
mDmDomo 
000 0 

rocessor 
h n book 



DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, Massa­
chusetts 01754, Telephone: (617)897-5111-SALES AND SERVICE OFFICES: UNITED 
STATES-ALABAMA, Huntsville· ARIZONA, Phoenix and Tucson· CALIFORNIA, 
EI Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San Francisco (Mountain 
View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland Hills. COLORADO, 
Englewood • CONNECTICUT, Fairfield and Meriden • DISTRICT OF COLUMBIA, 
Washington (Lanham, MD) • FLORIDA, Ft. Lauderdale and Orlando· GEORGIA, 
Atlanta· HAWAII, Honolulu· ILLINOIS, Chicago (Rolling Meadows) • INDIANA, 
Indianapolis • IOWA, Bettendorf· KENTUCKY, Louisville • LOUISIANA, New Or­
leans (Metairie) • MARYLAND, Odenton • MASSACHUSETTS, Marlborough, Wal­
tham and Westfield· MICHIGAN, Detroit (Farmington Hills) • MINNESOTA, Min­
neapolis· JIIIISSOURI, Kansas City (Independence) and St. Louis· NEW HAMP­
SHIRE, Manchester • NEW JERSEY, Cherry Hill, Fairfield, Metuchen and Princeton • 
NEW MEXICO, Albuquerque· NEW YORK, Albany, Buffalo (Cheektowaga), Long 
Island (Huntington Station), Manhattan, Rochester and Syracuse· NORTH CARO­
LINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and Dayton· 
OKLAHOMA, Tulsa • OREGON, Eugene and Portland • PENNSYLVANIA, Allentown, 
Philadelphia (Bluebell) and Pittsburgh. SOUTH CAROLINA, Columbia. TENNES­
SEE, Knoxville and Nashville. TEXAS, Austin, Dallas and Houston. UTAH, Salt 
Lake City • VIRGINIA, Richmond • WASHINGTON, Bellevue • WISCONSIN, Milwau­
kee (Brookfield) • INTERNATIONAL-ARGENTINA, Buenos Aires • AUSTRALIA, 
Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney • AUSTRIA, Vienna • 
BELGIUM, Brussels • BOLIVIA, La Paz • BRAZIL, Rio de Janeiro and Sao Paulo • 
CANADA, Calgary, Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver 
and Winnipeg • CHILE, Santiago • DENMARK, Copenhagen • FINLAND, Helsinki 
• FRANCE, Lyon, Grenoble and Paris • GERMAN FEDERAL REPUBLIC, Cologne, 
Frankfurt, Hamburg, Hannover, Munich, Nuremburg, Stuttgart and West Berlin • 
HONG KONG. INDIA, Bombay • INDONESIA, Djakarta. IRELAND, Dublin. ITALY, 
ITALY, Milan, Rome and Turin • IRAN,Tehran • JAPAN,OsakaandTokyo • MALAY­
SIA, Kuala Lumpur • MEXICO, Mexico City. NETHERLANDS, utrecht • NEW ZEA­
LAND, Auckland and Christchurch • NORWAY, Oslo • PUERTO RICO, Santurce • 
SINGAPORE. SPAIN, Madrid. SWEDEN, Gothenburg and Stockholm. SWITZERLAND, 
Geneva and Zurich. UNITED KINGDOM, Birmingham, Bristol, Epsom, Edinburgh, 
Leeds, Leicester, London, Manchester and Reading. VENEZUELA, Caracas. 



processor 
handbook 

digital equipment corporation 



Copyright © 1976 by Digital Equipment Corporation 

DEC, PDP, UNIBUS are registered trademarks 

of Digital Equipment Corporation. 

ii 



TABLE OF CONTENTS 

CHAPTER 1 INTRODUCTION 
1.1 PDP-ll/70 ............... . 
1.2 FEATURES 
1.3 SYSTEM ARCHITECTURE. 
1.4 CENTRAL PROCESSOR . 
1.5 MEMORY 
1.6 MEMORY SYSTEM 
1.7 OTHER CPU EQUIPMENT. 
1.8 UNIBUS 
1.9 SYSTEM INTERACTION 

1.10 THE PDP-ll FAMILY 
1.11 PERIPHERALS/OPTIONS 

CHAPTER 2 SPECIFICATIONS 
2.1 PACKAGING 
2.2 COMPONENT PARTS 
2.3 OTHER SPECIFICATIONS 

CHAPTER 3 ADDRESSING MODES 
3.1 SINGLE OPERAND ADDRESSING. 
3.2 DOUBL:E OPERAND ADDRESSING. 
3.3 DIRECT ADDRESSING 
3.4 DEFERRED ADDRESSING 
3.5 USE OF PC .. 
3.6 USE OF STACK POINTER. 

1-1 
1-1 
1'1 
1-1 
1-2 
1-6 
1-7 
1-8 
1-9 
1-10 
1-14 
1-14 

2-1 
2-1 
2-1 
2-2 

3-1 
3-2 
3-2 
3-3 
3-8 
3-11 
3-14 

CHAPTER 4 INSTRUCTION SET 4-1 
4.1 INTRODUCTION 4-1 
4.2 INSTRUCTION FORMATS . 4-2 
4.3 BYTE INSTRUCTIONS. 4-3 
4.4 SINGLE OPERAND INSTRUCTIONS. 4-5 
4.5 DOUBLE ·OPERAND INSTRUCTIONS. 4-25 
4.6 PROGRAM CONTROL INSTRUCTIONS . 4-37 
4.7 MISCELLANEOUS INSTRUCTIONS 4-78 
4.8 CONDITION CODE OPERATORS. . 4-86 

CHAPTER 5 PROCESSOR CONTROL 5-1 
5.1 GENERAL ...................................................................... 5-1 
5.2 REGISTERS 5-1 
5.3 PROCESSOR TRAPS 5-2 
5.4 STACK LIMIT 5-4 
5.5 PROGRAM INTERRUPT REQUESTS . . 5-5 

CHAPTER 6 ADDRESSING 6-1 
6.1 GENERAL 
6.2 ADDRESS SPACE 
6.3 CPU MAPPING 
6.4 COMPATIBILITY . 

iii 

6-1 
6-1 
6-2 
6-2 



6.5 MEMORY MANAGEMENT 6·4 
6.6 UNIBUS MAP 6·20 
6.7 NON·EXISTENT MEMORY ERRORS .... 6·21 

CHAPTER 7 MEMORY SYSTEM 7·1 
7.1 GENERAL 7·1 
7.2 CACHE MEMORY 7·1 
7.3 PARITY .... 7·5 
7.4 REGISTERS 7·7 

CHAPTER 8 FLOATING POINT PROCESSOR 8·1 
8.1 INTRODUCTION 8·1 
8.2 OPERATION 8·1 
8.3 ARCHITECTURE 8·2 
8.4 FLOATING POINT DATA FORMATS. 8·3 
8.5 FPP STATUS REGISTER. 8·5 
8.6 FEC REGISTER 8·9 
8.7 FPP INSTRUCTION ADDRESSING 8·9 
8.8 FPP INSTRUCTIONS. 8·11 

CHAPTER 9 PROGRAMMING TECHNIQUES 9·1 
9.1 THE STACK ... 9·1 
9.2 SUBROUTINE LINKAGE 9·5 
9.3 INTERRUPTS 9·9 
9.4 REENTRANCY 9·11 
9.5 POSITION INDEPENDENT CODE 9·14 
9.6 CO·ROUTINES ..... ................ 9·15 

CHAPTER 10 HIGH·SPEED I/O CONTROLLERS 10·1 
10.1 SYSTEM PERFORMANCE 10·1 
10.2 HIGH·SPEED, MASS STORAGE PERIPHERALS. 10·1 
10.3 HIGH·SPEED CONTROLLERS 10·3 
10.4 REGISTERS 10·4 
10.5 CONTROLLER REGISTERS 10·5 

CHAPTER 11 CONSOLE OPERATION 11·1 
11.1 INTRODUCTION 11·1 
11.2 GENERAL 11·1 
11.3 STARTING AND STOPPING. . 11·2 
11.4 REFERENCING MEMORY 11·2 
11.5 STEP OPERATIONS. 11·3 
11.6 GENERAL REGISTERS. 11·4 
11.7 SINGLE INSTRUCTION/SINGLE BUS CYCLE. 11·5 
11.8 FUNCTIONS OF SWITCHES & INDICATORS. 11·5 

Appendix A Memory Map . 

Appendix B Summary of Registers .. 

Appendix C Instruction Timing .. 

iv 

A·1 

B·1 

C·1 



CHAPTER I 

INTRODUCTION 

1.1 PDP-ll/70 
The PDP-11/70 is the most powerful computer in the PDP-l1 family. It 
is designed to operate in large, sophisticated, high-performance systems. 
It can be used as a powerful computational tool for high-speed, real-time 
applications and for large multi-user, multi-task time-shared applications 
requiring large amounts of addressable memory space. It is the systems 
level PDP-l1 that applies the power of 32-bit hardware architecture to 
demanding, multi-function computing requirements. 

1.2 FEATURES 
The PDP-l1i70 contains as an integral part of the central processor unit, 
the following hardware features and expansion capabilities: 

Cache memory organization to provide very fast program execution 
speed and high system throughput 

• Memory management for relocation and protection in multi-user, multi­
task environments 

• Ability to access up to 2 million bytes of main memory (1 byte = 8 
bits) 

Optional high-speed, mass storage controllers as an integral part of 
the CPU, to provide dedicated paths to high performance storage 
devices 

• Optional Floating Point processor with advanced features and operation 
with 32-bit and 64-bit numbers 

1.3 SYSTEM ARCHITECTURE 
The PDP-11/70 is a medium scale general purpose computer using an 
enhanced, upwards-compatible version of the basic architecture of the 
PDP-II. A block diagram of the computer is shown in Figure I-I. 

The Central Processor performs all arithmetic and logical operations re­
quired in the system. Memory Managemellt is standard with the basic 
computer, allowing expanded memory addressing, relocation, and pro­
tection. Also standard is a UNIBUS Map which translates UNIBUS ad­
dresses to physical memory addresses. The Cache contains 2,048 bytes 
of fast, bipolar memory that buffers the data from main (core) memory. 

1-1 



Also within the CPU assembly are pre·wired areas for a Floating Point 
Processor, and up to 4 High-Speed I/O Controllers. 

-= INDICATES 32-8IT DATA BUS 

"':QPTIONAL 

Figure 1·1 PDp·11/70 Block Diagram 

The PDp·11/70 System has an expanded internal implementation of the 
PDp·l1 architecture for greatly improved systems thruput. All the memo 
ory is on its own high data rate bus. The internal high·speed I/O con· 
trollers for mass storage devices have direct connections through the 
cache to memory for transferring data (using the cache only for timing 
purposes). The processor has a direct connection to the cache memory 
system for very high·speed memory access. 

The UNIBUS remains the primary control path in the 11/70 system. It 
is conceptually identical with previous PDp·ll systems; the memory in 
the system still appears to be on the UNIBUS to all UNIBUS devices. 
Control and status information to and from the high speed 1/ a con· 
trollers is transferred over the UNIBUS. This expanded internal imple· 
meRtation of the PDp·ll architecture has absolutely no effect on pro­
gramming the PDp· 11/70. 

1.4 CENTRAL PROCESSOR 
The PDp·ll/70 performs all arithmetic and logical operations required 
in the system. It also acts as the arbitration unit for UNIBUS control by 
regulating bus requests and transferring control of the bus to the reo 
questing device with the highest priority. 

The central processor contains arithmetic and control logic for a wide 
range of operations. These include high·speed fixed point arithmetic with 
hardware multiply and divide, extensive test and branch operations, and 
other control operations. It also provides room for the addition of the 
high·speed Floating Point Processor, and High-Speed Controllers. 

1·2 



The machine operates in three modes: Kernel, Supervisor, and User. 
When the machine is in Kernel mode a program has complete control of 
the machine; when the machine is in any other mode the processor is 
inhibited from executing certain instructions and can be denied direct 
access to the perpiherals on the system. This hardware feature can be 
used to provide complete executive protection in a multi·programming 
environment. 

The central processor contains 16 general registers which can be used 
as accumulators, index registers, or as stack pointers. Stacks are ex· 
tremely useful for nesting programs, creating re·entrant coding, and as 
temporary storage where a Last·ln First·Out structure is desirable. One 
of the general registers is used as the PDP·11/70's program counter. 
rhree others are used as Processor Stack Pointers, one for each opera· 
tional mode. 

The CPU performs all of the computer's computation and logic opera· 
tions in a parallel binary mode through step by step execution of indio 
vidual instructions. 

1.4.1 General Registers 
The general registers can be used for a variety of purposes; the uses 
varying with requirements. The general registers can be used as accumu· 
lators, index registers, autoincrement registers, autodecrement registers, 
or as stack pointers for temporary storage of data. Chapter 3 on Ad· 
dressing describes these uses of the general registers in more detail. 
Arithmetic operations can be from one general register to another, from 
one memory or device register to another, or between memory or a 
device register and a general register. 

GENERAL 
REGISTER 
SET 1 

KERNEL 
STACK POINTER 

R6 

RI1I 

R1 

R2 

R3 

R4 

R5 

SUPERVISOR 
STACK POINTER 

PROGRAM 
COUNTER 

R6 

RI1I 

R1 

R2 

R3 

R4 

R5 

R7 

Figure 1·2 The General Registers 

GENERAL 
REGISTER 
SET 111 

USER 
STACK POINTER' 

R6 

R7 is used as the machine's program counter (PC) and contains the ad· 
dress of the next instruction to be executed. It is a general register 
normally used only for addressing purposes and not as an accumulator 
for arithmetic operations. 

The R6 register is normally used as the Processor Stack Pointer indicllt· 

1-3 



ing the last entry in the appropriate stack (a common temporary storage 
area with "Last-In First-Out" characteristics)_ (For information on the 
programming uses of stacks, please refer to Chapter 9). The three stacks 
are called the Kernel Stack, the Supervisor Stack, and the User Stack. 
When the Central Processor is operating in Kernel mode it uses the 
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User 
mode, the User Stack. When an interrupt or trap occurs, the PDP-11!70 
automatically saves its current status on the Processor Stack selected 
by the service routine. This stack-based architecture facilitates reentrant 
programming. 

The remaining 12 registers are divided into two sets of unrestricted reg­
isters, RO-R5. The current register set in operation is determined by the 
Processor Status Word. 

The two sets of registers can be used to increase the speed of real-time 
data handling or facilitate multi-programming. The six registers in Gen­
eral Register Set 0 could each be used as an accumulator and/ or index 
register for a real-time task or device, or as general registers for a Kernel 
or Supervisor mode program. General Register Set 1 could be used by 
the remaining programs or User mode programs. The Supervisor can 
therefore protect its general registers and stack from User programs, or 
other parts of the Supervisor. 

