EK-KDJ1A-UG-001

KDJ11-A
CPU Module
User's Guide

| Prepared by Educational Services

of
Digital Equipment Corporation

Preliminary Edition, January 1984
1st Edition, May 1984

© Digital Equipment Corporation 1984,
All Rights Reserved.
Printed in U.S.A.

The material in this manual is for informational purposes and is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

The manuscript for this book was created using a DIGITAL Word Processing System and, via a translation
program, was automatically typeset on DIGITAL’s DECset Integrated Publishing System. Book production
was done by Educational Services Development and Publishing in Mariboro and Bedford, MA.

The following are trademarks of Digital Equipment Corporation.

dlilg]it]al)] MASSBUS RSTS

DEC MicroPower/PASCAL RSX

DECmate MINC-11 RT-11

DEChnet OMNIBUS TOPS-10
DECUS 0S/8 TOPS-20
DECsystem-10 PDP UNIBUS
DECSYSTEM-20 PDT VAX
DECwriter P/OS VMS

DIBOL Professional VT

EduSystem QBus Work Processor

IAS Rainbow

CHAPTER 1

w N —

(O S N
NN D BN — b — W PO =

ot ot bk bk bk bt et ek ek ek et e et et bk ok ek ek bt bk et ek ek bt bl ek ek ek ek ek ek pk
W b -

T T U U T T U T T T T T T T U U U U U T T T TS T T T T T I S U U U

N eI I R S N I I R e R N N N R R

CONTENTS

Page

ARCHITECTURE
DESCRIPTION L. e 1-1
GENERAL PURPOSE REGISTERSoooiiiiiieie oo 1-2
REZISLEIS ... -2
StACK POINLET ..., 1-3
Program CoUNTer........coueiiieiiee e 1-3
SYSTEM CONTROL REGISTERScoooiiiioe e 1-3
Processor Status Word (Address: 17 777 776) coooeooeeoeeeeeeeeeeeeeeeeee, 1-3
CPU Error Register (Address: 17 777 T66) ...c..ccooireereoeeeseeeeeeeeeeeeeeeeoeee 1-5
Program Interrupt Request Register (Address: 17 777 772)cccccvvcvcecciiaerenn. 1-6
Line Time Clock Register (Address: 17 777 546) ...c.ocoooeioeeeeeeeeeeeeeeeeen, 1-7
Maintenance Register (Address: 17 777 T50) oo, 1-7
INTERRUPTS ... e 1-8
MEMORY MANAGEMENT ... 1-10
MemOory MapPing........coooeiiiiiiiie oo e 1-10
16-Bit MaPPINgcooooiiiiiiieiieieeec e, 1-11
J8-Bit MaAPPING ...ttt e, 1-11
22-Bit MaPPING ...vviieiiiiieeeies e 1-12
ComPatiblityc.ooviiiiiiiiic et 1-12
Virtual AddresSIngcoovvioioiiiiiioc e 1-13
Interrupt Conditions Under Memory Management Control............c..cc......... 1-13
Construction of a Physical Address.............ocoooeivoimoeiooeeeeeeeooee 1-14
Memory Management RegiStersocooviiiiiiiiiiii oo 1-16
Page Address RegISIErS.....ccuiiiiiiiiiiio oo 1-18
Page Descriptor ReGISTErcoooovviiiiiiiiiiis e 1-18
Fault Recovery RegIStersocvviiiiiiiiiiic e e 1-18
Memory Management Register O (Address: 17 777 572) coccoveiieeen 1-20
Memory Management Register 1 (Address: 17 777 574).c.cccoovvvnen... 1-21
Memory Management Register 2 (Address: 17 777 576) ...cvveevevenn... [-21
Memory Management Register 3 (Address: 17 772 516)...ccccceevvnnnn... 1-21
Instruction Back-Up/Restart Recovery..........ccooovvmiieeeoeee 1-22
Clearing Status Registers Following AbOrtccocoovovviocceioe] 1-22
Multiple Faults ... 1-22
Typical Usage EXAmMPIEsooooioiiiiiieiiiiiie e, 1-22
Typical Memory Pageccooooiiioiiiiiii e 1-23
Nonconsecutive Memory Pages............c.ocooooiiiooiiieeeeoce oo 1-25
Stack Memory Pagesccoioioiiiiiii oo 1-26
TIANSPATEIICY ...ttt e, 1-27

iii

BB — = —
W o — o —

™oLt —

W N —

S T I I I I NN N A A T SN
B -

bttt et it ot bt et b ek bt et et et ek ek bk

CHAPTER 2

B 1 b 1 1o b b —

[19 19 19 19 19 19 19 10
Ny—‘_-—-‘»—n-—t
B b —

b
N N
s W

2.2.6

19 19 19 19
N o Bt

9 1o
3

r

o
O oo

2.9.1
292
293
2.10
2.11
2.12
2.13

CONTENTS (Cont)

Page
CACHE MEMORY ...ttt ettt s e 1-27
|50 1 TP SOOI PPRRPPP PP 1-29
Parity EITOTS ..o 1-29
Multiple Cache Parity Errors.....c.ccoocovivviieieniiieeeee e 1-30
Memory System REIStETScoiiiiiiiiiiieciie ettt 1-30
Cache Control Register (Address: 17 777 746)....cccooveveiinneaieieene 1-30
Hit/Miss Register (Address: 17 777 752) i, 1-32
Memory System Error Register (Address: 17 777 744)....ccccccveveiennnenn. 1-32
FLOATING-POINToootiiiiitieiieitee ettt 1-33
Floating-Point Data FOrmats.......cccovvieiiiiiiiiieiiiiieec e 1-33
Nonvavishing Floating-Point Numberscccoocoeiiiiiiiiniiie 1-33
Floating-Point Zero.........cccoiviieoieie e 1-33
The Undefined Variablecccoooeiiiiiiiiiii e 1-33
Floating-Point Data............covvviieiiirieiee e 1-34
Floating-Point RegIStErscccoiiiiiiiiiii e 1-35
Floating-Point Accumulatorcccooiiiiiiiniin e 1-35
Floating-Point Status Register (FPS) ..., 1-35
Floating-Point Exception Registers (FEC, FEA)ccccoociiiiien 1-38
Floating-Point Instruction Addressing........ccoooiiviiiiiiiiiiiiiiicieieciee e 1-38
ANCCUTACY .vvtee ettt et e e e e et e e e te e e esate e e eebe e e ase e e eate b e aaabe s e e tbbeeeenbtbeesanenens 1-39
SOFTWARE SYSTEMS ... oot 1-40
INSTALLATION
INTRODUCGTION ..o ettt e et 2-1
CONFIGURATION ..ottt ettt 2-1
POWEr-UP OPLIONS ..ottt 2-2
Power-Up Option D ..o 2-2
PoOWer-Up OPHON 1...ooiioiieiiieiieieie et 2-2
Power-Up OPLion 2. ..ot 2-2
Power-Up OPHon 3. . 2-2
HALT OPtON ..ottt e 2-2
BOOt AQAress ..ottt s 2-3
Wakeup DiIsableooooiiiiiii e 2-3
BEVNT Recognition.......ccocovveveinieiieneiniiicaceceees e e 2-3
Factory ConfigUurationocoiiiiiiiiiiieeie et 2-3
DIAGNOSTIC LEDS ... oo 2-4
MAINTENANCE REGISTER (ADDRESS 17 777 750) oo 2-6
POWER-UP SEQUENCEoooiiiiiiiee e 2-7
POWER-DOWN SEQUENCEoiiiiiiiii et 2-8
EXIT MICRO-ODT SEQUENCEoooiiiiiii e 2-8
MODULE CONTACT FINGER IDENTIFICATIONccooooiiiiiiiiiiice 2-9
HARDWARE OPTIONS ...ttt e e 2-10
LSI-T1 OPIONS ...oveiivieiit ettt et 2-10
Restricted LSI-TT OPtioNS ..vveiieeiieeie et 2-12
EICLOSUIES 1.ttt tveeeite sttt e e e e 2-14
SYSTEM DIFFERENCES. ..ot 2-15
KDJTT-A SYSTEM ..ottt 2-16
MODULE INSTALLATION PROCEDURE........ccocciiiiiiiiiiiiiiiice 2-16
SPECIFICATIONS oottt et ettt e eeeenae e 2-18

iv

CHAPTER 3

[PS VS VSN
W —

O WA UnNB W — o e—

»
S

3.6.2
3.6.3
3.6.4
3.7

CHAPTER 4

4.1
4.2
4.2.1
422
4221
4222
4223
4224
4.2.2.5
4226
422.7
4228
4.2.3
42.3.1
4232
4233
4234
4235
4.2.3.6
4.2.3.7
4238
4239

CONTENTS (Cont)

Page
CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)
INTRODUCTION ...ttt 3-1
TERMINAL INTERFACEc.oooiiioi e e, 3-1
CONSOLE ODT ENTRY CONDITIONSooiiiiiiitie oot er e 3-1
ODT OPERATION OF THE CONSOLE
SERIAL-LINE INTERFACEccooiiiieii e, 3-2
Console ODT Input SEQUENCE......c.ovviivieriiieieie e 3-3
Console ODT Output SeqUENCE........ccoveieviiiiieieeiier e, 3-3
CONSOLE ODT COMMAND SET ..ot e, 3-3
J(ASCIL 057) = SIaSH ..ot e, 34
<CR> (ASCII 15) — Carriage Returncc.cocoovoviiiiiiceceeeeeeeee e, 3-5
<LF> (ASCII 12) = Line Feedcooooviiiiiieoeeeeoe e 3-5
$ (ASCII 044) or R (ASCII 122) - Internal Register Designator.................... 3-6
S (ASCII 123) - Processor Status Word Designatorccoocveevieiireeenennnnn. 3-6
G (ASCIT 107) = GOureieieeeiee e e 3-6
P (ASCII 120) = Proceedoovviiueiiiiiiiieeeeceeeeeeee e 3-7
Control-Shift-S (ASCII 23) — Binary Dumpccocoooiiviniiiioceeeece e 3-7
Reserved Commandoovivuiiiiiiiiiie e e 3-7
KDJ11-A ADDRESS SPECIFICATIONcooiiiiiiiieiceeee e 3-8
Processor /O Addresses........o.ooiiviviriioiii i 3-8
Stack Pointer Selectioncccciiiiiiiiiiiii et 3-8
Entering of Octal DIgits.....ccoooeiiiiiiiiiiii e 3-8
ODT TIMEOUL. . cvviieteiit ittt ettt ettt e eee s ens 3-9
INVALID CHARACTERS. ... 3-9
FUNCTIONAL THEORY
INTRODUCTION L. 4-1
DCJ11 MICROPROCESSORooviiiiiiiiiiiies oo 4-3
Initialization (MINTT L) ccooooiiiiiiiicee e 4-3
OUEPUL SIENALS..c..iiviiiiieiee e 4-3
Address Input/Output (ATIO<03:00> H)......ooooooviiiiiiiiee 4-3
Bank Select, (BST H, BSO H) ...oovoiiiiiiieeeee e 4-4
Address Latch Enable (ALE L)ooooiviiiiie e 4-5
Stretch Control (SCTL L) ..o 4-5
Strobe (STRB L) ..oiviiiieiiieece et 4-5
Buffer Control (BUFCTL L).....oooiiiiio e 4-5
Predecode Strobe (PRDC L)oo 4-5
Clock (CLK H) . ooiiiiiie e 4-5
INPUt SIZNAlS....ooiiiiiie e 4-5
MISS L e 4-5
Data Valid (DV L)oo 4-5
Continue (CONT L) oot 4-5
DMA Request (DMR L) ... e 4-5
TIRQ <07:04> H oo e 4-5
HALT H oo 4-5
EVINT H oo e 4-6
PWR FAIL L oo e 4-6
PARITY Lo e 4-6

CONTENTS (Cont)

Page
4.2.3.10 ABORT Lo, 4-6
42311 FPA FPE L ool e, 4-6
4.2.4 MDAL <21:003 ..ot 4-6
4.2.5 DCITT TIMNZ. ¢ttt ettt er e, 4-6
4.2.5.1 INOP e, 4-6
4.25.2 Bus Read ..o, 4-7
4253 BUS WITLE ..ot 4-8
4254 General-Purpose Readococooiiiiiiiii e 4-9
4255 General-Purpose WIIteoooveviieioicieeee e, 4-10
4256 TACK e s 4-10
43 STATE SEQUENCERcocciiiiiiiiiieee e 4-10
4.3.1 DCTT Lottt 4-12
432 LSI-TT BUS SIZNALS .ottt e 4-12
433 LSI-T1 BUS RECEIVETS ..o, 4-12
434 LSI-11 Bus TranSmitterSccooioioiiieeiiet e 4-12
4.3.5 Maintenance RegiSter......coooiviiiiiiiiiiii e 4-12
4.3.6 © U DMA REEISEI ..o e 4-12
4.3.7 Cache Data Path.......coooiiii e, 4-12
4.3.8 CaChe MEIMOTIY ...eoiiiiiie et 4-13
439 Floating-Point AcCeleratorocooviviiiieiiii e 4-13
4.3.10 Bus Trafficoooii e 4-13
4.3.10.1 Address BUSINZ......oviiiiiiiiiiiiie e 4-13
4.3.10.2 Read Data . ..ot 4-13
4.3.10.3 WIIE Data.cooiiiiiiiiiece e 4-13
4.4 CACHE DATA PATH ..ottt 4-17
4.4.1 DCJIT1 Input SIZNAIS ..ccuoiiiiiiiiiieieceeee e 4-17
44.2 State Sequencer INPULS........ccoocoiiiiiiiiiiiiicc e 4-17
443 System Memory Parityccoocooiriioiiiiiioieeeee e 4-19
444 Cache Memory Parity.......occoociiiiiiiiiiiic e 4-19
445 TIMEOUL ...ttt en e 4-19
4.4.6 Cache Control RegISter.........oooeiiiiiiiiieiii et 4-19
4.47 Memory System Error Register............ooooviiiiiieiiciiceec e 4-19
448 LTC REZISIET ..ottt 4-20
4.49 FIUSh COUNLET .ottt 4-20
4.4.10 AdAress REGISLET .ovuvoiiiieieiiiiiecieee e 4-20
4.4.11 CDP OULPULS ...ttt ettt 4-20
4.5 CACHE MEMORY ..., 4-21
4.5.1 Cache Data.....ccooiiiiiiie e 4-22
4.5.2 Data Parity LOZIC. ... ccciiiiiiiiiieiicie e 4-22
4,53 Parity Data........ooooiiiiii e, 4-23
4.5.4 TAG RAM et 4-23
4.5.5 Hit/MISS LOZIC ...viviitiie ittt 4-23
4.6 BUS RECEIVERS ... 4-24
4.7 BUS TRANSMITTERS ... 4-25
4.8 OUTPUT CONTROL ..ottt 4-26
4.9 INPUT CONTROL ..ottt 4-26
4.10 DMA MONITOR REGISTERcoooiiioiiiiiiece et 4-27
4.11 INITIALIZATION/MAINTENANCE REGISTERcooooooiiiiiiiie, 4-27

4.12 STATUS LEDS ..ottt 4-29

vi

CHAPTER 5§

—_— i —
w0 —

A A LR R R R RV
(oo Weo WUV, IV, IV, RN L US I VS IS I UL S U ISR N
W b —

w
Non
BN —

5.6.4.1
5.6.4.2
5.6.4.3
5.6.4.4
5.6.5
57
5.7.1
5.7.2
5.7.3
5.7.4

wh
~J
W

Lh Lh h L1 D 1 L h b

90000000 NN NN

w 00 00 00 80 00 ~1 O
W —

o b —

CHAPTER 6

Do o
B ot —
b —

CONTENTS (Cont)

Page
EXTENDED LSI-11 BUS
f
INTRODUCTION ..ottt 5-1
BUS SIGNAL NOMENCLATUREcooiiiiiiiieeeee e 5-3
DATA TRANSFER BUS CYCLES ... 5-3
Bus Cycle Protocol........ooociiiiiiiiiieiiiic it 5-4
Device AdAresSiNg.. ... eoeriieiiiieeie ettt 5-4
DIATT e et 5-5
DATO(B) oottt 3-7
DATIO(B) ...ttt 5-10
DIRECT MEMORY ACCESS (DMA) . ..ottt 5-12
INTERRUPTS et e 5-15
DEVICE PIIOTILY .oooiiiiiiiie e 5-15
Interrupt Protocol.......coooiiiiioi e 5-16
4-Level Interrupt Configurationsccccoeeiieeeiiioiiee e 5-19
CONTROL FUNCTIONS L.t 5-20
Memory Refresh ... 5-20
HAIt o e 5-20
INItAlIZALION ..ottt 5-20
POWET SEALUS....eiiiiitie ettt et ene e 5-20
BDCOK H .o 5-20
BPOK Heuoooooee e 5-20
POWET-UD .o 5-21
POWEr-DOWN ..o 5-22
BUS ELECTRICAL CHARACTERISTICS.........ccooiiiiieieeee e 5-22
Signal-Level Specificationcccooviiiiiiiiieiie e 5-22
AC Bus Load Definitioncccoooviioiiiiiiiiiiiii e 5-22
DC Bus Load Definitionccocoeiiiiiiiiiiiiiciii e, 5-23
120 Ohm LSI-TT BUS .cviiiiiiiciece et 5-23
BUS DIFIVELS ...oeiiiiiiiie et ettt ens s 5-23
BUS RECRIVETS .iviiiiiiiiiietcce e 5-24
KDJ11-A Bus Terminationccoeoviieiieeiieeeee et 5-24
Bus Interconnection WIrngcoocoiiviviiiieniieeie e 5-25
Backplane WIring.......ccoccoiioriiiiiiieiieee e 5-25
Intrabackplane Bus Wiring.........cccooccviiiiiiiioiice e 5-25
Power and Ground.........ccooco i 5-25
Maintenance and Spare Pinscooooiioiiiiiii e 5-26
SYSTEM CONFIGURATIONS.......coiiiiiiiiiiet e 5-26
Rules for Configuring Single-Backplane Systems...............cccoovevviiiiiieicnninn 5-27
Rules for Configuring Multiple-Backplane Systems............cc..oooooevvreoverenn. 5-27
Power Supply Loadingccccoovviiiiiiiiiiiiiieee e 5-29
ADDRESSING MODES AND BASE INSTRUCTION SET
INTRODUCTION ...ttt et 6-1
ADDRESSING MODES ..ot 6-1
Single-Operand AddresSiNgooooeieieiiviiieeeeeeeeeeeeeeeeeooeooo 6-3
Double-Operand Addressing........o.ooviieiiiioie oo 6-3

vii

6.2.3

6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.4

6.2.5

6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4

CONTENTS (Cont)

Page
DiIrect AdAreSSINg......veevereiiiiieiieeieee ittt ettt et ettt 6-4
RegiSter MOde......coiiiiiiiiciie e 6-6
Autoincrement Mode [OPR (Rn)=]covvvviiiiiiiiiiiiicieee e 6-7
Autodecrement Mode [OPR-(RN)]cccoooiiviiiiiiiiiiiiieieeeecee 6-9
Index Mode [OPR X(RN)]....coouviiiiiieeieie e 6-11
Deferred (Indirect) Addressingcoocovveeieiiiieiiiieiicieeceece e 6-13
Use Of The PC as a General-Purpose Registercc.ccoovveeeiiievieinniicicen.. 6-17
Immediate Mode [OPR #1n,DD] ..cooooiiiiiii e 6-18
Absolute Addressing Mode [OPR @#A].........coooooiiiieiiieieece 6-18
Relative Addressing Mode [OPR A or OPR X(PC)]..c....coovvvvieiinnnnne. 6-20
Relative-Deferred Addressing Mode
[OPR @A or OPR @X(PCO)]....coeiiieiiiiie et 6-20
Use Of The Stack Pointer as a
General-Purpose ReGISTEr.......ooovviiiiieiiiiiiieeieccie e 6-21
INSTRUCTION SET ...ooiiiiiii ettt 6-21
INSruCtion FOIMALS ...coivvviiriiiiiierieiiiec et 6-22
Byte INStrUCtIONS.vviiiiiii et 6-26
List Of INStIUCHIONS c.vvivvietieiiiiee ettt ee e 6-27
Single-Operand INSTrUCIONSoiviiviiiiiiiii ittt 6-30
GENETAL ..iiiiiiii it et 6-31
Shifts And ROALESooiveieieeeee e 6-36
MURIPLE-PreCISION ...ovvveiiiieiieeee e e 6-42
PS Word Operatorsooouiiiiiiiieceeeeeeeee e 6-45
Double-Operand INStructions...........coiveriiiiriiienie e e 6-46
L€ 131 1<) 1 USRS USRS 6-47
LOZICAL ..ttt e 6-53
Program Control INStructions.........coooeviiiiiiiiiiii e 6-56
BranChesooove e 6-56
Signed Conditional Branchescoocvviiviiiiiiiiiiiiicce e 6-61
Unsigned Conditional Branches...........c.c.cocoeeiiiiiiieii e 6-63
Jump and Subroutine INStructions.............cooceveeivieiieiie e 6-65
TS ittt ettt ettt ettt e e e e 6-69
Miscellaneous Program Control...........cocoeviniinniiniiiinieii e 6-73
Reserved Instruction Traps........ccooiiieiiiiieioeee e 6-76
TTACE TTAD coeiiieiiiiie e e ae e e e e e e e e etre e e e s ananers 6-76
Miscellaneous INStrUCtiONS.cviieoieriiiiiieeie et 6-77
Condition Code OPEratorS..........ccoivriiieiiiie ittt eette e et 6-80
FLOATING-POINT ARITHMETIC
INTRODUCGCTION ...ttt ettt nn e ene e e e 7-1
FLOATING-POINT DATA FORMATS................ e et 7-1
Nonvanishing Floating-Point NUmMDETS...........occvveviiiiiiiie e 7-1
F1oating-PoOINt ZeT0cccooiiiiiie e 7-1
Undefined Variables.......cooioiiiiiioiiicc e 7-2
Floating-Point Dataccoooiviiiiiiiiiic e 7-2
FLOATING-POINT STATUS REGISTER (FPS)...cccoiiieiiieiiiieieee, 7-3
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS...................... 7-6
FLOATING-POINT INSTRUCTION ADDRESSINGccccooviiiiiiiiniiiiicis 7-7

viii

7.6
7.7

CHAPTER 8

—— =t I N LR Wi —
B — M — R —

CHAPTER 9

CONTENTS (Cont)

Page
ACCURACY ettt 7-7
FLOATING-POINT INSTRUCTIONS ..ot 7-8
PROGRAMMING TECHNIQUES
INTRODUCTION ...ttt 8-1
POSITION-INDEPENDENT CODEcccooiiiiiiiiiieeece e 8-1
Use of Addressing Modes in the Construction of
Position-Independent Code.........oocooiiiiieiiiiiiiiiiiei e, 8-1
Comparison of Position-Dependent and
Position-Independent Code...........ccooioeiiiiioiiiii e 8-3
STACKS ettt 8-5
Pushing onto @ Stackocooiiiiiii i 8-6
Popping from a Stackcoooioiiiiii e 8-6
Deleting Items from a Stack........c.ccocoiviiiiiiiiniiii e, 8-7
SHACK USES ...ttt 8-7
Stack Use EXaMPIES.....cc.ooiiiiiiiiiieiieeiiice e 8-8
Subroutine LINKageooovviiiiiiiii ettt 8-10
Return from a Subroutinecccocoovviciiiiiiiiiicce e 8-10
Subroutine Advantages..........coocvvveiiiiiioiiiiiie e 8-10
TIECITUPLS ..ot 8-11
Interrupt Service ROUHINES.......c..cooiiiiiiiiiiiiec e 8-11
INESTINE ettt ettt et e e e 8-11
REENIIANCY ..o 8-12
Reentrant Code.......oooiiiiiiiiiiis e 8-13
Writing Reentrant Codecccoooiiiiioioiiiiiciecceeeece e 8-14
COTOULIMES ...ttt ettt ettt ettt e et e et eeeees e 8-14
Corouting Callso.eoiiiiieiiie e 8-15
Coroutines Versus SUBIOULINEScocveieiiiviierie e 8-16
USING COTOULINES.eiiiiiieie ettt 8-17
RECUTISION ...ttt et 8-19
ProCessOr TTaPS .ceiiiaiiie ittt 8-20
Trap INStrUCTIONSocviiiiieiee e 8-21
Use of Macro Calls.......coooiiiiiviiiiiiieieineieeee e 8-22
Conversion ROULINES.........coiviiiiiiiiiieet et 8-22
PROGRAMMING THE PROCESSOR STATUS WORDc.ccoooiiii, 8-26
PROGRAMMING PERIPHERALSccoooiiiiiiiiiiec e 8-27
PDP-11 PROGRAMMING EXAMPLES. ..o, 8-27
LOOPING TECHNIQUES ..o 8-34
BOOT ROMS AND DIAGNOSTICS
INTRODUCTION ..ot 9-1
MXVIT-B2 ROM SET ..o, 9-1
POWET-UD ...t 9-1
Automatic BOOtINGoooviiiiiiiiiici e 9-2
Manual BOOtINGcociiiiiiiiiiie et 9-2
Error and Help MesSsages..........cccocociniariinrininiieiee oo 9-3
DIAGNOSTICS ettt 9-6
DIAGNOSTIC EXAMPLE ..o 9-7

ix

APPENDIX A

APPENDIX B

Figure No.

1 1 1 1 1 1} 1 1 1 [} 1 1 1 [} 1 1 1} 1 1 1 1] 1 1 1 1] 1 1
—ahbhabLib—LbbLbiLbbLLbLbbbba L L L L L L L L Lol
S S OO AR LI — D OO0 Ao — O

I S NG Y NG T N Y N N N Y N5 0 G gV U G0 G GGG Gy GG G Gy G G G G G G G U VU

CONTENTS (Cont)

Page
INSTRUCTION TIMING
GENERAL....coo it A-1
BASE INSTRUCTION SET TIMINGcocoooooiiiiiieiiiceeeee e, A-1
FLOATING-POINT INSTRUCTION SET TIMINGcocoooviiiiiiieieeereeee, A-6
PROGRAMMING DIFFERENCES
FIGURES

Title Page
Programming Model............coooiiiiii e 1-2
Processor Status RegiStercouovuiieiiviiiiiiiiieeeceeeeee e 1-3
CPU EITOr REZISTET.....cviiiiciiiiecieece et 1-5
Program Interrupt Request Register (PIRQ).........ccooviiiiiiiiiiiic e 1-6
Line Time Clock Register (BEVNT) ... 1-7
Maintenance REZISTErooiiiiiiiieie e 1-7
[8-BIt MAPPIINZ . ..etiiiiiiiiiit ittt ettt ettt e en e e ens I-11
22-Bit MAPPINE.ccueoienieiiiii ettt ettt 1-12
Virtual Address Mapping into Physical Address............cooooveviviiieiiiiiicee 1-13
Interpretation of a Virtual Address...........cocoovvieiiiiiiiiiiiiicciece e 1-14
Displacement Field of a Virtual Address...........cccoooevioiiiieiiiiiiiicceee e 1-14
Construction of a Physical Addresscoccooiieeiiiiiiiccceceeee e 1-15
Active Page RegISterS......c.oiuiiiiiiiiieiic e 1-16
Page Address Register (PAR)......ccccooiiiiiiiiiiiie e 1-18
Page Descriptor Register (PDR)ccoooiiiiiiii e 1-18
Memory Management Register 0 (MMRO)........cccocoiiiiiiiiiiiiii e, 1-20
Memory Management Register 1 (MMR1).......cccoooiiiiiiiiiiiii e 1-21
Memory Management Register 3 (MMR3).......cooiiiiiiii 1-21
Typical Memory Pagec.coovrieiiiiiiiiiiiiceee e 1-23
Nonconsecutive Memory Pages..........ccooiviiiioeiiiiiieiiiicieceeeeeeee e 1-25
Typical Stack Memory Page........cccooviiiiiiiieiioicececeeeee e 1-26
Cache Physical Addressccoocioieiiiiioiiiiceeeee e 1-27
Cache Data FOrMat......ccoooiiiiiiiiicicccce e e 1-27
Cache Control Register (CCR)ccoiiiiiiiiiiiei e 1-30
Hit/Miss Register (HMR) ..ot 1-32
Memory System Error Register (MSER)c..coooovoiiiiiii 1-32
Single-Precision FOrmMat.........o.oovioviiiiiioiiiiiecceeeee e 1-34
Double-Precision Format.................c..ccoce.. e ettt et e e eaes 1-34
2’s Complement FOrmat........cocooiiiiiiiiiiiiieiic e 1-35
Floating-Point Status RegiSter.........oocoiviiiiiiiiiiice e 1-36
KDJT1-A Jumper LOCAtIONS.ccvieiiieiieiiitieeiie et 2-4
Maintenance REGISTETooviiiiiiiiiiiiic ettt 2-6
KDJ11-A Power-Up SEQUENCE.......ccoviiieiieeiieiiieiie ettt 2-7
KDJI1-A Power-Down SEqUENCE........c..couiiiireiiiiiiieeitieiie ettt 2-8
Micro-ODT EXit SEQUENCEccvoiviiiiiviiiiieee ettt 2-8
KDJ11-A Module COontacts.........cceeiieiieiieiiiecieeeiicie ettt 2-9
Functional Block Diagram.............ccciiiiiiciinioinioiiiecie e 4-2

Figure No.

S A A A A A A AR A AR AP (VA
NN B — O

AN DA NNy b b L th n

FIGURES (Cont)
Title

DCJITT-A MICTOPIOCESSOT c.vviieiiiii et ee ettt ee et e e et e e e et e e eaeeeas
INOP TransaCtioN.......coiiiiieiieieeitiiee ittt see ettt eie ettt ebte st et as e teeeseeaseneeas

Bus Write Transaction.......oocoiiiieiiie ittt
General-Purpose Read Transactionccocveeiiiiioiiiiiioiiiie e
General-Purpose Write Transactionccoeeeiioiiiioiiiiicce e
Interrupt Acknowledge TransaCtionc...cooceeviiiiiiiiniiiiit e
SHALE SEQUENCET ...oee ittt et e e ettt
Address Traffic Pattern........ccoocooioiiiiiiiii e
Read Data BUSING......cccoviiiiiiiiiiee e
Write Data BUSINZooiiiiiit e
Cache Control LOZIC......cooiiiiiiiicci i
CaAChE MEIMOTY ooiiiiiiiii et e
Cache Memory Physical Address........coooiioiiiiiiiiiiiiei e
CAChE DALA cvviiiiiic e
Cache Data Parity LOZIC. ..ot
Cache HIT/MISS LOZIC.....ioiiiiiiii ettt
KDJT1-A Bus RECEIVETS ..ottt

DCJIT1-A Output Control.......ccooeiiieiiiiii it
DCITT-A Input Control......coociiiiiiiiii e
DMA Momtor REZISIETooui i
Initialization/Maintenance Register LOZIC.........ccooviiiiiiioioiie e
Status LEDS LOZIC ..ioviiiiiiiiit ittt
DATI BUs CyCle ..o
DATI Bus Cycle Timingccviiviiiiitiirieieeeie et
DATO or DATO(B) Bus CyCle. ..o,
DATO or DATO(B) Bus Cycle Timing.....cc.cocooviioiiiiiiiiiciieeeeeeeeecee e,
DATIO or DATIO(B) Bus CyCle...cuvioiiiiiiiiiiiioi e
DATIO or DATIO(B) Bus Cycle Timingc.occoovvioiiorieiieieiieeeieeeee e
DMA Request/Grant SEqUENCEcouoveiiriiaiiieii et
DMA Request/Grant Bus Cycle Timing.........coocoooviivieiiiiiiii oo
Interrupt Request/Acknowledge Sequencecccooooiiiiiiiviiiiici e
Interrupt Protocol TIMINgGccocoviiiiieieeieeiie e
Position-Independent Configurationcccccoeiiiiiiniiiensiiee e
Position-Dependent Configuration...........c.ocovovviiiieoiiieiiee e
Power-Up/Power-Down Timingoccoovviiiiiiiioiiiiioieceeeeeeeee e
Bus Line Terminationcc.ooiiiiiioiiieiieieeis et
Single-Backplane Configurationccocoooioviioiiiiiiiiecc e
Multiple-Backplane Configuration..........e..oovvviiiiioiiiiiiiiiei e
Single-Operand AddresSing.........co.vicviiiioiioie e
Double-Operand Addressing...........oovvivverereeiiieiieiee e
MOAE O REZISTET ...t
Mode 2 AULOINCTEIMENTovivitiiiieiceiie et

xi

Figure No.

PO DO DD DO DD et et et et et et et e e O

WO — OO TN W — O

[exNe N Ne e N N o) He e o) o e o e e e

OO Q0 00 OO OO0 00 ~1 ~J1 ~J 1
N B L) — B

FIGURES (Cont)

Title Page
COMB R4 Complement BYtecccooeuiiiiiiiiiieiiiieccce e, 6-7
CLR (RS5)H CLEAT ..o, 6-8
CLRB (R5)+ Clear BYTE ..oouooieieeiieiiieiiieee e 6-8
ADD (R2)+H,R4 Add ..o 6-9
INC —(RO) INCT@MENT ..ot e 6-9
INCB —(RO) Increment Byteccoooviiiiiiiiiiiioeee e 6-10
ADD —(R3),R0O Add ..o, 6-10
CLR 200(R4) ClIaT.....c.eiiiiiiiieieiiee ettt 6-11
COMB 200(R 1) Complement BYte.........cccoooiiiiiioiioeeeeeeeeeeeeeee e 6-12
ADD 30(R2),20(RS5) Add ..o 6-12
Mode 1 Register-Deferred...... ..o 6-13
Mode 3 Autoincrement-Deferred ..o 6-13
Mode 5 Autodecrement-Deferredooooiiiiiiiii e, 6-14
Mode 7 Index-Deferred ..ot 6-14
CLR @RS CleaT .ottt 6-15
INC @(R2)4+ INCrEMENT ...ooviiiiiiii e 6-15
COM @—(RO) COMPIEMENT ..o 6-16
ADD @1000(R2),RT Add...c..coiiiiiieeeeee e, 6-16
ADD #10,RO Add ..o 6-18
CLR @ #1100 CIEAT ..o e 6-19
ADD @ #2000 AdG ..ot 6-19
INC A INCTEMENT ..ottt 6-20
CLR @A CIRAT ...ttt 6-21
Single-Operand GrOUPcicviiieiiietiit e 6-22
Double-Operand Group ©.....ocoociiiieiie i 6-22
Double-Operand Group 2 ...t 6-22
Program Control Group Branch...........occoooviiiiiiiee oo, 6-23
Program Control Group JSR ... 6-23
Program Control Group RTS. ... 6-23
Program Control Group Traps........cccccoviiiiirieeiiee e 6-23
Program Control Group Subtractc..oocciioeeiiiiiieieiee e 6-24
MaarK e, 6-24
Call t0 Supervisor MOAe.......c.oiiviiiiiiiiii e 6-24
Set Priority Level .o 6-24
OPEIAte GIOUP ...ttt ettt et 6-25
CondItIoN GIOUPcviiiiiiiieiiee ettt b ettt aene e 6-25
Move To And From Previous Instruction/Data Space Group...............cccovevvennn. 6-25
Byte INSLIUCHIONS ..o.uiiiiiiiiiieice e e 6-26
Single-Precision FOrmat.........coocooiiiiiii e 7-2
Double-Precision FOrmatcc.ooooiiiiiiiieicee e 7-2
2’s Complement FOrMAt..........cooooiioiiee oo 7-3
Floating-Point Status RegiSter.........ooooiiiioiiiiii e, 7-3
Floating-Point Addressing Modes..............ccoooioiiiioiiiieee e, 7-9
Word and Byte Stacks........coocioiiiiiiioiiiiiei e, 8-5
Push and Pop OPerationscccovieiotiouioriiiiceieee e, 8-6
Byte Stack Used as a Character Buffer.....................oocoooiiii e 8-9
JSR Stack Condition EXample........ccoooeiiiiiiiiiiiiiiiiee e 8-10
Nested Interrupt Service Routines and Subroutines..............cccoevioevieiiiiiriieeieee. 8-12
Reentrant ROULINES ...coooviiiiiiiiiiii e 8-13

xii

R R R R R N O R RO T T e e e e T T T T T T T T T e T T
o OO0~ NWnN B Wb — O

N W =N — = OO0~ N R WHN — = e = et et et et e = D 00 1 ON U 02—

Bh bR D R WWNMNDMIMNMNMININD DN D — o e e o et et et et el et b it et et bt et et

FIGURES (Cont)

Title Page

Sharing Control of @ ROULINEoooooiiii e 8-13
Corouting EXAMPIeccviiiiiiiiiiiii e 8-15
Coroutines Versus SubrOULINESc.ovviiiiiiiciiiiis et 8-16
Corouting Pathi......ccoooiiiiiiieeie e 8-17
Corouting INtEraCtiON.......c.oeuiiutieiiieeiee ettt 8-18
Recursive Routine FIOW ... 8-19

TABLES

Title Page

General-Purpose REZISIErSooviiiiiiiiiiicii ettt 1-2
Stack Pointer (PSW 15, 14 08 13, 12) oo 1-3
Processor Status Bit DeSCIIPLioNnc..oivieiiiiiiiiiieieiie et 1-4
CPU Error Register Bit DeSCriptionoouieeiiiiiieeiiiiie e, 1-5
PIRQ Bit DESCIIPLIONS ...ttt ettt ae e 1-6
Line Time Clock (LTC) Register Bit Descriptions.........c...occoooivioiiiiiiiieeieeee. 1-7
Maintenance Register Bit DesCription.............ooovviiiiiiieeiiiiiciie e 1-8
ASYNChronous INtEITUPLS.......coeoiiiieitiiiieieeie et 1-9
SYNChronoUS INEETTUPLS ...cviiiieiiie ettt 1-10
KDJT1-A Compatibility ...c.ooooiiiii e 1-12
Memory Management Register Addresses..........ocoovvvieeieioiiiiiiciiiceie e, 1-17
Page Descriptor Bit Descriptioncccooieiiiiiiiiiii i 1-19
MMRO Bit DESCIIPUONS ..o 1-20
MMR3 Bit DESCIIPLIOMN . ..c..iviiiiiieiie ettt e 1-22
Cache Response MatliX......ooooiiiiiiiiiiii s 1-28
Cache Parity EITOrS....ccooiiiiiiii e 1-29
Cache Control Register DeSCriptionovieiereeviireiieieeieesieeee e 1-31
Memory System Error Register.......coooiiiiiiiiiiiiieee e 1-32
Floating-Point Status Bit DesCription..........cccooiiiieiiiiiiiiiiieicec e 1-36
KDJ11-A Jumper Identification...........ccooiiiiiiiiiiiiiiiieicci e, 2-1
POWEr-UpP OPLIONSoiiiiiiii i 2-2
Factory Configurationc..ccocverieriiioiiiie et 2-3
LED FUNCHONS. ..ottt ettt 2-5
Probable System Failure..........occoooiiiiiiiiii e 2-5
Maintenance Register Bit DesCription.........ccooviiiiiiiicioiiiiii e 2-6
KDJI1-A Module Signals.........cccccooviiiiiiiiiiiiiie i 2-10
LSI-11 Compatible OPtions..........c.ociiiiiioeiieeiie e 2-11
Restricted or Noncompatible LSI-11 Optionsccoooooiiiiiiiiiiiiiiiis e 2-12
UPZrade CROICES.euviieiiiieii et 2-17
Console ODT Commands..........ccorveriiiiiiniiee ettt 3-3
Console ODT States and Valid Input Characters...........coc.oooivioiiiivieeiieeeeen . 3-9
ATO COGINE .ttt 4-4
Bank Select Address Codes.........ooivuiiiiiiiiiiii e, 4-4
General-Purpose Read Codesooviiiiiiiiiiiiiiic e 4-9
General-Purpose Write Codesc.oovivvivriiieiieeeiieeeececeee e 4-10
SEIECE COUES. ... vttt ettt 4-13

xiii

NolNoRNoEEN RV IRV IRV, SV, T S S S o
W — — B W — O 00 -3 N

[T [e 1
T o = = O OO NI NN BN —

P e gie Jie e g v ' ' '

o — O

]

TABLES (Cont)

Title Page
Output Select COASouoiiiieii e e 4-17
TAG PaTItY . oioiiiiiiiiiect et e rte e ettt e b et ee b sreeanees 4-17
Parity Error ACHON ..o e e 4-19
Abort and Parity RESPONSEvvviviviiiiiiieiiiee e e et svcae s sraae s snaae s 4-20
Summary of Signal Line FUNCHONS..........cccooiiiiiiiiiiii e S5-1
Data Transfer Bus CYCles.......oviviiiiiiiiiieiiii ettt e 5-3
Data Transfer Bus SignalS.....ccccociiiiiiiiiiiiie e snaee s a e 5-4
Position-Independent, Multilevel Device Requirements............occcvvveiiieoicieninennn 5-18
FPS REZIStEr BILS ...uviiiiiiiiiiiiiie ettt sie e e s anb e e 7-4
MXV11-B2 Boot Commandscovuveiiiiiiirie e sie e ee e 9-2
MXVI1-B2 ErTOr MESSAZES . .eeccvviiiiiieii ettt ettt e e erae e 9-3
KDJTT-A DIZZIOSTICS ..vieueiiiiiteiiie ettt ettt e ee et et ettt ettt etteeeeeaateeeneeesieeannees 9-7
Source Address Time: All Double Operandc.ccocoooiiiiiiiiinin A-1
Destination Address Time: Read-Only Single Operand..............cccocoveiiiieiiiinn, A-2
Destination Address Time: Read-Only Double Operand................ccoooeivevnninnnnn A-2
Destination Address Time: Write-Only ..o A-2
Destination Address Time: Read-Modify-Writeoooviiiiiiiiiiiiiieieee e A-3
Execution, FEtCh TIMeEoooiiiiiiiiiiiee e A-3
Instruction Execution Times (In Microseconds)ccccovevveiieiiiiiiiiei e A-6
Floating Source Modes 1=7.....ooiiiiiiiiiieeiieie et A-7
Floating Destination Modes 1=7......ccveiiiiiiiieiiiiiie ettt A-7
Floating Read-Modify-Write Modes 1=7 ..o A-8
Integer Source Modes 1=7ooiiiiiiiiiieiieit e A-8
Integer Destination Modes 1=7coooviiiiiiiiiiieiit e e A-9

KDJI11-A Programming Differences

Xiv

PREFACE

This user’s guide is intended to support the users of the KDJ11-A CPU module by providing them with
architecture, programming, diagnostic and configuration information. The architecture is described in
Chapter 1 and is supported by the functional theory description in Chapter 4. The diagnostics and booting
procedures are described in Chapter 9, and Chapter 3 provides the techniques used for on-line debugging
(ODT). The configuration requirements for both the module and system applications are described in
Chapter 2. Chapter 5 provides the information on the LSI-11 bus used in most system applications.

The KDJ11-A module uses the standard instruction set described in Chapter 6 and the floating-point
instruction set described in Chapter 7. Also described in Chapter 6 are the addressing modes which are
supported by the programming techniques described in Chapter 8. The detailed timing information is
provided in Appendix A and the differences between other LSI-11 and PDP-11 microprocessors are listed
in Appendix B.

XV

CHAPTER 1
ARCHITECTURE

1.1 DESCRIPTION
The KDJ11-A is a dual-height processor module for LSI-11 type bus systems. It is designed for use in
high-speed, real-time applications and for multiuser, multitasking environments.

The KDJ11-A module executes the complete PDP-11 integer and FP-11 floating-point instruction sets.
Full 22-bit memory management is provided for both instruction references and data references in three
protection modes — kernel, supervisor, and user. The KDJ11-A module is fully downward compatible with
older PDP-11 models which have 18-bit memory management or no memory management.

The three protection modes provide the ability to implement layered software protection. Memory
management separately manages each mode, allowing each mode to access different sections of main
memory. Furthermore, each section can have different access protection rights. Each mode uses a separate
system stack pointer that offers an additional degree of isolation. The protection modes are organized so
that a higher protection mode can always enter a lower protection mode, while a lower protection mode
can never accidentally enter a higher protection mode. Kernel mode has full privileges and can execute all
instructions. Supervisor mode and user mode, the two lower privileged modes, cannot execute certain
instructions.

The module interfaces to the extended LSI-11 bus and can address up to 4 megabytes of main memory.
Block mode DMA transfers, which are allowed on the extended bus, are supported by the KDJ11-A. The
22-bit extended LSI-11 bus is fully downward compatible with the standard 18-bit LSI-11 bus.

The KDJ11-A module supports console emulation (micro octal debugging tool or ODT). This allows users
to interrogate and write main memory and CPU registers as if a console switch panel and display lights
were available.

The module contains an 8 Kbyte write-through direct map cache (set size one, block size one). The cache
is transparent to all programs and acts as a high-speed buffer between the processor and main memory.
The data stored in the cache represents the most active portion of the main memory being used. The
processor accesses main memory only when data is not available in the cache.

The user-visible registers are shown in Figure 1-1 and are classified as general purpose, system control,
memory system, floating point and memory management registers.

Self-diagnostic LEDs are provided on the KDJ11-A module and indicate the status of the module and
system when the module is powered-up. The LEDs aid in troubleshooting module failures.

The KDJ11-A module can run RT-11 V5.1, RSX-11M, RSX-11M PLUS, RSTS/E, UNIX, and micro-
power PASCAL operating systems.

1-1

GENERAL PURPOSE

SYSTEM CONTROL

MEMORY SYSTEM

FLOATING POINT

MEMORY MANAGEMENT

RO RO’ KsP [psw] [¢] [cachecThL]
R1 R1’ sSSP

R2 R2’ usP [pra | [wmant] [mEmSsvserr]
R3 R3’

R4 re | [PC] [cPuERROR]
R5 R5’

[Fes | [Fec | [Fea]

[mvro | [wmri] [wwmr2] [wmmes]
ACCUMULATORS (64 BIT)
PAGE REGISTERS (32 BIT)
KERNEL (00) SUPERVISOR (01) USER (11)
PAR | PDR PAR_| PDR PAR | PDR

1.2 GENERAL PURPOSE REGISTERS

Figure

'

'

'

8 | SPACE AND 8 D SPACE

1-1 Programming Model

'

MR-11041

There are 16 general purpose registers (GPR), as listed in Table 1-1, but only 8 are visible to the user at
any given time. All these registers can be used as accumulators, deferred addresses, index references,

autoincrement, autodecrement, and stack pointers.

1.2.1 Registers

There are two groups of six registers designated RO-R5 and R0O’-R5’. The group currently being used is
selected by bit 11 in the processor status word (PSW). When bit 11 is set (1), the RO’-R5’ group is
selected, and when bit 11 is cleared (0), the RO-R5 group is selected.

Table 1-1 General-Purpose Registers
Register

Number Designation

0 RO RO
1 R1 RY
2 R2 R2
3 R3 R3
4 R4 R4’
S RS RS’
6 KSP SSP
7 PC USP

1-2

1.2.2 Stack Pointer

Register six (R6) is designated as the system stack pointer. There are three stack pointers available, one for
each corresponding protection mode. However, only one is visible to the user at a given time. The
processor status bits 14 and 15 select the active stack pointer used for all instructions except MFPI,
MFPD, MTPI, and MTPD. When these instructions select R6 as the destination register, bits 12 and 13 of
the processor status word select the active stack pointer. In both cases, the 2-bit selection code is encoded
as described in Table 1-2 to select the active register.

Table 1-2 Stack Pointer (PSW 15, 14 or 13, 12)

Code Selected R6

00 Kernel stack pointer (KSP)

0l Supervisor stack pointer (SSP)

11 User stack pointer (USP)

10 Illegal — User stack pointer selected

1.2.3 Program Counter

The program counter (PC) contains the 16-bit address of the next instruction stream word to be accessed.
It is designated as R7 and controls the sequencing of instructions. The PC is directly addressable by single-
and double-operand instructions and is a general purpose register, although it is normally not used as an
accumulator.

1.3 SYSTEM CONTROL REGISTERS

The processor status word (PSW), program interrupt request (PIRQ), CPU error register, line clock
register, and the maintenance register are designated as the system control registers. These registers are
used by the module to control system-oriented functions.

1.3.1 Processor Status Word (Address: 17 777 776)

The processor status word (PSW) provides the current and previous operational modes, the general
purpose register group being used, the current priority level, the condition code status, and the trace trap
bit used for program debugging. The PSW is initialized at power-up and is cleared with a console start.
The PSW register is defined in Figure 1-2 and is described in Table 1-3.

15 14 13 12 " 10 09 08 07 06 05 04 03 02 o1 00
1] T I
0 0 PRIORITY T N z \ C
|] 1 |
8 { I\ T J L% 7 J T \ r)
CURRENT PREVIOUS PRIORITY TRACE BIT CONDITION
MODE MODE LEVEL CODES

GENERAL PURPOSE SUSPENDED
REGISTER GROUP INFORMATION

MR-11042

Figure 1-2 Processor Status Register

Table 1-3 Processor Status Bit Description

Bit Name Status Description

15, 14 Current mode R/W Indicates the current operating mode and is coded as follows.
Bits
15 14 Mode
0 0 Kernel
0 1 Supervisor
1 0 Illegal
1 | User

13, 12 Previous mode R/W Indicates the previous operating mode and is coded the same as
bits 15, 14.

11 Register set R/W Selects the group of general purpose registers being used. When
the bit is set, the RO’-R5’ group is selected and when cleared, the
RO-R5 group is selected.

10, 09 N/A R Not used.

08 Suspended R/W Reserved.

information

07:05 Priority R/W Indicates the current priority level of the processor and is coded
as follows.
Bits
7 6 5 Priority Level
1 | 1 7
1 0 0 6
1 0 1 5
1 0 0 4
0 1 1 3
0 1 0 2
0 0 1 |
0 0 0 0

04 Trap* R/W The trap bit is inactive when it is cleared. When set, the proces-
sor traps to location 14 at the end of the current instruction. It is
useful for debugging programs and setting breakpoints.

03 Negative R/W Condition code N is set when the previous operation result was
negative.

02 Zero R/W Condition code Z is set when the previous operation result is
zero.

01 Overflow R/W Condition code V is set when the previous operation resulted in
an arithmetic overflow.

00 Carry R/W Condition code C is set when the previous operation caused a

carry out.

* The T-bit cannot be set by explicitly writing to the PSW. It can only be changed by the RTI/RTT instructions.

1-4

1.3.2 CPU Error Register (Address: 17 777 766)

The CPU error register identifies the source of any trap or abort condition that caused a trap through
location 4. Six separate error conditions are identified in Figure 1-3 and are described in Table 1-4. The
register is cleared by any write reference, power-up, or by console start. It is not changed by the RESET
instruction.

ILLEGAL HALT
ADDRESS ERROR
NON-EXISTENT MEMORY
1/0 BUS TIMEQUT
YELLOW STACK VIOLATICON
RED STACK VIOLATION

MR-9326

Figure 1-3 CPU Error Register

Table 1-4 CPU Error Register Bit Description

Bit Name Status Function
15:08 Not used - -
07 Illegal HALT Read only Set when execution of a HALT instruction is attempted in

user or supervisor mode.

06 Address error Read only Set when word access to an odd byte address or an instruc-
tion fetch from an internal register is attempted.

05 Nonexistent Read only Set when a reference to main memory times out
memory

04 1/0 bus timeout Read only Set when a reference to the 1/0O page times out.

03 Yellow stack Read only Set on a yellow zone stack overflow trap. (Kernel mode
violation stack reference less than 400 octal).

02 Red stack Read only Set on a red stack trap - a kernel stack push abort during
violation an interrupt, abort, or trap sequence.

01, 00 Not used - -

1-5

1.3.3 Program Interrupt Request Register (Address: 17 777 772)

The program interrupt request register (PIRQ) implements a software interrupt facility. A request is
initiated by setting one of the bits <15:09>, which corresponds to a program interrupt request for priority
levels 7-1. Bits <07:05> and <03:01> are set by hardware to the encoded value of the highest pending
request set. When the interrupt is acknowledged, the processor vectors to address 240 for a service routine.
It is the responsibility of the service routine to clear the interrupt request. The PIRQ register is defined in
Figure 1-4 and is described in Table 1-5. The PIRQ register is cleared at power-up, by a console start, or
by the RESET instruction.

PIR7|PIR6|PIR5|PIR4|PIR3|PIR2[PIR1 0 0 0

[§ J [J ¢ J

REQUEST LEVELS J

PRIORITY ENCODED VALUE OF BITS 9-15

MR-9013

Figure 1-4 Program Interrupt Request Register (PIRQ)

Table 1-5 PIRQ Bit Descriptions

Bit Name Status Function

15 Level 7 Read/write Requests an interrupt priority of level 7

14 Level 6 Read/write Requests an interrupt priority of level 6

13 Level § Read/write Requests an interrupt priority of level 5

12 Level 4 Read/write Requests an interrupt priority of level 4

11 Level 3 Read/write Requests an interrupt priority of level 3

10 Level 2 Read/write Requests an interrupt priority of level 2

09 Level 1 Read/write Requests an interrupt priority of level 1

07:05 Encoded value Read only Bits <07:05> represent the encoded value of highest priori-

ty level set in bits <15:09>

03:01 Encoded value Read only Bits <03:01> represent the encoded value of the highest
priority level set in bits <15:09>. Same as bits <07:05>.

1-6

1.3.4 Line Time Clock Register (Address: 17 777 546)

The line time clock register (LTC) controls the recognition of the LSI-11 bus BEVNTL signal. When bit
06 of the register is set (1), the BEVNTL signal can be recognized and will generate the highest possible
level 6 interrupt request through address location 100. The BEVNTL input is disabled when bit 06 of the
register is cleared (0). The BEVNTL input can be permanently disabled by installing the W9 jumper. The
register is defined in Figure 1-5 and is described by Table 1-6. The register is cleared at power-up, by a
console start, or by the RESET instruction.

!

BEVNTL ENABLE

MR-11043
Figure 1-5 Line Time Clock Register (BEVNT)
Table 1-6 Line Time Clock (LTC) Register Bit Descriptions
Bit Name Status Function
15:07 Not used - -
06 BEVNT ENABLE Read/write When this bit is set (1), the LSI-11 BEVNT L signal can

be recognized (unless W9 is installed).

05:00 Not used - -

1.3.5 Maintenance Register (Address: 17 777 750)

The maintenance register provides a way for software to determine the power-up options selected by the
user. It also indicates if a floating-point accelerator (FPA) is available. The register is defined in Figure 1-6
and is described by Table 1-7.

15 14 13 12 " 10 09 08 07 06 05 04 03 02 01 00
! 1 | T
0 0 o] 0 0 0 1
1 | 1 |
‘ J T f ¥ 1
} FPA HALT POWER
BOOT AVAILABLE OPTION oK
ADDRESS POWER UP (POK]
OPTION
MR-11044

Figure 1-6 Maintenance Register

Table 1-7 Maintenance Register Bit Description

Bit Name Status Function

15:12 Boot address Read only These bits read the user’s selected boot address. The
address is selected by jumpers, W1 (bit 15), W2 (bit 14),
W4 (bit 13)and W6 (bit 12). A ““1” indicates the jumper is
inserted and a 0" indicates the jumper is removed.

11:09 Not used - -

08 FPA available Read only The bit is set (1) if a floating-point accelerator (FPA) is
installed on the module.

07:04 Module ID - The “0001” code identifies this module as a KDJI11-A
Microprocessor.

03 HALT option Read only The option determines how the HALT instruction is used
in the kerne!l mode. If W35 is removed, the bit is set (1) and
the processor will set up an emergency stack at location 4
and then trap through vector address 4. If W5 is installed,
the bit is cleared (0) and the processor will enter console
ODT mode.

02, 01 Power-up Read only These bits read the power-up mode for the processor. Bit 2
is set (1) by removing jumper W3 and bit 01 is set (1) by
removing jumper W7. The following power-up options are
available.

Bit 02 Bit 01 Option

PC at 24, PS at 26
Micro-ODT, PS =0
PC = 173000, PS = 340

0
0
1
1 User Bootstrap, PS = 340

0
1
0
1

00 BPOK H Read only The bit is sct (1) when the LSI-11 bus signal BPOK H is
asserted, indicating that the ac power is okay.

1.4 INTERRUPTS

The KDJ11-A module uses a variety of trap, hardware, and software interrupts, described in Tables 1-8
and 1-9. Four interrupt request lines allow external hardware to interrupt the processor on four interrupt
levels using an externally supplied vector. Seven levels of software interrupt requests are supported
through use of the PIRQ register. Finally, a variety of internally vectored traps are provided to flag error
conditions.

1-8

Table 1-8 Asynchronous Interrupts

Internal

or Vector Priority
Interrupt External Address Level*
Red stack trap Internal 4 NM
(CPU error register, bit 02)
Address error Internal 4 NM
(CPU ecrror register, bit 06)
Memory management violation Internal 250 NM
(MMRO, bits <13:15>)
Timeout/nonexistent memory Internal 4 NM
(CPU ecrror register, bits <04:05>)
Parity crror (PARITY, ABORT) External 114 NM
Trace (T-bit) Trap (PSW, bit 04) Internal 14 NM
Yecllow stack trap Internal 4 NM
(CPU error register, bit 03)
Power fail (PWRF) External 24 NM
FP exception (FPE) External 244 NM
PIR 7 (PIRQ, bit 15) Internal 240 7
IRQ 7 External User-defined 7
PIR 6 (PIRQ, bit 14) Internal 240 7
BEVNT External 100 6
IRQ 6 External User-defined 6
PIR S (PIRQ, bit 13) Internal 240 5
IRQ 5 External User-defined 5
PIR 4 (PIRQ, bit 12) Internal 240 4
IRQ 4 External User-defined 4
PIR 3 (PIRQ, bit 11) Internal 240 3
PIR 2 (PIRQ, bit 10) Internal 240 2
PIR 1 (PIRQ, bit 09) Internal 240 1
Halt linc (HALT)* External None - places system

in console mode.

* NM = Non-maskable

+ The halt line usually has the lowest priority, however, it has highest priority during vector reads. This allows the user to break
out of potential infinite loops. An infinite loop could occur if a vector has not been properly mapped during memory
management operations.

1-9

Table 1-9 Synchronous Interrupts

Vector
Interrupt Address
FP instruction ¢xception 244
TRAP (trap instruction) 34
EMT (emulator trap instruction) 30
IOT (I/0O trap instruction) 20
BPT (breakpoint trap instruction) 14
CSM (call to supervisor mode instruction) 10
HALT instruction* 4

WAIT (wait-for-interrupt instruction)

* Execution of the HALT instruction performs different operations, depending on jumper W5 and the protection mode. Jumper
W3 determines the operation of a HALT instruction in the kernel mode. If it is installed, the processor enters the ODT mode,
and, if it is removed, the processor sets up an emergency stack at location 4 and traps to location 4. The HALT instruction in
the supervisor or user mode is an illegal instruction and the processor traps to location 4. This condition also sets bit 07 of the
CPU error register.

1.5 MEMORY MANAGEMENT

KDJI1-A memory management provides the hardware for complete memory management and protec-
tion. It is designed to be a memory management facility for accessing all of physical memory and for
multiuser, multiprogramming systems where memory protection and relocation facilities are necessary.

In multiprogramming environments, several user programs are resident in memory at any given time. The
tasks of the supervisory program include the following.

I. Control the execution of the various user programs
2. Manage the allocation of memory and peripheral device resources
3. Safeguard the integrity of the system as a whole by control of each user program

In a multiprogramming system, memory management provides the means for assigning memory pages to a
user program and preventing that user from making any unauthorized access to pages outside his assigned
area. Thus, a user can effectively be prevented from accidental or willful destruction of any other user
program or the system executive program.

The following are the basic characteristics of KDJ11-A memory management.

16 user mode memory pages

16 supervisor mode memory pages

16 kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation
Transparent operation

3 modes of memory access control

Memory access to 4 megabytes.

1.5.1 Memory Mapping
The processor can perform 16-bit, 18-bit or 22-bit address mapping. The 1/O page, which is the uppermost
4 K words of memory, always uses the physical addresss locations 17 760 000 to 17 777 777.

1-10

1.5.1.1 16-Bit Mapping — There is a direct mapping relocation from virtual to physical addresses. The
lowest 28 K virtual addresses are the same corresponding physical addresses. The 1/0O page physical

addresses are located in the upper 4 K block as shown in Figure 1-7.

1.5.1.2 18-Bit Mapping — Each of the three modes; kernel, supervisor, and user, are allocated 32 K
words that are mapped into 128 K words of physical address space. The lowest 124 K words of physical

memory or the 1/O page can be referenced as shown in Figure 1-8.

17777777
4K
17760000
177777
160000
00157777
VIRTUAL
(16 BITS) 28 K
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)
MR-11045
Figure 1-7 16-Bit Mapping
17777777
4K
17760000
00757777
177777
124 K
VIRTUAL | 5 MEM
(16 BITS) MGMT
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)

Figure 1-8 18-Bit Mapping

MR-11046

1.5.1.3 22-Bit Mapping - This mode uses the full 22-bit addresses to access all of the physical memory.
The upper 4 K block is still the I/O page as shown in Figure 1-9.

1.5.2 Compatibility

The operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among other PDP-11
computers. This means that software written and developed for any PDP-11 computer can be run on the
KDJ!11-A without modification. Refer to Table 1-10.

17777777
4K
17760000
17757777
2044K
177777
VIRTUAL » MEM >
(16 BITS) MGMT
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)
MR-11047
Figure 1-9 22-Bit Mapping
Table 1-10 KDJ11-A Compatibility
Memory
Mapping Management System
16-bit Off PDP-11,/05, 11/10, 11/15, 11/20, 11/03
18-bit On PDP-11/35, 11/40, 11/45, 11/50, 11/23
22-bit On PDP-11/70, 11/44, 11/24, 11/23 plus

1.5.3 Virtual Addressing

When memory management is operating, the normal 16-bit address is no longer interpreted as a direct
physical address but as a virtual address containing information to be used in constructing a new 22-bit
physical address. The information contained in the virtual address is combined with relocation information
contained in the page address register to yield a 22-bit physical address as shown in Figure 1-10. Using
memory management, memory can be dynamically allocated in pages, each composed of from 1 to 128
integral blocks of 64 bytes.

The starting physical address for each page is an integral multiple of 64 bytes, and each page has a
maximum size of 8192 bytes. Pages may be located anywhere within the physical address space. The
determination of which set of 16 pages registers is used to form a physical address is made by the current
mode of operation (i.e., kernel, supervisor, or user mode), and if the reference is for instructions or data.

PHYSICAL
ADDRESS SPACE
PAGE 5
VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE SAGES
32K PAR 7
PAR 6
PAR S PAGE 7
PAR 4
PAR 3 \
PAR 2 PAGE 4
PAR 1
0 PAR O 0
VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS
(16 BITS) (22 BITS)

PAR = PAGE ADDRESS REGISTER

MR-11048

Figure 1-10 Virtual Address Mapping into Physical Address

1.5.4 Interrupt Conditions Under Memory Management Control

Memory management relocates all addresses. When it is enabled, all traps, aborts, and interrupt vectors
are mapped using the kernel mode data space mapping registers. Therefore, when a vectored transfer
occurs, the new program counter (PC) and processor status word (PS) are obtained from two consecutive
words physically located at the trap vector and are mapped using kernel mode data space registers.

