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This manual describes the KB11-C Central Pro-
cessor Unit, which is the basic component of the
PDP-11/70 Programmed Data Processor System.
The purpose of this manual is to:

1.  provide an overall understanding of how
the KB11-C functions in the PDP-11/70
System.

2. describe how the KB11-C logic works in
sufficient detail to enable maintenance
personnel to perform on-site trouble-
shooting and repair.

The format of this manual is functional, i.e., the in-
tent is to explain the various processes that are exe-
cuted by the KB11-C, as opposed to a module by
module logic description. Since this might be a
problem for a technician who has a module to re-
pair, an index of logic functions by module is
provided.

This manual is divided into six sections:

Section 1 is an introduction to the PDP-11/70.
It describes a block diagram of the system
and introduces some system concepts.

Section Il describes the processor. Its six chap-
ters explain processor control, data manipu-
lation, Control Registers, timing, data
transfers and error handling.

Section 11l provides both an operating guide
to the Console and a detailed description of

its logic.

Section IV describes Memory Management
and address space.

Section V describes the Unibus Map.

INTRODUCTION

Section VI contains a description of the
Cache.

Appendix A contains both a System Data
Paths and a System Address Paths block
diagram,

Due to the numerous references to specific logic
functions in the text, it is recommended that the
reader refer to the PDP-11/70 Engineering Print Set
while reading this manual.

Comments (both favorable and unfavorable), sug-
gestions, and corrections are welcome. A Reader’s
Comment sheet is provided for this purpose at the
end of this manual.

RELATED DOCUMENTS
This manual should be used in conjunction with the
following related publications:

PDP-11/70 Maintenance and Installation
Manual

PDP-11/70 Processor Handbook
MJ11 Memory System Maintenance Manual
FP11-C Floating-Point Processor Manual

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

RWP04 Moving Head Disk Subsystem
Maintenance Manual

TWUI16 Magnetic Tape Subsystem Mainte-
nance Manual

PDP-11 Peripherals Handbook






SECTION I

BLOCK DIAGRAM AND CONCEPTS

Unless otherwise indicated, references within this sec-
tion pertain to this section only.
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The PDP-11/70 is the most powerful computer in
the PDP-11 family. It is designed to operate in
large, sophisticated, high-performance systems. It
can by used as a powerful computational tool for
high-speed, real-time applications and for large
multi-user, multi-task, time-shared applications re-
quiring large amounts of addressable memory
space. Although it is a 16-bit machine, it applies
the power of a Cache memory and 32-bit memory
and 1/0 structure to demanding, multi-function
computing requirements.

The PDP-11/70 contains as an integral part of the
Central Processor Unit (CPU), the following hard-
ware features and expansion capabilities:

Cache memory organization to provide bipo-
lar memory speed at core memory prices.

CHAPTER 1
BLOCK DIAGRAM

Memory Management for relocation and pro-
tection in multi-user, multi-task environments.

Ability to access up to 4 million bytes of
Main Memory.

Optional high-speed mass storage controllers
as an integral part of the CPU. These con-
trollers provide dedicated paths to high per-
formance storage devices.

Optional Floating Point Processor

1.1 BLOCK DIAGRAM

The PDP-11/70 is a medium scale, general-purpose
computer. A block diagram of the computer is
shown in Figure 1-1.
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PDP-11/70 Block Diagram



The KB11-C Processor performs all arithmetic and
logical operations required in the system. Memory
Management is standard with the basic computer,
allowing expanded memory addressing, relocation,
and protection. Also standard is the Unibus Map,
which translates 18-bit Unibus addresses to 22-bit
physical memory addresses. The Cache contains
2048 bytes of bipolar memory that buffer the data
from Main (core) Memory. Main Memory is on its
own high data rate bus. The processor has a direct
connection to the Cache/Main Memory system for
high-speed access.

The PDP-11/70 Console allows direct control of
the computer system. It contains a power switch for
the CPU. This switch may also be used as the mas-
ter switch for the system. The Console is used for
starting, stopping, resetting, and debugging. Lights
and switches provide the facilities for monitoring
operations, system control, and maintenance. De-
bugging and detailed tracing of operations can be
accomplished by having the computer execute
single instructions or single bus cycles. Contents of
all locations can be examined, and data can be en-
tered manually from the Console switches. Console
operation and logic are described in Section III of
this manual.

Also within the CPU assembly are pre-wired areas
for an optional Floating Point Processor, and for
up to four optional high-speed [/O controllers
(RH70 Massbus Controllers). These controllers
have direct connections through the Cache to Main
Memory (using the Cache only for timing
purposes).

The Unibus remains the primary control path in
the 11/70 system. It is conceptually identical with
previous PDP-11 systems; the memory in the sys-
tem still appears to be on the Unibus to all Unibus
devices. Control and status information to and
from the high speed 1/O controllers is transferred
over the Unibus. This expanded internal implemen-
tation of the PDP-11 architecture has no effect on
programming the PDP-11/70.

Three Unibus devices are standard on the PDP-
11/70:

1. a KWI1I-L Line Time Clock

2. a DLI1 Synchronous Serial Interface (an
LA36 DECwriter Il is also standard in

the PDP-11/70)

3.  a Unibus Terminator and Bootstrap

Module.

Also standard are 128KB of parity core memory.
Memory, in the PDP-11/70, is not on the Unibus,
but on its own high-speed bus (refer to Paragraph
1.2).

1.1.1 Processor

The Processor is the instruction execution section
of the system. It implements the PDP-11/45 instruc-
tion set. It also acts as the arbitration unit for
Unibus control by regulating bus requests and trans-
ferring control of the bus to the requesting device
with the highest priority.

The Processor contains arithmetic and control logic
for a wide range of operations. These include high-
speed, fixed-point arithmetic with hardware multi-
ply and divide, extensive test and branch oper-
ations, and other control operations.

The Processor is described in Section II of this
manual.

1.1.2 Memory Management

Memory Management provides the hardware facil-
ities necessary for address relocation and pro-
tection. It is designed to be a memory management
facility for accessing all of physical memory and for
multi-user, multi-programming systems where mem-
ory protection and relocation facilities are
necessary.

In order to most effectively utilize the power and ef-
ficiency of the PDP-11/70 in medium and large
scale systems, it is necessary to run several pro-
grams simultaneously. In -such multi-programming
environments, several user programs could be resi-
dent in memory at any given time. The task of the
supervisory program would be to control the execu-
tion of the various user programs, to manage the al-
location of memory and peripheral device
resources, and to safeguard the integrity of the sys-
tem as a whole by control of each user program.

In a multi-programming system, Memory Manage-
ment provides the means for assigning memory
pages to a user program and preventing that user
from making any unauthorized access to these
pages. Thus, a user can effectively be prevented
from accidental or willful destruction of any other
user program or of the system executive program.



The basic characteristics of Memory Management
are:

16 User mode memory pages

16 Supervisor mode memory pages
16 Kernel mode memory pages

8 pages in each mode for instructions
8 pages in each mode for data

Page lengths from 32 to 4096 words

Each page provided with full protection and
relocation

Transparent operation
6 modes of memory access control

Memory access to 2 million words (4 million
bytes)

Memory Management is described in Section IV of
this manual.

1.1.3  Unibus Map

The Unibus Map is the interface to the Memory
System (Cache and Main Memory) from the
Unibus. It performs the address conversion that al-
lows devices on the Unibus to communicate with
physical memory by means of Non-Processor
Requests (NPRs). Unibus addresses of 18 bits are
converted to 22-bit physical addresses using reloca-
tion hardware. This relocation is enabled (or dis-
abled) under program control.

The top 4K word addresses of the 128K Unibus ad-
dresses are reserved for CPU and 1/0O device regis-
ters and is called the Peripherals Page. The lower
124K addresses are used by the Unibus Map to ref-
erence physical memory.

The Unibus Map is described in Section V of this
manual.

1.1.4 Cache

The Cache is a high-speed memory that buffers
words between the processor and Main Memory.
The Cache is completely transparent to all pro-
grams; programs are treated as if there were one
continuous bank of memory.

Whenever a request is made from the Processor to
fetch data from memory, the Cache does an ad-
dress compare to see if that data is already in the
Cache. If it is, it is fetched from there and no Main
Memory read is required. If the data is not already
in Cache memory, 4 bytes are fetched from Main
Memory and stored in the Cache, with the re-
quested word or byte being passed directly to the
processor.

When a request is made from the Processor to
write data into memory:

1. If it is stored in the Cache, it is written
both to the Cache and to Main Mem-
ory, thus assuring that Main Memory is
always updated immediately.

2. If it is not stored in the Cache, it is writ-
ten only to Main Memory.

Unibus Map references to memory are executed in
the same manner as processor references.

Because it stores 1024 words, and because pro-
grams tend to use localized sections of code and
data, the Cache already contains the next needed
word a very high percentage of the time, indepen-
dently of the program.

The Cache is also the interface between the high-
speed /0 controllers and Main Memory.

A detailed description of the Cache is contained in
Section VI of this manual.

1.1.5 Unibus

Most of the computer system components and pe-
ripherals connect to and communicate with each
other on a bus known as the Unibus. Addresses,
data, and control information are sent along the 56
lines of the bus. Refer to Figure 1-2.
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Figure 1-2 PDP-11/70 System
Simplified Block Diagram



The form of communication is the same for every
device on the Unibus. Peripheral devices use the
same set of signals when communicating with the
processor, memory, or other peripheral devices.
Each device, including memory locations, processor
registers, and peripheral device registers, is assigned
an address. Peripheral device registers may be ma-
nipulated as flexibly as memory by the central pro-
cessor. All instructions that can be applied to data
in core memory can be applied equally well to data
in peripheral device registers.

Processor Unibus operations are described in Sec-
tion 1I, Chapters 5 and 6 of this manual. Cache
Unibus operations are transacted through the
Unibus Map (Section V),

1.1.6 Optional Equipment

Floating Point Processor

The Floating Point Processor fits into prewired
slots in the Central Processor backplane. It pro-
vides a supplemental instruction set for performing
single- and double-precision floating point arith-
metic operations and floating-integer conversion in
parallel with the CPU. The Floating Point Pro-
cessor provides both speed and accuracy in arith-
metic computations. It provides 7 decimal digit
accuracy in single word calculations and 17 decimal
digit accuracy in double calculations.

Floating point calculations take place in the FPP’s
six 64-bit accumulators. The 46 floating point in-
structions include hardware conversion from single-
or double-precision floating point to single- or
double-precision integers. Refer to the FPII-C
Floating Point Processor Manual for a detailed
description.

High-Speed Mass Storage

Up to four high-speed I/O controllers can be
plugged into the KB11-C backplane. A dedicated in-
terface (wired on the backplane) connects these con-
trollers to the memory. A separate bus (Massbus)
connects the controllers to high-speed devices. Pre-
sent DIGITAL devices that utilize this bus struc-
ture are the RP04, RS04, RSO3, and TUI16. The
RPO4 is a moving head disk pack drive with capac-
ity for 88 million bytes and a transfer rate of 1.25
microseconds per byte. The RS04 is a fixed head
disk with a capacity of 1024K bytes and a transfer
rate of 1 microsecond per byte (1.2 microseconds at
50 Hz). The RS03 is a fixed head disk, 512K bytes,
2 microseconds per byte. The TU16 is an industry
standard 1600 bpi tape unit,

Refer to the following manuals for detailed descrip-
tions of these high-speed devices:

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

RWP04 Moving Head Disk Subsystem
Maintenance Manual

TWU 16 Magnetic Tape Subsystem Mainte-
nance Manual

1.2 MEMORY SYSTEM

1.2.1 Representation and Storage

The PDP-11/70 is a 16-bit machine. The data is
stored in Main Memory in blocks, each of which
consists of two 16-bit words. Thus, the PDP-11 in-
struction set and the addressing modes are identical
to other PDP-11s, but data storage is implemented
in a 32-bit configuration, This is transparent to the
program and to the processor logic.

The PDP-11 data word consists of two 8-bit bytes,
as shown in Figure 1-3. The program addresses ei-
ther a single byte, when it uses a byte instruction,
or a 160-bit word, when it uses a word instruction.

08 07 00

HIGH BYTE

LOW BYTE
i n L 1 i | i 1 1 L

1

n-3193

Figure 1-3 High and Low Byte

From the point of view of the program, memory
can be viewed as a series of locations, with a num-
ber (address) assigned to each location. Thus, a
131,072-byte PDP-11 memory could be represented
as in Figure 1-4.

Because PDP-11 memories are designed to accom-
modate both 16-bit words and 8-bit bytes, the total
number of addresses does not correspond to the
number of words. A 64K-word memory can con-
tain 128K bytes and consist of 777 777 byte loca-
tions. Words always start at even-numbered
locations.



LOCATIONS

00 000 000
00 000 001
00 000 002

00 000 003
00 000 004

OCTAL
ADDRESSES

.
00 777 774
00 777 775

00 777 776

00 777 777

N-3194

Figure 1-4 Memory Addresses

Low bytes are stored at even-numbered memory lo-
cations and high bytes at odd-numbered memory lo-
cations. Thus it is convenient, from the point of
view of the program, to represent the PDP-11 mem-
ory as shown in Figure 1-5.

Main Memory stores data in blocks. A block con-
sists of two 16-bit words (plus 4 parity bits). Figure
1-6 shows how the data for the same memory
shown in Figure 1-5 is stored in Main Memory.
Block boundaries are located on program addresses
whose low-order octal digit is either O or 4.

Main Memory addresses are block addresses. The
processor and the Unibus use word addresses and
the Cache translates these addresses to block
addresses.

The Cache, which is the interface to Main Memory
for the processor, the Unibus and the high-speed
1/O controllers, reads and writes Main Memory as
listed below for each of these units:

High-Speed 1/0 Controllers

1. Read: double word only

2. Write:
byte.

double word, single word, or

The controllers listed in Paragraph 1.1.6 do not im-
plement byte writes.

16-BIT WORD 8-BIT BYTE
- o N
ns BYTE 08 07 BYTE 00 07 00
00 000 001 HIGH LOW 00 000 000 WORD Low 00 000 000
00 000 003 HIGH LOW 00 000 002 HIGH 00 000 001
00 000 005 HIGH LOW 00 000 004 LOW 00 000 002
WORD
HIGH 00 000 003
{ LOW 00 000 004
_//—\_,.’—) | —
"\
00 777 773 HIGH LOW 00 777 772 { HIGH 00 777 775
00777 775 HIGH LOW 00 777 774 { LOW 00 777 776
00 777 777 HIGH LOW 00 777 776 HIGH 00 777 777

WORD ORGANIZATION

Figure 1-5 Word and Byte Addresses

I-1-5

BYTE ORGANIZATION
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BLOCK

WORD 1 WORD 0

v N

BYTE 3 BYTE 2 BYTE 1 BYTE 0

00 000 003 00 000 002 00 000 001 00 000 000 | 00 000 000
00 000 007 00000 006 00 000 005 00000 004 | 00 000 004
00 000 010

T N N e T
00 777 760
00 777 767 00 777 766 00 777 765 00777 764 | 00 777 764
00777 773 00 777 772 00 777 771 00 777 770 00777 770
00 777 777 00 777 776 00 777 775 00777774 | 00777 774

11-4000

Figure 1-6 Main Memory Addresses

Processor or Unibus

This address is an 18-bit address in the case of a
Unibus reference and a 22-bit address in the case of

I. Read: double word, but only Word 0 a memory reference. The Unibus Map converts 18-
or Word I are transmitted to processor bit Unibus addresses to 22-bit Cache addresses.
or Unibus
2. Write: single word (Word 0 or Word 1)
or single byte (one of bytes 0, 1, 2, or 3).
CPU
UNIBUS
1.2.2  Address Space & 18 ADDRESS BITS >
The PDP-11/70 uses 22 bits for addressing physical MEM. MGT. ]?TQDDRESS
memory. This represents a total of 222 (over 4 mil- - UNIBUS
lion) byte locations. /B\RISDRESS MAP
Three separate address spaces are used with the 22 ADDRESS BITS
PDP-11/70. Main memory uses 22 bits, the Unibus CACHE
uses an 18-bit address, and the computer program
uses a 16-bit virtual address. This information is 2
summarized below: éﬁ?RESS
16 bits program virtual space 216 = 64K bytes
18 bits  Unibus space 218 = 256K bytes MAEAag‘RY
22 bits  physical memory space 4 million bytes

Refer to Figure 1-7. Memory Management gener-
-ates the physical address output for the processor.

11-4001

Figure 1-7 Address Paths



Processor Addresses

See Figure 1-8. Of the over 2 million 16-bit word lo-
cations possible with the 22-bit physical address,
the top 128K are used to reference the Unibus
rather than physical memory. Maximum physical
memory is therefore 22 - 28 bytes, or a total of
1,966,080 words. The system size boundary is the
highest address available with the amount of mem-
ory included in the system. If the CPU address is
between 00 000 000 and the system size boundary,
an attempt is made to reference physical memory.
Memory addresses between the system size bound-
ary and 16 777 777 are known as Non-Existent
Memory (NEXM); any attempt to access these loca-
tions is aborted. If the address is in the top 128K,
17 000 000 — 17 777 777, the lower 18 bits of the ad-
dress are placed on the Unibus,

17y 777 777 PERIPHERAL
PAGE (4K)
| _ (17} 760000 _ | UNIBUS
17) 757 777 REFERENCE
(128K}
{17} 000 000
6 777 777
NON-EXISTENT
MEMORY OR NXM
SYSTEM SIZE
BOUNDARY
MEMORY
REFEREN CE
00 000 000
11-4002

Figure 1-8 Physical Address Space

1.2.3 Mapping

Muapping is the process of converting the virtual ad-
dress generated by the program to a physical mem-
ory address or to a Unibus address, or the process
of converting a Unibus address to a physical mem-
ory address.

The virtual address is mapped by Memory Manage-
ment: the Unibus address is mapped by the Unibus
Map. Neither of these increases memory access
time,

Memory Management and the Unibus Map are sep-
arate units and one may be enabled independently

of each other. They are both part of the KB11-C
and are included in all PDP-11/70 systems.

Refer to Figures 1-9 through 1-11.

1. Mapping of processor addresses is per-
formed in one of three possible ways by
Memory Management:

16-BIT MAPPING

There is fixed mapping from virtual to
physical addresses. The lowest 28K vir-
tual addresses are treated as correspond-
ing to the same physical addresses. The
top 4K addresses cause Unibus cycles to
addresses 17 760 000 — 17 777 777. Refer
to Figure 1-9. 16-bit mapping is enabled
after. Power Up, Console Start, or the
RESET instruction.

I18-BIT MAPPING

32K virtual addresses for each of the
three modes (Kernel, Supervisor, User)
are mapped into 128K of physical ad-
dress space. The lowest 124K addresses
reference physical memory. The top 4K
addresses cause Unibus cycles to ad-
dresses 17 760 000 - 17 777 777. Refer to
Figure 1-10.

22-BIT MAPPING
This mode produces 22-bit addresses for
accessing all of physical memory. The
top 128K addresses cause Unibus cycles
to addresses 17 000 000 - 17 777-777. Re-
fer to Figure 1-11.

2. Mapping of Unibus addresses is per-
formed by the Unibus Map.

UNIBUS MAP NOT ENABLED

When the Unibus Map is not enabled,
Unibus addresses 000 000 - 757 777 ac-
cess memory locations 00 000 000 - 00
757 7717, i.e., they are not modified ex-
cept for the insertion of leading zeroes.

UNIBUS MAP ENABLED

When the Unibus Map is enabled,
Unibus addresses 000 000 - 757 777 are
relocated and a Unibus device may ac-
cess any location in physical memory.
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Figure 1-11 22-Bit Mapping

1.2.4 Parity

This paragraph provides general information on
parity checking in the PDP-11/70 system. A de-
tailed description of this subject is provided in Sec-
tion VI of this manual (Cache) and in the Memory
Manual.

System Reliability

Parity is used extensively in the PDP-11/70 to en-
sure the integrity of the data and thus to enhance
the reliability of the system. All memory (Cache
and Main Memory) has byte parity. Parity is gener-
ated and checked on all transfers between Main
Memory and Cache, and between Cache and the
CPU. 1t is checked between the high-speed mass
storage devices and their controllers, and again be-
tween the controllers and core memory. A software
routine can be used to log the occurrence of parity
errors, 10 handle recovery from errors, and to pro-
vide information on system reliability and
performance.

Parity in the System
Muain Memory stores one parity bit for each 8-bit
byte, (refer to Figure 1-12). The Cache also stores

byte parity for data, and in addition it stores two
parity bits for the address information (tag storage)
associated with each two-word block of data.

CPU UNIBUS

DATA

ADDRESS| |2

ADDRESS

ADDRESS(P)[CATA(P)]|  DATA (P) HIGH - SPEED | High-speeD
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Figure 1-12 Parity (P) in the
PDP-11/70 System



The bus between Main Memory and the Cache con-
tains parity on the data lines and on the address
and control lines. The high-speed [/O controllers
check and generate parity for data transfers to
Main Memory, and they have the capability of han-
dling address errors that are flagged by the control
in the Cache memory. Refer to Section VI, Chapter
3 for a detailed description of the PDP-11/70 parity
system.

System Handling of Parity Errors

The design of the PDP-11/70 allows recovery from
parity errors. It also allows operation in a degraded
mode if a section of the memory system is not oper-
ating properly. This type of operation is possible un-
der program control by using the control registers.

If part or all of the Cache memory is malfunction-
ing, it is possible to bypass half or all of the Cache.
Misses can be forced within the Cache, such that
all read data is brought from Main Memory. Oper-
ation will be slower, but the system will yield cor-
rect results. If part of Main Memory is not

working, Memory Management can be used to map
around it. If data found in the Cache does not have
correct parity, the memory system automatically
tries the copy in Main Memory, to allow program
execution to proceed. The correct data from Main
Memory automatically replaces the data in the
Cache which caused the parity error. Therefore,
if the error was caused by transitory conditions, it
will not occur again.

Aborts and Traps

One of two actions can take place after detection of
a parity error: (1) The cycle can be aborted. The
computer then transfers control through the vector
at location 114 to an error handling rou-
tine. (2) The instruction is completed, but then
the computer traps (also through location 114). In
the first case, it was not possible to complete the
cycle: in the second case it was. This second type of
parity error usually (but not always) causes the trap
before the next instruction is fetched.
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This chapter introduces several concepts that are
useful for the understanding of the KB11-C Pro-
cessor and the PDP-11/70 system. The first two of
these concepts, Microprogramming (2.1) and Paral-
lel Operation or Pipelining (2.2), should be well un-
derstood before reading any further. The other two
paragraphs, Virtual Machines (2.3) and Reentrant
and Recursive Programming (2.4), discuss system
concepts that may be easier to understand after a
working knowledge of the PDP-11/70 has been ac-
quired. The block diagrams in Appendix A show
the interconnection between the several parts of the
PDP-11/70, including the RH70 controllers.

2.1 MICROPROGRAMMING

The KB11-C Processor uses a microprogram con-
trol section which reduces the amount of com-
binational logic in the processor. This paragraph
introduces the concept of microprogramming by
first describing a digital computer, then dividing the
computer into various parts, and finally, describing
how some of these parts differ for a micro-
programmed processor.

Digital Computer Description

Although a computer can effect complicated
changes to the data it receives, it must do so by
combining a large number of simple changes in dif-
ferent ways. The part of the digital computer that
actually operates on the data is the processor. A
processor is made up of logical elements; some of
these clements can store data, others can do such
simple operations as complementing a data oper-
and, combining two operands by addition or by
ANDing, or reading a data operand from some
other part of the computer. These simple oper-
ations can be combined into functional groups;
such a group is called an instruction, and it in-
cludes operations that read data, operations that
combine, change, or simply move the data, and op-
crations that dispose of the data. Instructions can

CHAPTER 2
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be further combined into programs, which use the
combined instructions to construct even more com-
plex operations.

The logical elements of a processor can only per-
form a small number of operations at one time.
Therefore, to combine operations into an instruc-
tion, the instruction is divided into a series of oper-
ations (or groups of operations that can be
performed simultaneously). The processor does
each part of the series in order. One way to de-
scribe how the processor executes an instruction is
to call each operation (or group of operations) a
machine state. An instruction then becomes a se-
quence of machine states which the processor enters
in a specific order.

The processor can be completely described in terms
of machine states by listing all the machine states in
which the processor can perform (i.e., all the differ-
ent operations or groups of operations that it can
perform) and all the sequences in which these ma-
chine states can occur. The sequence of machine
states is determined by the current state of the com-
puter;: this includes such information as the instruc-
tion being executed, the values of the data being op-
erated on, and the results of previous instructions.

In terms of the machine state description, the pro-
cessor can be divided into two parts. The first part,
called the data section, includes the logic elements
that perform the operations which make up a ma-
chine state. The second part, called the control sec-
tion, includes all the logic that determines which
operations are to be performed and what the next
machine state should be. The data section and con-
trol section are discussed in the following
paragraphs.
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The data section in the KB11-C is usually referred
to as the Data Parhs and is described in Section 11,
Chapter 2. The control section is. described in Sec-
tion II, Chapter 1, Instruction Decode and Micro-
program Control.

The Data Section

During each machine state, the data section per-
forms operations selected by signals from the con-
trol section. The data section provides inputs to the
control section which help to determine the next
machine state; the data section also exchanges data
with other devices external to the processor.

The data section can be divided into three func-
tional sections; each section is discussed in one of
the following paragraphs.

The Data Storage Section

For the processor to combine data operands it
must be able to store data internally, while simulta-
neously reading additional data. Often, a processor
stores information about the instruction being exe-
cuted, about the program from which the instruc-
tion was taken, and about the location of the data
being operated on, as well as a number of data op-
erands. When the processor must select some of the
internally-stored data, or store new data, the con-
trol section provides control signals which cause the
appropriate action within the data storage section.

The Data Manipulation Section

This section includes the various logic elements that
actually change data. Many of these elements are
controlled by signals from the control section,
which select the particular operation to be per-
formed. Data manipulation is performed on data
being transferred between the processor and the
rest of the system, and on data that remains within
the processor. In some cases, the data that remains
within the processor is used to control the pro-
cessor by providing inputs to the sensing section of
the processor control.

The Data Routing Section

The interconnections between the logic elements in
the data storage section and the elements in the
data manipulation section are not fixed; they are
set up as required in each machine state. The con-
trol section generates signals that cause the logic ele-
ments in the data routing section to form the
appropriate interconnections within the processor,
and between the data interface and the data storage
and manipulation sections.

The Control Section

The control section of a processor receives from the
data section, inputs which are used by the sensing
logic to help select the next machine state. The con-
trol section also generates control signals to all
parts of the data section and communicates with
other parts of the computer system through control
signals. The following paragraphs describe the three
parts of the control section.

The Sequence Control Section

The primary control of the processor is the selec-
tion of the sequence of machine states to be per-
formed. This is done by the sequence control
section which selects the next machine state on the
basis of:

the current machine state

2. inputs from the data section (such as the
instruction type or the data values)
3. information about external events.

The sequence control section maintains information
about the current machine state, and receives infor-
mation from the data section and the external envi-
ronment through the sensing section.

The Function Generator

In each machine state, the data section performs op-
crations selected by signals from the control section
of the processor. The function generator produces
these control signals on the basis of the current ma-
chine state and also on the basis of inputs from the
sensing section, such as information on the instruc-
tion type.

The Sensing Logic
In general, the sequence control section requires in

puts that select one of a limited number of machine
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states to follow the current state.

The Control Section in the KB11-C

The function generator comprises the micro-
program Read Only Memory (ROM), its output
buffer, and several logic elements that generate con-
trol signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence con-
trol comprises the microprogram address gener-
ation logic. The sensing section includes the various
logical elements that receive inputs from the data
section, especially the condition-code generator, the
subsidiary ROMs, and the branch logic.



Microprogramming in the Control Section
Implementation

This paragraph describes two methods of imple-
menting the control section of a processor. The first
method, which is called the conventional method for
the purposes of this discussion, uses combinational
networks, with many inputs combined in varying
ways to produce each output. The second method,
which is called microprogramming, replaces most of
the combinational networks with an array struc-
ture. The array requires a small number (approx-
imately 10) of inputs to select the output states for
a large number (approximately 100) of signals. Be-
cause the array is a regular structure, it is simpler
to construct and understand, and less expensive.

Conventional Implementation

In a conventional processor, each control signal is
the output of a combinational network that detects
all the machine states (and other conditions) for
which the signal should be asserted. The machine
state is represented by the contents of a number of
storage clements (such as flip-flops), which are
loaded from signals that are, in turn, the outputs of
combinational networks. The inputs to these net-
works include:

1. the current machine state
2. senscd conditions within the Processor
3. sensed external conditions.

The number of logical elements in the processor is
often reduced by sharing the outputs of networks
which gencrate intermediate signals needed in the
generation of several control signals, or even in the
generation of control signals and machine states.
Unfortunately, while this reduces the size of the pro-
cessor, it increases the complexity and difficulty of
understanding the device because it is no longer ob-
vious what conditions cause each signal. In addi-
ton, the distinction between the sequence control
and the function generator is blurred, which makes
it more difficult to determine whether improper op-
eration is caused by a bad machine state sequence
or, more simply, by the wrong control signals
within an otherwise correct machine state.

Microprogrammed Implementation
The microprogrammed implementation is based on
the following observation. Each control signal is

completely defined if its value is known for every
machine state. The function generator section can
therefore be implemented as a storage device: the
storage is divided into words, with each word con-
taining a bit for every control signal; there is one
word for each machine state. During each machine
state, the contents of the corresponding word in the
storage element are transmitted on the control
lines. For most control signals, the output of the
storage unit is the control signal; no additional
logic is required.

The two tasks of the sequence control section are
to select the next machine state, and to provide in-
formation about the current machine state to the
function generator. The only information that the
function generator in a microprogrammed pro-
cessor requires is which word to use as control sig-
nals. Therefore, the seqence control simply provides
an address that selects the correct word. The se-
quence control must also select the address of the
next word to determine the machine state sequence.
Because the next machine state is determined in
part by the current machine state, information is
stored in the microprogram that helps to select the
next state; the microprogram word contains the con-
trol signal values and the address and sensing con-
trol information required by the microprogram
address generation logic (i.e., by the sequence
control).

In a microprogrammed control like the one de-
scribed above, the two major portions of the con-
trol section have been simplified to regular logical
structures. The function generator is entirely sepa-
rate from the sequence control, so it is easy to iso-
late malfunctions to the microprogram storage or
to the address generator. In addition, the sensing
logic is simplified, because each sensed condition is
reduced to a single signal and the sensing logic se-
lects the appropriate signals for the current ma-
chine state, based on signals output from the
microprogram storage. To summarize this dis-
cussion, a microprogrammed processor has a sim-
pler, more regular, more easily repaired control
structure, based on the generation of control signals
from stored information, and the selection of each
machine state, based on information stored in the
current machine state, and on information from a
simplified sensing section.
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2.2 PARALLEL OPERATION (PIPELINING)

In a digital computer system, the processor is usu-
ally the fastest part of the system. In order to
achieve the maximum speed of operation, all parts
of the processor should be used as much as pos-
sible. To prevent the processor from wasting time
waiting for other parts of the system, the processor
must make use of the external data transfer inter-
face as much as possible. Because any one oper-
ation that the processor performs uses only part of
the processor’s available resources, the two consid-
erations above require the processor to perform sev-
eral operations in parallel.

In general, the sequence of operations required for
each instruction uses various parts of the processor
at different times. Some parts of the processor,
such as the program counter, are used only during
the early parts of the instruction; others, like the
shift counter, are used only during later parts of the
instruction. The processor can be fully utilized only
il different parts of the processor can be used for
parts of different instructions during the same ma-
chine state.

When the processor works on the early part of an
instruction at the same time that it completes the
previous instruction, this form of parallel operation
is called pipelining. The processor attempts to make
continuous use of the external data interface by
fetching each word addressed by the Program
Counter (PC) in succession (incrementing the PC
during each transfer), on the assumption that the
next word required will be the one following the
current instruction. In the pipelining analogy, the
processor attempts to fill a pipe, corresponding to
the different parts of the processor used succes-
sively by each instruction, with a series of
instructions.

The current instruction often requires some other
words from the external storage. At times, the next
instruction does not follow the current instruction
because the PC has been explicitly changed by the
current instruction. When either of these two condi-
tions occurs, the processor must stop the data trans-
fer begun after the instruction fetch and begin a
data transfer with a different address. In the pipe-
line analogy, this is a break in the smooth flow of
instructions through the pipe; some time is lost be-
fore the pipe drains (the current instruction is com-
pleted) and can be refilled (a new instruction
fetched and a transfer begun to read the word fol-
lowing that instruction).
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A second form of parallel operation occurs in the
KBI11-C to further improve the utilization of the
processor. Because the processor includes several
types of data storage and data manipulation ele-
ments, with different interconnections, several data
transfers can take place within the processor simul-
taneously. As an example, during the same machine
state that completes an external data transfer, the
processor can read a general register into a tempo-
rary storage register, and perform an addition that
adds a constant to the program counter.

The use of parallel operations within an instruction
reduces the number of machine states (and there-
fore the total time) required to execute each instruc-
tion: the use of pipelining further reduces the
number of machine states required to execute a pro-
gram by effectively eliminating the elapsed time be-
tween many external data transfers,

2.3 VIRTUAL MACHINES

The processor executes instructions and operates on
data, both of which are stored in memory, and it re-
sponds to various asynchronous events.

The response to an interrupt or trap is not entirely
designed into the processor. Instead, the response is
controlled by a series of instructions (a program)
which is selected by a simpler hardware response
when the asynchronous event is detected. Often, a
number of programs are required to respond to a
number of events, and the scheduling, coordination,
and interaction of these programs is one of the
most important (and difficult) parts of program-
ming a computer system.

In many applications, the user programs that are
written for the system are treated as though they
are interrupt response programs. This is done to
simplify the scheduling, to allow each user program
to operate with a terminal (some form of character
1/O device), and to allow several user programs to
operate at once. By running several programs at
once, the processor can be utilized more fully than
is generally possible with only one user program,
which would often be waiting while devices other
than the processor completed data transfer oper-
ations. With several programs to be run, the pro-
cessor can be switched among the programs so that
those ready to run have the use of the processor
while others are waiting. The use of the processor
for several programs at the same time is called
multiprogramming.



Running programs in a multiprogrammed system
presents several difficulties. Each program can be
run at arbitrary times, but all the programs must be
capable of running together, without conflict. A fail-
ure in one program must not be allowed to affect
other programs. Each program must be able to use
all features of the system in a simple, easily-learned
manner, preferably in such a way that the program
does not need to be modified to run in a different
hardware configuration.

These difficulties are overcome by providing each
program with a virtual machine. The programmer
writes his program as though it is to run by itself}
the program uses any system resources (such as
memory or peripheral devices), and the system pro-
vides the services necessary to support the program
and coordinate it with other programs in operation.
The physical hardware in the system is combined
with a control, or executive program, to simulate a
more powerful hardware machine; it is for this
more powerful, but abstract, machine that the pro-
grams are written.

Based on this discussion, the hardware machine
and the executive program must combine to fulfill
the fotllowing four major objectives of the virtual
machine:

Mapping - The virtual machine of the
program currently in operation must be
assigned to some part of the hardware
machine.

Resource management - The scheduling
of programs, and the allocation of parts
of the hardware machine, must be per-
formed by the executive program,

Communication - The virtual machine
must be able to request services from the
executive program, and the executive pro-
gram must be able to transfer data back
and forth with the user programs.

Protection -~ The system that supports
the virtual machine, and all other virtual
machines, must be protected from fail-
ures in any one virtual machine.

Each of these subjects is discussed in one of the fol-
lowing paragraphs.
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Mapping

Each time a program is run (or, if the multi-
programming system is running several programs in
a round-robin manner, each time a program re-
sumes operation), it has some of the system dar-
dware allocated to it. This generally includes some
part of the memory to contain the instructions and
data required by the program, some of the pro-
cessor’s registers, a hardware stack (which is ac-
tually an area in the memory and a pointer to that
area in a processor register), possibly some per-
ipheral devices, and perhaps a fixed amount of the
processor’s time. All of thse allocations must be
made in such a way that the hardware machine can
then execute the user program with a minimum of
extra operations; i.e., so that the execution of the
user program requires as few additional memory cy-
cles, or additional machine cycles, as possible.
Therefore, the allocation is done entirely in the
hardware machine; registers in the hardware con-
tain all the allocation (mapping) information, and
all references to virtual addresses, virtual stack loca-
tions, virtual register contents, or virtual devices
converted by hardware to physical references.

In a PDP-11/70 System, mapping is done by two
devices. The mapping of virtual registers into pro-
cessor registers, of the virtual stack, and of the vir-
tual program counter, is done by loading the
appropriate values into the processor registers; one
of two sets of general registers can be selected for
the user, and the processor has a separate stack
pointer for user mode, while the program counter is
changed by interrupt and trap operations and by
the Return from Interrupt (RTI) or Return from
Trap (RTT) instructions.

The remaining mapping functions distribute the vir-
tual memory into the physical memory. In the phys-
ical memory, many specific addresses are reserved
for special functions; the lowest addresses are used
for interrupt and trap vectors, while the highest ad-
dresses are used for device registers. Because all
functions that require reserved addresses in the
physical memory are performed either by the phys-
ical machine or by the control program, these ad-
dresses need not be reserved in the virtual machine.
Therefore, the programs written to be run in the vir-
tual machine can use any addresses; specifically,
these programs can start at address 000000 and con-
tinue through ascending addresses to the highest ad-
dress needed.



In discussions of the virtual memory and the phys-
ical memory, it is often necessary to describe the ad-
dresses used to select data items within the
memory. The range of addresses that it is possible
to use is called the address space. The maximum
range of addresses that can be used in the virtual
machine (which in the PDP-11/70 is the maximum
number that can be contained in a 16-bit word) is
called the virtual address space, while the maximum
range of physical addresses that can exist in the
hardware system is called the physical address
space (in the PDP-11/70 this can be all the ad-
dresses expressed by a 22-bit number).

If the user program is to use addresses in the vir-
tual address space that are reserved in the physical
address space, the virtual address space must be
relocated to some other part of the physical address
space. In a multiprogramming system, several user
programs, each in its own virtual address space,
may be sharing the physical address space. There-
fore, the relocation of the virtual address space into
the physical.address space must be variable; each
time a program is run, it may be allocated a differ-
ent part of the physical address space. Memory
Management provides the capability of varying the
relocation for each user program by storing a map
of the memory allocation in a set of registers.

Resource Management

In a multiprogramming system, each user program
operates in a virtual machine that can utilize any of
the possible devices or functions of the physical ma-
chine, as well as many functions performed by the
exccutive program. The resources that exist in the
system must be allocated to each user program as
required, but without allowing conflicts to arise
where several user programs require the same re-
sources. The physical machine and the executive
program must resolve any protective conflicts by
scheduling the resources for use by different pro-
grams at different times, and must schedule the
user programs to operate when the resources are
available.

The management of input/output or peripheral de-
vices is beyond the scope of this discussion, which
is primarily concerned with the basic PDP-11/70
System. Within the system, the two most important
resources which require the most care and effort to
control are the memory and the processor.
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Processor Management

The processor can only execute one instruction at a
time. When several programs are sharing the use of
the processor, the processor operates on each pro-
gram in turn; either the processor is shared among
the programs, by using periodic interrupts to allow
the executive program to transfer the processor to
another user program, or each user program runs
to completion before the next user program begins.
To share the processor on a time basis, the execu-
tive program must perform the transfer from one
virtual machine to another. Each virtual machine is
given control of the physical machine by loading
the map of that virtual machine into the physical
machine. That is, the executive program changes vir-
tual machines by changing the contents of the pro-
cessor registers used by the virtual machine, and by
changing the contents of the registers in Memory
Management which map the virtual address space.

Memory Management

The following discussion assumes that Memory
Management is enabled. Memory Management is
much more complicated than Processor Manage-
ment. If a program uses a large proportion of the
virtual address space, and only a small amount of
memory is physically available in the system, the
program may be too large to fit into the memory
all at once. Fortunately, in most programs only a
small part of the program (or possibly several small
parts. one for the instruction stream and one or
more for blocks of data) is used at any one time.
To take advantage of this fact, the virtual address
space is divided into pages so that each page can be
mapped separately. Only the pages that are in use
in the current instruction are required to be in the
physical memory during the execution of that
instruction.

A system which uses Memory Management to per-
mit cach virtual machine to have a larger address
space than the available physical memory must also
include a mass storage device to hold those parts of
cach virtual memory that are not in the physical
memory. As a program proceeds through a se-
quence of instructions, it requires different pages of
the virtual memory. The memory map in the Mem-
ory Management includes relocation information
for cach page of the virtual address space, and also
includes information specifying which pages are cur-
rently in the physical memory. If the processor at-
tempts to perform transfers with a virtual address



which is on a non-resident page, the instruction is
aborted. A part of the executive program which
transfers the required page into the physical mem-
ory and changes the map in Memory Management
to reflect the newly available page is then executed.

Memory Use Statistics

If it is necessary for the executive program to bring
a page into the physical memory, but all of the
physical memory is already in use, the executive
program must remove another page (from the same
virtual machine or, in a multiprogramming system,
from some other virtual machine) from the physical
memory. When a page is removed from the phys-
ical memory, a copy of that page must be stored in
the mass storage device; if a copy of the page is al-
ready on the mass storage device, and none of the
data (or instructions) stored on the page have been
changed, the writing of the page onto the mass stor-
age device can be bypassed. Each time a page must
be replaced, the executive program attempts to pre-
dict which page is least likely to be used in the fu-
ture, so that it will not soon need to be moved
back into the physical memory.

Memory Management includes hardware to permit
choosing the page to be replaced and to determine
whether that page must be written onto the mass
storage device. Each external data transfer per-
formed by the processor requires that Memory
Management convert a virtual address into a phys-
ical address and keep track of which virtual pages
have been accessed and which virtual pages have
been written into. The executive program operates
on the assumption that pages which have been re-
cently accessed will also be used soon. To find a
page which can be replaced, the executive program
looks for a page which has not been used, prefera-
bly from the address space of a user other than the
current user. If there are no virtual pages currently
in the physical memory that have not been ac-
cessed, the executive program looks for a page that
has not been written into, to avoid having to copy
a page to the mass storage device. If all the virtual
pages in the physical memory belong to the current
user, the executive program looks for a page that
has not been used recently, again preferably one
that has not been written into. By use of the hard-
ware Memory Management unit and of a variety of
scheduling and allocation algorithms in the execu-
tive program, the system can provide a number of
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user programs with virtual machines of great power
and flexibility, with a minimum burden on the user
program.

Communication

A program running in a virtual machine must be
able to communicate with the executive program,
to request various services performed by the execu-
tive program, or to determine the status of the sys-
tem. The same type of communication can be used
for communication between virtual machines, by
providing inter-machine communication as a service
through the executive program. The same hardware
functions that provide a means for the user pro-
gram to communicate to the executive program are
also used by the executive program to determine
the status of the user program when a trap or abort
condition occurs,

The user program requests services by executing
trap instructions (such as EMT, TRAP, or 10T).
Abnormal conditions caused by a program failure,
such as an odd address for a word data transfer, or
an attempt to execute a reserved instruction, cause
internal processor traps. In either case, the trap
function performed by the processor serves to no-
tify the executive program that an instruction is
required.

Context Switching

The executive program must then begin executing
instructions to perform the requested service or to
correct the failure condition, if possible. However,
in order for the hardware machine to operate on
any program other than the user program, the map-
ping information must be changed to reflect the al-
locations used by the new program.

The trapping function performs the change of most
of the mapping information. The contents of the
Program Counter (PC) and the Processor Status
(PS) registers are changed directly; the old contents
are stored on a stack in memory, pointed to by a
stack pointer, and the new contents are supplied
from locations called a trap vector. The address of
the trap vector is provided by the processor and de-
pends on the type of trap instruction or trap condi-
tion, so that for each trap instruction or condition,
a different PC and PS can be supplied.



Memory Management stores the maps for the exec-
utive program and one user program in separate
registers, The processor indicates which map should
be used to relocate virtual addresses. During the ex-
ecution of instructions (as opposed to the interrupt
and trap service function), the address space map
to usec is specified by bits 15 and 14 of the PS.
These bits also specify which Stack Pointer (SP) reg-
ister in the processor to use (there is a separate SP
for each virtual machine). Because the trap and in-
terrupt service function loads the PS register with a
new value, this function changes almost the entire
virtual machine context directly.

The only remaining parts of the virtual machine
context that require changes are the general regis-
ters in the processor. These can be changed either
by saving the contents of the registers from the pre-
vious virtual machine on the hardware stack and
loading new contents, or by selecting the alternate
set of general registers (the processor has two sets
of general registers, 0 - 5). Register set selection is
controlled by bit 1l of the PS register, so this
method can be used in conjunction with the trap
service function,

To summarize the change of virtual machines: the
mapping in the hardware system includes the selec-
tion of a register set, a stack pointer, a program ad-
dress (in the program counter), an address space,
and a processor status. The trap and interrupt ser-
vice function, which is performed by the processor
as an automatic response to trap an instruction or
abnormal condition, can change all of these selec-
tions as follows:

1. The program counter and processor
status are changed directly.

2. Bits 15 and 14 of the new PS select the
new address space and stack pointer.
3. Bit 11 of the new PS selects the new reg-

ister set.

The mapping and selection information for the pre-
vious virtual machine is completely saved, either by
remaining in unselected portions of the processor
and the Memory Management unit, or by being
stored on the hardware stack. If the selected regis-
ter set is shared with other virtual machines, the reg-
ister contents must be changed by an instruction
sequence.
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Inter-Program Data Transfers

When the new virtual machine begins executing a
service program for the programmed request (if a
trap instruction was executed) or abnormal condi-
tion (if a trap condition occurred), the service pro-
gram must get information from the previous
virtual machine. This information may define the
status of the previous virtual machine, after an ab-
normal condition occurred, so that the service pro-
gram can correct the condition and restore the
correct status before returning control to the pre-
vious virtual machine. If the service program is per-
forming a service, the information required from
the culling program may define the specific type of
service to perform, or provide the addresses of data
buffers, or specify device and file names.

Most information required by the service program
is stored in the calling program’s address space. To
get this information, and to return information to
the calling program, the service program must be
able to operate in the present address space and
transfer data in the previous address space, at the
same time. The KB11-C Processor provides instruc-
tions to do this.

The special instructions that transfer data between
virtual address space make use of the PS register to
specify which address space is being used by the cur-
rent virtual machine, and which address space was
used by the previous machine (this is identified by
bits 13 and 12 of the PS). The data is transferred be-
tween the hardware stack of the current address
space and arbitrary addresses of the previous ad-
dress space. The calculations of the virtual address
in the previous address space; i.e., any index con-
stants or absolute addresses used to generate the vir-
tual address, are taken from the current address
space, just as the instructions are.

Each virtual address space is divided into an In-
struction (I) space and a Data (D) space. Each I or
D space has a full set of 2'¢ virtual addresses. There-
fore, the communication instructions are available
in two versions; one to transfer with the previous |
space. and one to transfer with the previous D
space. A different instruction is needed for each
transfer direction as well, so there are four commu-
nication instructions: Move To Previous Instruction
(MTPI) space, Move To Previous Data (MTPD)
space, Move From Previous Instruction (MFPI)
space, and Move From Previous Data (MFPD)
space.



Returning to the Previous Context

Because all the mapping and context information
for the previous virtual machine is saved when the
trap and interrupt service function sets up a new vir-
tual machine, the hardware system can resume the
execution of any program at the same point that it
was interrupted. This is done with a Return from
Interrupt (RTI) or Return from Trap (RTT) instruc-
tion, which replaces the PC and PS values of the
current virtual machine with the stored values from
the previous virtual machine.

The PS selects most of the mapping information, as
described previously, so the return instructions com-
pletely restore the previous context.

Protection

The hardware system and the executive program
must be protected from failures in each virtual ma-
chine. In addition, most systems provide protection
so that no program operating in a virtual machine
can tlake control of the system or affect the oper-
ation of the system without authorization. A third
form of protection that is useful in a large and com-
plex system is the protection of the executive pro-
gram against itself. The executive program is
divided into a basic, carefully written Kernel, which
is allowed to perform any operation, and a broader
Supervisor, which cannot perform privileged oper-
ations, but which provides various services useful to
the executive program and to the user programs.

The forms of protection provided include the differ-
ent address spaces for different types of programs,
a variety of restricted access modes, and restricted
processor operations. The address space protection
can be used with any type of program, whether op-
crating in User, Kernel, or Supervisor mode. The re-
stricted  processor operations are usable only in
Kernel mode: Supervisor mode has the same restric-
tions as User mode.