1.4.2 Processor Status Word 

NOT USED 

~1110 

OURRENT MODE~ r 
PREVIOUS MODE" 

~~~E~~1 fE"'G""S::.:.T-=:ER"-___ ----' 

"MODE: 00" KERNEL 
01 "SUPERVISOR 
11 "USER 

PRIORITY 

8 7 5 4 3 2 

Figure 1-3 Processor Status Word 

o 

The Processor Status Word, located at location 17777776, contains in­
formation on the current status of the PDP-11/70. This information in­
cludes the register set currently in use; current processor priority; cur­
rent and previous operational modes; the condition codes describing the 
results of the last instruction; and an indicator for detecting the execu­
tion of an instruction to be trapped during program debugging. 

Modes 
Mode information includes the present mode, either User, Supervisor, or 
Kernel (bits 15, 14); the mode the machine was in prior to the last in­
terrupt or trap (bits 13, 12); and which register set (General Register 
Set 0 or 1) is currently being used (bit 11). 

The three modes permit a fully protected environment for a multi-pro­
gramming system by providing the user with three distinct sets of Proc­
essor Stacks and Memory Management Registers for memory mapping. 

1-4 



In all modes except Kernel a program is inhibited from executing a 
"HALT" instruction and the processor will trap through location 4 if an 
attempt is made to execute this instruction. Furthermore, the processsor 
will ignore the "RESET" and "SPL" (Set Priority level) instructions. In 
Kernel mode, the processor will execute all instructions. 

A program operating in Kernel mode can map users' programs anywhere 
in core and thus explicitly protect key areas (including the devices regis' 
ters and the Processor Status Word) from the User operating environ· 
ment. 

Processor Priority 
The Central Processor operates at any of eight levels of priority, 0·7. 
When the CPU is operating at level 7 an external device cannot interrupt 
it with a request for service. The Central Processor must be operating at 
a lower priority than the priority of the external device's request in order 
for the interruption to take effect. The current priority is maintained in 
the processor status word (bits 5·7). The 8 processor levels provide an 
effective interrupt mask, which can be dynamically altered through use 
of the Set Priority Level (SPL) instruction which is described in Chapter 
4 and which can only be used by the Kernel. This instruction allows a 
Kernel mode program to alter the Central Processor's priority without 
affecting the rest of the Processor Status Word. 

Condition Codes 
The condition codes contain information on the result of the last CPU 
operation. They include: a carry bit (C), which is set by the previous 
operation if the operation caused a carry out of its most significant bit; 
a negative bit (N) set if the result of the previous operation was nega· 
tive; a zero bit (Z), set if the result of the previous operation was zero; 
and an overflow bit (V), set if the result of. the previous operation reo 
suited in an arithmetic overflow. 

Trap 
The trap bit (T) can be set or cleared under program control. When set, 
a processor trap will occur through location 14 on completion of instruc· 
tion execution and a new Processor Status Word will be loaded. This bit 
is especially useful for debugging programs as it provides an efficient 
method of installing breakpoints. 

Interrupts and trap instructions both automatically cause the previous 
Processor Status Word and Program Counter to be saved and replaced 
by the new values corresponding to those required by the routine servo 
icing the interrupt or trap. The user can, thus, cause the central proces· 
sor to automatically switch modes (context switching), register sets, alter 
the CPU's priority, or disable the Trap Bit whenever a trap or interrupt 
occurs. 

1.4.3 Stack Limit Register 
All PDp·11's have a Stack Overflow Boundary at location 400. The Kernel 
Stack Boundary, in the PDP·11/70 is a variable boundary set through 
the Sta,ck Limit Register found in location 17777774. 

Once the Kernel stack exceeds its boundary, the Processor will complete 
the current instruction and then trap to location 4 (Yellow or Warning 
Stack Violation). If, for some reason, the program perSists beyond the 

1·5 



16·word limit, the processor will abort the offending instruction, set the 
stack pointer (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola· 
tion). A description of these traps is contained in Appendix A. 

1.5 MEMORY 
Memory Organization 
A memory can be viewed as a series of locations, with a number (ad· 
dress) assigned to each location. Thus a 16,384·byte PDp·l1 memory 
could be shown as in Figure 2·5. 

LOCATIONS 

L..,.; 

------......---

Figure 1·4 Memory Addresses 

Because PDp·l1 memories are designed to accommodate both 16·bit 
words and 8·bit bytes, the total number of addresses does not corre· 
spond to the number of words. An 8K·word memory can contain 16K 
bytes and consist of 037777 octal locations. Words always start at even· 
numbered locations. 

A PDp·l1 word is divided into a high byte and a low byte as shown in 
Figure 1·5. 

15 o 
HIGH BYTE LOW BYTE 

Figure 1·5 High & Low Byte 

Low bytes are stored at even· numbered memory locations and high bytes 
at odd·numbered memory locations. Thus it is convenient to view the 
PDp·l1 memory as shown in Figure 1·6. 

Certain memory locations have been reserved by the system for inter· 
rupt and trap handling, processor stacks, general registers, and peri ph· 

1·6 



eral device registers. Addresses from a to 370. are always reserved and 
those to 777. are reserved on large system configurations for traps and 
interrupt handling. 

000001 

000003 

000005 

037773 

037775 

037777 

Parity 

16-81T WORD 

BYTE BYTe 

f----_...:.H::.:'G...:.H __ t-_-":.::O.::.W_---l 000000 

HIGH lOW 000002 

HIGH 

HIGH 

HIGH 

HIGH 

lOW 000004 

lOW 

lOW 

lOW 

/" 

037772 

037774 

037776 

WORD ORGANIZATION 

OR 

8-BIT B~TE 
~ 

WOIIO{ 

WOIIO{ 

{ 

{ 
{ 

lOW 

HIGH 

lOW 

HIGH 

lOW 

l....--' 

~ 

HIGH 

lOW 

HIGH 

BYTE ORGANIZATION 

Figure 1-6 Word and Byte Addresses 

000000 

000001 

000002 

000003 

000004 

037775 

037776 

037177 

Parity is used extensively in the PDP-11/70 to ensure the integrity of in­
formation. All memory has byte parity. Parity for both data and ad­
dresses is generated on transfers to memory and is checked on all trans­
fers from memory. Registers are provided within the CPU to provide in­
formation on the location of parity errors, types of errors, and other rele· 
vant information so that software can respond to the situation, take cor­
rective action, and log the occurrence of errors. 

1.6 MEMORY SYSTEM 

1.6.1 Address Space 
The PDP·11j70 uses 22 bits for addressing physical memory. This repre­
sents a total of 222 (over 4 million) byte locations. 

Of the over 4 million byte locations possible with the 22-bit address, the 
top 256K are used to reference the UNIBUS rarther than physical mem­
ory. Maximum main memory is therefore 222 - 218, or a total of 
3,932,160 bytes, although only 2 million bytes are allowed due to bus 
length limitations. 

Three separate address spaces are used with the PDP-11/70. Main 
memory uses 22 bits, the UNIBUS uses an 18-bit address, and the com­
puter program uses a 16-bit virtual address. The information is sum­
marized below: 

16 bits 
18 bits 
22 bits 

program virtual space 
UNIBUS space 
physical memory space 

1-7 

Bytes 

2" = 64K 
218 = 256K 
4 million 



1.6.2 Memory Management 
The Memory Management hardware is standard with the PDP-ll/70 
computer. It is a hardware relocation and protection facility that can con­
vert the 16-bit program virtual addresses to 22-bit addresses. The unit 
may be enabled or disabled under program control. There is no increase 
in access time when the Memory Management unit is enabled_ 

1.6.3 UNIBUS Map 
The UNIBUS Map responds like memory on the UNIBUS. It is the hard­
ware relocation facility for converting the 18-bit UNIBUS addresses to 
22-bit addresses. The relocation mapping may be enabled or disabled 
under program control. 

1.6.4 Cache 
The cache memory is a very high-speed memory that buffers words be­
tween the processor and main memory. The cache is completely trans­
parent to all programs; programs are treated as if there were one con­
tinuous bank of memory. 

Whenever a request is made to fetch data from memory, the cache cir­
cuitry checks to see if that data is already in the cache. If it is, it is 
fetched from there and no main memory read is required. If the data is 
not already in cache memory, 4 bytes are fetched from main memory 
and stored in the cache, with the requested word or byte being passed 
directly to the CPU. 

When a request is made to write data into memory, it is written both to 
the cache and to main memory, assuring that main memory is always 
updated immediately. 

The key to the effectiveness of PDP-ll/70's cache memory is its size. 
Because it holds 2,048 bytes at any given point in time, and because 
programs tend to use localized sections of code and data, the PDP-ll/70 
cache already contains the next needed data word a very high percentage 
of the time. 

A detailed description of cache memory and the other parts of memory 
are contained in Chapter 7. 

1.7 OTHER CPU EQUIPMENT 
1.7.1 Floating Point Processor 
The PDP-ll/70 Floating Point Processor fits integrally into the Central 
Processor. It provides a supplemental instruction set for performing sin­
gle and double precision floating point arithmetic operations and 
floating-integer conversion in parallel with the CPU. The floating point 
processor provides both speed and accuracy in arithmetic computations. 
It provides 7 decimal digit accuracy in single word calculations and 17 
decimal digit accuracy in double calculations. 

Floating point calculations take place in the FPP's six 64·bit accumula­
tors. The 46 floating point instructions include hardware conversion from 
single or double preCision floating point to single or double preciSion 
integers. There is a detailed description in Chapter 7. 

1.7.2 High Speed Mass Storage 
The PDP-ll/70 bussing structure is optimized for high-speed device 
transfers. Up to four such devices can be plugged directly into the proc-

1-8 



essor with a dedicated 32·bit bus feeding through to the core memory. 
Present DIGITAL devices that utilize this bus structure are the RP04, 
RS04, RS03, and TUI6. The RP04 is a moving head disk pack drive with 
capacity for 88 million bytes and a transfer rate of 1.25 microseconds 
per byte. The RS04 is a fixed head disk with a capacity of 1,024K bytes 
and a transfer rate of 1 microseconds per byte (1.2 microseconds at 50 
Hz). The RS03 is a fixed head disk, 512K bytes, 2 ,usec per byte. The 
TU16 is an industry standard 1,600 bpi tape unit. 

1.8 UNIBUS 
Most of the computer system components and peripherals connect to 
and communicate with each other on a bus known as the UNIBUS. 
Addresses, data, and control information are sent along the 56 lines of 
the bus. 

Figure 1·7 PDp·ll System Simplified Block Diagram 

The form of communication is the same for every device on the UNIBUS. 
Peripheral devices use the same set of signals when communicating with 
the processor, memory or other peripheral devices. Each device, includ­
ing memory locations, processor registers, and peripheral device registers, 
is assigned an address. Peripheral device registers may be manipu· 
lated as flexibly as core memory by the central processor. All the instruc­
tions that can be applied to data in core memory can be applied equally 
well to data in peripheral device registers. This is an especially powerful 
feature, considering the special capability of PDp·ll instructions to pro­
cess data in any memory location as though it were an accumulator. 

1.8.1 Bidirectional Lines 
With bidirectional and asynchronous communications on the UNIBUS, 
devices can send, receive, and exchange data independently without 
processor intervention. For example, a cathode ray tube (CRT) display 
can refresh itself from a disk file while the central processor unit (CPU) 
attends to other tasks. Because it is asynchronous, the UNIBUS is com· 
patible with devices operating over a wide range of speeds. 

1.8.2 Master-Slave Relation 
Communication between two devices on the bus is in the form of a 
master· slave relationship. At any point in time, there is one device that 
has control of the bus. This controlling device is termed the "bus mas­
ter." The master device controls the bus when communicating with 
another device on the bus, termed the "slave." A typical example of 
this relationship is the processor, as master, fetching an instruction from 
memory (which is always a slave). Another example is the disk, as 
master, transferring data to memory, as slave. Master-slave relation· 
ships are dynamic. The processor, for example, may pass bus control 

1·9 



to a disk. The disk, as master, could then communicate with a slave 
memory bank. 

Since the UNIBUS is used by the processor and all I/O devices, there is 
a priority structure to determine which device gets control of the bus. 
Every device on the UNIBUS which is capable of becoming bus master 
is assigned a priority. When two devices, which are capable of becoming 
a bus master, request use of the bus simultaneously, the device with 
the higher priority will receive control. 

1.8.3 Interlocked Communication 
Communication on the UNIBUS is interlocked so that for each control 
signal issued by the master device, there must be a response from the 
slave in order to complete the transfer. Therefore, communication is 
independent of the physical bus length (as far as timing is concerned) 
and the response time of the master and slave devices. The asynchro· 
nous operation precludes the need for synchronizing with, and waiting 
for, clock pulses. Thus, each device is allowed to operate at its maximum 
possible speed. 

Interfaces to the UNIBUS are not time·dependent; there are no pulse· 
width or rise·time restrictions to worry about. 

Input/output devices transferring directly to or from memory are given 
highest priority and may request bus mastership and steal bus and memo 
ory cycles during instruction operations. The processor resumes opera· 
tion immediately after the memory transfer. Multiple devices can operate 
simultaneously at maximum direct memory access (DMA) rates by 
"stealing" bus cycles. 

Full 16·bit words or 8·bit bytes of information can be transferred on the 
bus between a master and a slave. The information can be instructions, 
addresses, or data. This type of operation occurs when the processor, as 
master, is fetching instructions, operands, and data from memory, and 
storing the results into memory after execution of instructions. Direct 
data transfers occur between a peripheral device control and memory. 

1.9 SYSTEM INTERACTION 
High·speed NPR devices use separate dedicated busses to the individual 
high·speed I/O controllers. From the controllers there is a single 4·byte 
wide bus that interfaces to the cache. The order of priorities in the 
system are: 

1) UNIBUS (via UNIBUS Map) 

2) High·speed I/O controllers (A through D) 

3) CPU 

Control information and lower speed data transfers are carried out 
through the UNIBUS. 

A device will request the UN IBUS for one of two purposes: 

To make a non· processor (NPR) transfer of data. (Direct Data 
Transfers such as DMA), or 

To interrupt program execution and force the processor to branch 
to a service routine. 

There are two sources of interrupts, hardware and software. 

1·10 



1.9.1 Hardware Interrupt Requests 
A hardware interrupt occurs when a device wishes to indicate to the 
program, or Central Processor, that a condition has occurred (such as 
transfer completed, end of tape, etc.). The interrupt can occur on any 
one of the four Bus Request levels and the processor responds to the 
interrupt through a service routine. 

1.9.2 Program Interrupt Requests 
Hardware interrupt servicing is often a two-level process. The first level 
is directly associated with the device's hardware interrupt and consists 
of retrieving the data. The second, is a software task that manipulates 
the raw information. The second process can be run at a lower priority 
than the first, because the PDP-11/70 provides the user with the means 
of scheduling his software servicing through seven levels of Program 
Interrupt Requests. The Program Interrupt Request Register is located 
at address 17777772. An interrupt is generated by the programmer set­
ting a bit in the high order byte of this register. 

1.9.3 Priority Structure on the UNIBUS 
When a device capable of becoming bus master requests use of the bus, 
handling of the request depends on the hierarchical position of that 
device in the priority structure. 

The relative priority of the request is determined by the Processor's 
priority and the level at which the request is made. 

The processor's priority is set under program control to one of eight 
levels using bits 7-5 in the processor Status Word. Bus requests are 
inhibited on the same or lower levels. 

Bus requests from external devices can be made on anyone of the 
five request lines. A non-processor request (NPR) has the highest 
priority, and its request is granted between bus cycles of an in­
struction execution. But Request 7 (BR 7) is the next highest 
priority and Bus Request 4 (BR 4) is the lowest. The four lower 
priority level requests (BR 7-BR 4) are granted by the processor 
between instructions providing that they occur on higher levels 
than the processor's. Therefore an interrupt may only occur on a 
Bus Request Level and not on a Non Processor Request level. 

Any number of devices can be connected to a specific BR or NPR 
line. 

If two devices with the same priority request the bus, the device 
physically closest to the processor on the UNIBUS has the higher 
priority. 

Program Interrupt Requests can be made on anyone of 7 levels 
(PIR 7-PIR 1). Requests are granted by the processor between 
instructions providing that they occur on higher levels than the 
processor's. 

Program Interrupt Requests take precedence over equivalent level 
Bus Requests. 

1.9.4 Non-Processor Data Transfers 
Direct memory or direct data transfers can be accomplished between 

1-11 



any two peripherals without processor supervision. These Non-Processor 
transfers, called NPR level data transfers, are usually made for Direct 
Memory Access (memory to/from mass storage) or direct device trans­
fers (disk refreshing a CRT display). 

PROCESSOR STATUS WORD 

CPU 
PRIORITY 

PROCESSOR STATUS WORD 

REQUEST 
~ 

-7 -NPR-I~-----'-l-

--~ PIR7 L-.-J L-.J 
-6-------- BR7------------=r==-,,------------
--~ PIR6 L-.-J 
-5 -BR6-~~----'-I-

--~PIR5 D D 
-4 -BR5-=-.-----r-=c----.-=-

--~PIR4 UUU 

3 
---PIR3 
2 
--~PIR2 

1 
--~PIR1 

" 

BR4[5 2J 

DECREASING PRIORITY 

Figure 1-8 UNIBUS Priority Structure 

ANY NUMBER 
OF HARDWARE 
DEVICES/LEVEL 

ONE PROGRAM/ 
PIR LEVEL 

An NPR device provides extremely fast access to the UNIBUS and can 
transfer data at high rates once it gains control of the bus. The state of 
the processor is not affected by this type of transfer, and, therefore, the 
processor can relinquish bus control while an instruction is still in prog­
ress. The bus can be released at the end of any bus cycle, except during 
a read-modify-write cycle sequence. (This occurs for example in de­
structive read-out devices such as core memory for certain instructions.) 
In the PDP-llj70 an NPR device can gain bus control in 3.5 micro­
seconds or less (depending on the number of devices on the UNIBUS), 
and can transfer 16-bit words to memory at the same speed as the ef­
fective cycle time of the memory being addressed. 

1.9.5 Using the Interrupts 
Devices that gain bus control with one of the Bus Request lines (BR 7-
BR 4), can take full advantage of the Central Processor by requesting an 
interrupt. In this way, the entire instruction set is available for manipu­
lating data and status registers. 

1-12 



When a service routine is to be run, the current task being performed by 
the central processor is interrupted, and the device service routine is 
initiated. Once the request has been satisfied, the Processor returns to 
its former task. Interrupts may also be used to schedule program exe· 
cution by using the Program Interrupt Request. 

1.9.6 Interrupt Procedure 
Interrupt handling is automatic in the PDP-1I/70. No device polling is 
required to determine which service routine to execute. The operations 
required to service an interrupt are as follows: 

1. Processor relinquishes control of the bus, priorities permitting. 

2. When a master gains control, it sends the processor an interrupt 
command and a unique memory address which contains the address 
of the device's service routine in Kernel virtual address space, called 
the interrupt vector address. Immediately following this pointer ad­
dress is a word (located at vector address +2) which is to be used 
as a new Processor Status Word. 

3. The processor stores the current Processor Status Word (PS) and the 
current Program Counter (PC) into CPU temporary registers. 

4. The new PC and PS (the interrupt vector) are taken from the speci· 
fied address. The old PS and PC are then pushed onto the current 
stack as indicated by bits 15,14 of the new PS and the previous 
mode in effect is stored in bits 13,12 of the new PS. The service 
routine is then initiated. 

These operations are performed in approximately 2.5 ,usec from the 
time the control processor receives the interrupt command until the time 
it starts executing the first instruction of the service routine. This time 
interval assumes no NPR transfer occurred during this time interval. 

5. The device service routine can cause the processor to resume the 
interrupted process by executing the Return from Interrupt (RTI or 
RTT) instruction, described in Chapter 4, which pops the two top 
words from the current processor stack and uses them to load the 
PC and PS registers. 

This instruction requires approximately 1.5 ,usec providing there is no 
NPR request. 

A device routine can be interrupted by a higher priority bus request any 
time after the new PC and PS have been loaded. If such an interrupt 
occurs, the PC and the PS of the service routine are automatically stored 
in the temporary registers and then pushed onto the new current stack, 
and the new device routine is initiated. 

1.9.7 Interrupt Servicing 
Every hardware device capable of interrupting the processor has a 
unique pair of locations reserved for its interrupt vector. The first word 
contains the location of the device's service routine, and the second, 
the Processor Status Word that is to be used by the service routine. 
Through proper use of the PS, the programmer can switch the opera­
tional mode of the processor, alter the General Register Set in use (con· 

1-13 



text switching), and modify the Processor's Priority level to mask out 
lower level interrupts. 

There is one interrupt vector for the Program Interrupt Request. It will 
generally be necessary in a multi·processing environment to determine 
which program generated the PIR and where it is located in memory. 

1.9.8 Processor Traps 
There are a series of errors and programming conditions which will 
cause the Central Processor to trap to a set of of fixed locations. These 
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout 
Errors, Non·Existent Memory Errors, Memory Parity Errors, Memory 
Management Violations, Floating Point Processor Exception Traps, Use 
of Reserved Instructions, Use of the T bit in the Processor Status Word, 
and use of the lOT, EMT, and TRAP instructions. 

1.10 THE PDP-ll FAMILY 
The PDp·ll family includes several processors, a large number of 
peripheral devices and options, and extensive software. PDp·ll com· 
puters are architecturally similar and hardware and software upwards 
compatible, although each machine has some of its own characteristics. 
New PDp·ll systems will be compatible with existing family members. 
The user can choose the system which is most suitable to his applica· 
tion, but as needs change or grow he can easily add or change hardware. 

1.11 PERIPHERAL OPTIONS 
Digital Equipment Corporation designs and manufactures many of the 
peripheral devices offered with PDp· lIs. As a designer and manufacturer 
of peripherals, DIGITAL can offer extremely reliable equipment, lower 
prices, more choices, and quantity discounts. 

Many processor, input/output, memory, bus, and storage options are 
available. These devices are explained in detail in the PDp·lI Peripherals 
Handbook. 

1.11.1 Input/Output Devices 
The LA36 DECwriter, a totally DIGITAL designed and built teleprinter, is 
the standard PDp·II system terminal. It has several advantages over 
standard electromechanical typewriter terminals, including higher speed, 
fewer mechanical parts and very quiet operation. I/O capabilities can be 
increased with high·speed paper tape readers-punches, line printers, 
card readers or alphanumeric display terminals. 

PDp·II I/O devices include: 

DECwriter teleprinter, LA36 

DECterminal alphanumeric display, VT05, VT50 

Teletypes, L T33 

High·speed line printers, LPll, LSlI, LVll 

Cassette, TAll 

High·speed paper tape reader punch, PCll 

Card readers, CRII, CDII 

Synchronous and asynchronous communication interfaces 

1·14 



1.11.2 Storage Devices 
Storage devices range from convenient, small-reel magnetic tape units to 
mass storage magnetic tapes and disk memories. A large number of 
storage devices, in any combination, may be connected to a PDP-ll 
system. TU56 DECtapes, highly reliable tape units with small tape reels, 
designed and built by DIGITAL, are ideal for applications with modest 
storage requirements. Each DECtape provides storage for 144K 16 bit 
words. For applications which require handling of large volumes of data, 
DIGITAL offers the industry compatible TU16 Magtape. 

Disk storage devices include fixed head disk units and moving-head re­
movable cartridge and disk pack units. PDP-II storage devices include: 

DECtape, TU56 

Magtape, TU16 

512K byte fixed head disk, RS03 

I,024K byte fixed head disk, RS04 

2.4M byte moving head cartridge disk, RK05 

88M byte moving head disk pack, RP04 

1-15 



1 -16 



CHAPTER 2 

SPECIFICATIONS 

2.1 PACKAGING 
A basic PDP-11/70 consists of two cabinets (see Figure 2-1): 

1) A CPU cabinet which contains the processor, CPU related equipment 
and interface equipment, and 

2) A Memory Cabinet which contains the first 128K bytes of parity core 
memory (with expansion capability to l,024K bytes within the cabi­
net. Another memory cabinet located next to it can house an addi­
tional l,024K bytes of memory). 

An LA63 DECwriter II console terminal is included with the system_ 
There are prewired areas within the mounting assemblies for expansion 
with optional equipment. 

CPU CAB CORE MEMORY CAB 

256K BYTES, 
MAX 

EXPANSION 
SPACE 

2S6K BYTES. 
MAX 

256K BYTES. 
MAX 

11/70 cPU 

," 128K BYTES 

(256K MAXI 

Figure 2-1 Equipment in 11/70 System 

2.2 COMPONENT PARTS 
The basic PDP-11/70 system has: 

Included Equipment 
11/70 CPU 
Memory Management 
Bootstrap loader 
Clock (KW11-L) 
DECwriter (LA36) 
Terminal interface (DL11-A) 
2K byte cache memory 
128K byte parity core 
CPU cabinet 
Memory cabinet 

2-1 



Prewired Expansion Space for Optional Equipment 
Floating Point Processor 
4 High-speed )/0 controllers 
4 SPC slots for peripherals 
128K byte parity core (within 1st memory expansion frame) 

2.3 OTHER SPECIFICATIONS 

AC Power 
115/208 VAC ± 10%, 47 to 63Hz, 3 phase power 
230/416 VAC ± 10%, 47 to 63Hz, 3 phase power 

Basic CPU cabinet (current on each of 
2 phases): 

Memory, each 256K bytes (current on 
1 phase): 

Size 

115 VAC 

15A 

12A 

Each cabinet is 72" high x 21" wide x 30" deep_ 

Weight 

CPU cabinet: 500 Ibs. 

Memory cabinet: 250 Ibs. (including 1st 256K bytes) 

230 VAC 

7.5A 

6A 

Memory expansion frame: 150 Ibs (each additional 256K bytes) 

Operating Environment 

Temperature: 10°C to 40 0 G (50° F to 104°F) 

Humidity: 10% to 90% with max wet bulb 28°C (82°F) and minimum 
dew point 2°C (36°F) 

Altitude: to 2.4 km. (8000 ft.) 

Non-Operating Environment 

Temperature: -40°C to 66°C (-40°F to 151'F) 

Humidity: to 95% 

Altitude: to 9.1 km (30,000 ft) 

2-2 



CHAPTER 3 

ADDRESSING MODES 

Data stored in memory must be accessed, and manipulated. Data han­
dling is specified by a PDP-ll instruction (MDV, ADD etc.) which usually 
indicates: 

the function (operation code); 

a general purpose register to be used when locating the source 
operand and/or a general purpose register to be used when locating 
the destination operand; 

an addressing mode (to specify how the selected register(s) is/ are 
to be used. 

Since a large portion of the data handladby a computer is usually 
structured (in character strings, in arrays, in lists etc.), the PDp·ll has 
been designed to handle structured data efficiently and flexibly. The 
general registers may be used with an instruction in any of the follow· 
ing ways: 

as accumulators. The data to be manipulated resides within the 
register. 

as pointers. The contents of the register are the address of the 
operand, rather than the operand itself. 

as pointers which automatically step through core locations. Auto· 
matically stepping forward through consecutive core locations is 
known as autoincrement addressing; automatically stepping back­
wards is known as autodecrement addressing. These modes are 
particularly useful for processing tabular data. 

as index registers. In this instance the contents of the register, and 
the word following the instruction are summed to produce the ad­
dress of the operand. This allows easy access to variable entries 
in a list. 

PDP·ll's also have instruction addressing mode combinations which 
facilitate temporary data storage structures for convenient handling of 
data which must be frequently accessed. This is known as the "stack." 
(see Chapter 9) 

In the PDP-II any register can be used as a "stack pointer" under pro· 
gram control; however, certain instructions associated with subroutine 
linkage and interrupt service automatically use Register 6 as a "hard­
ware stack pointer." For this reason R6 is frequently referred to as 
the "SP." 

3·1 



R7 is used by the processor as its program counter (PC). It is recom­
mended that R7 not be used as a stack pointer. 

An important PDP-ll/70 feature, which must be considered in conjunc­
tion with the addressing modes, is the register arrangement; 

Two sets of general purpose registers (RO-R5) 

three hardware stack pointers (R6) 

a Program Counter (PC) register (R7). 

Register R7 is used as a common program counter (PC). At any point 
in time only one register set is active. Thus a programmer need only 
concern himself with the existence of multiple register sets for those 
special supervisory tasks which involve Kernel, Supervisor, User com­
munications (e.g. MTPX, MFPX); otherwise he need never worry about 
which R3 or R6 an instruction will reference, the choice is automatic 
and transparent to his program. 

Instruction mnemonics and address mode symbols are sufficient for 
writing machine language programs. The programmer need not be con­
cerned about conversion to binary digits; this is accomplished auto­
matically by the PDP-1I/70 assembler. 

3.1 SINGLE OPERAND ADDRESSING 
The instruction format for all single operand instructions such as clear, 
increment, test) is: 

** * *** 

MODE Rn 

,~1_5 __________ -y __________ ~6J\~5 ___ 4 ___ ~2 _____ 0~, 

OP CODE _____ ~i • 
DESTINATION ADDRESS ______________________ -'J 

*·SPECIFIES DIRECT OR INDIRECT ADDRESS 
**·SPECIFIES HOW REGISTER WILL BE USED 

***·SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS 

Bits 15 through 6 specify the operation code that defines the type of 
instruction to be executed. 

Bits 5 through 0 form a six-bit field called the destination address field. 
This consists of two subfields: 

a) Bits 0 through 2 specify which of the eight general purpose registers 
is to be referenced by this instruction word. 

b) Bits 4 and 5 specify how the selected register will be used (address 
mode). Bit 3 is set to indicate deferred (indirect) addressing. 

3.2 DOUBLE OPERAND ADDRESSING 
Operations which imply two operands (such as add, subtract, move and 
compare) are handled by instructions that specify two addresses. The 

3-2 



first operand is called the source operand, the second the destination 
operand. Bit assignments in the source and destination address fields 
may specify different modes and different registers. The Instruction 
format for the double operand instruction is: 

** * *** ** * 

OP CODE I MODE Rn MODE 

15 12 \11 10 9 B 6, ,5 4 2 

SOURCE ADDRESS + 
DESTI NATION ADDRESS 

*oDIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS 
**·SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED 

***'SPECIFIES A GENERAL REGISTER 

*-
Rn 

0, 

The source address field is used to select the source operand, the first 
operand. The destination is used similarly, and locates the second 
operand and the result. For example, the instruction ADD A,B adds the 
contents (source operand) of location A to the contents (destination 
operand) of location B. After execution B will contain the result of the 
addition and the contents of A will be unchanged. 

Examples in this section and further in this chapter use the following 
sample PDp·l1 instructions: 

Mnemonic Description Octal Code 

CLR clear (zero the specified destination) 0050nn 

CLRB clear byte (zero the byte in the specified 1050nn 
destination) 

INC increment (add 1 to contents of destination) 0052nn 

INCB increment byte (add 1 to the contents of 1052nn 
destination byte) 

COM complement (replace the contents of the 0051nn 
destination by their logical complement; 
each 0 bit is set and each 1 bit is cleared) 

COMB complement byte (replace the contents of the lO51nn 
destination byte by their logical complement; 
each 0 bit is set and each 1 bit is cleared). 

ADD add (add source operand to destination 06mmnn 
operand and store the result at destination 
address) 

3.3 DIRECT ADDRESSING 
The following table summarizes the four basic modes used with direct 
addressing. 

3·3 



Mode 

o 
2 

4 

6 

Name 

Register 

Autoincrement 

Autodecrement 

Index 

3.3.1 Register Mode 

DIRECT MODES 

Assembler Function 
Syntax 

Rn Register contains operand 

(Rn)+ Register is used as a pointer 
to sequential data then in· 
cremented. 

-(Rn) Register is decremented and 
then used as a pointer. 

X(Rn) Value X is added to (Rn) to 
produce address of operand. 
Neither X nor (Rn) are modi· 
fied. 

OPR Rn 

With register mode any of the general registers may be used as simple 
accumulators and the operand is contained in the selected register. 
Since they are hardware registers, within the processor, the general reg· 
isters operate at high speeds and provide speed advantages when used 
for operating on frequently·accessed variables. The PDP-ll assembler 
interprets and assembles instructions of the form OPR Rn as register 
mode operations. Rn represents a general register name or number and 
OPR is used to represent a general instruction mnemonic. Assembler 
syntax requires that a general register be defined as follows: 

RO= %0 

RI = %1 

R2 = %2, etc. 

(% !:ign indicates register definition) 

Registers are typically referred to by name as RO, Rl, R2, R3, R4, R5, 
R6 and R7. However R6 and R7 are also referred to as SP and PC, 
respectively. 

Register Mode Examples 
(all numbers in octal) 

Symbolic Octal Code 

005203 

Instruction Name 

Increment 1. INC R3 

Operation: Add one to the contents of general register 3 

** * 

10 ° 0 0 ° 0 010,01010 '1~~ ,. 
,'-".::..5 _____ ~------'--6 J \ 5 4 3 ---=-2 __ .;;0, 

OP COOE (lNC(0052))~ f 
DESTINATION FIELD--------------' 

*. DIRECT ADDRESS 
**.REGlSTER MODE 

3-4 

R0 

Rl 

R2 

R3 

R4 

R5 

R6(SP) 

R7 (PC) 



2. ADD R2,R4 060204 Add 

Operation: Add the contents of R2 to the contents of R4. 

3. COMB R4 

Operation: 

BEFORE AFTER 

R2 I 000002 R2 :1 ::::::::::::00:::0:::00:::2:::=: 

R4 .... 1 __ 0_0_00_0_4--, R41 ....... _0_00_0.,.;0..:..6--, 

BEFORE 

105104 Complement Byte 

One's complement bits 0-7 (byte) in R4. 
(When general registers are used, byte in­
structions only operate on bits 0-7; i.e. byte 
o of the register) 

AFTER 

R4 1...1 _----"02:.:2=22::2--' R4 1...1 _....;;;02::2c.:' 5;,:.5--, 

3.3.2 Autoincrement Mode 
OPR (Rn)+ 

This mode provides for automatic stepping of a pointer through sequen­
tial elements of a table of operands. It assumes the contents of the 
selected general register to be the address of the operand. Contents of 
registers are stepped (by one for bytes, by two for words, always by two 
for R6 and R7) to address the next sequential location. The autoincre­
ment mode is especially useful for array processing and stacks. It will 
access an element of a table and then step the pointer to address the 
next operand in the table. Although most useful for table handling, this 
mode is completely general and may be used for a variety of purposes. 

Autoincremlmt Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR (R5)+ 

Operation: 

BEFORE 
ADDRESS SPACE 

20000 I 005025 R5 I 

005025 Clear 

Use contents of R5 as the address of the 
operand. Clear selected operand and then 
increment the contents of R5 by two. 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

030000 120000 005025 R51 030002 

~ 
30000 I ' "1"6 

~ 

2. CLRB (R5)+ 

Operation: 

30000 000000 

105025 Clear Byte 

Use contents of R5 as the address of the 
operand. Clear selected byte operand and 
then increment the contents of R5 by one. 

3·5 



BEFORE AFTER 
AOORESS SPACE REGISTER ADDRESS SPACE REGISTER 

20000 105025 R5 I 030000 1 20000 105025 R5 LI __ 03--,O--,O_01_...J 

30000 

30002 
11111~ 30000 111 000 

30002 '--_-'-_--' 

3. ADD (R2)+, R4 062204 Add 

Operation: 

BEFORE 
ADDRESS SPACE 

10000 062204 R2 

R4 1 

100002 ... 1 __ 0_10_00_0_-, 

3.3.3 Autodecrement Mode 

The contents of R2 are used as the address 
of the operand which is added to the con­
tents of R4. R2 is then incremented by two. 

AFTER 
REGISTERS ADDRESS SPACES REGISTERS 

10000 1 062204 R2 1 100004 

010000 R41 020000 

100002 1-1 __ 0_'0_00_0_-, 

OPR-(Rn) 

This mode is useful for processing data in a list in reverse direction. 
The contents of the selected general register are decremented (by two 
for word instructions, by one for byte instructions) and then used as 
the address of the operand. The choice of postincrement, predecrement 
features for the PDP-ll were not arbitrary decisions, but were intended 
to facilitate hardware! software stack operations. 

Autodecrement Mode Examples 
Symbolic Octal Code Instruction Name 

1. INC-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

1000 ... 1 __ 00_5_24_0_-, 

17774 ... 1 __ 00_0_00_0_-, 

2. INCB-(RO) 

Operation: 

005240 Increment 

The contents of RO are decremented by two 
and used as the address of the operand. 
The operand is increased by one. 

AFTER 
REGISTERS ADDRESS SPACE REGISTER 

R0 1-1 __ 0_'7_77_6_-, 1000 ... 1 _=00=5=24=0==,-__ R_0-,:1==0=':::77~74_--, 
~ 

17774 1 000001 

105240 Increment Byte 

The contents of RO are decremented by one 
then used as the address of the operand. 
The operand byte is increased by one. 

3-6 



BEFORE AFTER 

REGISTER ADDRESS SPACE REGISTER ADDRESS SPACE 

1000 .... ' __ '0_52_4_0_-, R0 .... ' __ 0'_7_77_6_-, 1000 .... ' __ '0_52_4_0_-, R0 
'-----".---' 

000 17774 I 000 
'7776 1--"7"-----1 

'---~-----' 

3. ADD-(R3),RO 

Operation: 

BEFORE 
ADDRESS SPACE 

17774 

'7776 1--"7"----i 

064300 Add 

The contents of R3 are decremented by 2 
then used as a pointer to an operand 
(source) which is added to the contents of 
RO (destination operand). 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

10020 1,--_06_4_30_0_-, R0 .... 1 __ 0_00_0_20_-, 10020 .... 1 __ 06_4_30_0_-, R01 0000070 

R3 .... , __ 07_7_77_6_-, ~4 
7777411-__ °°,-0-,-05:';'°_-1 

77776 L... ____ -' 

777741 000050 I 
77776 L... ____ --'. 

3.3.4 Index Mode 
OPR X(Rn) 

The contents of the selected general register, and an index word follow­
ing the instruction word, are summed to form the address of the op­
erand. The contents of the selected register may be used as a base for 
calculating a series of addresses, thus allowing random access to ele­
ments of data structures. The selected register can then be modified 
by program to access data in the table. Index addressing instructions 
are of the form OPR X(Rn) where X is the indexed word and is located 
in the memory location following the instruction word and Rn is the 
selected general register. 

Index Mode Examples 
Symbolic 

1. CLR 200(R4) 

Operation: 

BEFORE 

ADDRESS SPACE 

Octal Code 

005064 
000200 

Instruction Name 

Clear 

The address of the operand is determined by 
adding 200 to the contents of R4. The loca­
tion is then cleared. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

1020 

1022 I---:-:-:-:::----i 
R4 1..-' __ 00_'_00_0_--, R41 001000 1020 

1022 1---:-=:----1 
1024 

I---===::-l 
1024 

'---------' 

'200~ 

3-7 



2. COMB 200(R1) 

Operation: 

BEFORE 

ADDRESS SPACE 

1020 

105161 
000200 

Complement Byte 

The contents of a location which is deter­
mined by adding 200 to the contents of R1 
are one's complemented (i.e. logically com­
plemented). 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

017777 
f-------j 

1022 1----=':="'-----1 

Rl I '--___ ----J 10201----:-:-::-::-:-:----1 

1022 1--'---'-'-'-'-------1 

Rl 1~-,--01_77_7_7_...J 

3. ADD 30(R2), 20(R5)066265 
000030 
000020 

Add 

Operation: The contents of a location which is deter­
mined by adding 30 to the contents of R2 are 
added to the contents of a location which is 
determined by adding 20 to the contents of 
R5. The result is stored at the destination 
address, i.e. 20(R5) 

BEFORE AFTER 
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 I 066265 R2 I 001100 1020 I 066265 R2 I 001100 

1022 I 000030 1022 I 000030 

1024 I 000020 R5 I 002000 
1024 I 000020 R5 I 002000 

1130 I 000001 1130 I 000001 

2020 I 000001 2020 I 000002 

1100 2000 
+30 +20 

1i3O 2020 

3.4 DEFERRED (INDIRECT) ADDRESSING 
The four basic modes may also be used with deferred addressing. 
Whereas in the register mode the operand is the contents of the selected 
register, in the register deferred mode the contents of the selected 
register is the address of the operand. 

In the three other deferred modes, the contents of the register selects 
the address of the operand rather than the operand itself. These modes 
are therefore used when a table consists of addresses rather than op­
erands. Assembler syntax for indicating deferred addressing is "@" or 
( ). The following table summarizes the deferred versions of the basic 
modes: 

3-8 



Mode Name 

1 Register Deferred 

Assembler 
Syntax Function 

@Rn or (Rn) Register contains the ad· 
dress of the operand 

3 Autoincrement Deferred @(Rn)+ Register is first used as 
a pointer to a word con· 
taining the address of 
the operand, then incre· 
mented (always by 2; 
even for byte instruc· 
tions) 

5 Autodecrement Deferred @-(Rn) Register is decremented 
(always by two; even for 
byte instructions) and 
then used as a pointer 
to a word containing the 
address of the operand 

7 I ndex Deferred @X(Rn) Value X (stored in a word 
following the instruction) 
and (Rn) are added and 
the sum is used as a 
pointer to a word con· 
taining the address of the 
operand. Neither X nor 
(Rn) are modified. 

Since each deferred mode is similar to its basic mode counterpart, sep· 
arate descriptions of each deferred mode are not necessary. However, 
the following examples illustrate the deferred modes. 

Register Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR @R5 

Operation: 

BEFORE 
ADDRESS SPACE 

005015 Clear 

The contents of location specified in R5 are 
cleared. 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

16771 
1700 t--oo-o-,o-o--! 

R5 I 00'700 1677 ~ ____ -! R5 I 001700 

'-------' 
t 700 . 000000 

Autoincrement Deferred Mode Example 
Symbolic Octal Code Instruction Name 

INC @(R2)+ 

Operation: 

005232 Increment 

The contents of R2 are used as the address 
of the address of the operand. 
Operand is increased by one. Contents of 
R2 is incremented by 2. 

3·9 



BEFORE AFTER 
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

~ R21 010300 

:~r=J-----/ 
1010~ 
1012~ 

R2 010302 
'--------' 

10300 1 0010'0 I 10300 II-_-,O-,O_'.:..O'..:.O_--t 

Autodecrement Deferred Mode Example 
Symbolic Octal Code Complement 

COM @-(RO) 

Operation: 

BEFORE 
ADDRESS SPACE 

005150 

The contents of RO are decremented by two 
and then used as the address of the address 
of the operand. Operand is one's comple· 
mented. (Le. logically complemented) 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

10100 

10102 

012345 R0 ... 1 __ 0_'_0_7_76_--, '0100 I = 1 R01 010774 

10774 ~ __ O_'_O_' O_O_--l 
10776 

'-------' 

101~ 

107741 010100 I 
10776 

'-------' 

Index Deferred Mode Example 
Symbolic Octal Code Instruction Name 

ADD @1000(R2),R1 

Operation: 

BEFORE 
ADDRESS SPACE 

RI 

067201 
001000 

Add 

1000 and contents of R2 are summed to 
produce the address of the address of the 
source operand the contents of which are 
added to contents of R1; the result is stored 
in Rl. 

AFTER 
REGISTER ADDRESS SPACE REGISTER 

001234 RI 001236 1020 

1022 

1024 
R2 11..._-'0"'0-'0-" 0",0_--, 

1020 11-_0_6_7_20_'_--1 

1022 11--_00_'_0_00_-1 

1024 ll-____ -I 
R2 1'---_0_0_0_10_0_--' 

1050 I 000002 I 
11~0 001050 1000 

~~ 1100 

'050 1r-_0_00_0_0_2_-i 

11 00 11-_-,0:.:0...:1O:.:5:.:0_--t 

3·10 



3.5 USE OF THE PC AS A GENERAL REGISTER 
Although Register 7 is a general purpose register, it doubles in function 
as the Program Counter for the PDp·l1. Whenever the processor uses 
the program counter to acquire a word from memory, the program 
counter is automatically incremented by two to contain the address of 
the next word of the instruction being executed or the address of the 
next instruction to be executed. (When the program uses the PC to 
locate byte data, the PC is still incremented by two.) 

The PC responds to all the standard PDp·l1 addressing modes. However, 
there are four of these modes with which the PC can provide advantages 
for handling position independent code (PIC-see Chapter 9) and un· 
structured data. When regarding the PC these modes are termed imme· 
diate, absolute (or immediate deferred), relative and relative deferred, 
and are summarized below: 

Mode 

2 

3 

6 

7 

Name Assembler 
Syntax 

Immediate # n 

Absolute @ # A 

Relative A 

Relative Deferred @A 

Function 

Operand follows instruction. 

Absolute Address follows in· 
struction. 

Address of A, relative to the 
instruction, follows the in· 
struction. 

Address of location contain· 
ing address of A, relative to 
the instruction follows the 
instruction. 

The reader should remember that the special effect modes are the 
same as modes described in 3.3 and 3.4, but the general register 
selected is R7, the program counter. 

When a standard program is available for different users, it often is 
helpful to be able to load it into different areas of core and run it there. 
PDP·l1's can accomplish the relocation of a program very efficiently 
through the use of position independent code (PIC) which is written by 
using the PC addressing modes. If an instruction and its objects are 
moved in such a way that the relative distance between them is not 
altered, the same offset relative to the PC can be used in all positions in 
memory. Thus, PIC usually references locations relative to the current 
location. 

The PC also greatly facilitates the handling of unstructured data. This 
is particularly true of the immediate and relative modes. 

3.5.1 Immediate Mode 

OPR #n,DD 

Immediate mode is equivalent to using the autoincrement mode with the 
PC. It provides time improvements for accessing constant operands by 

3·11 



including the constant in the memory location immediately following the 
instruction word. 

Immediate Mode Example 
Symbolic Octal Code Instruction Name 

ADD # IO,RO 062700 Add 
000010 

Operation: The value 10 is located in the second word 
of the instruction and is added to the con· 
tents of RD. Just before this instruction is 
fetched and executed, the PC points to the 
first word of the instruction. The processor 
fetches the first word and increments the 
PC by two. The source operand mode is 27 
(autoincrement the PC). Thus, the PC is used 
as a pointer to fetch the operand (the second 
word of the instruction) before being incre­
mented by two to point to the next in­
struction. 

BEfORE AFTER 

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 I 062700 

1022 I 000010 
"" R0 LI _-,-00:.;:0..:..02:.;:0_-, 

PC 

1020 1-_06_27_0_0_-;J R0 IL_..:..OO:.;:00.:..:3..:..0_-, 

1022 000010 I 

1024 11------1 
l _____ PC 

1024 f-------l 

3.5.2 Absolute Addressing 

OPR @ # A 

This mode is the equivalent of immediate deferred or autoincrement 
deferred using the PC. The contents of the location following the instruc­
tion are taken as the address of the operand. Immediate data is inter­
preted as an absolute address (i.e., an address that remains constant 
no matter where in memory the assembled instruction is executed). 

Absolute Mode Examples 
Symbolic Octal Code Instruction Name 

1. CLR @#1100 

Operation: 

BEFORE 

ADDRESS SPACE 

20 
1-------1 

22 
I---~---I 

PC 

005037 
001100 

Clear 

Clear the contents of location 1100. 

AFTER 

ADDRESS SPACE 

20 I 005037 

22 r 001100 /PC 

24 r 

1100 I 000000 

1102 

3-12 



2. ADD @ # 2000, R3 063703 

Operation: 

BEFORE 

ADDRESS SPACE 

20 
I-------j 

22 
I-------j 

24 
~=~---l 

3.5.3 Relative Addressing 

002000· 

Add contents of location 2000 to R3. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

000500 20 R3 LI __ 00_'0_0_0_....1 

221---'-'--'-'---1 _____ PC 
24 ¥ 

1-------1 

2000 Jt--__ OO_O_30_0_-t 

OPR A or 
OPR X(PC) ,where X is the location of A relative to the instruction. 

This mode is assembled as index mode using R7. The base of the ad· 
dress calculation, which is stored in the second or third word of the 
instruction, is not the address of the operand, but the number which, 
when added to the (PC), becomes the address of the operand. This mode 
is useful for writing position independent code (see Chapter 5) since 
the location referenced is always fixed relative to the PC. When instruc· 
tions are to be relocated, the operand is moved by the same amount. 

Relative Addressing Example 
Symbolic Octal Code Instruction Name 

INC A 

Operation: 

BEFORE 

ADDRESS SPACE 

005267 
000054 

Increment 

To increment location A, contents of memory 
location immediately following instruction 
word are added to (PC) to produce address 
A. Contents of A are increased by one. 

AFTER 

ADDRESS SPACE 

1020 005267 

1---'-=="'----j~PC 1022 000054 
I-------j 

1024 

1020 1--'0c::.0",05:.::26:.c7_-i 

1022 l-_o-,0..:.00-,5_4_-t 
1024 _PC 

I-------j 
1026 

1--------1 
1024 

,,~,.,;~ 

3.5.4 Relative Deferred Addressing 

OPR@ or 

I------i 
1026 

~-----l 

11 00 L.I __ 00_0_0_0'_ .... 

OPR@X(PC), where x is location containing address of A, relative to the 
instruction. 

This mode is similar to the relative mode, except that the second word 
of the instruction, when added to the PC, contains the address of the 
address of the operand, rather than the address of the operand. 

3·13 



Relative Deferred Mode Example 
Symbolic Octal Code 

CLR @A 005077 
000020 

Instruction Name 

Clear 

Operation: Add second word of instruction to PC to pro­
duce address of address of operand. Clear 
operand. 

BEFORE 

ADDRESS SPACE 

1020 "-
10221-------1 "PC 

1024 1-___ --1 

1O~10~6 
~ 1044 

10100 I 100001 I 

AFTER 

ADDRESS SPACE 

1020 
1-------1 

1022 r-------f /PC 

10241--___ --1/ 

10441 010100 

10100 I 000000 

3_6 USE OF STACK POINTER AS GENERAL REGISTER 
The processor stack pointer (SP, Register 6) is in most cases the gen­
eral register used for the stack operations related to program nesting. 
Autodecrement with Register 6 "pushes" data on to the stack and auto­
increment with Register 6 "pops" data off the stack. Index mode with 
the SP permits random access of items on the stack. Since the SP is 
used by the processor for interrupt handling, it has a special attribute: 
autoincrements and autodecrements are always done in steps of two. 
Byte operations using the SP in this way simply leave odd addresses 
unmodified. 

On the PDP-1l/70 there are three R6 registers selected by the PS; but 
at any given time there is only one in operation. 

The following table is a concise summary of the various PDP-II address­
ing modes 

Mode 

o 
2 

4 

6 

Name 

Register 

Autoincrement 

Autodecrement 

Index 

DIRECT MODES 

Assembler 
Syntax 

Rn 

(Rn) + 

-(Rn) 

X(Rn) 

3-14 

Function 

Register contains operand. 

Register contains address 
of operand. Register con­
tents incremented after 
reference. 

Register contents decre­
mented before reference 
register contains address 
of operand. 

Value X (stored in a word 
following the instruction) is 
added to (Rn) to produce 
address of operand. Nei­
ther X nor (Rn) are modi­
fied. 



DEFERRED MODES 

Mode Name Assembler 
Syntax 

Function 

1 

3 

5 

7 

2 

3 

6 

7 

Register Deferred @Rn or (Rn) Register contains the ad­
dress of the operand 

Autoincrement Deferred @(Rn) + 

Autodecrement Deferred @-(Rn) 

Index Deferred @X(Rn) 

PC ADDRESSING 

Immediate #n 

Absolute @#A 

Relative A 

Relative Deferred @A 

3-15 

Register is first used as 
a pointer to A word con­
taining the address of 
the operand, then incre­
mented (always by 2; 
even for byte instruc­
tions) 

Register is decremented 
(always by two; even for 
byte instructions) and 
then used as a pointer 
to a word containing the 
address of the operand 

Value X (stored in a word 
following the instruction) 
and (Rn) are added and 
the sum is used as a 
pointer to a word con­
taining the address of 
the operand_ Neither X 
nor (Rn) are modified 

Operand follows instruc-
tion 

Absolute address follows 
instruction 

Address of A, relative to 
the Instruction, follows 
the instruction_ 

Address of location con-
taining address of A, rela-
tive to the instruction fol-
lows the instr.uction_ 



'It ••• • - . :. -... .... . ... . 
...... . .. ... ... : .. ~ ~ 
..... . -.. ~ .. -

1": ~tft'I' WI.·..,.. )1' , \ 

3·16 



CHAPTER 4 

INSTRUCTION SET 

4.1 INTRODUCTION 
This chapter describes the PDp·11/70 instructions in the following 
order: 

Single Operand (4.4) 
General, Shifts, Multiple Precision, Rotates 

Double Operand (4.5) 
Arithmetic Instructions, General Register Destination, Logical In­

structions 

Program Control Instructions (4.6) 
Branches, Subroutines, Traps 

Miscellaneous (4.7) 

Condition Code Operators (4.8) 

The specification for each instruction includes the mnemonic, octal code, 
binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and the effect on the condition codes, 
timing information, a description, special comments, and examples. 

MNEMONIC: This is indicated at the top corner of each page. When the 
word instruction has a byte equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction shows 
the octal op code, the binary op code, and bit assignments. (Note that 
in byte instructions the most significant bit (bit 15) is always a 1.) 

OPERATION: The operation of each instruction is described with a single 
notation. The following symbols are used: 

( ) = contents of 

src = source address 

dst = destination address 

loc = location 

<c- = becomes 

t = "is popped from stack" 

~ = "is pushed onto stack" 

A = boolean AND 

v = boolean OR 

4·1 



-41-= exclusive OR 

r-' = boolean not 

Reg or R = register 

B = Byte 

4.2 INSTRUCTION FORMATS 
The major instruction formats are: 

Single Operand Group 

I OP Code 

I 
15 

Double Operand Group 

OP Code Src 

I 
15 12 11 

Condition Code Operators 

0 0 0 

Register-Source or Destination 

Subroutine Return 

o 

Branch 

OP Code 
I 

o 

dst 

I 
6 5 0 

dst 

I 
6 5 0 

: 2 4 I I N I z Iv I c 

Src/dst 
I 

o reg 

offset 

4-2 



4.3 BYTE INSTRUCTIONS 
The POp·ll processor includes a full complement of instructions that 
manipulate byte operands. Since all POP-ll addressing is byte-oriented, 
byte manipulation addressing is straightforward. Byte instructions with 
autoincrement or autodecrement direct addressing cause the specified 
register to be modified by one to point to the next byte of data. Byte 
operations in register mode access the low-order byte of the specified 
register. These provisions enable the POP-l1 to perform as either a word 
or byte processor. The numbering scheme for word and byte addresses 
in core memory is: 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 1 

BYTE 3 

BYTE 0 

BYTE 2 

WORD OR BYTE 
ADDRESS 

002000 

002002 

The most significant bit (Bit 15) of the instruction word is set to indicate 
a byte instruction. 

Example: 

Symbolic 

CLR 
CLRB 

Octal 

005000 
105000 

4-3 

clear word 
clear byte 



4-4 



4.4 SINGLE OPERAND INSTRUCTIONS 
4.4.1 Single Operand Arithmetic Instructions 

General: CLR DEC INC NEG TST COM 
CLRB DECB INCB NEGB TSTB COMB 

Shifts: ASR ASL ASH ASHC 
ASRB ASLB 

Multiple Precision: ADC SBC SXT 
ADCB 5BCB 

Rotates: ROL ROR SWAB 
ROLB RORB 

4-5 



CLR 
CLRB 

Clear destination n05000 

o 0 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

o 

(dst)~ 

N: cleared 
Z: set 
V: cleared 
C: cleared 

o j 0 

6 5 