The stack used for the “push” of the current PC and PSW is specified by bits 14 and 15 of the new PSW.
The PSW mode bits also determine the new mapping register set. This allows the kernel mode program to
have complete control over servicing all traps, aborts or interrupts. The kernel program may assign the
service of some of these conditions to a supervisor or user mode program by simply setting the mode bits of
the new PSW in the vector to return control to the appropriate mode.

1.5.5 Construction of a Physical Address

All addresses with memory relocation enabled either reference information in instruction (I) space or data
(D) space. I space is used for all instruction fetches, index words, absolute addresses, and immediate
operands; D space is used for all other references. I space and D space each have cight page address
registers (PARs) in each mode of CPU operation (kernel, supervisor, and user). Memory management
register 3, can disable D space and map all references (instructions and data) through I space, or can
enable D space and map all references through both I and D space.

The basic information needed for the construction of a physical address comes from the virtual address,
which is illustrated in Figure 1-11, and the appropriate PAR set.

15 14 13 12 00

I 1 | I | 1 4 | ! I [T I |
APF DF

L 1] 1 | L L 1 | | 1 I | |

\ J\ J
Y Y
ACTIVE F;AGE DISPLACEMENT FIELD
FIELD

MR-11049

Figure 1-11 Interpretation of a Virtual Address

The virtual address consists of:

. The active page field. This 3-bit field determines which of 8 page address registers from the
PAR set (PARO-PAR?7) will be used to form the physical address.

2. The displacement field. This 13-bit field contains an address relative to the beginning of a page.
The longest page length is 8 Kbytes (213 = 8 Kbytes). The DF is further subdivided into two
fields as shown in Figure 1-12.
The displacement field consists of:

1. The block number. This 7-bit field is interpreted as the block number within the current page.

2. The displacement in block. This 6-bit field contains the displacement within the block referred
to by the block number.

12 00
1 I T I I 1 I 1 I I I
BN DiB
] 1 1 1 1 1 1 1 i 1 I
~ ~— —)
BLOCK NUMBER DISPLACEMENT IN BLOCK

MR-11050

Figure 1-12 Displacement Field of a Virtual Address

1-14

The remainder of the information needed to construct the physical address comes from the contents of the
PAR referenced by the page address field. This 16-bit register specifies the starting address of the memory
page. The PAF is actually a block number in the physical memory. For instance, PAF = 3 indicates a
starting address of 96 (3 X 32) words in physical memory.

The construction of the physical address is illustrated in Figure 1-13.

The logical sequence involved in constructing a physical address (PA) is as follows.

1.

Select a set of page address registers. This depends on the space being referenced and the
protection mode being used.

The active page field of the virtual address selects one of eight page address registers
(PARO-PAR?7) from the appropriate set.

The page address field of the selected page address register contains the starting address of the
currently active page as a block number in physical memory.

The block number from the virtual address is added to the page address field to yield the
number of the block in physical memory. This is bits <21:06> of the physical address being
constructed.

The displacement in block from the displacement field of the virtual address is joined to the
physical block number to yield a true 22-bit physical address.

15 00
T T T T T T T T T T T T T T T
VIRTUAL ADDRESS
] I |] I |] | ! !]]]] !
15 13
T I
SELECT PAR
]]
12 00
1 I 1 1 T 1 T 1) I) I
OFFSET INTO
PAGE (VA) I !]) ! 1 1 |] 1]]
15 14 13 05 04 03 02 01 00
T T T T T Y T T T
+ PAF {
] | I]])]]]
21 00

I T 1 T I I T i I ! 1 I I I 1
PHYSICAL ADDRESS /
| | Il 1 L 1 1 | 1 | Il 1 1 1

MR-11051

Figure 1-13 Construction of a Physical Address

1.5.6 Memory Management Registers

Memory management implements 3 sets of 32 16-bit registers as shown in Figure 1-14. One set of registers
is used in kernel mode, another in supervisor mode, and the other in user mode. The protection mode in
use determines which set is to be used. Each set is subdivided into two groups of 16 registers. One group is
used for references to instruction (I) space, and one to data (D) space. The I space group is used for all
instruction fetches, index words, absolute addresses, and immediate operands. The D space group is used
for all other references, providing it has not been disabled by memory management register 3. Each group
is further subdivided into two parts of eight registers. One part is the page address register (PAR) whose
function was described previously. The other part is the page descriptor register (PDR). PARs and PDRs
are always selected in pairs by the top three bits of the virtual address. A PAR/PDR pair contains all the
information needed to describe and locate a currently active memory page.

The memory management registers are located in the uppermost 8 Kbytes of physical address space,
which is designated as the /O page. The addresses allocated to the memory management registers are
listed in Table 1-11.

PROCESS STATUS WORD }

15 14
KERNEL (00) SUPERVISOR (01) USER (11)
PAR PDR PAR PDR : PAR PDR
1 SPACE
1 1) ¥ v v
PAR PDR PAR PDR PAR PDR
D SPACE
' v ' y L v

MR-11052

Figure 1-14 Active Page Registers

1-16

Table 1-11 Memory Management Register Addresses

Register Address Register Address
Memory management register O(MMRO) 17 777 572 Supervisor | space address register (SISAR0) 17 772 240
Memory management register 1{(MMR1) 17 777 574 . .
Memory management register 2(MMR2) 17 777 576
Memory management register 3(MMR3) 17 772 516 . .
Supervisor | space address register (SISAR7) 17 772 256
User | space descriptor register (UISDRO) 17 777 600
. . Supervisor D space address register (SDSARO) 17 772 260
User I space descriptor register (UISDR7) 17 777 616 . .
Supervisor D space address register (SDSDR7) 17 772 276
User D space descriptor register (UDSDRO) 17 777 620
. . Kernel | space descriptor register (KISDRO) 17 772 300
User D space descriptor register (UDSDR7) 17 777 636 . .
Kernel | space descriptor register (KIDSR7) 17 772 316
User | space address register (UISARO) 17 777 640
. . Kernel D space descriptor register (KDSDRO) 17 772 320
User I space address register (UISAR7) 17 777 656 . .
Kernel D space descriptor register (KDSDR7) 17 772 336
User D space address register (UDSARO) 17 777 660
. . Kernel | space address register (KISARO) 17 772 340
User D space address register (UDSAR7) 17 777 676 . .
Kernel | space address register (KISAR7) 17 772 356

Supervisor | space descriptor register (SISDRO) 17 772 200
. . Kernel D space address register (KDSARDO) 17 772 360

Supcrvisor I space descriptor register (SISDR7) 17772 216 || . .
Kernel D space address register (KDSAR7) 17 772 376
Supervisor D space descriptor register (SDSDR0O) 17 772 220

Supervisor D space descriptor register (SDSDR7) 17 772 236

1-17

1.5.6.1 Page Address Registers — The page address register (PAR) contains the page address field
(PAF), a 16-bit field that specifies the starting address of the page as a block number in physical memory.

The page address register (see Figure 1-15) contains the page address field that may be alternatively
thought of as a relocation register containing a relocation constant, or as a base register containing a base
address. These registers are not changed by either console starts or the reset instruction. They are

undefined at power-up.

00

MR-11063

Figure 1-15 Page Address Register (PAR)

1.5.6.2 Page Descriptor Register — The page descriptor register contains information relative to page
expansion, page length, and access control. The register is shown in Figure 1-16 and is described in Table

1-12.

15 14 08 07 06 05 04 03 02 01 00
PAGE LENGTH FIELD (PLF) o | w| o] o] €D ACF 0
) | | [| |
s ¥] T
BYPASS PAGE JENGTH PAGE EXPANSION
CACHE FIELD WRITTEN DIRECTION
ACCESS

CONTROL FIELD

MR-8920

Figure 1-16 Page Descriptor Register (PDR)

1.5.7 Fault Recovery Registers

Aborts generated by the memory management hardware are vectored through kernel virtual location 250.
Memory management registers O, 1, 2, and 3 are used to determine why the abort occurred and to allow

for program restarting.

NOTE
An abort to a location which is itself an invalid
address will cause another abort. Thus, the kernel
program must ensure that kernel virtual address 250
is mapped into a valid address; otherwise, a loop will
occur that will require console intervention.

1-18

Table 1-12 Page Descriptor Bit Description

Bit Name Status Function

15 Bypass cache Read/write This bit implements a conditional cache bypass mechanism. If the
PDR accessed during a relocation operation has this bit set, the
reference will go directly to main memory. Read or write hits will
result in invalidation of the accessed cache location.

14:08 Page length Read/write This field specifies the block number which defines the page

field boundary. The block number of the virtual address is compared
against the page length field to detect length errors. An error
occurs when expanding upwards if the block number is greater
than the page length field, and when expanding downwards if the
block number is less than the page length field.

07 Not used - -

06 Page written Read only The written into (W) bit indicates whether the page has been
written into since it was loaded in memory. When this bit is set, it
indicates a modified page. The W-bit is automatically cleared
when the PAR or PDR of that page is written.

05, 04 Not used - -

03 Expansion Read/write This bit specifies in which direction the page expands. If ED =0,

direction the page expands upward from block number 0 to include blocks
with higher addresses; if ED = 1, the page expands downward
from block number 127 to include blocks with lower addresses.

02, 01 Access control Read/write This field contains the access code for this particular page. The

field access code specifies the manner in which a page may be accessed
and whether or not a given access should result in an abort of the
current operation. Implemented codes are:
00 Nonresident — abort all accesses
01 Read only - abort on write
10 Not used — abort all accesses
11 Read/write access

00 Not used - -

1-19

1.5.7.1 Memory Management Register 0 (Address: 17 777 572) - Memory management register 0
(MMRO) provides MMU control and records MMU status. The register contains abort and status flags as
shown in Figure 1-17 and described in Table 1-13.

08

07 06 05 04 03 00

ABORT READ-ONLY
ACCESS VIOLATION

ABORT PAGE

LENGTH ERROR

ABORT
NON-RESIDENT

|

PAGE MODE PAGE NUMBER

PAGE ADDRESS
SPACE I/0 ENABLE RELOCATION

MR-8926

Figure 1-17 Memory Management Register 0 (MMRO)

Table 1-13 MMRO Bit Descriptions

Bit Name Status Function
15* Nonresident Read/write Bit 15 is set by attempting to access a page with an access control
abort field key equal to 0 or 2. It is also set by attempting to use memory
relocation with a processor mode (PS<15:14>) of 2.
14* Page length Read/write Bit 14 is set by attempting to access a location in a page with a
abort block number (virtual address bits <12:06>) that is outside the
area authorized by the page length field of the page descriptor
register for that page.
13* Read only Read/write Bit 13 is set by attempting to write in a read-only page. Read-only
abort pages have access keys of 1.
12:07 Not used - -
06, 05 Processor Read only Bits <06:05> indicate the processor mode (kernel, supervisor,
mode user, illegal) associated with the page causing the abort (kernel =
00, supervisor = 01, user = 11, illegal = 10). If the illegal mode is
specified, an abort is generated and bit 15 is set.
04 Page space Read only Bit 04 indicates the address space (I or D) associated with the page
causing the abort (0 = I space, 1 = D space).
03:01 Page number Read only Bits <03:01> contain the page number of the page causing the
abort.
00 Enable Read/write Bit 00 enables relocation. When it is set to 1, all addresses are
relocation relocated. When bit 00 is set to 0, memory management is inoper-

ative and addresses are not relocated.

* Bits <15:13> can be set by an explicit write; however such an action does not cause an abort. Whether set explicitly or by an
abort, setting any bit in bits <15:13> causes memory management to freeze the contents of MMRO <06:01>, MMRI, and
MMR2. The status registers remain frozen until MMRO <15:13> is cleared by an explicit write.

1-20

1.5.7.2 Memory Management Register 1 (Address: 17 777 574) - Memory management register 1
(MMR1) records any autoincrement or autodecrement of a general purpose register, including explicit
references through the PC. The increment or decrement amount by which the register was modified is
stored in 2’s complement notation. The lower byte is used for all source operand instructions and the
destination operand may be stored in either byte, depending on the mode and instruction type. The register
is cleared at the beginning of each instruction fetch. The register is defined in Figure 1-18.

15 11 10 08 Q7 03 02 00
L 1 !] i L 1 | 1 1 1 1
— T g A v A w 4
AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
(2'S COMPLEMENT) NUMBER {2’S COMPLEMENT) NUMBER

MR-8924

Figure 1-18 Memory Management Register | (MMR1)

1.5.7.3 Memory Management Register 2 (Address: 17 777 576) - Memory management register 2
(MMR2) is loaded with the program counter of the current instruction and is frozen when any abort
condition is posted in MMRO.

1.5.7.4 Memory Management Register 3 (Address: 17 772 516) - Memory management register 3
(MMR3) enables the data space for the kernel, supervisor, and user operating modes. It also selects either
18-bit or 22-bit mapping and enables the request for the supervisor macroinstruction (CSM). The register
is shown in Figure 1-19 and is defined in Table 1-14. MMR3 is cleared during power-up, by a console
start, or by a RESET instruction.

0 0 0 0 0 0 0 0 0 0 MODE

UNINTERPRETED
ENABLE 22-BIT MAPPING
ENABLE CSM INSTRUCTION
KERNEL
SUPERVISOR
USER

MR-8925

Figure 1-19 Memory Management Register 3 (MMR3)

1-21

Table 1-14 MMR3 Bit Description

Bit Name Status Function
15:06 Not used - -
05 Uninterpreted Read/write This bit can be set or cleared under program control, but it is not

interpreted by the KDJ11-A.

04 Enable 22-bit Read/write This bit enables 22-bit memory addressing (the default is 18-bit

mapping addressing).

03 Enable CSM Read/write This bit enables recognition of the call supervisor mode instruction.
instruction

02 Kernel data Read/write This bit enables the data space mapping for the kernel operating mode.
space

0l Supervisor data Read/write This bit enables the data space n;apping for the supervisor operating
space mode.

00 User data space Read/write This bit enables the data space mapping for the user operating mode.

1.5.7.5 Instruction Back-Up/Restart Recovery — The process of “backing up’ and restarting a partially
completed instruction involves the following.

1. Performing the appropriate memory management tasks to alleviate the cause of the abort (e.g.,
loading a missing page).

2. Restoring the general purpose registers indicated in MMR1 to their original contents at the start
of the instruction by subtracting the “modify value” specified in MMR1.

3. Restoring the PC to the “abort-time” PC by loading R7 with the contents of MMR2, which
contains the value of the virtual PC at the time the “abort-generating” instruction was fetched.

Note that this back-up/restart procedure assumes that the general purpose register used in the program
segment will not be used by the abort recovery routine. This is automatically the case if the recovery
program uses a different general purpose register set.

1.5.7.6 Clearing Status Registers Following Abort — At the end of a fault service routine, bits <15:13>
of MMRO must be cleared (set to 0) to resume error checking. On the next memory reference following
the clearing of these bits, the various registers will resume monitoring the status of the addressing
operations. MMR2 will be loaded with the next instruction address, MMRI1 will store register change
information, and MMRO will log memory management status information.

1.5.7.7 Multiple Faults - Once an abort has occurred, any subsequent errors that occur while the
memory management registers are frozen will not change MMRO, MMR1 or MMR2. The information
saved in MMRO through MMR2 will always refer to the first abort that it detected.

1.5.8 Typical Usage Examples

The memory management unit provides a general purpose memory management tool. It can be used in a
manner as simple or complex as desired. It can be anything from a simple memory expansion device to a
complete memory management facility.

1-22

The variety of possible and meaningful ways to use the facilities offered by the memory management unit
means that both single-user and multiprogramming systems have complete freedom to make whatever
memory management decisions best suit their individual needs. Although a knowledge of what most types
of computer systems seek to achieve may indicate that certain methods of using the memory management
unit will be more common than others, there is no limit to the ways to use these facilities.

In most typical applications, the control over the actual memory page assignments and their protection
resides in a supervisory type program which operates in kernel mode. This program sets access keys in such
a way as to protect itself from willful or accidental destruction by other supervisor or user mode programs.
The facilities are also provided such that the kernel mode program can dynamically assign memory pages
of varying sizes in response to system needs.

1.5.8.1 Typical Memory Page — When the memory management unit is enabled, the kernel mode
program, a supervisor mode program, and a user mode program each have eight active pages described by
the appropriate page address registers and page descriptor registers for data and eight pages for instruc-
tions. Each segment is made up of from 1 to 128 blocks and is pointed to by the page address field of the
corresponding page address register as illustrated in Figure 1-20.

VA 157777 PA 331777
BLOCK 177g (1271¢)

/ BLOCK1/768 112;
_

_

%// _

/

VA 144777 PA 316777
BLOCK 47g (391)

BLOCK 1

BLOCK O

PA 312000

PAR 6 3120

VA 140000 PAF
3910

PDR 6 47g 0 o1

MR-11054

Figure 1-20 Typical Memory Page

1-23

The memory segment illustrated in Figure 1-20 has the following attributes.

A e M

Page length: 40 blocks

Virtual address range: 140000-144777

Physical address range: 312000-316777

Nothing has been modified (i.e., written) in this page
Read-only protection

Upward expansion

These attributes were determined according to the following scheme.

1.

Page address register (PARG6) and page descriptor register (PDR6) were selected by the active
page field (APF) of the virtual address. (Bits <15:13> of the VA = 63.)

The initial address of the page was determined from the page address field of PAR6 (312000 =
3120g blocks x40g (3210) words per block X 2 bytes per word).

NOTE
The PAR that contains the PAF constitutes what is
often referred to as a base register containing a base
address or a relocation register containing a reloca-
tion constant.

The page length (47g + 1 = 40;¢ blocks) was determined from the page length field (PLF)
contained in page descriptor register PDR6. Any attempts to reference beyond these 40g
blocks in this page will cause a “page length error,” which will result in an abort, vectored
through kernel virtual address 250.

The physical addresses were constructed according to the scheme illustrated in Figure 1-13.

The written (W) bit indicates that no locations in this page have been modified (i.e., written). If
an attempt is made to modify any location in this particular page, an access control violation
abort will occur. If this page were involved in a disk swapping or memory overlay scheme, the
W-bit wouid be used to determine whether it had been modified and, thus, required saving
before overlay.

This page is read-only protected; i.e., no locations in this page may be modified. The mode of
protection was specified by the access control field of PDR6.

The direction of expansion is upward (ED = 0). If more blocks are required in this segment,
they will be added by assigning blocks with higher relative addresses.

The attributes which describe this page can be determined under software control. The parameters
describing the page are loaded into the appropriate page address register (PAR) and page descriptor
register under program control. In a normal application, the particular page, which itself contains these
registers, would be assigned to the control of a kernel mode program.

1-24

1.5.8.2 Nonconsecutive Memory Pages — Higher virtual addresses do not necessarily map to higher
physical addresses. It is possible to set up the page address fields of the PARSs so that higher virtual address
blocks may be located in lower physical address blocks as illustrated in Figure 1-21.

Although a single memory page must consist of a block of contiguous locations, consecutive virtual
memory pages do not have to be located in consecutive physical address locations. The assignment of
memory pages is not limited to consecutive nonoverlapping physical address locations.

VA 037777 PA 467777
T
]
1
]
1
AR 7 VA 020000 PA 460000
A PAF
VA 017777 PA 560777
T
1
1
)
PAR 1 PAF
PAF
PARO VA 000000 PA 541000

MR-11055

Figure 1-21 Nonconsecutive Memory Pages

1-25

1.5.8.3 Stack Memory Pages - When constructing programs, it is often desirable to isolate all program
variables from pure code (i.e., program instructions) by placing them on a register indexed stack. These
variables can then be “pushed” or “popped” from the stack area as needed. (See Chapter 6.) Since stacks
expand by adding locations with lower addresses, when a memory page which contains “stacked” variables
needs more room, it must “expand down,” i.e., add blocks with lower relative addresses to the current
page. This mode of expansion is specified by setting the expansion direction bit of the appropriate page
descriptor register to a 1. Figure 1-22 illustrates a typical stack memory page. This page will have the
following parameters.

PAR6: PAF = 3120

PDR6: PLF = 1755 or 125,¢(128,9—3)

ED =1

W=0orl

ACF = nnn (to be determined by programmer as necessary)

NOTE
The W-bit will be set by hardware.

In this case the stack begins 128 blocks above the relative origin of this memory page and extends
downward for a length of three blocks. A page length error abort will be generated by the hardware when
an attempt is made to reference any location below the assigned area, i.e., when the block number from
the virtual address is less than the page length field of the appropriate page descriptor register.

VA 1587777 PA 331777
BLOCK 177g (1271¢)
BLOCK 176g {1261q)
BLOCK 175g (1251¢)

VA 157500 PA 331500

BLOCK O
VA 140000 PA 312000
PAR 6 PAF

PDR 6 % SLF w /ED

ACF

MR-11056

Figure 1-22 Typical Stack Memory Page

1-26

1.5.9 Transparency

In a multiprogramming application, it is possible for memory pages to be allocated such that a program
appears to have a complete 64 Kbyte memory configuration. Using relocation, a kernel mode supervisory-
type program can perform all memory management tasks entirely transparent to a supervisor or user mode
program. In effect, a system can use its resources to provide maximum throughput and response to a
number of users, each of whom seems to have a powerful system “all to himself.”

1.6 CACHE MEMORY

The statistics from executing programs clearly indicate that at any given moment, a program spends most
of its time within a relatively small section of code. The KDJ11-A cache memory exploits this phenome-
non by using a small amount of high-speed memory to store the most recently accessed memory locations.
Cached code will execute much faster than noncached code because of the large difference between the
access times of the cache memory and the LSI-11 bus main memory.

The following illustrates how the KDJ11-A cache is constructed. It is a direct map (set size one; block size

one), 8 Kbyte cache. Each physical address is logically subdivided into a 9-bit label, 12-bit index, and 1-bit
byte select field as shown in Figure 1-23.

21 13 12 01 00

BYTE SELECT J

MR-11057

LABEL INDEX

Figure 1-23 Cache Physical Address

The index field is used to select the cache entry. The index is 12 bits long, selecting one of 4096 separate
cache entries. Each cache entry contains a 9-bit tag field (TAG), tag parity bit (P), tag valid bit (V), two
bytes of cache data (BO and B1) and two corresponding byte parity bits (PO and P1). (See Figure 1-24.)

08 00

P \% TAG

15 08 07 00

P1 B1 PO BO

MR-11058

Figure 1-24 Cache Data Format

1-27

A physical address is considered cached when the tag field of the cache entry specified by the index field
equals the label field, the valid bit is set, and no parity errors are seen. When a cache read hit occurs, i.e.,
the address is cached during a read operation, Bl and BO are used as the source of the data. When a cache
read miss occurs, i.e., the address is not cached, main memory is accessed to obtain the data.

A physical address is stored in the cache whenever the cache is allocated. To allocate the cache, the tag
field of a cache entry specified by the index field is set equal to the label field, the V-bit is set, Bl and B0
are loaded with the fresh data, and the parity bits are correctly calculated. This guarantees that the next
access to this address will report a cache hit. It should be noted that allocating the cache typically destroys
a previously allocated valid cache entry. The cache is allocated whenever a read miss or word write miss
occurs.

Write cycles are separated into word write and byte write operations. Main memory is always updated
during writes. A cache hit will cause the proper byte(s) to be written in both the cache and in main
memory. This is called writing through the cache. A cache miss during a word write will allocate the
cache; however, since two bytes are allocated together, a byte write only updates main memory. The cache
response matrix is summarized in Table 1-15.

The 1/0 page (top 8 Kb) is never cached and therefore always reports misses. This is because the I/O page
contains dynamic status registers which, when read, must always convey the latest information.

When the system is powered up, the cache must be cleared and correct parity written into each entry. This
is called flushing the cache.

Table 1-15 Cache Response Matrix

DMA CPU
Operation Hit Miss Hit Miss

Read Read memory- Read memory- Read cached data Read memory-

allocate cache

Write word

Write byte

Read bypass

Write bypass

Read force

miss

Write force
miss

no cache change

Invalidate cache-
update memory

Invalidate cache-
update memory

no cache change

Update memory-
no cache change

Update memory-
no cache change

Write through
cache to memory

Write through
cache to memory

Read memory-
invalidate cache

Write memory-
invalidate cache

Read memory-
no cache change

Write memory-
no cache change

Write memory—
allocate cache

Write memory-
no cache change

Read memory-
no cache change

Write memory-
no cache change

Read memory-
no cache change

Write memory—
no cache change

1-28

A potential stale data problem can occur when a DMA device writes to a cached location. The overwritten
cache entry must be invalidated. To avoid this problem, the cache system monitors each DMA transaction
to determine when the DMA transaction invalidates the cache. This also includes block mode DMA which
is possible on the 22-bit LSI-11 bus.

For both diagnostic and availability reasons, it is important to be able to turn off the cache via software.
The cache is disabled by setting either of the force cache miss bits, 02 and 03, in the cache control register.
When disabled, all references are forced to miss the cache. That is, main memory is always accessed,
cache parity errors are ignored, and no cache allocation is performed. The cache is essentially removed
from the system. This is different than bypassing the cache. Bypass references access the main memory,
check cache parity, and invalidate the cache entry if previously allocated. Read references that bypass the
cache check for parity errors and will invalidate any address hits.

1.6.1 Parity

The KDJ11-A module has a main memory parity error detection mechanism. The BDAL<16> and <17>
data lines are sampled when BDIN L is negated and the microprocessor initiates a memory read. The
BDAL<16> bit is the parity error signal and the BDAL<17> bit is the parity abort error signal. When
both are asserted (1), an abort occurs through the vector at virtual address 114 in kernel D space.

The cache memory also has a parity error detection mechanism. A parity error in the cache is not
considered fatal because the main memory system has a backup copy of the data. The cache uses even
parity for the even data bytes stored in the cache memory and odd parity for the odd data bytes stored in
the cache memory. It also uses even parity for the tag field stored in the cache memory.

1.6.1.1 Parity Errors — A parity error indicates that a single bit error has occurred. Parity errors can
occur in either the main memory or the cache memory. A main memory parity error is always fatal since
the data stored in this memory is wrong and it cannot be restored. This type of parity error will always
cause an abort through virtual address 114 in the kernel D space. Cache parity errors are not considered to
be fatal since the data in the cache memory can be updated with the correct data from the main memory.
When they occur, the KDJ11-A module will either abort, interrupt, or continue without an abort or
interrupt. The action is determined by the state of bits 07 and 00 in the cache control register as defined in
Table 1-16.

Table 1-16 Cache Parity Errors

CCR <07> CCR <00> Action

0 0 Update cache, interrupt through 114

0 1 Update cache only

1 X Update cache, abort through 114 should only be used for diagnostics

1-29

1.6.1.2 Multiple Cache Parity Errors - If a cache parity error occurs while the error status from a
previous cache parity error is not cleared from the memory system error register, then no abort or
interrupt occurs. The main memory is accessed again to retrieve the correct data and the corrupted cache
entry data is updated with the correct data. This prevents a cache hardware failure from generating an
infinite series of interrupt or abort service loops.

1.6.2 Memory System Registers

The memory system registers consist of the cache control register, the memory system error register, and
the hit/miss register. These registers are used by modules to control the memory system and report any
errors that occur.

1.6.2.1 Cache Control Register (Address: 17 777 746) — The cache control register (CCR) controls the
operation of the cache memory. The cache bypass, abort, and force miss functions can be controlled by
software via this register. The cache control register is shown in Figure 1-25 and is described in Table 1-17.
The register is cleared by either power-up or a console start. It is unaffected by the RESET instruction.

1 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
T T T I i
0o 0 0 0 0 0 //
| 1 | 1 |
T4 3 r . - 3
WRITE WRONG 1(¥
TAG PARITY

UNCONDITIONAL
CACHE BYPASS

FLUSH CACHE

PARITY ERROR ABORT

WRITE WRONG DATA PARITY

UNINTERPRETED

FORCE CACHE MISS

DIAGNOSTIC MODE

DISABLE CACHE PARITY INTERRUPT

MR-11059

Figure 1-25 Cache Control Register (CCR)

1-30

Table 1-17

Cache Control Register Description

Bit Name Status Function

15:11 Not used - -

10 Write wrong Read/write When set (1), this bit causes the cache tags to be written with wrong parity

tag parity on all update cycles. This will cause a cache tag parity error to occur on the
next access to that location.

09 Bypass cache Read/write When set (1), this bit forces all CPU memory references to go directly to
main memory. Read hits will result in invalidation of accessed locations in
the cache.

08 Flush cache* Write only When set (1), this bit causes the entire contents of the cache to be declared
invalid. Writing a 0 into this bit will have no effect.

07 Enable parity Read/write This bit is used with bit O to define the action taken as a result of a parity

error abort error. This bit is reserved for diagnostic purposes only.

06 Write wrong Read/write When set (1), this bit causes high and low parity bytes to be written with

data parity wrong parity on all update cycles. This will cause a cache parity error to
occur on the next access to that location.

05:04 Uninterpreted - These bits can be set or cleared under program control, but are not inter-
preted by the KDJ11-A.

03:02 Force miss Read/write When either is set, they force all CPU memory references to go directly to
main memory. The cache tag and data stores are not changed. The parity is
not checked. When set (1) these bits remove the cache memory from the
system.

01 Diagnostic mode Read/write When set (1), all non-bypass and non-forced miss word writes will allocate
the cache, irrespective of nonexistent memory (NXM) errors. In addition,
NXM writes will not trap.

00 Disable cache Read/write Bits <07:00> specify the action to take following a cache parity error. If

parity interrupt

both bits are cleared (0) and a parity error occurs, an interrupt through
vector 114 is generated. If bit 07 is cleared and bit 00 is set, a cache parity
error neither aborts the reference nor generates an interrupt. In any case, all
cache parity errors force a memory reference and update the cache with the
fresh data.

* It takes approximately 1 millisecond to flush the cache. During this time DMA and interrupt requests are not serviced and no

data processing occurs.

1-31

1.6.2.2 Hit/Miss Register (Address: 17 777 752) - The hit/miss register (HMR) records the status of
the most recent cache accesses. The HMR is a shift register that records a hit as a 1 and a miss as a 0 for
the most recent memory reads. A hit represents data located in the cache memory and a miss means the
data is located in the main memory. Bit 00 represents the most recent memory access and is shifted to the
left on successive memory access. The HMR is a read-only register and is shown in Figure 1-26.

1.6.2.3 Memory System Error Register (Address: 17 777 744) — The memory system error register
(MSER) is a read-only register that is cleared by any write reference. The register monitors parity error
aborts and records the type of parity error. The register is shown in Figure 1-27 and is described in Table
1-18. The memory system register is cleared by any write reference, during power-up, and by a console
start. It is unaffected by the RESET instruction.

15 14 13 12 1" 10 08 07 06 05 00
¢} 0 0 0 0 0 0 0 0 +——FLOW
] | L] |
MR-8899
Figure 1-26 Hit/Miss Register (HMR)
15 14 13 12 11 10 08 07 06 05 04 03 02 01 00
—T T T T T T T T

NOT USED
1 I

NOT USED
1 1 | 1 1

!

! !

PARITY PARITY TAG
ERROR ERROR PARITY
ABORT HIGH ERROR
PARITY
ERROR
LOW
MR-11060
Figure 1-27 Memory System Error Register (MSER)
Table 1-18 Memory System Error Register
Bit Name Status Description
15 Parity error abort Read only This bit is set (1) when cache or memory parity error aborts on instruc-
tion. Parity aborts occur on all main memory parity errors and when bit
07 of the CCR is set. A cache parity error occurs on a non-prefetch bus
cycle.
14:08 Not used - -
07* Parity error high Read only This bit is set (1) when the parity error was causcd by the high byte data.
06* Parity error low Read only This bit is set (1) when the parity error was caused by the low byte data.
05* Tag parity error Read only This bit is set (1) when the parity error was caused by the tag field.
04:00 Not used - -

* Bits <07:05> are individually set when a cache parity error occurs and CCR bit 07 is set. All three bits are set when the CCR
bit 07 is cleared and a cache parity error occurs irrespective of where the error occurred.

1-32

1.7 FLOATING-POINT

The KDJ11-A uses the floating-point instruction set to perform all floating-point arithmetic operations and
converts data between integer and floating-point formats. It uses similar address modes and the same
memory management facilities of the processor. The floating-point instructions can reference the floating-
point accumulators, the general registers, or any location in memory.

1.7.1 Floating-Point Data Formats

Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the
condition 1/2 < f < 1. The fractional part (f) of the number is then said to be normalized. For the
number O, f must be assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

1.7.1.1 Nonvanishing Floating-Point Numbers -~ The fractional part (f) is assumed normalized, so that
its most significant bit must be 1. This 1 is the hidden bit. It is not stored explicitly in the data word, but
the processor restores it before carrying out arithmetic operations. The floating and double modes reserve
23 and 55 bits, respectively, for f. These bits, with the hidden bit, imply effective fractions of 24 bits and
56 bits.

Eight bits are reserved for storage of the exponent K in excess 128 (200g) notation (i.e., as K + 200g),
giving a biased exponent. Thus, exponents from —128 to +127 could be represented by Q to 377g, or 0 to
255)9. For reasons given below, a biased exponent of O (the true exponent of —200g), is reserved for
floating-point 0. Therefore, exponents are restricted to the range —127 to +127 inclusive (—177g to +177g)
or, in excess 200g notation, 1 to 377g.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1.

1.7.1.2 Floating-Point Zero — Because of the hidden bit, the fractional part is not available to distinguish
between 0 and nonvanishing numbers whose fractional part is exactly 1/2. Therefore, the floating-point
processor (FPP) reserves a biased exponent of O for this purpose, and any floating-point number with a
biased exponent of O either traps or is treated as if it were an exact 0 in arithmetic operations. An exact or
“clean” 0 is represented by a word whose bits are all 0s. A “dirty” O is a floating-point number with a
biased exponent of 0 and a nonzero fractional part. An arithmetic operation for which the resulting true
exponent exceeds 277g is regarded as producing a “floating overflow;” if the true exponent is less than
—177g, the operation is regarded as producing a “floating underflow.” A biased exponent of 0 can thus
arise from arithmetic operations as a special case of overflow (true exponent = —200g). (Recall that only
eight bits are reserved for the biased exponent.) The fractional part of results obtained from such overflow
and underflow is correct.

1.7.1.3 The Undefined Variable - An undefined variable is any bit pattern with a sign bit of 1 and a
biased exponent of 0. The term undefined variable is used, for historical reasons, to indicate that these bit
patterns are not assigned a corresponding floating-point arithmetic value. Note that the undefined variable
is frequently referred to as —0 elsewhere in this chapter.

A design objective of the FPP was to ensure that the undefined variable would not be stored as the result
of any floating-point operation in a program run with the overflow and underflow interrupts disabled. This
is achieved by storing an exact 0 on overflow and underflow, if the corresponding interrupt is disabled.
This feature, together with an ability to detect reference to the undefined variable (implemented by the
FIUV bit discussed later), is intended to provide the user with a debugging aid: if —0 occurs, it did not
result from a previous floating-point arithmetic instruction.

1-33

1.7.1.4 Floating-Point Data — Floating-point data is stored in words of memory as illustrated in Figures
1-28 and 1-29.

The FPP provides for conversion of floating-point to integer format and vice-versa. The processor

recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in
standard 2’s complement form. (See Figure 1-30.)

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00
+2 FRACTION <16:0>
A] 1 1 1 |] i i I) I 1 |]
15 14) 07 06 00
MEMORY +0 S EXP FRACT <22:16>
]] 1 1 |] L L i 1 1 L L

MR-3604

Figure 1-28 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00
+6 FRACTION <15:0>
1 1 L 1 1 1 1 1 I 1 1 1)| | 1
15 00
+4 FRACTION <31:16>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 00
2 FRACTION <47:32>
1 1 1 1 L 1 1 L 1 1 1 1 L 1 1
15 07 06 00
MEMORY +0 | s EXP FRACT <54:48>
L L 1 1 1 1 1 L i 1 1 L 1

S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON-VANISHING NUMBERS.

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MR-36085

Figure 1-29 Double-Precision Format

1-34

| FORMAT, INTEGER SINGLE PRECISION
15 14 00

S NUMBER <15:0>

1 1 i 1 1 1 Il i 1 1 1 1 1 1

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00
MEMORY +0 S NUMBER <30:16>>
L L 1 ! ! L 1 I 1 1 L) L 1
15 00
+2 NUMBER <15:0>
1 1 i 1 1 ! 1 | I 1 1 1 1 1 1

WHERE S = SIGN OF NUMBER

NUMBER =15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

MR-3606
Figure 1-30 2’s Complement Format
1.7.2 Floating-Point Registers
The floating-point registers are defined as six accumulators, the floating-point status register, the floating-

point exception address register, and the floating-point exception code register, as shown in Figure 1-1.

1.7.2.1 Floating-Point Accumulator - Six 64-bit accumulators (AC0-ACS5) are implemented for the
temporary storage and manipulation of 32-bit and 64-bit floating-point data types.

1.7.2.2 Floating-Point Status Register (FPS) - This register provides mode and interrupt control for the
floating-point unit and conditions resulting from the execution of the previous instruction.

For the purposes of discussion, a set bit = 1 and a reset bit = 0. Three bits of the FPS register control the
modes of operation as follows.

® Single/Double: floating-point numbers can be either single- or double-precision.

e Short/Long: integer numbers can be 16 bits or 32 bits.

¢ Chop/Round: the result of a floating-point operation can be either chopped or rounded. The
term chop is used instead of truncate to avoid confusion with truncation of series used in

approximations for function subroutines.

The FPS register contains an error flag and four conditions codes (five bits): carry, overflow, zero, and
negative, which are equivalent to the CPU condition codes.

1-35

The floating-point operation recognizes six floating-point exceptions.

Detection of the presence of the undefined variable in memory
Floating overflow

Floating underflow

Failure of floating-to-integer conversion

Attempt to divide by zero

Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to enable or disable interrupt
individually. An interrupt on the occurrence of either of the last two exceptions can be disabled only by
setting a bit which disables interrupts of all six of the exceptions as a group.

Of the 13 FPS bits described above, the error flag and condition codes are set by the FPP as part of the
output of a floating-point instruction. Any of the mode and interrupt control bits may be set by the user;
the LDFS instruction is available for this purpose. The FPS register is shown in Figure 1-31 and described
in Table 1-19.

fer| FD| o | o {Fuv| Fu| Fv|Fc | e | FL L FT | o | FN| Fz | BV | FC
t L§ I\ J \ J

FLOATING f T

ERROR , INTERRUPTS MODES FLOATING
INTERRUPT COND CODES
DISABLE

MR-9377

Figure 1-31 Floating-Point Status Register

Table 1-19 Floating-Point Status Bit Description

Bit Name Function

15 Floating crror (FER) This bit is set by a floating-point instruction if:

® Division by zero occurs
® lllegal op code occurs
® Any of the remaining errors occur and the corresponding interrupt is enabled.

This action is independent of the FID bit status.

Also note that the FPP never resets the FER bit. Once the FER bit is set by the FPP, it
can be cleared only by an LDFPS instruction (the RESET instruction does not clear the
FER bit). This means that the FER bit is up-to-date only if the most recent floating-
point instruction produced a floating-point exception.

14 Interrupt disable If this bit is set, all floating-point interrupts are disabled.
(FID)
The FID bit is primarily a maintenance feature. It should normally be clear. In particu-
lar, it must be clear if one wishes to assure that storage of —0 by a FPP is always
accompanied by an interrupt.

Throughout the rest of this chapter, it is assumed that the FID bit is clear in all
discussions involving overflow, underflow, occurrence of —0, and integer conversion

Crrors.

13,12 Not used -

1-36

Table 1-19 Floating-Point Status Bit Description (Cont)

Bit Name Function
11 Interrupt on An interrupt occurs when this bit is set and a —0 is obtained from memory as an
undefined operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or any LOAD
variable (FIUV) instruction. The interrupt occurs before execution. When FIUV is reset, —0 can be
loaded and used in any FPP operation. Note that the interrupt is not activated by the
presence of —0 in any AC operand of an arithmetic instruction; in particular, trap on —0
never occurs in mode 0.
The FPP will not store a result of —0 without a simultaneous interrupt.
10 Interrupt on When this bit is set, floating underflow will cause an interrupt. The fractional part of
underflow (FIU) the result of the operation causing the interrupt will be correct. The biased exponent will
be too large by 400 (octal) except for the special case of 0, which is correct. An
exception is discussed later in the detailed description of the LDEXP instruction.
If the FIU bit is reset and if underflow occurs, no interrupt occurs and the result is set to
exact 0.
09 Interrupt on When this bit is set, floating overflow will cause an interrupt. The fractional part of the
overflow (F1V) result of the operation causing the overflow will be correct. The biased exponent will be
too small by 400 (octal).
If the FIV is reset and overflow occurs, there is no interrupt. The FPP returns to exact
0.
Special cases of overflow are dis- cussed in the detailed descriptions of the MOD and
LDEXP instructions.
08 Interrupt on integer When this bit is set and conversion to integer instruction fails, an interrupt will occur. If
conversion (FIC) the interrupt occurs, the destination is set to 0, and all other registers are left untouched.
If the FIC bit is reset, the result of the operation will be the same as detailed above, but
no interrupt will occur.
The conversion instruction fails if it generates an integer with more bits than can fit in
the short or long integer word specified by the FL bit (bit 06)
07 Floating double- This bit determines the precision that is used for floating-point calculations. When set,
precision mode (FD) double-precision is assumed; when reset, single-precision is used.
06 Floating long This bit is used in conversion between integer and floating-point format. When set, the
integer mode (FL) integer format assumed is double-precision 2’s complement (i.c., 32 bits). When reset,
the integer format is assumed to be single-precision 2's complement (i.e., 16 bits).
05 Floating chop When this bit is set, the result of any arithmetic operation is chopped (or truncated).
mode (FT) When reset, the result is rounded.
04 Not used -
03 Floating negative (FN) This bit is set if the result of the last floating-point operation was negative; otherwise, it
is reset.
02 Floating zcro (FZ) This bit is set if the result of the last floating-point operation was 0; otherwise. it is reset.
0l Floating overflow (FV) This bit is set if the last floating-point operation resulted in an exponent overflow;
otherwise, it is reset.
00 Floating carry (FC) This bit is set if the last operation resulted in a carry of the most significant bit. This can

only occur in a floating or double-to-integer conversion.

1-37

1.7.2.3 Floating-Point Exception Registers (FEC, FEA) - One interrupt vector is assigned to take care
of all floating-point exceptions (location 244). The six possible errors are coded in the 4-bit floating
exception code (FEC) register as follows.

Floating op code error

Floating divide by zero error

Floating or double-to-integer conversion error
Floating overflow error

Floating underflow error

Floating undefined variable error

OO BIN

1
1
The address of the instruction producing the exception is stored in the floating exception address (FEA)
register.

The FEC and FEA registers are updated when one of the following occurs.

o Divide by zero
¢ [llegal op code
® Any of the other four exceptions with the corresponding interrupt enabled

If one of the four exceptions occurs with the corresponding interrupt disabled, the FEC and FEA are not
updated. Inhibition of interrupts by the FID bit does not inhibit updating of the FEC and FEA, if an
exception occurs. The FEC and FEA are not updated if no exception occurs. This means that the store
status (STST) instruction will return current information only if the most recent floating-point instruction
produced an exception. Unlike the FPS register, no instructions are provided for storage into the FEC and
FEA registers.

1.7.3 Floating-Point Instruction Addressing

Floating-point instructions use the same type of addressing as the central processor instructions. A source
or destination operand is specified by designating one of eight addressing modes and one of eight central
processor general registers to be used in the specified mode. The modes of addressing are the same as those
of the central processor, except in mode 0. In mode O the operand is located in the designated floating-
point processor accumulator rather than in a central processor general register. The modes of addressing
are as follows.

0 = FPP accumulator
1 = Deferred

2 = Autoincrement
3 = Autoincrement-deferred
4 = Autodecrement
5 = Autodecrement-deferred
6 = Indexed

7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 4g for F format and 10g for
D format.

In mode 0, users can make use of all six FPP accumulators (AC0O-AC5) as their source or destination.
Specifying FPP accumulators AC6 or AC7 will result in an illegal op code trap. In all other modes which
involve transfer of data to or from memory or the general registers, users are restricted to the first four
FPP accumulators (AC0-AC3). When reading or writing a floating-point number from or to memory, the
low memory word contains the most significant word of the floating-point number, and the high memory
word the least significant word.

1-38

1.7.4 Accuracy

General comments on the accuracy of the floating-point are presented here. The descriptions of the
individual instructions, including the accuracy at which they operate, are listed in Chapter 7. An instruc-
tion or operation is regarded as “exact” if the result is identical to an infinite precision calculation
involving the same operands. The prior accuracy of the operands is thus ignored. All arithmetic instruc-
tions treat an operand whose biased exponent is 0 as an exact 0 (unless FIUV is enabled and the operand is
—0, in which case an interrupt occurs). For all arithmetic operations, except DIV, a 0 operand implies that
the instruction is exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the
divisor, division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. [t contains 24 bits or 56
bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with
two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has
an error bound of 1/2 LSB. These error bounds are realized by the FPP for all instructions.

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded result is
related to the chopped result as follows.

I. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.
2. If the rounding bit is 0, the rounded and chopped results are identical.
It follows that:
1. If the result is exact, rounded value = chopped value = exact value.
2. If the result is not exact, its magnitude is:

a. always decreased by chopping.
b. decreased by rounding if the rounding bit is 0.
¢. increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.
However, the internal hardware has produced the correct answer. For the case of underflow, replacement
of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by
the FPP if the underflow interrupt is disabled. The error incurred by this action is an absolute rather than a
relative error; it is bounded (in absolute value) by 2 ** (—128). There is no such simple resolution for the
case of overflow. The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09) of
the status register.

1-39

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition. If such a condition occurs and the correspond-
ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place and users can identify the cause by examination of the floating
overflow (FV) bit of the floating exception (FEC) register. You can readily verify that (for the standard
arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction bears
the following relation to the correct exponent generated by the microcode.

1. On overflow, it is too small by 400g.

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too
large by 400g.

Thus, with the interrupt enabled, enough information is available to determine the correct answer. Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

1.8 SOFTWARE SYSTEMS

The KDJ11-A module can run the RT-11, RSX-11 V5.1, RSX-11 PLUS, RSTS/E, UNIX, and micro-
power PASCAL operating systems. These systems are described in the PDP-11 Software Handbook (EB
18687-20/80).

1-40

CHAPTER 2
INSTALLATION

2.1 INTRODUCTION

This chapter discusses the considerations and requirements to configure and install a KDJ11-A module in
an LSI-11 system. The module can be installed in systems using the extended LSI-11 bus backplane as well
as existing systems that use one of the standard LSI-11 backplanes. The items that must be consideréd
before installing the module are as follows. &

. Configuration of the user selectable features.
2. Selection of an LSI-11 compatible backplane and mounting box.
3. Selection of LSI-11 options compatible with the KDJ1 1-A.

4. Knowledge of system differences when replacing an LSI-11 processor with the KDJ11-A
module.

2.2 CONFIGURATION

The KDJ11-A has nine jumpers for the user selectable features. The locations of these jumpers are shown
in Figure 2-1 and their functions are described in Table 2-1. A jumper is installed by pushing an insulated
jumper wire (P/N 12-18783-00) onto the two wirewrap pins provided on the module.

Table 2-1 KDJ11-A Jumper Identification

" Jumper Function
Wi Bootstrap address bit 15
W2 Bootstrap address bit 14
W3 Power-up option selection bit 02
w4 Bootstrap address bit 13
W3 HALT trap option bit 03
Wé Bootstrap address bit 12
w7 Power-up option selection bit 01
w38 Wakeup disable
W9 BEVNT recognition

2-1

2.2.1 Power-Up Options

There are four power-up options available for the user to select. These options are selected by jumpers W7
and W3. The bits are set (1) when the jumpers are removed. A power-up option is selected by configuring
W3 and W7, as described in Table 2-2. A description of each option is provided below.

Table 2-2 Power-Up Options

Option W3 w7 Power-Up Mode

0 Installed Installed PC at 24, PS = 26

1 Installed Removed Micro-ODT, PS = 0

2 Removed Installed PC at 173000, PS = 340
3 Removed Removed Users bootstrap, PS at 340

2.2.1.1 Power-Up Option 0 - The processor reads physical memory locations 24 and 26 and loads the
data into the PC and PS, respectively. The processor either services pending interrupts or starts program
execution, beginning at the memory location pointed at by the PC.

2.2.1.2 Power-Up Option 1 - The processor unconditionally enters micro-ODT with the PS cleared.
Pending service conditions are ignored.

2.2.1.3 Power-Up Option 2 - The processor sets the PC to 173000 and the PS to 340. The processor
then either services pending interrupts or starts program execution, beginning at the memory location
pointed at by the PC. This option is used for the standard bootstrap.

2.2.1.4 Power-Up Option 3 - The processor reads the four bootstrap address jumpers and loads the
result into PC<15:12>. PC<11:00> are set to zero, and the PS is set to 340. The processor then either

services pending interrupts, or starts program execution, beginning at the memory location pointed at by
the PC.

2.2.2 HALT Option

The HALT option determines the action taken after a HALT instruction is executed in the kernel mode.
At the end of a HALT instruction, the processor checks the BPOK bit 00 before checking the HALT
option bit 03. If BPOK is set, the processor will recognize the HALT option, which is controlled by the W5
Jumper. When the jumper is removed, bit 03 is set (1) and the processor will trap to location 4 in the
kernel data space and set bit 07 of the CPU error register. When the jumper is installed, bit 03 reads as a
zero and the processor enters the micro-ODT mode. If BPOK bit 00 is not set when the processor checks,
the option is not recognized and the processor loops until BPOK is asserted and the power-up sequence is
initiated.

2.2.3 Boot Address

The boot address jumpers selects the starting address for the user’s bootstrap program when power-up
option 3 is selected. The state of the highest four bits, <15:12>, is determined by jumpers W1, W2, W4,
and W6, respectively. A bit will be set (1) when the respective jumper for that bit is installed and the bit
will be read as a zero when the jumper is removed. During the power-up sequence, the processor reads the
address determined by bits <15:12> and forces the remaining bits to read as zeros. Therefore, the user’s
bootstrap program can reside on any 2048 word boundary.

2.2.4 Wakeup Disable

The KDJ11-AA module has an onboard wakeup circuit to properly sequence the BDCOK signal. When
Jumper W8 is removed, the wakeup circuit is enabled and the module will properly sequence the BDCOK
signal. The wakeup circuit will be disabled when W8 is installed and external logic must be used to
properly sequence the BDCOK signal.

2.2.5 BEVNT Recognition

The LSI-11 bus signal BEVNT provides an external event interrupt request to the processor. This feature
is disabled when the W9 jumper is installed and disables the line time clock register. When the jumper is
removed, the BEVNT input is recognized and is under control of the line time clock register. Specifically,
the signal is recognized by the module when bit 06 of the line time clock register is set (1) and is disabled
when bit 06 is not set (0). The line time clock register address is 17 777 546 and is a read/write register.

2.2.6 Factory Configuration

The factory or shipped configuration is described in Table 2-3. The user should review these features and
change them accordingly to match the requirements of the system using the module.

Table 2-3 Factory Configuration

Jumper Status Function

Wi Installed Bit 15 set (1)

w2 Installed Bit 14 set (1)

W3 Removed Selects power-up option 2

W4 Installed Bit 13 set (1)

W5 Removed HALT instruction traps to location 4
Y Installed Bit 12 set (1)

w7 Installed Selects power-up option 2

A% Removed Wakeup circuit is enabled

w9 Removed BEVNT register is enabled

2.3 DIAGNOSTIC LEDS

The module has four LEDs that monitor the status of the module. The LEDs are designated as D1 through
D4 and are located on the edge of the module, as shown in Figure 2-1. The D1 LED is turned on only when
the module is operating in the micro-ODT mode. LEDS D2-D4 are used with the diagnostics and run
during the power-up sequence. These LEDs are turned on at the beginning of the sequence and are turned
off upon the successful pass of the diagnostic. Each LED monitors a primary function of the module

operation, as described in Table 2-4. When troubleshooting the system, the LEDs indicate the most
probable failure, as described in Table 2-5.

Table 2-4 LED Functions

LED On Test Conditions

Dl Micro-ODT is entered.

D2 Mod}lle could not do a write and read transaction to the CPU error register. Indicates the microcode is not
running.

D3 Module attempted to read location 17 777 560 and timed out. Indicates SLU is not responding.

D4 Module attempted to read location 0 and timed out or attempted to read location 17 777 700 and did not time

out. Indicates the memory system is not responding.

Table 2-5 Probable System Failure

LEDs

D1 D2 D3 D4 Probable Failure

X On On On CPU module

X Off On On LSI-11 bus

X On Off On CPU module

X Off Off On LSI-11 bus or memory
X On On Off CPU module

X Off On Off SLU module

X On Off Off CPU module

X Off Off Off Console terminal

2-4

D4AC—P MEM
D3[P SLU
D2C—p cPU
D1C=p oDT

E36
MICROPROCESSOR

E34 E13
CACHE STATE
CONTROL SEQUENCER

MR-11061

Figure 2-1 KDJI11-A Jumper Locations

2-5

24

MAINTENANCE REGISTER (ADDRESS 17 777 750)

The contents of the maintenance register is primarily determined by the user’s selection of jumpers W1
through W7. In addition to these, the register bit 00 monitors the status of the LSI-11 bus signal BPOK,
and bit 08 monitors the availability of a floating-point accelerator. The register is defined in Figure 2-2 and
its contents are described in Table 2-6. It is a read-only register.

15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
T T T T
0 0 0 0 0 Q 1
| | | |
FPA HALT ‘ POWER
BOOT AVAILABLE OPTION 0K
ADDRESS POWER UP (POK)
OPTION
MR-11044
Figure 2-2 Maintenance Register
Table 2-6 Maintenance Register Bit Description

Bit Name Status Function

15:12 Boot address Read only These bits read the user’s boot address selected by
jumpers W1, W2, W4, and W6. A 1 indicates the jump-
er is installed and a O indicates the jumper is removed.

11:09 Not used Read only Read as zeros

08 FPA available Read only A 1 indicates the presence of a floating-point accelerator
and a 0 indicates that an accelerator is not installed.

07:.04 Module ID Read only The 0001 code identifies to the microprocessor that this
is a KDJ11-A module.

03 HALT Read only This bit reads the status of the WS jumper. A 1 indicates
the jumper is removed and a 0 indicates the jumper is
installed.

02:01 Power-up Read only These bits read the user’s power-up mode sclected by
jumpers W3 and W7. A 1 indicates the jumper is
removed and a O indicates the jumper is installed.

01 POK Read only Reads as a | when BPOK H is asserted and the power

supply is okay.

2-6

,

2.5 POWER-UP SEQUENCE
The power-up sequence for the module is shown in Figure 2-3.

C

POWER UP)
:

TURN OFF D1

:

ASSERT BINIT L

}

WAIT 10 uS

:

NEGATE BINIT L

;

CLEAR MMRO

:

CLEAR MMR3

:

WAIT 90 uS

}

EXPLICITLY CLEAR

PIRQ
}

CLEAR FPS

READ JUMPERS

:

CLEAR CPU ERROR REG

BPOK H
ASSERTED

EXPLICITLY SET
CCR<8>TO FLUSH

THE CACHE AND CLEAR
CCR<15:9, 7:0>

:

EXPLICITLY CLEAR
MSER

CLEARPS

|

SET CPU ERROR REG
TO 177766

;

EXPLICITLY READ CPU
ERROR REGISTER

:

CLEAR CPU ERROR REG

READ
EQUAL
WRITTEN

TURN OFF D3

EXPLICITLY READ
MEMORY LOCATION
177700

NXM ABORT
NO

TURN OFF D2

©

EXPLICITLY READ
MEMORY LOCATION
177560

NXM ABORT
NO

TURN OFF D4

EXPLICITLY READ
MEMORY LOCATION O

NXM ABORT

POWER UP
OPTION O

POWER UP
OPTION 1

POWER UP
OPTION 2

PC<15:12> = USER BOOT
PC<11:0>=0
PS = 340

BEGIN EXECUTING CODE

Figure 2-3 KDJ11-A Power-Up Sequence

2.7

PC@24
PS@26

BEGIN
EXECUTING
CODE

ENTER
MICRO-ODT
PS=0

PC = 173000
PS = 340

BEGIN
EXECUTING
CODE

MR-11062

2.6 POWER-DOWN SEQUENCE
The power-down sequence for the module is shown in Figure 2-4.

2.7 EXIT MICRO-ODT SEQUENCE
The micro-ODT mode is exited by the G command and the module sequence is shown in Figure 2-5.

‘ POWER DOWN)

CLEAR POWER FAIL
FLIP-FLOP

i

TRAP THROUGH
VECTOR 24

CONTINUE EXECUTING CODE
s

HALT
INSTRUCTION

NO

EXECUTE
INSTRUCTION

READ JUMPER OPTIONS

SET CPU ERROR
REG<7>: TRAP
VECTOR 4

BPOK H
ASSERTED

INITIATE POWER UP
SEQUENCE

HALT
OPTION JUMPER

REMOVED

ENTER MICRO-ODT

SET CPU ERROR
REG<7>: TRAP
VECTOR 4

MR-11063

Figure 2-4 KDJ11-A Power-Down Sequence

‘ MICRO-ODT ‘G’)

TURN OFF D4 CLEAR FPS
ASSERT BINIT L
[READ JUMPERS

WAIT 10 uS

:

CLEAR CPU ERROR REG

NEGATE BINIT L

:

CLEAR MMRO

!

CLEAR MMR3

BPOK H
ASSERTED

!

WAIT 90uS

EXPLICITLY SET
CCR<8> TO FLUSH
THE CACHE

!

:

EXPLICITLY CLEAR
PIRQ

EXPLICITLY CLEAR

MSER

2-8

L CLEAR PS

BEGIN EXECUTING CODE

MR-11064

Figure 2-5 Micro-ODT Exit Sequence

2.8 MODULE CONTACT FINGER IDENTIFICATION

The LSI-11 type modules, including the KDJ11-A, all use the same contact (pin) identification system.
Figure 2-6 identifies the contacts used on a dual-height module. The LSI-11 bus signals are carried on rows
A and B, each with 18 contacts on the component side and the solder side. The KDJ11-A signals are
identified along with the LSI-11 bus signals in Table 2-7. The pins are identified as follows.

AE2 Module Side Identifier Side (solder side)
Pin Identifier (Pin E)
Row Identifier (Row A)
The positioning notch between the two rows of pins mates with a protrusion on the connector block for the

correct module positioning. A complete description of the backplane and bus operation is provided in
Chapter 5.

PIN AA1

PIN AA2
~
ROW A
PIN AV1 PIN AV2 |E
‘\] l/'
PIN BA1 PIN BA2
SIDE 2
ROW B SOLDER SIDE
COMPONENT SIDE
PIN BV1
PIN BV2

MR-7177

Figure 2-6 KDJI11-A Module Contacts

Table 2-7 KDJ11-A Module Signals

Component Side

Solder Side

Pin LSI-11 Bus KDJ11-A Pin LSI-11 Bus KDJ11-A
AAl BIRQ 5 L BIRQ 5 L AA2 +5 +5

ABI BIRQ 6 L BIRQ 6 L AB2 ~12 Not used
AC1 BDAL 16 L BDAL 16 L AC2 GND GND

ADI BDAL 17 L BDAL 17 L AD2 +12 Not used
AEI SSPARE 1 Not used AE2 BDOUT L BDOUT L
AF1 SSPARE 2 SRUN L* AF2 BRPLY L BRPLY L
AHI SSPARE 3 Not used AH2 BDIN L BDIN L
All GND GND Al2 BSYNC L BSYNC L
AKI1 MSPARE A Not used AK2 BWTBT L BWTBT L
ALl MSPARE A Not used AL2 BIRQ L BIRQ 4 L
AMI GND GND AM2 BIAKI L Not used
AN BDMR L BDMR L AN2 BAILO L BIAK L
API1 BHALT L BHALT L AP2 BBS 7L BBS 7L
ARI1 BREF L Not used AR2 BDMGI L Not used
ASI +12 B Not used AS2 BDMGO L BDMG L
ATI BND GND AT2 BINIT L BINIT L
AUl PSPARE 1 Not used AU2 BDAL 0 L BDAL O L
AV1 +5B +5 B AV2 BDAL 1 L BDAL I L
BA1 BDCOK H BDCOK H BA2 +5 +5

BBI BPOK H BPOK H BB2 —12 Not used
BC1 SSPARE 4 BDAL 18 L BC2 GND GND

BDI1 SSPARE 5 BDAL 19 L BD2 +12 Not used
BEI SSPARE 6 BDAL 20 L BE2 BDAL 2 L BDAL 2 L
BF! SSPARE 7 BDAL 21 L BF2 BDAL 3 L BDAL 3 L
BH1 SSPARE 8 Not used BH2 BDAL 4 L BDAL 4 L
BJ1 GND GND BJ2 BDAL 5 L BDAL 5 L
BK1 MSPARE B Not used BK2 BDAL 6 L BDAL 6 L
BL1 MSPARE B Not used BL2 BDAL 7 L BDAL 7 L
BMi GND GND BM2 BDAL 8 L BDAL 8 L
BNI BSACK L BSACK L BN2 BDAL 9 L BDAL 9 L
BP1 BIRQ7L BIRQ 7 L BP2 BDAL 10 L BDAL 10 L
BR1 BEVNT L BEVENT L BR2 BDAL 11 L BDAL 11 L
BSI PSPARE 4 Not used BS2 BDAL 12 L BDAL 12 L
BT1 GND GND BT2 BDAL 13 L BDAL 13 L
BUI PSPARE 2 Not used BU2 BDAL 14 L BDAL 14 L
BV1 +5 +5 BV2 BDAL 15 L BDAL 15 L

* The SRUN L signal is primarily used to drive a panel run light indicator. It is used for BA11-N and later systems. It indicates

the processor is executing instructions.

29 HARDWARE OPTIONS
The KDJ11-A module can be configured into an operating system using a variety of backplanes, power
supplies, enclosures, and LSI-11 type modules.

2.9.1

LSI-11 Options
The LSI-11 options that are compatible with the KDJ11-A module are listed in Table 2-8. These options

meet the following requirements and may be used in any KDJ11-A system configuration.

The backplanes, memory, and I/O devices must support 22-bit addressing.

These devices must use backplane pins BC1, BD1, BE1, BFl and DC1, DD1, DE1, DF1, for the

BDAL bits <18:21> only.