Separate Address Spaces

The most basic protection against modification of
the exccutive program by a User program (or of
the Kernel section by the Supervisor section) is the
separation of the address spaces. A program oper-
ating in User mode operates in the User address
space. It cannot access any physical addresses that

are not in that address space, regardless of their cor-
respondence to addresses in any other virtual ad-
dress space. The executive (Kernel) program can
prevent a User program from accessing other vir-
tual address spaces through the communication in-
structions (MTPI, MTPD, MFPI, MFPD) by
forcing bits 13 and 12 of the stored processor status
word to Is (to reflect User mode) before executing
an RTI or RTT instruction to return control to the
user program. This forces the previous mode bits in
the PS register to take on User mode, just as the
current mode bits are set to User mode, and the
communication instructions operate only within the
User address space .

Access Modes

Within one address space, it is often useful to be
able to protect certain parts of a program from un-
intentional modification. This can be done by allow-
ing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is
known as read-only (or write-protected) access.
Arcas in a virtual address space that contain alter-
able data must permit read/write access, but areas
that contain unmodified instructions may be read-
only.

Another useful form of access protection dis-
tinguishes between read accesses that fetch instruc-
tions (or address constants) and any accesses that
transfer data. If instructions can be accessed by the
processor only as instructions, they can be executed
but they cannot be read or transferred to any other
part of the address space. This prevents the user
from determining what the instructions are in order
to tamper with the instruction sequence or attempt
to modify the program in undesirable ways. This
type of access restriction is called execute-only
aceess.

Memory Management provides a read/write, read-
only. and exccute-only access modes system. The ac-
cess mode is stored in the mapping registers along
with the relocation information; in fact, when a
page of the virtual address space is not in memory,
a special access code that identifies the page as
non-resident is used. The execute-only access mode
is not a separate access mode, but is provided by
separating the address space into two address
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spaces that are used for the different kinds of trans-
fers. One address space is used for all transfers that
fetch instructions and is called the Instruction (I)
space, while a second address space is used for all
data transfers and is called the Data (D) space. If
the two address spaces are mapped separately, at-
tempts to use the same address for an instruction
and for data may address different physical loca-
tions. If no addresses in the D space correspond to
the physical addresses used in the I space, the in-
structions cannot be accessed as data and an exe-
cute-only access mode has been achieved. This
mode must be used with caution: tables that are ac-
cessed by indexed address modes must be in D
spuce and MARK instructions, which are stored on
he hardware stack as data and then executed, and
require the stack to be in the same virtual addresses
in I and D space.

‘Privileged Instructions

Certain PDP-11 instructions that affect the oper-
ation of the hardware machine must be prohibited
in the virtual machine. These include the HALT in-
struction, which stops the physical machine and
thus prevents any virtual machine from operation,
the RESET instruction, which stops all in-
put/output devices, regardless of which virtual ma-
chine they are allocated to, and various PS change
instructions. These instructions are allowed only in
Kernel mode so that the executive program can con-
trol the entire hardware system; they are ineffective
in the Supervisor or User mode. The RESET and
Set Priority Level (SPL) instructions are allowed to
exccute in these modes, but have no effect; the
HALT instruction activates a trap function so that
the executive program may stop all action for the
virtual machine that executed the HALT, but not
for other virtual machines.

2.4 REENTRANT
PROGRAMMING

A program can generally be divided into routines,
cach of which performs a function that is built up
from a sequence of instructions. Often, the function
performed by a routine is needed in several other
routines, so it is desirable to be able to call the rou-
tine from many other routines in the program; i.e.,

AND RECURSIVE

the program should be able to transfer the pro-
cessor to the instructions following the calling in-
struction. A routine which is called from other
routines is said to be subordinate to those routines
and is called a subroutine; the special instructions
that transfer the processor to the beginning of a
subroutine and that return the processor to the call-
ing routine are called subroutine linkage
instructions.

Recursive Functions

Some procedures are most easily implemented as a
subroutine that either performs a part of the pro-
cedure and then calls itself to perform the rest of
the procedure, or completes a computation and re-
turns a partial (and finally, a complete) result. This
is called recursive operation. The common example
of a recursive procedure is one that calculates the
factorial of a number (the factorial is the product
resulting from the multiplication of a number, n, by
all smaller numbers). The recursive procedure to cal-
culate a factorial of a positive integer is as follows:

1. Ifnis! or0, return 1 as the value of fac-
torial n.
2. If n is greater than |, compute the facto-

rial of n minus 1, multiply that number
times n, and return that value.

For example, to compute the value of factorial 3,
the procedure is to compute the value of factorial 2
and multiply by 3. However, the value of factorial
2 is the value of factorial 1 times 2. The value of
lactorial 1 is found by Step 1. to be I, so the final
result is | times 2, multiplied by 3, or 6. The same
recursion computes the factorial of any positive in-
teger, in n recursions for a number n.

Use of a Stack in Recursive Routines

When a subroutine is called recursively, the linkage
information for each call (the information required
to return to the calling program) must be saved dur-
ing subscquent calls. Since a recursive subroutine
can be called again before it returns from the first
call, the linkage information should not be stored
in a lixed location; instead, it is stored in a stack,
with cach linkage in a different location and a
pointer that identifies the specific location for each
linkage.
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Assume that subroutine A calls subroutine B,
which then calls subroutine C. Subroutine C must
return control to subroutine B before subroutine B
can return control to subroutine A. It can be seen
that in this case the last linkage which has not been
used for a return must be the first one used; i.e.,
the linkages must be used in a last-in, first-out se-
quence. A storage area whose locations are used for
last-in, first-out storage is called a stack; a pointer
is used to point to the last entry placed on the
stack, and the subroutine linkage instructions that
put information on the stack (a push operation), or
remove information from the stack (a pop oper-
ation), change the contents of the pointer so that it
always points to the correct word for the next link-
age operation.

One of the KB11-C processor’s general registers is
used by the subroutine linkage instructions as a
stack pointer. This register is the Kernel Stack
Pointer (SP) and it must be initialized to point to
the first word in a stack area. This same stack is
also used for storage of context or linkage informa-
tion by the trap and interrupt service function,
which is described in Section II, Chapter 6. The
traps, interrupts, and subroutine calls are all han-
dled in the same last-in, first-out manner.

A subroutine that can be called recursively should
not move data into fixed locations, because later ex-
ccutions of the same subroutine (before the current
execution is finished) may also execute the same
data transfer instructions. The best way to keep the
data storage for each execution of a subroutine sep-
arate is to store the data on the stack in the same
manner as the linkage information,

Reentrant Functions

Keeping the data storage separate from the pro-
gram is particularly important for programs and
subroutines that can be called from more than one
virtual machine. If several virtual machines are exec-
uting the same program, it can be called from more
than one virtual machine. If several virtual ma-
chines are executing the same program, it is desir-
able to have only one copy of the program in the

physical memory, and to map each virtual address
space into the same physical address space. How-
cver, in a muliprogramming system, one virtual ma-
chine may begin execution of a program and then
be interrupted: a second virtual machine may begin
excecution of the same virtual program and then run
out of time: the original virtual machine may re-
sume exccution and complete the program; and the
second virtual machine may resume executions. The
programmer cannot make any assumptions about
where cach virtual machine may resume execution,
nor can he make any assumptions about where
cach virtual machine stops, so the program must be
capable of being reentered at any time, regardless
of what other virtual machines have done with the
program.

Programs designed to store all their data on a
stack, so that each virtual machine that uses the
program simply uses a different stack, are called re-
entrant programs. A different stack pointer is se-
lected each time a different virtual machine is
selected. If the executive program changes the con-
text of the user virtual machine, to run a different
user, it changes the address mapping of the stack
area and the contents of the stack pointer, so that
cach activation of a program executes the program
in complete isolation from other activations by
other virtual machines.

Indexed Addressing of Parameters

When a program or routine calls a subroutine, the
calling routine may send data to the subroutine.
The amount of the data to be “passed’ to the sub-
routine may vary, as may the amount of data re-
turned by the subroutine. By placing all the data on
the stack, the amount of data becomes unimpor-
tant. The subroutine may read different data items
on the stack by using the indexed addressing modes
with the stack pointer as the base register. Complex
subroutines may require that the last word placed
on the stack (the word with the lowest virtual ad-
dress, because the stack expands toward low ad-
dresses) contain the number of parameters passed
so that the program does not use other data also
on the stack but not intended as parameters.
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Separate Stack and Index Pointers

Using the stack pointer as the base address for in-
dexed addressing presents problems if the sub-
routine must, in turn, pass data to another
subroutine. Each time the first subroutine calculates
a parameter for the second subroutine, it pushes
the parameter onto the stack. The address in the
stack pointer changes to reflect the new data on the
stack. As a result, all instructions in the first sub-
routine which contain index constants are invalid,
because the base value that the index constants are
supposed to modify has changed. It would be very
difficult, if not impossible, to write a subroutine
that could use different index constants as the stack
pointer changes (because to remain reentrant, the
program cannot change any part of the instruction
code). A much simpler solution is to separate the
base register from the stack pointer by copying the
stack pointer value into another general register be-
fore using the stack for any other data. This is still
reentrant because any change of virtual machine
also changes the contents of (or the selection of) all
general registers.

The register commonly used as ‘a separate index
pointer is register 5. The standard method of call-
ing subroutines in reentrant programs uses register
S as the index pointer, register 6 as the stack
pointer, and a word on the stack (at the address
contained in the index pointer) that indicates the
number of parameters on the stack. In addition to
providing a straightforward and completely reen-
trant structure, this method is completely com-
patible with a similar form of non-reentrant
subroutine call. The same -subroutine can be called
both by reentrant programs and. by simpler pro-
grams that are non-reentrant.

Subroutine Call Compatibility

In a non-reentrant program, the parameters passed
to a subroutine are placed in-line; i.e., they are in
the addresses immediately following the address of
the calling instruction. The subroutine call and re-
turn instructions use a register to store the program
counter value for the calling program; the value in
the program counter at the time the subroutine call
(jump to subroutine or JSR) instruction is executed
is the address of the word following the JSR instruc-
tion. The standard register specified in the JSR in-
structions is register 5; register 5 can be used as an

index pointer while the stack is used for data stor-
age during the execution of the subroutine. The
JSR instruction does not destroy the previous con-
tents of register 5 when it stores the return address
in that register; the previous contents are pushed on
the stack, and are automatically restored by a Re-
turn from Subroutine (RTS) instruction.

When the RTS instruction restores the Program
Counter (PC) value stored by the JSR instruction,
the calling program must have some means of by-
passing the stored data to get to the next instruc-
tion. The word immediately following the calling
instruction must contain the number of words occu-
pied by the parameters. Both of these requirements
can be fulfilled by placing a branch instruction in
the return location; the branch instruction advances
the PC so that the first word after the line parame-
ters, and the offset in the eight least-significant bits
of the branch instruction, contain the number of
words used for the parameters (the offset is multi-
plied by 2, before use, to generate a byte address).

The calling sequence and in-line parameter struc-
ture used by non-reentrant routines permits the sub-
routine to return control to the calling routine with
an RTS RS instruction. For compatibility, the reen-
trant subroutine call must also permit the same
RTS RS instruction to perform the return. How-
ever, when a subroutine has been called in a reen-
trant manner, RS points to a location on the
hardware stack, not to the calling program. In addi-
tion. the space in the stack area used by the sub-
routine call must be released (the stack pointer
must be adjusted to point to the first location after
the parameter area) so that any additional informa-
tion on the stack (such as a return linkage to a rou-
tine that called the routine that called the current
subroutine) is accessible. Thus, the word pointed to
by R5 should contain an instruction, whose least-
significant bits arc the number of parameters
passed to the subroutine, which can adjust the
stack pointer and also complete the subroutine re-
turn sequence.

The MARK instruction performs this function in
the PDP-11/70. A detailed description of the use of
this instruction is contained in the PDP-11/70 Pro-
cessor Handhook.
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The KBI11-C Processor System is capable of manip-
ulating, storing, and routing data. The processor is
the system component that manipulates the data.
Although the processor is designed to effect com-
plicated changes to the data that it receives, it ac-
tually consists of elements making only simple
changes. The complex data manipulation are ach-
eived by combining a number of these simple
changes in a variety of ways.

The processor consists of logical elements, each ele-
‘ment designed to perform a specific function. For
example, some elements store data, some read data
from another part of the computer, and others per-
form simple modifying functions such as com-
plementing the data or combining two operands,
cither by arithmetic or by logical means. These
simple basic operations are combined into func-
tional groups known as instructions. An instruction
can include a number of operations so that data
can be combined, changed, moved, or deleted. In-
structions can be further combined into programs
which use a number of instructions to construct
even more complex operations.

The basic logical elements of the processor can per-
form only a small number of operations at one
time. Therefore, to combine a number of these oper-
ations into an instruction, the instruction must be
divided into a series of sequential steps. These steps
are called machine states, or cycles, and may per-
form cither a single operation or several operations
at the same time. An instruction thus becomes a se-
quence of machine states. This sequence may be
fixed or may provide alternate paths (branches); in
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the latter case, internal conditions determine which
branch the instruction will follow.

The processor can be divided into several func-
tional parts:.

I.  The Interface section exchanges data
with devices external to the processor
(Chapters 5 and 6).

2. The Data Paths section performs data
handling functions (Chapter 2).

3. Control section includes the logic that de-
termines which operations are to be per-
formed during a particular state and
what the next machine state should be
(Chapter 1).

4.  The Timing section generates clock sig-
nals which synchronize the various oper-
ations of the KB11-C Processor System
(Chapter 4).

5. The Control Registers store the results of
processor operations. This data may be
used in determining future processor op-
erations (Chapter 3).

The Interface section consists basically of logic nec-
essary for transferring data between the processor,
the Unibus, the memory, and the Console. The
Data Paths and Control sections interact to per-
form the three main processor functions of data
storage, modification, and routing.



The Data Paths section consists of storage registers,
shift registers, multiplexers, and an Arithmetic
Logic Unit (ALU). The multiplexers control the
data flow between registers. The ALU executes the
more complex data manipulations, while the shift
registers move the data bits stored in them, either
to the left or to the right.

Operation of the elements of the Data Paths section
is determined by the Control section. Refer to Fig-
ure I-1. This section consists of a Read Only Mem-
ory (ROM) and its associated logic. The ROM
contains 2569 (400¢) locations. Each location con-
tains 68 bits. This 64-bit ROM output is divided
into 32 groups or fields, each of which controls a
discrete part of the KB11-C Processor. One of these
fields is called the Address Field (UADR or UAD).
The UAD field from the current machine state is
combined with selected data from other sections of
the KB11-C Processor in the ROM address logic,
whose output is the ROM address for the next ma-
chine state. In this manner, the required machine
states are generated in the proper sequence. The
UAD field may either be used as the next ROM ad-
dress, or may be modified by the feedback from the
other sections of the processor to generate the next
ROM address. This allows for instruction branch-
ing that is dependent on other conditions, and also
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8 UAD

L_____J 56
l l 1 }

DATA
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11- 3101

Figure I-1  Processor Control Section

for the use of machine states that are common to
several instructions. An auxiliary ROM in Memory
Management uses the same address as the pro-
cessor ROM.



The main function of the processor is to execute a
Program, or sequence of Instructions.

Instructions are stored in memory. A Program
Counter stores the address of the next instruction.
At the end of the execution of one instruction, the
processor fetches (reads from memory) the instruc-
tion that is to be processed next.

Instructions consist of a series of steps, called Ma-
chine States, or cycles, that are executed sequen-
tially. This sequence of steps is unique to each
instruction, although some steps, or series of steps,
may be common to several instructions.

The sequence of operations within each instruction
in the KB11-C is controlled by the microprogram
Read Only Memory (ROM).

A ROM is a storage device whose contents are pre-
determined and cannot be changed. Each address
generates a unique output. The KB11-C ROM has
an 8-bit address, which allows 256,, different out-
puts, each consisting of 68 bits.

This 68-bit output (ROM word) is divided into 32
fields, each of which controls a different part of the
Processor. :

The ROM word contains an address field, which in
most cases is the address of the next ROM word:
the ROM is self-sequencing. This address field can
be modified by conditions internal or external to
the processor, such as the instruction operation
code, the addressing mode or other factors.
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CHAPTER 1
INSTRUCTION DECODE AND
MICROPROGRAM CONTROL

When an instruction is fetched (read from memory)
it is stored in two instruction registers (IR):IRCA-
IR(15:00) and RACJ AFIR (15:00) and in the
FPP’s FIRA if this option is installed. The contents
of these registers are decoded, and these decoded
outputs control the ROM address, along with in-
puts from other processor circuits.

The decoded outputs of the IR are also used to de-
termine how the results of the executed instruction
are interpreted in setting the Condition Codes. Refer
to Paragraph 1.5.

BLOCK DIAGRAM

Figure 1-1 is a block diagram of the KB11-C Read
Only Memory (ROM). The ROM contains 256, or
400« processor control words. For each processor
machine cycle, one of these stored words is output
to the Data Paths section and to the other pro-
cessor circuits. The ROM word is divided into
fields, and each field controls a specific register,
multiplexer or process of the processor. In Figure
1-1, each control field is listed by a mnemonic
name and by bits of the microprogram word occu-
pied by the control field. The control selection that
is made, or the action that takes place for each
value that can be stored in the field, is listed under
the field name. Where possible, the field name and
description are placed next to the logical element
controlled by that field.

The microprogram ROM outputs that control
other parts of the processor must be stored in a buf-
fer register, so that the next microprogram word
can be selected while the current word is being
used. Therefore, a ROM Buffer Register (RBR) is
provided for these outputs (Paragraph 1.1).
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14 — T — ) —
15 - FJ/CLASS T ~0/CLASS —
16 DRO (1) SR15(1) {ROM <07:04> (RACD) [—
17 RACK RIP+FP SYNC L * TMCB BRQ# (T + CONF ) L 7P [
TMCB BRQ* (T +CONF ) L Le{ ROM <03:00> (RACD) |—
t (BEF=5)%0BD= CONDITIONAL FORK B 200 —
MISCELLANEOUS BUS DELAY ((BEF=14;=C8NSOLE BRANgHES
BEF=14)= CONDITIONAL FORK C
MsC (T1) [e9-27] BSD (T1) [40-39] { BEF =15)* FJ/CLASS=CONDITIONAL FORK B)
O NO EFFECT 0 NO PAUSE
1R AN 1 INTR PausE
3 SET CONF IF KERNEL MODE 3}305 PAUSE
4 SPL (SET PRIORITY LEVEL) l J l
5 CONDITIONAL BUST
6 BRQ STROBE TRAPS AND
7 BUST (BUS START) FROM CONSOLE ) UNLBUS AND MISCELLANEOUS TIMING
CONTROL — TO ALL MODULES
_ CONTROL (PRIORITY ARBITRATOR) GENERATOR
BUS CONDITION BUS CONTROL FP START (UBC) (TMC) (T16)
BSC (T1) [26-24]) BCT (T1) [32-30] FPS (T1) [67] 7S
@ NOP
0 DATI 0 NO EFFECT
1 SRC1 DATI » 1 READ FPP DATA 1 FLOATING POINT START FROM
2 KERNEL DATI 2 CONSOLE ACKNOWLEDGE MEMORY MGMT
3 SRC2 DATI 3 CLEAR FLAGS To/FRON aoneus o
4 FC (CONTROLLED BY FPP) 4 INIT IF KERNEL MODE TO/FROM
FPP, MEMORY MGMT.
5 DATO 5 STACK REFERENCE UNIBUS ;
6 BSOP1 6 ACKNOWLEDGE CONTROL INTERNAL DATA BUS
7 BSOP2 7 BEND (BUS END) SIGNALS 8 UNIBUS .
FLOATING POINT CONTROL * BCT = 1 IS HIGH ORDER CLEAR SYNC
FPC (T1) [64-65] OF FPC CLS (T1) [66]
® NOP @ NOP
1 LD FGR 1 INITIALIZE SYNCHRONIZER
2 LD FIR
3 LD FPA
4 READ DATA
5 READ FPS
6 READ FDR
7 READ FPA
Figure 1-1 Block Diagram
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Three output fields are used to select the next mi-
croprogram word (FEN, BEF, and UAD). They
are not buffered because they are used immediately
and the resulting address is buffered. Immediately
after the beginning of a machine cycle; when a-new
microprogram word becomes available, the ROM
address generation circuits begin the calculation of
the next ROM address. This corresponds to select-
ing the next machine state. The generated address is
assembled by the address gating logic and loaded
into the ROM Address Register (RAR). There are
three copies of the RAR to accommodate the out-
put loading required for 16 ROM elements, and to
transmit the ROM address to Memory Manage-
ment. (Refer to Paragraph 1.4.1.)

The address gating logic assembles the address
from five sets of inputs. The basic input, which is al-
ways present, is the Address (UAD) field of the cur-
rent microprogram word. The UAD is ORed with
the outputs of the Branch logic, which is controlled
by the BEF field of the microprogram word. The
Branch Control logic selects a set of condition in-
puts from signals received from the processor data
paths, the condition codes, and from the processor
interface modules. Depending on the state of the se-
lected inputs, the Branch Control generates one or
two signals that are used to modify the address
(Paragraph 1.4.4).

The three other inputs to the address gating circuits
are from the Fork logic. The three forks are similar
in implementation and purpose. Each fork uses
combinational logic to decode the instruction type
and a variety of processor conditions, and generates
one of .a number of addresses that is combined with
the UAD input by masking. Each fork can be en-
abled by one bit in the Fork-ENable (FEN) micro-
program field; normally all forks are disabled. No
more than one fork is ever enabled at a time (Para-
graphs 1.4.6 - 1.4.8).

The A Fork logic, used to select the machine state
that follows an instruction fetch, requires a separate
instruction register (AFIR) because this fork must
operate rapidly and therefore puts a heavy load on
the IR outputs. The B and C Forks decode inputs

from the primary IR and use the outputs of a sub-
sidiary ROM, which decodes some classes of in-
structions. These forks are used after a destination
operand fetch and a source operand fetch,
respectively.

To summarize the operation of the microprogram
control logic: during each machine cycle, an ad-
dress is assembled from any enabled fork combined
with the address field of the microprogram word
and any enabled branches. This address is loaded
into the ROM address register to select a new mi-
croprogram word. At the beginning of the next ma-
chine cycle, the new microprogram word is loaded
into the ROM buffer register and the sequence is
continued.

On power-up, the ROM is initialized and the pro-
gram is forced to a fixed address in memory which
contains the power-up subroutine. This subroutine
typically restores the program parameters that were
stored during power-down. Refer to Chapter 6
(Traps, Aborts and Interrupts) for a description of
these features.

DOCUMENTS

The documents listed below contain the informa-
tion required to follow an instruction from fetch to
execution.

1. KB11-C Flow Diagrams, drawing num-
ber D-FD-KB11-C-1, sheets 1 — 15. This
set contains a block diagram of the pro-
cessor on sheet 1, and the sequence of
microprogram cycles in flowchart form,
on sheets 2 - 15, The flowchart sheets
are labelled “FLOWS 1°° through
“FLOWS 15”, and are referred to in this
manner throughout this manual. (Refer
to Paragraph 1.2.)

2. ROM Map, sheets 12 - 15 of the RAC
module schematic, drawing number D-
CS-M8123-0-1. These four sheets repro-
duce the computer listing, in numerical
order, of the contents of each ROM
word, the name of each state, and the
page of the Flows on which this state is
shown. Refer to Paragraph 1.3.
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The ROM and its control logic is shown on draw-
ing D-CS-M8123-0-1, ROM & ROM Control
(RAC module), and on drawing D-CS-M8132-0-1,
IR Decode & Cond. Codes (IRC module).

1.  The ROM, ROM Buffer Register (RBR)
and ROM Address Register (RAR) are
shown on sheets 2 - 5 of RAC (drawings
RACA-RACD). Refer to Paragraphs
1.1 and 1.4.1.

(8]

The ROM Address bits (RADR), which
are the inputs to the RAR are shown on
sheet 11 of RAC (drawing RACL). Re-
fer to Paragraph 1.4.2.

3. The Branch Control logic is on sheet 10
(RACK) of RAC. Refer to Paragraph
1.4.4.

4. The A Fork logic is shown on sheets 6 -
8 of RAC (drawings RACE, RACF and
RACH). Refer to Paragraph 1.4.6.

5. The B Fork logic is on sheet 3 of IRC
(IRCB). Refer to Paragraph 1.4.7.

6. The C Fork logic is on sheet 4 of IRC
(IRCC). Refer to Paragraph 1.4.8.

7.  The Condition Code logic is on sheets 6
through 9 of IRC (IRCE - IRCJ). Refer
to Paragraph 1.5.

1.1 MICROPROGRAM ROM AND BUFFER
REGISTER

All control signals that are dependent only on the
machine state (i.e., that are not dependent on as-
ynchronous signals or on data inputs) are derived
directly from the outputs of the microprogram
ROM. The ROM contains 256 68-bit words; during
cach processor cycle, one word is fetched from the
ROM and stored in a buffer register. The outputs
of the buffer register are transmitted to the other
modules of the processor to act as control signals
or to be used in combinational logic that generates
control signals for all processor operations.

The ROM is implemented by 16 256-word X 4-bit
read-only memories.

11-1-4

The buffer register is implemented primarily by
745174 D-type hex flip-flop registers. (Some bits
are implemented by individual flip-flops to provide
separate input clocking or greater output load
capacity.)

Various ROM bits are clocked into the output buf-
fer register at different times. Most bits are clocked
by the T1 pulse, while others are clocked by the T2
pulse. Certain bits are clocked on the trailing edge
of the T1 pulse to allow slightly more time for the
processor 1o complete operations started by the pre-
vious machine cycle.

Figure 1-2 shows the ROM output bits, the type of
ROM IC that generates each bit (i.e., C71), which
groups of bits are stored in one 6-bit IC register,
and the time at which they are clocked into the
RBR. Table [-1 gives much of the same informa-
tion, plus the name given to each field.

The output buffer register, shown on drawing
RACA, is clocked by the T2 pulse; none of the con-
trol signals transmitted from the 18 bits of storage
on this drawing can be assumed to have settled be-
fore the T3 pulse.

Five output signals are derived from the contents of
the buffer register that is clocked by the falling
edge of the T1 pulse, rather than the leading edge
(drawing RACB). These signals (two pad write-en-
able and three pad address lines) gate the writing of
information into the processor general registers.
The data is transferred into the registers by writing
them with the TI pulse, so these enable signals
must not change until after the TI1 pulse has
oceurred.

One of the 6-bit output registers, shown on drawing
RACC, stores the output of bit 34 and of bits 32 -
28 of the ROM. Bit 33 is stored in a separate flip-
flop. This permits the buffer register to transmit
both polarities of USHCO00, with no additional sig-
nal delays. Bit 27 of the ROM, which generates
UMSCO0, is also stored on a separate flip-flop to
generate both polarities.

The microprogram bits which are used to calculate
the new ROM address are used only on the RAC
module, so they are not brought to module pins.
However, several of the branch-enable signals are
required either in both polarities or with greater fan-
out capacity: UBEF03, UBEFO0I1, and UBEFO00 are
buffered by more than one gate.
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Each 6-bit group: one 745174 register, except bits 66-64
which are clocked into a 745175 register.

Bits 27,33,67 are individual 74S74 flip-flops.

Figure 1-2 ROM Word: Clock, ICs and Registers
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Table 1-1

Microprogram Bit Usage
Bit Positions Contents Clocked At
RACA
67 FP start (UFPS) T1
66 clear sync (UCLS) T1
65-64 Floating Point Control (UFPC) T1
63 bus register clock (UBRK) T2
62 bus register multiplexer (UBRX) T2
61-60 source register MUX (USRX) T2
59-58 destination register MUX (UDRX) T2
57 source register clock (USRK) T2
5655 destination register clock (UDRK) T2
54-52 condition-code load (UCCL) T2
51 program counter A CLK (UPCA) T2
50—-49 program counter B CLK (UPCB) T2
4847 shifter control (USHF) T2
46 instruction register CLK (UIRK) T2
RACB
45-44 pad write-enable (UPWE) T1+15ns
43-41 scratchpad address (UPAD) Tl +15ns
40-39 bus delay (UBSD) T1
38-37 bus address multiplexer (UBAX) T1
3635 internal bus (UIBS) T1
RACC
34-33 shift counter (USHC) T1
32-30 bus control (UBCT) T1
29-27 miscellaneous control (UMSC) T1
26—24 bus conditions (UBSC) T1
23-22 A multiplexer (UAMX) T1
21-20 B multiplexer (UBMX) T1
19-18 constant multiplexers (UKMX) T1
17-15 arithmetic logic unit cont (UALU) T1
RACD
14 fork C enable (UCFEN) not buffered
13 fork B enable (UBFEN) not buffered
12 fork A enable (UAFEN) not buffered
11-08 branch-enable (UBEF) not buffered
07-00 microprogram address (UADR) not buffered
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1.2 FLOW DIAGRAMS

The Flows are a description, in flowchart form, of
the operation of the KB11-C Processor. Refer to
Figure 1-3. Each cycle, or machine state, is repre-
sented on the Flows by a rectangular box. The top
part of this box describes the operations executed
during the cycle. The bottom part lists the actual
operations that occur at each timing pulse.

The following information is supplied to aid in un-
derstanding and using the Flows:

1. A note on timing (Paragraph 1.2.1).

2. A glossary of abbreviations and terms
used on the Flows (Paragraph 1.2.2).

3. A definition of Instruction Classes (Para-
graph 1.2.3).

4. A description of Addressing Modes as
they relate to operand fetch (Paragraph
1.2.4).

5. A description of the Flow Diagrams,
page by page, which explains in general
terms the use of the cycles on each page
(Paragraph 1.2.5).

6. Tables listing the cycles on each Fork
used by each instruction (Paragraph
1.2.6).

1.2.1 ROM Timing

Refer to Figure 1-4. The ROM address RACL
RADR(07:00) H is clocked into the ROM address
register at T3. The ROM output for the new cycle
is clocked into the RBR at T1 - T2.

NOTE

The KB11-C is controlled by the clock circuits de-
scribed in Chapter 4, Timing Generator. For the pur-
poses of this Chapter and of Chapters 2 and 3, it
must be known that there are two types of clock sig-
nals: the timing pulses, T1 - T5 and the time states,
TS1 - TSS. The timing pulses are 15 ns wide and oc-
cur at 30 ns intervals. The time states occur at the
same time as the timing pulse of the same number
(TS1 occurs at the same time as T1) and are asserted
for 60 ns.

The timing pulse shown as “T6” on the Flows occurs
at T1 ef the next cycle.

1.2.2 Glossary

The symbols, abbreviations and terms listed below
occur on the Flow Diagrams and are also used in
the text of this manual.

SYMBOLS

(OP CODE).B - Refers to both the word and byte
instructions, when describing instruction classes,
e.g.: “NEG.B” means “NEG and NEGB.”

+ is used for a logical inclusive OR.

* is used for a logical AND.

ANGLE BRACKETS (...) - Indicates operations
that are executed for diagnostic purposes only and
are not necessary to the operation performed by the
cycle.

$ - Instruction dependent. See Chapter 2.

ACKN - ACKNowledge: signal that clears certain
trap and abort flags when they have been serviced.

AFIR - See IR
ALU - Arithmetic Logic Unit. See Chapter 2.

BA - Bus Address: Example: BA-PCB means that
the PCB is used as the address for a data transfer.

BC - Bus Condition: defines the type of data trans-
fer that is to be executed; example: BC-DATI

BEND - Bus END: aborts a data transfer cycle
which cannot be completed because of an abort con-
dition (refer to Chapter 6) or one which was started
in the previous cycle and which is not required. See
Chapter 5.

BR - Bus Register: stores data received during
data transfers: also used as temporary storage dur-
ing instruction execution.

BRQ STROBE - Signal which clocks traps and in-
terrupts into the request register. See Chapter 6.

BUS - Source of data during any data transfer:
may be Unibus, Internal Bus or Cache; example:
BR-BUS.

BUS PAUSE - Sccond ROM state of any data
transfer. See Chapter 5.
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Figure 1-3 Flow Chart Symbols (P/O Flows 2)
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Figure 1-4 ROM Timing

BUST - BU STart: first cycle of any data transfer.
Sce Chapter 5.

BXX DISP - The left shifted (multiplied by 2) and
sign extended value of the displacement field of a
branch instruction,

CC - Condition Codes
CCLD - Condition Code Load

CHECK STACK LIMIT - The contents of GD[6]
are checked to see if there is a stack violation. See
Chapter 6.

CLEAR FLAGS - Asserted when UBCT =3: clears
the Address and Stack Error Flags. See Chapter 6.

CONF - CONsole Flag: causes the processor to
halt when set.

DATI - Transfer of one word of data to the pro-
cessor from memory or from a Unibus device.
SRCI1. SRC2, KERNEL DATI. See Chapter 5.

DATO - Transfer of one word of data from the
processor to memory or to a Unibus device.

DF - Destination Field: bits 02:00 of instruction
word: this number is the address of a register.

DM - Destination Mode: bits 05:03 of instruction
word.

DR - Destination Register: see Chapter 2.

EALU - Floating Point Processor (FPP) ALU.
FC - FPP Cl line.

FCC - FPP Condition Codes.

FDR - FPP Data Register.

FIRA - FPP Instruction Register.

FPA - FPP Address Register

FP ATTEN - Signals the FPP that data transfer is
complete.

FP READ DATA - Processor request for FPP
data.
FPS - FPP Status Register.

FP START - Processor signal to FPP to initiate
operation,
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GD[X] - General Destination register. See Chapter
2. “X” designates the register number, e.g.: GD[4];
GDI[DF] is the register designated by the Destina-
tion Field of the instruction word. The notation
“GDI[X]” means that the register is read.

GR[X] - General Register: includes both GD and
GS when writing into these registers.

GS[X] - General Source Register. See Chapter 2.
“X” designates the register number, e.g.: GS[4];
GS|[SF] is the register designated by the Source
Field of the instruction word. The notation
“GS[X]’ means that the register is read.

INIT - INITialization pulse (10 ms).

INTR PAUSE -~ INTerRupt PAUSE: the processor
stops and accepts an interrupt vector from the
Unibus. See Chapter 6.

IR,AFIR - Instruction Register which stores the in-
structon word.

Left Arrow («) - Signifies transfer of data to unit
on left from unit on right; example: BR—BUS, the
BR receives data from the BUS.

PC,PCA,PCB - Program Counter. See Chapter 2.
SC - Shift Counter. See Chapter 2.

SF - Source Field: bits 08:06 of Binary instruction
word; this number is the address of a register.

SHFR - SHiFteR. See Chapter 2.

SM - Source Mode: bits 11:09 of binary instruction
word.

SR - Source Register. See Chapter 2.

SRCCON - Value generated to modify the SR dur-
ing auto increment or decrement addressing mode.

SV - Start Vector: address of a word that contains
the address that is entered on power-up. See Chap-
ter 6.

SWAP(XX) - The SHFR moves the low byte into
the high byte position and the high byte into the
low byte position of the designated register.

TV - Trap Vector: address of a word that contains
the address of a subroutine that is entered after a
trap. See Chapter 6.

1.2.3 Instruction Classes

The instructions in the PDP-11 Instruction Set are
divided into classes by the decoding logic on RAC
and IRC. Some of these classes are used on the
Flows to determine the machine state to which an
instruction will go next.

During BSOPI and BSOP2 data transfer cycles,
one of several types of bus cycles (DATI, DATIP,
DATO or DATOB) may be executed during a
given machine state. The type of bus cycle that is
executed during one of these machine states also de-
pends on the instruction class. These instruction
classes are described as follows:

P/CLASS - Defines a group of instructions which
require a DATIP instead of a DATI cycle when ob-
taining the word which is to be operated on. This
allows for modification of the word without requir-
ing memory to restore the word first during a
DATI and then again during a DATO. In addition,
it provides an interlock, i.e., the location cannot be
accessed by another device while it is being oper-
ated on. The following instructions are P/class:

0003 DD SWAB 07 4R DD XOR
0050 DD CLR 1050 DD CLRB
0051 DD COM 1051 DD COMB
00 52 DD INC 1052 DD  INCB
0053 DD DEC 1053 DD DECB
0054 DD NEG 1054 DD NEGB
0055DD ADC 1055 DD ADCB
0056 DD  SBC 10 56 DD SBCB
00 60 DD ROR 10 60 DD RORB
00 61 DD ROL 10 61 DD ROLB
0062 DD  ASR 1062 DD  ASRB
0063 DD  ASL 1063 DD  ASLB
0067 DD  SXT 11SSDD MOVB
04 SS DD  BIC 14SS DD  BICB
05SS DD  BIS 15SS DD  BISB

06 SSDD ADD 16 SSDD SUB

I/CLASS - Defines a class of instructions which re-
quire a DATI during a BSOPI1:

0057DD TS 07 IR SS D1V
00 65 SS MFPI 1057 DD  TSTB
02SSDD CMP 10 65 SS MFPD
03SSDD  BIT 12SS DD CMPB
07 OR SS MUL 13SS DD  BITB

0O/CLASS - Defines a class of instructions which re-
quire a DATO during a BSP1: 01 SS DD MOV
and X0 66 DD MTP
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BIN(ayy) - All double-operand instructions; may re-
quire both source and destination calculations:

01SSDD MOV 11SSDD MOVB
02SS DD CMP 128SSDD CMPB
03SS DD  BIT 13SS DD  BITB
04 SSDD  BIC 14SS DD  BICB
05SS DD  BIS 15SS DD  BISB

06 SSDD ADD 16 SSDD SUB

DAC - (Destination Address Calculation) All
single-operand, register to destination or BIN*SMO
instructions:

always:

0001 DD JMP 07 IR SS DIV

00 03 DD SWAB 07 2R SS ASH
00 4R DD JSR 07 3R SS ASHC
0050 DD CLR 07 4R DD XOR
0051 DD COM 1050 DD  CLRB
00 52 DD INC 1051 DD COMB
00 53 DD DEC 10 52 DD INCB
0054 D NEG 10 53 DD DECB
0055 DD  ADC 10 54 DD NEGB
00 56 DD SBC 1055 DD  ADCB
0057 DD TST 10 56 DD  SBCB
00 60 DD RO 1057 DD  TSTB
00 61 DD ROL 10 60 DD RORB
0062 DD  ASR 10 61 DD ROLB
00 63 DD  ASL 1062 DD  ASRB
00 65 SS MFPI 10 63 DD ASLB
00 67 DD  SXT 10 65 SS MFPD
07 OR SS MUL

if SMO:

01 SSbD MOV 11SSDD MOVB
02SS DD CMP 12SS DD CMPB
03SS DD  BIT 13SS DD  BITB
04 SS DD  BIC 14SS DD  BICB
05 S DD BIS 15SS DD  BISB

06 SSDD ADD 16 SSDD SUB

E/CLASS - (Execute class) No address calculation
is required. These instructions use EXC.80 or
EXC.90 (Flows 3). In general, these are DAC*DMO0
or BIN*SM0*DMO:

0003 DD SWAB 06 SSDD ADD
0050 DD CLR 07 4R DD XOR
0051 DD COM 1050 DD  CLRB
0052 DD INC 1051 DD COMB
0053 DD DEC 10 52 DD INCB
0054 DD NEG 10 53 DD DECB
0055 DD  ADC 1055 DD  ADCB
0056 DD  SBC 10 56 DD SBCB
0057 DD  TST 1057 DD  TSTB
00 60 DD ROR 10 60 DD RORB
00 61 DD ROL 10 61 DD ROLB
00 62 DD  ASR 1062 DD  ASRB
0063 DD  ASL 1063 DD  ASLB
00 67 DD SXT 12SS DD CMPB
01 SSDD MOV 13SS DD  BITB
02SS DD CMP 14SS DD  BICB
03SS DD  BIT 15SS DD  BISB

04 SS DD BIC 16 SSDD SUB

05 SS DD BIS

BSOP1 - (BuS OPeration 1) When the ROM Bus
Condition (UBSC) equals 6 during a bus cycle
(data transfer), a DATO is executed for an O/class
instruction, a DATIP for a P/class or a DATI if
the instruction is neither O/class nor P/class. This
condition is shown on the Flows as BC—-BSOPI.

BSOP2 - (BuS OPeration 2) When UBSC=7 dur-
ing a bus cycle, a DATOB is executed for a byte in-
struction and a DATO for a word instruction. This
condition is shown on the Flows as BC~BSOP2.

J/CLASS - 00 01 DD JMP or 00 4R DD JSR -See
FJ/class.

F/CLASS - Floating Point Processor instructions
17 XX XX - See FJ/class.

FJ/CLASS - F/class or J/class, which require one
bus cycle less after the destination address calcu-
lation cycles than other DAC instructions (Flows 5
and 6).
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1.2.4 Addressing Modes and Operand Fetch
In general, the following steps are required for the
execution of an instruction:

1.  Instruction Fetch: The instruction word
is read from memory. The PCB is used
as an address and a DATI is executed in
FET.10. The instruction word is stored
in the instruction registers (IR and
AFIR).

2. Source Operand Fetch: This step is re-
quired only by BIN instructions whose
source mode is not 0 (-SMO). This may
require up to three DATI bus cycles, de-
pending on the addressing mode (refer
to Paragraphs 1.2.4.1 and 1.2.4.2).

3.  Destination Operand Fetch: This step is
required by all instructions that have a
destination operand when the destina-
tion mode is not 0 (-DMO). Up to three
bus cycles may be required, depending
on the addressing mode. Address word
fetches are DATIs; operand bus cycles
may be DATIs (I/class instructions),
DATOs or DATOBs (O/class) or DA-
TIP/DATO(B)s (P/class).

4.  Execution: After fetching the operand(s),
the operation specified by the op code is
performed. Execution may require sev-
eral cycles or may be part of the destina-
tion operand fetch.

PDP-11 instructions allow six bits for each operand
address. Three of these bits point to one of the gen-
eral registers; the other three define one of eight ad-
dressing modes, 0 - 7, which are defined in
Paragraphs 1.2.4.1 and 1.2.4.2. The position of the
bits in the instruction word is shown in Figure 1-5.
Unary, or single-operand instructions require only
a destination (DST) address, located in bits 05:00.
Binary, or double-operand instructions require both
a source (SRC) and a destination address; the SRC
is located in bits 11:06 and the DST in bits 05:00.

BINARY OR DOUBLE
OPERAND INSTRUCTION (BIN) SOURCE

15 11 09 08

NOTE
In the KB11-C, those FPP instructions whose bits
<11:06> = 0 are also classified as Mode 0 (CFCC,
SETF, SETI, SETD, SETL, op codes 170000-
170012). These are FPP Register operations. Refer
to Paragraph 1.2.5.2,

The mode determines how the contents of the regis-
ter are to be used. Addressing is said to be:

DIRECT - when the contents of the register
are the operand (mode 0);

DEFERRED - when the contents of the regis-
ter are the address of the operand or the ad-
dress of the address of the operand (modes |
- 5and 7);

INDEXED - when the contents of the regis-
ter are added to those of the word following
the instruction to obtain the address of the op-
erand (mode 6).

Mode 7 is indexed and deferred. Modes 4 and 5
decrement the contents of the register by 2 before
address determination. Modes 2 and 3 increment
the contents of the register by 2 after the address
determination.

Up to three bus cycles are required to obtain each
operand, one for each level of deferral, plus one for
indexing.

NOTE
Programming documentation sometimes refers to the
contents of bits 05:00 of an instruction word as a
Source address. The KB11-C logic, however, treats
any operand field in bits 05:00 as a Destination ad-
dress. For example, MFPI and MFPD are shown on
the PDP-11 Programming Card as 0065SS and
1065S, where “SS” indicates the source; these two in-
structions, however, are DAC and are executed as
such: the contents of the SS field (bits 05:00) are
used in the same manner as the bits 05:00 (=DD) in
an INC (0052DD) instruction.

DESTINATION
06 05 03

' T T T T !
OP CODE L MODE

o2
T T L —h T T
MODE REG

UNARY OR SINGLE
OPERAND INSTRUCTION (DAC)
15

DESTINATION
06 05 03 02 00
T

T T T [ T T
[7 0F CODE

T T
REG

1~ 3104

Figure 1-5 Source and Destination Mode Formats
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1.2.4.1

General Register Addressing - “R” is any
general register but register 7 (PC). The number of
bus cycles listed below for each mode is that re-
quired for operand fetch.

Mode Name

Definition

0 REGISTER
Symbolic: %R

Example:
CLR %3=005003

1 REGISTER
DEFERRED
Symbolic: (R)

Example:
CLR (3)=005013

2 AUTO-INCREMENT

Symbolic: (R)+

Example:
CLR (3)+=005023

3 AUTO-INCREMENT

DEFERRED
Symbolic: @R)+

Example:
CLR @(3)+=005033

Register R contains the
operand.

No bus cycle required.

Register R contains the
address of the operand.

One bus cycle is
required.

Register R ‘contains the
address of the operand.
The register is incre-
mented after the
operand has been
fetched.

One bus cycle required.

Register R contains the
address of a location
which contains the ad-
dress of the operand.
The contents of the
register are incre-
mented after its use.

Two bus cycles are
required.

Mode Name Definition
4 AUTO-DECREMENT The contents of Regis-
Symbolic: -(R) ter R are decremented,
then used as the address
of the operand.
Example:

5 AUTO-DECREMENT
DEFERRED
Symbolic: @-(R)

Example:

6

CLR -(3)=005043

CLR @-(3)=005053

INDEX
Symbolic: X(R)

Example:

CLR 100(3)=005063
000100

One bus cycle is re-
quired.

The contents of register
R are decremented by
2. The register then
contains the address of
a location which con-
tains the address of the
operand.

Two bus cycles are re-
quired.

The contents of register
R are added to the
word X to which the
PC is pointing. This sum
is the address of the
operand.

The word to which the
PC is pointing is called
the INDEX word (engi-
neering term) or BASE
(programming term).
This word may be the
second or third word of
an instruction.

Two bus cycles are re-
quired.
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Mode Name Definition

Mode Name Definition

7 INDEX DEFERRED
Symbolic: @X(R)

Same as Mode 6, except
that the sum is the ad-
dress of a location
which contains the ad-
dress of the operand.

Example:
CLR @100(3)=005073
000100

Three bus cycles are re-
quired.

1.2.4.2 Program Counter Addressing - “R” is the
PC (general register 7). The number of bus cycles
listed below for each mode is that required for oper-
and fetch.

NOTE
Modes 2, 3, 6 and 7 are also used with the PC as the
register. The machine sequence for obtaining the oper-
and is the same in this case as that used when any
other register is used. Modes 0, 1, 4 and 5 are not il-
legal, but are of no practical use.

Mode Name Definition

2 IMMEDIATE
Symbolic: #n

The PC, after the instruc-
tion fetch, contains the ad-
dress of the operand, which
is the word contained in
the memory location
following that in which the
instruction word is stored.
The PC is incremented by
2.

Example:
MOV #100,R0 ; MOVE 100(8) TO REGISTER 0
The operation of this mode is explained as follows:

The statement MOV #100,R0 assembles as two words.

These are:
012700
000100

Just before this instruction is fetched and executed, the
PC points to the first word of the instruction. The pro-
cessor fetches the first word and increments the PC by
two. The source operand mode is 27 (autoincrement the
PC). Thus, the PC is used as a pointer to fetch the
operand (the second word of the instruction) before
being incremented by two, to point to the next instruc-
tion.

One bus cycle is required.

3 ABSOLUTE
Symbolic: @#A

Same as Mode 2, except
that the word that follows
the instruction is the ad-
dress A of the operand,
instead of the operand
itself.

Example: CLR @#100 = 005037
000100

Two bus cycles are re-
quired.

6 RELATIVE
Symbolic: A

Relative mode is assembled
as index mode, using regis-
ter 7, the PC, as the index
register. The base of the
address calculation, which
is stored in the second or
third word of the instruc-
tion, is not the address of
the operand (as index
mode), but the number
which, when added to the
PC, becomes the address
of the operand. Thus, the
base is X-PC, which is
called an offset. The
operation is explained as
follows:

Example:

If the statement MOV 100,R3 is assembled at absolute
location 20, the assembled code is:

Location 20:

016703
Location22: 0 0 0 0 5 4 (54=100-24)
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Mode Name Definition

The processor fetches the MOV instruction and adds two
to the PC so that it points to location 22. The source
operand mode is 67; that is, indexed by the PC. To pick
up the base, the processor fetches the word pointed to
by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source
operand, the base is added to the designated register.
That is, BASE+PC=54+24=100, the operand address.

Two bus cycles are re-
quired.

7 RELATIVE
DEFFERED
Symbolic: @A

Same as Mode 6, except
that the sum BASE+PC is
the address of a location
which contains the address
of the operand.

Three bus cycles are re-
quired.

1.2.4.3 A and C Forks: Operand Fetch - After an
instruction has been fetched and decoded, the oper-
and(s) are obtained from memory, if the addressing
mode is other than 0. The operation required by
the operation code is then executed.

The A FORK is used by all instructions:

1. Binary instructions that require source
mode calculation (-SMO0) calculate their
source address and fetch the source
operand.

2. Binary instructions that require no
source address calculation (SMO) and
single-operand instructions are DAC and
calculate the destination address and
fetch the destination operand.