d d d d 

o 

Word: Contents of specified destination are re­
placed with zeroes_ 

Byte: Same 

Before 
(R1) = 177777 

NZVC 
111 1 

4-6 

CLR R1 

After 
(Rl) = 000000 

NZVC 
0100 



DEC 
DECB 

Decrement destination n053DD 

o o 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

o o : 1 1 I d d d d d 
d I 

6 5 0 

(dst) ..... (dst)-l 

N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (dst) was 100000; cleared otherwise 
C: not affected 

Word: Subtract 1 from the contents of the destina­
tion 
Byte: Same 

Before 
(R5) = 000001 

NZVC 
1000 

4-7 

DEC R5 

After 
(R5) = 000000 

NZVC 
0100 



INC 
INCB 

Increment destination n052DD 

o 0 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

o d d d 

6 5 

(dst) ~(dst) + 1 

N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

d 

o 

V: set if (dst) held 077777; cleared otherwise 
C: not affected 

Word: Add one to contents of destination 
Byte: Same 

Before 
(R2) = 000333 

NZVC 
0000 

4-8 

INC R2 

After 
(R2) = 000334 

NZVC 
0000 



NEGB 
NEG 

Negate destination n0054DD 

1°/1 1 ° o ° 
15 

Operation: 

Condition Codes: 

Description: 

Example: 

° 1 : 0 0 I d d d d d 

6 5 ° 
(dst) ~ - (dst) 

N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if the result is 100000; cleared otherwise 
c: cleared if the result is 0; set otherwise 

Word: Replaces the contents of the destination ad· 
dress by its two's complement. Note that 100000 is 
replaced by itself (in two's complement notation the 
most negative number has no positive counterpart). 
Byte: Same 

Before 
(RO) = 000010 

NZVC 
0000 

4·9 

NEG RO 

After 
(RO) = 177770 

NZVC 
1001 



T5T 
T5T8 

Test destination 

10lf I ° ° ° 
15 

Operation: 

Condition Codes: 

Description: 

Example: 

n057DD 

° d d d d 
I 

6 5 o 

(dst) ~(dst) 

N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: cleared 

Word: Sets the condition codes Nand Z according 
to the contents of the destination address 
Byte: Same 

Before 
(R1) = 012340 

NZVC 
0011 

4-10 

TST R1 

After 
(R1) = 012340 

NZVC 
0000 



COM 
COMB 

Complement destination n051DD 

o 0 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

o 1 I d d d d 

6 5 o 

(dst) e-, (dst) 

N: set if most significant bit of result is set; cleared 
otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Replaces the contents of the destination address 
by their logical complement (each bit equal to 0 
is set and each bit equal to 1 is cleared) 
Byte: Same 

Before 
(RO) = 013333 

NZVC 
0110 

4-11 

COM RO 

After 
(RO) = 164444 

NZVC 
1001 



4.4.2 Shifts 
Scaling data by factors of two is accomplished by the shift instructions: 

ASR-Arithmetic shift right 

ASL-Arithmetic shift left 

ASC-Multiple shift one word 

ASC-Multiple shift one word 

The sign bit (bit 15) of the operand is replicated in shifts to the right. 
The low order bit is filled with 0 in shifts to the left. Bits shifted out 
of the C bit, as shown in the following examples, are lost. 

4·12 



ASR 
ASRB 

Arithmetic Shift Right destination n06200 

1011, ° ° o 

15 

Operation: 

Condition Codes: 

Description: 

Word: 

Byte: 

° o : 1 d d d d 

6 5 ° 
(dst) ~(dst) shifted one place to the right 

N: set if the high-order bit of the result is set (re­
sult < 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded from the Exclusive OR of the N-bit and 
C-bit (as set by the completion of the shift op­
eration) 
C: loaded from low-order bit of the destination 

Word: Shifts all bits of the destination right one 
place. Bit 15 is replicated. The C-bit is loaded from 
bit 0 of the destination. ASR performs signed divi­
sion of the destination by two. 

~...II-~OO::::D-:.io~D::::-RE~S::::-S-'--'---"-;8;-,1-G d::o 'EVEN ADORES! I-GJ 
o 

4-13 



ASL 
ASLB 

Arithmetic Shift Left destination n063DD 

10/11 0 o 

15 

Operation: 

Condition Codes: 

Description: 

1 I d d d d d 

6 5 o 

(dst) ~(dst) shifted one place to the left 

N: set if high-order bit of the result is set (result 
< 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded with the exclusive OR of the N-bit and 
C-bit (as set by the completion of the shift opera­
tion) 
C: loaded with the high-order bit of the destination 

Word: Shifts all bits of the destination left one 
place_ Bit 0 is loaded with an 0_ The C-bit of the 
status word is loaded from the most significant bit 
of the destination_ ASL performs a signed multi­
plication of the destination by 2 with overflow in­
dication_ 

Word: 

Byte: 

G-I ,I, r-oGJ-L,,1 ...J..-..!::I.""J'-:=!:=' "J--I-~I+-o L-15-L--'-~OO-LO"""AO""O!"R"='ES-LS-'--...L...,....J EVEN ADDRESS 0 

4-14 



ASH 

Shift Arithmetically 072RSS 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

[ l I 
J 15 

o s I 
9 8 6 5 o 

R~ R Shifted arithmetically NN places to right 
or left 
Where NN = (src) 

N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if sign of register changed during shift; 
cleared otherwise 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left 
the number of times specified by the source op­
erand. The shift count is taken as the low order 6 
bits of the source operand. This number ranges 
from -32 to +31. Negative is a right shift and 
positive is a left shift. 

- 1-0 I 

OR 
0 

1- 0 

0 

4-15 



ASHe 

Arithmetic Shift Combined 073RSS 

10 I 1 

15 

Operation: 

Condition Codes: 

Description: 

o 
9 6 6 5 o 

R, Rv1 ~R, Rv1 The double word is shifted NN 
places to the right or left, where NN = (src) 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: set if sign bit changes during the shift; cleared 
otherwise 
C: loaded with high order bit when left shift; loaded 
with low order bit when right shift (loaded with the 
last bit shifted out of the 32·bit operand) 

The contents of the register and the register ORed 
with one are treated as one 32 bit word, R + 1 
(bits 0·15) and R (bits 16·31) are shifted right or left 
the number of times specified by the shift count. 
The shift count is taken as the low order 6 bits of 
the source operand. This number ranges from -32 
to +31. Negative is a right shift and positive is 
a left shift. 
When the register chosen is an odd number the reg· 
ister and the register OR'ed with one are the same. 
In this case the right shift becomes a rotate. The 
16 bit word is rotated right the number of bits 
specified by the shift count. 

cL~~~I~~~~~~~~~L-~~L-~~I$1 , 
R+t I I G-7 I-G 

OR 

4·16 



4.4.3 Multiple Precision 
It is sometimes necessary to do arithmetic on operands considered as 
multiple words or bytes. The PDP-II makes special provision for such 
operations with the instructions ADC (Add Carry) and SSC (Subtract 
Carry) and their byte equivalents. 

For example two 16-bit words may be combined into a 32-bit double 
precision word and added or subtracted as shown below: 

32 BIT WORD 
( 

OPERAND I AI I I A0 

31 16 15 

OPERAND (I 91 90 

31 16 15 

RESULT r 
31 16 15 

Example: 

The addition of -1 and-l could be performed as follows: 

-1 = 37777777777 

, 

I 
0 

0 

0 

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777 

ADD Rl, R2 
ADC R3 
ADD R4,R3 

1. After (Rl) and (R2) are added, 1 is loaded into the C bit 

2. ADC instruction adds C bit to (R3); (R3) = 0 

3. (R3) and (R4) are added 

4. Result is 37777777776 or -2 

4-17 



ADC 
ADCB 

Add Carry destination n055DD 

10/1 a a 
I I 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

a a 1 I d d d 

6 5 

(dst) ~(dst) + (C) 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 

d d 

a 

V: set if (dst) was 077777 and (C) was 1: cleared 
otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared 
otherwise 

Adds the contents of the C-bit into the destination. 
This permits the carry from the addition of the low­
order words to be carried into the high-order result. 
Byte: Same 

Double precision addition may be done with the 
fol/owing instruction sequence: 
ADD AO, BO ; add low-order parts 
ADC Bl ; add carry into high-order 
ADD Al,Bl ; add high order parts 

4-18 



SBC 
SBCB 

Subtract Carry destination n056DD 

10/1 I a a a 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

a 1 : 1 a I d d d 

6 5 

(dst) ~(dst)-(C) 

N: set if result <0; cleared otherwise 
Z: set if result 0; cleared otherwise 

d d 

V: set it(dst)was 100000; cleared otherwise 

o 

C: set if (dst ) was 0 and C was 1; cleared otherwise 

Word: Subtracts the contents of the C·bit from the 
destination. This permits the carry from the sub· 
traction of two low·order words to be subtracted 
from the high order part of the result. 
Byte: Same 

Double precision subtraction is done by: 

SUB AO,BO 
SBC Bl 
SUB Al,Bl 

4-19 



SXT 

Sign Extend destination 006700 

I 0 1 0 

15 

Operation: 

o 

Condition Codes: 

Description: 

Example: 

o 1 I d 

6 5 

(dst) ~ 0 if N bit is clear 
(dst) ~-1 N bit is set 

N: unaffected 
Z: set if N bit clear 
V: cleared 
C: unaffected 

d d I d d 

o 

If the condition code bit N is set then a-I is 
placed in the destination operand: if N bit is clear, 
then a 0 is placed in the destination operand. This 
instruction is particularly useful in multiple preci­
sion arithmetic because it permits the sign to be 
extended through multiple words. 

Before 
(A) = 012345 

NZVC 
1000 

4-20 

SXT A 

After 
(A) = 177777 

NZVC 
1000 



4.4.4 Rotates 
The rotate instructions operate on the destination word and the C bit as 
though they formed a 17-bit "circular buffer." These instructions facili­
tate sequential bit testing and detailed bit manipulation. 

4-21 



ROL 
ROLB 

Rotate Left destination n061DD 

10/1 ° ° I I 

15 

o 

Condition Codes: 

Description: 

Example: 

Word: 

° 1 I d d 

6 5 ° 
N: set if the high-order bit of the result word is set 
(result <0): cleared otherwise 
Z: set if all bits of the result word = 0; cleared 
otherwise 
V: loaded with the Exclusive OR of the N-bit and 
C-bit (as set by the completion of the rotate op­
eration) 
C: loaded with the high-order bit of the destination 

Word: Rotate all bits of the destination left one 
place_ Bit 15 is loaded into the C-bit of the status 
word and the previous contents of the C-bit are 
loaded into Bit 0 of the destination_ 
Byte: Same 

dst 

~-~I ~~~~~~~~~~I 
LI __ ~15~ __________________________________ ~tO 

Bytes: 

4-22 



ROR 
RORB 

Rotate Right destination n060DD 

1011 I 0 I 0 I 0 I I d d I I ! _ 

15 

Condition Codes: 

Description: 

Example: 
Word: 

6 5 o 
N: set if the high-order bit of the result is set 
(result < 0); cleared otherwise 
Z: set if all bits of result = 0; cleared otherwise 
V: loaded with the Exclusive OR of the N-bit and 
C-bit (as set by the completion of the rotate 
operation) 
C: loaded with the low-order bit of the destination 

Rotates all bits of the destination right one place_ 
Bit 0 is loaded into the C-bit and the previous 
contents of the C-bit are loaded into bit 15 of the 
destination_ 
Byte: Same 

0-~1 ~~~~~~~~~~ tL __ ~15 ____________________________________ ~IO 

Byte: 

4-23 



SWAB 

Swap Bytes destination 000300 

10,0 00,0,0,0,0> lid d d d d dl 
15 6 5 0 

Operation: 

Condition Codes: 

Description: 

Example: 

Byte 1/Byte a ~Byte a/Byte 1 

N: set if high-order bit of low-order byte (bit 7) of 
result is set; cleared otherwise 
Z: set if low-order byte of result = 0; cleared 
otherwise 
V: cleared 
C: cleared 

Exchanges high-order byte and low-order byte of 
the destination word (destination must be a word 
address). 

Before 
(R1)= 077777 

NZVC 
111 1 

4-24 

SWAB R1 

After 
(R1) = 177577 

NZVC 
0000 



4.5 DOUBLE OPERAND INSTRUCTIONS 
Double operand instructions provide an instruction (and time) saving 
facility since they eliminate the need for "load" and "save" sequences 
such as those used in accumulator·oriented machines. 

General: MOV ADD SUB CMP 
MOVB CMPB 

Register Destination: MUL DIV XOR 

Logical: BIS BIT BIC 
BISB BITB BICB 

4.5.1 Double Operand General Instructions 

4·25 



MOV 
MOVB 

Move source to destination n1SSDD 

a 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

1 15 5 5 5 '5 
. I I I ! 

d d 

12 11 6 5 

(dst) +-(src) 

N: set if (src) <0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared 
C: not affected 

d d 

a 

Word: Moves the source operand to the destination 
location. The previous contents of the destination 
are lost. The contents of the source address are 
not affected. 
Byte: Same as MOV. The MOVB to a register 
(unique among byte instructions) extends the most 
significant bit of the low order byte (sign exten­
sion). Otherwise MOVB operates on bytes exactly 
as MOV operates on words. 

MOV XXX,R1 ; loads Register 1 with 
the contents of memory location; XXX represents 
a programmer-defined mnemonic used to represent 
a memory location 

MOV #20,RO ; loads the number 20 
into Register 0; "#" indicates that the value 20 is 
the operand 

MOV @#20,-(R6) ; pushes the operand 
contained in location 20 onto the stack 

MOV (R6)+,@#177566 ; pops the operand off 
a stack and moves it into memory location 177566 
(terminal print buffer) 

MOV R1,R3 
terregister transfer 

; performs an in-

MOVB @ # 177562,@ # 177566 ; moves a charac­
ter from terminal keyboard buffer to terminal 
buffer 

4-26 



ADD 

Add source to destination 06SSDD 

I ° I 1 
15 

Operation: 

Condition Codes: 

Descri ption: 

Examples: 

d 0ls 5 s sIs 
. I I I ! 

d d 

12 l' 6 5 

(dst) ~(src) + (dst) 

N: set if result <0; cleared otherwise 
Z: set if result .= 0; cleared otherwise 

d 

o 

V: set if there was arithmetic overflow as a result 
of the operation; that is both operands were of the 
same sign and the result was of the opposite sign; 
cleared otherwise 
C: set if there was a carry from the most significant 
bit of the result; cleared otherwise 

Adds the source operand to the destination operand 
and stores the result at the destination address. 
The original contents of the destination are lost. 
The contents of the source are not affected. Two's 
complement addition is performed. 

Add to register: ADD 20,RO 

Add to memory: ADD Rl,XXX 

Add register to register: ADD Rl,R2 

Add memory to memory: ADD @#17750,XXX 

XXX is a programmer-defined mnemonic for a mem­
ory location. 

4-27 



SUB 

Subtract source from destination 16SSDD 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

d d d d 

12 11 6 5 o 

(dst) ~(dst)-(src) 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: set if there was arithmetic overflow as a result 
of the operation, that is if operands were of oppo­
site signs and the sign of the source was the same 
as the sign of the result; cleared otherwise 
C: cleared if there was a carry from the most sig­
nificant bit of the result; set otherwise 

Subtracts the source operand from the destination 
operand and leaves the result at the destination 
address_ The original contents of the destination 
are lost_ The contents of the source are not af­
fected_ In double-precision arithmetic the C-bit, 
when set, indicates a "borrow" 

Before 
(Rl) = 011111 
(R2) = 012345 

NZVC 
111 1 

4-28 

SUB Rl, R2 

After 
(R1) = 011111 
(R2) = 001234 

NZVC 
0000 



CMP 
CMPB 

Compare source to destination n2SSDD 

10/1 I 0 

15 

Operation: 

Condition Codes: 

Description: 

d d d d 

12 11 6 5 

(src)-(dst) [in detail, (src) + r-' (dst) + 1] 

N: set if result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 

o 

V; set if there was arithmetic overflow; that is, op­
erands were of opposite signs and the sign of the 
destination was the same as the sign of the result; 
cleared otherwise 
C: cleared if there was a carry from the most sig­
nificant bit of the result; set otherwise 

Compares the source and destination operands and 
sets the condition codes, which may then be used 
for arithmetic and logical conditional branches. 
Both operands are unaffected. The only action is 
to set the condition codes. The compare is cus­
tomarily followed by a conditional branch instruc­
tion. 
Note that unlike the subtract instruction the order 
of operation is (src)-(dst), not (dst)-(src). 

4-29 



MUl 

Multiply 

15 

Operation: 

Conditon Codes: 

Description: 

Example: 

070RSS 

o 0 0 I r 
9 8 6 5 

R, Rvl ~ R x(src) 

N: set if product is <0; cleared otherwise 
Z: set if product is 0; cleared otherwise 
V: cleared 

o 

C: set if the result is less than _215 or greater 
than or equal to 215,_l. 

The contents of the destination register and source 
taken as two's complement integers are multiplied 
and stored in the destination register and the suc­
ceeding register (if R is even)_ If R is odd only the 
low order product is stored_ Assembler syntax is: 
MUL S,R. 
(Note that the actual destination is R,Rvl which 
reduces to just R when R is odd_) 

16-bit product (R is odd) 

CLC ;Clear carry condition code 
MOV #400,Rl 
MUL #lO,Rl 
BCS ERROR ;Carry will be set if 

;product is less than 

Before 

(Rl) = 000400 

4-30 

;_215 or greater than or equal 
to 215 

;no significance lost 

After 

(Rl)= 004000 



Divide 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

DIV 

071RSS 

o 0 1 I r 
9 8 6 5 

R, Rvl ~R, Rv1 I (src) 

N: set if quotient <0; cleared otherwise 
Z: set if quotient =0; cleared otherwise 

o 

V: set if source =0 or if the absolute value of the 
register is larger than the absolute value of the 
source. (In this case the instruction is aborted be­
cause the quotient would exceed 15 bits.) 
C: set if divide 0 attempted; cleared otherwise 

The 32-bit two's complement integer in Rand 
Rv1 is divided by the source operand. The quotient 
is left in R; the remainder in Rvl. Division will be 
performed so that the remainder is of the same 
sign as the dividend. R must be even. 

CLR RO 
MOV #20001,R1 
DIV #2,RO 

Before 
(RO) = 000000 
(R1) = 020001 

4·31 

After 
(RO) = 010000 
(R1) = 000001 

Quotient 
Remainder 



XOR 

Exclusive Or 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

074RDD 

9 8 6 5 

(dst) ~Rv(dst) 

N: set if the result <0; cleared otherwise 
Z: set if result =0; cleared otherwise 
V: cleared 
C: unaffected 

o 

The exclusive OR of the register and destination 
operand is stored in the destination address. Con· 
tents of register are unaffected. Assembler format 
is: XOR R,D 

Before 
(RO) = 001234 
(R2) = 001111 

4·32 

XOR RO,R2 

After 
(RO) = 001234 
(R2) = 000325 



4.5.2 Logical Instructions 
These instructions have the same format as the double operand arith· 
metic group. They permit operations on data at the bit level. 

4·33 



BIS 
BISB 

Bit Set 

10/1 I 1 

15 

Operation: 

o 

Condition Codes: 

Description: 

Example: 

n5SSDD 

d d d d I 
12 11 6 5 o 

(dst) ~(src) v (dst) 

N: set if high·order bit of result set, cleared other· 
wise 
Z: set if result = zero; cleared otherwise 
V: cleared 
C: not affected 

Performs "Inclusive OR" operation between the 
source and destination operands and leaves the re· 
suit at the destination address; that is, correspond· 
ing bits set in the source are set in the destination. 
The content of the destination are lost. 

Before 
(RO) = 001234 
(R1) = 001111 

NZVC 
0000 

4·34 

BIS RO,R1 

After 
(RO) = 001234 
(R1) = 001335 

NZVC 
0000 



Bit Test 

I 0/1 I 0 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

d 

12 11 6 5 

(dst)A(src) 

BIT 
BITB 

n3SSDD 

o 

N: set if high-order bit of result set; cleared other­
wise 
Z: set if result =0; cleared otherwise 
V: cleared 
C: not affected 

Performs logical "and" comparison of the source 
and destination operands and modifies condition 
codes accordingly_ Neither the source nor destina­
tion operands are affected_ The BIT instruction may 
be used to test whether any of the corresponding 
bits that are set in the destination are also set in 
the source or whether all corresponding bits set in 
the destination are clear in the source_ 

BIT #30,R3 

4-35 

test bits 3 and 4 of R3 
; to see if both are off 



BIC 
BICB 

Bit Clear n4SSDD 

10/1 , 1 0 0 I s d d I 
15 12 11 6 5 o 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) (-r-' (src)A(dst) 

N: set if high order bit of result set; cleared other­
wise 
Z: set if result =0; cleared otherwise 
V: cleared 
C: not affected 

Clears each bit in the destination that corresponds 
to a set bit in the source. The original contents of 
the destination are lost. The contents of the source 
are unaffected. 

Before 
(R3) = 001234 
(R4) = 001111 

NZVC 
1 1 1 1 

4-36 

BIC R3,R4 

After 
(R3) = 001234 
(R4) = 000101 

NZVC 
0001 



4.6 PROGRAM CONTROL INSTRUCTIONS 
4.6.1 Branches 
The instruction causes a branch to a location defined by the sum of 
the offset (multiplied by 2) and the current contents of the Program 
Counter if: 

a) the branch instruction is unconditional 

b) it is conditional and the conditions are met after testing the 
condition codes (status word). 

The offset is the number of words from the current contents of the PC. 
Note that the current contents of the PC point to the word following 
the branch instruction. 

Although the PC expresses a byte address, the offset is expressed in 
words. The offset is automatically multiplied by two to express bytes 
before it is added to the PC. Bit 7 is the sign of the offset. If it is set, 
the offset is negative and the branch is done in the backward d;rection. 
Similarly if it is not set, the offset is positive and the branch is done 
in the forward direction. 

The 8·bit offset allows branching in the backward direction by 2008 
words (4008 bytes) from the current PC, and in the forward direction 
by 1778 words (376 8 bytes) from the current PC. 

The PDp·ll assembler handles address arithmetic for the user and 
computes and assembles the proper offset field for branch instructions 
in the form: 

Bxx loc 

Where "Bxx" is the branch instruction and "Ioc" is the address to 
which the branch is to be made. The assembler gives an error indica· 
tion in the instruction if the permissible branch range is exceeded. 
Branch instructions have no effect on condition codes. 

4·37 



BR 

Branch (unconditional) 0004 loc 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC <-- PC + (2 x offset) 

Provides a way of transferring program control 
within a range of -128 to +127 words with a one 
word instruction. 

4·38 



Simple Conditional Branches 
BEQ 
BNE 
BMI 
BPL 
BCS 
BCC 
BVS 
BVC 

4-39 



BEQ 

Branch on Equal (zero) 0014 offset 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

OFFSET 

8 7 o 

PC <-- PC + (2 x offset) if Z = 1 

Unaffected 

Tests the state of the Z-bit and causes a branch if 
Z is set. As an example, it is used to test equality 
following a CMP operation, to test that no bits set 
in the destination were also set in the source fol­
lowing a BIT operation, and generally, to test that 
the result of the previous operation was zero. 

CMP A,B 
BEQ C 

will branch to C if A = B 
and the sequence 

ADD A,B 
BEQ C 

; compare A and B 
; branch if they are equal 

(A - B = 0) 

; add A to B 
; branch if the result = 0 

will breach to C if A + B = O. 

4-40 



BNE 

Branch Not Equal (Zero) 0010 offset 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

OFFSET 

e 7 

PC ~ PC + (2 x offset) if Z = 0 

Unaffected 

o 

Tests the state of the Z-bit and causes a branch if 
the Z-bit is clear. BNE is the comple7lentary opera­
tion to BEQ_ It is used to test inequality following a 
CMP, to test that some bits set in the destination 
were also in the source, following a BIT, and gen­
erally, to test that the result of the previous opera­
tion was not zero. 

CMP A,B ; compare A and B 
BNE C ; branch if they are not equal 

will branch to C if A =F B 
and the sequence 

ADD A,B 
BNE C 

; add A to B 
; branch if the result is not equal 

to 0 

will branch to C if A + B =f 0 

4-41 



8MI 

Branch on Minus 1004 offset 

15 

Operation: 

Condition Codes: 

Description: 

OFFSET 

8 7 

PC <c- PC + (2 x offset) if N = 1 

Unaffected 

o 

Tests the state of the N-bit and causes a branch if 
N is set. It is used to test the sign (most significant 
bit) of the result of the previous operation, branch­
ing if negative. 

4-42 



BPL 

Branch on Plus 1000 offset 

OFFSET , 
ffi 8 7 o 

Operation: 

Description: 

PC ~ PC + (2 x offset) if N = 0 

Tests the state of the N-bit and causes a branch 
if N is clear. BPL is the complementary operation 
of BMI. 

4-43 



BCS 

Branch on Carry Set 1034 offset 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC ~ PC + (2 x offset) if C = 1 

Tests the state of the C-bit and causes a branch if 
C is set. It is used to test for a carry in the result 
of a previous operation. 

4-44 



Bee 

Branch on Carry Clear 1030 offset 

15 

Operation: 

Description: 

OFFSET 
I 

B 7 o 

PC ~ PC + (2 x offset) if C = 0 

Tests the state of the C-bit and causes a branch 
if C is clear. BCC is the complementary operation 
to BCS 

4-45 



BVS 

Branch Of! Overflow Set 1024 offset 

15 

OperatiCHI! 

DescriptieA: 

o OFFSET 

8 7 o 

PC ~ PC + (2 x offset) if V = 1 

Tests the state of V bit (overflow) and causes a 
branch if the V bit is set. BVS is used to detect 
arithmetic overflow in the previous operation. 

4-46 



Bve 

Branch on Overflow Clear 1020 offset 

I 1 I 0 0 0 I 0 
OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC ~ PC + (2 x offset) if V = 0 

Tests the state of the V bit and causes a branch if 
the V bit is clear. BVC is complementary operation 
to BVS. 

4·47 



Signed Conditional Branches 
Particular combinations of the condition code bits are tested with the 
signed conditional branches. These instructions are used to test the 
results of instructions in which the operands were considered as a 
signed (two's complement) values. 

Note that the sense of signed comparisons differs from that of unsigned 
comparisons in that in signed 16·bit, two's complement arithmetic the 
sequence of values is as follows: 

largest 

positive 

negative 

smallest 

077777 
077776 

000001 
000000 
177777 
177776 

100001 
100000 

whereas in unsigned 16·bit arithmetic the sequence is considered to be 
highest 177777 

lowest 

000002 
000001 
000000 

The signed conditional branch instructions are: 

BlT BGE 
BlE BGT 

4·48 



Bll 

Branch on Less Than (Zero) 0024 offset 

o I 0 

15 

Operation: 

Description: 

o 0 0 o OFFSET 

8 7 o 

PC <--- PC + (2 x offset) if N v V = 1 

Causes a branch if the "Exclusive Or" of the Nand 
V bits are 1. Thus BL T will always branch following 
an operation that added two negative numbers, 
even if overflow occurred. 
In particular, BLT will always cause a branch if it 
follows a CMP instruction operating on a negative 
source and a positive destination (even if overflow 
occurred). Further, BL T will never cause a branch 
when it follows a C:VlP instruction operating on a 
positive source and negative destination. BL Twill 
not cause a branch if the result of the previoLls 
operation was zero (without overflow). 

4-49 



BGE 

Branch on Greater than or Equal (zero) 0020 offset 

15 

Operation: 

Description: 

o I 0 OFFSET 

8 7 o 

PC ~ PC + (2 x offset) if N v V = 0 

Causes a branch if N and V are either both clear or 
both set. BGE is the complementary operation to 
BL T. Thus BGE will always cause a branch when 
it follows an operation that caused addition of two 
positive numbers. BGE will also cause a branch on 
a zero result. 



BLE 

Branch on Less than or Equal (zero) 0034 offset 

I 0 I 0 0 0 I 0 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC ~ PC + (2 x offset) if Z v(N-¥-V) = 1 

Operation is similar to BL T but in addition will 
cause a branch if the result of the previous op­
eration was zero. 

4-51 



BGT 

Branch on Greater Than (zero) 0030 offset 

I 0 I 0 0 0 0 OFFSET 

15 

Operation 

Description: 

8 7 o 

PC <--- PC + (2 x offset) if Z v(N -'of- V) = 0 

Operation of BGT is similar to BGE, except BGT 
will not cause a branch on a zero result. 

4-52 



Unsigned Conditional Branches 
The Unsigned Conditional Branches provide a means for testing the 
result of comparison operations in which the operands are considered as 
unsigned values. 

BHI 
BlOS 
BHIS 
BlO 

4-53 



BHI 

Branch on Higher 1010 offset 

15 

Operation: 

Description: 

o OFFSET 

8 7 o 

PC <- PC + (2 x offset) if C = 0 and Z = 0 

Causes a branch if the previous operation caused 
neither a carry nor a zero result. This will happen 
in comparison (CMP) operations as long as the 
source has a higher unsigned value than the 
destination. 

4-54 



BLOS 

Branch on lower or Same 1014 offset 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC +- PC + (2 x offset) if C v Z = 1 

Causes a branch if the previous operation caused 
either a carry or a zero result. BlOS is the com­
plementary operation to BHL The branch will occur 
in comparison operations as long as the source is 
equal to, or has a lower unsigned value than the 
destination. 

4-55 



BlO 

Branch on Lower 

Ll 0 0 0 0 

15 

OFFSET 

8 7 

Operation: PC <f-- PC + (2 x offset) if C = 1 

1034 offset 

o 

Description: BLO is same instruction as BCS. This mnemonic is 
included only for convenience. 

4·56 



BHIS 

Branch on Higher or Same 1030 offset 

I 1 0 0 0 0 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC ~ PC + (2 x offset) if C = 0 

BHIS is the same instruction as BCC. This mne­
monic is included only for convenience. 

4-57 



4.6.2 Subroutine Il'IstructiQns 
The subroutine call in the PDP-l1 provides for automatic nesting of 
subroutines, reentrancy, and multiple entry potnts_ Subroutines may cat,1 
other subroutines (or indeed themselves) to any level of nesting without 
making special provision for storage or return addresses at each level 
of subroutine call. The subrouhne catling mechanism does not modify 
any fixed location il'l memory, thus providing for reentrancy. This aHows 
one copy of a subroutine to be shared among several interrupting pro­
cesses. For more detailed descr~ption of subroutine programming see 
Chapter 5. 

4-58 



JSR 

Jump to Sub Routine 004 reg. dst 

15 

Operation: 

Description: 

001,:, ,Id d d d d I 
9 8 6 5 o 

(tmp) ~(dst) (tmp is an internal processor register) 

J,(SP) ~reg (push reg contents onto processor 
stack) 

reg~PC (PC holds location following JSR; this ad· 
dress now put in reg) 

PC ~(tmp) (PC now points to subroutine address) 

In execution of the JSR, the old contents of the 
specified register (the "LINKAGE POINTER") are 
automatically pushed onto the processor stack and 
new linkage information placed in the register. 
Thus subroutines nested within subroutines to any 
depth may all be called with the same linkage reg· 
ister. There is no need either to plan the maximum 
depth at which any particular subroutine will be 
called or to include instructions in each routine to 
save and restore the linkage pOinter. Further, since 
all linkages are saved in a reentrant manner on the 
processor stack, execution of a subroutine may be 
interrupted, the same subroutine reentered and 
executed by an interrupt service routine. Execution 
of the initial subroutine can then be resumed 
when other requests are satisfied. This process 
(called nesting) can proceed to any level. 

In both JSR and JMP instructions the destination 
address is used to load the program counter, R7. 
Thus for example a JSR in destination mode 1 for 
general register R1 (where (R1) = 100), will ac­
cess a subroutine at location 100. This is effectively 
one level less of deferral than operate instructions 
such as ADD. 

A subroutine called with a JSR reg,dst instruction 
can access the arguments following the call with 
either autoincrement addressing, (reg) +, (if argu­
ments are accessed sequentially) or by indexed 

4-59 



addressing, X(reg), (if accessed in random order). 
These addressing modes may also be deferred, 
@(reg) + and @X(reg) if the parameters are op­
erand addresses rather than the operand them­
selves_ 

JSR PC, dst is a special case of the PDP-ll sub­
routine call suitable for subroutine calls that trans­
mit parameters through the general registers. The 
SP and the PC are the only registers that may be 
modified by this call. 

Another special case of the JSR instruction is JSR 
PC, @(SP) + which exchanges the top element of 
the processor stack and the contents of the pro­
gram counter. Use of this instruction allows two 
routines to swap program control and resume op­
eration when recalled where they left off. Such rou­
tines are called "co-routines." 

Return from a subroutine is done by the RTS in­
struction. RTS reg loads the contents of reg into 
the PC and pops the top element of the processor 
stack into the specified register. 

4-60 



Mark 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

MARK 

0064nn 

o o 0 n 

6 5 o 

SP~·PC + 2xnn nn = number of parameters 
PC~R5 

R5~(SP)t 

unaffected 

Used as part of the standard PDP-II subroutine 
return convention. MARK facilitates the stack clean 
up procedures involved in subroutine exist. Assem­
bler format is: MARK N 

MOV R5,-(SP) ;place old R5 on stack 
MOV Pl,-(SP) ;place N parameters 
MOV P2,-(SP) ;on the stack to be 

;used there by the 
;subrouti-ne 

MOV PN,-(SP) 
MOV =MARKN,-(SP) ;placesthe instruction 

;MARK N on the stack 
MOV SP,R5 ;set up address at Mark N 

instruction 
JSR PC,SUB ;jump to subroutine 

At this point the stack is as follows: 

OLD R5 

PI 

PN 

MARK N 

OLD PC 

And the program is at the address SUB which is 
the beginning of the subroutine. 

SUB: 

RTS R5 

4-61 

;execution of the subroutine it­
self 

;the return begins: this causes 



the contents of R5 to be placed in the PC which 
then results in the execution of the instruction 
MARK N. The contents of the old PC are placed in 
R5. 

MARK N causes: (1) the stack pointer to be ad­
justed to point to the old R5 value; (2) the value 
now in R5 (the old PC) to be placed in the PC; and 
(3) contents of the old R5 to be popped into 
R5 thus completing the return from subroutine. 

Note: If Memory Management is in use a stack 
must be in I and D spaces (Chapter 6) to execute 
the MARK instruction. 

4-62 



RTS 

Return from Subroutine 00020 Reg 

o o 

15 

Operation: 

Description: 

o I 0 o o 

PC~reg 

reg~(SP>1' 

o > o 10 o 
3 2 o 

Loads contents of reg into PC and pops the top 
element of the processor stack into the specified 
register. 
Return from a non-reentrant subroutine is typically 
made through the same register that was used in 
its call. Thus, a subroutine called with a JSR PC, 
dst exits with a RTS PC and a subroutine called 
with a JSR R5, dst, may pick up parameters with 
addressing modes (R5)+, X(R5), or @X(R5) and 
finally exits, with an RTS R5. 

4-63 



4.6.3 Program Control Instructions 
SPL 
JMP 
SOB 

4·64 



SPL 

Set Priority Level 00023N 

I 0 I 0 o 
15 

Operation: 

Condition Codes: 

Description 

o I 0 o 0 o o 

PS (bits 7-5) <-Priority 

not affected 

o 
3 2 o 

The least significant three bits of the instruction 
are loaded into the Program Status Word (PS) bits 
7-5 thus causing a changed priority_ The old priority 
is lost_ 
Assembler syntax is: SPL N 

Note: This instruction is a no op in User and 
Supervisor modes_ 

4-65 



JMP 

Jump 

I 0 I 0 o 

15 

Operation: 

Condition Codes: 

Description: 

o I 0 o 

PC <-(dst) 

not affected 

d 

6 5 

000100 

d I d d 

o 

JMP provides more flexible program branching 
than provided with the branch instructions. Control 
may be transferred to any location in memory (no 
range limitation) and can be accomplished with 
the full flexibility of the addressing modes, with 
the exception of register mode O. Execution of a 
jump with mode 0 will cause an "illegal" instruc· 
tion" condition. (Program control cannot be trans· 
ferred to a register.) Register deferred mode is 
legal and will cause program control to be trans· 
ferred to the address held in the specified register. 
Note that instructions are word data and must 
therefore be fetched from an even-numbered ad­
dress. A "boundary error" trap condition will re.sult 
when the processor attempts to fetch an instruc­
tion from an odd address. 

Deferred index mode JMP instructions permit trans­
fer of control to the address contained in a select­
able element of a table of dispatch vectors. 

4-66 



SOB 

Subtract One and Branch 077R offset 

15 

Operation: 

Condition Codes: 

Description: 

9 8 6 5 

OFFSET 
I 

o 

R <-- R -1 if this result ::F 0 then PC <-- PC -(2x 
offset) 

unaffected 

The register is decremented. If it is not equal to 0, 
twice the offset is subtracted from the PC (now 
pointing to the following word). The offset is inter· 
preted as a six bit positive number. This instruction 
provides a fast, efficient method of loop control. 
Assembler syntax is: 

SOB R,A 

Where A is the address to which transfer is to be 
made if the decremented R is not equal to O. Note 
that the SOB instruction can not be used to trans· 
fer control in the forward direction. 

4·67 



4.6.4 Traps 
Trap instructions provide for calls to emulators, 110 monitors, debugging 
packages, and user-defined interpreters. A trap is effectively an interrupt 
generated by software. When a trap occurs the contents of the current 
Program Counter (PC) and Program Status Word (PS) are pushed onto 
the processor stack and replaced by the contents of a two-word trap 
vector containing a new PC and new PS. The return sequence from a 
trap involves executing an RTI or RTT instruction which restores the old 
PC and old PS by popping them from the stack_ Trap vectors are located 
permanently assigned fixed address. 

TRAP 
EMT 
BPT 
lOT 
RTI 
RTT 

4-68 



Emulator Traps 

1 I 0 o 0 

15 

Operation: 

Condition Codes: 

Description: 

~(SP) <--PS 
~(SP) <--PC 

PC <--(30) 
PS <--(32) 

8 7 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

EMT 

104000-104377 

o 

All operation codes from 104000 to 104377 are 
EMT instructions and may be used to transmit in­
formation to the emulating routine (e.g., function 
to be performed). The trap vector for EMT is at 
address 30. The new PC is taken from the word at 
address 30; the new central processor status (PS) 
is taken from the word at address 32. 

Caution: EMT is used frequently by DIGITAL system 
software and is therefore not recommended for gen· 
eral use. 

4-69 



TRAP 

Trap 

1 I 0 o 
15 

Operation: 

Condition Codes: 

Description: 

o I 1 o o 

~(SP) <--PS 
HSP) <--PC 

PC <--(34) 
PS <--(36) 

8 7 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104400 to 104777 

o 

Operation codes from 104400 to 104777 are TRAP 
instructions. TRAPs and EMTs are identical in op· 
eration, except that the trap vector for TRAP is at 
address 34. 

Note: Since DEC software makes frequent use of 
EMT, the TRAP instruction is recommended for 
general use. 

4·70 



BPT 

Breakpoint Trap 000003 

1000000010:000000 11 
15 

Operation: 

Condition Codes: 

Description: 

t(SP)~PS 
t(SP)~PC 
PC~(14) 

PC~(16) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

o 

Performs a trap sequence with a trap vector ad­
dress of 14_ Used to call debugging aids_ The user 
is cautioned against employing code 000003 in pro­
grams run under these debugging aids_ 
(no information is transmitted in the low byte_) 

4-71 



lOT 

1(0 Trap 

15 

Operation: 

Condition Codes: 

Description: 

t(SP)~PS 
t(SP)~PC 
PC~(20) 

PS~(22) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

000004 

o 0 I 
o 

Performs a trap sequence with a trap vector ad­
dress of 20. Used to call the 1(0 Executive routine 
lOX in the paper tape software system, and for 
error reporting in the Disk Operating System. 
(no information is transmitted in the low byte) 

4-72 



RTI 

Return from Interrupt 000002 

o 0 0 
I 

15 

Operation: 

Condition Codes: 

Description: 

PC~(SP)t 
PS~(SP)t 

o 0 0 0 
I 

N: l(Jaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

o 

Used to exit from an interrupt or TRAP service rou· 
tine. The PC and PS are restored (popped) from the 
processor stack. 

4·73 



RTT 

Return from Trap 000006 

15 

Operation: 

Condition Codes: 

Description: 

PC~(SP)t 

PS~(SP)t 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

o I 
o 

This is the same as the RTI instruction except that 
it inhibits a trace trap, while RTI permits a trace 
trap. If a trace trap is pending, the first instruction 
after the RTT will be executed prior to the next 
"T" trap. In the case of the RTI instruction the 
"T" trap will occur immediately after the RTI. 

4·74 



Reserved Instruction Traps-These are caused by attempts to execute 
instruction codes reserved for future processor expansion (reserved in­
structions) or instructions with illegal addressing modes (illegal instruc­
tions)_ Order codes not corresponding to any of the instructions de· 
scribed are considered to be reserved instructions. JMP and JSR with 
register mode destinations are illegal instructions. Reserved and illegal 
instruction traps occur as described under EMT, but trap through vectors 
at addresses 10 and 4 respectively. 

Stack Overflow Trap 
Bus Error Traps-Bus Error Traps are: 

L Boundary Errors-attempts to reference instructions or word 
operands at odd addresses. 

2. Time·Out Errors-attempts to reference addresses on the bus 
that made no response within 5 ,"s in the PDP-lli70. In general, 
these are caused by attempts to reference non-existent memory, 
and attempts to reference non-existent peripheral devices. 

Bus error traps cause processor traps through the trap vector address 4. 

Trace Trap-Trace Trap enables bit 4 of the PS and causes processor 
traps at the end of instruction executions. The instruction that is ex­
ecuted after the instruction that set the T-bit will proceed to completion 
and then cause a processor trap through the trap vector at address 14. 
Note that the trace trap is a system debugging aid and is transparent 
to the general programmer. 

The following are special cases and are detailed in subsequent para­
graphs. 

L The traced instruction cleared the T-bit. 

2. The traced instruction set the T-bit. 

3. The traced instruction caused an instruction trap. 

4. The traced instruction caused a bus error trap. 

5. The traced instruction caused a stack overflow trap. 

6. The process was interrupted between the time the T·bit was set 
and the fetching of the instruction that was to be traced. 

7. The traced instruction was a WAIT. 

8. The traced instruction was a HALT. 

9. The traced instruction was a Return from Trap. 

Note: The traced instruction is the instruction after the one that sets 
the T-bit. 

An instruction that cleared the T-bit-Upon fetching the traced instruc­
tion an internal flag, the trace flag, was set. The trap will still occur at the 
end of execution of this instruction. The stacked status word, however, 
will have a clear T·bit. 

4-75 



An instruction that set the T-bit-Since the T·bit was already set, setting 
it again has no effect. The trap will occur. 

An instruction that caused an Instruction Trap-The instruction trap is 
sprung and the entire routine for the service trap is executed. If the 
service routine exits with an RTI or in any other way restores the 
stacked status word, the T-bit is set again, the instruction following the 
traced instruction is executed and, unless it is one of the special cases 
noted above, a trace trap occurs. 

An instruction that caused a Bus Error Trap-This is treated as an In· 
struction Trap. The only difference is that the error service is not as 
likely to exit with an RTI, so that the trace trap may not occur. 

An instruction that caused a stack overflow-The instruction completes 
execution as usual-the Stack Overflow does not cause. a trap. The 
Trace Trap Vector is loaded into the PC and PS, and the old PC and 
PS are pushed onto the stack. Stack Overflow occurs again, and this 
time the trap is made. 

An interrupt between setting of the T-bit and fetch of the traced instruc­
tion-The entire interrupt service routine is executed and then the T·bit 
is set again by the exiting RTI. The traced instruction is executed (if 
there have been no other interrupts) and, unless it is a special case 
noted above, causes a trace trap. 

Note that interrupts may be acknowledged immediately after the loading 
of the new PC and PS at the trap vector location. To lock out all inter­
rupts, the PS at the trap vector should raise the processor priority to 
level 7. 

A WAIT-The trap occurs immediately. 

A HALT-The processor halts. When the continue key on the console 
is pressed, the instruction following the HALT is fetched and executed. 
Unless it is one of the exceptions noted above, the trap occurs imme· 
diately following execution. 

A Return from Trap-The return from trap instruction either clears or 
sets the T-bit. It inhibits the trace trap. If the T·bit was set and RTT 
is the traced instruction the trap is delayed until completion of the next 
instruction. 

Power Failure Trap-is a standard PDP-ll feature. Trap occurs when· 
ever the AC power drops below 95 volts or outside 47 to 63 Hertz. Two 
milliseconds are then allowed for power down processing. Trap vector 
for power failure is at locations 24 and 26. 

Trap priorities-in case multiple processor trap conditions occur simul· 
taneously the following order of priorities is observed (from high to low): 

4·76 



1. Parity error 
2. Memory Management violation 
3. Stack Limit Yellow 
4. Power Failure 
5. Floating Point 
6. Program Interrupt Request 
7. Bus Request 
8. Trace Trap 

The details on the trace trap process have been described in the trace 
trap operational description which includes cases in which an instruction 
being traced causes a bus error, instruction trap, or a stack overflow 
trap. 

If a bus error is caused by the trap process handling instruction traps, 
trace traps, stack overflow traps, or a previous bus error, the processor 
is halted. 

If a stack overflow is caused by the trap process in handling bus errors, 
instruction traps, or trace traps, the process is completed and then the 
stack overflow trap is sprung. 

4·77 



4.7 MISCELLANEOUS 

HALT 

WAIT 

RESET 

MTPD 

MTPI 

MFPD 

MFPI 

4·78 



Halt 

15 

Condition Codes: 

Description: 

HALT 

000000 

o 

not affected 

Causes the processor operation to cease. The COFl­

sole is given control of the bus. The console data 
lights display the contents of RO; the console ad­
dress lights display the address after the halt in­
struction. Transfers on the UNIBUS are terminated 
immediately. The PC points to the next instruction 
to be executed. Pressing the continue key on the 
console causes processor operation to resume. No 
INIT signal is given. 

Note: A halt issued in Supervisor or User Mode 
will generate a trap. 

4-79 



WAIT 

Wait for Interrupt 000001 

I 0 I 0 o 0 

15 

Condition Codes: 

Description: 

000 o o 0 o o o I 0 o 
o 

not affected 

Provides a way for the processor to relinquish use 
of the bus while it waits for an interrupt. Having 
been given a WAIT command, the processor will 
not compete for bus use by fetching instructions or 
operands from memory. This permits higher trans· 
fer rates between a device and memory, since no 
processor-induced latencies will be encountered by 
bus requests from the device. In WAIT, as in all in­
structions, the PC points to the next instruction 
following the WAIT operation. Thus when the ser­
vice routine executes an RTI instruction, at the 
end of the routine, the program will resume at the 
instruction following the WAIT. Note also that 
Floating Point, Power Fail, and Parity Traps will 
cause the processor to fall through the WAIT loop. 

4-80 



RESET 

Reset External Bus 000005 

100000000:00000 o 1 I 
15 o 

Condition Codes: not affected 

Description: Sends INIT on the UNIBUS for 10 ms. All devices 
on the UNIBUS are reset to their state at power up. 

4·81 



MTPI 

Move to Previous Instruction Space 0066DD 

15 

Operation: 

Condition Codes: 

Description: 

o ': 1 0 I d d d d 

(temp) ~(SP)t 
(dst) ~(temp) 

6 5 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

o 

The address of the destination operand is deter­
mined in the current address space. MTPI then 
pops a word off the current stack and stores that 
word in the destination address in the previous 
mode's I space (bits 13, 12 of PS). 

4-82 



MTPD 

Move to Previous Data Space 1066DD 

15 

Operation: 

Condition Codes: 

Description: 

(temp) <-(SP)j 
(dst) <-(tem p) 

6 5 o 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

The address of the destination operand is deter­
mined in the current address space as in MTPL 
MTPD then pops a word off the current stack and 
stores that word in the destination address in the 
previous mode's D space_ 

4-83 



MFPI 

Move from Previous Instruction Space 0065SS 

15 

Operation: 

Condition Codes: 

Description: 

(temp) <--- (src) 
,j,(SP) <---(temp) 

6 5 

s I S 

o 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

This instruction is provided in order to allow inter­
address space communication when the PDPll/45 
is using the Memory Management unit. The address 
of the source operand is determined in the current 
address space. That is, the address is determined 
using the SP and memory pages determined by 
PS<15:14>_ The address itself is then used in the 
previous I space (as determined by PS<13:12> 
to get the source operand. This operand is then 
pushed onto the current R6 stack. 

4-84 



MFPD 

Move from Previous Data Space 1065SS 

15 

Operation: 

Condition Codes: 

Description: 

(temp) <-(src) 
J,(SP) <-(temp) 

6 5 

s I S 

N: set if the source <0; otherwise cleared 
Z: set if the source =0; otherwise cleared 
V: cleared 
C: unaffected 

o 

This instruction is provided in order to allow inter­
address space communication when the PDP-ll/45 
is using the Memory Management unit_ The address 
of the source operand is determined in the current 
address space_ That is, the address is determined 
using the SP and memory pages determined by 
PS<15:14>- The address itself is then used in the 
previous D space (as determined by PS<13:12> 
to get the source operand_ This operand is then 
pushed on to the current R6 stack. 

4-85 



4.8 Condition Code Operators 

ClN 
ClZ 
ClV 
ClC 
CCC 

SEN 
SEZ 
SEV 
SEC 
SCC 

Condition Code Operators 0002XX 

o 0 
I 

o o I 1 

15 

Description: 

Mnemonic 
Operation 

ClC Clear C 

ClV Clear V 

CLZ Clear Z 

ClN Clear N 

SEC Set C 

SEV Set V 

SEZ Set Z 

SEN Set N 

SCC Set all CC's 

CCC Clear all CC's 

Clear V and C 
No Operation 

5 432 o 

Set and clear condition code bits. Selectable com· 
binations of these bits may be cleared or set to· 
gether. Condition code bits corresponding to bits 
in the condition code operator (Bits 0-3) are modi­
fied according to the sense of bit 4, the set/clear 
bit of the operator. i.e. set the bit specified by bit 
0, I, 2 or 3, if bit 4 is a 1. Clear corresponding 
bits if bit 4 = O. 

OP Code 

000241 

000242 

000244 

000250 

000261 

000262 

000264 

000270 

000277 

000257 

000243 
000240 

Combinations of the above set or clear operations may be ORed together 
to form combined instructions. 

4-86 



CHAPTER 5 

PROCESSOR CONTROL 

5.1 GENERAL 
This chapter provides detailed information on: 

a) CPU registers: CPU Error 
System Size 
System Identification 
Microprogram Break 
Processor Status 

b) Processor Traps 

c) Stack Li mit 

d) Program Interrupt Request 

5.2 REGISTERS 
The following 5 CPU registers are not accessible from the UNIBUS. They 
are accessed by program or console control. 

CPU Error Register 17 777 766 

I I 
ILLEGAL HALT I r 1 ODD ADDRESS ERROR 

NON' EXISTENT MEM'CO~RY~ICc:'A.c.CfltHE'I:} ============'_J UNIBUS TIME-OUT - -

YELLOW ZONE STACK LIIMM':rIT-================~~ 
RED ZONE STACK LIMIT -

This register identifies the source of the abort or trap that used the 
vector at location 4. 

BIT 

7 

6 

5 

4 

NAME 

Illegal 
Halt 

Odd Address 
Error 

Non·existent 
Memory 

UNIBUS 
Timeout 

FUNCTION 

Set when trying to execute a HALT instruction 
when the CPU is in User or Supervisor mode 
(not Kernel). 

Set when a program attempts to do a word 
reference to an odd address. 

Set when the CPU attempts to read a word 
from a location higher than indicated by the 
System Size register. This does not include 
UNIBUS addresses. 

Set when there is no response on the UNIBUS 
within approx. 10 ,"sec. 

5·1 



BIT 

3 

2 

NAME 

Yellow Zone 
Stack Limit 

Red Zone 
Stack Limit 

FUNCTION 
Set when a yellow zone trap occurs. 

Set when a red zone trap occurs. 

Lower Size Register 17 777 760 
This read only register specifies the memory size of the system. It is 
defined to indicate the last addressable block of 32 words in memory 
(bit 0 is equivalent to bit 6 of the Physical Address). 

Upper Size Register 17 777 762 
This register is an extension of the system size, which is reserved for fu· 
ture use. It is read only and its contents are always read as zero. 

System I/O Register 17 777 764 
This read only register contains information uniquely identifying each 
system. 

Microprogram Break Register 17 777 770 
This register is used for maintenance purposes only. It is used with 
maintenance equipment to provide timing synchronization and testing 
facilities. 

Processor Status Word 17 777 776 

15 14 13 12 11 10 

~ 

CURRENT MODE·----.J i 
PREVIOUS MODE *------'. 
GENERAL REGISTER 
SET (0,1)----------' 

'" MODE: OO:::KERNEL 
01 =SUPERVISOR 
11 "USER 

NOT USED PRIORITY I T I N I Z I v C I 

The Processor Status Word contains information on the current status of 
the CPU. This information includes the register set currently in use; cur· 
rent processor priority; current and previous operational modes; the con· 
dition codes describing the results of the last instruction; and an indio 
cator for detecting the execution of an instruction to be trapped during 
program debugging. 

5.3 PROCESSOR TRAPS 
There are a series of errors and programming conditions which will cause 
the Central Processor to trap to a set of fixed locations. These include 
Power Failure, Odd Addressing Errors, Stack Errors, Timeout Errors, Non· 
Existent Memory References, Memory Parity Errors, Memory Manage· 
ment Violations, Floating Point Processor Exception Traps, use of Re· 
served Instructions, use of the T bit in the Processor Status Word, and 
use of the lOT, EMT, and TRAP instructions. 

Power Failure 
Whenever AC power drops below 95 volts for 110v power (190 volts for 
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the 

5·2 



power fail sequence is initiated. The Central Processor automatically 
traps to location 24 and the power fail program has 2 msec. to save all 
volatile information (data in registers), and to condition peripherals for 
power fail. 

When power is restored the processor traps to location 24 and executes 
the power up routine to restore the machine to its state prior to power 
failure. 

Odd Addressing Errors 
This error occurs whenever a program attempts to execute a word in· 
struction on an odd address (in the middle of a word boundary). The 
instruction is aborted and the CPU traps through location 4. 

Time-out Error 
This error occurs when a Master Synchronization pulse is placed on the 
UNIBUS and there is no slave pulse within 10 Itsec. This error usually 
occurs in attempts to address non·existent memory or peripherals. 

The offending instruction is aborted and the processor traps through 
location 4. 

Non·Existent Memory Errors 
This error occurs when a program attempts to reference a memory ad· 
dress that is larger than indicated by the system size register. The cycle 
is aborted and the processor traps through vector 4. 

Reserved Instructions 
There is a set of illegal and reserved instruction which cause the proces· 
sor to trap through Location 10. The set is fully described in Appendix A. 

Trap Handling 
Appendix A includes a list of the reserved Trap Vector locations, and 
System Error Definitions which cause processor traps. When a trap oc· 
curs, the processor follows the same procedure for traps as it does for 
interrupts (saving the PC and PS on the new Processor Stack etc .... ). 

In cases where traps and interrupts occur concurrently, the processor 
will service the conditions according to the priority sequence illustrated 
following. 

Trap Priorities 

Parity error 

Memory Management violation 

Stack Limit Yellow 

Power Failure (power down) 

Floating Point exception trap 

Program Interrupt Request (PIR) level 7 

Bus Request (BR) level 7 

PIR 6 
BR 6 
PIR 5 
BR 5 

5·3 



PIR 4 

BR 4 
PIR 3 

PIR 2 

PIR 1 

Trace trap 

5.4 STACK LIMIT 
The Stack Limit allows program control of the lower limit for permissible 
stack addresses. This limit may be varied in increments of (400), bytes 
or (200), words, up to a maximum address of 177 400 (almost the top 
of a 32K memory). 

The normal boundary for stack addresses is 400. The Stack Limit option 
allows this lower limit to be raised, providing more address space for 
interrupt vectors or other data that should not be destroyed by the pro· 
gram. 

There is a Stack Limit Register, with the following format: 

15 7 0 -
The Stack Limit Register can be addressed as a word at location 17 
777774, or as a byte at location 17 777775. The register is accessible to 
the processor and console, but not to any bus device. 

The 8 bits, 15 through 8, contain the stack limit information. These bits 
are cleared by System Reset, Console Start, or the RESET instruction. 
The lower 8 bits are not used. Bit 8 corresponds to a value of (400)s 
or (256),0' 

Stack limit Violations 
When instructions cause a stack address to exceeC\ (go lower than) a 
limit set by the programmable Stack Limit Register, a Stack Violation 
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack 
Limit which provides a warning to the program so that corrective steps 
can be taken. Operations that cause a Yellow Zone Violation are com· 
