
EK-KB11C-TM-001

KB11-C PROCESSOR

MANUAL (PDP-11/70)

digital equipment corporation · maynard. massachusetts

Copyright© 1975 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP

DIGITAL

UNIBUS
DEC US

PDP
FOCAL
COMPUTER LAB

MASS BUS

9185·15

SECTION I

SECTION II

INTRODUCTION
CHAPTER 1
CHAPTER2
CHAPTER3
CHAPTER4
CHAPTERS
CHAPTER6

SECTION III

INTRODUCTION
CHAPTER 1
CHAPTER2

SECTION IV

INTRODUCTION
CHAPTER 1
CHAPTER2
CHAPTER3
CHAPTER4
CHAPTERS
CHAPTER6
CHAPTER 7
CHAPTERS
CHAPTER9

SECTIONV

INTRODUCTION
CHAPTER 1
CHAPTER2
CHAPTER3

SECTION VI

CHAPTER 1
CHAPTER2
CHAPTER3
CHAPTER4

APPENDIX A

TABLE OF CONTENTS

BLOCK DIAGRAM AND CONCEPTS

PROCESSOR

INSTRUCTION DECODE AND MICROPROGRAM CONTROL
DATA PATHS
PROCESSOR CONTROL REGISTERS
TIMING GENERA TOR
DATA TRANSFERS
ABORTS, TRAPS AND INTERRUPTS

CONSOLE

SWITCHES, INDICATORS AND OPERATION
LOGIC DESCRIPTION

MEMORY MANAGEMENT

PDP-11/70 ADDRESS SPACE
GENERAL DESCRIPTION
MEMORY MANAGEMENT MAPPING FUNCTION
PAR AND PDR ADDRESSING DURING RELOCATION
GENERATION OF THE PHYSICAL ADDRESS
ADDRESS VALIDITY
DESCRIPTION OF PDR
READING AND WRITING OF PAR AND PDR REGISTERS
MEMORY MANAGEMENT ERROR HANDLING
MEMORY MANAGEMENT REGISTERS (MMRO, 1, 2 and 3)

UNIBUS MAP

GENERATION OF THE PHYSICAL ADDRESS
UNIBUS/CACHE INTERFACE
READING AND WRITING THE MAPPING REGISTERS

CACHE

CACHE CONCEPTS
PDP-11 /70 CACHE
THEORY OF OPERATION
DETAILED LOGIC

BLOCK DIAGRAMS

This manual describes the KBl 1-C Central Pro
cessor Unit, which is the basic component of the
PDP- I I /70 Programmed Data Processor System.
The purpose of this manual is to:

1. provide an overall understanding of how
the KBl 1-C functions in the PDP-11/70
System.

2. describe how the KBl 1-C logic works in
sufficient detail to enable maintenance
personnel to perform on-site trouble
shooting and repair.

The format of this manual is functional, i.e., the in
tent is to explain the various processes that are exe
cuted by the KBl 1-C, as opposed to a module by
module logic description. Since this might be a
problem for a technician who has a module to re
pair, an index of logic functions by module is
provided.

This manual is divided into six sections:

Section I is an introduction to the PDP-I I /70.
It describes a block diagram of the system
and introduces some system concepts.

Section II describes the processor. Its six chap
ters explain processor control, data manipu-
1 at ion, Control Registers, timing, data
transfers and error handling.

Section Ill provides both an operating guide
to the Console and a detailed description of
its logic.

Section IV describes Memory Management
and address space.

Section Y describes the Unibus Map.

INTRODUCTION

Section YI contains a description of the
Cache.

Appendix A contains both a System Data
Paths and a System Address Paths block
diagram.

Due to the numerous references to specific logic
functions in the text, it is recommended that the
reader refer to the PD P-11/70 Engineering Print Set
while reading this manual.

Comments (both favorable and unfavorable), sug
gestions, and corrections are welcome. A Reader's
Comment sheet is provided for this purpose at the
end of this manual.

RELATED DOCUMENTS
This manual should be used in conjunction with the
following related publications:

PDP-I I /70 Maintenance and Installation
Manual

PDP-11 /70 Processor Handbook

MJ 11 Memory System Maintenance Manual

FPl 1-C Floating-Point Processor Manual

R WS04/R WS03 Fixed Head Disk Subsystem
Maintenance Manual

R WP04 Moving Head Disk Subsystem
Maintenance Manual

TWU 16 Magnetic Tape Subsystem Mainte
nance Manual

PD P-11 Peripherals Handbook

SECTION I

BLOCK DIAGRAM AND CONCEPTS

Un less otherwise indicated, references within this sec
tion pertain to this section only.

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.2
1.2.3
1.2.4

CHAPTER2

2.1
2.2
2.3
2.4

Figure No.

1-1
1-2
1-D
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

SECTION I BLOCK DIAGRAM AND CONCEPTS
CONTENTS

BLOCK DIAGRAM

BLOCK DIAGRAM
Processor ...
Memory Management
Unibus Map
Cache
Unibus
Optional Equipment

MEMORY SYSTEM ...
Representation and Storage
Address Space
Mapping
Parity

CONCEPTS

MICROPROGRAMMING
PARALLEL OPERATION (PIPELINING)
VIRTUAL MACHINES
REENTRANT AND RECURSIVE PROGRAMMING

ILLUSTRATIONS

Title

PDP-11/70 Block Diagram
PDP-11/70 System Simplified Block Diagram
High and Low Byte
Memory Addresses
Word and Byte Addresses
Main Memory Addresses
Address Paths
Physical Address Space .
16-Bit Mapping
18-Bit Mapping
22-Bit Mapping
Parity (P) in the PDP0 l l/70 System

I-iii

Page

I-1-1
I-1-2
I-1-2
I-1-3
I-1-3
I-1-3
I-1-4
1-1-4
I-1-4
1-1-6
I-1-7
I-1-9

I-2-1
I-2-4
I-2-4

I-2-10

Page

I-1-1
1-1-3
I-1-4
1-1-5
I-1-5
1-1-6
I-1-6
I-1-7
1-1-8
1-1-8
I-1-9
I-1-9

The PDP-11 /70 is the most powerful computer in
the PDP-11 family. It is designed to operate m
large, sophisticated, high-performance systems. It
can by used as a powerful computational tool for
high-speed, real-time applications and for large
multi-user, multi-task, time-shared applications re
quiring large amounts of addressable memory
space. Although it is a 16-bit machine, it applies
the power of a Cache memory and 32-bit memory
and I /0 structure to demanding, multi-function
computing requirements.

The PDP- I I /70 contains as an integral part of the
Central Processor Unit (CPU), the following hard
ware features and expansion capabilities:

Cache memory organization to provide bipo
lar memory speed at core memory prices.

CONSOLE

L ___ _ ~-11/?0CPU __

MEMORY
BUS

~IN
~~ORY

- ' INDICATES 32-BIT DATA BUS

110
BUS

CHAPTER 1
BLOCK DIAGRAM

Memory Management for relocation and pro
tection in multi-user, multi-task environments.

Ability to access up to 4 million bytes of
Main Memory.

Optional high-speed mass storage controllers
as an integral part of the CPU. These con
trollers provide dedicated paths to high per
formance storage devices.

Optional Floating Point Processor

1.1 BLOCK DIAGRAM
The PD P-11 /70 is a medium scale, general-purpose
computer. A block diagram of the computer is
shown in Figure 1-1.

1/0
BUS

110
BUS

_J

1/0

UNIBUS
PERIPHERAL

BUS MASS •
STORAGE

PERIPHERAL

•,OPTIONAL 11- 3191

Figure 1-1 PDP-11 /70 Block Diagram

1-1-1

The KBl 1-C Processor performs all arithmetic and
logical operations required in the system. Memory
Management is standard with the basic computer,
allowing expanded memory addressing, relocation,
and protection. Also standard is the Unibus Map,
which translates 18-bit Unibus addresses to 22-bit
physical memory addresses. The Cache contains
2048 bytes of bipolar memory that buffer the data
from Main (core) Memory. Main Memory is on its
own high data rate bus. The processor has a direct
connection to the Cache/Main Memory system for
high-speed access.

The PD P-11 /70 Console allows direct control of
the computer system. It contains a power switch for
the CPU. This switch may also be used as the mas
ter switch for the system. The Console is used for
starting, stopping, resetting, and debugging. Lights
and switches provide the facilities for monitoring
operations, system control, and maintenance. De
bugging and detailed tracing of operations can be
accomplished by having the computer execute
single instructions or single bus cycles. Contents of
all locations can be examined, and data can be en
tered manually from the Console switches. Console
operation and logic are described in Section III of
this manual.

Also within the CPU assembly are pre-wired areas
for an optional Floating Point Processor, and for
up to four optional high-speed I /0 controllers
(RH70 Massbus Controllers). These controllers
have direct connections through the Cache to Main
Memory (using the Cache only for timing
purposes).

The Unibus remains the primary control path in
the 11 /70 system. It is conceptually identical with
previous PDP-11 systems; the memory in the sys
tem still appears to be on the Unibus to all Unibus
devices. Control and status in formation to and
from the high speed I /0 control1ers is transferred
over the Unibus. This expanded internal implemen
tation of the PDP- I I architecture has no effect on
programming the PDP-11/70.

Three Unibus devices are standard on the PDP-
11 /70:

I. a KWJ 1-L Line Time Clock

2. a DLI I Synchronous Serial Interface (an
LA36 DECwriter II is also standard in
the PDP-11 /70)

1-1-2

3. a Unibus Terminator and Bootstrap
Module.

Also standard are 128KB of parity core memory.
Memory, in the PDP-11/70, is not on the Unibus,
but on its own high-speed bus (refer to Paragraph
1.2).

1. I. I Processor
The Processor is the instruction execution section
of the system. It implements the PDP-11 /45 instruc
tion set. It also acts as the arbitration unit for
Unibus control by regulating bus requests and trans
ferring control of the bus to the requesting device
with the highest priority.

The Processor contains arithmetic and control logic
for a wide range of operations. These include high
speed, fixed-point arithmetic with hardware multi
ply and divide, extensive test and branch oper
ations, and other control operations.

The Processor is described in Section II of this
manual.

1.1.2 Memory Management
Memory Management provides the hardware facil
ities necessary for address relocation and pro
tection. It is designed to be a memory management
facility for accessing all of physical memory and for
multi-user, multi-programming systems where mem
ory protection and relocation facilities are
necessary.

In order to most effectively utilize the power and ef
ficiency of the PDP- I I /70 in medium and large
scale systems, it is necessary to run several pro
grams simultaneously. In such multi-programming
environments, several user programs could be resi
dent in memory at any given time. The task of the
supervisory program would be to control the execu
tion of the various user programs, to manage the al-
1 oca ti on of memory and peripheral device
resources, and to safeguard the integrity of the sys
tem as a whole by control of each user program.

In a multi-programming system, Memory Manage
ment provides the means for assigning memory
pages to a user program and preventing that user
from making any unauthorized access to these
pages. Thus, a user can effectively be prevented
from accidental or willful destruction of any other
user program or of the system executive program.

The basic characteristics of Memory Management
are:

16 User mode memory pages

16 Supervisor mode memory pages

16 Kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 32 to 4096 words

Each page provided with full protection and
relocation

Transparent operation

6 modes of memory access control

Memory access to 2 million words (4 million
bytes)

Memory Management is described in Section IV of
this manual.

1.1.3 Unibus Map
The Unibus Map is the interface to the Memory
System (Cache and Main Memory) from the
Unibus. It performs the address conversion that al
lows devices on the Unibus to communicate with
physical memory by means of Non-Processor
Requests (NP Rs). Unibus addresses of 18 bits are
converted to 22-bit physical addresses using reloca
tion hardware. This relocation is enabled (or dis
abled) under program control.

The top 4K word addresses of the l 28K Unibus ad
dresses are reserved for CPU and 1/0 device regis
ters and is called the Peripherals Page. The lower
I 24K addresses are used by the Unibus Map to ref
erence physical memory.

The Unibus Map is described in Section V of this
manual.

1.1.4 Cache
The Cache is a high-speed memory that buffers
words between the processor and Main Memory.
The Cache is completely transparent to all pro
grams; programs are treated as if there were one
continuous bank of memory.

1-1-3

Whenever a request is made from the Processor to
fetch data from memory, the Cache does an ad
dress compare to see if that data is already in the
Cache. If it is, it is fetched from there and no Main
Memory read is required. If the data is not already
in Cache memory, 4 bytes are fetched from Main
Memory and stored in the Cache, with the re
quested word or byte being passed directly to the
processor.

When a request is made from the Processor to
write data into memory:

I.

2.

If it is stored in the Cache, it is written
both to the Cache and to Main Mem
ory, thus assuring that Main Memory is
always updated immediately.

If it is not stored in the Cache, it is writ
ten only to Main Memory.

Unibus Map references to memory are executed in
the same manner as processor references.

Because it stores 1024 words, and because pro
grams tend to use localized sections of code and
data, the Cache already contains the next needed
word a very high percentage of the time, indepen
dently of the program.

The Cache is also the interface between the high
speed 1/0 controllers and Main Memory.

A detailed description of the Cache is contained in
Section VI of this manual.

1.1.5 Unibus
Most of the computer system components and pe
ripherals connect to and communicate with each
other on a bus known as the Unibus. Addresses,
data, and control information are sent along the 56
lines of the bus. Refer to Figure 1-2.

11-3192

Figure 1-2 PDP-11/70 System
Simplified Block Diagram

The form of communication is the same for every
device on the Unibus. Peripheral devices use the
same set of signals when communicating with the
processor, memory, or other peripheral devices.
Each device, including memory locations, processor
registers, and peripheral device registers, is assigned
an address. Peripheral device registers may be ma
nipulated as flexibly as memory by the central pro
cessor. All instructions that can be applied to data
in core memory can be applied equally well to data
in peripheral device registers.

Processor Unibus operations are described in Sec
tion IL Chapters 5 and 6 of this manual. Cache
Unibus operations are transacted through the
Unibus Map (Section V).

l.1.6 Optional Equipment

Floating Point Processor
The Floating Point Processor fits into prewired
slots in the Central Processor backplane. It pro
vides a supplemental instruction set for performing
single- and double-precision floating point arith
metic operations and floating-integer conversion in
rarallel with the CPU. The Floating Point Pro
cessor provides both speed and accuracy in arith
metic computations. It provides 7 decimal digit
accuracy in single word calculations and 17 decimal
digit accuracy in double calculations.

Floating point calculations take place in the FPP's
six 64-bit accumulators. The 46 floating point in
structions include hardware conversion from single
or double-precision floating point to single- or
double-precision integers. Refer to the FPJJ-C
Floating Point Processor Manual for a detailed
description.

High-Speed Mass Storage
Up to four high-speed I/O controllers can be
plugged into the KBl 1-C backplane. A dedicated in
terface (wired on the backplane) connects these con
trollers to the memory. A separate bus (M assbus)
connects the controllers to high-speed devices. Pre
sent DIGITAL devices that utilize this bus struc
ture are the RP04, RS04, RS03, and TU 16. The
RP04 is a moving head disk pack drive with capac
ity for 88 million bytes and a transfer rate of 1.25
microseconds per byte. The RS04 is a fixed head
disk with a capacity of I024K bytes and a transfer
rate of I microsecond per byte (1.2 microseconds at
50 Hz). The RS03 is a fixed head disk, 5 I 2K bytes,
2 microseconds per byte. The TU 16 is an industry
standard 1600 bpi tape unit.

1-1-4

Refer to the following manuals for detailed descrip
tions of these high-speed devices:

RWS04/RWS03 Fixed Head Disk Subsystem
Maintenance Manual

R WP04 Moving Head Disk Subsystem
Maintenance Manual

TWU 16 Magnetic Tape Subsystem Mainte
nance Manual

1.2 MEMORY SYSTEM

1.2.1 Representation and Storage
The PDP- I I /70 is a 16-bit machine. The data is
stored in Main Memory in blocks, each of which
consists of two 16-bit words. Thus, the PDP- I I in
struction set and the addressing modes are identical
to other PDP-I Is, but data storage is implemented
in a 32-bit configuration. This is transparent to the
program and to the processor logic.

The PD P-11 data word consists of two 8-bit bytes,
as shown in Figure 1-3. The program addresses ei
ther a single byte, when it uses a byte instruction,
or a 16-bit word, when it uses a word instruction.

15 08 07 00

HIGH BYTE LOW BYTE

11-3193

Figure 1-3 High and Low Byte

From the point of view of the program, memory
can he viewed as a series of locations, with a num
ber (address) assigned to each location. Thus, a
1.31,072-byte PDP- I I memory could be represented
as in Figure 1-4.

Because PDP- I I memories are designed to accom
modate both 16-bit words and 8-bit bytes, the total
number of addresses does not correspond to the
number of words. A 64K-word memory can con
tain 128K bytes and consist of 777 777x byte loca
tions. Words always start at even-numbered
locations.

OCTAL
ADDRESSES

00 000 000

00 000 001

00 000 002

00 000 003

00 000 004

• •
•
•
•
•
•

00 777 774

00 777 775

00 777 776

00 777 777

LOCATIONS

-.._.........

---,-----~ ,,---

11-3194

Figure 1-4 Memory Addresses

Low bytes are stored at even-numbered memory lo
cations and high bytes at odd-numbered memory lo
cations. Thus it is convenient, from the point of
view of the program, to represent the PDP-I I mem
ory as shown in Figure 1-5.

16-BIT WORD

Main Memory stores data in blocks. A block con
sists of two 16-bit words (plus 4 parity bits). Figure
1-6 shows how the data for the same memory
shown in Figure 1-5 is stored in Main Memory.
Block boundaries are located on program addresses
whose low-order octal digit is either 0 or 4.

Main Memory addresses are block addresses. The
processor and the Unibus use word addresses and
the Cache translates these addresses to block
addresses.

The Cache, which is the interface to Main Memory
for the processor, the Unibus and the high-speed
1/0 controllers, reads and writes Main Memory as
I isted below for each of these units:

High-Speed 1/0 Controllers

I. Read: double word only

2. Write: double word, single word, or
byte.

The controllers listed in Paragraph 1.1.6 do not im
plement byte writes.

8-BIT BYTE
,-1-5---B-YT_E ___ o_~-07~---B-Y_T_E ____ o_o_'

___ _...-...._ __ _
'o7 oo'

00000001

00 000 003

00 000 005

00 777 773

00 777 775

00 777 777

HIGH LOW 00 000 000
1----------------+----------------1

HIGH LOW 00 000 002
1----------------+------------1

-

HIGH LOW 00 000 004

_.....,--. -

HIGH LOW

HIGH LOW

HIGH LOW

WORD ORGANIZATION

/

00 777 772

00 777 774

00 777 776

OR

WORD{

WORD{

{

{
{

Figure 1-5 Word and Byte Addresses

1-1-5

LOW

HIGH

LOW

HIGH

LOW --L---" -,..

HIGH

LOW

HIGH

BYTE ORGANIZATION

00 000 000

00 000 001

00 000 002

00 000 003

00 000 004

00 777 775

00 777 776

00 777 777

11-3195

BLOCK

WORD 1

BYTE 3 BYTE 2

00 000 003 00 000 002

00 000 007 00 000 006

WORD 0

BYTE 1

00 000 001

00 000 005

BYTE 0

00 000 000

00 000 004

00 000 000

00 000 004

00 000 010

00 777 760

00 777 767 00 777 766 00 777 765 00 777 764 00 777 764

00 777 773 00 777 772 00 777 771 00 777 770 00 777 770
'--~~~~~~~___.~~~~~~~~~~~~~~~~~-+-~~~~~~~~

00 777 777 00 777 776 00 777 775 00 777 774 00 777 774

11-4000

Figure I -6 Main Memory Addresses

Processor or Unibus

I. Read: double word, but only Word 0
or Word I are transmitted to processor
or Unibus

2. Write: single word (Word 0 or Word I)
or single byte (one of bytes 0, I, 2, or 3).

1.2.2 Address Space
The PDP- I I /70 uses 22 bits for addressing physical
memory. This represents a total of 222 (over 4 mil
lion) byte locations.

Three separate address spaces are used with the
PDP- I I /70. Main memory uses 22 bits, the Unibus
uses an I 8-bit address, and the computer program
uses a I 6-bit virtual address. This information is
summarized below:

16 bits program virtual space
18 bits Unibus space
22 bits physical memory space

21 6 = 64K bytes
218 = 256K bytes
4 million bytes

Refer to Figure I-7. Memory Management gener
·ates the physical address output for the processor.

1-1-6

This address is an 18-bit address in the case of a
Unibus reference and a 22-bit address in the case of
a memory reference. The Unibus Map converts I 8-
bit Unibus addresses to 22-bit Cache addresses.

CPU

& 18 ADDRESS BITS MEM. MGT.

22
ADDRESS
BITS

CACHE 22 ADDRESS BITS

22
ADDRESS
BITS

MAIN
MEMORY

UNIBUS

18 ADDRESS
ITS

Figure 1-7 Address Paths

11-4001

Processor Addresses
See Figure 1-8. Of the over 2 million 16-bit word lo
cations possible with the 22-bit physical address,
the top I 28K are used to reference the Unibus
rather than physical memory. Maximum physical
memory is therefore 2 22 - 2 18 bytes, or a total of
1,966,080 words. The system size boundary is the
highest address available with the amount of mem
ory included in the system. If the CPU address is
between 00 000 000 and the system size boundary,
an attempt is made to reference physical memory.
Memory addresses between the system size bound
ary and 16 777 777 are known as Non-Existent
Memory (NEXM): any attempt to access these loca
tions is aborted. If the address is in the top 128K,
17 000 000 - 17 777 777, the lower 18 bits of the ad
dress arc placed on the Unibus.

117)777777 }

f--_(~7J !~~ ~0_9 _ - -1
(17) 757 777

(17) 000 000

16 777 777

>

SYSTEM SIZE
BOUNDARY

)

00 000 000

PERIPHERAL
PAGE (4K)

UNIBUS
REFERENCE
(128K)

NON-EXISTENT
MEMORY OR NXM

MEMORY
REFERENCE

11-4002

Figure 1-8 Physical Address Space

1.2.3 Mapping
Mapping is the process of converting the virtual ad
dress generated by the program to a physical mem
ory address or to a Unibus address, or the process
of converting a Unibus address to a physical mem
ory address.

The virtual address is mapped by Memory Manage
ment: the Unibus address is mapped by the Unibus
Map. Neither of these increases memory access
time.

Memory Management and the Unibus Map are sep
arate units and one may be enabled independently

1-1-7

of each other. They are both part of the KBl 1-C
and are included in all PDP-11 /70 systems.

Ref er to Figures 1-9 through 1-11.

I. Mapping of processor addresses is per
formed in one of three possible ways by
Memory Management:

2.

16-BIT MA PP/NG
There is fixed mapping from virtual to
physical addresses. The lowest 28K vir
tual addresses are treated as correspond
ing to the same physical addresses. The
top 4K addresses cause Unibus cycles to
addresses 17 760 000 - 17 777 777. Refer
to Figure 1-9. 16-bit mapping is enabled
after. Power Up, Console Start, or the
RESET instruction.

18-BIT MA PP/NG
32K virtual addresses for each of the
three modes (Kernel, Supervisor, User)
are mapped into I 28K of physical ad
dress space. The lowest I 24K addresses
reference physical memory. The top 4K
addresses cause Unibus cycles to ad
dresses 17 760 000 - 17 777 777. Refer to
Figure 1-10.

22-BIT MA PP/NG
Th is mode produces 22-bit addresses for
accessing all of physical memory. The
top I 28K addresses cause Unibus cycles
to addresses 17 000 000 - 17 777 777. Re
fer to Figure 1-11.

Mapping of Unibus addresses 1s per
formed by the Unibus Map.

UNIBUS MAP NOT ENABLED
W.hen the Unibus Map is not enabled,
Unibus addresses 000 000 - 757 777 ac
cess memory locations 00 000 000 - 00
757 777, i.e., they are not modified ex
cept for the insertion of leading zeroes.

UNIBUS MAP ENABLED
When the Unibus Map is enabled,
Unibus addresses 000 000 - 757 777 are
relocated and a Unibus device may ac
cess any location in physical memory.

777777

UNIBUS

FLOW

·------...... - - -- - - - - - - ------
17777777

4K

17760000
17757777

17777777
PERIPHERAL PAGE

17600000

(18 BITS)

000000

124K

17000000

'\
'\

'---"""'"'-'----'-~~;-.,. 16777777 1
M~

'\
'\

'\
'·I------~

00757777 19 20K

177777

160000
00157777

VIRTUAL
(16BITS) 28K

i..;:00:..:;..::.;00:o..;:0:.,::;0 __ __. --- - --- - - - - - ,_0;..;;0..;;.0..;..00;;..;0;..;;0..;;.0 __

INCOMING
ADDRESS

PHYSICAL
ADDRESS SPACE
(22 BITS)

96K

00157777
28K

00000000

ADDRESS
LOCATIONS
(MAX. AVAILABLE
MEMORY 1024K)

---- •RELOCATION
•NO ADDRESS
RELOCATION 11-3196

Figure 1-9 16-Bit Mapping

FLOW

777777
-.,...----------.- - - - - - - - - - ------

17777777 1n77777
4K PERIPHERAL PAGE

17760000
17757777

UNIBUS
(18 BITS)

124K

000000 17000000

~ 17600000

'--"-"-"-''-"-"-"-----'.~S 16777777 1
MAP'\

00757777 \~\1-0-07_5_7_77_7 __ -I

177777

VIRTUAL
(16BITS)

MEM
MGMT

1920K

124K 124K

,_oo;..;;...;;..oo..;..o;;..;o;...._ __ _, __________ .-'-o-'-oo"'"""o'"""'o'""'o""'"oo-'--_ __, ___________ 00000000

INCOMING PHYSICAL
ADDRESS ADDRESS SPACE

(22 BITS)

---- •RELOCATION
-----. •NO ADDRESS

RELOCATION

Figure 1-10 18-Bit Mapping

1-1-8

ADDRESS
LOCATIONS
(MAX. AVAILABLE
MEMORY 1024K)

11-3197

FLOW

~------.--- - - - - --------........ -- - ---- - -- ----------.
777777

UNIBUS
(18 BITS)

000000

000000

17777777
4K

17760000
17757777

124K

17000000
16777777

1920K
ADDRESS

00000000

17777777
PERIPHERAL PAGE

17600000

16777777

00757777
124K

00000000

INCOMING
ADDRESS

PHYSICAL
ADDRESS SPACE
(22 BITS)

ADDRESS
LOCATIONS
(MAX. AVAi LABLE
MEMORY 1024K)

--- •RELOCATION
- ---- •NO ADDRESS

RELOCATION

Figure 1-11

1.2.4 Parity
Th is paragraph provides general information on
parity checking in the PDP-11/70 system. A de
tailed description of this subject is provided in Sec
tion VI of this manual (Cache) and in the Memory
Manual.

System Reliability
Parity is used extensively in the PDP- I I /70 to en
sure the integrity of the data and thus to enhance
the reliability of the system. All memory (Cache
and Main Memory) has byte parity. Parity is gener
ated and checked on all transfers between Main
Memory and Cache, and between Cache and the
CPU. It is checked between the high-speed mass
storage devices and their controllers, and again be
tween the controllers and core memory. A software
routine can be used to log the occurrence of parity
errors, to handle recovery from errors, and to pro
vrde information on system reliability and
performance.

Parity in the System
Main Memory stores one parity bit for each 8-bit
byte, (refer to Figure 1-12). The Cache also stores

11-3198

22-Bit Mapping

1-1-9

byte parity for data, and in addition it stores two
parity bits for the address information (tag storage)
associated with each two-word block of data.

CPU 1----~~UN_l_Bu_s ____ -~

ADDRESS DATA ADDRESS
(Pl.------------1

DATA P MAP

pl ... A_D_DRE_S_S("--'Pl_._I D_A_TA..;....(P""') 11 f----"D"-'AT~A'"""(P_.___---l HIG~ ;gPEED HIGH-SPEED
CONTROL 1/0 BUS

CACHE ~--~ DATA&CONTROL(P)

ADDRESS
&

CONTROL(P)

DATA(P)

MAIN CONTROL

Figure 1-12 Parity (P) in the
PDP-11/70 System

11-3199

The bus between Main Memory and the Cache con
tains parity on the data Ii nes and on the address
and control lines. The high-speed 1/0 controllers
check and generate parity for data transfers to
Main Memory, and they have the capability of han
dling address errors that are flagged by the control
in the Cache memory. Refer to Section YI, Chapter
3 for a detailed description of the PDP- I I /70 parity
system.