3.  Binary instructions with both SMO and
DMO, single-operand instructions with
DMO, and instructions that are not part
of any one of the classes listed on Flows
3 and 5 are executed.

The C Fork is used by F/class instructions or by
binary instructions with source mode other than 0
(-SM0) to calculate the destination address and to
fetch the destination operand after the source oper-
and has been obtained on the A FORK.

Figure 1-6 shows the A and C Fork source and des-
tination calculation cycles. After the instruction has
obtained its operand(s) on these forks, it is exe-
cuted on the B Fork.

1.2.5 Flowchart Description

The KB11-C Processor flowcharts (drawing D-FD-
KB11-C-1) are divided into 14 drawings that illus-
trate options of the flow. Where possible, a contin-
uous sequence of machine states is shown on a
single drawing. The succeeding paragraphs describe
the machine operations illustrated on each drawing.
The description does not attempt to give detailed in-
formation about each machine state shown on the
drawing; this information can be derived directly
from the flowcharts and the ROM map (Paragraph
1.3).

Data Transfers

Data transfers require two machine states: a prelimi-
nary or BUST cycle, which sets up the conditions
for the PAUSE cycle, during which the data is
transferred. Data transfers are described in detail in
Chapter 5.

1.2.5.1 FLOWS 1

Instruction Fetch

Flows 1 illustrates the instruction fetch sequence,
the address calculation sequence for five of the
source modes, a special sequence for the MTPI and
MTPD instructions, and the execution of the
branch type instructions.

Fetch States

The basic instruction fetch sequence requires two
machine states: FET.10 (fetch) and IRD.00 (IR de-
code). FET.10 completes a data transfer operation,
begun during the last cycle of the previous instruc-
tion, which moves the instruction word from an ex-
ternal storage location to the instruction register
(IR) and bus register (BR), and increments the pro-
gram counter by 2. The instruction address is also
stored in the FPA (FPA<BA), if the FP11-C option
is present. If the data transfer is not overlapped
(i.e., if the transfer was not begun before the end of
the previous instruction), an additional state is re-
quired to begin the data transfer.

The additional state, FET.00, also checks for as-
ynchronous operations (such as bus requests) that
must be performed before beginning a new instruc-
tion, and branches to BRK.90 (break) if necessary.
When the instruction fetch is overlapped, the ma-
chine state that begins the data transfer must also
perform the same check.
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F/CLASS DAC BIN
sMg -sMg
l A FORK
SM1 sM23 SM45 SMe7
A FORK l l l l
$13.00 $13.01 $45.00 $67.00
| () ) () 2)
F/CLASS DAC » DM@ DAC *-DM@ 4 i !
A FORK C FORK
DMI2 DM3 DM45 DME7
o } | |
?Z)M D12.00 D30.00 D45.00 D67.00
A FORK D12.01 (5) D45.01 D67.01
l (5) (6) (6)
-E/CLASS E/CLASS
(1,2,3)
A FORK
(DF7 + BRQ) -(DF7 + BRQ)
EXC.90 EXC.80
(3) (3)
C FORK
DM@ * F/CLASS DM@ x-F/CLASS —OMB
SR (1) SRE (@) SRE (1) SR (@)
DF7 ~DF7 DF7 -DF7 Df\i12 DTB DMl45 DM67
FOR5¢ D07.00 D00.80 DO7.10 D00.90 DI2.90 030.90 D45.90 067.90
(4) (4) (4) (4) (4) (5) (5) (6) (6)
LEGEND:
S$M: SOURCE MODE | | | |
DM: DESTINATION MODE
DM12 M DM45 M
DF: DESTINATION FIELD oM3 bMe7
SR@(1): ODD BYTE ADDRESS
SR@ (@): EVEN BYTE ADDRESS D12.80 D30.80 D45.80 D&67.80
(5) (5) (6) (6)

NOTE:
Numbers in parenthesis show page
of flows where cycle occurs.

11-3449

Figure 1-6 A and C Forks, General Case

I1-1-16



Instruction Decoding

IRD.00 begins a new data transfer that fetches the
word following the instruction word. This data
transfer is used for address modes 6 or 7, and for
fetching the next instruction whenever the instruc-
tion being executed does not require other data
transfers.

In some cases, the CONDITIONAL BUST is not is-
sued, i.e., when a data cycle is required but the PC,
which is specified as the address in IRD.00, is not
the required address. In this case, for example
D30.00 (Flows 5), the DR is the address and a new
BUST is issued. CONDITIONAL BUST, which is
used only in IRD.00 (UMSC=5), and BUST are
controlled by RACH BUST H. Refer to drawing
RACH:

The four AND gates must be negated to assert
BUST.

1. The top gate is negated when MCS=5
or 7.

2.  The three other gates are enabled when
MCS=5 (CONDITIONAL BUST in
IRD.00).

3.  The second gate from the top is asserted,
and negates BUST during an IRD.00
that precedes S13.00 and S13.01
(BIN*SM 123).

4.  The third gate from the top is asserted,
and negates BUST during IRD.00, if the
instruction is a Branch and if there is a
Brake Request (BRQ TRUE). FET.00,
which is a BUST cycle, follows IRD.00
in this case.

5. The last gate prevents BUST from being
asserted during an IRD.00, if this cycle
precedes the three cycles that calculate
destination modes 1, 2 and 3 on the A
Fork (D12.00, D12.01, DAC*DM12; and
D30.00, DAC*DM3; all on Flows 5).
These cycles fetch the destination oper-
and but use the DR as the address, in-
stead of the PCB used by IRD.00.

The NAND gate prevents the negation
of BUST during IRD.00 when the cycle
that follows it is S67.00 (BIN*SM67,
Flows 2), if the destination mode of the
instruction is 1, 2, or 3. This cycle gets
the index word for source mode 6 and 7
of a binary instruction. The PCB is used
here as the address and the bus cycle
started in IRD.00 is completed. The
NAND gate prevents BUST from being
inhibited if the destination mode of the
BIN instruction is 1, 2, or 3.

In other cases, this data transfer operation is
aborted by a Bus End (BEND) operation in the ma-
chine state following IRD.00. During this machine
state, the processor also loads the source and desti-
nation registers (SR and DR) with the contents of
the general registers specified in the source and des-
tination fields of the instruction; this operation is
also done in anticipation of the use of this data,
and in many cases the data loaded into the SR and
DR is ignored. However, when the data is needed,
the anticipatory transfers allow the processor to op-
erate at maximum speed. The instruction word is
stored in the FIRA (FIRA«<BR), if the FP11-C op-
tion is installed.

Source Modes 1 - 5

The A Fork logic is enabled during IRD.00 (FEN
1), so the machine state that follows IRD.00 is de-
termined by decoding the instruction and certain
other conditions. Six of the possible sequences that
follow IRD.00 are shown on Flows 1. These in-
clude the beginning of the data fetch sequence for
all binary instructions that have a source mode of 1
— 5. If the source mode is 1, 2 or 3, the external
data transfer is restarted with a new address and
the incrementation of the source register is started
for modes 2 or 3. If the source mode is 4 or 5, the
external data transfer can not be started until the
address has been decremented, so S45.00 performs
a BEND. After performing the data transfer to
fetch the word addressed by the source register, the
sequence conditionally enables the C Fork logic. If
the source mode is odd, another data transfer is re-
quired to fetch the data addressed by the word just
fetched; otherwise the fork determines the next
state.
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Move to Previous Space Instructions

For an MTPI or MTPD (Move To Previous) in-
struction, MTP.00 and MTP.10 read an address
from the stack pointer and begin a data transfer op-
eration to fetch a data word that will be transferred
to the destination address. The flow then transfers
to the last state of the source-data-fetch sequence,
because this state is alike for both the MTP se-
quence and the normal source data sequence.

Branch Instructions

For branch instructions, the A Fork logic deter-
mines whether the branch is successful, and if not,
whether a bus request has been sensed. If the
branch is successful, the PC must be changed be-
fore the next instruction is fetched; this is per-
formed by the BXX.00 - BXX.05 (branch) machine
state which aborts the previous data transfer. This
state also strobes any new bus requests. The BRQ
STROBE must be performed in the state preceding
the state that starts the instruction fetch; this in-
cludes FET.10 (in case the A Fork logic returns
control directly to FET.00), the next-to-last state of
instructions that overlap the instruction fetch, and
the last state of instructions that do not provide
overlap. The machine state following BXX.00 is
FET.00.

If the branch is not successful and no bus requests
are sensed, the instrucion fetch continues the data
transfer begun in IRD.00; if a bus request is sensed,
the sequence returns to FET.00, which in turn trans-
fers the sequence to BRK.00. Table 1-3E lists the
ROM words used by each branch instruction for
the four possible sequences.

1.2.52 FLOWS2

Indexed Source Modes and Operate Instructions
Flows 2 illustrates the sequence of machine states
for the data fetch for source modes 6 or 7, for the
transfer of floating-point instructions to the FPP,
and for the execution of five operate instructions.

Indexed Source Modes

For BIN*SM67, the indexed source modes for
binary instructions, the transfer begun in IRD.00 is
completed and an increment from the source regis-
ter is added to the data word; the resulting data
word is used for a second data transfer. When this
transfer is complete, a conditional fork is used to

transfer to the sequence required for the current in-
struction, unless an indirect-indexed address re-
quires a third data transfer. In the latter case, the
sequence continues through three machine states
that are common to the sequences of all indirect
source modes 3, 5, and 7, and in part to the MTPI
or MTPD instruction.

Floating Point Instructions

When a floating-point instruction is recognized by
the A Fork logic, the sequence is transferred to
FOP.00 (floating-point operation). In this state, the
contents of the Destination Register are stored in
the BR; in the following state (FOP.10) the con-
tents of the BR are stored in the FDR. Thus, at
this point in the instruction execution, the instruc-
tion word, its address, and the contents of the Gen-
eral Register specified by the instruction are all
stored in the FPP.

The instruction flow then goes to the C Fork logic
to perform the address calculation:

1. For DMO (which also includes FPP op
codes 170000-170012, whose IR<11:06>
= 0. CFCC, SETF, SETI, SETD and
SETL), the next cycle is FOP.50 (Flows
4);

2. For -DMO, the FPP uses the same ad-
dress calculation cycles as the processor
instructions.

RTI and RTT Instructions

The RTI and RTT instructions differ only in the
clocking of T bit traps after the data transfers, so
the sequence of machine states is identical. This se-
quence performs two data transfers to restore the
previous PC and PS words from the hardware
stack, and performs two increment operations on
the stack pointer. The sequence then continues with
an instruction fetch.

RTS Instruction

The RTS sequence performs one register-to-register
transfer and one external data transfer to restore
the PC and the specified register, and updates the
Stack Pointer (SP) after the transfer. The sequence
then returns to the instruction fetch machine states.
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SOB Instruction

The sequence of machine states for the SOB instruc-
tion first generates a new PC value, based on the
offset in the instruction, and then restores the old
PC value if the value in the specified register will be
0 after decrementing. This is done because the test
on the value of the register requires one machine
state in every case, which can be combined with the
calculation of the new PC value, and because the
branch is successful most of the time; thus, the ex-
tra machine state to perform the restoration of the
old PC value is executed less often than if an extra
state were required when the branch is successful.
The SOB sequence initiates the fetch of the next in-
struction during the last machine state, which also
performs the decrement on the specified register.

MARK Instruction

The machine state sequence for the MARK instruc-
tion transfers the contents of general register 5 to
the PC, transfers the top word on the hardware
stack to register 5, then begins fetching the next in-
struction. The operation of the MARK instruction
assumes that the instruction has been fetched from
the top of the hardware stack; for a discussion of
the purpose and effects of the MARK instruction,
see Chapter 4.

1.2.5.3 FLOWS 3

No Memory Reference Execution

Flows 3 illustrates the machine state sequences for
a variety of instructions that do not require mem-
ory references other than the instruction fetch. A
number of sequences are shown that transfer imme-
diately to machine states on other pages; they are
shown only to illustrate the routing from A Fork to
these states. These sequences include the breakpoint
trap (OP3), 10T trap, the EMT and TRAP traps,
and several groups of reserved op codes, including
OP7, OP22, and RSVD. The illegal instructions
JMP or JSR, with destination mode 0, also transfer
directly to a point in the trap sequence. The four in-
structions ASH, ASHC, MFPI, and MFPD are
shown on other pages which do not show the A
Fork flow line; therefore, off-page connectors are
shown on this drawing for these instructions with
destination mode 0 (for other destination modes of
these instructions, the sequence transfers to the des-
tination address calculation sequences shown on
Flows 5 and 6).

Multiply and Divide with Destination Mode 0

For the multiply and divide instructions, a special
sequence is used when the destination mode is 0. In
cither case, this sequence precedes the normal se-
quence for that instruction. MUL.80 (multiply) sets
up the step counter and transfers to MUL.10, be-
cause MUL.0O is used to complete the data transfer
begun in the destination data fetch sequence. In
DVS.00 (divide start), the contents of the register
specified for the destination operand are transferred
to the BR, which corresponds to the result of the
data fetch sequence for other destination modes.

E/Class and Negate Instructions

For the majority of instructions that operate on
data, one machine state is required to perform the
data manipulation. If both the source (if any) and
destination modes are 0, the data is already in the
SR and DR registers as a result of IRD.00. The
data manipulation (selected by the subsidiary ROM
for all except the NEG.B instruction) is performed,
the data is stored in the general register specified by
the destination field, and the sequence returns to
the instruction fetch. The NEG and NEG.B instruc-
tions require two machine states because the com-
plement and increment operations cannot be
performed on the data during the same state; there-
fore the external data transfer operation started in
IRD.00 is aborted (a bus operation cannot be car-
ried across more than two machine states) and the
sequence returns to FET.00. The other instructions
complete the data operation and return to FET.10,
unless a bus request has been sensed; because the
transfer to the BRQ service sequence is performed
by FET.00, the bus operation must be aborted.

RESET Instruction

Three processor control instructions, RESET,
HALT and WAIT, are executed by sequences
shown on this drawing. The RESET instruction
transfers general register 0 to the DR so that the
contents of RO can be displayed in the DATA
lights of the console during the reset operation, and
then triggers the initialization pulse. The in-
itialization is inhibited if the processor is not oper-
ating in the Kernel mode; in this case, the
instruction is, in effect, a NOP. The machine state
that triggers the pulse recycles to itself until the
pulse (which lasts for 10 ms) is completed, and then
returns the sequence to the instruction fetch
sequence.
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HALT Instruction

The HALT instruction does not actually stop the
processor; instead, control is transferred to the con-
sole service sequence, which waits for manual inter-
vention to determine further operations. This is
performed by setting the console flag and then re-
turning to the instruction fetch sequence where the
console flag generates a BRQ, which in turn trans-
fers to the break service sequence. The console flag
is set only if the processor is in Kernel mode; a
branch after HLT.10, (HALT) transfers control to
the trap service sequence if the processor is not in
Kernel mode, i.e., a HALT instruction in Super or
User modes traps through location 4.

WAIT Instruction

The WAIT instruction is used to wait for an asynch-
ronous condition that either initiates the execution
of a service program or enters the console service se-
quence. The basic wait loop consists of two ma-
chine states, so that the BRQ STROBE in one state
is available for the branch in the other state. When
any BRQ is sensed, the sequence goes to the first of
two states that test for console requests and then
for interrupts or traps (other than T bit traps) that
supply vectors. If neither is found, the sequence re-
turns to the wait loop: otherwise, control is trans-
ferred to the appropriate sequence.

Processor Status Change Instructions

Two types of instructions that transfer data from
the instruction word to the PS word are the CCOP
instruction and the SPL instruction. The former af-
fects only the condition code bits [PS(03:00)] and
the latter affects only the priority bits [PS(07:05)].
In the CCOP instruction, the external data transfer
begun by the IRD.00 state is aborted because the
processor must maintain the data in the BR register
until the PS word is reloaded. In the SPL instruc-
tion, the first state does the actual transfer to the
priority. The second state also begins a new instruc-
tion fetch and control transfers to FET.10. SPL is a
no-op (no change to the PS) unless the processor is
in Kernel mode.

1.2.5.4 FLOWS 4

Destination Mode 0 Sequence

Ilows 4 illustrates the five sequences used when the
destination mode is 0. These sequences are entered
through the C Fork microprogram address calcu-
lation: this fork is used to determine the next ma-
chine state after a source operand has been fetched.

For all instructions except floating-point instruc-
tions, these sequences correspond to, or join, the se-
quences used when both the source and the
destination modes are 0.

Not Register 7

When the destination specification in an instruction
refers to any general register other than register 7
(the PC), and the other conditions for the se-
quences shown on this drawing are met, the instruc-
tion is executed by D00.90 (destination mode 0). If
the source address is odd, a byte-swap operation
must be performed on the contents of the BR be-
fore the instruction-dependent data manipulation
operation. If the source mode is also 0, no byte
swap is required, and the execution is performed by
the EXC.8 (execute) machine state.

Register 7

When the destination register is 7, the PC is modi-
led. Because the PC is stored as a separate register
(not in the general register set), the execution is ac-
complished by EXC.90, which requires the source
data to be in the SR register. A machine state is
therefore required to transfer the source data from
the BR to the SR. A byte swap can be combined
with this transfer, if necessary.

Floating-Point Instructions

FOP.50 is the C Fork cycle used by all
DMO*F/CLASS instructions, which include FPP
Condition Code and accumulator to accumulator
operations, as well as FPP writes to the processor
general registers.

This sequence reads the FPP Status Register into
the BR. If BRQ is true, a branch to FOP.60 is exe-
cuted. In this cycle, the address of the FPP instruc-
tion is read into the BR; then, in FSV.90 (Flows
13), it is written back into PCA and PCB, and con-
trol is transferred to the service routine (BRK.00,
Flows 12). The FPP instruction is aborted at this
time and its address is saved. This same instruction
will thus be fetched again and executed after the ser-
vice routine.

FOP.30 repeats FOP.50 and waits for FP SYNC. If
BRQ is true, control is transferred to the service
routine as described above. If FP SYNC is re-
ceived, FOP.40 is executed. FOP.30 cycles upon it-
self until either of these conditions is true.

FOP .45 instructs the FP11-C to execute the instruc-
tion (FP START).
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1. In the case of a CFCC, the FPP Condi-
tion Codes are written to the PSW from
the BR.

2. If the instruction requires a write into a
processor General Register (FP REG
WR), the data is read into the BR in
FOP.65 then transferred to GR[DF] dur-
ing FET.08, as the next instruction fetch
is started.

3. If the instruction does not require a
write into a processor general register,
the instruction is done and control is
transferred to FET.06.

1.2.5.5 FLOWSS

Destination Modes 1 - 3

Flows 5 illustrates the machine state sequences used
to fetch data specified by destination modes 1, 2, or
3. These sequences are entered from one of the two
forks: some are entered from the A Fork decision
point, for instructions which either do not require a
source operand or have a source mode of 0, while
others are entered from the C Fork decision point
after the source operand has been fetched and
placed in the SR.

Sequence Entry

All six sequences on this drawing start a data cycle
(BUST). It should be noted that the CONDI-
TIONAL BUST in IRD.00 is not asserted when the
two A Fork sequences on Flows 5 are entered; this
is because the PC is not the address required for
the DM 123 data cycles on this drawing.

The four sequences entered from the C Fork deci-
sion point also start by transferring the contents of
the BR to the SR, so that the source data is avail-
able in both registers; the opposite transfer is per-
formed for the A Fork entry to move the source
data to the BR for the DATO that follows the desti-
nation address calculation. If the destination is 3,
there is no point in loading the BR from the DR be-
cause the address fetched by the first external data
transfer is stored in the BR for use in the next data
{ransfer.

Destination Modes 1 and 2

There are two entries from the C Fork decision
point for address modes | or 2 because the source
data may be an odd byte which must be swapped.

This is the only difference between D12.80 (destina-
tion modes 1 or 2) and D12.90. After one of these
states or D12.00 has been completed, the processor
performs a three-way branch, to separate JMP,
JSR, and floating-point instructions, and instruc-
tions that transfer the source operand to the destina-
tion unchanged (specifically, the MOV, MTPI, and
MTPD instructions) from all others. For floating-
point instructions, the external data transfer is
aborted, and the sequence continues through the B
Fork decision point to FOP.40. For JMP instruc-
tions, the sequence is directed to JMP.00; for JSR
instructions, to JSR.00. For the three direct-transfer
(0 Class) instructions, the external transfer is forced
to be a DATO instead of a DATIP or a DATI,
and the transfer is completed before an instruction-
dependent, condition-code load operation is per-
formed. The last machine state in the sequence for
0 Class instructions also begins the instruction fetch
for the next instruction and checks for asynch-
ronous conditions requiring service.

For all other instructions, the DATI or DATIP
transfer is completed, and the B Fork logic is condi-
tionally enabled in D12.10. If a byte swap is needed
because the destination address is to an odd byte,
the extra machine state D12.30 is entered, and then
the B Fork decision point. Note that in all three of
the sequences shown (in DI12.60, D12.10, and
D12.70) the destination register is incremented by a
constant which can be either 0, 1, or 2, depending
on the address mode and whether a word or a byte
operand is being fetched.

Destination Mode 3

The three sequences for destination mode 3 all en-
ter D30.10 (destination mode 3), which completes
the data transfer, increments the destination register
by the necessary amount, and transfers to D10.20,
which begins the fetch of the operand addressed by
the word just transferred. Because the first transfer
during a destination mode 3 sequence can only be a
full word, the increment used in the register update
is always 2, not 1.

1.2.5.6 FLOWS 6

Destination Modes 4 — 7
Flows 6 illustrates six machine state sequences that
arc used to fetch the destination operand when the
destination address mode is 4, 5, 6, or 7. These six
sequences correspond to the six sequences for ad-
dress modes [, 2, and 3.
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Modes 4 and 5 require that the contents of the des-
tination register be decremented before the value is
used in the external data transfer. They are treated
by one of three scquences. Modes 6 and 7 use gen-
eral register 7 (the PC) first and then use the desti-
nation register. They are treated by one of three
sequences.

In either case, two of the three sequences are en-
tered from the C Fork and one from the A Fork.
The two C Fork entries differentiate between
source operands that require byte swapping and
source operands that do not. There can be no re-
quirement for a byte swap on the A Fork entry, be-
cause the source operand would be address mode 0
and the high byte of a register cannot be specified.

C Fork Entries for Modes 4 and §

D45.80 (destination mode 4 or 5) and D45.90 differ
mainly in the microprogram addresses contained in
the microprogram word. Each state decrements the
DR by the value of the destination constant, which
is | for a byte operation in mode 4, and 2 for a
word operation. Byte operations in mode 5 use a
constant of 2 because the data fetched from the ad-
dress taken from the DR is in turn used as an ad-
dress and must be a full word. The state following
D45.80 or D45.90 begins the external data transfer,
which may be a DATI, DATIP, or a DATO, de-
pending on the specific instruction. D40.30 and
D50.30. which follow D45.90, also perform the
byte-swap operation on the source operand. In each
of the two sequences, a different path is taken for
destination mode 4 where only one data transfer is
needed, than for destination mode S where a sec-
ond transfer is needed. The second transfer is per-
formed by a sequence that is common for address
modes 3, 5, and 7; this sequence transfers the first
word that is fetched from the BR to the DR and
then uses the DR as the address for a second
transfer.

A Fork Entry for Modes 4 and 5

D45.00, which is entered from the A Fork Decision
point, is similar to D45.80 and D45.90, except that
a BEND is performed to abort the transfer begun
during the IRD.00 machine state. The sequences
that follow D45.00 are similar to the sequences that
follow D45.80 or D45.90, except that the source op-
crand, if any, is already in the SR.

Destination Modes 6 and 7 Entry
For address modes 6 and 7, the first machine state
entered from the C Fork decision point begins an

external data transfer, using the contents of the PC
as an address, and performs an increment operation
on the PC. The entry from the A Fork decision
point continues the transfer begun by the IRD.00
machine state, so this entry is to D67.00 (destina-
tion mode 6 or 7) that follows the first state for the
other entries. D67.10 adds the contents of the DR
to the data read into the BR, thus performing the
indexing operation, and then transfers to a machine
state in the flow sequence for destination modes 4
or 5. The transfer is to D10.30 (a state also used
for mode 4) if the mode is 6, or to D10.10 (a state
also used for mode 5) if the mode is 7. The shared
sequences perform the remaining one or two data
transfers to fetch or store the actual data word.

Ending Sequence

When the last data transfer has been started, all six
sequences enter a combined conditional fork and
two-way branch that selects the next machine state.
For O/class instructions (MOV, MTPI, and MTPD)
the last data transfer is a DATO operation, which
is completed by D10.40; this state also loads the
condition codes. The processor then returns to the
instruction fetch sequence. For all other instruc-
tions, the DATI or DATIP transfer is completed in
D10.60, leaving the destination data in the BR and
the source data in the SR, and the B Fork logic is
conditionally enabled. If a byte-swap operation is
required for the destination data, D12.30, which
performs this operation for all destination modes |
- 7, is entered. FJ/Class instructions go directly to
the B Fork.

1.2.5.7 FLOWS 7

ASH, ASHC, and Floating-Point Instructions

Flows 7 illustrates the machine state sequences for
the Arithmetic Shift (ASH) and Arithmetic Shift
Combined (ASHC) instructions, and the first ma-
chine state of the floating-point instruction service
after the destination address calculation.

ASH Instruction

When the machine state sequence for the ASH in-
struction is entered from the B Fork decision point,
the destination data is in the BR register. The six
least-significant bits of the destination word are
used as a 2’s complement number which is the shift
count for the instruction. The DR is loaded from
the BR and this data is then loaded into the Shift
Counter (SC) from the DR in ASH.I0. In an
ASH.20, the condition codes are loaded, based on
the vatue of the word in the source register, and the
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SC is tested for a 0 shift count. If the shift count is
0, the instruction is completed, and the processor re-
turns to the instruction fetch sequence; otherwise,
one of two states is entered, depending on the sign
of the shift count. ASH.30 (Arithmetic Shift) and
ASH .40 perform the actual shift one bit at a time,
and increment or decrement, respectively, the shift
counter. These states also load the condition codes
with the results of each shift, so that after the last
shift the codes are correct, and test during each
cycle to determine whether any further cycles are re-
~ quired. Note that the first change to the SC is per-
formed in ASH.20; all tests are done on the value
before any changes are performed, so the last cycle
in ASH.30 or ASH.40 is performed with the SC=0,
and the final value in the SC is -0 (all Is).

ASHC Instruction

The ASHC instruction operates in a manner similar
to the ASH instruction. The difference is that two
words of data are shifted. ASC.00 and ASC.10 per-
form the same functions as ASH.00 and ASH.10,
and in addition, load the DR (after the SC has
been loaded from the previous value in the DR)
with the contents of a general register which is se-
lected by ORing the destination register specifica-
tion with 1. When the destination register specified
by the instruction is an even-numbered register, the
OR produces the number of the next higher num-
bered register.

ASC.20 performs the first change of the SC, moves
the first data word to the BR, loads the condition
codes, and tests for a 0 SC, just as ASH.20 does.
However, if the SC is 0, the sequence continues
with ASC.80 (arithmetic shift combined), instead of
returning immediately to the instruction fetch se-
quence. This state is required to test the second
data word, so that the Z condition code can be set
on the contents of both words. ASC.80 also starts
the next instruction fetch, so the processor transfers
to either FET.10 or BRK.00 rather than FET.00.

If the SC is not 0, ASC.20 is followed by ASC.30
or ASC.40. These states perform the same oper-
ations as the corresponding states for the ASH in-
struction, and also cause shifting of the DR (which
can be shifted internally, without passing the data
through the ALU or SHFR). The bit shifted into
the DR is selected by processor hardware. When
the SC does reach 0, the next machine state is
SC.60. which performs the same operations- as
ASC.80, but also stores the second word from the
DR into the appropriate general register.

Floating-Point Instructions

When the B Fork logic decodes a floating-point in-
struction, FOP.40 (floating-point operation) is en-
tered. This state aborts the last external data
transfer started by the destination-data-fetch se-
quence, and sends the destination address, not the
destination data, to the BR. A three-way branch is
then entered:

1. BRQ true: Control is transferred to
FSV.70 (Flows 13). In this cycle and the
two that follow it, the original DR and
PC are read back from the FP11-C and
the DR, PCA and PCB are restored to
the state in which they were prior to the
FPP instruction fetch. The service flows
(BRK.00 through SVC.90), and the inter-
rupt subroutine are then executed; the
FPP instruction is then fetched and exe-
cuted again.

2.  ~(SYNC+BRQ): The processor cycles
on FSV.60 (Flows 13) until it receives ei-
ther an FP SYNC or a BRQ. In this last
case it executes the sequence described in
(1) above. In the first case (FP SYNC) it
executes the sequence in (3) below.

3. SYNC+-BRQ: FSV.10 is entered. In
this state, a bus cycle is started, whose di-
rection (DATI or DATO) is determined
by FC (BC<FC).

a. If the instruction is not a Floating
Pause Class (FPCLASS), up to
four 16-bit words are transferred
by the FSV.10-FSV.70 loop.

b. If the instruction is FPCLASS, this
loop is expanded to include
FSV.30, FSV.40 and FSV.50 which
cause the loop to execute a
read/modify /write operation.
FPCLASS instructions are ABSX
and NEGX.

After the CPU completes this loop, it ex-
ecutes FSV.20 where it can copy the
floating condition codes in the FP11-C,
if desired. From this state, the CPU se-
quences to FET.07 to start the next in-
struction fetch.
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1.2.5.8 FLOWS 8

Multiply Instruction

The sequence of machine states shown on Flows 8
performs a multiplication operation on two words
of data, one from a general register and the other
in a word specified by the destination field and fet-
ched into the BR. The results of the multiplication
are stored in two general registers: one is the regis-
ter specified in the instruction, and the other is a
register whose number is formed by ORing 1 with
the number of the specified register (Figure 1-7). If
the specified register has an odd number, only one
register is used.

SR (MULTIPLIER) —I

(SIGN OF SR m
OR v
SIGN OF BR)

BR (PRODUCT) H DR (MULTIPLICAND)

Figure 1-7 Multiply Instruction

The multiplier is in the SR, the multiplicand in the
DR. and the 32-bit product is formed in the BR
and DR by an add and shift algorithm.

The multiplier (SR) is used as a 32-bit, not a 16-bit,
2's complement number. This is accomplished by ex-
tending its sign bit into the BR after every shift.
The multiplication thus has as its operands a 16-bit
multiplicand, the DR, and a 32-bit multiplier, the
SR.

In 2°s complement notation, a negative 16-bit num-
ber (-A) is equivalent to (2'¢ -A), and a negative 32-
bit number (-B) to (272 -B). When a combination of
16- and 32-bit positive and negative numbers are
multiplied, four conditions are possible, as shown

Note that correction of the product is required
when the DR (multiplicand) is negative.

In Case 1, where both SR and DR are positive, the
product is correct and no correction is required.

In Case 2, 22 X DR must be subtracted, but since
the product is only 32 bits wide, this term is out of
range and no correction is required.

In Case 3, 2'¢ X SR has to be subtracted from the
product, as this term is within the 32-bit product
formed in the BR and DR.

In Case 4, the first two terms are out of range, and
2! X SR must be added to the product. Since in
this case the SR is a 2’s complement negative num-
ber, the addition is accomplished by subtracting it
as in Case 3 (- - = +).

The multiplication sequence begins with two ma-
chine states that set up the four registers (BR, SR,
DR, and SC) used in the sequence, and performs
the first test and shift on the DR. Note that all
branches refer to the state of the DR and the SC at
the beginning of the machine state preceding the
branch, not the values in the registers at the end of
that state. This is because the RAR is clocked at
T3. The operand supplied by the destination-data-
fetch sequence is loaded into the DR, and the SC is
loaded with the octal value 17 (decimal 15) in
MUL.00 (multiply).

In MUL.10, the BR is cleared; the other operand is
in the SR as the result of IRD.00. The SC is
decremented.

Fifteen multiplication cycles are then performed in
MUL.20 and MUL.30.

1. If the low order bit of the DR is 1
[DRO(1)], the SR is added to the BR
and both BR and DR are shifted right
in a combined shift, which forms the

in Table 1-2. product (MUL.20).
Table 1-2
Sign Correction for MUL Instruction
Case | SR | DR | Representation of Product Generated Product Correction
SR DR (2" SR X DR) Should Be: | Required
1 20 | 20 |SR DR (SRXDR) (SRXDR) None
2 <0 | >0 |232-SR | DR 232DR-(SRXDR) -(SRXDR) | None
3 >0 | <0 |SR 2'6-DR | 2'¢SR-(SRXDR) -(SRXDR) | -2'¢SR
4 <0 | <0 [23%-SR | 2'°-DR | 2%-232DR-2!6SR+(SRXDR) | (SRXDR) +216SR
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2. If the low order bit of the DR is 0
[DRO(0)], the shift is performed, but no
add (MUL.30).

At the end of these fifteen cycles, SC=0 and DRO
contains the sign bit of the multiplicand (DR).

1. If DRO(1), the multiplicand was negative
and correction is required. MUL.50 sub-
tracts the multiplier (SR) from the high
order product (BR and DR). This is the
same as subtracting 2'¢ X SR from the
product.

2. If DRO(0). no correction is required
(MUL.40).

MUL.50 or MUL.40 store the more-significant half
of the result into the register specified by the source
field, and set the condition codes on the value of
this word.

MUL.60 stores the less-significant half of the result
in the register, whose number is formed by ORing
the source field with 1; if an odd register is speci-
fied, this value replaces the more-significant half of
the result, which is lost. This is done because many
multiplications produce a result which can be con-
tained in only one word, and this result is preserved
by this action. The condition codes are altered to
represent the value of the entire result; if all 32 bits
are 0, the Z bit is set, and if the result cannot be
contained in one word, the C bit is set. At the end
of this cycle, the sequence returns either to the in-
struction fetch sequence, or, if an asynchronous con-
dition needing service was sensed by the BRQ
STROBE in machine state MUL.40 or MUL.50, to
the break service sequence.

1.2.5.9 FLOWS 9 and 10

The Divide Instruction

Division is the process of counting the number of
times one number (the dividend) can be reduced by
another number (the divisor). The count of the
number of reductions is called the quotient; the
part of the dividend that cannot be reduced by the
divisor is called the remainder. Division is more
complicated than multiplication, for several
reasons:

1.  Division produces two results, not one.
2. During multiplication, the maximum re-

sult occurs when the maximum number
is multiplied by itself. This result fits

into two words; during division, the max-
imum result occurs when the largest pos-
sible number is divided by a very small
number and the result does not fit into
any reasonable number of words. There-
fore, the division algorithm must recog-
nize the overflow condition when the
quotient is too large.

3. During the division process, it is neces-
sary to recognize when the partial re-
mainder is smaller than the divisor;
usually this is done by recognizing when
the last reduction passed through 0 and
changed the sign of the remainder. This
condition is called underflow and re-
quires that the results of the last reduc-
tion be restored in some way.

The simplest division algorithm is to subtract the
divisor from the dividend until underflow occurs, re-
store the remainder, and keep a count of all but the
last subtraction for the quotient (this algorithm as-
sumes all positive numbers). This procedure is very
tedious, particularly if an overflow condition exists,
so a shorter algorithm is used that is based on the
positional representation of numbers.

The result of the division is a quotient that can be
multiplied by the divisor to regenerate the dividend
(with a difference equal to the remainder). If, dur-
ing the multiplication, each bit of the quotient can
generate a partial product that becomes part of the
total sum, then during the division, each bit of the
quotient can be generated individually while reduc-
ing the partial remainder by an appropriate
amount. To determine what the most-significant bit
of the quotient should be, the number that is sub-
tracted from the dividend is equal to the divisor,
multiplied by the positional value of the most-sig-
nificant digit.

Figure 1-8 illustrates the division algorithm. At the
beginning of the division, the dividend occupies all
of a word register. The divisor has been multiplied
by 2 to the nth power, so that the number which is
first subtracted from the dividend is actually the
divisor times the positional value of the most-signif-
icant bit. Before each step of the division, the divi-
sor is divided by 2, so that the correct number for
generating the next bit of the quotient is formed,;
the division by 2 is done by shifting the 2-word divi-
sor 1 bit to the right. In order for the division al-
gorithm to operate with negative numbers, the
reduction that is performed at each step of the divi-
sion must be the correct operation to reduce the re-
mainder; if the divisor and the partial remainder
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Figure 1-8 Divide Algorithm
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(that is, the dividend) have the same sign, the divi-
sor is subtracted from the remainder, but if their
signs differ, the divisor is added to the remainder to
reduce its magnitude.

The algorithm that is illustrated does not perform a
restoration if an underflow condition occurs. In-
stead, while underflow exists, succeeding operations
are performed in the opposite manner to complete
the restoration; while an underflow condition exists,
the bits of the quotient are set only when the under-
flow is corrected and are cleared if the operation
does not complete the restoration. If the original
divisor and dividend are of opposite sign, the
quotient should be negative, so bits of the quotient
depend on the operation performed and its results,
as follows:

1. If the operation was a subtraction (the
signs of the divisor and the partial re-
mainder were the same), the quotient bit
is set if there was no underflow, and is
cleared if there was underflow.

2. If the operation was an addition (the
signs of the divisor and the partial re-
mainder were different), the quotient bit
is cleared if there was no underflow, and
is set if there was underflow.

The non-restoring division algorithm works because
an underflow at any step can be corrected to within
one multiple of the divisor by the succeeding steps.
This is true because a binary number that is repre-
sented by all s is changed to a number that is rep-
resented by a 1, followed by all Os, when the
number 1 is added to it. Therefore, the multiple of
the divisor that is subtracted from the partial re-
mainder at any step is only one more multiple of
the divisor than can be expressed by all the less-sig-
nificant bits of the quotient. The remaining single
multiple of the divisor can be restored by a single
operation (which is always an addition, because un-
derflow exists and the divisor and partial remainder
have different signs) following the steps that gener-
ate the quotient bits; this step is also used to cor-
rect the remainder.

Divide Instruction Sequence

The divide (DIV) instruction is executed by the
longest and most complex sequence of machine
states used in the KB11-C Processor. This sequence
is illustrated on two drawings. Flows 9 shows the

register setup, the first two overflow tests, and the
cycle of states that perform the actual division.
Flows 10 shows the quotient and remainder sign
corrections and the final overflow test.

The division is performed by a non-restoring divide
algorithm that is described above. The hardware im-
plementation (Figure 1-9) uses the SR to hold the
divisor and begins with the dividend in the BR and
DR registers. The BR contains the more-significant
half of the dividend, while the less-significant half is
in the DR. Each cycle of the division shifts the divi-
dend one bit to the left and shifts the next bit of
the quotient into the least-significant bit of the DR.
When the division terminates, the quotient is in the
DR and the remainder is in the BR.

| SR (DIVISOR) |

CARRY

SUM q

L BR (REMAINDER} |‘—LDR (QUOTIENT)

NOTE.
Dividend in BR aond DR

11-0844

Figure 1-9 Divide Instructions

The non-restoring divide algorithm can operate
with positive or negative operands; however, the
KBI11-C always operates on a positive dividend to
simplify the detection of underflow. (The divisor
may have either sign.) The first two machine states
of the division sequence test for a 0O divisor or a
negative dividend, and set up the SR and DR regis-
ters. If a O divisor is sensed, the division is aborted
and the C, V, and Z condition codes are set to in-
dicate that an error has occurred.

Initial Setup

If the dividend is negative, a sequence is entered to
complement the dividend. Note that the branch on
the N condition code occurs after DIV.20, although
the condition code is loaded in DIV.10 (divide), be-
cause the branch condition must be available at the
beginning of the machine state in which the branch
is used. Similarly, the branch on the Z condition
code after DIV.10 uses the condition code value set
by DIV.00, not the new value set by DIV.10.
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Negative Dividend Processing

The sequence beginning with DVN.00 (divide nega-
tion) generates the 2’s complement of the 2-word
dividend as follows:

1. The 2’s complement of the less-signifi-
cant word is formed by first clearing the
DR, then subtracting the SR, which con-
tains the low order word, from the 0 in
the DR. The DR is cleared so that a sub-
tract from 0, which requires only one ma-
chine state, can be used; normally a 2’s
complement is generated by forming the
I's complement and then incrementing,
as shown for the remainder of correction
steps. The 2’s complement of the less-
significant word is stored in the register
which originally held the less-significant
word.

2.  DVN.20 generates a carry from the less-
significant word to the more-significant
word. That is, if a carry-out of the most-
significant bit of the ALU occurs during
the operations (which is repeated in
DVN.20), a 1 is shifted into the DR,

3. A 1 is subtracted from the DR. If a
carry occurred in Step 2, the DR con-
tains 0 and the 2’s complement of the
more-significant word is formed; if no
carry occurred, the DR now contains a -
1, which cancels the carry insert during
the subtraction in DVN.40, and the I‘s
complement of the SR is formed. This is
the correct result if there is no carry.

After the 2’s complement of the dividend is formed,
DVN.50 begins the restoration of the divisor to the
SR and the dividend to the BR and DR. However,
if the dividend is still negative, which occurs if the
dividend was the maximum negative number (be-
cause the 2s complement notation can express one
more negative number than positive number, the
largest negative number complements to itself), the
division cannot be performed and the sequence is
aborted.

Overflow Test and First Cycle

After the setup is completed, the processor enters
DIV.30 with a positive dividend in the BR and DR,
17(8) in the SC, and the divisor in the SR. The next

portion of the sequence performs the first cycle of
the division and performs a test for overflow. This
test is based on the fact that if underflow does not
occur during the first cycle, the quotient is too
large to be expressed in 16 bits. If the instruction is
not aborted because of overflow, the processor en-
ters the DIV.70 machine state to begin the main di-
vide cycle.

Division Process

The test for underflow that determines whether
DIV.80 or DIV.90 is entered is based on the follow-
ing considerations:

1. If the divisor is negative, adding the divi-
sor to the dividend should produce a re-
sult closer to O than the original
dividend. If the result is negative, under-
flow has occurred and a 0 is shifted into
the DR.

2. If the divisor is negative and the divi-
dend is also negative, an underflow con-
dition already exists. The divisor is
subtracted from the dividend to return
the dividend to a positive number. If the
result is still negative, a 0 is shifted into
the DR; if the result is positive, the un-
derflow has been corrected and a 1 is
shifted in.

3. For a positive divisor and dividend, a
subtraction is performed. If the result is
positive, a 1 is shifted into the DR, but
if the result is negative, underflow has oc-
curred and a 0 is shifted in.

4, If the divisor is positive and the dividend
is negative, an addition is performed to
correct an existing underflow. If the re-
sult is positive, the underflow has been
corrected and a 1 is shifted into the DR,
otherwise a 0 is shifted in.

As a result of these considerations, the processor en-
ters DIV.80 if the divisor is positive and there is no
underflow (DRO is a 1), or if the divisor is negative
and there is underflow (DRO is a 0). DIV.80 per-
forms a subtract operation and shifts the carry-out
of the ALU into the DR. (A carry-out of the most-
significant bit of the ALU indicates that underflow
has occurred; if an uncorrected underflow existed,
the carry indicates that it has been corrected.)
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If the opposite conditions exist (SR is positive and
DRO is 0, or SR is negative and SRO is 1), DIV.90
is entered and an addition is performed, followed
by a shift of the DR. Note that the cases for which
a carry-out of the most-significant bit of the ALU
exist are equivalent to the cases described above for
which the least-significant bit of the DR is set.

Remainder Storage and Sign Check

After the divide cycle has been performed 15 times
(the first division cycle) and the first decrement of
the SC is performed in DIV.30 - DIV.60, DVC.00
(divide correction) writes the remainder from the
BR into the appropriate general register, and trans-
fers control to one of four machine states, depend-
ing on whether a remainder correction is required
and whether the quotient has the correct sign.

Remainder Correction

If, after the last division cycle, the least-significant
bit of the quotient is a 0, an underflow condition
still exists. This condition can be corrected (unless
an overflow condition also exists) by adding a posi-
tive divisor or subtracting a negative divisor to cor-
rect the remainder. This is done by DVC.10 or
DVC.20. If no remainder correction is needed, or
following the remainder correction, DVC.30 or
DVC.40 begins complementing the remainder in
case the remainder has the wrong sign. The current
value of the remainder is not disturbed until a deter-
mination is made of the appropriate sign.

Quotient Sign Change

If the N condition code is set, the original dividend
was negative. The complemented remainder, which
is negative because the corrected remainder is posi-
tive (if all underflow conditions are corrected), is
stored as the final value of the remainder. If both
the dividend and the divisor were positive, the
quotient, which is also positive (the most-significant
bit of the quotient must be positive or an immedi-
ate overflow condition aborts the division), is writ-
ten into the appropriate general register. Similarly,
if both dividend and divisor are negative, the
quotient should be positive and is written in its pre-
sent form.

If the original signs of the dividend and divisor
were different, the quotient should be negative. The
quotient is complemented by DVC.80 and DVC.90;
one special case in which the quotient is the most
negative number is considered an error.

1.2.5.10 FLOWS 11

Memory Reference Execution Sequences

Flows 11 illustrates eight sequences that execute the
data manipulation stages of a variety of instruc-
tions, when those instructions require external data
transfers to complete the instruction execution.
These sequences are entered from the B Fork deci-
sion point.

Standard Execution

The majority of instructions are executed by
EXC.00 (execute). When this state is entered, the
source operand, if any, is in the SR, and the desti-
nation operand is in the DR. EXC.00 performs one
data manipulation operation and loads the condi-
tion codes; both the operation performed and the
condition-code loading are controlled by subsidiary
ROMs (i.e., they are instruction-dependent).
EXC.00 performs the byte-swap operation in the
SHFR automatically.

For any instruction that is operating on an odd-
byte destinaton operand, EXC.00 also begins an ex-
ternal data transfer operation that is completed in
EXC.10; this operation transfers the result data to
the destination address, which is taken from the
DR.

Negate Instructions

Several instructions, which are otherwise treated in
the same manner as those executed by EXC.00,
must be executed separately. The negate and negate
byte (NEG.B) instructions require two machine
states for execution because the 2’s complement of
a number is formed by first generating the 1’s com-
plement and then incrementing that value. After the
negation is performed and the condition codes
loaded, the processor performs a byte swap if the
destination operand is an odd byte, and starts an ex-
ternal data transfer that is completed in EXC.10.
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Shifter Instructions

Two instructions, which are executed by EXC.00
when they operate on an even byte [DRO(0)], use
the SHFR to perform a right shift. These are the
ASRB and ROR instructions. When these instruc-
tions operate on a destination operand taken from
an odd-byte location [DRO(1)], a second machine
state is required to perform the byte swap, which
also requires the SHFR. Therefore, SHR.00 (shift
right) performs the same actions as EXC.00, except
that no external data transfer is begun and no byte
swap is performed. These functions are performed
by SHR.10. No conflict occurs for the ASL and
ROL instructions because left shifts are performed
by the ALU, not by the SHFR.

Test Instructions

The three instructions that set the condition codes
without modifying any stored data, TST, CMP,
and BIT, are executed by machine states that do
not start an external data transfer for the data
operand.

Jump Instruction

The jump (JMP) instruction performs only one op-
eration; it sets a new value in the Program Counter
(PC). The value loaded into the PC is the destina-
tion address, not the destination data word. The
last external data transfer to fetch the data word is
aborted, (BEND) the PC is loaded, and a transfer
to the instruction fetch sequence is performed by
the machine state JMP.00 (jump).

Jump to Subroutine Instruction

The jump to subroutine (JSR) instruction performs
two data transfers in addition to loading the PC.
The contents of a register specified by the instruc-
tion are saved on the hardware stack, and the pre-
vious value in the PC is saved in the specified
register. JSR.00 (jump to subroutine) the last exter-
nal data transfer, loads the destination address into
the PCA (but does not load the PCB from the
PCA, so that the PCB can be stored in the general
register until JSR.40), and loads the SR with the

contents of the specified register. JSR.10 transfers
the SR to the BR, which is the register that holds
data to be transmitted during external data trans-
fers, and loads the DR with the contents of general
register 6, the Stack Pointer (SP). JSR.20 decr-
ements the SP by 2 (to allocate a word at the top
of the stack for the data to be stored); the new
value is stored in the SP and in the DR for use in
the external data transfer started in JSR.30. JSR.40
transfers the contents of the PCB to the specified
general register and loads the PCB from the PCA.
The data transfer begun in JSR.30 is completed in
this state.

Move From Previous Space Instructions

The MFPI or MFPD instruction transfers data
from the destination address to the hardware stack;
it acts like a *“‘push” instruction. If Memory Man-
agement is on, the address space from which the de-
sination data is taken may differ from the address
space that the data is pushed into, but this does not
affect the operations within the processor.. The
MFP.00 state is entered with the data to be trans-
ferred in the BR; this state loads the condition
codes and loads the SR from the hardware stack
pointer. The MFP.80 machine state is entered if the
destination mode is 0; this implies that the data is
in a general register. This data is loaded into the
DR while the bus operation started by the IRD.00
machine state is aborted. The MFP.90 machine
state transfers the DR to the BR and loads the SR
from the stack pointer. The sequence for destina-
tion mode O then joins the sequence for the other
address modes in MFP.10. This state decrements
the SR (which contains the SP). SVC.80 and
SVC.90 (Flows 13) complete the instruction by
pushing the data onto the stack.