pleted, then a bus error trap is effected. The error trap, which itself uses 
the stack, executes without causing an additional violation, unless the 
stack has entered the Red Zone. 

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non·existent 
stack are the other Fatal Stack Errors.) When detected, the operation 
causing the error is aborted, the stack is repositioned to address 4, and 
a bus error occurs. The old PC and PS are pushed into location 0 and 2, 
and the new PC and PS are taken from locations 4 and 6. 

Stack limit Addresses 
The contents of the Stack Limit Register (SL) are compared to the stack 
address to determine if a violation has occurred. The least significant 

5·4 



bit of the register (bit 8) has a value of (400),. The determination of the 
violation zones is as follows: 

Yellow Zone = (SL) + (340 through 377)k execute, then trap 

Red Zone :::;; (SL) + (337), abort, then tra p to 10' 
cation 4 

If the Stack Limit Register contents were zero: 

Yellow Zone = 340 through 377 
Red Zone = 000 through 337 

5.5 PROGRAM INTERRUPT REQUESTS 
A request is booked by setting one of the bits 15 through 9 (for '~IR 7-
PIR 1) in the Program Interrupt Register at location 17 777772. The 
hardware sets bits 7-5 and 3-1 to the encoded value of the highest 
PIR bit set. This Program Interrupt Active (PIA) should be used to set 
the Processor Level and also index through a table of interrupt vectors 
for the seven software priority levels. The Figure shows the layout of the 
PIR Register. 

9 8 

PIR 1 t%a p 

Program Interrupt Request Register 

When the PIR is granted, the Processor will Trap to location 240 and 
pick up PC in 240 and the PSW in 242. It is the interrupt service rou· 
tine's responsibility to queue requests within a priority level and to clear 
the PIR bit before the interrupt is dismissed. 

The actual interrupt dispatch program should look like: 

MOVB PIR,PS 

MOV R5,-(SP) 

MOV PIR,R5 

BIC # 177761,R5 

JMP @DISPAT(R5) 

; places Bits 5-7 in PSW Priority Level 
; Bits 

; save R5 on the stack 

; Gets Bits 1-3 

; use to index through table 

; which requires 15 core locations. 

5·5 



5 ·6 



CHAPTER 6 

ADDRESSING 

6.1. GENERAL 
This chapter provides detailed information on: 

a) Address space 
b) Memory management 
c) UNIBUS Map 
d) Non-existent memory errors 

6_2 ADDRESS SPACE 
There are 3 separate address spaces used: 

a) 16 bits, program virtual space 
b) 18 bits, UNIBUS space 
c) 22 bits, physical space 

A 22-bit physical address references a unique core memory location (or 
register). The UNIBUS Map performs the conversion of 18-bit UNIBUS 
addresses to 22-bit physical addresses. Within the CPU, the Memory 
Management unit converts 16-bit program virtual addresses to 22-bit 
physical addresses. Registers within these two memory extension units 
are used in conjunction with the virtual or UNIBUS address to produce 
the physical address. See Figure 6-1. 

CPU Addresses 
Of the over 2 million word locations possible with the 22-bit physical 
address, the top 128K are used to reference the UN IBUS rather than 
physical memory. Maximum physical memory is therefore 222 ,- 218 bytes, 
or a total of 1,966,080 words (1 word = 2 bytes). If the CPU address is 
between 00 000 000 and 16 777 777, an attempt is made to reference 
physical, memory. If the address is in the top 128K, 17 000 000 to 
17 777 777, the lower 18 bits of the address are placed on the UNIBUS. 
See Figure 6-2. 

22 
ADDRESS 
BITS 

Figure 6-1 Address Paths in the PDP-ll/70 

6-1 



17777777 

""'".~} 17760000 --------- PAGE (4K) 

UNIBUS 
REFERENCE 
(126K) 

17000000 

10000000 }~"'"~' MAXIMUM AVAilABLE 
MEMORY 

MEMORY 

SYSTEM SIZE 
BOUNDARY 

} ~OO. REFERENCE 

00000000 

Figure 6·2 Physical Address Space 

6.3 CPU MAPPING 
Mapping of processor addresses is performed in 1 of 3 possible ways. 

16·Bit Mapping 
There is fixed relocation mapping from virtual to physical addresses. 
The lowest 28K virtual addresses are treated as corresponding to the 
same physical addresses. The top 4K addresses cause UNIBUS cycles to 
addresses 17 760 000 to 17 777 777. Refer to Figure 6·3. 16·bit map· 
ping operation occurs after Power Up, Console Start, or the RESET 
instruction. 

IS·Bit Mapping 
32K virtual addresses for each of the 3 modes (Kernel, Supervisor, User) 
are mapped into 128K of physical address space. The lowest 124K ad· 
dresses reference physical memory. The top 4K addresses cause 
UNIBUS cycles to addresses 17760 000 to 17 777 777. Refer to 
Figure 6·4. 

22·Bit Mapping 
This mode produces full 22·bit addresses for accessing all of PDP·11/70 
physical memory. The top 128K addresses cause UNIBUS cycles to 
addresses 17 000 000 to 17 777 777. Refer to Figure 6·5. 

6.4 COMPATIBILITY 
Operation with 16·bit and 18·bit mapping can be used such that the com· 
puter is compatible with other PDP·11 computers, such as the PDP· 
11/20 and the PDp·ll/45. Operating in this manner means that soft· 
ware written for another PDP·l1 can be run on the PDp·ll/70 without 
modification. 

Mapping 

16 Bit 
18 Bit 
22 Bit 

Mem Mgt 

Off 
On 
On 

UNIBUS 
Map 
Relocation 

Off 
Off 
Off or On 

6·2 

Compatible With 

PDP·ll/05, 11/10, 11/15, 11/20 
PDP·ll/35, 11/40, 11/45, 11/50 
PDP·ll/70 



777777 

UNIBUS 
I1B BITS) 

000000 

177777 

FLOW 

~1~77~77=7=77~--'----------~~=---~ 

14K) 

;.:;~;7~7~~~"'~~"'~:-~-j.;;~-- - - - - - - - - - - ===~~--' 

" 
Llc.:70e-,0",~",::",:,-)~-,,~~~s 16777777 I 

M~ 

" " " "r-~~~~-i 
1920K 

MEMORY 
196K) 

PHYSICAL j 
160000 

ro~o~oo~~~~'i-TI~-~-~~---1 ____________ ===.-~'-_-_-~ ~ ~ ~~ ___ I-;:"':-;-;~:C;:"'~:,",:~;-)~----I 
INCOMING 
ADDRESS 

----..... =RELO(ATION 

=NO ADDRESS 
RtLOCATION 

777777 

UNIBUS 
118 BITS) 

000000 

INCOMING 
ADDRESS 

-~-- =RELOCATION 
-- - - -.-- =NO ADDRESS 

RELOCATION 

PHYSICAL 
ADDRESS SPACE 
122 BITS) 

Figure 6-3 16 Bit Mapping 

FLOW 

--~---

ADDRESS 
LOCATIONS 
(MAX, AVAILABLE 
MEMORY 1024K) 

"1=77""77"'"77""'7.----,- - .- - - - - - - - r===--~ 

14K) 
17760000 
17757777 

1124K) 

17000000 

PHYSICAL 
ADDRESS SPACE 
122 BITS) 

Figure 6-4 l8-Bit Mapping 

6-3 

ADDRESS 
LOCATIONS 
(MAX, AVAILABLE 
MEMORY 1024K) 



FLOW 

"'''77'''77'''--'------- - -- 17777777 ------- --- - ,==~-~ 

UNIBUS 
(18 BITS) 

000000 

(4K) 

1T:;'";6~5~"'~~"'~--k\ -- --- - -- -'-""=~--' 
\ 

(124K) \ 

r.17'70"'00~0"'0~0-_____i.~ - ___ ~""""""=-_, 
16777777 UNIBUS 16777777 

(1920K) 

MAP 

~ 
\ 

\ 
\ 

\ 
\ 
\ 

PHYSICAL 
MEMORY 
(1920K) 

\f--------1 
(124K) 

"'0=00"'0=00"-_--' ______ -',.=00"'0=00"'0"'00"-----' ____________ 00000000 
INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

--- =RElOCATION 
- ---~ =NO AOORESS 

RELOCATION 

(22 BITS) (MAX AVAILABLE 
MEMORY 1024K) 

Figure 6-5 22 Bit Mapping 

6.5 MEMORY MANAGEMENT 
6.5.1 General 
The PDP-11/70 Memory Management Unit provides the hardware facili­
ties necessary for complete memory management and protection. It is 
designed to be a memory management facility for accessing all of physi­
cal memory and for multi-user, multi-programming systems where mem­
ory protection and relocation facilities are necessary. 

In order to most effectively utilize the power and efficiency of the 
PDP-11/70 in medium and large scale systems it is necessary to run 
several programs simultaneously. In such multi-programming environ­
ments several user programs would be resident in memory at any given 
time. The task of the supervisory program would be: control the execu­
tion of the various user programs, manage the allocation of memory 
and peripheral device resources, and safeguard the integrity of the sys­
tem as a whole by careful control of each user program. 

In a multi-programming system, the Memory Management Unit provides 
the means for assigning memory pages to a user program and prevent­
ing that user from making any unauthorized access to these pages out­
side his assigned area. Thus, a user can effectively be prevented from 
accidental or willful destruction of any other user program or the system 
executive program. 

The basic characteristics of the PDP-11/70 Memory Management Unit 
are: 

• 16 User mode memory pages 
• 16 Supervisor mode memory pages 

6·4 



• 16 Kernel mode memory pages 
• 8 pages in each mode for instructions 
• 8 pages in each mode for data 

page lengths from 32 to 4096 words 
• each page provided with full protection and relocation 
• transparent operation 
• 6 modes of memory access control 
• memory access to 2 million words (4 million bytes) 

6.5.2 Virtual Addressing 
When the PDP-U/70 Memory Management Unit is operating, the normal 
16 bit direct byte address is no longer interpreted as a direct Physical 
Address (PA) but as a Virtual Address (VA) containing information to be 
used in constructing a new 22-bit physical address. The information 
contained in the Virtual Addess (VA) is combined with relocation infor­
mation contained in the Page Address Register (PAR) to yield a 22-bit 
Physical Address (PA)_ Using the Memory Management Unit, memory 
can be dynamically allocated in pages each composed of from 1 to 128 
integral blocks of 32 words. 

32K 

VIRTUAL 
INSTRUCTION/DATA 
ADDRESS SPACE 

VIRTUAL ADDRESS 
(16 BITSI 

--- PAR 7 "'~ 1--- PAR 6 

~ --- PAR 5 

--- PAR 4 

PAR 3 

PAR 2 

PAR 1 

PAR 0 
0 

PAGE ADDRESS REGISTERS 

PAR = Page Address Register 

PHYSICAL 
ADDRESS SPACE 

PAGE 5 

PAGE 6 

PAGE 7 

PAGE .4 

PHYSICAL ADDRESS 
(22 BITSI 

Figure 6-6 Virtual Address Mapping into Physical Address 

The starting physical address for each page is an integral multiple of 32 
words, and each page has a maximum size of 4096 words_ Pages may be 
located anywhere within the Physical Address space. The determination 
of which set of 16 pages registers is used to form a Physical Address is 
made by the current mode of operation of the CPU, Le., Kernel, Super­
visor or User mode. 

6.5.3 Interrupt Conditions under Memory Management Control 
The Memory Management Unit relocates all addresses_ Thus, when it is 
enabled, all trap, abort, and interrupt vectors are considered to be in 
Kernel mode Virtual Address Space_ When a vectored transfer occurs, 
control is transferred according to a new Program Counter (PC) and 
Processor Status Word (PS) contained in a two-word vector relocated 
through the Kernel Page Address Register Set_ Relocation of trap ad­
dresses means that the hardware is capable of recovering from a failure 
in the first physical bank of memory_ 

6-5 



When a trap, abort, or interrupt occurs the "push" of the old PC, old 
PS is to the User/Supervisor/Kernel R6 stack specified by CPU mode 
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01 = 
Supervisor, 11 = User). The CPU mode bits also determine the new PAR 
set. In this manner it is possible for a Kernel mode program to have 
complete control over service assignments for all interrupt conditions, 
since the interrupt vector is located in Kernel space. The Kernel program 
may assign the service of some of these conditions to a Supervisor or 
User mode program by simply setting the CPU mode bits of the new 
PS in the vector to return control to the appropriate mode. 

6.5.4 Construction of a Physical Address 
All addresses with memory relocation enabled either reference informa­
tion in instruction (I) Space or Data (D) Space_ I Space is used for all 
instruction fetches, index words, absolute addresses and immediate 
operands, D Space is used for all other references. I Space and D Space 
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor, 
and User. Using Memory Management Register # 3, the operating sys­
tem may select to disable D space and map all references (Instructions 
and Data) through I space, or to use both I and D space. 

The basic information needed for the construction of a Physical Address 
(PA) comes from the Virtual Address (VA), which is illustrated in Figure 
6-7, and the appropriate PAR set. 

15 13 12 D 

~~A~PF~'~~~ __ ~-L __ ~~~~D~F~~ __ ~~ __ ~~.~ 
ACTIVE PAGE DISPLACEMENT FIELD 

FIELD 

Figure 6-7 Interpretation of a Virtual Address 

The Virtual Address (VA) consists of: 

1. The Active Page Field (APF). This 3-bit field determines which of 
eight Page Address Registers (PARO-PAR7) will be used to form the 
Physical Address (PA). 

2. The Displacement Field (DF). This 13-bit field contains an address 
relative to the beginning of a page. This permits page lengths up to 
4K words (213 = 8K bytes). The DF is further subdivided into two 
fields as shown in Figure 6-8. 

12 6 5 0 

BN DIB =:=J 
k-~~~BL~O~CK~N~UM~B=ER~~~k-~D~IS~PL~AC~EM~E~N~TI~N~BL~OCK 

Figure 6-8 Displacement Field of Virtual Address 

The Displacement Field (DF) consists of: 

1. The Block Number (BN). This 7-bit field is interpreted as the block 
number within the current page. 

6-6 



2. The Displacement in Block (DIB). This 6·bit field contains the dis-
placement within the block referred to by the Block Number (BN). 

The remainder of the information needed to construct the Physical Ad­
dress comes from the I6-bit Page Address Field. (PAF) (the 
Page Address Register (PAR» that specifies the starting address of the 
memory page which that PAR describes. The PAF is actually 'a block 
number in the physical memory, e.g. PAF = 3 indicates a starting ad­
dress of 96 (3 x 32) words in physical memory. 

The formation of the Physical Address (PA) is illustrated in Figure 6-9. 

The logical sequence involved in constructing a Physical Address (PA) 
is as follows: 

1. Select a set of Page Address Registers depending on the space 
being referenced. 

2. The Active Page Field (APF) of the Virtual Address is used to select 
a Page Address Register (PARa-PAR?). 

3. The Page Address Field (PAF) of the selected Page Address Register 
(PAR) contains the starting address of the currently active page as a 
block number in physical memory. 

4. The Block Number (BN) from the Virtual Address (VA) is added 
to the Page Address Field (PAF) to yield the number of the block in 
physical memory (PBN-Physical Block Number) which will contain 
the Physical Address (PA) being constructed. 

5. The Displacement in Block (DIB) from the Displacement Field (OF) 
of the Virtual Address (VA) is joined to the Physical Block Number 
(PBN) to yield a true 22-bit PDP-U/70 Physical Address (PA). 

15 o 

VIRTUAL ADDRESS L--__________ ---] 

15 13 

SELECT PAR 

12 

OFFSET INTO PAGE I VA) 

PAf 

PHYSICAL ADDRESS ~\~--------------~ 
Figure 6-9 Construction of a Physical Address 

6.5.5 Management Registers 
The PDP-U/70 Memory Management Unit implements three sets of 32 
sixteen bit registers. One set of registers is used in Kernel mode, another 
in Supervisor, and the other in User mode. The choice of which set is to 
be used is determined by the current CPU mode contained in the Proces-

6-? 



sor Status word. Each set is subdivided into two groups of 16 registers. 
One group is used for references to Instruction (I) Space, and one to 
Data (D) Space. The I Space group is used for all instruction fetches, 
index words, absolute addresses and immediate operands. The D Space 
group is used for all other references, providing it has not been disabled 
by Memory Managements Register # 3. Each group is further subdivided 
into two parts of 8 registers. One part is the Page Address Register (PAR) 
whose function has been described in previous paragraphs. The other 
part is the Page Descriptor Register (PDR). PARs and PDRs are always 
selected in pairs by the top three bits of the virtual address. A PAR/PDR 
pair contain all the information needed to describe and locate a currently 
active memory page. 

The various Memory Management Registers are located in the upper· 
most 4K of PDp·ll physical address space along with the UNIBUS I/O 
device registers. 

PROCESS STATUS WORD 

15 I 14 

KERNEl (gQL SUPERVISOR IDll 

PAR PDR PAR PDR 

PAR PDR PAR PDR 

PAR 

, 
USER 1111 

PDR 

PAR PDR 

Figure 6·10 Active Page Registers 

Page Address Registers (PAR) 

I SPACE 

D SPACE 

The Page Address Register (PAR) contains the Page Address Field (PAF), 
16·bit field, which specifies the starting address of the page as a block 
number in physical memory. 

6·8 



15 

PAF 

Figure 6·11 Page Address Register 

The Page Address Register (PAR) which contains the Page Address 
Field (PAF) may be alternatively thought of as a relocation register con­
taining a relocation constant, or as a base register containing a base 
address. Either interpretation indicates the basic importance of the Page 
Address Register (PAR) as a relocation tool. 

Page Descriptor Register 
The Page Descriptor Register (PDR) contains information relative to page 
expansion, page length, and access control. 

~14 
PLF ACf 

Figure 6-12 Page Description Register 

Access Control Field (ACF) 
This three-bit field, occupying bits 2-0 of the Page Descriptor Register 
(PDR) contains the access rights to this particular page. The access 
codes or "keys" specify the manner in which a page may be accessed 
and whether or not a given access should result in a trap or an abort 
of the current operation. A memory reference which causes an abort is 
not completed while a reference causing a trap is completed. In fact, 
when a memory reference causes a trap to occur, the trap does not 
occur until the entire instruction has been completed. Aborts are used 
to catch "missing page faults," prevent illegal access, etc.; traps are 
used as an aid in gathering memory management information. 

In the context of access control the term "write" is used to indicate 
the action of any instruction which modifies the contents of any ad­
dressable word. "Write" is synonymous with what is usually called a 
"store" or "modify" in many computer systems. 

The modes of access control are as follows: 

000 non-resident abort all accesses 

001 read-only abort on write attempt, memory man-
agement trap on read 

010 read-only abort on write attempt 

011 unused abort all accesses-reserved for future 
use 

100 read/write memory management trap upon com-
pletion of a read or write 

101 read/write memory management trap upon com-
pletion of a write 

6-9 



110 read/write 

111 unused 

no system trap/abort action 

abort all accesses-reserved for future 
use 

It should be noted that the use of I Space provides the user with a 
further form of protection, execute only. 

Access Information Bits 
A Bit (bit 7)-This bit is used by software to determine whether or not 
any accesses to this page met the trap condition specified by the 
Access Control Field (ACF) (A = 1 is Affirmative) The A Bit is used in 
the process of gathering memory management statistics. 

W Bit (bit 6)-This bit indicates whether or not this page has been 
modified (i.e. written into) since either the PAR or PDR was loaded. 
(W = 1 is Affirmative). The W Bit is useful in applications which involve 
disk swapping and memory overlays. It is used to determine which pages 
have been modified and hence must be saved in their new form and 
which pages have not been modified and can be simply overlaid. 

Note that A and W bits are "reset" to "0" whenever either PAR or PDR 
is modified (written into). 

Expansion Direction (ED) 
Bit 03 of the Page Description Register (PDR) specifies in which direc­
tion the page expands. If ED = 0 the page expands upwards from Block 
Number 0 to include blocks with higher addresses; if ED = 1, the page 
expands downwards from Block Number 127 to include blocks with lower 
addresses. Upward expansion is usually used for program space while 
downward expansion is used for stack space. 

Page Length Field (PLF) 
This seven-bit field, occupying bits 14-8 of the Page Descriptor Register 
(PDR), specifies the block number, which defines the boundary of that 
page. The block number of the Virtual Address is compared against the 
Page Length Field to detect Length Errors. An error occurs when expand­
ing upwards if the block number is greater than the Page Length Field, 
and when expanding downwards if the block number is less than the 
Page Length Field. 

Reserved Bits 
Bits 15, 5, and 4 are spare and are always read as 0, and should never 
be written. They are unused and reserved for possible future expansion. 

6.5.6 Fault Recovery Registers 
Aborts and traps generated by the Memory Management hardware are 
vectored through Kernel virtual location 250, Memory Management Re­
gisters #0, #1, #2 and #3 are used in order to differentiate an abort 
from a trap, determine why the abort or trap occurred, and allow for 
easy program restarting. Note that an abort or trap to a location which 
is itself an invalid address will cause another abort or trap. Thus the 
Kernel program must insure that Kernel Virtual Address 250 is mapped 
into a valid address, otherwise a loop will occur which will require con­
sole intervention. 

Memory Management Register #0 (MMRO) (status and error indicators) 
MMRO contains error flags, the page number whose reference caused the 

6-10 



abort, and various other status flags. The register is organized as shown 
in Figure 6·13. 

Setting bit 0 of this register enables address relocation and error detec­
tion. This means that the bits in MMRO become meaningful. 

Bits 15-12 are the error flags. They may be considered to be in a "priority 
queue" in that "flags to the right" are less significant and should be 
ignored. That is, a "non-resident" fault-service routine would ignore 
length, access control, and memory management flags. A "page length" 
service routine would ignore access control and memory management 
fa u Its, etc. 

Bits 15-13 when set (error conditions) cause Memory Management to 
freeze the contents of bits 1-7 and Memory Management Registers # 1 
and # 2. This has been done to facilitate error recovery. 

These bits may also be written under program control. No abort will oc· 
cur, but the contents of the Memory Management registers will be locked 
up as in an abort. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ABORT-NON 
ABORT- PA 
LENGTH ER 

ABORT-RE 
ACCESS VIO 

TRAP-MEMO 

NOT USED 
NOT USED 
ENABLE M 

MAINTENA 

INSTRUCT I 
PAGE MOD 
PAGE ADDR 

PAGE NUM 
ENABLE RE 

~"~gJ ROR} 

AD ONLY} 
LATION 

RY MANAGEMENT 

EMORY MANAGEMENT TRAP 

NCE MODE 

ON COMPLETED 
E 
ESS SPACE liD 

BER 
LOCATION 

~ 
~ '----...-----J 

Figure 6-13 Format of Memory Management Register #0 (MMRO) 

Abort-Nan-Resident, Bit 15 
Bit 15 is the "Abort-Non-Resident" bit. It is set by attempting to 
access a page with an Access Control Field (ACF) key equal to 0, 3, or 7. 
It is also set by attempting to use Memory Relocation with a processor 
mode of 2. 

Abort-Page length, Bit 14 
Bit 14 is the "Abort Page length" bit. It is set by attempting to access 
a location in a page with a block number (Virtual Address bits, 12-6) 
that is outside the area authorized by the Page length Field (PlF) of the 
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be 
set simultaneously by the same access attempt. Bit 14 is also set by 
attempting to use Memory Relocation with a processor mode of 2. 

6-11 



Abort-Read Only, Sit 13 
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write in 
a "Read-Only" page. "Read-Only" pages have access keys of 1 or 2. 

Trap~Memory Management, Bit 12 
Bit 12 is the "Trap-Memory Management" bit. It is set whenever a 
Memory Management trap condition occurs; that is, a read operation 
which references a page with an Access Control Field (ACF) of 1 or 4, 
or a write operation to a page with an ACF key of 4 or 5. 

Bits 11, 10 
Bits 11 and 10 are spare and are always read as 0, and should never be 
written. They are unused and reserved for possible future expansion. 

Enable Memory Management Traps, Bit 9 
Bit 9 is the "Enable Memory Management Traps" bit. It is set or cleared 
by doing a direct write into MMRO. If bit 9 is 0, no Memory Management 
traps will occur. The A and W bits will, however, continue to log Memory 
Management Trap conditions. When bit 9 is set to 1, the next Memory 
Management trap condition will cause a trap, vectored through Kernel 
Virtual Address 250. 

Note that if an instruction which sets bit 9 to a (disable Memory Man­
agement Trap) causes a Memory Management trap condition in any of 
its memory references prior to and including the one actually changing 
MMRO, then the trap will occur at the end of the instruction anyway. 

Maintenance/Destination Mode, Bit S 
Bit 8 specifies that only destination mode references will be relocated 
using Memory Management. This mode is only used for maintenance 
purposes. 

Instruction Completed, Bit 7 
Bit 7 indicates that the current instruction has ·beencompleted. It will 
be set to a during T bit, Parity, Odd Address, and Time Out traps and 
interrupts. This provides error handling routines with a way of determin­
ing whether the last instruction will have to be repeated in the course of 
an error recovery attempt. Bit 7 is Read-Only (it cannot be written). It is 
initialized to a 1. Note that EMT, TRAP, BPT, and lOT do not set bit 7. 

Processor Mode, Bits 5 & 6 
Bits 5 and 6 indicate the CPU MODE (Kernel/Supervisor/User) associ­
ated with the page causing the abort (Kernel = 00, Supervisor = aI, 
User = 11, Illegal Mode = 10). If an illegal mode is specified, bits 15 
and 14 will be set. 

Page Address Space, Bit 4 
Bit 4 indicates the type of address space (lor D) the Unit was in when 
a fault occurred (0 = I Space, 1 = D Space). It is used in conjunction 
with bits 3-1, Page Number. 

Page Number, Bits 3 to 1 
Bits 3-1 contain the page number of a reference causing a Memory 
Management fault. Note that pages, like blocks, are numbered from 
a upwards_ 

6-12 



Enable Relocation, Bit 0 
Bit 0 is the "Enable Relocation" bit. When it is set to 1, all addresses 
are relocated by the unit. When bit 0 is set to 0 the Memory Management 
Unit is inoperative and addresses are not relocated or protected. 

Memory Management Register # 1 (MMRl) 
MMRI records any autoincrement/decrement of the general purpose reg­
isters, including explicit references through the PC. MMRI is cleared at 
the beginning of each instruction fetch. Whenever a general purpose reg­
ister is either autoincremented or autodecremented the register number 
and the amount (in 2s complement notation) by which the register was 
modified, is written into MMRl. 

The information contained in MMRI is necessary to accomplish an effec­
tive recovery from an error resulting in an abort. The low order byte is 
written first and it is not possible for a PDP-ll instruction to autoincre­
ment/decrement more than two general purpose registers per instruction 
before an "abort-causing" reference. Register numbers are recorded 
"MOD 8"; thus it is up to the software to determine which set of regis­
ters (User/Supervisor/Kernel-General Set O/General Set 1) was modi­
fied, by determining the CPU and Register modes as contained in the 
PS at the time of the abort. The 6-bit displacement on R6(SP) that can 
be caused by the MARK instruction cannot occur if the instruction is 
aborted. 

15 

AMOUNT CHANGED 
(2'S COMPLEMENT) 

II 10 8 7 

REGISTER AMOUNT CHANGED 
NUMBER (2'S COMPLEMENT) 

3 2 

REGISTER 
NUMBER 

o 

Figure 6-14 Format of Memory Management Register # 1 (MMRI) 

Memory Management Register #2 
MMR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of 
each instruction fetch, or with the address Trap Vector at the beginning 
of an interrupt, "T" Bit trap, Parity, Odd Address, and Timeout aborts 
and parity traps. Note that MMR2 does not get the Trap Vector on EMT, 
TRAP, BPT and lOT instructions. MMR2 is Read-Only; it can not be writ­
ten. MMR2 is the Virtual Address Program Counter. 

Memory Management Register #3 
The Memory Management Register #3 (MMR3) enables or disables the 
use of the 0 space PAR's and PDR's and 22-bit mapping and UNIBUS 
mapping. When 0 space is disabled, all references use the I space regis­
ters; when 0 space is enabled, both the I space and 0 space registers 
are used. Bit 0 refers to the User's Registers, Bit 1 to the Supervisor's, 
and Bit 2 to the Kernel's. When the appropriate bits are set 0 space is 
enabled; when clear, it is disabled. Bit 03 is read as zero and never writ­
ten. It is reserved for future use. Bit 04 enables 22-bit mapping. If Mem­
ory Management is not enabled, bit 04 is ignored and 16-bit mapping is 
used. 

If bit 4 is clear and Memory Management is enabled (bit 0 of MMRO is 
set), the computer uses 18-bit mapping. If bit 4 is set and Memory Man-

6-13 



agement is enabled, the computer uses 22-bit mapping. Bit 5 is set to 
enable relocation in the UNIBUS map; the bit is cleared to disable reloca­
tion. Bits 6 to 15 are unused. On initialization this register is set to 0 
and only I space is in use. 

Bit 

5 

4 

2 
1 
o 

ENABLE UNIBUS MAP~=========~~ t r ENABLE 22-BIT MAPPING I 

KERN~l§~================~~ __ J SUPERVISOR USER 
Figure 6-15 Format of Memory Management Register #3 (MMR3) 

State 

o 
1 

o 
1 

1 
1 
1 

Operation 

UNIBUS Map relocation disabled 
UNIBUS Map relocation enabled 

na e - I mapping of MMRO E bl 18 b·t . t if bit 0 
Enable 22-bit mapping is set 

Enable Kernel D Space 
Enable Supervisor D Space 
Enable User D Space 

Instruction Back-Up/Restart Recovery 
The process of "backing-up" and restarting a partially completed instruc­
tion involves: 

1. Performing the appropriate memory management tasks to alleviate 
the cause of the abort (e.g., loading a missing page, etc.) 

2. Restoring the general purpose registers indicated in MMRI to their 
original contents at the start of the instruction by subtracting the 
"modify value" specified in MMR1. 

3. Restoring the PC to the "abort-time" PC by loading R7 with the con­
tents of MMR2, which contains the value of the Virtual PC at the time 
the "abort-generating" instruction was fetched. 

Note that this back-up/restart procedure assumes that the general pur­
pose register used in the program segment will not be used by the abort 
recovery routine. This is automatically the case if the recovery program 
uses a different general register set. 

Clearing Status Registers Following Trap/ Abort 
At the end of a fault service routine bits 15-12 of MMRO must be cleared 
(set to 0) to resume error checking. On the next memory reference fol­
lowing the clearing of these bits, the various Registers will resume moni­
toring the status of the addressing operations. MMR2 will be loaded 
with the next instruction address, MMRI will store register change infor­
mation and MMRO will log Memory Management Status information. 

Multiple Faults 
Once an abort has occurred, any subsequent errors that occur will not 
affect the state of the machine. The information saved in MMRO thru 

6-14 



MMR2 will always refer to the first abort that it detected. However, when 
multiple traps occur, the information saved will refer to the most recent 
trap that occurred. 

In the case that an abort occurs after a trap, but in the same instruction, 
only one stack operation will occur; and the PC and PS at the time of 
the abort will be saved. 

6.5.7 Examples 

Normal Usage 
The Memory Management Unit provides a very general purpose memo 
ory management tool. It can be used in a manner as simple or complete 
as desired. It can be anything from a simple memory expansion device to 
a very complete memory management facility. 

The variety of possible and meaningful ways to utilize the facilities of· 
fered by the Memory Management Unit means that both single,user and 
multi'programming systems have complete freedom to make whatever 
memory management decisions best suit their individual needs. AI· 
though a knowledge of what most types of computer systems seek to 
achieve may indicate that certain methods of utilizing the Memory Man· 
agement Unit will be more common than others, there is no limit to the 
ways to use these facilities. 

In most normal applications, it is assumed that the control over the 
actual memory page assignments and their protection resides in a super· 
visory type program which would operate at the nucleus of a CPU's 
executive (Kernel) mode. It is further assumed that this Kernel mode 
program would set access keys in such a way as to protect itself from 
willful or accidental destruction by other Supervisor mode or User mode 
programs. The facilities are also provided such that the nucleus can 
dynamically assign memory pages of varying sizes in response to sys· 
tem needs, 

Typical Memory Page 
When the Memory Management Unit is enabled, the Kernel mode'pro' 
gram, a Supervisor mode program and a User mode program each have 
eight active.pages described by the appropriate Page Address Registers 
and Page Descriptor Registers for data, and eight, for instructions. Each 
segment is made up of from 1 to 128 blocks and is pointed to by the 
Page Address Field (PAF) of the corresponding Page Address Register 
(PAR) as illustrated in Figure 6·16. 

The memory segment illustrated in Figure 6·16 has the following attri· 
butes: 

1. Page Length: 40 blocks. 

2. Virtual Address Range: 140000-144717. 

3. Physical Address Range: 312000-316777. 

4. No trapped access has been made to this page. 

5. Nothing has been modified (i.e. written) in this page. 

6. Read·Only Protection. 

7. Upward Expansion. 

6·15 



P:LLLL.:.L.LL.L.CLLL.L.'-LLLL.j PA 31677 7 

BLOCK 1 

BLOCK 0 
L-_______ ---" PA 312000 

VA 140000{PAR6 i 
3910 :~FO 

PDR6~ 478 1010WJ Ol1 I 
PLF A W ED- ACF 

Figure 6-16 Typical Memory Page 

These attributes were determined according to the following scheme: 

1. Page Address Register (PAR6) and Page Descriptor Register (PDR6) 
were selected by the Active Page Field (APF) of the Virtual Address 
(VA). (Bits 15·13 of the VA = 68.) 

2. The initial address of the page was determined from the Page Ad­
dress Field (PAF) of PAR6 (312000 = 3120, blocks x 40H (3210) words 
per block x 2 bytes per word). 

Note that the PAR which contains the PAF constitutes what is often 
referred to as a base register containing a base address or a reloca· 
tion register containing relocation constant. 

3. The page length (478 + 1 = 4010 blocks) was determined from the 
Page Length Field (PLF) contained in Page Descriptor Register PDR6. 
Any attempts to reference beyond these 4010 blocks in this page 
will cause a "Page Length Error," which will result in an abort, vec­
tored through Kernel Virtual Address 250. 

4. The Physical Addresses were constructed according to the scheme 
illustrated in Figure 6·9. 

5. The Access bit (A-bit) of PDR6 indicates that no trapped access has 
been made to this page (A bit = 0). When an illegal or trapped refer· 
ence, (i.e. a violation of the Protection Mode specified by the Access 
Control Field (ACF) for this page), or a trapped reference (i.e. Read 
in this case), occurs, the A-bit will be set to a 1. 

6-16 



6. The Written bit (W·bit) indicates that no locations in this page have 
been modified (i.e. written). If an attempt is made to modify any 
location in this particular page, an Access Control Violation Abort 
will occur. If this page were involved in a disk swapping or memory 
overlay scheme, the W·bit would be used to determine whether it 
had been modified and thus required saving before overlay. 

7. This page is Read·Only protected; i.e. no locations in this page may 
be modified. In addition, a memory management trap will occur upon 
completion of a read access. The mode of protection was specified 
by the Access Control Field (ACF) of PDR6. 

8. The direction of expansion is upward (ED = 0). If more blocks are 
required in this segment, they will be added by assigning blocks 
with higher relative addresses. 

Note that the various attributes which describe this page can all be 
determined under software control. The parameters describing the page 
are all loaded into the appropriate Page Address Register (PAR) and Page 
Descriptor Register (PDR) under program control. In a normal applica· 
tion it is assumed that the particular page which itself contains these 
registers would be assigned to the control of a supervisory type program 
operating in Kernel mode. 

Non-Consecutive Memory Pages 
It should be noted at this point that although the correspondence be· 
tween Virtual Addresses (VA) and PAR/PDR pairs is such that higher 
VAs have higher PAR/PDR's, this does not mean that higher Virtual 
Addresses (VA) necessarily correspond to higher Physical Addresses 
(PA). lit is quite simple to set up the Page Address Fields (PAF) of the 
PAR's in such a way that higher Virtual Address blocks may be IQcated 
in lower Physical Address blocks as illustrated in Fig. 6·17. 

Note that although a· single memory page must consist of a block of 
contiguous locations, memory pages as macro units do not have to be 
located in consecutive Physical Address (PA) locations. It also should 
be realized that the assignment of memory pages is not limited to con· 
secutive non·overlapping Physical Address (PA) locations. 

Stack Memory Pages 
When constructing PDp·11/70 programs it is often desirable to isolate 
all program variables from "pure code" (i.e. program instructions) by 
plaCing them on a register indexed stack. These variables can then be 
"pushed" or "popped" from the stack area as needed (see Chapter 3. 
Addressing Modes). Since all PDp·ll Family stacks expand by adding 
locations with lower addresses, when a memory page which contains 
"stacked" variables needs more room it must "expand down," i.e. add 
blocks with lower relative addresses tq the current page. This mode of 
expansion is specified by setting the Expansion Direction (ED) bit of 
the appropriate Page Descriptor Register (PDR) to a 1. Figure 6·18 
illustrates a typical "stack" memory page. This page will have the fol· 
lowing parameters: 

PAR6: PAF = 3120 
PDR6: PLF = 175. or 12510 (12810.3) 

ED = 1 

6-17 



PAR 7,---------, 
PAF 

"om"~."'''' 

,,",""0 ~ .. ~o 
"W'" ~=====r'w'" 

::: ~+---::-:---j;-------_~O_OO'5~--:-- PA 541000 

Figure 6-17 Non-Consecutive Memory Pages 

A = 0 or 1 

W = 0 or 1 
ACF = nnn (to be determined by programmer as the need dictates)_ 

note: the A, W bits will normally be set by hardware_ 

In this case the stack begins 128 blocks above the relative ongln of 
this memory page and extends downward for a length of three blocks_ 
A "PAGE LENGTH ERROR" abort vectored through Kernel Virtual Ad­
dress (VA) 250 will be generated by the hardware when an attempt is 
made to reference any location below the assigned area, Le_ when the 
Block Number (BN) from the Virtual Address (VA) is less than the Page 
Length Field (PLF) of the appropriate Page Descriptor Register (PDR)_ 

6.5.8 Transparency 
It should be clear at this point that in a multiprogramming application 
it is possible for memory pages to be allocated in such a way that a 
particular program seems to have a complete 32K basic PDP-ll/70 
memory configuration_ Using Relocation, a Kernel Mode supervisory-type 
program can easily perform all memory management tasks in a manner 
entirely transparent to a Supervisor or User mode program. In effect, a 
PDP-1l/70 System can utilize its resources to provide maximum through­
put and response to a variety of users each of which seems to have a 
powerful system "all to himself_" 

6-18 



VA 157777 ,-----::-::::::-:-::::---c::=--;---, PA 331777 
BLOCK 1778 1127101 

BLOCK 1768 1126101 

BLOCK 1758 112~01 

Figure 6-18 Typical Stack Memory Page 

6_5_9 Memory Management Unit-Register Map 

REGISTER 

Memory Mgt Register #O(MMRO) 
Memory Mgt Register #1(MMR1) 
Memory Mgt Register #2(MMR2) 
Memory Mgt Register #3(MMR3) 

User I Space Descriptor Register (UISDRO) 

User I Space Descriptor Register (UIDR7) 

User D Space Descriptor Register (UDSDRO) 

User D Space Descriptor Register (UDSDR7) 

User I Space Address Register (UISARO) 

User I Space Address Register (UISAR7) 

User D Space Address Register (UDSARO) 

User D Space Address Register (UDSAR7) 

Supervisor I Space Descriptor Register (SISDRO) 

Supervisor I Space Descriptor Register (SISDR7) 

6-19 

ADDRESS 

17777572 
17777574 
17777576 
17772516 

17777600 

17777616 

17777620 

17777636 

17777640 

17777656 

17777660 

17 777676 

17772200 

17772216 



REGISTER 

Supervisor 0 Space Descriptor Register (SDDRO) 

Supervisor 0 Space Descriptor Register (SDSDR7) 

Supervisor I Space Address Register (SISARO) 

Supervisor I Space Address Register (SISAR7) 

Supervisor 0 Space Address Register (SDSARO) 

Supervisor 0 Space Address Register (SDSDR7) 

Kernel I Space Descriptor Register (KISDRO) 

Kernel I Space Descriptor Register (KIDSR7) 

Kernel 0 Space Descriptor Register (KDSDRO) 

Kernel 0 Space Descriptor Register (KDSDR7) 

Kernel I Space Address Register (KISARO) 

Kernel I Space Address Register (KISAR7) 

Kernel 0 Space Address Register (KDSARO) 

Kernel 0 Space Address Register (KDSAR7) 

6.6 UNIBUS MAP 

ADDRESS 

17772226 

17772236 

17772240 

17772256 

17772260 

17772276 

17772300 

17772316 

17772320 

17772336 

17772340 

17772356 

17772360 

17772376 

The UNIBUS Map performs the conversion that allows devices on the 
UNIBUS to communicate with physical memory by means of Non-Proces­
sor Requests (NPR's)_ UNIBUS addresses of 18 bits are converted to 
22·bit physical addresses using relocation hardware_ This relocation is 
enabled (or disabled) under program control: 

The top 4K word addresses of the 128K UNIBUS addresses are reserved 
for CPU and I/O registers and is called the Peripherals Page; see Figure 
6-19_ The lower 124K addresses are used by the UNIBUS Map to refer­
ence physical memory. 

6-20 



PERIPHERAL 
PAGE 

777777 

f-_(_4K_W_O_R_D_S)_---j;~~ ~~? 
12A.K 

(TO UNIBUS MAP) 

'--____ --'DOO 000 

Figure 6·19 UNIBUS Address Space 

The UNIBUS Map is the interface to memory from the UNfBUS. The 
operation is transparent to the user, if it is disabled. 

Relocation Disabled 
If the UNIBUS Map relocation is not enabled, an incoming 18·bit 
UN IBUS address has 4 leading zeros added for referencing a 22·bit phys· 
ical address. The lower 18 bits are the same. No relocation is performed. 

Relocation Enabled 
There are a total of 31 mapping registers for address relocation. Each 
register is composed of a double 16·bit PDp·ll word (in consecutive 
locations) that holds the 22·bit base address; see Figure 6·20. These 
registers have UNIBUS addresses in the range 770 200 to 770 372. 

If UNIBUS Map relocation is enabled, the 5 high order bits of the 
UN IBUS address are used to select one of the 31 mapping registers. 
The low order 13 bits of the incoming address are used as an offset 
from the base address contained in the 22·bit mapping register; see 
Figure 6·21. To form the physical address, the 13 low order bits of the 
UNIBUS address are added to 22 bits of the selected mapping register to 
produce the 22·bit physical address. Refer to Figure 6·22. The lowest 
order bit of all mapping registers is always a zero, since relocation is 
always on word boundaries. 

ADDRESS =A+2 ADDRESS:: A 

15 6 5 0 

6 HIGH ORDER BITS I 16 lOW ORDER BITS 

DOUBLE WORD 

Figure 6·20 Single Mapping Register (1 of 31) 

6.7 NON·EXISTENT MEMORY ERRORS 

ALWAYS] 
ZERO 

After a 22·bit physical address is generated, the CPU looks at the 4 high 
order bits, bits 18 to 21, to see if they are all ONES. If this is true (range 
17 000 000 to 17 17 777 777), the lower 18 bits are used for a 
UNIBUS address. If after 10 to 20 !-,sec, there is no response, the CPU 
does a UNIBUS Timeout abort, and bit 4 in the CPU error Register is set. 

6·21 



UNIBUS ADDRESS 

17 13 12 

I 5 BITS I 13 BITS I UNIBUS 

t=::::::::=jc" ====::::=====:::J" ADDRESS ~' 4 OFFSET 
SELECT 1 OF 31 --.J 
MAPPING REGS 
(IF RElOCATION 
IS ENABLED) 

Figure 6-21 l8-bit UNIBUS Address 

17 

SELECT MAP REGISTER L~_~_I3-,1 

OfFSET INTO PAGE (UNIBU$ ADDRESS) 

CONTENTS OF 
MAP REGISTER 

21 

12 

00 

00 

00 

CACHE ADDRESS 
(PHYSICAL) c=J\~ ________________ ~ 

Figure 6-22 Construction of a Physical Address 

If the 4 high order bits are not all ONES, the address is compared against 
the System Size register. If the physical address is higher than the 
amount of implemented physical memory, the CPU does an immediate 
non-existent memory abort, and bit 5 in the CPU Error Register is set. 
Note that it is not necessary to do a time-out, since the maximum phys­
ical memory on the system is indicated in the System Size register. 

When memory is accessed from the UNIBUS via the UNIBUS Map, a 
memory cycle is requested. If the memory location is not in physical 
memory, the memory bus times out. Since there is no response on the 
UNIBUS, the UNIBUS master also times-out. " 

6-22 



CHAPTER 7 

MEMORY SYSTEM 

7.1 GENERAL 
This chapter provides detailed information on: 

a) Memory system 
b) Cache memory 
c) Main memory 
d) Parity 

An overall block diagram of the PDP-U/70 is shown in Figure 7-1. From 
a functional standpoint, main memory and the cache can be treated as 
a single unit of memory. 

CPU & ~~~ UNIBUS 

Figure 7-1 Block Diagram of PDP-U/70 

7.2 CACHE MEMORY 

7.2.1 Introduction 
A cache memory is a small, high-speed memory that maintains a copy 
of automatically selected portions of main memory for faster access to 
instructions and data. A computer system, using a cache memory, ap­
pears the same as a conventional system with core memory, except that 
the execution of programs is noticeably faster. The only difference is in 
system timing; there are no changes in programming! The operation is 
transparent to the user. 

Figure 7-2 shows the block diagram for a system with cache memory. 
Main memory is replaced by a combination of cache memory plus main 
memory. The cache system simulates a system having a large amount 
of fast memory. The cache itself uses a small amount of very fast semi-

7-1 



conductor memory; the main memory uses slower core memory. The 
key to the effectiveness of a cache is the algorithm which automatically 
and dynamically allocates (transfers) the data most needed to the fast 
memory. 

Figure 7·2 Memory System 

The statistics of program behavior make a cache system work. 'All of the 
data is stored in main memory; a copy of some of the data is stored in 
the cache. If most of the time the needed data is in the fast memory, the 
program will execute quickly, slowing down only when accesses must be 
made to main memory. Other semiconductor·core systems attempt to 
achieve this goal by having the programmer guess ahead of time which 
sections of the program should go in which memory. The cache system 
achieves the same goal by automatically, dynamically shuffling data 
between the two memory types in a way which gives a high probability 
that useful data will be in the fast memory. 

A cache memory predicts which words a program will most probably reo 
quire soon. The principle of program locality states that programs have 
a tendency to make most accesses in the neighborhood of locations ac· 
cessed in the recent past. Programs typically execute instructions in 
straight lines or small loops, with the next few accesses likely to be 
within a few words ahead or behind of the current location. Stacks grow 
and shrink from one end, with the next few accesses near the current 
top. Data elements are often scanned through sequentially. The cache 
makes use of this type of program behavior by bringing in extra words 
on each access to main memory (look ahead) and keeping copies of 
recently used words (look behind). 

From a cost effectiveness stnadpoint, a cache system offers faster system 
speed for the cost of only a small quantity of fast memory plus asso· 
ciated logic. How much faster depends on the size and organization of 
the cache not on the size of main memory. The user receives a very sub· 
stantial speed improvement for a modest cost, and there are no pro· 
gramming changes. Although the exact speed improvement depends on 
the particular program, a judicious choice of architecture and algorithm 
will produce good results for useful programs. 

The fundamental concern is execution speed. This is affected by the 
speeds of fast and slow memory and by the percentage of times memory 
references will find the data within the cache and therefore allow faster 
execution. When the needed data is found in the cache, a hit is said to 
occur. A miss occurs when the data is not in the cache. 

7·2 



7.2.2 The PDp·11/70 Cache 
The architecture of the cache chosen for the PDp·1I/70 is described in 
this section. It represents a carefully thought out approach, backed by 
extensive program simulations to determine hit statistics. Figure 7-1 
shows the basic block diagram of the PDP-ll/70 memory system. The 
size of the cache memory is 1,024 words (2,048 bytes), organized as a 
two·way associative cache with two-word blocks. This means there are 
two groups in the cache; each group contains 256 blocks of data, and 
each block contains two PDP-ll words (see Figures 7-3 & 7-4). Each 
block also has a tag field, which contains information to construct the 
address in main memory where the original copy of this data block re­
sides. The data from main memory can be stored within the cache in 
one index position determined by its physical address. Refer to Figure 
7-5 for the organization of the 22-bit physical address. The 8·bit index 
field (bits 2 to 9) determine which element of the array will contain the 
data (but it can be in either Group 0 or Group 1). 

f.--GROUP 0------.. -1-· -----GROUP 1-----~-1 
I f DATA MEMORY 

, ~ , ,-----------. \ 

TAG 

~ 
I 

WORD 1 WORD 2 
I I 
I I 
I I 
I I I I 
1 

I 
I 
I 
I 
I 
I 
I 
I I 

BYTE I BYTE BYTE I BYTE 

ADDRESS MEMORY 

TAG 

~ 
I 

WORD 1 WORD 2 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 

I I 
I 

BLOCK OF DATA 

Figure 7-3 Cache Memory (1024 words) 

1 
256 INDEX 
POSITIONS 

-I Bits 1---12 BITS-----i BI\S I----'B BlTs------.j_I_. ---lB BITS-----I_I 

WORD 1 WORD 2 

BYTE BYTE BYTE BYTE 

I---TAGS-----I 

Figure 7-4 Block of Data plus Tags 

11-"0------------ 22 BITS -I 
21 10 

TAG INDEX 
1 1 

11o>0----------BLO(K ADDRESS --------~~ f t 
WORD IN BLOCK-.J \ 
ByTE----......J 

Figure 7-5 Physical Address 

7-3 



The elements of the cache must store not only the data, but also the 
address identification. Since the index position itself implies part of the 
address, only the high address field (called tag field) must be stored. 
The combination of the tag plus index gives the address of the two·word 
block in main memory. The lowest two bits in the physical address select 
the particular word in the block, and the byte (if needed). 

There are two places in the cache where any block of data can go, a par· 
ticular index position in either Group 0 or Group 1. Random selection 
determines into which group the information is placed, overwriting the 
previous data. Another bit is needed within the cache to determine if 
the block has been loaded with data. When power is first applied, the 
cache data is invalid, and the valid bit for each data block is cleared. 
When a particular block location is updated, the associated valid bit is set 
to indicate good data. 

Figure 7·4 shows the organization for a single block of data within a 
set. Note that data has byte parity, and that the non·data part called 
tags contains a 12·bit high order address field plus a valid bit and two 
parity bits. 

7.2.3 General Operation 
The system always looks for data in the fast cache memory first. If it is 
there (a hit), execution proceeds at the fastest rate. If the information is 
not there (a miss), and the operation was a read, a two-word block of 
data is transferred from main memory to the cache. If there is a miss 
while trying to write, main memory is updated, but there are no changes 
to the cache. Main memory and the cache are both updated on write 
hits. 

The operation of what happens on hits or misses is summarized in 
Table 7-1. 

Table 7·1 Operation on Hit or Miss 

What Happens In 

CACHE MAIN MEMORY 

READ 
hit no change no change 
miss updated no change 

WRITE 
hit updated updated 
miss no change updated 

When power is first applied (Power-Up), all of the valid bits are cleared. 
If power is suddenly lost, cache data may become invalid, but main 
memory, with non-volatile core, will have a correct copy of all the data. 

With a typical program, writes occur only 10% of the time as compared 
to 90% of the time for reads. Read hits will average 80 to 95% of all 
cycles with a typical program. 

74 



7.3 PARITY 

System Reliability 
Parity is used extensively in the PDP-1l/70 to ensure the integrity of 
data storage and transfer, and to enhance the reliability of system opera­
tion. All of memory (cache and core) has byte parity. Parity is generated 
and checked on all transfers between core and cache, again between 
cache and the CPU, between high-speed mass storage devices and their 
controllers, and again between the controllers and core memory. A soft­
ware routine can be used to log the occurrence of parity errors, to han­
dle recovery from errors, and to provide information on system reliability 
and performance. 

Parity in the System 
Main memory stores 1 parity bit for each 8-bit byte, refer to Figure 7-6. 
The cache also stores byte parity for data, and in addition it stores 2 
parity bits for the address and control information (tag storage) asso­
ciated with each 2-word block of data. 

) CPU I UNIBUS 

I 1 l RESS DATA 
ADDRESS (P) 

I DATA(P} I MAP 

I 

ADD 

I ADDRESS(P} I DATA(P} I DATA (PI J HIGH - SPEED I HIGH-SPEED 
1/0 

CACHE 
l CONTROL] 110 BUS 

DATA&CONTROUP) 

ADDRESS DATA(P} 
& 

co NTROL(P} 

I DATA(P} I 
MAIN CONTROl 

Figure 7-6 Parity (P) in the PDP-ll/70 System 

The bus between main memory and the cache contains parity on the 
data and address and control lines. The high-speed I/O controllers check 
and generate parity for data transfers to main memory, and they have 
the capability of handling address errors that are flagged by the control 
in the cache memory. 

System Handling of Parity Errors 
Extensive capabilities have been designed into the PDP-ll/70 to allow 
recovery from parity errors, and to allow operation in a degraded mode 
if a section of the memory system is not operating properly. This type 
of operation is possible under program control by using the built-in con­
trol registers. 

7-5 



If part or all of the cache memory is malfunctioning, it is possible to 
bypass half or all of the cache. Misses can be forced within the cache, 
such that all read data is brought from main memory. Operation will be 
slower, but the system will yield correct results. If part of main memory 
is not working, the Memory Management unit can be used to map 
around it. If data found in the cache does not have correct parity, the 
memory system automatically tries the copy in main memory, to allow 
program execution to proceed. 

Details of how to perform this programming is explained in the next sec· 
tion on the CPU and memory control registers. 

Aborts and Traps 
Two actions can take place after detection of a parity error. The cycle 
can be aborted. Then the computer transfers control through the vector 
at location 114 to an error handling routine. The other action is that the 
instruction is completed, but then the computer traps (also through loca· 
tion 114). In the first case, it was not possible to complete the cycle; 
whereas, in the second case it was. This second type of parity error usu· 
ally (but not always) cau~es the trap before the next instruction is 
fetched. Refer to Table 7·2. 

TABLE 7·2 Response to Parity Errors 

PARITY ERROR 
DETECTED 

CPU cycle, 
data error, 
read from main memory 

UNIBUS cycle,* 
data error, 
read from main memory 

CPU cycle, 
address error, 
reference to main mem 

UN IBUS cycle, 
address error, 
reference to main mem 

CPU or UNIBUS cycle, 
data or address error, 
reference to cache 

High-speed I/O cycle, 
data or address error, 
ref to main memory 

CONDITION FOR 
ABORT 

Error in requested 
word. 

/ 

All reads and writes. 

CONDITION FOR 
TRAP 

Error in the other 
word. 

Error in either word. 

All reads and writes. 

All reads. 

(no CPU aborts or traps occur; high-speed 
I/O controllers handle their parity errors). 

* NOTE: When a parity error is detected on data going to the UNIBUS, 
the parity error signal is asserted. 

7-6 



System Response to Parity Errors 
Data is read from main memory to the cache in 2·word blocks. If the 
read cycle was caused by the CPU, and a parity error is detected in the 
requested word, an abort occurs. If it was in the other word, a trap oc· 
curs. On UN IBUS cycles, a trap is caused if there is a read error in either 
word. 

When an address parity error is detected on any read or write to main 
memory, an abort is caused for both CPU and UNIBUS cycles. 

When any fast data memory or address memory parity error is detected 
on any read from the cache, a trap occurs. On a fast data memory parity 
error, the CPU will try to get the data from main memory, and also over· 
write the same cache location with the new (correct) word just fetched. 
On an address memory parity error, the CPU will go to main memor¥~ 
for the data, and will correct (overwrite) the tag storage in the cache. 

Data transfers for the high·speed mass storage devices take place with 
main memory. No data is stored in the cache. Parity errors are handled 
by the device controllers; no CPU aborts or traps occur, and no cache 
status registers are affected. 

Table 7·2 summarizes the system response. 

7.4 REGISTERS 
The registers described in this section provide information about parity 
errors, memory status, and CPU status. These hardware registers have 
program addresses in the top 4K words of physical address space (Peri· 
pheral Page). 

Register 

Low Error Address 
High Error Address 
Memory System Error 
Control 
Maintenance 
Hit/Miss 

Address 

17 777 740 
17 777 742 
17 777 744 
17 777 746 