System Handling of Parity Errors
The design of the PDP-I I /70 allows recovery from
parity errors. It also allows operation in a degraded
mode if a section of the memory system is not oper
ating properly. This type of operation is possible un
der program control by using the control registers.

If part or all of the Cache memory is malfunction
ing, it is possible to bypass half or all of the Cache.
Misses can be forced within the Cache, such that
all read data is brought from Main Memory. Oper
ation will he slower, but the system will yield cor
rect results. If part of Main Memory is not

1-1-10

working, Memory Management can be used to map
around it. If data found in the Cache does not have
correct parity, the memory system automatically
tries the copy in Main Memory, to allow program
execution to proceed. The correct data from Main
Memory automatically replaces the data in the
Cache which caused the parity error. Therefore,
if the error was caused by transitory conditions, it
will not occur again.

Aborts and Traps
One of two actions can take place after detection of
a parity error: (I) The cycle can be aborted. The
computer then transfers control through the vector
at location 114 to an error handling rou
tine. (2) The instruction is completed, but then
the computer traps (also through location 114). In
the first case, it was not possible to complete the
cycle: in the second case it was. This second type of
parity error usually (but not always) causes the trap
before the next instruction is fetched.

This chapter introduces several concepts that are
useful for the understanding of the KBl 1-C Pro
cessor and the PDP-11/70 system. The first two of
these concepts, Microprogramming (2.1) and Paral
lel Operation or Pipelining (2.2), should be well un
derstood before reading any further. The other two
paragraphs, Virtual Machines (2.3) and Reentrant
and Recursive Programming (2.4), discuss system
concepts that may be easier to understand after a
working knowledge of the PDP-11/70 has been ac
quired. The block diagrams in Appendix A show
the interconnection between the several parts of the
PDP-11/70, including the RH70 controllers.

2.1 MICROPROGRAMMING
The KB 11-C Processor uses a microprogram con
trol section which reduces the amount of com
binational logic in the processor. This paragraph
introduces the concept of microprogramming by
first describing a digital computer, then dividing the
computer into various parts, and finally, describing
how some of these parts differ for a micro
program med processor.

Digital Computer Description
A I tho ugh a computer can effect complicated
changes to the data it receives, it must do so by
combining a large number of simple changes in dif
ferent ways. The part of the digital computer that
actually operates on the data is the processor. A
processor is made up of logical elements; some of
these clements can store data, others can do such
simple operations as complementing a data oper
~rnd, combining two operands by addition or by
AN Ding:, or reading a data operand from some
other part of the computer. These simple oper
ations can be combined into functional groups;
such a group is called an instruction, and it in
cludes operations that read data, operations that
combine, change, or simply move the data, and op
erations that dispose of the data. Instructions can

CHAPTER 2
CONCEPTS

be further combined into programs, which use the
combined instructions to construct even more com
plex operations.

The logical elements of a processor can only per
form a small number of operations at one time.
The ref ore, to combine operations into an instruc
tion, the instruction is divided into a series of oper
ations (or groups of operations that can be
performed simultaneously). The processor does
each part of the series in order. One way to de
scribe how the processor executes an instruction is
to call each operation (or group of operations) a
machine state. An instruction then becomes a se
quence of machine states which the processor enters
in a specific order.

The processor can be completely described in terms
of machine states by listing all the machine states in
which the processor can perform (i.e., all the differ
ent operations or groups of operations that it can
perform) and all the sequences in which these ma
chine states can occur. The sequence of machine
states is determined by the current state of the com
puter: this includes such information as the instruc
tion being executed, the values of the data being op
erated on, and the results of previous instructions.

In terms of the machine state description, the pro
cessor can be divided into two parts. The first part,
called the data section, includes the logic elements
that perform the operations which make up a ma
chine state. The second part, called the control sec
tion, includes all the logic that determines which
operations arc to be performed and what the next
machine state should be. The data section and con
t rot section arc discussed in the following
paragraphs.

1-2-1

The data section in the KBI 1-C is usually referred
to as the Data Paths and is described in Section II,
Chapter 2. The control section is described in Sec
tion II, Chapter I, Instruction Decode and Micro
program Control.

The Data Section
During each machine state, the data section per
forms operations selected by signals from the con
trol section. The data section provides inputs to the
control section which help to determine the next
machine state; the data section also exchanges data
with other devices external to the processor.

The data section can be divided into three func
tional sections; each section is discussed in one of
the following paragraphs.

The Data Storage Section
For the processor to combine data operands it
must be able to store data internally, while simulta
neously reading additional data. Often, a processor
stores information about the instruction being exe
cuted, about the program from which the instruc
tion was taken, and about the location of the data
being operated on, as well as a number of data op
erands. When the processor must select some of the
internally-stored data, or store new data, the con
trol section provides control signals which cause the
appropriate action within the data storage section.

The Data Manipulation Section
Th is section includes the various logic elements that
actually change data. Many of these elements are
controlled by signals from the control section,
which select the particular operation to be per
formed. Data manipulation is performed on data
being transferred between the processor and the
rest of the system, and on data that remains within
the processor. In some cases, the data that remains
within the processor is used to control the pro
cessor by providing inputs to the sensing section of
the processor control.

The Data Routing Section
The interconnections between the logic elements in
the data storage section and the elements in the
data manipulation section are not fixed; they are
set up as required in each machine state. The con
trol section generates signals that cause the logic ele
ments in the data routing section to form the
appropriate interconnections within the processor,
and between the data interface and the data storage
and manipulation sections.

1-2-2

The Control Section
The control section of a processor receives from the
data section, inputs which are used by the sensing
logic to help select the next machine state. The con
trol section also generates control signals to all
parts of the data section and communicates with
other parts of the computer system through control
signals. The following paragraphs describe the three
parts of the control section.

The Sequence Control Section
The primary control of the processor is the selec
tion of the sequence of machine states to be per
formed. This is done by the sequence control
section which selects the next machine state on the
basis of:

I. the current machine state

2. inputs from the data section (such as the
instruction type or the data values)

3. information about external events.

The sequence control section maintains information
about the current machine state, and receives infor
mation from the data section and the external envi
ronment through the sensing section.

The Function Generator
In each machine state, the data section performs op
erations selected by signals from the control section
of the processor. The function generator produces
these control signals on the basis of the current ma
chine state and also on the basis of inputs from the
sensing section, such as information on the instruc
tion type.

The Sensing Logic
In general, the sequence control section requires in
.puts that select one of a limited number of machine
states to follow the current state.

The Control Section in the KBll-C
The function generator comprises the micro
program Read Only Memory (ROM), its output
huff er, and several logic elements that generate con
trol signals based on sensed inputs (notably
through the subsidiary ROMs). The sequence con
trol comprises the microprogram address gener
ation logic. The sensing section includes the various
logical clements that receive inputs from the data
section, especially the condition-code generator, the
subsidiary ROMs, and the branch logic.

Microprogramming in the Control Section
Implementation
This paragraph describes two methods of imple
menting the control section of a processor. The first
method, which is called the conventional method for
the purposes of this discussion, uses combinational
networks, with many inputs combined in varying
ways to produce each output. The second method,
which is called rnicroprogramming, replaces most of
the combinational networks with an array struc
ture. The array requires a small number (approx
imately 10) of inputs to select the output states for
a large number (approximately JOO) of signals. Be
cause the array is a regular structure, it is simpler
to construct and understand, and less expensive.

Conventional Implementation
In a conventional processor, each control signal is
the output of a combinational network that detects
all the machine states (and other conditions) for
which the signal should be asserted. The machine
state is represented by the contents of a number of
storage clements (such as flip-flops), which are
loaded from signals that are, in turn, the outputs of
combinational networks. The inputs to these net
works include:

I. the current machine state

2. sensed conditions within the Processor

.3. sensed external conditions.

The number of logical elements in the processor is
often reduced by sharing the outputs of networks
which generate intermediate signals needed in the
generation of several control signals, or even in the
generation of control signals and machine states.
Un fortunately., while this reduces the size of the pro
cessor, it increases the complexity and difficulty of
understanding the device because it is no longer ob
vious what conditions cause each signal. In addi
ton, the distinction between the sequence control
and the function generator is blurred, which makes
it more difficult to determine whether improper op
eration is caused by a bad machine state sequence
or, more simply, by the wrong control signals
within an otherwise correct machine state.

Microprogrammed Implementation
The microprogrammed implementation is based on
the following observation. Each control signal is

completely defined if its value is known for every
machine state. The function generator section can
therefore be implemented as a storage device: the
storage is divided into words, with each word con
taining a bit for every control signal; there is one
word for each machine state. During each machine
state, the contents of the corresponding word in the
storage element are transmitted on the control
lines. For most control signals, the output of the
storage unit is the control signal; no additional
logic is required.

The two tasks of the sequence control section are
to select the next machine state, and to provide in
formation about the current machine state to the
function generator. The only information that the
function generator in a microprogrammed pro
cessor requires is which word to use as control sig
nals. Therefore, the seqence control simply provides
an address that selects the correct word. The se
quence control must also select the address of the
next word to determine the machine state sequence.
Because the next machine state is determined in
part by the current machine state, information is
stored in the microprogram that helps to select the
next state; the microprogram word contains the con
trol signal values and the address and sensing con
trol information required by the microprogram
address generation logic (i.e., by the sequence
control) .

In a microprogrammed control like the one de
scribed above, the two major portions of the con
trol section have been simplified to regular logical
structures. The function generator is entirely sepa
rate from the sequence control, so it is easy to iso
late malfunctions to the microprogram storage or
to the address generator. In addition, the sensing
logic is simplified, because each sensed condition is
reduced to a single signal and the sensing logic se
lects the appropriate signals for the current ma
chine state, based on signals output from the
microprogram storage. To summarize this dis
cussion, a microprogrammed processor has a sim
pler, more regular, more easily repaired control
structure, based on the generation of control signals
from stored information, and the selection of each
machine state, based on information stored in the
current machine state, and on information from a
simplified sensing section.

1-2-3

2.2 PARALLEL OPERATION (PIPELINING)
In a digital computer system, the processor is usu
ally the fastest part of the system. In order to
achieve the maxim um speed of operation, all parts
of the processor should be used as much as pos
sible. To prevent the processor from wasting time
waiting for other parts of the system, the processor
must make use of the external data transfer inter
face as much as possible. Because any one oper
ation that the processor performs uses only part of
the processor's available resources, the two consid
erations above require the processor to perform sev
eral operations in parallel.

In general, the sequence of operations required for
each instruction uses various parts of the processor
at different times. Some parts of the processor,
such as the program counter, are used only during
the early parts of the instruction; others, like the
shift counter, are used only during later parts of the
instruction. The processor can be fully utilized only
if different parts of the processor can be used for
parts of different instructions during the same ma
chine state.

When the processor works on the early part of an
instruction at the same ti me that it completes the
previous instruction, this form of parallel operation
is called pipelining. The processor attempts to make
continuous use of the external data interface by
fetching each word addressed by the Program
Counter (PC) in succession (incrementing the PC
during each transfer), on the assumption that the
next word required will be the one following the
current instruction. In the pipelining analogy, the
processor attempts to fill a pipe, corresponding to
the different parts of the processor used succes
sively by each instruction, with a series of
instructions.

The current instruction often requires some other
words from the external storage. At times, the next
instruction does not follow the current instruction
because the PC has been explicitly changed by the
current instruction. When either of these two condi
tions occurs, the processor must stop the data trans
fer begun after the instruction fetch and begin a
data transfer with a different address. In the pipe
line analogy, this is a break in the smooth flow of
instructions through the pipe; some time is lost be
fore the pipe drains (the current instruction is com
pleted) and can be refilled (a new instruction
fetched and a transfer begun to read the word fol
lowing that instruction).

I-2-4

A second form of parallel operation occurs in the
KBI 1-C to further improve the utilization of the
processor. Because the processor includes several
types of data storage and data manipulation ele
ments, with different interconnections, several data
transfers can take place within the processor simul
taneously. As an example, during the same machine
state that completes an external data transfer, the
processor can read a general register into a tempo
rary storage register, and perform an addition that
adds a constant to the program counter.

The use of parallel operations within an instruction
reduces the number of machine states (and there
fore the total time) required to execute each instruc
tion: the use of pipelining further reduces the
number of machine states required to execute a pro
gram by effectively eliminating the elapsed time be
tween many external data transfers.

2.3 VIRTUAL MACHINES
The processor executes instructions and operates on
data, both of which are stored in memory, and it re
sponds to various asynchronous events.

The response to an interrupt or trap is not entirely
designed into the processor. Instead, the response is
controlled by a series of instructions (a program)
which is selected by a simpler hardware response
when the asynchronous event is detected. Often, a
number of programs are required to respond to a
number of events, and the scheduling, coordination.
and interaction of these programs is one of the
most important (and difficult) parts of program
ming a computer system.

In many applications, the user programs that are
written for the system are treated as though they
are interrupt response programs. This is done to
simplify the scheduling, to allow each user program
to operate with a terminal (some form of character
1/0 device), and to allow several user programs to
operate at once. By running several programs at
once, the processor can be utilized more fully than
is generally possible with only one user program,
which would often be waiting while devices other
than the processor completed data transfer oper
ations. With several programs to be run, the pro
cessor can be switched among the programs so that
those ready to run have the use of the processor
while others are waiting. The use of the processor
for several programs at the same time is called
111 u/ ti progra 111111 ing.

Running programs in a multiprogrammed system
presents several difficulties. Each program can be
run at arbitrary times, but all the programs must be
capable of running together, without conflict. A fail
ure in one program must not be allowed to affect
other programs. Each program must be able to use
all features of the system in a simple, easily-learned
manner, preferably in such a way that the program
does not need to be modified to run in a different
hardware configuration.

These difficulties are overcome by providing each
program with a virtual machine. The programmer
writes his program as though it is to run by "itself;
the program uses any system resources (such as
memory or peripheral devices), and the system pro
vides the services necessary to support the program
and coordinate it with other programs in operation.
The physical hardware in the system is combined
with a control, or executive program, to simulate a
more powerful hardware machine; it is for this
more powerful, but abstract, machine that the pro
grams are written.

Based on this discussion, the hardware machine
and the executive program must combine to fulfill
the foHowing four major objectives of the virtual
machine:

I. Mapping - The virtual machine of the
program currently in operation must be
assigned to some part of the hardware
machine.

2. Resource management -· The scheduling
of programs, and the allocation of parts
of the hardware machine, must be per
formed by the executive program.

3. Communication - The virtual machine
must be able to request services from the
executive program, and the executive pro
gram must be able to transfer data back
and forth with the user programs.

4. Protection - The system that supports
the virtual machine, and all other virtual
machines, must be protected from fail
ures in any one virtual machine.

Each of these subjects is discussed in one of the fol
lowing paragraphs.

1-2-5

Mapping
Each time a program is run (or, if the multi
programming system is running several programs in
a round-robin manner, each time a program re
sumes operation), it has some of the system dar
dware allocated to it. This generally includes some
part of the memory to contain the instructions and
data required by the program, some of the pro
cessor's registers, a hardware stack (which is ac
tually an area in the memory and a pointer to that
area in a processor register), possibly some per
ipheral devices, and perhaps a fixed amount of the
processor's time. All of thse allocations must be
made in such a way that the hardware machine can
then execute the user program with a minimum of
extra operations; i.e., so that the execution of the
user program requires as few additional memory cy
cles, or additional machine cycles, as possible.
Therefore, the allocation is done entirely in the
hardware machine; registers in the hardware con
tain all the allocation (mapping) information, and
all references to virtual addresses, virtual stack loca
tions, virtual register contents, or virtual devices
converted by hardware to physical references.

In a PD P-11 /70 System, mapping is done by two
devices. The mapping of virtual registers into pro
cessor registers, of the virtual stack, and of the vir
tual program counter, is done by loading the
appropriate values into the processor registers; one
of two sets of general registers can be selected for
the user, and the processor has a separate stack
pointer for user mode, while the program counter is
changed by interrupt and trap operations and by
the Return from Interrupt (R Tl) or Return from
Trap (R TT) instructions.

The remaining mapping functions distribute the vir
tual memory into the physical memory. In the phys
ical memory, many specific addresses are reserved
for special functions; the lowest addresses are used
for interrupt and trap vectors, while the highest ad
dresses are used for device registers. Because all
functions that require reserved addresses in the
physical memory are performed either by the phys
ical machine or by the control program, these ad
dresses need not be reserved in the virtual machine.
Therefore, the programs written to be run in the vir
tual machine can use any addresses; specifically,
these programs can start at address 000000 and con
tinue through ascending addresses to the highest ad
dress needed.

In discussions of the virtual memory and the phys
ical memory, it is often necessary to describe the ad
dresses used to select data items within the
memory. The range of addresses that it is possible
to use is called the address space. The maximum
range of addresses that can be used in the virtual
machine (which in the PDP- I I /70 is the maximum
number that can be contained in a 16-bit word) is
called the virtual address space, while the maximum
range of physical addresses that can exist in the
hardware system is called the physical address
space (in the PD P-11 /70 this can be all the ad
dresses expressed by a 22-bit number).

If the user program is to use addresses in the vir
tual address space that are reserved in the physical
address space, the virtual address space must be
relocated to some other part of the physical address
space. In a multiprogram ming system, several user
programs, each in its own virtual address space,
may be sharing the physical address space. There
fore, the relocation of the virtual address space into
the physical. address space must be variable; each
time a program is run, it may be allocated a differ
ent part of the physical address space. Memory
Management provides the capability of varying the
relocation for each user program by storing a map
of the memory allocation in a set of registers.

Resource Management
In a multiprogramming system, each user program
operates in a virtual machine that can utilize any of
the possible devices or functions of the physical ma
chine, as well as many functions performed by the
executive program. The resources that exist in the
system must be allocated to each user program as
required, but without allowing conflicts to arise
where several user programs require the same re
sources. The physical machine and the executive
program must resolve any protective conflicts by
scheduling the resources for use by different pro
grams at different times, and must schedule the
user programs to operate when the resources are
available.

The management of input/output or peripheral de
vices is beyond the scope of this discussion, which
is primarily concerned with the basic PDP-11/70
System. Within the system, the two most important
resources which require the most care and effort to
control are the memory and the processor.

1-2-6

Processor Management
The processor can only execute one instruction at a
time. When several programs are sharing the use of
the processor, the processor operates on each pro
gram in turn; either the processor is shared among
the programs, by using periodic interrupts to allow
the executive program to transfer the processor to
another user program, or each user program runs
to completion before the next user program begins.
To share the processor on a time basis, the execu
tive program must perform the transfer from one
virtual machine to another. Each virtual machine is
given control of the physical machine by loading
the map of that virtual machine into the physical
mac hi nc. That is, the executive program changes vir
tual machines by changing the contents of the pro
cessor registers used by the virtual machine, and by
changing the contents of the registers in Memory
Management which map the virtual address space.

Memory Management
The following discussion assumes that Memory
Management is enabled. Memory Management is
much more complicated than Processor Manage
ment. If a program uses a large proportion of the
virtual address space, and only a small amount of
memory is physically available in the system, the
program may be too large to fit into the memory
all at once. Fortunately, in most programs only a
small part of the program (or possibly several small
parts. one for the instruction stream and one or
more for blocks of data) is used at any one time.
To take advantage of this fact, the virtual address
space is divided into pages so that each page can be
mapped separately. Only the pages that are in use
in the current instruction are required to be in the
physical memory during the execution of that
instruction.

A system which uses Memory Management to per
mit each virtual machine to have a larger address
space than the available physical memory must also
include a mass storage device to hold those parts of
each virtual memory that are not in the physical
memory. As a program proceeds through a se
quence of instructions, it requires different pages of
the virtual memory. The memory map in the Mem
ory Management includes relocation information
for each page of the virtual address space, and also
includes information specifying which pages are cur
rently in the physical memory. If the processor at
tempts to perform transfers with a virtual address

which is on a non-resident page, the instruction is
aborted. A part of the executive program which
transfers the required page into the physical mem
ory and changes the map in Memory Management
to reflect the newly available page is then executed.

Memory Use Statistics
If it is necessary for the executive program to bring
a page into the physical memory, but all of the
physical memory is already in use, the executive
program must remove another page (from the same
virtual machine or, in a multiprogramming system,
from some other virtual machine) from the physical
memory. When a page is removed from the phys
ical memory, a copy of that page must be stored in
the mass storage device; if a copy of the page is al
ready on the mass storage device, and none of the
data (or instructions) stored on the page have been
changed, the writing of the page onto the mass stor
age device can be bypassed. Each time a page must
he replaced, the executive program attempts to pre
dict which page is least likely to be used in the fu
ture, so that it will not soon need to be moved
hack into the physical memory.

Memory Management includes hardware to permit
choosing the page to be replaced and to determine
whether that page must be written onto the mass
storage device. Each external data transfer per
formed by the processor requires that Memory
Management convert a virtual address into a phys
ical address and keep track of which virtual pages
have hcen accessed and which virtual pages have
heen written into. The executive program operates
on the assumption that pages which have been re
ccn tly accessed will also be used soon. To find a
page which can be replaced, the executive program
looks for a page which has not been used, prefera
bly from the address space of a user other than the
current user. If there are no virtual pages currently
in the physical memory that have not been ac
cessed, the executive program looks for a page that
has not heen written into, to avoid having to copy
a page to the mass storage device. If all the virtual
pages in the physical memory belong to the current
user, the executive program looks for a page that
has not heen used recently, again preferably one
that has not heen written into. By use of the hard
ware Memory Management unit and of a variety of
scheduling and allocation algorithms in the execu
tive program, the system can provide a number of

1-2-7

user programs with virtual machines of great power
and flexibility, with a minimum burden on the user
program.

Communication
A program running in a virtual machine must be
able to communicate with the executive program,
to request various services performed by the execu
tive program, or to determine the status of the sys
tem. The same type of communication can be used
for communication between virtual machines, by
providing inter-machine communication as a service
through the executive program. The same hardware
functions that provide a means for the user pro
gram to communicate to the executive program are
also used by the executive program to determine
the status of the user program when a trap or abort
condition occurs.

The user program requests services by executing
trap instructions (such as EMT, TRAP, or JOT).
Ah normal conditions caused by a program failure,
such as an odd address for a word data transfer, or
an attempt to execute a reserved instruction, cause
internal processor traps. In either case, the trap
function performed by the processor serves to no
tify the executive program that an instruction is
required.

Context Switching
The executive program must then begin executing
instructions to perform the requested service or to
correct the failure condition, if possible. However,
in order for the hardware machine to operate on
any program other than the user program, the map
ping information must be changed to reflect the al
locations used by the new program.

The trapping function performs the change of most
of the mapping information. The contents of the
Program Counter (PC) and the Processor Status
(PS) registers are changed directly; the old contents
are stored on a stack in memory, pointed to by a
stack pointer, and the new contents are supplied
from locations called a trap vector. The address of
the trap vector is provided by the processor and de
pends on the type of trap instruction or trap condi
tion, so that for each trap instruction or condition,
a different PC and PS can be supplied.

M cmory Management stores the maps for the exec
utive program and one user program in separate
registers. The processor indicates which map should
he used to relocate virtual addresses. During the ex
ecution of instructions (as opposed to the interrupt
and trap service function), the address space map
to use is specified by bits 15 and 14 of the PS.
These hits also specify which Stack Pointer (SP) reg
ister in the processor to use (there is a separate SP
for each virtual machine). Because the trap and in
terrupt service function loads the PS register with a
new val uc, this function changes almost the entire
virtual machine context directly.

The only remaining parts of the virtual machine
context that require changes are the general regis
ters in the processor. These can be changed either
hy saving the contents of the registers from the pre
vious virtual machine on the hardware stack and
loading new contents, or by selecting the alternate
set of general registers (the processor has two sets
of general registers, 0 - 5). Register set selection is
controlled by bit 11 of the PS register, so this
method can be used in conjunction with the trap
service function.

To summarize the change of virtual machines: the
mapping in the hardware system includes the selec
tion of a register set, a stack pointer, a program ad
dress (in the program counter), an address space,
and a processor status. The trap and interrupt ser
vice function, which is performed by the processor
as an automatic response to trap an instruction or
abnormal condition, can change all of these selec
tions as follows:

I. The program counter and processor
status are changed directly.

2. Bits 15 and 14 of the new PS select the
new address space and stack pointer.

3. Bit 11 of the new PS selects the new reg
ister set.

The mapping and selection information for the pre
vious virtual machine is completely saved, either by
remaining in unselected portions of the processor
and the Memory Management unit, or by being
stored on the hardware stack. If the selected regis
ter set is shared with other virtual machines, the reg
ister contents must be changed by an instruction
sequence.

1-2-8

Inter-Program Data Transfers
When the new virtual machine begins executing a
service program for the program med request (if a
trap instruction was executed) or abnormal condi
tion (if a trap condition occurred), the service pro
gram must get information from the previous
virtual machine. This information may define the
status of the previous virtual machine, after an ab
normal condition occurred, so that the service pro
gram can correct the condition and restore the
correct status before returning control to the pre
vious virtual machine. If the service program is per
forming a service, the information required from
the calling program may define the specific type of
service to perform, or provide the addresses of data
buffers, or specify device and file names.

Most information required by the service program
is stored in the calling program's address space. To
get this information, and to return information to
the calling program, the service program must be
able to operate in ~he present address space and
transfer data in the previous address space, at the
same time. The KBI 1-C Processor provides instruc
tions to do this.

The special instructions that transfer data between
virtual address space make use of the PS register to
specify which address space is being used by the cur
rent virtual machine, and which address space was
used by the previous machine (this is identified by
bits 13 and 12 of the PS). The data is transferred be
tween the hardware stack of the current address
space and arbitrary addresses of the previous ad
dress space. The calculations of the virtual address
in the previous address space; i.e., any index con
stants or absolute addresses used to generate the vir
tual address, are taken from the current address
space, just as the instructions are.

Each virtual address space is divided into an In
struction (I) space and a Data (D) space. Each I or
D space has a full set of 216 virtual addresses. There
fore, the communication instructions are available
in two versions; one to transfer with the previous I
space. and one to transfer with the previous D
space. A different instruction is needed for each
transfer direction as well, so there are four commu
nication instructions: Move To Previous Instruction
(MTPI) space, Move To Previous Data (MTPD)
space, Move From Previous Instruction (MFPI)
space, and Move From Previous Data (M FPD)
space.

Returning to the Previous Context
Because all the mapping and context information
for the previous virtual machine is saved when the
trap and interrupt service function sets up a new vir
tual machine, the hardware system can resume the
executiom of any program at the same point that it
was interrupted. This is done with a Return from
Interrupt (RTI) or Return from Trap (RTT) instruc
tion, which replaces the PC and PS values of the
current virtual machine with the stored values from
the previous virtual machine.

The PS selects most of the mapping information, as
described previously, so the return instructions com
pletely restore the previous context.

Protection
The hardware system and the executive program
must be protected from failures in each virtual ma
chine. In addition, most systems provide protection
so that no program operating in a virtual machine
can take control of the system or affect the oper
ation of the system without authorization. A third
form of protection that is useful in a large and com
plex system is the protection of the executive pro
gram against itself. The executive program is
divided into a basic, carefully written Kernel, which
is allowed to perform any operation, and a broader
Supervisor, which cannot perform privileged oper
ations, hut which provides various services useful to
the executive program and to the user programs.

The forms of protection provided include the differ
ent address spaces for different types of programs,
a variety of restricted access modes, and restricted
processor operations. The address space protection
can he used with any type of program, whether op
erating in User, Kernel, or Supervisor mode. The re
stricted processor operations are usable only in
Kernel mode: Supervisor mode has the same restric
tions as User mode.

Separate Address Spaces
The most basic protection against modification of
the executive program by a User program (or of
the Kernel section by the Supervisor section) is the
s~paration of the address spaces. A program oper
ating in User mode operates in the User address
space. It cannot access any physical addresses that

are not in that address space, regardless of their cor
respondence to addresses in any other virtual ad
dress space. The executive (Kernel) program can
prevent a User program from accessing other vir
tual address spaces through the communication in
structions (MTPI, MTPD, MFPI, MFPD) by
forcing bits 13 and 12 of the stored processor status
word to Is (to reflect User mode) before executing
an RTI or R TT instruction to return control to the
user program. This forces the previous mode bits in
the PS register to take on User mode, just as the
current mode bits are set to User mode, and the
communication instructions operate only within the
User address space .