Table 2-8 LSI-11 Compatible Options

Name Option Identification

Backplanes

H9275 4x9 LSI-11/LSI-11 backplane

H9276 4x9 LSI-11/CD backplane

Micro/PDP-11 4 %8 LSI-11/CD and 4 x 5 LSI-11/LSI-11 backplane

Memory

MCV11-D-D Mg631 CMOS nonvolatile memory

MSVI1I1-D-L M8059 MOS memory

MSVI1I-P M8067 MOS memory

MXVI1I-B M7915 Multifunction module

MRVI11-D M8578 PROM/ROM module

Options

AAV11-C A6008 D/A converter

ADVII-C A8000 A/D converter

AXVII-C A0028 D/A and A/D combination converter

DLVII M7940 Asynchronous serial line interface

DLVI1I-E M8017 Asynchronous serial line interface

DLVII-F M8028 Asynchronous serial line interface

DLVI1I1-] M8043 Four asynchronous serial linc interfaces (CS Rev. E or later, ECO
M8043-MRO002 installed)

DMVI11-AC M8053-MA Synchronous communications interface

DMVI11-AF MB064-MA Synchronous communications interface

DPVI11 M8020 Programmable synchronous EIA line

DRVI11 M7941 Parallel interface

DRVI1-J Mg8049 Parallel interface

DUVII M7951 Programmable synchronous EIA Line

DZV11 M7957 4-line asynchronous EIA multiple

IBVI1I-A M7954 IEEE instrument bus interface

KPVII-A M8BO16 Power-fail and LTC generator (KPV11-B and -C are not compatible)

KWVI11-C A4002 Programmable real-time clock

LAVII M7949 LA180 line printer interface

LPVII M8027 LA180/LP0S5 printer interfacc

RLVI2 M8061 RLO1/2 controller

RQDXI1 M&639 MSCP controller for RX50 floppy disk and RD51 Winchester

RXVII M7946 RXO01 interface

TSVO05 M7196 Magnetic tape interface

Bus Cable Cards

M9404 Cable connector

M9404-Y A Cable connector with 240 ! terminators
M9405 Cable connector

M9405-YA Connector with 120 Q terminators

Boot ROMs

MXVI11-B2 Boot ROMs

2-11

2.9.2 Restricted LSI-11 Options

The LSI-11 options that are not compatible or restricted for use with the KDJ11-A module are listed in
Table 2-9. Backplanes, memories, or I/O devices that are not capable of 22-bit addressing may generate or
decode erroneous addresses if they are used in systems that implement 22-bit addressing. Memory and
memory-addressing devices which implement only 16- or 18-bit addressing may be used in a 22-bit
backplane, but the size of the system memory must be restricted to the address range of these devices (32
KW for systems with a 16-bit device, and 128 KW for systems with an 18-bit device).

Any device that uses backplane pins BC1, BDI1, BE1, BF1 or DCI1, DDI1, DE1, DF1 for purposes other
than BDAL <I8:21> is electrically incompatible with the 22-bit bus and may not be used without
modification to the hardware.

NOTE
Eighteen-bit DMA devices can potentially work in
Q22 systems by buffering I/0O in the 18-bit address
space.

Table 2-9 Restricted or Noncompatible LSI-11 Options

Name Option Identification
Backplanes
DDVI11-B 6 X9 Backplane

(18-bit addressing only)
H9270 4 x4 Backplane

(18-bit addressing only)
H9273-A 4 X9 Backplane

(18-bit addressing only)
H9281-A, -B, -C 2Xn Dual-height backplane n = 4, 8, and 12

(18-bit addressing only)
VT103 B.P. 4% 4 Backplane (54-14008)

(18-bit addressing only)
Memories
MMVII1-A G653 Core memory

(16-bit addressing only, Q-Bus required on C/D backplane

connectors)
MRV11-AA M7942 ROM

(16-bit addressing only)
MRV11-BA M8021 UV PROM-RAM

(16-bit addressing only)
MRVI11-C M8048 PROM/ROM

(18-bit addressing only)
MSV11-B M7944 MOS

(16-bit addressing only)
MSV1I-C M7955 MOS

(18-addressing only)

2-12

Table 2-9 Restricted or Noncompatible LSI-11 Options (Cont)

Name Option Identification
MSVI1-D/E M8044/M8045 MOS
(18-bit addressing only)
MXVII-A MB047 Multifunction module
(18-bit addressing only on memory, the memory can be
disabled)
Options
AAVII A6001 D/A converter
(Use of BCI for purposes other than BDAL 18)
ADVI11 A012 A/D converter
(Use of BCI for purposes other than BDAL 18)
BDVI1 MB8012 Bootstrap/terminator
(CS Revision D or later for use with KDF11-A, or KDF11-B,
EDD M8012-ML0002. CS Revision E or later for use in 22-
bit systems, ECO M8012-ML00S)
DLVI1I1-J M8043 Serial line interface
(CS Reyvision E or later for use with KDFI11-A, or KDF11-B,
ECO M8043-M8002)
DRVI1I-B M7950 DMA interface
(18-bit DMA only)
KPV11-B, -C M8016-YB, -YC Power-fail/line-time clock terminator
(Termination for 18 bits only)
KUVII M8018 WCS
(For use with KD11-B and KD11-BA processors only)
KWVI1I-A M7952 Programmable real-time clock
(Use of BC1 for purposes other than BDAL 18)
REVI1 M9400 Terminator, DMA refresh, bootstrap
(Bootstrap for use with KD11-B and KL11-HA processors
only. Termination for 18 bits only. DMA refresh may be
used in any system.)
RKVI1-D M72609 RKO0S5 controller interface
(16-bit DMA only)
RLVII M8013 + M&014 RLO1, 2 controller
(18-bit DMA only, use of BC1 and BL1 for purposes other
than BDAL 18 AND BDAL 19, requires CD-interconnect
on backplane C/D connectors)
RXV2I M8029 RXO02 interface
(18-bit DMA only)
TEVII M9400-YB Terminator
(Termination for 18 bits only)
VSVI11 M7064 Graphics display

(18-bit DMA only)

2-13

Table 2-9 Restricted or Noncompatible LSI-11 Options (Cont)

Name Option Identification

Bus Cable Cards

M9400-YD Cable connector
(18-bit bus only)

M9400-YE Cable connector with 240 Q terminators
(18-bit bus only)

M9401 Cablc connector
(18-bit bus only)

Boot ROMs

MXVI1-A2 Boot ROMs

2.9.3 Enclosures
The KDJ11-A module may be installed in a variety of enclosures, including, but not limited to, the
following.

BA11-S Mounting Box - Contains the H9276 backplane and the H7861 power supply. It supports 22-bit
addressing for up to nine quad- or dual-height modules. The H7861 power supply provides 36 A at +5 V
and 5 A at +12 V.

BA11-N Mounting Box — Contains the H9273 backplane and the H786 power supply. It supports 18-bit
addressing for up to nine quad- or dual-height modules. The H786 power supply provides 22 A at +5 V
and 11 A at +12 V,

BA11-M Mounting Box - Contains H9270 backplane and the H780 power supply. It supports 18-bit
addressing for four slots, each of which may contain one quad- or two dual-height modules. The H780
power supply provides 18 A at +5 V and 3.5 A at +12 V.

Refer to the PDP-11/23B Mounting Box Technical Manual for a complete description of the BA11-S

mounting box and the Microcomputer Interfaces Handbook for a complete description of the BA11-N
and BA11-M mounting boxes.

2-14

2.10 SYSTEM DIFFERENCES
The KDJ11-A module does not have a bootstrap loader, serial line interface, 1/0 bus map, real-time clock,
or memory. A complete listing of the differences between the module and other LSI-11 type processor
modules are listed in Appendix B.

Several key system differences between the KDF11-A and KDJ11-A modules are highlighted below.

1.

The KDJ11-A contains an on-board line time clock register (LTC). No LSI-11 bus cycle is
started when the LTC register is accessed at its bus address of 17 777 546. The access is
completely contained on board the KDJ11-A and does not use the LSI-11 bus. Therefore, an
LSI-11 bus option register addressable at 17 777 546 can never be accessed.

An example of a problem this causes with options can be found in the BDV11 option (M8012).
The BDV11 contains an LTC register which disables recognition of the LSI-11 bus signal
BEVNT by continually asserting BEVNT. Since only the negative edge of BEVNT triggers the
interrupt through location 100, recognition of BEVNT is disabled by this action. The LTC
register on the BDV11 powers-up with BEVNT disable and will only release its grip when a
programmer writes to the register. When the BDVI11 is used with a KDJI1-A, the BDV11’s
copy of the LTC can never be written and, therefore, unless the BDV11 is configured with
switch BS in the off position, all BEVNT interrupts are forever blocked. Switch B5 disconnects
the BEVNT signal from the BDVI11.

In general, no option should contain a register at address 17 777 546.

Bit 11 in the processor status (PS) word selects the alternate register set in the KDJ11-A. This
bit is not implemented in the KDF11-A. Interrupt vectors should not specify the alternate
register set.

Odd word addresses cause addressing error traps (through location 4) in the KDJ11-A. The
KDF11-A does not generate any error condition when word references are addressed with odd
addresses. Any existing code which generates odd word addresses will not work on the KDJ11-
A. The existing BDV11 has code that generates odd word addresses.

The BDV11 generates the error in the ROM diagnostics. The BDV 11 can bypass the error code
if the diagnostics are eliminated (switches Al and A2 off).

BDAL <21:13> are driven as “110000111” during I/O references (BBS7 asserted). The
KDF11-A drives these bits differently: “000000111” when memory management is turned off,
“000011111” when 18-bit memory management is selected, and “111111111” when 22-bit
memory management is selected.

2-15

2.11 KDJ11-A SYSTEM

A KDJ11-A module can be installed to upgrade an existing Digital system or a custom-built system using
LSI-11 components. The existing system must be either a KDF11-A or KDF11-B processor. There are
three considerations that must be addressed to upgrade a system.

1. The boot mechanism
2. 18- or 22-bit addressing system
3. Single or multiple box system

If the system processor is not a KDF11-A or KDJ11-A, such as the 11/03 and 11/03L, it should not be
considered for upgrade.

In the following upgrade descriptions, the systems have been labeled as being field serviceable or not. A
system which is field serviceable has a bootstrap which meets Field Service requirements. However, there
is no guarantee that the overall system will be field serviceable.

NOTE
It is recommended that the ac and dc loading for the
final configuration be checked for conformance with
the Q-bus loading rules. It is also recommended to
check for overloading on the +5 V and +12 V power
supplies.

For each system upgrade, Table 2-10 lists the parameters for both the old system and the upgraded
system.

2.12 MODULE INSTALLATION PROCEDURE
Certain guidelines should be followed when installing or replacing a KDJ11-A module.

1. Verify dc power before inserting the module in a backplane.
2. Ensure that no dc power is applied to the backplane when removing or inserting the module.
3. Verify the configuration of option jumpers.

4. Insert the KDJ11-A module into the first slot or position in the backplane with the component
side facing up.

5. Ensure that either the module or the selected system components provide the power-up
protocol. '

6. Use a single switch to apply all power to the system.

2-16

Table 2-10 Upgrade Choices

KDJ11-A/MXV11-B KDJ11-A
or MRV11-D w/B2 KDJ11-A/MXV11-A BDV11 (1)
ROM Field Not Field Not Field
Current System Serviceable Serviceable Serviceable
18-Bit Systems
Component upgrades
KDFI1-A/MXVI1I-A
1 box X X
Multibox X X
KDF11-A/BDV11
1 box X X(8) X
Multibox X(2) X(2) X(6)
PDP-11/23S system upgrades
KDF11-BA (boot on CPU)
1 slot required
1 box X X X
Multibox (3) X(2) X(2) X(6)
PDP-11/23A system upgrades
KDFII-A
Same as component upgrades
22-Bit Systems
Component upgrades
KDFI1-A/MXVI1I-A (4)
1 box X X

Multibox (10)

PDP-11/23 PLUS or MICRO/PDP-11 (7, 9)
KDF11-B/BE (boot on CPU)
| slot required
I box X X(4) X(3)
Multibox (3, 10)

NOTES:

L, Disable the Processor and Memory test and also the BEVNT register on the BDVI 1.

(8]

Use BCVIA and BDVI1B expansion cables.

3 It is not currently possible to expand out of the PDP-11/23-S or MICRO/PDP-11 box while maintaining FCC
compliance.

4. Memory must be disabled.
5. Must have BDV1I ECO M8012-ML0O0S5 installed.

6. Use BCV2B cable set between the first and second box and BCVIA or BCV2B between second and third box. In a
3-box system, expansion cable set lengths must differ by 4 feet.

7. Neither the BDV 11 nor the MXV11-A boot code support the RD51 (10 megabyte Winchester) or the RX50 5-1/4
inch diskettes.

8. Check ac loading, since termination was removed when the BDV 11 was removed from the system.

9. The PDP-11/23 PLUS and MICRO/PDP-11 system upgrades will require an extra backplane slot to accommodate
the additional boot module.

10. Not currently configurable with Digital equipment.
For further information regarding upgrade parts, contact your local Ficld Service Represenitative.

2-17

2.13 SPECIFICATIONS
Identification

Size

Dimensions

Power Consumption

AC Bus Loads

DC Bus Loads
Environmental

Storage

Operating

Instruction Timing

DMA Latency

M38192

Dual

13.2 cm X 22.8 cm (5.2 in X 8.9 in)
+5V £5% at 4.5 A (maximum)

3.4 unit loads

1 unit load

—40°C to 65°C (—40°F to 150°F) 10% to 90% relative humidity,
noncondensing

For ambient temperatures above 55°C, sufficient air flow must be
provided to limit the module temperature to less than 65°C. For
inlet temperatures below 55° C, air flow must be provided to limit
temperature rise across the module to 10° C.

Derate maximum temperature by 1°C (1.89F) for each 305 m
(1000 ft) above 2440 m (8000 ft).

See Appendix A.
DMA latency is defined as the time between receiving a DMA

request (MDMRL) and granting the request (BDMGL). The
worst case DMA latency is 2.2 microseconds.

2-18

CHAPTER 3
CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1 INTRODUCTION

A portion of the microcode in the KDJ11-A module emulates the capability normally found on a
programmer’s console. Since the KDJ11-A does not have a programmer’s console (one with lights and
switches) or a console switch register at bus address 17777570, the terminal at the standard bus address of
17777560 is used to perform console functions. Communication between the processor and the user is via
a stream of ASCII characters interpreted by the processor as console commands. The console terminal
addresses 17777560 through 17777566 are generated in microcode and cannot be changed.

This feature is called the microcode on-line debugging technique, or micro-ODT. The KDJ11-A micro-
ODT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus the 8 Kbyte I/O page.
Micro-ODT provides a more sophisticated range of debugging techniques, including access of memory
locations by virtual address.

The differences in use of console ODT in the KDJ11-A as compared with that in the KD11-F (LSI-11) and
the KD11-HA (LSI-11/2) are listed in Appendix E.

3.2 TERMINAL INTERFACE

The KDJ11-A does not provide a serial line interface on the module. Therefore, the console must interface
with an LSI-11 serial line interface module connected into the backplane. This allows the console to
communicate with the KDJI1-A via the LSI-11 bus.

3.3 CONSOLE ODT ENTRY CONDITIONS
The ODT console mode can be entered by the following ways.

1. Execution of a HALT instruction in kernel mode, provided the HALT TRAP jumper (W5) is
installed.

2. Assertion of the BHALT signal on the bus. Note that the signal must be asserted long enough
that it is seen at the end of a macroinstruction by the service state in the processor. BHALT is
level-triggered, not edge-triggered. Typically, BHALT remains asserted until the processor
enters ODT.

3-1

3. If power-up mode option | has been selected, ODT is entered upon processor power-up.

NOTE

Unlike the KD11-F and KD11-HA, the KDJ11-A
does not enter console ODT upon occurrence of a
double bus error (for example, when R6 points to
nonexistent memory during a bus timeout trap). The
KDJ11-A creates a new stack at location 2 and
continues to trap to 4. If a bus timeout occurs while
getting an interrupt vector, the KDJ11-A ignores it
and continues execution of the program, whereas in
such case the KD11-F and KD11-HA enter console
ODT. Refer to Appendix E for a listing of the dif-
ferent ways certain processors interpret the same
console ODT commands.

ODT causes the following processor initialization upon entry.

1. Performs a DATI from RBUF (input data buffer at 17777562g) and then ignores the character
present in the buffer. This operation prevents the ODT from interpreting erroneous characters
or user program characters as a command.

2. Prints a carriage return <CR> and line feed <LLF> on the console terminal.
3. Prints the contents of the PC (program counter R7) in six digits.

4. Prints a <CR> and <LF>.

5. Prints the prompt character @.

6. Enters a wait loop for the console terminal input. The DONE flag (bit 07) in the RCSR at
177775603 is constantly being tested via a DATI by the processor for a 1. If bit 07 is a 0, the
processor keeps testing.

3.4 ODT OPERATION OF THE CONSOLE SERIAL-LINE INTERFACE

The processor’s microcode operates the serial-line interface in half-duplex mode by using program 1/0
techniques rather than interrupts. This means that when the ODT microcode is busy printing characters
using the output side of the interface, the microcode is not monitoring the input side for incoming
characters. Any characters coming in while the ODT microcode is printing characters are lost. Overrun
errors detected by the universal asynchronous receiver/transmitter (UART) will be ignored because the
microcode does not check any error bits in the serial-line interface registers.

Therefore, the user should not “type ahead” to ODT because those characters will not be recognized.
More importantly, if another processor is at the end of the serial line, it must obey half-duplex operation.
In other words, no input characters should be sent from the console terminal until the processor’s ODT
output has finished. This restriction does not pertain to echoed characters, however.

3-2

3.4.1 Console ODT Input Sequence
The input sequence for ODT follows. (Upon entry to ODT, the RBUF register at 17777562 is read, but

the character is ignored to prevent the character from being interpreted as a command by the console
ODT.)

1. Test RCSR bit 07 (DONE flag) of RCSR at 177775603 using a DATI bus cycle; if it is a 0,
continue testing.

2. If RCSR bit 07 is a 1, read the low byte of RBUF at 17777562g using a DATI bus cycle.

3.4.2 Console ODT Output Sequence
The output sequence of ODT is as follows.

1. Test bit 07 (DONE flag) of the XCSR at 177775643 using a DATI bus cycle; if it is a 0,
continue testing.

2. If XCSR bit 07 is a 1, write to the XBUF at 17777566g using a DATO bus cycle. The desired
character is in the low byte. The data in the high byte is undefined and is ignored by the serial-
line interface.

If the interrupt enable (bit 06) in the XCSR is a 1, an interrupt will be created to the software when the
proceed (P) console ODT command is used. If a go (G) command is used, all interrupt enables in
peripherals are cleared and an interrupt will not occur.

3.5 CONSOLE ODT COMMAND SET

The ODT command set is listed in Table 3-1 and described in Paragraphs 3.5.1 through 3.5.9. The
commands are a subset of ODT-11 and use the same command characters. ODT has 10 internal states.
Each state recognizes certain characters as valid input and responds with a question mark (?) to all others.

Table 3-1 Console ODT Commands

Command Symbol Function

Slash / Prints the contents of a specified location.

Carriage return <CR> Closes an open location.

Line feed <LF> Closes an open location and then opens the next
contiguous location.

Internal register $orR Opens a specific processor register.

designator

Processor status S Opens the PS; must follow an $ or R command.

word designator

Go G Starts execution of a program.

Proceed P Resumes execution of a program.

Binary dump Control-shift-S Manufacturing use only.

(Reserved) H Reserved for DIGITAL use.

The parity bit (bit 07) on all input characters is ignored (i.e., not stripped) by console ODT and if the input
character is echoed, the state of the parity bit is copied to the output buffer (XBUF). Output characters
internally generated by ODT (e.g., <CR>) have the parity bit equal to 0. All commands are echoed except
for <LF>. '

In order to describe the use of a command, other commands are mentioned before they have been defined.
For the novice user, these paragraphs should be scanned first for familiarization and then reread for detail.
The word /ocation, as used in the following paragraphs, refers to a bus address, processor register, or
processor status word (PS).

The descriptions of the ODT commands include examples of the printouts that the processor will output to
the console terminal in response to the commands entered by the user. In the examples given, the processor
output is underlined.

3.5.1 / (ASCII 057) - Slash

This command is used to open a bus address, processor register, or processor status word and is normally
preceded by other characters that specify a location. In response to /, ODT will print the contents of the
location (six characters) and then a space (ASCII 40). After printing is complete, ODT will wait for either
new data for that location or a valid close command. The space character is issued so that the location’s
contents and possible new contents entered by the user are legible on the terminal.

Example: @00001000/012525 <SPACE>
where: @ = ODT prompt character.
00001000 = octal location in the Q-Bus address space desired by the user (leading

0Os are not required).
/ = command to open and print contents of location.

012525 contents of octal location 1000.

<SPACE> = space character generated by ODT.

The / command can be used without a location specifier to verify the data just entered into a previously
opened location. The / produces this result only if it is entered immediately after a prompt character. A /
issued immediately after the processor enters ODT mode will cause ? <CR>, <LF> to be printed because
a location has not yet been opened.

Example: @1000/012525 <SPACE> 1234 <CR> <CR> <LF>
@/001234 <SPACE>
where: first line = new data of 1234 entered into location 1000 and location closed
with <CR>.
second line = a / was entered without a location specifier and the previous

location was opened to reveal that the new contents was correct-
ly entered into memory.

3-4

3.5.2 <CR> (ASCII 15) - Carriage Return

This command is used to close an open location. If a location’s contents are to be changed, the user should
precede the <CR> with the new data. If no change is desired, <CR> will close the location without
altering its contents.

Example: @R1/004321 <SPACE> <CR> <CR> <LF>
@

Processor register R1 was opened and no change was desired, so the user issued <CR>. In response to the
<CR=>, ODT printed <CR>,<LF>, and @.

Example: @R1/004321 <SPACE> 1234 <CR> <CR> <LF>
@

In this case, the user desired to change R1. The new data, 1234, was entered before the <CR>. ODT
deposited the new data into the open location and then printed <CR>,<LF>, and @. ODT echoes the
<CR> entered by the user before it prints <CR>, <LF>, and @.

3.5.3 <LF> (ASCII 12) - Line Feed
This command is used to close an open location and then open the next contiguous location. Bus addresses
and processor registers will be incremented by two and one, respectively. If the PS is open when an <LF>
is issued, it will be closed and <CR>, <LF>, @ will be printed; no new location will be opened. If the open
location’s contents are to be changed, the new data should precede the <LF>. If no data is entered, the
location is closed without being altered.

Example: @R2/123456 <SPACE> <LF> <CR> <LF>
@R3/054321 <SPACE>

In this case, the user entered <LF> with no data preceding it. In response, ODT closed R2 and then
opened R3. When a user has the last register, R7, open, and issues <LF>, ODT will “roll over” to the first
register, RO. When the user has the last bus address of a 32 K word open segment and issues <LF>, ODT
will open the first location of that segment. If the user wishes to cross the 32 K word boundary, the user
must reenter the address for the desired 32 K word segment (i.e., ODT is modulo 32 K words).

Example: @R7/000000 <SPACE> <LF> <CR> <LF>
@RO0/123456 <SPACE>
or

Example: @577776/000001 <SPACE> <LF> <CR> <LF>

@477776/125252 <SPACE>

Unlike other commands, ODT will not echo the <LF>. Instead, it will print <CR>, then <LF>, so that
teletype printers will operate properly. To make this easier to decode, ODT does not echo ASCII 0, 2, or
10, but responds to these three characters with ? <CR>, <LF>, @.

3-5

3.5.4 $ (ASCII 044) or R (ASCII 122) - Internal Register Designator

Either character, $ or R, when followed by a register number (0 to 7) or PS designator (S), will open the
processor register specified. The $ character is recognized to be compatible with ODT-11. The R character
was introduced for its being a one key stroke representation of its function.

Examples: @$0 /000123 <SPACE>

@R7/000123 <SPACE> <LF>
@R0/054321 <SPACE=>

If more than one character (digit or S) follows the R or $, ODT will use the last character as the register
designator. An exception: if the last three digits equal 077 or 477, ODT will open the PS rather than R7.

3.5.5 S (ASCII 123) - Processor Status Word Designator
This designator is for opening the processor status word and must be used after the user has entered an R
or $ register designator.

Example: @RS/100377 <SPACE> 0 <CR> <CR> <LF>
@/000010 <SPACE>

Note that the trace bit (bit 04) of the processor status word cannot be modified by the user. This is to
prevent the PDP-11 program debugging utilities (e.g., ODT-11), which use the T-bit for single-stepping,
from being accidentally harmed by the user. If the user issues an <LF> while the processor status word is
open, the word is closed and ODT will print a <CR>, <LF>, @. No new location is opened in this case.

3.5.6 G (ASCII 107) - Go
This command is used to start program execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch sequence on other PDP-11 consoles.

Example: @200 G <NULL> <NULL>

The ODT sequence for a G, after echoing the command character, is as follows.

1. Print two nulls (ASCII 0) so the bus initialize that follows will not flush the G character from
the double buffered UART chip in the serial-line interface.

2. Load R7 (PC) with the entered data. If no data is entered, O is used. (In the above example, R7
will equal 200 and that is where program execution will begin.)

3. The floating-point status (FPS) register and the PS will be cleared to 0.

4. The LSI-11 bus is initialized by the processor asserting BINIT L for 12.6 microseconds,
negating BINIT L, and then waiting for 110 microseconds.

5. The service state is entered by the processor. Anything to be serviced is processed. If the
BHALT L bus signal is asserted, the processor reenters the console ODT state. This feature is
used to initialize a system without starting a program (R7 is altered). If the user wants to single-
step a program, he/she issues a G and then successive P commands, all done with the BHALT L
bus signal asserted.

3-6

3.5.7 P (ASCII 120) - Proceed
This command is used to resume execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No machine state visible to the programmer is altered using this command.

Example: @P

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT state is left and
the processor immediately enters the state to fetch the next instruction. If a HALT request is asserted, it is
recognized at the end of the instruction (during the service state) and the processor will enter the ODT
state. Upon entry, the contents of the PC (R7) will be printed. In this fashion, a user can single-step
through a program and get a PC “trace” displayed on his/her terminal.

3.5.8 Control-Shift-S (ASCII 23) - Binary Dump

This command is used for manufacturing test purposes and is not a normal user command. It is intended to
display a portion of memory more efficiently than the / and <LF> commands do. The protocol is as
follows.

1. After a prompt character, ODT receives a control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send two 8-bit bytes which ODT will
interpret as a starting address. These two bytes are not echoed. The first byte specifies starting
address <15:08> and the second byte specifies starting address <07:00>. Bus address bits
<21:16> are always forced to 0; the DUMP command is restricted to the first 32 K words of
address space.

3. After the second address byte has been received, ODT outputs 10g bytes to the serial line,
starting at the address previously specified. When the output is finished, ODT will print <CR>,
<LF>, @.

If a user accidentally enters this command, it is recommended that, in order to exit from the
command, two @ characters (ASCII 100) be entered as a starting address. After the binary
dump, the user will get the prompt character @.

3.5.9 Reserved Command

An ASCII H (110) is reserved for future use by Digital. If it is accidentally typed, ODT will echo the H
and print a prompt character rather than a ?, which is the invalid character response. No other operation is
performed. i

3-7

3.6 KDJ11-A ADDRESS SPECIFICATION

The KDJ11-A micro-ODT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus
the 8 Kbyte [/O page. All 1/0 page addresses must be entered by users with a full 22 bits specified. For
example, if a user wishes to open the RCSR of the serial-line unit (SLU), he/she must enter 17777560, not
177560.

3.6.1 Processor [/O Addresses

Certain processor and MMU registers have [/O addresses assigned to them for programming purposes. If
referenced in ODT, the PS will respond to its bus address, 17777776. Processor registers RO through R7
will not respond (i.e., timeout will occur) to bus addresses 17777700 through 17777707 if referenced in
ODT.

The MMU status registers and PAR/PDR pairs can be accessed from ODT by entering their bus address.

Example: @17777572/000001 <SPACE>

In this case, memory management status register O is opened to show the memory management enable bit
set.

The FP11 accumulators cannot be accessed from ODT. Only FP11 instructions can access these registers.

3.6.2 Stack Pointer Selection

Accessing kernel and user stack pointer registers is accomplished in the following way. Whenever R6 is
referenced in ODT, it accesses the stack pointer specified by the PS current mode bits (PS<15:14>). This
is done for convenience. If a program operating in kernel mode (PS<15:14> = 00) is halted, and R6 is
opened, the kernel stack pointer is accessed.

Similarly, if a program is operating in user mode (PS<15:14> = 11), the R6 command accesses the user
stack pointer. If a different stack pointer is desired, PS<15:14> must be set by the user to the appropriate
value, and then the R6 command can be used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000
@R6/123456 <SPACE>

The user mode stack pointer has been opened.

@RS/140000 <SPACE> 0 <CR> <CR> <LF>

@R6/123456 <SPACE> <CR> <CR> <LF>

@RS/000000 <SPACE> 140000 <CR> <CR> <LF>

@P

In this case, the kernel mode stack pointer was desired. The PS was opened and PS<15:14> was set to 00
(kernel mode). Then R6 was examined and closed. The original value of PS<15:14> was restored, and
then the program was continued using the P command.

3.6.3 Entering of Octal Digits

In general, when the user is specifying an address or data, ODT will use the last eight digits if more than
eight have been entered. The user need not enter leading Os for either address or data; ODT forces Os as
the default. If an odd address is entered, the low-order bit is ignored, and a full 16-bit word is displayed.

3.6.4 ODT Timeout
If the user specifies a nonexistent address, ODT will respond to the bus timeout by printing 7, <CR>,
<LF>, @.

3.7 INVALID CHARACTERS

In general, any character that ODT does not recognize during a particular sequence is echoed (with the
exception of ASCII codes 0, 2, 10, and 12 as noted earlier) and ODT will print ?, <CR>, <LF>, @. ODT
has 10 internal states, with each state having its own set of valid input characters. Some commands are
allowed only when in certain states or sequences; thus an attempt has been made to lower the probability
of a user’s unconsciously destroying data by pressing the wrong key. Table 3-2 defines the ODT states and
valid input characters.

Table 3-2 Console ODT States and Valid Input Characters

Example of
State Terminal Output Valid Input

1 @ 0-7
R, S
G
P
Control-shift-S

2 @R or @$ 0-7
S

3 @1000/123456 0-7
<CR>
<LF>

4 @R 1/123456 0-7
<CR>
<LF>

5 @1000 0-7
/
G

6 @R1 or @RS 0-7
S
/

7 @1000/123456 1000 0-7
<CR>
<LF>

8 @R 1/123456 1000 0-7

<CR>
<LF>

9* @ /

10 @ Control-shift-S 2 binary bytes

*Indicates previous location was opened.

CHAPTER 4
FUNCTIONAL THEORY

4.1 INTRODUCTION

The KDJ11-A is a dual-height microprocessor module on a multilayer printed circuit board for use in an
LSI-11 type system. Figure 4-1 shows the interconnecting data paths between the major functional blocks
of the module which include the following.

the DCJ11 microprocessor

the cache data path and memory

the state sequencer

the input/output control circuits

the bus interface input/output transceivers

The module uses a DCJ11 microprocessor CMOS chip to execute the PDP-11 instruction set described in
Chapter 6, control the memory management, support the console micro-ODT and the other architectural
features described in Chapter 1. The DCJ11 initiates all the KDJ11-A data transfers and operations. The
cache data path contains the line time clock register and the memory system error register (MSER). The
maintenance register is an on-board register that allows software to read the options selected by the user.
The KDJ11-A provides an interface between the DCJ11 and the LSI-11 bus via the A-bus and B-bus data
paths. The state sequencer is a 68-pin gate array that controls the module data transfers using the data
paths. These include the read and write transactions to the cache memory and the system memory by
sequencing the hand shake signals that control the LSI-11 bus.

An on-board 8 Kbyte direct map cache memory is provided. The cache data path chip is a 68-pin gate
array that contains the control logic to support the cache memory. The cache memory is transparent to all
programs and is designed with high-speed RAM memory. The memory locations currently being accessed
from the system memory are automatically stored in the cache memory. The next time these locations are
accessed, the data is retrieved from the cache memory and eliminates the time-consuming LSI-11 bus
transaction. Full parity protection is provided for the cache memory and much of the parity calculations
are done by the cache data path chip. The KDJ11-A monitors DMA writes into the system memory to
ensure that the cache data does not become stale. Each DMA write address is checked to see if the address
is cached, and if it is, the cached data is invalidated.

There are four LEDs on the module that provide a visual indication and monitor the status of the module.
Three of the indicators are set during the power-up sequence to indicate when a hardware failure occurs.
The fourth indicator is set when the module is in the micro-ODT mode. There is also a 40-pin socket
provided on the module for a future floating-point accelerator option.

4-1

680ZL HIN

SHILLINSNYHL
sng

vas

HILSIOAY |

JONYNILNIYIN

H 3Tv

/3ZNVILINGE[*T30 vIva 9D

130 viva d9

SY3IAI303H
snga

1307
D—

137

vas

werIgrl Yoolg [puonduny |-y N34
sN8 v
- [S |
H doHa
MR ETAZT | ! sna v
-
- 1Inoo| ! (vnoisdo) |
A|ﬂm\%_. “J1woav | xoqumw,.”wwu ™ 330V va3
30V4HILNI P *—T5ogv
WILSAS . Y¥3DON3IN03S TdW0D | ONILVOT4 7 1408V
130 vivd d9 J1vis [SNLVLS vad) r AQ
-— |
730 939 VNG Lo
H YIWd avOl “7auis T INOD
130 sn8 *T7104na “ TAd
130 MEECET .
T3y HOSSII0HAOHIIW [* T INATW
TOYINOD 300Hd -
_1 HOSS VY- L0 [
TOHLINOD IHOVD 0|_ sna 1van ~——sEn
-— |
RERELS T3LIAM 4D
- -]
H do"d 7 1H08Y "[NdNI WILSAS
le—— -———
130SN8D T INAIW
-— ————————
TALEYE| v 7110 4ng
IHOVD sSNg Tvan J0HINOD ‘|I|||I vdn
LNdNI
AHOWIW
-— 3HIVD snav
T dW0D
>zl sng g
e
sng g sna a 7 1L04n8
1307
JOHINOD |,
ndin H IV e
+0dtno 730 O34 vWd
lem— ¥ILSI93Y [
AENEYE Yna H ONASY
saa
SNLvis sng 8 sNg v

4-2

4.2 DCJ11 MICROPROCESSOR
The DCJ11 is a microprocessor contained on a 60-pin VLSI chip. The input/output pins are shown in
Figure 4-2 and the signals are described below.

MAIO<O>H AlO<O>H
MAIO<1>H AIO<1>H
MAIQ<2>H AIQ<2>H
PARITY L o MAIO <3>H AIO<3>H
MISSL MALE L ALEL
FPA FPE L BUFFER/ 14 1E 1
MINIT H e MSCTL L DRIVERS —»SCT
LH
RIRQ4 H MSTRB L ET‘R‘BL—’
RIRQ5 H I2H8 L o
CLR PWR FAIL L R——IROS_.‘H MABORT L STRB H
— " MPRDC L ABORT L
I RIRQ7 H ———»anN -
= INIT L vean F— - — e
RPOK L PWR FaiL L_| DCITT-A ENB
MICRO PROCESSOR CO[ENA

R HALT H
UPA H >

EVNT L

FPA STL H bvi -
DMR L
RDMR H

 MBS<O>H

CONT L

CONTL A MBS<1>H
CONT L ——

RAPLY H M BUF CTL L

JCLK H
XTAL1

——

T XTALO

MR-12090

Figure 4-2 DCJ11-A Microprocessor

4.2.1 Initialization (MINIT L)

The MINIT L input is asserted by the BDCOK bus signal which must be asserted for a minimum of 1.5
microsecond. BDCOK H is asserted by the KDJ11-A when jumper W8 is removed. If jumper W8 is
inserted, BDCOK H must be asserted externally in order to start the KDJ11-A. The DCJ11 starts the
power-up sequence (described in Chapter 2) after MINIT L is asserted. MINIT L also clears the PWR
FAIL circuit, initializes the state sequencer, asserts the LSI-11 bus initialization signal BINIT L, and turns
on the diagnostic LEDs.

4.2.2 Output Signals
The DCJ11 output signals control the various module functions and are described below.

4.2.2.1 Address Input/Output (AI0<03:00> H) - These four signals classify the current transaction as a

bus read, bus word write, bus byte write, GP read, GP write, interrupt acknowledge, or NOP as shown in
Table 4-1.

43

Table 4-1 AlO Coding

AlO SIGNAL

3 2 1 0 Type of Transaction*

1 1 1 1 Non I/0O (NOP)

1 1 1 0 General-purpose read

1 1 0 1 Interrupt acknowledge (read vector)
1 1 0 0 Instruction stream request read
1 0 1 1 Read-modify-write, no bus lock
1 0 1 0 Read-modify-write, bus lock

1 0 0 1 Data stream read

1 0 0 0 Instruction stream demand read
0 1 0 - General-purpose word write

0 0 1 - Bus byte write

0 0 0 - Bus word write

* The NOP, IACK, bus and general-purpose (GP) transactions are defined as follows.

1. A NOP transaction is an internal operation that does not require a bus transfer.

2. A bus transaction uses the DAL bus to access memory, 1/0 devices or explicit addressable registers.
3. A general-purpose transaction is used to access interface devices that are not directly addressable by the DAL bus.
4. Interrupt acknowledge (IACK) transactions are in response to the DCJ11 granting an interrupt request.

4.2.2.2 Bank Select, (BS1 H, BSO H) - These signals are time multiplexed during the transaction.
During the first portion of a bus transaction, they are used to define the type of address on the MDAL bus.
The addresses identified by the BSO H and BS1 H signals are defined in Table 4-2.

The memory types are all addresses below 17 600 000. The system register types are bus addressable
registers in the address range of 17 777 740 to 17 777 751. The internal register types are addressable
registers that reside within the DCJ11. The external 1/O types are addresses greater than 17 577 777
which are neither internal registers nor system registers.

During the second half of the transaction, the BS1 H signal indicates the cache bypass status and the BSO
signal indicates the cache force miss status as described below.

BS1 H Asserted — Cache bypass
Negated — No cache bypass

BSO H Asserted — Cache force miss
Negated - No cache force miss

Table 4-2 Bank Select Address Codes

BS1 BS0 Address Type
0 0 Memory

0 1 System register
1 0 External 1/0

1 |

Internal register

4.2.2.3 Address Latch Enable (ALE L) - The ALE L output is asserted at the start of a transaction and
latches the physical address, the AIO code and the BS1 H, BSO H code. The negation of ALE L latches
the cache hit/miss calculated data.

4.2.2.4 Stretch Control (SCTL L) - The SCTL L is asserted for the stretched portion of a transaction
and negated when the DCJ11 receives CONT L input. When SCTL L is asserted, it generates the LSI-11
bus signal BSYNC L that is used for the LSI-11 bus read and write transactions. It also activates the
ABORT L input/output signal.

4.2.2.5 Strobe (STRB L) - This signal is asserted at the end of the second DCJ11 clock period and is
negated at the end of the transaction. The address is latched into the cache data path and the LSI-11 bus
drivers when STRB L is asserted. The negation of STRB L clears the parity error flip-flop that drives the
PARITY L input to the DCJ11.

4.2.2.6 Buffer Control (BUFCTL L) - The BUFCTL L is asserted to enable the input control logic for
the A-bus to drive the MDAL bus. It is negated to enable the output control logic for the MDAL bus to
drive the B-bus. The signal is asserted when the DCJ11 is reading data from the A-bus and negated when
the DCJ11 is writing address or data information onto the B-bus.

4.2.2.7 Predecode Strobe (PRDC L) - The signal is asserted for the first two DCJ11 clock periods of
any transaction that decodes a PDP-11 instruction. It also drives the SRUN L output of the module.

4.2.2.8 Clock (CLK H) - The CLK H output initiates and continuously clocks the timeout logic circuits
used to detect nonexistent memory and the no BSACK L error condition.

4.2.3 Input Signals
The DCJ11 receives status and control information from a variety of input signals. These signals and their
associated functions are described below.

4.2.3.1 MISS L - The MISS L input reports the cache memory hit and miss status during bus read and
write transactions.

4.2.3.2 Data Valid (DV L) - The DV L input is generated by the state sequencer and is used to latch in
read data from the MDAL bus.

4.2.3.3 Continue (CONT L) - The CONT L input is generated by the state sequencer and the LSI-11
bus signal BRPLY L to indicate that the current stretched transaction can end. It is only asserted when
both the state sequencer enables the continue output, and the bus signal BRPLY L is negated on the LSI-
11 bus.

4.2.3.4 DMA Request (DMR L) - The DMR L input is used to stall the DCJ11 by stretching the next
transaction. It is asserted by the FPA STL L signal from the floating-point accelerator socket or by the
LSI-11 bus signal BDMR L. The input is sampled at the beginning of the current transaction, and, when
present, it will stretch the next transaction until the DMA or FPA transfer is complete.

4.2.3.5 IRQ <07:04> H - These inputs are coded priority levels from external devices that drive the
LSI-11 bus signals BIRQ<07:04> L. The IRQ<07:04> H inputs are interrupt requests to the DCJ11 and
are coded to determine a priority level. The acknowledgement of these inputs is dependent on the current
priority level of the processor status word.

4.2.3.6 HALT H - The HALT H input is driven by the LSI-11 bus signal BHALT L and is the lowest
interrupt priority for an external device.

4-5

4.2.3.7 EVNT H - The EVNT H input is driven by the LSI-11 bus signal BEVNT L and has a level-6
priority. This signal can be disabled by installing the W9 jumper or by software clearing bit 6 of the line
time clock (LTC) register.

4.2.3.8 PWR FAIL L - This input is asserted by the power fail flip-flop which is set by the negation of
the LSI-11 bus signal BPOK H. The flip-flop is reset by either MINIT L or CLR PWR FAIL L signals.
This input is a nonmaskable interrupt to the DCJ11.

4.2.3.9 PARITY L - The PARITY L input is driven by the cache data path when a parity error is
detected. This input is a nonmaskable interrupt to the DCJ11.

4.2.3.10 ABORT L - The ABORT L signal is an input/output line that can be driven by the DCJ11 or
an external device such as the cache data path. The signal is used in conjunction with the PARITY L input
to determine when the DCJ11 aborts the current transaction.

4.2.3.11 FPA FPE L - The FPA FPE L input is driven by the floating-point accelerator socket and is a
nonmaskable interrupt request. '

4.2.4 MDAL<21:00>

The MDAL<21:00> bus is a time-multiplexed data/address bus. The basic bus consists of DAL bits
<15:00> and is bidirectional. DAL bits <21:16> are outputs only and used as the extended bus. The data
being transmitted or received is dependent on the type of transaction being performed by the DCJ11.

4.2.5 DCJ11 Timing

The DCJ11 controls the type of transaction being executed and indicates this to the module circuits by
coding the AI0<03:00> signals. There are six basic transactions performed and these are described as
follows.

4.2.5.1 NOP - This transaction performs a DCJ11 internal operation and does not require the use of the
MDAL bus. The normal transaction is shown in Figure 4-3. The stretched transaction (Figure 4-4) occurs
when DMR is asserted early in the transaction and remains stretched until the CONT input is asserted to
end the transaction.

ALE AN 1y

AD T AIO CODE AL
DVR DA\ XXX AKX

REQUEST

MR-12074

Figure 4-3 NOP Transaction

A~
~

ALE NN Vil
ST o W 4
({
ATO [I[[] o cope NN 31 (;)
SRR —mREOUEST/]/// 2 ;r /
BUFCTL A\ { (/]ﬂ]_
AR B
SCTL LAY j((//7?/

-
{ CONTINUE
CONT) M

MR-12075

Figure 4-4 Stretched NOP Transaction

4.2.5.2 Bus Read - The bus read transaction uses the MDAL bus to read data from cache memory, main
memory, input/output devices or the addressable module registers. These transactions occur during
instruction stream reads, data stream reads and the read portion of read-modify-write. The transaction
reads complete words and if only a byte is required, the DCJ11 ignores the excess byte. A cache bus read
transaction (Figure 4-5) occurs when the physical address scores a hit in the cache memory. The DCJ11
will abort the transaction if any memory management or address errors assert the ABORT L signal. When
this happens, all current information is ignored and the transaction is immediately aborted.

pa SCCSCKKCCRKECRRECE. o) cace ot EREECRETIERK

PHYSICAL ADDRESS

AL AN T
S I/ r A\ YRR+ XXX

DMA REQUEST

8BS N\ /0 BANK SELECT CACHE STATUS /J77

CACHE HIT
NIES N4
EORT WX{(MMU ABORT STATUS WX

BUFCTL M

MR-12076

Figure 4-5 Bus Read Transaction

47

The non-cache or stretched bus read transaction (Figure 4-6) is used when the data must be accessed via
the LSI-11 bus. This occurs when any of the following conditions exist.

Either BSI H or BSO H is set to one indicating an I/O address
Cache bypass is indicated

Cache force miss is indicated

DMR L is asserted

Cache MISS is reported

T

The BUFCTL L and SCTL L outputs are asserted during the stretched portion of the read transaction.
The data is read by the DCJ11 when data valid (DV L) is asserted. When the transaction is stretched only
because the DMR input was asserted, then DV L is not asserted because it will overwrite the valid data

received from the cache. The transaction will remain stretched until the CONT L input is asserted to end
the transaction.

PHYSICAL ADDRESS

oac (G &) pImI LSt BUS DATA (

~——
e

ALE R 1y
DMA REQUEST o
SR ¥ T 0 X
T
1/0 BANK SELECT — O
BS W ¥ WX{{ CACHE sTATUS Dl
CACHE HIT {0
MISS R
CACHE MISS o
ABORT MW MMU ABORT STATUS AN MMU AND SYSTEM ABORT STATUS
)
BUFCTL T 7 W\ (f /4
SCTL W () (, /7277
{ CONTINUE
CONT)7

ov 4 i/ w

MR-12077

-~

Figure 4-6 Stretched Bus Read Transaction

4.2.5.3 Bus Write — The bus write transaction writes data to memory, /0 devices, or other addressable
registers via the DAL bus. The transaction can write either bytes or words as determined by the AIO code.
The DCJI11 reports any memory management or address errors by enabling the ABORT L signal. This
causes the transaction to be terminated immediately and all data should be ignored.

The write transaction as shown in Figure 4-7 and all bus write transactions are stretched. The SCTL L
signal is asserted and the write data is on the bus during the stretched portion of the transaction. For byte
writes, an even address selects the low byte and an odd address selects the high byte. The data for the
remaining byte is not used.

4-8

ALE

BS

ot {{((CCLCELLECCLCC s)»)wgy«((DATA OUT !
A\ Vi
))).{(G I CACHE STATUS

ABORT
BUFCTL

SCTL

L 1/0 BANK SELECT

DA

MMU ABORT STATUS

AN

MMU AND SYSTEM ABORT STATUS

A

S N e T ~ J\ A
T~T T

TTTTT

/.

1d
T

CONTINUE

CONT

W+ J7

MR-12078

Figure 4-7 Bus Write Transaction

4.2.5.4 General-Purpose Read -~ The gencral-purpose read transaction accesses non-user-addressable
module hardware. The MDAL address used for general-purpose reads is in the form of 17 777 XXX,
where the “XXX” bits represent the general-purpose read code described in Table 4-3. The codes use
MDAL bits <07:00> to access the hardware.

All general-purpose read transactions (Figure 4-8) are stretched. The DCJ11 reads the data when DV L is
asserted. The transaction is stretched until CONT L is asserted to end the transaction.

Table 4-3 General-Purpose Read Codes

Code Function

000 Reads the maintenance register during power up
and determines the options selected by the user.

001 Reserved

003 Reserved

DAL CECCC(C_sPcone DMDIIINIINY 6P DATA 4} (i (i

e ™ 17 '

BUFCTL AN V////R\\\ ((7
1R

seTT m ///—
[(CONTINUE

CONT 1R

ov (i/} AN

MR-12079

Figurc 4-8 General-Purpose Read Transaction

4-9

4.2.5.5 General-Purpose Write — The general-purpose write transaction accesses non-user-addressable
module hardware. The MDAL address used for general-purpose writes is in the form 17 777 XXX, where
the “XXX bits represent the general-purpose write code described in Table 4-4. The codes use MDAL
bits <07:00> to access the hardware.

All general-purpose write transactions (Figure 4-9) are stretched. The DCJ11 writes the data when SCTL
is asserted during the stretched portion of the transaction. The transaction is stretched until CONT L is
asserted to end the transaction.

Table 4-4 General-Purpose Write Codes

Code Function

003 Reserved

014 Asserts bus reset signal

034 Indicates exit from console (ODT) mode
040 Reserved for future use

100 Acknowledges EVENT interrupt

114 Negates bus reset signal

140 Acknowledges power fail

220 Microdiagnostic test 1 passed

224 Microdiagnostic test 2 passed

230 Microdiagnostic test 3 passed

234 Indicates entrance into console (ODT) mode

PP ETRTID 4 R) T
e m [1
gt
s m m—
((CONTINUE
CONT L)

MR-12080

Figure 4-9 General-Purpose Write Transaction

4.2.5.6 IACK - The read interrupt vector transaction acknowledges an interrupt request received on one
of the IRQ<03:00> inputs by reading a device interrupt vector. All interrupt vector transactions (Figure
4-10) are stretched. The device interrupt vector is latched by the DCJ11 when the DV L input is asserted.

4.3 STATE SEQUENCER

The state sequencer (Figure 4-11) controls the routing of address and data information on the KDJ11-A
module and the LSI-11 bus handshaking signals. The module data path buses consist of the A-bus, B-bus
and the MDAL bus. The MDAL bus is bidirectional; it interfaces with the A-bus by the input control logic
and the B-bus by the output control logic. These data paths allow the DCJ11 to transmit addressing and
data information on the B-bus to the LSI-11 bus, and receive read data on the A-bus from the LSI-11 bus.

The A-bus and B-bus are also connected to the DMA register, which allows DMA addresses to connect to
the B-bus.

oar (T o TDDDDWRIINII) DEVICE VECTOR J;’ :’ {{({{
L INTERRUPT LEVEL e

ALE NN il Y

ABORT /M/ AN J(: ;rSYSTEM ABORT STATUS

BUFCTL T /A (i

scTL AW (17

— (o CON'iINUE

DV {4 Ll \\“_

Figure 4-10 Interrupt Acknowledge Transaction

SET L

AlO<O>H

AIO <1>H
AlO<2>H
AlO<3>H
MBS<0O>H
MBS<1>H
ABORT L

><>RESET L

RDOUT H DO

TDMG H

TIMEOUT L

RRPLY H

RSACK H

]

— ==
CONT FRM RPLY H

ALE L

—_—
SCTL H
RX DOUT H
) FPA OP L
e
B FPA RDY H

FPA FPE L
FDA STL L

SAS H
FLOVFL H

AO H

RDMR2 H
MINIT L

END DMA H

E19

Figure

STRB H

4-11

UPA H

CLK POH _|

CLKP1 H

DRCP H

QBUS OE L

TWTBT H

TDIN H

TDOUT H

TIAK H

TDMG H

VlVV\V'VV

TSYNC L

GP DATAOQE L

LOAD DMA LATCH H_

DMA REG OE L

SEL<O>H

STATE

SEL<1>H

SEQUENCER

LONGCYCLE H

UPDATE L

CHECK H

TY YV

TAGCS L

DATA CS BO L

DATA CS B1 L

RAM WE L

vvYyvyy

DV L

CONT L

'y

RLE L

RLOE L

FPA ACK L

14\"

ILOE L

CLK IN

State Sequencer

TIME DELAY

MR-12091

The steady or quiescent state of the sequencer sets up the module data paths for high-speed cache memory
read operation. When a transaction is stretched, the state sequencer leaves the steady state to control the
module functions and the LSI-11 bus. This allows the module to perform memory read/write, interrupt
vector reads, board register read/write, floating-point accelerator memory 1/0, general purpose 1/0, or
DMA arbitration. A stretched transaction is initiated when SCTL L is asserted. This starts the state
sequencer’s clock and, if necessary, generates the LSI-11 bus signal BSYNC L. The CLK H output drives
the external delay line to generate two delayed clock inputs of 40 ns and 60 ns. These are used to
determine the cycle time of the sequencer and provide short periods of 80 ns or long periods of 120 ns. The
state sequencer decodes the AIO inputs to identify the type of transaction and the BS1 H, BSO H inputs to
classify the address. The state sequencer provides control signals to the functional areas of the module to
support the transaction being performed.

4.3.1 DCJ11

The state sequencer informs the DCJ11 when valid data is on the MDAL bus by asserting DV L. It also
asserts the CONT L input to the DCJ11 when the transaction is completed. It receives the ABORT L and
ALE L inputs from the DCJ11.

4.3.2 LSI-11 Bus Signals

The state sequencer provides the handshaking control signals when the module is transmitting or receiving
data via the LSI-11 bus. These signals are TWTBT H, TDIN H, TDOUT H, TIAK H, TDMG H and
TSYNC. The use of these signals and the LSI-11 bus protocol are described in Chapter 5.

4.3.3 LSI-11 Bus Receivers
The LSI-11 bus data is latched into the bus receivers when RLE L is asserted and this data is driven onto
the A-bus when RLOE L is asserted.

4.3.4 LSI-11 Bus Transmitters
The LSI-11 bus data is latched into the bus transmitters from the B-bus when the DRCP H signal is
asserted and driven onto the LSI-11 bus when the Q-BUS OE L signal is asserted.

4.3.5 Maintenance Register
The maintenance register data is placed on the A-bus when GP DATA OE L signal is asserted.

4.3.6 DMA Register

The DMA register receives an address from the LSI-11 bus via the A-bus and latches it into the register
when LOAD DMA LATCH H is asserted. The address is driven onto the B-bus to check it against the
addresses in the cache memory when DMA REG OE L is asserted.

4.3.7 Cache Data Path

The cache data path provides the SAS H, FLOVFL H and A<0> H inputs to the state sequencer and
receives the SEL <01:00> H, LONGCYCLE H, UPDATE L and CHECK H from the state sequencer.
The special address status (SAS H) is asserted whenever the maintenance or LTC registers are addressed.
The A<00> H input represents the status of address bit zero. The flush counter overflow status (FLOVFL
H) input is asserted when the cache memory is being flushed. The LONGCYCLE H output is asserted
each time a location is flushed and increments the address stored in the flush counter to the next location.
The SEL<01:00> H provide the select output code used to drive the contents of a register selected in the
cache data path onto the B-bus. The select codes are described in Table 4-5. The UPDATE L and
CHECK H signals are used by the cache data path to control the tag parity function.

4-12

Table 4-5 Select Codes

SEL
1 0 Selections
0 0 The cache data path DAL outputs are tristated.
0 I The contents of the address register is driven on the DAL outputs.
1 0 The status of the memory system error register is driven on the DAL outputs, except when the LTC

register is specifically addressed.

1 | The current address/or contents of the flush counter is driven on the DAL outputs.

4.3.8 Cache Memory

The cache memory asserts the COMP L input when an address scores a cache memory miss. The memory
read/write functions are controlled by the TAG CS L, DATA CS B1-BO L and the RAM WE L outputs.
The tag chip select (TAG CS L) signal is asserted to select the 11-bit TAG memory. The high byte data
chip select (DATA CSBI H) and the low byte data chip select (DATA CSBO H) signals are asserted to
select words or bytes stored in the cache memory. The RAM write enable signal (RAMWE L) is asserted
to write data, or negated to read data into the selected memory.

4.3.9 Floating-Point Accelerator

The floating-point accelerator (FPA) socket provides the FPA RDY H, FPA STL L, FPA OP L and FPA
FPE L inputs and receives the FPA ACK L and DV L outputs. The FPA RDY H input is asserted when
the FPA is ready to proceed. The FPA STL L input is asserted when the FPA wishes to stall the DCJ11.
The FPA FPE L is asserted to exit the stall condition. The FPA OP L is asserted when the FPA is writing
data on the A-bus. The state sequencer enables the FPA option by asserting the FPA ACK L output. The
FPA latches data from the DCJ11 when the state sequencer asserts DV L.

4.3.10 Bus Traffic

The on-board buses transfer the addresses and the read/write data to and from the DCJ11. They also
provide communications between the on-board functions and the system I/O. An overview of the bus
traffic flow is described below.

4.3.10.1 Address Busing — The DCJ11 uses the B-bus to address cache memory, main memory. and the
[/O devices. The address flow pattern is shown in Figure 4-12.

4.3.10.2 Read Data — The DCJ11 uses the A-bus to read data from the FPA, cache memory, mainte-
nance register, main memory, and the 1/O devices. The read pattern is shown in Figure 4-13.

4.3.10.3 Write Data — The DCJ11 uses the A-bus and B-bus to write data to the FPA, cache memory,
status LEDs, main memory, and the I/O devices. The write data pattern is shown in Figure 4-14.

4-13

PSLZLHW

Ivasg

SYILLINSNVYYL
sng

uiaNed dlyjel] SsaIppy ¢l-¥ dndig

H3LSI93Y |l&——

JONVNILNIVIN H 3V

/3ZNVILINI[* 930 viva 49

730 Viva do

7307y
le—————

737y

sNa v
r—— - -1
“ H doud _
T 79OV vdd ! sn8 v
-
L _1iNOJ| I (wNoitdo) T
A|4._wmm_ “T1goav | xozmmwﬂu_mu I 350V vai
30V4Y3LNI e
T WO r—
W31SAS . HIONINDIS o ! oNuvou 1608V
130 vivd d9 31V1S SN1VvLS <&u_ _ ana
*730 D39 VNG L
H vIWa avol MERETTt T INOD
730 sng *T7104na 1AQ
1301 ~—T| .
318 H0SSID0YdOBIIN [* T INATW
_| TOHLINOD HOSS3IO0Hd P 2NN e o] PSS
T ALIHVd
J0HINOD FHIVD L sN8 TVAW Rt
- -
7 g41S 7 3LIHM 49D
-——————————— -
A doud T1doav "TNdNI WILSAS
———— -
130 SN80 7 LNAIW
- [——————
7 Alldvd 17112 4Nn8
H1vd Viva Sna Tvan e ©
JHOVD 10HLNOD H vdn
1NdN!
AHOW3IW
na v
] 3nowo s
T dWO0J
* 55| Sne 8
— — ~
e
sna g sng 8 171048
————
e A T0HLNOD AE
Nnd1No H 3w le— ————
1ndL 730 535 vWa
————————— -
TIL8M 4D E»m%s.um H ONASH
sa: —
SNLViS sne g sng v

4-14

SSITL W

vag

SHILLIWSNVYHL
sn8

guisng eieq peoy ¢ [-p 24ndi]

HILSIOWY | ——

ONYNILNIVIN H 3V
/3ZNVILINI [*736VIva 49

13078

SH3AIZDIY |e—5—5=5o

Sng 13
—

sng v
—-
r—-——=—1
“ H doda t
* T v vdd ! Sne v
- —
T INOD I (wnoido) | —
A|14Pm$ *TIdoav | O Ry ™ 130 Va3
JOVAHILNI ——
TdW s
W3LSAS .| y3on3noas 0o | ONLvOd | T LHo8v
330 VIVa dD 31v1S | SNLVIS vddl I TAG
-—
730 534 VWO L
H VNG avOol T auls T 1NOD
130 5nd *39103n8 TAd
7307 ‘.\.(_.._»lm.u_wﬂ
RER HOSS3008d0O¥IIN [* T INATW
JOHINOD Hd -
_I 40SS300 VY- LM (e
T0HINOD JHIVD A|_ SNg Tvan 5T
-—
MERETT ‘ T31UM 49
-—] —
I*—H d3ua 1408y 1NdNI W3LSAS
130SN890 TANAIW ‘
-1
T ALIBvd va 70 3ng
Hivd V1 sng Tvan oo
IHIVD JOHLINOD H vdn
p— LNdNI
AHOW3IW
v
<« 3HOW S8
7 dN0D
-~ =5l sng g A—
fe—————
sna g sna g 77104n8
le-—————
10¥LNOD E
H IV e
1ndino 730 D34 VNG
Y3LsIo3y [y
*S308M dO e H DNASH
sa:n
SNLYLS sng @ sna v

4-15

ISLTLHW

vasg

SHILLIWSNVHL
sna

guisng B1R(NUA\ p[-p 210814

sna v
- — —
- | r=- Bl
H doua I
EREEAZE J sna v
AV Vd3|
-~ TINOD| I fwvnoisdo) | —
A’% *T1goav | moZEwﬂu_wu " 330V vai #
3OV4HILNI -
1
W3ISAS ¥3IININDIS dWO3 | ONILYO | 71408y
130 vivad 49 31v1s | snivis vddl r AQ
*730 534 YA L _
1 vWa avon " guis 7 INOD
-« YWA GVOl)
il m..Omwwm RRRTGENY:] 1AQ
-— “TRIWV e
je———
3] mm; H0SS3I00HIOHIIW [* T INATH uuz<ﬂumﬁwb_ow& CER
. e~
JOYINOD HOSS3004d YV LU0 e AZAVILN [*T35 Y Va5
TOYINOD 3HIVD Al_ sna Tvamw 55
- -—
T auls — T3LIEM 9
o -] S
H d3HaQ 7 1H08v 1NdNI W3ILSAS
130 sN8D T LNAIW
-— - ———— S T TT]
TALEVA| | viva 15 and # T304
SNg 1vaw fe——————— R~ SHIAIFOIY [*——=—o7
IHOVD 10HINOD H vdn sna 13
1NdNI
AHOWIW vaa
- IHOVD sna v '
T dW0D
“ 7 SSIN Sna 8 — - —
sn8 g sng g 7 7104ng
It
G — TOHLINOD Al'%
1Ndino 7 30 934 YIND
le———— le———————
T311HM dO mmhm%_\w__m H ONASY
saan A
SNLVLS sna a sne v
-

4-16

44 CACHE DATA PATH

The cache data path is a multifunction gate array (Figure 4-15) that controls the 8 Kbyte direct map cache
memory. It generates B-bus bits <21:13> as TAG data for the cache memory during cache write
transaction. Parity for the TAG data is generated, predicted, and checked by the gate array. The LTC,
memory system error, and address registers are contained within the array. It also contains the flush
address counter used to clear or flush the cache memory.

4.4.1 DCJ11 Input Signals

The cache data path decodes the AlO input to identify the transaction and the BS<01:00> H inputs to
identify the type of address. The SEL<01:00> H inputs selects the contents of an internal register or
counter as described in Table 4-6.

The cache data path receives the ALE L, STRB L and SCTL L signals to synchronize and control the
cache operation. The assertion of ALE L latches the BS<01:00> H data and gates the GP WRITE L
output. The assertion of STRB L latches the address data into the address register. The negation of STRB
L clears the parity error latch and enables the GP WRITE L output. The assertion of SCTL L enables the
ABORT L output and latches the write data. The negation of SCTL L clears the flush counter and
disables the ABORT L output.

Table 4-6 Output Select Codes

SEL
1 0 Selections
0 0 The DAL output are tristated
0] The contents of the address register
1 0 Either memory system error or BEVNT register
1 1

Flush counter

4.4.2 State Sequencer Inputs

The cache data path receives CHECK H, UPDATE L and LONGCYCLE H signals to control the cache
memory. The CHECK H and UPDATE L inputs control the generation, checking and prediction of the
TAG parity as described in Table 4-7. The cache data path predicts the parity of address bits <21:13> in
the same way it calculates the TAG parity bit. The predicted parity is driven as the PREDICT PAR H
output signal and compared with the stored TAG parity bit by the data parity logic to determine a hit or
miss. The TAG parity bit is calculated for bits <21:13> and stored with the TAG data. The parity is
checked when the predicted parity and the stored parity bits are compared within the cache data path to
enable the PERR L output when an error is detected. The LONGCYCLE H input is asserted to increment
the address stored in the flush counter.