17 777 750 
17 777 752 

Some bit positions of the registers are not used (not implemented with 
hardware) and are indicated by cross·hatching. These bits are always 
read as ZEROS by the program. Most of the bits can be read or written 
under program control. 

Low Error Address Register 17 777 740 

15 

lOW ADDRESS 116 BITS) Il5B I 

This register contains the lowest 16 bits of the 22·bit address of the 
first error. The least significant bit is bit O. The high order bits are con· 
tained in the High Error Address Register. 

All the bits are read only. The bits are undetermined after a Power Up. 
They are not affected by a Console Start or RESET instruction. 

7·7 



High Error Address Register 17 777 742 

15 14 13 6 

HIGH ADDRESS 

BIT 

15-14 

NAME FUNCTION 

Cycle Type These bits are used to encode the type of memory 
cycle which was being requested when the parity 
error occurred. 

Bit 15 Bit 14 Cycle Type 

0 0 Data In (read) 
0 1 Data In Pause 
1 0 Data Out 
1 1 Data Out Byte 

5·0 Address These bits contain the highest 6 bits of the 22·bit 
address of the first error. The most significant bit 
is bit 5. 

All the bits are read only. The bits are undetermined after a Power Up. 
They are not affected by a Console Start or RESET instruction. 

Memory System Error Register 17 777 744 

15 14 13 12 10 

CPU ABORT 
CPU ABORT 
UNIBUS PAR 
UNIBUS MU 
CPU ERROR 
UNIBUS ERR 
CPU UNIBU 
ERROR IN M 
DATA MEM 
DATA MEM 
ADDRESS M 
ADDRESS M 
MAIN MEM 
MAIN MEM 
MAIN MEM 
MAIN MEM 

~ORJ r J 
lTV ERROR 

LTiPLE PARITY ERROR 

OR 
S ABORT 
AINTENANCE 
ORY GROUP 1 
ORY GROUP 0 
EMORY GROUP 1 
EMORY GROUP 0 
ORY ODD WORD 
ORY EVEN WORD 
ORY ADDRESS PARITY ERROR 
DRY TIMEOUT 

BIT NAME 

15 CPU Abort 

14 CPU Abort 
After Error 

13 UNIBUS 
Parity 
Error 

12 UNIBUS 
Multiple 
Parity 
Error 

DATA ERRORS 

I J I 1 I 
FUNCTION 

Set if an error occurs which caused the cache 
to abort a processor cycle. 

Set if an abort occurs with the Error Address 
Register locked by a previous error. 

Set if an error occurs which resulted in the 
UNIBUS Map asserting the parity error signal 
on the UNIBUS. 

Set if an error occurs which caused the parity 
error to be asserted on the UNIBUS with the 
Error Address Register locked by a previous 
error. 

7·8 



BIT 

11 

10 

9 

8 

7-6 

5-4 

3-2 

1 

o 

NAME 

CPU Error 

UNIBUS Error 

CPU UNIBUS 
Abort 

Error in 
Maintenance 

Data Memory 

Address 
Memory 

Main Memory 

Main Memory 
Address 
Parity Error 

Main Memory 
Timeout 

FUNCTION 

Set if any memory error occurs during a 
cache CPU cycle. 

Set if any memory errors occurs during a 
cache cycle from the UNIBUS. 

Set if the processor traps to vector 114 be· 
cause of UNIBUS parity error on a DATI or 
DATIP memory cycle. 

Set if an error occurs when any bit in the 
Maintenance Register is set. The Mainte· 
nance Register will then be cleared. 

These bits are set if a parity error is detected 
in the fast data memory in the cache. Bit 7 
is set if there is an error in Group 1; bit 6 
for Group O. 

These bits are set if a parity error is detected 
in the address memory in the cache. Bit 5 is 
set if there is an error in Group 1; bit 4 for 
Group O. 

These bits are set if a parity error is detected 
on data from main memory. Bit 3 is set if 
there is an error in either byte of the odd 
word; bit 2 for the even word. (Main memory 
always transfers two words at a time.) An 
abort occurs if the error is in the word 
needed by a CPU reference. A trap occurs if 
the error is in the other word, or if it is a 
UN IBUS reference. 

Set if there is a parity error detected on the 
address and control lines on the main mem­
ory bus. 

Set if there is no response from main mem­
ory. For CPU cycles, this error causes an 
abort. When a UNIBUS device requests a 
non-existent location, this bit will set, cause 
a time-out on the UNIBUS, and then cause 
the CPU to trap to vector 114. 

The bits are cleared on Power Up or by Console Start. They are unaf­
fected by a RESET instruction. 

When writing to the Memory System Error Register, a bit is unchanged 
if a 0 is written to that bit, and it is cleared if a 1 is written to that bit. 
Thus, the register is cleared by writing the same data back to the regis­
ter. This guarantees that if additional error bits were set between the 
read and the write, they will not be inadvertantly cleared. 

7-9 



Control Register 17 777 746 
/ 

I I 
FORCE REPLACEMENT GROUP 1 r J J 
FORCE REPLACEMENT GROUPO 
FORCE MISS GROUP 1 
FORCE MISS GROUP 0 

DISABLE UNIBUS,--T~RA~P~====================-~ DISABLE TRAPS 

BIT 

5-4 

3-2 

1 

o 

NAME 

Force 
Replacement 

Force Miss 

Disable 
UNIBUS Trap 

Disable 
Traps 

FUNCTION 

Setting these bits forces data replacement 
within a Group in the cache by main memory 
data on a read miss. Bit 5 selects Group 1 
for replacement; bit 4 selects Group O. 

Setting these bits forces misses on reads to 
the cache. Bit 3 forces misses on Group 1; 
bit 2 forces misses on Group O. Setting both 
bits forces all cycles to main memory. 

Set to disable traps to vector 114 when the 
parity error signal is placed on the UNIBUS. 

Set to disable traps from non-fatal errors. 

Bits 5 through 0 are read/write. The bits are cleared on Power Up or 
by Console Start. 

The PDP-11j70 has the capability of running in a degraded mode if 
problems are detected in the cache. If Group 0 of the cache is malfunc­
tioning, it is possible to force all operations through Group 1. If bits 2 
and 5 of the Control Register are set, and bits 3 and 4 are clear, the 
CPU will not be able to read data from Group 0, and all main memory 
data replacements will occur within Group 1. In this manner, half the 
cache will be operating. But system throughout will not decrease by 
50%, since the statistics of read hit probability will still provide reason­
ably fast operation. 

If Group 1 is malfunctioning, bits 3 and 4 should be set, and bits 2 and 
5 cleared; such that only Group 0 is operating. If all of the cache is mal­
functioning, bits 2 and 3 should be set. The cache will be bypassed, and 
all references will be to main memory. 

Bits 1 and 0 can be set to disable trapping; more memory cycles will be 
performed, but overall system operation will produce correct results. 

Maintenance Register 17 777 750 

15 12 11 B 7 4 3 0 

I", I , "I,~ 
~~'--------.-----

MAIN MEMORY PARITY~ j f J 
FAST ADDRESS PAR;T~Y========~=====~I ____ J FAST DATA PARITY 
MEMORY MARGINS 

7-10 



BIT 

15-12 

ll-8 

7-4 

3-1 

NAME 

Main 
Memory 
Parity 

Fast 
Address 
Parity 

Fast 
Data Parity 

Memory 
Margins 

FUNCTION 

Setting these bits causes the 4 parity bits to 
be l's_ There is 1 bit per byte; there are 4 
bytes in the data block_ 

Bit Set 

15 
14 
13 
12 

Byte 

odd word, high byte 
odd word, low byte 
even word, high byte 
even word, low byte 

Setting these bits causes the 4 parity bits for 
fast address memory to be wrong_ Bits 11 
and 10 affect Group 1; bits 9 and 8 affect 
Group 0_ 

Setting these bits causes the 4 parity bits to 
be l's_ 

Bit Set 

7 
6 
5 
4 

Byte 

Group I, high byte 
Group I, low byte 
Group 0, high byte 
Group 0, low byte 

These bits are encoded to do maintenance 
checks on main memory_ 

Bit 3 Bit 2 Bit 1 

0 0 0 Normal operation 
0 0 1 Check wrong 

address parity 
0 1 0 Early strobe margin 
0 1 1 Late strobe margin 
1 0 0 Low current margin 
1 0 1 High current 

margin 
1 1 0 

"- (reserved) 1 1 1 ) 

All of main memory is margined simultane­
ously_ 

Hit/Miss Register 17 777 752 

~FLOW 

This register indicates whether the 6 most recent references by the CPU 
were hits or misses_ A ONE (1) indicates a read hit; a ZERO (0) indicates 
a read miss or a write_ The lower numbered bits are for the more recent 
cycles_ 

All the bits are read only_ The bits are undetermined after a Power Up_ 
They are not affected by a Console Start ora RESET instruction_ 

7-ll 



7·12 



CHAPTER 8 

FLOATING POINT PROCESSOR 

8.1 INTRODUCTION 
The PDp·ll Floating Point Processor is an optional arithmetic processor 
which fits into the PDp·1I/70 Central Processor. It performs all floating 
point arithmetic operations and converts data between integer and float· 
ing point formats. 

The hardware provides a time and money·saving alternative to the use of 
software floating pOint routines. Its use can result in many orders of mag· 
nitude improvement in the execution of arithmetic operations. 

The features of the unit are: 

• Overlapped operation with central processor 

• High speed 

• Single and double precision (32 or 64 bit) floating point modes 

• Flexible addressing modes 

• Six 64·bit floating point accumulators 

• Error recovery aids 

8.2 OPERATION 
The Floating Point Processor is an integral part of the Central Processor. 
It operates using similar address modes, and the same memory man· 
agement facilities provided by the Memory Management Option, as the 
Central Processor. Floating Point Processor instructions can reference the 
floating pOint accumulators, the Central Processor's general registers, or 
any location in memory. 

When, in the course of a program, an FPP Instruction is fetched from 
memory, the FPP will execute that instruction in parallel with the CPU 
continuing with its instruction sequence. The CPU is delayed a very short 
period of time during the FPP Instruction's Fetch operation, and then is 
free to proceed independently of the FPP. The interaction between the 
two processors is automatic, and a program can take full advantage of 
the parallel operation of the two processors by intermixing Floating Point 
Processor and Central Processor instructions. 

Interaction between Floating Point Processor and Central Processor in· 
structions is automatically taken care of by the hardware. When an FPP 
Instruction is encountered in a program, the machine first initiates Float· 
ing Point handshaking and calculates the address of the operand. It 
then checks the status of the Floating Point Processor. If the FPP is 
"busy", the CPU will wait until it is "done" before continuing execution 
of the program. As an example, consider the following sequence of 
instructions: 

LDD(R3)+,AC3 

ADDLP: LDD(R3)+,ACO 

MUL AC3,ACO 

;Pick up constant operand and place it 
in AC3 

;Load ACO with next value in table 

;and multiply by constant in AC3 

8:1 



ADDD ACO,ACI 

SOB R5,ADDLP 

STCDI ACl@R4 

;and add the result into ACI 

;check to see whether done 

;done, convert double to integer and 
store 

In the above example, the Floating Point Processor will execute the first 
three instructions. After the "ADDD" is fetched into the FPP, the CPU 
will execute the "SOB", calculate the effective address of the STCDI 
instruction, and then wait for the FPP to be "done" with the "ADDD" 
before continuing past the STCDI instruction. 

As can be seen from this example, autoincrement and autodecrement 
addressing automatically adds or subtracts the correct amount to the 
contents of the register, depending on the modes represented by the 
instruction. 

8.3 ARCHITECTURE 
The Floating Point Processor contains scratch registers, a Floating Ex· 
ception Address pointer (FEA), a Program Counter, a set of Status and 
Error Registers, and six general purpose accumulators (ACO·AC5). 

Each accumulator is interpreted to be 32 or 64 bits long depending on 
the instruction and the status of the Floating Point Processor. For 32·bit 
instruction only the left·most 32 bits are used, while the remaining 32 
bits remain unaffected. 

r----~~----------I 

~ I 
32 BIT I 
A~R I 

AC0 

AC3 
I----jr---j 

AC4 
1---+---1 

AC5 

SCRATCH 

L=:T=:...JI 

I 
I 

UNIBUS 

CENTRAL 
PROCESSOR 
ARITHMETIC 

AND 
LOGICAL 

UNIT 

MEMORY 

Figure 8.1: Floating Point Processor 

The six Floating Point Accumulators are used in numeric calculations 
and interaccumulator data transfers; the first four (ACO·AC3) are also 
used for all data transfers between the FPP and the General Registers or 
Memory. 

8-2 



8.4 FLOATING POINT DATA FORMATS 
Mathematically, a floating point number may be defined as having the 
form (2':":' K) ':'f, where K is an integer and f is a fraction. For a non­
vanishing number, K and f are uniquely determined by imposing the 
condition liz ::; f < l. The fractional part, f, of the number is then 
said to be normalized. For the number zero, f must be assigned the 
value 0, and the value of K is indeterminate. 

The FPP floating point data formats are derived from this mathematical 
representation for floating point numbers. Two types of floating paint 
data are provided. In single precision, or Floating Mode, the word is '32 
bits long. In double precision, or Double Mode, the word is 64 bits long. 
Sign magnitude notation is used. 

8.4.1. Non-vanishing Floating Point Numbers 
The fractional part f is assumed normalized, so that its most significant 
bit must be 1. This 1 is the "hidden" bit: it is not stored in the data 
word, but of course the hardware restores it before carrying out arith­
metic operations. The Floating and Double modes reserve 23 and 55 
bits, respectively, for f, which with the hidden bit, imply effective word 
lengths of 24 bits and 56 bits for arithmetic operations. 

Eight bits are reserved for the storage of the exponent K in excess 128 
(200 octal) notation (i.e. as K + 200 octal). Thus exponents from-128 
to +127 could be represented by a to 377 (octal), or a to 255 (deci­
mal). For reasons given below, a biased EXP of a (true exponent of 
-200 octal), is reserved for floating point zero. Thus exponents are 
restricted to the range -127 to +127 inclusive (-177 to 177 octal) or, 
in excess 200 (octal) notation, 1 to 377 (octal). 

The remaining bit of the floating pOint word is the sign bit. 

8.4.2_ Floating Point Zero 
Because of the hidden bit, the fractional part is not available to dis­
tinguish between zero and non-vanishing numbers whose fractional part 
is exactly 1/2. Therefore the FPll reserves a biased exponent of a for 
this purpose. And any floating point number with biased exponent of a 
either traps or is treated as if it were an exact a in arithmetic operations. 
An exact zero is represented by a word, whose bits are all a's. An arith­
metic operation for which the resulting true exponent exceeds 177 
(octal) is regarded as producing a floating overflow; if the true expo­
nent is less than -177 (octal) the operation is regarded as producing a 
floating underflow. A biased exponent of a can thus arise from arith­
metic operations as a special case of overflow (true exponent = 400 
octal), or as a special case of underflow (true exponent = 0). (Recall 
that only eight bits are reserved for the biased exponent.) The fractional 
part of results obtained from such overflows and underflows is correct. 

8.4.3. The Undefined Variable 
The undefined variable is defined to be any bit pattern with a sign bit of 
one and a biased exponent of zero. The term "undefined variable" is 
used, for historical reasons, to indicate that these bit patterns are not 
aSSigned a corresponding floating point arithmetic value. Note that the 
undefined variable is frequently referred to as "-0" elsewhere in this 
chapter. 

8-3 



A design obective of the FPllC was to assure that the undefined vari· 
able would not be stored as the result of any floating pOint operation in 
a program run with the overflow and underflow interrupts disabled. 
This is achieved by storing an exact zero on overflow or underflow, if 
the corresponding interrupt is disabled. This feature together with an 
ability to detect a reference to the undefined variable (implemented by 
the FIUV bit discussed in the next section) is intended to provide the 
user with a debugging aid: if the presence -0 occurs, it did not result 
from a previous floating point arithmetic instruction. 

8.4.4. Floating Point Data 
Floating point data is stored in words of memory as illustrated below. 

F Format, single precision 

lsi EXP I FRA I-I I I ! 

CTION 
! • 

1514 7 6 15 o 

D Format, double precision 

Is I EXP I FR I-I I I I 
, 

1514 7 6 0 15 

q Tl I-I I ! 

AC 

',:J , ! ! 

ON . I 
15 0 15 0 

S = Sign of Fraction 

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for 
non,vanishing numbers. 

FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden bit 
(normalization). The binary radix point is to the left. 

The FPP provides for conversion of Floating Point to Integer Format and 
vice·versa. The processor recognizes single preCision integer (I) and 
double precision integer long (L) numbers, which are stored in stan· 
dard two's complement form: 

Format: 

NUMBER 
! I 

o 

L Format: 

NUM I BER 
I . . I 

1514 0 15 0 

where 

8-4 



S = Sign of Number 

NUMBER = 15 bits in I Format, 31 bits in L Format. 

8.5 FLOATING POINT UNIT STATUS REGISTER (FPS register) 
This register provides (1) mode and interrupt control for the floating 
point unit, and (2) conditions resulting from the execution of the pre­
vious instruction. 

Four bits of the FPS register control the modes of operation: 

Single/Double: Floating point numbers can be either single or 
double precision. 

Long/Short: Integer numbers can be 16 bits or 32 bits. 

Chop/ Round: The result of a floating point operation can be either 
chopped or rounded. The term "chop" is used instead of "trun· 
cate" in order to avoid confusion with truncation of series used 
in approximations for function subroutines. 

Normal/Maintenance: a special maintenance mode is available. 

The FPS register contains an error flag and four condition codes (5 bits): 

Carry, overflow, zero, and negative, which are equivalent to the CPU 
condition codes. 

The floating point processor (FPP) recognizes seven "floating point 
exceptions": 

detection of the presence of the undefined variable in memory 
floating overflow 
floating underflow 
failure of floating to integer conversion 
maintenance trap 
attempt to divide by zero 
illegal floating OP code 

For the first five of these exceptions, bits in the FPS register are 
available to individually enable or disable interrupts. An interrupt 
on the occurrence of either of the last two exceptions can be dis· 
abled only by setting a bit which disables interrupts on all seven of 
the exceptions, as a group. 

Of the fourteen bits described above, five are set by the FPP as part 
of the output of a floating point instruction: the error flag and condi· 
tion codes. Any of the mode and interrupt control bits (except the 
FMM bit) may be set by the user; the LDFS instruction is available 
for this purpose. These fourteen bits are stored in the FPS register 
as follows: 

8·5 



BIT 

15 

14 

NAME 

Floating Error (FER) 

Interrupt Disable (FlO) 

DESCRIPTION 

The FER bit is set by the FPP if 

1. division by zero occurs 
2. illegal OP code occurs 
3. anyone of the remaining 

occurs and the correspond· 
ing interrupt is enabled. 

Note that the above 'action is in· 
dependent of whether the FlO 
bit (next item) is set or clear. 

Note also that the FPP never reo 
sets the FER bit. Once the FER 
bit is set by the FPP, it can be 
cleared only by an LDFPS in· 
struction (or by the RESET in­
struction described in Section 
4.7). This means that the FER 
bit is up to date only if the most 
recent floating point instruction 
produced a floating point excep­
ception. 

If the FlO bit is set, all floating 
point interrupts are disabled. 
Note that if an individual inter­
rupt is simultaneously enabled, 
only the interrupt is inhibited; all 
other actions associated with the 
individual interrupt enabled take 
place. 

NOTES 
1. The FlO bit is primarily a maintenance fea­

ture. It should normally be clear. In particu­
lar, it must be clear if one wishes to assure 
that storage of -0 by the FPllC is always 
accompanied by an interrupt. 

2. Through the rest of this chapter, it is as­
sumed that the FlO bit is clear in all discus­
sions involving overflow, underflow, occur­
rence of -0, and integer conversion errors. 

13 Not Used 

12 Not used 

11 Interrupt on Undefined 
Variable (FIUV) 

8-6 

An interrupt occurs if FIUV is 
set and a -0 is obtained from 
memory as an operand of ADD, 
SUB, MUL, DIV, CMP, MOD, 
NEG, ABS, TST or any LOAD in­
struction. The interrupt occurs 
before execution on the FP11B. 
It also occurs before execution 



BIT NAME DESCRIPTION 

on the FPllC except on NEG 
and ABS for which it occurs after 
execution. When FIUV is reset, 
-0 can be loaded and used in 
any FPP operation. Note that the 
interrupt is not activated by the 
presence of -0 in an AC oper· 
and of an arithmetic instruc· 
tion: in particular, trap on -0 
never occurs in Mode O. 

The FPllC will not store a resolt 
of -0 without the simultaneous 
occurrence of an interrupt (See 
Section 8.4). 

10 Interrupt on Underflow (FlU) When the FlU bit is set, Floating 
Underflow will cause an interrupt. 
The fractional part of the result 
of the operation causing the in· 
terrupt will be correct. The biased 
exponent will be too large by 400 
(octal), except for the special 
case of 0, which is correct. An 
exception is discussed in the de· 
tailed description of the LDEXP 
instruction. 

If the FlU bit is reset and if un· 
derflow occurs, no interrupt oc· 
curs and the result is set to 
exact O. 

9 Interrupt on Overflow (FIV) When the FIV bit is set, Floating 
Overflow will cause an interrupt. 
The fractional part of the result 
of the operation causing the 
overflow will be correct. The bi· 
ased exponent will be too small 
by 400 (octal). 

8 Interrupt on Integer 
Conversion Error (FIC) 

8·7 

If the FIV bit is reset, and over· 
flow occurs, there is no inter· 
rupt. The FPllC returns exact 0; 
the FPllB returns the result of 
the operation, just as for FIV 
set. 

Special cases of overflow are 
discussed in the detailed des· 
criptions of the MOD and LDEXP 
instructions. 

When the FIC bit is set, and a 
conversion to integer instruction 
fails, an interrupt will occur. If 



BIT 

7 

6 

5 

4 

3 

2 

1 

NAME 

Floating Double Precision 
Mode (FD) 

Floating Long Integer 
Mode (FL) 

Floating Chop Mode (FT) 

Floating Maintenance Mode 
(FMM) 

Floating Negative (FN) 

Floating Zero (FZ) 

Floating Overflow (FV) 

8·8 

DESCRIPTION 

the interrupt occurs, the destina· 
tion is set to 0, and all other 
registers are left untouched. 

If the FIC bit is reset, the result 
of the operation will be the same 
as detailed above, but no inter· 
rupt will occurr. 

The conversion instruction fails 
if it generates an integer with 
more bits than can fit in the 
short or long integer word speci· 
fied by the FL bit (see 6 below). 

Determines the precision that is 
used for floating point calcula· 
tions. When set, double precision 
is assumed; when reset, single 
precision is used. 

Active in conversion between in· 
teger and floating point format. 
When set, the integer format as· 
sumed is double precision two's 
complement (i.e. 32 bits). When 
reset, the integer format is as­
sumed to be single precision 
two's complement (i.e. 16 bits). 

When bit FT is set, the result 
of any arithmetic operation is 
chopped (or truncated). 

When reset, the result is rounded. 

See Section 8.8 for a discussion 
of the chopping and rounding 
operations. 

This code is a maintenance fea: 
ture. Refer to the Maintenance 
Manual for the details of its oper· 
ation. The FMM bit can be set 
only in Kernel Mode. 

FN is set if the result of the last 
operation was negative, otherwise 
it is reset. 

FZ is set if the result of the last 
operation was zero; otherwise it 
is reset. 

FV is set if the last operation reo 
suited in an exponent overflow; 
otherwise it is reset. 



BIT 

o 
NAME 

Floating Carry (FC) 

DESCRIPTION 

FC is set if the last operation 
resulted in a carry of the most 
significant bit. This can only oc· 
cur in floating or double to inte· 
ger conversions. 

8.6 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS 
One interrupt vector is assigned to take care of all floating point excep­
tions (location 244). The seven possible errors are coded in the four bit 
FEC (Floating Exception Code) register as follows: 

2 Floating OP code error 
4 Floating divide by zero 
6 Floating (or double) to integer conversion error 
8 Floating overflow 

10 Floating underflow 
12 Floating undefined variable 
14 Maintenance trap 

The address of the instruction producing the exception is stored in the 
FEA (Floating Exception Address) register. 

The FEC and FEA registers are updated only when one of the following 
occurs: 

1. divide by zero 
2. illegal OP code 
3. any of the other five exceptions with the corresponding interrupt 

is enabled. 

NOTE 
1. If one of the last five exceptions occurs with 

the corresponding interrupt disabled, the FEC 
and FEA are not updated. 

2. Inhibition of interrupts by the FlO bit does not 
inhibit updating of the FEC and FEA, if an 
exception occurs. 

3. The FEC and FEA do not get updated if no 
exception occurs. This means that the STST 
(store status) instruction will return current 
information only if the most recent floating 
point instruction produced an exception. 

4. Unlike the FPS register, no instructions are 
provided for storage into the FEC and FEA 
registers. 

8.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING 
Floating Point Processor instructions use the same type of addressing as 
the Central Processor instructions. A source or destination operand is 
specified by designating one of eight addressing modes and one of 
eight central processor general registers to be used in the specified 
mode. The modes of addressing are the same as those of the central 
processor except for mode O. In mode 0 the operand is located in the 
designated Floating Point Processor Accumulator, rather than in a Cen­
tral processor general register. The modes of addressing: 

8-9 



0= Direct Accumulator 

1 = Deferred 

2 = Auto-increment 

3 = Auto-increment deferred 

4 = Auto-decrement 

5 = Auto-decrement deferred 

6 = Indexed 

7 = Indexed deferred 

Autoincrement and autodecrement operate on increments and decre­
ments of 4 for F Format and 10, for D Format_ 

In mode 0, the user can make use of all six FPP accumulators (ACO­
AC5) as his source or destination. In all other modes, which involve 
transfer of data from memory or the general register, the user is reo 
stricted to the first four FPP accumulators (ACO-AC3). 

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored. 

8.8 ACCURACY 
General comments on the accuracy of the FPP are presented here. The 
descriptions of the individual instructions include the accuracy at which 
they operate. An instruction or operation is regarded as "exact" if the 
result is identical to an infinite precision calculation involving the same 
operands. The a priori accuracy of the operands is thus ignored. All 
arithmetic instructions treat an operand whose biased exponent is 0 as 
an exact 0 (unless FIUV is enabled and the operand is-O, in which case 
an interrupt occurs). For all arithmetic operations, except DIV, a zero 
operand implies that the instruction is exact. The same statement holds 
for DIV if the zero operand is the dividend. But if it is the divisor, division 
is undefined and an interrupt occurs. 

For non-vanishing floating point operands, the fractional part is binary 
normalized. It contains 24 bits or 56 bits for Floating Mode and Double 
Mode, respectively. The internal hardware registers contain 60 bits for 
processing the fractional parts of the operands, of which the high order 
bit is reserved for arithmetic overflow. Therefore there are, internally, 35 
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic 
operations. For ADD, SUB, MUL, and DIV, two guard bits are necessary 
and sufficient to guarantee return of a chopped or rounded result iden­
tical to the corresponding infinite precision operation chopped or rounded 
to the specified word length. Thus, with two guard bits, a chopped result 
has an error bound of one least significant bit (LSB); a rounded result 
has an error bound of 1/2 LSB. (For a radix other than 2, replace "bit" 
with "digit" in the two preceding sentences to get the corresponding 
statements on accuracy.) These error bounds are realized by both the 
FPllB and FPllC for most instructions. For the addition of operands of 
opposite sign or for the subtraction of operands of the same sign in 
rounded double precision, the error bound is 9/16 LSB, which is slightly 
larger than the 1/2 LSB error bound for all other rounded operations. 

In the rest of this chapter an arithmetic result is called exact if no non­
vanishing bits would be lost by chopping. The first bit lost in chopping 

8-10 



is referred to as the "rounding"bit. The value of a rounded result is 
related to the chopped result as follows: 

1. if the rounding bit is one, the rounded result is the chopped result 
incremented by an LSB (least significant bit). 

2. if the rounding bit is zero, the rounded and chopped results are 
identical. 

It follows that 
1. If the result is exact 

rounded value = chopped value = exact value 
2. If the result is not exact, its magnitude 

(a) is always decreased by chopping 
(b) is decreased by rounding if the rounding bit is zero 
(c) is increased by rounding if the rounding bit is one. 

Occurrence of floating point overflow and underflow is an error condition: 
the result of the calculation cannot be correctly stored because the expo· 
nent is too big to fit into the 8 bits reserved for it. However, the internal 
hardware has produced the correct answer. For the case of underflow 
replacement of the correct answer by zero is a reasonable resolution of 
the problem for many applications. This is done on both the FPll Band 
FPllC if the underflow interrupt is disabled. The error incurred by this 
action is an absolute rather than a relative error; it is bounded (in abso· 
lute value) by 2"""(-128). There is no such simple resolution for the case 
of overflow. The action taken, if the overflow interrupt is disabled, is 
described under FIV (bit 9) of Section 8.5. 

The FIV and FlU bits (of the floating point status word) provide the user 
with an opportunity to implement his own fix up of an overflow or 
underflow condition. If such a condition occurs and the corresponding 
interrupt is enabled, the hardware stores the fractional part and the low 
eight bits of the biased exponent. The interrupt will take place and the 
user can identify the cause by examination of the FV (floating overflow) 
bit or the FEC (floating exception) register. The reader can readily verify 
that (for the standard arithmetic operations ADD, SUB, MUL, and DIV) 
the biased exponent returned by the hardware bears the following 
relation to the correct exponent generated by the hardware: 

1. on overflow: it is too small by 400 octal 
2. on underflow: if the biased exponent is 0 it is correct. If it is not 0, 

it is too large by 400 octal. 

Thus, with the interrupt enabled, enough information is available to 
determine the correct answer. The user may, for example, rescale his 
variables (via STEXP and LDEXP) to continue his calculation. Note that 
the accuracy of the fractional part is unaffected by the occurrence of 
underflow or overflow. 

8.9 FLOATING POINT INSTRUCTIONS 
Each instruction that references a floating point number can operate on 
either floating or double precision numbers depending on the state of 
the FD mode bit. Similarly, there is a mode bit FL that determines 
whether a 32·bit integer (FL = 1) or a 16·bit integer (FL= O)is used in 
conversion between integer and floating point representation. FSRC and 
FDST use floating point addressing modes; SRC and DST use CPU 
addressing Modes. 

8·11 



In the detailed descriptions of the floating point instructions, the opera· 
tions of the FPllB and FPllC are identical, except where explicitly 
stated to the contrary. 

Floating Point Instruction Format 
Double Operand Adressing 

OC FOC 

15 12 11 

Single Operand Addressing 

OC FOC 

I 

AC I FSRC, FDST, SRC, DST 

• ' t I I 

8 7 6 5 a 

FSRC, FDST, SRC, DST 
t I I I 

15 12 11 6 5 a 

OC = Op Code = 17 
FOC = Floating Op Code 
AC = Accumulator 
FSRC, FDST use FPP Address Modes 
SRC, DST use CPU Address Modes 

General Definitions: 
XL = largest fraction that can be represented: 

1-2"'*(-24), FD = 0; single precision 
1-2"""( -56), FD = 1); double precision 

XLL = smallest number that is not identically zero = 2*"(-128)-2"'" 
(-127»"(1/2) 

XUL = largest number that can be represented = 2"""(127)"'XL 
JL = largest integer that can be represented: 

2*"(15)-1 if FL = 0 2"*(31)-1 if FL = 1 
ABS (address) = absolute value of (address) 
EXP (address) = biased exponent of (address) 
.LT. = "less than" 
.LE. = "less than or equal" 
.GT. = "greater than" 
.GE. = "greater than or equal" 
LSB = least significant bit 

8·12 



LDF 
LDD 

Load Floating/Double 172(AC + 4),FSRC 

15 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

1 I 0 ,1 0 1 I AC FSRC 
I 

12 11 8 7 6 5 

AC ~ (FSRC) 

FC ~O 
FV ~O 
FZ ~ 1 if (AC) = 0, else FZ ~ O. 
FN ~ 1 if (AC) < 0, else FN ~ o. 

o 

Load Single or Double Precision Number into 
Accumulator. 

If FIUV is enabled, trap on-O occurs before AC 
is loaded. Neither overflow nor underflow can 
occur. 

These instructions are exact. 

These instructions permit use of -0 in a subse· 
quent floating point instruction if FIUV is not 
enabled and (FSRC) = -0. 

8·13 



STF 
STD 

Store Floating/Double 174ACFDST 

15 

Operation: 

Condition Codes: 

Oescri ption: 

Interrupts: 

Accuracy: 

Special Comment: 

1 I' 0 0 0 I AC 

12 " 876 5 

FDST <- (AC) 

FC <- FC 
FV <- FV 
FZ <- FZ 
FN <- FN 

o 

Store Single or Double Precision Number from 
Accumulator. 

These instructions do not interrupt if FI UV en· 
abled, because the -0, if present, is in AC, not 
in memory. Neither overflow nor underflow can 
occur. 

These instructions ,are exact. 

These instructions permit storage of a -0 in 
memory from AC. Note, however, that the FPllC 
processor can store a -0 in an AC only if it 
occurs in conjunction with overflow or underflow, 
and if the corresponding interrupt is enabled. 
Thus, the user has an opportunity to clear the 
-0, if he wishes. 

8·14 



ADDF 
ADDD 

Add Floating/Double 172ACFSRC 

15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

o I 0 I AC 

8 7 6 5 o 

Let SUM = (AC) + (FSRC): 

If underflow occurs and FlU is not enablEild, 
AC <- exact O. 

If overflow occurs and FIV is not enabled, 
AC <- exact 0 on FPllC. 

For all other cases, AC <- SUM. 

FC <- O. 
FV <- 1 If overflow occurs, else FV <- O. 
FZ <- 1 If (AC) = 0, else FZ <- O. 
FN <- 1 If (AC) < 0, else FN <- O. 

Add the contents of FSRC to the contents of AC. 
The addition is carried out in single or double 
precision and is rounded or chopped in accor· 
dance with the values of the FD and FT bits in 
the FPS register. The result is stored in AC 
except for: 

Overflow with interrupt disabled on the FPIIC. 

Underflow with interrupt disabled. 

For these exceptional cases, an exact 0 is 
stored in AC. 

If FIUV is enabled, trap on -0 in FSRC occurs 
before execution. 

If overflow or underflow occurs and if the cor· 
responding interrupt is enabled, the trap occurs 
with the faulty result in AC. The fractional parts 
are correctly stored. The exponent part is too 
large by 400 octal for underflow, except for the 
special case of 0, which is correct. 

Errors due to overflow and underflow are de­
scribed above. If neither occurs, then: For 
oppositely signed operands with exponent dif­
ferences of 0 or I, the answer returned is exact 
if a loss of significance of one or more bits 
occurs. Note that these are the only cases for 
which loss of significance of more than one bit 
can occur. For all other cases the result is 
inexact with error bounds of 

8-15 



Special Comment: 

1 LSB in chopping mode with either single or 
double precision. 

1/2 LSB in rounding mode with single precision. 

9/16 LSB in rounding mode with double pre· 
cision. 

The undefined variable -0 can occur only in con· 
junction with overflow or underflow. It will be 
stored in AC only if the corresponding inter· 
rupt is enabled or, for the FPllB, on overflow 
even if the overflow interrupt rs not enabled. 

8·16 



SUBF 
SUBD 

Subtract Floatingl Double 173ACFSRC 

15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

AC 

8 7 6 5 

Let DIFF = (AC) - (FSRC): 

FSRC 
I 

o 

If underflow occurs and FlU is not enabled, 
AC <c- exact o. 
If overflow occurs and FIV is not enabled, 
AC <c- exact 0 on the FPIIC. 

For all other cases, AC <c- DIFF. 

FC <c- O. 
FV <c- 1 If overflow occurs, else FV <c- O. 
FZ <c- 1 If (AC) = 0, else FZ <c- O. 
FN <c- 1 If (AC) < 0, else FN <c- O. 

Subtract the contents of FSRC from the contents 
of AC. The subtraction is carried out in single or 
double precision and is rounded or chopped in 
accordance with the values of the FD and FT 
bits in the FPS register. The result is stored in 
AC except for: 

Overflow with interrupt disabled on the FPIIC. 

Underflow with interrupt disabled. 

For these exceptional cases, an exact 0 is stored 
in AC. 

If FIUV is enabled, trap on -0 in FSRC occurs 
before execution. 

If overflow or underflow occurs and if the cor­
responding interrupt is enabled, the trap occurs 
with the faulty results in AC. The fractional parts 
are correctly stored. The exponent part is too 
small by 400 octal for overflow. It is too large 
by 400 octal for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are de­
scribed above. If neither occurs, then: For like­
signed operands with exponent difference of 0 
or 1, the answer returned is exact if a loss of 
significance of more than one bit can occur. Note 
that these are the only cases for which loss of 
significance of more than one bit can occur. For 
all other cases the result is inexact with error 
bounds of 

8-17 



Special Comment: 

1 LSB in chopping mode with either single or 
double precision. 

1/2 LSB in rounding mode with single precision. 

9/16 LSB in rounding mode with double pre· 
cision. 

The undefined variable -0 can occur only in 
conjunction with overflow or underflow. It will 
be stored in the AC only if the corresponding 
interrupt is enabled or, for the FP11 B, on over· 
flow even if the overflow interrupt is not enabled. 

8-18 



NEGF 
NEGD 

Negate Floating/Double 1707FDST 

1 I 0 0 0 FDST 
I 

15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

6 5 o 

FDST .- - (FDST) if EXP(FDST):;t 0, else FDST .­
exact O. 

FC .- O. 
FV .- O. 
FZ .- 1 If EXP(FDST) = 0, else FZ .- O. 
FN .- 1 If (FDST) < 0, else FN .- O. 

Negate single or double Precision number, store 
result in same location. (FDST) 

If FIUV is enabled 
FPllC: Trap on -0 occurs after execution. 
FP11 B: Trap on -0 occurs before execution. 

Neither overflow nor underflow can occur. 

These instructions are exact. 

8-19 



MULF 
MULD 

Multiply Floating/Double 171ACFSRC 

1 I 0 0 o I AC 

15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

8 7 6 5 

Let PROD = (AC)"'(FSRC) 

If underflow occurs and FlU 
AC ~ exact O. 

If overflow occurs and FIV 
AC ~ exact 0 on FPllC. 

For all other cases AC ~PROD 

FC ~O. 

is not 

is not 

FV ~ 1 if overflow occurs, else FV ~ O. 
FZ ~ 1 if (AC) = 0, else FZ ~ O. 
FN ~ 1 if (AC) < 0, else FN ~ O. 

o 

enabled, 

enabled, 

If the biased exponent of either operand is zero, 
(AC) ~ exact O. For all other cases PROD is 
generated to 48 bits for Floating Mode an<;.l 59 
bits for Double Mode. The product is rounded or 
chopped for FT = 0 and I, respectively, and is 
stored in AC except for 

Overflow with interrupt disabled on the FPllC. 

Underflow with interrupt disabled. 

For these exceptional cases, an exact 0 is stored 
in accumulator. 

If FIUV is enabled, trap on -0 occurs before 
execution. 

If overflow or underflow occurs and if the cor­
responding interrupt is enabled, the trap occurs 
with the faulty results in AC. The fractional parts 
are correctly stored. The exponent part is too 
small by 400 octal for overflow. It is too large by 
400 otcal for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are de­
scribed above. If neither occurs, the error 
incurred is bounded by 1 LSB in chopping mode 
and 1/2 LSB in rounding mode. 

The undefined variable -0 can occur only in 
conjunction with overflow or underflow. It will be 
stored in AC only if corresponding interrupt is 
enabled or, for the FP11 B, on overflow even if 
the overflow interrupt is not enabled. 

8-20 



DIVF 
DIVD 

Divide Floating/Double 174(AC + 4)FSRC 

15 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

1 I 1 0 0 1! AC 

12 11 8 ? 6 5 o 

If EXP(FSRC) = 0, AC +- (AC): instruction is 
aborted. 

If EXP(AC) = 0, AC <-- exact O. 

For all other cases, let QUaT = (AC)/(FSRC): 

If underflow occurs and FlU is not enabled 
AC <-- exact O. 

If overflow occurs and FIV is not enabled, AC +­
exact 0 on the FP11C. 

For all remaining cases AC +- QUaT. 

FC +- O. 
FV +- 1 if overflow occurs, else FV +- O. 
FZ <-- 1 if EXP(AC) = 0, else FZ <-- O. 
F-N <-- 1 if (AC) < 0, else FN <-- O. 

If either operand has a biased exponent of 0, it 
is treated as an exact O. For FSRC this would 
imply division by zero; in this case the instruc­
tion is aborted, the FEC register is set to 4 and 
an interrupt occurs. Otherwise the quotient is 
developed to single or double precision with 
enough guard bits for correct rounding. The 
quotient is rounded or chopped in accordance 
with the values of the FD and FT bits in the FPS 
register. The result is stored in AC except for: 

Overflow with interrupt disabled on the FP11C. 

Underflow with interrupt disabled. 

For these exceptional cases an exact 0 is stored 
in accumulator. 

If FI UV is enabled, trap on -0 in FSRC occurs 
before execution. 

If EXP(FSRC) = 0 interrupt traps on attempt to 
divide by O. 

If overflow or underflow occurs and if the cor­
responding interrupt is enabled, the trap occurs 
with the faulty results in AC. The fractional parts 
are correctly stored. The exponent part is too 
small by 400 octal for overflow. It is too large by 
400 octal for underflow, except for the special 
case of 0, which is correct. 

8-21 



Accuracy: 

Special Comment: 

'Errors due to overflow, underflow and division 
by 0 are described above. If none of these 
occurs, the error in the quotient will be bounded 
by 1 LSB in chopping mode and by 1/2 LSB in 
rounding mode. 

The undefined variable -0 can occur only in con· 
junction with overflow or underflow. It will be 
stored in AC only if the corresponding interrupt is 
enabled or, for the FPllB, on overflow even if 
the overflow interrupt is not enabled. 

8·22 



CMPF 
CMPD 

Compare Floating/Double 173 (AC + 4) FSRC 

1 I a 
15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

1 r AC 

8 7 6 5 

(FSRC) - (AC) 

FC <- O. 
FV <- O. 

FSRC 
I 

a 

FZ <- 1 If (FSRC) - (AC) = 0, else FZ <- O. 
FN <- 1 If (FSRC)- (AC) < 0, else FN <- O. 

Compare the contents of FSRC with the accu­
mulator. Set the appropriate floating point con­
dition codes. FSRC and the accumulator are left 
unchanged. 

If FIUV is enabled, trap on -0 occurs before 
execution. 

These instructions are exact. 

8-23 



MODF 
MODO 

Multiply and Integerize Floating/Double 171(AC + 4)FSRC 

15 

Description 
and Operation 

1 I 0 

12 11 

o AC 
I 

8 7 6 5 

FSRC 
I 

o 

This instruction generates the product of its 
two floating paint operands, separates the prod­
uct into integer and fractional parts and then 
stores one or both parts as floating point num­
bers. 

Let PROD = (AC),'(FSRC) so that in: 

Floating point: ABS(PROD) = (2""K) "'f 

where 1/2.LE.f.LT.l and 
EXP(PROD) = (200 + K) octal 

Fixed Point binary: PROD = N + g, with 

N = INT(PROD) = the integer 
part of PROD 

and 

g = PROD - INT(PROD) = the fractional 
part of PROD with O.LE.g.LT.l 

Both Nand g have the same sign as PROD. 
They are returned as follows: 

If AC is an even-numbered accumulator (0 or 
2), N is stored in AC + 1 (lor 3), and g is 
stored in AC. 

If AC is an odd-numbered accumulator, N is 
not stored, and g is stored in AC. 

The two statements above can be combined as 
follows: N is returned to ACvl and g is returned 
to AC, where v means .OR. 

Five speCial cases occur, as indicated in the 
following formal description with L = 24 for 
Floating Mode and L = 56 for Double Mode: 

1. If PROD overflows and FIV enabled: 

ACvl <-- N, chopped to L bits, AC <-- exact 0 

Note that EXP(N) is too small by 400 (octal), 
and that <--0 can get stored in ACv1. 

If FIV is not enabled: action is same as above 
for FPllB. For FPllC, ACvl <-- exact 0, AC <-­
exact 0, and -0 will never be stored. 

2. If 2""'L.LE.ABS(PROD) and no overflow 

ACvl <-- N, chopped to L bits, AC <-- exact 0 

8-24 



Condition Codes: 

Interrupts: 

Accuracy: 

Applications: 

The sign and EXP of N are correct, but low 
order bit information, such as parity, is lost. 

3. If 1. LE.ABS(PROD). L T.2"'" L 

ACv1 .... N, AC .... g 

The integer part N is exact. The fractional part 
g is normalized, and chopped or rounded in 
accordance with FT. Rounding may cause are· 
turn of ±unity for the fractional part. For L 
= 24, the error in g is bounded by 1 LSB in 
chopping mode and by 1/2 LSB in rounding 
mode. For L = 56, the error in g increases from 
the above limits as ABS(N) increases above 3 
because only 59 bits of PROD are generated: 

if 2"""p.LE.ABS(N).L T.2 ,',,', (p + I), with p> 2, 
the low order p - 2 bits of g may be in error. 

4. If ABS (PROD). L T.1 and no underflow: 

ACv1 .... exact 0 AC .... g 

There is no error in the integer part. The error in 
the fractional part is bounded by 1 LSB in chop· 
ping mode and 1/2 LSB in rounding mode. 
Rounding may cause a return of ±unity for the 
fractional part. 

5. If PROD underflows and FlU enabled: 

ACv1 .... exact 0 AC .... g 

Errors are as in case 4, except that EXP(AC) will 
be too large by 400 octal (except if EXP = 0, it 
is correct). Interrupt will occur and -0 can be 
stored in AC. 

IF FlU is not enabled, ACv1 .... exact 0 and AC 
.... exact O. For this case the error in the frac· 
tional part is less than 2""'(-128). 

FC .... o. 
FV .... 1 if PROD overflows on FPllC, else 

FV .... O. 
FZ .... 1 if (AC) = 0, else FZ .... O. 
FN .... if (AC) < 0, else FN .... O. 

If FIUV is enabled, trap on -0 in FSRC will oc­
cur before execution. 

Overflow and Underflow are discussed above. 

Discussed above. 

1. Binary to decimal conversion of a proper 
fraction: the following algorithm, using MOD, will 
generate decimal digits D(I), D(2) ... from left 
to right: 

Initialize: I .... 0 
X .... number to be converted; 
ABS(X) < 1 

8-25 



While X oF 0 do 
Begin PROD ~ X"lO; 

I ~ I + 1; 
D(I) ~ INT(PROD); 
X ~ PROD - INT(PROD); 
END; 

This algorithm is exact; it is case 3 in the de­
scription: the number of non-vanishing bits in 
the fractional part of PROD never exceeds L, 
and hence neither chopping nor rounding can 
introduce error_ 

2_ To reduce the argument of a trigonometric 
function_ 

ARG':'2/PI= N + g_ The low two bits of N 
identify the quadrant, and g is the argument 
reduced to the first quadrant_ The accuracy of 
N +g is limited to L bits because of the factor 
2/PL The accuracy of the reduced argument 
thus depends on the size of N_ 

3_ To evaluate the exponential function e':":'x, 
obtain 

x"(log e base 2) = N + g_ 
Then e':":'x = (2"':'N),:'(e':"'(g':'ln 2)) 

The reduced argument is g':'ln2 < 1 and the 
factor 2" ':'N is an exact power of 2, which may 
be scaled in at the end via STEXP, ADD N to 
EXP and LDEXP_ The accuracy of N + g is lim­
ited to L bits because of the factor (log e base 
2)_ The accuracy of the reduced argument thus 
depends on the size of N_ 

8-26 



lDCDF 
lDCFD 

Load and convert from Double to Float­
ing or from Floating to Double 

177(AC + 4)FSRC 

11 I 1 1 11 
15 12 l' 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

1 I AC FSRC 
I 

8 7 6 5 o 

If EXP(FSRC) = 0, AC ~ exact 0_ 

If FD =1, FT = 0, FIV = 0 and rounding 
causes overflow, AC ~ exact 0 on the FPIIC_ 

In all other cases AC ~ C,y (FSRC), where C,y 
specifies conversion from floating mode x to 
floating y; 

x = F, Y = D if FD = 0 
x = D, y = F if FD = 1_ 

FC ~o_ 
FV ~ 1 if conversion produces overflOW, else 
FV ~o. 
FZ ~ 1 if (AC) = 0, else FZ ~ o. 
FN ~ 1 if (AC) < 0, else FN ~ o. 
If the current mode is Floating Mode (FD = 0) 
the source is assumed to be a double-precision 
number and is converted to single preCision. If 
the Floating Chop bit (FT) is set, the number 
is chopped, otherwise the number is rounded. 

If the current mode is Double Mode (FD = I), 
the source is assumed to be a single-precision 
number, and is loaded left justified in the AC. 
The lower half of the AC is cleared. 

If FIUV is enabled, trap on -0 occurs before 
execution. 

Overflow cannot occur for LDCFD. 

A trap occurs if FIV is enabled, and if rounding 
with LDCDF causes overflow; AC ~ overflowed 
result of conversion. This result must be +0· or 
-0. 
Underflow cannot occur. 

LDCFDis an exact instruction. Except for over­
flow, described above, LDCDF incurs an error 
bounded by one LSB in chopping mode, and by 
1/2 LSB in rounding mode. 

8-27 



STCFD 
STCDF 

Store and convert from Floating to 
Double or from Double to Floating 

176ACFDST 

1 11 
15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

o 0 I AC 

8 7 6 5 o 

If EXP(AC) = 0, FDST ~ exact 0 

If FD = 1, FT = 0, FIV = 0 and rounding causes 
overflow, FDST ~ exact 0 on FP11C. 

In all other cases, FDST <-- C.y(AC), where 
C.y specifies conversion from floating mode x 
to floating mode y; 

x = F and y = D if FD= 0, 
x = D and y = F if FD = 1. 

FC <-- O. 
FV <-- 1 If conversion produces overflow else 
FV <--0. 
FZ <-- 1 If (AC) = 0, else FZ ~ O. 
FN <-- 1 If (AC) < 0, else FN ~ O. 

If the current mode is single precision, the Ac· 
cumulator is stored left justified in FDST and 
the lower half is cleared.· If the current mode 
is double precision,- the contents of the accumu· 
lator are converted to single precision, chopped 
or rounded~epending on the state of FT, and 
stored in FDST. 

Trap on -0 will not occur even if FIUV is en· 
abled because FSRC is an accumulator. 

Underflow cannot occur. 

Overflow cannot occur for STCFD. 

A trap occurs if FIV is enabled, and if rounding 
with STCDF causes overflow; FDST <-- overflowed 
result of conversion. This result must be +0 
or -0. 

STCFD is an exact instruction. Except for over· 
flow, described above, STCDF incurs an error 
bounded by 1 LSB in chopping mode and 1/2 
LSB in rounding mode. 

8-28 



LOCIF 
LOCIO 
LOCLF 
LOCLO 

Load and Convert Integer or Long Integer to 
Floating or Double Precision 

177ACSRC 

11 I 1 1 11 
15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

O! AC 
8 7 6 5 

AC +- C;, (SRC), where 

SRC 
I 

o 

C;, specifies conversion from integer mode 
j to floating mode x; 

j = I if FL = 0, j = L if FL = 1, 
x = F if FD = 0, x = D if FD = 1. 

FC +- O. 
FV ~O. 
FZ ~ 1 If (AC) == 0, else FZ +- O. 
FN ~ 1 If (AC) < 0, else FN +- O. 

Conversion is performed on the contents of SRC 
from a 2's complement integer with precision i 
to a floating point number of precision x. Note 
that j and x are determined by the state of the 
mode bits FL and FD: J = I or L, and X = F or D. 

If a 32-bit Integer is specified (L mode) and 
(SRC) has an addressing mode of 0, or immedi­
ate addressing mode is specified, the 16 bits of 
the source register are left justified and the 
remaining 16 bits loaded with zeroes before 
conversion. 

In the case of LDCLF the fractional part of the 
floating point representation is chopped or 
rounded to 24 bits for FT = 1 and 0 'respec­
tively. 

None; SRC is not floatillg point, so trap on -0 
cannot occur. 

Overflow and underflow cannot occur. 

LDCIF, LDCID, LDCLD are exact instructions. 
The error incurred by LDCLF is bounded by one 
LSB in chopping mode, and by 1/2 LSB in 
rounding mode. 

8-29 



STCFI 
STCFl 
STCDI 
STCDl 

Store and Convert from Floating or 
Double to Integer or Long Integer 

175(AC + 4)DST 

\1 I 1 1 11 
15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

a 1 1 1 AC 
1 I I . 

876 5 

DST 
I 

o 

DTS ~ C'i (AC) if - JL - 1 < C'i (AC) < JL + I, 
else DST ~ 0, where C'i specifies con­
version from floating mode x to integer 
mode j; 

j = I if FL = 0, j = L if FL = I, 
x = F if FD = 0, x = D if FD = 1. 

JL is the largest integer: 

2""" 15 - 1 for FL = 0 
2"""31 - 1 for FL = 1 

C ~ FC ~ 0 if -JL - 1 < C'i (AC) < JL + I, 
else FC ~ 1. 
V ~ FV ~O. 
Z ~ FZ ~ 1 if (DST) = 0, else FZ ~ O. 
N ~ FN ~ 1 if (DST) < 0, else FN ~ O. 
Conversion is performed from a floating point 
representation of the data in the accumulator to 
an integer representation. 
If the conversion is to a 32-bit word (L mode) 
and an address mode of 0, or immediate adress­
ing mode, is specified, only the most significant 
16 bits are stored in the destination register. 

If the operation is out of the integer range se­
lected by FL, FC is set to 1 and the contents 
of the DST are set to O. 
Numbers to be converted are always chopped 
(rather than rounded) before conversion. This 
is true even when the Chop Mode bit, FT is 
cleared in the Floating Point Status Register. 
These instructions do not interrupt if FIUV is 
enabled, because the ~O, if present, is in AC, 
not in memory. 
If FIC enabled, trap on conversion failure will 
occur. 
These instructions store the integer part of the 
floating point operand, which may not be the 
integer most closely approximating the operand. 
They are exact if the integer part is within the 
range implied by FL. 

8-30 



Load Exponent 

15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

LDEXP 

176(AC + 4)SRC 

o 1 I AC 

B 7 6 5 

SRC 
I 

o 

NOTE: 177 and 200, appearing below, are octal 
numbers. 

If -200 < SRC < 200, EXP(AC) ~(SRC) + .200 
and the rest of AC is unchanged on both 
FP11C and FP11B. 

If SRC > 177 and FIV is enabled, 
EXP(AC) ~ (SRC) < 6:0 > on FPllC, 
EXP(AC) ~ (SRC) < 7.0 > on FPllB. 

If SRC > 177 and FIV is disabled 
AC ~ exact 0 on FPllC, 
EXP(AC) ~ (SRC + 200) < 7:0 > on 
FP11B. 

If SRC < -177 and FlU is disabled, 
AC ~ exact 0 on both FPllC and FPllB. 

If SRC < -177 and FlU is enabled, 

FC ~o. 

EXP(AC) ~ (SRC) < 6:0 > on FPllC, 
EXP(AC) ~ (SRC) + 200) < 7:0 > on 
FPllB. 

FV ~ 1 if (SRC) > 177, else FV ~ O. 
FZ ~ 1 if EXP(AC) = 0, else FZ ~ O. 
FN ~ 1 if (AC) < 0, else FN ~ O. 

Change AC so that its unbiased exponent = 
(SRC). That is, convert (SRG) from 2's comple­
ment to excess 200 notation, and insert in the 
EXP field of AC. This is a meaningful operation 
only if ABS(SRC).LE.l77. 

If SRC > 177, result is treated as overflow. If 
SRC <-177, result is treated as underflow. 
Note that the FPllC and FPllB do not treat 
these abnormal conditions in exactly the same 
way. 

No trap on -0 in AC occurs, even if FlUV en· 
abled. 

If SRC > 177 and FIV enabled, trap on over­
flow will occur. 

If SRC <-177 and FlU enabled, trap on under­
flow will occur. 

The answers returned by the FPllC and FPllB 
differ for overflow and underflow conditions. 

8-31 



Accuracy: Errors due to overflow and underflow are de­
scribed above. If EXP(AC) = 0 and SRC ~ -200, 
(AC) changes from a floating point number 
treated as 0 by all floating arithmetic operations 
to a non-zero number. This is because the inser­
tion of the "hidden" bit in the hardware imple­
mentation of arithmetic instructions is triggered 
by a non-vanishing value of EXP. 

For all other cases, LDEXP implements exactly 
the transformation of a floating point number 
(2*'~ K)'~f into (2';";' (SRC»,;'f where 1 /2 . LE.ABS 
(f). L T.l. 

8-32 



Store Exponent 

1 l' 
15 12 11 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

STEXP 

175ACDST 

o AC , 
8 7 6 5 

DST <- EXP(AC)-200 octal 

C <- FC <- O. 
V <- FV <- O. 

OST 
I 

Z <- FZ <- 1 if (DST) = 0, else FZ <- O. 
N <- FN <- 1 if (DST) < 0, else FN <- O. 

o 

Convert accumulator's exponent from excess 
200 octal notation to 2's complement, and store 
result in DST. 

This instruction will not trap on -0. 

Overflow and underflow cannot occur. 

This instruction is always exact. 

8·33 



CLRF 
CLRD 

Clear Floating/Double 1704FDST 

15 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

1 100 0 o 0 I FDST 
I 

12 11 

FDST ~ exact O. 

FC ~O. 
FV ~O. 
Fl ~ 1 
FN ~O. 

6 5 o 

Set FDST to O. Set FZ condition code and clear 
other condition code bits. 

No interrupts will occur. Neither overflow nor 
underflow can occur. 

/ 
These instructions are exact. 

8-34 



ABSF 
ABSD 

Make Absolute Floating/Double 1706FDST 

'5 '2 " 

Operation: 

Condition Codes: 

Description: 
Interrupts: 

Accuracy: 

01 
6 5 

FDST 
I 

If (FDST) < 0, FDST ~ - (FDST). 

If EXP(FDST) = 0, FDST ~ exact O. 

For all other cases, FDST ~ (FDST). 

FC ~O. 
FV ~O. 
FZ ~ 1 if EXP(FDST) = 0, else FZ ~ O. 
FN ~O 

o 

Set the contents of FDST to its absolute value. 

If FIUV is set: 

FPllC: Trap on -0 occurs after execution 

FPllB: Trap on -0 occurs before execution 

Overflow and underflow cannot occur. 

These instructions are exact. 

8·35 



TSTF 
TSTD 

Test Floating/Double 1705FDST 

15 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

1 I 0 0 0 o 1 I FDST 
I 

12 11 

FDST ~ (FDST) 

FC ~O. 
FV ~O. 

6 5 

FZ ~ 1 if ·EXP(FDST) = 0, else FZ ~ O. 
FN ~ 1 if (FDST) < 0, else FN ~ O. 

o 

Set the Floating Point Processor's Condition 
Codes according to the contents of FDST. 

If FIUV is set, trap on-O occurs after execution 

Overflow and underflow cannot occur. 

These instructions are exact. 

8·36 



SETF 

Set Floating Mode 170001 

1 I 0 o o o o o o o o I 0 o 
15 o 

Operation: FD ~O 

Description: Set the FPP in Single Precision Mode. 

SETD 

Set Floating Double Mode 170011 

1100000000 o 0 1 I 
15 o 

Operation: FD ~ 1 