1.2.5.11 FLOWS 12 and 13 - Flows 12 and 13
show the abort, trap, interrupt and floating-point
service routines. The abort, trap and interrupt se-
guences are described in Chapter 6. The FP11-C in-
structions are described in Paragraph 1.2.5.7 (Flows
.
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1.2.5.12 FLOWS 14 - Flows 14 shows the se-
quences for manual Console operations. These oper-
ations are described in Part III of this manual
(Console).

1.2.6 Following an Instruction Through the
Flowcharts

To follow a particular instruction through the flow-
charts, it is necessary to know which machine state
sequences apply to that instruction in the particular
state of the processor (specifically, which machine
state will be entered from various fork decision

points).

The tables and diagrams in this paragraph are de-
signed to help determine the exact sequence of ma-
chine states for a particular instruction. Starting
with either the binary code, or the symbolic name
of the instruction, the machine state entered from
each decision point, and what branches are taken at
some of the primary branch points within the se-
quences shown can be determined.

1.2.6.1 Figures and Tables - Figure 1-10 shows the
correspondence between binary op codes and in-
struction mnemonics.

1.  Starting with the most-significant bit of
the instruction code, look down the cor-
responding column of Figure 1-10 to
find the number that matches the value
of that bit in the instruction.

2. The horizontal line to the right of that
number leads to another vertical col-
umn, for the next most-significant group
of bits in the binary code. Look down
that line to find the number that
matches the value of the corresponding
bit or bits in the instruction.

3. Repeat Step 2 for each portion of the
binary code until the last number is fol-
lowed by the symbolic name and struc-
ture of an instruction instead of a
horizontal line. That instruction corre-
sponds to the given binary code.

When the symbolic code for an instruction is
known, the reader can find that instruction in
Table 1-3 which specifies the machine state se-
quences used to execute that instruction. The table

codes used for the instructions, and lists both the in-
struction classes, if any, and the machine states en-
tered from various decision points, when used. The
instruction classes are groupings of the instructions
according to properties of the execution sequences
(e.g., I, P, and O/Class instructions perform a
DATI, DATIP, or DATO bus transfer as the last
transfer of the destination data fetch sequence).
While the A Fork decision point is used by all in-
structions (the A Fork decision point follows the in-
struction fetch sequence and is, in effect, the
instruction decoding system), not all instructions
use the B Fork or C Fork decision points; those
which do not are indicated by entry “N.U.” in the
appropriate column.
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Table 1-3A

Instruction Microprogram Properties

Instruction Class A Fork B Fork C Fork Instruction Class A Fork B Fork C Fork
ADC.B P, E, DAC See Table 1-3B EXC.00 (11) N.U. IMP  DMO J,FJ, DAC See Table 1-3C IMP.00 (11) N.U.
ADD: -SMO P, E, BIN See Table 1-3B EXC.00 (11) See Table 1-3D DMO RSD.00(3) N.U. N.U.
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. JSR  -DMO J,FI, DAC See Table 1-3C JSR.00(11) N.U.
ASH -DMO DAC See Table 1-3C ASH.00 (7) N.U DMO RSD.00(3) N.U. N.U.
DMO DAC ASH.10 (3) ASH.00 (7) N.U MARK None MRK.00 (2) N.U. N.U.
ASHC -DMO DAC See Table 1-3C ASC.00(7) N.U MFP  -DMO I, DAC See Table 1-3C MFP.00 (11) N.U.
DMO DAC ASC.10 (3) ASC.00(7) N.U DMO I, DAC MFP.80 (3) N.U. N.U.
ASL.B P,E, DAC See Table 1-3C EXC.00 (11) N.U MOV  -SMO O, E, BIN See Table 1-3B N.U. See Table 1-3D
ASR P, E, DAC See Table 1-3C EXC.00 (1) N.U SMO 0, E, BIN, DAC See Table 1-3C N.U. N.U.
ASRB  DRO(0) P, E, DAC See Table 1.3C EXC.00 (11) N.U MOVB -SMO P, BIN See Tzble 1-3B EXC.00(11) See Table 1-3D
DRO (1) P.E. DAC See Table 1-3C SHR.00 (11) N.U SMO P, BIN, DAC See Table 1-3C EXC.00 (11) N.U.
Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS — See Table 1-3E MTP 0 MTP.00 (1) N.U. See Table 1-3D
BIC.B -SMO P,E,BIN See Table 1-3B EXC.00(11) See Table 1-3D MUL  -DMO I, DAC See Table 1-3C MUL.00 (8) N.U.
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. DMO I,DAC MUL.80 (3) MUL.00 (8) N.U.
BISB -SMO P,E, BIN See Table 1-3B EXC.00 (11) See Table 1-3D NEG.B -DMO P,DAC See Table 1-3C NEG.00(11) N.U.
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U. DMO P, DAC NEG.70 (3) N.U. N.U.
BIT.B -SMO I,E, BIN See Table 1-3B TST.10 (11) See Table 1-3D RESET None RES.00 (3) N.U. N.U.
SMO L E, BIN, DAC See Table 1-3C TST.10(11) N.U. ROL.B P, E, DAC See Table 1-3C EXC.00(11) N.U.
Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL — See Table 1-3E ROR P, E, DAC See Table 1-3C EXC.00 (11) N. U.
BPT (OP3) None | TRP.00 (3) N.U. N.U. RORB DRO (0) P, E, DAC See Table 1-3C EXC.00(11) N.U.
Branch Instructions: BR, BVC, BVS — See Table 1-3E DRO (1) P,E,DAC See Table 1-3C SHR.00 (11) N.U.
CCOP None CCP.00 (3) N.U. N.U. RTI None RTIL.0O0(2) N.U. N.U.
CLRB P,E,DAC See Table 1-3C EXC.00 (11) N.U. RTS None RTS.00 (2) N.U. N.U.
CMPB -SMO LE,BIN See Table 1-3B TST.10(11) See Table 1-3D RTT None RTLO1(2) N.U. N.U.
SMO I, E, BIN, DAC See Table 1-3C TST.10(11) N.U. SBC.B P,E,DAC See Table 1-3C EXC.00 (11) N.U.
COM.B P,E, DAC See Table 1-3C EXC.00 (11) N.U. SOB None SOB.00 (2) N.U. N.U.
DEC.B P,E, DAC See Table 1-3C EXC.00 (11) N.U. SPL None SPL.00 (3) N.U. N.U.
DIV  -DMO I, DAC See Table 1-3C DIV.00 (9) N.U. SUB  -SMO P,E, BIN See Table 1-3B EXC.00(11) See Table 1-3D
DMO I, DAC DVS.00 (3) DIV.00 (9) N.U. SMO P, E, BIN, DAC See Tabie 1-3C EXC.00(11) N.U.
EMT None RSD.00 (3) N.U. N.U. SWAB P, E, DAC See Table 1-3C EXC.00 (11) N.U.
Floating Point: F,FJ SXT P,E, DAC See Table 1-3C EXC.00(11) N.U.
iflf :ggfggao 1;(5)13:88 ((;)) 1;6},]:40 (7) I;éeufable 1-3D TRAP None RSD.00(3) N.U. N.U.
FP PRES*DMO FOP.00 (2) FOP .40 (7) FOP.50 (4) TST.B I,E,DAC See Table 1-3C TST.10(11) N.U.
HALT None HLT.00 (3) N.U. N.U. WAIT None WAT.00 (3) N.U. N.U
INC.B P,E, DAC See Table 1-3C EXC.00(11) N.U. XOR P,E,DAC See Table 1-3C EXC.00 (11) N.U.
10T None TRP.00 (3) N.U: N.U.
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4
Table 1-3B 4};\’ % Table 1-3C
A Fork, BIN®*-SM0O - // A Fork, DAC -
Source Mode Machine State Destination Mode Machine State
1 $13.00 (1) s \v{ 0 (DF7 + BRQ):EXC.90 (3),
2 $13.01 (}—"" ’h A l/\) -(DF7 + BRQ):EXC.80 (3)
3 $13.01 (1) y a 1 D12.00(5)
4 $45.00 (1) ﬁ/ 2 D12.00 (5)
5 $45.00 (1) 3 D30.00 (5)
6 S67.00 (2) 4 D45.00 (6)
7 $67.00 (2) 5 D45.01 (6)
6 D67.00 (6)
7 D67.01 (6)
Table 1-3D Table 1-3E
C Fork, BIN Branches
(All Cycles on Flows 1)
Destination Mode SRO Machine State
Instruction Branch Successful Branch Not Successful
0 0 DF7:D07.10 (4), -DF7:D00.90 (4) BRQ Present BRQ Not Present BRQ Present BRQ Not Present
1 DF7:D07.00 (4), -DF7:D00.80 (4)
BCC BXX.03 BXX.00 FET.01 FET.11
1 0 D12.80(5) BCS BXX.04 BXX.01 FET.03 FET.13
1 D12.90 (5) BEQ BXX.05 BXX.02 FET.03 FET.13
BGE BXX.03 BXX.00 FET.02 FET.12
2 0 D12.80 (5) BGT BXX.03 BXX.00 FET.02 FET.12
1 D12.90(5) BHI BXX.03 BXX.00 FET.01 FET.11
- BHIS BXX.03 BXX.00 FET.01 FET.11
3 0 D30.80 (5/ BLE BXX.05 BXX.02 FET.03 FET.13
1 D30.90 (5) BLO BXX.04 BXX.01 FET.03 FET.13
BLOS BXX.04 BXX.01 FET.03 FET.13
4 0 D45.80 (6) BLT BXX.05 BXX.02 FET.03 FET.13
1 D45.90 (6) BMI BXX.04 BXX.01 FET.03 FET.13
BNE BXX.03 BXX.00 FET.02 FET.12
S 0 D45.80 (6) BPL BXX.03 BXX.00 FET.01 FET.11
1 D45.90 (6) BR BXX.05 BXX.02 (always successful)
BVC BXX.03 BXX.00 FET.01 FET.11
6 0 D67.80 (6) BVS BXX.04 BXX.01 FET.03 FET.13
1 D67.90 (6)
7 | o D67.80 (6)
i 1 D67.90 (6)
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Figure 1-10 Determination of an Instruction from the Binary Code
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Whenever possible, the entry for each active deci-
sion point specifies a machine state by its symbolic
name, with the number of the flowchart where that
state is illustrated in parentheses. If a particular ma-
chine state depends on additional conditions, those
conditions are shown preceding the corresponding
machine state and are separated from the state by a
colon.

To follow an instruction through the Flows with
Table 1-3, execute the following steps:

1. Find the instruction symbolic name in
the INSTRUCTION column (Table 1-
3A).

2.  Go to the A Fork cycle shown under “A
Fork” and follow the Flows until a B or
C Fork, if any, is found.

3.  Go to the B or C Fork cycle shown in
Table 1-3A. Repeat Steps 2 and 3 if the
instruction uses both the B and C Forks.

4.  Determine the type of execute cycle from
the CLASS column of Table 1-3.

A sample instruction is taken through the Flows, us-
ing this documentation, in Paragraph 1.2.6.2.

1.2.6.2 An Instruction Example — This paragraph
traces one instruction through a sequence of ma-
chine states to illustrate the process of finding each
machine state and using the flowchart and ROM
map information to understand the operations per-
formed by the processor. The example instruction
and the environment in which it is executed is
shown in Figure 1-11.

The instruction is a CMP, which subtracts the desti-
nation word from the source word and uses the re-
sult to set the condition codes. These may then be
used by arithmetic and logic conditional branches.

BEIARE BEITETY BABGSLS AE0100

DR1166 BROEEA CHAR:

Its Source mode is 2 (SM2) and its source field (reg-
ister) is 7 (SF7). After the Fetch cycles, the PC (reg-
ister 7) contains 1002. This value is the address of
the operand. A DATI is performed; it reads loca-
tion 1002 which contains 15, the source operand.

The Destination mode is 6 (DM6) and the destina-
tion field is 7 (DF7). The PC contains 1006 after
the source operand fetch. The destination operand
is stored in the location whose address is the sum
of the present PC (1006) plus the contents of the in-
dex word, whose address is 1004. The index word
equals 100, and the destination operand is at loca-
tion 1106. Two DATIs are required to obtain the
destination operand: the first reads the index word,
the second reads the operand.

Immediately before the processor begins the ma-
chine state sequence for this instruction, the Pro-
gram Counter (PC) contains the value 1000(8), the
processor status word contains the value 000340,
there are no bus requests or other asynchronous
conditions, and the processor is about to enter the
FET.0X machine state. In this state, a DATI bus
operation is begun, using the contents of the PC as
the address.

FET.1X

Assuming that no requests have been strobed into
the request register (refer to Chapter 6), the next
machine state entered is FET.1X. In this state, the
PC is updated (the new value is loaded into the
PCA and does not disturb the PCB, which is still
being used for the address in the data transfer) and
the word that is read is loaded into the IR and BR.
Thz PCA now contains 1002, the IR and BR con-
tain 022767, and the PCB still contains 1000; fi-
nally, after the bus operation is completed, the PCB
is updated to 1002.

IRD.00

The third machine state entered is IRD.00. In this
state, the A Fork logic is enabled. According to Fig-
ure 1-10, the binary number in the IR represents a

CHP #15, CHAR

Figure 1-11 Instruction Execution Example
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CMP instruction; the entry for this instruction in
Table 1-3A refers to Table 1-3B, which indicates
that for a source mode of 2 (as specified by the
third octal digit of the instruction), the next ma-
chine state is S13.01. Since both the source and des-
tination fields are 7, the IRD.00 machine state also
loads the SR and DR with the updated PC value
(1002). Since CMP is a binary instruction and its
source mode is 2, RACH BUST is not asserted in
IRD.00 (CONDITIONAL BUST, refer to Para-
graph 1.2.5.1).

Source Operand

In S13.01 the DATI is started, using the contents of
the SR as the address. The contents of the SR
(1002) are incremented by 2, and this value is writ-
ten back into the PCA and PCB, which now con-
tain 1004.

The fifth machine state entered for this instruction
is the S13.10 state. In this state, the DATI is com-
pleted, with the data that has been read-loaded into
the BR register. The new contents of the BR are 15
(the contents of the word following the instruction,
which is the source operand). The DR is loaded
with the updated contents of the register specified
by the destination field of the instruction (because
this is register 7, the DR is loaded from the PCB);
the new contents of the DR is 1004.

Destination Operand

For a source mode of 2, the branch condition in
S13.10 cnables the Fork C logic. The entry for the
CMP instruction in Table 1-3A refers to Table 1-
3D, which indicates that, for a destination mode of
6 and the least significant bit of thg SR equal to 0
[SRO(0)=even address], the next machine state is
D67.80, which is shown on Flows 6. This machine
state transfers the contents of the BR (=source op-
erand) to the SR, and begins the third DATI bus
operation, using the contents of the PCB as the
address.

The next machine state is D67.00, which completes
the third DATI and increments the PCA by 2. Be-
cause the DR is intended to reflect the current con-
tents of the specified register, the DR is updated to
reflect the new value in the PC, which is 1006. The
data read into the BR is 100. This is the index

word, which when added to the destination mode
register (R7 or the PC), is the address of the desti-
nation word.

Following the D67.0 state, the processor enters the
D67.1 state, where the PCB is loaded from the
PCA and the contents of the BR is added to the
contents of the DR. The result (1106) is the index
word and is loaded into the DR. The branch condi-
tion in this machine state selects the D10.3 state to
follow the D67.1 state (-DM357).

In the D10.3 machine state, the processor begins a
fourth bus operation, using the contents of the DR
(1106) as the address. The type of bus operation
performed depends on the instruction class, accord-
ing to Table 1-3A. A CMP instruction is an 1/Class
instruction, so a DATI operation is begun. This ma-
chine state also loads the BR from the SR, so that
both registers contain 15.

The next state entered depends on the instruction
class. A CMP instruction is not F, J, or O/Class,
so the D10.60 state is entered. This state completes
the fourth DATI operation, loading the contents of
the location addressed by the DR (location 1106)
into the BR. This word is the Destination Operand,
which equals 0.

Execute

The D10.60 machine state branch condition enables
the B Fork logic [DRO(0)]. The entry for a CMP in-
struction in Table 1-3A indicates that the next ma-
chine state is TST.10 (Flows 11).

The CMP instruction does not alter any data
words, so no further bus operations are required.
The TST.10 machine state performs instruction-de-
pendent ($ on Flows) data operations and condi-
tion-code loading.

Flows 11 shows that the arithmetic operation is per-
formed with the A operand = BR (destination
word) and B = SR (source word). The ALU Con-
trol ROM Map on drawing GRAK shows that for
CMP.B, the operation is A - B - |, and that the
SHFR does not change the result (except in the
case of an odd byte operation, in which case the
bytes are swapped).
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In this example, the following operation is executed
by the ALU:

A input: 0 000 000 000 000 000

B input: -0 000 000 000 001 101
1111111111110011

minus 1: -0 000 000 000 000 001

Result (to SHFR): 1111111 111110010 + carry

The condition codes are then set as shown by
the CC Control ROM Map on drawing IRCJ:

N is set if “SHFR(15)0”" (SHFR bit 15=0).

Z is set if “A=B(15:00)" (four-input gate to
IRCF Z DATAI L).

Vissetif “A15*-B15*-ALUI15+-A15*BIS*ALU

15 (bottom two inputs to the lower IRCE
VDATA L 74S65: A=AMX, B=BMX).

Cis set if “ALU COUT 15" (DAPJ ALUCN
L).

I.  The N bit is cleared, since bit 15 of the
SHFR is 1.

2. The Z bit is cleared, since the output of
the ALU is not 0.

3. The V bit is cleared, since A15 and BI15
(AMX bit 15 and BMX bit 15) are the
same.

4.  The C bit is set, since there is a carry
from ALU bit 15,

NOTE

The arithmetic and the N and
C condition code load oper-
ations are the opposite of
those described in the First
Edition of the PDP-11/70 Pro-
cessor Handbook. The instruc-
tion, however, performs as
specified in the Handbook.

.3 ROM MAP
Refer to drawing D-CS-M8123-0-1, ROM & ROM
CONTROL, sheets 12 - 15.

These four drawings list all the ROM states in nu-
merical order. The following information is
provided:

1. In the STATE column, the name by
which the state is called on the Flows.

2. In the FLOWS column, the sheet of the
Flow Diagrams on which the ROM state
is shown.

3. In the ADR column, the ROM address
of the state.

4, In the BRK - ALU columns, the value
of each of the ROM fields for each
state.

5. In the FEN column, the fork that is en-
abled, if any.

6. In the BEN column, the branch that is
enabled, if any.

7. In the UAD column, the base address
for the next ROM state, which may be
modified if the FEN or BEN fields are
other than 0.

1.4 ROM ADDRESS

Refer to Figure 1-12. The ROM Address Register
(RAR), which is clocked at T3, determines the out-
put of the ROM for the next cycle and supplies the
address for the next cycle. It also supplies the ad-
dress for the Memory Management ROM (refer to
Section 1V),

The input to the RAR [RACL RADR(07:00) H] is
the address selection logic shown on RACL. The
following are inputs to this logic:

I.  The UADR field of the ROM. In the ab-
sence of any of the modifying signals,
this is the ROM address for the next
cycle.

2. The Branch inputs, which are controlled
by conditions occurring in the rest of the
processor logic.
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Figure 1-12 ROM Address

3. The Fork logic, which is controlled by
the instruction word there are three
Forks:

a. The A Fork, used by all instruc-
tions, is the instruction decoder for
the KB11-C.

b.  The C Fork, which is used only by
binary instruction that require ad-
dress calculation (SM not 0)

¢.  The B Fork, which is used for exe-
cute cycles by instructions that re-
quire either source or destination
address calculation, or both.

Figure 1-12 lists both the paragraph and the logic
drawings containing information about the ROM
address generation.

1.4.1 ROM Address Register (RAR)

There are three identical copies of the RAR. Refer
to drawings RACA through RACD. In addition to
the two copies (RARB and RARA) used to provide
sufficient fanout for the 16 ROM ICs, a third copy
(RAR, shown on RACD) is used to transmit the
current microprogram word address to the Memory
Management ROM (refer to Section IV of this
manual).

The RAR is normally loaded from inputs generated
by the microprogram address selection logic shown
on drawing RACL. Under some circumstances, the
RAR is forced to address 200 by clearing all but
the most-significant of the eight bits, and setting
that bit. To permit setting the most-significant bit,
it is implemented by a separate flip-flop. The re-
maining seven bits are implemented by 6-bit regis-
ters of the same type used for the ROM output
buffer.
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RACA ZAP L is the signal used to force the pro-
cessor into a known state to start the processing of
aborts and of the power-up sequence. The condi-
tions that can generate this signal are:

1. Power-up sequence or start sequence
(ROM INIT)

2. Parity error abort, which is flagged
UBCB PE ABORT during the micro-
program cycle which follows a pause

3.  All other aborts (TMCC ABORT),
which are flagged during a pause cycle
(RACB UBSDO0I).

PE ABORT and ABORT are gated with TIGD
TS2 L, which remains asserted longer than the
pulse TIGC T3 L that clocks the RAR, and ensures
that the ZAP signal overrides the normal address.

ROM INIT and ABORT are described in Chapter
6 of this manual.

1.42 ROM Address Selection

Refer to drawing RACL. RADR(07:00) are the in-
puts to the RAR. An address bit is asserted (high),
when all four of the negative-input-OR gates have
at least one low input.

On all RADR 74S64 gates, there are four input OR
gates. Three of these gates are used for the forks,
one gate each for the A, B and C Forks. The
fourth gate is the OR of the ROM UADR field bit
and of the Branch Enable Bit (BRCAB) for that bit
position, Since there is no branch enable for bit 3,
the gate for RADRO03 has only one input,
UADRO3.

1. When all three fork inputs are negated,
the OR gate inputs for the forks are low.
The inputs to the fourth gate then deter-
mine the state of the address bit: if ei-
ther or both UADR and BRCAB bits
are asserted (low), the RADR bit is as-
serted (high).

2. Only one of the three UFEN bits is ever
asserted at one time (in a microprogram
word). When one of these bits is as-
serted, its input to its RADR OR gates
is high, and this OR gate is asserted if
one or more of their fork logic input sig-
nals is asserted (low). In this case, the
RADR bit is asserted (high).

From the above, it can be seen that:

l. A branch can assert an RADR bit for
which the UADR is not asserted;

2. Any Fork can negate an RADR bit for
which the UADR bit is asserted. For ex-
ample, if UADROO is asserted (low) and
the A Fork (lower gate) is enabled,
RADROO is negated if none of the AQ,
Al, A2 RABOO signals are asserted
(low). The A Fork has an address of
377, or all eight UADR bits asserted;
any combination of these could be ne-
gated to generate any address between
000 and 377.

Fork Inputs
The A Fork input, RACD UAFEN L is
unconditional.

The C Fork input, RACD UCFEN L, is disabled
by BENI4 if the source mode is 3, 5 or 7. This
branch occurs during source mode operand fetch
when one more bus cycle is required to fetch the
source operand. Refer to Flows 1, S13.10 and
Flows 2, S67.30: if -SM357, the next cycle starts the
DM operand fetch on the C Fork; if SM357, both
cycles fetch the operand in S13.20 - S13.40 and
then go to the C Fork.

The B Fork input, RACD UBFEN L, is disabled
by one of two conditions, both shown at the bot-
tom of Flows 6:

1. BENIS. If the instruction is FJ/class, it
goes directly to the B Fork for execu-
tion; if it is not FJ/class, it branches to
one of two cycles, depending on whether
or not it is O/class, to complete its desti-
nation operand fetch.

2. BENO5. An instruction that is neither
O/class nor FJ/class goes to the B Fork
if its destination address is not an odd
byte. If it is an odd byte [DRO(I) or
GRAB OBD] it first branches to D12.30
to swap bytes in the BR, and then goes
to the B Fork.

1.4.3 Branches and Forks

Normally, the address of the next microprogram
word is derived from the contents of the micro-
address field (UADR) in bits 7 = 0 of the current
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microprogram word. Two Branch selectors allow 2-
way or 4-way branches on the conditions of various
processor circuits and on the contents of various
data registers. For most decision points encoun-
tered during the flow of machine states, this branch
capability is sufficient.

In certain situations, particularly after an instruc-
tion or data has been fetched by a state sequence
that is common to many instructions, it is necessary
to select a next machine state that is unique to one
or a small class of instructions. This requires a
much wider branching capability. In the KB11-C
Processor, this capability is provided by the Fork
logic. Each of three forks generates one of a large
number of possible addresses, based on the decod-
ing of the instruction, the address modes, and vari-
ous processor status indications. When a fork is
enabled by the corresponding fork-enable bit of the
microprogram, the address generated by the fork is
loaded into the ROM address register instead of
the contents of the microaddress field.

1.4.4 Branch Logic

The processor is controlled by words fetched from
a microprogram ROM; each word represents a ma-
chine state. The sequence of machine states is con-
trolled by the sequence of ROM words fetched.
Normally, each ROM word contains the address of
the next word (o be fetched. When it is necessary to
provide for alterations in the sequence of machine
states, two bits of the address contained in the cur-
rent ROM word can be altered by inputs that sense
processor conditions and data values. The altered
bits select different addresses, depending on their fi-
nal values, so that up to four different addresses
can be selected. This 4-way branch permits a wide
variety of machine state sequences to use the same
microprogram words.

The two bits that can be altered by branch condi-
tions are bits 5 and 4 of the microprogram address.
Therefore, when a branch is used, the addresses se-
lected for different conditions differ by 20, 40 or
60. There are 16 sets of branch conditions. One of
the 16 sets is selected by the four branch-enable bits
in the current microprogram word.

The Console branch (Flows 14) can modify bits 7,
6 and 2:0; it is not included in the explanation that

follows, but is described in Section III (Console) of
this manual.

RACK BRCAB(05:04) L are the outputs of the
branch logic; each signal is ORed with the corre-
sponding bit of the microprogram address from the
current ROM word on one of the input gates to
RACL RADR(05:04). When the 4-way branch is
used, bits 5 and 4 of the UAD address are both ne-
gated (high), and the two branch signals select one
of four addresses. If only a 2-way branch is desired,
onc of the UAD address bits is asserted (low), and
the corresponding branch bit is ignored, because
the result of the OR is always asserted.

Refer to drawing RACK. BRCABOS5 L and
BRCABO4 L are both generated by identical logic
circuitry, which consists of two multiplexers and a
4-input AND-NOR gate. UBEF(03:00) controls the

circuit.

UBEFO03 selects the multiplexer: when this signal is
not asserted, the top multiplexer is enabled and the
lower one disabled. The opposite occurs when
UBEFO3 is asserted.

UBEF(01:00) selects which input to each half of the
multiplexer 1C is selected. Each IC has two
outputs.

UBEFO02 selects which of the two outputs of the
multiplexer selected by UBEF(01:00) is gated
through the BRCAB gate.

When UBEF(03:00) = 00, the D1 inputs to the top
multiplexers are selected. Since these are both
ground, BRCAB(05:04) are both negated (high),
and the corresponding ROM address bits, RACL
RADR(05:04) follow the UADR(05:04) inputs, i.e.:
the address is not modified.The same is true for
UBEF = 14, which is the Console branch.

Table 1-4 shows the inputs for each branch.

1.4.5 Instruction Registers

The instruction word is read from memory during
FET.10. It is clocked into the Instruction Registers
at T1 of IRD.0O0; this is shown as T6 of FET.10 on
the Flows.
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Table 1-4
Branch Signal Sources

UBEF RACK BRCAB 05 L RACK BRCAB 04 L Comments
Value
00 GROUND GROUND No Branch
01 |IRCDDM357H GRAE SREQONEL
02 |IRCFZ2(1)H TMCB (PWRF + INTR) L
03 GRAJSC=0L GRAJ SCOS L
04 |GRAJDIVSUBL IRCHN (1)H
05 GRAB OBD (0) H GRAJ DIV QUITL BRCABOS: Disable B Fork if OBD,
Flows 6
06 |DAPABRI4L SSRA PS RESTORE (1) H
07 RACKBE75H RACK FP REQH
10 UBCC RIP + FP SYNC H FRMB FP CLASS L
11 GRAJSC=0L GRAD DROO H
12 TMCA CONF (1) H TMCB BRQ TRUE L
13 |TMCBPF(0) * (SF+ TF)H | TMCBPF(0) * (SF+-TF)H | Service Flows, Flows 12
14 |GROUND GROUND g?sr;ﬁleecBrFagihi’stl%ss;?Flows 182
15 IRCB FJ CLASSL IRCC 0 CLASS L Disable B Fork if F/J Class, Flows 6
16 GRAD DROOH GRAH SR15 H
17 |RACK RIP+FP SYNCL TMCB BRQ * (T+ CONF) L

*TMCB BRQ * (T+ CONF) L
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There are two copies of the Instruction Register
(IR):

.  RACJ AFIR(15:00) (1) H, which is
used only by the A Fork logic for rea-
sons of speed. For this same reason,
there is an extra copy of bits 9 and 10
[RACH AFIR(10A:09A) (1) H].

2. IRCA IR(15:00) (1) H, which is used by
the B and C Forks, the Condition Code
logic and the rest of the KB11-C logic.

Both copies of the IR are clocked at Tl when the
UIRK bit of the microprogram field is asserted in
FET.10.

1.4.6 A Fork Logic

1.4.6.1 Decode Logic - Refer to drawing RACE.
The logic illustrated on this drawing is part of the
A Fork. This fork operates as the instruction deco-
der of the processor. Immediately after the instruc-
tion has been loaded into the Instruction Register
(IR) the A Fork begins to generate an address. Be-
cause this address must be available within one ma-
chine cycle, the A Fork is designed to operate at
maximum speed. Therefore, the amount of decod-
ing is minimized; classes of instructions are recog-
nized and the bits that differentiate members of the
class are used directly as low-order bits of the gener-
ated address. This technique can be understood by
examining the address utilization by the forks. As
an example, consider the selection of addresses by
the A Fork for the group of instructions ranging
from HALT to RTT. The binary op codes for all
these instructions are identical except for the three
least-significant bits. When the A Fork decode logic
recognizes that all but the three least-significant bits
are 0, bit 3 of the ROM address is set, and the
three least-significant bits of the op code become
the three least-significant bits of the address.

1.4.6.2 Address Bit Generation — The logic shown
on drawing RACE generates address bits for cer-
tain classes of instructions. These bits are then
ORed with other signals that generate the same bits
for other classes of instructions to generate the A
Fork address. The address is then combined with

the address from the microprogram in a bit-clear
operation as shown on drawing RACL.

The signal names indicate the use of each logic cir-
cuit as follows:

1. The fork signals that are connected to
the microaddress logic on drawing
RACL have names that include RAB
(for ROM Address Bit), followed by the
number of the address bit to which the
signal is connected.

2. In some cases, a signal is connected to
more than one address bit because the
same conditions generate both bits,

3. Many RAB signals are connected to the
same address bit. They are distinguished
by a letter that tells which fork generates
the bit, and where more than one signal
can be generated for the same fork.
Thus, the signal RACE A0 RABOO is
one of several signals used by the A
Fork logic to generate bit 0 of the
address.

Branch instructions are described separately in Para-
graph 1.4.6.4.

Table 1-5 shows the RAB bits asserted by each in-
struction on the A Fork.

1.4.6.3 Instructions Other Than Branch

RACE A0 RAB (02:00)

RACE A0 RABOO L, RACE A0 RABOI L, and
RACE A0 RABO2 L are used to generate micro-
program addresses 001 — 007. No other A Fork bits
are enabled when these gates are enabled. The en-
abling conditions for all three signals are identical,
except that each signal corresponds to a different
bit of the Instruction Register. The IR bits passed
through the AND-NOR gates are the destination-
mode bits for instructions that require Destination
Address Calculation (DAC), but no source address
calculation. If the destination mode is O, the destina-
tion data is in the Destination Register and no ad-
dress calculation is required.
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This group of microprogram words is used for the
following groups of instructions:

1.

All single-operand instructions (with op
codes of 005XDD, 105XDD, 006XDD
and 106XDD); this includes the instruc-
tion group from CLR to ASL (in both
word and byte forms), the variable ad-
dress-space moves, SXT, and XOR.
These instructions are recognized by
their op codes and generate the signal
RACE RCLASS H.

The register and memory instruction
group, which includes MUL, DIV, ASH,
and ASHC. When one of these instruc-
tions is decoded, the signal RACE
(MUL:ASHC+MFP) H is generated.

Any binary instruction with a source
mode of 0. Because the source data is al-
ready in the Source Register, it is not
necessary to do the source data fetch.
These instructions generate the signal
RACE BIN*SMO H.

The three instructions JMP, JSR, or
SWAB. These three instructions use the
sume address calculation as the single-
operand instructions. The signal RACE
JMP + JSR + SWAB H is generated.

The instructions that use AG RAB(02:00) are listed

below:

00 01 DD
0003 DD
00 4R DD
0050 DD
00 51 DD
00 52 DD
0053 DD
0054 DD
00 55 DD
00 56 DD
0057 DD
00 60 DD
00 61 DD
0062 DD
00 63 DD
0065 SS

00 67 DD

JMP 07 OR SS MUL
SWAB 07 IR SS DIV
JSR 07 2R SS ASH
CLR 07 3R SS ASHC
COM 074R DD XOR
INC 1050DD CLRB
DEC 1051 DD COMB
NEG 1052 DD INCB
ADC 1053 DD DECB
SBC 1054 DD  NEGB
TST 1055DD ADCB
ROR 1056 DD  SBCB
ROL 1057 DD  TSTB
ASR 1060 DD  RORB
ASL i061 DD ROLB
MEPI 1062 DD  ASRB
SXT 1063 DD  ASLB

IF SMO:

01 SS DD
02 SS DD
03 SS DD
04 SS DD
05 SS DD
06 SS DD

RACE A0

MOV 11SSDD MOVB

CMP 12SS Db CMPB

BIT 13 SS DD BITB

BIC 14SS DD  BICB

BIS 15SS DD  BISB

ADD 16 SS DD SUB
RABO3

RACE A0 RABO3 L is generated for the following
groups of instructions:

1.

00 00 00
00 00 01
00 00 02
00 00 03

00 03 DD
0050 DD
00 51 DD
0052 DD
00 53 DD
00 55 DD
00 56 DD

00 37 DD

00 60 DD

1I-1-43

Branch instructions accompanied by a
Bus Request (BRQ); these instructions
generate A Fork addresses ranging from
330 - 336. Refer to Paragraph 1.4.6.4.

Op codes 000000 - 000007; these instruc-
tions range from HALT to RTT and use
microprogram addresses 010 - 017 (017
is for op code 000007 and traps through
location 4).

The instructions in this group are:

HALT 00 00 04 10T
WAIT 00 00 05 RESET
RTI 00 00 06 RTT
BPT 00 00 07

E/class instructions, with the exception
of the binary instructions that have both
SMO0*DMO, if these instructions have a
DF7 or there is a BRQ to be serviced
(DF7+BRQ). These instructions all go
to address 030 because AFIR(05:03) are
all 0s, which causes RACE RAB(02:00)
to be negated. RACF A2 RABO3 asserts
bit 3 for BIN*SM0*DMO0*(DF7+BRQ).

The instructions in this group are:

SWAB*DMO 00 61 DD ROL
CLR 0062 DD  ASR
COM 0063 DD ASL
INC 0067 DD SXT
DEC 074R DD XOR
ADC 1050 DD CLRB
SBC 1051 DD COMB
IST 1052 DD INCB
ROR 10 53 DD

DECB



Table 1-5A

A Fork Address Generation
Instruction Class AO RAB Al RAB A2 RAB Address Instruction Class AO RAB Al RAB A2 RAB Address
00 ] o1 | 02 [03]05 07 00 |01 |02 05 03| 05 & Flows 00 | o1 ] 02 |03 0507 00 |01 ]02]04]05 03] 05 & Flows
ADC.B P, E, DAC See Table 1-5B JMP  -DMO J,FJ, DAC See Table 1-5C
ADD: -SMO P, E, BIN See Table 1-5B DMO 000 (3)
SMO P,E,BIN,DAC | See Table 1-5C JSR  -DMO 1, FJ, DAC See Table 1-5C
ASH -DMO DAC See Table 1-5C DMO 1000(3)
DMO DAC X X 052 (3) MARK None X |x [x X 047 (2)
ASHC -DMO DAC See Table 1-5C MFP _ -DMO T, DAC See Table 1-5C
DMO DAC X X |X 053 (3) DMO 1, DAC X | x X 046 (3)
ASL.B P,E, DAC See Table 1-5C MOV -SMO 0, E, BIN See Table 1-5B
ASR P, E, DAC See Table 1-5C SMO O, E, BIN, DAC See Table 1-5C
ASRB DRO (0) P, E, DAC See Table 1-5C MOVB -SMO P, BIN See Table 1-5B
DRO (1) P,E, DAC See Table /l/_SC SMO P, BIN, DAC See Table 1-5C
Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS — See Table 1-7 MTP 0 X X X 045 (1)
BIC.B -SMO P, E, BIN See Table 1-SB MUL  -DMO I, DAC See Table 1-5C
SM0 P,E,BIN,DAC | See Table 1-5C DMO I, DAC X 050 (3)
BISB -SMO P, E, BIN See Table 1-5B NEG.B -DMO P,DAC See Table 1-5C
SMO P,E,BIN,DAC | See Table 1-5C DMO P,DAC X 301(3)
BITB -SMO I, E, BIN See Table 1-5B RESET None X X X 015(3)
SMO I,E,BIN,DAC | See Table 1-5C ROL.B P, E, DAC See Table 1-5C
Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL — See Table 1-7 ROR P, E, DAC See Table 1-5C
BPT (OP3) None x| | | x][x] | | 013(3)  RORB DRO(0) | P,E,DAC See Table 1-5C
Branch Instructions: BR, BVC, BVS — See Table 1-7 DRO (1) P.E,DAC See Table 1-5C
CCOP None X X 044(3  RTI None X X 012(2)
CLR.B P, E, DAC See Table 1-5C RTS None X 040(2)
CMP.B -SMO L E, BIN See Table 1-5B RTT None X X | X 016 (2)
SMO LE,BIN,DAC | See Table 1-5C SBC.B P,E, DAC See Table 1-5C
COM.B P, E, DAC See Table 1-5C SOB None X X | X | X 057 (2)
DEC.B P, E, DAC See Table 1-5C SPL None X | X X 043 (3)
DIV  -DMO I, DAC See Table 1-5C SUB  -SMO P,E, BIN See Table 1-5B
DMO I, DAC X X 051 (3) SMO P,E,BIN,DAC | See Table 1-5C
EMT None 000 (3) SWAB P, E, DAC See Table 1-5C
Floating Point: F,FJ SXT P,E, DAC See Table 1-5C
-FP PRESENT 000(12)  pap None 000 (3
FPPRES 101 @) TST.B I, E, DAC See Table 1-5C 2
. ,E, ee Table 1-
HALT None X 0106 WAIT N X X 011 (3)
INC.B P,E, DAC See Table 1-5C one
XOR P.E, DAC See Table 1-5C
10T None X X 014 (3)
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Table 1-5B
A Fork, BIN*.SM0

Source

AO RAB Al RAB

A2 RAB

Mode

0001 [02]03]|05 |07 00 { 01 | 02 05

03

05

Address
& Flows

N N R W =

X

>
XX X X X x x| e

=
MoK XK X

021 (1)
022 (1)
022 (1)
024 (1)
024 (1)
026 (2)
026 (2)

Table 1-5C
A Fork, DAC

Destination Mode

A0 RAB Al RAB

A2 RAB

Address

00 01 {02103 ]05 |07 00|01 (02| 04

05

00

03 | 05

& Flows

0:  -(DF7+BRQ)

0: BIN*(DF7+BRQ)

0: -BIN*(DF7+BRQ)
1

N N AW

>

>
Kok XX

020 (3)
030 (3)
030 (3)
001 (5)
002 (5)
003 (5)
004 (6)
005 (6)
006 (6)
007 (6)
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1055 DD ADCB 10 61 DD ROLB
1056 DD  SBCB 1062 DD  ASRB
1057 DD  TSTB 1063 DD  ASLB
10 60 DD RORB

RACE A0 RAB04

RACE A0 RABO4 L is generated for any branch in-
struction. This signal is an input to bits 4, 6 and 7
of the microprogram address; as a result, all branch
instructions generate A Fork addresses with these
three bits set (addresses between 320 and 336). Re-
fer to Paragraph 1.4.6.4.

RACE A0 RABOS

RACE A0 RABO5 L is generated for MUL, DIV,
ASH, and ASHC instructions with a destination
mode of 0, and for SOB instructions. RACE BIN L
climinates the binary instructions from U/class.
This RAB signal is also connected to RABO3 to
generate addresses ranging from 050 to 057.

These instructions are listed below:

07 OR SS MUL
07 IR SS DIV
07 2R SS ASH

07 3R SS ASHC
07 7R NN  SOB

RACH A0 RABO7

RACH A0 RABO7 is asserted for a NEG or NEGB
instruction with DMO0. Together with RACH A2
RABOO, it generates address 301.

RACF A1 RAB(02:00)

RACF Al RAB0OO L, RACF Al RABOI L, and
RACE A1 RABO2 L generate the three least-signifi-
cant bits of the ROM address for the classes of in-
structions described in the following paragraphs.

HALT Through Op Code 7 - These instructions
gencrate microprogram addresses ranging from 010
- 017: the 1 in bit 3 of the address is generated by
RACE A0 RABO3 L. The following instructions
arc included in this group:

00.00 00 HALT
00 00 01 WAIT
00 00 02 RTI
00 00 03 BPT

00 00 04 10T
00 00 05 RESET
00 00 06 RTT

X/Class - The X/Class instructions, MARK, MFP
with a destination mode of 0, and MTP, generate
addresses of 074, 046, and 045, respectively. RAB02
is forced to a I, and the two low-order bits are the
complements of the corresponding bits from the In-
struction Register. Bit 5 of the address is set by
RACF A2 RABOS L.

U/Class - U/Class instructions include three
groups: the binary instructions; the SOB instruc-
tion; and the MUL, DIV, ASH, and ASHC instruc-
tions with a destination mode of 0.

The Binary instruction use four microprogram ad-
dresses, 021 for SM1, 022 for SM23, 024 for SM45,
and 026 for SM67. These bits are controlled by
AFIR(11:09); bit 0 (A1 RABOO) can only be set by
SM1 [RACH BIN*(-SMO0I1) L]. Bit 4 of these ad-
dresses is set by RACH Al RABO4 [(-BF1=7)*(-
BF1=0)*(-SMO0) = op codes with bits 14:12 from 1 -
6 and not source mode 0]. The instructions in this
group are:

01 SS DD MOV 11 SS DD MOVB
02SS DD CMP 12SS DD  CMPB
03 SS DD BIT 13 SS DD BITB
04 SS DD BIC 14 SS DD BICB
05 SS DD BIS 15SS DD BISB
06 SS DD ADD 16 SS DD  SUB

MUL, DIV, ASH and ASHC with DMO0 and SOB
use addresses 050 - 053 and 57. Bits 11:09 of the op
code generate bits 02:00 of the address; bits 3 and 5
of the address is asserted by RACE A0 RABOS5.

RTS:CCOP - Op codes 0002XX (RST:CCOP) use
addresses 040 - 044. Bit 0 of the address is set
when IR(05:03) = 3 (SPL), bit 1 when IR(05:03) =
2 or 3 (OP22, Flows 3 and SPL), bit 2 when
IR(05:03) = 4 (CCOP). Bit 5 of the address is set
by RACF A1l RABOS5. The instructions in this
group include:

0002 OR RTS

000210 Unused
through '
00 02 27 Unused

00 02 3N SPL
00 02 40 NOP

00 02 41 CCOP
through
00 02 77 CCOP
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RACH Al RAB04
RACH Al RABO4 L is asserted for the following
instructions:

1.  Binary instructions with:

a. Both source and destination modes
0 (addresses 20 and 30);

b. Any source mode except 0 (ad-
dresses 21, 22, 24, and 26);

The instructions in this group are the fol-

lowing, when either SMO0*DMO or

SM(1:7).
01SSDD MOV 11SSDD MOVB
02SSDD CMP 12SSDD CMPB
03SSDD  BIT 13SS DD  BITB
04SSDD  BIC 14SS DD  BICB

15SS DD  BISB
16 SSDD SUB

05SS DD  BIS
06 SS DD ADD

2. R/Class instructions with destination
mode 0, except MFP and the NEG.B in-
structions (addresses 20 or 30);

The instructions in this group are the fol-

lowing, when DMO:

0050 DD CLR 074R DD XOR

0051 DD COM 1050 DD  CLRB
0052 DD INC 1051 DD COMB
00 53 DD DEC 1052 DD INCB
0055 DD ADC 10 53 DD DECB
00 56 DD  SBC 1055 DD ADCB
0057 DD  TST 1056 DD  SBCB
0060 DD ROR 1057 DD  TSTB
00 61 DD ROL 1060 DD RORB
00 62 DD ASR 1061 DD ROLB
00 63 DD ASL 1062 DD ASRB
00 67 DD  SXT 1063 DD ASLB

3.  SWAB instructions with a destination
mode of 0 (also addresses 20 or 30).

RACF A1l RABOS

RACF Al RABOS5 is asserted for RTS:CCOP ex-
cept when IR(05:03) = 1 which are unused op
codes.

RACH A2 RAB0O
RACH A2 RABOO generates bit 0 and 6 of the
ROM address. It is asserted in the following cases:

1. For NEG.B instructions with DMO, ad-
dress 301. RACH A0 RABO7 asserts bit
7 in this case.

2.  For branch instructions when RACF
TRUE] is asserted. Refer to Paragraph
1.4.6.4.

3.  For floating point instructions, address
101.

RACH A2 RAB(02:01)
These bits are used by the branch instructions. Re-
fer to Paragraph 1.4.6.4.

RACF A2 RABO3

RACF A2 RABO3 asserts bit 3 of the address for
E/class binary instructions (= both source and des-
tination modes equal to 0; no address calculation),
either when the destination field is 7 or a BRQ is to
be serviced. RACE A0 RABO3 asserts bit 3 for the
non-binary E/class instructions.

The instructions in this group are the following,
when SM0*DMO and (DF7+BRQ):

01SSDD MOV 11SSDD MOVB
02SS DD CMP 12SS DD CMPB
03SS DD  BIT 13SS DD  BITB
04 SS DD  BIC 14 SS DD  BICB

15SS DD  BISB
16 SSDD SUB

05SS DD  BIS
06 SSDD ADD

RACF A2 RABO05

RACF A2 RABOS5 asserts bit 5 of the ROM ad-
dress for MFP instructions with DMO, and for
MARK and MPT instructions.

1.4.6.4 Branch Instructions — Table 1-6 lists the
Branch Instructions, their op codes and the condi
tions on which they branch.

With the exception of BR, which always branches,
the branch instructions are grouped in pairs, each
of which checks one condition (e.g.. BNE and BEQ
check the Z bit). Bit 08 of the op code determines
whether the instruction branches when the branch
condition is true (1 or asserted) or false (0 or ne-
gated). For example: BNE branches if Z=0 and
BEQ branches if Z=1.
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RACF TRUEI and TRUE?2 are asserted when the
branch condition is met. TRUEIL checks the result
of branches that have a 1 in bit 15 of their op code;
TRUE2 does the same for branches with a 0 in bit
15 of their op code. These two functions cannot
both be asserted at one time.

Branch A Fork Address
shows

Table

1-7

the generation
RADR(07:00) for branch instructions.

of RACL

Refer to Flows 1. Branch instructions (BXX) are

shown on three separate branches:

Table 1-6
Branch Instructions
Instruction Branch AFIR RACF (See Note 1)
Condition 15 |14 |13 112 111 | 10} 09 | 08 | TRUE2 | TRUE1
BR Always 0 0 0 0 0 0 0 1 1 0
BNE Z 0 0 0 0 0 0 1 0 X 0
BEQ Z 0 0 0 0 0 0 1 1 X 0
BGE Nwv 0 0 0 0 0 1 0 0 X 0
BLT NwV 0 0 0 0 0 1 0 1 X 0
BGT Zv (NWYV) 0 0 0 0 0 1 1 0 X 0
BLE Zv (NWV) 0 0 0 0 0 1 1 1 X 0
BPL N 1 0 0 0 0 0 0 0 0 X
BMI N 1 0 0 0 0 0] 0 1 0 X
BHI CvZ 1 0 0 0 0 0 1 0 0 X
BLOS CvZ 0 0 0 0 0 1 1 0 X
BVC \" 1 0 0 0 0 1 0 0 0 X
BVS \'4 1 0 0 0 0 1 0 1 0 X
BCC,BHIS C 1 0 0 0 0 1 1 0 X
BCS,BLO C 1 0 0 0 0 1 1 1 0 X

NOTE 1 — “X” in the RACF TRUE1 or TRUE2 columns means that the function is asserted if

the “Branch Condition” is asserted. For example, if the instruction isa BNE or a
BEQ, TRUE? is asserted if the Z bit is set.