Access Modes
Within one address space, it is often useful to be
able to protect certain parts of a program from un
intentional modification. This can be done by allow
ing the data in those addresses to be read, but
prohibiting transfers into the addresses. This is
known as read-only (or write-protected) access.
Areas in a virtual address space that contain alter
able data must permit read/write access, but areas
that contain unmodified instructions may be read-,
only.

Another useful form of access protection dis
tinguishes between read accesses that fetch instruc
tions (or address constants) and any accesses that
transfer data. If instructions can be accessed by the
processor only as instructions, they can be executed
hut they cannot be read or transferred to any other
part of the address space. This prevents the user
from determining what the instructions are in order
to tamper with the instruction sequence or attempt
to modify the program in undesirable ways. This
type of access restriction is called execute-only
access.

Memory Management provides a read/write, read
on ly, and execute-only access modes system. The ac
cess mode is stored in the mapping registers along
with the relocation information; in fact, when a
page of the virtual address space is not in memory,
a special access code that identifies the page as
non-resident is used. The execute-only access mode
is not a separate access mode, but is provided by
separating the address space into two address

1-2-9

spaces that are used for the different kinds of trans
fers. One address space is used for all transfers that
fetch instructions and is called the Instruction (I)
space, while a second address space is used for all
data transfers and is called the Data (D) space. If
the two address spaces are mapped separately, at
tempts to use the same address for an instruction
and for data may address different physical loca
tions. If no addresses in the D space correspond to
the physical addresses used in the I space, the in
structions cannot be accessed as data and an exe
cute-only access mode has been achieved. This
mode must be used with caution: tables that are ac
cessed by indexed address modes must be in D
space and MARK instructions, which are stored on
.he hardware stack as data and then executed, and
require the stack to be in the same virtual addresses
in I and D space.

Privileged Instructions
Certain PDP- I I instructions that affect the oper
ation of the hardware machine must be prohibited
in the virtual machine. These include the HALT in
struction, which stops the physical machine and
thus prevents any virtual machine from operation,
the RESET instruction, which stops all in
put/output devices, regardless of which virtual ma
chine they are allocated to, and various PS change
instructions. These instructions are allowed only in
K erncl mode so that the executive program can con
trol the entire hardware system; they are ineffective
in the Supervisor or User mode. The RESET and
Set Priority Level (SPL) instructions are allowed to
execute in these modes, but have no effect; the
HALT instruction activates a trap function so that
the executive program may stop all action for the
virtual machine that executed the HALT, but not
for other virtual machines.

2.4 REENTRANT
PROGRAMMING

AND RECURSIVE

A program can generally be divided into routines,
each of which performs a function that is built up
from a sequence of instructions. Often, the function
performed by a routine is needed in several other
routines, so it is desirable to be able to call the rou
tine from many other routines in the program; i.e.,

the program should be able to transfer the pro
cessor to the instructions following the calling in
struction. A routine which is called from other
routines is said to be subordinate to those routines
and is called a subroutine; the special instructions
that transfer the processor to the beginning of a
subroutine and that return the processor to the call
ing routine are called subroutine linkage
instructions.

Recursive Functions
Some procedures are most easily implemented as a
subroutine that either performs a part of the pro
cedure and then calls itself to perform the rest of
the procedure, or completes a computation and re
turns a partial (and finally, a complete) result. This
is calkd recursive operation. The common example
of a recursive procedure is one that calculates the
factorial of a number (the factorial is the product
resulting from the multiplication of a number, n, by
all smaller numbers). The recursive procedure to cal
culate a factorial of a positive integer is as follows:

I. If n is I or 0, return I as the value of fac
torial n.

2. If n is greater than I, compute the facto
rial of n minus I, multiply that number
times n, and return that value.

hH example, to compute the value of factorial 3,
the procedure is to compute the value of factorial 2
and multiply by 3. However, the value of factorial
2 is the value of factorial I times 2. The value of
factorial I is found by Step I. to be I, so the final
result is I times 2, multiplied by 3, or 6. The same
recursion computes the factorial of any positive in
teger. in n recursions for a number n.

Use of a Stack in Recursive Routines
When a subroutine is called recursively, the linkage
information for each call (the information required
to return to the calling program) must be saved dur
ing subsequent calls. Since a recursive subroutine
can be called again before it returns from the first
c~11l, the linkage information should not be stored
in a fixed location; instead, it is stored in a stack,
with each linkage in a different location and a
pointer that identifies the specific location for each
linkage.

1-2-10

Assume that subroutine A calls subroutine B,
which then calls subroutine C. Subroutine C must
return control to subroutine B before subroutine B
can return control to subroutine A. It can be seen
that in this case the last linkage which has not been
used for a return must be the first one used; i.e.,
the linkages must be used in a last-in, first-out se
quence. A storage area whose locations are used for
last-in, first-out storage is called a stack; a pointer
is used to point to the last entry placed on the
stack, and the subroutine linkage instructions that
put information on the stack (a push operation), or
remove information from the stack (a pop oper
ation), change the contents of the pointer so that it
always points to the correct word for the next link
age operation.

0 ne of the KBl 1-C processor's general registers is
used hy the subroutine linkage instructions as a
stack pointer. This register is the Kernel Stack
Pointer (SP) and it must be initialized to point to
the first word in a stack area. This same stack is
also used for storage of context or linkage informa
tion hy the trap and interrupt service function,
which is described in Section 11, Chapter 6. The
traps, interrupts, and subroutine calls are all han
dled in the same last-in, first-out manner.

A subroutine that can be called recursively should
not move data into fixed locations, because later ex
ecutions of the same subroutine (before the current
execution is finished) may also execute the same
data transfer instructions. The best way to keep the
data storage for each execution of a subroutine sep
arate is to store the data on the stack in the same
manner as the linkage information.

Reentrant Functions
Keeping the data storage separate from the pro
gram is particularly important for programs and
subroutines that can be called from more than one
virtual machine. If several virtual machines are exec
uting the same program, it can be called from more
than one virtual machine. If several virtual ma
chines arc executing the same program, it is desir
able to have only one copy of the program in the

physical memory, and to map each virtual address
space into the same physical address space. How
ever, in a muliprogramming system, one virtual ma
chine may begin execution of a program and then
he interrupted: a second virtual machine may begin
execution of the same virtual program and then run
out of time: the original virtual machine may re
sume execution and complete the program; and the
second virtual machine may resume executions. The
programmer cannot make any assumptions about
where each virtual machine may resume execution,
nor can he make any assumptions about where
each virtual machine stops, so the program must be
capable of being reentered at any time, regardless
or what other virtual machines have done with the
program.

Programs designed to store all their data on a
stack, so that each virtual machine that uses the
program simply uses a different stack, are called re
entrant programs. A different stack pointer is se
lected each ti me a different virtual machine is
selected. If the executive program changes the con
text of the user virtual machine, to run a different
user. it changes the address mapping of the stack
area and the contents of the stack pointer, so that
each activation of a program executes the program
in complete isolation from other activations by
other virtual machines.

Indexed Addressing of Parameters
When a program or routine calls a subroutine, the
calling routine may send data to the subroutine.
The amount of the data to be "passed" to the sub
routine may vary, as may the amount of data re
turned by the subroutine. By placing all the data on
the stack, the amount of data becomes unimpor
tant. The subroutine may read different data items
on the stack by using the indexed addressing modes
with the stack pointer as the base register. Complex
subroutines may require that the last word placed
on the stack (the word with the lowest virtual ad
dress, because the stack expands toward low ad
dresses) contain the number of parameters passed
so that the program does not use other data also
on the stack but not intended as parameters.

1-2-11

Separate Stack and Index Pointers
Using the stack pointer as the base address for in
dexed addressing presents problems if the sub
routine must, in turn, pass data to another
subroutine. Each time the first subroutine calculates
a parameter for the second subroutine, it pushes
the parameter onto the stack. The address in the
stack pointer changes to reflect the new data on the
stack. As a result, all instructions in the first sub
routine which contain index constants are invalid,
because the base value that the index constants are
supposed to modify has changed. It would be very
difficult, if not impossible, to write a subroutine
that could use different index constants as the stack
pointer changes (because to remain reentrant, the
program cannot change any part of the instruction
code). A much simpler solution is to separate the
base register from the stack pointer by copying the
stack pointer value into another general register be
fore using the stack for any other data. This is still
reentrant because any change of virtual machine
also changes the contents of (or the selection of) all
general registers.

The register commonly used as a separate index
pointer is register 5. The standard method of call
ing subroutines in reentrant programs uses register
5 as the index pointer, register 6 as the stack
pointer, and a word on the stack (at the address
contained in the index pointer) that indicates the
number of parameters on the stack. In addition to
providing a straightforward and completely reen
trant structure, this method is completely com
patible with a similar form of non-reentrant
subroutine call. The same subroutine can be called
both hy reentrant programs and by simpler pro
grams that are non-reentrant.

Subroutine Call Compatibility
In a non-reentrant program, the parameters passed
to a subroutine are placed in-line~ i.e., they are in
the addresses immediately following the address of
the calling instruction. The subroutine call and re
turn instructions use a register to store the program
counter value for the calling program; the value in
the program counter at the time the subroutine call
Uump to subroutine or JSR) instruction is executed
is the address of the word following the JSR instruc
tion. The standard register specified in the JSR in
structions is register 5: register 5 can be used as an

1-2-12

index pointer while the stack is used for data stor
age during the execution of the subroutine. The
JSR instruction does not destroy the previous con
tents of register 5 when it stores the return address
in that register: the previous contents are pushed on
the stack, and are automatically restored by a Re
turn from Subroutine (RTS) instruction.

When the RTS instruction restores the Program
Counter (PC) value stored by the JSR instruction,
the calling program must have some means of by
passing the stored data to get to the next instruc
tion. The word immediately following the calling
instruction must contain the number of words occu
pied by the parameters. Both of these requirements
can he fulfilled by placing a branch instruction in
the return location: the branch instruction advances
the PC so that the first word after the line parame
ters. and the offset in the eight least-significant bits
of the branch instruction, contain the number of
words used for the parameters (the offset is multi
plied by 2. before use, to generate a byte address).

The calling sequence and in-line parameter struc
ture used by non-reentrant routines permits the sub
routine to return control to the calling routine with
~111 RTS R5 instruction. For compatibility, the reen
tr<tnt subroutine call must also permit the same
RTS R5 instruction to perform the return. How
ever, when a subroutine has been called in a reen
trant manner. R5 points to a location on the
hard\\ are stack. not to the calling program. In addi
tion. the space in the stack area used by the sub
routine call must he released (the stack pointer
must he adjusted to point to the first location after
the parameter area) so that any additional informa
tion on the stack (such as a return linkage to a rou
tine that called the routine that called the current
subroutine) is accessible. Thus, the word pointed to
by R5 should contain an instruction, whose least
sign i ficant hits arc the number of parameters
passed to the subroutine, which can adjust the
stack pointer and also complete the subroutine re
turn sequence.

The MARK instruction performs this function in
the PD P-1 I /70. A detailed description of the use of
this instruction is contained in the PDP-I I /70 Pro
cessor 11 and/wok.

SECTION II

PROCESSOR

Unless otherwise indicated, references within this sec
tion pertain to this section only.

SECTION II PROCESSOR
CONTENTS

INTRODUCTION

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.2.4.3
1.2.5
1.2.5 .1
1.2.5.2
1.2.5.3
1.2.5.4
1.2.5.5
1.2.5.6
1.2.S.7
1.2.5.8
1.2.5.9
1.2.5.10
1.2.5.11
1.2.5.12
1.2.6
1.2.6.1
1.2.6.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.6.1
1.4.6.2
1.4.6.3
1.4.6.4
1.4.7
1.4.8
1.5
1.5.1
1.5.2
1.5.3
1.5.4

INSTRUCTION DECODE AND MICROPROGRAM CONTROL

MICROPROGRAM ROM AND BUFFER REGISTER
FLOW DIAGRAMS

ROM Timing
Glossary
Instruction Classes
Addressing Modes and Operand Fetch

General Register Addressing
Program Counter Addressing
A and C Forks: Operand Fetch

Flowchart Description .
FLOWS 1
FLOWS2
FLOWS3
FLOWS4
FLOWS5
FLOWS 6
FLOWS?
FLOWS8
FLOWS 9 and 10 .
FLOWS 11
FLOWS 12 and 13
FLOWS 14

Following an Instruction Through the Flowcharts
Figures and Tables
An Instruction Example

ROM MAP
ROM ADDRESS

ROM Address Register (RAR)
ROM Address Selection
Branches and Forks
Branch Logic .
Instruction Registers
A Fork Logic .

Decode Logic .
Address Bit Generation
Instructions Other Than Branch
Branch Instructions

C Fork Logic
B Fork Logic .

CONDITION CODES .
Condition Code Storage
Condition Code Load Field
Instruction Dependent Control
SUBROM Address Generation

II-iii

Page

11-1-4
11-1-7
11-1-7
11-1-7

11-1-10
11-1-12
11-1-13
11-1-14
11-1-15
11-1-15
11-1-15
11-1-18
11-1-19
11-1-20
11-1-21
11-1-21
11-1-22
11-1-23
11-1-25
11-1-29
11-1-30
11-1-31
11-1-31
11-1-31
11-1-35
11-1-37
11-1-37
11-1-38
11-1-39
11-1-39
11-1-40
11-1-40
11-1-42
11-1-42
11-1-42
11-1-42
11-1-47
11-1-50
11-1-51
11-1-53
11-1-53
11-1-54
11-1-54
11-1-54

1.5.5
1.5.6
1.5.7
1.5.8

CHAPTER2

2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.2
2.1.2.1
2.1.2.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.9 .1
2.1.9.2
2.1.9.3
2.1.9.4
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4

CHAPTER3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

C Bit Data
N Bit Data
Z Bit Data
V Bit Data

DATA PATHS

SECTION II PROCESSOR
CONTENTS (Cont)

Page

11-1-55
11-1-55
11-1-58
11-1-60

DATA MANIPULATION 11-2-3
Arithmetic and Logic Unit (ALU) . 11-2-3

Description of ALU . 11-2-3
ALU Control . 11-2-4

Shifter (SHFR) . 11-2-6
Description of SHFR . 11-2-6
Shifter Control . 11-2-7

Program Counter (PCA and PCB) . 11-2-7
General Registers . 11-2-7
Source and Destination Multiplexers (SRMX and DRMX) 11-2-10
Source Register (SR) . 11-2-11
Destination Register (DR) . 11-2-11
Shift Counter (SC) . 11-2-12
ALU Inputs . 11-2-13

A Multiplexer (AMX) . 11-2-13
B Multiplexer (BMX) . 11-2-13
Constant Multiplexer 0 (KOMX) . 11-2-14
Constant Multiplexer 1 (KlMX) . 11-2-14

INPUTS TO PROCESSOR DATA PATHS . 11-2-15
Bus Register Multiplexer (BRMX) . 11-2-15
Internal Data Bus (INTD) . 11-2-16

SSRJ Multiplexer . 11-2-18
SCCH Bus Output . 11-2-18
SCCM Multiplexer . 11-2-18
SCCN Multiplexer . 11-2-18

Bus Register (BR and BRA) . 11-2-18
Instruction Registers (IR and AFIR) . 11-2-18

PROCESSOR DATA PATHS OUTPUTS . 11-2-19
Bus Address Multiplexer (BAMX) . 11-2-19
Unibus Data Multiplexer (DMX) . 11-2-19
Bus Register A (BRA) . 11-2-20
Display Multiplexer . 11-2-20

PROCESSOR CONTROL REGISTERS

SWITCH REGISTER (SWR) AND LIGHT REGISTER (LR)
LOWER SIZE REGISTER .
UPPER SIZE REGISTER .
SYSTEM ID REGISTER .
CPU ERROR REGISTER .
MICROPROGRAM BREAK REGISTER (PB) .
PROGRAM INTERRUPT REQUEST REGISTER (PIRQ)

II-iv

11-3-1
11-3-1
11-3-1
11-3-1
11-3-2
11-3-2
11-3-2

3.8
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.S
3.9.6
3.9.7
3.9.8
3.9.9
3.9.10

CHAPTER4

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.3
4.3.1
4.3.2
4.3.3
4.4
4.S
4.6
4.6.1
4.6.2
4.7
4.8
4.8.1
4.8.1.1
4.8.1.2
4.8.2
4.8.2.l
4.8.2.2
4.8.3
4.8.3.1
4.8.3.2
4.9
4.9.1
4.9.2
4.9.3

SECTION II PROCESSOR
CONTENTS (Cont)

STACK LIMIT REGISTER (SL)
PROCESSOR STATUS WORD (PS, PSW)

Reading the PS .
wading the PS .
Processor Mode Bits [PS(1S:12)] .
Current Processor Mode [PS{l S: 14)]
Pi"evious Processor Mode [PS(13: 12)]
PS{l S: 12) Implicit Write .
General Register Set Bit (PS 11) .
Priority [PS(07:0S)]
Trace Bit (T Bit, PS04) .
Condition Codes

TIMING GENERATOR

CLOCK SOURCES
Crystal Clock .
R/C Clock
MAINT STPR Switch

SOURCE SYNCHRONIZER .

Page

11-3-3
11-3-3
11-3-S
11-3-S
11-3-5
11-3-6
11-3-6
11-3-6
11-3-7
11-3-7
11-3-8
11-3-8

11-4-1
11-4-2
11-4-2
11-4-2
11-4-2

Crystal Clock Selection . 11-4-2
RC Clock Selection . 11-4-2
MAINT STPR Selection . 11-4-2
Synchronization . 11-4-3

PHASE SPLITTER/BUFFER . 11-4-3
Level Converter . 11-4-3
Phase Splitter . 11-4-4
Buffers . II-4-4

TIGC TPB AND TF . 11-4-4
RING COUNTER . 11-4-4
TIMING PULSES, Tl-TS 11-4-S

TS H . II-4-6
TS L . II-4-7

TIME STATES (TIGE TSl L-TSS L) . 11-4-9
PAUSE CYCLES AND CLOCK BR . 11-4-9

Synchronous Pauses . 11-4-9
Internal Bus (INT D) Pause (T2) . 11-4-9
Cache Pause (5) . 11-4-9

Asynchronous Pauses . 11-4-9
Unibus Pause (T2) . 11-4-9
INTR Pause (T2) . 11-4-11

CLK BR, BRA . 11-4-11
Non-Cache Cycles . 11-4-11
Cache Cycles . 11-4-12

MAINTENANCE STOPS . 11-4-12
Single Cycle Mode
ROM+UPB
TIGBCONTL ..

11-v

11-4-12
11-4-13
11-4-13

CHAPTERS

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.3
5.3.1
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3

CHAPTER6

6.1
6.1.1
6.1.2
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.3.4
6.1.3.5
6.1.3.6
6.1.3.7
6.1.3.8
6.1.3.9
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.3
6.2.3.1
6.2.3.2
6.3
6.3.1
6.3.2
6.3.3

SECTION II PROCESSOR
CONTENTS (Cont)

DATA TRANSFERS

PROCESSOR DATA TRANSFERS
Types of Data Transfers
Types of BUST Cycles .
Types of Pause Cycles
BEND Cycle

UNIBUS INTERFACE
UNIBUS DATA INTERFACE

Unibus Data Transfer Protocol
Unibus Data Interface

Unibus Device References
Unibus Timeout
Control Register Reference

ABORTS, TRAPS AND INTERRUPTS

SERVICE FLOWS AND VECTORS
Vectors
CPU Error Register
Service Flows

ABORTS

Entry into the Service Flows .
BRK.90 and ZAP.00 ..
BRK.00 and BRK.10
Branch Enable 13
Red Stack Error (SER.00 and SER.1 O)
BRK.80 and BRK.20 .
BK.30
Entry into SVC.00
SVC.00 - SV.90 .

Address Errors
Odd Address Error
Non-Existent Memory Error .
Memory Management Aborts
Timeout Error
Timing of Address Error Aborts . .

Stack Errors
Kernel R6
Stack Limit Errors
Timing of Stack Error Aborts

Parity Errors
Description
Timing of Parity Error Aborts

TRAPS AND INTERRUPTS .
Illegal Halt
Console Flag . .
Cache Parity Trap

11-vi

Page

11-5-1
11-5-3
11-5-4
11-5-4
11-5-5
11-5-5
11-5-5
11-5-5
11-5-6
11-5-6
11-5-8
11-5-9

11-6-1
11-6-1
11-6-2
11-6-2
11-6-2
11-6-2
11-6-2
11-6-2
11-6-3
11-6-3
11-6-3
11-6-3
11-6-3
11-6-3
11-6-3
11-6-3
11-6-5
11-6-5
11-6-6
11-6-6
11-6-7
11-6-7
11-6-8

11-6-10
11-6-10
11-6-10
11-6-11
11-6-12
11-6-12
11-6-12
11-6-12

6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3

Figure~ No.

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
2-1
2-2
2-3
2-4
2-5
2-6
2-7

SECTION II PROCESSOR
CONTENTS (Cont)

Memory Management Traps
Yellow Zone Trap (SL YEL)
Power Down Trap (PDNF)
FP Exception Trap
Program Interrupt Request .
External Interrupt (BUS BR)
T Bit Trap

UNIBUS ARBITRATION AND INTERRUPT INTERFACE
Unibus Arbitration Interface Logic
NPR-NPG Sequence
BR-BG Interrupt Sequence and Passive Release

UNIBUS POWER MONITOR
Power-Down
Power-Up
PDP-11/70 System Power Control

ACLO Connections
DCLO Connections
Power Down ...

ILLUSTRATIONS

Title

Block Diagram
ROM Word: Clock, ICs and Registers
Flow Chart Symbols (P/O Flows 2)
ROM Timing
Source and Destination Mode Formats
A and C Forks, General Case
Multiply Instruction
Divide Algorithm
Divide Instructions
Determination of an Instruction from the Binary Code
Instruction Execution Example
ROM Address
Sources of C Bit Data, Simplified Diagram
Sources of N Bit Data, Simplified Diagram
Sources of Z Bit Data, Simplified Diagram
VENl Sources of V Data Bit, Simplified Diagram
VEN2 Sources of V Data Bit, Simplified Diagram
Block Diagram Data Paths
Typical SHFR Bit
General Register Storage in GS and GD Storage Elements
Processor Status Word
SC Loaded With 00101
SC Loaded With 17 s
BRMX Selection, Simplified Schematic

II-vii

Page

11-6-12
11-6-12
11-6-12
11-6-12
11-6-14
11-6-14
11-6-14
11-6-14
11-6-17
11-6-17
11-6-18
11-6-19
11-6-20
11-6-21
11-6-21
11-6-21
11-6-21
11-6-22

Page

11-1-2
11-1-5
11-1-8
11-1-9

11-1-12
11-1-16
11-1-23
11-1-26
11-1-27
11-1-34
11-1-35
11-1-38
11-1-56
11-1-56
11-1-59
11-1-61
11-1-62

11-2-2
11-2-6
11-2-8
11-2-8

11-2-12
11-2-13
11-2-16

2-8
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

Table No.

1-1
1-2
1-3A
l-3B
1-3C
1-3D
l-3E
1-4
1-SA
1-SB
1-SC
1-6

SECTION II PROCESSOR
ILLUSTRATIONS (Cont)

Internal Data Bus Block Diagram
CPU Error Register
Program Interrupt Register
Stack Limit Register . . .
Processor Status Word
PSW Clock and Direct Set Simplified Schematic
Timing Generator Block Diagram
Timing Source Synchronization
Timing Pulse Generation
Simplified Schematics of TIGD TS H
Simplified Schematics of TIGD TS L
Time States
Timing Generator and Pauses
Clock BR Circuit (Part of D-CS-M8 l 39-0-1, Sheet 3)
Clock BR Timing
Processor Data Transfers
Unibus Data Transfers
Address Error Aborts
Examples of Stack Limit
Stack Error Aborts .. .
Parity Abort
Program Interrupt Request Register
BR - Interrupt Sequence
UBCD Free Clock
NPR-NPG Sequence
INTR Sequence
Power-Down
Power-Up
PDP-11/70 ACLO and DCLO Connections

TABLES

Microprogram Bit Usage
Sign Correction for MUL Instruction
Instruction Microprogram Properties
A Fork, BIN*-SMO
AFork,DAC
C Ford, BIN
Branches (All Cycles on Flows 1)
Branch Signal Sources
A Fork Address Generation
A Fork, BIN*-SMO
AFork,DAC ...
Branch Instructions

Title

II-viii

Page

11-2-17
11-3-2
11-3-3
11-3-3
11-3-3
11-3-7
11-4-1
11-4-3
11-4-5
11-4-6
11-4-7
11-4-9
11-4-9

11-4-11
11-4-12

11-5-2
11-5-7
11-6-6
11-6-9

11-6-10
11-6-11
11-6-14
11-6-16
11-6-17
11-6-18
11-6-19
11-6-20
11-6-21
11-6-22

Page

11-1-6
11-1-24
11-1-32
11-1-33
11-1-33
11-1-33
11-1-33
11-1-41
11-1-44
11-1-45
11-1-45
11-1-48

1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
4-1
6-1
6-2
6-3
6-4

SECTION II PROCESSOR
TABLES (Cont)

Branch Instruction ROM Address
C Fork Address Generation
B Fork Address Generation
Condition Code Load
Subsidiary ROM Address Sources
C Bit Data Sources
N Bit Data Sources
Z Bit Data Sources
V Bit Data Sources
Non-Instruction-Dependent ALU Control Signals
Multiplexer Input Selection GSAM and GDAM
Multiplexerlnput Values
Multiplexer Input Selection GSREG and GDREG SET 1
ALU Input Multiplexers
BMX Output Selection ..
BMX Output From KIMX
Data Output to Unibus ..
Display Register Selection
Processor Status Word Bit Assignments
Ring Counter Stop and Pause Conditions
Service Flows
Processor Service in Order of Priority
Trap Vectors Enabled
ACLO and DCLO Driver Outputs

11-ix

Page

11-1-49
11-1-51
11-1-52
11-1-54
11-1-55
11-1-57
11-1-58
11-1-59
11-1-60

11-2-5
. 11-2-9
. 11-2-9

11-2-10
11-2-13
11-2-14
11-2-15
11-2-20
11-2-20

. 11-3-4
11-4-10

. 11-6-4
11-6-13
11-6-14
11-6-21

The KBI 1-C Processor System is capable of manip
ulating, storing, and routing data. The processor is
the system component that manipulates the data.
Although the processor is designed to effect com
plicated changes to the data that it receives, it ac
tually consists of elements making only simple
changes. The complex data manipulation are ach
eived by combining a number of these simple
changes in a variety of ways.

The processor consists of logical elements, each ele
-focn t designed to perform a specific function. For
example, some elements store data, some read data
from another part of the computer, and others per
form simple modifying functions such as com
plementing the data or combining two operands,
either by arithmetic or by logical means. These
simple basic operations are combined into func
tional groups known as instructions. An instruction
can incl udc a number of operations so that data
can he combined, changed, moved, or deleted. In
structions can he further combined into programs
which use a number of instructions to construct
even more complex operations.

The basic logical clements of the processor can per
form only a small number of operations at one
time. Therefore, to combine a number of these oper
ations into an instruction, the instruction must be
divided into a series of sequential steps. These steps
arc called machine states, or cycles, and may per
form either a single operation or several operations
at the same time. An instruction thus becomes a se
quence of machine states. This sequence may be
l'ixed or may provide alternate paths (branches); in

11-1-1

INTRODUCTION

the latter case, internal conditions determine which
branch the instruction will follow.

The processor can be divided into several func
tional parts:.

I. The Interface section exchanges data
with devices external to the processor
(Chapters 5 and 6).

2.

3.

4.

The Data Paths section performs data
handling functions (Chapter 2).

Control section includes the logic that de
termines which operations are to be per
formed during a particular state and
what the next machine state should be
(Chapter I).

The Timing section generates clock sig
nals which synchronize the various oper
ations of the KBI 1-C Processor System
(Chapter 4).

5. The Control Registers store the results of
processor operations. This data may be
used in determining future processor op
erations (Chapter 3).

The Interface section consists basically of logic nec
essary for transferring data between the processor,
the Unibus, the memory, and the Console. The
Data Paths and Control sections interact to per
form the three main processor functions of data
storage, modification, and routing.

The Data Paths section consists of storage registers,
shift registers, multiplexers, and an Arithmetic
Logic Unit (ALU). The multiplexers control the
data tlow between registers. The ALU executes the
more complex data manipulations, while the shift
registers move the data bits stored in them, either
to the left or to the right.