Description: Set the FPP in Double Precision Mode. 

8-37 



SETI 

Set I,nteger Mode 170002 

1 10 0 0 0 0 0 0 0 0 0 o 
15 o 

Operation: FL ~O 

Description: Set the FPP for Integer Data. 

SETL 

Set Long Integer Mode 170012 

l' I 1 
o 

15 12 II o 

Operation: FL ~ 1 
Description: Set the FPP for Long Integer Data. 

8-38 



Load FPPs Program Status 

11 I 1 110000011 

15 12 11 6 5 

Operation: FPS ~ (SRC) 

Description: Load FPP's Status from SRC. 

Store FPPs Program Status 

11 I I o I 
15 12 11 6 5 

Operation: DST ~ (FPS) 

Description: Store FPP's Status in DST. 

8-39 

SRC 
I 

DST 
I 

lDFPS 
1701SRC 

o 

STFPS 
1702DST 

o 



STST 
Store FPPs Status 

15 12 11 

Operation: 

Description: 

CFCC 

DST +- (FEC) 
DST + 2 +-(FEA) 

6 5 

DST 
I 

1703DST 

o 

Store the FEC and then the FPP's Exception 
Address Pointer in DST and DST + 2. 

NOTES: 1. If destination mode specifies a 
general register or immediate ad· 
dressing, only the FEC is saved. 

2. The information in these registers 
is current only if the most recently 
executed floating point instruction 
(refer to Section 8.6) caus~d a float· 
point exception. 

Copy Floating Condition Codes 170000 

l' I 1 
15 

Operation: 

Description: 

12 11 6 5 0 

C +- FC 
V+- FV 
Z +- FZ 
N +- FN 

Copy FPP Condition Codes into the CPU's Con· 
dition Codes. 

8·40 



CHAPTER 9 

PROGRAMMING TECHNIQUES 

In order to produce programs which fully utilize the power and flexibility 
of the PDP-ll, the reader should become familiar with the various pro­
gramming techniques which are part of the basic design philosophy of 
the PDP-ll_ Although it is possible to program the PDP-ll along tradi­
tional lines such as "accumulator orientation" this approach does not 
fully exploit the architecture and instruction set of the PDP-ll. 

9.1 THE STACK 
A "stack," as used on the PDP-ll, is an area of memory set aside by 
the programmer for temporary storage or subroutine/interrupt service 
linkage. The instructions which facilitate "stack" handling are useful 
features not normally found in low-cost computers. They allow a program 
to dynamically establish, modify, or delete a stack and items on it. 
The stack uses the "last-in, first-out" concept; that is, various items may 
be added to a stack in sequential order and retrieved or deleted from 
the stack in reverse order. On the PDP-ll, a stack starts at the highest 
location reserved for it and expands linearly downward to the lowest 
address as items are added to the stack. 

HIGH ADDRESSES 

LOW ADDRESSES """'""""'"'''"''"'''''"'''''''''''" 

Figure 9-1: Stack Addresses 

To keep track of the last item added to the stack (or "where we are" in 
the stack) a General Register always contains the memory address 
where the last item is stored in the stack_ In the PDP-ll any register 
except Register 7 (the Program Counter-PC) may be used as a "stack 
pointer" under program control; however, instructions associated with 
subroutine linkage and interrupt service automatically use Register 6 
(R6) as a hardware "Stack Pointer." For this reason R6 is frequently 
referred to as the system "SP". 

Stacks in the PDP-ll may be maintained in either full word or byte 
units. This is true for a stack pointed to by any register except R6, 
which must be organized in full word units only_ 

9-1 



WORD STACK 

007100 ITEM #1 

007076 ITEM #2 

007074 ITEM #3 

007072 ITEM #4 1--------1-SP LI __ 0_0_7~07~2~----I 
007070 

007066 

007064 

007100 

007077 

007076 

007075 

BYTE STACK 

ITEM #1 

ITEM #2 

ITEM #3 

ITEM #4 

NOTE: BYTES ARE 
ARE ARRANGED IN 
WORDS AS FOLLOWING: 

I BYTE 1 I BYTE 0 I 

4--SPLI __ 0_0_7_07_5_----I 

Figure 9·2: Word and Byte Stacks 

Items are added to a stack using the autodecrement addressing mode 
with the appropriate pointer register. (See Chapter 3 for description of 
the autoincrement/ decrement modes). 

This operation is accomplished as follows: 

MOV Source .. -(SP) ;MOV Source Word onto the stack 

or 

MOVB Source.-(SP) ;MOVB Source Byte onto the stack 

This is called a "push" because data is "pushed onto the stack." 

To remove an item from a stack the autoincrement addressing mode with 
the appropriate SP is employed. This is accomplished in the following 
manner: 

MOV(SP) +. Destination ;MOV Destination Word off the stack 

or 

MOVB(SP)+. Destination ;MOVB Destination Byte off the stack 

Removing an item from a stack is called a "pop" for "popping from the 
stack." After an item has been "popped." its stack location is considered 
free and available for other use. The stack pointer points to the last· 
used location implying that the next (lower) location is free. Thus a stack 
may represent a pool of shareable temporary storage locations. 

9·2 



HIGHMEMORY~ ~ -Sp 

}
• E0 -SP 

STACK 
AREA 

LOW MEMORY 

~ 
.~SP 

1. AN EMPTY STACK 2.PUSHINGA DATUM 
AREA ONTO THE STACK 

~0 
E1 

j E2 -SP 

4. ANOTHER PUSH 

§ E3 

E0 

E1 +SP 

7, POP 

~p 
~~P 
5. POP 

3. PUSHING ANOTHER 
DATUM ONlO THE 
STACKS 

~0 
E1 

j E3 _5P 

6. PUSH 

Figure 9-3: Illustration of Push and Pop Operations 

As an example of stack usage consider this situation: a subroutine 
(SUBR) wants to use registers 1 and 2, but these registers must be 
returned to the calling program with their contents unchanged. The 
subroutine could be written as follows: 

Address 

076322 
076324 
076326 
076330 

076410 
076412 
076414 
076416 
076420 
076422 
076424 

Octal Code 

010167 
000074 
010267 
000072 

016701 
000006 
016702 
000004 
000207 
000000 
000000 

SUBR: 

Assembler Syntax 

MOV R1,TEMPI ; save RI 
* 
MOV R2,TEMP2 ;save R2 

* 

MOV TEMP1,R1 ;Restore R1 
* 
MOV TEMP2,R2 ; Restore R2 
* 
RTS PC 
TEMPI: 0 
TEMP2: 0 

*Index Constants 

Figure 9-4: Register Saving Without the Stack 

9-3 



OR: Using the Stack 

Address 

010020 
010022 

010130 
010132. 
010134 

Octal Code 

010143 SUBR: 
010243 

012301 
012302 
000207 

Assembler Syntax 

MOV Rl, -(R3) ;push Rl 
MOV R2,-(R3) ;push R2 

MOV (R3)+,R2 ;pop R2 
MOV (R3}+,Rl ;pop Rl 
RTS PC 

Note: In this case R3 was used as a Stack Pointer 

Figure 9-5: Register Saving using the Stack 

The second routine uses four less words of instruction code and two 
words of temporary 'stack" storage_ Another routine could use the same 
stack space at some later point. Thus, the ability to share temporary 
storage in the form of a stack is a very economical way to save on 
memory usage. 

As a further example of stack usage, consider the task of managing an 
input buffer from a terminal. As characters come in, the terminal user 
may wish to delete characters from his line; this is accomplished very 
easily by maintaining a byte stack containing the input characters. When­
ever a backspace is received a character is "popped" off the stack and 
eliminated from consideration. In this example, a programmer has the 
choice of "popping" characters to be eliminated by using either the 
MOVB (MOVE BYTE) or INC (INCREMENT) instructions. 

001011 

001010 

001007 

001006 

001005 

001004 

001003 

001002 

001001 

c 
u 

S 

T 

0 

M 

E 

R 

Z .... R3 

MOV (R3) +. dest. 

OR 

INC SP 

001001 

c 
u 
S 

T 

0 

M 

E 

R 

Figure 9-6: Byte Stack used as a Character Buffer 

001002 

NOTE that in this case using the increment instruction (INC) is prefer­
able to MOVB since it would accomplish the task of eliminating the un­
wanted character from the stack by readjusting the stack pointer without 
the need for a destination location. Also, the stack pointer (SP) used in 
this example cannot be the system stack pointer (R6) because R6 may 
only point to word (even) locations. 

9-4 



9.2 SUBROUTINE LINKAGE 
9.2.1 Subroutine Calls 
Subroutines provide a facility for maintaining a single copy of a given 
routine which can be used in a repetitive manner by other programs 
located anywhere else in memory. In order to provide this facility, gen· 
eralized linkage methods must be established for the purpose of control 
transfer and information exchange between subroutines and calling 
programs. The PDp·ll instruction set contains several useful instruc· 
tions for this purpose. 

PDp·ll subroutines are called by using the JSR instruction which has 
the following format. 

a general register (R) for linkage I 
JSR R,SUBR 

an entry location (SUBR) for the subroutine--1 

When a JSR is executed, the contents of the linkage register are saved 
on the system R6 stack as if a MOV reg,-(SP) had been performed. 
Then the same register is loaded with the memory address following the 
JSR instruction (the contents of the current PC) and a jump is made 
to the entry location specified. 

BEFORE 

Address 

001000 
001002 
001004 

001064 

(R5)" 000132 
(R6)~ 00 t 776 

(PC)=(R7)" 001000 

002000 

001776 r-------i_ SP 

001774 

001772 

Assembler Syntax 
. 

JSRR5, SUBR 
index constant for SUBR 

Octal Code 

004567 
000060 

SUBR: MOV A,B Olnnmm 

Figure 9·7: JSR using R5 

AFTER 

(R5)= 001004 
(R6)=Q01774 

(PC)=(R7};Q01064 

002000 

r---:COOC-:-'7=7CC6-'1 001776 r--m-m-m-mm-m--i 
001774 000132 +-SP 

001772 
r------i 

Figure 9·8: JSR 

001774 

Note that the instruction JSR R6,SUBR is not normally considered to be 
a meaningful combination. 

9.2.2 Argument Transmission 
The memory location pointed to by the linkage register of the JSR in· 
struction may contain arguments or addresses of arguments. These argu· 
ments may be accessed from the subroutine in several ways. Using 
Register 5 as the linkage register, the first argument could be obtained 
by using the addressing modes indicated by (R5),(R5)+,X(R5) for actual 
data, or @(R5)+, etc. for the address of data. If the autoincrement 

9·5 



mode is used, the linkage register is automatically updated to point to 
the next argument. 

Figures 9·9 and 9·10 illustrate two possible methods of argument trans· 
mission. 

Address Instructions and Data 

JSR R5, SUBR 010400 
010402 
010404 
010406 

Index constant for SUBR 
arg #1 

SUBROUTINE CALL 
ARGUMENTS 

arg #2 

020306 SUBR: 
020310 

MOV (R5)+,R1 
MOV (R5)+,R2 

;get arg #1 
;get arg #2 Retrieve Arguments 
from SUB 

Figure 9·9: Argument Transmission·Register Autoincrement Mode 

Address Instructions and Data 

010400 
010402 
010404 
010406 
010410 

JSR R5, SUBR 
Index constant for SUBR 
077722, 
077724 
077726 

077722 arg # 1 
077724 arg: #2 
077726 arg #3 

SUBROUTINE CALL 
Address of arg # 1 
Address of arg #2 
Address of arg #3 

argu'ments 

020306 SUBR: MOV @(R5)+,Rl ;get arg #1 
020301 MOV @(R5)+,R2 ;get arg #2 

Figure 9·10: Argument Transmission·Register Autoincrement 
Deferred Mode 

Another method of transmitting arguments is to transmit only the ad· 
dress of the first item by placing this address in a general purpose 
register. It is not necessary to have the actual argument list in the same 
general area as the subroutine call. Thus a subroutine can be called to 
work on data located anywhere in memory. In fact, in many cases, the 
operations performed by the subroutine can be applied directly to the 
data located on or pointed to by a stack without the need to ever actually 
move this data into the subroutine area. 

9·6 



Calling Program: MOV 
JSR 

SUBROUTINE ADD 

ADD 

POINTER, Rl 
PC,SUBR 

(Rl) + ,(Rl) ;Add item # 1 to item # 2, place 
result in item # 2, Rl points 

etc. 
or 

(Rl),2(Rl) 

to item # 2 now 

;Same effect as above except 
that Rl still points to item # 1 
etc. 

ITEM :IF 1 -Rl ... 1 ____ --' 
ITEM #- 2 

Figure 9·11: Transmitting Stacks as Arguments 

Because the PDp·11 hardware already uses general purpose register R6 to 
point to a stack for saving and restoring PC and PS (processor status 
word) information, it is quite convenient to use this same stack to save 
and restore intermediate results and to transmit arguments to and from 
subroutines. Using R6 in this manner permits extreme flexibility in nest­
ing subroutines and interrupt service routines. 

Since arguments may be obtained from the stack by using some form 
of register indexed addressing, it is sometimes useful to save a temporary 
copy of R6 in some other register which has already been saved at the 
beginning of a subroutine. In the previous example R5 may be used to 
index the arguments while R6 is free to be incremented and decremented 
in the course of being used as a stack pointer. If R6 had been used 
directly as the base for indexing and not "copied," it might be difficult 
to keep track of the position in the argument list since the base of the 
stack would change with every autoincrement/ decrement which occurs. 

arg #1 

org #2 

SP_ erg #3 

erg # 2 is at source 
-2(SP) 

but when another item 
TO is pushed "9 #1 

Qrg #- 2 

org #= 3 

TO 

erg:IF 2 is at source 

-4(SP) 

Figure 9-12: Shifting Indexed Base 

However, if the contents of R6 (SP) are saved in R5 before any arguments 
are pushed onto the stack, the position relative to R5 would remain 
constant. 

9-7 



erg :11= 1 1--_0'..::.' _#_'_-I-R5 

SP erg #2 - erg :11=2 

SP- erg #3 

org#2 IS ot 2 (R5) erg #2 IS stlH ot 2(R5) 

Figure 9-13: Constant Index Base Using "R6 Copy" 

9_2_3 Subroutine Return 
In order to provide for a return from a subroutine to the calling program 
an RTS instruction is executed by the subroutine. This instruction should 
specify the same register as the JSR used in the subroutine call. When 
executed, it causes the register specified to be moved to the PC and the 
top of the stack to be then placed in the register specified. Note that if 
an RTS PC is executed, it has the effect of returning to the address 
specified on the top of the stack. 

Note that the JSR and the JMP Instructions differ in that a linkage reg­
ister is always used with a JSR; there is no linkage register with a JMP 
and no way to return to the calling program. 

When a subroutine finishes, it is necessary to "clean-up" the stack by 
eliminating or skipping over the subroutine arguments. One way this can 
be done is by insisting that the subroutine keep the number of argu­
ments as its first stack item. Returns from subroutines would then in­
volve calculating the amount by which to reset the stack pointer, 
resetting the stack pointer, then restoring the original contents of the 
register which was used as the copy of the stack pointer. The PDP-II, 
however, has a much faster and Simpler method of performing these 
tasks. The MARK instruction which is storeo on a stack in place of 
"number of argument" information may be used to automatically per­
form these "clean-up" chores. (For more information on the MARK 
instruction refer to Chapter 4.) 

9_2.4 PDP-ll Subroutine Advantages 
There are several advantages to the PDP-ll subroutine calling procedure. 

a. arguments can be quickly passed between the calling program and 
the subroutine. 

b. if the user has no arguments or the arguments are in a general reg­
ister or on the stack the JSR PC,DST mode can be used so that none 
of the general purpose registers are taken up for linkage. 

c. many JSR's can be executed without the need to provide any saving 
procedure for the linkage information since all linkage information is 
automatically pushed onto the stack in sequential order. Returns can 
simply be made by automatically popping this information from the 
stack in the opposite order of the JSR's. 

Such linkage address bookkeeping is called automatic "nesting" of sub­
routine calls. This feature enables the programmer to construct fast, 

9-8 



efficient linkages in a simple, flexible manner. It even permits a routine 
to call itself in those cases where this is meaningful. Other ramifications 
will appear after we examine the PDp·ll interrupt procedures. 

9.3 INTERRUPTS 

9.3.1 General Principles 
Interrupts are in many respects very similar to subroutine calls. How· 
ever, they are forced, rather than controlled, transfers of program 
execution occurring because of some external and program-independent 
event (such as a stroke on the teleprinter keyboard). Like subroutines, 
interrupts have linkage information such that a return to the interrupted 
program can be made. More information is actually necessary for an 
interrupt transfer than a subroutine transfer because of the random 
nature of interrupts. The complete machine state of the program im­
mediately prior to the occurrence of the interrupt must be preserved in 
order to return to the program without any noticeable effects. (i.e. was 
the previous operation zero or negative, etc.) This information is stored 
in the Processor Status Word (PS). Upon interrupt, the contents of the 
Program Counter (PC) (address of next instruction) and the PS are auto­
matically pushed onto the R6 system stack. The effect is the same as if: 

MOV PS ,-(SP) 
MOV R7,-(SP) 

had been executed. 

;Push PS 
;Push PC 

The new contents of the PC and PS are loaded from two preassigned 
consecutive memory locations which are called an "interrupt vector." 
The actual locations are chosen by the device interface designer and are 
located in low memory addresses of Kernel virtual space (see interrupt 
vector list, Appendix A). The first word contains the interrupt service 
routine address (the address of the new program sequence) and the 
second word contains the new PS which will determine the machine 
status including the operational mode and register set to be used by the 
interrupt service routine. The contents of the interrupt service vector 
are set under program control. 

After the interrupt service routine has been completed, an RTI (return 
from interrupt) is performed. The two top words of the stack are auto­
matically "popped" and placed in the PC and PS respectively, thus re­
suming the interrupted program. 

9.3.2 Nesting 
Interrupts can be nested in much the same manner that subroutines 
are nested. In fact, it is possible to nest any arbitrary mixture of sub­
routines and interrupts without any confusion. By using the RTI and 
RTS instructions, respectively, the proper returns are automatic. 

l. Process 0 is running; 
SP is pointing to loca­
tion PO. 

9-9 



2. Interrupt stops process 0 
with PC= PCO, and 
status = PSO; starts process 1. 

3. Process 1 uses stack for 
temporary storage (TEO, TEl). 

PO§ pso 

SP: pco 

PO 
PSO PCO 
TEO 

sp----.. TE 1 

o 

4. Process I interrupted with PC = PCI PO 

and status = PSI; process 2 is started 

5. Process 2 is running and does a 
JSR R7,A to Subroutine A with 
PC= PC2. 

6. Subroutine A is running 
and uses stack for 
temporary storage. 

9-10 

a 

PO 

a 

PO 

SP~ 

a 

PSO 

PCO 

TEO 

TE1 

PS1 

PC1 

PSO 

PCO 

TEO 

TE1 

PS1 

PC1 

PC2 

PSO 

PCO 

TEO 

TE1 

PS 1 

PC1 

PC2 

TA1 

TA2 



7. Subroutine A releases the temporary 
storage holding TAl and TA2. 

8. Subroutine A returns control to process 
2 with an RTS R7,PC is reset to PC2. 

9. Process 2 completes with an RTI 
instruction (dismisses interrupt) PC 
is reset to PC I and status is reset to 
PSI; process 1 resumes. 

10. Process 1 releases the temporary 
storage holding TEO and TEL 

11. Process 1 completes its operation 
with an RTI is reset to PCO and status 
is reset to PSO. 

PO 

PSO 

peo 

TEO 

TE I 

PS I 

PC! 

SP~ pe2 

PO 

PSO 

PC 0 

TEO 

TE I 

PS I 

PC! 

PO f--"P""so--I 

pco 

TEO 

SP- TEl 
f-----j 

PO~ PSO 

SP~ pco 

Figure 9·14: Nested Interrupt Service Routines and Subroutines 

Note that the area of interrupt service programming is intimately in­
volved with the concept of CPU and device priority levels. 

9.4 REENTRANCY 
Further advantages of stack organization becomes apparent in complex 
situations which can arise in program systems that are engaged in the 
concurrent handling of several tasks. Such multi-task program environ-

9-11 



ments may range from relatively simple single-user applications which 
must manage an intermix of I/O interrupt service and background com­
putation to large complex multi-programming systems which manage a 
very intricate mixture of executive and multi-user programming situa­
tions_ In all these applications there is a need for flexibility and time/ 
memory economy_ The use of the stack provides this economy and 
flexibility by providing a method for allowing many tasks to use a single 
copy of the same routine and a simple, unambiguous method for keep­
ing track of complex program linkages_ 

The ability to share a single copy of a given program among users or 
tasks is called reentrancy_ Reentrant program routines differ from ordi­
nary subroutines in that it is unnecessary for reentrant routines to finish 
processing a given task before they can be used by another task_ Mul­
tiple tasks can be in various stages of completion in the same routine 
at any time_ Thus the following situation may occur: 

MEMORY 

PROGRAM 1 f-------l 
PROGRAM 2 SUBROUTINE A 

PROGRAM 3 1-------1 

PDP-ll Approach 

Programs 1, 2, and 3 can 
share Subroutine A_ 

MEMORY 

PROGRAM 1 SUBROUTINE A 

PROGRAM 2 ~SUBROUT INE AC(; 

PROGRAM 3 %{SUBROUTINE ~??-

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each program_ 

Figure 9-15: Reentrant Routines 

The chief programming distinction between a non-shareable routine and 
a reentrant routine is that the reentrant routine is composed solely of 
"pure code," Le_, it contains only instructions and constants_ Thus, a 
section of program code is reentrant (shareable) if and only if it is 
"non self-modifying," that is it contains no information within it that is 
subject to modification_ 

Using reentrant routines, control of a given routine may be shared as 
illustrated in Figure 9-16_ 

REENTRANT 
ROUTINE t---~~--" 

Q 

Figure 9-16: Reentrant Routine Sharing 

9-12 



1. Task A has requested processing by Reentrant Routine Q. 

2. Task A temporarily relinquishes control (is interrupted) of Reentrant 
Routine Q before it finishes processing. 

3. Task B starts processing in the same copy of Reentrant Routine Q. 

4. Task B relinquishes control of Reentrant Routine Q at some point in 
its processing. 

5. Task A regains control of Reentrant Routine Q and resumes process-
ing from where it stopped. 

The use of reentrant programming allows many tasks to share frequently 
used routines such as device interrupt service routines, ASCII-Binary 
conversion routines, etc. In fact, in a multi-user system it is possible, for 
instance, to construct a reentrant FORTRAN compiler which can be used 
as a single copy by many user programs. 

As an application of reentrant (shareable) code, consider a data process­
ing program which is interrupted while executing a ASCII-to-Binary sub­
routine which has been written as a reentrant routine. The same 
conversion routine is used by the device service routine. When the device 
servicing is finished, a retu-rn from interrupt (RTI) is executed and 
execution for the processing program is then resumed where it left off 
inside the same ASCII-to-Binary subroutine. 

Shareable routines generally result in great memory saving. It is the 
hardware implemented stack facility of the PDP-ll that makes shareable 
or reentrant routines reasonable. 

A subroutine may be reentered by a new task before its completion 
by the previous task as long as the new execution does not destroy any 
linkage information or intermediate results which belong to the previous 
programs. This usually amounts to saving the contents of any general 
purpose registers, to be used and restoring them upon exit. The choice 
of whether to save and restore this information in the calling program or 
the subroutine is quite arbitrary and depends on the particular applica­
tion. For example in controlled transfer situations (i.e. JSR's) a main 
program which calls a code-conversion utility might save the contents of 
registers which it needs and restore them after it has regained control, 
or the code conversion routine might save the contents of registers 
which it uses and restore them upon its completion. In the case of 
interrupt service routines this save/restore process must be carried out 
by the service routine itself since the interrupted program has no warn­
ing of an impending interrupt. The advantage of using the stack to save 
and restore (i.e. "push" and "pop") this information is that it permits 
a program to isolate its instructions and data and thus maintain its 
reentra ncy. 

In the case of a reentrant program which is used in a mUlti-program­
ming environment it is usually necessary to maintain a separate R6 
stack for each user although each such stack would be shared by all the 
tasks of a given user. For example, if a reentrant FORTRAN compiler 
is to be shared between many users, each time the user is changed, 

9-13 



R6 would be set to point to a new user's stack area as illustrated in 
Figure 9-17. 

Figure 9-17: Multiple R6 Stack 

9.5 POSITION INDEPENDENT CODE-PIC 
Most programs are written with some direct references to specific ad­
dresses, if only as an offset from an absolute address origin. When it is 
desired to relocate these programs in memory, it is necessary to change 
the address references and/or the origin assignments. Such programs 
are constrained to a specific set of locations. However, the PDP-ll 
architecture permits programs to be constructed such that they are not 
constrained to specific locations. These Position Independent programs 
do not directly reference any absolute locations in memory. Instead all 
references are "PC-relative" i.e. locations are referenced in terms of 
offsets from the current location (offsets from the current value of the 
Program Counter (PC». When such a program has been translated to 
machine code it will form a program module which can be loaded any­
where in memory as required. 

Position Independent Code is exceedingly valuable for those utility rou­
tines which may be disk-resident and are subject to loading in a dy­
namically changing program environment. The supervisory program may 
load them anywhere it determines without the need for any relocation 
parameters since all items remain in the same positions relative to each 
other (and thus also to the PC). 

Linkages to program routines which have been written in position inde­
pendent code (PIC) must still be absolute.in some manner. Since these 
routines can be located anywhere in memory there must be some fixed 
or readily locatable linkage addresses to facilitate access to these rou­
tines. This linkage address may be a simple pointer located at a fixed 
address or it may be a complex vector composed of numerous linkage 
information items. 

9-14 



9.6 CO· ROUTINES 
In some situations it happens that two program routines are highly 
interactive. Using a special case of the JSR instruction i.e., JSR PC, 
@(R6)+ which exchanges the top element of the Register 6 processor 
stack and the contents of the Program Counter (PC), two routines may 
be permitted to swap program control and resume operation where they 
stopped, when recalled. Such routines are called "co· routines ... This 
control swapping is illustrated in Figure 9-18. 

Routi ne # 1 is operati ng, it then executes: 

MOV #PC2,-(R6) 

JSR PC,@(R6)+ 
with the following results: 

1) PC2 is popped from the stack 
and the SP autoincremented 

2) SP is autodecremented and the 
old PC (i.e. PC1) is pushed 

3) control is tra nsferred to the 
location PC2 (i.e. routine #2) 

Routine # 2 is operating, it then executes: 

JSR PC, @(R6)+ 

with the result the PC2 is exchanged 
for PC1 on the stack and control is 
transferred back to routine # 1. 

SP_~ 

~! PC2 
SP_ 

PC2 

! 
Sp-~j 

Figure 9-18-Co·Routine Interaction 

9-15 



9-16 



CHAPTER 10 

HIGH SPEED I/O CONTROLLERS 

10.1 SYSTEM PERFORMANCE 
To support the speed, power, and data reliability features of the PDp· 
11/70 central processor and memory system, DIGITAL offers a wide 
range of high· performance, mass·storage peripheral options. These sec· 
ondary storage disk and magnetic tape systems interface to the central 
processor through optimized high·speed controllers and dedicated data 
paths to provide high system throughput. Since the control and inter­
facing of these high-performance peripherals is an integral part of the 
PDP-ll/70 architecture, increased input/output capabilities are achieved. 
These peripherals become a vital part of the PDP-ll /70 system_ 

10.2 HIGH-SPEED, MASS STORAGE PERIPHERALS 
There are, currently, 3 high-performance peripherals that can take ad­
vantage of interfacing to the PDP-ll/70 through its high-speed control­
lers and high data rate bus_ 

a) RS04 (and RS03) Fixed Head Disk 
b) RP04 Disk Pack 
c) TU16 Magnetic Tape Unit 

10.2.1 Fixed Head Disk 
The RS03 and RS04 fixed-head disks have been designed for applica­
tions requiring fast, reliable, on-line storage. With an average access time 
of 8.5 milliseconds and a transfer rate of 2 microseconds per word (4 
!-,sec for RS03), the disks increase throughput substantially for timeshar­
ing applications which involve significant amounts of program swapping. 
Phase lock loop reading techniques and CRC error detection make these 
disk systems ideal for real-time data acquisition and control systems re­
quiring a high level of reliability. 

The RS03 fixed-head disk drive has a storage capacity of 256K words, 
and the RS04 has a storage capacity of 512K words. The disks are ex­
pandable by adding either RS03 or RS04 drives, up to a total of eight 
drives per controller. 

SPECIFICATIONS 

Storage medium 

Capacity / disk 

Data transfer speed 

Average access 
time (1/2 rev) 

Minimum access 
time 

RS03 

Fixed-head disk 

RS04 (when different) 

262,144 words (256K) 512K words 

4 !-,sec/word 2 !-,sec/word 

8.5 msec 

6.4 !-,sec 

10-1 



Disk rotation 
speed 

Disks/control, 
maximum 

10.2.2 Disk Pack 

3600 RPM (3000 RPM 
at 50 Hz) 

8 

The RP04 is a mass storage system offering low cost per bit and high 
performance. Each disk pack has a capacity of 44 million 16·bit words 
expandable to 8 disk pack drives in a system. The removable disk pack 
offers the flexibility of unlimited off·line storage capacity. 

On multi·drive systems, positioning operations can be overlapped for effi· 
ciency. While one drive is reading or writing, one or more drives can be 
positioning to a new cylinder for the next transfer. 

The RP04 operates at a transfer rate of 400,000 words per sacond (2.5 
microseconds per word). 

The disk drive is a high·performance device, featuring direct access and 
single head per surface. It enables the data processing system to store 
or retrieve information at any location on a rotating disk pack. 

SPECIFICA nONS 

Storage medium: 
Ca pacity / pack: 
Data transfer speed: 

Disk pack 
43,980,288 words 
2.5 ,usec/word 

Time for 1/2 revolution: 8.3 msec 
Disk rotation speed: 3600 RPM 
Drives/control, maximum: 8 

One cylinder seek: 
Average seek: 
Maximum seek: 

10.2.3 Magnetic Tape 

7 msec 
28 msec 
50 msec 

The TU16 is a fully integrated, high·performance magnetic tape storage 
system that uses standard recording formats, with densities of 1600 
and 800 bits per inch, selectable under program control. Reading and 
writing are performed at 45 inches/second. Since the industry standard 
format is used, data may be easily transferred between computers. 

Reading can be performed while tape is moving in the forward or reverse 
direction, but writing occurs only in forward. The control unit can move 
the tape to new positions in forward or reverse. 

Tape motion is controlled by vacuum columns and a servo·controlled 
single capstan. Long tape life is possible because the only contact with 
the oxide surface is at the magnetic head and at a rolling contact on one 
low·friction, low·inertia bearing. 

Main Specifications 

Storage medium: 

Capacity/tape reel: 

Data transfer speed: 

Drives/control: 

%·inch w:de magnetic tape (industry std) 

32 million characters (at 1600 bpi) 

72,000 characters/sec., max. 

8, max. 

10·2 



Data Organization 

Number of tracks: 

Recording density: 

Interrecord gap: 

Recording method: 

Tape Motion 

Read/write speed: 

Rewind speed: 

Rewind time: 

Tape Characteristics 

Length: 

Type: 

Reel diameter: 

Handling: 

9 

800 or 1600 bits/inch, program selectable 

0.50 inches, min 

NRZI for 800 bpi, phase encoded for 1600 bpi 

45 inches/sec. 

150 inches/sec. 

3 minutes, typical 

2,400 feet, max. 

Mylar base, iron oxide coated 

10 112 inches, max. 

direct·drive reel motors, servo·controlled single 
capstan, vacuum tape buffer changers with con· 
stant tape tension 

10.3 HIGH·SPEED CONTROLLERS 

Mounting Space 
The PDP·U/70 CPU assembly provides dedicated, pre·wired space for 
up to 4 high-speed I/O controllers. Refer to Figure 10·1. DC power for 
the controllers is derived from the cabinet power supply. 

Interfacing 
Each group of mass storage peripherals communicates with its high· 
speed controller through a separate high·speed I/O bus. This I/O bus 
consists of a set of 56 signals for. data, control, status, and parity. High 
transfer rate is achieved by using synchronous block transfer of data 
simultaneously with asynchronous control information. The controller 
contains an 8,word data buffer. 

Data is transferred in a Direct Memory Access (DMA) mode. An internal 
32-bit wide data bus transfers 4 bytes in parallel between memory and 
the high·speed controllers. The Priority Arbitration logic within the cache 
memory controls the timing of data transfers; but the cache itself is not 
used for data storage. Data transfers are between main (core) memory 
and the mass storage peripheral. The cache is not affected, except that 
on a write hit from the 1/ a Bus to memory, the valid bit is cleared for that 
particular 2·word block within the cache. In this way, the affected areas 
of the cache are flagged as having incorrect data, but main memory 
always contains the correct, updated information. 

The UNIBUS plays a subordinate role with respect to the high·speed 
controllers. The UNIBUS is used: 

a) to supply control and status information 
b) to generate an interrupt request (by the controller) 

10·3 



~-~-l~ 
I/O I/O 110 
BUS BUS BUS 

Figure 10-1 PDP-ll/70 Block Diagram 

The UNIBUS is not used for data transfer_ 

The registers within the controller (which can be read and written di­
rectly) are addressed from the UNIBUS_ In a typical DMA transfer, the 
registers would first be loaded with the following data: 

a) number of words to be transferred 
b) starting address in memory for data transfers 
c) control information specifying the device and type of operation_ 

Then the GO command would be issued (to the register), and data trans­
fer would proceed without CPU intervention_ 

Increased Data Transfer Rate 
The architecture of the PDP-lI/lO allows overlapping of some opera­
tions, thereby providing faster program execution speed_ CPU and 
UN (BUS read hits with the cache memory are overlapped with mass stor­
age device reads from main memory_ It is possible to overlap the read 
cycles of several mass storage devices_ 

Parity 
Parity is generated and checked in the system for both data, and address 
and control information, to ensure the integrity of the information trans­
ferred_ The RHCS3 register in the controller is used to indicate the oc­
currence of parity errors during memory transfers_ 

10_4 REGISTERS 
The controller contains 6 local registers, plus part of 1 more which is 
shared with the mass-storage device_ Other registers needed by the 

10-4 



particular mass storage system and device are contained in the device 
itself. Appendix B contains information about the mass storage device 
registers. 

Controller Registers 

RHCSI Control and Status 1 (partial) 

RHWC Word Count 

RHBA 

RHBAE 

RHCS2 

RHCS3 

RHDB 

Bus Address (Main Memory Bus) 

Bus Address Extension (Main Memory Bus) 

Control and Status 2 

Control and Status 3 

Data Buffer (Maintenance) 

10.5 CONTROLLER REGISTERS 

Control and Status 1 Register (RHCSl) 
This register is utilized by both the controller and the mass storage 
device to store the device commands and hold operational status. Reg· 
ister bits 0 thru 5, 11, and 12 are dedicated for use by the drive and are 
physically located in each drive attached to the controller. When read­
ing or writing this register, the selected drive (indicated by bits 2 thru 
o in the RHCS2 register) will respond in those b:t positions. 

When the program reads, writes· a word, or writes the low byte of this 
register, a register cycle will be initiated to the selected drive over the 
high-speed I/O bus. If the unit selected does not exist or respond, an 
NED (non-existing drive) error will result. The program may, however, 
write the upper byte of this register without regard to the unit selected 
and without affecting any drive. 

Register bits 0 thru 5 indicate the command to be performed and are 
actually stored in the selected drive. The controller will always interrogate 
the command code being passed to the drive by the program and will 
prepare for the appropriate memory cycle required by data transfer op­
erations. Data transfer command codes are designated by 51" thru 77. 
(always odd since the GO bit must be asserted to execute the function) 
and will cause the controller to become busy (ROY negated) until the 
completion of the operation. When the controller is busy, no further data 
transfer commands may be issued (see PGE bit 10 in RHCS2). Non-data 
transfer commands, however, may be issued at any time and to any 
drive which is not busy. 

While a data transfer is in progress, unit select bits U(02:00) in RHCS2 
may be changed by the program in order to issue a non data transfer 
command to another drive. This will not affect the data transfer. 

When a non-data transfer command code is written into RHCSI while a 
data transfer is taking place, only the even (low) byte of RHCSI should 
be written. This will prevent the program from unintentionally changing 
the A16 and A17 status bits if the transfer is completed just before the 
register is written. (While the ROY bit is negated, the controller prevents 
program modification of these control bits even when the write is done 
to the odd byte.) 

10-5 



BIT 

15 SC 
Special 
Condition 
Read Only 

14 TR£ 
TRansfer 
Error 
Read/Write 

13 MCPE 
Mass I/O 
Bus Control 
Parity Error 
Read Only 

12 Reserved for 
use by the 
Drive 
Read Only 

Control and Status 1 Bit Usage 

SET BY/CLEARED BY 

Set by TRE or Attention 
or MCPE. Cleared by 
Unibus INIT, controller 
clear, or by removing 
the Attention condition. 

Set by DL T or WCE or 
PE or NED or NEM or 
PGE or MXF or MDPE 
or a drive error during 
a data transfer. Cleared 
by Unibus INIT, con­
troller clear, error clear 
(the action of writing a 
1 in the TRE bit), or by 
loading a data transfer 
command with GO set. 

Set by a parity error on 
the control section of 
the I/O bus when read­
ing a remote register 
(located in the drive). 
Cleared by Unibus INIT, 
controll.er clear, error 
clear, or by loading a 
data transfer command 
with GO set. 

Always read as 0 if not 
implemented by the se­
lected drive. 

10-6 

REMARKS 

SC = TRE + ATTN 
+ MCPE. 
Attention occurs when 
any drive has a) an er­
ror condition, b) a 
change in status or c) 
completed a function 
requiring action by the 
program (other than 
data transfer. 

TRE = DLT + WCE 
+ PE + NED + NEM 
+ PGE + MXF + 
MDPE + (EXCP'EBL) 

Parity errors which oc­
cur on the control bus 
when writing a drive 
register are detected by 
the drive. Parity check­
ing occurs at the Com­
pletion of the register 
cycle (an MCPE when 
reading the RHCSI reg­
ister would not be indi­
cated on the same cy­
cle. 



BIT 

11 DVA 
DriVe 
Available 
Read Only 

10 Not used 

9 A17 
8 A16 

Bus Address 
Extension 
Bits 
Read/Write 

7 RDY 
Ready 
Read only 

6 IE 
Interrupt 
Enable 
Read/Write 

5-0 F4-FO and 
GO 
Read/Write 

SET BY/CLEARED BY 

Implemented by the 
drive_ Set when the se­
lected drive is available 
to the controller. 

Always read as 0_ 

Upper address exten­
sion bits of the BA reg· 
ister. Cleared by Unibus 
I N IT, controller clear, or 
by writing O's in these 
bit positions. 

Indicates controller sta­
tus. When set the con­
troller will accept 
any command_ When 
cleared the controller 
is performing a data 
transfer command and 
will allow only non-data 
transfer commands to 
be executed_ 

Control bit which can 
be set under program 
control. When IE = I, 
an interrupt may occur 
due to RDY or Attention 
or MCPE being as­
serted_ Cleared by Uni­
bus IN IT, controller 
clear, or automatically 
cleared when an inter­
rupt is recognized by 
the CPU_ 

F4-FO are function 
(command) code con­
trol bits which deter­
mine the action to be 
performed by the con­
troller and/or drive. The 
GO bit must be set in 
order to execute the 
command. The GO bit 

10-7 

REMARKS 

Used in dual·port drive 
applications_ Always a 
1 in single port drives. 

These bits cannot be 
modified by writing to 
the RHCS1 register 
while the controller is 
busy (RDY negated)_ In­
cremented by a carry 
from the RHBA register 
during data transfers 
to/from memory. These 
bits can also be set/ 
cleared thru the RHBAE 
register. 

The assertion of RDY 
(transfer complete or 
TRE) will cause an in· 
terrupt if IE = L 

A program-controlled 
interrupt may occur by 
writing l's into IE and 
RDY at the same time. 
This bit can be set/ 
cleared thru the RHCS3 
register. 

The function code bits 
are stored in the se­
lected drive. Only data 
transfer cO"1mands (de­
fined as F4o(F3 + F2)o 
GO will cause the 
controller to become 
busy (RDY negated). All 
other command codes 



BIT SET BY/CLEARED BY 

is reset by the drive at 
the end of the opera· 
tion. 

REMARKS 

are ignored by the con· 
troller. 

Function Code Table 

F4 F3 F2 Fl FO 

o 

1 

1 
I 
I 

I 

1 
I 
1 

1 

1 
1 
I 

1 

o 
o 

o 
o 
o 

o 

I 
1 
1 

I 

I 
1 
1 

I 

o 
thru 
o 

1 
1 
I 

I 

o 
o 
o 

o 

I 
1 
1 

I 

o 

1 

o 
o 
1 

I 

o 
o 
1 

I 

o 
o 
1 

I 

Reserved for drive related 
commands. No controller 
action taken. 

Write Check commands. 
O} Memory data compared 
I with drive data in control· 
o ler. Memory address incre· 

ments. 

} 
Write Check command. 

1 Memory address decre· 
ments 

Write commands. Memory 
o } data written into drive. 
I Memory address incre· 
o ments. 

I 1 Write command. Memory r address decrements. 

! r 
Read commands. Drive 
data written into Memory. 
Memory address incre· 
ments. 

Read command. Memory 
address decrements. 

Word Count Register (RHWC) 
This register is loaded by the program with the two's complement of the 
number of words to be transferred. During a data transfer, it is incre· 
mented by 1 each time a word is transmitted to or from memory. 

Word Count Register Bit Usage 

10·8 



BIT 

WC(15:00) 

Word Count 
Read/Write 

SET BY/CLEARED BY 

Set by the program to specify 
the number of words to be 
transferred (Two's complement 
form.) This register is cleared 
only by writing O's into it. 

Bus Address Register (RHBA) 

REMARKS 

Incremented for each 
word transferred to/ 
from memory. 

This register is loaded by the program to specify the lower 16 bits of 
the starting memory address to which data transfers will take place. The 
RHBA and RHBAE registers combine to form the complete 22 bit memo 
ory address. 

During a data transfer this register is incremented (decremented for spe· 
cific function codes) by 2 each time a word is transmitted to or from 
memory. If the BAI (Bus Address Increment Inhibit) bit (bit 03 of 
RHCS2) is set, the incrementing (or decrementing) of the RHBA regis· 
ter is inhibited and all transfers take place to or from the starting memo 
ory address. 

BIT 

15:01 A (15:01) 
Bus Address 
Read/Write 

00 Not Used 

Bus Address Register Bit Usage 

SET BY/CLEARED BY 

Loaded by the program 
to specify the starting 
memory address of a 
data transfer operation. 
Cleared by Unibus INIT 
or controller clear 

Always read as a 0 

REMARKS 

The RHBA register is 
incremented (or dec· 
remented) by 2 when· 
ever a word is trans· 
mitted to or from 
memory. 

Bus Address Extension Register (RHBAE) 
The RHBAE register contains the upper 6 bits of the memory address 
and combine with the lower 16 bits located in RHBA to form the com· 
plete 22 bit address. This register should be loaded by the program in 
conjunction with the RHBA register to specify the starting memory ad· 
dress of a data transfer operation. The six bit field is incremented (dec· 
remented for specific function codes) each time a carry (borrow) occurs 
from the RHBA register during memory transfers. 

Address bits A16 and A17 can also be set or cleared thru the RHCS1 
register. If an address extension field is written into RH BAE, the pro· 
gram should ensure that A16 and A17 are not altered when a command 
is loaded into RHCSI. This can be accomplished by either loading the 
command with a write low byte instruction to RHCS1 or by ensuring the 
proper value appears in the A16 and A17 bit positions of RHCSI. 

10·9 



15 14 13 5 4 3 2 1 0 

Bus Address Extension Register Bit Usage 

BIT 

15:06 Not Used 

05:00 A(21:16) 
Bus Address 
Read/Write 

SET BY/CLEARED BY 

Always read as a 0 

Loaded by the program 
to specify the starting 
memory address of a 
data transfer operation. 
Cleared by Unibus INIT 
or controller clear. 

Control and Status 2 Register (RHCS2) 

REMARKS 

The RHBAE register is 
incremented (or de­
cremented) each time 
a carry out (borrow 
out) of RHBA occurs. 
A16 and AI? can also 
be set or cleared thru 
the RHCS1 register. 

This register indicates the status of the controller and contains the drive 
unit number U(2:0). The unit number specified in bits 2 thru 0 of this 
register indicates which drive is responding when registers are addressed 
which are located in a drive. 

Control and Status 2 Register Bit Usage 

BIT 

15 DLT 
Data LaTe 
Read only 

14 WCE 
Write Check 
Error 
Read only 

SET BY/CLEARED BY 

Set when the controller 
is unable to supply a 
data word during a 
write operation or ac· 
cept a data word during 
a Read or Write·check 
operation at the time 
the drive demands a 
transfer. Cleared by 
Unibus INIT, controller 
clear, error clear, or 
loading a data transfer 
command with GO set. 

Set when the controller 
is performing a write­
check operation and a 
word on the drive does 

10-10 

REMARKS 

DL T causes TRE. Buf­
fering is 8 words deep 
in the controller and 
a DL T error indicates 
a severely overloaded 
system. 

weE causes TRE. If a 
mismatch is detected 
during a Write-check 
command execution 



BIT 

13 PE 
Parity Error 
Read only 

12 NED 
Non-Existent 
Drive 
Read only 

11 NEM 
Non-Existent 
Memory 
Read only 

10 PGE 
Program Error 
Read only 

SET BY/CLEARED BY 

not match the corre­
sponding word in mem­
ory. Cleared by Unibus 
INIT, controller clear, 
error clear, or loading a 
data transfer command 
with GO set. 

Set if a parity error oc­
curred between mem­
ory and the controller 
during a memory trans­
fer. Cleared by Unibus 
IN IT controller clear, er­
ror clear, or loading a 
data transfer command 
with GO set. 

Set when the program 
reads or writes a regis­
ter in a drive (selected 
by U(02:00) which does 
not exist or is powered 
down. (The drive fails 
to assert TRA within 
1.5 ,"s after assertion of 
DEM. Cleared by Uni­
bus I N IT, controller 
clear, error clear, or 
loading a data transfer 
command with GO set. 

Set when the controller 
is performing a DMA 
transfer and the mem­
ory address specified in 
RHBA is non-existent. 
Cleared by Unibus INIT, 
controller clear, error 
clear, or loading a data 
transfer command with 
GO set. 

Set when the program 
attempts to initiate a 
data transfer operatiool 
while the controller is 
currently performing 
one. Cleared by Unibus 
INIT, controller clear, 
error clear, or loading a 
data transfer command 
with GO set. 

10-11 

REMARKS 

the transfer termi­
nates and the WCE 
bit is set. The mis­
matched data word 
from the drive is dis­
played in the data 
buffer (RHDB). 

PE = APE + DPEOW 
+ DPEEW 

NED causes TRE. 

NEM causes TRE to 
set. 

PGE causes TRE to 
set. The data transfer 
command code is in­
hibited from being 
written into the drive. 



BIT 

09 MXF 
Missed Trans· 

fer 
Read only 

08 MOPE 
Mass I/O Bus 
Data Parity 
Error 
Read only 

07 OR 
Output Ready 
Read only 

06 IR 
Input Ready 
Read only 

05 CLR 
Controller 
Clear 
Write only 

04 PAT 
Parity Test 
Read/Write 

SET BY/CLEARED BY 

Set if the drive does not 
respond to a data trans· 
fer command within 
500 ILsec. Cleared by 
Unibus INIT, controller 
clear, error clear, or 
loading a data transfer 
command with GO set. 

Set when a parity error 
occurs on the data sec· 
tion of the I/O bus 
while doing a read or 
write·check operation. 
Cleared by Unibus IN IT, 
controller clear, error 
clear, or loading a data 
transfer command with 
GO set. 

Set when a word is 
present in RHDB and 
can be read by the pro· 
gram, cleared by Uni· 
bus INIT, controller 
clear, or by reading DB. 

Set when a word may 
be written in the RHDB 
register by the pro· 
gram. Cleared when the 
data buffer is full (con· 
tains 8 words). 

When a 1 is written into 
this bit, the controller 
and all dnves are ini· 
tialized. 

While PAT is set, the 
controller generates 
even parity on both the 
Control and Data sec· 
tions of the I/O bus. 
When clear, odd parity 
is generated. Cleared by 
Unibus INIT or control· 
ler clear. 

10·12 

REMARKS 

MXF causes TRE to 
set. This error occurs 
if a data transfer com· 
mand is loaded into a 
drive which has ERR 
set, or if the drive 
fails to initiate the 
command for any rea· 
son (such as par~y 
error or illegal func· 
tion.) 

MOPE causes TRE. 
Parity errors on the 
data bus during write 
operations are de· 
tected by the drive. 

Serves as a status in· 
dicator for diagnostic 
check of the data buf· 
fer. 

Serves as a status in· 
dicator for diagnostic 
check of the data buf· 
fer. 

Unibus INIT also 
causes Controller 
Clear to occur. 

While PAT is set, the 
controller checks for 
even parity received 
on the Data Bus but 
not on the Control 
Bus. 



BIT 

03 BAI 
Unibus 
Address 
Increment 
Inhibit 
Read/Write 

02-00 U(2:0) 
Unit Select 

(2:0) 
Read/Write 

SET BY/CLEARED BY 

When BAI is set, the 
controller will not in­
crement the BA register 
during a data transfer. 
This bit cannot be modi­
fied while the controller 
is doing a data transfer 
(ROY negated)_ Cleared 
by Unibus INIT or con­
troller clear_ 

These bits are written 
by the program to se­
lect a drive_ Cleared by 
Unibus INIT or control­
ler clear_ 

REMARKS 

When set during a 
data transfer, all data 
words are read from 
or written into the 
same memory loca­
tion_ 

The unit select bits 
can be changed-'by 
the program during 
data transfer opera­
tions without interfer­
ing with the transfer. 

Control and Status 3 Register (RHCS3) 
The RHCS3 register contains parity error information associated with the 
memory bus. Bit position 13 of the RHCS2, PE, indicates that a parity 
error occurred during the memory transfer_ Bits 15 thru 13 of RHCS3 
further localize the error for diagnostic maintenance. In addition, bits 3 
thru 0 provide the diagnostic program the ability to invert the sense of 
parity check and thereby verify correct operation of the parity circuits. 

An Interrupt Enable bit in the RHCS3 register allows the program to en­
able interrupts without writing into a drive register as previously de­
scribed. This bit also appears in the RHCS1 register for program com­
patibility and can be set or cleared by writing into either register_ 

BIT 

15 APE 
Address Parity 
Error 
Read Only 

Control and Status 3 Bit Usage 

SET BY/CLEARED BY 

Set if the address parity 
error line indicates that 
the memory defected a 
parity error on address 
and control information 
during a memory trans­
fer. Cleared by Unibus 
Init, controller clear, er­
ror clear, or loading a 

10-13 

REMARKS 

APE causes PE, bit 13 
of RHCS2. When an 
APE error occurs the 
RHBA and RHBAE reg­
isters contain the ad­
dress +4 of the dou­
ble word address at 
which the error oc­
curred during a dou-



BIT 

14, 13 OPE, OW, 
EW 

Data Parity 
Error 
Odd Word, 
Even Word 
Read Only 

12, 11 WCE 
OW, EW 

Write Check 
Error 
Odd word, 
Even word, 
Read only 

10 DBl 
DouBle word 
Read Only 

9-7 Not Used 

6 IE 
Interrupt 
Enable 
Read/Write 

SET BY/CLEARED BY 

data transfer command 
with GO set. 

Set if a parity error is 
detected on data from 
memory when the con­
trol is performing a 
Write or Write Check 
command_ Cleared by 
Unibus Init, controller 
clear, error clear, or 
loading a data transfer 
command with GO set_ 

Set when data fails to 
compare between mem­
ory and the drive_ 
Cleared by Unibus Init, 
controller clear, error 
clear, or loading a data 
transfer command with 
the GO bit set_ 

Set if the last memory 
transfer was a double 
word operation_ Cleared 
by Unibus Init, control­
ler clear or loading a 
data transfer command 
with GO set 

Always read as a 0 

IE is a control bit which 
can be set under pro­
gram control. When IE 
= I, an interrupt may 
occur due to RDY or SC 
being asserted_Cleared 
by Unibus Init, control­
ler clear, or automati­
cally cleared when an 
interrupt is recognized 
by the CPU_ When a 0 
is written into IE by the 
program, any pending 
interrupts are can­
celled_ 

10-14 

REMARKS 

ble word operation or 
the address +2 dur­
ing a single word oper­
ation_ 

DPE causes PE, bit 13 
of RHCS2_ When a 
DPE error occurs, the 
RHBA and RHBAE reg­
isters contain the ad­
dress +4 of the dou­
ble word address at 
which the error oc­
curred during a dou­
ble word operation or 
the address +2 dur­
ing a single word oper­
ation_ 

Causes WCE, bit 14 of 
RHCS2_ The word 
read from the drive 
which did not com­
pare is locked in the 
data buffer and can 
be examined by read­
ing the RHDB register. 

This bit can also be 
set or cleared by writ­
ing into RHCSI regis­
ter_ If written thru 
RHCS3 register write 
operation is not per­
formed into a drive 
register simultaneous­
ly-



BIT 

5-4 Not Used 

3-0 IPCK (3:0) 
I nvert Parity 
Check (3:0) 
Read/Write 

SET BY/CLEARED BY 

Always read as a 0 

These bits are written 
by the program to con­
trol the data parity de­
tection logic_ When set 
inverse parity is 
checked with data dur­
ing memory transfers of 
Write and Write Check 
operations_ 

Data Buffer Register (RHOB) 

REMARKS 

Parity control is pro­
vided for each byte in 
double word ad-
dresses_ 
Le_ 
IPCK O-Even Word, 

Even Byte 
IPCK I-Even Word, 

Odd Byte 
IPCK 2-0dd Word t 

Even Byte 
IPCK 3-0dd Word, 

Odd Byte 

This register provides a maintenance tool to check the data buffer in the 
contro"er_ A total of 8 words is accepted before the data buffer becomes 
full. Successive reads from DB read out words in the same order in 
which they were entered into the data buffer. 

The IR (input ready) and OR (output ready) status indicators in the 
RHCS2 register are provided ·so that the programmer can determine 
when words can be read from or written into the RHOB. IR should be 
asserted before attempting a write into DB; OR should be asserted 
before attempting a read from DB. 

The RHOB register can be read and written only as an entire word. Any 
attempt to write a byte wi" cause an entire word to be written. Reading 
the DB register is a "destructive read-out" operation: the top data word 
in the data buffer is removed by the action of reading DB, and a new 
data word (if present) replaces it a short time later. Conversely, the ac­
tion of writing the DB register does not destroy the "contents" of DB; 
it merely causes one more data word to be inserted into the data buffer 
(if it was not full). 

BIT 

15-00 
OB(15:00) 
Data Buffer 

(15:00) 
Read/Write 

Data Buffer Bit Usage 

DATA BUFFER BIT 
ASSIGNMENTS 

When read, the con­
tents of OBUF (internal 
register) are delivered. 
Upon completion of the 
read the next sequen­
tial word in the buffer 

10-15 

REMARKS 

Used by the program 
for diagnostic pur­
poses. When the reg­
ister is written into, IR 
is cleared until the DB 
is ready to accept a 



BIT 
DATA BUFFER BIT 

ASSIGNMENTS 

will be clocked into 
OBUF. 

NOTE 

REMARKS 

new word. When the 
register is read, it will 
cause OR to be 
cleared until a new 
word is ready. During 
a Write Check Error 
condition the data 
word read from the 
disk which did not 
compare with the cor· 
responding word in 
memory is frozen in 
RHDB for examination 
by the program. 

Appendix B contains register diagrams for each 
High Speed I/O subsystem. Detailed descrip­
tions of bit assignments for each I/O device reg­
ister may be found in the PDP-ll Peripherals 
Handbook, 1975 edition. 

10-16 



10-17 



..... 
o 
..... 
00 



CHAPTER 11 

CONSOLE OPERATION 

11.1 INTRODUCTION 
The PDP-ll/70 console allows direct control of the computer system_ It 
contains a power switch for the CPU, which is also usually used as the 
Master Switch for the system_ The console is used for starting, stopping, 
resetting, and debugging_ Lights and switches provide the facilities for 
monitoring operation, system control, and maintenance_ Debugging and 
detailed tracing of operations can be accomplished by having the com­
puter execute single instructions or single cycles_ Contents of all loca­
tions can be examined, and data can be entered manually from the 
console switches_ 

11.2 GENERAL 
The PDP-ll/70 Operator's Console provides the following facilities: 

a) Power Switch (with a key lock) 

b) ADDRESS Register display (22 bits) 

c) DATA Register display (16 bits), plus Parity Bit Low Byte, & Parity 
Bit High Byte 

d) Switch Register (22 switches) 

e) Error Lights 
ADRS ERR (Address Error) 
PAR ERR (Parity Error) 

f) Processor State Lights (7 indicators) 
RUN 
PAUSE 
MASTER 
USER 
SUPERVISOR 
KERNEL 
DATA 

g) Mapping Lights 
16 BIT 
18 BIT 
22 BIT 

h) ADDRESS Display Select Switch (8 positions) 