NOTE 2 — The op code (AFIR < 15:08) for each pair of Branch Instructions differs only in bit

08. If bit 08 is set, the instruction branches, if the Branch Condition is asserted. If bit

08 is not set, the instruction branches if the condition is not asserted. For example:

BNE Z=0 Branch
Z=1 No Branch

BEQ Z=0 No Branch
Z=1 Branch
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BXX*BCOK (Branch OK = condition
met). In this case, cycles BXX.00 -
BXX.05 (all identical) are executed.
Since the branch is successful, the PC
plus the displacement is moved to PCA
and PCB, a BRQ strobe is issued, the
bus cycle started in IRD.00 is ended,
and the microprogram goes to FET.00.
The instruction fetch sequence then fet-
ches the instruction pointed to by the
new PC.

BXX* - BCOK* - BRQ (condition not
met and no break request). Since BRQ is
not true and the instruction does not
branch, control goes to FET.11 -
FET.13.

BXX* - BCOK* - BRQ (condition not
met and break request asserted). Control
remains with the current PC, but the
BRQ must be serviced; the next states
are FET.0l - FET.03, after which the
BRQ is serviced.

Table 1-7
Branch Instruction ROM Address
RACL RADR Result Next State
07 06 05 04 03 02 01 00
1 1 0 1 0 0 0 0 BCOK * -BRQ FET.0X
1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0
1 1 0 1 1 0 0 0 BCOK * BRQ FET.0X
1 1 0 1 1 1 0 1
1 1 0 1 1 1 1 0
1 1 0 1 0 0 0 1 -BCOK * -BRQ FET.1X
1 1 0 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 0 1 1 0 0 1 -BCOK * BRQ FET.0X
1 1 0 1 1 0 1 0
1 1 0 1 1 1 0 0
A A b

L
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Input to RACL RADR (07:00):

RACH A2 RABOO = TRUE! * BR INST
RACH A2 RABO1 = TRUE2 * BR INST
RACH A2 RABO2 = AFIR08 * BR INST
RACE A0 RAB03 = BRQ TRUE * BR INST
0=-BRQ
1 =BRQ

RACE A0 RAB04 = BR INST



Refer to Table 1-7.

1. RACL RADR(07:06) H and RADRO04
H are asserted (high) for all branch in-
structions by RACE A0 RAB04, which
is a decode of all branch instruction op
codes.

2. RACL RADROS5 is negated (low) for all
branch instructions.

3. RACL RADRO3 is asserted (high) when
BRQ is true during a branch instruction
and negated when BRQ is not true. This
bit is controlled by RACE A0 RABO3.

4. RACL RADRO2 is asserted when bit 08
of the op code is | (branch if condition
true).

5. RACL RADROI is asserted by RACH
A2 RABO!I when RACF TRUE2 is
asserted.

6. RACL RADROO is asserted by RACH
A2 RABOO when RACF TRUEI is
asserted.

It can be seen from Table 1-7 that a branch is suc-
cessful (BCOK) under the following conditions:

1. When the instruction requires a branch
on condition false or not asserted
(RAB02 = 0) and neither TRUE2 nor
TRUEI are asserted (RABOlI = 0 and
RABOO = 0).

8]

When the instruction requires a branch
on condition true or asserted (RAB02 =
1) and either TRUE2 or TRUEI are as-
serted (RABOI = | or RABOO = 1).

A branch is not successful (-BCOK) when the
above conditions are not met, i.e.. RAB02 asserted
and neither TRUEI nor TRUE2 asserted, or
RABO2 not asserted and either TRUE!] or TRUE2

asserted.

1.4.7 C Fork Logic
Refer to drawing IRCC. The logic shown on this
drawing decodes the address modes and register

specifications of the current instruction, and gener-
ates signals that control register selection and ad-
dress calculation in the processor. The logic also
generates addresses for the C Fork microprogram
address logic. The C Fork selects the address of the
next microprogram address when a destination oper-
and must be fetched.

Two 8251-1 BCD-to-Decimal Decoders are used to
recognize the source and destination modes, respec-
tively, by decoding each 3-bit IR field. The source
and destination modes determine the operations per-
formed in the fetching of operands; these signals
are used throughout the IRC module. Destination
mode O is also used to separate the C Fork ad-
dresses for this mode and all other destination
modes, by connecting IRCC DSTMO L to the C
Fork input for bit 7 of the ROM address (as shown
on drawing RACL) and connecting IRCC DSTMO0
H to the input for bit 6. In this manner, the C
Fork generates microprogram addresses ranging
from 202 - 211 for destination mode 0, and micro-
program addresses ranging from 110 - 117 for
other destination modes.

The address generated by the C Fork logic depends

on:

1. For mode 0, whether or not the instruc-
tion is F/class. If it is not F/class,
whether the destination field is 7 or not,
and whether an odd byte swap is re-
quired (SRO = [ or 0);

2. For other modes, whether an odd byte
swap is required.

The C Fork multiplexer is 74S157 4-bit 2-Line-to-1-
l.inc Multiplexer that is controlled by IRCC
DSTMO L. Recognition of destination mode 0 gen-
crates the four low-order bits of the microprogram
address for the C Fork. The two high-order bits are
directly controlled by the destination mode and bits
4 and 5 are always 0. Bit 3 of the address is always
a | if the destination mode is not 0 (the input is a
ground which generates a low output, which asserts
the input to the microprogram address assembly
logic on drawing RACL). For destination mode 0,
bit 3 is controlled by the instruction class; the bit is
set for F/class instruc tions and clear for all others.
Table 1-8 summarizes the C Fork multiplexer
outputs.
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Table 1-8

C Fork Address Generation
Instructions Flows ROM Cycle C Fork Multiplexer
Adrs Name Input Output: IRCC CO RAB
Enabled 03 02 01 00
DMO * -F/Class 4 202 D07.00 A H H L H
* DF7 * SRO (1)
DMO * -F/Class 4 203 D07.10 A H H L L
* DF7 * SRO (0)
DMO * -F/Class 4 204 D00.80 A H L H H
* .DF7 * SRO (1)
DMO * -F/Class 4 205 D00.90 A H L H L
* .DF7 * SRO (0)
DMO * F/Class 4 211 FOP.50 A L H H L
DM12 * SRO (1) 5 110 D12.90 B L H H H
DM12 * SRO (0) 5 111 D12.80 B L H H L
DM3 * SRO (1) 5 112 D30.90 B L H L H
DM3 * SRO (0) 5 113 D30.80 B L H L L
DM45 * SRO (1) 6 114 D45.90 B L L H H
DM45 * SRO (0) 6 115 D45.80 B L L H L
DM67 * SRO (1) 6 116 D67.90 B L L L H
DM67 * SRO (0) 6 117 D67.80 B L L L L

1.4.8 B Fork Logic

Refer to drawing IRCB. The B Fork logic gener-
ates microprogram addresses that are used to select
the next machine state after the destination operand
has been fetched. For each instruction that operates
on a destination operand, there is a unique micro-
program word that controls the execution of the op-
eration for that instruction. The majority of these
instructions are included in the P/class group. The
P/class instructions are executed by a single micro-
program word that is stored in ROM location 031,
with the exception of the NEG, ASRB, and RORB
instructions. The exceptions are made because these

instructions may require a byte swap during the exe-
cution cycle, and must use other machine states
that permit a separate byte-swap operation for odd-
byte data.

The B Fork addresses are generated by a 74S157 2-
input, 4-bit multiplexer, and by two additional
gates. IRCB BO RABO4 L is connected to ROM ad-
dress bits 4 and 5, to generate ROM addresses rang-
ing from 60 - 67. IRCB BO RABO3 L is connected
to ROM address bits 3 and 4, to generate ROM ad-
dresses ranging from 31 - 36. The ROM addresses
used by the B Fork and the instructions executed
by cach address, are listed in Table 1-9.
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Table 1-9

B Fork Address Generation
Instructions Flows ROM Cycle IRCB Multiplexer Other
Adrs Name Inputs Outputs Signals
Enabled Asserted Asserted
P/Class * -[(ASRB 11 031 EXC.00 A BO RAB0O BO RABO3
+ RORB) * DRO (1) + NEGB]
TST.B + BIT.B + CMP.B 11 033 TST.10 A B0 RABO1 B1 RABOO
BO RABO3
JSR 11 034 JSR.00 A BO RABO2 BO RABO3
JMP 11 035 JMP.00 A B0 RABO2 B1 RABOO
BO RABO3

F/Class 7 036 FOP.40 A BO RABO1 BO RABO3

BO RAB02
MUL 8 060 MUL.80 B BO RABO4
DIV 9 061 DIV.00 B BO RABOO

B0 RABO4
ASH 7 062 ASH.00 B BO RABO1

B0 RAB04
ASHC 7 063 ASC.00 B BO RABOO

BO RABO1

B0 RABO4
[ASRB + RORB] * DRO (1) 11 064 SHR.00 B BO RABO2

B0 RABO4
MFP 11 066 MFP.00 B B0 RABO1

BO RABO2

BO RAB04
NEG 11 067 NEG.00 Multiplexer disabled,

output all 1s.

Note: All Signals on IRCB.
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When the multiplexer is disabled for a NEG instruc-
tion. the outputs are all Is: this generates address
67. For all other addresses, the inputs are selected
by a signal that is generated for the MUL, DIV,
ASH, ASHC, ASRB, RORB, and MFP instruc-
tions. When this signal is asserted, the B inputs of
the multiplexer are used; RABO4 is forced to a
logic | by a 0V input. Conversely, the A inputs are
used for F/class, J/class, K/class, and most P/class
instructions; RABO4 is forced to a 0 by a +3 V in-
put. The instructions that use the A inputs of the
multiplexer also assert IRCB BO RABO3 L. IRCB
BO RAB(02:00) L are generated by connecting the
instruction group signals to the multiplexer inputs
in the order required for each signal.

1.5 CONDITION CODES

The four least-significant bits of the PS word con-
tain the processor condition codes. These bits store
information about the value resulting from data ma-
nipulation during an instruction. The condition
codes are not altered to reflect the results of ad-
dress calculations, but are changed only when an in-
struction explicitly operates on a unit of data.

The condition codes can also be set to any specific
vialue by transferring a word containing that value
to the PS address. The value of the condition codes
are altered by every interrupt or trap response func-
tion, and by every RTI or RTT instruction. In addi-
tion, individual condition-code bits may be
manipulated directly, with the condition-code oper-
ate instructions. These instructions provide a means
to set any one, or more, of the condition codes
with a single instruction that requires only one
memory reference; a similar set of instructions can
clear any one or more bits. The condition codes are
used in conditional branch instructions, so the vari-
ous means of manipulating the condition codes are
uscful because they permit setting up the PS word
to respond in a particular way to various branch
instructions.

1.5.1 Condition Code Storage

Refer to drawing IRCH. The circuits shown on the
top half of this drawing are used to store the pro-
cessor condition codes; the remainder of the draw-
ing shows circuits concerned with the subsidiary
ROMs used in condition-code calculation, instruc-
tion decoding, and Arithmetic and Logic Unit
(ALU) control.

The four condition-code bits, N, Z, V, and C, are
stored in the four least-significant bits of the Pro-
cessor Status (PS) word. The remaining bits of the
PS, and the PS loading and reading logic, are on
the PDR module and are shown on drawing
PDRD. (Refer to Chapter 3, Control Registers.)
The condition codes are normally loaded to reflect
the result of each instruction that operates on data.
When this is done (by clocking the data inputs to
each flip-flop), each bit takes on the value of the
corresponding signal from the condition code gener-
ation logic on drawings IRCE and IRCF. Two Z
bit flip-flops, provided to avoid the delay of a final
stage OR gate before the clock time, are shown on
drawing IRCF.

Clocked Inputs - IRCH CCLK H clocks the condi-
tion-code flip-flops immediately following each
ROM cycle (T6 is the T1 of the following cycle) ex-
cept when the clock is inhibited by a value of 2 in
the Condition Code Load (CCL) bits in the micro-
program. In many cases where the condition codes
are clocked, individual bits may remain unaffected
by loading the bit from itself, through the com-
binational logic that generates the condition codes.

BR Inputs — The condition code flip-flops can be
loaded directly from the BR. This is done whenever
the bus address transmitted by the processor ad-
dresses the low byte of the Processor Status (PS)
word. UBCB CC DATA (1) H indicates this condi-
tion and is used to gate the BR bits into the direct-
set and direct-clear inputs of the flip-flops. Com-
plements are applied to set and clear inputs, so that
cach flip-flop is correctly set or reset.

IR Inputs - A third method of modifying the condi-
tion codes allows bits to be set or cleared directly
from the CCOP instruction. The four least-signifi-
cant bits of the IR are connected to either the set
or clear inputs of the flip-flops, but not both. The
selection of inputs is done by two enabling signals
that are generated from opposite polarities of IR04.
The same polarity inputs from the IR are used for
cither setting or clearing; only bits which are 1s in
the IR are altered, the remaining bits are not
affected.

When the condition codes are set or cleared from
the IR, the normal clocking of the flip-flops is in-
hibited. When the condition codes are loaded from
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the BR, the loading signal is present beyond the
time when the data inputs are clocked, so the BR
inputs take precedence. Unless one of these two
conditions is true, the normal clocked input is used.

The Z bit is stored in two flip-flops shown on draw-
ing IRCF. The flip-flop outputs are ORed to gener-
ate the value of the condition-code bit. If either
flip-flop contains a 1, the Z bit is considered to be
a 1. Both flip-flops are set or cleared together when
either the BR or IR bits are transferred to the con-
dition codes.

1.5.2 Condition Code Load Field

The Condition Code Load (CCL) field of the ROM
is decoded as shown on drawing IRCF to deter-
mine how the PSW condition-code bits are to be al-
tered. The CCL field is summarized in Table 1-10.

1.5.3 Instruction Dependent Control

ROM and the INSTR DECODE ROM, both

shown on IRCH.

1.5.4 SUBROM Address Generation

IRCH SUBROM(04:00) H is the address, for the
Condition Code Control and Instruction Decode
ROMs; it is also the address for the ALU Control
ROM (refer to Chapter 2). This address is gener-
ated from IRCA IR(15:06), by the two multiplexers

and the OR gate on drawing IRCH.

Fach subsidiary ROM contains 32 8-bit words. The
32 addresses are organized as follows (addresses in

octal):

d.

MARK, MFP, MTP, and SXT.

When CCL = I, the Condition Code loading is in- b.  Addresses 10-17 are used for instruc-
struction dependent, i.e., controlled by the oper- tions with op codes containing 05 in IR
ation code field of the instruction; this control is (14:09). These are the single-operand
implemented by two subsidiary ROMs, CC CNTL instructions.
Table 1-10
Condition Code Load
RACA UCCL
Output Asserted IRCF: Function
02 01 00
0 0 0 CC NON AFF L No change
0 0 1 CC INSDEP H Instruction-dependent. Condition codes determined by
subsidiary CC CNTL ROM.
0 1 0 (IRCH SETCC H)* Set or clear CC; dependent upon IR.
0 1 1 CCFPLOAD L Load CCs from floating-point processor
1 0 0 CCLD4 Z and N: ACC SHFR
Cand V: 0
1 0 1 CCLDS Z and N: ACC SHFR
C: AMXI15
V: Vold + (AMX ¥ ALU)
1 1 0 CCLD6 *N, C, and V: not affected
Z: Z* SHFR =0
1 1 1 CCLD7 Z, N, and V: not affected
C: carry

* Generated on drawing IRCH.
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with op codes containing 06 in IR
(14:09). These include the rotates, shifts,



¢.  Addresses 20-27 are used for binary in-
structions [[R (14:12) contains any value
from 1 to 6].

d.  Addresses 30-37 are used for the register
destination instructions, which have a 7
in IR(14:12). These include multiply and
divide, the long shifts, and XOR.

Instructions included in a. and b. above, have sub-
rom addresses equal to IR(09:06) via the D inputs
to the multiplexers; SUBROMAA4 is low.,

For the register destination instructions, SUB-
ROMA4 is asserted, SUBROMAZJ is driven by a
+3 V input to the multiplexer, and the remaining
three address bits take on the value of IR (11:09)
through the C inputs of the multiplexer. For binary
instructions, the B inputs of the multiplexer are
used: SUBROMAA4 is asserted and SUBROMAZ3 is
clear. This data is summarized in Table 1-11.

The SUB instruction is treated specially, to separate
the ADD and SUB instructions when generating
ROM addresses. Both SUB and ADD would nor-
mally generate ROM -address 26 (the op codes
differ only in bit 15). When the SUB instruction is
decoded, the four least-significant bits of the ROM
address are forced to Os to generate address 20. Ad-
dresses 27, 35, and 36 are not used. For the SWAB
instruction, which is not in any of the four groups
that generate ROM addresses, the contents of the
IR gencrate the same ROM address that is used for
the ASL instruction. The signal IRCH SWAB L is
used to distinguish between the two instructions.
The UALU signals are used to recognize that the
ALU control is instruction-dependent, and that the
outputs of the ALU control ROM on drawing
GRAA are active.

1.5.5 C Bit Data

The C (Carry) bit of the PSW is set when a pro-
cessor operation causes a carry out of the most-sig-
nificant bit. The logic that generates the C bit data
is shown on drawing IRCF. Figure 1-13 is a sim-
plified diagram of the logic that asserts IRCF
CDATA L. Each AND gate input covers a group
of instructions that could cause a carry. The nota-
tion adjacent to each AND gate indicates the condi-
tions or instructions that enable the gate and the
resultant C bit source that asserts IRCF CDATA
L.

Table [-12 lists the instruction-dependent CC
CNTL ROM outputs that control the C bit for
cach group of instructions. IRCE WOB CARRY H
and TRCE LOB CARRY H are derived from a
745153 multiplexer. These C bit inputs are deter-
mined from AMX 00, AMX 07, or AMX 15.

1.5.6 N Bit Data

The N (negative) bit of the PSW is set when a nega-
tive result is produced by a processor operation.
The logic that generates the N bit data is shown on
drawing IRCF. Figure 1-14 is a simplified diagram
of the logic that asserts IRCF NDATA L. Each
AND gate input decodes a particular group of in-
structions or processor operations for which a nega-
tive result might be obtained.

For most of the instructions, the CC CNTL ROM
outputs IRCH MODZN H and IRCH ENZN H
arc asserted. These control outputs condition the
NDATA logic to examine the SHFR output to de-
termine when the N bit should be set. For word or
odd-byte operations, the input A logic tests
SHFRALS, and sets N accordingly. For byte oper-
ations, the input C logic tests SHFRAOQ7. These in-
puts control the N bit for most operations.

Table 1-11
Subsidiary ROM Address Sources
Type of ROM Address Input Subsidiary ROM Address Source
Instruction Multiplexer Selected A4 A3 A2 Al A0
Select
S1 SO

IR(14:09) = 05 or 06 H H D 0 IR09 | IRO8 {IRO7 | IRO6
Register destination H L C 1 1 IR11 |IR10 | IRO9
Binary L H B 1 0 IR14 [IR13 | IRI2
Not used L L A Not Used
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IRCE WOB CARRY H WORD OR ODD BYTE CARRY

IRCE LOB CARRY H LOW BYTE CARRY:C+—AMXO07

C+—CARRY
IRCF CCLD 7 L . IRCF
CDATA L
IRCH CMOD 1 H
IRCC CC INSDEPA H—— GRAA AMX O*ASH L CCLD 7+ROM 100:C+-ALUCN
DAPJ ALUCN L ASH: C+-AMX00
™\ IRCF CEN1 H=ENC#CC INspEpa  IRCH CMODO H ROM D10:Ce— ALUCN
IRCH ENC H Do—m—l—/
GRAD DROO H
IRCH CMODO H ASHC:C— DROO
+5v
™\ IRCF CEN2 H=ENC*CC INSDEPA* -CMOD MUL: CoeX
~DRI5*Z (1)+ (DRIS#BR=-1 SAVE (1) H) ~IRCF X L
encLRCE CCo—BR Hx(PS LOAD+LOAD FCC)
IRCH CMOD1 H—} INSDEPA * MODI DAPA BROO H TOAD PS+ LOAD FCC
IRCF cC NON AFF L CCLD6 + CC NON AFF + ROM101:
IRCF CCLDS L IRCE PS LOAD L NON- AFFECTED
IRCH C (1) H
IRCE LOAD FCC L 1-0793
Figure 1-13 Sources of C Bit Data, Simplified Diagram
IRCF CCLD4 L
IRCF CCLDS5 L
S INPUT A
IRCH MODZN H 4 (WORD+0B SWAP)(CCLD4 +5+ SWAB*MODZN®ENZN)
DAPJ SHFRAI5 H 6 SHFRA 1521:Ne—1
INCH SWAB L
GRAA WORD+0B SWAP H——f \
13 INPUT B

CMP.B SHFR <0: Ne-1

DO-MODZN H
IRCF _NENI H 12

TRCF NDATA L

DAPJ SHFRAO7 H

e b—AA-

INPUT €

SWAB+WORD+OB SWAP
SHFRAO7*1: Ne

1
SWAB +(WORD+0B) SWAP 9

MODZN H

-IRCE PS LOAD H
IRCE LOAD FCC HI)——— 2
IRCF CCLD 67 L IRCH N (N H

IRCF CC NONAFF L 3

GRAA WORD+0B SWAP L.

INPUT D
CCLD67+MUL+DIV:
N NON AFFECTED

IRCH ENZN H
DAPA BRO3 H INPUT €
IRCH CC | \}= LOAD PS+LOAD FCC
INSDEP H
IRCF MUL+DIV NZV EN H IRCE CCe-BRH

IRCH MODZN H IRCF CHECKZ H

IRCF CCLD6 L
1-0794

Figure 1-14 Sources of N Bit Data, Simplified Diagram
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Table 1-12

C Bit Data Sources
CC Control ROM
Instruction IRCF CDATA L
CMOD1 CMODO ENC Source
ROR.B, ASR.B 0 0 0 C < AMXO00 (VMODO0=1)
ROL.B, ASL.B 0 0 0 C <~ AMX08 (WORD)
C < AMXO08 (OB)
ASHC 0 0 1 C < DROO
COM.B, NEG.B, 0 1 0 C <-ALUCN
SBC.B SUB
MUL 0 1 1 C+«-X
CLR.B, ADC.B TST.B 1 0 0 C <« ALUCN
CMP.B, ADD
ASH 1 0 0 C < AMXO00
MFEP, MTP, SXT
INC.B, DEC.B
MOV.B, BIT.B, BIC.B 1 0 1 non-affected
BIS.B, XOR
DIV 1 1 0 C<1
C<+0if-DR15
SWAB C+0
Condition-Code Load Signals
IRCF CCLD4 C<0
IRCF CCLD5 C < AMX15
IRCF CCLD6 non-affected
IRCF CCLD7 C < ALUCN
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The input B logic tests for CMP.B instructions. Un-
der these conditions, if SHFRA15 is 0, the N bit is
set, and if SHFRAI1S is 1, the N bit is cleared. In-
put D covers all cases where the N bit is not af-
fected by the current operation, and is therefore
reloaded with the previous content, IRCH N(1) H.
Input E allows IRCF NDATA L to be asserted by
BRO03 for load PS and load FCC functions. Table
1-13 summarizes the sources of N bit data.

1.5.7 Z Bit Data

The Z (Zero) bit of the PSW is set when the result
of a processor operation is 0. The Z bit data that
controls the condition code is generated by logic on
drawings IRCF and GRAB.

Figure 1-15 is a simplified diagram of the logic that
asserts IRCF ZDATAI L and GRAB ZDATA2 L.

These outputs are clocked into the Z1 and Z2 flip-
flops, whose contents are ORed to provide the Z
bit of the PSW condition code.

ZDATAIL Sources — The input gates that assert
IRCF ZDATAI L cover the special conditions that
control the Z bit, independent of the SHFR out-
puts being equal to 0. For example, during the DIV
instruction execution, MODZN and ENZN are
both low and the Z bit is set. For the special case
of the CMP.B instruction, the logic tests for the
SHRF output = 1 condition to determine the Z bit.
The other input gates that assert IRCF ZDATAI L
test for load PS or load FCC operations and oper-
ations that have no effect on the Z bit. Under the
former conditions, the Z bit is loaded from BRO02
and under the latter conditions, the Z bit is un-
changed [Z(1)H controls ZDATAI1]. These special
conditions are summarized in Table 1-14.

Table 1-13
N Bit Data Sources

CC Control ROM

. IRCF NDATAL
Instruction Source
MODZN ENZN

CMP.B 0 1 N <« 1if-SHFRA15=1
N« 0if SHFRA15=1

DIV 0 0 non-affected

MUL 1 0 non-affected

all other instruction- 1 1 N« 1if SHFRA15=1

dependent codes

(word or odd byte)

N « 1 if SHFRAO7 = 1
(byte)

SWAB N < 1 if SHFRAO8 =1
Condition-Code Load Signal

IRCF CCLD4 N «if SHFR =0

IRCF CCLDS5 N<«if SHFR=0

IRCF CCLD6 non-affected

IRCF CCLD7 non-affected
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IRCH MODZN H%IRCF SET V H
3

IRCF MUL+DIV NZVEN H
IRCF CCLD7 L
IRCF CC NONAFF L
IRCH Z(1) H 4
IRCH LOAD FCC L DAPA BRO2 H
IRCH PS LOAD L 56
IRCE CCe—BR H2
IRCF NEN1 H=CC INSDEPXENZN

DIV:Z+—1

CCLD7: NON AFFECTED

IRCF zDATAL L b _VRCF 7L

LOAD PS+ LOAD FCC 2

IRCF ZINV H= -MODZN CMP.B (SHFR=1) Ze1
DAPJ A=8B(15:8) +BYTE H
DAPF A=B(7:0) H
+5Vv IRCH Z (1) H
DAPJ, H SHFR <15:08> H—| X % IRCE EN HIB H=BYINA»MODZNx*NEN1 z HI BYTE=0
10|
Héx = IRCE EN WORD H=(CCLD4+5)+ 5 ORAB zDATAZ L] oy, IRCH Z2 (1)L
INVERTERS gy (WDIN¥-SWAB* MODZN*NEN1) >_41
% 6 WORD=0 z2
DAPJ, F SHFR <07:00> H— 1
b ’12 CCLD6+MUL® SHFR=0 ams
% IRCH Z (1) H—1 Z+—2 OLD
GRAA 0B SWAP H— IRCF GHECKZ H 13!
) IRCH CC CLK H
Figure 1-15 Sources of Z Bit Data, Simplified Diagram
Table 1-14
Z Bit Data Sources
CC Control ROM
Instruction Z Data Source
MODZN ENZN
CMP.B 0 1 Z < 1if SHFR =1
MUL 1 0 Z < 2(HH if SHFR =0
DIV 0 0 Z<1
SWAB Z < 1 if SHFR <07:00) =0
all other instruction-dependent codes 1 1 Z <« 1if SHFR=0
Condition-Code Load Signals
IRCF CCLD4 Z < 1if SHFR=0
IRCF CCLD5 Z < 1if SHFR=0
IRCF CCLD6 Z < Z(HH if SHFR =0
IRCF CCLD7 non-affected
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ZDATA2 Sources - The logic that generates
GRAB ZDATA?2 L tests the SHFR output for 0.
The open-collector inverters function as 0 detectors
for SHRF(15:08) and SHFR(07:00). The enabling
inputs, IRCE EN HIB H, IRCE EN LOB H, and
IRCE EN WORD H are used to test each byte of
the SHFR separately, or together. The additional
GRAB ZDATA?2 gate tests the SHFR output word
for 0 under CCLD6 or MUL conditions. If the
SHFR output is 0, the previous Z bit condition,
Z(1)H, controls the new Z bit.

1.5.8 V Bit Data

The V (overflow) bit of the PSW is set when a pro-
cessor operation results in an arithmetic overflow,
The logic that generates the V bit data is shown on

drawing IRCE. The V bit is affected by two broad
categories of instructions: arithmetic operations,
and word or byte operations. The results of these
operations and other special cases determine IRCE
VDATA L. To simplify the description, arithmetic
operations and special cases are grouped as VENI
inputs. Word and byte operations are grouped as
VEN2 inputs. Table 1-15 summarizes the V bit data
sources of both groups.

VENI

Figure 1-16 is a simplified diagram of the V bit
data sources that are grouped in the VENI cate-
gory. A 74S153 Dual 4-Line-to-1-Line Multiplexer
is used to select the most-significant BMX bit for
the arithmetic operations that involve the B input.

Table 1-15
V Bit Data Sources
CC Control ROM
Instruction IRCE VDATA L Source*
VMCD1 | VMODO | ENV
VENI
INC.B, ADC.B ’ 0 0 0 V «<-A*ALUIS
DEC.B, SBC.B 0 1 0 V < A*ALUIS
NEG.B, ADD 1 0 0 V < A*B*~ALUIS5 + -A*B*ALUIS
SUB, CMP.B 1 1 0 V<« A*-B*~ALU15 + -A*B*ALUI1S5
VEN2
MFP, MTP, SXT, CLR.B, COM.B, 0 0 1 V<0
TST.B, MOV.B, BIT.B, BIC.B,
BIS.B, MUL, ASH, ASHC, XOR
DIV ] 0 0 1 Vel
ROL.B, ASL.B 1 0 1 V < SHFRAI1S5 ¥ AMX15
ROR.B, ASR.B 1 1 1 V < SHFRA1S ¥ AMX00
Condition-Code Load Signals
IRCF CCLD4 V<0
IRCF CCLD5 (VEN2) V < Vold + (SHFRA1S ¥ AMX15)
IRCF CCLD6 (VEND) non-affected
IRCF CCLD7 (VENI) non-affected

*A = DAPJ AMX SIGN H

B = DAPD BMX15 H (word) or DAPC BMX07 H (byte)

ALU1S5 = DAPJ ALU SIGN H
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IRCF CC INSDEP H IRCE VEN! L
IRCH ENV H

IRCH VMODO H

1 4 VMODO: Ax B #ALU
DAPC BMXO7 H | 1 DAPY AMX SIGN H g VMODO: A B ALU
10
>
IRCH VMOD1 H 3
a 12 UMGDO: A # B w ALU
_— DAPJ ALU SIGN H 1 s VMODO: A w B % ALU
. 5| col? 13]
DAPD BMX15 H
Si__so
YINA |
IRCD BYINA H >—D0—E1Rce VDATA L
FROM VEN2 LOGIC

IRCE CC+—BR H
DAPA BRO1 H

IRCF MUL+DIV NZVEN H

LOAD PS+ LOAD FCC: Ve+—BRO1
DIV: Ve—14

VMOD1[BYTE H|VMODO H| FO 1 IRCF SET V H (= MODZN)
1 |o(worm)| o |-BMX15 | BMX1s IRCH v (1) 1
1 o 1 BMX15 |-BMX15 IRCE LOAD FCC L o
1 |1eve)| o |-swxor| emxo7 IRCE PS LOAD L NON AFFECTED
1| 1 BMXOT | —BMX07 IRCF CC NONAFF L 2
S 5 IRCF CCLODS L
— — ° IRCF CCLD67 L

11-0794

Figure 1-16 VENI1 Sources of V Data Bit, Simplified Diagram

These are NEG.B, ADD, SUB, and CMP.B, as in-
dicated in Table 1-15. For these instruction-depend-
ent codes, the CC CNTL ROM asserts IRCH
VMODI H, which gates the BMX outputs to the
multiplexer inputs, and IRCE VENI L, which en-
ables the multiplexer. IRCD BYINA H selects
BMX15 or BMXO07 as the most-significant bit.
IRCH VMODO H selects the BMX bit or its com-
plement at each output, as shown on the multi-
plexer truth table in Figure 1-16.

The notation on Figure 1-16 indicates the condi-
tions and functions for which each AND gate input
asserts IRCE VDATA L.

For INC.B, ADC.B, DEC.B, and SBC.B instruc-
tion-dependent codes, CC CNTL ROM output
IRCH VMODI H is low. As a result, the BMX
multiplexer outputs are always 0. For these instruc-
tions, B is eliminated from the source function, as
listed in the source column of Table 1-15.

VEN2

Figure 1-17 is a simplified diagram of the V bit
data sources that are grouped in the VEN2 cate-
gory. A 74S153 Dual 4-Line-to-1-Line Multiplexer
selects the most-significant AMX bit for the word,
odd-byte, or byte operations. The multiplexer truth
table is shown on Figure 1-17. The multiplexer is
only enabled by CCLDS, or those instruction-de-
pendent codes for which the CC CNTL ROM as-
serts IRCH VMODI H and IRCH ENV H. As
indicated in Table 1-15, these instructions include
ROL.B., ASL.B, ROR.B, and ASR.B. For these in-
structions, the notation on Figure 1-17 indicates the
conditions and functions for which each AND gate
input asserts IRCE VDATA L.

For the majority of the instructions included in the
VEN2 group of Table 1-15, VMODI is low. As a
result, the AMX multiplexer is not enabled and
none of the AND gate inputs will be enabled be-
cause IRCE VEN L is not asserted. Therefore, pro-
cessing these instructions clears the V bit.
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IRCH-SWAB H

DAPB AMX00 H

AMXO7 % OB SWAP +
AMX15 % -0B SWAP

ODAPC AMXO7

GRAA WORD+0B SWAP L

IRCE VEN2 L

IRCE WOB CARRY H _ 2
3 i }— WOB CARRY Hx» SHFRA1S

{WORD+0B SWAP)

IRCF
CCLD5 L

o
FN

" i DAPJ SHFRA15 H —& (CCLD5 +VEN2)
GRAA WORD + * SHFRAIS
= 0B SWAP H
10 IRCF CCLD5 L ) IRCE
|3 ] IRCE VEN2 L OATAL
" FROM VEN!
LOGIC

GRAA WORD +

; 0B SWAP L S
Fo (WORD + OB SWAP)
o DAPJ SHFRAOT H (CCLDS +VEN2)
1 * SHFRAO?

‘_:

ofjuo
2

)

IRCF CCLDS L 9 ! }— LOB CARRY = SHFRAO7

IRCH VMODO H IRCE LOB CARRY H
WORD OR
0oDD BYTE VMoDOo IRCE IRCE
SWAP #»CCLD5 | LOB CARRY WOB CARRY
YES NO 0 AMXO07 (ODD BYTE)
AMX15 (WORD)
YES YES 0 AMX00
NO NO AMXO7 0
NO YES AMX00 0

1-0792

Figure 1-17 VEN2 Sources of V Data Bit, Simplified Diagram
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This chapter describes the Data Paths of the KB11-
C Processor. The Data Paths consist of the logical
clements that execute the data manipulations re-
quired by the Control section. The inputs to and
the outputs from the Data Paths, as well as the
Data Paths themselves, are described in this
chapter.

All the elements of the Data Paths logic are con-
trolled by the microprogram ROM; a separate field
of the ROM output word controls each of these ele-
ments. These fields, the values that they can as-
sume, and the function executed by the logic unit,
are listed on the block diagram, Figure 2-1.

The Arithmetic and Logic Unit (ALU), performs
most of the arithmetic and all of the logic (AND,
OR. EXCLUSIVE-OR) functions required by the
instruction set (Paragraph 2.1.1).

The ALU is the input to the Program Counter (PC)
and to the Shifter (SHFR). The PC (Paragraph
2.1.3) consists of two registers (PCA and PCB) and
is used both to keep track of the next program in-
struction and as an auxiliary register during data
manipulation. The SHFR is the input to the Gen-
cral Registers (GR) and to the Bus Register. The
SHER transfers data from the ALU or from the
PCB. The ALU data may be either unchanged,
shifted one bit to the right, or byte-swapped (Para-
graph 2.1.2).

The General Registers consist of two identical cop-
ies of 16 registers (00-174): one copy consists of the
General Source (GS) registers, the other consists of
the General Destination (GD) registers. Both of
HEese™ COPIES e WHTIEH ot "tHe SUE fime afd arée
identical (Paragraph 2.1.4).
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CHAPTER 2
DATA PATHS

The Source Register and Destination Register multi-
plexers (SRMX and DRMX, Paragraph 2.1.5) trans-
mit data from the GRs (including the PC or GR7)
to the Source Register (SR) and to the Destination
Register (DR).

The SR and DR (Paragraphs 2.1.6 and 2.1.7), as
their name implies, are used for source and destina-
tion address and operand storage. In addition to
this function, they are used as storage during cer-
tain instructions, such as MPY, DIV, ASH and
ASHC. The SR cannot change data, but the DR
can shift either right or left.

The Shift Counter (SC) is used only for instructions
that require multiple shifting: MPY, DIV, ASH
and ASHC. A value is loaded into the SC, which
counts to zero: at this time the instruction is com-
pleted. The DR is the input to the SC (Paragraph
2.1.8).

The logic elements described above, plus the BR,
and the Constant Multiplexers (KOMX and
K1MX) are the inputs to the ALU, via two multi-
plexers (AMX and BMX). These two multiplexers
correspond to the A and B inputs of the ALU.
AMX. BMX, KOMX and KIMX are described in
Puragraph 2.1.9.

The Bus Register Multiplexer (BRMX, Paragraph
2.2.1) receives data from all inputs to the Data
Paths and selects one for storage in the Bus Regis-
ters (BR and BRA, Paragraph 2.2.3) and, during an
instruction fetch, into the Instruction Registers (IR
and AFIR, Paragraph 2.2.4).

The inputs to the BRMX are the Cache, the
SHER the Unibuy via the Bus Buffér Régister, and
the Internal Data Bus (INTD, Paragraph 2.2.2).
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Figure 2-1 Block Diagram
Data Paths
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The outputs of the processor Data Paths select and
supply address, data and display information:

1. The Bus Address Multiplexer (BAMX,
Paragraph 2.3.1) selects the virtual ad-
dress for transmission to Memory Man-
agement from either the DR, the SR, or
the PC.

2. The (Unibus) Data Multiplexer (DMX,
Paragraph 2.3.2) selects the source of
data to the Unibus from the BR or from
the Control Registers (Chapter 3).

3. The BRA supplies data directly to the
Cache, the Memory Management regis-
ters, the Floating Point Processor and
the Control Registers (Paragraph 2.3.3).

4.  The Display Multiplexer is controlled by
the Data Display selection switch on the
Console and selects the source of the
Console data display from the SHFR,
the FPP and CPU ROM Address Regis-
ters, the Light Register or the BR (Para-
graph 2.3.4).

2.1 DATA MANIPULATION

Data manipulation is done mainly by the logic ele-
ments, shown in the top-half of the Data Paths
Block Diagram, Figure 2-1.

The ALU is the most complex of these elements
and is the only one that can combine two operands.
It is the first one described. Its outputs are input to
the PC or to the SHFR, from where they may be
routed to the General Registers, to the SRs and
DRs and back to the ALU via the A and B
multiplexers.

2.1.1 Arithmetic and Logic Unit (ALU)

The primary data processing element in the KBI11-
C (the only element that can combine two operands
to form a result) is the Arithmetic and Logic Unit
(ALU). The ALU can perform a variety of arith-
metic operations on two variables (such as addition
or subtraction) and can perform a variety of logical
operations on one or two variables, such as com-
plementing or ANDing. The specific operation per-

formed at any time is selected by the processor

control on the basis of the microprogram word and

the current instruction. The manipulated operands
are selected by two multiplexers, one for each of
the ALU inputs. The operands can be the contents
of the SR, the DR, the BR, the PCB, or one of sev-
eral numbers generated by the constant
multiplexers.

The output of the ALU is gated either into PCA or
into the SHFR, from which it can then be routed
to any of the General Registers, or to the SR, the
DR, or the BR (and the IR, although this path is
not used). All of these destinations for manipulated
data are internal to the processor; when data is
transferred out of the processor, it must go through
the BRA. When the ALU outputs are routed to the
PC, the signal paths do not pass through the
SHFR; this means that when shift or byte-swap op-
erations are attempted with register 7 as the destina-
tion, the data that enters the PCA is unchanged.
For example, an ASR PC instruction does not shift
the PC but does set the condition code as would an
ASR.

2.1.1.1 Description of ALU - Refer to drawings
DAPF and DAPH. The ALU does most of the
data manipulation in the processor. It operates on
two 16-bit words of data and a carry input to pro-
duce one 16-bit word of data and a carry output.
When the M input is high, the ALU operates in the
logical mode; when this signal is low, the ALU op-
erates in arithmetic mode. The carry signals are not
active when the ALU is operating in the logical
mode. Drawing DAPF shows the low byte and
DAPH shows the high byte of the ALU.

The 16-bit ALU is implemented with four 74S181
4-bit Arithmetic Logic Units. Each 74S181 includes
look-ahead carry generation for the four bits. A sec-
ond level of look-ahead carry generation is pro-
vided by the 74182-1 Carry Generator. The carry-
propagate (P) and carry-generate (G) outputs of
each 74S181 (except the most-significant four bits)
are connected to the corresponding inputs of the
74182-1, and the carry outputs of the 74182-1 are
connected to the appropriate carry inputs of the
ALUs. The least-significant bit carry input is con-
trolled by GRAA ALUC H, based on the output
of the subsidiary instruction-dependent ALU con-
trol ROM.
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The ALU can perform any one of 16 logical func-
tions (cach output bit is dependent only on the cor-
responding input bits) or any one of 16 arithmetic
functions (ecach output is dependent on the corre-
sponding input bits and on a carry propagated
from less-significant bits). The selection of a particu-
lar function is controlled by five signals from the
GRA module which select the mode (arithmetic or
logical) and the function. The KB11-C uses only
ten of the possible 74S181 functions. These ten func-
tions are listed at the bottom of drawing DAPF.

The low order byte of the ALU is controlled by the
SO - S3 inputs (DAPF LSO H - DAPF LS3 H) and
the M input (DAPF LM H). The high order byte is
similarly controlled by DAPH HSO H - DAPH
HS3 H and DAPH HM H. All of these signals are
derived from GRAA ALUSO L - GRAA ALUS3 L
and GRAA ALUM L.

In addition to the data and carry outputs, each
ALU c¢lement has a comparator output, which in-
dicates (if the ALU is in subtract mode) that the
two inputs are equal. These outputs, which are
open-collectors, are wire-ANDed for each data byte
to gencerate equality signals that are used in forming
the condition codes.

DAPF A = B(7:0) H indicates that the inputs to
the low data byte are equal.

DAPEF A = B(15:0) L indicates that the inputs to
the entire word are equal. DAPH BUS A = B(15:8)
H is the wired-AND of the A = B outputs for the
high-byte ALUs on drawing DAPH.

FFour signals that are used in the generation of the
Condition Codes are derived from the ALU:

I.  DAPJ AMX SIGN H is the sign of the
A input to the ALU. This signal corre-
sponds to AMXI15 if the processor is op-
erating on word data, or to AMXO07 if
the processor is operating on byte data.

2. DAPJ ALU SIGN H is the sign of the
ALU output; it is taken from ALUIS
for word data or from ALUO7 for byte
data.

3. DAPJ A = B(15:8) + BYTE H indicates
either that the high data byte is all Os or
that the processor is operating on byte
data. This signal is used in determining
whether all the active data is Os for the
Z condition code.

4. DAPJ ALUCN L is the carry output of
the active portion of the ALU; it takes
the carry output from the high byte for
word data or the carry output from the
low byte for byte data. This signal is
used to generate the Carry (C) condition
code.

2.1.1.2 ALU Control - During each machine cycle,
the ALU performs the function that is specified by
the ROM ALU control bits [RACC UALU(2:0)
H]. The signals that actually control the ALU (and
also the SHFR) operations are shown on schematic
GRAA.

If the UALU bits equal 0 - 6, the control signals are
independent of instructions being executed. If these
bits equal 7, the control signals depend on the
instruction code. In this last case (instruction depend-
ent), the notation “SALU” appears on the Flow
Diagrams.

The ALU control signals generated on the GRA
module are:

GRAA ALUS(3:0) L (ALU SO - S3 control)

GRAA ALUM L (ALU mode control)

GRAA ALUCH (Carry in)

GRAA ALU INSDEP L controls the two 74S158
multipiexers that select the source of these ALU
control signals. GRAA ALU INSDEP L is low
when the UALU bits equal 7 (A inputs), and high
when the UALU bits equal 0 — 6 (B inputs).

Non-Instruction Dependent Control

The ALU control field in the main microprogram
ROM is a 3-bit field that controls the values of six
control signals. There is not-a one-to-one relation-
ship between the ROM bits and the control signals,
and not all possible combinations of control signals
can be generated. Each control signal is the result
of decoding the ROM bits.
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RACC UALUO and UALU2 are inverted by the
multiplexer and generate GRAA ALUS3 and
ALUS2, respectively. If UALU = 1 or 6, the out-
put of the 74564 at the lower-left of GRAA goes
high and GRAA ALUSI goes low; for other values
of UALU, ALUSI is high. If UALU = 3, the B0
input to the multiplexer is high and ALUSO is low.

The M bit is asserted when UALU = 0 or I;
GRAA MODE H goes high and ALUM L goes
low. The carry bit is generated when UALU = 6
by GRAA CIN L, which goes low and causes
GRAA ALUC H to go high.

These control signals are all inverted on DAPF and
DAPH and input to the ALU. Table 2-1 shows the
operation performed by the ALU for each value of
the UALU field, and the state of the control signals
at the 74S181.

Instruction-Dependent Control

When the ALU control signals are instruction-de-
pendent, each of the six signals is controlled by a
separate output signal from the subsidiary ALU
control ROM, shown on drawing GRAA. The
ROM inputs [IRCH SUBROMA(4:0) H] are de-
scribed in Chapter 1, Paragraph 1.5.

When UALU = 7, the multiplexer SO inputs are
low and the A inputs are selected. Two of the ALU
select signals, GRAA ALUSO and ALUSI, take on
the value of the ROM outputs. The other two,

GRAA ALUS2 and ALUSS3, are forced high when
the SWAB instruction is being executed. The
SWAB instruction does not have a unique ROM
word, and uses the same word as the ASL instruc-
tion with some of the control signals modified in
this manner. Refer to the ALU Control ROM
Map, shown on drawing GRAK.

The ALUM (mode control) signal is taken directly
from the ROM, except when the SXT instruction is
executed with a negative operand [IRCH N(I) H is
high] or when both GRAA ROMM and ROMC
are high (GRAA CDEP L).

In the case of SXT and a positive operand [IRCH
N(1) H low], GRAA ROMM is high, ROMC is
low: this forces GRAA ALUM low, DAPF LM
and DAPH HM high, which puts the ALU in the
logic mode. DAPF LSO - LS3 (and DAPH HSO -
HS3) are respectively L, L, H, H and the ALU out-
put is O (refer to the ALU table on DAPF). In the
case of a negative operand [IRCH N(1) H high],
GRAA ALUM is high, which puts the ALU in the
arithmetic mode. All other control signals being un-
changed, the ALU output is a 2’s complement
minus 1 (all 1s).

GRAA ROMM and ROMC are both high for the
ROL, ROLB, ADC, ADCB, SBC and SBCB in-
structions. In this case, GRAA CDEP L is low and
the ALU is put in the arithmetic mode instead of in
the logic mode.

Table 2-1
Non-Instruction-Dependent ALU Control Signals
UALU Operation Control Signals
DAPF or DAPH Negation of
LS3H | LS2H | LSIH | LSOH | LMH GRAA ALUCH
HS3H | HS2H | HS1H | HSOH | HMH
0 not A L L L L H
1 B H L H L H
2 A (plus carry) L L L L L
3 A plus B (plus carry) H L L H L L
4 not used
5 A plus A (plus carry) H H L L L L
6 A-B L H H L L H
7 instruction-dependent Instruction Dependent
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The ALU C (Carry-in) signal is modified for two
classes of instructions. The DIV and ASHC instruc-
tions operate on 2-word operands, and the instruc-
tion-dependent state is one that shifts the two
words left. The carry-in must take on the state of
the most-significant bit of the less-significant word.
For the ADC on ROL instructions, a carry insert
signal is generated if the C bit is set; for the SBC in-
struction, the signal is generated if the C bit is
cleared. This data-dependent carry generation is
controlled by the assertion of both ROMM and
ROMC.

GRAA SGNEX MOVB is generated when a
MOVB instruction is being executed. This instruc-
tion is used to extend the sign of the byte into the
high byte when the destination is a General
Register.

GRAA WORD + OB SWAP L and H indicate
that the significant SHFR outputs include the high
byte, and the sign of the output is bit 15 (rather
than bit 7).

2.1.2  Shifter (SHFR)

The output of the ALU is input to the program
counter (PCA) and to the SHFR. The inputs to the
SHEFR include, in addition to the ALU, the output
of PCB.