Operation of the elements of the Data Paths section
is determined by the Control section. Refer to Fig
ure 1-1. This section consists of a Read Only Mem
ory (ROM) and its associated logic. The ROM
contains 25610 (400x) locations. Each location con
tains 68 10 bits. This 64-bit ROM output is divided
into 32 groups or fields, each of which controls a
discrete part of the KBl 1-C Processor. One of these
fields is called the Address Field (U AD R or U AD).
The U AD field from the current machine state is
combined with selected data from other sections of
the KBl 1-C Processor in the ROM address logic,
whose output is the ROM address for the next ma
chine state. In this manner, the required machine
states are generated in the proper sequence. The
UA D field may either be used as the next ROM ad
dress, or may be modified by the feedback from the
other sections of the processor to generate the next
ROM address. This allows for instruction branch
ing that is dependent on other conditions, and also

11-1-2

1 _i_

ROM
ADDRESS

LOGIC

ei: MEMORY
j_ MANAGEMENT

ROM

8 UAD

J l··
J l

DATA
INTERFACE PATHS CONSOLE TIMING

I J
11-3101

Figure 1-1 Processor Control Section

for the use of machine states that are common to
several instructions. An auxiliary ROM in Memory
Management uses the same address as the pro
cessor ROM.

The main function of the processor is to execute a
Program, or sequence of Instructions.

Instructions are stored in memory. A Program
Counter stores the address of the next instruction.
At the end of the execution of one instruction, the
processor fetches (reads from memory) the instruc
tion that is to be processed next.

Instructions consist of a series of steps, called Ma
chine States, or cycles, that are executed sequen
tially. This sequence of steps is unique to each
instruction, although some steps, or series of steps,
may be common to several instructions.

The sequence of operations within each instruction
in the KBI 1-C is controlled by the microprogram
Read Only Memory (ROM).

!\ ROM is a storage device whose contents are pre
determined and cannot be changed. Ea~h address
generates a unique output. The KBll-C ROM has
an 8-bit address, which allows 25610 different out
puts, each consisting of 68 bits.

This 68-bit output (ROM word) is divided into 32
fields, each of which controls a different part of the
processor.

The ROM word contains an address field, which in
most cases is the address of the next ROM word:
the ROM is self-sequencing. This address field can
he modified by conditions internal or external to
tlie processor, such as the instruction operation
cndc, the addressing mode or other factors.

11-1-1

CHAPTER 1
INSTRUCTION DECODE AND
MICROPROGRAM CONTROL

When an instruction is fetched (read from memory)
it is stored in two instruction registers (IR):IRCA
IR(l5:00) and RACJ AFIR (15:00) and in the
FPP's FIRA if this option is installed. The contents
of these registers are decoded, and these decoded
outputs control the ROM address, along with in
puts from other processor circuits.

The decoded outputs of the IR are also used to de
termine how the results of the executed instruction
are interpreted in setting the Condition Codes. Refer
to Paragraph 1.5.

BLOCK DIAGRAM
Figure 1-1 is a block diagram of the KBI 1-C Read
Only Memory (ROM). The ROM contains 25610 or
400x processor control words. For each processor
machine cycle, one of these stored words is output
to the Data Paths section and to the other pro
cessor circuits. The ROM word is divided into
fields, and each field controls a specific register,
multiplexer or process of the processor. In Figure
1-1, each control field is listed by a mnemonic
name and by bits of the microprogram word occu
pied hy the control field. The control selection that
is made, or the action that takes place for each
value that can be stored in the field, is listed under
the field name. Where possible, the field name and
description are placed next to the logical element
controlled by that field.

The microprogram ROM outputs that control
other parts of the processor must be stored in a buf
fer register, so that the next microprogram word
can be selected while the current word is being
used. Therefore, a ROM Buffer Register (RBR) is
provided for these outputs (Paragraph 1.1).

FROM VARIOUS
T DATA PATHS

CONDITION CODE LOAD COND~ION I 1L.~~~-,
CCL M'2l (54-52] CODES u

1 INSTRUCTION DEPENDENT CONDITION CODE 0 NO CHANGE L FB-
2 SETICLR FROM BR lCCOP) GENERATOR .- RAR TOMEMORY MGMT
3 LOAD FROM FPP IF ENABLED (GRAB TRCE F
4 CCLD4(Z&NACCSHFR;cav-ol
5 CCLD5(Z SN ACC SHFR;C-AMX15, l

v -void +(SHFR15 y. AMX15))
6 c CLD6(N,C, av UNAFFECTED; z-Z* SHFR .. OJ
7 CCLD7(Z,N,a v UNAFFECTED; c-ALU CARRY)

FROM IR

ll
FROM AFIR

11
lAFIR DECODE

(RACE, F,HI
ROM ,,,....

(lIR DECODE

(IRCB, C,Dl

T
R0M<67:64> (RACA) l====l~lK

SUBSl{)IARY
ROM CONTROL

(IRCH)

~FORK C

v (IRCC)

l
1

L-", FORK
""V

(IRCB)

B FORK A

(RACE,F,Hl

,...-----,

~ ROM <63:60> (RACA)

I- ROM <59:56> (RACAI

~ I- ROM <55:52> (RACA)

RARB f-+ ROM <51=48> (RACAl

(RACA,
RACB,
RACC)

T2
CLK

r---

l=. CCL}-

l
T

1 .__ __ ___,.,. ~ ~ t-f- lRACA,1-1 ~ GENERAL

CONDITION
CODE
SUBSIDIARY
ROM

ALU
SUBSIDIARY
ROM

1 1----------~-..~ i
1----------~-.t~ ~ 1-

RACC) I- ROM <47:44> (RACB) -T,-.---- ~ PWE REGISTER TO
~ c 1- >-- I-+ CONTROL t-- GENERAL

I- ROM <43:40> (RACB) LK I= PAO REGISTERS

FORK ENABLE

FEN C14-12:J
0 NO FORK
1 FORK A
2 FORK B
4 FORK C

MICRO ADDRESS FIELD

UAD[07-00]

TO ADDRESS GATING

MISCELLANEOUS

MSC (T1) (29-27]

0 NO EFFECT
1 FP ATTN
2 NOT USED
3 SET CONF IF KERNEL MODE
4 SPL lSET PRIORITY LEVEL)
5 CONDITIONAL BUST
6 BRO STROBE
7 BUST (BUS START)

BUS CONDITION

BSC (T1) (26-24)

0 OAT!
1 SRC1 OATI
2 KERNEL OATI
3 SRC2 DATI
4 FC (CONTROLLED BY FPP)
5 DATO
6 BSOP1
7 BSOP2

(IRCHl

l

B US DELAY

B SD (TO (40-39]

0 NO PAUSE
1 INTR PAUSE

~}Bus PAUSE

B US CONTROL

B CT lT 0 [32 - 30]

0 NO EFFECT

* 1 READ FPP DATA
2 CONSOLE ACKNOWLEDGE
3 CLEAR FLAGS
4 !NIT IF KERNEL MODE
5 STACK REFERENCE
6 ACKNOWLEDGE
7 BEND (BUS END)

FLOATiNG POINT CONTROL
FPC (T1) [64 -65]

0 NOP
1 LO FGR
2 LO FIR
3 LO FPA
4 READ DATA
5 READ FPS
6 READ FDR
7 READ FPA

Figure 1-1 Block Diagram

11-1-2

(GRAA) BRANCH ENABLE

BEF [t 1 -8] UADR5 [+40)

0 GND
1 DESTINATION MODE 3, 5, 7
2 CONDITION CODE Z
3 SC= 0

-DIV SUB 4
5
6
7

-080 (000 BYTE DESTINATIONlt

10
11
12
13

14
15
16
17

BR14!0)
RACK BE 75 H

RIP+ FP SYNC
SC= 0
CONF (CONSOLE FLAG)
PF(O)*(SF+TF)

- FJ/CLASS
DRO(I)
RACK RIP+ FP SYNC L II

TMCB BRQ * (T + CONF) L

i
t

UADR4 [+20)

SR= 1
-(PWRF+INTR)
SC<O

GND

CONDITION CODE N
-DIV QUIT

RESTORE
RACK FP REQ H

FRMB FP CLASS L
DR0(1 l
-BRO
PF(O)•(SF+ -TF)

-0/CLASS
SR 15 (1)

TMCB BRO* (T + CONF) L

t IBEF=5l*OBD= CONDITIONAL FORK B
(BEF=14)=CONSOLE BRANCHES
(BEF=14)=CONOITIONAL FORK C
(BEF=15)tt FJ/CLASS=CONDITIONAL FORK B)

l
" FROM CONSOLE UNIBUS AND
v

t

___ ___,.,.s

BRANCH

(RACK)

BEN

~ (RACLl

"""'-r--'
ADR FEN

~TRAPS AND
L-,/ MISCELLANEOUS CONSOLE

CONTROL

t
..a. CONTROL ----------~ .. (PRIORITY ARBITRATOR)

FP START
FPS (T1) [67]

0 NOP
1 FLOATING POINT START

it BCT ~ 1 IS HIGH ORDER
OF FPC

(UBC)

CLEAR SYNC
CLS IT1l [66]

0 NOP

J
D

TO/FROM
UNIBUS
CONTROL
SIGNALS

1

1 INITIALIZE SYNCHRONIZER

(TMC)

..; 7
TO/FRO'M'
FPP, MEMORY MGMT.
INTERNAL DATA BUS
8 UNIBUS

f-+ ROM <39:36> (RACB) t---1

L., ROM <35:32> (RACBI

~ ROM <31'28> (RACC1----o T1

t:::::-:::::::--::::::"1:====:JCLK f-+ ROM <27 24> (RACC)

~ f- ROM <23,20> (RACC) ---

~ BSD ~ (GRAC)

I- BCT
I=
I= MSC>-'
I-
~BSC

RARA f- ROM <19:16> (RACC) 1- .1 _ ~
._f-+(RACCI-- t=::::--::-:-:-::--::::::1:::=-""""""'\"-l _ __J~ALU_r- ALU

RACO!' f-.l-R_o_M_<_1_s_:1_2_> __ <R_A_c_o_1-t~ }·- CTRL t---TO ALU

-

- , __ ~ (GRAA)
f-+ ROM <11:08> (RACO) F___

ZAP
200

f- ROM <07:04> (RACO) F }
4._R_o_M_<_o_3_:o_o_> __ <R_A_c_o_1 ... ~ J

l
TIMING
GENERATOR

(TIGl

FROM D
MEMORY MGMT.
8 UNIBUS

r-----.To ALL MODULES

11- 3447

Three output fields are used to select the next mi
croprogram word (FEN, BEF, and UAD). They
are not buffered because they are used immediately
and the resulting address is buffered. Immediately
after the beginning of R machine· cycle;· when a·11ew

microprogram word becomes available, the ROM
address generation circuits begin the calculation of
the next ROM address. This corresponds to select
ing the next machine state. The generated address is
assembled by the address gating logic and loaded
into the ROM Address Register (RAR). There are
three copies of the RA R to accommodate the out
put loading required for 16 ROM elements, and to
transmit the ROM address to Memory Manage
ment. (Refer to Paragraph 1.4.1.)

The address gating logic assembles the address
from five sets of inputs. The basic input, which is al
ways present, is the Address (U AD) field of the cur
rent microprogram word. The UAD is ORed with
the outputs of the Branch logic, which is controlled
by the BEF field of the microprogram word. The
Branch Control logic selects a set of condition in
puts from signals received from the processor data
paths, the condition codes, and from the processor
interface modules. Depending on the state of these
lected inputs, the Branch Control generates one or
two signals that are used to modify the address
(Paragraph 1.4.4).

The three other inputs to the address gating circuits
are from the Fork logic. The three forks are similar
in implementation and purpose. Each fork uses
combinational logic to decode the instruction type
and a variety of processor conditions, and generates
one of a number of addresses that is combined with
the UA D input by masking. Each fork can be en
abled by one bit in the Fork-ENable (FEN) micro
program field; normally all forks are disabled. No
more than one fork is ever enabled at a time (Para
graphs 1.4.6 - 1.4.8).

The A Fork logic, used to select the machine state
that follows an instruction fetch, requires a separate
instruction register (AFIR) because this fork must
operate rapidly and therefore puts a heavy load on
the IR outputs. The B and C Forks decode inputs

11-1-3

from the primary IR and use the outputs of a sub
sidiary ROM, which decodes some classes of in
structions. These forks are used after a destination
operand fetch and a source operand fetch,
respectively.

To summarize the operation of the microprogram
control logic: during each machine cycle, an ad
dress is assembled from any enabled fork combined
with the address field of the microprogram word
and any enabled branches. This address is loaded
into the ROM address register to select a new mi
croprogram word. At the beginning of the next ma
chine cycle, the new microprogram word is loaded
into the ROM buffer register and the sequence is
continued.

On power-up, the ROM is initialized and the pro
gram is forced to a fixed address in memory which
contains the power-up subroutine. This subroutine
typically restores the program parameters that were
stored during power-down. Refer to Chapter 6
(Traps, Aborts and Interrupts) for a description of
these features.

DOCUMENTS
The documents listed below contain the informa
tion required to follow an instruction from fetch to
execution.

I.

2.

KB 11-C Flow Diagrams, drawing num
ber D-FD-KBl l-C-1, sheets 1 - 15. This
set contains a block diagram of the pro
cessor on sheet 1, and the sequence of
microprogram cycles in flowchart form,
on sheets 2 - 15. The flowchart sheets
are labelled "FLOWS 1" through
"FLOWS 15", and are referred to in this
manner throughout this manual. (Refer
to Paragraph 1.2.)

ROM Map, sheets 12 - 15 of the RAC
module schematic, drawing number D
CS-M8123-0-1. These four sheets repro
duce the computer listing, in numerical
order, of the contents of each ROM
word, the name of each state, and the
page of the Flows on which this state is
shown. Refer to Paragraph 1.3.

The ROM and its control logic is shown on draw
ing D-CS-M8123-0-l, ROM & ROM Control
(RAC module), and on drawing D-CS-M8132-0-l,
IR Decode & Cond. Codes (IRC module).

I. The ROM, ROM Buffer Register (RBR)
and ROM Address Register (RAR) are
shown on sheets 2 - 5 of RAC (drawings
RACA-RACD). Refer to Paragraphs
I. I and 1.4.1.

2. The ROM Address bits. (RADR), which
are the inputs to the RAR are shown on
sheet l l of RAC (drawing RACL). Re
fer to Paragraph 1.4.2.

3. The Branch Control logic is on sheet 10
(RACK) of RAC. Refer to Paragraph
1.4.4.

4. The A Fork logic is shown on sheets 6 -
8 of RAC (drawings RACE, RACF and
RACH). Refer to Paragraph l .4.6.

5. The B Fork logic is on sheet 3 of IRC
(IRCB). Refer to Paragraph 1.4.7.

6. The C Fork logic is on sheet 4 of I RC
(IRCC). Refer to Paragraph l .4.8.

7. The Condition Code logic is on sheets 6
through 9 of IRC (IRCE - IRCJ). Refer
to Paragraph 1.5.

1.1 MICROPROGRAM ROM AND BUFFER
REGISTER
All control signals that are dependent only on the
machine state (i.e., that are not dependent on as
ynchronous signals or on data inputs) are derived
directly from the outputs of the microprogram
ROM. The ROM contains 256 68-bit words; during
each processor cycle, one word is fetched from the
ROM and stored in a buffer register. The outputs
of the buffer register are transmitted to the other
modules of the processor to act as control signals
or to be used in combinational logic that generates
control signals for all processor operations.

The ROM is implemented by 16 256-word X 4-bit
read-only memories.

11-1-4

The buffer register is implemented primarily by
74S 174 0-type hex flip-flop registers. (Some bits
are implemented by individual flip-flops to provide
separate input clocking or greater output load
capacity.)

Various ROM bits are clocked into the output buf
f er register at different times. Most bits are clocked
by the Tl pulse, while others are clocked by the T2
pulse. Certain bits are clocked on the trailing edge
of the Tl pulse to allow slightly more time for the
processor to complete operations started by the pre
vious machine cycle.

Figure 1-2 shows the ROM output bits, the type of
ROM IC that generates each bit (i.e., C71), which
groups of bits are stored in one 6-bit IC register,
and the time at which they are clocked into the
R BR. Table 1- l gives much of the same informa
tion. plus the name given to each field.

The output buffer register, shown on drawing
RAC A, is clocked by the T2 pulse; none of the con
trol signals transmitted from the 18 bits of storage
on this drawing can be assumed to have settled be
fore the T3 pulse.

Five output signals are derived from the contents of
the buffer register that is clocked by the falling
edge of the TI pulse, rather than the leading edge
(drawing RACB). These signals (two pad write-en
able and three pad address lines) gate the writing of
information into the processor general registers.
The data is transferred into the registers by writing
them with the TI pulse, so these enable signals
must not change until after the TI pulse has
occurred.

One of the 6-bit output registers, shown on drawing
RACC, stores the output of bit 34 and of bits 32 -
28 of the ROM. Bit 33 is stored in a separate flip
flop. This permits the buffer register to transmit
both polarities of USHCOO, with no additional sig
nal delays. Bit 27 of the ROM, which generates
UM SCOO, is also stored on a separate flip-flop to
generate both polarities.

The microprogram bits which are used to calculate
the new ROM address are used only on the RAC
module, so they are not brought to module pins.
However, several of the branch-enable signals are
required either in both polarities or with greater fan
out capacity: U BEF03, U BEFO I, and UBE FOO are
buffered by more than one gate.

T3
(RAR)

FEN

C78

T1------

BSC

26 25

C75

C79

AMX

24 23 22 21

C76

C80 C81

BMX KMX ALU

20 19 18 17 16 15

C77 C78

BCT MSC Li_ SHC I

T1 --------:L:-.i 3j~ BJ ~lr--3.._2---.-3.i...1--..-3'-0-+---'29-...-2...i.8-~
C73 C74

IBS

I I I I

I

BSD BAX I

T1 ----------------_ 4.0 ... 1_39_......__3_8 1_3_7_..__3_6-;.l .. 3.5..._

C71 C72

PCA PCB SHF IRK PWE

T2------ 51 50 49 48 47 46 45

C69 C70
-T1 ----------·~-----------~

BRK BAX SRX DRX

T2------ 63 62 61 60 59

C66

FPS CLS FPC

T1 66

C82

NOTE:
C82 = ROM IC type
Each 6-bit group• one 74S174 register, except bits 66-64
which are clocked into a 74$175 register.

Bits 27,33,67 are individual 74574 flip-flops.

65

SRK

58 57

C67

64

C73

44 43

ORK

56 55

Figure 1-2 ROM Word: Clock, ICs and Registers

11-1-5

PAD

42

C71

54

C75

41

CCL

53

C68

NOT
USED

52

11-3448

Table 1-1
Microprogram Bit Usage

Bit Positions Contents Oocked At

RACA

67 FP start (UFPS) Tl
66 clear sync (UCLS) Tl
65-64 Floating Point Control (UFPC) Tl
63 bus register clock (UBRK) T2
62 bus register multiplexer (UBRX) T2
61-60 source register MUX (USRX) T2
59-58 destination register MUX (UDRX) T2
57 source register clock (USRK) T2
56-55 destination register clock (UDRK) T2
54-52 condition-code load (UCCL) T2
51 program counter A CLK (UPCA) T2
50-49 program counter B CLK (UPCB) T2
48-47 shifter control (USHF) T2
46 instruction register CLK (UIRK) T2

RACB

45-44 pad write-enable (UPWE) Tl+ 15 ns
43-41 scratchpad address (UPAD) Tl + 15 ns
40-39 bus delay (UBSD) Tl
38-37 bus address multiplexer (UBAX) Tl
36-35 internal bus (UIBS) Tl

RACC

34-33 shift counter (USHC) Tl
32-30 bus control (UBCT) Tl
29-27 miscellaneous control (UMSC) Tl
26-24 bus conditions (UBSC) Tl
23-22 A multiplexer (UAMX) Tl
21-20 B multiplexer (UBMX) Tl
19-18 constant multiplexers (UKMX) Tl
17-15 arithmetic logic unit cont (UALU) Tl

RACD

14 fork C enable (UCFEN) not buffered
13 fork B enable (UBFEN) not buffered
12 fork A enable (UAFEN) not buffered
11-08 branch-enable (UBEF) not buffered
07-00 microprogram address (UADR) not buffered

11-1-6

1.2 FLOW DIAGRAMS
The Flows are a description, in flowchart form, of
the operation of the KBI 1-C Processor. Refer to
Figure 1-3. Each cycle, or machine state, is repre
sented on the Flows by a rectangular box. The top
part of this box describes the operations executed
during the cycle. The bottom part lists the actual
operations that occur at each timing pulse.

The following information is supplied to aid in un
derstanding and using the Flows:

I.

2.

3.

4.

5.

6.

A note on timing (Paragraph 1.2.1).

A glossary of abbreviations and terms
used on the Flows (Paragraph 1.2.2).

A definition of Instruction Classes (Para
graph 1.2.3).

A description of Addressing Modes as
they relate to operand fetch (Paragraph
1.2.4).

A description of the Flow Diagrams,
page by page, which explains in general
terms the use of the cycles on each page
(Paragraph 1.2.5).

Tables listing the cycles on each Fork
used by each instruction (Paragraph
1.2.6).

1.2.1 ROM Timing
Refer to Figure 1-4. The ROM address RACL
RADR(07:00) H is clocked into the ROM address
register at T3. The ROM output for the new cycle
is clocked into the RBR at Tl - T2.

NOTE
The KBll-C is controlled by the clock circuits de
scribed in Chapter 4, Timing Generator. For the pur
poses of this Chapter and of Chapters 2 and 3, it
must be known that there are two types of clock sig
nals: the timing pulses, Tl - TS and the time states,
TSI - TS5. The timing pulses are 15 ns wide and oc
cur at 30 ns intervals. The time states occur at the
same time as the timing pulse of the same number
(TSI occurs at the same time as Tl) and are asserted
for 60 ns.

The timing pulse shown as "T6" on the Flows occurs
at Tl of the next cycle.

1.2.2 Glossary
The symbols, abbreviations and terms listed below
occur on the Flow Diagrams and are also used in
the text of this manual.

SYMBOLS

,;> (OP CODE).B - Refers to both the word and byte
instructions, when describing instruction classes,
e.g.: "NEG.B" means "NEG and NEGB."

+ is used for a logical inclusive OR.

* is used for a logical A ND.

ANGLE BRACKETS (.•.) - Indicates operations
that are executed for diagnostic purposes only and
are not necessary to the operation performed by the
cycle.

$ - Instruction dependent. See Chapter 2.

ACKN - ACKNowledge: signal that clear:- certain
trap and abort flags when they have been serviced.

AFIR - Sec IR

ALU - Arithmetic Logic Unit. See Chapter 2.

BA - Bus Address: Example: BA-PCB means that
the PCB is used as the address for a data transfer.

BC - Bus Condition: defines the type of data trans
f cr that is to be executed; example: BC-DA TI

BEND - Bus END: aborts a data transfer cycle
which can not be completed because of an abort con
dition (refer to Chapter 6) or one which was started
in the previous cycle and which is not required. See
Chapter 5.

BR - Bus Register: stores data received during
data transfers: also used as temporary storage dur
ing instruction execution.

BRQ STROBE - Signal which clocks traps and in
terrupts into the request register. See Chapter 6.

BUS - Source of data during any data transfer:
may he U nihus, Internal Bus or Cache: example:
BR-RUS.

BUS PA USE - Second ROM state of any data
transfer. Sec Chapter 5.

11-1-7

Connector from c::::=::"' .ll-FOl?K. Condition for entry
another page ---- BIN~ "/fl<;:,7~ intoflowsthatfollow

of ~ " 7 rt; cau~ 4 2'
Name/ Er Illt:iEX M:'.t.oJFIXUP s~ - Address of
Cycle ~Cl!. 1t) PaINT 8EYONCJ ~ ROM cycle

Yt()Rt> lF SF 7 O' 0F7

Clock time
at which
operations
are executed

, 'B~rPC~.>
t'1. SHr~t S-'?.t-8,!f!
~ S~•SNI""/€..

.!'C.84-l"C'A

Fork
Enable:

Connector to
another page: may
be to Fork or Branch

4 = C Fork
2 = B Fork
1 =A Fork

t 1 <B/1~/'CB>
tz SNF.(!~ &e.
t" s...e.--sHFA:

('/tll4J
SI$. 3 0-'.!1_
FETCll SIZC OffRliWb _;NO
SL Cll£Cltt.

t, &9t£-SI€..; 8 Ctt-5,RC Z MT .Z
t 1 <:~HF~#-KB> (ausn ~.ec¢:i

Sl:J.4~
Sl:3.4 Cl"''-
GET s~c OPERl9ND

t:, B~s,e~8C<l-&'eCc LJ,9r.I
t6 ~SHFAe•PC8>
t3 '3.A!Q S T..l!OBE
t'lf BUS PAUSE
t" BR.*-8VS

Branch

BEN14: Branch
Enable #148

(317): Base address
of next Cycle:
final address
depends on
conditions

Figure 1-3 Flow Chart Symbols (P /0 Flows 2)

11-1-8

1 1-31 3 5

T1 H n
T2 H n n

I I

I n I n_ T3 H I
I I

I I I I I
ADDRESS

+-----;GENERATION ROM ACCESS TIME I I
I
I I
I I
I I

)
t

BITS BITS
15:40 46:63

BITS 41:45

ROM OUTPUT
CLOCKED INTO
BUFFER { RBR l

I
I
I
I
t

RAR
CLOCKED

I I
I I
I I

I I I
'------._,.---- t ROM OUTPUT
CLOCKED INTO RAR
BUFFER {RBRl CLOCKED

11-3103

Figure 1-4 ROM Timing

BUST - BU ST art: first cycle of any data transfer.
Sec Chapter 5.

BXX DISP - The left shifted (multiplied by 2) and
sign extended value of the displacement field of a
hranch instruction.

CC - Condition Codes

CCLD - Condition Code Load

CH ECK STACK LI MIT - The contents of G 0[6]
arc checked to sec if there is a stack violation. See
Ch~1pter h.

CLEAR FLAGS - Asserted when U BCT=J: clears
I he Address and Stack Error Flags. See Chapter 6.

CONF - CONsolc Flag: causes the processor to
halt when set.

DATI - Transfer of one word of data to the pro
cessor from memory or from a Unibus device.
SRCI. SRC2, KERNEL DATI. See Chapter 5.

DATO - Tran sf er of one word of data from the
processor to memory or to a Unibus device.

DF - Destination Field: bits 02:00 of instruction
word: this number is the address of a register.

DM - Destination Mode: bits 05:03 of instruction
word.

DR - Destination Register: sec Chapter 2.

EALU - Floating Point Processor (FPP) ALU.

FC - FPP C 1 line.

FCC - FPP Condition Codes.

FDR - FPP Data Register.

FIRA - FPP Instruction Register.

FPA - FPP Address Register

FP ATTEN - Signals the FPP that data transfer is
complete.

FP READ DATA - Processor request for FPP
data.

FPS - FPP Status Register.

FP ST ART - Processor signal to FPP to initiate
operation.

11-1-9

GD[X] - General Destination register. See Chapter
2. "X" designates the register number, e.g.: GD[4];
GD[DF] is the register designated by the Destina
tion Field of the instruction word. The notation
"GD[X]" means that the register is read.

GR[X] - General Register: includes both GD and
GS when writing into these registers.

GS[X] - General Source Register. See Chapter 2.
"X" designates the register number, e.g.: GS[4];
GS[SF] is the register designated by the Source
Field of the instruction word. The notation
"GS[X]" means that the register is read.

INIT - INITialization pulse (10 ms).

INTR PAUSE - INTerRupt PAUSE: the processor
stops and accepts an interrupt vector from the
Unibus. See Chapter 6.

IR,AFIR - Instruction Register which stores the in
structon word.

Left Arrow (.---) - Signifies transfer of data to unit
on left from unit on right; example: BR.-BUS, the
BR receives data from the BUS.

PC,PCA,PCB - Program Counter. See Chapter 2.

SC - Shift Counter. See Chapter 2.

SF - Source Field: bits 08:06 of Binary instruction
word; this number is the address of a register.

SHFR - SHiFteR. See Chapter 2.

SM - Source Mode: bits 11:09 of binary instruction
word.

SR - Source Register. See Chapter 2.

SRCCON - Value generated to modify the SR dur
ing auto increment or decrement addressing mode.

SV - Start Vector: address of a word that contains
the address that is entered on power-up. See Chap
ter 6.