Table 4-7 TAG Parity

Update L Check H Function

Negated Negated Predict TAG parity
Negated Asserted Check TAG parity
Asserted Negated Generate TAG parity
Asserted Asserted Undefined

4-17

T60Z LYW

TINAT W

7 Alidvd

21307 [onuo) AYoe) ¢ [-p 2InJiy

T 1IN

7 LNA3 HD

a

NG+

H vdn

H LNA3Y

T LNO3NIL G

oM T
$oLn G

H vdn

H N3 INA3

H SvS

H £s81

1 3LIHM dD
7 H43d W3INW

1 HY3d

71408V

H Yvd 101034d

H YYd DONOHEMM

<0>v

1 4A074

b

H HVd OVl

HLllgADVL

<0:8> SN\ HvL

<0'le> sng 8

1

AVHYY H1lVd
v.iva IHOVO

H 1NO3WIL

L

l——————————
H HH3 Hvd L8
e——————
H HH3 Hvd 08

A0S+

1 d43d
WIW

H Hd3d WIN

————
H 310A3ONOT

~———————
1 31vadn

-—————————
H Y33HO

e ——
H 113S

—————————

1 841S

le—————————
RERAY

l—————
H<1> 73S

-———————————
H<0> 13S

[—
H0IV
l————————
H<Z>0IV

[*>———————
H<E>OIV

f-—————
H<1>S8
je——————
H<0>S8

H Alddyd

H 1LNnoa.L

H NIdL

H<SLLI>Y

HV

4-18

4.4.3 System Memory Parity

The system memory parity data is transmitted to the module via A-bus bits <17,16>. These inputs are
monitored and when asserted, a parity error is detected. The MEM PERR H input is asserted and enable
either on ABORT L or PERR L output.

4.4.4 Cache Memory Parity

The cache memory parity error inputs BO PAR ERR H and Bl PAR ERR H are asserted when a parity
error is detected in the cache data memory. The low byte is monitored by BO PAR ERR H and sets bit 06
of the MSER. The high byte is monitored by B PAR ERR H and sets bit 07 of the MSER. Either input
can enable the PERR L or ABORT L output.

4.4.5 Timeout

The TIMEOUT H input is enabled when the LSI-11 bus fails to assert the RRPLY H input within 10
microseconds after the TDIN H or TDOUT H signal was asserted by the module. When TIMEOUT is
asserted, it causes the ABORT L output to be asserted and aborts the transaction.

4.4.6 Cache Control Register

The cache control register in the cache data path is shadow copied when the CCR register in the DCJ11 is
written and its contents are used to control the cache memory system. The cache data path logic only
interprets bits 10, 08, 07, 06, 01, and 00. The write wrong parity logic is enabled by bit 10 being set (1)
and it inverts the current TAG parity bit. This will force a TAG parity error the next time that location is
accessed. When bit 08 is set (1), the FLOVFL H output is asserted to flush the cache and the flush counter
is enabled. The bit is reset when the flush counter overflows and SCTL L is negated. The parity error
abort, bit 07, is used with the disable cache parity interrupt, bit 00 to determine the action taken in
response to parity errors. The conditions for bits 07 and 00 are summarized in Table 4-8. The write wrong
data parity logic is enabled when bit 06 is set (1) and it inverts both of the data parity bits. This changes
the high byte even parity to odd and the low byte odd parity to even. This causes a data parity error the
next time that location is accessed. The cache diagnostic mode is enabled when bit 01 is set (1) and the
cache is allocated on all write transactions, regardless of ABORT L, except when bypassing or forcing a
cache miss.

Table 4-8 Parity Error Action

Bit 7 Bit 0 Action

0 Abort through vector 114, update cache

1 Abort through vector 114, update cache

0 Interrupt through vector 114, update cache
1 Update cache only

OO - -

4.4.7 Memory System Error Register

The memory system error register is a read-only register that uses bits 15, 07, 06, and 05 to store parity
error data for the memory system. The register is cleared by any write into it. The parity abort, bit 15, is
set whenever a parity abort occurs. A parity abort is defined as any parity error or memory error occurring
during a demand read with the cache control register bit 07 set. When this occurs, bits 07, 06, and 05 are
individually set to identify the type of parity error. Bit 07 is set for a high byte data parity error, bit 06 is
set for a low byte parity error, and bit 05 is set for a tag parity error. However, if the cache control register
bit 07 is not set, then any type of parity error in the cache sets all three bits. The register is read when the
SEL <01, 00> bits are set to 1 and 0, respectively, and the LTC register address is not selected.

4.4.8 LTC Register

The LTC register is a read/write register that allows software to set bit 06 and enable the EVNT EN
output. The EVNT EN H signal allows the bus BEVNT L input to be routed to the microprocessor as an
external event interrupt. The BEVNT L input can be disabled by the user inserting the W9 jumper. When
enabled, the flip-flop is clocked by REVNT H and the output is gated with EVNT EN H to enable the
MEVNT L signal. The flip-flop is reset by either CLR EVNT L or TINIT L.

4.4.9 Flush Counter

The contents of the cache memory is flushed or cleared during power-up and whenever bit 08 of the cache
control register is set. This requires each address location in the cache to be addressed and cleared. The
process is initiated by the cache control chip asserting FLOVFL H to the state sequencer and zeroing the
flush counter. The contents of the flush counter is used to address the cache memory via the B-bus bits
<12:01>. Every time an address is cleared, the counter is incremented to the next address by the
LONGCYCLE H input from the state sequencer. Flushing the cache memory takes up to 1.3 microsec-
onds and during this time, no DMA or processor activity is performed. The counter contains 12 bits and
when the cache memory is completely flushed, the counter overflows. This causes the cache control chip to
negate the FLOVFL H signal to the state sequencer, indicating the cache flush operation is complete.

4.4.10 Address Register

The address register latches the address received via the B-bus during the early portion of the transaction.
The A<00> output is driven directly from address bit 00. During the later portion of the transaction, the
SEL <01, 00> H code enables the address to be driven via the B-bus to the main memory and the cache
memory. All 22 bits are used to address the main memory and bits <12:01> are used to address the cache
memory. Register bits <21:13> are placed on the TAG bus as data for storage in the cache memory when
the UPDATE L input is asserted.

4.4.11 CDP Outputs

The cache data path transmits and receives address and data information via the B-bus <21:00> and the
TAG bus <10:00> including the TAG V bit and TAG parity bit. The FLOVFL H output is asserted while
the cache memory is being flushed and negated when flushing cycle is completed. The A<00> H output is
asserted whenever the B-bus bit 00 is set (1). The WR WRONG PAR H output is asserted whenever bit
06 of the CCR is set and writes the wrong parity into the cache memory. The PREDICT PAR H output is
the predicted TAG parity of B-bus bits <21:13> and it is compared with the stored TAG parity to
determine the hit/miss results. The PERR L and ABORT L outputs are generated by the parity logic and
interpreted by the DCJ11 as described in Table 4-9. The GP WRITE L output is asserted when the AIO
coded input specifies a GP write transaction. The output is used to externally latch the GP data. The TBS7
H output is asserted when the BS <01, 00> H code specifies an external 1/0O address during the early
portion of the transaction and during the later portion of the transaction, or if the transaction is bypassing
the cache or forcing a cache miss. The SAS H output is asserted whenever the maintenance register or the
LTC register is being addressed. The EVNT EN H output is described in Paragraph 4.4.8.

Table 4-9 Abort and Parity Response

Abort Parity DCJ11 Action

Negated Negated No interrupt or abort

Negated Asserted Interrupt; vector to location 114
Asserted Asserted Abort; vector to location 114
Asserted Negated Abort; vector to location 4

4-20

4.5 CACHE MEMORY

The cache memory (Figure 4-16) consists of RAM memory for data, TAG and parity, the data parity
logic, and the hit/miss logic. The cache memory is used to temporarily store data received from the system
memory that the processor is currently using. This allows the DCJ11 to quickly access on-board data
without performing external bus transactions. The physical address is divided into three sections as shown
in Figure 4-17. The byte bit is used to access either high or low bytes of data. The index bits are used as the
address of the cache memory. The label bits are stored as TAG data for valid cache entries. Each cache
entry is organized as shown in Figure 4-18. The high and low bytes of data are stored as data. The low byte
parity (PO) is stored as even parity and the high byte parity (P1) is stored as odd parity. The label bits with
a tag valid bit (V) and the tag parity bit (P2), stored as even parity are stored as TAG data. The byte
parity is calculated by the data parity logic and the hit/miss logic interprets the physical address as a valid
cache address.

The cache memory is controlled by the state sequencer signals DATA CS BO, BIL, TAG CS L, UPDATE
L, and the write enable signal RAM WE L. The WR WRONG PAR H, PREDICT PAR H signals and
the TAG data are controlled by the cache data path chip. The physical addresses are received via the B-
bus, the data is read/written via the A-bus and the TAG data is read/written via the TAG bus.

CACHE
> DATA 5
> A BUS <15:0>
B BUS<12:1 PrAVAN >
BO, B1 DATACS L - o
RAM WE L~y
A BUS<15:0>
RAM WE L WREN BO, B1 PAR ERR H_
BO, B1 DATACS L
— () ENO DATA
_____ BO.B1 DATACS L | A0t
PARITY W WRONG PAR H LOGIC
S_ B BUS<21:1> DATA UP DATE L BO, B1 PAR OK L
4KX1 BO, B1 PAR OUT H
r. BO, B1 PAR IN H _]
<21:13>
B BUS <21:13 > s MISS L
H COMP L

PREDICT PARH | LOGIC

TAG VBITH

B BUS <12:1> >
TAG PAR H
TAG DATA
4KX12
< TAG BUS <8:0> >
TAG CS L)
RAM WE L ol \n

MR-12093

Figure 4-16 Cache Memory

4-21

21 13 12 01 Q0

BYTE SELECT —T

MR-11057

LABEL INDEX

Figure 4-17 Cache Memory Physical Address

08 00

P \Y) TAG

15 08 07 00

P1 B1 PO BO

MR-11068

Figure 4-18 Cache Data

4.5.1 Cache Data

The cache data RAM is 8 Kbytes of read/write memory that is addressed by the index field, B-bus bits
<12:01>. These bits will always access the data stored in an address location, but the data is not validated
until the label field of the address is verified as the TAG data.

The read/write operations are controlled by the state sequencer. The low byte of cache data is read when
the DATA CS BO L input is asserted and is written when both the DATA CS BO L and RAM WE L
inputs are asserted. The high byte of cache data is read when the DATA CS B1 L input is asserted and is
written when both the DATA CS BI L and RAM WE L inputs are asserted. The data is routed via the A-
bus to the DCJ11.

4.5.2 Data Parity Logic

The data parity logic generates parity bits for the high and low bytes of data. The same logic is used to
check the parity bits when data is read from the cache memory. The high byte stores odd parity and the
low byte stores even parity. The parity logic is shown in Figure 4-19.

The parity logic uses the selected byte data and the UPDATE L signal from the state sequencer to
generate data parity. The UPDATE L input enables the parity generator. The parity generator determines
the number of high inputs and generates a parity bit for the high and low bytes. The low byte stores the
status of the parity bit as BO PAR IN H, and the high byte stores the status of the parity bit as Bl PAR
IN H when the data is written into the cache memory. The cache data path can invalidate the data entry
by enabling the WR WRONG PAR H input. This signal uses the exclusive-OR gate to invert the
generated parity bit and store the error in the parity RAM.

The parity bit of the data is checked when the cache memory is accessed. The data is received by the
parity generator and the UPDATE L input is not asserted at this time. The parity data is accessed, the low
byte parity bit is received as BO PAR OUT H, and the high byte parity bit is received as Bl PAR OUT H.
The NAND gate is enabled and functions as an inverter for the BO, Bl PAR OUT H signals. The DATA
CS BO, BI L inputs, check the even output for the low byte (B0) and the odd output for the high byte (B1)
to set the PAR OK L outputs low.

4-22

BO DATA CS L
:} > BO PAR OR L
A BUS <7:0> EVEN

BO PAR ERR H
oDD

|

BO PAR OUT H
LOW BYTE
PARITY
GENERATOR

:

AN BO PAR IN H
WR WRONG
PARITY H

UPDATE L
B1 DATA CS L
B1 PAR OK L
oDD
B1 PAR OUT H B1 PAR ERR H
— EVEN
“‘H B1 PAR IN H
HIGH BYTE WR WRONG
A BUS <15:8> PARITY
GENERATOR PARITY H

MR-10264

Figure 4-19 Cache Data Parity Logic

4.5.3 Parity Data

The parity RAM has 8 Kbytes of read/write RAM memory that stores the high and low byte data parity
bit. The low byte parity bit is read when DATA CS BO L input is asserted and is written when both the
DATA CS BO L and RAM WE L are asserted. The high byte parity bit is read when DATA CS BI L
input is asserted and is written when both the DATA CS BI L and RAM WE L are asserted. The data
parity bits are generated and used by the data parity logic.

4.5.4 TAG RAM

The TAG RAM is a 4 K X 12 read/write memory that stores 11 bits of data and one bit that is not used.
The data consists of the 9-bit label field (address bits <21:13>), the TAG valid bit (VBIT), and the TAG
parity bit (TAG PAR). The data is received from the cache data path. The data is read when TAG CS
input is asserted and is written when both TAG CS and RAM WE inputs are asserted. These signals are
controlled by the state sequencer.

4.5.5 Hit/Miss Logic

The hit/miss logic (Figure 4-20) compares the TAG stored data and bits <21:13> of the current address
on the B-bus for a match condition. The TAG valid bit is also checked. When a match occurs, the current
address is recognized as a valid cache entry and sets the comparator outputs low. If they do not match, the
comparator outputs are set high. The TAG PAR H bit is checked with the PREDICT PAR H bit by the
exclusive-OR gate and the output is low when a match occurs. The MISS L and COMP L gates are
identical and monitor the two comparator outputs, the two data PAR OK L bits, and the output of the
TAG PAR H gate. When all five inputs are low, the MISS L and COMP L outputs are high to indicate a
hit. The MISS L signal goes to the DCJ11 and the COMP L signal goes to the state sequencer to indicate
that the current address is stored in the cache memory. If MISS L and COMP L outputs are low,
indicating one of the inputs is invalid, then the current address is not a valid cache entry and the data is
retrieved from the system memory.

4-23

A OUTPUT)

MISS L

TAG BUS <B:0> BO PAR OK L ——

COMPARATORS
AANDB

TAG PARH
B BUS <21:13> \
PREDICT
TAG VBITH PAR H _/

UPA H
B1 PAROK L q COMP L

o B OUTPUT 1

VN

—:L_W\’—OEN

MR-10265

Figure 4-20 Cache HIT/MISS Logic

4.6 BUS RECEIVERS

The module receives addresses and data from the LSI-11 bus via six 2908 bus transceivers as shown in
Figure 4-21. The state sequencer provides the control signals RLE L and RLOE L that transfer LSI-11
bus data to the module A-bus. The data is latched when RLE L is asserted. The output drivers are then
enabled by RLOE L and transmits the LSI bus data to the module A-bus.

The LSI-11 bus control signals are transmitted to the module by the input transceivers. These signals are
used by the module to control the LSI-11 bus interface.

BUS ABUS <21:0>)
TRANSCEIVER
RLEL_~ — — — — 1
RLOE L N rxeN
BIRQ<4> L . RIRQ4 H
BIRQ<E>L RIRQ5 H
BIRQ<6>L RIRQ6 H
BIRQ<7>L RIRQ7 H
BHALT L RHALT H
BDCOK H MINIT H,
BPOK H BUS INPUT RPOK L
BSACK L TRANSCEIVER | RSACK H
BEVNT L REVNT H
BDMR L RDMR H
BDOUTL RDOUT H
BSYNC L RSYNC H
BRPLY L RRPLY H
UPAH s D
_L—O ENO

MR-12094

Figure 4-21 KDJ11-A Bus Receivers

4-24

4.7 BUS TRANSMITTERS

The module transmits addresses and data to the LSI-11 bus via six 2908 bus transceivers as shown in
Figure 4-22. The address and data inputs are controlled by the LATCH H input. The address is clocked
into the transceiver when the STRB L input from the DCJ11 is asserted. Write data is checked into the
transceiver when DRCP L (normally low) is pulsed from high to low. The DRCP L input is generated by
the state sequencer. The state sequencer enables the QBUS OE L input to transmit the data over the LSI-
11 bus. When TBS7 H (Bank Select) signal is asserted to indicate the reference is to the 1/O page, bits
<19:16> are driven as zeros. This allows the KDJ11-A module to work in a 64 Kbyte system with the
older MSV11-D memories.

The LSI bus control signals are transmitted by the output transceivers. The state sequencer provides most
of the handshake protocot with the LSI bus. The WAKEUP H signal is enabled by removing the W9
jumper to generate the BDCOK H initialization pulse at power-up.

BUS
TRANSCEIVER
B BUS <21:0> BDAL <21:0>
TBS7 H BBS7 L
WTBT H BWTBT L
—_— ———»

QBUSOEL I ——— 777

DRCP H ———— Q) EN
LATCHH | TxCLK

STRB L i

TBS7 H

vy BUS ENABLE
FOR BITS
QBUS OEL 16,17, 18,19
+5v

TOOUT H BUS OUTPUT |.BROUTL
W8 TDIN H TRANSCEIVER BDIN L
TIAK H BIAK L
M17 M18 Tomen 1 Bomco L
+5V TINITH BINIT L

BDCOK H
————»

- I |>
1 TSYNC L BSYNC L
= — — »

b — — —————

MR-12095

Figure 4-22 KDJ11-A Bus Transmitters

4-25

4.8 OUTPUT CONTROL

The output control logic (Figure 4-23) has 22 D-type latch circuits with output drivers that transfer the
address or data on the MDAL bus to the B-bus. The ILOE L signal from the state sequencer enables the
drivers to the B-bus. A decoder circuit uses the DCJ11 outputs, BUFCTL L and ALE L, to control the
latches. When BUFCTL L and ALE L are negated, the output latches are opened. When either ALE L or
BUFCTL L are asserted, the latches are closed.

MBUFCTL L
| 2A

FZB

DECODER

ALE H
— »O|EN

MDAL BUS <21:O>> B BUS <21:0> >
22

TRANSPARENT
D TYPE
LATCHES
ILwTcHL |
EN
ILOE L
OE

MR-10268

Figure 4-23 DCJ11-A Output Control

4.9 INPUT CONTROL

The input control logic (Figure 4-24) uses 16 D-type latch circuits to transfer data from the A-bus to the
MDAL bus. The latches are used as buffers (latches are always opened) and are enabled when the

BUFCTL L input is asserted.

A BUS <15:0> X

UPA H
—0

BUFCTL L

16
TRANSPARENT
D TYPE
LATCHES

MDAL BUS <15:0> >

MR-10268

Figure 4-24 DCJI11-A Input Control

4-26

4.10 DMA MONITOR REGISTER

The KDJ11-A does not perform direct DMA transfers, but it does monitor DMA transfers when the
system memory is being updated via block DMA. This ensures that the data stored in the cache memory is
not being changed in the system memory. During a DMA transfer, the initial address of the DMA
transaction is transferred over the A-bus. It is clocked into the DMA monitor register when RSYNC H is
asserted. For DMA, DATO, DATIO and DATOB bus cycles, this register is used to address the cache
memory in order to determine if the referenced location is in the cache memory. If it is, the cache data is
invalidated. Successive block mode DMA write cycles (DATOB) are also monitored. Address bits
<04:01> of the initial DMA address are clocked into the DMA monitor register when RSYNC H is
asserted. These bits are incremented to the next address when RDOUT H is negated. Therefore, an entire
16-word aligned block mode transfer can be monitored. The four-bit incrementor with bits 00 and 05 are
designed into the FPLA shown in Figure 4-25. The remaining 16 bits are controlled by the D-type flip-
flops. The DMA REG OE L signal is controlled by the state sequencer and the INC/LOAD DMA ADR
H input is controlled by the DMA LSI-11 bus signals BSYNC L and BDOUT L.

4.11 INITIALIZATION/MAINTENANCE REGISTER

The initialization/maintenance register allows the user to select the options available as described in
Chapter 2. This register (Figure 4-26) is read by the DCJ11 during the power-up sequence and can be read
by software accessing location 17 777 750 to determine which options were selected. The register uses
jumpers W1 to W7 to determine the input state. The W3, W5, and W7 jumpers read as “1” when the
Jumper is removed; W1, W2, W4 and W6 jumpers read as “1” when the jumper is inserted. The UPA
input is pulled up to +5 Vdc representing a “1” for bit 04 and a “0” for bits <11:09>. The grounded
inputs represent a *“0” for bits <07:05>. The FPA OP L input will be a ““1” if a FPA is mounted on the
module and the PWR OK H input is a “1” when the LSI-11 bus signal is asserted. The BDCOK H signal
indicates the ac power is set to its proper value.

A BUS <21:1> A BUS <5:1> FPLA TYPE B BUS <5:1> B BUS <21:7>>
RSYNC H
RDOUT H INC/LOAD
DM DRH | . ———————1
——C ENO
16 D TYPE
FF
A BUS <21:6> B BUS <21:6>
RSYNC H ‘
LOAD DMA)C
LATCH H
RSYNCH | | T~ ———————T7]
DMA REG OE L cLx
Q) ENO

MR-10270

Figure 4-25 DMA Monitor Register

4-27

The low byte of the register is implemented by using eight D-type latches. The data is clocked by the
assertion of ALE L from the DCJ11. The high byte of the register is implemented by using eight buffer
drivers. The entire register is read onto the A-bus by GP DATA OE L input from the state sequencer.

RPOK L PWR OKH
+5V A<O0> H _

M2 w7 M1 PUJ<0> H D AEIPH
M wr A \ . LATCH
+5V A<2> H -
—AA
A<3> H
M4 M3 >
W3 PUJ<1> H >
——o0—'— -0 >
45V A<4> H -
—VW\
M14 w5 M13 HLT OPT H A<BE>H >
—_ _C L
4 UPA H A<6>H
=3 - - > >
> A<T>H
GP DATA OE L
EN
ALE H

— | ClK

FPA OP L
UPA H A<8> H
L e
DRIVER/
BUFFER A<9> H
- A<10> H
+5v
A<11> H
- >
M6 we M5 BAJ<12> H
O— — —O > A<12> H
+5v
A<13> H
-
M8 w4 M7 BAJ<13> H
PR A > A<14> H
-
+5v
A<15> H
e
M10 \p MS BAJ<14> H
—O— — _C
+5v
M12 M i BAJ<15> H
_J—-o— - -0

GP DATAOQE L

MR-12071

Figure 4-26 Initialization/Maintenance Register Logic

4-28

4.12 STATUS LEDs

The status LEDs logic (Figure 4-27) uses an addressable latch circuit for the LED display and a decoder
circuit to reset either EVENT or PWR FAIL. The DCJ11 controls these functions by performing GP
writes on the B-bus.

The EVENT or PWR FAIL conditions are cleared by GP write codes 100 and 140. The decoder circuit
decodes B-bus bits 05 and 06 and is enabled by the GP WRITE L signal from the cache data path. When
both bits are set, the CLR PWR FAIL L output is enabled and when bit 06 is set and bit 05 negated, the
CLR EVENT L output is enabled.

The status LEDs are controlled by an addressable latch circuit. The circuit is reset by the MINIT L signal
generated at power-up. MINIT L latches all the outputs low, thereby turning on the three diagnostic LEDs
and turning off the ODT LED. It also enables the TINIT L output to initialize the module. During the
initialization period the DCJ11 performs diagnostics, and upon the successful completion, it issues GP
write codes to turn off the LEDs. GP code 220 turns off the SLU LED, GP code 224 turns off the
MEMORY OK LED and GP code 230 turns off the SEQUENCING LED. After the initialization
period, the DCJ11 enters its start up mode. If it enters ODT then GP write code 234 is issued and turns on
the ODT LED. The LED functions are described in Chapter 2.

DECODER

B<E>H — 1

0
B<5>H — 2 T
2 ——= CLREVNT L
3

—— CLR PWR FAIL L

GP WRITE L - EN
ADDRESSABLE ol >
LATCH [® TINT H
1 b
B<2>H —»{ 1)
B<3>H —»| 2 3 ® TINT L +5V
B<4>H —» 4 D2 ~————~ CPU
4 —He—n—3
5 > SLU
D4
6 @ MEM
7
B<7>H —{ DATA
D1 oDT
———— Q| EN
MINIT H I >
RESET

MR-12072

Figure 4-27 Status LEDs Logic

CHAPTER 5§
EXTENDED LSI-11 BUS

5.1 INTRODUCTION

The processor, memory and I/O devices communicate via signal lines that constitute the extended LSI-11
bus. The extended LSI-11 bus contains 4 additional address lines (BDAL<21:18>) in addition to the 38
lines of the original LSI-11 bus. The four additional address lines extend the 256 Kbyte physical address
space of the LSI-11 bus to 4 megabytes. Addresses, 8-bit bytes or 16-bit data words, bus synchronization,
and control signals are sent along these 42 lines. Addresses may be either 16-, 18-, or 22-bits wide,
depending on the addressing capability of the processor installed in the system. The 16-bit data and the
first 16 address bits are time-multiplexed over the same 16 data/address lines. Two additional address bits
(<17:16>) and the memory parity bits are also time-multiplexed over two signal lines. The signal lines are
functionally divided as listed in Table 5-1. Refer to Chapter 2 for a list of the extended LSI-11 bus signals.

The LSI-11 bus lines may be considered transmission lines that are terminated in their characteristic

impedance (Zg) at both the near and far ends of the bus. The near end of the bus is defined as the first bus
interface slot in the backplane, the far end is the last bus interface slot.

Table 5-1 Summary of Signal Line Functions

Quantity Function Bus Signal Mnemonic

16 Data/address lines BDAL<15:00>

2 Memory parity/address lines BDAL<17;16>

4 Address lines BDAL<21:18>

6 Address and data transfer BSYNC, BDIN, BDOUT,
control lines BWTBT, BBS7, BRPLY

3 Direct memory access (DMA) BDMR, BDMG, BSACK
control lines

5 Interrupt control lines BIRQ4, BIRQS, BIRQ6,

BIRQ7, BIAK
6 System control lines BPOK, BDCOK, BINIT,

BHALT, BREF, BEVNT

5-1

Most LSI-11 bus signals are bidirectional and use a terminating resistor network connected between +5 V
and ground to provide a negated (high) signal level. Devices may be connected to any point along the bus
to receive signals from the near or far end of the bus via high-impedance bus receivers, or to transmit
signals to the near or far end through gated open-collector bus drivers. A bus driver asserts a signal by
causing the line to go from a high level (approximately 3.4 V) to a low level (approximately 0.5 V).
Although bidirectional lines are electrically bidirectional, certain lines carry signals that are functionally
unidirectional. The functionally unidirectional lines carry signals that are required to travel in only one
direction. For example, when a device asserts a bus request signal (BIRQ), the signal always travels from
the requesting device to the processor and never in the reverse direction.

The interrupt acknowledge (BIAK) and direct memory access grant (BDMG) signals are physically
unidirectional signals that are wired to each LSI-11 bus slot in a daisy-chain scheme. These signals are
generated by the processor in response to interrupt and direct memory access requests and are transmitted
to the bus via output signal pins. Each of the output signals (BIAKO or BDMGO) is received on a device
input pin (BIAKI or BDMGI) and conditionally retransmitted via a device output pin (BIAKO or
BDMGO). These signals are received from higher-priority devices and retransmitted to lower-priority
devices on the bus. DMA and I/O interrupt priorities are discussed in Pargaraphs 5.4 and 5.5.1.

Bus Master/Slave Relationship

Communication between devices on the bus is asynchronous. A master/slave relationship exists through-
out each bus transaction. At any time, there is one device that has control of the bus. This controlling
device is termed the bus master. The master device controls the bus when communicating with another
device on the bus, termed the s/ave. The bus master (typically the KDJ11-A processor or a DMA device)
initiates a bus transaction. The slave device responds by acknowledging the transaction in progress and by
receiving data from, or transmitting data to, the bus master. The extended LSI-11 bus control signals
transmitted or received by the bus master or bus slave device must complete the sequence according to the
protocol established for transferring address and data information. The processor controls bus arbitration
(i.e., it “‘decides” which device is to be bus master at any given time).

A typical example of a master/slave relationship has the processor, as master, fetching an instruction from
memory which is always a slave). Another example is a disk drive, as master, transferring data to memory,
again, as the slave. Any device except the processor can be master or slave depending on the circum-
stances. Communication on the extended LSI-11 bus is interlocked; therefore, for each control signal
issued by the master device, there must be a response from the slave in order to complete the transfer. It is
the master/slave signal protocol that makes the extended LSI-11 bus asynchronous. The asynchronous
operation allows both fast and slow devices to use the bus and eliminates the need for synchronizing clock
pulses between the bus master and slave device.

Since bus cycle completion by the bus master requires response from the slave device, each bus master
must include a timeout error circuit that will abort the bus cycle if the slave device does not respond to the
bus transaction within 10 us. The KDJI11-A has a bus timer that restarts the clock when no device
responds to BDIN L or BDOUT L within 10 us. An immediate trap to location 4g occurs. The slowest
peripheral or memory device must respond in less than 10 us to prevent a bus timeout error.

5-2

5.2 BUS SIGNAL NOMENCLATURE
Throughout the following protocol specifications, bus signals are referred to in several different ways.

1. In general discussions where timing, polarity, and physical location are unimportant, the base
signal name without any prefixes or suffixes is used. For example:

SYNC, WTBT, BS7, DAL<21:00> or the DAL lincs

2. Most signals on the backplane etch are asserted low and referred to with a prefix character B,
and a suffix (space) L. For example:

BSYNC L, BWTBT L, BBS7 L, BDAL<21:00> L
BPOK H and BDCOK H are asserted high.

3. Receivers and drivers are considered part of the bus. Signal inputs to drivers are referred to with
a prefix character T for transmit. For example:

TSYNC, TWTBT, TBS7, TDAL<21:00>

4. Signal outputs of receivers are referred to with the prefix character R for received. For
example:

RSYNC, RWTBT, RBS7, RDAL<21:00>

Whenever timing is important, the designations in items 3 and 4 above are used to reference timing to a
receiver output or driver input. For example, after receipt of the negation of RDIN, the slave negates its
TRPLY (0 ns minimum, 8000 ns maximum). It must maintain data valid on its TDAL lines until O ns
(minimum) after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after the
negation of its TRPLY.

5.3 DATA TRANSFER BUS CYCLES
Data is transferred between a bus master and slave device to accomplish various functions. The data
transfer bus cycles and their functions are described in Table 5-2.

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The data to be written in the destination byte during byte output operations is valid on the
appropriate BDAL lines. For example, BDAL<15:08> contains the high byte, and BDAL<07:00> con-
tains the low byte. Table 5-3 describes the bus signals used in a data transfer operation.

Table 5-2 Data Transfer Bus Cycles

Bus Cycle Function (with respect
Mnemonic Description to the bus master)
DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write byte

DATIO Data word input/output Read-modify-write
DATIOB Data word input/byte output Read-modify-write byte

Table 5-3 Data Transfer Bus Signals

Mnemonic Description Function

BDAL<21:00> L 22 data/address lines BDAL<21:18> L are used for 22-bit extended
addressing; BDAL<17:16> L are used for 18-bit
extended addressing, memory parity error, and mem-
ory parity error enable functions; BDAL<15:00> L
are used for 16-bit addressing, word and byte

transfers.
BSYNC L Synchronize Strobe signals
BDIN L Data input strobe
BDOUT L Data output strobe
BRPLY L Reply
BWTBT L Write/byte control Control signals
BBS7 L Bank 7 select

Data transfer bus cycles can be reduced to three basic types: DATI, DATO(B) and DATIO(B). These
transactions occur between the bus master and one slave device selected during the addressing portion of
the bus cycle.

5.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been completed (BSYNC L negated)
and the device must become bus master. The bus cycle is divided into two parts: an addressing portion, and
a data transfer portion. During the addressing portion, the bus master outputs the address for the desired
slave device (memory location or device register). The selected slave device responds by latching the
address bits and holding this condition for the duration of the bus cycle (until BSYNC L becomes
negated). During the data transfer portion of the bus cycle, the operations performed will vary slightly,
depending on the type of data transfer desired. Paragraphs 5.3.1.2 through 5.3.1.4 describe the data
transfer portion of the various bus cycles.

5.3.1.1 Device Addressing — The device addressing portion of a data transfer bus cycle comprises an
address setup/deskew time and an address hold/deskew time. During the address setup/deskew time, the
bus master does the following.

1. It asserts TDAL<21:00> with the desired slave device address bits.

2. It asserts TBS7 if a device in the 1/O page is being addressed.

3. Tt asserts TWTBT if the cycle is a DATO(B) bus cycle.

4. [t asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus.

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at least
75 ns before RSYNC becomes active. Devices in the 1/O page ignore the 9 high-order address bits
RDAL<21:13> and, instead, decode RBS7 along with the 13 low-order address bits. An active RWTBT
signal indicates that a DATO(B) operation follows, while an inactive RWTBT indicates a DATI or
DATIO(B) operation.

The address hold/deskew time begins after RSYNC is asserted. The slave device uses the active RSYNC
to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. RDAL<21:00>, RBS7, and
RWTBT will remain active for 25 ns (minimum) after the RSYNC becomes active. RSYNC remains
active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way they respond to RBS7.
Addressed peripheral devices must not decode address bits on RDAL<17:13>. Addressed peripheral
devices may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle.
When asserted, RBS7 indicates that the device address resides in the 1/O page (the upper 8 Kbyte address
space). Memory devices generally do not respond to addresses in the I/O page; however, some system
applications may permit memory to reside in the I/O page for use as DMA buffers, read-only memory
bootstraps, or diagnostics, etc.

5.3.1.2 DATI - The DATI bus cycle is a read operation that inputs data from the slave device to the bus
master. The operations performed by the bus master and slave device during a DATI are shown in Figure
5-1. The DATI bus cycle timing is shown in Figure 5-2. Data consists of 16-bit word transfers over the bus.
During the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100 ns (minimum)
after it asserts TSYNC. The slave device responds to RDIN active by asserting:

l. TRPLY after receiving RDIN and [25 ns (maximum) before TDAL bus driver data bits are
valid;

2. TDAL<17:00> L with the addressed data and error information.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE MEMORY

* ASSERT BDAL <21:00> L WITH
ADDRESS AND

¢ ASSERT BBS7 IF THE ADDRESS
ISIN THE I/O PAGE

¢ ASSERT BSYNC L

—
_
—_
T
DECODE ADDRESS
« STORE"DEVICE SELECTED"
OPERATION
/
REQUEST DATA -
« REMOVE THE ADDRESS FROM
BDAL <21:00> L AND NEGATE BBS7
L
« ASSERT BDIN L —_
_
_—
—_
INPUT DATA
* PLACE DATA ON BDAL < 15:00> L
P ASSERT BRPLY L
/ /
TERMINATE INPUT TRANSFER
+ ACCEPT DATA AND RESPOND
BY NEGATING BDIN L —_
_
—_
_
Te—a-
TERMINATE BUS CYCLE OPERATION COMPLETED
+ NEGATE 8SYNC L -— o NEGATE BRPLY L

MR-6028

Figure 5-1 DATI Bus Cycle

5-5

T/R DAL (4) T ADDR —X (4) m R DATA x (4)

100 NS 200 NS _J
150 NS_" I MINIMUM [* ™ MAXIMUM
TSYNC MINIMUM ¥/ 200 NS MINIMUM

CLOCK DATA
100 NS MINIMUM —a l&———200 NS MINIMUM
8 uS MAXIMUM
TDIN /

R RPLY /L_/

150NS g
"1 MINIMUM — 100 NS MINIMUM

T 8S7 (4) X (4)
TWTBT (4) & (4)

TIMING AT MASTER DEVICE

R/T DAL (4) X R ADDR X (4) X T DATA K (4)
—— -

200 NS
MINIMUM —

300 NS MINIMUM———»

25 NS 100 NS MAXIMUM
INIMUM > +—125 NS MAXIMUM —| "’ONSM|N|MUM
RSYNC 4 ons \ /
MINIMUM
«— 75 NS r——200 NS MINIMUM 150 NS

MINIMUM MH\/HMUM'.

R DIN \
\ ’G——SDONSMINIMUM——

T RPLY

[¢-— 75 NS MINIMUM

24

R BS7 (4) (4)

1 25 NS MINIMUM

RWTBT (4) /< (4)

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS. SIGNAL NAMES INCLUDE A "B PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T =BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR-6037

Figure 5-2 DATI Bus Cycle Timing

When the bus master receives RRPLY, it does the following.

1. It waits at least 200 ns deskew time and then accepts input data at RDAL<15:00> bus
receivers. RDAL<17:16> are monitored for a possible parity error indication.

2. It negates TDIN 150 ns (minimum) after RRPLY becomes active.

The slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL
bus drivers. TRPLY must be negated 100 ns (maximum) prior to removal of read data. The bus master
responds to the negated RRPLY by negating TSYNC.

Conditions for the next TSYNC assertion are as follows.
1. TSYNC must remain negated for 200 ns (minimum).
2. TSYNC must not become asserted within 300 ns of the previous RRPLY negation.

5.3.1.3 DATO(B) - DATO(B) is a write operation. Data is transferred in 16-bit words (DATO) or 8-bit
bytes (DATOB) from the bus master to the slave device. The data transfer output can occur after the
addressing portion of a bus cycle when TWTBT has been asserted by the bus master, or immediately
following an input transfer part of a DATIO(B) bus cycle. The operations performed by the bus master
and slave device during a DATO(B) bus cycle are shown in Figure 5-3. The DATO(B) bus cycle timing is
shown in Figure 5-4.

The data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time and a data
hold/deskew time. During the data setup/deskew time, the bus master outputs the data on
TDAL<15:00> 100 ns (minimum) after TSYNC is asserted. If it is a word transfer, the bus master
negates TWTBT while gating data onto the bus. If the transfer is a byte transfer, the bus master asserts
TWTBT while gating data onto the bus. During a byte transfer, the condition of BDAL 00 L during the
address cycle selects the high or low byte. If asserted, the high byte (BDAL<15:08> L) is selected;
otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL 16 L at data transfer time will
force a parity error to be written into memory if the memory is a parity-type memory. BDAL 17 L is not
used for write operations. The bus master asserts TDOUT L 100 ns (minimum) after the TDAL and
TWTBT bus driver inputs are stable. The slave device responds to RDOUT by accepting the input data
and asserting TRPLY (8 us maximum to avoid bus timeout). This completes the data setup/deskew time.
During the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) after the assertion
of RRPLY. TDAL<21:00> bus drivers remain stable for at least 100 ns after TDOUT negation. The bus
master then negates TDAL inputs.

During this time, the slave device senses RDOUT negation and negates TRPLY. The bus master responds
by negating TSYNC. However, the processor will not negate TSYNC for at least 175 ns after negating
TDOUT. This completes the DATO(B) bus cycle. Before the next cycle, TSYNC must remain unasserted
for at least 200 ns. Also, TSYNC may not assert until 300 ns (minimum) after RRPLY negates.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

* ASSERT BDAL <21:00> L WITH
ADDRESS AND

* ASSERT BBS7 L IFADDRESS IS
IN THE 1/0 PAGE

¢ ASSERT BWTBT L (WRITE

CYCLE)

ASSERT BSYNC L

T -
DECODE ADDRESS
/' STORE "DEVICE SELECTED
- OPERATION
/
—

/

OUTPUT DATA -

* REMOVE THE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7 L
* NEGATE BWTBT L UNLESS DATOB
e PLACE DATAON BDAL < 15:00> L

¢ ASSERT BDOUT L — —_ -
—
\ *
TAKE DATA
* RECEIVE DATA FROM BDAL
LINES
o — * ASSERT BRPLY L
. - o
TERMINATE OUTPUT TRANSFER -~
* NEGATE BDOUT L (AND BWTBT L
{F A DATOB BUS CYCLE)

e REMOVE DATA FROM BDAL <15:00> L____

~

OPERATION COMPLETED
__—* NEGATEBRPLY L

TERMINATE BUS CYCLE -
« NEGATE BSYNC L

MR-6029

Figure 5-3 DATO or DATO(B) Bus Cycle

5-8

T DAL

TSYNC

T DOUT

R RPLY

T8S7

TWTBT

R DAL

R SYNC

R DOUT

T RPLY

R BS7

RWTBT

'1—0 NS MINIMUM

(4) X T ADDR

T DATA

(4)

X

‘17100 NS MINIMUM

‘.‘ meo NS

NIMUM

l._150 NS
MuNuMUM’]

N\ /

e 84S 175 NS te—200 NS MINIMUM—
MAXIMUM MINIMUM
150 NS MINIMUM—-I /l\‘_ 300 NS MINIMUM———
- |¢—100NSMINIMUM
(4) Y (4)

t¢—150 NS MINIMUM

150 NS
MINIMUM

ASSERTION = BYTE

x (4)

L—100 NS MINIMUM

)

100 NS
MINIMUM

TIMING AT MASTER DEVICE

(4) x R ADDR X

R DATA

>< (4

—

/

25 NS MINIMUM

—b‘

L—25 NS MINIMUM

‘s

» /5NS g
MINIMUM

25 NS MINIMUM

{25 NS

100 NS MINIMUMAJ‘150 NS M{NIMUM o+

__.__/—_——

MINIMUM

75 NS
MINIMUM

r— "—300 NS MINIMUM ————

—.1
(4)4X

(4)

25 NS MINIMUM 4

(4)

75 NS

MINIMUM

NOTES:

\/ ASSERTION =BYTE

I‘—?B NS MINIMUM
X (4)

L-‘ZS NS MINIMUM

TIMING AT SLAVE DEVICE

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE
BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T =BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

Figure 5-4 DATO or DATO(B) Bus Cycle Timing

3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT
SIGNAL NAMES INCLUDE A “B” PREFIX.

4. DON'T CARE CONDITION.

5-9

MR-1179

5.3.1.4 DATIO(B) - The protocol for a DATIO(B) bus cycle is identical to the addressing and data
transfer portions of the DATI and DATO(B) bus cycles. After addressing the device, a DATI cycle is
performed as explained in Paragraph 5.3.1.2; however, TSYNC is not negated. TSYNC remains active
for an output word or byte transfer [DATO(B)]. The bus master maintains at least 200 ns between
RRPLY negation during the DATI cycle and TDOUT assertion. The cycle is terminated when the bus
master negates TSYNC, which follows the same protocol as described for DATO(B). The operations
performed by the bus master and slave device during a DATIO or DATIO(B) bus cycle are shown in
Figure 5-5. The DATIO and DATIO(B) bus cycle timing is shown in Figure 5-6.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
® ASSERT BDAL <21:00> L WITH
ADDRESS
® ASSERT BBS7 L IF THE
ADDRESS IS IN THE 1/0 PAGE
® ASSERT BSYNC L
- DECODE ADDRESS
® STORE “"DEVICE SELECTED"

OPERATION
- —— -
REQUEST DATA
e REMOVE THE ADDRESS FROM
BDAL <21:00> L
e ASSERT BDIN L —_—
™ NPUT DATA
e PLACE DATA ON BDAL < 15:00> L
e ASSERT BRPLY L
TERMINATE INPUT TRANSFER -
e ACCEPT DATA AND RESPOND BY
TERMINATING BDIN L
~—_
COMPLETE INPUT TRANSFER
e REMOVE DATA
e NEGATE BRPLY L
- -
OUTPUT DATA
e PLACE QUTPUT DATA ON BDAL <15:00 > L
e (ASSERT BWTBT L iF AN OUTPUT
BYTE TRANSFER)
e ASSERT BDOUT L
—
\\\L
TAKE DATA
e RECEIVE DATA FROM BDAL LINES
e ASSERTBRPLY L
//
- -
TERMINATE OUTPUT TRANSFER
e REMOVE DATA FROM BDAL LINES
e NEGATE BDOUT L -
— — ~
OPERATION COMPLETED
® NEGATE BRPLY L
—
— — - -

TERMINATE BUS CYCLE
e NEGATEBSYNC L
(AND BWTBT L IF IN
A DATIOB BUS CYCLE)

MR-6030

Figure 5-5 DATIO or DATIO(B) Bus Cycle

5-10

'Q-— 150 NS MINIMUM

—-I

|¢ 0 NS MINIMUM

R/T DAL (4) X TADDR)(

(4 X RDATA X (4) X T DATA)((4)
T00 N T
Mﬁ\,O,MaM—J l— [-200 NS MAXIMUM ‘ — L—mo NS MiN(MUM
TSYNC
150 NS _| 175 NS
100 NS MINIMUM MINIMUM™]MINIMUM
le— 200 NS 200 NS
T DOUT MINIMUM 7/ \ MINIMUM —
200 NS
MINIMUM "
TDIN /
300 NS
\ / MINIMUM ™1
R RPLY / /
\
150 NS e
MINIMUM
-
T8S7 X ><
—»{ |&— 100 NS MINIMUM 100 NS MINIMUM—{ '4—
TWTBT (4>\ (4))(ASSERTION = BYTE x (4)
—»J le— 150 NS MINIMUM
TIMING AT MASTER DEVICE
RT/DAL (4 XR ADDR)((4) X T DATA X (4) X R DATA X 4
25 NS L
—
MINIMUM '] —» 25 NS MINIMUM
R SYNC / — l-— 100 NS \ /
MAXIMUM 100 NS
le—75 NS MINIMUM 25 NS MINIMUM "_ ™ MINIMUM
—»{ 125NS 150 NS |q
R DOUT MAXIMUM K> MINIMUM
e 150 NS MINIMUM —»
R DIN \B
150 NS . 300NS __gf
= minivum / MINIMUM
TRPLY Q\ n\
—-] [+— 75 NS MINIMUM
R BS? X X
|
‘.' le— 75 NS MINIMUM le— 25 NS MINIMUM —» 25 NS MINIMUM

RWTBT (4%

.1

-

(4)

I

ASSERTION = BYTE

A

(4)

NOTES:

{25 NS MINIMUM

TIMING AT SLAVE DEVICE

1. TIMING SHOWN AT REQUESTING DEVICE

BUS DRIVER INPUTS AND BUS RECEIVER QUTPUTS

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T =BUS DRIVER INPUT
R =BUS RECEIVER OUTPUT

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

4. DON'T CARE CONDITION.

Figure 5-6 DATIO or DATIO(B) Bus Cycle Timing

5-11

SIGNAL NAMES INCLUDE A "B” PREFIX.

MR-6036

5.4 DIRECT MEMORY ACCESS (DMA)

The direct memory access (DMA) capability allows direct data transfers between I/O devices and
memory. This is useful when using mass storage devices (e.g., disk drives) that move large blocks of data
to and from memory. A DMA device only needs to know the starting address in memory, the starting
address in mass storage, the length of the transfer, and whether the operation is read or write. When this
information is available, the DMA device can transfer data directly to or from memory. Since most DMA
devices must perform data transfers in rapid succession or lose data, DMA requests are assigned the
highest priority level.

DMA is accomplished after the processor (normally bus master) has passed bus mastership to the highest-
priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the bus to
the DMA device located electrically closest to the processor. A DMA device remains bus master until it
relinquishes its mastership. The following control signals are used during bus arbitration.

Signal Name

BDMGI L DMA Grant Input
BDMGO L DMA Grant Qutput
BDMR L DMA Request Line
BSACK L Bus Grant Acknowledge

A DMA transaction is divided into three phases: the bus mastership acquisition phase, the data transfer
phase, and the bus mastership relinquish phase. The operations performed by the processor and bus master
during the DMA request/grant sequence are shown in Figure 5-7. The DMA request/grant bus cycle
timing is shown in Figure 5-8.

During the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR. The
processor arbitrates the request and initiates the transfer of bus mastership by asserting TDMG. The
maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the processor
is DMA latency. This time is processor-dependent. The KDJ11-A asserts TDMG 1.4 us (maximum) after
the assertion of RDMR.

BDMGO L/BDMGI L is one of two signals that are daisy-chained through each module in the backplane.
The signal is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI L pin
and exits on the BDMGO L pin. This signal passes through the modules in descending order of priority
until it is stopped by the requesting device. The requesting device blocks the output of BDMGO L and
asserts TSACK. If no device responds to the DMA grant, the processor will clear the grant and rearbitrate
the bus.

NOTE
The KDJ11-A uses a “NO-SACK?” timer, which
clears BDMGO L if BSACK L is not received from
the DMA device within 10 us.

During the data transfer phase, the DMA device continues asserting BSACK L. If multiple-data transfers
are performed during this phase, consideration must be given to the use of the bus for other system
functions, such as memory refresh (if required). The actual data transfer is performed in the same manner
as the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles described in Paragraphs 5.3.1.2
through 5.3.1.4.

The DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives RDMGI L,
250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPLY is negated.

During the bus mastership relinquish phase, the DMA device relinquishes the bus by negating TSACK.

This occurs after the last data transfer cycle (RRPLY negated) is completed (or aborted). TSACK may be
negated up to 300 ns (maximum) before negating TSYNC.

5-12

KDJ11-A PROCESSOR
(MEMORY IS SLAVE)

GRANT BUS CONTROL

® NEAR THE END OF THE
CURRENT BUS CYCLE
(BRPLY L IS NEGATED).
ASSERT 8DMGO L AND
INHIBIT NEW PROCESSOR
GENERATED BYSNC L FOR
THE DURATION OF THE
DMA OPERATION

TERMINATE GRANT
SEQUENCE
® NEGATE BDMGO L AND

WAIT FOR DMA OPERATION "™

TO BE COMPLETED

RESUME PROCESSOR

OPERATION

® ENABLE PROCESSOR-
GENERATED BSYNC L
(PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED.

-

—

Figure 5-7

—

—

—_—

~—

—

—
—

BUS MASTER
(CONTROLLER)

REQUEST BUS
® ASSERT BDOMR L

ACKNOWLEDGE BUS

—~a MASTERSHIP

—

e

—

e RECEIVE BDMG

® WAIT FOR NEGATION OF
BSYNC L AND BRPLY L

® ASSERT BSACK L

® NEGATE BDMR L

EXECUTE A DMA DATA

TRANSFER

® ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI, OR DATO BUS
CYCLES

® RELEASE THE BUS BY
TERMINATING BSACK L
(NO SOONER THAN
NEGATION OF LAST BRPLY
L) AND BSYNC L

WAIT 4 uS OR UNTIL
ANOTHER FIFO TRANSFER
ISPENDING BEFORE
REQUESTING BUS AGAIN.

MR 6031

DMA Request/Grant Sequence

5-13

T DMR

R DMG

T SACK

R/T SYNC

R/T RPLY

T DAL
(ALSO BS7,
WTBT, REF)

SECOND

REQUEST
——I le— DMA LATENCY
LAY ayany e ey ally sy Sy Sy a4 7T 7
A A A A A A A) A Y I A
ya L ya ya Z A
—>1 LONSMINIMUM

\ —_———

/ ’

250 NS MINIMUM—s —»

'4—

r— 300 NS MAXIMUM

1-— 250 NS MINIMUM 0N5M|N|MUM—-1 fe—
300 NS MINIMUM
—» 0 NS MINIMUM
—
l::o NS MINIMUM

'4—100 NS MAXIMUM

DATA

-\

L o X
NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS
AND BUS RECEIVER OUTPUTS.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T=BUSDRIVER INPUT
R =BUS RECEIVER OUTPUT

3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES
INCLUDE A “B” PREFIX.

Figure 5-8 DMA Request/Grant Bus Cycle Timing

5-14

MR-3690

5.5 INTERRUPTS

The interrupt capability of the LSI-11 bus allows any 1/O device to suspend temporarily (interrupt)
current program execution and divert processor operation for service of the requesting device. The
processor inputs a vector from the device to start the service routine (handler). As with a device register
address, the hardware fixes the device vector at locations within a designated range of addresses between
000 and 777g. The vector indicates the first of a pair of addresses. The content of the first address is read
by the processor; it is the starting address of the interrupt handler. The content of the second address is a
new processor status word (PS). The PS bits <07:05> can be programmed to a priority level from 0 to 7g.
Only interrupts on a level higher than the number in the priority level field of the PS are serviced by the
processor. If the interrupt priority level of the new PS is higher than that of the original PS, the new PS
raises the interrupt priority level and thus prevents lower-level interrupts from breaking into the current
interrupt service routine. Control is returned to the interrupted program when the interrupt service routine
is completed. The original (interrupted) program’s address (PC) and its associated PS are stored on a
“stack.” The original PC and PS are restored by a return from interrupt instruction (RTI or RTT) at the
end of the service routine. The use of the stack and the LSI-11 bus interrupt scheme can allow interrupts
to occur within interrupts (nested interrupts) if the requesting interrupt has a higher priority level than the
interrupt currently being serviced.

Interrupts can be caused by LSI-11 bus options and can also originate in the processor. Interrupts
originating in the processor are called traps and are caused by programming errors, hardware errors,
special instructions, and maintenance features. The following are the LSI-11 bus signals used in interrupt
transactions.

Signal Name

BIRQ4 L Interrupt request priority level 4
BIRQS L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority level 7
BIAKI L Interrupt acknowledge input
BIAKO L Interrupt acknowledge output

BDAL<15:00> L Data/address lines

BDIN L Data input strobe
BRPLY L Reply

5.5.1 Device Priority
The LSI-11 bus supports the following two methods of determining device priority.

1. Distributed arbitration — Priority levels are implemented on the hardware. When devices of
equal priority level request an interrupt, priority is given to the device electrically closest to the
processor.

2. Position-defined arbitration — Priority is determined solely by electrical position on the bus. The
device closest to the processor has the highest priority, while the device at the far end of the bus
has the lowest priority.

The KDJ11-A uses both methods — distributed arbitration, with four levels of priority, and position-
defined arbitration within each level. Interrupts on these priority levels are enabled/disabled by bits in the
processor status word (PS<07:05>). Single-level interrupt (position-defined) devices that interrupt on
BIRQ4 can also be used in KDJ11-A systems but must be placed in a bus slot following the last bus slot in
which a position-independent device is installed.

5.5.2 Interrupt Protocol

Interrupt protocol has three phases: the interrupt request phase, the interrupt acknowledge and priority
arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor and
interrupting device are shown in Figure 5-9. Interrupt protocol timing is shown in Figure 5-10.

PROCESSOR DEVICE

INITIATE REQUEST
—— ® ASSERT BIRQ L

//
— -
STROBE INTERRUPTS -
® ASSERT BDIN L —
_—
—_
T
‘ RECEIVE BDIN L
® STORE “INTERRUPT SENDING”
* (N DEVICE
GRANT REQUEST
e PAUSE AND ASSERT BIAKO L
—_
—
T —
RECEIVE BIAKI L
e RECEIVE BIAKI L AND INHIBIT
BIAKO L
e PLACE VECTOR ON BDAL < 15:00 > L
® ASSERT BRPLY L
_ ® NEGATE BIRQ L
—_—
/ /
RECEIVE VECTOR & TERMINATE
REQUEST
® INPUT VECTOR ADDRESS
o NEGATE BDIN L AND BIAKO L
— —_
—_
T
COMPLETE VECTOR TRANSFER
® REMOVE VECTOR FROM BDAL BUS
e - NEGATE BRPLY L
—_— -
-

PROCESS THE INTERRUPT

® SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK

® LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION

® EXECUTE INTERRUPT SERVICE
ROUTINE FOR THE DEVICE

MR-1182

Figure 5-9 Interrupt Request/Acknowledge Sequence

5-16

INTERRUPT LATENCY
le——
MINUS SERVICE TIME

TIRQ

150NSMINIMUM—’-I le—
R DIN /

R IAKI 1

TRPLY J\

125 NS MAXIMUM —» f— =100 NS MAXIMUM
T DAL (4) X VECTOR X (4)

RSYNC (UNASSERTED)

R BS7 (UNASSERTED)

NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS
AND BUS RECEIVER QUTPUTS.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T=BUS DRIVER INPUT
R =BUS RECEIVER OUTPUT

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES
INCLUDE A “B” PREFIX.

4. DON'T CARE CONDITION.

MR-1183

Figure 5-10 Interrupt Protocol Timing

The interrupt request phase begins when a device meets its specific conditions for interrupt requests (for
example, when the device is “ready,” “done,” or when an error has occurred). The interrupt enable bit in a
device status register must be set. The device then initiates the interrupt by asserting the interrupt request
line(s). BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt requests for
compatibility with previous LSI-11 processors. The level at which a device is configured must also be
asserted. (A special case exists for level 7 devices that must also assert level 6.) The interrupt request line
remains asserted until the request is acknowledged.

Interrupt Level Lines Asserted by Device

4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L

During the interrupt acknowledge and priority arbitration phase, the KDJ11-A will acknowledge inter-
rupts under the following conditions.

I. The device interrupt priority is higher than the current priority level stored in PS<07:05>.
2. The processor has completed instruction execution and no additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later, by
asserting TIAKO. The device electrically closest to the processor receives the acknowledge on its RIAKI
bus receiver.

On the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to accept
or to pass on the RIAKI signal. A device that does not support position-independent, multilevel interrupts
accepts RIAKI if it is requesting an interrupt when RDIN asserts. A device that does support position-
independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt and if there is no higher-
priority request pending when RDIN asserts. This decision must be clocked into a flip-flop, which settles
within 150 ns of TDIN.

Devices that support position-independent, multilevel interrupts assert from one to three IRQ lines when
requesting an interrupt. Table 5-4 presents the IRQ lines a device at each level must assert in order to
request an interrupt and lists the lines it must monitor to determine whether a higher-priority device is
requesting an interrupt.

During the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then
asserts TRPLY. The vector address must be stable at TDAL<08:02> 125 ns (maximum) after TRPLY is
asserted. The processor receives the assertion of RRPLY, and 200 ns (minimum) later it inputs the vector
address and negates both TDIN and TIAKI. The interrupting device negates TRPLY after the negation of
RIAKI and removes the vector address from TDAL<08:02> 100 ns (maximum) after TRPLY negates.
Since vector addresses are constrained to be between 000 and 7743, none of the remaining TDAL lines are
used.

Tabfe 5-4 Position-Independent, Multilevel Device Requirements

Interrupt

Level IRQ Lines Asserted IRQ Lines Monitored
4 TIRQ4 .RIRQ3, RIRQ6

5 TIRQ4, TIRQS RIRQ6

6 TIRQ4, TIRQ6 RIRQ7

7 TIRQ4, TIRQ6, TIRQ7

5-18

5.5.3 4-Level Interrupt Configurations

Users having high-speed peripherals and desiring better software performance can use the 4-level interrupt
scheme. Both position-independent and position-dependent configurations can be used with the 4-level
interrupt scheme.

The position-independent configuration is shown in Figure 5-11. This configuration allows peripheral
devices that use the 4-level interrupt scheme to be placed in the backplane in any order. These devices
must send out interrupt requests and monitor higher-level request lines, as described in Paragraph 5.5.2.
The level-4 request is always asserted by a requesting device, regardless of priority, to allow compatibility
if an LSI-11 or LSI-11/2 processor is in the same system. If two or more devices of equally high priority
request an interrupt, the device physically closest to the processor will win arbitration. Devices that use the
single-level interrupt scheme must be modified or placed at the end of the bus for arbitration to function

properly.

The position-dependent configuration is shown in Figure 5-12. This configuration is simpler to implement,
with the following constraint, however. Peripheral devices must be ordered so that the highest-priority
device is located closest to the processor with the remaining devices placed in the backplane in decreasing
order of priority. With this configuration each device must only assert its own level and level 4 (for
compatibility with an LSI-11 or LSI-11/2). Monitoring higher-level request lines is unnecessary. Arbitra-
tion is achieved through the physical positioning of each device on the bus. Single-level interrupt devices on
level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 |BjaK | LEVEL6 [gjak | LEVELS |Bjak | LEVEL7
KDJ11 DEVICE —*| DEVICE DEVICE DEVICE

A
3

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) | [

BIRQ 5 (LEVEL5 INTERRUPT REQUEST)]

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) 1 [

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

MRA-2888

Figure 5-11 Position-Independent Configuration

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL7 | BIAK | LEVELS6 |BIAK LEVEL 5 | BIAK LEVEL4

ko411 DEVICE DEVICE DEVICE DEVICE

4

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) v

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST) []

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) v

MR-2889

Figure 5-12 Position-Dependent Configuration

5-19

5.6 CONTROL FUNCTIONS
The following LSI-11 bus signals provide system control functions.

Signal Name

BREF L Memory refresh

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

BEVENT L External event interrupt request

5.6.1 Memory Refresh

If BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS
memories to be addressed simultaneously. The sequence of addresses required for refreshing the memories
is determined by the specific requirements of each memory. The complete memory refresh cycle consists
of a series of refresh bus transactions. (A new address is used for each transaction.) The entire cycle must
be completed within 2 ms. Multiple-data transfers by DMA devices must be avoided since they could
delay memory refresh cycles. The KDJ11-A does not perform memory refresh.

5.6.2 Halt
Assertion of BHALT L stops program execution and forces the processor unconditionally into console
ODT mode. The processor does not assert the BHALT L bus line when it comes to a programmed HALT.

5.6.3 Initialization
Devices along the bus are initialized when BINIT L is asserted. The processor asserts the BINIT L signal
under the following conditions.

1. During a power-down sequence

2. During a power-up sequence

3. During the execution of a RESET instruction

4. After detection of a G character in ODT mode (if the processor features an ODT mode and a G
command within it), and before execution of the code starting at the address that preceded the

G command

5.6.4 Power Status .
Power status protocol is controlled by two signals, BDCOK H and BPOK H. These signals are driven by an
external device (usually the power supply) and are defined as follows.

5.6.4.1 BDCOK H - The assertion of this line indicates that dc power has been stable for at least 3 ms.
Once asserted this line remains asserted until the power fails.

5.6.4.2 BPOK H - The assertion of this line indicates that there is at least an 8 ms reserve of dc power
and that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must remain
asserted for at least 3 ms.

The negation of this line indicates that power is failing and that only 4 ms of dc power reserve remains.
The negation of this line during processor operation initiates a power-fail trap sequence.

5-20

5.6.4.3 Power-Up - The following events occur during a power-up sequence.

1. Logic associated with the power supply negates BDCOK H during power-up and asserts
BDCOK H 3 ms (minimum) after dc¢ power is restored to voltages within specification.

2. The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 ns
(minimum) after the assertion of BDCOK H.

3. Logic associated with the power supply negates BPOK H during power-up and asserts BPOK H
70 ms (minimum) after the assertion of BDCOK H. If power does not remain stable for 70 ms,
BDCOK H will be negated; therefore, devices should suspend critical actions until BPOK H is
asserted.

4. BPOK H must remain asserted for a minumum of 3 ms. BDCOK H must remain asserted 4 ms
(minimum) after the negation of BPOK H.

The timing diagram for the power-up/power-down sequence is shown in Figure 5-13.

!