~~~~ b } SUPER I _ 
SUPER 0 (Virtual) 

KERNEL I 
KERNEL 0 
PROG PHY (Program Physical) 
CONS PHY (Console Physical) 

11-1 



i) DATA Display Select Switch (4 positions) 
DATA PATHS 
BUS REGISTER 
ADRS FPP/CPU 
DISPLAY REGISTER 

j) LAMP TEST SWITCH 

k) Control Switches 
LOAD ADRS 
EXAM (Examine) 
DEP (Deposit) 
CO NT (Continue) 
ENABLE/ HALT 
S INST/S BUS CYCLE (Single Instruction/Single Bus Cycle) 
START 

11.3 STARTING AN'D STOPPING 

Starting 
Once power is on, execution can be started by placing the ENABLE/ 
HALT Switch in the ENABLE position, putting the starting address in 
the Switch Register, and depressing the LOAD ADRS Switch. Verify in the 
Address Display Lights that the address was entered correctly, then 
depress the START Switch. The computer system will be cleared and will 
then start running. Once execution has begun, depressing the START 
Switch again has no effect. 

If the system needs to be initialized but execution is not wanted, the 
START Switch should be depressed while the HALT/ENABLE Switch is 
in the HALT position. 

Stopping 
Set the ENABLE/HALT Switch to the HALT position. The computer will 
stop execution, but the contents of all memory locations will be retained. 
The switch can then be set to the ENABLE position with no effect on 
the system. 

NOTE 
NPR's are still serviced after a halt from the 
console if S BUS CYCLE is disabled. 

Continuing 
After the computer has been stopped, execution can be resumed 
from the point at which it was halted by using the CONT (Continue) 
Switch. The function of the CO NT Switch depends on the position of the 
ENABLE/HALT Switch: 

ENABLE (up) 

HALT (down) 

CPU resumes normal execution. 

The mode is used for debugging purposes and 
forces execution of only a single instruction or 
a single bus cycle. This is discussed in Section 
11.7. 

11.4 REFERENCING MEMORY 

Unmapped References 
When performing unmapped memory references from the console, the 

11·2 



Address Select Switch must be set to CONS PHY. This means that the 
22-bit address entered in the Switch Register should be the physical 
address desired. To examine a memory location, depress the LOAD 
ADRS Switch and then the EXAM Switch. The address referenced will 
appear in the Address Display Lights. The Data Select Switch should be 
selecting DATA PATHS, and the contents of that location are displayed 
in the Data Display Lights. To deposit information into a memory loca­
tion, depress the LOAD ADRS Switch, then enter the desired data in the 
Switch Register and raise the DEP Switch. The DATA Select Switch 
should be in the DATA PATHS position, and the deposited information 
will appear in the Data Display Lights. 

Mapped References 
Sometimes when software is running with Memory Management enabled 
the physical addresses generated are not known. This makes examining 
and depositing memory locations more difficult. For this reas.on, the 6 
positions KERNEL I through USER D of the Address Select Switch are 
provided. When doing a memory reference the low order 16 bits of the 
Switch Register are considered to be a Virtual Address and are relocated 
by Memory Management using the set of PAR/PDR's indicated by the 
Address Select Switch. 

To examine a memory location, depress the LOAD ADRS Switch and the 
EXAM Switch. The data Select Switch should be selecting DATA PATHS, 
and the contents of that location are displayed in the DATA Display 
Lights. To deposit information ino a memory location, depress the LOAD 
ADRS Switch, then enter the desired data in the Switch Register and 
raise the DEP Switch. The Data Select Switch should be in the DATA 
PATHS position, and the deposited information will appear in the DATA 
DISPLAY Lights. 

The PROG PHY (Program Physical) position of the Address Select Switch 
is used as a debugging tool. After an examine or deposit has been per­
formed on a virtual address, changing the Address Select Switch to 
select PROG PHY will display the Physical Address generated by Memory 
Manag"!ment in the Address Display Lights. Using the PROG PHY posi­
tion in any other way will produce meaningless results. 

NOTE 
An EXAM or DEP operation which causes an 
addressing error (ADRS ERR or PAR ERR) will 
be aborted and must be corrected by perform­
ing a new LOAD ADRS operation with a valid 
address. 

11.5 STEP OPERATIONS 
Performing more than one EXAM operation in a row or more than one 
DEP operation in a row results in a STEP-operation. Depressing the 
EXAM Switch after a previous examine of a location displays the con­
tents of the next location in memory. Raising the DEP Switch after a 
previous deposit into a memory location causes the current contents of 
the Switch Register to be deposited into the next location in memory. 

In each case, the Address Display is updated by 2 to hold the value of 
the now current address. This· allows consecutive EXAM operations and 

11-3 



consecutive DEP operations without the use of the LOAD ADRS Switch. 
An EXAM-STEP or DEP-STEP operation will not cross a 32K word 
memory block boundary. 

NOTE 
The EXAM and DEP Switches are coupled to en­
able an EXAM-DEP-EXAM sequence to be 
carried out on a location without having to do 
extra LOAD ADRS operations. The following ex­
ample deposits values into consecutive memory 
locations. 

Operation 
(Activate Switch) 

LOAD ADRS 
EXAM 
DEP 
EXAM 
EXAM (result is 

EXAM-STEP) 
DEP 
EXAM 

11.6 GENERAL REGISTERS 

Location shown in 
ADDRESS Display 

X 
X 
X 
X 
X+2 

X+2 
X+2 

The General Registers can be examined and deposited using the EXAM 
and DEP Switches provided the previous LOAD ADRS operation loaded 
the Address Display with a "register address." 

Address 

17 777 700 
I 
I 
I 
I 

17 777 705 
17 777 706 
17 777 707 
17 777 710 

I 
I 
I 
I 

17 777 715 
17 777 716 
17 777 717 

Register 

Register a (Set 0) 
I 
I 
I 
I 

Register 5 (Set 0) 
Register 6, Kernel Mode 
Program Counter 
Register 0 (Set 1) 

I 
I 
I 
I 

Register 5, (Set 1) 
Register 6, Supervisor Mode 
Register 6, User Mode 

Examining and depositing into General Register Addresses is indepen­
dent of the Address Select Switch. It is not possible to be mapped to a 
Genera I Register. 

EXAM-STEP and DEP-STEP operations can be performed on the General 
Registers, similar to that for memory locations, except that: 

a) ADDRESS Display is incremented by 1 (instead of 2) 

b) The STEP after address 17 777 717 is 17 777 700, such that 
the addresses are looped. 

11-4 



c) It is not possible to STEP up to the first General Register (17 
777 700) from 17 777 676 

11.7 SINGLE INSTRUCTION/SINGLE BUS CYCLE 
Once the machine is halted, a useful debugging tool is being able to 
execute code, a small segment at a time. The S INST / S BUS CYCLE 
(Single Instruction/Single Bus Cycle) Switch provides that capability. 
The ENABLE/HALT Switch must be in the HALT position. To start execu· 
tion of a segment depress the CaNT Switch. How much is executed is a 
function of the S INST /S BUS CYCLE Switch. 

Position 

S INST Depressing the CaNT Switch will result in the exe· 
cution of one instruction. This means that the 
machine state can be determined after each in· 
struction. Examining and depositing into memory 
locations is a method of accomplishing this. The 
contents of the DATA DISPLAY LIGHTS are not nec· 
essarily meaningful. 

S BUS CYCLE For this mode to have any meaning, the Data Se· 
lect Switch should be selecting the BUS REG (Bus 
Register). Depressing the CaNT Switch will execute 
until the end of the next bus cycle. The Address 
Display Lights will then contain the address of the 
location that- the bus cycle was performed at. (Vir­
tual or Physical, depending on the position of the 
Address Select Switch). The DATA Display Lights, 
on a read operation, will contain the data that was 
read (this could be an instruction or data). During 
a write operation, the lights will contain the data 
just written (except during a stack operation or 
Floating Point instruction). 

Examine and deposit operations are not able to be 
used in this mode. Depressing the LOAD ARS, 
EXAM, or DEP Switch will not cause anything to­
happen. If an examine or deposit operation is de· 
sired, the S INST / S BUS CYCLE Switch should be 
changed to select S INST and the CaNT Switch 
should be depressed once. (This will cause execu­
tion until the end of the current instruction). The 
system will then be ready to perform an examine 
or deposit. 

11.8 FUNCTIONS OF SWITCHES & INDICATORS 

11.8.1 Power Switch 

OFF 

POWER 

LOCK 

Power to the processor is OFF. 

Power to the processor is ON, and all console 
switches function normally. 

Power to the processor is ON, but the 7 con­
trol switches LOAD ADRS through START are 
disabled. All other switches are functional. 

11-5 



11.8.2 Control Switches 

LOAD ADRS (Load Address) 
When the LOAD ADRS Switch is depressed, the contents of the Switch 
Register are loaded into the Address Display. The address displayed in 
the Address Display Lights is a function of the position of the Address 
Select Switch. 

EXAM (Examine) 
Depressing the EXAM Switch causes the contents of the current location 
specified in the Address Display to be displayed in the DATA Display 
Register when the Data Select Switch is in the DATA PATHS position. 
The address in the Address Display will be mapped or unmapped de­
pending on the position of the Address Select Switch. The location dis­
played in the Address Display Lights is also a function of that switch. 

DEP (Deposit) 
Raising the DEP Switch causes the current contents of the Switch Regis­
ter to be deposited into the address specified by the current contents 
of the Address Display. 

The address in the Address Display will be mapped or unmapped de­
pending on the position of the Address Select Switch. The location dis­
played in the Address Display Lights is also a function of that switch. 

CONT (Continue) 
Depressing the CaNT Switch causes the CPU to resume execution. 
The CaNT Switch has no effect when the CPU is in RUN state. 

ENABLE/HALT 
The ENABLE/HALT Switch is a two position switch used to stop machine 
execution and to enable the system to run. 

S/INST-S/BUS CYCLE (Single Instruction/Single Bus Cycle) 
The S/INST-S/BUS CYCLE Switch affects only the operation of the 
CONTINUE Switch. It controls whether the machine stops after instruc­
tions or bus cycles. This switch has no effect on any switches when the 
ENABLE/ HALT Switch is set to ENABLE. 

START 
The functions of the START Switch depend upon the setting of the 
ENABLE/HALT Switch as follows: 

ENABLE 

HALT 

11.8.3 Switch Register 

Starts execution 

Clears the computer system 

The switches are used to manually load data or an address into the pro­
cessor, as determined by the control switches and the Address Select 
Switch. 

Note that bits 0 to 15 of the current setting of the Switch Register may 
be read under program control from a read only register at address 
17 777 570. 

11.8.4 Lamp Test 
The Lamp Test Switch (which is not labeled) is located between the 
Switch Register and the LOAD ADRS Switch. It is used for maintenance 

11-6 



purposes. When the Lamp Test Switch is raised, all console indicator 
lights should go on. An indicator which does not light is defective and 
should be replaced. 

11.8.5 Address Select Switch 

VIRTUAL 
(6 positions for 
User, Supervisor, 
& Kernel) 

CONS PHY 
(Console Physical) 

PROG PHY 
(Program Physical) 

11.8_6 Address Display 

Uses a 16·bit Virtual Address where bits 16 
to 21 are always OFF. 

Uses a 22·bit Physical Address to perform 
console operations (e.g. LOAD ADRS, EXAM, 
& DEP). 

Displays the 22-bit Physical Address of the 
current bus cycle that was generated by the 
Memory Management Unit. 

The ADDRESS Display lights are used to show the address of data being 
examined or just deposited. The address is interpreted as a Virtual or 
Physical Address as determined by the Address Select Switch. 

11.8.7 Data Select Switch 

DATA PATHS The normal display mode, shows examined 
or deposited data. 

BUS REG The internal CPU register used for bus cy­
cles. 

I'ADRS FPP/CPU The ROM address, FPP control micro-pro­
gram (bits 15 to 8) and the CPU control 
micro· program (bits 7 to 0). 

DISPLAY REGISTER The contents of the Display Register. This 
has an add ress of 17 777 570. 

11.8.8 Data Display 
The Data Display lights are used to show the 16·bit word data just exam­
ined or deposited or other data within the CPU. The PARITY HIGH & 
LOW lights indicate the parity bit for the respective bytes on read op­
erations; on write operations the bits are off. The interpretation of the 
data is determined by the Data Select Switch. 

11.8.9 Status Indicator Lights 

Error Indicators 

PAR ERR 

ADRS ERR 

Lights to indicate a parity error during a ref­
erence to memory. 

Lights to indicate any of the following ad­
dressing errors: 

a) Reference of non-existent memory 

b) Access control violation 

c) Reference of unassigned memory pages 

11-7 



Processor State 

RUN 

PAUSE 

MASTER 

Mode 

USER 

SUPER 
(Supervisor) 

KERNEL 

DATA 

Address 

16 bit 

18 bit 

22 bit 

The CPU is executing program instructions. 
If the instruction being executed is a WAIT 
instruction, the RUN light will be on. The 
CPU will proceed from the WAIT on receipt of 
an external interrupt, or on console interven­
tion. 

The CPU is inactive because the current in­
struction execution has been completed as 
far as possible without more data from the 
UNIBUS or memory or the CPU is waiting 
to regain control of the UNIBUS (UNIBUS 
mastership). 

The CPU is in control of the UNIBUS 
(UNIBUS Master only when it needs the 
UNIBUS). The CPU relinquishes control of 
the UNIBUS during DMA and NPR data 
transfers 

The CPU is executing program instructions in 
USER mode. 

The CPU is executing program instructions in 
SUPERVISOR mode. 

The CPU is executing program instructions in 
KERNEL mode. 

If on, the last memory reference was to D 
address space in the current CPU mode. If 
off, the last memory reference was to I ad­
dress space in the current CPU mode. 

Lights when the CPU is using 16-bit map-
ping. 

Lights when the CPU is using 18-bit map-
ping. 

Lights when the CPU is using 22-bit map-
ping. 

11-8 



11.9 M9301·YC BOOTSTRAP LOADER 

FEATURES 

• Contains bootstrap routines for a wide range of storage media 

• Allows bootstrapping of any drive unit on a particular controller 

• Runs diagnostic programs to test the basic CPU, Cache, and Main 
Memory 

• Allows booting to selected physical memory segments in 32K in· 
crement 

• Switch selectable default loading device 

DESCRIPTION 
The M9301·YC is a dedicated diagnostic bootstrap loader for use with 
the PDp·11/70. It contains a ROM organized as 512 16·bit words which 
are separated into hardware verification programs and bootstrap routines. 
It is a double height extended module which occupies rows E and F of 
slot one in the PDP·11/70 CPU. 

DIAGNOSTICS 
The diagnostic portion of the M9301·YC will test the basic CPU to in· 
clude addressing modes, and most of the instructions available in the 
PDP·11/70. The ROM will then test memory from virtual addresses 
100[8) to 157776[8). It does this first with the cache disabled to verify 
main memory, and then verifies the cache by retesting memory and 
enabling first one cache group, the other, and finally both cache groups 
simultaneouslY. Any errors detected will cause the program to halt. If 
any of the cache tests fail, the system can still be booted by pressing the 
console continue switch. The program will set the cache to force misses 
in both groups and proceed to boot. 

The M9301·YC can be selected via the console switches <15:12> to 
test and load physical sections of memory other than the lowest 32K. 
The memory management and UNIBUS map can be set to use physical 
memory from 0 thru 512K Bytes. See Table 11·1. 

TABLE 11·1 Bootstrap Option Selection (switch register settings) 
The device codes are as follows: 

Switch Register <03:06> Device Booted 

1. TM11/TU10 MAGNETIC TAPE, TM11 
2. TC11/TU56 DECTAPE, TC11·G 
3. RK11/RK05 DECPACK DISK CARTRIDGE, RK11·D 
4. RP11/RP03 DISK PACK, RP11'C 
5. RESERVED FOR FUTURE DEVICE 
6. RH70/TU16 MAGNETIC TAPE SYSTEM, TWU16 
7. RH70/RP04 DISK PACK, RW04 
10. RH70/RS04 FIXED HEAD DISK, RW04 (OR RWS03) 
11. RX11/RXOl DISKETTE 

The memory blocks are as follows: 

Switch Register <08: 11 > 

O. PHYSICAL MEMORY 00000000 - 00077 776 
1. PHYSICAL MEMORY 00100000 - 00177 776 

11·9 



2. PHYSICAL MEMORY 00 200 000 - 00 277 776 
3. PHYSICAL MEMORY 00300000 - 00377 776 
4. PHYSICAL MEMORY 00400000 - 00 477 776 
5. PHYSICAL MEMORY 00 500 000 - 00 577 776 
6. PHYSICAL MEMORY 00 600 000 - 00 677 776 
7. PHYSICAL MEMORY 00 700 000 - 00 777 776 
10. PHYSICAL MEMORY 01 000 000 - 01 077 776 
11. PHYSICAL MEMORY 01 100 000 - 01177 776 
12. PHYSICAL MEMORY 01 200000 - 01 277 776 
13. PHYSICAL MEMORY 01 300 000 - 01 377 776 
14. PHYSICAL MEMORY 01 400 000 - 01 477 776 
15. PHYSICAL MEMORY 01 500 000 - 01 577 776 
16. PHYSICAL MEMORY 01 600000 - 01 677 776 
17. PHYSICAL MEMORY 01 700000 - 01 777 776 

11/70 Bootstrap 
The bootstrap portion of the program looks at the lower byte of the 
switch register to determine which one of 9 devices and which drive 
number to attempt the "BOOT" from, switches <02: 00> select the 
drive number (0 - 7), and switches <06: 03> select the device code 
(1 - 11). If the lower byte of the switch register is zero, the program will 
read the set of switches on the M9301·YC to determine the device and 
drive number. These switches can be set by field service to select a 
"DEFAULT BOOT" device. 

If the bootstrap operation fails as a result of a hardware error in the 
peripheral device the program will do a "RESET" instruction and jump 
back to the test that sets up and turns on memory management and 
tests memory. Then the program will attempt to "BOOT" again. 

STARTING PROCEDURE 
To start operation of the M9301·YC, first set the console switch register 
to 17765000 and press Load Address. Then set the console switches for 
the desired memory section storage medium, and unit number (Table 
11·1). With HALT switch in the ENABLE position, depress the START 
switch. This will cause the ROM diagnostic to run followed with a boot 
operation from the selected device. Failure of the diagnostic portion will 
be signified by a halt. Table 11·2 identifies the meaning of each error 
halt. If it is desired not to run the diagnostic portion of this sequence 
and to simply boot from the default device, the following procedure is 
used. First set the console switches to 17773000 and press Load Ad­
dress. Place a's in the switch register and with the HALT switch in the 
ENABLE position, press START. This will then cause the M9301-YC to 
read the switch setting located on the module to determine the device 
and unit number to boot from. 