SW AP(XX) - The SHFR moves the low byte into
the high byte position and the high byte into the
low byte position of the designated register.

TV - Trap Vector: address of a word that contains
the address of a subroutine that is entered after a
trap. See Chapter 6.

1.2.3 Instruction Classes
The instructions in the PDP-I I Instruction Set are
divided into classes by the decoding logic on RAC
and IRC. Some of these classes are used on the
Flows to determine the machine state to which an
instruction will go next.

During BSOPI and BSOP2 data transfer cycles,
one of several types of bus cycles (DA TI, DATIP,
DA TO or DATOB) may be executed during a
given machine state. The type of bus cycle that is
executed during one of these machine states also de
pends on the instruction class. These instruction
classes are described as follows:

P /CLASS - Defines a group of instructions which
require a DATIP instead of a DATI cycle when ob
taining the word which is to be operated on. This
allows for modification of the word without requir
ing memory to restore the word first during a
DA TI and then again during a DATO. In addition,
it provides an interlock, i.e., the location cannot be
accessed by another device while it is being oper
ated on. The following instructions are P /class:

00 03 DD SWAB 07 4R DD XOR
00 50 DD CLR 10 50 DD CLRB
00 51 DD COM 10 51 DD COMB
00 52 DD INC 10 52 DD INCB
00 53 DD DEC 10 53 DD DECB
00 54 DD NEG 10 54 DD NEGB
00 55 DD ADC 10 55 DD ADCB
00 56 DD SBC 10 56 DD SBCB
00 60 DD ROR 10 60 DD RORB
00 61 DD ROL 10 61 DD ROLB
00 62 DD ASR 10 62 DD ASRB
00 63 DD ASL 10 63 DD ASLB
00 67 DD SXT 11 SS DD MOVB
04 SS DD BIC 14 SS DD BICB
05 SS DD BIS 15 SS DD BISB
06 SS DD ADD 16 SS DD SUB

I/CLASS - Defines a class of instructions which re
quire a DA TI during a BSOPl:

00 57 DD
00 65 SS
02 SS DD
03 SS DD
07 OR SS

TS
MFPI
CMP
BIT
MUL

07 IR SS
10 57 DD
10 65 SS
12 SS DD
13 SS DD

DIV
TSTB
MFPD
CMPB
BITB

0 /Cl.ASS - Defines a class of instructions which re
quire a DATO during a BSPl: 01 SS DD MOY
and XO 66 DD MTP

IJ-1-10

J3!N(Vy) - All double-operand instructions; may re
quire both source and destination calculations:

01 SS DD
02 SS DD
03 SS DD
04 SS DD
05 SS DD
06 SS DD

MOV
CMP
BIT
BIC
BIS
ADD

11 SS DD
12 SS DD
13 SS DD
14 SS DD
15 SS DD
16 SS DD

MOVB
CMPB
BITB
BICB
BISB
SUB

flAC - (Destination Address Calculation) All
single-operand, register to destination or BIN*SMO
instructions:

always:

00 01 DD
00 03 DD
00 4R DD
00 50 DD
00 51 DD
00 52 DD
00 53 DD
00 54 D
00 55 DD
00 56 DD
00 57 DD
00 60 DD
00 61 DD
00 62 DD
00 63 DD
00 65 SS
00 67 DD
07 OR SS

if SMO:

01 SS DD
02 SS DD
03 SS DD
04 SS DD
05 S DD
06 SS DD

JMP
SWAB
JSR
CLR
COM
INC
DEC
NEG
ADC
SBC
TST
RO
ROL
ASR
ASL
MFPI
SXT
MUL

MOV
CMP
BIT
BIC
BIS
ADD

07 IR SS
07 2R SS
07 3R SS
07 4R DD
10 50 DD
10 51 DD
10 52 DD
10 53 DD
10 54 DD
10 55 DD
10 56 DD
10 57 DD
10 60 DD
10 61 DD
10 62 DD
10 63 DD
10 65 SS

11 SS DD
12 SS DD
13 SS DD
14 SS DD
15 SS DD
16 SS DD

DIV
ASH
ASHC
XOR
CLRB
COMB
INCB
DECB
NEGB
ADCB
SBCB
TSTB
RORB
ROLB
ASRB
ASLB
MFPD

MOVB
CMPB
BITB
BICB
BISB
SUB

E/CLASS - (Execute class) No address calculation
is required. These instructions use EXC.80 or
EXC.90 (Flows 3). In general, these are DAC*DMO
or BIN*SMO*DMO:

00 03 DD
00 50 DD
00 51 DD
00 52 DD
00 53 DD
00 54 DD
00 55 DD
00 56 DD
00 57 DD
00 60 DD
00 61 DD
00 62 DD
00 63 DD
00 67 DD
01 SS DD
02 SS DD
03 SS DD
04 SS DD
05 SS DD

SWAB
CLR
COM
INC
DEC
NEG
ADC
SBC
TST
ROR
ROL
ASR
ASL
SXT
MOV
CMP
BIT
BIC
BIS

06 SS DD
07 4R DD
10 50 DD
10 51 DD
10 52 DD
10 53 DD
10 55 DD
10 56 DD
10 57 DD
10 60 DD
10 61 DD
10 62 DD
10 63 DD
12 SS DD
13 SS DD
14 SS DD
15 SS DD
16 SS DD

ADD
XOR
CLRB
COMB
INCB
DECB
ADCB
SBCB
TSTB
RORB
ROLB
ASRB
ASLB
CMPB
BITB
BICB
BISB
SUB

BSOPt - (BuS OPeration 1) When the ROM Bus
Condition (UBSC) equals 6 during a bus cycle
(data transfer), a DATO is executed for an O/class
instruction, a DA TIP for a P /class or a DA TI if
the instruction is neither 0 /class nor P /class. This
condition is shown on the Flows as BC.--BSOPI.

BSOP2 - (BuS OPeration 2) When UBSC=7 dur
ing a bus cycle, a DA TOB is executed for a byte in
struction and a DATO for a word instruction. This
condition is shown on the Flows as BC-BSOP2.

J /CLASS - 00 01 DD JMP or 00 4R DD JSR -See
FJ /class.

F /CLASS - Floating Point Processor instructions
17 XX XX - See FJ /class.

FJ/CLASS- F/class or J/class, which require one
bus cycle less after the destination address calcu
lation cycles than other DAC instructions (Flows 5
and 6).

11-1-11

1.2.4 Addressing Modes and Operand Fetch
In general, the following steps are required for the
execution of an instruction:

1. Instruction Fetch: The instruction word
is read from memory. The PCB is used
as an address and a DATI is executed in
FET.10. The instruction word is stored
in the instruction registers (IR and
AFIR).

2. Source Operand Fetch: This step is re
quired only by BIN instructions whose
source mode is not 0 (-SMO). This may
require up to three DA TI bus cycles, de
pending on the addressing mode (refer
to Paragraphs 1.2.4.1 and 1.2.4.2).

3. Destination Operand Fetch: This step is
required by all instructions that have a
destination operand when the destina
tion mode is not 0 (-OMO). Up to three
bus cycles may be required, depending
on the addressing mode. Address word
fetches are DA Tis; operand bus cycles
may be DA Tis (I/class instructions),
DATOs or DATOBs (O/class) or DA
TIP /DATO(B)s (P /class).

4. Execution: After fetching the operand(s),
the operation specified by the op code is
performed. Execution may require sev
eral cycles or may be part of the destina
tion operand fetch.

PDP-11 instructions allow six bits for each operand
address. Three of these bits point to one of the gen
eral registers; the other three define one of eight ad
dressing modes, 0 - 7, which are defined in
Paragraphs 1.2.4.1 and 1.2.4.2. The position of the
bits in the instruction word is shown in Figure 1-5.
Unary, or single-operand instructions require only
a destination (DST) address, located in bits 05:00.
Binary, or double-operand instructions require both
a source (SRC) and a destination address; the SRC
is located in bits 11 :06 and the DST in bits 05:00.

BINARY OR DOUBLE
OPERAND INSTRUCTION (BIN)

SOURCE
15 It 09 08

OP CODE MODE

UNARY OR SINGLE
OPERAND INSTRUCTION lDACl

15

OP CODE

NOTE
In the KB 11-C, those FPP instructions whose bits
<11:06> = 0 are also classified as Mode 0 (CFCC,
SETF, SETI, SETO, SETL, op codes 170000-
170012). These are FPP Register operations. Refer
to Paragraph 1.2.S.2.

The mode determines how the contents of the regis
ter are to be used. Addressing is said to be:

DIRECT - when the contents of the register
are the operand (mode O);

DEFERRED - when the contents of the regis
ter are the address of the operand or the ad
dress of the address of the operand (modes 1
- 5 and 7);

INDEXED - when the contents of the regis
ter are added to those of the word following
the instruction to obtain the address of the op
erand (mode 6).

Mode 7 is indexed and deferred. Modes 4 and 5
decrement the contents of the register by 2 before
address determination. Modes 2 and 3 increment
the contents of the register by 2 after the address
determination.

Up to three bus cycles are required to obtain each
operand, one for each level of deferral, plus one for
indexing.

NOTE
Programming documentation sometimes refers to the
contents of bits 05:00 of an instruction word as a
Source address. The KBll-C logic, however, treats
any operand field in bits 05 :00 as a Destination ad
dress. For example, MFPI and MFPD are shown on
the PDP-11 Programming Card as 0065SS and
1065S. where ""SS" indicates the source; these two in
structions, however, are DAC' and are executed as
such: the contents of the SS field (bits 05:00) are
used in the same manner as the bits 05:00 (=DD) in
an INC (0052DD) instruction.

DESTINATION
06 05 03 02 00

REG MODE REG

DESTINATION
06 05 03 02 00

I
MODE REG

Figure 1-5 Source and Destination Mode Formats

11-1-12

1.2.4.1 General Register Addressing - "R" is any
general register but register 7 (PC). The number of
bus cycles listed below for each mode is that re
quired for operand fetch.

Mode Name

0 REGISTER
Symbolic: %R

Example:
CLR %3=005003

REGISTER
DEFERRED
Symbolic: (R)

Example:

2

CLR (3)=005013

AUTO-INCREMENT
Symbolic: (R)+

Example:

3

CLR (3)+=005023

AUTO-INCREMENT
DEFERRED
Symbolic: @(R)+

Example:
CLR@(3)+=005033

Definition

Register R contains the
operand.

No bus cycle required.

Register R contains the
address of the operand.

One bus cycle is
required.

Register R 'contains the
address of the operand.
The register is incre
mented after the
operand has been
fetched.

One bus cycle required.

Register R contains the
address of a location
which contains the ad
dress of the operand.
The contents of the
register are incre
mented after its use.

Two bus cycles are
required.

Mode Name Definition

4 AUTO-DECREMENT The contents of Regis
Symbolic: -(R) ter Rare decremented,

then used as the address
of the operand.

Example:

5

CLR -(3)=005043

One bus cycle is re
quired.

AUTO-DECREMENT The contents of register
DEFERRED Rare decremented by
Symbolic: @-(R) 2. The register then

contains the address of
a location which con
tains the address of the
operand.

Example:

6

CLR @-(3)=005053

INDEX
Symbolic: X(R)

Example:
CLR 100(3)=005063

000100

Two bus cycles are re
quired.

The contents of register
R are added to the
word X to which the
PC is pointing. This sum
is the address of the
operand.

The word to which the
PC is pointing is called
the INDEX word (engi
neering term) or BASE
(programming term).
This word may be the
second or third word of
an instruction.

Two bus cycles are re
quired.

11-1-13

Mode Name

7 INDEX DEFERRED
Symbolic: @X(R)

Example:
CLR @100(3)=005073

000100

Definition

Same as Mode 6, except
that the sum is the ad
dress of a location
which contains the ad
dress of the operand.

Three bus cycles are re
quired.

1.2.4.2 Program Counter Addressing - "R" is the
PC (general register 7). The number of bus cycles
listed below for each mode is that required for oper
and fetch.

NOTE
Modes 2. 3. 6 and 7 are also used with the PC as the
register. The machine sequence for obtaining the oper
and is the same in this case as that used when any
other register is used. Modes o. I, 4 and 5 are not il
legal. but arc of no practical use.

Mode Name

2 IMMEDIATE
Symbolic: #n

Example:

Definition

The PC, after the instruc
tion fetch, contains the ad
dress of the operand, which
is the word contained in
the memory location
following that in which the
instruction word is stored.
The PC is incremented by
2.

MOY #100,RO ; MOVE 100(8) TO REGISTER 0

The operation of this mode is explained as follows:

The statement MOY #100,RO assembles as two words.
These are:

0 1 2 7 0 0
0 0 0 1 0 0

Mode Name Definition

Just before this instruction is fetched and executed, the
PC points to the first word of the instruction. The pro
cessor fetches the first word and increments the PC by
two. The source operand mode is 27 (autoincrement the
PC). Thus, the PC is used as a pointer to fetch the
operand (the second word of the instruction) before
being incremented by two, to point to the next instruc
tion.

3 ABSOLUTE
Symbolic: @#A

One bus cycle is required.

Same as Mode 2, except
that the word that follows
the instruction is the ad
dress A of the operand,
instead of the operand
itself.

Example: CLR @#100 = 005037
000100

6 RELATIVE
Symbolic: A

Example:

Two bus cycles are re
quired.

Relative mode is assembled
as index mode, using regis
ter 7, the PC, as the index
register. The base of the
address calculation, which
is stored in the second or
third word of the instruc
tion, is not the address of
the operand (as index
mode), but the number
which, when added to the
PC, becomes the address
of the operand. Thus, the
base is X-PC, which is
called an off set. The
operation is explained as
follows:

If the statement MOY 1 OO,R3 is assembled at absolute
location 20, the assembled code is:

Location 20: 0 1 6 7 0 3
Location 22: 0 0 0 0 5 4 (54 = 100-24)

11-1-14

Mode Name Definition

The processor fetches the MOV instruction and adds two
to the PC so that it points to location 22. The source
operand mode is 67; that is, indexed by the PC. To pick
up the base, the processor fetches the word pointed to
by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source
operand, the base is added to the designated register.
That is, BASE+PC=54+24=100, the operand address.

7 RELATIVE
DEFFERED
Symbolic: @A

Two bus cycles are re
quired.

Same as Mode 6, except
that the sum BASE+PC is
the address of a location
which contains the address
of the operand.

Three bus cycles are re
quired.

1.2.4.3 A and C Forks: Operand Fetch - After an
instruction has been fetched and decoded, the oper
and(s) are obtained from memory, if the addressing
mode is other than 0. The operation required by
the operation code is then executed.

The A FORK is used by all instructions:

1. Binary instructions that require source
mode calculation (-SMO) calculate their
source address and fetch the source
operand.

2. Binary instructions that require no
source address calculation (SMO) and
single-operand instructions are DAC and
calculate the destination address and
fetch the destination operand.

3. Binary instructions with both SMO and
OMO, single-operand instructions with
OMO, and instructions that are not part
of any one of the classes listed on Flows
3 and 5 are executed.

The C Fork is used by F /class instructions or by
binary instructions with source mode other than 0
(-SMO) to calculate the destination address and to
fetch the destination operand after the source oper
and has been obtained on the A FORK.

Figure 1-6 shows the A and C Fork source and des
tination calculation cycles. After the instruction has
obtained its operand(s) on these forks, it is exe
cuted on the B Fork.

1.2.5 Flowchart Description
The KBl 1-C Processor flowcharts (drawing D-FD
KBl l-C-1) are divided into 14 drawings that illus
trate options of the flow. Where possible, a contin
uous sequence of machine states is shown on a
single drawing. The succeeding paragraphs describe
the machine operations illustrated on each drawing.
The description does not attempt to give detailed in
formation about each machine state shown on the
drawing; this information can be derived directly
from the flowcharts and the ROM map (Paragraph
1.3).

Data Transfers
Data transfers require two machine states: a prelimi
nary or BUST cycle, which sets up the conditions
for the PA USE cycle, during which the data is
transferred. Data transfers are described in detail in
Chapter 5.

1.2.5.1 FLOWS I

Instruction Fetch
Flows 1 illustrates the instruction fetch sequence,
the address calculation sequence for five of the
source modes, a special sequence for the MTPI and
MTPD instructions, and the execution of the
branch type instructions.

Fetch States
The basic instruction fetch sequence requires two
machine states: FET.10 (fetch) and IRD.00 (IR de
code). FET.10 completes a data transfer operation,
begun during the last cycle of the previous instruc
tion, which moves the instruction word from an ex
ternal storage location to the instruction register
(IR) and bus register (BR), and increments the pro
gram counter by 2. The instruction address is also
stored in the FPA (FPA+-BA), if the FPl 1-C option
is present. If the data transfer is not overlapped
(i.e., if the transfer was not begun before the end of
the previous instruction), an additional state is re
quired to begin the data transfer.

The additional state, FET.00, also checks for as
ynchronous operations (such as bus requests) that
must be performed before beginning a new instruc
tion, and branches to BRK.90 (break) if necessary.
When the instruction fetch is overlapped, the ma
chine state that begins the data transfer must also
perform the same check.

11-1-15

F/CLASS DAC BIN

I
1

I
SM¢ -SM¢

t
A FORK

I
SMI SM23 SM45 SM67

A FORK + + + +
$13.00 $13.01 $45.00 $67.00

F/CLASS

FOPIZl¢
(2)

DAC * DM0

A FORK

DAC *-DM0

+

El CLASS

(1) (1)

A FORK

I I
DM12 DM3

+ + D12.00 D30.00
Dl2.01 (5)

(5)

-E/CLASS
(1,2,3) ! A FORK

I
(DF7 + BRQ l

+
EXC. 90

(3)

DM0 * F/CLASS DM0 * -F/CLASS

I
I

SR0 (1 l SR0(0)

r1--i r-1-----i
DF7 -DF7 DF7

l l l
FOP. 5¢ 007. 00 000.80 007.10

(4) (4) (4) (4)

LEGEND:

SM: SOURCE MODE
OM: DESTINATION MODE
OF: DESTINATION FIELD
SR0 (1): ODD BYTE ADDRESS
SR0 (!21): EVEN BYTE ADDRESS

NOTE:
Numbers in parenthesis show page
of flows where cycle occurs.

-DF7

l
000.90

(4)

I
-(DF7 + BRQ l

+
EXC. 80
(~)

C FORK

I
DM12

l
012.90

(5)

I
SR¢(1)

• I
DM3

l
D30.90

(5)

OM12

' 012.80
(5)

Figure 1-6 A and C Forks, General Case

11-1-16

(1) (2)

c FORK

I I
DM45 DM67

+ + D45.00 D67.00
D45.01 D67.01

(6) (6)

-DM0

I
SR¢!0l

I I
DM45 DM67

l l
045.90 067.90

(6) (6)

DM3 DM45 DM67

J ' ' 030.80 045.80 067.80
(5) (6) (6)

11-3449

Instruction Decoding
IRD.00 begins a new data transfer that fetches the
word following the instruction word. This data
transfer is used for address modes 6 or 7, and for
fetching the next instruction whenever the instruc
tion being executed does not require other data
transfers.

In some cases, the CONDITIONAL BUST is not is
sued, i.e., when a data cycle is required but the PC,
which is specified as the address in IRD.00, is not
the required address. In this case, for example
030.00 (Flows 5), the DR is the address and a new
BUST is issued. CONDITIONAL BUST, which is
used only in IRD.00 (UMSC=5), and BUST are
controlled by RACH BUST H. Refer to drawing
RACH:

The four AND gates must be negated to assert
BUST.

1. The top gate is negated when MCS=5
or 7.

2. The three other gates are enabled when
MCS=5 (CONDITIONAL BUST in
IRD.00).

3. The second gate from the top is asserted,
and negates BUST during an IRD.00
that precedes S13.00 and S13.01
(BIN*SM 123).

4. The third gate from the top is asserted,
and negates BUST during IRD.00, if the
instruction is a Branch and if there is a
Brake Request (BRQ TRUE). FET.00,
which is a BUST cycle, follows IRD.00
in this case.

5. The last gate prevents BUST from being
asserted during an IRD.00, if this cycle
precedes the three cycles that calculate
destination modes 1, 2 and 3 on the A
Fork (012.00, 012.01, DAC*DM12; and
030.00, DAC*DM3; all on Flows 5).
These cycles fetch the destination oper
and but use the DR as the address, in
stead of the PCB used by IRD.00.

The NANO gate prevents the negation
of BUST during IRD.00 when the cycle
that follows it is S67.00 (BIN*SM67,
Flows 2), if the destination mode of the
instruction is 1, 2, or 3. This cycle gets
the index word for source mode 6 and 7
of a binary instruction. The PCB is used
here as the address and the bus cycle
started in IRD.00 is completed. The
NANO gate prevents BUST from being
inhibited if the destination mode of the
BIN instruction is 1, 2, or 3.

In other cases, this data transfer operation is
aborted by a Bus End (BEND) operation in the ma
chine state following IRD.00. During this machine
state, the processor also loads the source and desti
nation registers (SR and DR) with the contents of
the general registers specified in the source and des
tination fields of the instruction; this operation is
also done in anticipation of the use of this data,
and in many cases the data loaded into the SR and
DR is ignored. However, when the data is needed,
the anticipatory transfers allow the processor to op
erate at maximum speed. The instruction word is
stored in the FIRA (FIRA~BR), if the FPl 1-C op
tion is installed.

Source Modes I - 5
The A Fork logic is enabled during IRD.00 (FEN
1), so the machine state that follows IRD.00 is de
termined by decoding the instruction and certain
other conditions. Six of the possible sequences that
follow IRD.00 are shown on Flows I. These in
clude the beginning of the data fetch sequence for
all binary instructions that have a source mode of 1
- 5. If the source mode is I, 2 or 3, the external
data transfer is restarted with a new address and
the incrementation of the source register is started
for modes 2 or 3. If the source mode is 4 or 5, the
external data transfer can not be started until the
address has been decremented, so S45.00 performs
a BEND. After performing the data transfer to
fetch the word addressed by the source register, the
sequence conditionally enables the C Fork logic. If
the source mode is odd, another data transfer is re
quired to fetch the data addressed by the word just
fetched; otherwise the fork determines the next
state.

11-1-17

Move to Previous Space Instructions
For an MTPI or MTPD (Move To Previous) in
struction, MTP.00 and MTP.10 read an address
from the stack pointer and begin a data transfer op
eration to fetch a data word that will be transferred
to the destination address. The flow then transfers
to the last state of the source-data-fetch sequence,
because this state is alike for both the MTP se
quence and the normal source data sequence.

Branch Instructions
For branch instructions, the A Fork logic deter
mines whether the branch is successful, and if not,
whether a bus request has been sensed. If the
branch is successful, the PC must be changed be
fore the next instruction is fetched; this is per
formed by the BXX.00 - BXX.05 (branch) machine
state which aborts the previous data transfer. This
state also strobes any new bus requests. The BRQ
STROBE must be performed in the state preceding
the state that starts the instruction fetch; this in
cludes FET.10 (in case the A Fork logic returns
control directly to FET.00), the next-to-last state of
instructions that overlap the instruction fetch, and
the last state of instructions that do not provide
overlap. The machine state following BXX.00 is
FET.00.

If the branch is not successful and no bus requests
are sensed, the instrucion fetch continues the data
transfer begun in IRD.00; if a bus request is sensed,
the sequence returns to FET.00, which in turn trans
fers the sequence to BRK.00. Table 1-3E lists the
ROM words used by each branch instruction for
the four possible sequences.

1.2.5.2 FLOWS 2

Indexed Source Modes and Operate Instructions
Flows 2 illustrates the sequence of machine states
for the data fetch for source modes 6 or 7, for the
transfer of floating-point instructions to the FPP,
and for the execution of five operate instructions.

Indexed Source Modes
For BIN*SM67, the indexed source modes for
binary instructions, the transfer begun in IRD.00 is
completed and an increment from the source regis
ter is added to the data word; the resulting data
word is used for a second data transfer. When this
transfer is complete, a conditional fork is used to

transfer to the sequence required for the current in
struction, unless an indirect-indexed address re
quires a third data transfer. In the latter case, the
sequence continues through three machine states
that are common to the sequences of all indirect
source modes 3, 5, and 7, and in part to the MTPI
or MTPD instruction.

Floating Point Instructions
When a floating-point instruction is recognized by
the A Fork logic, the sequence is transferred to
FOP.00 (floating-point operation). In this state, the
contents of the Destination Register are stored in
the BR; in the following state (FOP. IO) the con
tents of the BR are stored in the FDR. Thus, at
this point in the instruction execution, the instruc
tion word, its address, and the contents of the Gen
eral Register specified by the instruction are all
stored in the FPP.

The instruction flow then goes to the C Fork logic
to perform the address calculation:

1. For OMO (which also includes FPP op
codes 170000-170012, whose IR< 11 :06>
= 0: CFCC, SETF, SETI, SETO and
SETL), the next cycle is FOP.50 (Flows
4);

2. For -OMO, the FPP uses the same ad
dress calculation cycles as the processor
instructions.

RTI and RTT Instructions
The RTI and RTT instructions differ only in the
clocking of T bit traps after the data transfers, so
the sequence of machine states is identical. This se
quence performs two data transfers to restore the
previous PC and PS words from the hardware
stack, and performs two increment operations on
the stack pointer. The sequence then continues with
an instruction fetch.

RTS Instruction
The RTS sequence performs one register-to-register
transfer and one external data transfer to restore
the PC and the specified register, and updates the
Stack Pointer (SP) after the transfer. The sequence
then returns to the instruction fetch machine states.

11-1-18

SO 8 Instruction
The sequence of machine states for the SOB instruc
tion first generates a new PC value, based on the
offset in the instruction, and then restores the old
PC value if the value in the specified register will be
0 after decrementing. This is done because the test
on the value of the register requires one machine
state in every case, which can be combined with the
calculation of the new PC value, and because the
branch is successful most of the time; thus, the ex
tra machine state to perform the restoration of the
old PC value is executed less often than if an extra
state were required when the branch is successful.
The SOB sequence initiates the fetch of the next in
struction during the last machine state, which also
performs the decrement on the specified register.

MARK Instruction
The machine state sequence for the MARK instruc
tion transfers the contents of general register 5 to
the PC, transfers the top word on the hardware
stack to register 5, then begins fetching the next in
struction. The operation of the MARK instruction
assumes that the instruction has been fetched from
the top of the hardware stack; for a discussion of
the purpose and effects of the MARK instruction,
sec Chapter 4.

1.2.5.3 FLOWS 3

No Memory Reference Execution
Flows 3 illustrates the machine state sequences for
a variety of instructions that do not require mem
ory references other than the instruction fetch. A
number of sequences are shown that transfer imme
diately to machine states on other pages; they are
shown only to illustrate the routing from A Fork to
these states. These sequences include the breakpoint
trap (OP3), IOT trap, the EMT and TRAP traps,
and several groups of reserved op codes, including
OP7, OP22, and RSVD. The illegal instructions
JM P or JSR, with destination mode 0, also transfer
directly to a point in the trap sequence. The four in
structions ASH, ASHC, MFPI, and MFPD are
shown on other pages which do not show the A
Fork flow line; therefore, off-page connectors are
shown on this drawing for these instructions with
destination mode 0 (for other destination modes of
these instructions, the sequence transfers to the <les
t ination address calculation sequences shown on
Flows 5 and 6).

Multiply and Divide with Destination Mode 0
For the multiply and divide instructions, a special
sequence is used when the destination mode is 0. In
either case, this sequence precedes the normal se
quence for that instruction. M UL.80 (multiply) sets
up the step counter and transfers to M UL. I 0, be
cause MU L.00 is used to complete the data transfer
begun in the destination data fetch sequence. In
DVS.00 (divide start), the contents of the register
specified for the destination operand are transferred
to the BR, which corresponds to the result of the
data fetch sequence for other destination modes.

E/Class and Negate Instructions
For the majority of instructions that operate on
data, one machine state is required to perform the
data manipulation. If both the source (if any) and
destination modes are 0, the data is already in the
SR and DR registers as a result of IR D.00. The
data manipulation (selected by the subsidiary ROM
for all except the NEG.B instruction) is performed,
the data is stored in the general register specified by
the destination field, and the sequence returns to
the instruction fetch. The NEG and NEG.B instruc
tions require two machine states because the com
plement and increment operations cannot be
performed on the data during the same state; there
fore the external data transfer operation started in
IR D.00 is aborted (a bus operation cannot be car
ried across more than two machine states) and the
sequence returns to FET.00. The other instructions
complete the data operation and return to FET. l 0,
unless a bus request has been sensed; because the
transfer to the BRQ service sequence is performed
by FET.00, the bus operation must be aborted.