IG—ONSMINIMUM "I l" 8-20 uS
BINIT L ﬂ ’ y \
3MS

* MI?\JW\/ISUM —+ 1S e
MAXIMUM MAXIMUM

r

B POK H 4/ 1
70 MS 4 MS 70 MS
mMiNiMuM % MINIMUM] “] MINIMUM

—]
BDCOK H [\
5 uS
le— 3 MS MINIMUM
3 ™ MINIMUM 1“

DC POWER /

POWER-UP NORMAL POWER-DOWN POWER-UP NORMAL

SEQUENCE "I rower SEQUENCE SEQUENCE *T* POWER
NOTE:

ONCE A POWER-DOWN SEQUENCE IS STARTED,
IT MUST BE COMPLETED BEFORE A POWER-UP
SEQUENCE IS STARTED.

MR-6032

Figure 5-13 Power-Up/Power-Down Timing

5-21

5.6.4.4 Power-Down - The following events occur during a power-down sequence.

1. If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line
cycle (15-24 ms), BPOK H is negated by the power supply. Once BPOK H is negated, the
entire power-down sequence must be completed.

A device that requested bus mastership before the power failure that has not become bus master
should maintain the request until BINIT L is asserted or the request is acknowledged (in which
case regular bus protocol is followed).

2. Processor software should execute a RESET instruction 3 ms (minimum) after the negation of
BPOK H. This asserts BINIT L for from 8 to 20 us. Processor software executes a HALT
instruction immediately following the RESET instruction.

3. BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms
allows mass storage and similar devices to protect themselves against erasures and erroneous
writes during a power failure.

4. The processor asserts BINIT L 1 us (minimum) after the negation of BDCOK H.

5. DC power must remain stable for a minimum of 5 us after the negation of BDCOK H.

6. BDCOK H must remain negated for a minimum of 3 ms.
5.6.5 BEVENT L
The BEVENT L signal is an external line clock interrupt request to the processor. When BEVENT L is
asserted, the processor internally assigns location 100g as the vector address for the BEVENT service
routine. Because the vector is internally assigned, the processor does not execute the protocol for reading-in

the interrupt vector address as is the case for other external interrupt requests.

5.7 BUS ELECTRICAL CHARACTERISTICS
This paragraph contains information about the clectrical characteristics of the LSI-11 bus.

5.7.1 Signal-Level Specification
Input Logic Levels

TTL logical low: 0.8 Vdc (maximum)
TTL logical high: 2.0 Vdc¢ (minimum)

Output Logic Levels

TTL logical low: 0.4 Vdc (maximum)
TTL logical high: 2.4 Vdc (minimum)

5.7.2 AC Bus Load Definition

AC bus loading is the amount of capacitance a module presents to a bus signal line. This capacitance is
measured between each module signal line and ground. AC bus loading is expressed in ac unit loads where
each unit load is defined as 9.35 pF.

5-22

5.7.3 DC Bus Load Definition
DC bus loading is the amount of leakage current a module presents to a bus signal line. A dc unit load is
defined as 105 uA flowing into a module device when the signal line is in the unasserted (high) state.

5.7.4 120 Q LSI-11 Bus

The electrical conductors interconnecting the bus device slots are treated as transmission lines. A uniform
transmission line, terminated in its characteristic impedance, will propagate an electrical signal without
reflections. Insofar as bus drivers, receivers, and wiring connected to the bus have finite resistance and
nonzero reactance, the transmission line impedance becomes nonuniform, and thus introduces distortions
into pulses propagated along it. Passive components of the LSI-11 bus (such as wiring, cabling, and etched
signal conductors) are designed to have a nominal characteristic impedance of 120 €.

The maximum length of the interconnecting cable in multiple-backplane systems (excluding wiring within
the backplane) is limited to 4.88 m (16 ft).

NOTES
1. The KDJ11-A processor (as well as all stan-
dard DIGITAL-supplied LSI-11 interfaces)
connects to the bus via special drivers and

receivers, described in Paragraphs 5.7.5 and
5.7.6.

2. The KDJ11-A processor provides resistive (250

Q) pull-up (on all bused lines) to 3.4 Vdc for
this wired-OR interconnecting scheme.

5.7.5 Bus Drivers
Devices driving the 120 Q LSI-11 bus must have open collector outputs and meet the specifications that
follow.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and input
signal levels.)

Ve can vary from 4.75 V to 5.25 V.
Output low voltage when sinking 70 mA of current: 0.7 V (maximum).

Output high leakage current when connected to 3.8 Vdc: 25 uA (even if no power is applied to them,
except for BDCOK H and BPOK H).

AC Specifications
Bus driver output pin capacitance load: Not to exceed 10 pF.
Propagation delay: Not to exceed 35 ns.

Driver skew (difference in propagation time between slowest and fastest bus driver): Not to exceed
25 ns.

Rise/fall times: Transition time from 10% to 90% for positive transition, and from 90% to 10% for
negative transition, must be no faster then S ns.

5-23

5.7.6 Bus Receivers
Devices that receive signals from the 120 @ LSI-11 bus must meet the following requirements.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and output
signal conditions.)

Vcc can vary from 4.75 V to 5.25 V.
Input low voltage: 1.3 V (maximum).
Input high voltage: 1.7 V (minimum).

Maximum input leakage current when connected to 3.8 Vdc: 80 uA with Ve between 0.0 V and
525 V.

AC Specifications
Bus receiver input pin capacitance load: Not to exceed 10 pF.
Propagation delay: Not to exceed 35 ns.

Receiver skew (difference in propagation time between slowest and fastest receiver): Not to exceed
25 ns.

5.7.7 KDJ11-A Bus Termination

The 120 Q LSI-11 bus must be terminated at each end by an appropriate resistive termination. A pair of
resistors in series from +5.0 V to ground is used to establish a voltage for each bidirectional line when that
line is not being driven (negated). The parallel impedance of this pair of resistors is 250 Q. The terminating
resistors are shown in Figure 5-14. The KDJ11-A contains terminating resistor networks in 18-pin single-
in-line packages to provide the 250 Q terminations for the data/address, synchronization, and control lines
at the processor end of the bus.

5V
33002
250 2
BUS LINE
TERMINATION
680 Q2

MR-6033
Figure 5-14 Bus Line Termination
Some system configurations do not require terminating resistors at the far end of the bus. If the system
configuration does require such termination, it is typically provided by a M9404-YA cable connector

module. Rules for configuring single- and multiple-backplane systems are described in Paragraphs 5.8.1
and 5.8.2.

5-24

5.7.8 Bus Interconnection Wiring

This paragraph contains the electrical characteristics of the bus interface. The bus interface for the module
connectors is provided by one, two, or three backplanes, depending on the system configuration. Since
each backplane contains 9 slots, a system may have a maximum of 27 module interfaces to the bus.

5.7.8.1 Backplane Wiring - The wiring that interconnects all device interface slots on the LSI-11 bus
must meet the following specifications.

1. The conductors must be arranged so that each line exhibits a characteristic impedance of 120 Q
(measured with respect to the bus common return).

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must be
less than 5% of the 5 V. Note that worst-case crosstalk is manifested by simultaneously driving
all but one signal line and measuring the effect on the undriven line.

3. DC resistance of a bus segment signal path, as measured between the near-end terminator and
far-end terminator modules (including all intervening connectors, cables, backplane wiring,
connector-module etch, etc.) must not exceed 2 Q.

4. DC resistance of a bus segment common return path, as measured between the near-end
terminator and far-end terminator modules (including all intervening connectors, cables, back-
plane wiring, connector-module etch, etc.) must not exceed an equivalent of 2 Q per signal path.
Thus, the composite signal return path dc resistance must not exceed 2 Q divided by 40 bus
lines, or 50 mQ. Note that although this common return path is nominally at ground potential,
the conductance must be part of the bus wiring; the specified low-impedance return path must
be provided by the bus wiring as distinguished from common system or power ground path.

5.7.8.2 Intrabackplane Bus Wiring - The wiring that interconnects the bus connector slots within one
contiguous backplane is part of the overall bus transmission line. Due to implementation constraints, the
nominal characteristic impedance of 120 Q@ may not be achievable. Distributed wiring capacitance in
excess of the amount required to achieve the nominal 120 Q impedance may not exceed 60 pF per signal
line per backplane.

5.7.8.3 Power and Ground - Each bus interface slot has connector pins assigned for the following dc
voltages.

Voltage Number of Pins

+5 Vdc Three pins, 4.5 A (maximum) per bus device slot

+12 Vdc Two pins, 3.0 A (maximum) per bus device slot)

Ground Eight pins, shared by power return and signal return
The maximum allowable current per pin is 1.5 A. The +5 Vdc must be regulated to +5% and the
maximum ripple should not exceed 100 mV peak-to-peak. The +12 Vdc must be regulated to +3% and the
maximum ripple should not exceed 200 mV peak-to-peak.

NOTE

Power is not bused between backplanes on any inter-
connecting LSI-11 bus cables.

5-25

5.7.8.4 Maintenance and Spare Pins

Maintenance Pins - There are four M SPARE pins per bus device slot assigned to maintenance (AK1,
AL1, BK1, BL1). The maintenance pins on the basic LSI-11 system are not bused from module to module.
Instead, at each bus device slot, the maintenance pins are shorted together as pairs. These pins must be
shorted together for some modules to operate. This allows a module to use these pins during initial testing
as two separate points. This feature is used by DIGITAL for manufacturing tests only.

Spare Pins - Spare pins are allocated on the backplane as follows.

S SPARES - These four pins, AE1, AH1, BHI, AF1 (with the exception of AF1 in slot 1), are
reserved for the particular use of a module or set of modules. They may be used as test points or for
intermodule connection. Appropriate wires must be added for intermodule communication since
these pins are not connected in any way. The processor uses AF1 in slot 1 as an output pin for the
SRUN signal. S SPARE lines cannot be used as bus connections.

P SPARES - These two pins, AU1 and BU! are similar to the S SPARE pins except that they are
located in a manner that causes dc voltages to appear on them if a module is inserted backwards. Use
of these pins is not recommended.

5.8 SYSTEM CONFIGURATIONS

LSI-11 bus systems can be divided into two types. The first type comprises those systems that use only one
backplane, the second type comprising those systems that use multiple backplanes. Two sets of rules must
be followed when configuring a system to accommodate the different electrical characteristics of the two
types of systems. These rules are listed in Paragraphs 5.8.1 and 5.8.2.

Three characteristics of each component in an LSI-11 bus system must be known before configuring any
system:

1. Power consumption — The total amount of current drawn from the +5 Vdc and +12 Vdc power
supplies by all modules in the system.

2. AC bus loading — The amount of capacitance a module presents to a bus signal line. AC loading
is expressed in ac unit loads, where one ac unit load equals 9.35 pF of capacitance.

3. DC bus loading — The amount of dc leakage current a module presents to a bus signal when the
line is high (undriven). DC loading is expressed in terms of dc unit loads, where one dc unit load
equals 105 pA (nominal).

Power consumption, ac loading, and dc loading specifications for each module are included in the
Microcomputer Interfaces Handbook.

NOTE
The ac and dc loads and the power consumption of
the processor module, terminator module, and back-
plane must be included in determining the total bus
loading of a backplane.

5-26

5.8.1 Rules for Configuring Single-Backplane Systems
The following rules apply only to single-backplane systems. Any extension of the bus off the backplane is
considered a multiple-backplane system and must be configured accordingly. A single-backplane configur-
ation diagram is shown in Figure 5-15.
1. The bus can accommodate modules that have up to 20 ac loads (total) before an additional
termination is required. The processor has on-board termination for one end of the bus. If more
than 20 ac loads are included, the other end of the bus must be terminated with 120 Q.
2. A terminated bus can accommodate modules comprising up to 35 ac loads (total).
3. The bus can accommodate modules up to 20 dc loads (total).

4. The bus signal lines on the backplane can be up to 35.6 cm (14 in) long.

I BACKPLANE WIRE >
35.6 CM (14 IN) MAXIMUM
L |

ONE ONE ONE OPTIONAL
250 O UNIT UNIT UNIT 120 &
LOAD LOAD LOAD
+ +
34V N v — 34V
- 35 AC LOADS 1
= 20 DC LOADS =
PROCESSOR TERM

MR-6034

Figure 5-15 Single-Backplane Configuration

5.8.2 Rules for Configuring Multiple-Backplane Systems
Multiple-backplane systems can contain a maximum of three backplanes. A configuration diagram for a
multiple-backplane system is shown in Figure 5-16.

1. The signal lines on each backplane can be up to 25.4 cm (10 in) long.

2. Each backplane can accommodate modules that have up to 20 ac loads (total). Unused ac loads
from one backplane may not be added to another backplane if the second backplane loading
will exceed 20 ac loads. It is desirable to load backplanes equally or with the highest ac loads in
the first and second backplanes.

3. DC loading of all modules in all backplanes cannot exceed 15 loads (total).

4. The first backplane must have an impedance of 120 © (obtained via the processor module). The

second backplane is terminated by 120 Q resistor networks contained on the cable connector
inserted in the third backplane.

5-27

" BACKPLANE WIRE |
35.6 CM (14 IN} MAX

((

l)Y | CABLE
ONE ONE
250 UNIT UNIT
LOAD LOAD
+
3.4V — ~ S
- 20 AC LOADS MAX
PROCESSOR
BACKPLANE WIRE
F 25.4 CM (10 IN) MAX *
]
ONE ONE
UNIT UNIT
LOAD LOAD
CABLE N iy , CABLE
ADDITIONAL 20 AC LOADS MAX
CABLES AND
BACKPLANE BACKPLANE WIRE
- 25.4 CM (10 IN) MAX —’{
{(
L
ONE ONE
120 2 UNIT UNIT
34V LOAD LOAD
CABLE/ J
TERM \4

20 AC LOADS MAX
NOTES:
1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)
TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAX).

MR 6035

Figure 5-16 Multiple-Backplane Configuration

5-28

5. The cables connecting the backplanes must observe the following rules.
a. The cable(s) connecting the first two backplanes must be 61 cm (2 ft) or greater in length,

b. The cable(s) connecting the second backplane to the third backplane must be 22 cm (4 ft)
longer or shorter than the cable(s) connecting the first and second backplanes.

¢. The combined length of both cables must not exceed 4.88 m (16 ft).
d. The cables used must have a characteristic impedance of 120 Q.

5.8.3 Power Supply Loading

Total power requirements for each backplane can be determined by obtaining the total power require-
ments for each module in the backplane. Obtain separate totals for +5 V and +12 V power. Power
requirements for each module are specified in the Microcomputer Interfaces Handbook.

Do not attempt to distribute power via the LSI-11 bus cables in multiple-backplane systems. Provide
separate, appropriate power wiring from each power supply to each backplane. Each power supply should
be capable of asserting BPOK H and BDCOK H signals according to bus protocol. This is required if
automatic power-fail /restart programs are implemented or if specific peripherals require an orderly power-
down halt sequence. The proper use of the BPOK H and BDCOK H signals is strongly recommended.

5-29

CHAPTER 6
ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION
The first part of this chapter is divided into six major sections as follows.

e Single-Operand Addressing — One part of the instruction word specifies the registers; the other
part provides information for locating the operand.

e Double-Operand Addressing — One part of the instruction word specifies the registers; the
remaining parts provide information for locating two operands.

e Direct Addressing — The operand is the content of the selected register.

e Deferred (Indirect) Addressing — The contents of the selected register is the address of the
operand.

e Use of the PC as a General-Purpose Register — The PC is different from other general-purpose
registers in one important respect. Whenever the processor retrieves an instruction, it automati-
cally advances the PC by 2. By combining this automatic advancement of the PC with four of
the basic addressing modes, we produce the four special PC modes - immediate, absolute,
relative, and relative-deferred.

e Use of the Stack Pointer as a General-Purpose Register — General-purpose registers can be used
for stack operations.

The second part of this chapter describes each of the instructions in the KDJI1-A instruction set.

6.2 ADDRESSING MODES

Data stored in memory must be accessed and manipulated. Data handling is specified by a KDJ11-A
instruction (MOV, ADD, etc.), which usually specifies the following.

e The function to be performed (operation code)

e The general-purpose register to be used when locating the source operand, and/or destination
operand (where required)

e The addressing mode, which specifies how the selected registers are to be used

A large portion of the data handled by a computer is structured (in character strings, arrays, lists, etc.).
The KDJ11-A addressing modes provide for efficient and flexible handling of structured data.

6-1

A general-purpose register may be used with an instruction in any of the following ways.
. As an accumulator - The data to be manipulated resides in the register.

2. Asa pointer - The contents of the register is the address of an operand, rather than the operand
itself.

3. As a pointer that automatically steps through memory locations - Automatically stepping
forward through consecutive locations is known as autoincrement addressing; automatically
stepping backwards is known as autodecrement addressing. These modes are particularly useful
for processing tabular or array data.

4. As an index register — In this instance, the contents of the register and the word following the
instruction are summed to produce the address of the operand. This allows easy access to
variable entries in a list.

An important KDJ11-A feature, which should be considered with the addressing modes, is the register
arrangement.

e Two sets of six general-purpose registers (R0O-R5 and RO’-R5’)
® A hardware stack pointer (SP) register (R6) for each processor mode (kernel, supervisor, user)
e A program counter (PC) register (R7)

Registers RO-R5 and RO’-R5’ are not dedicated to any specific function; their use is determined by the
instruction that is decoded.

® They can be used for operand storage. For example, the contents of two registers can be added
and stored in another register.

® They can contain the address of an operand or serve as pointers to the address of an operand.

e They can be used for the autoincrement or autodecrement features.

® They can be used as index registers for convenient data and program access.
The KDJ11-A also has instruction addressing mode combinations that facilitate temporary data storage
structures. These can be used for convenient handling of data that must be accessed frequently. This is
known as stack manipulation. The register that keeps track of stack manipulation is known as the stack
pointer (SP). Any register can be used as a stack pointer under program control; however, certain
instructions associated with subroutine linkage and interrupt service automatically use register R6 as a
“hardware stack pointer.” For this reason, R6 is frequently referred to as the SP.

® The stack pointer (SP) keeps track of the latest entry on the stack.

® The stack pointer moves down as items are added to the stack and moves up as items are
removed. Therefore, the stack pointer always points to the top of the stack.

® The hardware stack is used during trap or interrupt handling to store information, allowing an
orderly return to the interrupted program.

Register R7 is used by the processor as its program counter (PC). It is recommended that R7 not be used

as a stack pointer or accumulator. Whenever an instruction is fetched from memory, the program counter
is automatically incremented by two to point to the next instruction word.

6-2

6.2.1 Single-Operand Addressing
The instruction format for all single-operand instructions (such as CLR, INC, TST) is shown in Figure 6-1.

Bits <15:06> specify the operation code that defines the type of instruction to be executed.

Bits <05:00> form a 6-bit field called the destination address field. The destination address field consists
of two subfields:

o Bits <05:03> specify the destination mode. Bit 03 is set to indicate deferred (indirect)
addressing.

® Bits <02:00> specify which of the 8 general-purpose registers is to be referenced by this
instruction word.

15 06 05 04 03 02 00
T T T —T T T T T T T T T T
MODE Rn
. A A i 1 |) . . 1 1 A A
AN Al J

OP CODE DESTINATION ADDRESS

MR-5458

Figure 6-1 Single-Operand Addressing

6.2.2 Double-Operand Addressing

Operations that imply two operands (such as ADD, SUB, MOV, and CMP) are handled by instructions
that specify two addresses. The first operand is called the source operand; the second is called the
destination operand. Bit assignments in the source and destination address fields may specify different

modes and different registers. The instruction format for the double operand instruction is shown in Figure
6-2.

The source address field is used to select the source operand (the first operand). The destination is used
similarly, and locates the second operand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination operand) of location B. After
execution, B will contain the result of the addition and the contents of A will be unchanged.

15 12 11 10 09 08 06 05 04 03 02 00
T T T T T T T T L] T T
OP CODE MODE Rn MODE Rn
& ! 1 i e | 1 1 4 n
\ A J
SOURCE ADDRESS DESTINATION ADDRESS

MR-5459

Figure 6-2 Double-Operand Addressing

6-3

Examples in this paragraph and the rest of the chapter use the following sample KDJ11-A instructions. (A
complete listing of the KDJ11-A instructions appears in Paragraph 6.3.)

Mnemonic Description Octal Code*
CLR Clear. (Zero the specified destination.) 0050DD
CLRB Clear byte. (Zero the byte in the specified 1050DD

destination.)

INC Increment. (Add one to contents of the 0052DD
destination.)

INCB Increment byte. (Add one to the contents of 1052DD
the destination byte.)

COM Complement. (Replace the contents of the 0051DD
destination by its logical complement;
each 0 bit is set and each 1 bit is
cleared.)

COMB Complement byte. (Replace the contents of 1051DD
the destination byte by its logical
complement; each O bit is set and each
1 bit is cleared.)

ADD Add. (Add the source operand to the 06SSDD
destination operand and store the result
at the destination address.)

*DD = destination field (six bits)

SS = source field (six bits)
() = contents of

6.2.3 Direct Addressing
The following summarizes the four basic modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Assembler
Mode Name Syntax Function
0 Register Rn Register contains operand.
INSTRUCTION OPERAND

MR-5460

Figure 6-3 Mode 0 Register

6-4

Mode

Mode

Mode

Assembler
Name Syntax Function

Autoincrement (Rn)+ Register is used as a pointer to sequential data
and then incremented.

INSTRUCTION At ADDRESS > OPERAND
3
+2 FOR WORD,
+1 FOR BYTE ——'
MR.5461
Figure 6-4 Mode 2 Autoincrement
Assembler
Name Syntax Function
Autodecrement —(Rn) Register is decremented and then used as a
pointer.
INSTRUCTION ADDRESS » -2 FOR WORD, OPERAND
-1 FOR BYTE
MR.-5462
Figure 6-5 Mode 4 Autodecrement
Assembler
Name Syntax Function
Index X(Rn) Value X is added to (Rn) to produce address
of operand. Neither X nor (Rn) is modified.
INSTRUCTION > ADDRESS
+ OPERAND
X

MR-5463

Figure 6-6 Mode 6 Index

6-5

6.2.3.1 Register Mode - With register mode any of the general registers may be used as simple
accumulators, with the operand contained in the selected register. Since they are hardware registers
(within the processor), the general registers operate at high speeds and provide speed advantages when
used for operating on frequently accessed variables. The assembler interprets and assembles instructions of
the form OPR Rn as register mode operations. Rn represents a general register name or number and OPR
is used to represent a general instruction mnemonic. Assembler syntax requires that a general register be
defined as follows.

RO = %0 (% sign indicates register definition)
Rl = %1
R2 = %2, etc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6, and R7. However, R6 and R7
are also referred to as SP and PC, respectively.

Register Mode Examples (Figures 6-7 to 6-9)
1. Symbolic Octal Code Instruction Name
INC R3 005203 Increment

Operation: Add one to the contents of general-purpose register R3.

[~ 71 SELECT
. d REGISTER
\ A v

N

OP CODE (INC(0052)) DESTINATION FIELD

RO

R1

|
|
I
!
!
[
I
|
|

R2

l

R3 e

R4

RS

R6 (SP)

R7 (PC)

MR-5467

Figure 6-7 INC R3 Increment

6-6

2. Symbolic Octal Code Instruction Name
ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

BEFORE AFTER
R2 000002 R2 000002
R4 000004 R4 000006

MR.6468

Figure 6-8 ADD R2,R4 Add

3. Symbolic Octal Code Instruction Name
COMB R4 105104 Complement byte

Operation: 1’s complement bits <07:00> (byte) in R4. (When general registers are used, byte instructions
operate only on bits <07:00>; i.e., byte 0 of the register.)

BEFORE AFTER

R4 022222 R4 022155

MR-5469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2) provides for automatic stepping of a
pointer through sequential elements of a table of operands. It assumes the contents of the selected general-
purpose register to be the address of the operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always by two for R6 and R7) to address the next sequential
location. The autoincrement mode is especially useful for array processing and stack processing. It will
access an element of a table and then step the pointer to address the next operand in the table. Although
most useful for table handling, this mode is completely general and may be used for a variety of purposes.

6-7

Autoincrement Mode Examples (Figures 6-10 to 6-12)
l. Symbolic Octal Code Instruction Name
CLR (R5)+ 005025 Clear

Operation: Use contents of RS as the address of the operand. Clear selected operand and then increment
the contents of RS by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 005025 R5 030000 20000 005025 R5 030002
30000 111116 30000 000000
1

MR-5464

Figure 6-10 CLR (R5)+ Clear

2. Symbolic Octal Code Instruction Name
CLRB (R5)+ 105025 Clear byte

Operation: Use contents of R5 as the address of the operand. Clear selected byte operand and then
increment the contents of R5 by one.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 | 105025 Rs | 030000 20000 | 105025 R5 | 030001
T T
30000 [111) 116 30000 | 111 | 000
30002 ' 30002 I
L |

MR-5465

Figure 6-11 CLRB (R5)+ Clear Byte

3. Symbolic ' Octal Code Instruction Name
ADD (R2)+,R4 062204 Add

Operation: The contents of R2 are used as the address of the operand, which is added to the contents of
R4. R2 is then incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 062204 R2 100002 10000 062204 R2 100004
R4 010000 R4 020000
100002 010000 100002 010000

MR-5470

Figure 6-12 ADD (R2)+,R4 Add

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is useful for processing data in a list in
reverse direction. The contents of the selected general-purpose register are decremented (by one for byte
instructions, by two for word instructions) and then used as the address of the operand. The choice of
postincrement, predecrement features for the KDJ11-A were not arbitrary decisions, but were intended to
facilitate hardware/software stack operations.
Autodecrement Mode Examples (Figures 6-13 to 6-15)
1. Symbolic Octal Code Instruction Name

INC —(RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as the address of the operand. The
operand is incremented by one.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 005240 RO 017776 1000 005240 RO 017774
17774 000000 17774 000001

MR-5466

Figure 6-13 INC —(RO) Increment

6-9

2. Symbolic Octal Code Instruction Name
INCB —(R0) 105240 Increment byte

Operation: The contents of RO are decremented by one and then used as the address of the operand. The
operand byte is increased by one.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 105240 RO 017776 1000 105240 RO 017775
[
T F T
17774 | 000 | 000 17774 | 001 | 00C
+ t
17776 | 17776 I
L 1
MR-5471
Figure 6-14 INCB —(RO) Increment Byte
3. Symbolic Octal Code Instruction Name
ADD —(R3),R0 064300 Add

Operation: The contents of R3 are decremented by two and then used as a pointer to an operand (source),
which is added to the contents of RO (destination operand).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10020 064300 RO 000020 10020 064300 RO 0000070
R3 077776 R3 077774
77774 000050 77774 000050
77776 77776

MR-5472

Figure 6-15 ADD —(R3),R0 Add

6.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6) the contents of the selected general-purpose
register, and an index word following the instruction word, are summed to form the address of the
operand. The contents of the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register can then be modified by
program to access data in the table. Index addressing instructions are of the form OPR X(Rn), where X is
the indexed word located in the memory location following the instruction word and Rn is the selected
general-purpose register.

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name
CLR 200(R4) 005064 Clear
000200

Operation: The address of the operand is determined by adding 200 to the contents of R4. The operand
location is then cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 005064 R4 001000 1020 005064 R4 001000
1022 000200 1022 000200
1024 1000 1024
+200
{ 1200
1200 177777 1200 000000
1202

MR-5473

Figure 6-16 CLR 200(R4) Clear

6-11

2. Symbolic Octal Code Instruction Name

COMB 200(R1) 105161 Complement byte
000200

Operation: The contents of a location, which are determined by adding 200 to the contents of R1, are 1’s
complemented (i.e., logically complemented).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 R1 017777 1020 105161 R1 017777
1022 000200 1022 000200
017777
+200
§ 020177
T I
20176 011 | 000 20176 166 | 000
] 1
T T
20200 | 20200 |
| i
MR-5474
Figure 6-17 COMB 200(R1) Complement Byte
3. Symbolic Octal Code Instruction Name
ADD 30(R2),20(R5) 066265 Add
000030
000020

Operation: The contents of a location, which are determined by adding 30 to the contents of R2, are added
to the contents of a location that is determined by adding 20 to the contents of R5. The result is stored at
the destination address, that is, 20(R5).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 R2 001100 1020 066265 R2 001100
1022 000030 1022 000030
1024 000020 R5 002000 1024 000020 Rb 002000
1130 000001 1130 000001
2020 000001 2020 000002
1100 2000
+30 +20
1130 2020

MR-5475

Figure 6-18 ADD 30(R2),20(RS5) Add

6-12

6.2.4 Deferred (Indirect) Addressing

The four basic modes may also be used with deferred addressing. Whereas in register mode the operand is
the contents of the selected register, in register-deferred mode the contents of the selected register is the
address of the operand.

In the three other deferred modes, the contents of the register select the address of the operand rather than
the operand itself. These modes are therefore used when a table consists of addresses rather than operands.
The assembler syntax for indicating deferred addressing is @ [or () when this is not ambiguous]. The
following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Mode

1

Mode

Assembler
Name Syntax Function
Register-
deferred @Rn or (Rn) Register contains the address of the operand.
INSTRUCTION ADDRESS OPERAND
Figure 6-19 Mode 1 Register-Deferred
Assembler
Name Syntax Function
Autoincrement-
deferred @(Rn)+ Register is first used as a pointer to a word
containing the address of the operand and then
incremented (always by two, even for byte
instructions).
INSTRUCTION > ADDRESS ADDRESS »| OPERAND

MR-5477

Figure 6-20 Mode 3 Autoincrement-Deferred

6-13

Mode

Mode

Assembler

Name Syntax Function
Autodecrement-
deferred @—(Rn) Register is decremented (always by two, even
for byte instructions) and then used as a point-
er to a word containing the address of the
operand.
INSTRUCTION ADDRESS) »{ ADDRESS » OPERAND
t
Figure 6-21 Mode 5 Autodecrement-Deferred
Assembler
Name Syntax Function
Index-deferred @X(Rn) Value X (stored in a word following the
instruction) and (Rn) are added; the sum is
used as a pointer to a word containing the
address of the operand. Neither X nor (Rn) is
modified.
INSTRUCTION ADDRESS
_‘:—_t@—‘ ADDRESS »{ OPERAND
X

MR-5479

Figure 6-22 Mode 7 Index-Deferred

6-14

The following examples illustrate the deferred modes.

Register-Deferred Mode Example (Figure 6-23)
Symbolic Octal Code Instruction Name
CLR @RS 005015 Clear

Operation: The contents of location specified in RS are cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 RS 001700 1677 R5 001700

1700 000100 1700 000000

MR-5480

Figure 6-23 CLR @R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)
Symbolic Octal Code Instruction Name
INC @(R2)+ 005232 Increment

Operation: The contents of R2 are used as the address of the address of the operand. The operand is
increased by one; the contents of R2 are incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
R2 010300 R2 010302
1010 000025 1010 000026
1012 1012
10300 001010 10300 go1010

MR-5481

Figure 6-24 INC @(R2)+ Increment

6-15

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)
Symbolic Octal Code
COM @—(R0) 005150

Operation: The contents of RO are decremented by two and then used as the address of the address of the
operand. The operand is 1’s complemented (i.e., logically complemented).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 RO 010776 10100 165432 RO 010774
10102 10102
10774 010100 10774 010100
10776 10776

MR-5482

Figure 6-25 COM @—(R0) Complement

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name
ADD @1000(R2),R1 067201 Add
001000

Operation: 1000 and the contents of R2 are summed to produce the address of the address of the source
operand, the contents of which are added to the contents of R1; the result is stored in R1.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 R1 001234 1020 067201 R1 001236
1022 001000 1022 001000
R2 000100 R2 000100
1024 1024
1050 000002 1050 000002
1100 001050 1100 001050
1000
+100
1100

MR-5483

Figure 6-26 ADD @1000(R2),R1 Add

6-16

6.2.5 Use of the PC as a General-Purpose Register

Although register 7 is a general-purpose register, it doubles in function as the program counter for the
KDJ11-A. Whenever the processor uses the program counter to acquire a word from memory, the
program counter is automatically incremented by two to contain the address of the next word of the
instruction being executed or the address of the next instruction to be executed. (When the program uses
the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard KDJ11-A addressing modes. However, with four of these modes the
PC can provide advantages for handling position-independent code and unstructured data. When utilizing
the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and relative-
deferred. The modes are summarized below.

Assembler

Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute @#A Absolute address of operand follows
instruction.

6 Relative A Relative address (index value) follows the
instruction.

7 Relative-

deferred @A Index value (stored in the word after the

instruction) is the relative address for the
address of the operand.

When a standard program is available for different users, it is often helpful to be able to load it into
different areas of memory and run it in those areas. The KDJ11-A can accomplish the relocation of a
program very efficiently through the use of position-independent code (PIC), which is written by using the
PC addressing modes. If an instruction and its operands are moved in such a way that the relative distance
between them is not altered,

the same offset relative to the PC can be used in all positions in memory. Thus, PIC usually references
locations relative to the current location.

The PC also greatly facilitates the handling of unstructured data. This is particularly true of the immediate
and relative modes.

6-17

6.2.5.1 Immediate Mode [OPR #n,DD] - Immediate mode (mode 2) is equivalent in use to the autoincre-
ment mode with the PC. It provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name
ADD #10,R0 062700 Add
000010

Operation: The value 10 is located in the second word of the instruction and is added to the contents of RO.
Just before this instruction is fetched and executed, the PC points to the first word of the instruction. The
processor fetches the first word and increments the PC by two. The source operand mode is 27 (autoincre-
ment the PC). Thus, the PC is used as a pointer to fetch the operand (the second word of the instruction)
before it is incremented by two to point to the next instruction.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 | 062700 \RO 000020 | 1020 | 062700 RO 000030
1022 000010 PC 1022 000010 PC

1024 1024 ’/

MR-5484

Figure 6-27 ADD #10,R0 Add

6.2.5.2 Absolute Addressing Mode [OPR @#A]- This mode (mode 3) is the equivalent of immediate-
deferred or autoincrement-deferred using the PC. The contents of the location following the instruction are
taken as the address of the operand. Immediate data is interpreted as an absolute address (i.e., an address
that remains constant no matter where in memory the assembled instruction is executed).

6-18

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name
CLR @#1100 005037 Clear
001100

Operation: Clear the contents of location 1100.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 \ 20 005037
22 001100 PC 22 001100 PC

3 ,

—

1100 177777 1100 000000

1102 1102

MR-5485

Figure 6-28 CLR @ #1100 Clear

2. Symbolic Octal Code Instruction Name
ADD @#2000,R3 063703 Add
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 \ R3 000500 20 063703 R3 001000
22 002000 PC 22 002000 PC

) o “
—

2000 000300 2000 000300

MR-5486

Figure 6-29 ADD @ #2000 Add

6-19

6.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] - This mode (mode 6) is assembled as index
mode using R7. The base of the address calculation, which is stored in the second or third word of the
instruction, is not the address of the operand, but the number which, when added to the (PC), becomes the
address of the operand. This mode is useful for writing position-independent code since the location
referenced is always fixed relative to the PC. When instructions are to be relocated, the operand is moved
by the same amount. The instruction OPR X(PC) is interpreted as “X is the location of A relative to the
PC.?!

Relative Addressing Mode Example (Figure 6-30)

Symbolic Octal Code Instruction Name
INC A 005267 Increment
000054

Operation: To increment location A, contents of memory location immediately following instruction word
are added to (PC) to produce address A. Contents of A are increased by one.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 PC 1022 000054
1024 1024 j[«—PC
1026 1026
1100 000000 1024 1100 000001

T +54

1100

MR-5487

Figure 6-30 INC A Increment

6.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] - This mode (mode 7) is
similar to relative mode, except that the second word of the instruction, when added to the PC, contains
the address of the address of the operand, rather than the address of the operand. The instruction OPR
@X(PC) is interpreted as “X is the location containing the address of A, relative to the PC.”

Relative-Deferred Mode Example (Figure 6-31)

Symbolic Octal Code Instruction Name
CLR @A 005077 Clear
000020

Operation: Add second word of instruction to updated PC to produce address of address of operand. Clear
operand.

6-20

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE
(PC = 1020) 1020 005077 1020 005077
1022 000620 PC 1022 000020 PC
(PC = 1022) 1024 1024 1024 /
+20
i 1044
1044 010100 1044 010100
10100 100001 10100 000000

MR-5488

Figure 6-31 CLR @A Clear

6.2.6 Use of the Stack Pointer as a General-Purpose Register

The processor stack pointer (SP, register 6) is, in most cases, the general register used for the stack
operations related to program nesting. Autodecrement with register 6 “pushes™ data onto the stack, and
autoincrement with register 6 “pops” data off the stack. Since the SP is used by the processor for interrupt
handling, it has a special attribute: autoincrements and autodecrements are always done in steps of two.
Byte operations using the SP in this way leave odd addresses unmodified.

6.3 INSTRUCTION SET

The rest of this chapter describes the KDJ11-A instruction set. The explanation of each instruction
includes the instruction’s mnemonic, octal code, binary code, a diagram showing the format of the
instruction, a symbolic notation describing its execution and effect on the condition codes, a description,
special comments, and examples. Each explanation is headed by its mnemonic. When the word instruction
has a byte equivalent, the byte mnemonic also appears.

The diagram that accompanies each instruction shows the octal op code, binary op code, and bit assign-
ments. [Note that in byte instructions, the most significant bit (bit 15) is always a one.]

Symbols:
.() = contents of V = Boolean OR

SS or src = source address ¥ = exclusive OR

DD or dst = destination address ~ = Boolean not

loc = location REG or R = register

— = becomes B = byte

1 = “is popped from stack” B = 0 for word, 1 for byte
| = “is pushed onto stack” , = concatenated

A = Boolean AND

6-21

6.3.1 Instruction Formats

The following formats include all instructions used in the KDJ11-A. Refer to individual instructions for
more detailed information.

l. Single-Operand Group: CLR, CLRB, COM, COMB, INC, INCB,
(Figure 6-32) DEC, DECB, NEG, NEGB, ADC, ADCB,
SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB,
JMP, SWAB, MFPS, MTPS, SXT,
TSTSET, WRTLCK, XOR

15 06 05 00

OP CODE DD(SS)

—— I i 1 1 1 I L 1 1 i I L

MR-5191

Figure 6-32 Single-Operand Group

2. Double-Operand Group:

a. Group 1: BIT, BITB, BIC, BICB, BIS, BISB,
(Figure 6-33) ADD, SUB, MOV, MOVB, CMP, CMPB
15 12 1 06 05 00

OP CODE SS DD
L L 1 i A A A 1 1 A

MR-5192

Figure 6-33 Double-Operand Group 1

b. Group 2: ASH, ASHC, DIV, MUL
(Figure 6-34)

15 09 08 06 05 00
| I | ! ! I 1 I T T T T T

]]] | 1 |) | 1 1 L | |

MR-11554

Figure 6-34 Double-Operand Group 2

6-22

3.

Program Control Group:

a. Branch (all branch instructions) (Figure 6-35)

15 08 07 00
T 1 T T T L T T T T T |l T
OP CODE OFFSET
L | | 4 | | L " 4 1 1 h "
MR-5193
Figure 6-35 Program Control Group Branch
b. Jump to Subroutine (JSR) (Figure 6-36)
15 09 08 06 05 00
T T T T T |l T 1 T T T T
0 0 4 R DD
L " |) 1 i I I 1 1 L |
MR-5194
Figure 6-36 Program Control Group JSR
c. Subroutine Return (RTS) (Figure 6-37)
15 03 02 00
1 T T T 1 T T T T T T T T
0 0 0 2 0
L | | g 1 i § L A d 1 1 "
MR-5185
Figure 6-37 Program Control Group RTS
d. Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 6-38)
15 00

Figure 6-38 Program Control Group Traps

6-23

MR-5196

Subtract 1 and Branch (if = 0) (SOB) (Figure 6-39)

15 09 08 06 05 00
T T T T T T T T T T T
0 0 7 R NN
L 1 | | 1 1 1 1 L 1
MR-5197
Figure 6-39 Program Control Group Subtract
Mark (Figure 6-40)
15 06 05 00
T T T T T T T T T T T T
0 0 6 4 NN
L i |] | 1 L) 1 | L I
MR-11548
Figure 6-40 Mark
Call to Supervisor Mode (CSM) (Figure 6-41)
15 06 05 00
I I 1 T I L I i 1 I I 1
0 0 7 0 DD
1 1 Il | 1 } L 1. L { ! L
MR-11549
Figure 6-41 Call to Supervisor Mode
Set Priority Level (SPL) (Figure 6-42)
15 03 02 00
I 1 I T T 1 1 1 I I i T
0 0 0 2 3
L | 1 | 1 1 i) I d 1 A
MR-11550

Figure 6-42 Set Priority Level

6-24

4.

Operate Group:
(Figure 6-43)

HALT, WAIT, RTI, RESET, RTT, NOP, MFPT

15 00
T T T 1 T T T T T T T T T T
OP CODE
1 1 A " & d 1 1 L n 1
MRA-5198
Figure 6-43 Operate Group
Condition Code Operators (all condition code instructions)
(Figure 6-44)
15 06 05 04 03 02 01 00
T T T T T T T T
0 0 2 4 o | N z | v |ec
| 1 i 1 1
MR-5199
Figure 6-44 Condition Group
Move To/From
Previous
Instruction/Data
Space Group: MTPD, MTPI, MFPD, MFPI
(Figure 6-45)
15 06 05 00
T 1 I 1 T i | I ! I T T T
OP CODE DD(SS)
L 1 | | 1 1 1 |]] 1 1 Il
MR-115661

Figure 6-45 Move To And From
Previous Instruction/Data Space Group

6-25

6.3.2 Byte Instructions

The KDJ11-A includes a full complement of instructions that manipulate byte operands. Since all KDJ11-
A addressing is byte-oriented, byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified register to be modified by one to
point to the next byte of data. Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the KDJ11-A to perform as either a word or byte processor. The
numbering scheme for word and byte addresses in memory is shown in Figure 6-46.

HIGH BYTE WORD OR BYTE
ADDRESS ADDRESS
002001 BYTE 1 BYTE O 002000
002003 BYTE 3 BYTE 2 002002

MR-5201

Figure 6-46 Byte Instructions

The most significant bit (bit 15) of the instruction word is set to indicate a byte instruction.

Example:
Symbolic Octal Code Instruction Name
CLR 0050DD Clear word
CLRB 1050DD Clear byte

6-26

6.3.3 List of Instructions
The following is a list of the KDJ11-A instruction set.

SINGLE-OPERAND

General
Mnemonic Instruction Op Code
CLR(B) Clear destination WOs50DD
COM(B) Complement destination HWO51DD
INC(B) Increment destination WO52DD
DEC(B) Decrement destination H053DD
NEG(B) Negate destination HW054DD
TST(B) Test destination BO57DD
WRTLCK Read/lock destination,

write/unlock RO into

destination 0073DD
TSTSET Test destination, set low bit 0072DD
Shift and Rotate
Mnemonic Instruction Op Code
ASR(B) Arithmetic shift right W062DD
ASL(B) Arithmetic shift left HW063DD
ROR(B) Rotate right H060DD
ROL(B) Rotate left W0o61DD
SWAB Swap bytes 0003DD

Multiple-Precision

Mnemeonic Instruction Op Code
ADC(B) Add carry WO055DD
SBC(B) Subtract carry W056DD
SXT Sign extend 0067DD

PS Word Operators

Mnemonic Instruction Op Code
MFPS Move byte from PS 1067DD
MTPS Move byte to PS 1064SS

6-27

DOUBLE-OPERAND

General

Mnemonic Instruction

MOV(B) Move source to destination
CMP(B) Compare source to destination
ADD Add source to destination
SUB Subtract source from destination
ASH Arithmetic shift

ASHC Arithmetic shift combined
MUL Multiply

DIV Divide

Logical

Mnemonic Instruction

BIT(B) Bit test

BIC(B) Bit clear

BIS(B) Bit set

XOR Exclusive OR

PROGRAM CONTROL

Mnemonic Instruction

Branch

BR Branch (unconditional)
BNE Branch if not equal (to zero)
BEQ Branch if equal (to zero)
BPL Branch if plus

BMI Branch if minus

BVC Branch if overflow is clear
BVS Branch if overflow is set
BCC Branch if carry is clear
BCS Branch if carry is set

Signed Conditional Branch

Mnemonic Instruction

BGE Branch if greater than or equal
(to zero)

BLT Branch if less than (zero)

BGT Branch if greater than (zero)

BLE Branch if less than or equal
(to zero)

6-28

Op Code

EISSDD
W2SSDD
06SSDD
16SSDD
072RSS
073RSS
070RSS
071RSS

Op Code

Wm3SSDD
W4SSDD
W5SSDD
074RDD

Op Code
or
Base Code

000400
001000
001400
100000
100400
102000
102400
103000
103400

Op Code
or
Base Code

002000
002400

003000
003400

Unsigned Conditional Branch

Mnemeonic

BHI
BLOS
BHIS
BLO

Jump and Subroutine

Mnemonic

JMP
JSR
RTS
SOB

Trap and Interrupt

Mnemonic

EMT
TRAP
BPT
IOT
RTI
RTT

Miscellaneous Program Control

Mnemonic

CSM
MARK
SPL

Op Code
or
Instruction Base Code
Branch if higher 101000
Branch if lower or same 101400
Branch if higher or same 103000
Branch if lower 103400
Op Code
or
Instruction Base Code
Jump 0001DD
Jump to subroutine 004RDD
Return from subroutine 00020R
Subtract one and branch (if # 0) 077R00
Op Code
or
Instruction Base Code
Emulator trap 104000-104377
Trap 104400-104777
Breakpoint trap 000003
Input/output trap 000004
Return from interrupt 000002
Return from interrupt 000006
Op Code
or
Instruction Base Code
Call to supervisor mode 0070DD
Mark 0064NN
Set Priority Level 00023N

6-29

MISCELLANEOUS

Op Code
or
Mnemonic Instruction Base Code
HALT Halt 000000
WAIT Wait for interrupt 000001
RESET Reset external bus 000005
MFPT Move processor type 000007
MTPD Move to previous data space 1066SS
MTPI Move to previous instruction space 0066SS
MFPD Move from previous data space 0065SS
MFPI Move from previous instruction space 1065SS
CONDITION CODE OPERATORS
Op Code
or

Mnemonic Instruction Base Code
CLC Clear C 000241
CLV Clear V 000242
CLZ Clear Z 000244
CLN Clear N 000250
CCC Clear all CC bits 000257
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
SCC Set all CC bits 000277
NOP No operation 000240

6.3.4 Single-Operand Instructions
The KDJ11-A instructions that involve only one operand are described in the paragraphs that follow.

6-30

6.3.4.1 General -

CLR
CLRB
CLEAR DESTINATION u050DD
15 06 05 00
0n 0 0 0 1 0 1 0 0 0 DD
Operation: (dst) — O
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared
Description: Word: The contents of the specified destination are replaced with Os.
Byte: Same.
Example: CLR R1
Before After -
(R1) = 177777 (R1) = 000000
NZVC NZVC
1111 0100

6-31

COM

=051DD

00

T

I

COMB
COMPLEMENT DST
15
T T T
01 0 0
Operation:

Condition Codes:

(dst) — ~ (dst)

MR-11505

N: set if most significant bit of result is set; cleared otherwise
Z: set if result is 0; cleared otherwise

V: cleared
C: set
Description: Word: Replaces the contents of the destination address by their logical
complement. (Each bit equal to 0 is set and each bit equal to 1 is cleared.)
Byte: Same.
Example: COM RO
Before After
(RO) = 013333 (RO) = 164444
NZVC NZVC
0110 1001
INC
INCB
INCREMENT DST 2052DD
15 06 05 00
01 0 0 0 1 0 1 0 1 0 DD

Operation:

Condition Codes:

(dst) — (dst) + 1

set if result is < 0; cleared otherwise

set if result is 0; cleared otherwise

set if (dst) held 077777, cleared otherwise
not affected

6-32

Description:

Word: Add 1 to the contents of the destination.

Byte: Same.
Example: INC R2
Before After
(R2) = 000333 (R2) = 000334
NZVC NZVC
0000 0000
DEC
DECB
DECREMENT DST =053DD
15 06 05 00
on 0 0 0 1 0 1 0 1 1 DD
Operation: (dst) — (dst) — 1

Condition Codes:

Description:

Example:

N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise

V: set if (dst) was 100000; cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destination.
Byte: Same.

DEC R5

Before After

(RS) = 000001 (R5) = 000000
NZVC NZVC
1000 0100

6-33

NEG
NEGB

NEGATE DST

15
T

=054DD

06 05 00

01 0

T T T T T T T T T T T
0 1 0 1 1 0 0 DD

1 | L 4 n 1 1 L I A

Operation:

Condition Codes:

Description:

Example:

MR-11503

(dst) — — (dst)

N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise

V: set if result is 100000; cleared otherwise
C: cleared if result is 0; set otherwise

Word: Replaces the contents of the destination address by its 2’s comple-
ment. Note that 100000 is replaced by itself. (In 2’s complement notation the
most negative number has no positive counterpart.)

Byte: Same.

NEG RO

Before After

(RO) = 000010 (RO) = 177770
NZVC | NZVC
0000 1001

6-34

TST

TSTB
TEST DST u057DD
15 06 05 00
01 0 0 o0 1 0 1 1 1 1 DD
L It) 1 I L) " 1 1 L L L
Operation: (dst) — (dst)
Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C:. cleared
Description: Word: Sets the condition codes N and Z according to the contents of the
destination address; the contents of dst remain unmodified.
Byte: Same.
Example: TST R1
Before After
(R1) = 012340 (R1) = 012340
NZVC NZVC
0011 0000
WRTLCK
READ/LOCK DESTINATION
WRITE/UNLOCK RO INTO DESTINATION 0073DD
15 06 05 [0]0]
I I ! | 1 ! I 1 T I 1 T T I
o 0o o0 o 1 1 1 1 1 0 DD
| 1 |] 1 | | -] 1 | } L 1]
Operation: (dst) — (RO)
Condition Codes: N: setif RO< 0
Z: setif RO=0
V: cleared
C: unchanged
Description: Writes contents of RO into destination using bus lock. If mode is 0, traps to

10.

6-35

TSTSET

TEST DESTINATION AND SET LOW BIT 0072DD
15 06 05 00
1 | | 1 i I T 1 I 1 I 1 T 1
0 0 o0 0 1 1 1 0 1 0 DD
1 n L) { | L 1 1 1 | L 1 }
Operation: (RO) — (dst), (dst) — (dst) Vv 000001 (octal)
Condition Codes: N: setif RO<0
Z: setif RO=0
V: cleared

C: gets contents of destination bit 0.

Description: Reads/locks destination word and stores it in RO. Writes/unlocks (R0) Vv 1
into destination. If mode is 0, traps to 10.

6.3.4.2 Shifts and Rotates — Scaling data by factors of two is accomplished by the shift instructions:
ASR - Arithmetic shift right
ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with Os in
shifts to the left. Bits shifted out of the C-bit, as shown in the following instructions, are lost.

The rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit
“circular buffer.” These instructions facilitate sequential bit testing and detailed bit manipulation.

6-36

ASR

ASRB
ARITHMETIC SHIFT RIGHT u062DD
15 06 05 00
01 o] 0 0 1 1 0 0 1 0 DD
Operation: (dst) «— (dst) shifted one place to the right
Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded from exclusive OR of N-bit and C-bit (as set by the completion
of the shift operation)
C: loaded from low-order bit of destination
Description: Word: Shifts all bits of the destination right one place. Bit 15 is reproduced.
The C-bit is loaded from bit 0 of the destination. ASR performs signed
division of the destination by 2.
Byte: Same.
Example:

00

BYTE:

ODD ADDRESS 08 07 EVEN ADDRESS 00
T T Y T

|) | { L L | 1 1 4 - i

MR-5209

6-37

ASL

ASLB
ARITHMETIC SHIFT LEFT u063DD
15 06 05 00
on 0 o 0o 1 1 o0 1 1 DD
i I A | i L I 4 1 1 L L L
Operation: (dst) — (dst) shifted one place to the left
Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of
the shift operation)
C: loaded with high-order bit of destination
Description: Word: Shifts all bits of the destination left one place. Bit O is loaded with a 0.
The C-bit of the status word is loaded from the most significant bit of the
destination. ASL performs a signed multiplication of the destination by 2
with overflow indication.
Byte: Same.
Example:
WORD:
15 00
T T T Ll T T T T 1 1 T T T T 1
C | -0
n L L 1 L n | l 1 [I 1
BYTE:
15 ODD ADDRESS 08 07 EVEN ADDRESS 00
T T T T 1 1§ T T T T T T T T
C | 0 Cc -0
L L) | L i A ol i 1 i i L

MRA-5211

6-38

ROR

RORB
ROTATE RIGHT 060DD
15 06 05 00
I I 1 I 1 1 | 1 | 1 T 1 I 1
01 o 0 0 1 1t o 0o o0 o DD
1 |) | | 1 L) | 1] I) |

Operation: (dst) — (dst) rotate right one place

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if all bits of result = 0; cleared otherwise
V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of

the rotate operation)

C: loaded with low-order bit of destination

Description: Word: Rotates all bits of the destination right one place. Bit 0 is loaded into
the C-bit and the previous contents of the C-bit are loaded into bit 15 of the
destination.
Byte: Same.

Example:

WORD:
|
15 00
c >
) 1 L L)) I It I L N)
BYTE:

oDbD EVEN

MR-5213

6-39

ROL

ROLB
ROTATE LEFT u0610D
15 06 05 00
T T T T T T T T T |l T
0n 0 0 1 1 0 0 0 1 DD
I 1 | i L " 1 i L 4 4
MR-11509
Operation: (dst) — (dst) rotate left one place

Condition Codes: N: set if high-order bit of result word is set (result < 0); cleared otherwise
Z: set if all bits of result word = 0; cleared otherwise
V: loaded with exclusive OR of the N-bit and C-bit (as set by the comple-
tion of the rotate operation)
C: loaded with high-order bit of destination
Description: Word: Rotates all bits of the destination left one place. Bit 15 is loaded into
the C-bit of the status word and the previous contents of the C-bit are loaded
into bit 0 of the destination.
Byte: Same.
Example:
WORD:
'
15 DST 00
C fa—
BYTE:

ODD EVEN

MR-5215

6-40

SWAB

SWAP BYTES

15

0003DD

0 0

Operation:

Condition Codes:

Description:

Example:

MR-11508

byte 1/byte 0 — byte O/byte 1

N:

Z:
V:
C:

set if high-order bit of low-order byte (bit 7) of result is set; cleared
otherwise

set if low-order byte of result = 0; cleared otherwise
cleared

cleared

Exchanges high-order byte and low-order byte of the destination word. (The
destination must be a word address.)

SWAB R1

Before After

(R1) = 077777 (R1) = 177577
NZVC NZVC
1111 0000

6-41

6.3.4.3 Multiple-Precision - It is sometimes necessary to do arithmetic operations on operands consid-
ered as multiple words or bytes. The KDJ11-A makes special provision for such operations with the
instructions ADC (add carry) and SBC (subtract carry) and their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit double-precision word and added or

subtracted as shown below.

32-8IT WORD

(A

31 16 15 0
OPERAND Al A0

(A

31 16 15 0
OPERAND B1 BO

31 16 16 0

RESULT

Example:

The addition of —1 and —1 could be performed as follows.

=1 =377777777717

(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD R1,R2
ADC R3
ADD R4,R3

1. After (R1) and (R2) are added, 1 is loaded into the C-bit.
2. The ADC instruction adds the C-bit to (R3); (R3) = 0.

3. The (R3) and (R4) are added.

4. The result is 37777777776, or —2.

6-42

MR-5217

ADC
ADCB

ADD CARRY

=055DD

06 05 00

— | 1 i I 4 1 1 1 I L

T T T 1 T Lf 1 1 T T s

Operation:

Condition Codes:

Description:

Example:

MR-11575

(dst) — (dst) + (C-bit)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Word: Adds the contents of the C-bit to the destination. This permits the
carry from the addition of the low-order words to be carried to the high-order
result.

Byte: Same.

Double-precision addition may be done with the following instruction
sequence.

ADD A0,BO ;add low-order parts
ADC Bl ;add carry into high-order
ADD Al,B1 ;add high-order parts

6-43

SBC
SBCB

SUBTRACT CARRY

®0560D

06 05 00

1 T 1 Ll T T T T T T

| 1 L L L 1 |) 4 &

Operation:

Condition Codes:

MR-11576

(dst) — (dst) — (C)

N:
Z:
V:
C:

set if result < O; cleared otherwise

set if result = 0; cleared otherwise

set if (dst) was 100000; cleared otherwise

set if (dst) was 0 and C was 1; cleared otherwise

Description: Word: Subtracts the contents of the C-bit from the destination. This permits
the carry from the subtraction of two low-order words to be subtracted from
the high-order part of the result.

Byte: Same.
Example: Double-precision subtraction is done by:
SUB A0,BO
SBC Bl
SUB Al,BI
SXT
SIGN EXTEND 0067DD
15 06 05 00
o o 0o o 1 o0 1 1 DD
Operation: (dst) — 0 if N-bit is clear

Condition Codes:

(dst) — 1 if N-bit is set

N: not affected

Z: set if N-bit is clear
V: cleared

C: not affected

6-44

Description:

Example:

If the condition code bit N is set, a —1 is placed in the destination operand; if
the N-bit is clear, a 0 is placed in the destination operand. This instruction is
particularly useful in multiple-precision arithmetic because it permits the sign
to be extended through multiple words.

SXT A

Before After

(A) = 012345 (A) = 177777
NZVC NZVC
1000 1000

6.3.4.4 PS Word Operators —

MFPS
MOVE BYTE FROM PROCESSOR STATUS WORD 10670D
15 08 07 00
¥ T T T T 1 T T T T T T
1 0 1 1 [¢] 1 1 1 DD
1 L ! & d 1 1 L L I
MR-11495
Operation: (dst) — PS

Condition Codes:

Description:

Example:

dst lower 8 bits

N: set if PS <07> = 1; cleared otherwise
Z: set if PS <07:00> = 0; cleared otherwise
V: cleared

C: not affected

The 8-bit contents of the PS are moved to the effective destination. If the
destination is mode 0, PS bit 07 is sign-extended through the upper byte of
the register. The destination operand address is treated as a byte address.

MFPS RO
Before After

RO [0] RO [000014]
PS [000014] PS [000000]

6-45

MTPS

MOVE BYTE TO PROCESSOR STATUS WORD 1064SS
15 0807 . 00
T T T T T T T T T T I T T T
1 0 0 0 1 1 0 1 0 0 ss
1 § 1 | i n Il 1 L L I]
Operation: PS «— (src)
Condition Codes: Set according to effective SRC operand bits <03:00>
Description: The eight bits of the effective operand replace the current contents of the

lower byte of the PS. The source operand address is treated as a byte address.
Note: The T-bit (PS bit 04) cannot be set with this instruction. The SRC
operand remains unchanged. This instruction can be used to change the
priority bits (PS bits <07:05>) in the PS only in kernel mode. If not in kernel
mode, PS bits <07:05> cannot be changed.

Example: MTPS R1
Before After
(R1) = 000777 (R1) = 000777
(PS) = XXX000 (PS) = XXX357
NZVC NZVC
0o000O 1111

6.3.5 Double-Operand Instructions
Double-operand instructions save instructions (and time) since they eliminate the need for “load” and
“save’ sequences such as those used in accumulator-oriented machines.

6-46

6.3.5.1 General -

MOV
MOVB
MQOVE SOURCE TO DESTINATION m1SSDD
15 12 11 06 05 00
01 0 0 1 SS DD
) 1 1 L e n 1 1 1 n 1
Operation: (dst) « (src)
Condition Codes: N: set if (src) < 0; cleared otherwise
Z: set if (sr¢) = 0; cleared otherwise
V: cleared
C: not affected
Description: Word: Moves the source operand to the destination location. The previous
contents of the destination are lost. Contents of the source address are not
affected.
Byte: Same as MOV. The MOVB to a register (unique among byte instruc-
tions) extends the most significant bit of the low-order byte (sign extension).
Otherwise, MOVB operates on bytes exactly as MOV operates on words.
Example: MOV XXX,R1 ;loads register 1 with the con-

tents of memory location;
XXX represents a program-
mer-defined mnemonic used
to represent a memory
location

MOV #20,R0 ;loads the number 20 into reg-

ister 0; # indicates that the
value 20 is the operand

MOV @#20,—(R6) ;pushes the operand contained

in location 20 onto the stack

MOV (R6)+,@#177566 ;pops the operand off a stack

and moves it into memory
location 177566 (terminal
print buffer)

MOV R1,R3 ;performs an inter-register
transfer
MOVB @#177562,@#177566 ;moves a character from the

terminal keyboard buffer to
the terminal printer buffer

6-47

CMP
CMPB

COMPARE SRC TO DST

m2SSDD
11 06 05 00

1 T T T B T T T T T

I 1 4 4 4 1 | 1 . 4

Operation:

Condition Codes:

Description:

MR-11562

(src) — (dst)

N:

Z:

C:

set if result < 0; cleared otherwise
set if result = O; cleared otherwise
set if there was arithmetic overflow; that is, operands were of opposite
signs and the sign of the destination was the same as the sign of the

result; cleared otherwise

cleared if there was a carry from the result’s most significant bit; set
otherwise

Compares the source and destination operands and sets the condition codes,
which may then be used for arithmetic and logical conditional branches. Both
operands are not affected. The only action is to set the condition codes. The
compare is customarily followed by a conditional branch instruction. Note:
Unlike the subtract instruction, the order of operation is (src) — (dst), not
(dst) — (src).

6-48

ADD

ADD SRC TO DST

12

06SSDD

00

SS DD

T v

Operation:

Condition Codes:

Description:

Example:

(dst) « (src) + (dst)

N:
Z:

V:

C:

Adds the source operand to the destination operand and stores the result at
the destination address. The original contents of the destination are lost. The
contents of the source are not affected. Two’s complement addition is per-

set if result < 0; cleared otherwise

set if result = 0; cleared otherwise

set if there was arithmetic overflow as a result of the operation; that is,
both operands were of the same sign and the result was of the opposite

sign; cleared otherwise

set if there was a carry from the result’s most significant bit; cleared

otherwise

formed. Note: There is no equivalent byte mode.

MR-11563

Add to register: ADD 20,R0
Add to memory: ADD RI1,XXX
Add register to register: ADD R1,R2

Add memory to memory:

ADD @#17750,XXX

XXX is a programmer-defined mnemonic for a memory location.

6-49

SUB

SUBTRACT SRC FROM DST 16SSDD
15 12 11 06 05 00
T T T T T T T T T T T
1 0 SS DD
1 1 I 4 " 1 1 [i b

Operation:

Condition Codes:

Description:

Example:

(dst) — (dst) — (src)
N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise

V: setif there was arithmetic overflow as a result of the operation; that is, if
operands were of opposite signs and the sign of the source was the same
as the sign of the result; cleared otherwise

C: cleared if there was a carry from the result’s most significant bit; set
otherwise

Subtracts the source operand from the destination operand and leaves the
result at the destination address. The original contents of the destination are
lost. The contents of the source are not affected. In double-precision arithme-
tic the C-bit, when set, indicates a “borrow.” Note: There is no equivalent
byte mode.