The SHFR can perform right-shift or byte-swap op-
erations on the data, or substitute the contents of
the PC for the ALU outputs. In many cases, where
an instruction is performed for an odd-byte destina-
tion operand, the data manipulation required by
the instruction is completed in the ALU and the
transfer of the result to the odd-byte data lines is
performed in the SHFR, all during one machine
cycle.

In addition to its data manipulation (shifting and
byte swapping) activity, the SHFR is used as a rout-
ing clement. When General Register 7 (the PC) is
transferred to the SR or to the DR, PCB is routed
through the SHFR, to the SRMX or DRMX, then
to the SR or DR.

The output of the SHFR goes to the General Regis-
ters, GS and GD, to the SRMX and DRMX, to
the BRMX and to the display multiplexer - where
it provides the Data Paths display data.
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2.1.2.1 Description of SHFR - The SHFR is a
four-input multiplexer that provides unshifted,
right-shifted and byte-swapped outputs from the
ALU inputs. It accepts PCB as the fourth input.
Left-shift operations are performed in the ALU by
using the A plus A mode. The sum of A added to
A is equivalent to the product 2A, which in turn is
equivalent to shifting A (as a binary number) one
bit to the left.

Bits (00:06) and (08:14) of the SHFR are similar,
and are shown on drawing DAPF and DAPH.

Special operations are required in the SHFR for
the most-significant bit of each byte. The SHFR
logic for data bits 7 and 15 are shown separately on
drawing DAPJ.

BITS 00:06 AND 08:14
Refer to Figure 2-2, which shows a typical SHFR
bit 00:06 or 08:14.

ALU(n+1) D
Auur ¢ e = SHFRn H
745153
PCBn B
ALU (n+8) A
st SO
I NOTE:
SHFRS1 H- n=00:06
0814
SHFRSO H
1-3107

Figure 2-2 Typical SHFR Bit

When a byte swap is required, the A inputs are se-
lected, and ALU(08:14) are switched to the outputs
of SHFR(00:06), and ALU(00:06) to the outputs of
SHFR(08:14). Inputs B switch the PCB to the multi-
plexer outputs. Inputs C transfer ALU(00:06) and
(08:14) to SHFR(00:06) and (08:14) (no shift). A
right shift is executed by using input D, which trans-
fers ALU (n+1) to SHFR n (for example, ALUOS
to SHFRO04).



BITS 07 and 15

Refer to drawing DAPJ. The most significant bit of
the shifter is SHFR 15. The shifter inputs are sim-
ilar to the inputs for other shifter bits when the
byte-swap (A) or unshifted ALU inputs (C) are se-
lected. However, the input used for the right-shift
mode is dependent on the instruction being
executed.

For some shift operations, such as ASR and
ASRB, the sign of the data word is replicated. This
is done by routing ALU1S5 (the most-significant, or
sign, bit) to the right-shift inputs of both DAPJ
SHFR 15 and DAPH SHFR 14, For right rotate
(ROR and RORB) instructions and multiply in-
structions, this procedure is modified by forcing a
second level 2-input 74S157 multiplexer to select
GRAJ SHFR DATA H instead of DAPH PCB 15
H. The signal GRAJ SHFR DATA consists in this
case of the carry (C) bit and the P/class instruction
decode for the rotate instruction. For the multiply
instruction, the input is used to extend the sign of
the result during the calculation and to correct the
sign on the cycle, if necessary. In this last case, it is
high if the instruction is an I/class, and either the
SR is greater than O during an instruction-depend-
ent cycle, or the contents of the SR are negative
(SR 15 1) during a non-instruction dependent cycle.

The shifter logic for data bit 7 must operate the
same as the normal bits for word data, and as the
most-significant bit for byte data. The right-shift in-
put must be able to receive one of three values;
ALUO08 for word data; ALUO7 for byte shifts (if
not a rotate instruction); or the Carry (C) bit for an
RORB instruction. This is accomplished by multi-
plexing the C bit with the PCB input and forcing
the SHFR to accept input B for an RORB instruc-
tion; for any other byte shift, the SHFR is forced
to accept input C, the no shift input, so that
SHFRO7 and SHFRO7 both receive ALUO7.
SHFRA15 and SHFRI5 signals and SHFRAO7 and
SHFRO7 signals are logically identical and appear
only for additional loading capacity.

GRAB Z DATA?2 L detects all Os at the SHFR out-
put. Depending on the operation being performed,
cither the entire word of data or only one byte of
data may be significant. For word data, both
wired-AND circuits must detect all 0s. For normal
byte operations, only the low byte (SHFRO7 -
SHFRO00) must be all 0s. During operations on odd

bytes, or during a SWAB instruction, only the high
byte is tested. A fourth input, enabled by IRCF
CHECKZ H, is used when the final result is two
words, to clear the 0 (Z) bit if the second word
does not contains all Os. If the second word is all
0Os, the Z bit retains the previous value. Thus, only
if both words are all Os will the Z bit be set.

2.1.2.2 Shifter Control - The SHFR is controlled
by DAPF SHFRS0 and SHFRSI1 H, which are in-
verted from GRAA SHFRSO and SHFRS1 L.
These signals, in turn, are generated by the same
subrom that controls the ALU, and they are instruc-
tion-dependent when the ALU control signals are.
Refer to Paragraph 2.1.1.2,

GRAA SHFRSO and SHFRSI, when instruction-
dependent, take on the value of the subrom output,
except in the case of the ASRB, ROROB, NEG
and NEGB instructions if the destination mode is
not 0, and in the case of the SWAB instruction. In
both of these cases, DAPF SHFRSO and SHFRSI
arc forced low by GRAA SWAP L.

2.1.3 Program Counter (PCA and PCB)

The Program Counter (PC) provides the address of
the next instruction to be fetched. The PC is imple-
mented as two 16-bit registers, PCA and PCB.

PCA accepts data only from the ALU; this data is
clocked in at T5 by DAPJ CLKPCA H when the
PCA ROM bit =1. The output of PCA goes only
to PCB, and is the only input to PCB.

PCA is clocked into PCB at T1 by DAPJ CLKPCB
H when the PCB ROM bits =1, 2 or 3: 1 is an un-
conditional load; 2 loads if the source field =7; 3
loads if the destination field =7, unless the instruc-
tion is I /class and the UPWEOO ROM bit is high.

(I/class instructions are those that cause a high out-
put of the ITCH R (I CLASS) output of the instruc-
tion decode subrom. They are listed in the R
(I/CLASS) column of the table on IRCJ).

2.1.4 General Registers

In all instructions that transfer data, each address
reference specifies one of eight General Registers.
The specific register (of the 16 in the KB11-C. Pro-
cessor) used for each reference depends both on the
value of the 3-bit register specification and on the
processor state, as represented by the contents of
the Processor Status (PS) word.
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Two of the eight General Registers that can be spec-
ified in the instruction code are also used by the
KBI11-C as special-purpose registers. If the register
specification has a value of 7, it specifies the Pro-
gram Counter (PC). This always refers to the hard-
ware PC register described in Paragraph 2.1.3. If
the specification has the value 6, it specifies the
hardware Stack Pointer (SP) register.

One of three hardware registers, within the General
Register data storage elements, is selected in this
case, depending on the processor mode: register 6 if
the processor is in Kernel mode, 16 if it is in Super
mode, or 17 if in User mode. If the register specifi-
cation has the value 0 - 5, one of two registers is se-
lected. depending on the register set selection bit
(bit 11 in the PS word).

Figure 2-3 illustrates the General Register selection
in the KB11-C Processor. Figure 2-4 shows the for-
mat of the Processor Status word (PS).

REGISTER
ADDRESS

o ]

1

2 GENERAL REGISTER
- SET O

3 PS<i1>=0

J

}PS<15:14> =00

6 KERNEL SP (R6)

7 SEE NOT 7
% E

-

10

11

12 GENERAL REGISTER
> SET 1

13 PS<i1> =1

14

15 J

16 SUPER SP (R6) }PS<15:14>=01

17 USER SP (Re6) }PS<15:14>=11

NOTE :
Register 7 is the PC,which is stored separately.

11-0963

Figure 2-3 General Register Storage in
GS and GD Storage Elements

15 4 13 12 11 10 8 7 5 4 3 2 1 0
] I NOT USED PRIORITY ly]NlZ]Vlc]

—_—r 11-3098
curment mope+———
PREVIOUS MODE *

ou!
GENERAL REGISTER
T(0,1)

* MODE: 00 =KERNEL
01 2SUPERVISOR
11:USER

Figure 2-4 Processor Status Word

Each of the 16 General Registers is duplicated. The
duplication allows the processor to access more
than one register at a time. Each General Register,
with the exception of register 7, is implemented by
two copies in the two General Register storage
clements.

The General Source (GS) registers include 16 regis-
ters allocated as shown in Figure 2-3. The General
Destination (GD) registers contain 16 registers used
in an identical manner. When data must be written
into a General Register, it is written into both cop
ics to ensure that all attempts to read the data will
read the same value. However, by specifying differ-
ent register addresses to the GS and GD storage ele-
ments, it is possible to read the contents of a
different register from each. This feature is used pri-
marily in reading the contents of the two registers
specified by double-operand instructions.

Whenever the General Registers, as a group, serve
as a data source, the PC (register 7) can be selected
as one of the General Registers. This is accom-
plished by selecting the PCB input to the SHFR,
and allowing the source or destination multiplexer
to select the SHFR input, if register 7 is selected,
and the GS or GD input if any other register is
selected.

Refer to schematics GRAD-GRAH. The General
Registers are implemented in two sets of four
310TA 64-bit random-access memories that are ar-
ranged in sixteen 4-bit words. Each General Regis-
ter is made up of one word from each of four
memories, and the same word selection signals are
sent to all four memories for one copy of the regis-
ters. A different set of selection signals can be sent
to the second copy of the registers while reading,
but not when data is being written.

Data is written when the W input is low. The write
enable signals are GRAC GRWE LOB L for the
low order byte, and GRAC GRWE HIB L for the
high-order byte. The conditions for these signals
are explained in a table on GRAC.
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Individual registers are selected for reading and
writing by GRAC GDA (0:2) H and by GRAC
GSA (0:2) H, all four of which go to the A0 - A2
inputs to the 3101As. The register sets are selected
by GRAC GDREG SETI1 H and GSREG SET1 H,

The multiplexers are disabled when PAD =6; GSA
(0:2) and GDA (0:2) are low in this case.

. . Table 2-2
which go to the A3 inputs to the 3101As. Multiplexer Input Selection
General Register Selection GSAM and GDAM
Source and Destination Address Multiplexer
[GRAC GSA(0:2), GDA(0:2)] - The microprogram PAD GSAM GDAM
selects the sources of the scratch pad addresses. The 0 A A
microprogram includes a 3-bit PAD field that se- 1 A B
lects one of seven sets of sources; the value of 3 in ) C C
the PAD field is not used. Some of the sources are 3 *used
constants, and are generated by +3 V and OV in- 4 y not us yY
puts to the GDAM and GSAM multiplexers; oth-
ers are taken from the IR source and destination 5 B B
. . . . . 6 GS and GD MX disabled
register specifications of the instruction. Table 2-2 7 D )
shows the multiplexer inputs used for each PAD
value. Table 2-3 shows the values of these inputs.
Table 2-3
Multiplexer Input Values
Input Value
Bits 1 and 2 Bit 0

A Source Field [IR(07:08)] If IR06=1, high. If IR06=0, low, unless current mode is User
and the source field =6 or 7.

If PAD=4, same as above, but GRAC PLUS 1 is ORed with
IR06 to force an odd register address. Used only during MUL,
DIV and ASHC.

B Destination Field [IR(01:02)] IF IR00=1, high. If IR00=0, low if the console is not active; or
if the destination field is not =6; or if PS15=0 (Kernel or Super
current mode) and the instruction is other than MFP or MTP
with destination mode 0; or if PS13=0 (Kernel or Super previous
mode) and the instruction is MFP or MTP with destination
mode 0.

C GSA(2:0) and GDA(2:0)=5

D If PS15=0, GSA(2:0) and

GDA(2:0)=6 (Register 6, Kernel
or Super)

If PS15=1, GSA(2:0) and
GDA(2:0)=7 (Register 6, User)
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General Register Set Selection (GRAC GDREG
SET | and GSREG SET 1) - The most-significant
bit of the scratch pad address selects which General
Register set is used. This selection is, in general,
done by the multiplexer; in several cases, the pro-
cessor forces the selection of General Register Set
1. Note that these multiplexers are always enabled.

Table 2-4 shows the multiplexer inputs selected for
each PAD value.

Table 2-4
Multiplexer Input Selection
GSREG and GDREG SET 1
PAD GSREG SET 1 GDREG SET 1

0 A A
1 A B
2 c C
3 not used
4 A A
5 B B
6 C C
7 D D

GRAB SRC SET 1 L and DST SET 1 L are, re-
spectively, the A and B inputs to both source and
destination multiplexers.

Both gates are asserted (low) when the Console is
not active, PSI1 is asserted, and registers O - 5 are
specified by the source [IR(06:08)] or destination
[IR(00:02)] fields of the current instruction; regis-
ters 0 - 5 are selected if not both IR08 and 07 (for
the source field) or IR02 and 01 (for the destination
field) are asserted.

Set I is also selected when the Console is not ac-
tive, PS14 is asserted (Super or User modes), and
register 6 is specified by the instruction source or
destination fields. This, in conjunction with the
GRAC multiplexer outputs, forms address 16. If
PSI15 is asserted, the A input to GRAC GDAO and
GSAO is forced high, thus generating address 17
(GRAC PLUS 1). If the instruction is an MFP or
an MTP, and UPEWO00 =1 (conditional), and the
destination field =6 or 7, and the mode is User or
Super, and the Console is not active, GRAB DST
SETI L is also asserted.

The C input to the Set 1 multiplexers is PS11,
which defines the register set.

The D input to these multiplexers is PS14(1)L
which, when asserted (low), specifies User or Super
modes.

The output of these multiplexers, when low, causes
the selection of General Register Set 1 through the
GRAC GDREG SETI H and GSREG SET1 H
OR gates.

The two other inputs to the OR gates cause the se-
lection of SET1:

I.  During a Console operation, bit 3 of the
address selects the Register Set and is
clocked into IR03; it is then input to the
OR gates to select the proper set.

N9

In the case of an MFP or MTP instruc-
tion with destination mode 0 and destina-
tion field =6, if UPWEQ0O=1
(conditional) and PSI2=1 (previous
User or Super modes), set 1 is also se-
lected. In an MFP instruction, the
source is always specified in the field nor-
mally designated as destination. The des-
tination is the current mode stack.

2.1.5 Source and Destination Multiplexers (SRMX
and DRMX)

The SRMX and DRMX select the input to the
Source and Destination Registers (SR and DR). Re-
fer to drawing GRAD.

The select inputs to these multiplexers are GRAC
SRMX SEL L and DRMX SEL L, which are con-
trolled by the SRX and DRX ROM bits and by
IRCB SRCF 7 L.

When the SRX and DRX bits =0, the SHFR is se-
lected as the input to the SR and DR. When SRX
and DRX =1, the General Source and Destination
registers (GS and GD) are the SR and DR inputs.
If SRX and DRX =2, the inputs are either the
SHFR, if the Source or Destination fields =7, or
the GS and GD if this is not the case. SRX =3 is
not used; DRX =3 clears the DR at GRAJ
TP(3:5), which is a flip-flop set by T3 and reset by
T5.
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2.1.6 Source Register (SR)

The Source Register (SR) performs two major func-
tions. It is the output buffer for the General Regis-
ters when addressed as the SR in an instruction,
and it provides temporary storage during the source
data-fetch operations.

All output from the GS registers must be trans-
ferred through the SR. When the PC is selected as
1 source register, the data from the PCB is routed
through the SHFR and the SRMX to the SR.
From the SR, data can be routed anywhere in the
processor through the ALU inputs, or the contents
of the SR can be used as an address for external
data transfers through the BAMX. The SR is also
used as a temporary storage register during trans-
fers of data within the processor; e.g., when the old
PC and PS are being stacked during an interrupt or
trap service sequence, the SR holds the vector
address.

The SR is used as a data storage element for inter-
mediate results during instruction execution. The
register and operand group instructions, such as
multiply, divide, and the arithmetic shifts, use the
SR to hold both operands and results.

The outputs of the SRMX are connected directly to
the inputs of the SR and are clocked by T1 if en-
abled by the microprogram bit RACA USRK H.
The outputs of the SR are routed to the ALU input
multiplexers and to the bus address multiplexer. Bit
0 of the SR is also sent to the IRC module for use
in one of the microprogram address generation cir-
cuits, the C Fork, for odd-byte source branches,

The output of the SR is checked for two condi-
tions: SR < 0 and SR = +1, by GRAE SR LEQ
ZERO H and SR EQ ONE L. The two flip-flops
are clocked by the same signal that clocks the SR.
They are both set if GS(01:15) = 0.

GRAE SR LEQ ZERO H is asserted if both flip-
flops are set and GRAD SRO0 H is low (SR=0) or
if GRAH SRI15 L is asserted (SR is negative).

GRAE SR EQ ONE L is asserted if both flip-flops
are set and GRAD SRO0 H is asserted (SR=+1).

2.1.7 Destination Register (DR)

In addition to performing two functions similar to
the major functions of the SR, the Destination Reg-
ister (DR) also operates as a data manipulation ele-
ment; specifically, the DR is used as a left or right
shift register during register and operand instruc-
tions - such as ASH, ASHC, MUL, and DIV.

All output from the GD registers (and from the
PC, when it is selected as a destination register)
must be through the DR. Data from the DR can
be routed anywhere in the processor through the
ALU, or used as an address in external data trans-
fers through the BAMX. To transfer the contents
of either the SR or the DR to an external data stor-
age location, the data must first be transferred from
the SR or DR through the ALU to the BR, and
then from the BR to the Cache, the Unibus, or the
Internal Data Bus.

The DR is used as a control register and to accumu-
late the less-significant part of the result during reg-
ister and operand instructions such as multiply,
divide, or the arithmetic shifts. The DR is also the
source for data to be loaded into the Shift Counter
(SC) register.

Refer to GRAD through GRAH. The DR can be
loaded with a left shift of one bit, a right shift of
one bit, or no shift. The shift inputs are used when
the processor must operate on two words of data at
the same time (for example, during a multiply or di-
vide instruction) and the operation includes shift-
ing. The type of loading is determined by RACA
UDRK(00:01), as shown on GRAD. During a right
shift, DAPF ALUOO is loaded into GRAH DRI5.
During a left shift, DAPJ LEFT DATA is loaded
into GRAD DRO00; DAPJ LEFT DATA is high
when both DAPJ COUTIS5 H (the ALU carry out)
and the instruction is I /class. This input is used dur-
ing the DIV instruction. When no shift is required,
DRMX(00:15) are loaded into DR(00:15).

The DR is cleared when the DRMX control bits
UDRX(00:01)=3.

At Tl, when UDRK(00:01)=3 (load DR),
DRMXO00 is clocked into the GRAB OBD (Odd-
Byte Destination) flip-flop. When set, this flip-flop
indicates that the destination field contains an odd
byte address.
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2.1.8 Shift Counter (SC)

The Shift Counter [GRAJ SC(00:05)] is used to
count the repetitive cycles of data manipulation in
the multiply (MUL), divide (DIV),: arithmetic shift
(ASH), and arithmetic shift combined (ASHC) in-
structions. The SC can be loaded either with the six
less-significant bits of the DR (for ASH or ASHC
instructions) or with a constant, 17(8), (for MUL
or DIV instructions). The SC is controlled by the
RACC USHC(00:01) ROM bits. The outputs of the
SC are used in the Branch Conditions logic on
RACK.

The SC consists of two 74191 counters and associ-
ated logic. They are loaded with the value present
at the D inputs when the LOAD input is low. The
74191 counts on the positive transition of the clock
signal, if the ENABLE input is low. The counter
counts down if the DN input is high, and counts
up if DN is low. The MAX/MIN output goes high
when the outputs are all high (=1111), and the
count direction is up (DN=Ilow), or when the out-
puts are all low (=0000) and the count direction is
down (DN=high). The R/CLK (ripple clock) out-
put goes low when MAX/MIN is high and CLK is
low. The R/CLK from the low order SC clocks the
high order SC. If RACC USHC(01:00)=0, the SC
is inoperative.

If USHC=1, the ENB input is low and one clock
pulse is generated at GRAJ TP(3:5) H.

If USHC=2, the complement of DR(05:00) is
loaded with the sign extended to the two unused
high order bits of the SC.

If USHC=3, the eight bits of the counter are
loaded with 1s. This is used to count to 16(10)
(=17x) during MUL and DIV. In this case, only the
four low order bits [SC(03:00)] are counted.

Refer to Figure 2-5. When 175 is loaded, SCOSL is
low, and the counter is made to count up, since
SCOSL is input to both DN inputs. At the first
clock pulse, SC(00:03) goes to all Os (111140001).
Neither MIN/MAX nor R/CLK are generated at
this time, and SC(04:05) stay high. Each clock pulse
increments the contents of SC(00:03) by 1. When
their value equals 1111, MIN/MAX goes high, and
since SC(04:05) are still high, GRAJ SC=0 L is as-
serted. This occurs on the sixteenth clock pulse.

sC@s

—

e | L L L

11-3108

Figure 2-5 SC Loaded With 00101

Refer to Figure 2-6. When an ASH or ASHC speci-
fies a right shift, bits (0:5) of the instruction word
contain a negative value. This causes a positive
value to be loaded into the SC (SC05=0), and the
counter will count down (GRAJ SC0S5 L = DN are
high). Assume that a 6-bit shift is desired: -6 in
2’s complement, or 11010, is entered into bits (5:0)
of the instruction word and then loaded into the
DR. The I's complement of this value, or 00101, is
the number loaded into SC(05:00). Since the DN in-
put is high, successive clock pulses cause the
counter to count down to 00000. At this time,
MIN/MAX goes high, but since SCO05 is low,
GRAJ SCO L is not asserted. At the next clock
pulse, the sixth, R/CLK is asserted. Since the
counter is still counting down, all five SC bits
change from 00000 to 11111. GRAJ SC05 L and
the DN input both go low, which defines count up.
MIN/MAX stays high, SC04 and SCO5 are high,
causing GRAJ SCO0 L to be asserted, thus ending
the count.
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2.1.9 ALU Inputs

The A multiplexer (AMX) is the “A” input to the
ALU. It can select one of four signals: DR, SR,
PCB, or the Bus Register (BR).

The B multiplexer (BMX) is the “B” input to the
ALU. It can select the SR, the BR or one of two
constant multiplexers, KOMX or K1MX.

General information on these inputs is listed in
Table 2-5.

R/CLK |
. 2.1.9.1 A Multiplexer (AMX) - The A multiplexer
SCOS H e (DAPB AMX00 H - DAPD AMXI15 H) is con-
trolled by RACC UAMX(01:00) and selects one of
1= four registers for input to the A operand of the
SCo4 H ALU. The values of RACC and the registers se-
lected are listed in the table on drawing DAPB.
MIN/ MAX . |
sceaL s | 2.1.9.2 B Multiplexer (BMX) - The B multiplexer
(DAPB BMX00 - DAPD BMXI15 H) selects the B
113109 input to the ALU. It is controlled by RACC
. . UBMX(01:00) H. Table 2-6 shows the outputs of
Figure 2-6 SC Loaded With 17, the BMX for the several values of UBMX.
Table 2-5
ALU Input Multiplexers
Multiplexer Output To Input From Type of Input
AMX A input of ALU source register variable operand
destination register variable operand
bus register variable operand
program counter variable operand
BMX B input of ALU source register variable operand
bus register variable operand
KOMX constants
K1MX constants and sign-extended operands
KOMX BMX 1 fixed constant
2 fixed constant
source constant generated constant
destination constant generated constant
KIMX BMX trap vector generated constant
start vector fixed constant
BR (SOB & MARK) shifted and sign-extended operand
BR (branch) shifted and sign-extended operand
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Table 2-6

BMX Output Selection
BMX RACC UBMX(01:00) H
00 01 10 11
00 KOMXO00 0 SR00 | BROO
01 01 | K1MXo1 01 01
02 02 02 02 02
03 03 03 03 03
04 0 04 04 04
05 0 05 05 05
06 0 06 06 06
07 0 K1MX07 07 07
*08 KOEX K1EX*UKMXO00 08 08
*09 KOEX KI1EX 09 09
*10 KOEX K1EX 10 10
*11 KOEX K1EX*UKMXO00 11 11
*12 KOEX K1EX 12 12
*13 KOEX 'K1EX 13 13
*14 KOEX K1EX 14 14
*15 KOEX K1EX SR15 | BRIS

*Note: If GRAA SGNEX MOVB L is asserted, KOEX H
becomes the output of BMX(15:08) H.

Sign Extension — When RACC UALU(2:0) H = 7
(ALU instruction dependent), and the instruction is
MOVB (IRCB MOVB H is high), GRAA SGNEX
MOVB L is low. This forces the two signals that
control BMX(15:08) high (DAPD BMXS1 HIB L
and BMX S0 HIB L), thus putting DAPD KOEX
H on the high order byte BMX output line. KOEX
takes on the value of BRO7 when the BR is selected
(UBMX=3), or that of SR0O7 when the SR is se-
lected (UBMX =2).

2.1.9.3 Constant Multiplexer 0 (KOMX) - Con-
stant Multiplexer 0 [DAPD KOMX(03:00)] supplies
values required for incrementation of ALU oper-
ands. The KOMX is controlled by RACC
UKMX(01:00) H.

When UKMX=0, a constant of | is generated.
When UKMX =1, a constant of 2 is generated, ex-
cept in the case where FRMJ ADDR INC L
(request by the FPII for an address increment) is
not asserted and TMCE FC H is asserted. FC
(Floating Point Condition) is asserted when the Bus
Condition bits (BSC)=4, signifying that the pro-
cessor is executing a memory operation for the
FPI11.

When UKMX =2, a constant of | is generated if
IRCC SRCCON-I H is asserted. A constant of 2 is
generated if IRCC SRCCON-1 H is asserted. The
conditions for these functions are shown on draw-
ing IRCC and are mutually exclusive. They nor-
mally indicate an auto-increment or auto-decrement
addressing mode for the source register.

When UKMX =3, constants of 1, 2, 4, or 10 may
be generated by IRCD DSTCON-I1 (or 2, 4, or 10)
H. Increments of 4 or 10 are only used for FP11 in-
structions. The conditions for these functions are
shown on drawing IRCD.

DAPD KOEX H is described in Paragraph 2.1.9.2,
B Multiplexer (Sign Extension).

2.1.9.4 Constant Multiplexer 1 (KIMX) - Con-
stant Multiplexer I [DAPE KI1MX(07:01) H and
KTEX H] generates vector addresses and program
counter offsets. The KIMX is controlled by RACC
UKMX(01:00) H.

Table 2-7 shows the output of the BMX for the sev-
cral values of UKMX when the KIMX is selected
(UBMX=1).

When UKMX =0, DAPE SV(07:02) H are selected.
This is the start vector, which is selected in ROM
state 100 (PUP.00 on Flows 12) during the power
up scquence. The address may be selected either in
the range of 000 000 to 000 174(8), or in that of
173 200 to 173 374(8), depending on the jumper for
SVO7. This is due to the logic for DAPE BMX08
and 11 combined with the KIMX circuitry, which
extends the sign to all high order bits except bits 08
and 11.

The trap vector (TV) is used to select a new PC
and PS following a trap operation. The trap vectors
for a variety of internal conditions are defined by
the logic in the lower-left corner of the drawing.
The chart on DAPE defines the specific vector for
cach condition. If none of these conditions is pre-
sent, but the processor is doing a trap operation,
the trap vector is set to 4. This occurs for non-ex-
istent memory references, memory parity errors,
odd address errors, fatal stack violation errors, and
executing the Halt instruction in User or Supervisor
modes of operation. The KIMX constants for
EMT and TRAP instructions are one-half their as-
signed values. This is because they are executed by
the same machine states (Flows 12) that cause the
vector for reserved instructions to be left shifted (so
that vector 4 forms vector 10).
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Table 2-7

BMX Output From KIMX

Bit BMX RACC RACC UKMX(01:00) H

UBMX=1 00 01 0 11
00 0 0 0 0
01 KI1MXO01 0 TVO1 BROO
02 02 SV02 1 02 01
03 03 03 03 02
04 04 04 TVO4 03
05 05 05 TVO05*07 04
06 06 06 TVO6 BROS
07 KIMX07 SVo7 TV05*07 0 BRO06
08 K1EX*UKMXO00 0 0 0 BRO7
09 K1EX SV07 0 0 BRO7
10 K1EX SV07 0 0 BRO7
11 K1EX*UKMX00 0 0 0 BRO7
12 KIEX SV07 0 0 BRO7
13 K1EX SV07 0 0 BRO7
14 K1EX SV07 0 0 BRO7
15 K1EX SV07 0 0 BRO7

The third input to KIMX, BR(07:00)H, is used for
the offset in SUBTRACT 1| AND BRANCH
(SOB), and MARK instructions. This offset is al-
ways.in full words and is always a positive quantity
that is subtracted from the PC in the ALU. Be-
cause all PDP-11 Systems use byte addresses, the
offset, as it appears in the instruction, must be mul-
tiplied by 2 to generate the proper value to be sub-
tracted from the PC. This is done by shifting the 6-
bit offset 1 bit to the left. For example, BROO is the
input to the multiplexer for bit 01. The BR is used
because it contains the same value as the Instruc-
tion Register (IR) at the time of the PC modifica-
tion, and is directly-accessible to the data path
logic.

The fourth input to KIMX is used for the offset in
successful branch instructions. The branch offset
can be either positive or negative; the value taken
from the instruction is first multiplied by 2 (shifted
left) and then sign-extended, and the resulting 16-
.bit number is added to the PC. The branch offset
can have values from +127,, to -128;, words; BR
(07:00) provide the offset and the left shift provides
word (rather than byte) addresses.

2.2 INPUTS TO PROCESSOR DATA PATHS
The Processor Data Paths receive data through the
Bus Register Multiplexer (BRMX) from the Cache
Memory, the Console (Switch Register), the Mem-
ory Management registers, the optional Floating
Point Processor and the Unibus. The Unibus input
is buffered by PDRJ D(15:00) H, the Bus Buffer
Register, which is clocked at every TIGD T3 L.

The BRMX also has an input for internal data
from the SHFR. The most generally used path
from the SHFR to the ALU is through the BRMX
and the BR.

The BRMX is the input to the two Bus Registers
(BR and BRA) and to the two Instruction Registers
(IR and AFIR).

2.2.1 Bus Register Multiplexer (BRMX)

All data input to the processor is routed through
PDRA BRMX(15:00) H; in addition to the external
data from the Unibus, the BRMX also accepts in-
puts from the Cache Memory, the SHFR, and the
Internal Data Bus.
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The four inputs to the BRMX are:

1.  PDRJ D(15:00) H (Bus Buffer Regis-
ter clocked each T3 from the Unibus
lines);

2. PDRA INT D(15:00) H (Internal Data
Bus)

3. DTML CDM(15:00) H (Cache Memory
data)

4.  DAPF-DAPJ SHFR(15:00) H (Shifter
output).

Refer to Figure 2-7. These signals are selected by
PDRA BRMX S(1:0) H. The SHFR is selected
when RACA UBRX H is low, making S1 and SO
both high.

The other three inputs can only be selected when
UBRX is high.

The Cache is selected when TMCF SEL MEM L is
low; the address is a Cache address, an interrupt
pause is not in progress, and the Internal Data Bus
is not selected.

The Internal Data Bus is selected if TMCF SEL
INT L is low. One of three conditions may cause
this: an internal register is being addressed, or the
IBS00 ROM bit is asserted (read Switch Register or
read PS), or the BCT(02:00) ROM bits = 1 (read
Floating Point data).

The Unibus is selected when UBRX, TMCF SEL
MEM L, and TMCF SEL INT L are all high.

The BRMX is the input to both Bus Registers (BR
and BRA) and to both Instruction Registers (IR
and AFIR).

2.2.2 Internal Data Bus (INTD)

The Internal Data Bus [PDRA INT D(15:00) H] is
a wired-OR bus that transmits the following data
to the BRMX:

1. Switch Register (from Console)

2. Memory Management Registers (MMR3
to MMRO and APR, which is a multi-
plexer that can select either a PAR or a

PDR)

3. System ID and System Size Registers

s1 |sd |BRMX OUT
L | L | uniBus
L |H INT D .-
H |L | cacHE PORA
H |H SHFR
' SHFR D
TMCF SEL . c
SCCD INT REG (1) L INT L CACHE—]
INT D—|B
BCTEQ "7 UNIBUS — ASQ’ .
BCTON L— TMCF FP
[ READ L
BCTO2 L PDRA BRMX S@ H
RACA UBRX H
PDRA BRMX St H
SAPN NOT CACHE ADR H—CD
TMCF SEL MEM L
BSDOY H—‘: [:
BSDOI L b L TMCE INTR PAUSE L
1-3110

Figure 2-7 BRMX Selection, Simplified Schematic
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4. Processor Error Register (TMCD
TRAPS TO 4)

5. Processor Status Word (PS)

6. Floating Point Processor Data [FXPD

DOMX(15:00)].

Figure 2-8 is a block diagram of the Internal Data
Bus. The data put on the bus is a function of the
IBS (Internal Bus) and BCT (Bus Control) ROM
bits. Refer to schematic TMCF. TMCF GET OFF
H is asserted when the IBS field equals 1 (Read
Switches), 2 (Load PS) or 3 (Read PS), or when the
BCT ficld equals 1 (Read Floating Point Processor
Data). TMCF GET OFF H is inverted on SSRJ
and becomes SSRJ GET OFF L.

When BCT=1, data from the FP11 is enabled onto
the bus and all the Memory Management inputs
are disabled by TMCF GET OFF.

When IBS=1, 2 or 3, the Memory Management in-
puts are also disabled. IBS=1 selects the Switch
Register. IBS=3 selects the PS.

When IBS=0 and BCT is not equal to 1, the Mem-
ory Management inputs are enabled. The selection
of the register that is to be put on the INT D bus is
made by register address decoding in Memory Man-
agement. Four schematic drawings (SSRJ, SCCH,
SCCM and SCCN) show the Memory Management
inputs to the Internal Bus. These inputs are:

MMRO - MMR3

APR (PAR/PDR multiplexer)
System Size and 1D registers
TMCD traps to 4 error register
Switch Register

SR -

One of these inputs is put on the Internal Bus if
SSRJ GET OFF L is high, and if the operation is a
read (SSRJ C1 B L not asserted).

- - ——— ——— o
TMCF 1 | woon I
I | SWITCH REG__'i
MX
I I SGOL MUR3 —af———————— '
I 1BS=1 READ SW l 4 I
I ADDRESS Decooz_ﬂ—} |
I l_ BUS INT O
| | S B TEE
T — — — —
l | SSRJ —|
I SAPM APR I
| SSRH MMRz_.l—_ o
SSRI MMR1
I I oo E— |
ADDRESS DECODE _.I_} |
RACC 1BS I _ ~
<01:00> » — _
| INT D '
C15:00> H
| —_——— ———
SCCN l
I T™MC =L SCCM | | UNIBUS —] s
I TRAPS TO 4 I us '
RACC BCT I SYS ID<00:07> I ohene
€02:00> l S l_ _l
I I SYS SIZE HI
| I SYS SIZE <O7-00> l
188 ADDRESS}+ SYS ID <15:08) |
| s ol LT |
I PDRD —I
I I PS<15:00> (W H BUS INT D
| | A
I “35-—-'——-“35=3 I
M
| BCT=1 FP READ I

Irxpo T T Bos m? g_
© FXPD DOMX |} <15:00 '
l <15:00> l

Figure 2-8 Internal Data Bus Block Diagram
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Address decode determines which one of the inputs
goes onto the bus.

2.2.2.1 SSRJ Multiplexer - The inputs to the mul-
tiplexer on SSRJ are MMRO, MMRI1, MMR2 and
the APR multiplexer (PAR or PDR). This multi-
plexer is enabled when SCCC INT REG B H is as-
serted and SCCC MMR3 is cleared in addition to
GET OFF and CI.

Input select signals are SCCC MMR REG (1) H
(MMRO, 1, 2), SSRH VA(02:01) L (virtual address
bits 02:01) and SCCD APR REG L. VA(02:01) de-
fine which MMR is being addressed.

2.2.2.2 SCCH Bus Output - The Switch Register
[SCCJ SWR(15:00) H] is transmitted from the Con-
sole to Connector J2 on SCCJ. It is multiplexed
with MMR3 to make up the second Memory Man-
agement input to the Internal Data Bus.

Since MMR3 consists of only five bits (00, 01, 02,
04 and 05), only these bits need be multiplexed.

The MMR3 input is selected when SCCC READ
MMR3 L is asserted.

The Switch Register is selected by SCCC SW REG
(0) H when the reference is an explicit one and by
TMCF READ SW L if the reference is implicit.
This last signal is asserted when the ROM IBS field
is equal to 1.

2.2.2.3 SCCM Multiplexer — The Multiplexer on
SCCM transmits the following data on BUS
INTD(07:00) L:

1. The System ID Register, bits (07:00),

2. The CPU Error Register (refer to Chap-
ter 3), which consists of TMCD ILL
HALT H, ODD ADRS H, CACHE
NXM H, UBUS TIMEOUT H, YEL
TRAP H and SL RED ERR H, and

3. The two System Size Register low-order
bytes.

The Multiplexer is enabled by SCCD INTD REG
L. Address decode signals select the output signal
and, in conjunction with SCCC C1 B L and SSRJ
GET OFF L, enable the output drivers.

2.2.2.4 SCCN Multiplexer — The high-order bytes
of the System ID Register [SCCN SYS ID(15:08)
H] and the System Size Register are gated onto the
Internal Bus on SCCN by their respective address
decode signals and by GET OFF and the negation
of CI.

2.2.3 Bus Registers (BR and BRA)
The Bus register consists of two slightly different
registers, the BR and the BRA.

The BRMX is the input to both BR and BRA.
This last register, however, also accepts the parity
bits from Cache Memory (DTML HI BYTE PAR
H and LO BYTE PAR H). These bits appear on
the BRA outputs as PDRB HI PAR H and LO
PAR H and are used only to generate PDRH IND
HI PAR H and IND LO PAR H, which transmit
byte parity information to the Console indicators.

The BR outputs are designated DAPA BR(15:00)
H and DAPA BR14 L. The high outputs are the in-
puts to the AMX, the BMX and the KIMX.
DAPA BRI14 L is an input to RACK BRCAB 05
L. -

The BRA outputs are called PDRB BR(15:00) A
H. They are also inverted as PDRB BR(15:00) B L.
They are the inputs to the Control Registers (LR,
PS, PIRQ, SL, PB), the DMX, the Display Multi-
plexer, Cache Memory, Memory Management and
the FPP.

The BR and the BRA are clocked by TIGA CLK
BR H and CLK BRA H, during the 15 ns of the
duration of TIGC TPB L, when RACA UBRK H
(load BR) is high and TIGA GATE BR (1) L is
low. This last flip-flop is set at the rising edge of
TPB L when the output of the OR gate is high.
This always occurs at T1 (refer to Chapter 4).

2.2.4 Instruction Registers (IR and AFIR)

When an instruction is fetched from an external
data storage location, the data word enters the pro-
cessor through the Bus Register Multiplexer
(BRMX), and is loaded into the BR. To retain the
instruction word for decoding during the execution
of the instruction, while releasing the BR for other
data transfers that may be required during the exe-
cution of the instruction, the outputs of the BRMX
are simultaneously loaded into the instruction regis-
ter [IRCA IR(15:00)] and into the A Fork Instruc-
tion Register [RACJ AFIR(15:00)].
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The IR and AFIR are clocked only during data
transfers that fetch instructions. The BR is clocked
during every external data transfer that brings data
into the processor. Both IR and AFIR are clocked
by TIGC T1 or TIB if RACA UIRK H is asserted
(Load IR).

The IR is used for decoding circuits which operate
the subsidiary ROMs, the program ROM B and C
Forks, and a variety of instruction class selectors.
The instruction decoding logic is shown on the con-
trol section block diagram, Chapter 1. The AFIR is
used only by the program ROM A Fork.

2.3 PROCESSOR DATA PATHS OUTPUTS
The output of the Data Paths is routed through
one of four logic units:

a.  The Bus Address Multiplexer (BAMX)
selects the source of the Unibus address

b. The Display Multiplexer selects the
source of the console data display

c.  The Data Multiplexer selects the source
of Unibus data

d.  The Bus Register (BRA) supplies data
directly to the Cache Memory, the Mem-
ory Management registers and the op-
tional Floating Point Processor.

2.3.1 Bus Address Multiplexer (BAMX)

The Bus Address Multiplexer (DAPB BAMX00 H
to DAPD BAMXI1S5 H) accepts as inputs the DR,
PCB and SR registers, as well as an input, used for
maintenance purposes only, from the FPI1 Float-
ing Point Processor. Its output is the program vir-
tual address, which is the input to Memory
Management, which in turn generates the physical
address for the Cache and the Unibus,

The BAMX output is selected by RACB
UBAX(01:00), as shown on the table on drawing
DAPB.

2.3.2 Unibus Data Multiplexer (DMX)

Refer to drawing PDRE. The Processor data out-
put to the Unibus is BUS D(15:00) L, which con-
sists of DEC 8881 bus drivers. The input to these
drivers are the Data Multiplexer (DMX), and
UBCA CPBSY B H, which gates the DMX outputs
onto the Unibus. CPBSY generates BUS BBSY L
during a Unibus transaction (refer to Chapter 5).

The inputs to the DMX (data outputs to the
Unibus) are:

a.  The Bus Register (BRA), which is used
as the data output of the processor to
Unibus devices. BRA is always selected
during a processor DATO.

b. The Control Registers: PS (Processor
Status word), SL (Stack Limit), PIR and
PIA (Program Interrupt), PB (Program
Break). When explicitly addressed (by
Unibus address), these registers are read
by the program from the Unibus during
a processor DATI.

¢.  During any DATI other than those dur-
ing which the processor reads the Con-
trol Registers, the output of the DMX is
0. This is because the data is coming
from a Unibus device and the processor
data lines must not be asserted.

The high order byte of the DMX corresponds to
BUS D(15:08) and is enabled by TMCD HI BYTE
EN H: the low order byte corresponds to BUS
D(07:00) and is enabled by TMCD LO BYTE EN
H. When these signals are not asserted, the corre-
sponding outputs of the DMX are not asserted
(low). In the case of the Control Registers (PS, SL,
PIR and PIA, PB), one or the other, or both, of
these signals are asserted when an internal address
is decoded (SCCE INTERNAL ADRS H) by Mem-
ory Management and a Unibus transaction has
been started (UBCA MSYN SET H). Both signals
are asserted in the case of the BR (DATO =
TMCD C1 B L).

The sclect signals (TMCD DMX S1 H and SO H)
arc enabled by UBCA MSYN SET H and the nega-
tion of TMCD C1 B L (=DATI). The combination
of select signals for each register is determined by
register address decoding on drawing SCCE. If
nonce of the Control Registers are selected, both se-
leet signals are low and the BR is selected.

During a DATO, both DMX SI H and SO H are
low (C1 L is low) and the BR is selected.

Table 2-8 shows the selection of data outputs to the
Unibus.
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2.3.3 Bus Register A (BRA)

PDRA BR(15:00) A H transmits data to the Cache
Memory write multiplexer CDPE WRITE
MUX(15:00) H, to which the other input is Unibus
data from the Unibus map [MAPA DATA(15:00)
H].

The BR is also the input to the Memory Manage-
ment registers, and the data input to the Floating
Point Processor.

2.3.4 Display Multiplexer

The Display Multiplexer [PDRF DISP(15:00) H] se-
lects the input to the Console data display [KNLA
DISP(15:00) H].

The multiplexer select signals (PDRF DISPS1 L
and SO L) are the inversion of PDRH DISP DATA
SELI H and SELO H, which in turn are the en-
coded outputs of the Console Data Display switch
(KNLD DISP DATA SELI H and SELO H).

Tuable 2-9 shows the register displayed for each
switch position.

Table 2-8
Data Output to Unibus
Unibus SCCE UBCE TMCD PDRE DMX
Output INT MSYN C1* HI LO | DMX | DMX | Input Byte
ADRSH | SETH BYTE | BYTE | SIH | SOH
ENH | ENH
PS H H DATI H H H H A HI, LO
SL H H DATI H L L H C HI
PIR H H DATI H H H L B HI, LO
PIA
PB H H DATI L H L H C LO
BR L H DATO H H L L D HL LO
NONE L H DATI L L L L None | None
*NOTE: TMCD C1 B L low =DATO, high = DATI.
Table 2-9
Display Register Selection
Switch Position KNLD DISP Register Displayed
DATA SEL
1H OH
BUS REGISTER L L BR(15:00)
DATA PATHS L H SHFR(15:00)
DISPLAY REGISTER H L LR(15:00)
HADRS FPP/ H H FRMA/B CRAR(7:1)
CPU H H RACD RAR(7:1)
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The KB11-C Processor contains registers which con-
trol processor operations or provide information rel-
ative to these operations. These registers, which are
listed below, are described in this chapter (in order
of ascending addresses):

Address Register
17 777 570 Switch and Light Registers
17 777 760 Lower Size Register
17 777 762  Upper Size Register
17 777 764 System ID Register
17 777 766 CPU Error Register

17 777 770  Microprogram Break Register

17 777 772 Program Interrrupt Request Register
17 777 774 Stack Limit Register

17 777 776 Processor Status Word

Information on Memory Management, Unibus
Map and Cache Registers are contained in Sections
IV through VI of this manual.

3.1 SWITCH REGISTER (SWR) AND LIGHT
REGISTER (LR)

The Switch Register is the output of the Console
switches. It shares address 17 777 570 with the
Light Register, whose input is the BR and whose
only output is the Console Display indicators
through the Display Multiplexer when the Console
Data display switch is in the DISPLAY REGIS-
TER position.

I1-3-1
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The SWR is read-only and the LR [PDRB
LR(15:00)] is write-only. They are both described in
Section III of this manual.

3.2 LOWER SIZE REGISTER

This read-only register [SCCN SYS SIZE(21:14),
bits 13:06 are all 1s] specifies the memory size of
the system. It indicates the last addressable block of
32 words in memory (the high order byte indicates
the number of 8K blocks of available memory
minus 1). It is used by Memory Management to de-
termine the validity of an address. It is read on the
Internal Data Bus (INTD) at address 17 777 760
(bit 0 is equivalent to bit 6 of the Physical Ad-
dress). Refer to Section 1V, Memory Management.

3.3 UPPER SIZE REGISTER

This register is an extension of the system size,
which is reserved for future use. It is read-only and
its contents are always read as zero. Its address is
17 777 762. It is read on the Internal Data Bus
(INTD).

3.4 SYSTEM ID REGISTER

This read-only register [SCCN SYS ID(15:08),
SCCM SYS ID(07:00)] contains information
uniquely identifying each system. Its address is 17
777 764. It is read on the Internal Data Bus
(INTD).



3.5 CPU ERROR REGISTER

The CPU Error Register (Figure 3-1) is a read-only
register, consisting of six bits which identify the
source of the abort or trap that used the vector at
location 4. These bits, which are set when the error
occurs, are:

Bit Name Function

7 Illegal Halt Set when trying to execute a
HALT instruction when the
CPU is in User or Supervisor

mode (TMCD ILL HALT).

6 Odd Address Set when a program attempts
Error to do a word reference to an
odd address (TMCD ODD
ADRS).

Set when the CPU attempts to
read a word from a location
higher than indicated by the
System Size register. This
does not include Unibus ad-
dresses (TMCD CACHE
NEXM).

5 Non-existent
Memory

4 Unibus
Timeout

Set when there is no response
on the Unibus within approxi-
mately 10 microseconds
(TMCD UBUS TIMEOUT).

3 Yellow Zone
Stack Limit

Set when a yellow zone trap
occurs (TMCD YEL TRAP).

"2 Red Zone
Stack Limit

Set when a red zone trap

occurs (TMCD SL RED ERR).

4 3 2

) : [T T LI 7

]|

CPU Error Register

135
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ODD ADDRESS ERROR
NON-EXISTENT MEMORY (CACHE)
UNIBUS TIME-OUT
YELLOW ZONE STACK LIMIT
RED ZONE STACK LIMIT
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Figure 3-1

The CPU Error Register cannot be loaded by the
program. It is read via the Internal Data Bus
(INTD) at address 17 777 766. The individual bits
of this register remain set until they are cleared by
a DATO. The several bits of this register are de-
scribed in Chapter 6.

3.6 MICROPROGRAM
(PB)

The Microprogram Break Register (PB) is intended
for use as a maintenance tool. When the processor
is being operated under the control of the mainte-
nance card, the processor can be halted during any
specific microprogram state by loading the address
of that state in the PB and setting the switches on
the card to the proper positions. A sync point that
generates a pulse at T1 (when the microprogram ad-
dress matches the contents of the PB) is provided
on TIGB. During normal operation of the pro-
cessor, any value can be loaded into the PB without
affecting operation of the processor.