RESET Instruction
Three processor control instructions, RESET,
HALT and WAIT, are executed by sequences
shown on this drawing. The RESET instruction
transfers general register 0 to the DR so that the
contents of RO can be displayed in the DATA
lights of the console during the reset operation, and
then triggers the initialization pulse. The in
itialization is inhibited if the processor is not oper
ating in the Kernel mode; in this case, the
instruction is, in effect, a NOP. The machine state
that triggers the pulse recycles to itself until the
pulse (which lasts for I 0 ms) is completed, and then
returns the sequence to the instruction fetch
sequence.

11-1-19

HALT Instruction
The HALT instruction does not actually stop the
processor: instead, control is transferred to the con
sole service sequence, which waits for manual inter
vention to determine further operations. This is
performed by setting the console flag and then re
turning to the instruction fetch sequence where the
console nag generates a BRQ, which in turn trans
fers to the break service sequence. The console flag
is set only if the processor is in Kernel mode; a
hranch after HL T.10, (HALT) transfers control to
the trap service sequence if the processor is not in
Kernel mode, i.e., a HALT instruction in Super or
User modes traps through location 4.

WA IT Instruction
The WAIT instruction is used to wait for an asynch
ronous condition that either initiates the execution
of a service program or enters the console service se
quence. The basic wait loop consists of two ma
chine states, so that the BRQ STROBE in one state
is available for the branch in the other state. When
any BRQ is sensed, the sequence goes to the first of
two states that test for console requests and then
for interrupts or traps (other than T bit traps) that
supply vectors. If neither is found, the sequence re
turns to the wait loop: otherwise, control is trans
ferred to the appropriate sequence.

Processor Status Change Instructions
Two types of instructions that transfer data from
the instruction word to the PS word are the CCOP
instruction and the SPL instruction. The former af
fects only the condition code bits [PS(03:00)] and
the latter affects only the priority bits [PS(07:05)].
In the CCOP instruction, the external data transfer
begun by the IRD.00 state is aborted because the
processor must maintain the data in the BR register
until the PS word is reloaded. In the SPL instruc
tion, the first state does the actual transfer to the
priority. The second state also begins a new instruc
t.ion fetch and control transfers to FET. l 0. SPL is a
no-op (no change to the PS) unless the processor is
in Kernel mode.

1.2.5.4 FLOWS 4

Destination Mode 0 Sequence
Flows 4 illustrates the five sequences used when the
destination mode is 0. These sequences are entered
through the C Fork microprogram address calcu
lation: this fork is used to determine the next ma
chine state after a source operand has been fetched.

For all instructions except floating-point instruc
tions, these sequences correspond to, or join, the se
quences used when both the source and the
destination modes are 0.

Not Register 7
When the destination specification in an instruction
refers to any general register other than register 7
(the PC), and the other conditions for the se
quences shown on this drawing are met, the instruc
tion is executed by 000.90 (destination mode 0). If
the source address is odd, a byte-swap operation
must be performed on the contents of the BR be
fore the instruction-dependent data manipulation
operation. If the source mode is also 0, no byte
swap is required, and the execution is performed by
the EXC.8 (execute) machine state.

Register 7
When the destination register is 7, the PC is modi
fied. Because the PC is stored as a separate register
(not in the general register set), the execution is ac
complished by EXC.90, which requires the source
data to be in the SR register. A machine state is
therefore required to transfer the source data from
the BR to the SR. A byte swap can be combined
with this transfer, if necessary.

Floating-Point Instructions
FOP. 50 is the C Fork cycle used by all
DMO*F /CLASS instructions, which include FPP
Condition Code and accumulator to accumulator
operations, as well as FPP writes to the processor
general registers.

This sequence reads the FPP Status Register into
the BR. If BRQ is true, a branch to FOP.60 is exe
cuted. In this cycle, the address of the FPP instruc
tion is read into the BR; then, in FSV.90 (Flows
13), it is written back into PCA and PCB, and con
trol is transferred to the service routine (BRK.00,
Flows 12). The FPP instruction is aborted at this
time and its address is saved. This same instruction
will thus be fetched again and executed after the ser
vice routine.

FOP.30 repeats FOP.50 and waits for FP SYNC. If
BRQ is true, control is transferred to the service
routine as described above. If FP SYNC is re
ceived, FOP.40 is executed. FOP.30 cycles upon it
self until either of these conditions is true.

FOP.45 instructs the FPl 1-C to execute the instruc
tion (FP ST ART).

11-1-20

1.

2.

3.

In the case of a CFCC, the FPP Condi
tion Codes are written to the PSW from
the BR.

If the instruction requires a write into a
processor General Register (FP REG
WR), the data is read into the BR in
FOP.65 then transferred to GR[DF] dur
ing FET.08, as the next instruction fetch
is started.

If the instruction does not require a
write into a processor general register,
the instruction is done and control is
transferred to FET.06.

1.2.5.5 FLOWS 5

Destination Modes I - 3
Flows 5 illustrates the machine state sequences used
to fetch data specified by destination modes 1, 2, or
3. These sequences are entered from one of the two
forks: some are entered from the A Fork decision
point, for instructions which either do not require a
source operand or have a source mode of 0, while
others arc entered from the C Fork decision point
after the source operand has been fetched and
placed in the SR.

Sequence Entry
All six sequences on this drawing start a data cycle
(BUST). It should be noted that the CONDI
TIONAL BUST in IRD.00 is not asserted when the
two A Fork sequences on Flows 5 are entered; this
is because the PC is not the address required for
the D M 123 data cycles on this drawing.

The four sequences entered from the C Fork deci
sion point also start by transferring the contents of
the BR to the SR, so that the source data is avail
able in both registers: the opposite transfer is per
f ormcd for the A Fork entry to move the source
data to the BR for the DATO that follows the desti
nation address calculation. If the destination is 3,
there is no point in loading the BR from the DR be
cause the address fetched by the first external data
transfer is stored in the BR for use in the next data
transfer.

Destination Modes I and 2
There are two entries from the C Fork decision
point for address modes I or 2 because the source
data may be an odd byte which must be swapped.

This is the only difference between D 12.80 (destina
tion modes I or 2) and D 12.90. After one of these
states or D 12.00 has been completed, the processor
performs a three-way branch, to separate JMP,
JSR, and floating-point instructions, and instruc
tions that transfer the source operand to the destina
tion unchanged (specifically, the MOV, MTPI, and
MTPD instructions) from all others. For floating
point instructions, the external data transfer is
aborted, and the sequence continues through the B
Fork decision point to FOP.40. For JMP instruc
tions, the sequence is directed to JMP.OO: for JSR
instructions, to JS R.00. For the three direct-transfer
(0 Class) instructions, the external transfer is forced
to be a DATO instead of a DATIP or a DATI,
and the transfer is completed before an instruction
depcndent, condition-code load operation is per
formed. The last machine state in the sequence for
0 Class instructions also begins the instruction fetch
for the next instruction and checks for asynch
ronous conditions requiring service.

For all other instructions, the DATI or DA TIP
transfer is completed, and the B Fork logic is condi
tionally enabled in DI 2.10. If a byte swap is needed
because the destination address is to an odd byte,
the extra machine state D 12.30 is entered, and then
the B Fork decision point. Note that in all three of
the sequences shown (in Dl2.60, Dl2.IO, and
D 12. 70) the destination register is incremented by a
constant which can be either 0, 1, or 2, depending
on the address mode and whether a word or a byte
operand is being fetched.

Destination Mode 3
The three sequences for destination mode 3 all en
ter D30.10 (destination mode 3), which completes
the data transfer, increments the destination register
by the necessary amount, and transfers to DI 0.20,
which begins the fetch of the operand addressed by
the word just transferred. Because the first transfer
during a destination mode 3 sequence can only be a
full word, the increment used in the register update
is a !ways 2, not I.

1.2.5.6 FLOWS 6

Destination Modes 4 - 7
Flows 6 illustrates six machine state sequences that
arc used to fetch the destination operand when the
destination address mode is 4, 5, 6, or 7. These six
sequences correspond to the six sequences for ad
dress modes I, 2, and 3.

11-1-21

Modes 4 and 5 require that the contents of the des
tination register be decremented before the value is
used in the external data transfer. They are treated
by one of three sequences. Modes 6 and 7 use gen
eral register 7 (the PC) first and then use the desti
nation register. They are treated by one of three
sequences.

In either case, two of the three sequences are en
tered from the C Fork and one from the A Fork.
The two C Fork entries differentiate between
source operands that require byte swapping and
source operands that do not. There can be no re
quirement for a byte swap on the A Fork entry, be
cause the source operand would be address mode 0
and the high byte of a register cannot be specified.

C Fork Entries for Modes 4 and 5
D45.80 (destination mode 4 or 5) and D45.90 differ
mainly in the microprogram addresses contained in
the microprogram word. Each state decrements the
DR by the value of the destination constant, which
is I for a byte operation in mode 4, and 2 for a
word operation. Byte operations in mode 5 use a
constant of 2 because the data fetched from the ad
dress taken from the DR is in turn used as an ad
dress and must be a full word. The state following
D45.80 or D45.90 begins the external data transfer,
which may be a DA TI, DA TIP, or a DATO, de
pending on the specific instruction. D40.30 and
D50.30, which follow D45.90, also perform the
byte-swap operation on the source operand. In each
of the two sequences, a different path is taken for
destination mode 4 where only one data transfer is
needed, than for destination mode 5 where a sec
ond transfer is needed. The second transfer is per
formed by a sequence that is common for address
modes 3, 5, and 7; this sequence transfers the first
word that is fetched from the BR to the DR and
then uses the DR as the address for a second
transfer.

A Fork Entry for Modes 4 and 5
D45.00, which is entered from the A Fork Decision
point, is similar to D45.80 and D45.90, except that
a BEND is performed to abort the transfer begun
during the IRD.00 machine state. The sequences
that follow D45.00 are similar to the sequences that
foil ow D45.80 or D45.90, except that the source op
erand, if any, is already in the SR.

Destination Modes 6 and 7 Entry
For address modes 6 and 7, the first machine state
entered from the C Fork decision point begins an

external data transfer, using the contents of the PC
as an address, and performs an increment operation
on the PC. The entry from the A Fork decision
point continues the transfer begun by the IRD.00
machine state, so this entry is to D67.00 (destina
tion mode 6 or 7) that follows the first state for the
other entries. D67.10 adds the contents of the DR
to the data read into the BR, thus performing the
indexing operation, and then transfers to a machine
state in the flow sequence for destination modes 4
or 5. The transfer is to DI 0.30 (a state also used
for mode 4) if the mode is 6, or to DI0.10 (a state
also used for mode 5) if the mode is 7. The shared
sequences perform the remaining one or two data
transfers to fetch or store the actual data word.

Ending Sequence
When the last data transfer has been started, all six
sequences enter a combined conditional fork and
two-way branch that selects the next machine state.
For O/class instructions (MOY, MTPI, and MTPD)
the last data transfer is a DATO operation, which
is completed by DI 0.40; this state also loads the
condition codes. The processor then returns to the
instruction fetch sequence. For all other instruc
tions, the DA TI or DA TIP transfer is completed in
DI 0.60, leaving the destination data in the BR and
the source data in the SR, and the B Fork logic is
conditionally enabled. If a byte-swap operation is
required for the destination data, D 12.30, which
performs this operation for all destination modes I
- 7, is entered. FJ/Class instructions go directly to
the B Fork.

1.2.5. 7 FLOWS 7

ASH, ASHC, and Floating-Point Instructions
Flows 7 illustrates the machine state sequences for
the Arithmetic Shift (ASH) and Arithmetic Shift
Combined (ASHC) instructions, and the first ma
chine state of the floating-point instruction service
after the destination address calculation.

ASH Instruction
When the machine state sequence for the ASH in
struction is entered from the B Fork decision point,
the destination data is in the BR register. The six
least-significant bits of the destination word are
used as a 2's complement number which is the shift
count for the instruction. The DR is loaded from
the BR and this data is then loaded into the Shift
Counter (SC) from the DR in ASH. IO. In an
ASH .20, the condition codes are loaded, based on
the value of the word in the source register, and the

11-1-22

SC is tested for a 0 shift count. If the shift count is
0, the instruction is completed, and the processor re
turns to the instruction fetch sequence; otherwise,
one of two states is entered, depending on the sign
of the shift count. ASH .30 (Arithmetic Shift) and
ASH .40 perform the actual shift one bit at a time,
and increment or decrement, respectively, the shift
counter. These states also load the condition codes
with the results of each shift, so that after the last
shift the codes are correct, and test during each
cycle to determine whether any further cycles are re
quired. Note that the first change to the SC is per
formed in ASH.20; all tests are done on the value
before any changes are performed, so the last cycle
in ASH.30 or ASH.40 is performed with the SC=O,
and the final value in the SC is -0 (all Is).

ASHC Instruction
The ASHC instruction operates in a manner similar
to the ASH instruction. The difference is that two
words of data are shifted. ASC.00 and ASC. I 0 per
form the same functions as ASH.00 and ASH. JO,
and in addition, load the DR (after the SC has
been loaded from the previous value in the DR)
with the contents of a general register which is se
lected by 0 Ring the destination register specifica
tion with I. When the destination register specified
by the instruction is an even-numbered register, the
OR produces the number of the next higher num
bered register.

ASC.20 performs the first change of the SC, moves
the first data word to the BR, loads the condition
codes, and tests for a 0 SC, just as ASH.20 does.
However, if the SC is 0, the sequence continues
with ASC.80 (arithmetic shift combined), instead of
returning immediately to the instruction fetch se
quence. This state is required to test the second
data word, so that the Z condition code can be set
nn the contents of both words. ASC.80 also starts
the next instruction fetch, so the processor transfers
to either FET.10 or B RK .00 rather than FET.00.

If the SC is not 0, ASC.20 is followed by ASC.30
or A SC.40. These states perform the same oper
ations as the corresponding states for the ASH in
struction, and also cause shifting of the DR (which
can be shifted internally, without passing the data
through the ALU or SHFR). The bit shifted into
the DR is selected by processor hardware. When
the SC docs reach 0, the next machine state is
SC.60, which performs the same operations· as
ASC.80, but also stores the second word from the
DR into the appropriate general register.

Floating-Point Instructions
When the B Fork logic decodes a floating-point in
struction, FOP.40 (floating-point operation) is en
tered. This state aborts the last external data
transfer started by the destination-data-fetch se
quence, and sends the destination address, not the
destination data, to the BR. A three-way branch is
then entered:

1. BRQ true: Control is transferred to
FSV.70 (Flows 13). In this cycle and the
two that follow it, the original DR and
PC are read back from the FP 11-C and
the DR, PCA and PCB are restored to
the state in which they were prior to the
FPP instruction fetch. The service flows
(BRK.00 through SVC.90), and the inter
rupt subroutine are then executed; the
FPP instruction is then fetched and exe
cuted again.

2. -(SYNC+ BRQ): The processor cycles
on FSV.60 (Flows 13) until it receives ei
ther an FP SYNC or a BRQ. In this last
case it executes the sequence described in
(l) above. In the first case (FP SYNC) it
executes the sequence in (3) below.

3. SYNC+-BRQ: FSV.10 is entered. In
this state, a bus cycle is started, whose di
rection (DA TI or DATO) is determined
by FC (BC~FC).

a. If the instruction is not a Floating
Pause Class (FPCLASS), up to
four 16-bit words are transferred
by the FSV.10-FSV.70 loop.

b. If the instruction is FPCLASS, this
loop is expanded to include
FSV.30, FSV.40 and FSV.50 which
cause the loop to execute a
read/modify /write operation.
FPCLASS instructions are ABSX
and NEGX.

After the CPU completes this loop, it ex
ecutes FSV.20 where it can copy the
floating condition codes in the FPl 1-C,
if desired. From this state, the CPU se
quences to FET.07 to start the next in
struction fetch.

11-1-23

1.2.5.8 FLOWS 8

Multiply Instruction
The sequence of machine states shown on Flows 8
performs a multiplication operation on two words
of data, one from a general register and the other
in a word specified by the destination field and fet
ched into the BR. The results of the multiplication
are stored in two general registers: one is the regis
ter specified in the instruction, and the other is a
register whose number is formed by ORing 1 with
the number of the specified register (Figure 1-7). If
the specified register has an odd number, only one
register is used.

SR (MULTIPLIER)

BR (PRODUCT) DR (MUL T IPLI CANO)

11-0845

Figure 1-7 Multiply Instruction

The multiplier is in the SR, the multiplicand in the
DR. and the 32-bit product is formed in the BR
and DR by an add and shift algorithm.

The multiplier (SR) is used as a 32-bit, not a 16-bit,
~·s complement number. This is accomplished by ex
tending its sign bit into the BR after every shift.
The multiplication thus has as its operands a 16-bit
multiplicand, the DR, and a 32-bit multiplier, the
SR.

In 2's complement notation, a negative 16-bit num
ber (-A) is equivalent to (2 16 -A), and a negative 32-
bit number (-B) to (2J2 -B). When a combination of
16- and 32-bit positive and negative numbers are
multiplied, four conditions are possible, as shown
in Table 1-2.

Note that correction or the product is required
when the DR (multiplicand) is negative.

In Case 1, where both SR and DR are positive, the
product is correct and no correction is required.

In Case 2,. 2J 2 X DR must be subtracted, but since
the product is only 32 bits wide, this term is out of
range and no correction is required.

In Case 3, 216 X SR has to be subtracted from the
product, as this term is within the 32-bit product
formed in the BR and DR.

In Case 4, the first two terms are out of range, and
216 X SR must be added to the product. Since in
this case the SR is a 2's complement negative num
ber, the addition is accomplished by subtracting it
as in Case 3 (- - = +).

The multiplication sequence begins with two ma
chine states that set up the four registers (BR, SR,
DR, and SC) used in the sequence, and performs
the first test and shift on the DR. Note that all
branches ref er to the state of the DR and the SC at
the beginning of the machine state preceding the
branch. not the values in the registers at the end of
that state. This is because the RAR is clocked at
T3. The operand supplied by the destination-data
fetch sequence is loaded into the DR, and the SC is
loaded with the octal value 17 (decimal 15) in
M U L. 00 (mu It i p I y).

In MUL.10, the BR is cleared; the other operand is
in the SR as the result of IRD.00. The SC is
decremented.

Fifteen multiplication cycles are then performed in
MUL.20 and MUL.30.

1. If the low order bit of the DR is I
[DRO(l)], the SR is added to the BR
and both BR and DR are shifted right
in a combined shift, which forms the
product (MUL.20).

Table 1-2
Sign Correction for MUL Instruction

Case SR DR Representation of Product Generated Product Correction
SR DR (2" SR X DR) Should Be: Required

1 ;;;;-:a ~ SR DR (SRXDR) (SRXDR) None
2 <O ;;;;-:a 232-SR DR 23 2 DR-(SRXDR) -(SRXDR) None
3 ;;;;-:a <O SR 216-DR 216 SR-(SRXDR) -(SRXDR) -216 SR
4 <O <O 232-SR 216 -DR 24 8 -23 2 DR-216 SR+(SRXDR) (SRXDR) +216 SR

11-1-24

2. If the low order bit of the DR is 0
[DRO(O)], the shift is performed, but no
add (MUL.30).

At the end of these fifteen cycles, SC=O and DRO
contains the sign bit of the multiplicand (DR).

1. If DRO(l), the multiplicand was negative
and correction is required. MUL.50 sub
tracts the multiplier (SR) from the high
order product (BR and DR). This is the
same as subtracting 2 16 X SR from the
product.

2. If DRO(O). no correction is required
(MUL.40).

MUL.50 or MUL.40 store the more-significant half
of the result into the register specified by the source
field, and set the condition codes on the value of
this word.

MUL.60 stores the less-significant half of the result
in the register, whose number is formed by ORing
the source field with 1; if an odd register is speci
fied, this value replaces the more-significant half of
the result, which is lost. This is done because many
multiplications produce a result which can be con
tained in only one word, and this result is preserved
by this action. The condition codes are altered to
represent the value of the entire result; if all 32 bits
are 0, the Z bit is set, and if the result cannot be
contained in one word, the C bit is set. At the end
of this cycle, the sequence returns either to the in
struction fetch sequence, or, if an asynchronous con
dition needing service was sensed by the BRQ
STROBE in machine state MUL.40 or MUL.50, to
the break service sequence.

1.2.5.9 FLOWS 9 and IO

The Divide Instruction
Division is the process of counting the number of
times one number (the dividend) can be reduced by
another number (the divisor). The count of the
number of reductions is called the quotient; the
part of the dividend that cannot be reduced by the
divisor is called the remainder. Division is more
complicated than multiplication, for several
reasons:

I. Division produces two results, not one.

2. During multiplication, the maximum re
sult occurs when the maximum number
is multiplied by itself. This result fits

into two words; during division, the max
imum result occurs when the largest pos
sible number is divided by a very small
number and the result does not fit into
any reasonable number of words. There
fore, the division algorithm must recog
nize the overflow condition when the
quotient is too large.

3. During the division process, it is neces
sary to recognize when the partial re
mainder is smaller than the divisor;
usually this is done by recognizing when
the last reduction passed through 0 and
changed the sign of the remainder. This
condition is called underflow and re
quires that the results of the last reduc
tion be restored in some way.

The simplest division algorithm is to subtract the
divisor from the dividend until underflow occurs, re
store the remainder, and keep a count of all but the
last subtraction for the quotient (this algorithm as
sumes all positive numbers). This procedure is very
tedious, particularly if an overflow condition exists,
so a shorter algorithm is used that is based on the
positional representation of numbers.

The result of the division is a quotient that can be
multiplied by the divisor to regenerate the dividend
(with a difference equal to the remainder). If, dur
ing the multiplication, each bit of the quotient can
generate a partial product that becomes part of the
total sum, then during the division, each bit of the
quotient can be generated individually while reduc
ing the partial remainder by an appropriate
amount. To determine what the most-significant bit
of the quotient should be, the number that is sub
tracted from the dividend is equal to the divisor,
multiplied by the positional value of the most-sig
nificant digit.

Figure 1-8 illustrates the division algorithm. At the
beginning of the division, the dividend occupies all
of a word register. The divisor has been multiplied
by 2 to the nth power, so that the number which is
first subtracted from the dividend is actually the
divisor times the positional value of the most-signif
icant bit. Before each step of the division, the divi
sor is divided by 2, so that the correct number for
generating the next bit of the quotient is formed;
the division by 2 is done by shifting the 2-word divi
sor 1 bit to the right. In order for the division al
gorithm to operate with negative numbers, the
reduction that is performed at each step of the divi
sion must be the correct operation to reduce the re
mainder; if the divisor and the partial remainder

11-1-25

DD-DD-DR

YES

0-0*2+1
(SHIFT LEFT)

YES

NO

NO

DIVIDE

LOAD DD
LOAD HIGH HALF
OF DR AND CLEAR
LOW HALF
CLEAR Q
SHC-N

DR-DR/2
(SHIFT RIGHT)
SHC-SHC-1

YES

DONE

NO

NO

NO

NO

DD-DD+DR

YES

0-0*2+0
(SHIFT LEFT)

DD-DD+DR

a-a+1

Figure 1-8 Divide Algorithm

11-1-26

DD

2N 0

0

~
N 0

LEGEND: DD=DIVIDEND
(REMAINDER IS DD <N-1:0>)
DR=DIVISOR
Q =QUOTIENT
SHC=SHIFT COUNTER

11-1070

(that is, the dividend) have the same sign, the divi
sor is subtracted from the remainder, but if their
signs differ, the divisor is added to the remainder to
reduce its magnitude.

The algorithm that is illustrated does not perform a
restoration if an underflow condition occurs. In
stead, while underflow exists, succeeding operations
are performed in the opposite manner to complete
the restoration; while an underflow condition exists,
the bits of the quotient are set only when the under
flow is corrected and are cleared if the operation
does not complete the restoration. If the original
divisor and dividend are of opposite sign, the
quotient should be negative, so bits of the quotient
depend on the operation performed and its results,
as follows:

1.

2.

If the operation was a subtraction (the
signs of the divisor and the partial re
mainder were the same), the quotient bit
is set if there was no underflow, and is
cleared if there was underflow.

If the operation was an addition (the
signs of the divisor and the partial re
mainder were different), the quotient bit
is cleared if there was no underflow, and
is set if there was underflow.

The non-restoring division algorithm works because
an underflow at any step can be corrected to within
one multiple of the divisor by the succeeding steps.
This is true because a binary number that is repre
sented by all ls is changed to a number that is rep
resented by a 1, followed by all Os, when the
number I is added to it. Therefore, the multiple of
the divisor that is subtracted from the partial re
mainder at any step is only one more multiple of
the divisor than can be expressed by all the less-sig
nificant bits of the quotient. The remaining single
multiple of the divisor can be restored by a single
operation (which is always an addition, because un
derflow exists and the divisor and partial remainder
have different signs) following the steps that gener
ate the quotient bits; this step is also used to cor
rect the remainder.

Divide Instruction Sequence
The divide (DIV) instruction is executed by the
longest and most complex sequence of machine
states used in the KBl 1-C Processor. This sequence
is illustrated on two drawings. Flows 9 shows the

register setup, the first two overflow tests, and the
cycle of states that perform the actual division.
Flows 10 shows the quotient and remainder sign
corrections and the final overflow test.

The division is performed by a non-restoring divide
algorithm that is described above. The hardware im
plementation (Figure 1-9) uses the SR to hold the
divisor and begins with the dividend in the BR and
DR registers. The BR contains the more-significant
half of the dividend, while the less-significant half is
in the DR. Each cycle of the division shifts the divi
dend one bit to the left and shifts the next bit of
the quotient into the least-significant bit of the DR.
When the division terminates, the quotient is in the
DR and the remainder is in the BR.

SR (DIVISOR)

BR (REMAINDER) DR (QUOTIENT)

NOTE:
Dividend in BR and DR

11-0844

Figure 1-9 Divide Instructions

The non-restoring divide algorithm can operate
with positive or negative operands; however, the
KBl 1-C always operates on a positive dividend to
simplify the detection of underflow. (The divisor
may have either sign.) The first two machine states
of the division sequence test for a 0 divisor or a
negative dividend, and set up the SR and DR regis
ters. If a 0 divisor is sensed, the division is aborted
and the C, V, and Z condition codes are set to in
dicate that an error has occurred.

Initial Setup
If the dividend is negative, a sequence is entered to
complement the dividend. Note that the branch on
the N condition code occurs after DIV.20, although
the condition code is loaded in DIV.10 (divide), be
cause the branch condition must be available at the
beginning of the machine state in which the branch
is used. Similarly, the branch on the Z condition
code after DIV.10 uses the condition code value set
by DIV.00, not the new value set by DIV.10.

11-1-27

Negative Dividend Processing
The sequence beginning with DVN.00 (divide nega
tion) generates the 2's complement of the 2-word
dividend as follows:

1. The 2's complement of the less-signifi
cant word is formed by first clearing the
DR, then subtracting the SR, which con
tains the low order word, from the 0 in
the DR. The DR is cleared so that a sub
tract from 0, which requires only one ma
-chine state, can be used; normally a 2's
complement is generated by forming the
1 's complement and then incrementing,
as shown for the remainder of correction
,steps. The 2's complement of the less
significant word is stored in the register
which originally held the less-significant
word.

2. DVN .20 generates a carry from the less
significant word to the more-significant
word. That is, if a carry-out of the most
significant bit of the ALU occurs during
the operations (which is repeated in
DVN.20), a 1 is sh.ifted into the DR.

3. A 1 is subtracted from the DR. If a
carry occurred in Step 2, the DR con
tains 0 and the 2's complement of the
more-significant word is formed; if no
carry occurred, the DR now contains a -
1, which cancels the carry insert during
the subtraction in DVN.40, and the 1 's
complement of the SR is formed. This is
the correct result if there is no carry.

After the 2's complement of the dividend is formed,
DVN.50 begins the restoration of the divisor to the
SR and the dividend to the BR and DR. However,
if the dividend is still negative, which occurs if the
dividend was the maximum negative number (be
cause the 2s complement notation can express one
more negative number than positive number, the
largest negative number complements to itself), the
division cannot be performed and the sequence is
aborted.

Overflow Test and First Cycle
After the setup is completed, the processor enters
DIV.30 with a positive dividend in the BR and DR,
17(8) in the SC, and the divisor in the SR. The next

portion of the sequence performs the first cycle of
the division and performs a test for overflow. This
test is based on the fact that if underflow does not
occur during the first cycle, the quotient is too
large to be expressed in 16 bits. If the instruction is
not aborted because of overflow, the processor en
ters the DIV.70 machine state to begin the main di
vide cycle.