SUB R1,R2

Before

(R1) =011111
(R2) = 012345

NZVC
1111

After

(R1) = 011111
(R2) = 001234

NZVC
0000

ASH

ARITHMETIC SHIFT 072RSS
15 09 08 06 05 00
T T 1 I I T I T ! 1 1 1 T
0o 1 1 o 1 o0 R sS
1 | | | 1 [I
MR-11560
Operation: R — R shifted arithmetically NN places to the right or left where NN =
(src)
Condition Codes: N: set if result < 0

Z: set if result =0
V: set if sign of register changed during shift
C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the number of times
specified by the source operand. The shift count is taken as the low-order six
bits of the source operand. This number ranges from —32 to +31. Negative is
a right shift and positive is a left shift.

ASHC
ARITHMETIC SHIFT COMBINED 8073RSS
15 09 08 06 05 00
0 1 1 1 0 1 1 R SS
A " L] 1 1 4 4 | 1 L 1
MR-11561
Operation: R_LRV1I—R R VI

The double word is shifted NN places to the right or left where NN = (src)

set if result < 0

set if result =0

set if sign bit changes during shift

loaded with high-order bit when left shift; loaded with low-order bit
when right shift (loaded with the last bit shifted out of the 32-bit
operand)

Condition Codes:

Description: The contents of the register and the register ORed with 1 are treated as one
32-bit word. R V 1 (bits <15:00>) and R (bits <31:16>) are shifted right or
left the number of times specified by the shift count. The shift count is taken
as the low-order six bits of the source operand. This number ranges from —32
to +31. Negative is a right shift and positive is a left shift.

When the register chosen is an odd number, the register and the register

ORed with 1 are the same. In this case, the right shift becomes a rotate. The
16-bit word is rotated right the number of times specified by the shift count.

6-51

MUL

. Operation:

MULTIPLY

070RSS
15 09 08 06 05 00
I [l I I [| T I | T I
0 1 1 0 0 0 R SS
i L | 1 i , i n i i L 4
MR-11572

Condition Codes:

Description:

DIV

Operation:

DIVIDE

R,R vV 1 — R X (src)

N: set if product < 0

Z: set if product = 0

V: cleared C: set if the result is less than —2 ** 15 or greater than or equal
to 2 **15 —1.

The contents of the destination register and source taken as 2’s complement
integers are multiplied and stored in the destination register and the suc-
ceeding register, if R is even. If R is odd, only the low-order product is stored.
Assembler syntax is: MUL S,R. (Note that the actual destination is R, R Vv
1, which reduces to just R when R is odd.

071RSS
09 08 06 05 00

Condition Codes:

Description:

MR-11573

R, RV 1—R,R V 1/(src)

N: set if quotient < 0

Z: set if quotient = 0

V. setif source = 0 or if the absolute value of the register is larger than the
absolute value of the instruction in the source. (In this case the instruc-
tion is aborted because the quotient would exceed 15 bits.)

C: set if divide by zero is attempted.

The 32-bit 2’s complement integer in R and R V 1 is divided by the source

operand. The quotient is left in R; the remainder is of the same sign as the
dividend. R must be even.

6-52

6.3.5.2 Logical - These instructions have the same format as those in the double-operand arithmetic
group. They permit operations on data at the bit level.

BIT
BITB

BIT TEST

u3SSDD

12 11 06 05 00

L Ll T T T T T T T T

Operation:

Condition Codes:

Description:

Example:

MR-11565

(src) A (dst)

N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

Performs logical AND comparison of the source and destination operands
and modifies condition codes accordingly. Neither the source nor the destina-
tion is affected. The BIT instruction may be used to test whether any of the
corresponding bits set in the destination are also set in the source, or whether
all corresponding bits set in the destination are clear in the source.

BIT #30,R3 ;test bits three and four of R3 to see if
both are off.

R3 = 0 000 000 000 011 000

Before After
NZVC NZVC
1111 0001

6-53

BIC

BICB
BIT CLEAR m4SSDD
15 1211 06 05 00
0/1 1 0 0 SS DD
Operation: (dst) « ~(src) N (dst)
Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: not affected
Description: Clears each bit in the destination that corresponds to a set bit in the source.
The original contents of the destination are lost. The contents of the source
are not affected.
Example: BIC R3,R4
Before After
(R3) = 001234 (R3) = 001234
(R4) = 001111 (R4) = 000101
NZVC | NZVC
1111 0001

Before: (R3) = 0 000 001 010 011 100

(R4) = 0 000 001 001 001 001

After: (R4) = 0 000 000 001 000 001

6-54

BIS
BISB

BIT SET

15

8555DD

11 06 05 00

T

on

1

T] T 1 T T T T T T

| L i I L 1 1 J 4 N

Operation:

Condition Codes:

Description:

Example:

MR-11558

(dst) — (src) Vv (dst)

N:
Z:
V:
C:

set if high-order bit of result set; cleared otherwise
set if result = 0; cleared otherwise

cleared

not affected

Performs an inclusive OR operation between the source and destination
operands and leaves the result at the destination address; that is, correspond-
ing bits set in the source are set in the destination. The contents of the
destination are lost.

BIS RO,R1

Before After

(R0O) = 001234 (R0O) = 001234
(R1) = 001111 (R1) = 001335
NZVC NZVC
0000 0000

Before: (RO) = 0 000 001 010 O11 100

(R1) = 0 000 001 001 001 001

After: (R1) = 0000 001 011 011 101

6-55

XOR

EXCLUSIVE OR 074RDD
15 09 08 06 05 00
0 1 1 1 1 4] 0 R DD
| ; 1 1 n) 1 1 L | L
MR-11559
Operation: (dst) — (reg) ¥ (dst)
Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared

C: not affected

Description: The exclusive OR of the register and destination operand is stored in the
destination address. The contents of the register are not affected. The assem-
bler format is XOR R,D.

Example: XOR RO,R2
Before After
(R0O) = 001234 (RO) = 001234
(R2) =001111 (R2) = 000325
NZVC NZVC
1111 0001

Before: (RO) = 0 000 001 010 011 100
(R2) = 0 000 001 001 001 001

After: (R2) = 0 000 000 011 010 101

6.3.6 Program Control Instructions
The following paragraphs describe the KDJ11-A instructions that affect program control.

6.3.6.1 Branches — These instructions cause a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the program counter if:

1. The branch instruction is unconditional.
2. It is conditional and the conditions are met after testing the condition codes (NZVC).

The offset is the number of words from the current contents of the PC, forward or backward. Note that
the current contents of the PC point to the word following the branch instruction.

6-56

Although the offset expresses a byte address, the PC is expressed in words. The offset is automatically
multiplied by 2 and sign-extended to express words before it is added to the PC. Bit 7 is the sign of the
offset. If it is set, the offset is negative and the branch is done in the backward direction. If it is not set, the
offset is positive and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200 (octal) words (400 octal bytes) from
the current PC, and in the forward direction by 177 (octal) words (376 octal bytes) from the current PC.

The KDJ11-A assembler typically handles address arithmetic for the user and computes and assembles the
proper offset field for branch instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the branch is to be made. The assembler gives
an error indication in the instruction if the permissible branch range is exceeded. Branch instructions have
no effect on condition codes. Conditional branch instructions where the branch condition is not met are
treated as NOPs.

BR
BRANCH (UNCONDITIONAL) 000400 PLUS OFFSET
15 08 07 00
0 0 0 0 0 ¢} 0 1 OFFSET
Operation: PC — PC + (2 X offset)
Condition Codes: Not affected
Description: Provides a way of transferring program control within a range of —128 to
+127 words with a one word instruction.
New PC address = updated PC + (2 X offset)
Updated PC = address of branch instruction +2
Example: With the branch instruction at location 500, the following offsets apply.
New PC Address Offset Code Offset (decimal)
474 375 -3
476 376 -2
500 377 -1
502 000 0
504 001 +1
506 002 +2

6-57

BNE

BRANCH |F NOT EQUAL (TO ZERO) 001000 PLUS OFFSET

08 07 00

¥ T T T 1 T 1 1 1 T T

0 0 0 1 0 OFFSET

— 1 | ! " d A 1 L L L

Operation:

Condition Codes:

MR-5232

PC — PC + (2 X offset) if Z =0

Not affected

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is clear. BNE is
the complementary operation of BEQ. It is used to test: (1) inequality follow-
ing a CMP, (2) that some bits set in the destination were also in the source
following a BIT operation, and (3) generally, that the result of the previous
operation was not 0.

Example: Branchto Cif A # B
CMP A,B ;compare A and B
BNE C ;branch if they are not equal
Branchto Cif A+ B # 0
ADD AB :add A to B
BNE C ;branch if the result is not

equal to 0
BEQ
BRANCH IF EQUAL (TO ZERO) 001400 PLUS OFFSET
15 08 07 00
0 0 0 0 1 1 OFFSET
Operation: PC — PC + (2 X offset) if Z = 1

Condition Codes:

Description:

Not affected

Tests the state of the Z-bit and causes a branch if Z is set. It is used to test:
(1) equality following a CMP operation, (2) that no bits set in the destination
were also set in the source following a BIT operation, and (3) generally, that
the result of the previous operation was 0.

6-58

Example:

Branchto Cif A=B(A—-B=0)

CMP A.B
BEQ C

;compare A and B
;branch if they are equal

Branchto Cif A4+ B=0

ADD A,B ;add A to B
BEQ C ;branch if the result = 0
BPL
BRANCH IF PLUS 100000 PLUS OFFSET
15 08 07 00
1 0 0 0 0 0 0 0 OFFSET
1 L ! & | 1 Il L I |
Operation: PC — PC + (2 X offset) if N =0

Condition Codes:

Description:

BMI

BRANCH IF MINUS

Not affected

Tests the state of the N-bit and causes a branch if N is clear (positive result).
BPL is the complementary operation of BMI.

100400 PLUS OFFSET

08 07 00

T T T T T T T T T T T
OFFSET

1 i n 4 | { i e L Il

Operation:
Condition Codes:

Description:

MR-5235

PC — PC + (2 X offset) if N = 1
Not affected
Tests the state of the N-bit and causes a branch if N is set. It is used to test

the sign (most significant bit) of the result of the previous operation), branch-
ing if negative. BMI is the complementary function of BPL.

6-59

BVC

BRANCH IF OVERFLOW IS CLEAR

102000 PLUS OFFSET

00

OFFSET

T T T

[A n

Operation:
Condition Codes:

Description:

BVS

PC — PC + (2 X offset) if V = 0

Not affected

MR-5236

Tests the state of the V-bit and causes a branch if the V-bit is clear. BVC is

complementary operation to BVS,

BRANCH IF OVERFLOW IS SET

15

102400 PLUS OFFSET
00

Operation:
Condition Codes:

Description:

BCC

PC — PC + (2 X offset) if V=1

Not affected

MR-5237

Tests the state of the V-bit (overflow) and causes a branch if V is set. BVS is
used to detect arithmetic overflow in the previous operation.

BRANCH IF CARRY IS CLEAR

103000 PLUS OFFSET

00

OFFSET
L

Operation:
Condition Codes:

Description:

PC — PC + (2 X offset) if C = 0

Not affected

MR-5238

Tests the state of the C-bit and causes a branch if C is clear. BCC is the

complementary operation of BCS.

6-60

BCS

BRANCH IF CARRY IS SET 103400 PLUS OF FSET
15 08 07 00
1 0 0 0 0 1 1 1 OFFSET
| N 1 | L Ly) | 1 L { 3
Operation: PC — PC + (2 X offset) if C =1
Condition Codes: Not affected
Description: Tests the state of the C-bit and causes a branch if C is set. It is used to test for

a carry in the result of a previous operation.

6.3.6.2 Signed Conditional Branches — Particular combinations of the condition code bits are tested with
the signed conditional branches. These instructions are used to test the results of instructions in which the
operands were considered as signed (2’s complement) values.

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed, 16-
bit, 2’s complement arithmetic the sequence of values is as follows.

largest 077777
positive 077776
000001
000000
177777
177776
smallest 100001
negative 100000

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be:

highest 177777
000002
000001
lowest 000000

6-61

BGE

BRANCH IF GREATER THAN OR EQUAL

(TO ZERO)
15

002000 PLUS OFFSET

08 07 00

T T T T T 1 T T T T T

0 0 1 0 0 OFFSET
A i | A " | 1 4 1 i it

Operation:
Condition Codes:

Description:

BLT

BRANCH IF LESS THAN (ZERO)

MR-65240

PC — PC + (2 X offset) if N * V=0
Not affected

Causes a branch if N and V are either both clear or both set. BGE is the
complementary operation of BLT. Thus, BGE will always cause a branch
when it follows an operation that caused addition of two positive numbers.
BGE will also cause a branch on a 0 result.

002400 PLUS OFFSET

08 07 00

Operation:
Condition Codes:

Description:

MR-5241

PC — PC + (2 X offset) if N ¥ V =1
Not affected

Causes a branch if the exclusive OR of the N- and V-bits is one. Thus, BLT
will always branch following an operation that added two negative numbers,
even if overflow occurred. In particular, BLT will always cause a branch if it
follows a CMP instruction operating on a negative source and a positive
destination (even if overflow occurred). Further, BLT will never cause a
branch when it follows a CMP instruction operating on a positive source and
negative destination. BLT will not cause a branch if the result of the previous
operation was O (without overflow).

6-62

BGT

BRANCH |F GREATER THAN (ZERO)

003000 PLUS OFFSET

08 07 00

Operation:
Condition Codes:

Description:

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO)

MR-5242

PC—PC+ (2 Xxoffset)if ZV (N ¥ V)=0
Not affected

Operation of BGT is similar to BGE, except that BGT will not cause a branch
on a 0 result.

003400 PLUS OFFSET

08 07 00

Operation:
Condition Codes:

Description:

MR-5243

PC—PC+ (2 Xoffset)if Z Vv (N ¥ V)=1
Not affected

Operation is similar to BLT, but in addition will cause a branch if the result
of the previous operation was 0.

6.3.6.3 Unsigned Conditional Branches - The unsigned conditional branches provide a means for testing
the result of comparison operations in which the operands are considered as unsigned values.

BHI
BRANCH IF HIGHER 101000 PLUS OFFSET
15 08 07 Q0
T Ll 1 L T T T T T T T L
1 0 0 0 1 0 OFFSET
A d L L | n 2 1 1 L I I
MR-5244
Operation: PC —PC+ (2 Xoffset)if C=0and Z=10

Condition Codes:

Description:

Not affected
Causes a branch if the previous operation caused neither a carry nor a 0

result. This will happen in comparison (CMP) operations as long as the source
has a higher unsigned value than the destination.

6-63

BLOS

BRANCH IF LOWER OR SAME 101400 PLUS OFFSET
15 08 07 00
T T T T T T T T 1 T 1 1 T T
1 0 0 0 0 0 1 1 OFFSET
A " i J | | e— " | | I 4 4 |
MR-5245
Operation: PC — PC + (2 X offset) if C V Z =1
Condition Codes: Not affected
Description: Causes a branch if the previous operation caused either a carry or a 0 result.

BLOS is the complementary operation of BHI. The branch will occur in
comparison operations as long as the source is equal to or has a lower
unsigned value than the destination.

BHIS
BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET
15 08 07 00
T Ll T L] T 1 T T Ll T T T T
1 0 0 0 0 1 1 0 OFFSET
L | | i 1 L L J 1 i L | f
Operation: PC «— PC + (2 X offset) if C =0
Condition Codes: Not affected
Description: BHIS is the same instruction as BCC. This mnemonic is included for conve-
nience only.
BLO
BRANCH IF LOWER 103400 PLUS OFFSET
15 08 07 00
1 0 0 0 o] 1 1 1 OFFSET
N n |) 1 [L |) 1 1 L n 1
MR-5247
Operation: PC — PC + (2 X offset) if C = 1
Condition Codes: Not affected
Description: BLO is the same instruction as BCS. This mnemonic is included for conve-

nience only.

6-64

6.3.6.4 Jump and Subroutine Instructions — The subroutine call in the KDJ11-A provides for automatic
nesting of subroutines, reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for storage of return addresses
at each level of subroutine call. The subroutine calling mechanism does not modify any fixed location in
memory, and thus provides for reentrancy. This allows one copy of a subroutine to be shared among
several interrupting processes.

JMP

0001DD

06 05 00

T T T T 1 T T T T T T

{ 1 1 4 " 1 1 L It I

Operation:
Condition Codes:

Description:

Example:

MR-11555

PC — (dst)
Not affected

JMP provides more flexible program branching than the branch instructions
do. Control may be transferred to any location in memory (no range limita-
tion) and can be accomplished with the full flexibility of the addressing
modes, with the exception of register mode 0. Execution of a jump with mode
0 will cause an “illegal instruction” condition, and will cause the CPU to trap
to vector address ten. (Program control cannot be transferred to a register.)
Register-deferred mode is legal and will cause program control to be trans-
ferred to the address held in the specified register. Note that instructions are
word data and must therefore be fetched from an even-numbered address.

Deferred-index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a table of dispatch vectors.

First:

JMP FIRST ;transfers to FIRST

JMP @LIST stransfers to location
pointed to at LIST

List:

FIRST ;pointer to FIRST

JMP @(SP)+ ;transfer to location

pointed to by the top of
the stack, and remove the
pointer from the stack

6-65

JSR

JUMP TO SUBROUTINE

004RDD

09 08 06 05 00

T 1 T T T T T T 1 T

1 1 A A 1 1 1 I A

Operation:

Description:

MR-11556

(tmp) — (dst) (tmp is an internal processor register)

| (SP) — reg (Push register contents onto processor stack)

reg — PC (PC holds location following JSR; this address now put in register)
PC — (dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified register (the /inkage
pointer) are automatically pushed onto the processor stack and new linkage
information is placed in the register. Thus, subroutines nested within subrou-
tines to any depth may all be called with the same linkage register. There is
no need either to plan the maximum depth at which any particular subroutine
will be called or to include instructions in each routine to save and restore the
linkage pointer. Further, since all linkages are saved in a reentrant manner on
the processor stack, execution of a subroutine may be interrupted. The same
subroutine may be reentered and executed by an interrupt service routine.
Execution of the initial subroutine can then be resumed when other requests
are satisfied. This process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access the arguments
following the call with either autoincrement addressing, (reg) +, if arguments
are accessed sequentially, or by indexed addressing, X(reg), if accessed in
random order. These addressing modes may also be deferred, @(reg)+ and
@X(reg), if the parameters are operand addresses rather than the operands
themselves.

JSR PC, dst is a special case of the KDJ11-A subroutine call suitable for
subroutine calls that transmit parameters through the general registers. The
SP and the PC are the only registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,@(SP) +, which
exchanges the top element of the processor stack with the contents of the
program counter. This instruction allows two routines to swap program con-
trol and resume operation from where they left off when they are recalled.
Such routines are called coroutines.

Return from a subroutine is done by the RTS instruction. RTS reg loads the

contents of reg into the PC and pops the top element of the processor stack
into the specified register, ’

6-66

Example:

SBCALL:
SBCALL+4:

SBCALL+2+2M:

CONT:

SBR:

EXIT:

JSR R5,SBR
ARG 1
ARG 2

ARG M
Next Instruction

MOV (R5)+.dst 1
MOV (R5)+.dst 2

MOV (R5)+.dst M
Other Instructions

RS
#1

#1

SBCALL~+4

SBCALL+24+2M
CONT
CONT

STACK

DATAO

DATAO

STACK

DATAO

RTS R5
JSR R5, SBR
BEFORE: (PC) R7 PC
(SP) R6 n
RE #1
AFTER: R7 SBR
R6 n—2
R5 PC+2
JSR PC, SBR
BEFORE: (PC) R7 PC
(SP) R6 n
AFTER: R7 SBR
R6 n—2

DATAOQ

6-67

PC+2

MR.5250

R6

n—2

n—2

R7
SBCALL

CONT

SBR

EXIT

RTS

RETURN FROM SUBROUTINE 00020R
15 03 02 00
T T 1 T T T T T T T L] L] 1 T
o o o0 o ©0 ©0 0 O 1 6 0 o0 o R
| 1 1 i 1 1
MR-11853
Operation: PC — (reg)

(reg) — (SP) 1

Description: Loads the contents of the register into PC and pops the top element of the
processor stack into the specified register.

Return from a nonreentrant subroutine is typically made through the same
register that was used in its call. Thus, a subroutine called with a JSR PC, dst
exits with a RTS PC and a subroutine called with a JSR R3, dst, may pick up
parameters with addressing modes (RS) +, X(RS5), or @X(RS5) and finally
exits, with an RTS RS.

Example: RTS RS

RTS R5 STACK

BEFORE: (PC) R7 SBR
DATAOQ

(SP} R6 n #1

RS PC

AFTER: R7 PC
R6 n+2 > DATAO

RS #1

MR-5252

6-68

SOB

SUBTRACT ONE AND BRANCH (IF #0) 077RNN
15 09 08 06 05 00
T T T L 4 T 1] T L T 14 T
0 1 1 1 1 1 1 R OFFSET
__ L 4 | 1 1 n 1 i h "
Operation: (R) — (R) — 1; if this result # 0, then PC —PC — (2 X offset); if (R) =0
then PC — PC
Condition Codes: Not affected
Description: The register is decremented. If the contents does not equal 0, twice the offset

is subtracted from the PC (now pointing to the following word). The offset is
interpreted as a 6-bit positive number. This instruction provides a fast, effi-
cient method of loop control. The assembler syntax is SOB R,A where A is
the address to which transfer is to be made if the decremented R is not equal
to 0. Note: the SOB instruction cannot be used to transfer control in the
forward direction.

6.3.6.5 Traps ~ Trap instructions provide for calls to emulators, 1/O monitors, debugging packages, and
user-defined interpreters. A trap is effectively an interrupt generated by software. When a trap occurs, the
contents of the current program counter (PC) and processor status word (PS) are pushed onto the
processor stack and replaced by the contents of a 2-word trap vector containing a new PC and new PS.
The return sequence from a trap involves executing an RTI or RTT instruction, which restores the old PC
and old PS by popping them from the stack. Trap instruction vectors are located at permanently assigned
fixed addresses.

6-69

EMT

EMULATOR TRAP

Operation:

Condition Codes:

Description:

15

104000104377
08 07 00

Lf T T T 1] T T T T T T

MR-5254

| (SP) — PS
| (SP) — PC
PC — (30)
PS — (32)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are EMT instructions and may
be used to transmit information to the emulating routine (e.g., function to be
performed). The trap vector for EMT is at address 30. The new PC is taken
from the word at address 30; the new processor status (PS) is taken from the
word at address 32.

NOTE
EMT is used frequently by DIGITAL system
software and is therefore not recommended for gen-

eral use.
PS PS 1
PC PC1 STACK
BEFORE:
SP n DATA1
AFTER: PS (32)
PC (30) DATA1
PS 1
sp n—4 PC1

MR-5255

6-70

TRAP

TRAP 104400104777
15 08 07 00
1 0 o0 0 1 o 0 1
Operation: | (SP) — PS
1 (SP) — PC
PC — (34)
PS — (36)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP is at
address 34.

NOTE

Since DIGITAL software makes frequent use of
EMT, the TRAP instruction is recommended for
general use.

BPT

Operation:

BREAKPOINT TRAP 000003
15 T Ll T T] T T T T T 1) 1 1 1 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
: 1 1 A i 1 L 4 i

| (SP) — PS

| (SP) — PC

PC — (14)

PS — (16)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector address of 14. Used to call
debugging aids. The user is cautioned against employing code 000003 in
programs run under these debugging aids. (No information is transmitted in
the low byte.)

6-71

10T

INPUT/QUTPUT TRAP 000004
15 00
T T T T T T 1 T T] T T T T
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
i n L I | 1 1 I L I] L 4 L

MR-5258

Operation:

Condition Codes:

| (SP) — PS
| (SP) — PC
PC — (20)
PS — (22)

N: loaded from trap vector

Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description:

Performs a trap sequence with a trap vector address of 20. (No information is
transmitted in the low byte.)

RTI
RETURN FROM INTERRUPT 000002
15 00
T T T 1 T T T T T T T T
0 c o o o o0 6 © ©0 0 0 0 @1 0
L 1 1 & | | 1 L L I
MR-5259
Operation: PC — (SP) |
PS — (SP) |

Condition Codes:

Description:

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from an interrupt or TRAP service routine. The PC and PS are
restored (popped) from the processor stack. If the RTI sets the T-bit in the
PS, a trace trap will occur prior to executing the next instruction. When
executed in supervisor mode, the current and previous mode bits in the
restored PS cannot be kernel. When executed in user mode, the current and
previous mode bits in the restored PS can only be user. RTI cannot clear PS
bit 11 if it was already set.

6-72

RTT

RETURN FROM TRAP 000006
15 00
T T T T T 1 T T 1 T L T T T T
o o o o0 o o o o0 0 ©0 0 0 0 1 10
A L 1 1 4 { n l 1 | 1 A 4
MR-5260
Operation: PC — (SP) 1
PS — (SP) |
Condition Codes: N: loaded from processor stack

Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Operation is the same as RTI except that it inhibits a trace trap, whereas RTI
permits a trace trap. If the new PS has the T-bit set, a trap will occur after
execution of the first instruction after RTT. When executed in supervisor
mode, the current and previous mode bits in the restored PS cannot be
kernel. When executed in user mode, the current and previous mode bits in
the restored PS can only be user. RTT cannot clear PS bit 11 if it was already
set.

6.3.6.6 Miscellaneous Program Control -

MARK

MARK 0064NN

15 06 05 00
T T T T T T T T T T T T T T

! L Il | | | L I L 1 1 ! 1 I

MR-11566

Operation: SP — PC + 2 X NN
PC — RS
RS — (SP)+
NN = number of parameters

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Used as part of the standard subroutine return convention. MARK facilitates

the stack clean-up procedures involved in subroutine exit. Assembler format
is: MARK N.

6-73

Example: ’

MOV R5,—(SP) ;place old R5 on stack
MOV P1,—(SP) ;place N parameters on
MOV P2,—(SP) ;the stack to be used

;there by the subroutine
MOV PN,—(SP)
MOV =MARKN,—(SP) ;place the instruction
;MARK N on the stack

MOV SP,R5 ;set up address at MARK N
;instruction
JSR PC,SUB ;jump to subroutine

At this point the stack is as follows

OLD R5

P1

PN

MARK N

OLDPC

MR-11569

The program is at the address SUB which is the beginning of the subroutine.

SUB: ;execution of the
;subroutine itself

RTS RS ;the return begins:
;this causes the contents
;of R5 to be placed in the
;PC which then results in
;the execution of the
;instruction MARK N. The
;contents of the old PC
;are placed in RS.

MARK N causes: (1) the stack pointer to be adjusted to point to the old RS
value; (2) the value now in R5 (the old PC) to be placed in the PC; and (3)
the contents of the old RS to be popped into RS, thus completing the return
from the subroutine.

NOTE

If memory management is in use, the stack must be
mapped through both I and D space to execute the
MARK instruction.

6-74

SPL

SET PRIORITY LEVEL
15

00023N
03 02 00

Operation:

Condition Codes:

MR-11567

PS bits <07:05> — priority
(priority = N)

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: In kernel mode, the least significant three bits of the instruction are loaded
into the processor status word (PS) bits <07:05>, thus causing a changed
priority. The old priority is lost. In user or supervisor modes, SPL executes as
a NOP.

Assembler syntax is: SPL N
CSM
CALL TO SUPERVISOR MODE 0070DD
15 06 05 00
| [l I I 1 i I I I I I T T
o o o0 0o 1 1 1 o 0o o DD
1 1 | | | 1] | | | | I) |
MR-11568
Operation: If MMR3 bit 3 = 1 and current

Condition Codes:

mode = kernel then

supervisor SP «— current mode SP
temp<15:04> — PS<15:04>
temp<03:00> — 0

PS<13:12> — PS<15:14>
PS<15:14> — 01

PS4 —0

—(SP) — temp

—(SP) — PC

—(SP) «— (dst) -

PC — (10)

otherwise, traps to 10 in kernel mode.

unaffected
unaffected
unaffected
unaffected

N<NZ

6-75

Description: CSM may be executed in user or supervisor mode, but is an illegal instruction
in kernel mode. CSM copies the current stack pointer (SP) to the supervisor
mode, switches to supervisor mode, stacks three words on the supervisor stack
(the PS with the condition codes cleared, the PC, and the argument word
addressed by the operand), and sets the PC to the contents of location 10 (in
supervisor space). The called program in supervisor space may return to the
calling program by popping the argument word from the stack and executing
RTL On return, the condition codes are determined by the PS word on the
stack. Hence, the called program in supervisor space may control the condi-
tion code values following return.

6.3.6.7 Reserved Instruction Traps — These are caused by attempts to execute instruction codes reserved
for future processor expansion (reserved instructions) or instructions with illegal addressing modes (illegal
instructions). Order codes not corresponding to any of the instructions described are considered to be
reserved instructions. JMP and JSR with register mode destinations are illegal instructions; they trap to
virtual address 4 in kernel data space. Reserved instructions trap to vector address 10 in kernel data space.

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and causes processor traps at the end of
instruction execution. The instruction that is executed after the instruction that set the T-bit will proceed
to completion and then trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

NOTE
Bit 4 of the PS can only be set indirectly by execut-
ing a RTT or RTT instruction with the desired PS on
the stack.

The following are special cases of the T-bit.

NOTE
The traced instruction is the instruction after the

one that set the T-bit.

1. An instruction that cleared the T-bit — Upon fetching the traced instruction, an internal flag,
the trace flag, was set. The trap will still occur at the end of this instruction’s execution. The
status word on the stack, however, will have a clear T-bit.

2. Aninstruction that set the T-bit — Since the T-bit was already set, setting it again has no effect.
The trap will occur.

3. Aninstruction that caused an instruction trap — The instruction trap is performed and the entire
routine for the service trap is executed. If the service routine exits with an RTIL, or in any other
way restores the stacked status word, the T-bit is set again, the instruction following the traced
instruction is executed, and, unless it is one of the special cases noted previously, a trace trap
occurs.

4. Aninstruction that caused a stack overflow — The instruction completes execution as usual. The
stack overflow does not cause a trap. The trace trap vector is loaded into the PC and PS and the
old PC and PS are pushed onto the stack. Stack overflow occurs again, and this time the trap is
made.

6-76

5. An interrupt between setting of the T-bit and fetch of the traced instruction — The entire
interrupt service routine is executed and then the T-bit is set again by the exiting RTI. The
traced instruction is executed (if there have been no other interrupts) and, unless it is a special
case noted above, causes a trace trap.

6. Interrupt trap priorities — See Table 1-8.
6.3.7 Miscellaneous Instructions

HALT

HALT 000000

15 00

MR-5261

Operation: | (SP) — PS
| (SP) — PC
PC — restart address
PS — 340

Condition Codes: Not affected

Description: The effect of HALT depends upon the CPU operating mode and the halt
option currently selected. See Chapter 8 for more details on halt options. In
kernel mode, a halt option of 1 (external logic driving a 1 on DAL3 in
response to a GP Read with a GP code of 000) causes a trap through location
4 and sets bit 7 of the CPU error register when HALT is executed. If the halt
option is 0 in kernel mode, execution of the HALT instruction causes the
KDJ11-A into console ODT. Execution of the HALT instruction in user or
supervisor mode causes a trap through location 4 and sets bit 7 of the CPU
error register.

WAIT

WAIT FOR INTERRUPT 000001

MR-5262

Condition Codes: Not affected

Description: In WAIT, as in all instructions, the PC points to the next instruction follow-
ing the WAIT instruction. Thus, when an interrupt causes the PC and PS to
be pushed onto the processor stack, the address of the next instruction
following the WAIT is saved. The exit from the interrupt routine (i.c.,
execution of an RTI instruction) will cause resumption of the interrupted
process at the instruction following the WAIT. If not in kernel mode, WAIT
executes as a NOP.

6-77

RESET

RESET EXTERNAL BUS 000005
15 00
T T 1 T T L T T T T T T T 1 T
6 0o o o0 0 0O O©0O O 0O 0 0 0 0 1 0o 1
- 1 1 -l ! 1 A
MR-5263
Condition Codes: Not affected
Description: The following sequence of events occurs: (1) a GP Write cycle is performed

and a GP code of 014 is generated; (2) operation is delayed for 69 micro-
cycles; (3) a GP Write is performed and a GP code of 214 is generated; (4)
operation is delayed for 600 microcycles delay. If not in kernel mode,
RESET operates as a NOP.

MFPT
MOVE FROM PRCCESSOR TYPE WORD 000007
15 00
T T T T T T T Ll T T T 1 T T T
0 0 0 0 o] o] 0 V] [0} 0 0 0 0 1 1 1
it 1 1 1 i n I
Operation: RO — 5§
Condition Codes: Not affected
Description: The number S is placed in RO, indicating to the system software that the

processor type is KDJ11-A.

6-78

MTPD/MTPI

MOVE TO PREVIOUS DATA SPACE
MOVE TO PREVIOUS INSTRUCTION SPACE |066DD

15

06 05 00

0/1

Operation:

Condition Codes:

MR-11571

(temp) — (SP)+
(dst) — (temp)

N: set if the source < 0
Z: set if the source =0
V: cleared

Z: unaffected

Description: The instruction pops a word off the current stack determined by PS bits
<15:14> and stores that word into an address in the previous space (PS bits
<13:12>). The destination address is computed using the current registers
and memory map.

MFPD/MFPI

MOVE FROM PREVIOUS DATA SPACE
MOVE FROM PREVIOUS INSTRUCTION SPAGE 06555
15 06 05 00

0/1

I !]) A " | 1 i It I

Operation:

Condition Codes:

Description:

MR-11570

(temp) — (src)
—(SP) « (temp)

N: set if the source < 0
Z: set if the source =0
V: cleared

Z: unaffected

Pushes a word onto the current stack from an address in the previous space
determined by PS<13:12>. The source address is computed using the current
registers and memory map. When MFPI is executed and both previous mode
and current mode are user, the instruction functions as though it were
MFPD.

6-79

6.3.8 Condition Code Operators

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC SCC
15 05 04 03 02 01 00
0 0 0 0 0 0 0 0 1 0 1 0/1 N z \Y C
Description: Set and clear condition code bits. Selectable combinations of these bits may

be cleared or set together. Condition code bits corresponding to bits in the
condition code operator (bits <03:00>) are modified according to the sense of
bit 4, the set/clear bit of the operator; i.e., set the bit specified by bit 0, 1, 2,
or 3, if bit 4 = 1. Clear corresponding bits if bit 4 = 0.

Mnemonic Operation Op Code
CLC Clear C 000241
CLV Clear V 000242
CLZ Clear Z 000244
CLN Clear N 000250
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
SCC Set all CCs 000277
CCC Clear all CCs 000257
Clear V and C 000243
NOP No operation 000240

Combinations of the above set or clear operations may be ORed together to
form combined instructions.

6-80

CHAPTER 7
FLOATING-POINT ARITHMETIC

7.1 INTRODUCTION

The KDJ11-A executes 46 floating-point instructions. The floating-point instruction set is compatible with
the FP11 instruction set for PDP-11 computers. Both single- and double-precision floating-point capabili-
ties are available with other features, including floating-to-integer and integer-to-floating conversion.

7.2 FLOATING-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the
condition 1/2 < f < 1. The fractional part (f) of the number is then said to be normalized. For the number
0, f is assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

7.2.1 Nonvanishing Floating-Point Numbers

The fractional part (f) is assumed normalized, so that its most significant bit must be 1. This 1 is the
hidden bit. It is not stored explicitly in the data word, but the microcode restores it before carrying out
arithmetic operations. The floating and double modes reserve 23 and 55 bits, respectively, for f. These bits,
with the hidden bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 200 notation [i.e., as K + 200 (octal)],
giving a biased exponent. Thus, exponents from —128 to +127 could be represented by 0 to 377 (base 8),
or 0 to 255 (base 10). For reasons given below, a biased exponent of O [the true exponent of —200 (octal)],
is reserved for floating-point 0. Therefore, exponents are restricted to the range —127 to +127 inclusive
(—177 to +177 octal) or, in excess 200 notation, 1 to 377.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1.

7.2.2 Floating-Point Zero

Because of the hidden bit, the fractional part is not available to distinguish between 0 and nonvanishing
numbers whose fractional part is exactly 1/2. Therefore, the KDJ11-A reserves a biased exponent of 0 for
this purpose, and any floating-point number with a biased exponent of O either traps or is treated as if it
were an exact 0 in arithmetic operations. An exact or “clean” 0 is represented by a word whose bits are all
0s. A “dirty” O is a floating-point number with a biased exponent of 0 and a nonzero fractional part. An
arithmetic operation for which the resulting true exponent exceeds 277 (octal) is regarded as producing a
floating overflow; if the true exponent is less than —177 (octal), the operation is regarded as producing a
floating underflow. A biased exponent of O can thus arise from arithmetic operations as a special case of
overflow (true exponent = —200 octal). (Recall that only eight bits are reserved for the biased exponent.)
The fractional part of results obtained from such overflow and underflow is correct.

7.2.3 Undefined Variables
An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 0. The term
undefined variable is used, for historical reasons, to indicate that these bit patterns are not assigned a
corresponding floating-point arithmetic value. Note that the undefined variable is frequently referred to as
—0 elsewhere in this chapter.

A design objective was to ensure that the undefined variable would not be stored as the result of any
floating-point operation in a program run with the overflow and underflow interrupts disabled. This is
achieved by storing an exact 0 on overflow and underflow if the corresponding interrupt is disabled. This
feature, together with an ability to detect reference to the undefined variable (implemented by the FIUV
bit discussed later), is intended to provide the user with a debugging aid: if —0 occurs, it did not result from
a previous floating-point arithmetic instruction.

7.2.4 Floating-Point Data
Floating-point data is stored in words of memory as illustrated in Figures 7-1 and 7-2.

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00
+2 FRACTION <15:0>
I L L | | I 1 L | A 1 | L 1 Il
15 14 07 06 00
MEMORY +0 S EXP FRACT <22:16>
| ! . L It 1 | 1 1 i i 1 L

MR-3604

Figure 7-1 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00
+6 FRACTION <15:0>
1 L I 1 1 ! 1 | i 1 1 1 1 | 1
15 00
+4 FRACTION <31:16>
1 1 1 ! | 1 1 1 1 1 1 | 1 1 |
15 00
+2 FRACTION <47:32>
I 1 1 ! 1 1 ! L I 1 i | L 1 1
15 07 06 00
MEMORY +0 S EXP FRACT <54:48>
1 I 1 1 1 1 1 1 i 1 | 1 L

S =SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON-VANISHING NUMBERS.

FRACT!ON = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MR-3605

Figure 7-2 Double-Precision Format

1-2

The KDJ11-A provides for conversion of floating-point to integer format and vice-versa. The processor
recognizes single-precision integer (I) and double-precision integer long (I.) numbers, which are stored in

standard 2’s complement form. (See Figure 7-3.)

| FORMAT, INTEGER SINGLE PRECISION

15 14 00
S NUMBER <15:0>
1 L A 1 1 ! 1 A I i 1 1
L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00
MEMORY +0 S NUMBER <30:16>
I L 1 A 1 | 1 ! ! L i 1
15 00
+2 NUMBER <15:0>
| 1 I L L i L 1 1 !] 1 1
WHERE S = SIGN OF NUMBER
NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.
MR-3606

Figure 7-3 2’s Complement Format

7.3 FLOATING-POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the currently executing floating-point instruction and
also reflects conditions resulting from the execution of the previous instruction. (See Figure 7-4.) In this
discussion a set bit = 1 and a reset bit = 0. Three bits of the FPS register control the modes of operation as

follows.

1. Single/Double — Floating-point numbers can be either single- or double-precision.

2. Long/Short - Integer numbers can be 16 bits or 32 bits.

3. Chop/Round - The result of a floating-point operation can be either “chopped” or “rounded.”
The term *“‘chop” is used instead of “truncate” to avoid confusion with truncation of series used

in approximations for function subroutines.

15 14 13 12 1110 09 08 07 06 05 04 03 02 0l 00
FER FID/ /FIUV Fiul Fv] Fic | Fo | FL | eT N | Fz | Fv | FC
\—W_/
RESERVED RESERVED

Figure 7-4 Floating-Point Status Register

7-3

MR-3607

The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, zero, and
negative, which are analogous to the CPU condition codes.

The KDJ11-A recognizes six floating-point exceptions:

Detection of the presence of the undefined variable in memory
Floating overflow

Floating underflow

Failure of floating-to-integer conversion

Attempt to divide by 0

Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to individually enable and
disable interrupts. An interrupt on the occurrence of either of the last two exceptions can be disabled only
by setting a bit that disables interrupts on all six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set as part of the output of a floating-point instruction: the error flag and
condition codes. Any of the mode and interrupt control bits may be set by the user; the LDFPS instruction
is available for this purpose. These 13 bits are stored in the FPS register as shown in Figure 7-4. The FPS
register bits are described in Table 7-1.

Table 7-1 FPS Register Bits

Bit Name Description

15 Floating Error (FER) The FER bit is set by the KDJ11-A if:
1. Division by zero occurs
2. An illegal op code occurs

3. Any one of the remaining floating-point exceptions occurs and
the corresponding interrupt is enabled

Note that the above action is independent of whether the FID bit is set
or clear.

Note also that the KDJ11-A never resets the FER bit. Once the FER
bit is set by the KDJ11-A, it can be cleared only by an LDFPS
instruction (note the RESET instruction does not clear the FER bit).
This means that the FER bit is up-to-date only if the most recent
floating-point instruction produced a floating-point exception.

14 Interrupt Disable (FID) If the FID bit is set, all floating-point interrupts are disabled.

NOTES

1. The FID bit is primarily a maintenance feature. It should nor-
mally be clear. In particular, it must be clear is one wishes to
assure that storage of —0 by the KDJ11-A is always accompa-
nied by an interrupt.

2. Throughout the rest of the chapter, assume that the FID bit is
clear in all discussions involving overflow, underflow, occurrence
of —0, and integer conversion errors.

7-4

Table 7-1

FPS Register Bits (Cont)

Name

Description

09

08

07

06

05

04

03

Interrupt on Undefined
Variable (FIUV)

Interrupt on Underflow (FIU)

Interrupt on Overflow (FIV)

Interrupt on Integer
Conversion Error (FIC)

Floating Double-Precision Mode (FD)

Floating Long-Integer Mode (FL)

Floating Chop Mode (FT)

Floating Negative (FN)

Reserved for future DIGITAL use.
Reserved for future DIGITAL use.

An interrupt occurs if FIUV is set and a —0 is obtained from memory
as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS,
TST, or any LOAD instruction. The interrupt occurs before execution
on all instructions. When FIUYV is reset, —0 can be loaded and used in
any floating-point operation. Note that the interupt is not activated by
the presence of —0 in an AC operand of an arithmetic instruction; in
particular, trap on —0 never occurs in mode 0.

A result of —0 will not be stored without the simultaneous occurrence
of an interrupt.

When the FIU bit is set, floating underflow will cause an interrupt. The
fractional part of the result of the operation causing the interrupt will
be correct. The biased exponent will be too large by 400, except for the
special case of 0, which is correct. An exception is discussed later in the
detailed description of the LDEXP instruction.

When the FIV bit is set, floating overflow will cause an interrupt. The
fractional part of the result of the operation causing the overflow will
be correct. The biased exponent will be too small by 400.

If the FIV bit is reset and overflow occurs, there is no interrupt. The
KDIJ11-A returns exact 0.

Special cases of overflow are discussed in the detailed descriptions of
the MOD and LDEXP instructions.

When the FIC bit is set and a conversion to integer instruction fails, an
interrupt will occur. If the interrupt occurs, the destination is set to 0,
and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as
detailed above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits
than can fit in the short or long integer word specified by the FL bit.

The FD bit determines the precision that is used for floating-point
calculations. When set, double-precision is assumed; when reset, single-
precision is used.

The FL bit is active in conversion between integer and floating-point
formats. When set, the integer format assumed is double-precision 2’s
complement (i.e., 32 bits). When reset, the integer format is assumed
to be single-precision 2's complement (i.e., 16 bits).

When the FT bit is set, the result of any arithmetic operation is
chopped (truncated). When reset, the result is rounded.

Reserved for future DIGITAL use.

FN is set if the result of the last floating-point operation was negative;
otherwise it is reset.

7-5

Table 7-1 FPS Register Bits (Cont)

Bit Name Description

02 Floating Zero (FZ) FZ is set if the result of the last floating-point operation was 0; other-
wise it is reset.

0l Floating Overflow (FV) FV is set if the last floating-point operation resulted in an exponent
overflow; otherwise it is reset.

00 Floating Carry (FC) FC is set if the last floating-point operation resulted in a carry of the
most significant bit. This can only occur in floating double-to-integer
conversions,

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating-point exceptions (location 244). The six possible
errors are coded in the 4-bit floating exception code (FEC) register as follows.

Floating op code error

Floating divide by zero error

Floating-to-integer or double-to-integer conversion error
Floating overflow error

Floating underflow error

Floating undefined variable error

NO BN

1
1

The address of the instruction producing the exception is stored in the floating exception address (FEA)
register.

The FEC and FEA registers are updated only when one of the following occurs.

1. Division by zero
2. lllegal op code
3. Any of the other four exceptions with the corresponding interrupt enabled

This implies that only when the FER bit is set, the FEC and FEA registers are updated.
NOTES

1. If one of the last four exceptions occurs with
the corresponding interrupt disabled, the FEC
and FEA are not updated.

2. If an exception occurs, inhibition of interrupts
by the FID bit does not inhibit updating of the
FEC and FEA.

3. The FEC and FEA are not updated if no excep-
tion occurs. This means that the STST (store
status) instruction will return current informa-
tion only if the most recent floating-point
instruction produced an exception.

4. Unlike the FPS, no instructions are provided
for storage into the FEC and FEA registers.

7-6

7.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the central processor instructions. A source
or destination operand is specified by designating one of eight addressing modes and one of eight central
processor general registers to be used in the specified mode. The modes of addressing are the same as those
of the central processor, except in mode 0. In mode O the operand is located in the designated floating-
point processor accumulator rather than in a central processor general register. The modes of addressing
are as follows.

0 = Floating-point accumulator
1 = Deferred

2 = Autoincrement

3 = Autoincrement-deferred

4 = Autodecrement

S = Autodecrement-deferred

6 = Indexed

7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 4 for F format, and 10
(octal) for D format.

In mode O users can make use of all six floating-point accumulators (ACO-ACS) as their source or
destination. Specifying floating-point accumulators AC6 or AC7 will result in an illegal op code trap. In all
other modes, which involve transfer of data to or from memory or the general registers, users are restricted
to the first four floating-point accumulators (AC0O-AC3). When reading or writing a floating-point
number from or to memory, the low memory word contains the most significant word of the floating-point
number, and the high memory word the least significant word.

7.6 ACCURACY

General comments on the accuracy of the KDJ11-A floating-point instructions are presented here. The
descriptions of the individual instructions include the accuracy at which they operate. An instruction or
operation is regarded as “exact” if the result is identical to an infinite precision calculation involving the
same operands. The a priori accuracy of the operands is thus ignored. All arithmetic instructions treat an
operand whose biased exponent is 0 as an exact O (unless FIUV is enabled and the operand is —0, in which
case an interrupt occurs). For all arithmetic operations, except DIV, a 0 operand implies that the
instruction is exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the
divisor, division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56
bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with
two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has
an error bound of 1/2 LSB. These error bounds are realized by the KDJ11-A for all instructions.

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded result is
related to the chopped result as follows.

1. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.
2. If the rounding bit is 0, the rounded and chopped results are identical.
It follows that:
1. If the result is exact: rounded value = chopped value = exact value.
2. If the result is not exact, its magnitude is:

® always decreased by chopping.
® decreased by rounding if the rounding bit is 0.
® increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.
However, the internal hardware has produced the correct answer. For the case of underflow, replacement
of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by
the KDJ11-A if the underflow interrupt is disabled. The error incurred by this action is an absolute rather
than a relative error; it is bounded (in absolute value) by 2 ** —128. There is no such simple resolution for
the case of overflow. The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09)
in Table 7-1.

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition. If such a condition occurs and the correspond-
ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place and users can identify the cause by examination of the floating
overflow (FV) bit or the floating exception register (FEC). The reader can readily verify that (for the
standard arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the instruc-
tion bears the following relation to the correct exponent.

1. On overflow, it is too small by 400 (octal)

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too
large by 400 (octal).

Thus, with the interrupt enable, enough information is available to determine the correct answer. Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

7.7 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number can operate on either single- or double-precision
numbers, depending on the state of the FD mode bit. Similarly, there is a mode bit FL that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between integer and
floating-point representations. FSRC and FDST operands use floating-point addressing modes (see Figure
7-5); SRC and DST operands use CPU addressing modes.

7-8

DOUBLE OPERAND ADDRESSING

15 121 08 07 06 05 00
oc FOC AC FSRC,FDST SRC,DST
1 L Il)| L 1 1 | L | 1
SINGLE OPERAND ADDRESSING
15 12 1 06 05 00
oc FOC FSRC, FDST, SRC, DST
| 1 1 Il L | 1 Il 1 | 1 1
OC = OPCODE =17
FOC = FLOATING OPCODE
AC = FLOATING POINT ACCUMULATOR (ACO-AC3)
FSRC AND FDST USE FPP ADDRESSING MODES
SRC AND DST USE CPU ADDRESSING MODES
MR-3608

Figure 7-5 Floating-Point Addressing Modes

Terms Used in Instruction Definitions

oC
FOC
AC
fsrc

fdst

XL

XLL

XUL

JL

op code = 17

floating op code

contents of accumulator, as specified by AC field of instruction
address of floating-point source operand

address of floating-point destination operand

fraction

largest fraction that can be represented:

1 — 2 ** (=24), FD = 0; single-precision
1 — 2 ** (=56), FD = 1; double-precision

smallest number that is not identically zero =
2 *¥*(—128)

largest number that can be represented =

2 ¥* (127) * XL

largest integer that can be represented:

2 ** (15) — 1; FL = 0O; short integer
2 ¥* (31) — 1, FL = 1; long integer

ABS (address) = absolute value of (address)

EXP (address) = biased exponent of (address)

7-9

LT =
LE. =
GT. =
GE. =
LSB

“less than”

“less than or equal to”
“greater than”

“greater than or equal to”

least significant bit

Boolean Symbols

A = AND
A% = inclusive OR
¥ = exclusive OR
~ = NOT
ABSF/ABSD
MAKE ABSOLUTE FLOATING/DOUBLE 1706 FDST
15 12 11 06 05 00
| I T I 1 | T T T T 1 i 1
1 1 1 0 0 0 1 1 0 FDST
| 1 | L & & 1 1 5
Format: ABSF FDST
Operation: If (FDST) < 0, (FDST) — — (FDST).

Condition Codes:

Description:

Interrupts:

Accuracy:

If EXP(FDST) = 0, (FDST) «— exact 0.

For all other cases, (FDST) — (FDST).

FC — 0

FV—20

FZ — 1 if (FDST) =0, else FZ — 0

FN —0

Set the contents of FDST to its absolute value.

If FIUV is enabled, trap on —0 occurs before execution. Overflow and
underflow cannot occur.

These instructions are exact.

7-10

ADDF/ADDD

ADD FLOATING/DOUBLE 172(AC)FSRC

15

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11468

ADDF FSRC,AC

Let SUM = (AC) + (FSRC)

If underflow occurs and FIU is not enabled, AC — exact 0.
If overflow occurs and FIV is not enabled, AC — exact 0.
For all others cases, AC — SUM.

FC — 0

FV — 1 if overflow occurs, else FV «— 0
FZ — 1if (AC) =0, ¢else FZ — 0

FN — 1 if (AC) <0, else FN — 0

Add the contents of FSRC to the contents of AC. The addition is carried out
in single- or double-precision and is rounded or chopped in accordance with
the values of the FD and FT bits in the FPS register. The result is stored in
AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
then: for oppositely signed operands with exponent difference of 0 or 1, the
answer returned is exact if a loss of significance of one or more bits can
occur. Note that these are the only cases for which loss of significance of
more than one bit can occur. For all other cases the result is inexact with
error bounds of:

1. LSB in chopping mode with either single- or double-precision.
2. 1/2 LSB in rounding mode with either single- or double-precision.

The undefined variable —0 can occur only in conjunction with overflow or

underflow. It will be stored in AC only if the corresponding interrupt is
enabled.

7-11

CFCC

COPY FLOATING CONDITION CODES 170000
15 12 11 00
T T T T T 1 T { T T T T 1 !
1 1 1 1] [¢] 0 0] 0 0 0 0 6] 0] 0 0
L | I | | L | I | 1 { i | 1
Format: CFCC
Operation: C — FC
V —FV
Z —FZ
N — FN
Description: Copy the floating-point condition codes into the CPU’s condition codes.
CLRF/CLRD
CLEAR FLOATING/DOUBLE 1704 FOST
15 1211 06 05 00
1 | U 1 1 1 1 1 T 1 1 I T
1 1 1 1 o o o 1 0o 0 FDST
L 1 | 1 | | 1 I 1 | i 1 L
Format: CLRF FDST
Operation: (FDST) — exact 0
Condition Codes: FC —~0
FV —0
FZ — 1
FN —0
Description: Set FDST to 0. Set FZ condition code and clear other condition code bits.
Interrupts: No interrupts will occur. Overflow and underflow cannot occur.
Accuracy: These instructions are exact.

7-12

CMPF/CMPD

COMPARE FLOATING/DOUBLE 173(AC+4)FSRC
15 12 11 08 Qa7 06 05 00
T T { ! | ! 1 [1 [T !
1 1 1 1 0 1 1 1 AC FSRC
[L | 1 L L | 1 L L I
MR-11471
Format: CMPF FSRC,AC
Operation: (FSRC) — (AQ)
Condition Codes: FC — 0
FV—0

FZ — 1 if (FSRC) = 0, else FZ — 0
FN — 1 if (FSRC) < 0, else FN — 0

Description: Compare the contents of FSRC with the accumulator. Set the appropriate
floating-point condition codes. FSRC and the accumulator are left unchanged
except as noted below.

Interrupts: If FIUV is enabled, trap on —0 occurs before execution.

Accuracy: These instructions are exact.

Special Comment: An operand that has a biased exponent of 0 is treated as if it were an exact 0.
In this case, where both operands are 0, the KDJ11-A will store an exact 0 in
AC.

7-13

DIVF/DIVD

DIVIDE FLOATING/DOUBLE 174(AC+4)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11472

DIVF FSRC,AC

If EXP(FSRC) = 0, (AC) — (AC) and the instruction is aborted.
If EXP(AC) = 0, (AC) « exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC — exact O.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — QUOT.

FC — 0

FV — 1 if overflow occurs, else FV «— 0
FZ — 1if (AC)=0,else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If either operand has a biased exponent of 0, it is treated as an exact 0. For
FSRC this would imply division by 0; in this case the instruction is aborted,
the FEC register is set to 4, and an interrupt occurs. Otherwise, the quotient
is developed to single- or double-precision with two guard bits for correct
rounding. The quotient is rounded or chopped in accordance with the values
of the FD and FT bits in the FPS register. The result is stored in the AC
except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If (FSRC)
= 0, interrupt traps on an attempt to divide by 0. If overflow or underflow
occurs, and if the corresponding interrupt is enabled, the trap occurs with the
fauity result in AC. The fractional parts are correctly stored. The exponent
part is too small by 400 for overflow. It is too large by 400 for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If none of these
occurs, the error in the quotient will be bounded by 1 LSB in chopping mode
and by 1/2 LSB in rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It will be stored in AC only if the corresponding interrupt is
enabled.

7-14

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING
AND FROM FLOATING-TO-DOUBLE 177(AC+4)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11473

LDCDF FSRC,AC
If EXP(FSRC) = 0, AC — exact 0.
If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC — exact 0.

In all other cases, AC «— Cxy(FSRC), where Cxy specifies conversion from
floating mode x to floating mode y.

x =D,y = Fif FD = 0 (single) LDCDF
y=F,y=Dif FD = 1 (double) LDCFD

FC — 0

FV — 1 if conversion produces overflow, else
FV — 0

FZ — 1if (AC) =0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If the current mode is floating mode (FD = 0), the source is assumed to be a
double-precision number and is converted to single-precision. If the floating
chop bit (FT) is set, the number is chopped; otherwise, the number is
rounded.

If the current mode is double mode (FD = 1), the source is assumed to be a
single-precision number and is loaded left-justified in AC. The lower half of
AC is cleared.

If FIUV is enabled, trap on —0 occurs before execution. Overflow cannot
occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding with LDCDF causes over-
flow. AC — overflowed result. This result must be +0 or —0. Underflow
cannot occur.

LDCFD is an exact instruction. Except for overflow, described above,
LDCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2
LSB in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER
TO FLOATING OR DOUBLE-PRECISION 177(AC)SRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11474

LDCIF SRC,AC

AC — Cjx(SRC), where Cjx specifies conversion from integer mode j to
floating mode y.

Jj=1ifFL=0,j=Lif FL =1
x=Fif FD=0,x=Dif FD=1

FC — 0
FV — 0
FZ — 1 if (AC)=0,else FZ — 0
FN — 1 if (Ac) < 0, else FN — 0

Conversion is performed on the contents of SRC from a 2’s complement
integer with precision j to a floating-point number of precision x. Note that j
and x are determined by the state of the mode bits FL and FD.

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of
0 or immediate addressing mode is specified, the 16 bits of the source register
are left-justified and the remaining 16 bits loaded with Os before conversion.

In the case of LDCLF, the fractional part of the floating-point representation
is chopped or rounded to 24 bits for FT = 1 or 0, respectively.

None; SRC is not floating-point, so trap on —0 cannot occur.
LDCIF, LDCID, and LDCLD are exact instructions. The error incurred by

LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

7-16

LDEXP

LOAD EXPONENT

176{AC+4)SRC

1 1 1 0 1 AC SRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11475

LDEXP SRC,AR
NOTE: 177 and 200, appearing below, are octal numbers.

If =200 < SRC < 200, EXP(AC) — SRC + 200 and the rest of AC is
unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) — [(SRC) + 200]<07:00>.
If (SRC) > 177 and FIV is disabled, AC — exact 0.

If (SRC) < —177 and FIU is enabled, EXP(AC) — [(SRC) + 200]<07:00>.
If (SRC) < —177 and FIU is disabled, AC — exact 0.

FC—0

FV — 1 if (SRC) > 177, else FV — 0
FZ — 1 if (AC) =0, else FZ — 0
FN — 1 if (AC) <0, else FN — 0

Change AC so that its unbiased exponent = (SRC). That is, convert (SRC)
from 2’s complement to excess 200 notation and insert it into the EXP field
of AC. This is a meaningful operation only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow. If SRC < —177, the result is
treated as underflow.

No trap on —0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV
is enabled, trap on overflow will occur. If SRC < —177 and FIU is enabled,
trap on underflow will occur.

Errors due to overflow and underflow are described above. If EXP(AC) =0
and (SRC) = —200, AC changes from a floating-point number treated as 0
by all floating arithmetic operations to a non-0 number. This happens because
the insertion of the “hidden” bit in the microcode implementation of arithme-
tic instructions is triggered by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly the transformation of a

floating-point number (2 ** K) * f into (2 ** (SRC)) * f where 1/2 .LE.
ABS(f) .LT. 1.

7-17

LDF/LDD

LOAD FLOATING/DOUBLE 172(AC+4)FSRC
15 121 08 07 06 05 00
T T T T T T T T T T
1 1 0 1 0 1 AC FSRC
Il | | — i i | |t n
MR-11476
Format: LDF FSRC,AC
Operation: AC — (FSRCQ)
Condition Codes: FC — 0
FV —0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ — 1 if (AC) =0, else FZ — 0
FN — 1 if (AC) < 0, else FN — 0

Load single- or double-precision number into AC.

If FIUV is enabled, trap on —0 occurs before AC is loaded. Overflow and
underflow cannot occur.

These instructions are exact.

These instructions permit use of —0 in a subsequent floating-point instruction
if FIUV is not enabled and (FSRC) = —0.

LDFPS
LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC
15 12 1 06 a5 00
1 i [1 I I ! I [1
1 1 o o o o o0 1 SRC
L L ! Il 1 1 - |

Format: LDFPS SRC
Operation: FPS — (SRC)
Description: Load floating-point status register from SRC.

Special Comment:

Users are cautioned not to use bits 13, 12, and 04 for their own purposes,
since these bits are not recoverable by the STFPS instruction.

7-18

MODF/MODD

MULTIPLY AND SEPARATE INTEGER

AND FRACTION FLOATING/DOUBLE 171(AC+4)FSRC
15 12 11 08 07 06 05 00
T T T T I l 1 i 1 T T li
1 1 1 1 0 0 1 1 AC FSRC
) 1] ! ' 1 ! !
MR-11478
Format: MODF FSRC,AC
Description This instruction generates the product of its two floating-point operands,
and Operation: separates the product into integer and fractional parts, and then stores one or

both parts as floating-point numbers.
Let PROD = (AC) * (FSRC) so that in
Floating-point: ABS(PROD) = (2 ** K) * f, where
172 .LE. f .LT. 1, and EXP(PROD) = (200 + K)
Fixed-point binary: PROD = N + g, where
N = INT(PROD) = integer part of PROD, and

g = PROD — INT(PROD) = fractional part of PROD with 0 .LE. g
LT. 1.

Both N and g have the same sign as PROD. They are returned as follows:

If AC is an even-numbered accumulator (0 or 2), N is stored in AC+1
(1 or 3), and g is stored in AC.

If AC is an odd-numbered accumulator, N is not stored and g is stored
in AC.

The two statements above can be combined as follows:

N is returned to AC V 1 and g is returned to AC.

7-19

Five special cases occur, as indicated in the following formal description with
L = 24 for floating mode and L = 56 for double mode.

1.

If PROD overflows and FIV is enabled, AC V 1 «— N, chopped to L
bits, AC — exact 0.

Note that EXP(N) is too small by 400 and that —0 can be stored in AC
VvV 1.

If FIV is not enabled, AC V | — exact 0, AC — exact 0, and —0 will
never be stored.

If 2 ** L .LE. ABS(PROD) and no overflow, AC V 1 — N, chopped to
L bits, AC — exact 0.

The sign and EXP of N are correct, but low-order bit information is lost.
If 1 .LE. ABS(PROD) .LT. 2 **L, ACV 1 — N, AC — g

The integer part N is exact. The fractional part g is normalized, and
chopped or rounded in accordance with FT. Rounding may cause a
return of + unity for the fractional part. For L = 24, the error in g is
bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding mode.
For L = 56, the error in g increases from the above limits as ABS(IN)
increases above 8 because only 59 bits of PROD are generated.

If 2**p .LE. ABS(N).LT. 2 ** (p + 1), with p > 2, the low order p — 2
bits of g may be in error.

If ABS(PROD) .LT. 1 and no underflow, AC V 1 « exact 0 and AC —
g.

There is no error in the integer part. The error in the fractional part is
bounded by 1 LSB in chopping mode and 1/2 LSB in rounding mode.
Rounding may cause a return of + unity for the fractional part.

If PROD underflows and FIU is enabled, AC V 1 — exact 0 and AC «—
g.

Errors are as in case 4, except that EXP(AC) will be too large by 4008
(if EXP = 0, it is correct). Interrupt will occur and —0 can be stored in
AC.