BREAK REGISTER

The PB is loaded directly from the BR whenever
the PB address is generated during an external data
transfer; refer to Chapter 5. The PB is an 8-bit regis-
ter that is loaded from the eight least-significant
bits of the BR. When the PB is read, the data must
be transferred through the DMX to the BR by a
Unibus data transfer operation. The PB is selected
by physical address 17 777 770.

The PB [PDRC PB(07:00)] and its use are de-
scribed in detail in Chapter 4 of this manual.

3.7 PROGRAM INTERRUPT REQUEST REGIS-
TER (PIRQ)

The Programmed Interrupt Request register (PIRQ)
allows a program to schedule the execution of vari-
ous subprograms according to a priority scheme,
and at the same time, allowing various levels of
hardware interrupt priority to interact with the soft-
ware priority levels. The register stores interrupt
requests set by transferring request data to the
PIRQ, and provides information about the requests
through encoded data transferred from the PIRQ.
Refer to Figure 3-2.
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Figure 3-2 Program Interrupt Register

Data is transferred to the PIRQ through the BR
whenever the processor recognizes that the physical
address is the address assigned to the PIRQ (ad-
dress 17 777 772). The contents of the PIRQ are
then input to the priority arbitration logic of the
processor, which uses the information from the
PIRQ with information from the Unibus and the
PS priority level to determine when requests should
be honored.

The data in the PIRQ can be transferred to other
devices or to other registers in the processor by ad-
dressing the PIRQ during an external data transfer.
Because the only outputs from the PIRQ are to the
DMX (Unibus Data Multiplexer), all transfers
which access the PIRQ are Unibus data transfers.
Refer to Chapter S.

PIRQ [PDRD PIR(15:09)] and PIA [PDRD
PIA(02:00)] are described in Chapter 6 of this
manual.

3.8 STACK LIMIT REGISTER (SL)

Because the number of locations occupied by a
stuck is unpredictable, some form of protection
against the stack expanding into locations contain-
ing other information must be provided. If the pro-
cessor is operating in Kernel mode, the processor
provides for stack overflow detection through the
use ol the Stack Limit register (SL). Refer to Fig-
ure 3-3.

15, 8 7 0

. % 2,

11-3099

Figure 3-3 Stack Limit Register

The SL is an 8-bit register that is loaded from the
eight most-significant bits of the BR whenever the
SL is selected by the physical address generated in
an external data transfer. This requires address 17
777 775 during a byte transfer, or address 17 777
774 during a word transfer. The data is transferred
directly from the BR to the SL; refer to Chapter 5.
To read the contents of the SL, however, the SL
must be selected by the DMX and the data trans-
ferred from the Unibus to the BR. This requires a
Unibus data transfer operation. Although the SL
and the PB registers share a common DMX input,
cach register uses a different byte, and only one set
is sclected at a time. Therefore, when the SL is
transmitted on the eight most-significant data lines,
all Os are transmitted on the eight least-significant
data lines.

The SL [PDRC SL(07:00)] and the stack limit
check operations are described in detail in Chapter
6.

3.9 PROCESSOR STATUS WORD (PS, PSW)
The Processor Status Word [PDRD PS(15:00), Fig-
ure 3-4] contains information regarding the pro-
cessor mode (both current and previous), the
register set currently in use, the processor priority,
the Trace bit and the Condition Codes. Table 3-1
lists the fields of the PSW. The address of the PS is
17 777 776.

5w w2 om0 87 s 4 3 2 10
l [ I [ NOT USED { PRIORITY 1 T lNl 3 l v I < J
—A ' ' o T i 1-3098
CURRENT MODE '—’
PREVIOUS MODE *

GENERAL REGISTER
SET(0,1)

* MODE: 00 =KERNEL
01:SUPERVISOR
11:USER

Figure 3-4 Processor Status Word

Refer to drawing PDRD. The PS stores several
types of data that are dependent on the process
being performed. This data must be stored when-
ever the processor changes processes; typically, this
occurs every time there is an interrupt or a trap. Be-
cause the contents of the PS control many parts of
the operation of the processor, modifications of the
contents are carefully controlled.
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Table 3-1

Processor Status Word Bit Assignments

Bit Name Utilization
15-14 Current Mode Specifies the current processor mode as follows:
1.  When PS(15:14) = 00, the processor is in Kernel mode; all opera-
tions are legal.
2. When PS(15:14) = 01, the processor is in Supervisor mode; HALT,
RESET, and SPL instructions are illegal; SUPER address space is
used if Memory Management is enabled.
3. PS(15:14) = 10 is an illegal mode; if Memory Management is
enabled, a Memory Management abort occurs (refer to Section IV
of this manual).
4.  WhenPS(15:14) = 11, the processor is in User mode; HALT,
RESET, and SPL instructions are illegal; USER address space is
used if Memory Management is enabled.
13—-12 Previous Mode Specifies the processor mode prior to the last trap, interrupt, or loading of the
PS.
11 Register Set Specifies which General Register set is used; if PS11 = 0, register set 0 is
selected; if PS11 = 1, register set 1 is used.
10-08 Unused Unused
07—-05 Priority Sets the processor priority; this priority determines which levels of programmed
and external device interrupt requests are honored.
04 Trace When PS04 = 1, the processor traps to the trace trap vector address after each
instruction fetch; this facility is used for debugging programs.
Condition Codes:
03 N This bit is set when the result of the last data manipulation is negative.
02 Z This bit is set when the result of the last data manipulation is 0.
01 A% This bit is set when the result of the last data manipulation is incorrect because
of an arithmetic overflow.
00 C This bit is set when a carry occurs during data manipulation.
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The four fields of information in the PS are:
1. Processor condition codes
2. Trace (T) bit
3. Processor priority

4.  Processor mode control and register set
selection bits

Some of the PS bits control the operation of the
processor, while others indicate the value of the re-
sult of the last data manipulation operation.

In addition to accepting inputs from the BR, the
PS receives inputs from the condition-code gener-
ation logic. In certain circumstances (the current
mode ficld replaces the previous mode field), some
bits of the PS also receive inputs from other bits of
the PS. The outputs from the PS during data trans-
fers can be directed to the processor data paths
through the BR [by selecting the PS inputs to the
internal bus (IBS) and the IBS inputs to the
BRMX], or directed to the Unibus through the PS
inputs to the Data Multiplexer (DMX). The IBS
path is used only for data transfers that implicitly
select the PS, such as the stacking operations dur-
ing interrupt and trap service sequences. When the
PS is addressed explicitly, the data is transferred on
the Unibus, even if the transfer is to the processor
data paths (through the BR).

3.9.1 Reading the PS

1. Implicit reference — The PS word can be
gated to the Internal Data Bus by
PDRD READ PS H, which is generated
by a microprogram IBS field value of 3.
This value is used in microstates
RSD.00, RSD.01, RSD.02, BRK.20,
BRK.80, TRP.00, TRP.01, TRP.02, and
HLT.00 to get the current PS into the
BR. This is shown on the Flows by
BR-PS.

2. Explicit reference — The PS word can be
read by the program with a reference to
address 17 777 776. In this case, the
PSW is gated onto the Unibus, from
where it is read during a DATI by the
processor.

3.9.2 Loading the PS

All used PS bits, with the exception of bit 04, (the
T bit) can be written by the program when the PS
address (17 777 776) is used (SCCE PS ADRS H is
asserted). In this case, the input is BR(15:00) and
the clock is a function of MSYN and of UBCB HI
BYTE and LLO BYTE. These signals are both as-
serted if the PS is referenced as a word.

1.  The Control Codes (bits 03:00) are
shown on IRCH and are clocked by
UBCB CC DATA.

2. The Priority bits (07:05) are clocked by
TMCE CLK LO PS.

3. The Processor Mode bits and the Regis-
ter Set bit (15:11) are clocked by TMCF
CLK HI PS.

The PS may also be loaded under microprogram
control (implicit reference). Since the loading logic
varies from bit to bit, it is explained with each bit
group.

3.9.3 Processor Mode Bits [PS(15:12)]

The current processor mode is stored in PS(15:14)
and the processor mode previous to the current one
is stored in PS(13:12).

If the current mode is other than Kernel, the
HALT, RESET and SPL instructions are illegal: A
HALT in Supervisor or User modes causes a trap
to 4: RESET or SPL in these modes are NOPs.

When Memory Management is enabled, the mode
bits affect PAR/PDR selection, and thus the phys-
ical address generated from the virtual address. Re-
fer to Section 1V, Memory Management.
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3.9.4 Current Processor Mode [PS(15:14)]

The Current Processor Mode bits determine
whether certain instructions are allowed or prohib-
ited. The processor mode can be set by moving a
data word to the PS at its Unibus address, or
through a trap or interrupt service function (which
loads a new PS value from the trap or interrupt vec-
tor), or through an RTI or RTT instruction (which
restores an old PS from the hardware stack). In this
last case, PS(15:14) can only be changed to a higher
value (i.e., these bits can only be set and not
cleared). This allows a Kernel mode program to re-
turn to Kernel, Supervisor, or User mode; a Super-
visor mode program to return to Supervisor or
User mode; and a User mode program only to re-
turn to User mode. A User or Supervisor mode pro-
gram cannot use the RTI instruction to enter the
‘Kernel mode. When a new PS is loaded from the
trap or interrupt vector, the old contents of PSIS
and PS14 are loaded into PS13 and PSI2.

When Memory Management is enabled, the current
processor mode selects the mapping for the virtual
machine, except for trap and interrupt processing.
Supervisor and User programs should not be al-
lowed to change the contents of this field. If the cur-
rent processor mode is changed, the mapping
registers in Memory Management are selected by
the set for the new mode. The result of attempting
to continue with the same PC value in the new vir-
tual address space is unpredictable.

The entire PS word can be protected from direct
transfers by being mapped only into Kernel address
" space. Refer to Section V.

PS bits PS15 and PS14 control and indicate the cur-
rent processor mode. The source of input data is al-
ways BR15A and BRI4A, whether the PS is loaded
by an RTT or RTI instruction, or if a new PS is
loaded from a trap or interrupt vector, or explicitly
referenced.

3.9.5 Previous Processor Mode [PS(13:12)]

The previous processor mode is used primarily by
the MFP and MTP instructions to define which ad-
dress space to communicate with. During User
mode operation, these bits are set to reflect User
mode. so that the User program cannot move data

into or out of any other address space. During trap
or interrupt service, these bits are set to reflect the
value contained in the current mode bits prior to
the interrupt or trap. In this case, a KERNEL
DATI! data transfer is used to fetch the new PS
value from the vector address; this causes bits 13
and 12 of the PS to be loaded from the old value of
bits 15 and 14 instead of from BR(13:12).

During the return from a trap or interrupt service
program (via an RTI or RTT instruction), the old
PS value is restored from the stacked value. The
previous mode bits are protected in the same way
as the current mode bits.

3.9.6 PS(15:12) Implicit Write

Refer to Figure 3-5. PS(15:12) can only be set, and
not cleared, by their direct-set inputs; they can be
both set and cleared when they are clocked. They
are clocked only in three machine states (RTI.50,
SVC.30 and ZAP.30) when appropriate conditions
exist.

When IBS = 2 (LOAD PS) bits 15 = 12 are direct-
set if the BSC bits do not require a KERNEL
DATI and if the corresponding DATA input is
high. These bits cannot be cleared in this manner.

IBS = 2 clocks PS(15:12), thus allowing bits to be
cleared, when one of three conditions are present:

1. PS14 = 0, or the mode is Kernel. This is
used during RTI and RTT instructions
when IBS = 2 in RTL.50.

2.  TMCE KERNEL DATI, which is as-
serted during the service flows (abort,
trap and interrupt service, see Chapter
6). IBS = 2 is asserted during SVC.30,
when the PS is loaded from the BR.

3. SSRA PS RESTORE is asserted when a
Memory Management abort occurs dur-
ing the service flows. When this hap-
pens, the PC and PS of the instruction
that caused the abort are restored before
servicing the Memory Management
abort. In ZAP.30, IBS = 2 and the old
PS value is loaded back into the PS.
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Figure 3-5 PSW Clock and Direct Set Simplified Schematic

Refer to drawing PDRD. Figure 3-5 shows the
DATA input to PS(15:12). This input is BR(15:12),
except in the case of KERNEL DATI. When KER-
NEL DATI is asserted, bits 15:14 are clocked from
BR(15:14) and bits 13:12 are clocked from
PS(15:14). The new processor mode is thus loaded
into PS(15:14) and the old processor mode into
PS(13:12).

3.9.7 General Register Set Bit (PS11)

PS11 indicates that General Register Set O is in use
(when cleared), or that General Register Set 1 is in
use (when set).

The input to PSt1 is BR1IA. This bit is loaded in
the same manner as PS15 (Paragraph 3.9.6).

3.9.8 Priority [PS(07:05)]

The proeessor priority is stored in PS(07:05). The 3-
bit priority field is interpreted as one of eight prior-
ity levels. This level is compared with other
requests for control of the system. These requests

can be external to the processor, in the case of
Unibus requests (BR), or internal, in the case of
Program Interrupt Requests (PIR). In general, the
purpose of requesting control of the system is to in-
terrupt the current processor program and to run a
service routine or higher priority program before re-
turning control to the interrupted program. Refer
to Chapter 6 for a description of the priority
scheme.

The processor priority level may be set by directly
transferring data to the PS, by popping a new PS
from the hardware stack, or by loading the PS
from an interrupt or trap vector. In addition, the
processor priority may be explicitly set by the set
priority level (SPL) instruction.

Refer to drawing PDRD. PS(07:05) are clocked in
a manner similar to the mode bits (Paragraph
3.9.6), but are not direct-set. The 74S157 multi-
plexer selects the input: in all cases, except during
an SPL instruction, the input is BR(07:05),while
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during the SPL the input is BR(02:00) A, which cor-
responds to the position of the new priority bits in
the instruction word. TMCE SET PRIORITY H
(MSC = 4) controls the multiplexer and gates the
clock.

In User or Supervisor modes, the processor priority
can only be changed by a transfer to the explicit ad-
dress of the PS (17 777 776). This is possible only if
Memory Management mapping allows it.

3.9.9 Trace Bit (T Bit, PS04)

The Trace (T) bit is provided as a software diagnos-
tic aid. When this bit is set, a processor trap will be
vectored through location 14. This trap occurs at
the end of the instruction that is being performed
when the T bit is being set, unless:

1. The instruction is a Return From Trap
(RTT) instruction. In this case, the trap
is delayed until the end of the following
instruction.

393

The instruction is a Set Priority Level
(SPL) instruction. No BRQ STROBE is
generated during the execution of an
SPL.

3. Some other trap or interrupt condition is
honored. In this case, the PS containing
the T bit is pushed onto the stack and
all Trace operations are deferred until
the PS word is popped off the stack at
the end of the trap or interrupt service
routine.

The T bit cannot be set by moving data to the PS;
the only way the T bit can be set is by popping a
word off the hardware stack with bit 4 set. This can
be done with an RTI, an RTT, or any trap instruc-
tion (TRAP, 10T, BPT or EMT), even when the
processor is not in Kernel mode. The purpose of in-
hibiting other methods of loading the T bit is to
protect the user from inadvertently setting the T bit
while changing the processor priority or condition
codes,

The presence of the T bit precludes the use of
EXC.80 by E/cluss*DMO instructions, since the T
bit is a trap request. EXC.90 is executed in this
cise.

3.9.10 Condition Codes

The four least-significant bits of the PS word con-
tain the processor condition codes. These bits store
information about the value resulting from any
data manipulation during an instruction. The condi-
tion codes are not altered to reflect the results of ad-
dress calculations, but are changed only when an
instruction explicitly operates on an explicit unit of
data.

The condition codes can also be set to any specific
value by transferring a word containing that value
to the PS address. The value of the condition codes
are altered by every interrupt or trap response func-
tion, and by every RTI and RTT instruction. In ad-
dition, individual condition-code bits may be
manipulated directly, with the condition-code oper-
ate instructions. These instructions provide a means
1o set any one, or more, of the condition codes
with a single instruction -that requires only one
memory reference; a similar set of instructions can
clear any one or more bits. The condition codes are
used in conditional branch instructions, so the vari-
ous means of manipulating the condition codes are
useful because they permit setting up the PS word
to respond in a particular way to various branch
instructions.

The logic that senses data conditions and stores the
selected indications is on the IRC module and is de-
scribed in Chapter 1; the gates that control the read-
ing of the condition codes onto the internal data
bus are shown on drawing PDRD. When the PS is
explicitly addressed at physical address 17 777 776,
the data transfer is on the Unibus; the internal bus
is used only under direct microprogram control.

The condition codes are loaded automatically with
the results of most data manipulations. In addition,
the codes can be manipulated by a microcoded in-
struction that can set or clear individual condition
code bits, Any operation that transmits data
directly to the processor status word inhibits the set-
ting of the condition codes, because the data trans-
mitted is loaded into PS(03:00) directly. This is
done for move instructions that address the PS,
RTI instructions that pop a value off the hardware
stack into the PS, or interrupt service sequences
that load the PS from the interrupt vector,
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The Timing Generator supplies the clock signals
which control the various operations of the KB11-C
Processor System. The M8139 module contains all
the components of the Timing Generator.

Refer to Figure 4-1. The synchronizer selects one of
three clock sources: A 33 MHz crystal clock, an
R/C maintenance clock (variable) or a pulse gener-
ated by a manual stepper switch. The selected clock
signal is routed through a phase splitter/buffer, the
output of which consists of two 180° out-of-phase
ciock signals. These two signals are buffered again
and are called TIGC TPB H, TPB L, TF H and TF
L. TPB H and TF H are identical and are 180° out
of phase with TPB L and TF L, which are also
identical.

Separate TPB and TF pulses are provided to sepa-
rate the timing source required by the TIG module

CHAPTER 4
TIMING GENERATOR

(TPB) from that required by the other modules. A
TF failure does not stop the clock.

The TPB pulses drive a five-stage ring counter, the
output of which generates gates to generators for
time pulses Tl - TS and for time states TS1 ~ TSS5.

The ring counter is generally stopped during a
pulse cycle to allow the data transfer operation in
progress to accept the data. It is stopped in T2 for
Unibus, Internal Data Bus, interrupt and mainte-
nance operations, and in T5 for Cache operations.
The ring counter is also stopped during mainte-
nance operations such as single cycle.

4.1 CLOCK SOURCES

The three sources of timing are the crystal clock,
the R/C clock, and the MAINT STPR switch SO
(on the maintenance card). These timing sources
are¢ shown on drawing TIGB.

PAR. 4.1 STOP CLOCK
R CIRCUITRY. |+—zZ—PAR.4.88 4.9
PAR.4.2 8 4.3 PAR. 4.4, | _PAUSE CYCLES PAR. 4.5
SOURCE TIGA
CLOCKS
XTAL CLOCK SYNCHRONIZER RING COUNTER
33 MHz AND PHASE
SPLITTER
BUFFERED TIGA
TIMING PAR.4.6
PULSES
(SELECTS ONE
R/C CLOCK OF THREE TIME PULSES PAR.4.7
SOURCE CLOCKS) TPB H T-T5
TPB L
TF H
TF L TIGC, TIGD TIME STATES
MAINTENANCE TS1-TS5
STEPPER SW.
XMAA S4 TIGE
TIGB TIGB TiGC
1-3116
Figure 4-1 Timing Generator Block Diagram
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4.1.1 Crystal Clock

The crystal clock provides a constant square wave
output of 33 MHz. The oscillator frequency is deter-
mined by the LC tuned-collector network and is
stabilized by the crystal connected between emit-
ters. The bias network in the base circuits ensures
that the oscillator will start when +5 V is applied
to the module. The amplified output, TIGB XTAL
H, is a +3.5 to 0 V square wave with a 30-ns
period. '

4.1.2 R/C Clock

The R/C clock is provided for maintenance pur-
poses and can be enabled only when the mainte-
nance card is plugged into the CPU backplane. The
frequency of the square wave output, TIGB RC H,
can be adjusted as high as 37 MHz by varying po-
tentiometer R104 in the RC feedback network.
Thus, the clock pulse period can be narrowed to ap-
proximately 27 ns to test for race conditions in the
logic.

4.1.3 MAINT STPR Switch

The third source of timing is the manually-oper-
ated, single-step MAINT STPR switch S4, located
on the maintenance card, This switch is only en-
abled when muaintenance card switches S2 and S3
are both set to 1. Each operation of S4 creates one
transition of a given timing pulse. It therefore re-
quires two actuations of S4 to complete a given
time pulse.

4.2 SOURCE SYNCHRONIZER

The timing source synchronizer is shown on draw-
ing TIGB. The purpose of the source synchronizer
is to select only one timing source at any time and
to inhibit the two remaining sources. The synchro-
nizer prevents cycles of improper length and en-
sures that TIGB SOURCE CLOCK L is in the
high (non-asserted) state when switching between
sources. Timing source selection is determined by
the setting of switches SI, S2, and S3 when the
maintenance card is plugged in. If the maintenance
card is not installed, the crystal clock is the only
source of timing. The following paragraphs describe
timing source selection when the maintenance card
is plugged in.

4.2.1 Crystal Clock Selection
When maintenance card switch S3 is not set,
XMAA S3 L is high. When the RC EN and MS

EN flip-flops are not set, the XTAL SYNC flip-
flop is set. With maintenance card switches S| and
S2 equal to 0, MS EN will be cleared, as will RC
SYNC and RC EN. Therefore, XTAL SYNC is set
and the source multiplexer output, TIGB SOURCE
CLOCK L, will follow the XTAL H input.

Note that the XTAL EN flip-flop inhibits the
maintenance module switch S3 inputs to the RC
EN flip-flop. Therefore, the XTAL SYNC flip-flop
must be cleared before a timing source change can
be accomplished. The RC EN and MS EN gating
input to the XTAL SYNC flip-flop ensures that
these sources have been disabled before XTAL EN
is allowed to gate the XTAL H pulse through the
source multiplexer.

4.2.2 RC Clock Selection

The RC clock is selected as the timing source when
maintenance card CLK switch S3 is on RC, and S2
and ST are both set to 0. When the XMAA S3 L in-
put is low, the RC SYNC flip-flop will be set. As a
result, the RC EN flip-flop will be set and the
source multiplexer output, TIGB SOURCE
CLOCK L, will then follow the TIGB RC H input.
TIGB XTAL EN (0) H and TIGB MS EN (0) H
are fed back to inhibit TIGB RC SYNC D inputs
to ensure that the enable flip-flops are cleared be-
fore the timing source can be changed.

4.2.3 MAINT STPR Selection

The maintenance card S2 and S1 switches are both
set to 1 to allow single timing pulses to be gener-
ated by MAINT STPR switch S4. The XMAA SI
L and XMAA S2 L inputs are both low. The result-
ant input to the MS EN flip-flop D input causes
the flip-flop to be set. On the following TIGB
XTAL H and TIGB RC H clock pulses, the XTAL
SYNC and RC SYNC flip-flops will be reset. Suc-
cceding clock pulses will then reset the XTAL EN
and RC EN flip-flops. MS EN (1) H is ANDed
with STEP (1) H to assert the TIGB SOURCE
CLOCK L output of the source multiplexer. Each
time the MAINT STPR switch S4 is operated, the
STEP fip-flop toggles. The MAINT STPR switch
must be actuated twice to complete a single TIGB
SOURCE LOCK L output pulse. Removing the S2
or SI input conditions the MS EN flip-flop to be
cleared. MS EN (0) L direct-clears STEP to condi-
tion it for the next time the ING TP function is
selected.
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4.2.4 Synchronization

A feature of the source synchronizer is that the out-.

put level is maintained high (non-asserted) while
the timing source is being changed. The timing dia-
gram in Figure 4-2 shows the TIGB SOURCE
CLOCK L output as the maintenance card CLK
switch is changed from XTAL to RC. With the
XMAA S3 L input low (RC clock selected), the
XTAL SYNC flip-flop is cleared on the next TIGB
XTAL L clock pulse going low.

One XTAL H clock pulse later, XTAL EN will be
cleared, enabling the D input to the RC SYNC
flip-flop. The next time TIGB RC H goes low, RC
SYNC will be set. The difference in XTAL H and
RC H pulse widths is exaggerated in Figure 4-2 to
indicate that the clock pulses are completely
independent.

Note that the SYNC and EN flip-flops are clocked
on the trailing edge of the source locks so that the
gating level to the source multiplexer is always re-
moved as the clock input is non-asserted. This pro-
vides a clean leading edge for TIGB SOURCE
CLOCK L. Note also that only half a clock period

TIGB XTAL H

TIGE XMAA S3 L E;;a

is available for the enable flip-flop to change states
and gate the associated clock source through the
multiplexer.

4.3 PHASE SPLITTER/BUFFER

The Phase Splitter/Buffer, shown on drawing
TIGB, is driven by TIGB SOURCE CLOCK L
from the source synchronizer to produce timing
pulse outputs TIGB CLOCK L and TIGB CLOCK
H. The TIGB CLOCK L output pulses are in
phase with TIGB SOURCE CLOCK L.

4.3.1 Level Converter

Transistors Q65 and Q66 convert the TIB
SOURCE CLOCK L output to the level required
at the phase splitter inputs. A low logic input at the
base of Q65 causes this transistor to conduct, thus
grounding the common emitter of Q65 and Q66.
The +V2 reference voltage applied at the base of
Q66 cuts this transistor off, causing no current to
flow through Q66 and R122. Thus, a low input pro-
vides a low output. When TIGB SOURCE
CLOCK L goes high, Q65 cuts off, and the +V2
reference at the base of Q66 allows current to flow
through Q66 and R 122 to provide a high output.

TIGB XTAL SYNC

TIGB XTAL EN

4

4

TIGB RC H

TIGB RC SYNC

TIGB RC EN

4

| (

( ,

TIGB SOURCE l | I | I
CLOCK L

<
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Figure 4-2 Timing Source Synchronization
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4.3.2 Phase Splitter

The phase splitter consists of two emitter-coupled
2N 3009 transistors, Q61 and Q62. When TIGB
SOURCE CLOCK L is not asserted (high), Q61
turns on. A fixed bias at the Q62 base holds that
transistor cut off. Under these conditions, the
TIGB CLOCK H output provided by buffer Q53
and Q54 is low because Q61 is conducting. Q54 is
on.

When TIGB SOURCE CLOCK L starts to go low,
as the result of a clock pulse, the base of Q61 goes
negative with respect to the Q62 base. More current
flows through Q62, causing a greater voltage drop
across the Q62 collector resistor, R109-R111. Less
voltage is developed across common emitter resist-
ors R89-R96, increasing the forward bias on Q62.
As a result, when Q62 starts to conduct more cur-
rent, Q61 starts to cut off. This circuit is a differen-
tial amplifier that responds to slight changes of the
input signal at high speed. When TIGB SOURCE
CLOCK L starts to go positive, Q61 turns on and
Q062 cuts off in the same manner. The switching ac-
tion of Q61 and Q62 follows the TIGB SOURCE
CLOCK L signal with about a | ns difference be-
tween TIGB CLOCK H and TIGB CLOCK L.

4.3.3 Buffers

Each buffer stage consists of a 2N3009 and a
2N4258 transistor. When Q61 turns off as a result
of a low source synchronizer output, Q53 is turned
on and Q54 is cut off. Thus, the TIGB CLOCK H
output goes high, 180° out-of-phase with the TIGB
SOURCE CLOCK L input. At the same time, Q62
turns on and the positive collector cuts off Q5 and
forward-biases Q56. Therefore, TIGB CLOCK L
goes low in phase with the TIGB SOURCE
CLOCK L input from the source synchronizer.

4.4 TIGC TPB AND TF

The outputs of the Phase Splitter/Buffer, TIGB
CLOCK H and CLOCK L, are buffered to gener-
ate the Time Pulses Buffered, TPB H and TPB L
and the Free Clock pulses, TF H and TF L. TPB
H and TF H are in phase with TIGB CLOCK H,
and are the complement of TPB L and TF L.

The TF pulses are used throughout the KB11-C for
synchronization. The TPB pulses are used only on
the M8139 module.

TPB H and TF H are driven from CLOCK H;
TPB L and TF L are driven from CLOCK L. With
‘this exception, the circuits that generate these four
pulses are identical: when TIGB CLOCK is high,
the NPN transistors conduct, the PNPs are cut off,
and the output is high. When TIGB CLOCK is
low, the NPNs are cut off, the PNPs conduct, and
the output is low.

4.5 RING COUNTER

The Ring Counter is shown on drawing TIGA. It
consists of the two edge-triggered D flip-flops, Tl
and TIA, of the six J-K flip-flops T2 - TS, T2A
and T5A, and their associated circuitry. Refer to
Figure 4-7 for the description that follows.

Start-Up and Normal Cycle

The ring counter is cleared by ROM INIT, which is
asserted on power-up, power-down, and when the
Console START switch is depressed while the
HALT/ENABLE switch is in the HALT position.
T4 is not cleared by ROM INIT directly, but by a
flip-flop that is set by ROM INIT. When ROM
INIT is negated, the trailing edge of the next TPB
L clears this flip-flop.

When the ring counter has been cleared, the J input
of T4 is high [T5 (0) H, T2 (0) H and TIA (0) H
are all high] and the next TPB sets T4.

It should be noted that the D flip-flops (T1 and
TIA) are clocked by the trailing edge of TPB L,
while the J-Ks are clocked by the trailing edge of
TPB H. Both of these trailing edges occur at the
same time.

The next TPB after the one that sets T4, sets TS5
and T4 complements (both J and K high) and is re-
set. If TIGA STOP T1 L is high, the next TPB com-
plements T5 (resets it) and sets T1. TS (0) H is now
high and asserts STOP T1 L. The TPB that follows
clears T1 and sets T2 but, since the common input
to T2-K and T3-J is low at this time [due to T2 (0)
H] T3 is not set. T2 (0) H is now low, and the next
TPB toggles T2 (clears it) and sets T3. TS5 (0) H, T2
(0) H and T1A (0) H are all high, thus allowing T4
to be set as T3 toggles.
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The ring counter flip-flops are used to gate the tim-
ing pulses T1 - T5. Note that there are two T2 and
two T5 flip-flops. In both cases, the second flip-flop
(T2A and T5A) is used to generate its correspond-
ing timing pulse. These flip-flops are used to pre-
vent the generation of more than one timing pulse
(T2 or TS) during Pause cycles: T2A and TSA are
reset by the TPB H following the one that sets
them, while T2 and T35 remain on for the duration
of the Pause.

4.6 TIMING PULSES, T1-T5

The switching times of the flip-flops used in the
ring counter are not very precise; therefore, the flip-
flop states are not used directly for processor tim-
ing. Instead, high-speed transistors are used to gen-
erate the timing pulses. The timing pulse generator
schematics are shown on drawing TIGC and
TIGD.

Each of the timing pulse generators gates the Phase
Splitter/Buffer clock output, TIGB CLOCK H or
L. with a ring counter output to generate the tim-
ing pulse associated with that state. Figure 4-3
shows how T5A (1) H and TSA (1) L are gated
with CLOCK H and CLOCK L to provide the T5
H and TS5 L timing pulses.

Note on drawing TIGC that the TIGB CLOCK H
and L signals are carried by two separate lines to
the timing pulse drivers; these lines are terminated
at the TIGD TS5 L circuits by diode terminators

and at TS H by a 33 ohm resistor to ground. These
lines are transmission lines, designed to guarantee
the integrity of the CLOCK H and CLOCK L sig-
nals from the phase splitter to the intended pulse
generator.

The +V and -V voltages shown on the schematics
are taken from diode dividers shown on TIGB for
+V5 to +VI and on TIGE for V3 to -VI.

Since the circuits for T(1:5) H are identical, as are
those for T(1:5) L, only the T5 schematics are ex-
plained below.

Figures 4-4 and 4-5 are simplified schematics of
TIGD TS H and L, respectively. Q53 and Q54 on
the first figure and Q55 and Q56 on the second, are
the output of the Phase Splitter/Buffer, TIGB
CLOCK H and L. The diode terminators are se-
lected to produce a pulse amplitude of approx-
imately 0 to +3.0 V for T5 H and of approximately
+3.0 to 0 V for TS L. Q32 and Q50 are not shown
on Figures 4-4 and 4-5. These transistors are turned
off when TIGA T5A is asserted, thus allowing Q31
and Q49 to conduct. Q32 and Q50 conduct when
TIGA T5A is negated and turn Q31 and Q49 off.

NOTE
The voltages shown on Figures 4-4 and 4-5 are ap-
proximate. They are based on a diode voltage drop of
0.7 V.

|__T'YPICALLY
30ns

L

TIGB CLOCK L

TIGB CLOCK H ﬂ_ m
:

% | m
TIGA T5A (1) H !

TIGD T5 H
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TIGD TS L

L
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Figure 4-3 Timing Pulse Generation
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46.1 TSH

Refer to TIGD and to Figure 4-4(a). The output
transistor pair, Q1 and Q2, is arranged to. give a
push-pull type output. Diode D2 between the two
bases, along with the resistor network consisting of
R12 (15K to +15 V) and R10 (3K to -15 V), biases
the transistor pair Q1 and Q2 so that a small volt-
age change at the base input turns one transistor on
and the other off. This arrangement has the effect
of reducing the propagation time from the CLOCK
H signal to the output time pulse TIGD TS5 H.
Diode DI clamps the bias at a level such that TSH
is at approximately 0 V when either CLOCK H is
low or the gate transistor Q31 is off. Diode D3 pre-
vents the bias circuit from saturating Q2 by clam-
ping the signal to +V5, or approximately 4 V.

When TIGA T5A (1) H is low, Q32 conducts and
Q31 is cut off. When TSA (1) H goes high, Q32
cuts off. Q31 cannot turn on at this time, since its
emitter is negative (CLOCK H at approximately 0
V., determined by the base voltage of Q54) with re-
spect 1o its base (=15 V - D36 to +V2 = approx-
imately +0.7 V). The voltage at the base of QI is
approximately -0.7 V and that at the base of Q2 is
one diode drop more positive, Q2 is off and QI con-
ducts: TS H is low.

Figure 4-4(b) shows the circuit when TIGB
CLOCK H goes high. Q54 is now off and Q33 is
on. The emitter of Q54 is now positive with respect
to its base and it conducts. The voltage at the base
of QI and Q2 becomes more positive; QI conducts
and Q2 is turned off. T5 H goes high.
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Figure 4-4(c) shows the end of the TS H pulse.
TIGB CLOCK H goes low: Q53 turns off and Q54
turns on. TIGA TS5A (1) H goes low and turns Q31
off. Q21 turns on and the voltage at the base of QI
and Q2 goes negative, turning Q2 off and QI on,
thus making TIGD TS H low. Q21 speeds this tran-
sition by providing a discharge path for the charge
left in the base bias circuit.

4.6.2 1T5L

Refer to TIGD and to Figure 4-5(a). The output
transistor pair, Q19 and Q20, is arranged to give a
push-pull type output. Diode D29 between the two
bases, along with the resistor network consisting of
R61 (1K to +15 V) and RI10 (4.7K to -15 V),
biases the transistor pair Q19 and Q20 so that a
small voltage change at the base input turns one
transistor on and the other off. This arrangement
has the effect of reducing the propagation time
from the CLOCK L signal to the output time pulse
TIGD T5 L. Diode D30 clamps the bias at a level
such that TS L is at approximately +3 V when ei-
ther CLOCK L is high or the gate transistor Q49 is
off. Diode D28 prevents the bias circuit from satu-
rating Q19 by clamping the signal to ground.

When TIGA TS (1) L is high Q50 conducts and
Q49 is cut off. When TS5 (1) L goes low Q50 cuts
off. Q49 cannot turn on at this time, since its emit-
ter is positive (CLOCK L at approximately +3.5 V,
determined by the base voltage of Q55) with respect
to its base (15 V - D49 to +V3 = approximately
+2.8 V). The voltage at the base of Q20 is approx-
imately +3.5 V and that at the base of Q19 is one
diode drop more negative. Q20 is conducting and
Q19 is off: TS L is high.
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Figure 4-5(b) shows the circuit when TIGB oV
CLOCK L goes tow. Q55 is now off and Q56 is on. +va
the emitter of Q49 is now negative with respect to

its base and it conducts. The voltage at the base of Q55 |4 TIGB GLOCK L
Q20 and QI9 becomes more negative; Q19 con- 00
: 1
ducts and Q20 is turned off. T5 L goes low.
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Figure 4-5b

Figure 4-5(¢) shows the end of the TS L pulse.

TIGB CLOCK L goes high; Q56 turns off and Q55

turns on. TIGA TSA | L goes high and turns Q49

off. Q30 turns on and the voltage at the base of
Q19 and Q20 goes positive, thus making TIGD TS5
L high. Q30 speeds this transition by providing a
discharge path for the charge left in the base bias
circuit.
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4.7 TIME STATES (TIGE TS1 L-TSS L)

Refer to Figure 4-6. The Time State pulses, TIGE
TSi L through TS5 L are generated from the ring
counter flip-flops and TIGB TPB H. The leading
edge of these pulses corresponds to that of the tim-
ing pulse of the same number (e.g., TS1 to TI)

The time states are used throughout the KB11-C
and are on for two time pulse durations (e.g., TSI
is on from the leading edge of T1 to the leading
edge of T3).

These time state pulses are provided for use in
areas where timing is not critical, in order to reduce
the load requirement of the timing pulses.
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Figure 4-6 Time States

4.8 PAUSE CYCLES AND CLOCK BR

The ring counter is stopped during Pause cycles, ex-
cept in the case of a Cache read hit cycle. The stop
occurs during TS5 for Cache Pause cycles and dur-
ing T2 for Unibus, Interrupt (INTR) or Internal
Data Bus (INT D) cycles. The INTR Pause cycle is
one where UBSD=1; for all other Pauses,
UBSD=2 or 3 [TIGA PAUSE H=ROM 40 as-
serted (UBSDO1=1)).

Table 4-1 is a summary of Stop and Pause
conditions.

4.8.1 Synchronous Pauses

4.8.1.1 Internal Bus (INT D) Pause (T2) - Refer to
Figure 4-7. During a Pause for an INT D read, a
90-ns delay is inserted between T2 and T3 by the
S0 and SI flip-flops.

The ring counter is stopped by the low output of
the 74S65 gates which cause a low input to the K
input of the T2 flip-flop. The flip-flop cannot be re-
set until this input becomes high. The low is caused
by the two gates that have SAPN NOT CACHE
ADRS H as inputs. Since the INT D registers have
Unibus addresses, this signal is high. S1 (0) H and
SO0 (0) H are also high, as well as TIGA PAUSE H
(UBSD=2 or 3, Bus Pause). S1 and SO are clocked
by TPB H and count up to 3. At this time, both S|
(0) H and SO (0) H are low, the output of the
74565 gates goes high, and on the net TPB pulse,
T2 (1) H is cleared, T3 (1) H is set, and the ring
counter is restarted.

4.8.1.2 Cache Pause (5) - Refer to Figure 4-7. The
ring counter stops in TS during a Pause for a
Cache cycle. A read hit Cache Pause cycle is the
only Pause cycle in which the ring counter is gener-
ally not stopped; all other Cache cycles stop the
counter. CCBC MEMSYNC H is asserted by the
Cache when it has completed a memory cycle.

TMCF CACHE ADRS H is asserted during a
pause for a Cache cycle and, in conjunction with
TIGA PAUSE; if there is no abort pending, and if
TIGA MEMSYNC is not asserted, then TIGA
STOP TI L is asserted and prevents T1 from being
set until CCBC MEMSYNC H is asserted by the
Cache. When this occurs, TIGA MEMSYNC (0) H
goes low. The next TPB sets T1, clears TS5 and res-
tarts the ring counter.

4.8.2 Asynchronous Pauses

Synchronizing flip-flops are required during asynch-
ronous Pause cycles in order to minimize the pos-
sible instability of flip-flops when clocked at the
same time that their data input is changing.

4.8.2.1 Unibus Pause (T2) - Refer to Figure 4-7.
During a Unibus Pause cycle, the.ring counter is
stopped during T2, as for the INT D Pause.
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Refer to figure 4-8

Figure 4-7 Timing Generator
and Pauses

Table 4-1
Ring Counter Stop and Pause Conditions
STOP IN T2
Internal Bus Pause Stop: SAPN NOT CACHE ADRS H
TIGA PAUSE H (UBSD = 2 or 3)
TIGA SO (0) Hor TIGA S1 (0)H
Restart: S0 and S1 count to 3 (90 ns).
Unibus Pause CPU Control Registers Stop: Same as Internal Bus Pause
Restart: Same as Internal Bus AND
UBCB TIG RESTART H
(BUS SSYN)
Interrupt Pause Stop: UBSD = 1 (INTR Pause)
UBCD EXT BRQH
Restart: UBCB TIG RESTART H
(Passive Release or BUS INTR)
Single ROM Cycle Stop: TIGB ROM+UPB (1) H
Restart: CONTINUE or MAINTENANCE
(XMAA S4) switches
STOP IN TS
Cache Pause Stop: TMCF CACHE ADRS H
TIGA PAUSE H (UBSD =2 or 3)
No Aborts (not TMCC ABORT H)
Restart: TIGA MEMSYNC (1) H
Single Bus Cycle Stop: TIGB SINGLECY L
TIGA PAUSE H
Restart: CONTINUE or MAINTENANCE
(XMAA S4) switches

11-4-10



The Unibus Pause is started by the same two gates
that start the INT D Pause, in addition to the gate
that has UBCA UNIBUS ADRS H as an input.
SCCD INTD REG (1) L is high, since the address
does not refer to an Internal Bus register.

There are two synchronizing flip-flops for this gate:
the first rank flip-flop is the one that has UBCB
TIG RESTART L as its input; the second rank
flip-flop has the output of the first rank flip-flop as
its input. The output of the second rank synchro-
nizing flip-flop is high at this time. The output of
the 74565 gates is low, T2 (1) H is not cleared, and
T3 (1) H is not set. The SO and S1 flip-flops count
to 3, at which time the NOT CACHE ADRS gates
are disabled. When BUS SSYN is received, UBCB
TIG RESTART is asserted. The first rank synchro-
nizing flip-flop is set by the next TPB L, and the
second rank flip-flop by the TPB after that. This
disables the UNIBUS ADRS gate, and the output
of the 74565S goes high, allowing the ring counter
to restart.

When reading the Control Registers (PS, SL, PIR,
PIA and PB - see Chapter 2, Paragraph 2.3.2)
SSYN is generated by the processor; in this case
the 90 ns SO-S1 delay and the synchronizing flip-
flop delays may be concurrent.

4.8.2.2 INTR Pause (T2) - Refer to Figure 4-7.
The interrupt (INTR) Pause cycle is similar to the
Unibus Pause cycle.

The ring counter is stopped in T2 by the UBCD
EXT BRQ H gate on the lower 74S65. This gate is

asserted during an INTR Pause cycle (UBSD=1),
the output of the second rank synchronizing flip-
flop is high at this time. UBCD EXT BRQ H is as-
serted when any of TMCA HONOR BR(4:7) are as-
serted. The T2 flip-flop remains set and the T3 flip-
flop cleared until the second rank synchronizing
flip-flop is set. S1 and SO count up but have no ef-
fect, since they are ANDed with TIGA PAUSE H
(UBSD= 2 or 3), which is low. UBCB TIG RES-
TART H is asserted either by the receipt of INTR
or by a passive release of the Unibus (UBCA PAS-
SIVE L). The first rank synchronizing flip-flop is
set by the next TPB L, and the second rank flip-
flop by the TPB after that. This disables the EXT
BRQ gate, and the output of the 74565 goes high,
allowing the ring counter to restart.

4.8.3 CLK BR, BRA

During any cycle during which UBRK (load BR) is
asserted, the BR is loaded at the proper time. Dur-
ing a Cache Pause cycle, the data is loaded into the
BR at MEMSYNC+30 ns. During any other type
of cycle, the BR is loaded at T5+30 ns. These oper-
ations are independent of when T1 occurs.

4.8.3.1 Non-Cache Cycles - Refer to Figures 4-8
and 4-9. TMCF CACHE ADRS H is asserted dur-
ing all Cache cycles. RACB ROM 40 L is asserted
and TIGA PAUSE H is high during all Bus Pause
cycles (UBSD=2 or 3). When either CACHE
ADRS or PAUSE are low, gate 2 is high, TSA(1) is
gated through gate 3 and the OR gate and sets flip-
flop 1 one clock period later. The following TPB L,
which occurs at TI, asserts TIGA CLK BR (and
BRA) if RACA UBRK H is asserted.
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g TIGA MEM Syaic H
=< FIA [34)
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CCBC MEM SN H g1 P Ed
13 ~\7sne -
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£z b 9
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Figure 4-8 Clock BR Circuit (Part of D-CS-M8139-0-1, Sheet 3)
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Figure 4-9 Clock BR Timing

4.8.3.2 Cache Cycles - Refer to Figures 4-8 and 4-
9. MEMSYNC gates the data from the Cache into
the BR during a Cache DATI or DATIP. Flip-flop
2 is set prior to the Pause cycle by T3.

Upon entering a Cache Pause cycle, gate 1 is en-
abled. When CCBC MEMSYNC H causes TIGA
MEMSYNC to set, the output of gate 1 goes low,
the output of the OR gate goes high, and flip-flop 1
is set at the same time as T1 (1) H (the ring counter
is restarted by TIGA MEMSYNC). Since RACA
UBRK is asserted, CLK BR is asserted 15 ns later
by TPB L, which occurs at the same time as T1.

Flip-flop 1 is on for only one clock period to en-
sure that only one BR clock pulse is generated.

4.9 MAINTENANCE STOPS

4.9.1 Single Cycle Mode

When the processor is halted and placed in the S
BUS CYCLE mode of operation from the console,
the TIGA SNGCY flip-flop is direct-set to assert
TIGA STOP TI1 and cause the processor to halt af-

ter each single bus cycle is completed (TIGA
PAUSE). When the CONT switch is pressed, TIGB
CONT is asserted and clocks the J-K flip-flop that
sets TIGA CONT (1) on the next TIGB TPB pulse
going high. This enables the K input to the
SNGCY flip-flop so it will reset on the next TPB
pulse going high.

The processor enters T1 and proceeds through an-
other bus cycle. As soon as T1 is entered, the flip-
flop controlled by the CONT switch is reset. The
CONT flip-flop resets on the next clock pulse and
the SNGCY flip-flop is again set on the trailing
edge of that clock pulse. As a result, STOP T1 is
again asserted to stop the processor after a single
bus cycle.

Since TIGA CLK BR is generated by either MEM-
SYNC or T5A (1), independently of T1, the data is
loaded into the BR 30 ns after T5. During Single
Cycle, the clock is stopped in TS5, and the data
from the current cycle could not be displayed if the
BR were clocked by T1 (after the clock has been
restarted).
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49.2 ROM+UPB
SINGLE ROM CYCLE operation (S1=0, S2=1)
stops the clock in T5 of every ROM cycle.

The UPB STOP (S1=1, S2=0) operation stops the
clock in TS when PDRC PB COMP H is high. This
signal is asserted when the microprogram ROM ad-
dress equals the contents of the Program Break Reg-
ister [PDRC PB(07:00)}. This read/write register is
accessed at address 17 777 770.

Maintenance module switch inputs XMAA S1 and
S2 are decoded, ORed and input to the TIGB
ROM+UPB (1) H flip-flop, which is cleared by T5
(1) L and clocked by the following TPB L (at the
trailing edge of T1 (1) H). Since the CONT flip-
flop is cleared, the clock is stopped in T2.

4.9.3 TIGB CONTL

It should be notea that, except for single clock
cvele operation, either the Console CONT switch
or the maintenance stepper XMAA S4 can be used.
XMAA S4 must be used for single clock cycling.
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This chapter examines the types of processor data
transfers (Paragraph 5.1), discusses the Unibus inter-
face, in general terms (Paragraph 5.2), .and de-
scribes processor data exchange with the Unibus
(Paragraph 5.3).

In order to execute instructions, the processor ex-
changes data with the Cache and with Unibus de-
vices; it contains the Unibus arbitrator, which
decides which device obtains the use of the Data
Section of the Unibus. The Unibus arbitrator is a
part of the processor priority network, which is de-
scribed in Chapter 6.

In order to exchange data with either the Cache or
with a Unibus device, the processor must supply
the following information:

1. An Address, which defines the device or
the location in memory with which the
data exchange is to take place; address
generation is described in Section IV of
this manual.

2. Control information, which specifies the
direction of the data transfer; the C bits
determine the type of transfer and are de-
scribed in this chapter.

3. Data, in the case of a transfer from the
processor to the Cache or to the Unibus;
data is supplied to the Cache by the BR
and to the Unibus by the Data Multi-
plexer (DMX), both of which are de-
scribed in Chapter 2.