Division Process
The test for underflow that determines whether
DIV.80 or DIV.90 is entered is based on the follow
ing considerations:

I. If the divisor is negative, adding the divi
sor to the dividend should produce a re
sult closer to 0 than the original
dividend. If the result is negative, under
flow has occurred and a 0 is shifted into
the DR.

2.

3.

If the divisor is negative and the divi
dend is also negative, an underflow con
dition already exists. The divisor is
subtracted from the dividend to return
the dividend to a positive number. If the
result is still negative, a 0 is shifted into
the DR; if the result is positive, the un
derflow has been corrected and a 1 is
shifted in.

For a positive divisor and dividend, a
subtraction is performed. If the result is
positive, a 1 is shifted into the DR, but
if the result is negative, underflow has oc
curred and a 0 is shifted in.

4. If the divisor is positive and the dividend
is negative, an addition is performed to
correct an existing underflow. If the re
sult is positive, the underflow has been
corrected and a 1 is shifted into the DR,
otherwise a 0 is shifted in.

As a result of these considerations, the processor en
ters DIV.80 if the divisor is positive and there is no
underflow (DRO is a 1), or if the divisor is negative
and there is underflow (ORO is a 0). DIV.80 per
forms a subtract operation and shifts the carry-out
of the ALU into the DR. (A carry-out of the most
significant bit of the ALU indicates that underflow
has occurred; if an uncorrected underflow existed,
the carry indicates that it has been corrected.)

11-1-28

If the opposite conditions exist (SR is positive and
ORO is 0, or SR is negative and SRO is 1), DIV.90
is entered and an addition is performed, followed
by a shift of the DR. Note that the cases for which
a carry-out of the most-significant bit of the ALU
exist are equivalent to the cases described above for
which the least-significant bit of the DR is set.

Remainder Storage and Sign Check
After the divide cycle has been performed 15 times
(the first division cycle) and the first decrement of
the SC is performed in DIV.30 - DIV.60, DVC.00
(divide correction) writes the remainder from the
BR into the appropriate general register, and trans
fers control to one of four machine states, depend
ing on whether a remainder correction is required
and whether the quotient has the correct sign.

Remainder Correction
If, after the last division cycle, the least-significant
bit of the quotient is a 0, an underflow condition
still exists. This condition can be corrected (unless
an overflow condition also exists) by adding a posi
tive divisor or subtracting a negative divisor to cor
rect the remainder. This is done by DVC.10 or
DVC.20. If no remainder correction is needed, or
following the remainder correction, DVC.30 or
DVC.40 begins complementing the remainder in
case the remainder has the wrong sign. The current
value of the remainder is not disturbed until a deter
mination is made of the appropriate sign.

Quotient Sign Change
If the N condition code is set, the original dividend
was negative. The complemented remainder, which
is negative because the corrected remainder is posi
tive (if all underflow conditions are corrected), is
stored as the final value of the remainder. If both
the dividend and the divisor were positive, the
quotient, which is also positive (the most-significant
bit of the quotient must be positive or an immedi
ate overflow condition aborts the division), is writ
ten into the appropriate general register. Similarly,
if both dividend and divisor are negative, the
quotient should be positive and is written in its pre
£ent form.

If the original signs of the dividend and divisor
were different, the quotient should be negative. The
quotient is complemented by DVC.80 and DVC.90;
one special case in which the quotient is the most
negative number is considered an error.

1.2.5.10 FLOWS 11

Memory Reference Execution Sequences
Flows 11 illustrates eight sequences that execute the
data manipulation stages of a variety of instruc
tions, when those instructions require external data
transfers to complete the instruction execution.
These sequences are entered from the B Fork deci
sion point.

Standard Execution
The majority of instructions are executed by
EXC.00 (execute). When this state is entered, the
source operand, if any, is in the SR, and the desti
nation operand is in the DR. EXC.00 performs one
data manipulation operation and loads the condi
tion codes; both the operation performed and the
condition-code loading are controlled by subsidiary
ROMs (i.e., they are instruction-dependent).
EXC.00 performs the byte-swap operation in the
SHFR automatically.

For any instruction that is operating on an odd
byte destinaton operand, EXC.00 also begins an ex
ternal data transfer operation that is completed in
EXC.10; this operation transfers the result data to
the destination address, which is taken from the
DR.

Negate Instructions
Several instructions, which are otherwise treated in
the same manner as those executed by EXC.00,
must be executed separately. The negate and negate
byte (NEG .B) instructions require two machine
states for execution because the 2's complement of
a number is formed by first generating the 1 's com
plement and then incrementing that value. After the
negation is performed and the condition codes
loaded, the processor performs a byte swap if the
destination operand is an odd byte, and starts an ex
ternal data transfer that is completed in EXC.10.

11-1-29

Shifter Instructions
Two instructions, which are executed by EXC.00
when they operate on an even byte [DRO(O)J, use
the SHFR to perform a right shift. These are the
ASRB and ROR instructions. When these instruc
tions operate on a destination operand taken from
an odd-byte location [DRO(l)], a second machine
state is required to perform the byte swap, which
also requires the SHFR. Therefore, SHR.00 (shift
right) performs the same actions as EXC.00, except
that no external data transfer is begun and no byte
swap is performed. These functions are performed
by SHR.10. No conflict occurs for the ASL and
ROL instructions because left shifts are performed
by the ALU, not by the SHFR.

Test Instructions
The three instructions that set the condition codes
without modifying any stored data, TST, CMP,
and BIT, are executed by machine states that do
not start an external data transfer for the data
operand.

Jump Instruction
The jump (JMP) instruction performs only one op
eration; it sets a new value in the Program Counter
(PC). The value loaded into the PC is the destina
tion address, not the destination data word. The
last external data transfer to fetch the data word is
aborted, (BEND) the PC is loaded, and a transfer
to the instruction fetch sequence is performed by
the machine state JMP.00 (jump).

Jump to Subroutine Instruction
The jump to subroutine (JSR) instruction performs
two data transfers in addition to loading the PC.
The contents of a register specified by the instruc
tion are saved on the hardware stack, and the pre
vious value in the PC is saved in the specified
register. JSR.00 (jump to subroutine) the last exter
nal data transfer, loads the destination address into
the PCA (but does not load the PCB from the
PCA, so that the PCB can be stored in the general
register until JSR.40), and loads the SR with the

contents of the specified register. JSR.10 transfers
the SR to the BR, which is the register that holds
data to be transmitted during external data trans
fers, and loads the DR with the contents of general
register 6, the Stack Pointer (SP). JSR.20 decr
ements the SP by 2 (to allocate a word at the top
of the stack for the data to be stored); the new
value is stored in the SP and in the DR for use in
the external data transfer started in JSR.30. JSR.40
transfers the contents of the PCB to the specified
general register and loads the PCB from the PCA.
The data transfer begun in JSR.30 is completed in
this state.

Move From Previous Space Instructions
The MFPI or MFPD instruction transfers data
from the destination address to the hardware stack;
it acts like a "push" instruction. If Memory Man
agement is on, the address space from which the de
sination data is taken may differ from the address
space that the data is pushed into, but this does not
affect the operations within the processor .. The
MFP.00 state is entered with the data to be trans
ferred in the BR; this state loads the condition
codes and loads the SR from the hardware stack
pointer. The MFP.80 machine state is entered if the
destination mode is O; this implies that the data is
in a general register. This data is loaded into the
DR while the bus operation started by the IRD.00
machine state is aborted. The MFP.90 machine
state transfers the DR to the BR and loads the SR
from the stack pointer. The sequence for destina
tion mode 0 then joins the sequence for the other
address modes in MFP.10. This state decrements
the SR (which contains the SP). SVC.80 and
SVC.90 (Flows 13) complete the instruction by
pushing the data onto the stack.

1.2.5.11 FLOWS 12 and 13 - Flows 12 and 13
show the abort, trap, interrupt and floating-point
service routines. The abort, trap and interrupt se
quences are described in Chapter 6. The FPl 1-C in
structions are described in Paragraph 1.2.5.7 (Flows
7).

11-1-30

1.2.5.12 FLOWS 14 - Flows 14 shows the se
quences for manual Console operations. These oper
ations are described in Part III of this manual
(Console).

1.2.6 Following an Instruction Through the
Flowcharts
To follow a particular instruction through the flow
charts, it is necessary to know which machine state
sequences apply to that instruction in the particular
state of the processor (specifically, which machine
state will be entered from various fork decision
points).

The tables and diagrams in this paragraph are de
signed to help determine the exact sequence of ma
chine states for a particular instruction. Starting
with either the binary code, or the symbolic name
of the instruction, the machine state entered from
each decision point, and what branches are taken at
some of the primary branch points within the se
quences shown can be determined.

1.2.6.1 Figures and Tables - Figure 1-10 shows the
correspondence between binary op codes and in
struction mnemonics.

1. Starting with the most-significant bit of
the instruction code, look down the cor
responding column of Figure 1-10 to
find the number that matches the value
of that bit in the instruction.

2. The horizontal line to the right of that
number leads to another vertical col
umn, for the next most-significant group
of bits in the binary code. Look down
that line to find the number that
matches the value of the corresponding
bit or bits in the instruction.

3. Repeat Step 2 for each portion of the
binary code until the last number is fol
lowed by the symbolic name and struc
ture of an instruction instead of a
horizontal line. That instruction corre
sponds to the given binary code.

When the symbolic code for an instruction is
known, the reader can find that instruction in
Table 1-3 which specifies the machine state se
quences used to execute that instruction. The table
is in alphabetical order according to the mnemonic
codes used for the instructions, and lists both the in
struction classes, if any, and the machine states en
tered from various decision points, when used. The
instruction classes are groupings of the instructions
according to properties of the execution sequences
(e.g., I, P, and O/Class instructions perform a
DA TI, DA TIP, or DATO bus transfer as the last
transfer of the destination data fetch sequence).
While the A Fork decision point is used by all in
structions (the A Fork decision point follows the in
struction fetch sequence and is, in effect, the
instruction decoding system), not all instructions
use the B Fork or C Fork decision points; those
which do not are indicated by entry "N.U." in the
appropriate column.

il-1-31

Table 1-3A
Instruction Microprogram Properties

Instruction Class A Fork B Fork C Fork Instruction Class A Fork B Fork C Fork

ADC.B P, E, DAC See Table 1-3B EXC.00 (11) N.U. JMP -DMO J,FJ,DAC See Table 1-3C JMP.00 (11) N.U.

ADD: -SMO P, E, BIN See Table l-3B EXC.00 (11) See Table 1-3D DMO RS0.00(3) N.U. N.U.

SMO P, E, BIN, OAC See Table l -3C EXC.00(11) N.U. JSR -DMO J,FJ,DAC See Table 1-3C JSR.00 (11) N.U.

ASH -DMO DAC See Table 1-3C ASH.00(7) N.U. OMO RSD.00(3) N.U. N.U.

DMO OAC ASH.10(3) ASH.00(7) N.U. MARK None MRK.00(2) N.U. N.U.

ASHC -OMO OAC See Table I -3C ASC.00(7) N.U. MFP -DMO I,DAC See Table 1-3C MFP.00(I1) N.U.

DMO OAC ASC.10 (3) ASC.00(7) N.U. DMO I,DAC MFP.80(3) N.U. N.U.

ASL.B P,E,DAC See Table 1-3C EXC.00 (11) N.U. MOV -SMO O,E,BIN See Table 1-3B N.U. See Table 1-3D

ASR P, E, DAC See Table 1-3C EXC.00(11) N.U. SMO 0, E, BIN, DAC See Table 1-3C N.U. N.U.

ASRB DRO(O) P, E, DAC See Table l-3C EXC.00(11) N.U.
DRO (1) P, E, DAC See Table 1-3C SHR.00(11) N.U.

MOVB -SMO P,BIN See Table 1-3B EXC.00 (11) See Table 1-3D
SMO P,BIN,DAC See Table 1-3C EXC.00 (11) N.U.

Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS - See Table 1-3E MTP 0 MTP.00(1) N.U. See Table 1-3D

BIC.B -SMO P, E, BIN See Table l-3B EXC.00 (11) See Table 1-3D
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U.

MUL -DMO I,DAC See Table 1-3C MUL.00 (8) N.U.
DMO I,DAC MUL.80(3) MUL.00(8) N.U.

BIS.B -SMO P,E,BIN See Table l-3B EXC.00(11) See Table 1-3D
SMO P, E, BIN, DAC See Table 1-3C EXC.00(11) N.U.

NEG.B -DMO P,DAC See Table 1-3C NEG.00 (II) N.U.
DMO P,DAC NEG.70 (3) N.U. N.U.

BIT.B -SMO I, E, BIN See Table 1-3B TST.10 (11) See Table 1-30 RESET None RES.00(3) N.U. N.U.

SMO I, E, BIN, DAC See Table l -3C TST.10 (11) N.U. ROL.B P, E, DAC See Table 1-3C EXC.00(11) N.U.
-

Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL- See Table 1-3E ROR P, E,DAC See Table 1-3C EXC.00 (11) N.U.

BPT (OP3) I None I TRP.00 (3) I N. U. N.U.

Branch Instructions: BR, BVC, BVS - See Table l-3E

RORB DRO(O) P, E, DAC See Table 1-3C EXC.00(11) N.U.
DRO(l) P,E,DAC See Table 1-3C SHR.00 (11) N.U.

CCOP None l CCP.00 (3) N.U. N.U.

CLR.B P, E, DAC See Table l -3C EXC.00 (11) N.U.

RTI None RTI.00 (2) N.U. N.U.

RTS None RTS.00(2) N.U. N.U.

CMP.B -SMO I, E, BIN See Table 1-3B TST.10 (11) See Table 1-30 RTT None RTI.01 (2) N.U. N.U.

SMO I, E, BIN, DAC See Table 1-3C TST.10 (11) N.U. SBC.B P,E,OAC See Table 1-3C EXC.00(11) N.U.

COM.B P,E,DAC See Table I-3C EXC.00(11) N.U. SOB None SOB.00 (2) N.U. N.U.

OEC.B P,E,DAC See Table l -3C EXC.00(11) N.U. SPL None SPL.00 (3) N.U. N.U.

DIV -DMO l,OAC See Table l -3C DIV.00(9) N.U. SUB -SMO P, E, BIN See Table 1-3B EXC.00 (11) See Table 1-3D

DMO l,DAC DVS.00(3) DIV.00(9) N.U. SMO P, E, BIN, DAC See Table l-3C EXC.00(11) N.U.

EMT None RSD.00(3) N.U. N.U. SWAB P, E,DAC See Table 1-3C EXC.00(11) N.U.

Floating Point: F,FJ SXT P,E,DAC See Table 1-3C EXC.00(11) N.U.

-FPPRESENT RSD.00(3) N.U. N.U.
FP PRES*-DMO FOP.00(2) FOP.40 (7) See Table 1-3D
FPPRES*OMO FOP.00 (2) FOP.40(7) FOP.50 (4)

TRAP None RSD.00(3) N.U. N.U.

TST.B I,E,DAC See Table 1-~~ TST.10 (11) N~ U.

HALT None HLT.00(3) N.U. N.U. WAIT None WAT.00 (3) N.U. N.U.

INC.B P,E,OAC See Table 1-3C EXC.00(11) N.U. XOR P,E,DAC See Table 1-3C EXC.00(11) N.U.

IOT None TRP.00(3) N.U: N.U.

11-1-32

Destination Mode

0

2

3

4

5

6

7

Table 1-3B
A Fork, BIN*-SMO

Source Mode Machine State

1
2
3
4
5
6
7

SRO

0

0

0
1

0
1

0

0

0

0

Sl3.00 (1)
Sl3.ol (l~--
Sl3.0l (1)
S45.00 (1)
S45.00 (1)
S67.00 (2)
S67.00 (2)

Table 1-3D
C Fork, BIN

Machine State

DF7:D07.10 (4), -DF7:D00.90 (4)
DF7:D07.00 (4), -DF7:D00.80 (4)

Dl2.80 (5)
Dl2.90 (5)

D12.80 (5)
Dl2.90 (5)

D30.80(5r-
D30.90 (5)

D45.80 (6)
D45.90 (6)

D45.80 (6)
D45.90 (6)

D67.80 (6)
D67.90 (6)

D67.80 (6)
D67.90 (6)

Instruction

BCC
BCS
BBQ
BGE
BGT
BHI
BHIS
BLE
BLO
BLOS
BLT
BMI
BNE
BPL
BR
BVC
BVS

Destination Mode

0

1
2
3
4
5
6
7

Table 1-3C
A Fork, DAC

Machine State

(DF7 + BRQ):EXC.90 (3),
-(DF7 + BRQ):EXC.80 (3)
D12.00 (5)
Dl2.00 (5)
030.00 (5)
045.00(6)
D45.01 (6)
D67.00 (6)
D67.01 (6)

Table l-3E
Branches

(All Cycles on Flows 1)

Branch Successful Branch Not Successful
BRQ Present BRQ Not Present BRQ Present BRQ Not Present

BXX.03 BXX.00 FET.01 FET.11
BXX.04 BXX.01 FET.03 FET.13
BXX.05 BXX.02 FET.03 FET.13
BXX.03 BXX.00 FET.02 FET.12
BXX.03 BXX.00 FET.02 FET.12
BXX.03 BXX.00 FET.01 FET.11
BXX.03 BXX.00 FET.01 FET.11
BXX.05 BXX.02 FET.03 FET.13
BXX.04 BXX.01 FET.03 FET.13
BXX.04 BXX.01 FET.03 FET.13
BXX.05 BXX.02 FET.03 FET.13
BXX.04 BXX.01 FET.03 FET.13
BXX.03 BXX.00 FET.02 FET.12
BXX.03 BXX.00 FET.01 FET.11
BXX.05 BXX.02 (always successful)
BXX.03 BXX.00 FET.01 FET.11
BXX.04 BXX.01 FET.03 FET.13

11-1-33

IR
15

0

IR
14-12

IR IR IR IR IR
11-09 08 07-06 05-03 02-00

f'PcA'NO'PseHANGE(iOF2>-----------------,

-------. 0 BNE OFFSET 2 2 RTI
o--------i~ 0 ? BR OFFSET

0-=i ?Fl? ~~H I
I 1 BEQ OFFSET 3 3 BPT

I
.- -OOUBLE-OPERAN~D I 2 0 BGE OFFSET 1 JMP DST 4 RESERVED 4 IOT I

1 BLT OFFSET 5 5 RESEi
(1 OF 2) I 0 SGT OFFSET 6 6 RTT

I
I MOV SRC, DST I 1 BLE OFFSET 7 7 RESERVED I

4 JSR REG, DST 2 0 RTS REG
--------- -----.., 1 RESERVED I

I 2
CMP SRC, DST I SINGLE OPERAND (iQF2i- - - - - - --, I ~ ~~~ER::~ORITY

I 3 BIT SRC, DST I 3 SWAB DST 1 I 4
} I

I 5 I 0 0 CLR DST ~ CCOP MICROINSTRUCTION

I 4 SIC SRC, DST I 1 COM DST I I 7 J
I

2 INC DST IL__: _______ _
3 DEC DST

I 5 BIS SRC, DST i I 0 NEG DST

r
I
I
I
I
I
I

1 ADC DST I
2 SBC DST

~~ SRC,~..J I 3 TST DST
6 I 0 0 ROR DST I

I
1 ROL DST
2 ASR DST
3 ASL DST I

L 7 RESERVED 1 0 MARK OFFSET
- - - - - - - - ~ 11 MFPI SRC

rREGISTERAND OPERAND - - - ., 2 MTPI DST 1 7------n 0 MUL REG, SRC I L2.. ~T ~S2_ --·
1 DIV REG, SRC I

I
2 ASH REG, SRC
3 ASHC REG, SRC
4 XOR REG, SRC I

I 5 RESERVED
6 RESERVED

L .!,20~R~O~~ -- -- _J
rPcA'Nc5Ps CH"AN'GE 12oF2i--I

0--------1-~ 0 0 BPL OFFSET I
1 BMI OFFSET

-------. 0 SHI OFFSET
1 BLOS OFFSET I

2-------. 0 BVC OFFSET
1 BVS OFFSET

3-------, 0 BHIS OFFSET (BCC)I
1 BLO OFFSET (BCS)

4 0 EMT CODE

-- -- - --,~~c~ __ J
Si°NGLE OPERAND (2 OF 2-) - -- -- -- -- -- -.,

5 I 0 0 CLRB DST
1 COMB DST
2 INCB DST I
3 DECB DST

1 0 NEGB DST I
1 AOCB OST
2 SBCB DST
3 TST-8. DST I
1 ROLB DST I
2 ASRB DST
3 ASLB OST

---~' DOUBLE OPERAND

11 (2 OF 2)