If it is desired only to boot from a device that is not the default device, 
a similar procedure is followed. First set the console switches to 
17773000 and press Load Address. Then set the switch register to the 
desired memory section, storage medium, and unit number (Table 11-1) 
and with the HALT switch in the ENABLE position, press the START 
switch. This will cause the M9301-YC to boot the selected device. 

Starting of the boot procedure can also be done under machine control. 
Execution of a jump instruction with the destination address of either 

11-10 



17765000 or 17773000, will cause the M9301-YC to sample the console 
switches and function as described above_ 

Table 11·2 Errors 
List of error halts indexed by the address displayed 

ADDRESS DISPLAYED 
17765004 
17765020 
17765036 
17765052 
17765066 
17765076 
17765134 
17765146 
17765166 
17765204 
17765214 
17765222 
17765236 
17765260 
17765270 
17765312 
17765346 
17765360 
17765374 
17765450 
17765474 
17765510 
17765520 
17765530 
17765542 
17765550 
17765760 

17766000 

17773644 

17773654 

17773736 

17773746 

17773764 

TEST NUMBER AND SUBSYSTEM UNDER TEST 
TEST 1 BRANCH TEST 
TEST 2 BRANCH TEST 
TEST 3 BRANCH TEST 
TEST 4 BRANCH TEST 
TEST 5 BRANCH TEST 
TEST 6 BRANCH TEST 
TEST 7 REGISTER DATA PATH TEST 
TEST 10 BRANCH TEST 
TEST 11 CPU INSTRUCTION TEST 
TEST 12 CPU INSTRUCTION TEST 
TEST 13 CPU INSTRUCTION TEST 
TEST 14 "COM" INSTRUCTION TEST 
TEST 14 CPU INSTRUCTION TEST 
TEST 15 CPU INSTRUCTION TEST 
TEST 16 BRANCH TEST 
TEST 16 CPU INSTRUCTION TEST 
TEST 17 CPU INSTRUCTION TEST 
TEST 20 CPU INSTRUCTION TEST 
TEST 20 CPU INSTRUCTION TEST 
TEST 21 KERNEL PAR TEST 
TEST 22 KERNEL PDR TEST 
TEST 23 JSR TEST 
TEST 23 JSR TEST 
TEST 23 RTS TEST 
TEST 23 RTI TEST 
TEST 23 JMP TEST 
TEST 25 MAIN MEMORY DATA COMPARE 

ERROR 
TEST 25 MAIN MEMORY PARITY ERROR 

(NO RECOVERY POSSIBLE FROM THIS 
ERROR) 

TEST 26 CACHE MEMORY DATA COMPARE 
ERROR 

TEST 26 CACHE MEMORY NO HIT 
PRESSING CONTINUE HERE WILL CAUSE 
BOOT ATTEMPT FORCING MISSES 

TEST 27 CACHE MEMORY DATA COMPARE 
ERROR 

TEST 27 CACHE MEMORY NO HIT 
PRESSING CONTINUE HERE WILL CAUSE 
BOOT ATTEMPT FORCING MISSES 

TEST 25 OR 36 CACHE MEMORY PARITY 
ERROR 
PRESSING CONTINUE HERE WILL CAUSE 
BOOT ATTEMPT FORCING MISSES 

11-11 



ERROR RECOVERY 
If the processor halts in one of the two Cache tests the error is re­
coverable_ By pressing CONTINUE the program will either attempt to 
finish the test (if at either 17 773 644 or 17 773 736) or force MISSES 
in both groups of the Cache and attempt to boot the system monitor 
with the Cache fully disabled (if at either 17 773 654, 17 773 746, 
17773764)_ The run time for this program is approximately 3 seconds_ 

11-12 



APPENDIX A 

UNIBUS ADDRESSES 

A.I INTERRUPT & TRAP VECTORS 
000 (reserved) 
004 CPU errors 
010 Illegal & reserved instructions 
014 BPT, breakpoint trap 
020 lOT, input/output trap 
024 Power Fail 
030 EMT, emulator trap 
034 TRAP instruction 

040 System software 
044 System software 
050 System software 
054 System software 

060 Console Terminal, keyboard/reader 
064 Console Terminal, printer/punch 
070 PC11, paper tape reader 
074 PCl1, paper tape punch 
100 KWll·L, line clock 
104 KWll·P, programmable clock 
110 
114 Memory system errors 
120 XV Plotter 
124 DRl1·B DMA interface; (DAll-B) 
130 AD01, A/D subsystem 
134 AFCll, analog subsystem 
140 AA11, display 
144 AAl1, light pen 
150 
154 
160 
164 

170 User reserved 
174 User reserved 

200 LPll/LSl1, line printer 
204 RS04/RF11, fixed head disk 
210 RCl1, disk 
214 TC11, DECtape 
220 RKll, disk 
224 TU16/TMll, magnetic tape 
230 CDll/CMl1/CRl1, card reader 
234 UDCl1, digital control subsystem 
240 PIRQ, Program Interrupt Request (11/45) 

A-I 



244 Floating Point Error 
250 Memory Management 
254 RP04/RPll disk pack 
260 TAll, cassette 
264 

270 User reserved 
274 User reserved 

300 (start of floating vectors) 

A.2 FLOATING VECTORS 
There is a floating vector convention used for communications (and 
other) devices that interface with the PDP-ll. These vector addresses 
are assigned in order starting at 300 and proceeding upwards to 777. 
The following Table shows the assigned sequence. It can be seen that 
the first vector address, 300, is assigned to the first DCll in the system_ 
If another DCll is used, it would then be assigned vector address 310, 
etc. When the vector addresses have been assigned for all the DCll's 
(up to a maximum of 32), addresses are then assigned consecutively 
to each unit of the next highest-ranked device (KLll or DPll or DMll, 
etc.), then to the other devices in accordance with the priority ranking. 

Priority Ranking for Floating Vectors 

(starting at 300 and proceeding upwards) 

Rank Device Vector Size Max No. 
(in octal) 

1 DC 11 (10). 32 
2 KL11, DL11-A, DL11-B 10 16 
3 DPll 10 32 
4 DMll-A 10 16 
5 DNll 4 16 
6 DMll-BB 4 16 
7 DRll-A 10* 32 
8 DRll-C 10* 32 
9 PA611 Reader 4* 16 

10 PA6ll Punch 4* 16 
11 DT11 10* 8 
12 DXll 10* 4 
13 DL11-C, DL11-D, DLll-E 10 31 
14 DJll 10 16 
15 DHll 10 16 
16 GT40 10 1 
17 LPSll 30* 1 
18 DQll 10 16 
19 KWll·W 10 1 
20 DUll 10 16 

'-The first vector for the first device of this type must always be on a (10). 
boundary. 

A·2 



A.3 FLOATING ADDRESSES 
There is a floating address convention used for communications (and 
other) devices interfacing with the PDP-11. These addresses are as­
signed in order starting at 760 010 and proceeding upwards to 763 776. 

Floating addresses are assigned in the following sequence: 

Rank Device First Address 
(if only floating address device in the system) 

1 OJ 11 
2 DHll 
3 DQll 
4 DUll 

A.4 DEVICE ADDRESSES 

777776 Processor Status word (PS) 
777774 Stack Limit (SL) 

760010 
760020 
760030 
760040 

777772 Program Interrupt Request (PIR) 
777 770 Microprogram Break 

777766 CPU Error 
777 764 System I/O 
777 762 Upper SiZe} . 
777760 Lower Size System Size 

777756 
777754 
777752 Hit/Miss 
777750 Maintenance 

777746 Control 
777744 Memory System Error 
777 742 High Error Address 
777740 Low Error Address 

777717 User R6 (SP) 
777 716 Supervisor R6 (SP) 
777715 

} 
R5 

777 714 R4 
777 713 General registers, R3 
777 712 Set 1 R2 
777711 R1 
777710 RO 

777707 R7 (PC) 
777706 Kernel R6 (SP) 
777705 

} 
R5 

777 704 R4 
777 703 General registers, R3 
777702 Set 0 R2 
777701 R1 
777700 RO 

A-3 



777676 } 
User Data PAR, reg 0-7 

777 660 

777656 

777 640 
} User Instruction PAR, reg 0-7 

777 636 } 
User Data PDR, reg 0-7 

777620 

777 616 

777 600 

777 576 
777 574 
777572 

777 570 

777 566 
777 564 
777 562 
777 560 

777 556 
777 554 
777 552 
777 550 

777546 

777 516 
777 514 
777 512 
777 510 

777 506 
777504 
777 502 
777 500 

777476 
777 474 
777472 
777 470 
777 466 
777 464 
777 462 
777 460 

777 456 
777 454 
777 452 
777 450 
777 446 
777 444 
777 442 
777 440 

} User Instruction PDR, reg 0-7 

(MMR2) 
Memory Mgt regs, (MMR1) 

(MMRO) 

Console Switch & Display Register 

printer/punch data 
Console Terminal, printer/punch status 

keyboard/ reader data 
keyboard/reader status 

punch data (PPS) 
PCll/PRll, punch status (PPS) 

reader data (PRS) 
reader status (PRS) 

KW11-l, clock status (lKS) 

pri nter data 
lPll/lSll/lVll, printer status 

TAll, cassette data (TADS) 
cassette status (TACS) 

look ahead (ADS) 
maintenance (MA) 
disk data (DSR) 

RFll, adrs ext error (DAE) 
disk address (DAR) 
current mem adrs (CMA) 
word count (WC) 
disk status (DCS) 

disk data (RCDS) 
maintenance (RCMN) 
current address (RCCA) 

RCll, word count (RCWC) 
disk status (RCCS) 
error status (RCER) 
disk address (RCDA) 
look ahead (RClA) 

A-4 



777436 
777434 
777 432 
777430 
777426 
777424 
777 422 
777420 

777416 
777414 
777 412 
777 410 
777406 
777404 
777 402 
777400 

777356 
777354 
777352 
777 350 
777 346 
777344 
777 342 
777 340 

777336 } 

777 320 

777316 
777 314 
777 312 
777310 
777306 
777304 
777302 
777 300 

777 166 
777164 
777 162 
777160 

776776 
776774 
776772 
776770 

776766 
776764 
776762 
776760 
776756 
776754 

#8 
#7 
#6 

DTll, bus switch #5 
#4 
#3 
#2 
#1 

disk data (RKDB) 
maintenance 
disk address (RKDA) 

RKll, bus address (RKBA) 
word count (RKWC) 
disk status (RKCS) 
errorr (RKER) 
drive status (RKDS) 

DECtape data (TCDT) 
TCll, bus address (TCBA) 

word count (TCWC) 
command (TCeM) 
DECtape status (TCST) 

KEll·A, EAE #2 

arithmetic shift 
logical shift 
normalize 

KEll·A, EAE # 1, step count/status register 
multiply 
multiplier quotient 
accumulator 
divide 

I 
CRll/ data (CRB2) comp I 
CMll, data (CRBl) I CDll, 

status (CRS) I 

ADOl, A/D data (ADDB) 
A/D status (ADCS) 

AAll # 1, 

register 4 (DAC4) 
register 3 (DAC3) 
register 2 (DAC2) 
register 1 (DAC1) 
D/ A status (CSR) 

A·5 

data (CDDB) 
cur adrs (CDBA) 
col count (CDCC) 
status (CDST) 



776752 

776750 
776746 
776744 
776742 
776740 
776736 
776734 
776732 
776730 
776726 
776724 
776722 
776720 
776716 
776714 
776712 
776710 

776706 

776704 

776702 
776700 

776676 } 
776500 

776476 } 776400 

776376 } 776200 

776176 } 775610 

775576 } 775400 

775376 } 
775200 

775176 } 
775000 

RP04, 

cant & status # 3 
(RPCS3) 

bus adrs ext (RPBAE) I 
ECC pattern (RPEC2) 
ECC position (RPEC1) I 
error #3 (RPER3) 
error #2 (RPER2) I 
cur cylinder (RPCC) I 
desired cyl (RPDC) 
offset (RPOF) I 
serial number (RPSN) 
drive type (RPDT) I 
maintenance (RPMR) 
data buffer (RPDB) I 
look ahead (RPLA) RPll, 
attn summary (RPAS) I 
error # 1 (RPER1) 
drive status (RPDS) 
cont & status # 2 

(RPCS2) 
sector/track adrs 

(RPDA) 
UNIBUS address 

(RPBA) 
word count (RPWC) 
cont & status # 1 

(RPCS1) 

#16 
DL11-A, -B, 

AAll, 

DXll 

#5 

#2 

DL11-C, -D, -E, 

#4 
DS11, 

#1 

#16 
DNll, 

#1 

#16 
DMll, 

#1 

#1 

#31 

#1 

A-6 

silo memory (SILO) 
cyl adrs (SUCA) 
maint 3 (RPM3) 
maint 2 (RPM2) 
maint 1 (RPM 1) 
disk adrs (RPDA) 
cyl adrs (RPCA) 
bus adrs (RPBA) 
word count (RPWC) 
disk status (RPCS) 
error (RPER) 
disk status ~RPDS) 



774776 } 

774400 

774376 

774 000 

773766 

773 000 

772776 

772700 

772-676 

772 600 

772576 

} 
} 
} 
} 

DPll. 

DCll. 

#1 

#32 

#32 

#1 

PDP-ll/70 diagnostic bootstrap (half of it) 

PA611 typeset punch 

PA611 typeset reader 

maintenance (AFMR) 
772 574 AFCII. 
772 572 

MX channel/gain (AFCG) 
flying cap data (AFBR) 
flying cap status (AFCS) 772570 

772556 } 

772550 
XYll plotter 

772546 
772544 
772542 
772540 

772536 
772534 
772532 
772530 
772 526 
772524 
772522 
772500 

772516 

772476 
772474 
772472 
772470 
772466 
772464 
772462 
772460 
772456 
772454 
772 452 
772450 

counter 
KWll-P. count set 

clock status 

read lines (MTRD) 
tape data (MTD) 

TMll. memory address (MTCMA) 
byte record counter (MTBRC) 
command (MTC) 
tape status (MTS) 

Memory Mgt reg (MMR3) 

cont & status # 3 (MTCS3) 
bus adrs ext (MTBAE) 
tape control (MTTC) 
serial number (MTSN) 
drive type (MTDT) 
maintenance (MTMR) 
data buffer (MTDB) 
check character (MTCK) 

TUI6. attention summary (MTAS) 
error (MTER) 
drive status (MTDS) 
cont & status #2 (MTCS2) 

A-7 



772446 frame count (MTFC) 
772444 UNIBUS address (MTBA) 
772442 word count (MTWC) 
772440 cont & status # 1 (MTCS1) 

772436 } DRll-B #2 
772430 

772416 data (DRDB) 
772414 DRll-B #1, status (DRST) 
772412 bus address (DRBA) 
772410 word count (DRWC) 

772376 } Kernel Data PAR, reg 0-7 
772360 

772356 } Kernel Instruction PAR, reg 0-7 
772340 

772336 } Kernel Data PDR, reg 0-7 
772320 

772316 } Kernel Instruction PDR, reg 0-7 
772300 

772276 } Supervisor Data PAR, reg 0-7 
772260 

772256 } Supervisor Instruction PAR, reg 0-7 
772240 

772236 } Supervisor Data Descriptor PDR, reg 0-7 
772 220 

772216 } Supervisor Instruction Descriptor PDR, reg 0-7 
772200 

772 136 } UNIBUS Memory Parity 
772110 

772072 cont & status # 3 (RSCS3) 
772070 bus adrs ext (RSBAE) 
772066 drive type (RSDT) 
772064 maintenance (RSMR) 
772062 data buffer (RSDB) 
772060 look ahead (RSLA) 
772056 attention summary (RSAS) 
772054 RS04, error (RSER) 

A-8 



772052 drive status (RSDS) 
772050 control & status # 2 (RSCS2) 
772046 RS04, desired disk adrs (RSDA) 
772044 UNIBUS address (RSBA) 
772 042 word count (RSWC) 
772040 control & status # 1 (RSCSl) 

772016 
} GT40 #2 

772010 

772006 Y axis 
772004 X axis 
772002 GT40 #1 status 
772000 program counter 

771 776 status (UDCS) 
771774 UDCll, scan (UDSR) 
771 772 
771770 

771 776 } UDC functional I/O modules 
771000 

770776 } #8 
KGll, 

770700 #1 

770676 } #16 
DMll-BB, 

770500 #1 

770436 DMA 
770434 
770432 
770430 
770426 
770424 
770422 ext DAC 
770420 D/A YR 
770416 D/A XR 
770414 D/A SR 
770412 LPSll, D I/O output 
770410 D I/O input 
770406 CKBR 
770404 CKSR 
770402 ADBR 
770400 ADSR 

770366 } UNIBUS Map 
770200 

767776 } GT40 bootstrap 
766000 

A-9 



765776 } 

765000 

PDp·11/70 diagnostic bootstrap 
(half of it) 

763776 

760010 

(top of floating addresses) 

(start of floating addresses) 

NOTE 
For the PDp·11/70, all addresses in Appendix A 
between 777 777 and 776 000 should be pre· 
fixed with 17. The address range is then 17 777 
777 to 17 760 000. 

A·lQ 



APPENDIX B 

CPU & MASS STORAGE DEVICE REGISTERS 

Processor Status Word (PS) 17 777 776 

15 14 13 12 11 10 

, ,I 
~ 

CURRENT MODE .----.J f 
PREVIOUS MODE .------'­
GENERAL REGISTER 
SET{O, 11-----------' 

• MODE' 00 -KERNEL 
a 1 -SUPERVISOR 
11 =USER 

NOT USED PRIORITY 

Program Interrupt Request (PIR) 17 777 772 

CPU Error Register 17 777 766 

I I 
ILLEGAL HALT 1 r ) 
ODD ADDRESS ERRO~~R~~~===========~~~ ~ZI~~X~J.i~o~~M5!RY (CACHE! 

YELLOW ZONE STACK LII"M~IT_=================-'___.J RED ZONE STACK lIMIT-

Hit/Miss Register 17 777 752 

15 6 - _FLOW 

Maintenance Register 17 777 750 

1 a 

15 
12111 8 7 4 3 a 

I ,~ 
MAIN MEMORV PARITy----1 ~r 
FAST ADDRESS PARITY---------' 

FAST DATA PARITY-===============~~ ____ J MEMORY MARGINS· 

8-1 



Control Register 17 777 746 

15 6 - I I 
FORCE REPLACEMENT GROUP 0 
FORCE MISS GROUP I 
FORCE MISS GROUP 0 

FORCE REPLACEMENT G~O~U~P~I~==============~=:!_Jr J J 

DISABLE UNIBUS.T~R,:A::P========================~~ DISABLE TRAPS-

Memory System Error Register 17 777 744 

15 14 13 12 11 10 

CPU ABORT 
CPU ABORT 
UNIBUS PAR 
UNIBUS MU 
CPU ERROR 
UNIBUS ERR 
CPU UNIBU 
ERROR IN M 
DATA MEM 
DATA MEM 
ADDRESS M 
ADDRESS M 
MAIN MEM 
MAIN MEM 
MAIN MEM 
MAIN MEM 

~RORJ JJ 
lTV ERROR 

LTIPLE PARITY ERROR 

OR 
S ABORT 
AINTENANCE 
ORY GROUP I 
ORY GROUP 0 
EMORV GROUP 1 
EMORV GROUP 0 
ORV ODD WORD 
ORV EVEN WORD 
ORV ADDRESS PARITV ERROR 
ORV TIMEOUT 

1 
1 

High Error Address Register 17 777 742 

Low Error Address Register 17 777 740 

15 

LOW ADDRESS (l6 BITS) 

8-2 

I 

o 
DATA ERRORS . 

1 I 

HIGH ADDRESS 

\LSB I 



RP04 Registers 

RPeS! {776700} 

RPWC (776702) 

RPBA (776704) 

RPOA (776706) 

RPCS2 (776710) 

RPDS (776712) 

RPERI (7767141 

RPAS (776716) 

RPLA (776720) 

R POB (776722) 

RPMR (1767241 

RPQT (776726) 

RPSN (776730) 

RPOF (776732) 

RPDC (77"'734) 

RPec (7767361 

RPER2 (776740) 

RPER3 1776742 ) 

RPEel (7167441 

RPEe2 (776746) 

RPBAE (776750) 

RPeS3 (776752) 

8-3 



RS04/RS03 Registers 
RSCSl-772040 

I m I ERR I PIP I MOL I WRL I LeT I 0 I oPR I DR' I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 

8-4 



TU16 Registers 

MTCS1 772440 

MTWC 772442 

MTBA 772444 

MTFC 772446 

MTDS 

MTER 772454 

MTAS 772456 

MTCK 772460 

MTDB 772462 

MrMR 772464 

MTDT 772466 

MTSN 772470 

MTTC 772472 

MTBAE 772474 

MTCS3 772476 

8·5 



8-6 



APPENDIX C 

INSTRUCTION TIMING 

C.I INSTRUCTION EXECUTION TIME 
The execution time for an instruction depends on the instruction itself, 
the modes of addressing used, and the type of memory being referenced. 
In the most general case, the Instruction Execution Time is the sum of a 
Source Address Time, and an Execute, Fetch Time. 

Instr Time = SRC Time + DST Time + EF Time 

Some of the instructions require only some of these times, and are so 
noted. Times are typical; processor timing, with core memory, may vary 
+15% to -10%. 
C.I.l BASIC INSTRUCTION SET TIMING 
Double Operand 

all instructions, 
except MOV: Instr Time = SRC Time + DST Time 
(but including MOVB) + EF Time 
MOV Instruction: Instr Time = SRC Time + EF Time 
(word only) 

Single Operand 
all instructions: Instr Time = DST Time + EF Time or 

Instr Time = SRC Time + EF Time 

Branch, Jump, Control, Trap & Misc 
all instructions: Instr Time = EF Time 

C.1.2 USING THE CHART TIMES 
To compute a particular instruction time, first find the instruction "EF" 
Time. Select the proper EF Time for the SRC and DST modes. Observe 
all "NOTES" to the EF Time by adding the correct amount to basic EF 
number. 

Next, note whether the particular instruction requires the inclusion of 
SRC and DST Times, if so, add the appropriate amounts to correct EF 
number. 

C.1.3 CHART TIMES 
The times given in-the chart for Cache "hits"; that is, all the read cycles 
are assumed to be in the Cache. The number of read cycles in each 
subset of the instruction is also included so that timing can be calcu· 
lated for a specific case of hits and misses, or timing can be calculated 
based on an average hit rate. 
a) Specific hits and misses 

Add 1.02 ~sec for each read cycle which is a miss instead of a hit. 

b) Average hit rate 
If PH is the percent of reads that are hits, add 1.02 X (1 - PH) X 
(Number of read cycles) to the instruction timing. 

C·1 



For example, an ADD A,B instruction using Mode 6 (indexed) address 
modes: 

1) All Hits: 

SRC time = 0.60 /Lsec 
DSTtime = 0.60 /Lsec 
EF time = 1.35/Lsec 

TOTAL = 2.55/Lsec 

2) 4 Hits, 1 Miss 
Total = 2.55 + 1.02 

= 3.57 /Lsec 

3) Read hit rate of 90% 

2 read cycles 
2 read cycles 
1 read cycle 

5 read cycles 

Total = 2.55 + (1.02) (.1) (5) 
= 3.06/Lsec 

C.1.4 NOTES 

1. The times specified generally apply to Word instructions. In most 
cases Even Byte instructions have the same time, with some Odd 
Byte instructions taking longer. All exceptions are noted. 

2. Timing is given without regard for NRP or BR serving. Core memory 
is assumed to be iocated within the first 128K memory unit. 

3. Times are not affected if Memory Management is enabled. 

4. All times are in microseconds. 

C.1.5 SOURCE ADDRESS TIME 

Instruction 

Double 
Operand 

Source 
Mode 

0 
1 
2 
3 
4 
5 
6 
7 

Read 
Memory 

SRC Time Cycles 

.00 0 

.30 1 

.30 1 

.75 2 

.45 1 

.90 2 

.60 2 
1.05 3 

C-2 



C.l.6 DESTINATION ADDRESS TIME 

Instruction 
DST 

Mode DST Time (A) 

Read 
Memory 
Cycles 

Single Operand 
and Double Oper· 
and (except MOV, 
MTPI, MTPD, JMP, 
JRS 

o 
1 
2 
3 
4 
5 
6 
7 

.00 

.30 

.30 

.75 

.45 

.90 

.60 
1.05 

o 
1 
1 
2 
1 
2 
2 
3 

NOTE (A): Add .15 ILsec for odd byte instructions, except DST Mode O. 

C.l.7 EXECUTE, FETCH TIME 

Double Operand 

Instruction EF Time 

(SRC 
Mode 0) 

(Use with (DST Read 
SRC Time Mode 0) Mem 
and DST Time) Cyc 

ADD, SUB, .30 1 
BIC, BIS MOVB (D) 

CMP, BIT .30 1 
(D) 

XOR .30 1 
(D) 

EF Time EF Time 

{SRC (SRC 
Mode 1·7) Mode 0·7) 
(DST Read (DST Mode 1·7) 
Mode 0) Mem 

Cyc 

.45 2 1.20 
(D) (C) 

.45 1 .45 
(D) (C) 

.30 1 1.20 
(D) 

NOTE (C): Add 0.15 "sec if SRC is Rl to R7 and DST is R6 or R7. 
NOTE (D): Add 0.3 "sec if DST is R7. 

EF Time EF Time 
Instruction DST DST (SRC (SRC 
(Use with SRC Time) Mode Register Mode = 0) Mode = 1-7) 

0 0-6 .30 .45 
0 7 .60 .75 
1 0-7 1.20 1.20 
2 0-7 1.20 1.20 

MOV 3 0-7 1.65 1.65 
4 0-7 1.35 1.35 
5 0-7 1.80 1.80 
6 0-7 1.50 1.65 
7 0·7 1.95 2.10 

C-3 

Read 
Mem 
Cye 

1 

1 

1 

Read 
Memory 
Cycles 

1 
1 
1 
1 
2 
1 
2 
2 
3 



Single Operand 

EF TIME EF Time Read 
Instruction (DST Memory (DST Memory 
(Use with DST Time) Mode = 0) Cycles Mode 1 to 7) Cycles 

CLR, COM, INC, DEC, .30 
ADC, SBC, ROL, (J) 
ASL, SWAB, SXT 

NEG .75 

TST .30 
(J) 

ROR, ASR .30 
(J) 

ASH, ASHC .75 
(I) 

NOTE (H): Add 0.15 f.'sec if odd byte. 
NOTE (I): Add 0.15 f.'sec per shift. 
NOTE (J): Add 0.30 f.'sec if DST is R7. 

Instruction 

1 

1 

1 

1 

1 

(Use with SRC Times) EF Time 

MUL 
DIV 

by zero 
shortest 
longest 

Instruction 

MFPI 
MFPD 

EF Time 

1.50 
1.50 

C-4 

3.30 

.90 
7.05 
8.55 

Read 
Memory 
Cycles 

1 
1 

1.20 

1.50 

.45 

1.20 
(H) 

.90 
( I) 

1 

1 

Read 
Memory 
Cycles 

1 

1 
1 
1 

use 
with 
SRC 
times 

1 

1 

1 



Read 
DST Memory 

Instruction Mode Instruction Time Cycles 

MTPI 0 .90 1 
MTPD 1 1.65 2 

2 1.65 2 
3 2.10 3 
4 1.80 2 
5 2.25 3 
6 2.10 3 
7 2.55 4 

Branch Instructions 

Read 
Instr Time Instr Time Memory 

Instruction (Branch) (No Branch) Cycles 

BR, BNE, BEQ, .60 .30 1 
BPL, BMI, BVC, 
BVS, BCC, BOS, 
BGE, BLT, BGT, 
BLE, BHI, BLOS, 
BHIS, BLO 

SOB .60 .75 1 

Jump Instructions 

Read 
DST Memory 

Instruction Mode Instr Time Cycles 

1 .90 1 
2 .90 1 
3 1.20 2 

JMP 4 .90 1 
5 1.35 2 
6 1.05 2 
7 1.50 3 

1 1.95 1 
2 1.95 1 
3 2.25 2 

JSR 4 1.95 1 
5 2.40 2 
6 2.10 2 
7 2.55 3 

C·5 



Control, Trap & Miscellaneous Instructions 

Read 
Memory 

Instruction Instr Time Cycles 

RTS 1.05 2 
MARK .90 2 
RTI, RTT 1.50 3 

SET N, Z, V. C 
CLR, N, Z, V, C .60 1 

HALT 1.05 0 
WAIT .45 0 

WAIT Loop 
for a BR is 
.3 ILsec. 

RESET 10ms 1 
lOT, EMT, 3.30 3 
TRAP, BRT 
SPL .60 1 
INTERRUPT 2.31 2 

Fi rst Device 

C.l.S EFFECTIVE MEMORY CYCLE TIME 
The overall effective cycle time of the CPU can be calculated from the 
following formula: 

TCE = PH X [(PH X TCH) + (1 - PH) TCM] + (1 - PH) TCw 

Where TCE = Effective cycle time 
TCH = Cycle time for a read hit = 0.30 ILsec 
TC" = Cycle time for a read miss = 1.32 ILsec 
TCw = Cycle time for a write = 0.75 ILsec 
PH = Percent of cycles that are reads 
PH = Percent of reads that are hits 

Thus, for an average PDp·ll/70 program which has a read rate of 91 % 
and a read hit rate of 93%, the effective cycle time is: 

TCE = .91 X [(.93 X .30) + (.07 X 1.32)] + (.09 X .75) = .41 ILsec 

C·6 



C.2 FLOATING POINT INSTRUCTION TIMING 

INTROOUCTION 

Floating Point instruction times are calculated in a manner similar to the 
calculation of CPU instruction timing. Due to the fact that the, FPll-C is 
a separate processor operating in parallel with the main processor 
however, the calculation of Floating Point instruction times must take 
this parallel processing or overlap into account. The following is a 
description of the method used to calculate the effective Floating Point 
instruction execution times. 

DEFINITIONS 
Preinteraction 

Address Calculation 

Wait Time 

CPU time required to decode a Floating Point 
instruction OP Code and to store the general 
register referred to in the Floating Point in­
struction in a temporary Floating Point regis­
ter (FPR). This time is fixed at 450 ns. 

CPU time required to calculate the address 
of the operand. This time is dependent on the 
addressing mode specified. Refer to Table 
Col. 

CPU time spent waiting for completion by the 
Floating Point Processor of a previous Float­
ing Point instruction in the case of Load Class 
instructions. For Store Class instructions, the 
Wait Time is the summation of time during 
which the Floating Point completes a previous 
Floating Point instruction and Floating Point 
execution time for the store class instruction. 
Wait Time is calculated as follows: 

Load Class Instructions: 

Wait Time = [Floating Point execution time 
(previous FP instruction)] - [Disengage and 
Fetch Time (previous FP instruction)] - [CPU 
execution time for interposing nonfloating 
point instruction] - [Preinteraction time]­
[Address Calculation Time]. If the result is 
~O the Wait Time is O. 

Store Class Instructions: 

Wait Time = {[Floating Point execution time 
(previous Floating Point instruction)] - [CPU 
execution time for interposing nonFP instruc­
tion] - Disengage and Fetch time. (previous 
FP instruction)] - [PreinteractionJ} * + Float­
ing Point execution time] - [Address Calcula­
tion time]. If Wait Time calculation result is 
~O the Wait Time is O. 

* If result of calculation in f } is ~O then 
it becomes O. 

C-7 



Resync Time If the CPU must wait for the Floating Point 
Processor (Le .• Wait Time = 0). an additional 
450 ns must be added to the Effective Exe· 
cution time of the instruction. If Wait Time = 
o then Resync Time = O. 

Interaction Time CPU time required to actually initiate Floating 
Point Processor operation. 

Argument Transfer Time CPU time required to fetch and transfer to 
the Floating Point Processor the required 
operand. This time is 300 ns X the number 
of 16·bit words read from Memory (Load 
Class Floating Point Instructions). or 1200 ns 
X the number of 16·bit words written to 
Memory (Store Class Instructions). 

Disengage and Fetch Time CPU time required to fetch the next instruc· 
tion from Memory. This time is 300 ns. 

Floating Point Time required by the Floating Point Processor 
Execution Time to complete a Floating Point instruction once 

it has received all arguments (Load Class 
Instructions). Execution times are contained 
in Table C·2. 

Effective Execution Time Total CPU time required to execute a Floating 
Point instruction. 

Effective Execution Time = Preinteraction + 
Address Calculation + Wait Time + Resync 
Time + Interaction Time + Argument Trans· 
fer + Disengage and Fetch. 

Table C-l Address Calculation Times 

Address 
Mode Calculation Time 

o 0 nsec 
1 300 
2 300 
3 600 
4 300 
5 750 
6 600 
7 1050 

Table C-2 FPll-C Execution Times 

MIN MAX TYP 

LDF 360 nsec 360 nsec 
LDD 360 360 
ADDF 900 2520 950 
ADDD 900 4140 980 

C·8 



Table C-2 FPll·C Execution Times (Cont.) 

MIN MAX TYP 

SUBF 900 1980 1130 
SUBD 900 4140 1160 
MULF 1800 3440 2520 
MULD 3060 6220 4680 
DIVF 1920 6720 3540 
DIVD 3120 14400 6000 
MODF 2880 5990 
MODO 3780 9770 
LDCFD 420 420 
LDCDF 540 540 
STP' 0 
STD" 0 

CMPF 540 1080 
CMPD 540 1080 
STCFD':' 720 720 720 
STCDP' 540 720 540 

LDCIF 1260 1440 1440 
LDCID 1260 1440 1440 
LDCLF 1260 1980 
LDCLD 1260 1980 
LDEXP 540 900 

STCFI" 1200 1620 
STCFL* 1260 2160 
STCDI* 1260 1620 
STCDL':' 1260 2160 
STEXP" 360 360 

MO Not MO 
CLRF 180 2150 
CLRD 180 4350 
NEGF 360 2400 
NEGD 360 2400 
ABSF 360 2400 
ABSD 360 2400 
TSTF 180 180 
TSTD 180 180 
LDFPS 180 0 
STFPS" 0 
STS1" 0 
CFCC 0 
SETF 180 
SETD 180 
SETI 180 
SETL 180 

:~ Store Class Instructions 

e-9 



Load Class Instructions are those which do not deposit results in a 
memory location. 

Execution of a Load Class Floating Point instruction by the Floating 
Point occurs in parallel with CPU operation and hence can be overlapped. 
Figure C·l gives a simplified picture of how a Load Class Floating Point 
instruction is executed. 

Store Class Instructions are those which store a result from the Floating 
Point into a memory location. Execution of a Store Class Instruction 
by the Floating Point Processor must occur before the result can be 
stored, hence parallel processing cannot occur for Store Class Floating 
Point Instructions. 

CPU 

T, Load Class Instruction 
is fetched. This occurs 

, during previous 
Effective 
Execution Time 
starts here 

I instruction execution. 

No Floating Point 
intervention ye\ 

Floating Point 
must respond 
(i.e., it must be 
finished with 
prior instruction 
by here--­
or CPU will wait 

Instruction is decoded. 

Contents of CPU General 
Register are transferred 
to temporary FPP Reg­
ister. 

Address of operand 
is calculated. 

CPU starts FPP execut· 
ing this instruction (i.e., 
interacts with FPP). 

CPU is finished CPU passes arguments 
with FPP; FPP to FPP 
will now execute 
instructions ~ 
on its own"""-- Fetch next instruction. 

Effective ~ 
Execution Time 
ends here 

FPP 
T , 
I 
I 
I 
I 
I I FPP is idle. 

I 
I 
I 
I , 
I 
I 

FPP interacts with CPU. 

FPP accepts arguments 
from CPU. 

FPP 

executes 

instruction. 

~Floating Point is fin· 
ished and ready to 
accept next instruc· 
tion. 

Figure C·l Load Class Floating Point Instruction. 

C·lO 



CPU 

Store Class Instruction 
is fetched. This occurs 
during previous instruc· 

Effective tion execution. 
Execution Ti me 
starts here-- Instruction is decoded. 

FPP must 
respond or 

Contents of CPU 
General Register are 
stored in Temporary 
FPP Register. 

Address at which result 
to be stored is calcu· 
lated. 

CPU will wait---, CPU waits for FPP to 
, complete execution . 

..L 
I Since CPU entered Wait 
I State, an additional 450 

ns Resync overhead is 
encountered. 

CPU interacts with FPP. 

CPU stores 

result 

in Memory. 

CPU fetches 
Effective next instruction. 
Execution Time 
ends here-

FPP 
T , , , , 
I FPP is idle. 

I 
I 
I 
I 

I 

I 

FPP begins execution­
does not respond until 
execution is complete. 

~FPP responds. 

FPP interacts with CPU. 

FPP passes 

result to 

CPU to 

store in 

Memory. 

I FPP is idle. 
J. 

Figure C·2 Store Class Floating Point Instruction. 

Figures Col and C-2 show, respectively, how timing associated with a 
typical Load Class and Store Class instruction is derived. 

Figures C-3 and C-4 show, pictorially, how Effective Execution Times for 
actual Floating Point instructions in a program are calculated. Note that 
Effective Execution Times are dependent on previous Floating Point 
instruction. 

C-ll 



Referencing Figure C-3, a sample calculation of Effective time would be: 
for MULF (RO), AC1 

Effective Execution Time is the summation of the following: 

Preinteraction Time 450 ns 
Address Calculation Time (Mode 1 from Table 11.1) 300 ns 
Wait Time (Since FPP is idle, Wait = 0) 0 ns 
Resync Time (Since Wait = 0, Resync = 0) 0 ns 
Interaction Time 300 ns 
Argument Transfer Time (Transfer 2 words @ 300 ns/word) 600 ns 
Disengage and Fetch Time 300 ns 

Effective Execution Time 

for LDF X(R3),ACO (Ref. Figure C-3) 

First we calculate Wait Time: 

Wait Time = [Floating Point Execution (previous 
FP instruction) (MULF)] 

- [Disengage and Fetch Time (previous 
FPT instruction)] 

- [Execution Time of interposing 
nonFPT instruction (SOB)] 

- [Preinteraction Time] 
- [Address Calculation (Mode 6 from 

Table C-2)] 

Since calculation resulted in a negative 
number, Wait Time = 0 _ 

1950 ns 

1800 ns 

- 300 ns 

- 750 ns 
- 450 ns 

- 600 ns 

- 300 ns 

_ _ _ So Effective Execution Time is the summation of the following: 

Preinteraction Time 450 ns 
Address Calculation Time (Mode 6 from Table 11.1) 600 ns 
Wait Time (From above calculation) 0 ns 
Resync Time (Since Wait Time = 0, Resync = 0) 0 ns 
Interaction Time 300 ns 
Argument Transfer Time (2 words @ 300 ns/word) 600 ns 
Disengage and Fetch Time 300 ns 

Effective Execution Time 2250 ns 

C-12 



CPU TIME FPP TIME 

MULF {ROI. AC 1 

PRE INTERACTION 

ADDRESS CAlCULATION ( 

INTERACTION ( 

» EFFECTIVE EXECUTlON~ 1950 nsec 

ARGUMENT TRANSFER 

DISENGAGE & FETCH 

SOB Rl 

{NON FLOATING POINT INSTRUCTION} 

LOF X{ R3J. ACO 

PRf INTERACTION 

~"m ",ru~,,~ f 
EFFECTIVE EXECUTiON~2250 "ec 

INTERACTION 

ARGUMENT TRANSFER ( 

> 
DISENGAGE & FETCH 

ADDF AC2 • AC I 

PRE INTERACTION 

EFFECTIVE EXECUTlON~1050n,ec 
INTERACTION 

r 
DISENGAGE & FETCH ( 

IR DECODE 

SET UP 
TEMP 
FPT REG 

ADDRESS 
CALC 
{MODE I} 

INTERACTION 

ARGUMENT 
TRANSFER 

DISENGAGE 
& FETCH 
NEXT INST. 

EXECUTIVE 
& FETCH 
NEXT INST. 

IR DECODE 

SET UP 
TEMP 
FPT REG. 

ADDRESS 
CALC 
{MODE 6} 

INTERACTION 

ARGUMENT 
TRANSFER 

DISENGAGE 
& FETCH 
NEXT INST. 

IR DECODE 

SET UP 
TEMP 
FPT REG 

INTERACTION 

DISENGAGE 
& FETCH 
NEXT INST. 

Figure C-3 Calculation of Effective Execution Times for 
Load Class Instructions 

C-13 

T 
FLOATING 
POINT 
EXECUTION 
{MULF} 

1 
~ 

FLOATING 
POINT 
EXECUTION 
{LOF} 

iT 
I 

T 
FLOATING 
POINT 
EXECUTION 
{ADDF} 

~ 



STCFI ACO. X(R2) 

EFFECTIVE EXECUTION'3900. sec 

DIVF ACI. ACO 

EFFECTIVE EXECU<ION' 1050 ... c 

PRE INTERACTION [ 
{ ADDRESS 

CALCULATION 

WAIT 

RESVNC 

INTERACTION { 

ARGUMENT 
TRANSFER 

DISENGAGE 
& FETCH 

PRE INTERACTION 

INTERACTION 

DISENGAGE 
& FETCH 

IR DECODE 
SET UP 
TEMP 
FPT REG 

ADDRESS 
CALC 
(MODE 6) 

STORE 
RESULTS 
IN 
MEMORY 

DISENGAGE 
& FETCH 
NEXT.INST 

IR DECDDE 

SET UP 
TEMP 
FPT REG 

INTERACTION 

DISENGAGE 
& FETCH 

Figure C-4 Calculation of Effective Execution Time for 
Store Class Instructions 

C-14 

I 
I 
I 
I 
I 
I 
I 

..L 

FLOATING 
POINT 
EXECUTION 
(STCFI) 

FlOATING 
POINT 
EXECUTION 
(DNF) 



DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, Massa­
chusetts 01754, Telephone: (617)897-5111-SALES AND SERVICE OFFICES: UNITED 
STATES-ALABAMA, Huntsville' ARIZONA, Phoenix and Tucson' CALIFORNIA, 
EI Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San Francisco (Mountain 
View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland Hills • COLORADO, 
Englewood • CONNECTICUT, Fairfield and Meriden • DISTRICT OF COLUMBIA, 
Washington (Lanham, MD) • FLORIDA, Ft. Lauderdale and Orlando' GEORGIA, 
Atlanta' HAWAII, Honolulu' ILLINOIS, Chicago (Rolling Meadows) • INDIANA, 
Indianapolis • IOWA, Bettendorf • KENTUCKY, Louisville • LOUISIANA, New Or­
leans (Metairie) • MARYLAND, Odenton • MASSACHUSETTS, Marlborough, Wal­
tham and Westfield' MICHIGAN, Detroit (Farmington Hills) • MINNESOTA, Min­
neapolis' MISSOURI, Kansas City (Independence) and St. Louis' NEW HAMP­
SHIRE, Manchester • NEW JERSEY, Cherry Hill, Fairfield, Metuchen and Princeton • 
NEW MEXICO, Albuquerque • NEW YORK, Albany, Buffalo (Cheektowaga), Long 
Island (Huntington Station), Manhattan, Rochester and Syracuse' NORTH CARO­
LINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and Dayton • 
OKLAHOMA, Tulsa' OREGON, Eugene and Portland' PENNSYLVANIA, Allentown, 
Philadelphia (Bluebell) and Pittsburgh. SOUTH CAROLINA, Columbia. TENNES­
SEE, Knoxville and Nashville. TEXAS, Austin, Dallas and Houston. UTAH, Salt 
Lake City • VIRGINIA, Richmond • WASHINGTON, Bellevue • WISCONSIN, Milwau­
kee (Brookfield) • INTERNATIONAL-ARGENTINA, Buenos Aires' AUSTRALIA, 
Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney • AUSTRIA, Vienna • 
BELGIUM, Brussels • BOLIVIA, La Paz • BRAZIL, Rio de Janeiro and Sao Paulo • 
CANADA, Calgary, Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver 
and Winnipeg • CHILE, Santiago • DENMARK, Copenhagen • FINLAND, Helsinki 
• FRANCE, Lyon, Grenoble and Paris • GERMAN FEDERAL REPUBLIC, Cologne, 
Frankfurt, Hamburg, Hannover, Munich, Nuremburg, Stuttgart and West Berlin • 
HONG KONG. INDIA, Bombay. INDONESIA, Djakarta. IRELAND, Dublin. ITALY, 
ITALY,Milan, Rome and Turin. IRAN, Tehran. JAPAN, Osaka and Tokyo. MALAY­
SIA, Kuala Lumpur • MEXICO, Mexico City • NETHERLANDS, Utrecht • NEW ZEA­
LAND, Auckland and Christchurch • NORWAY, Oslo • PUERTO RICO, Santurce • 
SINGAPORE. SPAIN, Madrid. SWEDEN, Gothenburg and Stockholm. SWITZERLAND, 
Geneva and Zurich. UNITED KINGDOM, Birmingham, Bristol, Epsom, Edinburgh, 
Leeds, Leicester, London, Manchester and Reading. VENEZUELA, Caracas· 



'" 0 

p 
...: 
<> 

~ 
0 

'" .... ..... 
0 
N 

N ., 
'" on 
0 

III 
UJ 

". < 
<I) 

? 
z 


	0001
	0002
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	xBackA
	xBackB