If FIU is not enabled, AC VvV [— exact 0 and AC — exact 0.

For this case the error in the fractional part is less than 2 ** (—128).

7-20

Condition Codes:

Interrupts:

Accuracy:

Applications:

FC — 0

FV — 1 if PROD overflows, else FV —0
FZ — 1 if (AC) =0, else FZ —0

FN — 1 if (AC) <0, else FN — 0

If FIUV is enabled, trap on —0 in FSRC occurs before execution. Overflow
and underflow are discussed above.

Discussed above.

1.

Binary-to-decimal conversion of a proper fraction. The following
algorithm, using MOD, will generate decimal digits D(1), D(2) - - - from
left to right.

Initialize: I —0;
X « number to be converted;
ABS(X) < 1,

While X # 0 do

Begin PROD — X * 10;

[—1+1;

D(I) — INT(PROD);

X — PROD — INT(PROD);

End;

This algorithm is exact. It is case 3 in the description because the
number of nonvanishing bits in the fractional part of PROD never
exceeds L, and hence neither chopping nor rounding can introduce error.

To reduce the argument of a trigonometric function.

ARG * 2/PI =N + g. The low two bits of N identify the quadrant, and
g is the argument reduced to the first quadrant. The accuracy of N + g
is limited to L bits because of the factor 2/PI. The accuracy of the
reduced argument thus depends on the size of N.

To evaluate the exponential function e ** x, obtain x * (log ¢ base 2) =
N + g, thene ** x = (2 ** N) * (e ** (g * In 2)).

The reduced argument is g * In2 < 1 and the factor 2 ** N is an exact
power of 2, which may be scaled in at the end via STEXP, ADD N to
EXP and LDEXP. The accuracy of N + g is limited to L bits because of
the factor (log e base 2). The accuracy of the reduced argument thus
depends on the size of N.

7-21

MULF/MULD

MULTIPLY FLOATING/DOUBLE 171{AC)FSRC

12 11 08 Q7 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11479

MULF FSRC,AC
Let PROD = (AC) * (FSRC)
If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — PROD.

FC — 0

FV « 1 if overflow occurs, else FV — 0
FZ — 1if (AC) =0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If the biased exponent of either operand is 0, (AC) «— exact 0. For all other
cases PROD is generated to 48 bits for floating mode and 59 bits for double
mode. The product is rounded or chopped for FT = 0 or 1, respectively, and
is stored in AC except for:

1. Overflow with interrupt disabled
2. Underflow with interrupt disabled

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
the error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in
rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or

underflow. It will be stored in AC only if the corresponding interrupt is
enabled.

7-22

NEGF/NEGD

NEGATE FLOATING/DOUBLE 1707 FDST

MR-11480

Format: NEGF FDST
Operation: (FDST) — — (FDST) if (FDST) = 0, else (FDST) — exact 0

Condition Codes: FC — 0
FV <0
FZ — 1 if (FDST) = 0, else FZ — 0
FN — 1 if (FDST) < 0, else FN — 0

Description: Negate the single- or double-precision number; store result in same location
(FDST).
Interrupts: If FIUV is enabled, trap on —0 occurs before execution. Overflow and

underflow cannot occur.

Accuracy: These instructions are exact.
SETD
SET FLOATING DOUBLE MODE 170011
15 12 11 00
| 1 I [! 1 T | | I 1 T 1 T
1 1 1 1 0 0 0 0 0 0 0 o] 1 0 0 1
[| |) | [1 " | L i L L
MR-11481
Format: SETD
Operation: FD — 1
Description: Set the KDJ11-A in double-precision mode.

7-23

SETF

SET FLOATING MODE 170001
15 12 11 00
1 T Ll 1 1 i T 1 T T I 1 I T
1 1 1 1 o o o 0 O 0 0 0 o0 0 0 1
L L | 1] L "l I ; i | j— I L
MR-11482
Format: SETF
Operation: FD — 0
Description: Set the KDJ11-A in single-precision mode.
SETI
SET INTEGER MODE 177002
15 12 1 00
! ! T [T 1 | I T T T I I 1
1 1 1 1 c o o o o0 0 o0 0o o0 O 1 o0
L I L | | L | 1 1 S L
MR-11483
Format: SETI
Operation: FL~0
Description: Set the KDJ11-A for short-integer data.
SETL
SET LONG-INTEGER MODE 177012
15 12 11 00
T J T 1 1 1 I 1 | L i I I
1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0
L L n | { L L ¢ | | I L 1 L
MR-11484
Format: SETL
Operation: FL — 1
Description: Set the KDJ11-A for long-integer data.

7-24

STCFD/STCDF

STORE AND CONVERT FROM FLOATING-TO-DOUBLE
AND FROM DOUBLE-TO-FLOATING T76(ACYFDST

15

12 11 08 07 06 05 00

l ! I 1 ! | T T
1 1 1 0 0 AC FDST
| | L L I i i L

Format:

Operation: .

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11485

STCFD AC,FDST
If (AC) = 0, (FDST) « exact 0.

If FD =1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) — exact
0.

In all other cases, (FDST) — Cxy(AC), where Cxy specifies conversion from
floating mode x to floating mode y.

x = F, y = D if FD = 0 (single) STCFD
x =D, y=Fif FD = 1 (double) STCDF

FC — 0

FV — 1 if conversion produces overflow, else
FV — 0

FZ — 1if (AC)=0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If the current mode is single-precision, the accumulator is stored left-justified
in FDST and the lower half is cleared.

If the current mode is double-precision, the contents of the accumulator are
converted to single-precision, chopped or rounded depending on the state of
FT, and stored in FDST.

Trap on —0 will not occur even if FIUV is enabled because FSRC is an
accumulator. Underflow cannot occur. Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding with STCDF causes over-
flow. (FDST) «— overflowed result. This must be +0 or —0.

STCFD is an exact instruction. Except for overflow, described above,
STCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

7-25

STCFI1/STCFL/STCDI/STCDL

STORE AND CONVERT FROM FLOATING OR DOUBLE
TO INTEGER OR LONG INTEGER 175(AC+4)DST

12 11 08 07 06 05 00

1 1 1 I | 1 1 1 T

| i L L | | L | L

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11486

STCFI AC,DST

(DST) «— Cxj(AC) if —JL — 1 < Cxj(AC) < JL + 1, else (DST) — 0, where
Cjx specifies conversion from floating mode x to integer mode j.

j=Tif FL=0,j=Lif FL = I
x=Fif FD=0, x =Dif FD = 1

JL is the largest integer.

2** 15— 1for FL=0
2* 32 1 forFL=1

C,FC — 0if =JL — 1 < Cxj(AC) < JL + 1, else
C, FC —1

V,FV —0

Z,FZ — 1if (DST) =0, else Z, FZ — 0

N, FN — 1 if (DST) <0, else N, FN «— 0

Conversion is performed from a floating-point representation of the data in
the accumulator to an integer representation.

If the conversion is to a 32-bit word (L mode), and an addressing mode of 0
or immediate addressing mode is specified, only the most significant 16 bits
are stored in the destination register.

If the operation is out of the integer range selected by FL, FC is set to 1 and
the contents of the DST are set to 0.

Numbers to be converted are always chopped (rather than rounded) before
they are converted. This is true even when the chop mode bit FT is cleared in
the FPS register.

These instructions do not interrupt if FIUV is enabled, because the —0, if
present, is in AC, not in memory. If FIC is enabled, trap on conversion failure
will occur.

These instructions store the integer part of the floating-point operand, which

may not be the integer most closely approximating the operand. They are
exact if the integer part is within the range implied by FL.

7-26

STEXP

STORE EXPONENT

08

07

06

175(AC)DST
00

MR-11487

Format: STEXP AC,DST
Operation: (DST) — EXP(AC) — 200
Condition Codes: C,FC—0

V,FV —0

Z,FZ — 1if (DST) =0, else Z, FZ — 0
N, FN «— 1 if (DST) < 0, else N, FN — 0

Description: Convert AC’s exponent from excess 200 notation to 2’s complement and
store the result in DST.
Interrupts: This instruction will not trap on —0. Overflow and underflow cannot occur.
Accuracy: This instruction is exact.
STF/STD
STORE FLOATING/DOUBLE 174(AC)FDST
15 12 11 08 07 06 05 00

MR-11488

Format: STF AC,FDST
Operation: (FDST) — AC
Condition Codes: FC — FC
FV — FV
FZ — FZ
FN — FN
Description: Store single- or double-precision number from AC.
Interrupts: These instructions do not interrupt if FIUV is enabled, because the —0, if

present, is in AC, not in memory. Overflow and underflow cannot occur.

7-27

Accuracy:

Special Comment:

These instructions are exact.

These instructions permit storage of a —0 in memory from AC. There are two
conditions in which —0 can be stored in an AC of the KDJ11-A. One occurs
when underflow or overflow is present and the corresponding interrupt is
enabled. A second occurs when an LDF or LDD instruction is executed and
the FIUV bit is disabled.

STFPS
STORE FLOATING-POINT PROGRAM STATUS 1702 DST
15 12N 06 05 00
I 1 I [[[1 1 1 T 1 T
1 1 1 o 0o 0 0 1 0 DST
b 1 1) 1 | f— | |
Format: STFPS DST
Operation: (DST) — FPS
Description: Store the floating-point status register in DST.

Special Comment:

Bits 13, 12, and 04 are loaded with 0. All other bits are the corresponding bits
in the FPS.

STST
STORE FPP'S STATUS 1703 DST
15 1211 ' 06 05 00
T T T T T T T T T T T T
1 1 o o o 0o 1 1 DST
S 1 L A | 1 ju 4 |
Format: STST DST
Operation: (DST) — FEC (DST + 2) — FEA
Description: Store the FEC and FEA in DST and DST+2. Note the following.

1. If the destination mode specifies a general register or immediate address-
ing, only the FEC is saved.

2. The information in these registers is current only if the most recently
executed floating-point instruction caused a floating-point exception.

7-28

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE 173(AC}FSRC

12 1 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11491

SUBF FSRC,AC

Let DIFF = (AC) — (FSRC)

If underflow occurs and FIU is not enabled, AC — exact 0.
If overflow occurs and FIV is not enabled, AC — exact 0.
For all others cases, AC — DIFF.

FC—0

FV — 1 if overflow occurs, else FV «— 0
FZ — 1if (AC)=0,else FZ — 0

FN — 1 if (AC) <0, else FN «— 0

Subtract the contents of FSRC from the contents of AC. The subtraction is
carried out in single- or double-precision and is rounded or chopped in accor-
dance with the values of the FD and FT bits in the FPS register. The result is
stored in AC except for:

1. Overflow with interrupt disabled
2. Underflow with interrupt disabled

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs:
for like-signed operands with exponent difference of O or 1, the answer
returned is exact if a loss of significance of one or more bits can occur. Note
that these are the only cases for which loss of significance of more than one
bit can occur. For all other cases the result is inexact with error bounds of:

1. LSB in chopping mode with either single- or double-precision
2. 1/2 LSB in rounding mode with either single- or double-precision

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It will be stored in AC only if the corresponding interrupt is
enabled.

7-29

TSTF/TSTD

TEST FLOATING/DOUBLE 1705 FDST
15 12 1 06 05 00
i i | | i i I I 1 I I ¥)
1 1 1 1 4] [} 0 1 0 1 FDST
i] | | | L ! i 1 j— |
Format: TSTF FDST
Operation: (FDST)
Condition Codes: FC —0
FV—0

FZ — 1 if (FDST) =0, else FZ — 0
FN — 1 if (FDST) < 0, else FN — 0

Description: Set the floating-point condition codes according to the contents of FDST.

Interrupts: If FIUV is set, trap on —0 occurs before execution. Overflow and underflow
cannot occur.

Accuracy: These instructions are exact.

7-30

CHAPTER 8
PROGRAMMING TECHNIQUES

8.1 INTRODUCTION

The KDJ11-A offers a great deal of programming flexibility and power. Utilizing the combination of the
instruction set, the addressing modes, and the programming techniques, it is possible to develop new
software or to utilize old programs effectively. The programming techniques in this chapter show the
capabilities of the KDJ11-A. The techniques discussed involve position-independent coding (PIC), stacks,
subroutines, interrupts, reentrancy, coroutines, recursion, processor traps, programming peripherals, and
conversion.

8.2 POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The task builder or linker binds one
or more modules together to create an executable task image. Once built, a task can only be loaded and
executed at the virtual address specified at link time. This is so because the linker has had to modif y some
instructions to reflect the memory locations in which the program is to run. Such a body of code is
considered position-dependent (i.e., dependent on the virtual addresses to which it was bound).

The KDJ11-A processor offers addressing modes that make it possible to write instructions that do not
depend on the virtual addresses to which they are bound. This type of code is termed position-independent
and can be loaded and executed at any virtual address. Position-independent code can improve system
efficiency, both in use of virtual address space and in conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that many tasks be able to share a single
physical copy of common code (a library routine, for example). To make the optimum use of a task’s
virtual address space, shared code should be position-independent. Code that is not position-independent
can also be shared, but it must appear in the same virtual locations in every task using it. This restricts the
placement of such code by the task builder and can result in the loss of virtual addressing space.

8.2.1 Use of Addressing Modes in the Construction of Position-Independent Code
The construction of position-independent code is closely linked to the proper use of addressing modes. The
remainder of this explanation assumes you are familiar with the addressing modes described in Chapter 6.

The following addressing modes, which involve only register references, are position-independent.

R Register mode

(R) Register-deferred mode

R+ Autoincrement mode

@*R)+ Autoincrement-deferred mode
—(R) Autodecrement mode

@—(R) Autodecrement-deferred mode

When employing these addressing modes, the user is guaranteed position independence, providing the
contents of the registers have been supplied independently of a particular virtual memory location.

8-1

The following two relative addressing modes are position-independent when a relocatable address is
referenced from a relocatable instruction.

A Relative mode
@A Relative-deferred mode

Relative modes are not position-independent when an absolute address (that is, a nonrelocatable address) is
referenced from a relocatable instruction. In such case, absolute addressing (i.e., @#A) may be employed
to make the reference position-independent.

Index modes can be either position-independent or position-dependent, according to their use in the
program:

X(R) Index mode
@X(R) Index-deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the reference is position-independent. The
following is an example.

MOV 2(SP),R0 ;POSITION-INDEPENDENT
N=
MOV N(SP),R0 ;POSITION-INDEPENDENT

If, however, X is a relocatable address, the reference is position-dependent, as the following example
shows.

CLR ADDR(R1) ;POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to its use. Immediate mode refer-
ences are formatted as follows.

#N Immediate mode
When an absolute expression defines the value of N, the code is position-independent. When a relocatable
expression defines N, the code is position-dependent. That is, immediate mode references are position-

independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases where an absolute virtual location is
being referenced. Absolute mode addressing references are formatted as follows.

@#A Absolute mode

An example of a position-independent absolute reference is a reference to the processor status word (PS)
from a relocatable instruction, as in this example.

MOV @#PSW RO ;RETRIEVE STATUS AND PLACE IN REGISTER

8-2

8.2.2 Comparison of Position-Dependent and Position-Independent Code

The RSX-11 library routine, PWRUP, is a FORTRAN-callable subroutine for establishing or removing a
user power failure asynchronous system trap (AST) entry point address. Imbedded within the routine is the
actual AST entry point that saves all registers, effects a call to the user-specified entry point, restores all
registers on return, and executes an AST exit directive. The following examples are excerpts from this
routine. The first example has been modified to illustrate position-dependent references. The second
example is the position-independent version.

Position-Dependent Code

PWRUP::
CLR —(SP) ;ASSUME SUCCESS
CALL X.PAA ;PUSH (SAVE)
; ARGUMENT ADDRESSES
:ONTO STACK
WORD 1..$PSW :CLEAR PSW, AND
;SET R1=R2SP
MOV $OTSV R4 :GET OTS IMPURE
;AREA POINTER
MOV (SP)+,R2 :GET AST ENTRY
:POINT ADDRESS
BNE 10% ;IJF NONE SPECIFIED,
:SPECIFY NO POWER
CLR —(SP) :RECOVERY AST SERVICE
BR 20% ;
108: ;
MOV R2,F.PF(R4) :SET AST ENTRY POINT
MOV #BA,—(SP) :PUSH AST SERVICE
;ADDRESS
208: ;
CALL X.EXT ;ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2. ;
BA: MOV RO,—(SP) :PUSH (SAVE) RO
MOV R1,—(SP) ;PUSH (SAVE) R1
MOV R2,—(SP) -PUSH (SAVE) R2

8-3

Position-Independent Code

PWRUP::
CLR
CALL

.WORD
MOV
MOV
BNE

CLR

BR
10$:

MOV

MOV

ADD

208:
CALL
BYTE

BA: MOV
MOV
MOV

~(SP)
X.PAA
1.,$PSW
@#$OTSV R4
(SP}+,R2

108

—(SP)
20$

R2,F.PF(R4)
PC,—(SP)
#BA—.,(SP)

X.EXT
109.,2.

R0,—(SP) |
R1,—(SP)
R2,—(SP)

;ASSUME SUCCESS
;PUSH ARGUMENT
;ADDRESSES ONTO
STACK

;CLEAR PSW, AND
;SET R1=R2-SP.

;GET OTS IMPURE
;AREA POINTER
;GET AST ENTRY
;POINT ADDRESS

;IF NONE SPECIFIED,
;SPECIFY NO POWER
;RECOVERY AST SERVICE

:SET AST ENTRY POINT

;PUSH CURRENT LOCATION
;COMPUTE ACTUAL LOCATION
;OF AST

;ISSUE DIRECTIVE, EXIT.

;ACTUAL AST SERVICE ROUTINE:

; 1) SAVE REGISTERS

5 2) EFFECT A CALL TO SPECIFIED
; SUBROUTINE

; 3) RESTORE REGISTERS

; 4) ISSUE AST EXIT DIRECTIVE

:PUSH (SAVE) RO
:PUSH (SAVE) R1
:PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative reference to an absolute symbol
($OTSV) and a literal reference to a relocatable symbol (BA). Both references are bound by the task
builder to fixed memory locations. Therefore, the routine will not execute properly as part of a resident
library if its location in virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been changed to an absolute reference. In
addition, the necessary code has been added to compute the virtual location of BA based upon the value of
the program counter. In this case, the value is obtained by adding the value of the program counter to the
fixed displacement between the current location and the specified symbol. Thus, execution of the modified
routine is not affected by its location in the image’s virtual address space.

8.3 STACKS

The stack is part of the basic design architecture of the KDJ11-A. It is an area of memory set aside by the
programmer or the operating system for temporary storage and linkage. It is handled on a LIFO (last-
in/first-out) basis, where items are retrieved in the reverse of the order in which they were stored. A stack
starts at the highest location reserved for it and expands linearly downward to lower addresses as items are

added.

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through a stack pointer. To keep track of the last item added to the stack, a general register
is used to store the memory address of the last item in the stack. Any register except register 7 (the PC)
may be used as a stack pointer under program control; however, instructions associated with subroutine
linkage and interrupt service automatically use register 6 as a hardware stack pointer. For this reason, R6
is frequently referred to as the system SP. Stacks may be maintained in either full-word or byte units. This
is true for a stack pointed to by any register except R6, which must be organized in full-word units only.
Byte stacks (see Figure 8-1) require instructions capable of operating on bytes rather than full words.

WORD STACK
007100 ITEM #1
007076 ITEM # 2
007074 ITEM # 3
007072 ITEM #4 «—sp | 007072]
007070
007066
007064
BYTE STACK
007100 ITEM # 1
007077 ITEM # 2
007076 ITEM #3
007075 ITEM # 4 «—sp | 007075 |
NOTE:
BYTES ARE
ARRANGED IN

WORDS AS FOLLOWING:
BYTE3 | BYTE2
BYTE1 | BYTEO

Mﬂ__J

WORD

MR-3662

Figure 8-1 Word and Byte Stacks

8-5

8.3.1 Pushing onto a Stack
Items are added to a stack using the autodecrement addressing mode. Adding items to the stack is called
pushing, and is accomplished by the following instructions.

MOV Source,—(SP) ;MOYV contents of source word
;onto the stack
or
MOVB Source,—(SP) ;MOVB source byte onto
;the stack

Data is thus pushed onto the stack.

8.3.2 Popping from a Stack
Removing data from the stack is called popping. This operation is accomplished using the autoincrement
mode.

MOV (SP)+,Destination ;MOV destination word
;off the stack
or
MOVB (SP)+,Destination ;MOVB destination byte

;off the stack
After an item has been popped, its stack location is considered free and available for other use. The stack

pointer points to the last-used location, implying that the next lower location is free. Thus, a stack may
represent a pool of sharable temporary storage locations. (See Figure 8-2.)

HIGH MEMORY

«— 5P
stack ¥ EO -sp EO
AREA ' E1 «—3P
LOW MEMORY
1 AN EMPTY STACK AREA 2 PUSHING A DATUM 3 PUSHING ANOTHER
ONTO THE STACK DATUM ONTOQ THE
STACKS
EO EO A E2 EO
E1 E1 -—sp E1
' E2 <—sP ' E3 -5P
4 ANOTHER PUSH 5 POP 6 PUSH
E3
EQ
E1 «—SP
7 POP

MR-3663

Figure 8-2 Push and Pop Operations

8-6

8.3.3 Deleting Items from a Stack
The following techniques may be used to delete items from a stack. To delete one item use:
INC SP or TSTB(SP)+ for a byte stack

To delete two items use:

ADD#2,SP or TST(SP)+ for word stack

To delete S0 items from a word stack use:

ADD#100.,SP

8.3.4 Stack Uses
A stack is used in the following ways.

1.

Often one of the general-purpose registers must be used in a subroutine or interrupt service
routine and then returned to its original value. The stack can be used to store the contents of the
registers involved.

The stack is used in storing linkage information between a subroutine and its calling program.
The JSR instruction, used in calling a subroutine, requires the specification of a linkage register
along with the entry address of the subroutine. The content of this linkage register is stored on
the stack, so as not to be lost, and the return address is moved from the PC to the linkage
register. This provides a pointer back to the calling program so that successive arguments may
be transmitted easily to the subroutine.

If no arguments need be passed by stacking them after the JSR instruction, the PC may be used
as the linkage register. In this case, the result of the JSR is to move the return address in the
calling program from the PC onto the stack and replace it with the entry address of the called
subroutine.

In many cases, the operations performed by the subroutine can be applied directly to the data
located on or pointed to by a stack without the need to move the data into the subroutine area.

Example:
;CALLING PROGRAM
MOV SP,R1 ;R1 IS USED AS THE STACK
JSR PC,SUBR ;POINTER HERE.
; SUBROUTINE
ADD (RI1)+,(R1) ;ADD ITEM #1 TO #2, PLACE

;RESULT IN ITEM #2,
;R1 POINTS TO
;ITEM #2 NOW

Because the hardware already uses general-purpose register R6 to point to a stack for saving
and restoring PC and processor status word (PS) information, it is convenient to use the same
stack to save and restore immediate results and to transmit arguments to and from subroutines.
Using R6 in this manner permits extreme flexibility in nesting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register-indexed
addressing, it is sometimes useful to save a temporary copy of R6 in some other register which
has been saved at the beginning of a subroutine. If R6 is saved in R5 at the beginning of the
subroutine, R5 may be used to index the arguments. During this time, R6 is free to be
incremented and decremented while being used as a stack pointer. If R6 had been used directly
as the base for indexing and not “copied,” it might be difficult to keep track of the position in
the argument list, since the base of the stack would change with every autoincre-
ment/decrement that occurred.

However, if the contents of R6 (SP) are saved in RS before any arguments are pushed onto the
stack, the position relative to RS would remain constant.

Return from a subroutine also involves the stack, as the return instruction, RTS, must retrieve
information stored there by the JSR.

When a subroutine returns, it is necessary to “clean up” the stack by eliminating or skipping
over the subroutine arguments. One way this can be done is by insisting that the subroutine keep
the number of arguments as its first stack item. Returns from subroutines then involve calculat-
ing the amount by which to reset the stack pointer, resetting the stack pointer, then storing the
original contents of the register that were used as the copy of the stack pointer.

5. Stack storage is used in trap and interrupt linkage. The program counter and the processor
status word of the executing program are pushed on the stack.

6. When the system stack is being used, nesting of subroutines, interrupts, and traps to any level
can occur until the stack overflows its legal limits.

7. The stack method is also available for temporary storage of any kind of data. It may be used as
a LIFO list for storing inputs, intermediate results, etc.

8.3.5 Stack Use Examples

As an example of stack use, consider this situation. A subroutine (SUBR) wants to use registers 1 and 2,
but these registers must be returned to the calling program with their contents unchanged. The subroutine
could be written as follows.

Not Using the Stack

Assembler
Address Octal Code Syntax Comments
076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 *
076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *
076410 016701 MOV TEMPI,R1 ;restore R1
076412 000006 *
076414 0167902 MOV TEMP2,R2 ;restore R2
076416 000004 *
076420 000297 RTS PC
076422 000000 TEMPI1:0
076424 000000 TEMP2:0

*Index constants

8-8

Using the Stack
R3 has been previously set to point to the end of an unused block of memory.

Assembler
Address Octal Code Syntax Comments
010020 010143 SUBR: MOV R1,—(R3) ;push R1
010022 010243 MOV R2,—(R3) ;push R2
010130 012302 MOV (R3)+,R2 -pop R2
010132 012301 MOV (R3)+,R1 ;pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and two words of temporary “stack’ storage.
Another routine could use the same stack space at some later point. Thus, the ability to share temporary
storage in the form of a stack is a way to save on memory usage.

As another example of stack use, consider the task of managing an input buffer from a terminal. As
characters come in, the user may wish to delete characters from the line; this is accomplished very easily
by maintaining a byte stack containing the input characters. Whenever a backspace is received, a
character is popped off the stack and eliminated from consideration. In this example, popping characters
to be eliminated can be done by using either the MOVB (MOVE BYTE) or INC (INCREMENT)
instructions.

Note that in this case the increment instruction (INC) is preferable to MOVB, since it accomplishes the
task of eliminating the unwanted character from the stack by readjusting the stack pointer without the
need for a destination location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer because R6 may point only to word (even) locations. (See Figure 8-3.)

001011
001010
001007
001006
001005
001004
001003
001002
001001

INC R3

DM ZIo|HA|lw|lc|o

<«r3| oo01002 |

N[omim|zjo|-]|«»|c|o

<«R3|[001001]

MR-3664

Figure 8-3 Byte Stack Used as a Character Buffer

8.3.6 Subroutine Linkage

The contents of the linkage register are saved on the system stack when a JSR is executed. The effect is
the same as if a MOV reg,—(R6) had been performed. Following the JSR instruction, the same register is
loaded with the memory address (the contents of the current PC), and a jump is made to the entry location
specified.

Figure 8-4 shows the conditions before and after the subroutine instructions JSR RS, 1064 are executed.

Because hardware already uses general-purpose register R6 to point to a stack for saving and restoring PC
and PS (processor status word) information, it is convenient to use that stack to save and restore
intermediate results and to transmit arguments to and from subroutines. Using R6 this way permits
nesting subroutines and interrupt service routines.

BEFORE AFTER
(R5) = 000132 (R5) = 001004
(R6) = 001776 (R6) = 001774
{PC) = (R7) = 001000 (PC) = (R7) = 001064
002000 nnnnnn 002000 nnnnnon
001776 mmmmmm - SP [001776 j 001776 mmmmmm
001774 001774 000132 «sp| 001774 |
001772 001772

MR-3665

Figure 8-4 JSR Stack Condition Example

8.3.6.1 Return from a Subroutine — An RTS instruction provides for a return from the subroutine to the
calling program. The RTS instruction must specify the same register as the one the JSR instruction used in
the subroutine call. When the RTS is executed, the register specified is moved to the PC, and the top of
the stack is placed in the register specified. Thus, an RTS PC has the effect of returning to the address
specified on the top of the stack.

8.3.6.2 Subroutine Advantages - There are several advantages to the subroutine calling procedure
affected by the JSR instruction.

1. Arguments can be passed quickly between the calling program and the subroutine.

2. If there are no arguments, or the arguments are in a general register or on the stack, the JSR
PC,DST mode can be used so that none of the general-purpose registers are used for linkage.

3. Many JSRs can be executed without the need to provide any saving procedure for the linkage
information, since all linkage information is automatically pushed onto the stack in sequential
order. Returns can be made by automatically popping this information from the stack in the
order opposite to the JSRs.

Such linkage address bookkeeping is called automatic nesting of subroutine calls. This feature enables
construction of fast, efficient linkages in a simple, flexible manner. It also permits a routine to call itself.

8-10

8.3.7 Interrupts
An interrupt is similar to a subroutine call, except that it is initiated by the hardware rather than by the
software. An interrupt can occur after the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data transfer, the
CPU loops to check the state of the DONE/READY flag (bit 7) in the peripheral interface. Using
interrupts, the CPU can handle other functions until the peripheral initiates service by setting the DONE
bit in its control/status register. The CPU completes the instruction being executed, then acknowledges
the interrupt, and vectors to an interrupt service routine. The service routine will transfer the data and may
perform calculations with it. After the interrupt service routine has been completed, the computer resumes
the program that was interrupted by the peripheral’s high-priority request.

8.3.7.1 Interrupt Service Routines — With interrupt service routines, linkage information is passed so
that a return to the main program can be made. More information is necessary for an interrupt sequence
than for a subroutine call because of the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be preserved in order to return to the
program without any noticeable effects. This information is stored in the processor status word (PS). Upon
interrupt, the contents of the program counter (PC) (address of next instruction) and the PS are automati-
cally pushed onto the R6 system stack. The effect is the same as if:

MOV PS,—(SP) ;Push PS
MOV PC,—(SP) ;Push PC

had been executed. The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called vector addresses.

The first word contains the interrupt service routine entry address (the address of the service routine
program sequence). The second word contains the new PS that will determine the machine status,
including the operational mode and register set to be used by the interrupt service routine. The contents of
the vector address are set under program control.

After the interrupt service routine has been completed, an RTI (return from interrupt) is performed. The
top two words of the stack are automatically popped and placed in the PC and PS, respectively, thus
resuming the interrupted program. Interrupt service programming is intimately involved with the concept
of CPU and device priority levels.

8.3.7.2 Nesting — Interrupts can be nested in much the same manner that subroutines are nested. It is

possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the
respective RTI and RTS instructions are used, the proper returns are automatic. (See Figure 8-5.)

8-11

1. PROCESS 0 1S RUNNING;SP IS SP — PO 7. SUBROUTINE A RELEASES THE PO
POINTING TO LOCATION PO, TEMPORARY STORAGE HOLDING PSO
TA1 AND TA2. PCO
0 TEO
TE1
2. INTERRUPT STOPS PROCESS OWITH PO PS1
PC = PCO, AND STATUS = PS0O; STARTS PSO PC1
PROCESS 1. SP —w PCO SP—» PC2
] 0
3. PROCESS 1 USES STACK FOR TEM- PO 8. SUBROUTINE A RETURNS CONTROL PO
PORARY STORAGE (TEO, TE1). PSO TO PROCESS 2WITH AN RTS R7; PC PSO
PCO IS RESET TO PC2. PCO
TEC TEO
P —» TE1 TE1
PS1
0 SP —a PC1
4. PROCESS 1 INTERRUPTED WITH PC PO o]
=PC1 AND STATUS = PSt; PROCESS PSO
2 ISSTARTED. PCO 9. PROCESS 2 COMPLETESWITH AN PO
TEO RT1 INSTRUCTIONS (DISMISSES PSO
TE1 INTERRUPT) PC IS RESET OT PC (1) PCO
PS1 AND STATUS IS RESET TO PS1; TEO
s —» Fel PROCESS 1 RESUMES' P —s TE
0 0
5. PROCESS 2 IS RUNNING AND DOES PO 10. PROCESS 1 RELEASES THE TEMPO- PO
A JSR R7,ATO SUBROUTINE AWITH PS0O RARY STORAGE HOLDING TEO AND PSO
PC =PC2. PCO TE1. P —» PCO
TEOD
TE1 0
PS1
PC1 11. PROCESS 1 COMPLETES ITS SP—e PO
Sp—» Fc2 OPERATION WITH AN RT1,PC IS
RESET TO PCO, AND STATUS IS 3}
° RESET TO PSO.
6. SUBROUTINE A IS RUNNING AND PO
USES STACK FOR TEMPORARY PSO
STORAGE. PCO
TEQ
TE1
PS1
PCI
PC2
TAl
SP — TA2
0

MR-3666

Figure 8-5 Nested Interrupt Service Routines and Subroutines

8.3.8 Reentrancy

Other advantages of the KDJ11-A stack organization occur in programming systems that handle several
tasks. Multitask program environments range from simple single-user applications that manage a mixture
of I/O interrupt service and background data processing (as in RT-11), to large, complex, multiprogram-
ming systems that manage an intricate mixture of executive and multiuser programming situations (as in
RSX-11). In all these situations, using the stack as a programming technique provides flexibility and
time/memory economy by allowing many tasks to use a single copy of the same routine with a simple
straightforward way of keeping track of complex program linkages.

The ability to share a single copy of a program among users or among tasks is called reentrancy. Reentrant
program routines differ from ordinary subroutines in that it is not necessary for reentrant routines to finish
processing a given task before they can be used by another task. Multiple tasks can exist at any time in
varying stages of completion in the same routine. Thus, the situation as shown in Figure 8-6 may occur.

8-12

MEMORY MEMORY

b~ 7777
PROGRAM 1 PROGRAM 1 SUBROUTINE A

PROGRAM 2 | SUBROUTINE A
PROGRAM 3

PROGRAM 2 SUBROUTINE A

PROGRAM 3 SUBROUTINE A

KDJ11-A APPROACH CONVENTIONAL APPROACH
PROGRAMS 1, 2, AND 3 CAN SHARE A SEPRATE COPY OF SUBROUTINE A
SUBROUTINE A. MUST BE PROVIDED FOR EACH PROGRAM.

MR-3667

Figure 8-6 Reentrant Routines

8.3.8.1 Reentrant Code - Reentrant routines must be written in pure code (that is, any code that consists
exclusively of instructions and constants). The value of using pure code whenever possible is that the
resulting code has the following characteristics.

1. It is generally considered easier to debug than standard code.
2. It can be kept in read-only memory (is read-only protected).

Using reentrant code, control of a routine can be shared as follows. (See Figure 8-7.)

Task A requests processing by reentrant routine Q.

Task A temporarily gives up control of reentrant routine Q before it completes processing.
Task B starts processing the same copy of reentrant routine Q.

Task B completes processing by reentrant routine Q.

Task A regains use of reentrant routine Q and resumes where it stopped.

B

TASK A

REENTRANT

ROUTINE Q

MR-3668

1

9

Figure 8-7 Sharing Control of a Routine

8-13

8.3.8.2 Writing Reentrant Code - In an operating system environment, when one task is executing and is
interrupted to allow another task to run, a context switch occurs in which the processor status word and
current contents of the general-purpose registers (GPRs) are saved and replaced by the appropriate values
for the task being entered. Therefore, reentrant code should use the GPRs and the stack for any counters,
pointers, or data that must be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute. It causes all of the GPRs, the PS,
and often other task-related information to be saved in an impure area. It then reloads these registers and
locations with the appropriate data for the task being entered. Notice that one consequence of this is that a
new stack pointer value is loaded into R6, thereby causing a new area to be used as the stack when the
second task is entered.

The following should be observed when writing reentrant code.
. All data should be in or pointed to by one of the general-purpose registers.

2. A stack can be used for temporary storage of data or pointers to impure areas within the task
space. The pointer to such a stack would be stored in a GPR.

3. Parameter addresses should be used by indexing and indirect reference rather than by putting
them into instructions within the code.

4. When temporary storage is accessed within the program, it should be by indexed addresses,
which can be set by the calling task in order to handle any possible recursion.

8.3.9 Coroutines
In some programming situations it happens that several program segments or routines are highly interac-
tive. Control is passed back and forth between the routines, each going through a period of suspension
before being resumed. Since the routines maintain a symmetric relationship with each other, they are
called coroutines.

Coroutines are two program sections, either subordinate to the call of the other. The nature of the call is,
“I have processed all I can for now, so you can execute until you are ready to stop, then I will continue.”
The coroutine call and return are identical, each being a jump to subroutine instruction with the destina-
tion address being on top of the stack and the PC serving as the linkage register, as follows.

JSR PC,@(R6)+

8-14

8.3.9.1 Coroutine Calls — The coding of coroutine calls is made simple by the stack feature. Initially, the
entry address of the coroutine is placed on the stack, and from that point the

JSR PC,@*R6)+

instruction is used for both the call and the return statements. This JSR instruction results in an exchange
of the contents of the PC and the top element of the stack; this permits the two routines to swap control
and resume operation where each was terminated by the previous swap. An example is shown in Figure 8-
8. Notice that the coroutine linkage cleans up the stack with each control transfer.

ROUTINE A STACK ROUTINE B COMMENTS

LOC IS PUSHED
ONTO THE STACK
TO PREPARE FOR

MOV #LOC,-(SP} Loc ~SP THE COROUTINE
. CALL.
LOC:
JSR PC,@(SP)+ PCO <SP . WHEN THE CALL
(PCO) . IS EXECUTED,
THE PC FROM
ROUTINE A IS

PUSHED ON THE
STACK AND EXE-
CUTION CONTIN-

UES AT LOC.
JSR PC,@(SP)+ ROUTINE B CAN
PC1 SP (PC1) RETURN CONTROL
. TO ROUTINE A
BY ANOTHER

COROUTINE CALL.
PCO IS POPPED
FROM THE STACK
AND EXECUTION
RESUMES IN
ROUTINE A JUST
AFTER THE CALL
TO ROUTINE B,
I.E., AT PCO.

PC1 IS SAVED

ON THE STACK
FOR A LATER
RETURN TO
ROUTINE 8.

MR-3669

Figure 8-8 Coroutine Example

8.3.9.2 Coroutines Versus Subroutines — Coroutines can be compared to subroutines in the following

ways.

I.

A subroutine can be considered to be subordinate to the main or calling routine, but a coroutine
is considered to be on the same level, as each coroutine calls the other when it has completed
current processing.

When called, a subroutine executes to the end of its code. When called again, the same code will
execute before returning. A coroutine executes from the point after the last call of the other
coroutine. Therefore, the same code will not be executed each time the coroutine is called. An
example is shown in Figure 8-9.

The call and return instructions for coroutines are the same:

JSR PC,@(SP)+
This one instruction also cleans up the stack with each call. The last coroutine call will leave an
address on the stack that must be popped if no further calls are to be made. Refer to Paragraph

8.3.6.1 for information on the return from subroutine instruction.

Each coroutine call returns to the coroutine code at the point after the last exit with no need for
a specific entry point label, as would be required with subroutines.

COROQUTINES MAIN PROGRAMS SUBROUTINES
A B 1ST LOC:
]
JSR PC,@ (SP)+ ——————> JSR Rn, LOC
\
JSR PC,@ (SP)+ '
RTS
v
JSR PC,@ (SP)+
v
JSR Rn, LOC
v
JSR PC,@ (SP)+
Y L

MR-3670

Figure 8-9 Coroutines Versus Subroutines

8-16

8.3.9.3 Using Coroutines — Coroutines should be used in the following situations.

1. Whenever two tasks must be coordinated in their execution without obscuring the basic struc-
ture of the program. For example, in decoding a line of assembly language code, the results at
any one position might indicate the next process to be entered. A detected label must be
processed. If no label is present, the operator must be located, etc.

2. To add clarity to the process being performed, to ease-in the debugging phase, etc.

An assembler must perform a lexicographic scan of each assembly language statement during pass | of the
assembly process. The various steps in such a scan should be separated from the main program flow to add
to the program’s clarity and to aid in debugging by isolating many details. Subroutines would not be
satisfactory here, as too much information would have to be passed to the subroutine each time it was
called. Such a subroutine would be too isolated. Coroutines could be effectively used here with one routine
being the assembly pass 1 routine and the other extracting one item at a time from the current input line.
Figure 8-10 illustrates this example.

ROUTINE A ROUTINE B
START AND SKIP
BLANKS
NONBLANK
y
READ NAME PROCESS NAME
SKIP BLANKS
4
PROCESS MNEMONICS = READ MNEMONICS
y
READ ADDRESSES
LINE
SEMICOLON TERMINATOR
}
SKIP COMMENT #1 END

MR-3671

Figure 8-10 Coroutine Path

Coroutines can be utilized in /O processing. The example above shows coroutines used in double-buffered
I/0O using 10X. The flow of events might be described as:

Write 01
Read [1 concurrently,
Process 12
then
Write 02
Read 12 concurrently,
Process 11
Figure 8-11 illustrates a coroutine swapping interaction.

When routine 1 is operating; it executes:

MOV #PC2,—(R6)
JSR PC,@(R6)+

with the following results.
1. PC2 is popped from the stack and the SP autoincremented.
2. SP is autodecremented and the old PC (i.e., PC1) is pushed.
3. Control is tranferred to the location PC2 (i.e., routine 2).
When routine 2 is operating; it executes:
JSR PC,@(R6)+

with the result that PC2 is exchanged for PC1 on the stack and control is transferred back to routine 1.

ROUTINE #1 IS OPERATING, IT THEN
EXECUTES:
MOV #PC2,-(R6)
JSR PC,@(R6)+
WITH THE FOLLOWING RESULTS:

1. PC2ISPOPPED FROM THE STACK
AND THE SP AUTOINCREMENTED. SP—» PC2

2. SPISAUTODECREMENTED AND
THE OLD PC (I.E., PC1) IS PUSHED.

3. CONTROL IS TRANSFERRED TO THE SP—» PC2 pPC2
LOCATION PC2 (I.E., ROUTINE #2).

ROUTINE #2 ISOPERATING, IT THEN
EXECUTES:

JSR PC,@(R6}+
WITH THE RESULT THAT PC2 IS SP—e PCi)
EXCHANGED FOR PC1 ON THE
STACK AND CONTROL IS
TRANSFERRED BACK TO ROUTINE #1. MR-3672

Figure 8-11 Coroutine Interaction

8-18

8.3.10 Recursion

An interesting aspect of a stack facility, other than its providing for automatic handling of nested
subroutines and interrupts, is that a program may call on itself as a subroutine just as it can call on any
other routine. Each new call causes the return linkage to be placed on the stack, which, as it is a last-
in/first-out queue, sets up a natural unraveling to each routine just after the point of departure. Typical
flow for a recursive routine might resemble that shown in Figure 8-12.

MAIN PROGRAM

SUB 1

SuB 2

SuB 2

MR-3673

Figure 8-12 Recursive Routine Flow

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses once before
returning.

Example:
DNCF: ,
BEQ 1$ “TO EXIT RECURSIVE LOOP
JSR R5,DNCF 'RECURSE
s ,
RTS RS .RETURN TO 1$ FOR

;EACH CALL, THEN TO
sMAIN PROGRAM

The routine DNCF calls itself until the variable tested becomes equal to 0, then it exits to 1§ where the
RTS instruction is executed, returning to the 1$ once for each recursive call and a final time to return to
the main program.

In general, recursion techniques will lead to slower programs than the corresponding interactive tech-

niques, but recursion will produce shorter programs, and thus save memory space. Both the brevity and
clarity produced by recursion are important in assembly language programs.

8-19

Uses of Recursion — Recursion can be used in any routine in which the same process is required several
times. For example, a function to be integrated may contain another function to be integrated, as in
solving for XM, where

SM =1 + F(X)

and
F(X) = G(X)

Another use for a recursive function could be in calculating a factorial function, because
FACT(N) = FACTIN - 1) * N

Recursion should terminate when N = |.

The macroprocessor within MACRO-11, for example, is itself recursive since it can process nested
macrodefinitions and calls. For example, within a macrodefinition, other macros can be called. When a
macro call is encountered within definition, the processor must work recursively; that is, it must process
one macro before it is finished with another, then continue with the previous one. The stack is used for a
separate storage area for the variables associated with each call to the procedure.

As long as nested definitions of macros are available, it is possible for a macro to call itself. However,
unless conditionals are used to terminate this expansion, an infinite loop could be generated.

8.3.11 Processor Traps

Certain errors and programming conditions cause the KDJ11-A processor to enter the service state and
trap to a fixed location. A trap is an interrupt generated by software. Pending conditions are arbitrated
according to a priority. The following list describes the priority from highest to lowest.

Condition Description

Memory Management Violation* A memory management violation causes an abort and
(MMUERR) traps to location 250g.

Timeout Error* (BUSERR) No response from a bus device during a bus transaction

causes an abort and traps to location 4g.

Parity Error* (PARERR) A parity error signal received by the processor during a
bus transaction causes an abort and traps to location 114g.

Trace (T) Bit* If PS bit 4 is set at the end of instruction execution, the
processor traps to location 14g.

Stack Overflow* (STKOVF) If the kernel stack pointer was pushed below 400g during
an instruction execution, the processor traps to location 4g
at the end of the instruction.

Power Fail* (PFAIL) If bus signal power OK (BPOKH) became negated during
instruction execution, the processor traps to location 24g
at the end of the instruction.

* Nonmaskable software cannot inhibit the condition. CTLERR, MMUERR, BUSERR, PARERR are mutually exclusive
when the processor is executing a program.

8-20

Condition Description

Interrupt Level 7 (BIRQ7) If device interrupt requests are asserted and PS<07:05>
Interrupt Level 6 (BIRQ6) are properly set, the processor at the end of the present
Interrupt Level 5 (BIRQ5) instruction execution will initiate an interrupt vector
Interrupt Level 4 (BIRQ4) sequenced on the bus. These inputs are maskable by

PS<07:05>.

PS<07:05> Levels Inhibited

7 All

6 6, 5,4

5 5, 4

4 4

0-3 None
Halt Line If the BHALT L bus signal is asserted during the service

state, the processor will enter ODT mode.

8.3.11.1 Trap Instructions - Trap instructions provide for calls to emulators, /O monitors, debugging
packages, and user-defined interpreters. When a trap occurs, the contents of the current program counter
(PC) and program status word (PS) are pushed onto the processor stack and replaced by the contents of a
2-word trap vector containing a new PC and new PS. The return sequence from a trap involves executing
an RTI or RTT instruction, which restores the old PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the word in their
machine language representation. This allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or EMT instructions is typically the

starting address of a routine to access and interpret this information. Such a routine is called a trap
handler.

A trap handler must accomplish several tasks. It must save and restore all necessary GPRs, interpret the
low byte of the trap instruction and call the indicated routine, serve as an interface between the calling
program and this routine by handling any data that needs to be passed between them, and, finally, cause
the return to the main routine.

A trap handler can be useful as a patching technique. Jumping out to a patch area is often difficult
because a 2-word jump must be performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching should first be reserved in the dispatch
table of the trap handler. The jump can then be accomplished by placing the address of the patch area into
the table and inserting the proper TRAP instruction where the patch is to be made.

8-21

8.3.11.2 Use of Macro Calls - The trap handler can be used in a program to dispatch execution to any
one of several routines. Macros may be defined to cause the proper expansion of a call to one of these
routines, as in the example below.

.MACRO SUB2 ARG
MOV ARG, RO
TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the routine in RO and then causes the
trap instruction with the number 1 in the lower byte. The trap handler should be wriiten so that it
recognizes a 1 as a call to SUB2. Notice that ARG here is being transmitted to SUB2 from the calling
program. It may be data required by the routine or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is used to call system or monitor
routines from a user program. The monitor of an operating system necessarily contains coding for many
functions, such as I/0, file manipulation, etc. This coding is made accessible to the program through a
series of macro calls that expand into EMT instructions with low bytes, indicating the desired routine or
group of routines to which the desired routine belongs. Often a GPR is designated to be used to pass an
identification code to further indicate to the trap handler which routine is desired. For example, the macro
expansion for a resume execution command in RT-11 is as follows.

.MACRO .RSUM
CM3, 2.
.ENDM

CM3 is defined:

.MACRO CM3 CHAN, CODE
MOV #CODE *400,R0
JIF NB CHAN,BISB CHAN,R0O
EMT 374
.ENDM

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a group of
routines. Then the contents of RO (high byte) are tested by the handler to identify exactly which routine
within the group is being requested — in this case routine number 2. (The CM3 call of the .RSUM is set up
to pass the identification code.)

8.3.12 Conversion Routines

Almost all assembly language programs require the translation of data or results from one form to another.
Code that performs such a transformation is called a conversion routine in this guide. Several commonly
used conversion routines follow.

Almost all assembly language programs involve some type of conversion routine. Octal-to-ASCII, octal-to-
decimal, and decimal-to-ASCII are a few of the most widely used.

8-22

Arithmetic multiply and divide routines are fundamental to many conversion routines. Division is typically
approached in one of two ways.

1.

The division can be accomplished through a combination of rotates and subtractions.
Example:

Assume the following code and register data; to make the example easier, also assume a 3-bit
word.

DIV: MOV #3,—(SP) :SET UP DIGIT COUNTER
CLR —(SP) :CLEAR RESULT

1$ ASL (SP)
ASL R1
ROL RO
CMP RO,R3
BLT 2§
SUB R3,R0 ;RO CONTAINS REMAINDER
INC (SP) :INCREMENT RESULT

2$ DEC 2 (SP) :DECREMENT COUNTER
BNE $1

Therefore, to divide 7 by 2:

RO = 000 remainder

Rl =111 7 (multiplicand)
R3 =010 2 (multiplier)
Cbit=0

STACK

011 counter

000 quotient

Following through the coding, the quotient, remainder, and dividend all shift left, manipulating
the most significant digit first, etc.

At the conclusion of the routine:

RO = 001 remainder
R1 = 000

R3 =010

STACK

000 counter
011 quotient

8-23

2.

The second method of division works by repeated subtraction of the powers of the divisor,
keeping a count of the number of subtractions at each level.

Example:

To divide 2211¢ by 10, first try to subtract powers of 10 until a nonnegative value is obtained
counting the number of subtractions of each power.

b

221
—1000

Negative, so go to the next lower power, and count for 103 = 0.

221
—-100
121 count for 102 = 1
—100
21 count = 2
-100

Negative, so reduce power, and count for 102 = 2.

21
-10
11 count for 10; = 1.
11
-10
1 count = 2
~10

Negative, so count for 10! = 2.
No lower power, so remainder is 1.

Answer = 022, remainder 1.

8-24

Multiplication can be done with a combination of rotates and additions or with repetitive additions.

Example:

Assume the following code and a 3-bit word.

ADD

CLR RO
MOV #3,CNT
MOV R1,MULT;

MORE:

NOW;

MULT:
CNT:

The following conditions exist for 6 times 3:

RO = 000
R1 =110
R3 =011

high-order half of result
multiplicand
multiplier

After the routine is executed:

RO =010
R1 =010
R2 =100
CNT =0

MULT =110

Example:

high-order half of result
low-order half of result

Multiplication of RO by 50g(101000).

MULS0:

If RO contains 7;
RO=111

After execution:

MOV RO0,—(SP)
ASL RO

ASL RO

ADD (SP)+,R0
ASL RO

ASL RO

ASL RO
RETURN

RO = 100011000
(73 * 508 = 430g).

8-25

;HIGH HALF OF ANSWER
;SET UP COUNTER
sMULTIPLICAND

ROR R2
BCC NOW
ADD MULT,RO ;IF INDICATED,

;MULTIPLICAND
ROR RO

R04 R1

DEC CNT

BNE MORE

0

0

ASCII Conversions — The conversion of ASCII characters to the internal representation of a number, as
well as the conversion of an internal number to ASCII in /O operations, presents a challenge. The
following routine takes the 16-bit word in R1 and stores the corresponding six ASCII characters in the
buffer addressed by R2.

OUT: MOV #5,R0 ;LOOP COUNT
LOOP: MOV R1,—(SP) ;COPY WORD INTO STACK
BIC #177770,@SP ;ONE OCTAL VALUE
ADD #0,@SP ;CONVERT TO ASCII
MOVB (SP+,—(R2) ;STORE IN BUFFER
ASR R1 ;SHIFT
ASR R1 ;RIGHT
ASR R1 ;THREE
DEC RO ;TEST IF DONE
BNE LOOP ;NO, DO IT AGAIN
BIC #177776,R1 ;GET LAST BIT
ADD #0,R1 ;CONVERT TO ASCII
MOVB R5,—(R2) ;STORE IN BUFFER
RTS PC ;DONE,RETURN

8.4 PROGRAMMING THE PROCESSOR STATUS WORD

The current processor status can be read and written using several programming techniques on the PS. The
PS has an 1/O address of 17777776. The KDJ11-A and other PDP-11 processors implement this address,
whereas LSI-11 and LSI-11/2 processors do not. One technique is to use the I/O address as a source or
destination address with any instruction.

CLR @#17777776
MOV @#17777776, RO

The first instruction clears the PS and the second instruction moves the contents of the PS to general
register RO.

The PS explicit address (17777776) can be accessed on a word or byte basis. The KDJ11-A will recognize
the PS odd address (17777777) and the access result will be identical to an odd memory address reference.

Another technique is to use the two dedicated PS instructions, MTPS and MFPS. These instructions only
reference the even byte. If memory management is enabled certain PS bits are protected.

8-26

8.5 PROGRAMMING PERIPHERALS

Programming LSI-11 bus-compatible modules (devices) is simple. A special class of instructions that deals
with input/output operations is unnecessary. The bus structure permits a unified addressing structure in
which control, status, and data registers for devices are directly addressed as memory locations. Therefore,
all operations on these registers, such as tranferring information into or out of them or manipulating data
within them, are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers greatly increases the flexibility of
input/output programming. For example, information in a device register can be compared directly with a
value and a branch made on the result.

CMP RBUF, #101
BEQ SERVICE

In this case, the program looks for 101 in the DLV11 receiver data buffer register (RBUF) and branches if
it finds it. There is no need to transfer the information into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can transfer the character into a user
buffer in memory or to another peripheral device. The instruction:

MOV DRINBUF LOC
transfers a character from the DRV11 data input buffer (DRINBUF) into a user-defined location.

All arithmetic operations can be performed on a peripheral device register. For example, the instruction
ADD #10, DROUT BUF will add 10 to the DRV 11’s output buffer. All read/write device registers can be
treated as accumulators. There is no need to funnel all data transfers, arithmetic operations, and compari-
sons through one or a small number of accumulator registers.

8.6 PDP-11 PROGRAMMING EXAMPLES
The programming examples on the following pages show how the instruction set, the addressing modes,

and the programming techniques can be used to solve some simple problems. The format used is either
PAL-11 or MACRO-11.

8-27

Program
Address

000500
000504
000510
000514
000520

000524
000526
000430
000532
000534
000536
000540
000542

000544

000546

000700
000702
000704
000706
000710

001000
001002
001004
001006
001010

Program
Contents

000000
000001
000002
000003
000004
000005
000006
000007

000500
012706
000500
012701
000700
012702
000712
012703
001000
012704
001012
005000
005005
062105
020102
001375
062300
020304
001375

160500
000000

000700
000001
000002
000003
000004
000005

001000
000004
000005
000006
000007
000010

000500

Label

START:

SUMI:

SUM2:

DIFF:

Op Code Operand
R0=%0

R1-%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

=500

MOV #..SP
MOV #700,R1
MOV #712,R2
MOV #1000,R3
MOV #1012,R4
CLR RO

CLR RS

ADD (R1)+,R5
CMP R1,R2
BNE SUMI
ADD (R3)+,RO
CMP R3,R4
BNE SUM2
SUB R5,R0
HALT

=700

WORD 1,2,34,5
=1000

WORD 4,5,6,7,8

END

8-28

Comments

;PROGRAMMING EXAMPLE
;SUBTRACT CONTENTS OF LOCS 700-710
;FROM CONTENTS OF LOCS 1000-1010

;INIT STACK POINTER

;START ADDING
;FINISHED ADDING?

;JF NOT BRANCH BACK
;START ADDING
;FINISHED ADDING?

;IF NOT BRANCH BACK

;'SUBTRACT RESULTS

;THAT’S ALL FOLKS

Program
Address

Program
Contents

Label Op Code Operand

RO=%0
R1=%1
R2=%2
SP=%6
PC=%7

=500
START: MOV#..SP

MOV #VALUE,RI
MOV #VALUES+40.,R2

CLR RO
CHECK: TST (R1)+
BPL NEXT
INC RO
NEXT: CMP R1,R2
BNE CHECK
HALT
VALUES: 0
.END

8-29

Comments

;PROGRAM TO COUNT NEGATIVE
NUMBERS

;IN'A TABLE

:20. SIGNED WORDS

;BEGINNING AT LOC VALUES

;COUNT HOW MANY ARE NEGATIVE IN RO

;SET UP STACK
;SET UP POINTER
;SET UP COUNTER

;TEST NUMBER
;POSITIVE?

;NO, INCREMENT
;COUNTER

;YES, FINISHED?
;NO, GO BACK
;YES, STOP

Program Program
Address Contents Label Op Code Operand Comments

;PROGRAM TO COUNT ABOVE AVERAGE
QUIZ SCORES

;LIST OF 16. QUIZ SCORES

;BEGINNING AT LOC SCORES

;KNOWN AVERAGE IN LOC AVERAGE
;COUNT IN RO SCORES ABOVE AVERAGE

RO=%0
R1=%1
R2=%2
R3=%3
SP=%6
PC=%7
=500
START: MOV #..SP ;SET UP STACK
MOV #16.,R1 ;SET UP COUNTER
MOV #SCORES,R2 ;SET UP POINTER
MOV #AVERAGE,R3
CLR RO
CHECK: CMP (R2)+,(R3) ;COMPARE SCORE AND AVERAGE
BLE NO ;LESS THAN OR EQUAL
;TO AVERAGE?
INC RO ;NO, COUNT
NO: DEC R1 ;YES, DECREMENT COUNTER
BNE CHECK ;FINISHED? NO, CHECK
HALT ;YES, STOP

AVERAGE: 65.

SCORES* 25.,70.,100.,60.,80.,80.,40.
55.,75.,100.,65.,90.,70.,65.,70.

.END

8-30

Program
Address

Program
Contents

OUT:

SAVE:

Label

START:

MOV

MOV

ECHO:

BPL
MOVB
MOVB
DEC
BNE

MOV

MOV

TSTB

BPL
MOVB
DEC
BNE
HALT

BYTE
=420,
.END

Op Code Operand

R0=%0
R1=%]1
SP=%6
CR=15
LF=12
TKS=177560
TKB=TKS+2
TPS=TKB+2
TPB=TPS+2

.TITLE ECHO
.=1000

MOV #..Sp
#SAVE+2,R0
#20.,R1

TSTB @#TKS
BPL IN

TSTB @#TPS
ECHO
@#TKB,@#TPB
@#TKB,(RO)+

R1

IN

#SAVE,R0

#22.,R1

@#TPS
ouT
(RO)+,@#TPB

R1
ouT

CR,LF

8-31

Comments

;PROGRAMMING EXAMPLE

;ACCEPT (IMMEDIATE ECHO) AND
;STORE 20. CHARS

;FROM THE KEYBOARD, OUTPUT CR & LF
;ECHO ENTIRE STRING FROM STORAGE

;INITIALIZE STACK POINTER
;SA OF BUFFER

;BEYOND CR & LF
;CHARACTER COUNT

;:CHAR IN BUFFER?

;IF NOT BRANCH BACK
;AND WAIT

;CHECK TELEPRINTER
;READY STATUS

;ECHO CHARACTER
;STORE CHARACTER AWAY

;FINISHED INPUTTING?

;SA OF BUFFER INCLUDING
iCR & LF

;COUNTER OF BUFFER
;INCLUDING CR & LF

;CHECK TELEPRINTER
;READY STATUS

;OUTPUT CHARACTER

;FINISHED OUTPUTTING?

Program
Address

Program
Contents

Label

INPUT:

IN:
OUT:

SORT:
NEXT:

LOOP:
LT:

GT:

INSERT:

COUNT:
LINEI:

LINE2:

BUFFER:

Op Code Operand

MOV #BUFFER,R0

MOV #-10.,R1

TSTB @#TKS

BPL IN

TSTB @#TPS

BPL OUT

MOVB @#TKB,@#TPB
MOVB @#TKB,(RO}+
INC R1

BNE IN

RTS PC

MOV #-10.,R4
MOV COUNT,R3
MOV #BUFFER+9.,R0
ADD R3,R0
MOVB (RO)+,R1
CMPB (RO)+,R1
BGE GT

MOVB —(RO),R2
MOVB R1,(RO)}+
MOV R2,R1

INC R3

BNE LOOP

MOVB R1,BUFFER+10.(R4)

INC R4

INC COUNT

BNE NEXT

MOV #-9.,COUNT
RTS PC

.-WORD -9.

Comments

;PROGRAMMING EXAMPLE
;SUBROUTINE TO INPUT TEN VALUES
;SET UP SA OF

;STORAGE BUFFER

;SET UP COUNTER

;TEST KYBD READY STATUS

;TEST TTO READY STATUS
;ECHO CHARACTER
;'STORE CHARACTER

;JINC COUNTER

;EXIT

;PROGRAMMING EXAMPLE
;SUBROUTINE TO SORT TEN VALUES

;RESTORE LOCATION COUNT
;EXIT

ASCII/INPUT ANY TEN SINGLE-DIGIT VALUES (0-9); I'LL/
.ASCII/SORT AND OUTPUT THEM IN/
.ASCII/SMALLEST TO LARGEST ORDER./

=+10.
.END INITSP

8-32

;FINISHED!!

Program
Address

Program
Contents

Label

INITSP:

Op Code Operand Comments
;PROGRAMMING EXAMPLE
;SUBROUTINE EXAMPLE
;INPUT TEN VALUES, SORT, AND
;OUTPUT THEM IN SMALLEST TO LARGEST
ORDER

RO=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

TKS=177560

(address of terminal control status register)
TKB=TKS+2 - (terminal data buffer register)
TPS=TKB+2

(terminal output control and status registers)
TPB=TPS+2 - (terminal output data buffer)

.=3000

MOV #.,SP
JSR PC,CRLF

JSR RS, OUTPUT

LINEI

69.

JSR PC,CRLF
JSR RS, OUTPUT
LINE2

26.

JSR PC,CRLF
JSR PC,INPUT
JSR PC,SORT
JSR PC,CRLF
JSR R5,0UTPUT
BUFFER

10.

JSR PC,CRLF
HALT

8-33

;INITIALIZE STACK POINTER
;GO TO CRLF SUBROUTINE
;GOT TO OUTPUT SUBROUTINE
;SA OF LINE 1 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 2 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO INPUT SUBROUTINE
;GO TO SORT SUBROUTINE
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;INPUT BUFFER AREA
;NUMBER OF OUTPUTS

;THE END!!!

Program Program
Address Contents Label Op Code Operand Comments
;PROGRAMMING EXAMPLE
; SUBROUTINE TO OUTPUT A CR & LF
CRLF: TSTB @#TPS ;TEST TTO READY STATUS
BPL CRLF
MOVB #15,@#TPB ;OUTPUT CARRIAGE RETURN
LNFD: TSTB @#TPS ;TEST TTO READY STATUS
BPL LNFD
MOVB #12,@#TPB ;OUTPUT LINE FEED
RTS PC ;EXIT
;SUBROUTINE TO OUTPUT A
;VARIABLE LENGTH MESSAGE
OUTPUT: MOV (R5)+,R0 ;PICK UP SA OF DATA BLOCK
MOV (RS5)+,R1 ;PICK UP NUMBER OF OUTPUTS
NEG R1 ;NEGATE IT
AGAIN: TSTB @#TPS ;TEST TTO READY STATUS
BPL AGAIN
MOVB (R0)+,@#TPB ;OUTPUT CHARACTER
INC R1 ;BUMP COUNTER
BNE AGAIN
RTS R5

8.7 LOOPING TECHNIQUES

Looping techniques are illustrated in the program segments below. The segments are used to clear a 50-
word table.