5.1 PROCESSOR DATA TRANSFERS

The processor requires two ROM states to execute
a data transfer; a BUST (BUs STart) cycle and a
Bus Pause cycle, during which the transfer of data

CHAPTER 5
DATA TRANSFERS

takes place. A BEND (Bus END) cycle may replace
the Pause cycle if the transaction is not to be com-
pleted (either due to error or to the microprogram).
Stack and Address errors (aborts, refer to Chapter
6) are detected prior to the completion of a Bus
cycle and cause a BEND. Conditions in the micro-
program which can cause a BEND are those where
Bus cycles are started in anticipation of certain
forks or branches. If the fork or branch results in a
condition which does not require the Bus cycle to
be completed, it is stopped by a BEND. An ex-
ample of this is found on Flows 5: D12.00, D12.80
and D12.90 all do a BUST and branch to one of
three cycles; one of these, D12.70, does not require
a Bus cycle and does a BEND.

Refer to Figure 5-1. During the BUST cycle, the vir-
tual address is generated from the BAMX; Memory
Management in turn generates the physical address.
RACH BUST H is received by the Cache, which
starts a CPU cycle if it is idle. During the BUST
cycle, the type of transaction is determined by de-
coding the BSC ROM field (refer to Paragraph
5.1 ).

Cache Address

If the physical address is a Cache reference, SAPN
NOT CACHE ADRS is negated and TMCE CON-
TROL OK is sent to the Cache, which allows the
data cycle to start. The clock is stopped in TS and
ts restarted upon receipt of the assertion of CCBC
MEMSYNC H, by which the Cache indicates com-
pletion of its data cycle, i.e., data is ready on read,
or taken in on write (refer to Section VI, Cache).
At Tl, the data from the Cache is strobed into the
BR (refer to Chapter 4). In the case of a read-hit
(i.c., the word is in the Cache and a Main Memory
cycle is not necessary) the clock generally does not
stop, because the data is ready and MEMSYNC is
asserted before TS.
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Figure 5-1
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Unibus Address

If the physical address is a Unibus reference, SAPN
UNIBUS ADRS L and SAPN NOT CACHE
ADRS H are both asserted and the clock is
stopped for a minimum of 90 ns in T2. TMCE
CACHE BEND H is asserted and causes the Cache
to stop its CPU data cycle. Refer to Section VI.

Thirty ns after the assertion of T2, UBCA CPBSY
is set, if all NPRs have been serviced and if no
abort is pending.

SCCD INTD REG (1) L is asserted if the Unibus
address is a reference to one of the registers that
are read on the Internal Data Bus (refer to Chapter
2, Paragraph 2.2.2). If this is the case, CPBSY is re-
set, MSYN is disabled, the 90 ns SO-S1 delay is
completed, the clock is restarted, and the contents
of the register that is being referenced is clocked
into the BR at the end of the PAUSE ROM state.

If the Unibus reference is not to an INTD register,
a Unibus data cycle is executed. The TIG clock is
stopped and stays stopped past the 90 ns SO-S1 de-
lay. Address, type of transaction (C1, CO) and, if re-
quired, data are put onto their respective Unibus
lines and deskewed. MSYN is asserted. The Unibus
device that is being addressed executes the transac-
tion and responds by asserting SSYN. The clock is
restarted 75 ns after receipt of this signal.

At T3, MSYN is negated and the data is clocked
into the PDRJ buffer. At T1 of the next cycle, ex-
cept in the case of a DATIP, the Unibus lines are
cleared by negating CPBSY. If the transaction was
a DATIP, CPBSY is not negated, the address lines
are not changed (except if the data-out is to be a
DATOB, in which case, A0O is changed from 0 to |
for an odd byte address), the C lines are adjusted,
and the data is put on the D lines.

In the case of a DATI or DATIP, the data is
clocked into the BR at Tt.

Aborts

If an abort occurs, the microprogram forces the
ROM address to 200 (ZAP.00). This occurs at T2
of PAUSE for all aborts except parity aborts,
which ZAP at T2 of the cycle following the

PAUSE. A Memory Management abort vectors
through address 250. A parity error abort vectors
through address 114. All other aborts vector
through address 4. (Refer to Chapter 6.)

5.1.1 Types of Data Transfers

Four types of data transfers are used by the KB11-
C. These types are defined by the condition of the
Control bits Cl1 and CO (TMCE CI H and TMCE
CO H):

C1=0, C0=0 - Data-in or DATI. One word
of data is transferred to the processor from
memory or from the Unibus.

C1=0, CO=1 - Data-in, PAUSE or DATIP.
Same as DATI, but a data-out must be exe-
cuted to the same address immediately follow-
ing the DATIP. This type of data transfer
may be considered as the first part of a
read/modify/write operation.

Cl=1, C0=0 - Data-out or DATO. One
word of data is transferred from the processor
to memory or to the Unibus.

Cl=1, C0=1 - Data-out, byte or DATOB.
One byte of data is transferred from the pro-
cessor to memory or to the Unibus. The high
order byte address is odd and its data is
stored in bits 15:08 of a word; the low order
byte address is even and its data is stored in
bits 07:00 of a word.

The CI and CO signals are obtained by decoding
the BSC bits as shown on drawing TMCE.

1. When RACC UBSCO02 H is negated
(low or BSC = 0 - 3) the 745153 multi-
plexer is disabled, and both of its out-
puts are low. Thus, TMCE Cl1 H and
CO H are low and call for a DATI.

2. When RACC UBSC02 H is asserted
(high or BSC = 4 - 7), the BUS COND
multiplexer is enabled and its output is a
function of RACC UBSCO1 and
UBSCO00, as defined by the table on
TMCE.
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The BUS CONDITION (BSC) bits of the micro-
program ROM determine the type of data transfer
by its control of the C lines [TMCE CI (and CO0)
H]. The significance of the BSC bits is defined
below:

BSC=000 - DATI (data-in), a transfer of one
word of data from a slave to the processor.

BSC=001 - SRC1 DATI (SouRCe | DATI),
a DATI used in odd address error detection
to distinguish the first bus operation of source
calculation. During a byte instruction, this
transaction cannot use an odd address if the
source mode is 3, 5 or 7. These are deferred
addressing modes and this transaction reads a
word containing the address of the operand;
this word cannot be odd.

BSC=010 - KERNEL DATI; a DATI is exe-
cuted, and Memory Management selects the
KERNEL PAR/PDR set (refer to Section IV,
Memory Management) used in the Trap and
Interrupt Service routines to obtain vectored
PC and PS from Kernel PAR 0. KERNEL
DATI also affects the processor mode bits
[PS(15:12)] as explained in Chapter 3.

BSC=011 - SRC2 DATI (SouRCe 2 DATI),
a DATI used in odd error detection to dis-
tinguish the second bus operation of a source
calculation. During a byte instruction, this
transaction may use an odd address.

BSC=100 - FC (Floating Point Processor
Conditions). Used during FPP Unibus transac-
tion: TMCE C1 H follows the FPP Cl line
(FRM1J FP CI H) and CO is always negated,
since the FPP does only word operations.

BSC=101 - DATO (data-out), a transfer of
one word of data from the processor to a
slave.

BSC=110 - BSOP! (BuS OPeration 1); In-
struction-dependent bus transaction, specified
in execute ROM cycles, common to several in-
structions that require different types of bus
operations. An O/class instruction calls for a
DATO, a P/class instruction for a DATIP,
and one that is neither O/ nor P/class for a
DATI. No instructions are both O/ and
P/class. Instruction classes are defined in
Chapter | and on Flows 3 and 5.

BSC=111 - BSOP2 (BuS OPeration 2). In-
struction-dependent bus transaction. If the in-
struction is a byte instruction, a DATOB
(data-out, byte) is executed; if it is not a byte
instruction, a DATO is executed.

5.1.2 Types of BUST Cycles

There are two types of BUST cycles: conditional
and unconditional, which are described in Chapter
1 (Paragraph 1.2.5.1).

A BUST cycle is one in which the MiSCellaneous
(MSC) bits of the microprogram ROM equal 5 or
7

MSC=5 - CONDITIONAL BUST. This
value occurs only in IRD.00 (Flows 1), which
generates the A Fork. RACH BUST H is as-
serted during this cycle, except when the cycle
that follows is also a BUST cycle.

MSC=7 - BUST, unconditional.

5.1.3 Types of Pause Cycles

The BUS DELAY (BSD) bits of the microprogram
ROM determine the type of Pause cycle to be exe-
cuted, if any. The significance of the BSD bits is de-
fined below:

BSD=00 - No Pause.

BSD=01 - Interrupt Pause or INTR PAUSE.
The Timing Generator is stopped in T2. A
Bus Grant is issued. The Timing Generator is
restarted by INTR, NO SACK or Passive Re-
lease of the Unibus.

BSD=10, BSD=11 - Bus Pause. Used for In-
ternal Data Bus (INTD), Unibus and Cache
transactions:

INTD - The Timing Generator is
stopped in T2 for 90 ns.

UNIBUS - The Timing Generator is
stopped in T2 and restarted after a min-
imum 90-ns delay by SSYN, Timeout or
TMCC ABORT.

CACHE - The Timing Generator is
stopped in TS and restarted by MEM-
SYNC or TMCC ABORT.
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5.1.4 BEND Cycle

Refer to drawing TMCE. When the ROM BCT
(Bus Control) field equals 7, TMCE ROM BEND
L is asserted. This condition is indicated by
“BEND" on the Flows.

TMCE CACHE BEND H causes the Cache to stop
a data cycle. It is asserted by a ROM BEND, when
the physical address does not indicate a memory ref-
erence (TMCF CACHE ADRS not asserted), by a
Memory Management abort (SSRC KT ABORT
FLG), by a fatal stack violation (TMCD SL RED)
or by an odd address error (TMCC ODD ADRS
ERR).

TMCE KT BEND L, when asserted, prevents the
modification of the contents of some Memory Man-
agement registers and the setting of the KT
ABORT FLAG.

5.2 UNIBUS INTERFACE

The Unibus is the transmission medium that inter-
connects the various components of the PDP-11/70
system, such as peripheral devices, the KB11-C Pro-
cessor and the Cache Memory via the Unibus Map.
The principal connection between the processor and
the Cache, however, is direct and does not use the
Unibus. Main Memory can only be accessed
through the Cache.

The Data Section of the Unibus is used for data
transfers between a master device, which controls
the transaction, and a slave device, which responds
to the master. A master asserts BBSY (Bus Busy);
it determines the type of data transfer and is the
only device that may assert MSYN (Master SYNc);
a slave executes the transaction requested by the
master and asserts SSYN (Slave SYNc¢). The pro-
cessor is generally a master during Unibus transac-
tions, but in the special case of interrupts, it acts as
a slave device.

Only one data transfer may occur at a time on the
Unibus, and the priority arbitration logic decides
which device may use the data transfer lines on the
Unibus. (Refer to Chapter 6, Paragraph 6.3).

5.3 WUNIBUS DATA INTERFACE
The KB11-C uses the Data Section of the Unibus
for the following types of data transfer:

1. To transmit or to receive data from
Unibus devices such as peripheral con-
troller control registers.

2. To access memory via the Unibus Map
and then through the Cache; this path is
used mainly for diagnostic purposes.

3. To read (only) its control registers (PS,
SL, PIR, PIA and PB).

4.  To receive a vector during an interrupt
transaction.

The transactions listed in (1) and (2) above are iden-
tical, and (3) is very similar. These operations are
described in this paragraph. The interrupt transac-
tion is explained as part of the Unibus arbitration
interface in Chapter 6, Paragraph 6.4.

5.3.1 Unibus Data Transfer Protocol
In order to execute a data transfer on the Unibus,
the processor must obey the Unibus protocol:

I.  The processor obtains the use of the
Unibus from the Unibus priority arbi-
tration logic (refer to Chapter 6).

2. The processor asserts BBSY, thus becom-
ing bus master.

3. The processor defines the slave device
with which it wants to communicate. To
do this, the processor puts a Unibus ad-
dress on the A lines [BUS A(17:00) L on
SCCL]. Memory Management generates
this address (refer to Section IV of this
manual).

4. The processor defines the type of data
transfer to be execuuted, which is deter-
mined by the C lines (BUS CO L and
BUS ClI L on UBCC). Data transfers
may be either from the processor to a
slave (data-out: DATO or DATOB) or
from a slave to the processor (data-in:
DATI or DATIP).
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9a.

9b.

If the intended data transfer is a DATO
or a DATOB, the processor puts the
data word or byte on the Unibus D lines
[BUS D(15:00) L on PDRE]. Data selec-
tion is described in Chapter 2, Para-
graph 2.3.2.

When these bits (Unibus A, C and D
lines) become valid, they are deskewed
for 150 ns to allow for decoding in the
slave and for variations in bus driver
and receiver characteristics (address
deskew).

The processor then asserts MSYN:

a. Ifit is executing a DATI or a DA-
TIP, when the negation of SSYN
from the previous Unibus transac-
tion has been received,

b.  If it is executing a DATO or a DA-
TOB, 150 ns after receipt of the ne-
gation of SSYN from the previous
transaction.

The slave receives the assertion of
MSYN and either accepts the data from
the D lines (DATO or DATOB), or puts
the data requested by the processor on
the D lines (DATI or DATIP). The
slave then asserts SSYN.

DATI or DATIP - Upon receipt of the
assertion of SSYN, the master deskews
the data received for a minimum of 75
ns. The master then strobes the data and
negates MSYN.

DATO or DATOB - The master may ne-
gate MSYN upon receipt of the asser-
tion of SSYN. The KBI11-C, however,
waits 75 ns before negating MSYN.

The master waits a minimum of 75 ns af-
ter negating MSYN, then removes the
address and control bits from the A and
C lines. The master then negates BBSY,
except in the case of a DATIP, where
this signal must remain asserted during
the DATO or DATOB that follows the
DATIP.

11. The slave typically negates SSYN upon
receipt of the negation of MSYN.

12. If the assertion of SSYN is not received
within a specified amount of time (Time-
out Delay), the instruction is aborted.

5.3.2 Unibus Data Interface

The Unibus data interface is shown on drawings
UBCA, UBCB and UBCC. This interface imple-
ments the Unibus data transfer protocol.

The description that follows refers to processor

Unibus device references, which include the Mem-

ory via the Unibus Map. Processor Control Regis-

ter references differ in some details from these

transactions. These differences are described at the

end of this paragraph.

5.3.2.1 Unibus Device References

l. During the BUST state, Memory Man-
agement generates the Unibus address,
which becomes valid by T1 of the
PAUSE state. SAPN UNIBUS ADRS
L, when asserted, informs the processor
that a Unibus transaction is required.
The Bus Condition (BSC) ROM bits are
asserted during the BUST and during
thc PAUSE states.

2. During T1 and T2 of the PAUSE state,
the Unibus Data Multiplexer (PDRE
DMX) selects the input to the Unibus
data drivers [BUS D(15:00) L]. Refer to
Chapter 2, Paragraph 2.3.2).

3. Refer to drawing UBCA and to Figure
5-2. SAPN UNIBUS ADRS L enables
the gate that clocks the UBCA CPBSY
flip-flop.

The TIG clock is stopped in T2 of the
PAUSE state (refer to Chapter 4). TIGA
PSEUDO T3 H is asserted 30 ns after
T2.

When all NPRs have been serviced, and
if no abort is present, and when the pre-
vious master has negated BBSY, UBCE
CPBSY is clocked and the processor be-
comes master by asserting BUS BBSY
L.
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T1
DATI-DATIP-DATO I

VIRTUAL ADDRESS

PHYSICAL ADDRESS

SAPN NOT CACHE ADRS H

SAPN UNIBUS ADRS H

TIGA PSEUDO T3 H

CP BUSY CLOCK H

UBCA CP BUSY H

UBCA START BUS (1) H

UBCA MSYN (1) H

BUS SSYN H

TIGC T3 H

TIGA BR CLKH

NOTES:

BUST T2 T2 T2 PAUSE
+
T2 T3 T4 T5 Tt T2 30 60 90 T3

I

Z

SEE NOTE # | —=

2

R

SEE NOTE # 3-\—\:|

150NS ADRS
DESKEW

!
.
—_f———f—_ - — - - - 1 | — -}

R ®

N

SEE
I NOTE #2

A

R

L - - -} -} - ——

I

J

SEE NOTE #4

. SEE NOTE # 5— |

1. Set CP BUSY if ~(NPR + NPG + SACK
+DSACK + ABORT + BBUSY).

2. CP BUSY is not cleared if DATIP cycle.
It is cleared on DATO portion of DATIP/
DATO.

Used to start DATO address deskew on
DATIP/DATO operation.

75 ns data deskew is obtained by 2 stage
synchronizer on TIGA.  Unibus data is
loaded into PDRH buffer register at T3.

Address & control are deskewed from
T3 to T1. PDRH buffer register loaded
to BR at T1.

Figure 5-2 Unibus Data Transfers
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0.

UBCE CPBSY B H gates the address
[BUS A(17:00) on  SCCL], the data
[BUS D(15:00) on PDRE] and the Con-
trol bits (BUS CI and BUS CO on
UBCC), onto the Unibus.

TIGA PSEUDO T3 also clocks and sets
UBCE START BUS. If the transaction
is a DATO or a DATOB (UBCC C1 B
H asserted) and SSYN is negated, the
150 ns address deskew is started. If the
transaction is a DATI or a DATIP, the
deskew is started without regard to the
state of SSYN.

Upon completion of the delay, if SSYN
is negated, BUS MSYN is asserted by
UBCA MSYN.

Upon receipt of the assertion of (UBCB)
BUS SSYN from the slave, and since
MSYN is being asserted by the pro-
cessor [UBCE MSYN (1) H], UBCB CP
SSYN is asserted. This signal clears
UBCA START BUS and thus disables
the direct-set input to UBCA MSYN (1)
H.

UBCB CP SSYN L also causes UBCB
TIG RESTART to be asserted. This sig-
nal causes the clock to be restarted. T3
is asserted 75 ns (minimum) after TIG
RESTART is asserted (refer to Chapter
4). T3 clocks the UBCA MSYN flip-flop
off and negates BUS MSYN.

If the transaction is a DATI or a DA-
TIP, the data is clocked into the Bus Buf-
fer Register [PDRJ D(15:00) H] at T3.
The 75-ns delay between the assertion of
TIG RESTART and that of T3 is the re-
quired data deskew.

At TI of the microprogram state that fol-
lows the Pause cycle, in the case of a
DATI or of DATIP, the data from
PDRJ D(5:00) H is clocked into the BR.
This is shown as “T6é BR<BUS” of
PAUSE on the Flows.
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At the same time (T1) CPBSY is direct-
cleared and BUS BBSY L is negated, ex-
cept in the case of a DATIP, when
BBSY must remain asserted until the
end of the DATO or DATOB that fol-
lows the DATIP. This is controlled by
the 74S74 flip-flop on UBCA whose D
input is UBCC DATIP L; UBCE
MSYN- (1) H clocks this flip-flop, which
controls the direct-clear input to UBCE
CPBSY.

When UBCA CPBSY B H is negated,
the address, data and control bits are re-
moved from the Unibus.

5.3.2.2 Unibus Timeout - If SSYN is not received
in response to the assertion of MSYN by the pro-
cessor within 10 us a Unibus Timeout occurs.

Refer to drawing UBCA. The 74193
binary counter is kept cleared by UBCA
MSYN (0) H. When the MSYN flip-flop
is set, the counter is free to count up. It
is clocked by UBCD FREE CLK (0) H
(30 ns pulse every 90 ns) refer to Para-
graph 6.4.1). On the 16th clock pulse, a
carry is generated which sets the UBCA
START TIMEOUT L latch. This
counter allows single clock cycle mainte-
nance module operations when referen-
cing Cache registers (or the Cache via
the Unibus Map). If the Timeout one-
shot was started immediately upon the
assertion of MSYN, the Cache, which
uses the processor time pulses, could not
complete the transaction and Timeout
would always occur.

Refer to drawing UBCB. The latch
starts the timeout 74123 one-shot (10
us).

If the assertion of BUS SSYN L is re-
ccived before the end of the 10 us, the
onc-shot is cleared.



If the assertion of BUS SSYN L is not
received by the end of the 10 us the one-
shot times out, UBCB TIMEOUT is set
and disables the direct-set gate to UBCA
MSYN (1) H. TMCC BUS ERROR L
and TMCC ABORT H are asserted.

3. Since the clock is stopped in T2 of the
Pause cycle (RACB UBSDOl H as-
serted), TMCC ABORT H asserts
UBCB ABORT RESTART H. This sig-
nal restarts the TIG clock as in (7)
above. The microprogram goes to
ZAP.00, thus ending the data transfer
cycle.

UBCB TIMEOUT B H sets TMCD
UBUS TIMEOUT H (bit 04 of the CPU
Error Register) when TMCC ABORT
CLK L is asserted at T3 of PAUSE. The
CPU Error Register may be read from
address 17 777 766.

5.3.2.3 Control Register Reference - The processor
Control Registers (PS, SL, PIR, PIA and PB) are
described in Chapter 3. They present a special case
of data transfers:

l. They are written directly from the BR,
whether they are referenced by Unibus
address or by the microprogram. A
Unibus cycle is performed as described
below when the reference is by Unibus
address.

2. The PS can be read either via the Inter-
nal Bus (Chapter 2, Paragraph 2.2.2) or
via the Unibus. The SL, PIR, PIA and
PB can only be read via the Unibus, and
not via the Internal Bus.

When referenced by its Unibus address, the register
to be read is selected by the DMX. Refer to Chap-
ter 2, Paragraph 2.3.2.

The logic sequence is the same as that for Unibus
device references, with the exception that the pro-
cessor itsell must generate SSYN.

Refer to drawing UBCC. SCCE INTERNAL
ADRS H is asserted when any one of the addresses
in the range of 17 777 770 — 17 777 776 is decoded
by Memory Management. These addresses .are
those of the Control Registers.

Fifty nanoseconds after UBCA MSYN (1) is as-
serted, BUS SSYN L (UBCC) is asserted. This sig-
nal is received by the bus receiver on UBCB and

asserts UBCB TIG RESTART H, which restarts

the TIG clock.
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An Abort is the non-completion or interruption of
a data cycle due to error. This may be a non-recov-
erable error or, if Memory Management is enabled,
a prohibited transaction. Aborts are serviced imme-
diately, prior to the completion of the instruction
during which they occur.

A Trap is an interruption of the normal program
flow by internal machine conditions. These condi-
tions can be, but are not necessarily errors. A Trap
is exccuted after the instruction during which it oc-
curs is completed.

An Interrupt is similar to a Trap, but is caused by
conditions external to the machine. These condi-
tions may be program action (PIR) or external de-
vice service requests (BR). Interrupts are controlled
by bits 7 - 5 of the Processor Status Word (PSW).

All of the above use the microprogram Service
Flows, which are described in Paragraph 6.1.
Aborts are explained in Paragraph 6.2, traps and
processor interrupts in Paragraph 6.3, and external
(Unibus) interrupts in Paragraph 6.4.

6.1 SERVICE FLOWS AND VECTORS

The microprogram Service Flows (Flows 12 and 13)
are used during all aborts, traps and interrupts.
During these cycles, the PC and PS of the sub-
routine that is required by the abort, trap, or inter-
rupt are read from memory and the PC and PS of
the instruction that caused the entry into the Ser-
vice Flows are pushed onto the new stack, as deter-
mined by the processor mode bits of the new PSW
[PS(15:14)].

CHAPTER 6

ABORTS, TRAPS AND INTERRUPTS

6.1.1 Vectors

During all aborts, traps and interrupts a Vector is
obtained. The vector is the address of the location
where the PC for the required subroutine is stored.
The vector+2 is the address of the location that
contains the new PSW.

During an external interrupt, the vector is provided
by the device causing the interrupt, and is read
from the Unibus. Refer to Paragraph 6.4. During a
power-up, it is read from the Start Vector (SV).
During all aborts, internal traps and processor PIR
interrupts, it is read from the Trap Vector (TV)
logic.

Refer to drawing DAPE. The SV (power-up) is gen-
erated by jumpers and is input to the ALU by the
BMX. The jumpers may be cut to provide a SV be-
tween 00 000 000 and 00 000 174 or between 17 173
200 and 17 173 374.

The TV bits [DAPE TV(01:04) H, TV06 H and
TV05*%07 H] are controlled by functions generated
on TMCB and IRCD. The vectors generated for

‘cach function are listed on DAPE. If none of these

is asserted, the vector is 4 (TV02).

IRCD decodes the operation code of the IOT, BPT
(OPCODE3), EMT and TRAP instructions, which
do nothing but generate an interrupt. They are
shown on Flows 3, on the A Fork.
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6.1.2 CPU Error Register

The CPU Error Register allows the program to de-
termine which abort or trap to location 4 caused en-
try into the Service Flows. It contains the following
bits:

Bit Name Function

7  Illegal Halt (trap) Set when trying to execute
a HALT instruction when
the CPU is in User or
Supervisor mode (not
Kernel).

6 0Odd Address Set when a program

Error (abort) attempts to do a word
reference to an odd ad-
dress.

5 Non-existent Set when the CPU at-

Memory (abort) tempts to read a word
from a memory location
higher than system size
register. This does not in-

clude Unibus addresses.

Set when there is no
response on the Unibus
within approximately 10
microseconds.

4  Unibus Timeout
(abort)

3 Yellow Zone Set when a yellow zone

Stack Limit (trap) trap occurs.
2 Red Zone Set when a red zone abort
Stack Limit (abort)  occurs.

The CPU Error Register is read on the internal
data bus (INTD) at address 17 777 766.

6.1.3 Service Flows

6.1.3.1 Entry into the Service Flows - Aborts and
Power-up enter the Service Flows through ZAP.00;
traps and interrupts enter through BRK.90. The
EMT, TRAP and reserved operation codes (from
the A Fork, Flows 3) enter through RSD.00. The
BPT (OP3) and 10T (also from the A Fork), and
the illegal HALT, enter through TR.00.
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RSD.00 and RSD.10 generate a trap vector (TV) of
4 and shift it left to obtain the correct vector,
which is 10. TRP.00 generates the correct TV.
These cycles all enter SVC.00 through TRP.10.

6.1.3.2 BRK.90 and ZAP.00 — These two cycles do
a BEND, which ends any bus operation that may
have been started during the previous cycle.

In addition, ZAP.00 does a BRQ STROBE, which
allows setting the CONF after BRK.00 if the
HALT switch is down and the S BUS CYCLES
INST switch is in S INST.

The BENO06 branch after ZAP.00 checks SSRA PS
RESTORE (1) H (Memory Management abort dur-
ing SVC.70 or SVC.90). Refer to Paragraph 6.2.1.3.

6.1.3.3 BRK.00 and BRK.10 - The INTR PAUSE,
during which the vector is read from the Unibus
during an external interrupt, occurs during
BRK.00. INTR PAUSE is described in Paragraph
6.4. The PC of the instruction preceding the service
sequence is stored in the SR.

During BRK.10, the INTR vector is moved into
the DR.

6.1.3.4 Branch Enable 13 - The logic that controls
Branch Enable 13 (BENI13) is shown on TMCB.
All the errors and requests that might be honored
to cause an internal trap are ORed to provide an
output called TF (and its complement, -TF). The
74H50 gates provide the following two outputs:
TMCB PF (0)*(SF+TF) H and TMCB PF (0)*(SF+-
TF) H. These outputs control which of four micro-
branch paths will be followed:

1. PUPF (0) L - If the Power-up flag is set,
neither output will be asserted. Micro-
state PUP.00 (100) will be entered.

2. TF - When the Power-up and Stack Er-
ror flags are both cleared [PUPF (0) L
and -SERF (1) L] and a trap condition
exists, only the TMCB PF (0)*(SF+TF)
H output will be asserted. This output
causes microstate BRK.80 (140) to be
entered.



3. -TF - When the Power-up and Stack Er-
ror flags are both cleared and no inter-
nal trap conditions are present (-TF),
only the TMCB PF (0)*(SF+-TF) H out-
put will be asserted. This causes micro-
state BRK.20 (120) to be entered.

4, SF - If the Stack Error flag is set and
the Power-up flag is not, SERF (1) L
will assert both outputs. This will cause
the SER.00 microstate (160) to be
entered.

The Power-up sequence is described in Paragraph
6.5 and the INTR in Paragraph 6.4.

6.1.3.5 Red Stack Error (SER.00 and SER.10) -
The PC and PS pushes in SVC.60 - SVC.80 must
be made to locations 0 and 2 of the stack. For this
reason, SER.00 and SER.10 set the stack pointer,
GR(6), to 4.

After this cycle, the Red Stack Error flows rejoin
the flows for all other internal traps by entering
BRK.80.

6.1.3.6 BRK.80 and BRK.20 - During BRK.80 the
trap vector is read into the DR. The PS is loaded
into the BR in both cycles.

The ACKN in BRK.20 clears the INTR flag.

6.1.3.7 BK.30 - This cycle is followed by SVC.00
- SVC.90, which are common to all aborts, traps
and interrupts. The ACKN in this cycle sets and
clears several functions related to the service flows.

6.1.3.8 Entry into SVC.00 - SVC.00 is entered
from either TRP.10 or from BRK.30. At this time,
the vector (address of the new PC, which is read
first) is in the DR, the old PC is in PCB and in the
SR, and the old PSis in the PSW and in the BR.

6.1.3.9 SVC.00 - SV.90 - During these cycles, the
PC and PS for the software service routine are read
from the Kernel stack during SVC.00 - SVC.20.
KERNEL DATI forces Kernel mode but does not
change the status bits in the PSW [PS(15:14)]. Re-
fer to Chapter 3.

The new PS is loaded into the PSW during SVC.30.
SVC.40 loads the SP into the DR and SVC.50 decr-
ements the SP.

SVC.60 - SVC.90 push the old PS and PC onto the
current mode stack as determined by the new PS. If
a Memory Management abort occurs during these
cycles, the PS RESTORE branch is taken after
ZAP.00. Refer to Paragraph 6.2.1.3.

SVC.90 does a BRQ STROBE. It is followed by
FET.00.

Table 6-1 shows in detail the movement of data in
the processor registers during these cycles.

6.2 ABORTS

Aborts are grouped under three headings in this
paragraph: Address, Stack and Parity. The several
errors, and their timing, are described under these
headings in this paragraph.

6.2.1 Address Errors

An address error causes the Address Error flag
(TMCC AERF (1) H) to be set. An address error
may be one of the following:

I. Odd Address error,

2. Non-Existent Memory error,
3. Memory Management abort,
4.  (Unibus) Timeout error,

provided the bus cycle during which the error oc-
curs is not a push to the Kernel stack.

6.2.1.1 Odd Address Error - An odd address is per-
missible only during a byte instruction, and then
only when the transaction is a SRC1 DATI and the
source mode is not 3, 5 or 7, a SRC2 DATI, a
BSOP! or a BSOP2. TMCC ODD ADRS ERR L
is asserted when the address is odd (BAMXO00=1)
and these conditions are not met. The bus cycle is
aborted and a trap to 4 is executed.

SRC1 DATI is the first bus operation of source cal-
culation: if the source mode is 3, 5 or 7 (all de-
ferred modes), this transaction reads the address of
the operand, which cannot be odd. SRC2 DATI
reads the operand, whose address during a byte in-
struction may be odd.

BSOPI generates DATIP for a P/class instruction,
a DATI for an instruction that is neither P/class
nor O/class and a DATO for O/class instructions;
no byte instructions are O/class.

BSOP2 generates a DATOB for byte instructions
and a DATO for all others.
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Table 6-1
Service Flows

ucycle Type of DR SR BR PCA PCB BAMX PS GR[6] Comments
ucycle
Initial Conditions Vector old PC old PS old PC old PS
BRK.30 ACKN new PC to BR from
TRP.10 BUST old PS Vector Kernel space.
SVC.00 PAUSE
SVC.10 BUST | VEC+2* new PC* VEC+2 g ?p‘;‘zeps to BR from Kernel
SVC.20 PAUSE old PC* new PC old PS*
SVC.30 old PS¥ new PS* | old PS new PC* new PS New PS to PSW
SVC.40 old PS* New SP (GD[6]) to DR
SVC.50 new SP* new SP-2 | Decrement SP
First Push:
SVC.60 BUST new SP-2 new SP-2 new SP4 g old PS to new Stack;
decrement SP
SVC.70 PAUSE
Second Push:
*
SVC.80 BUST new SP4 old PC new SP4 old PC to new Stack
BRQ STROBE if not SERF
SVC.90 PAUSE g or PWRF
CLEAR FLAGS
FET.00 ; (SERF or BLOCK STROBE)
FET.10 or
BRK.90

*Qccurs at T1, shown as T6 on Flows.



TMCD ODD ADRS ERR L is asserted under the
following conditions:

1. The address is odd (BAMX00=1) and
the instruction is not a byte instruction
(IRCD BY IN H negated). The third
gate from the top is asserted in this case.

2. If the address is odd and this gate is not
asserted, the instruction is a byte instruc-
tion, and either the top or the bottom
gate can cause ODD ADRS ERR to be
asserted:

a. If the BSC field calls for a DATI,
a KERNEL DATI, a Floating
Point Bus Operation or a DATO
(BSC=0, 2, 4, or 5), the top gate is
asserted;

b. If the BS field calls for a SRCI
DATI or a DATI (BSC=0 or 1)
and a source mode of 3, 5 or 7, the
bottom gate is asserted. Note that
a DATI causes the top gate to be
asserted without regard to the
source mode.

6.2.1.2 Non-Existent Memory Error - TMCC
NEXM L is asserted when an address is neither a
Unibus nor a Cache address. This is determined by
ANDing SAPN NOT CACHE ADRS H and
SAPN UNIBUS ADRS L. Refer to Section IV of
this manual for a description of these functions.

The bus cycle is aborted when reference is made to
an address larger than that specified by the System
Size Register. The Trap vector is 4 for an NEXM
error.

6.2.1.3 Memory Management Aborts - Memory
Muanagement aborts are described in Section IV of
this manual. SSRC KT ABORT FLG L informs
the TMCC logic of such an abort condition. This
signal is inhibited when a Stack Limit Red, Odd
Address or Non-Existent Memory error is asserted
(TMCE KT BEND L). In other words, a Memory
Management abort is allowed if no Stack or Ad-
dress abort is flagged.

KT ABORT asserts TMCC ABORT H and, at T3
of the Pause cycle, sets TMCC SEG ABORTED
(1) H, except in the case of a Console operation
(UBCF CNSL ACT (0) H).

The SEG ABORTED flip-flop generates the Trap
vector for a Memory Management abort. This TV
is 250 unless the bus cycle during which the error
occurs is a push to the Kernel stack; in this case,
the vector is 4 (Stack error, see Paragraph 6.2.2).
Refer to TMCB: TMCB SEGT L, when asserted,
generates vector 250 on DAPE. SEGT is asserted
for an abort when TMCC SEG ABORTED and
AERF are both asserted. AERF, however, cannot
be asserted when the error is a Stack error (i.e.,
when TMCC KERNEL R6 is asserted). In this last
case, the vector is 4 instead of 25,

PS RESTORE

The Service Flows first fetch the new PC and PS
from the vector address; the Kernel stack is used
for this operation (SVC.00 - SVC.50). The old PS
and PC are then pushed onto the new stack
(SVC.60 - SVC.90).

IT the new stack is not the Kernel stack, and if
Memory Management is enabled and causes an
abort during the pushes in SVC.70 or SVC.90, this
abort may be a length error, which in this case is a
non-Kernel stack error. (A Red Stack error would
have occured if the Kernel stack was being used).

1. The microprogram goes to ZAP.00.
SSRA PS RESTORE (1) H has been as-
serted during the push cycle that causes
the abort and the microprogram
branches to ZAP.10. At this time, the
PC and PS of the instruction that caused
entry into the Service Flows are in the
SR and PCA. PCB and PSW contain the
values for the abort, trap or interrupt
that was being serviced.

2. ZAP.10 - ZAP.30 restore the PC and PS
of the instruction that caused entry into
the service routine. The Service Flows
are now reentered via BRK.00, BRK.10,
and BRK.80. This last cycle fetches the
trap vector, which is 250 (Memory
Management).

3. BRK.30 - SVC.30 get the Memory Man-
agement subroutine PC and PS. This sub-
routine is typically a Kernel subroutine,
and the pushes in SVC.70 and SVC.90
are then to the Kernel stack, and no er-
ror should occur.
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4. At the end of the Service Flows, control
is transferred to the Memory Manage-
ment software subroutine. This sub-
routine typically finds the error that
caused the abort and corrects the error.
In this case, it may allocate more space
for the stack.

5. When the software subroutine returns
control to the main program, the instruc-
tion that originally caused entry into the
Service Flows is executed again and
causes a new entry into the Service
Flows. Since more stack space has been
allocated by the software subroutine, the
pushes are not successfully executed.

Refer to Section IV of this manual for a description
of Memory Management aborts.

6.2.1.4 Timeout Error - UBCB TIMEOUT B L is
asserted when a processor Unibus cycle cannot be
completed because no device responds to MSYN

within approximately 10 us. The bus cycle is
aborted in this case. Refer to Chapter 5, Paragraph
5.3.2. The Trap vector is 4 for a Unibus Timeout
error.

A Main Memory timeout on a processor (not a
Unibus) cycle is flagged by CCBD CP TIMEOUT
L. This signal direct-sets PDRH CACHE PERF L,
the Cache parity abort flag, and a Main Memory
timeout is processed as a fatal parity error. Refer to
Paragraph 6.2.3, Parity Errors. The Trap vector is
114 for a Main Memory timeout error.

6.2.1.5 Timing of Address Error Aborts - Refer to
Figure 6-1. The timing diagram shows the approx-
imate time at which TMCC ABORT H is asserted
and negated by the several errors. It should be
noted that NEXM is derived from the BAMX and
is not gated: the times shown in this case indicate
the time during which NEXM is valid, i.e., during
a Pause cycle.

TMCC ABORT asserts RACA ZAP L at TS2 of
the Pause cycle (UBSDOI).

BUST PAUSE ZAP. 3@ BRK. 3¢ SVC. 90 FET. 3¢
D e e e — <+
T5 T1 T5TH TS T T5T1 T TST Ti TS T1
1IIIIIIJIIIIIIII IIIIII ALttt
0DD ADRS ODD ADRS
NEXM NEXM
[ KT ABORT KT ABORT
ETIME ouT FTIMEOUT

TMCC ABORT H

"~ TMCC AERF (1) H

//3//1?/' :
7

I % 2 M
¢

I3

TMCC SEG ABORTED (1) H

I EYY 2

TMCC BLOCK STROBE (1) H

l 3 2

UBCB ABORT ACKN L

X l__l

/]
TMCC PRIORITY CLR L \-l l

TMCE BRQ STROBE H

3
e -2 &

Inhibited by
BLOCK STROBE

2 2% | I 2%

RACA ZAP L

A

Figure 6-1
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TMCC AERF (1) H is set during TS2 of a Pause
cycle by any of the address error conditions, if the
reference is not to the Kernel stack (KERNEL R6
is negated) and if the bus cycle is not generated by
Console action (UBCF CNSL ACT (0) H).

TMCC ABORT direct-sets BLOCK STROBE and
asserts PRIORITY CLR during TS3 of the Pause
cycle. BLOCK STROBE, while asserted, inhibits
BRQ STROBE by asserting TMCC STROBE INH.
BLOCK STROBE and PRIORITY CLR prevent
any requests previously strobed in from generating
vectors during an INTR PAUSE. In this case, since
BLOCK STROBE is cleared by its ACKN clock in-
put during BRK.30, the BRQ STROBE during
ZAP.00 is inhibited. TMCC PRIORITY CLR
clears the request register on TMCA. This allows
new requests to be clocked in SVC.90, and a new
bran, 1 to BRK.90 after FET.00.

AERF and BLOCK STROBE are cleared by
ACKN in BRK.30.

6.2.2 Stack Errors

A Stack is an area of memory set aside for tempo-
rary storage. Data is added to a stack (‘“‘pushed”
onto the stack) in sequential order and is retrieved
from the stack (“popped” from the stack) in re-
verse order. A stack starts at its highest address
and expands toward its lowest address as data is
added to it.

The address of the last valid item pushed onto the
stack is stored in a general register which is called
the Stack Pointer (SP). When an item is pushed
onto a stack, the SP is first decremented to the next
lower address, then the item is written using the SP
as the address. When an item is popped from a
stack, the item is read using the SP as the address,
then the SP is incremented to the next higher ad-
dress. Further details on stacks and their use are in-
cluded in Chapter 9 of the PDP-11/70 Processor
Handbook.

There are three Hardware Stacks, one each for Ker-
nel, Supervisor and User modes. The particular reg-
ister (R6) for each mode is the SP for that mode’s

hardware stack. These stacks are word-oriented and
the SPs can only be incremented or decremented by
2.

The Kernel stack differs from the other two in that
it is hardware-protected.

The Supervisor and User stacks are not protected
by hardware, but may be checked by Memory Man-
agement and appropriate software. Refer to Para-
graph 6.2.1.3 (PS Restore).

A stack error is one which occurs during a push to
the Kernel stack. When such a push occurs, TMCC
KERNEL R6 (1) H is asserted. If an error occurs
during this push, TMC SERF (1) H (the Stack Er-
ror flag) is set.

A stack error may be any of the address errors
listed in Paragraph 6.2.1 or a Stack Limit Red
error.

The above errors all cause aborts. Stack Limit Yel-
low is a stack error, but traps instead of aborting.
Refer to Paragraph 6.2.2.2.

Both SL YEL and SL RED vector to 4, with the ex-
ception of an SL RED that occurs during a power
fail. Refer to Paragraph 6.5.1.

6.2.2.1 Kernel R6 - TMCC KERNEL R6 (1) H is
a J-K flip-flop that is clocked at T4. It is set during
a data-out (including DATIP) BUST cycle if the ref-
erence is to the Kernel stack. It is reset during the
Pause cycle that follows the BUST.

The J input to the flip-flop is a 74564 gate. All the
OR inputs to this gate must be asserted if the out-
put of the gate is to be high (asserted).

1. The second gate from the top is asserted
during a BUST cycle that calls for any
type of data transfer except a DATI.

2. The third gate is asserted when General
Destination Register Set 0 is addressed
(GRAC GRA3 L is asserted when GD
Set 1 is addressed).

11-6-7



3. The top and bottom gates are asserted in
two cases:

a. When BAX = 0 or 2 and the
BAMX selects the contents of ei-
ther the DR or the SR (RACB
UBAXO00 H is negated) and Gen-
eral Destination Register 6 is se-
lected (GRAC GD6 L is asserted).
In this case, GD register 6, Set 0,
is used as the address for a data-
out operation: this is a push onto
the Kernel stack. During these cy-
cles, the General Registers are ad-
dressed using the destination field
(GD[DF)}) on the Flows, and the
description of the cycle includes
the sentence: “Check Stack Limit.”

b.  During a JSR, the contents of the
source field register are pushed
onto the stack. This is done during
JSR.30 (Flows 11) where BCT = §
(STACK REFerence). If PDRD
PS14 (0) H is asserted, the pro-
cessor is in Kernel mode, and the
push is to the Kernel stack. The
74520 NAND gate is asserted, as
are the top and bottom gates of
the 74S64.

The K input to KERNEL R6 (1)
H is TMCE PAUSES H, which is
asserted during Bus Pauses (BSD
= 2 or 3) to clear the flip-flop.

6.2.2.2 Stack Limit Errors - The lower limit of the
Kernel stack is set by program control of the Stack
Limit Register (SL). Any bus cycle that does a push
beyond this lower limit is aborted (Stack Limit
RED or SL RED). A warning zone of 16 words ex-
ists where any push causes a trap (Stack Limit YEL-
low or SL YEL).

The default boundary for stack addresses is 400.
This is the case when the SL contains 0. The Stack
Limit Register allows this lower limit to be raised,
providing more address space for interrupt vectors
or other data that should not be destroyed by the
program. This limit may be varied in increments of
400¢ words, up to a maximum virtual address of
177 400 by modifying the content of the Stack
Limit Register (SL). This register contains eight bits
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and can be addressed as a word at location 17 777
774, or as a byte at location 17 777 775. The regis-
ter is accessible to the processor and Console, but
not to any Unibus device. The 8 bits, PDRC
SL(07:00), contain the stack limit information and
are compared with BAMX(15:08). These bits are
cleared by System Reset, Console Start, or the RE-
SET instruction. The lower 8 bits are not used. Bit
8 corresponds to a value of (400)s or (256)0.

Stack Limit Violations

When instructions cause a stack address to exceed
(to go lower than) a limit set by the programmable
Stack Limit Register, a Stack Violation occurs.
There is a Yellow Zone (grace area) of 16 words be-
low the Stack Limit which provides a warning to
the program so that corrective steps can be taken.
Operations that cause a Yellow Zone Violation are
completed, then a bus error trap is executed. The er-
ror trap, which itsell uses the stack, executes with-
out causing an additional violation, unless the stack
has entered the Red Zone.

A Red Zone Violation is a Fatal Stack error. (Odd
stack or non-existent stack are the other Fatal
Stack errors). When detected, the operation causing
the crror is aborted, the SP is set to point to ad-
dress 4, and a bus error occurs. The old PC and PS
are pushed into location 0 and 2, and the new PC
and PS are taken from locations 4 and 6.

Stack Limit Addresses

The contents of the SL are compared to the stack
address during a push to determine if a violation
has occurred.

If the contents of the SL are zero:
Yellow Zone = 340 - 376: execute, then trap;
Red Zone = 000 - 336: abort, then trap.

If the contents of the SL are greater than zero:

Yellow Zone = (SL)+(340 - 376): execute,
then trap;

Red Zone =(SL)+(336): abort, then trap.

Stack Limit Yellow

Refer to Figure 6-2. PDRC STACK LIMIT H is as-
serted when the high order eight bits of the virtual
address [BAMX(15:08)] equal the contents of the
Stack Limit Register [PDRC SL(07:00)].



When bits 7 — 5 of the virtual address are all ones,
the value of bits 7 - 0 of the address is between 377
and 340. TMCD YEL ZONE H is asserted.

Thus, when PDRC STACK LIMIT H and TMCD
YEL ZONE are both asserted, a Yellow Zone stack
violation exists.

TMCD SL YEL (1) H is then set at T2 + 15 ns of
a Pause cycle (UBSDO1 H) that is pushing onto the
Kernel stack (KERNEL R6).

SL YEL is cleared by setting the SERF flip-flop
(ACKN in BRK.30); SERF inhibits the BRQ
STROBE in SVC.90.

Stack Limit Red

Refer to Figure 6-2. If a Yellow Zone condition ex-
ists and the address is further decremented, TMCD
YEL ZONE goes low and the bottom gate of

STACK LIMIT

TMCD SL RED is asserted. SL RED is a latch,
and is set by this gate at TS5 of the BUST cycle.

TS5 is gated with KERNEL R6. This gate is dis-
abled if BLOCK STROBE and SERF are both as-
serted, i.e., SL RED cannot be asserted again
during the pushes to 0 and 2 in SVC.60 and
SVC.80.

SCCE STACK OVERFLOW H is asserted if the
virtual address equals 177 776. This gate asserts SL
RED in the case that the SP is decremented from 0
to protect the Processor Status word.

PDRC RED ZONE H is asserted when the virtual
address is less than the SL.

SL RED is cleared by ABORT ACKN in BRK.30.

Figure 6-2 is a summary of the conditions that
cause a Stack Limit error.

STACK LIMIT

REGISTER REGISTER
=000(000) =001(000)
000400 ;'%AS,'; 001400
000376 001376
[~ YELLOW [ Y TMcD SL YEL (1) H
TMCD SL YEL (1) H{ =5~ ZONE ———\"]
000340 L oor340 |J
000336 001336 ||

LN\ —
PDRC STACK LIMITH NN

* —TMCD YEL ZONE H loretamre)
000000 001000
<
SCCE STACK OVERFLOW H{ 177776 000776
L
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LN
~—~—_~1/PDRC RED ZONE H

000000
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|
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Figure 6-2 Examples of Stack Limit
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6.2.2.3 Timing of Stack Error Aborts - Refer to
Figure 6-3. The timing for stack errors is similar to
that for address errors, with the following
exceptions:

1. TMCC KERNEL R6 (1) H is asserted
at T4 + 15 ns of BUST and cleared at
T4 + 15 ns of PAUSE.

2.  KERNEL R6 causes TMCC SERF (1)
H to be set (instead of AERF).

3. Since SERF is asserted, BLOCK
STROBE and therefore PRIORITY
CLR are asserted until TS3 of FET.00,
when SERF and BLOCK STROBE are
cleared by CLEAR FLAGS (BCT=3,
TMCCQC).

BRQ STROBE is thus inhibited, not only during
ZAP.00, but also during SVC.90, thus guaranteeing
the execution of the first instruction of the error
subroutine before any other error can be processed.

BUST PAUSE

T1 TS5 T

T5 T

ZAP.g¢g
———

6.2.3 Parity Errors

6.2.3.1 Description - A parity error may be de-
tected either by the Cache or by a Unibus device.

Cache parity errors are either “hard”, if bad parity
is detected in the word requested by the processor,
or “soft”, if the Cache can recover without pro-
cessor intervention. Hard errors are