1. Autoincrement (pointer address in GPR)

RO = %0

MOV #TBL,R0O
CLR (RO)+

CMP RO,#TBL+100.
BNE LOOP

LOOP:

2. Autodecrement (pointer and limit values in GPR)

RO=%0
R1=%I

MOV #TBL,RO
MOV #TBL+100.,R1
CLR - (R1)

CMP R1,R0

BNE LOOP

LOOP:

8-34

Counter (decrementing a GPR containing count)

LOOP:

R0=%0
R1=%I

MOV #TBL,RO
MOV #50.R1
CLR (RO)+
DEC Rl

BNE LOOP

Index Register Modification (indexed mode; modifying index value)

LOOP:

R0O=%0

CLR RO

CLR TBL (RO0)
ADD #2,R0
CMP RO,#100.
BNE LOOP

Faster Index Register Modification (storing values in GPR)

LOOQOP:

RO=%0
R1=%1
R2=%2

MOV #2,R1
MOV #100.,R2
CLR RO

CLR TBL (R0)
ADD R1,R0
CMP RO,R2
BNE LOOP

Address Modification (indexed mode; modifying base address)

LOOP:

R0=%0

MOV #TBL,R0O
CLR 0(RO)

ADD #2,LOOP+2
CMP LOOP+2,#100.
BNE LOOP

8-35

CHAPTER 9
BOOT ROMS AND DIAGNOSTICS

9.1 INTRODUCTION

The KDJ11-A module may be incorporated into some type of LSI-11 based system using a mass storage
device and a system console. The system should contain a multifunction option such as the MXV11-B with
a system device bootstrap program that is included in the MXV11-B2 ROM option. These ROMs are
required for on-site Field Service support.

The operation of the XXDP+ diagnostics for the KDJ11-A module are described in this section,

9.2 MXV11-B2 ROM SET

The MXV11-B2 ROM set is a bootstrap/diagnostic option for the MXV11-B multifunction module and
the MRV11-D universal PROM module. The option performs bootstrap programs for mass storage
devices and diagnostic programs on the CPU, memory, and I/O devices during power-up or when
manually invoked.

The bootstrap function is automatic at power-up if the CPU is configured for this feature. The system
console can be used to boot devices at nonstandard I/O page addresses, select a secondary system device,
or run a diagnostic program.

CAUTION
In the event of a power failure, if a system uses
battery backup, the user should not power-up using
the automatic mode. During the power-up sequence,
this mode executes a memory diagnostic and could
destroy the data stored. An alternative power-up
mode should be selected.

The MXV11-B2 supports turnkey operation so that the user does not have to initiate the bootstrap
function. It supports all the system devices currently available for the LSI-11 bus, These include the
RLOI, RLO2, TVS0S, TU58, RX50/RD5I.

9.2.1 Power-Up

The MXV11-B2 performs a memory diagnostic at power-up. On completion of the memory test, a search
is conducted for a bootable device. During the power-up sequence, the console port is monitored for a
CTRL C command and, if it occurs, the sequence is aborted and the BOOT?> prompt appears on the
console.

9-1

9.2.2 Automatic Booting
The KDJ11-A will power-up at 17 773 000 when power-up option 2 is selected. The MXV11-B2 option
will automatically perform the power-up diagnostics and then search for a bootable device as follows.

RLO1/RLO2 (units 0 through 3)
RX50/RD51* (units O through 7)
RXO02 (units 0 and 1)

RXOI1 (units 0 and 1)

TSVOS (unit O only)

TUS8

The MXV11-B2 boots a volume from unit 0 of the first mass storage device found. If unit O cannot be
booted, it searches through RX and RD units 1-7 in sequence of the same device for a bootable volume.
When a bootable volume cannot be located, it proceeds to the next device in sequence and exercises the
same routine. A message appears on the console approximately every 30 seconds until a volume is
bootstrap loaded. If no devices exist or respond to the booting sequence, then it will try to boot a TUSS.

When a bootable volume is found, the MXV11-B2 reads the boot code from the selected mass storage
device and unit (logical block 0) into successive memory locations, starting at address 0. It loads the unit
number and the device CSR address into registers 0 and 1, respectively.

9.2.3 Manual Booting

Pressing a CTRL C before a device is booted will abort the program and enter the manual mode by issuing
the BOOT?> program or ODT prompt “@”. The KDJ11-A module allows the user to select a bootstrap
address by using power-up option 3. A list of the MXV11-B2 boot commands are listed in Table 9-1.

Table 9-1 MXV11-B2 Boot Commands

Command Group Function

CLn Utility Clock on/off

mDDn Boot Boot TU58

mDLn Boot Boot RLO1/RLO02

mDUn Boot Boot MSCP devices (RX50/RD51)*
mDXn Boot Boot RX01

mDYn Boot Boot RX02

HE Utility Help

IN Utility Initialize bus

LD Utility Load from boot block

MP Utility Show memory map

mMSn Boot Boot TSVO0S

n/ Ulity Examine/deposit memory
mNEn Boot Boot DECnet via DLVI11-E
mNFn Boot Boot DECnet via DLVII-F
mNPn Boot Boot DECnet via DPVI11
mNUn Boot Boot DECnet via DUVI11
oD Utility Enter console ODT

mTCn Utility Clock test

TF Utility Floating-point test

mTMn Utility Test memory

mTSn Utility Serial line test

* The boot searches for removable (RX50) disk and then fixed disk (RD51).

* Sequences through MSCP (mass storage control protocol) removable units O through 7, then MSCP fixed units O through 7.

9-2

9.2.4 Error and Help Messages
The MXV11-B2 ROMs will printout on the system console a variety of error and help messages when the
system fails to be booted. In the automatic mode, a message is displayed every 30 seconds while it searches
for a bootable device, this does not represent a failure. The messages can occur for either the automatic or
manual mode. A fatal message is always preceded by BOOTROM-F-~; other messages will provide helpful
information to the user. The messages are listed in Table 9-2 with suggestions to help the user.

Table 9-2 MXV11-B2 Error Messages

Message*

Cause

Suggested User Action

Automatic Boot Soft Error Message

No device ready after x tries.

Automatic Boot Fatal Error Messages

7BOOTROM-F Memory parity
€rror at Xxxxxx.

?BOOTROM-F Memory error at
XXXXXX.

I7BOOTROM-F Unknown error -
call for help.

XXXXXX
@

Any partially printed message.

General Command Error Messages

?BOOTROM-F Syntax error in
command.

BOOTROM-F No such com-
mand - type HE for help.

BOOTROM-F Too many
characters.

7BOOTROM-F Number not
octal.

No bootable device or volume available
to load. This message repeats at 30-
second intervals until 10th message,
then repeats at 15-minute intervals
(approximately).

Defective memory unit or MMU
detected.

Fatal hardware failure detected.

Fatal hardware failure or bad system
volume detected.

Fatal hardware failure detected, possi-
bly the console.

Illegal character or other general input
error occurred.

Invalid or misspelled command
entered.

More than 8 octal digits typed before
the 2-letter command, or more than 1
digit following command, or more than
17 letters in command.

An 8 or 9 was typed.

Close doors on floppy if system is on
RXO01 or RX02 media. Make sure that
RLO1/RL0O2 READY (white) indicator
is on, etc. If problem is not obvious and
the message repeats, press CTRL C and
try to boot desired device with a key-
board command. More specific messages
will appear.

Record the message and number. Turn
power off, then on. If problem remains,
service is required. If you wish to bypass
the memory test, use manual mode by
rebooting system, pressing CTRL C, and
then using the LOAD command.

Record all relevant information about
the system, including the LED indicators
on MXV11-B module (if installed). Ser-
vice is required.

Try a different system volume, if availa-
ble (one you know works, if possible). If
the problem remains, record information
as above. Service is required.

If possible, try a different console. If the

problem remains, record information.
Service is required.

Retype command correctly.

Refer to manual, or type HE to get a
list of all valid commands.

Retype command correctly.

Determine correct number and retype
command.

* XX = device mnemonic, x = octal number

9-3

Table 9-2 MXV11-B2 Error Messages (Cont)

Message*

Cause

Suggested User Action

Manual Boot Messages

You can produce these messages by using one of the commands in the boot group (Table 9-1). Some device-specific messages
are listed in the next section of this table.

Enter a device and unit

XX x boot block read.

No boot block on volume.

Unknown boot block on volume
boot anyway?

?BOOTROM-F No XX device
at x.

"BOOTROM-F XX x read error.

7BOOTROM-F XX x error.

?BOOTROM-F XX x not ready.

Previous command was LD.

Normal termination for a boot group
command when the previous command
was LD.

The volume has a format that corre-
sponds to a Digital data-only volume.

The volume has a format that does not
correspond to any Digital standard.

If a CSR was explicitly typed in, it
may be incorrect. If none was typed,
the device is missing, defective, or con-
figured for a nonstandard 1/0 page
address.

Error detected in the device or volume.

Device error detected.

Volume not ready to be read by device
(for example, not loaded).

If you wish to load a device boot block
into memory without executing it, enter
a valid command from the boot group.
Normal load-and-go operation is restored
after the command executes.

Examine or alter the boot block in loca-
tions 000000 to 000776 by using console
ODT.

Remove the volume and replace with
correct one, or (if it is not a Digital sys-
tem volume) boot it with the LD com-
mand. (Refer to LD command section.)

Type N and retry with a different vol-
ume. If it is not a Digital system vol-
ume, type Y; this transfers control to
secondary boot at location zero.

If CSR was incorrect, retype with cor-
rect CSR. If not, service is required.
(Hardware must be supported by Digital,
and device must be part of your system.)

Try another volume you know is good.
If the problem remains, service is
required.

Service may be required, unless there is
an obvious solution.

The solution depends on the device, and
is usually obvious after inspection (for
example, volume not inserted into
device, floppy drive door open, or RLO2
disk cover left out). If the device has a
panel of status indicators, they may give
a clue. If there is no obvious solution,
service may be required.

* XX = device mnemonic, x = octal number

9-4

Table 9-2 MXV11-B2 Error Messages (Cont)

Message*

Cause

Suggested User Action

BOOTROM-F Bad CSR
number,

"BOOTROM-F Bad Unit
number.

BOOTROM-F Unknown error -
call for help.

’BOOTROM-F Fatal ROM

error.

XXXXXX

@

Any partially printed message.

BOOTROM-F Memory cache
parity error.

CSR number typed in is greater than
177560, less than 160000, or odd, or
specified CSR is that of the console.

Specified unit does not exist in system,
or the number is greater than maxi-
mum number of units supported by
single controller for specified device

type.

Fatal hardware failure detected.

Fatal hardware failure or a bad system
volume detected.

Fatal hardware failure detected, possi-
bly the console.

Cache memory parity error or failure
detected.

Device-Specific Manual Boot Messages

RX02 unit with RX01 volume.
Boot anyway? (Occurs with
RX02 floppy disk systems.)

7BOOTROM-F Comm error.
(Occurs only while booting
DECnet via a serial line from a
keyboard command, such as

NE))

RX02 drive loaded with single-density
volume.

DECnet boot could not be executed
due to hardware or software problem
in host system, target system, or com-
munication link.

Retype the command, using correct
CSR address.

If device uses unit- number plugs, such
as RL disks, they may have been
changed or removed without operator
knowledge. Check device for plugs and
retype command. If not, there may be a
hardware fault.

Record all relevant information about
the system, including LED indicators on
the MXV11-B module (if installed). Ser-
vice is required.

Try a different system volume, if availa-
ble (one you know works, if possible). If
the problem remains, record all relevant
information, including the LED indica-
tors on the MXV11-B module (if
installed). Service may be required.

If possible, try a different console. If
problem remains, record all information.
Service may be required.

Replace processor module or continue to
use system without cache (cache turned
off). System simply runs slower.

If you know the volume contains a valid
RX02 boot-only block, type Y. If vol-
ume is unknown, it may be an RX01
disk.

Check the communication line. Service
may be required.

* XX = device mnemonic, x = octal number

9-5

If the option is installed in the MXV11-B module, the LEDs on the module can indicate errors.

The LEDs read as follows. The single red LED to one side of the green LED is bit 3; the three red LEDs to
the other side of the green LED are bits 2 to 0, with bit 2 being the red LED closest to the green LED.
3 2 1 0

Red Green Red Red Red (As seen looking at the edge of the board, with the
components up.)

In the following chart, a 1 indicates the LED is on, and O indicates the LED is off. The green LED
indicates +5 Vdc is applied to RAM memory.

The chart shows which part of the ROM program was executing when the system hung up.

LEDs
3 2 1 0
0 0 0 0 Successful boot
0 0 0 1 Comprehensive memory test
0 0 1 0 Waiting for console input
0 0 1 1 Low memory test (below 2000 octal)
0 1 0 0 MSCP device (RXS50/RD51)
0 1 0 1 Not assigned
0 1 1 0 Not assigned
0 1 1 1 RLO1/RLO2 boot
1 0 0 0 RX01/RX02 boot
1 0 0 1 TSVO0S5 boot
1 0 1 0 Not assigned
1 0 1 1 DPV11 DECnet boot
| 1 0 0 DUV11 DECnet boot
1 1 0 1 DLV11 DECnet boot
1 | 1 0 TUS58 boot
1 | 1 1 Power-up initialization

LED indicator codes that are not assigned should never appear when using the MXV11-B2.

NOTE ,
A 1111 indicator code appears after a successful
DECnet boot.

9.3 DIAGNOSTICS

The XXDP+ diagnostic programs help to verify the system is functioning correctly or to isolate a faulty
component. These are used for maintenance purposes and not as part of the normal system operation. The
XXDP+ diagnostic software consists of a library of diagnostic programs designed to test individual system
components. These can be chained together, dependent on the system configuration, to provide an overall
system diagnostic. The diagnostics specifically used for the KDJ11-A module are listed in Table 9-3 and
are described below.

9-6

Table 9-3 KDJ11-A Diagnostics

Name Function

CZKDIJAO CPU tests

CZKDKAO Memory management tests
CZKDLAO Floating-point tests
CZKDMAO Cache memory tests

The HALT trap option must be disabled by installing the W5 jumper when running these diagnostics. The
diagnostic program can be halted by asserting the HALT line. This is done by pressing the BREAK key on
the system console for systems configured to assert HALT when BREAK is keyed. They can be restarted
by addressing location 152 010 and pressing the G key on the system console. The system monitor *.” will
prompt and the diagnostic program can be selected by the run command R followed by the diagnostic
name. The name will be echoed and the program started. The name of the diagnostic is printed on the first
pass and completed tests are identified by the system console printing END PASS. When an error is
detected, the diagnostic will halt and print out the error condition as follows.

Error = Specific Function Being Tested
Error = (Unique Error Number)
Error PC = (PC at Time of Error)

9.4 DIAGNOSTIC EXAMPLE

An example of running the diagnostics is described below. The response of the user is underlined and the
system response is typed. The W5 jumper must be installed. Comments are listed on the right hand side to
further explain the example.

Diagnostic Comments

28

START? DL<CR> Booted DL device

CHMDLC! XXDP+ DL MONITOR XXDP+ monitor

BOOTED VIA UNIT 0

28K UNIBUS SYSTEM May be LSIBUS or UNIBUS
28K=MEMORY SIZE OR STANDARD

ENTER DATE (DD-MMM-YY): 1-NOV-83 User enters date

RESTART ADDRESS: 152010 Identifies restart address

THIS IS XXDP+. TYPE “H” OR
“H/L” FOR HELP

R CZKDJO<CR> . = System monitor
R = RUN command
CZKDJO.BIC CZKDJO = Diagnostic

<CR> = RETURN key

9-7

CZKDJO KDJ11 CPU Diagnostic
END PASS # 1

END PASS # 2

END PASS # 3

027622

@152010G

.R CZKDKO<CR>

CZKDKO.BIC

SET BIT 8 = | FOR 18 BIT SYSTEM
SWR = 000000 NEW = <CR>

CZKDKO KDJ11 Memory Management

END PASS # 1
END PASS # 2
END PASS # 3
END PASS # 4
012404

@152010G

R CZKDLO<CR>
CZKDLO.BIC

CZKDLO KDJ11 Floating Point

END PASS # 1
END PASS # 2
END PASS # 3
END PASS # 4
END PASS # 5
022242

@152010G

R CZKDMO<CR>

CZKDMO.BIC

SET BIT 8 = 1 FOR 18 BIT SYSTEM

SET BIT 9 = 1 FOR CACHE RAM AND TAG
RELIABILITY TESTS

SWR = 000000 NEW = <CR>

Halt test by pressing break
Address at HALT

Key restart address and
G for GO
Run diagnostic and return

Set bit 8 by 000400
Press return

Halt test by pressing break
address at halt

Key restart address and
G for GO
Run diagnostic and return

Halt by pressing BREAK
address at HALT

Key restart address and
G for GO
Run diagnostic and return

Set bit 8 by 000400
Set bit 9 by 001000
Set bits 8 and 9 by 001400

Press RETURN

CZKDMO KDJ11 Cache Memory System

END PASS # 1

END PASS # 2

END PASS # 3

END PASS # 4

END PASS # 5

END PASS # 6 Halt test by pressing BREAK

010152 address at HALT

@152010G Key restart address and
G for GO

R System monitor and run
command

9-9

APPENDIX A
INSTRUCTION TIMING

A.1 GENERAL

The execution time required for the base instruction set and the floating-point instruction sct used by the
KDJ11-A is described in this appendix. The execution time for an instruction is dependent upon the type
of instruction, the addressing mode used, and the type of memory accessed. In general, the total execution
time is the sum of the base instruction fetch/execute time and the operand(s) address calculation/fetch
time.

The execution time provided for all read instructions assumes that the data is accessed from the module
cache memory. When the data is accessed from the main memory, the execution time provided must be
degraded. Memory write instructions, indicated by the “+” notation, must have the memory write time
added to the listed time in order to determine the total time.

The floating-point instruction execution timing is provided as a range. The actual performance is data
dependent and will fall within the described range.

A.2 BASE INSTRUCTION SET TIMING

The execution times for the base instruction set are provided in Tables A-1 through A-6 and are subject to
the general notes listed at the end of Table A-6.

Table A-1 Source Address Time: All Double Operand

Read
Source Source Microcode Time Memory
Instruction Mode Register Cycles (ns) Cycles
ADD, SUB, 0 0-7 0 0 0
CMP, BIT, 1 0-7 2 534 1
BIC, BIS, 2 0-6 2 534 1
MOV 2 7 1 267 1
3 0-6 4 1068 2
3 7 3 801 2
4 0-6 3 801 1
4 7 6 1602 2 (Note 1)
5 0-6 5 1335 2
5 7 8 2136 3 (Note 1)
6 0-7 4 1068 2
7 0-7 6 1602 3

A-1

Table A-2 Destination Address Time: Read-Only Single Operand

Read
Destination Destination Microcode Time Memory
Instruction Mode Register Cycles (ns) Cycles
TST, MUL, DIV, 0 0-7 0 0 0
ASH, ASHC, MTPS, 1 0-7 2 534 1
MFPI, MFPD, CSM 2 0-6 2 534 1
2 7 1 267 |
3 0-6 4 1068 2
3 7 3 801 2
4 0-6 3 801 1
4 7 7 1869 2 (Note 2)
5 0-6 5 1335 2
S 7 9 2403 3 (Note 3)
6 0-7 4 1068 2
7 0-7 6 1602 3
Table A-3 Destination Address Time: Read-Only Double Operand
Read
Destination Destination Microcode Time Memory
Instruction Mode Register Cycles (ns) Cycles
CMP, BIT 0 0-7 0 0 0
1 0-7 3 801 |
2 0-6 3 801 1
2 7 2 534 1
3 0-6 5 1335 2
3 7 4 1068 2
4 0-6 4 1068 1
4 7 8 1236 2 (Note 2)
5 0-6 6 1602 2
5 7 10 2670 3 (Note 3)
6 0-7 5 1335 2
7 0-7 7 1869 3
Table A-4 Destination Address Time: Write-Only
Memory Cycles
Destination Destination Microcode Time
Instruction Mode Register Cycles (ns) Read Write
MOV, CLR, SXT, 0 0-6 0 0 0 0
MFPS, MTPI, MTPD 0 7 5 1335 1 0
1 0-6 2 534+ 0 1
1 7 6 1602+ 1 1
2 0-6 2 534+ 0 1
2 7 6 1602+ 1 1
3 0-6 4 1068+ 1 1
3 7 3 801+ 1 1
4 0-6 3 801+ 0 1
4 7 7 1869+ 1 1
5 0-6 5 1335+ 1 1
5 7 9 2403+ 2 1
6 0-7 4 1068+ 1 1
7 0-7 6 1602+ 2 1

A-2

Table A-5 Destination Address Time: Read-Modify-Write

Memory Cycles

Destination Destination Microcode Time
Instruction Mode Register Cycles (ns) Read Write
ADD, SUB, ADC, 0 0-6 0 0 0 0
SBC, BIC, BIS, 0 7 5 1335 1 0
SWAB, NEG, INC, 1 0-6 3 801+ 1 1
DEC, COM, XOR, 1 7 7 1869+ 2 1
ROR, ROL, ASR, 2 0-6 3 801+ 1 1
ASL 2 7 7 1869+ 2 1
3 0-6 5 1335+ 2 1
3 7 4 1068+ 2 1
4 0-6 4 1068+ 1 1
4 7 8 2136+ 2 1 (Note 2)
5 0-6 6 1602+ 2 1
5 7 10 2670+ 3 1 (Note 3)
6 0-7 S 1335+ 2 1
7 0-7 7 1869+ 3 1
Table A-6 Execution, Fetch Time
Memory Cycles
Microcode Time
Instruction Cycles (ns) Read Write
Double Operand
ADD, SUB, CMP, 1 267 | 0
BIT, BIC, XOR,
MOV, BIS
Single Operand
SWAB, CLR, COM, 1 267 1 0
INC, DEC, NEG,
ADC, SBC, TST,
ROL, ROR, ASL,
ASR, SXT, MFPS,
XOR
MFPI, MFPD 5 1335+ 1 1
MTPS 8 2136 1 0
MTPI, MTPD 3 801 2 0
CSM 28 7476+ 3 3
Extended Instruction Set
MUL 22 5874 l 0 (Notes 5, 11)
DIV
By zero 5 1335 1 0 (Note 6)
Other 34 9078 1 0 (Notes 6, 7)
ASH 4 1068 1 0 (Notes 8, 11)
ASHC
No shift S 1335 1 0
Left 6 1602 1 0 (Notes 8, 9, 11)
Right 7 1869 1 0 (Notes 8, 10, 11)

A-3

Table A-6 Execution, Fetch Time (Cont)

Double Operand Memory Cycles
Microcode Time
Instruction Cycles (ns) Read Write

Program Control

BRANCH
Not Taken 2 534 1 0
Taken 4 1068 2 0
SOB
Not Taken 3 801 1 0
Taken 5 1335 2 0
10T, TRAP, 20 5340+ 4 2
EMT, BPT
MARK 10 2670 3 0
Memory Cycles
Destination Destination Microcode Time
Instruction Mode Register Cycles (ns) Read Write
JMP 1 0-7 4 1068 2 0
2 0-7 6 1602 2 0
3 0-7 5 1335 3 0
4 0-7 5 1335 2 0
5 0-7 6 1602 3 0
6 0-6 6 1602 3 0
6 7 S 1335 3 0
7 0-7 7 1869 4 0
JSR (Note 4) 1 0-7 9 2403+ 2 1
2 0-7 10 2670+ 2 1
3 0-6 10 2670+ 3 |
3 7 9 2403+ 3 1
4 0-7 10 2670+ 2 1
5 0-7 11 2937+ 3 1
6 0-6 10 2670+ 3 1
6 7 9 2403+ 3 1
7 0-7 12 3204+ 4 1
Memory Cycles
Microcode Time
Instruction Cycles (ns) Read Write
RTS 0-6 6 1602 3 0
RTS 7 5 1335 3 0
RTT, RTI 9 2403 4 0

A-4

Table A-6 Execution, Fetch Time (Cont)

Double Operand Memory Cycles

Microcode Time

Instruction Cycles (ns) Read Write

Miscellaneous Instructions

MFPT 2 534 1 0
NOP, 3 801 1 0
SET or CLEAR

C,V,N, Z

SPL 7 1869 1 0
HALT TBD

RESET TBD

WAIT TBD

General Notes to Tables A-1 through A-6

1.

Subtract 534 ns and one read if both source and destination modes autodecrement PC, or if WRITE-ONLY or READ-
MODIFY-WRITE mode 07 or 17 is used.

READ-ONLY and READ-MODIFY-WRITE destination mode 47 references actually perform 3 read operations. For
bookkeeping purposes, one of the reads is accounted for in the EXECUTE, FETCH TIMING.

READ-ONLY and READ-MODIFY-WRITE destination mode 57 references actually perform 4 read operations. For
bookkeeping purposes one of the reads is accounted for in the EXECUTE, FETCH TIMING.

Subtract 267 ns if link register is PC.

Add 267 ns if the source operand is negative.

Subtract 267 ns if the source mode is not zero.

Add 267 ns if the quotient is even.

Add 534 ns if overflow occurs.

Add 1335 ns and 1 read if the PC is used as a destination register, but only if source mode 47 or 57 is not used.
Add 267 ns per shift.

Add 267 ns if source operand<15:6> is not zero.

Subtract 267 ns if one shift only.

Add 1068 ns and 1 read if the PC is used as a destination register, but only if source mode 47 or 57 is not used.

A-5

A.3 FLOATING-POINT INSTRUCTION SET TIMING
The execution time range for the floating-point instruction set is described in Tables A-7 through A-12.

Table A-7 Instruction Execution Times (In Microseconds)

Non-mode 0

Instruction Minimum Typical Maximum Section
ABSD 6.1 6.4 v
ABSF 5.1 5.3 v
ADDD 10.9 12.8 31.7 I
ADDF 8.3 9.3 31.7 1
CFCC 1.3 1.3 -
CLRD 3.7 3.7 11
CLRF 3.2 3.2 111
CMPD 6.4 6.7 i
CMPF 4.8 5.1 II
DIVD 42.7 44.5 II
DIVF 15.7 16.8 Il
LDCDF 6.4 6.9 11
LDCFD 5.3 5.6 11
LDCID 8.3 11.2 \%
LDCIF 6.9 9.6 \Y
LDCLD 8.3 13.9 \Y%
LDCLF 6.9 11.7 \Y
LDD 43 4.5 11
LDEXP 4.5 4.8 \%
LDF 32 3.5 11
LDFPS 1.6 1.6 \%
MODD 53.9 51.9 71.5 I
MODF 21.9 25.1 30.1 11
MULD 44.0 46.1 II
MULF 14.9 16.3 11
NEGD 5.9 6.1 v
NEGF 4.8 5.1 Iv
SETD 1.6 1.6 -
SETF 1.6 1.6 -
SETI 1.6 1.6 -
SETL 1.6 1.6 -
STCDF 4.5 5.3 111
STCDI 6.9 10.1 VI
STCDL 6.9 14.4 VI
STCFD 5.1 5.3 111
STCFI 6.1 9.3 A%
STCFL 6.1 13.6 VI
STD 3.2 3.2 I
STEXP 43 43) VI
STF. 2.1 2.1 I
STFPS 2.4 2.4 VI
STST 1.9 1.9 VI
SUBD 12.5 14.7 325 I
SUBF 9.9 10.9 27.7 I
TSTD 29 3.2 II
TSTF 2.4 2.7 I

Table A-8 Floating Source Modes 1-7

Microcode Time Memory Memory
Instruction Mode Register Cycles (ns) Read Write
Single Precision
ADDF, CMPF, 1 0-7 3 801 2 0
DIVF, LDCDF, 2 0-6 3 801 2 0
LDF, MODF, 2 7 | 267 1 0
MULF, SUBF, 3 0-6 4 1068 3 0
TSTF 3 7 3 801 3 0
4 0-7 4 1068 2 0
5 0-7 S 1335 3 0
6 0-7 4 1068 3 0
7 0-7 6 1602 4 0
Double Precision
ADDD, CMPD, 1 0-7 5 1335 4 0
DIVD, LDCFD, 2 0-6 5 1335 4 0
LDD, MODD, 2 7 0 0 1 0*
MULD, SUBD, 3 0-6 6 1602 5 0
TSTD 3 7 5 1335 5 0
4 0-7 6 1602 4 0
5 0-7 7 1869 5 0
6 0-7 6 1602 5 0
7 0-7 8 2136 6 0

* Mode 27 references only access single word operands. The exccution time listed has been compensated in order to accurately

compute the total execution time.

Table A-9 Floating Destination Modes 1-7

Microcode Time Memory Memory

Instruction Mode Register Cycles (ns) Read Write

Single Precision

CLRF, STCDF, STF 1 0-7 3 801+ 0 2
2 0-6 3 801+ 0 2
2 7 1 267+ 0 \
3 0-6 4 1068+ 1 2
3 7 3 801+ 1 2
4 0-7 4 1068+ 0 2
5 0-7 5 1335+ 1 2
6 0-7 4 1068+ 1 2
7 0-7 6 1602+ 2 2

Double Precision

CLRD, STCFD, STD 1 0-7 5 1335+ 0 4
2 0-6 5 1335+ 0 4
2 7 0 0 0 1*
3 0-6 6 1602+ 1 4
3 7 5 1335+ 1 4
4 0-~7 6 1602+ 0 4
5 0-7 7 1869+ 1 4
6 0-7 6 1602+ 1 4
7 0-7 8 2136+ 2 4

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately

compute the total execution time.

A-7

Table A-10 Floating Read-Modify-Write Modes 1-7

Microcode Time Memory Memory

Instruction Mode Register Cycles (ns) Read Write

Single Precision

ABSF, NEGF 1 0-7 5 1335+ 2 2
2 0-6 5 1335+ 2 2
2 7 1 267+ 1 1*
3 0-6 6 1602+ 3 2
3 7 5 1335+ 3 2
4 0-7 6 1602+ 2 2
S5 0-7 7 1869+ 3 2
6 0-7 6 1602+ 3 2
7 0-7 8 2136+ 4 2

Double Precision

ABSD, NEGD 1 0-7 9 2403+ 4 4
2 0-6 9 2403+ 4 4
2 7 0 0 1 1*
3 0-6 10 2670+ 5 4
3 7 9 2403+ 5 4
4 0-7 10 2670+ 4 4
5 0-7 11 2937+ 5 4
6 0-7 10 2670+ 5 4
7 0-7 12 3204+ 6 4

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately

compute the total execution time.

Table A-11 Integer Source Modes 1-7

Microcode Time Memory Memory

Instruction Mode Register Cycles (ns) Read Write

Integer

LDCID, LCDIF, 1 0-7 2 534 1 0

LDEXP, LDFPS 2 0-6 2 534 1 0
2 7 0 0 1 0*
3 0-6 3 801 2 0
3 7 2 534 2 0
4 0-7 3 801 1 0
5 0-7 4 1068 2 0
6 0-7 3 801 2 0
7 0-7 5 1335 3 0

Long Integer

LDCLD, LCDLF 1 0-7 4 1068 2 0
2 0-6 4 1068 2 0
2 7 0 0 1 0*
3 0-6 5 1335 3 0
3 7 4 1068 3 0
4 0-7 5 1335 2 0
5 0-7 6 1602 3 0
6 0-7 5 1335 3 0
7 0-7 7 1869 4 0

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately

compute the total execution time.

A-8

Table A-12 Integer Destination Modes 1-7

" Microcode Time Memory Memory

Instruction ‘ Mode Register Cycles (ns) Read Write

Integer

STCDI, STCFI, 1 0-7 2 534+ 0 1

STEXP, STFPS 2 0-6 2 534+ 0 1
2 7 2 534+ 0 1
3 0-6 3 801+ 1 1
3 7 2 534+ 1 1
4 0-7 3 801+ 0]
5 0-7 4 1068+ 1 1
6 0-7 3 801+ 1 1
7 0-7 5 1335+ 2 1

Long Integer

STCDL, STCFL, STST 1 0-7 4 1068+ 0 2
2 0-6 4 1068+ 0 2
2 7 2 534+ 0 1
3 0-6 S 1335+ 1 2
3 7 4 1068+ 1 2
4 0-7 5 1335+ 0 2
5 0-7 6 1602+ 1 2
6 0-7 5 1335+ 1 2
7 0-7 7 1869+ 2 2

A-9

APPENDIX B
PROGRAMMING DIFFERENCES

The programming differences between the KDJ11-A processor and the other processors of the PDP-11
family are summarized in Table B-1.

X X X X X

X X X X

“Jd MU 9Y] SB pasn aIe Y JO SHUIUOD
X X X X X [enul 4 () “321 YS[10 + (A) AT

'$$aIppe Dd MU dy) se
pasn uayy ‘z £q pajuswaloul e Y Jo
SIUUOD 1+ (Y) T34 YST 10 + (A) AT

T+ UdO Jo Dd 2y} ureuod
% v uoneso] iy ® ‘Od ¥dO 'V ‘Od
X X X X ¥dO ‘(¥) X D *Dd 4dO ‘(4) X ‘2d ¥4dO

v+ UdO JO Dd 9y} ureIuoo
M v uonesof 1y ‘Od YdO 'V @ Od
X AdO (D) X @ Dd ¥dO ‘(W) X “Dd ddO

‘pueiado

90IN0S 941 SB PIsn SIB Y JO SIUUOD
[e1liul :UONBUIISIP PUEB IDINOS

yioq se 19)s1321 swes oy} Juisn

X X X X () — ® Y% AdO + (W) D ‘Y% AdO

‘pueiado

92In0s 3Y) se pasn Juiaq 210jaq

7 Aq (Po1uswaId9p) paIuswIaIOU] ale
¥ JO SIUUOS UOHBUNSIP pUE IDINOS
yioq se Jasidal awes ay) Juisn

X (A — @ Y% YdO + (W) ® Y% UdO

‘puetado 92In0s ay] SE Pasn

512 3 JO S)USIUOD [BNIUI (UOIIBUIISIP

pue 1981821 yloq se 19151891 swes

X X X X gy Butsn (Y) — Y% YO + (¥) Y% AdO

._u:m‘_oao 32INos 3y) se vom_._

Buraq a10j3q 7 AqQ (PIIUSWIAIIIP) pIjudW

-2I5Ul 1R Y JO SIUIIUOD :UOIjBUIISIP

PUB 30IN0S Y10q SB 131s13al dwres ay}

X Juisn (Y) — “U% UdO + (A) ‘4% 4dO

V-IIfAX 09 0L Sy ov/sE€ 0T/sl1

01/50

I/IST v v0 ¥b ¥bT/€T

$10SS3J014

saduasayji(q Suwwesdord V-IIrAN I-4 2I9EL

amyeay

"suonejusWAdWI 19410 URY} JUSISJIP S INQ $(/]| Ul 9|qe[IEA’ SI UOLINIISUL | | Y4

‘JEWLIOJ BJEP SWES
ay) w vonesado | IHS ‘Ald “TNA

X X sopiaodd -] 1) uondo [euralxs sy
X X X ‘uononnsut J44N
-aulydBW
X X aseq ur suononuisut yutod-3uneor|
X X X X X X X X X dOX "IN ‘AId ‘DHSV ‘HSV
X X X X X X X X X ssuononnsul [XS ‘1LY MUV ‘40S
“YOOGPUDE] 40SS3004d
X X X X X X X X X X X X [I-ddd Ul pajou suononnsut diseqg '
*90su0d o NdD
£q sSoJppe UE SB Pasn uoym Jno sun
X X X (LILLLI-00LLL]) S3SSQIPDE JAISITNY
‘uonerado 2josuod I1apun
passaippe 9q ue) ‘NdD Y £q ssalppe
uresSoid © se pasn uaym jno swn
X X X X X X X X (LTLLLT-00LLLT) $35521ppE 1215139y
'NdO 4q pasn
usym sassaippe wesdosd pipea ae
X (L1LLLT-00LLLT) S3sSAIppE JoISIBoy L
X X X X X X X X X X X ‘A I gVMS
X ‘A 98ueyd 10U S0P GYMS 9
“(uononuysul [egdofj
X X X X v 03 sden ¥y, ‘31 YS[10 Y% dNF
‘(uondnnsur 1e3a(1)
X X X X X X X X 01 01 sden Y9, ‘821 YSr 40 Y% ANl °S
V-IIEAM 09 OL S¥ Ov/SE 0T/SI 01/S0 1I/IST PE vO b ¥T/€T a1med g

$10883301 3

(buo)) saduasapy(q upwwesdord V-IIraN 1-9 dqEL

X X X

X X X X

X

-oouanbas umop Jamod
Ou yim [e1R) St Y930y 1ASHY Fulmp
|1} IamOd "(WRWIUIW SPUOJISOUBY

00€ NOQE YIm SPUOIISI[IW ZT)
Sp/11 Se awes oY) SIO® [IB] Jomod

swny LIN] winwiui

Oou Yjim Je[ils 3IT py/vE/¥0-11dAd
‘Po110QE UOHONIISUI JI SIMOJ0 PUOIS
-oJoiw Jo J[N] wnwiuiw v ‘ssasdoid ut
st LINI ue ji sdesj pue uononjsut
LASHAY Y1 spud Ajorerpawiwul [e} Jomo

“SpuodasIjjiw (g 1s41j Suunp Surnooo
LINI yna asned puodasijiwr g Jo
$1sIsU00 uononIIsul JASHY (Spuodas
-{iw QL) paystulj st uonodnIsul

3y} J91j€ [nun paziugodal jou st

uononnsul J4STY Suunp [rej 19mod 6

uononsUl INSD

uononasut TdS

suononnsut J1W ‘dAN
suonannsut SIA/SI9 SpPe [1-AdM UL

‘a1a4d

“INA ‘dNSd ‘aavs ‘suononnsut juiod
Pa1USLIO PaIdplIo ¥oe)s anbiun sppe

(395 uononysut guneofy) J-1 19N UL

aqnedwod ¢p/[] e

SUOIIONIISUL MU 3s3Y] ‘DHSV pue ‘HSV
‘AId “TNA suononaisul ay1 sapiaoid

(32s uononssul uoisuedxa) -1 14N YL

V-1Irax 09 0L St ov/sg

0Z/S1 01/S0 IL/IST ¥€ ¥0 bb ¥T/€C

S10SSIV0I

amjeaq

(yu0)) saouarayyq Sumwesdord v-11rdd

I-4 dIqeL

B-4

X X X X X

X X X X X

X

X X X X X

X X X X X

X X X X X

X X

ydnumnur ue
[1un sjrepy "uononnsul [V Jo
jno aouanbas jou m den 1q-1

‘uononnsul VM
Jo 1no souanbas jjim den 1g-},

‘deny 11q-], 210J9q

pagpaimounyde st jdnurigjut oyl
‘398 1 }1g-1 941 pue uondNISul
ue Juunp sinnodo 1dnisul ue jj

1dnaasul 243 210J9q
pagpajmouoe st den 11q-1 Y3
39S 11Q- 1 Y} Sey ey}l uoijonijsut
ue uunp sindd0 jdnioul ue Jj

AR |
Suimorjoj Ajereipawwl pagpajmouyor

st des3 1g-1 ‘Nq-1 198 LLY JI

"LLY Suimoyjoy
UOIJONIISUI I2)jB Pagpa|mOuyoe SI

den 1q-1 “1q-1 5198 LY JI

‘LLY 8uimojoy
=OCU=.:w:_ o_._u ._u.CN SINd20 Qm.:
Hg-L 241 ‘Nq-1 2y $33s LLY JI

‘uonondysul f 1Y ON

"sa19]dwod

UoIONIISUL 3Y) [IuUn paziugooal

10U [1B} I1om0d "asned puosasousu ()|
wnuwiuiw g Aq pamo[[0) Spuod3soIoiw
$'8§ Wwnuwiuiw e jo SISIsu0d uon
-OnIIsur 1959y -osned puodsISOIdIW (6
B AQ pamo[|o} LIN] JO Spuooasosdiu
01 Jo sisisuod uononnsul | 4SHY

€l

Tl

0l

V-IILdd 09 OL Sv Ob/S€ 0Z/SI 0I/SO

II/IST vE ¥0 ¥¥ $T/€T

S10SS32014

ameay

(uo)) sadudrayji(q Sutmmerdoly v-1IrdN

I-4 3lqeL

X X X X X

X X X X X

X X X X X

X

X

X

‘pajuswdjdun
108 40151321 asodind-[esouad [engy

‘parudwapdwr
13151321 asodand-[e1ousd sdurg

“PaINd9X3 3q 0] padjuelend sI IDIAIIS
1dnuoyur ue ur ydnasaqun 181ty oy |

Jdnasaqur 1541y 9y) Aq pawnsse

ue) [9A3] Ajuoud 1oydiy e je
SIN300 1dNLIdUL ISYIOUR JI PIINIIXD
3q 10U [[Im dunnol jdnuajur

ue ul UoNONJIISUI IS11j Y |

*Z/0 18 P3IeaId YorIS MU

‘901A10s dexy w1 10013 snq uQ ‘den
|eie) © asned 1oyuiod yoels ayy uisn
SAOUAIZJOI JUIISIXSUOU/SSAIPPE PPO

v¢/11 10

€¢/11 ‘11-IST ut payuswaidwn jou den
$$2Ippe ppO 10419 1811 9yl JuIdlalas
den ay1 ur unINd20 0113 PuUOIIS

Y} Ylim JOLID SNQ 3[qnOp JO 3SBd B

St sy "L TVH ®© asned 4§ ay) 3uisn
SOOUIDJII JUIISIXIUOU/SSAIPPE PPO

'JIq-] PeO| JOUUEBD 3[0SUOD)
"11g-1, peo| ued (sidniiau pue sden
‘LLY ‘I1LY) seouasajar notdwi AjuQ

‘Nq-L peoj os[e
UBD 3[0SUO)) '}IG-] PEO| UED Sd 01
(Ss300€ 12211p) 2oUAIA)AI 1NN

Ll

i 4!

V-IIEA 09 0L Sv Ob/sE 0Z/SI

01/s0

I/IST ¥€ b0 ¥v PT/€T

S10SS3201

ainjedy

(uo)) saduasd g Surnweidord v-1]rad

I-4 31qeL

B-6

X X X X X

X

“1dniIaur 30149p ©
JO 9snEd3q 1I0qE UBD SUOIIONJISUI
SIJ ‘auw uonndaxa 1Y) 01 angg

1dnLIa1ul 921A9p B JO Isnedaq
1I0qE Jou Op suondnIISUl SIg

‘ydnuriajur 201a3p B
JO 9snED2q 110qQE UBD SUOHONIISUL
SId ‘2w uonndaxa Iayl o3 ang

"9y asn Apoydun

jou op suononasul Add Pue TNWA
*A[1991109

dn 195 2q 1snw 9y 3ouay ‘(dod

pue ysnd auo) gy asn Aprondur
suononnsul Ajdd pue N4

‘pajusuwd[dunt dery ssaippe ppQ
‘payuawadjdunt jou desy ssaippe ppO

‘payuowsidun
MO[JJ2A0 YOBIS JO 1JOS WO

"paruswaidurl Jou MO[J12A0 Yorlg
*ISIX3 S[249] 1dNIIUI N0,

“SISIX3
(¥g) 1PA9] Wdnumut suo AjuQ

‘parudwddut
SdAN Pu® Sd.LIN Pue ssalppe mSd

‘paruswisdu jou SdAN
pue Sd L ‘parudwdjdw ssasppe mSd

(Sd wo1y 2a0w) SN Pue (Sd 01 da0w)
Sd.LI Suuononnsul asn jsnui ‘pajua

-o[dwt 10U *9/// /] ‘SSAIPPE MSd

ve

€T

K44

‘0T

61

‘81

V-1Iead 09 0L st OF/s€ 0T/sT

01/S0 T1/IST ¥€ %0 ¢b YT/

S10SS3d01d

alnjea

(Quo))) saduary(q Jumwwerdord v-11raAd

I-4 31qeL

'09/11 Joj pawnsse [[d ‘+7/11 Pue £€7/11 uo pawnsse jutod Suneoyy jeidaups

X X X X X X X

X

‘padueyoun
s 19151391 1Nq 2A0QR SB JUIEg

‘pAaRrudWLd

-ut 2q |[im 19381891 ‘SINDY0 JO1ID

SNQ B pue g 9pow Ul SSaIppe KJowaw
JUDISIX3UOU SUTBIU0d 19)sIal

"padueyoun oq [[1m
Od ‘SINDd0 10113 SNq B pUB SSAIPpE
Alowsw 1U)SIXIUOU SUTRIU0d Dd]

"PIIUSIAIDUL UIIq IARY
i Dd ‘SINd20 JOJI3 SNq B pue
AIOWwaw 1U2ISIXUOU SUTRIU0D D JI

3[04 Alowdw
ise| 9y Joj douanbss snq OLVA
pue JI11v(®© ssop uononiisut AOW

"919hd
Klowdw 3se[9y} Joj 2ouanbas snq
OLvd ® 1snf s0p uononaisut AOW

‘puesado
201n0s 3ulyd13j usym ouanbos

snq [Lv(Q ® op suononsul Siy

‘puetado 201nos
Suiyojoy uaym souanbas snq O LVQ
PUE d11LV(® 0Op suononnsut giy

Jdnuizojur 251a9p € jo asnesaq
1oqe jou op suondnnsul |44

4 1dnussut 201a2p ©

JO 9snedaq 1J0qe Ued SuonONJISUl
[1d ‘W uonnasxa Jidayl 0y ang

‘6C

8¢

LT

9T

R4

V-11eaM

09 0L sy

OF/S€ 0T/S1 01/S0 IL/IST ¥E +0 b PT/E€T

SI0SS30014

amyedy

(u0)) sdudRY(Sunuweidord v-1Iray

1-9 1qeL

B-8

X X X X X X X X X X X

X X X X X X X X X X X

X X X X X X

"UOIITIISUl IDUBUIIUIEW €
se pasn a1 £ [z ySnoayl gz sepod do

‘SUOTIONIISUT PIAIISII SB (]
0y dexny £ 1z ySnoayl gz sepoa dQ

"$4N200

01 01 des) e ‘ssolppe JudJsIXo ue

91 SIUDIUOD 191SIFL AY1 J] 'SINO20

$ 01 de1) e ‘ssalppe 1U2)SIXaUOU B JIe
S1U9IU00 J9181301 9y J| “s9julod e se
S1q ¢ I9pI0 mo[3y Aq paljidads
19951321 9Y) Suisn peas Alowdw €

uiogiad €570 Y3noIy) OpOsL SIpod
do ‘yuasaxd st uondo 11-ATN JI

'sapod do paAlosas
se 0] 01 deny Ajjeuonipuooun
LLLESLO Y3noIy) QpOSLO S9P0d dO

"9TRUIWLISIApUL

are jioqe jdnuaut SLI/SIF 1o1ye
P2101sa1 2JB JEY) SIPOD UOHIPUO))

(0F/5¢ uo 110qe 10U S30p S[H) Hoqe
1dnurojut Q. 191je sanjea [euiSuo

0] PaI0)Sal SAPOd UOHIIPUOD)

"paSueyoun 2q [[im 19181301
‘5In900 10110 SNQ € PuUE g pow ul
anjeA ppo UE SUIEIUOD IISIFAI j]

"PIIUSWIDIDUI 3q [[I4 J9)SIFaI
‘$IN950 IO1IO SNq & pue g dpow ut
an[eA ppo ue SUIBRIUOD 1931301 J|

‘£t

K43

0t

V-IILAX 09 0L S¥ Op/SE 0T/ST 01/s0 II/IST #€ ¥0 bb ¥T/€T

SI0SS3201]

In)ed j

()u0)) saduasdyyi(q Suimwerdold v-11rax

1-4 31q9eL

B-9

X X X X X X X

X X X X X X X X X X X

‘pasuswaidwi jou st g
1q OYNIN 2pow douBuAUIRW |OW W

‘parwswdidut st g 11q
0 spow 2duBuAuUIRW | OW WIN

'3[94A> snq 1se] 24} Joj
ouanbes OLVA-dILVA OP LXS Pue Y10

"9]0A2 snq 1se| 2y} Joj souanbas
OLvd ®snl op 1XS pue Y10

"20URUIIUIRW JOJ Pasn 0099.0 2poo dQ

"$1M920 Q[01
deJy e ‘sJSIX3 9p0OI0IIIW JISN OU J]
"9p0201o1W Jasn 0} sadeosa se pasn aq

ued ///LLLT YSnoayl 0pQoL| sepoo dO

*SUOIIINIISUL
yutod-3uneoly se pajuswapdwi
o1 LLLLLT Y3NOIY) 00O0L] $3p0d dO

"SUOLIONIISUL PIAI3SAL se (O 03
den £//L41 y3nosyy 0000L1 $9pod dO

'$INJ20
01 01 den} ® ‘s)SIXa SpoooIdIW 1asn
OU J "3p0d0IoIW 19sn 0} sadeoss se

pasn aq ues £/6/ Y3noay OpQs. SIpoo
do ‘yuasaid s1 suondo [1-ATY JI

"SUOIOTLIISUI PAIASAI SB () O}
desy 7£.6L y3nopy 0posL sapod dQ

Le

9¢

vt

V-1I£dX 09 OL SP Ob/SE 0T/ST O01/SO IL/IST ¥E PO ¥b PT/€CT

$10SS33014

aumedq

(3u0)) saouasa g Sunweidord v-11rqy

1-4 3IqeL

B-10

X X X X

X X

‘paddewr st 947441
ssaippe Sd J3Y1aym jo ssojpiedas

den jou [jim opow Jasn ul SJIW

‘passa00® ik <((:L0> Sd ‘peddew jj
‘paddewr Jou 9/ /L] $saippe Sd J! LOW
WHN 9SNED [[m apows Iasn Ut Sd4N “I¥

"poddew s1 9/.//] SS3Ippe
Sd 1oy1aym jo ssappredal <00:£0> Sd
109)Je Ajuo jiim pue den IOW WIW
asned Jou [jim Jpoul Jasnuou ul 4 LW

‘PR <0 £0>
pue <¢0:L0> Sd ‘paddews j1 -paddew
Jou 97/ /11 ssaippe S jt den | OW
WA 3sned [[is spow Jasn ut S LN "OF

*20udJ9)s Asowsw Aue wodn

den IO NI © 9sned [[im] 0)
198 <p[:§[> Slq §d dpow 1UdLIN))

‘den

LD WHIA E asned jou pue (gQ) apow
|ou19y Se pajeasy aq [[Im Q] 03

138 <p[:G[> SNg Sd dpouw 1uaLIn)

"ouasajal Krowsw Aue uodn den

LDW WAW © 358D [[14 01 40 [0}
195 <p[:G[> SNq Sd 2POW AN “6¢

‘pandijued st IOW WANW

uaym AJUO ISIXD SUONINNISUI XdJW
pue X4 LN pue ‘1ajuiod joels [ouidy
-Uou ‘apoul [SUIINUOU ‘<TG [> Sd

"paIngyuod jou st [OW WIIW
uayMm UJAD JSIX9 suononiisul Xd.JN

pue XJ LN pue Jojuiod Yoels [dusoy
-UOU ‘3POW [UIINUOU ‘<7 [:§> Sd '8€

V-IIrAX 09 OL Sy Ov/s€ 0T/S1

01/S0 II/IST ¥€ %0 vb VT/€T

SI0SS3D01J

EXUITEN |

(3uo)) saduasayyiq Sunuweidold v-1 1A

I-4 3Iq&L

B-11

X

‘porudwadut Jou <0:70> CYNWW

‘pardswddwi-djqeud
souds 04— <00:20> CAWN

‘parudwdjdwt Jou <> OYIWIN

‘pauswdjdwi—judwodeuew
Kowow-den-<z[> 0NN

‘paruswddwt <p0:[1> Yvd AU0
"pauswddunl <Q:§1> Yvd N4

‘pajuswaduwn
jou ($s2008 Aue) </(> 1q Ydd

‘pajuswajdun
(ssa00e Aue) </ 0> 119 YAd

‘pojudwd[dwit jou <(O> 1q YAdd
‘paswsidwt <0p> 19 Ydd

01

uon1e00] ydnoay) deil [im dpous J0sia
-1adns Jo Iasn Ul uondMJISUL | TVH V
‘b UOI1BIO]

ySnoxpy den jjim spour Josiazadns

JO J3SN ur uonodonasul [IvVH vV

's19151391 108$9001d
[BUIDIUL JO JNO IINIIXI UBD SWERIFolq

'$12151321 10$59004d [BUIAIU]
JO 1IN0 9IND9X9 Jouued sweidold

k.14

Ly

9y

R34

by

£

w

v-1irax 09

0L Sk Ob/SE 0T/SI 01/S0 11/IST b€ +0 +b bT/€T

$10SS3J0.14

ainyead

(3u0)y) sadudIRgIq JuwwesSoid v-I 1A

1-4 21qe L

B-12

X

X

X X

“19jut0d YOElS JISN SAsM ()|
= <CI't1> Sd udym 97 Xd LW ‘9% Xd LW

"s1[nsad d[qeldipaldun soAIg O
= <T1'¢1> Sd uaym Xd LN 9% XddW

*$31[219)
uondnusut £juo sydel TYWW

5101094 1dnuunul pue
SOUDI9) UOIOMIISUL.SYIRI TYININ

‘parudwdpdwt 10U <> YW

‘parudwdun
—dlqeul INSD-<€0> tYIWIA

‘paruowaiduir jou <p(:60> £ YW

‘paruswiduwi-pajqeus uiddew
N9-77 "dVINOI-<#0:50> CHWIN

K4y

0s

K14

V-1irax

09

0L Sy ov/st 0T/s1

01/s0 11/1ST1 ¥E ¥0 vb ¥T/€T

$108532014

anjeay

(uo)) saduasdyyiq Sutmweidord v-11raN

I-4 s1qe],

B-13

A

Abort (ABORT), 4-6
Abort, function of, 4-17
Address Input/Output, (AIO) 4-4
Address Latch Enable, (ALE) 4-5
Addressing modes, 6-1
autodecrement, 6-9
autoincrement, 6-7
deferred, 6-13
direct, 6-4
double-operand, 6-3
index, 6-11
PC relative, 6-17
register, 6-6
single-operand, 6-3
Al/O coding, 4-4

Bank Select (BS), 4-4

BEVNT signal, 2-3

Boot address, 2-3

Boot ROM set, 9-1

Buffer Control (BUFCTL), 4-5

Bus cycles, 4-6
AlQO, codes for, 4-4
bus read, 4-7
bus write, 4-8
general-purpose read, 4-9
general-purpose write, 4-10
interrupt acknowledge, 4-10
non-1/0O (NOP), 4-6

Bus, 4-6
read transaction, 4-7
receivers, 4-12, 4-24
transmitters, 4-12, 4-25
write transaction, 4-8

INDEX

Cache control
data path, 4-12, 4-17
register, 4-19
Cache memory, 1-27, 4-13
control register, 1-30, 4-19
data, 1-27, 4-13, 4-22
description, 1-27, 4-21
error register, 1-32, 4-19
hit/miss register, 1-32, 4-23
operation, 4-21
parity, 1-29, 4-19, 4-21
timeout, 4-19
Cache miss, 4-5, 4-23
Clock (CLK1, CLK2), 4-5
Code, 8-1
coroutine, 8-14
position dependent, 8-3
position independent, 8-1
reentrant, 8-13
Configuration, 2-1
factory, 2-3
jumpers, 2-1
Consocle ODT, 3-1
commands, 3-3
input sequence, 3-3
invalid characters, 3-9
output sequence, 3-3
serial line interface, 3-2
timeout, 3-9
Continue (CONT), 4-5
CPU error register, 1-5

D

Data Address Lines (DAL), 4-6
Data Valid (DV), 4-5

Diagnostics, 9-6

Diagnostic LEDs, 2-4, 4-29

Direct Memory Access (DMA), 4-27

INDEX-1

Error message, 9-3
Event (EVENT), 4-6

Floating point, 1-33
addressing, 1-38
data formats, 1-33, 1-34, 7-2
exception code register, 1-38, 7-6
exception (FPE), 1-38
nonvanishing numbers, 1-33
status register, 1-35, 7-3
undefined variables, 1-33, 7-2
zero, 1-33, 7-1

Floating-point instructions, 7-8
ABSD, 7-10
ABSF, 7-10
ADDD, 7-11
ADDF, 7-11
CFCC, 7-12
CLRD, 7-12
CLRF, 7-12
CMPD, 7-13
CMPF, 7-13
DIVD, 7-14
DIVF, 7-14
LDCDF, 7-15
LDCFD, 7-15
LDCID, 7-16
LDCIF, 7-16
LDCLD, 7-16
LDCLF, 7-16
LDD, 7-18
LDEXP, 7-17
LDF, 7-18
LDFPS, 7-18
MODD, 7-19
MODF, 7-19
MULD, 7-22
MULF, 7-22
NEGD, 7-23
NEGF, 7-23
SETF, 7-24
SETI, 7-24
SETL, 7-24
STCDF, 7-25
STCDI, 7-26
STCDL, 7-26
STCFD, 7-25
STCFI, 7-26

STCFL, 7-26
STEXP, 7-27
STD, 7-27
STF, 7-27
STEFPS, 7-28
STST, 7-28
SUBD, 7-29
SUBF, 7-29
TSTD, 7-30
TSTF, 7-30
Flush counter, 4-20

G

General-purpose codes, 4-9, 4-10
General-purpose read cycle, 4-9
General-purpose registers, 1-2
General-purpose write cycle, 4-10

H
Halt (HALT), 4-5
Halt option, 2-2
Help message, 9-3
Hit/miss logic, 4-23

|

I and D space, 1-16
Initialization, 4-27
Initialize (INIT), 4-3
Instruction, 6-21
byte, 6-26
formats, 6-22
list, 6-27
symbols, 6-21
Instruction set, 6-21
ADC, 6-43
ADCB, 6-43
ADD, 6-49
ASH, 6-51
ASHC, 6-51
ASL, 6-38
ASLB, 6-38
ASR, 6-37
ASRB, 6-37
BCC, 6-60
BCS, 6-61
BEQ, 6-58
BGE, 6-62
BGT, 6-63
BHI, 6-63

INDEX-2

BHIS, 6-64
BIC, 6-54
BICB, 6-54
BIS, 6-54
BISB, 6-54
BIT, 6-53
BITB, 6-53
BLE, 6-63
BLO, 6-64
BLOS, 6-64
BLT, 6-62
BMI, 6-59
BNE, 6-58
BPL, 6-59
BPT, 6-71
BR, 6-57
BVC, 6-60
BVS, 6-60
CCC, 6-80
CLC, 6-80
CLN, 6-80
CLV, 6-80
CLZ, 6-80
CLR, 6-31
CLRB, 6-31
COM, 6-32
COMB, 6-32
CMP, 6-48
CMPB, 6-48
CSM, 6-75
DEC, 6-33
DECB, 6-33
DIV, 6-52
EMT, 6-70
HALT, 6-77
INC, 6-32
INCB, 6-32
10T, 6-72
JMP, 6-65
JSR, 6-66
MARK, 6-73
MFPD, 6-79
MFPI, 6-79
MFPS, 6-45
MFPT, 6-78
MOV, 6-47
MOVB, 6-47
MTPD, 6-79
MTPI, 6-79
MTPS, 6-46
MUL, 6-52
NEG, 6-34
NEGB, 6-34

NOP, 6-67
RESET, 6-78
ROL, 6-40
ROLB, 6-40
ROR, 6-39
RORB, 6-39
RTI, 6-72
RTS, 6-68
RTT, 6-73
SOB, 6-67
SBC, 6-44
SBCB, 6-44
SCC, 6-66
SEC, 6-66
SEN, 6-66
SEV, 6-66
SEZ, 6-66
SPL, 6-75
SUB, 6-50
SWAB, 6-41
SXT, 6-44
TRAP, 6-71
TST, 6-35
TSTB, 6-35
TSTSET, 6-36
WAIT, 6-77
WRTLCK, 6-35
XOR, 6-56
Installation, 2-16

Interrupt acknowledge cycle, 4-11

Interrupt and DMA control

direct memory access (DMR), 4-5

event (EVENT), 4-6

floating-point exception (FPE), 4-6
interrupt request (IRQ), 4-5

power fail (PWRF), 4-6

Interrupts and traps, 1-8, 1-9, 1-10

L

Line time clock register, 1-7, 4-20

LSI bus
characteristics, 5-22
configuration, 5-26
dati, 5-5
datio, 5-10
dato, 5-7
DMA, 5-12
interrupts, 5-15, 5-16
loading, 5-23, 5-29
priority, 5-15

INDEX-3

M

Maintenance register, 1-7, 2-6, 4-27
Memory management, 1-10
addressing, 1-13, 1-14
fault recovery, 1-18, 1-22
I and D space, 1-16
implementation, 1-10
mapping, 1-10
page address registers (PAR), 1-18
page descriptor registers (PDR), 1-18
physical address construction, 1-15
register 0 (MMRO), 1-20
register 1 (MMRI1), 1-21
register 2 (MMR?2), 1-21
register 3 (MMR3), 1-21
registers, 1-16
MMRO, 1-20
enable relocation bits, 1-20
error flags, 1-20
page address space bits, 1-20
page number bits, 1-20
processor mode bits, 1-20
reserved bits, 1-20
MMRI1, 1-21
MMR2, 1-21
MMR3, 1-21
enable 22-bit mapping bit, 1-22
enable CMS instruction bit, 1-22
enable 1/O map bits, 1-22
kernel, supervisor and user bits, 1-22
reserved bits, 1-22
Module pinout, 2-9
Memory system registers, 1-30, 4-19

N

Non-1/0 (NOP) cycle, 4-6

0
Options, 2-10

P

Page address registers, 1-18
Page descriptor registers, 1-18
access control field, 1-19
bypass cache bit, 1-19
expansion direction bit, 1-19
page length field, 1-19
page written bit, 1-19
reserved bits, 1-19
Parity error (PARITY), 4-6
Power-down routine, 2-8
Power-up circuit, 2-7
Power-up routine, 2-7
Predecode (PRDC), 4-5
Processor status word, 1-3, 1-4, 8-26
Program counter, 1-3
Program interrupt request (PIRQ), 1-6
Programming model, 1-2

S

Software, 1-40
Specifications, 2-18
Stack pointer, 8-3, 8-6
Status signals
abort (ABORT), 4-6
cache miss (MISS), 4-5
parity error (PARITY), 4-6
predecode (PRDC), 4-5
Stretch control (SCTL), 4-5
Strobe (STRB), 4-5
System control
address 1/0, 4-4
bank select, 4-4
buffer control, 4-5
continue, 4-5
data valid, 4-5

TAG RAM, 4-23

Timeout, 4-19

Wakeup, 2-3

INDEX-4

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	i-1
	i-2
	i-3
	i-4