1 MOVB SRC, DST 11
2 CMPB SRC, OST I
3 BITS SRC, DST

1
,

4 BICB SRC, DST I
5 BISB SRC, DST I 1

~~~c.DsTJI 
I 

6-------.

1 

0 0 RORB DST 

I , 0 RESERVED I 
1 MFPD SRC 
2 MTPD DST _J 

~ 2..._R~R~ ___ --__ ~R~~ _ 

~OATING POINT 1 
SINGLE OPERAND 

7-------~ o----~, 0 11 ? LDFPS SRC I 
I 2 STFPS DST 

3 STST DST 
1--------'---, 0 CLR (F/D) FDST I ---- - ----- --1111 TST(F/D) FDST 

FLOATING POINT AC AND OPERAND 2 ABS (F/Dl FDSLJ 

1 0 MUL (F/D) AC, FSRC IL ~N~F/D) ~T 
1 MOD (F/D) AC, FSRC 

2-------. 0 ADD(F/D) AC, FSRC 
, LO (F/D) AC, FSRC I 

3-------. 0 SUB (F/D) AC, FSRC 
, CMP(F/D) AC, FSRC I 

4-------. 0 ST(F/Dl AC, FDST 
1 DIV(F/D) AC, FSRC 

5-------, 0 STEXP AC, DST L--, 
1 STC (F/D)(I/L} AC, DST 

I 6-------, 0 STC(F/D)(D/F) AC, FDST I 
1 LDEXP AC, SRC 

L
7-----~ 0 LDC(I/L)(F/0) AC, SR~ 

1 LDC(F/O}(O/F) AC, FSRC ----------

f"'FLOATING POI NT OPERATE- - 1 

OIOCFCC I 1 SETF I 
I 2 SETI 

3 LDUB 

I 4 MSN I 
5 STAO 

I , ! STQO I 

1~1§~m I 
I ~ ~ I 
L

7 6 _____ _! __ _J 

11-3450 

Figure 1-10 Determination of an Instruction from the Binary Code 

11-1-34 



Whenever possible, the entry for each active deci
sion point specifies a machine state by its symbolic 
name, with the number of the flowchart where that 
state is illustrated in parentheses. If a particular ma
chine state depends on additional conditions, those 
conditions are shown preceding the corresponding 
machine state and are separated from the state by a 
colon. 

To follow an instruction through the Flows with 
Table 1-3, execute the following steps: 

1. Find the instruction symbolic name in 
the INSTRUCTION column (Table l-
3A). 

2. 

3. 

4. 

Go to the A Fork cycle shown under "A 
Fork" and follow the Flows until a B or 
C Fork, if any, is found. 

Go to the B or C Fork cycle shown in 
Table l-3A. Repeat Steps 2 and 3 if the 
instruction uses both the B and C Forks. 

Determine the type of execute cycle from 
the CLASS column of Table 1-3. 

A sample instruction is taken through the Flows, us
ing this documentation, in Paragraph 1.2.6.2. 

1.2.6.2 An Instruction Example - This paragraph 
traces one instruction through a sequence of ma
chine states to illustrate the process of finding each 
machine state and using the flowchart and ROM 
map information to understand the operations per
formed by the processor. The example instruction 
and the environment in which it is executed is 
shown in Figure 1-11. 

The instruction is a CMP, which subtracts the desti
nation word from the source word and uses the re
sult to set the condition codes. These may then be 
used by arithmetic and logic conditional branches. 

001000 022767 000015 000100 

Its Source mode is 2 (SM2) and its source field (reg
ister) is 7 (SF7). After the Fetch cycles, the PC (reg
ister 7) contains 1002. This value is the address of 
the operand. A DA TI is performed; it reads loca
tion 1002 which contains 15, the source operand. 

The Destination mode is 6 (DM6) and the destina
tion field is 7 (DF7). The PC contains 1006 after 
the source operand fetch. The destination operand 
is stored in the location whose address is the sum 
of the present PC ( 1006) plus the contents of the in
dex word, whose address is 1004. The index word 
equals 100, and the destination operand is at loca
tion 1106. Two DA Tis are required to obtain the 
destination operand: the first reads the index word, 
the second reads the operand. 

Immediately before the processor begins the ma
chine state sequence for this instruction, the Pro
gram Counter (PC) contains the value 1000(8), the 
processor status word contains the value 000340, 
there are no bus requests or other asynchronous 
conditions, and the processor is about to enter the 
FET.OX machine state. In this state, a DATI bus 
operation is begun, using the contents of the PC as 
the address. 

FET.IX 
Assuming that no requests have been strobed into 
the request register (refer to Chapter 6), the next 
machine state entered is FET. lX. In this state, the 
PC is updated (the new value is loaded into the 
PCA and does not disturb the PCB, which is still 
being used for the address in the data transfer) and 
the word that is read is loaded into the IR and BR. 
Thz PCA now contains 1002, the IR and BR con
tain 022767, and the PCB still contains 1000; fi
nally, after the bus operation is completed, the PCB 
is updated to 1002. 

IRD.00 
The third machine state entered is IRD.00. In this 
state, the A Fork logic is enabled. According to Fig
ure 1-10, the binary number in the IR represents a 

CMF' #15 .. CHAf': 

Figure 1-11 Instruction Execution Example 

11-1-35 



CMP instruction; the entry for this instruction in 
Table 1-3A refers to Table l-3B, which indicates 
that for a source mode of 2 (as specified by the 
third octal digit of the instruction), the next ma
chine state is S 13.01. Since both the source and des
tination fields are 7, the IRD.00 machine state also 
loads the SR and DR with the updated PC value 
(1002). Since CMP is a binary instruction and its 
source mode is 2, RACH BUST is not asserted in 
IRD.00 (CONDITIONAL BUST, refer to Para
graph 1.2.5.1 ). 

Source Operand 
In S 13.01 the DA TI is started, using the contents of 
the SR as the address. The contents of the SR 
(1002) are incremented by 2, and this value is writ
ten back into the PCA and PCB, which now con
tain 1004. 

The fifth machine state entered for this instruction 
is the S 13.10 state. In this state, the DA TI is com
pleted, with the data that has been read-loaded into 
the BR register. The new· contents of the BR are 15 
(the contents of the word following the instruction, 
which is the source operand). The DR is loaded 
with the updated contents of the register specified 
by the destination field of the instruction (because 
this is register 7, the DR is loaded from the PCB); 
the new contents of the DR is 1004. 

Destination Operand 
For a source mode of 2, the branch condition in 
S 13.10 enables the Fork C logic. The entry for the 
CM P instruction in Table 1-3A refers to Table l-
30, which indicates that, for a destination mode of 
6 and the least significant bit of th~ SR equal to 0 
[SRO(O)=even address], the next machine state is 
067.80, which is shown on Flows 6. This machine 
state transfers the contents of the BR (=source op
erand) to the SR, and begins the third DATI bus 
operation, using the contents of the PCB as the 
address. 

The next machine state is D67.00, which completes 
the third DA Tl and increments the PCA by 2. Be
cause the DR is intended to reflect the current con
tents of the specified register, the DR is updated to 
reflect the new value in the PC, which is 1006. The 
data read into the BR is l 00. This is the index 

word, which when added to the destination mode 
register (R 7 or the PC), is the address of the desti
nation word. 

Following the D67 .0 state, the processor enters the 
D67. l state, where the PCB is loaded from the 
PCA and the contents of the BR is added to the 
contents of the DR. The result ( 1106) is the index 
word and is loaded into the DR. The branch condi
tion in this machine state selects the Dl0.3 state to 
follow the D67. I state (-DM357). 

In the DI0.3 machine state, the processor begins a 
fourth bus operation, using the contents of the DR 
( 1106) as the address. The type of bus operation 
performed depends on the instruction class, accord
ing to Table l-3A. A CMP instruction is an I/Class 
instruction, so a DA Tl operation is begun. This ma
chine state also loads the BR from the SR, so that 
both registers contain 15. 

The next state entered depends on the instruction 
class. A CMP instruction is not F, J, or O/Class, 
so the DI 0.60 state is entered. This state completes 
the fourth DATI operation, loading the contents of 
the location addressed by the DR (location 1106) 
into the BR. This word is the Destination Operand, 
which equals 0. 

Execute 
The DI 0.60 machine state branch con di ti on enables 
the B Fork logic [DRO(O)]. The entry for a CMP in
struction in Table l-3A indicates that the next ma
chine state is TST.10 (Flows 11). 

The CM P instruction does not alter any data 
words, so no further bus operations are required. 
The TST.10 machine state performs instruction-de
pendent ($ on Flows) data operations and condi
tion-code loading. 

Flows 11 shows that the arithmetic operation is per
formed with the A operand = BR (destination 
word) and B = SR (source word). The ALU Con
trol ROM Map on drawing G RAK shows that for 
CM P. B, the operation is A - B - I, and that the 
SH FR does not change the result (except in the 
case of an odd byte operation, in which case the 
bytes are swapped). 

11-1-36 



In this example, the following operation is executed 
by the ALU: 

A input: 
B input: 

minus 1: 

0 000 000 000 000 000 
-o 000 000 000 001 101 

1111111111110011 
-0 000 000 000 000 001 

Result (to SHFR): 1 111 111 111 110 010 +carry 

The condition codes are then set as shown by 
the CC Control ROM Map on drawing IRCJ: 

N is set if "SHFR(l5)0" (SHFR bit 15=0). 

Z is set if "A= B( 15:00)" (four-input gate to 
IRCF Z DATA l L). 

Vis set if "A 15*-B 15*-ALU 15+-A l 5*Bl 5*ALU 
15" (bottom two inputs to the lower IRCE 
VDATA L 74S65: A=AMX., B=BMX). 

C is set if "ALU COUT 15" (DAPJ ALUCN 
L). 

I. The N bit is cleared, since bit 15 of the 
SHFR is 1. 

2. The Z bit is cleared, since the output of 
the A LU is not 0. 

3. The V bit is cleared, since Al5 and Bl5 
(AMX bit 15 and BMX bit 15) are the 
same. 

4. The C bit is set, since there is a carry 
from ALU bit 15. 

NOTE 
The arithmetic and the N and 
C condition code load oper
ations are the opposite of 
those described in the First 
Edition of the PDP-11/70 Pro
cessor Handbook. The instruc
tion, however, performs as 
specified in the Handbook. 

l.3 ROM MAP 
Refer to drawing D-CS-M8123-0-l, ROM & ROM 
CONTROL, sheets 12 - 15. 

These four drawings list all the ROM states in nu
merical order. The following information is 
provided: 

I. In the ST ATE column, the name by 
which the state is called on the Flows. 

2. In the FLOWS column, the sheet of the 
Flow Diagrams on which the ROM state 
is shown. 

3. In the ADR column, the ROM address 
of the state. 

4. In the BRK - ALU columns, the value 
of each of the ROM fields for each 
state. 

5. In the FEN column, the fork that is en
abled, if any. 

6. In the BEN column, the branch that is 
enabled, if any. 

7. In the UAD column, the base address 
for the next ROM state, which may be 
modified if the FEN or BEN fields are 
other than 0. 

1.4 ROM ADDRESS 
Refer to Figure 1-12. The ROM Address Register 
( RAR ), which is clocked at T3, determines the out
put of the ROM for the next cycle and supplies the 
address for the next cycle. It also supplies the ad
dress for the Memory Management ROM (refer to 
Section IV). 

The input to the RAR [RACL RADR(07:00) H] is 
the address selection logic shown on RACL. The 
following are inputs to this logic: 

I. The UADR field of the ROM. In the ab
sence of any of the modifying signals, 
this is the ROM address for the next 
cycle. 

2. The Branch inputs, which are controlled 
by conditions occurring in the rest of the 
processor logic. 

11-1-37 



PAR.1.4.4 

EXTERNAL ·~ BRANCH 

) LOGIC 
CONDITIONS ./1 

RACK 

PAR.1.4.5 PAR.1.4.6 

AFIR 

~ 
A FORK ~ 

RACJ,H RACE, F, H 
y 

Tt-=:::.__J PAR.1.4.8 
PAR.1.4. 5 

1) ~ B FORK 

0 
IRCB 

v 
IR 

PAR.1.4.7 

.... C FORK -ii 
IRCA 

~ IRCC 

l -'\ T1 
-,I 

Figure 1-12 

J. The Fork logic, which is controlled by 
the instruction word there are three 
Forks: 

a. The A Fork, used by all instruc
tions, is the instruction decoder for 
the KBl 1-C. 

b. The C Fork, which is used only by 
binary instruction that require ad
dress calculation (SM not 0) 

c. The B Fork, which is used for exe
cute cycles by instructions that re
quire either source or destination 
address calculation, or both. 

Figure 1-12 lists both the paragraph and the logic 
drawings containing information about the ROM 
address generation. 

PAR.1.4.2 

RADR N 

RACL 

ROM Address 

TO MEMORY 
MANAGEMENT ROM 

PAR.1.4.1 -< ~ 
PAR. 1.1 

ROM 

RAR t-- LI\ 1----1 

~ 
UADR 1--

RACA 
RACA RACB 
RACC RACC 
RACO RACO 

f 
T3 

11-3106 

1.4.1 ROM Address Register (RAR) 
There are three identical copies of the RA R. Refer 
to drawings RACA through RACO. In addition to 
the two copies (RARB and RARA) used to provide 
sufficient fanout for the 16 ROM I Cs, a third copy 
(RAR, shown on RACO) is used to transmit the 
current microprogram word address to the Memory 
Management ROM (refer to Section IV of this 
manual). 

The RA R is normally loaded from inputs generated 
by the microprogram address selection logic shown 
on drawing RACL. Under some circumstances, the 
RA R is forced to address 200 by clearing all but 
the most-significant of the eight bits, and setting 
that bit. To permit setting the most-significant bit, 
it is implemented by a separate flip-flop. The re
maining seven bits are implemented by 6-bit regis
ters of the same type used for the ROM output 
buffer. 

11-1-38 



RACA ZAP L is the signal used to force the pro
cessor into a known state to start the processing of 
aborts and of the power-up sequence. The condi
tions that can generate this signal are: 

I. Power-up sequence or start sequence 
(ROM INIT) 

2. Parity error abort, which is flagged 
UBCB PE ABORT during the micro
program cycle which follows a pause 

3. All other aborts (TMCC ABORT), 
which are flagged during a pause cycle 
(RACB UBSOOI). 

PE ABORT and ABORT are gated with TIGO 
TS2 L, which remains asserted longer than the 
pulse TIGC T3 L that clocks the RAR, and ensures 
that the ZAP signal overrides the normal address. 

ROM INIT and ABORT are described in Chapter 
6 of this manual. 

1.4.2 ROM Address Selection 
Refer to drawing RACL. RAOR(07:00) are the in
puts to the RAR. An address bit is asserted (high), 
when all four of the negative-input-OR gates have 
at least one low input. 

On all RAOR 74S64 gates, there are four input OR 
gates. Three of these gates are used for the forks, 
one gate each for the A, B and C Forks. The 
fourth gate is the OR of the ROM UAOR field bit 
and of the Branch Enable Bit (BRCAB) for that bit 
position. Since there is no branch enable for bit 3, 
the gate for RAOR03 has only one input, 
UAOR03. 

I. When all three fork inputs are negated, 
the OR gate inputs for the forks are low. 
The inputs to the fourth gate then deter
mine the state of the address bit: if ei
ther or both UAOR and BRCAB bits 
are asserted (low), the RAOR bit is as
serted (high). 

2. Only one of the three UFEN bits is ever 
asserted at one time (in a microprogram 
word). When one of these bits is as
serted, its input to its RAOR OR gates 
is high, and this OR gate is asserted if 
one or more of their fork logic input sig
nals is asserted (low). In this case, the 
RAOR bit is asserted (high). 

From the above, it can be seen that: 

I. A branch can assert an RAOR bit for 
which the UAOR is not asserted; 

2. Any Fork can negate an RAOR bit for 
which the UAOR bit is asserted. For ex
ample, if UA OROO is asserted (low) and 
the A Fork (lower gate) is enabled, 
RA 0 ROO is negated if none of the AO, 
A I, A2 RA BOO signals are asserted 
(low). The A Fork has an address of 
377, or all eight UAOR bits asserted; 
any combination of these could be ne
gated to generate any address between 
000 and 377. 

Fork Inputs 
The A Fork input, RACO UAFEN L is 
unconditional. 

The C Fork input, RACO UCFEN L, is disabled 
hy BEN 14 if the source mode is 3, 5 or 7. This 
branch occurs during source mode operand fetch 
when one more bus cycle is required to fetch the 
source operand. Refer to Flows I, Sl3.IO and 
Flows 2, S67.30: if -SM357, the next cycle starts the 
OM operand fetch on the C Fork: if SM357, both 
cycles fetch the operand in S 13.20 - S 13.40 and 
then go to the C Fork. 

The B Fork input. RACO U BFEN L, is disabled 
hy one of two conditions, both shown at the bot
tom of Flows 6: 

I. BENl5. If the instruction is FJ/class, it 
goes directly to the B Fork for execu
tion: if it is not F J /class, it branches to 
one of two cycles, depending on whether 
or not it is O/class, to complete its desti
nation operand fetch. 

2. BEN05. An instruction that is neither 
O/class nor FJ/class goes to the B Fork 
if its destination address is not an odd 
byte. If it is an odd byte [ORO( I) or 
GRAB 080) it first branches to 012.30 
to swap bytes in the BR, and then goes 
to the B Fork. 

1.4.3 Branches and Forks 
Normally, the address of the next microprogram 
word is derived from the contents of the micro
address field (UA 0 R) in bits 7 - 0 of the current 

11-1-39 



microprogram word. Two Branch selectors allow 2-
way or 4-way branches on the conditions of various 
processor circuits and on the contents of various 
data registers. For most decision points encoun
tered during the flow of machine states, this branch 
capability is sufficient. 

In certain situations, particularly after an instruc
tion or data has been fetched by a state sequence 
that is common to many instructions, it is necessary 
to select a next machine state that is unique to one 
or a small class of instructions. This requires a 
much wider branching capability. In the KBl 1-C 
Processor, this capability is provided by the Fork 
logic. Each of three forks generates one of a large 
number of possible addresses, based on the decod
ing of the instruction, the address modes, and vari
ous processor status indications. When a fork is 
enabled by the corresponding fork-enable bit of the 
microprogram, the address generated by the fork is 
loaded into the ROM address register instead of 
the contents of the microaddress field. 

1.4.4 Branch Logic 
The processor is controlled by words fetched from 
a microprogram ROM: each word represents a ma
chine state. The sequence of machine states is con
trolled by the sequence of ROM words fetched. 
Normally, each ROM word contains the address of 
the next word to be fetched. When it is necessary to 
provide for alterations in the sequence of machine 
states, two bits of the address contained in the cur
rent ROM word can be altered by inputs that sense 
processor conditions and data values. The altered 
bits select different addresses, depending on their fi
nal values, so that up to four different addresses 
can be selected. This 4-way branch permits a wide 
variety of machine state sequences to use the same 
microprogram words. 

The two bits that can be altered by branch condi
tions are bits 5 and 4 of the microprogram address. 
Therefore, when a branch is used, the addresses se
lected for· different conditions differ by 20, 40 or 
60. There are 16 sets of branch conditions. One of 
the 16 sets is selected by the four branch-enable bits 
i1_i the current microprogram word. 

The Console branch (Flows 14) can modify bits 7, 
6 and 2:0: it is not included in the explanation that 

follows, but is described in Section III (Console) of 
this manual. 

RACK BRCAB(05:04) L are the outputs of the 
branch logic: each signal is ORed with the corre
sponding bit of the microprogram address from the 
current ROM word on one of the input gates to 
RACL RADR(05:04). When the 4-way branch is 
used, bits 5 and 4 of the U AD address are both ne
gated (high), and the two branch signals select one 
of four addresses. If only a 2-way branch is desired, 
one of the U AD address bits is asserted (low), and 
the corresponding branch bit is ignored, because 
the result of the OR is always asserted. 

Refer to drawing RACK. BRCAB05 L and 
BRCAB04 L are both generated by identical logic 
circuitry, which consists of two multiplexers and a 
4-input AND-NOR gate. U BEF(03:00) controls the 
circuit. 

U BEF03 selects the multiplexer: when this signal is 
not asserted, the top multiplexer is enabled and the 
lower one disabled. The opposite occurs when 
UBEF03 is asserted. 

U BEF(O I :00) selects which input to each half of the 
multiplexer IC is selected. Each IC has two 
outputs. 

UBEF02 selects which of the two outputs of the 
multiplexer selected by U BEF(OI :00) is gated 
through the BRCAB gate. 

When U BEF(03:00) = 00, the DI inputs to the top 
multiplexers are selected. Since these are both 
ground, BRCAB(05:04) are both negated (high), 
and the corresponding ROM address bits, RACL 
RA DR(05:04) follow the UA DR(05:04) inputs, i.e.: 
the address is not modified.The same is true for 
UBE r = 14, which is the Console branch. 

Table 1-4 shows the inputs for each branch. 

1.4.5 Instruction Registers 
The instruction word is read from memory during 
FET.10. It is clocked into the Instruction Registers 
at Tl of IRD.00: this is shown as T6 of FET.10 on 
the Flows. 

11-1-40 



UBEF RACK BRCAB OS L 
Value 

00 GROUND 

01 IRCD DM357 H 

02 IRCF Z2 (1) H 

03 GRAJ SC= OL 

04 GRAJ DIV SUB L 

05 GRAB OBD {O) H 

06 DAPA BR14 L 

07 RACK BE 75 H 

10 UBCC RIP + FP SYNC H 

11 GRAJ SC= 0 L 

12 TMCA CONF {l) H 

13 TMCB PF{O) * {SF + TF) H 

14 GROUND 

15 IRCB FJ CLASS L 

16 GRADDROOH 

17 RACK RIP + FP SYNC L 
*TMCB BRQ * {T+ CONF) L 

Table 1-4 
Branch Signal Sources 

RACK BRCAB 04 L 

GROUND 

GRAE SR EQ ONE L 

TMCB {PWRF + INTR) L 

GRAJ SC05 L 

IRCH N (1) H 

GRAJ DIV QUIT L 

SSRA PS RESTORE (1) H 

RACKFPREQH 

FRMB FP CLASS L 

GRADDROOH 

TMCB BRQ TRUE L 

TMCB PF{O) * (SF + -TF) H 

GROUND 

IRCC 0 CLASS L 

GRAH SR15 H 

TMCB BRQ * {T+ CONF) L 

11-1-41 

Comments 

No Branch 

BRCAB05: Disable B Fork if OBD, 
Flows 6 

Service Flows, Flows 12 

Console Branch, Flows 14 
Disable C Fork if SM357, Flows 1&2 

Disable B Fork if F/J Class, Flows 6 



There are two copies of the Instruction Register 
(IR): 

I. 

2. 

RACJ AFIR(l5: 00) (l) H, which is 
used only by the A Fork logic for rea
sons of speed. For this same reason, 
there is an extra copy of bits 9 and I 0 
[RACH AFIR(IOA:09A) (I) H]. 

IRCA IR(l5:00) (I) H, which is used by 
the B and C Forks, the Condition Code 
logic and the rest of the KBl 1-C logic. 

Both copies of the IR are clocked at TI when the 
UIRK bit of the microprogram field is asserted in 
FET.10. 

1.4.6 A Fork Logic 

1.4.6. l Decode Logic - Refer to drawing RA CE. 
The logic illustrated on this drawing is part of the 
A Fork. This fork operates as the instruction deco
der of the processor. Immediately after the instruc
tion has been loaded into the Instruction Register 
(IR) the A Fork begins to generate an address. Be
cause this address must be available within one ma
chine cycle, the A Fork is designed to operate at 
maximum speed. Therefore, the amount of decod
ing is minimized: classes of instructions are recog
nized and the bits that differentiate members of the 
class arc used directly as low-order bits of the gener
ated address. This technique can be understood by 
examining the address utilization by the forks. As 
an example, consider the selection of addresses by 
the A Fork for the group of instructions ranging 
from HALT to RTT. The binary op codes for all 
these instructions are identical except for the three 
least-significant bits. When the A Fork decode logic 
recognizes that all but the three least-significant bits 
arc 0, hit 3 of the ROM address is set, and the 
three least-significant bits of the op code become 
the three least-significant bits of the address. 

1.4.6.2 Address Bit Generation - The logic shown 
on drawing RACE generates address bits for cer
tain classes of instructions. These bits are then 
0 Red with other signals that generate the same bits 
for other classes of instructions to generate the A 
Fork address. The address is then combined with 

the address from the microprogram in a bit-clear 
operation as shown on drawing RACL. 

The signal names indicate the use of each logic cir
cuit as follows: 

I. The fork signals that are connected to 
the microaddress logic on drawing 
RACL have names that include RAB 
(for ROM Address Bit), followed by the 
number of the address bit to which the 
signal is connected. 

2. In some cases, a signal is connected to 
more than one address bit because the 
same conditions generate both bits. 

3. Many RAB signals are connected to the 
same address bit. They are distinguished 
by a Jetter that tells which fork generates 
the bit, and where more than one signal 
can be generated for the same fork. 
Thus, the signal RACE AO RABOO is 
one of several signals used by the A 
Fork logic to generate bit 0 of the 
address. 

Branch instructions are described separately in Para
graph 1.4.6.4. 

Table 1-5 shows the RAB bits asserted by each in
struction on the A Fork. 

l.4.6.3 Instructions Other Than Branch 

RACE AO RAB (02:00) 
RACE AO RABOO L, RACE AO RABOI L, and 
RACE AO RAB02 L are used to generate micro
program addresses 001 - 007. No other A Fork bits 
arc enabled when these gates are enabled. The en
abling conditions for all three signals are identical, 
except that each signal corresponds to a different 
bit of the Instruction Register. The IR bits passed 
th rough the AND-NOR gates are the destination
mode bits for instructions that require Destination 
Address Calculation (DAC), but no source address 
calculation. If the destination mode is 0, the destina
tion data is in the Destination Register and no ad
dress calculation is required. 

11-1-42 



This group of microprogram words is used for the 
following groups of instructions: 

I. All single-operand instructions (with op 
codes of 005XDD, 105XDD, 006XDD 
and I06XDD); this includes the instruc
tion group from CLR to ASL (in both 
word and byte forms), the variable ad
dress-space moves, SXT, and XOR. 
These instructions are recognized by 
their op codes and generate the signal 
RACE RCLASS H. 

2. The register and memory instruction 
group, which includes MUL, DIV, ASH, 
and ASHC. When one of these instruc
tions 1s decoded, the signal RACE 
(MUL:ASHC+MFP) His generated. 

3. Any binary instruction with a source 
mode of 0. Because the source data is al
ready in the Source Register, it is not 
necessary to do the source data fetch. 
These instructions generate the signal 
RACE BIN*SMO H. 

4. The three instructions JMP, JSR, or 
SWAB. These three instructions use the 
same address calculation as the single
operand instructions. The signal RACE 
JM P + JSR + SW AB H is generated. 

The instructions that use AO RAB(02:00) are listed 
below: 

00 01 DD 
00 03 DD 
00 4R DD 
00 50 DD 
00 51 DD 
00 52 DD 
00 53 DD 
00 54 DD 
00 55 DD 
00 56 DD 
00 57 DD 
00 60 DD 
00 61 DD 
00 62 DD 
00 63 DD 
00 65 SS 
00 67 DD 

JMP 
SWAB 
JSR 
CLR 
COM 
INC 
DEC 
NEG 
ADC 
SBC 
TST 
ROR 
ROL 
ASR 
ASL 
MfPl 
SXT 

07 OR SS 
07 IR SS 
07 2R SS 
07 3R SS 
07 4R DD 
IO 50 DD 
IO 51 DD 
10 52 DD 
10 53 DD 
10 54 DD 
10 55 DD 
10 56 DD 
10 57 DD 
10 60 DD 
10 61 DD 
10 62 DD 
10 63 DD 

MUL 
DIV 
ASH 
ASHC 
XOR 
CLRB 
COMB 
INCB 
DECB 
NEGB 
ADCB 
SBCB 
TSTB 
RORB 
ROLB 
ASRB 
ASLB 

IF SMO: 
01 SS DD 
02 SS DD 
03 SS DD 
04 SS DD 
05 SS DD 
06 SS DD 

MOY 
CMP 
BIT 
BIC 
BIS 
ADD 

II SS DD 
12 SS DD 
13 SS DD 
14 SS DD 
15 SS DD 
16 SS DD 

MOVB 
CMPB 
BITB 
BICB 
BISB 
SUB 

RACE AO RAB03 
RACE AO RAB03 L is generated for the following 
groups of instructions: 

I. Branch instructions accompanied by a 
Bus Request (BRQ); these instructions 
generate A Fork addresses ranging from 
330 - 336. Refer to Paragraph 1.4.6.4. 

2. Op codes 000000 - 000007; these instruc
tions range from HALT to RTT and use 
microprogram addresses 010 - 017 (017 
is for op code 000007 and traps through 
location 4). 

00 00 00 
00 00 01 
00 00 02 
00 00 03 

3. 

00 03 DD 
00 50 DD 
00 51 DD 
00 52 DD 
00 53 DD 
00 55 DD 
00 56 DD 
00.57 DD 
00 60 DD 

The instructions in this group are: 

HALT 
WAIT 
RTI 
BPT 

00 00 04 
00 00 05 
00 00 06 
00 00 07 

JOT 
RESET 
RTT 

E/class instructions, with the exception 
of the binary instructions that have both 
SMO*DMO, if these instructions have a 
DF7 or there is a BRQ to be serviced 
( DF7 + BRQ). These instructions all go 
to address 030 because AFIR(05:03) are 
all Os, which causes RACE RAB(02:00) 
to be negated. RACF A2 RAB03 asserts 
bit 3 for BIN*SMO*DMO*(DF7+BRQ). 

The instructions in this group are: 

SWAB*DMO 
CLR 
COM 
INC 
DEC 
ADC 
SBC 
ISI 
ROR 

00 61 DD 
00 62 DD 
00 63 DD 
00 67 DD 
07 4R DD 
10 50 DD 
10 51 DD 
lO 52 DD 
10 53 DD 

ROL 
ASR 
ASL 
SXT 
XOR 
CLRB 
COMB 
1NCB 
DECB 

II-1-43 



Table 1-SA 
A Fork Address Generation 

Instruction Class AO RAB AIRAB A2RAB Address Instruction Class AO RAB Al RAB A2RAB Address 

00101102 03 OS 07 00 01 02 04 OS 00 03 OS & Flows ()() 1 01 ] 02 03 OS 07 ()() 01 02 04 05 00 03 05 & Flows 

ADC.B P,E,DAC See Table I-SB JMP -DMO J, FJ, DAC See Table 1-SC 

ADD: -SMO P, E,BIN See Table 1-SB DMO 000 (3) 

SMO P, E, BIN, DAC See Table 1-SC JSR -DMO J, FJ, DAC See Table 1-SC 

ASH -DMO DAC See Table 1-SC DMO 000 (3) 

DMO DAC x x 052 (3) MARK None x x x x 047 (2) 

ASHC -DMO DAC See Table 1-5C MFP -DMO l,DAC See Table 1-SC 
DMO DAC x x x 053 (3) DMO I,DAC x x x 046 (3) 

ASL.B P,E,DAC See Table 1-5C MOY -SMO 0, E, BIN See Table 1-SB 

ASR P,E,DAC See Table 1-5C SMO 0, E, BIN, DAC See Table 1-5C 

ASRB DRO(O) P,E,DAC See Table 1-SC 
DRO (1) P,E,DAC See Table 1-5c 

MOVB -SMO P, BIN See Table 1-SB 
SMO P, BIN,DAC See Table 1-SC 

Branch Instructions: BCC (BHIS), BCS (BLO), BEQ, BGE, BGT, BHI, BHIS - See Table 1-7 MTP 0 x x x 045 (1) 

BIC.B -SMO P, E, BIN See Table 1-5B 
SMO P, E, BIN, DAC See Table 1-5C 

MUL -DMO I,DAC See Table 1-5C 
DMO I,DAC x 050 (3) 

BIS.B -SMO P, E,BIN See Table 1-5B 
SMO P, E, BIN, DAC See Table 1-SC 

NEG.B -DMO P,DAC See Table 1-5C 
DMO P,DAC x x 301 (3) 

BIT.B -SMO I, E, BIN See Table 1-5B RESET None x x x 015 (3) 

SMO I, E, BIN, DAC See Table 1-5C ROL.B P,E,DAC See Table l-5C 

Branch Instructions: BLE, BLO, BLOS, BLT, BMI, BNE, BPL -See Table 1-7 ROR P, E, DAC See Table 1-5C 

BPT{OP3) I None I IX I I x Ix 013 (3) RORB DRO(O) P,E,DAC See Table 1-5C 

Branch Instructions: BR, BVC, BVS - See Table 1-7 DRO(l) P,E,DAC See Table 1-5C 

CCOP None x x 044 (3) RTI None x x 012 (2) 

CLR.B P,E,DAC See Table 1-5C RTS None x 040 (2) 

CMP.B -SMO I, E, BIN See Table 1-5B RTT None x x x 016 (2) 

SMO I, E, BIN, DAC See Table 1-5C SBC.B P,E,DAC See Table 1-5C 

COM.B P,E,DAC See Table 1-SC SOB None x x x x 057(2) 

DEC.B P,E,DAC See Table 1-5C SPL None x x x 043 (3) 

DIV -DMO l,DAC See Table 1-SC SUB -SMO P,E,BIN See Table l-5B 
DMO l,DAC x x 051 (3) SMO P, E, BIN, DAC See Table 1-SC 

EMT None 000(3) SWAB P,E,DAC See Table 1-5C 

Floating Point: F,FJ SXT P,E,DAC See Table 1-SC 
-FPPRESENT 000 (12) 
FPPRES x 101 (2) 

HALT None x 010 (3) 

INC.B P,E,DAC See Table 1-5C 

TRAP None 000 (3) 

TST.B I,E,DAC See Table 1-SC 

WAIT None x x 011 (3) 

XOR P,E,DAC See Table 1-SC 

IOT None x x 014 (3) 

II-1-44 



Source AO RAB 
Mode 00 01 02 03 OS 07 

1 

2 

3 

4 

5 

6 

7 

Destination Mode AO RAB 
00 01 02 03 OS 

0: -(DF7+BRQ) 

0: BIN*(DF7+BRQ) 

0: - BIN*(DF7+BRQ) x 
1 x 
2 x 
3 x x 
4 x 
5 x x 
6 x x 
7 x x x 

Table 1-SB 
A Fork, BIN*-SMO 

Al RAB 
00 01 

x 
x 
x 

x 
x 

Table 1-SC 
A Fork, DAC 

07 00 

11-1-45 

02 

x 
x 
x 
x 

01 

04 OS 

x 
x 
x 
x 
x 
x 
x 

Al RAB 
02 04 

x 
x 
x 

A2RAB Address 
00 03 OS & Flows 

021 {1) 

022 (1) 

022 (1) 

024 (1) 

024 (1) 

026 (2) 

026 (2) 

A2RAB Address 
OS 00 03 OS & Flows 

020 (3) 

x 030 (3) 

030 (3) 

001 (5) 

002 (5) 

003 (5) 

004 (6) 

005 (6) 

006 (6) 

007 (6) 



10 55 DD 
10 56 DD 
10 57 DD 
10 60 DD 

ADCB 
SBCB 
TSTB 
RORB 

RA CE AO RA804 

10 61 DD 
10 62 DD 
10 63 DD 

ROLB 
ASRB 
ASLB 

RACE AO RAB04 Lis generated for any branch in
struction. This signal is an input to bits 4, 6 and 7 
of the microprogram address; as a result, all branch 
instructions generate A Fork addresses with these 
three bits set (addresses between 320 and 336). Re
f er to Paragraph I .4.6.4. 

RA CE AO RAB OS 
RACE AO RAB05 L is generated for MUL, DIV, 
ASH, and ASHC instructions with a destination 
mode of 0, and for SOB instructions. RACE BIN L 
eliminates the binary instructions from U/class. 
This RAB signal is also connected to RAB03 to 
generate addresses ranging from 050 to 057. 

These instructions are listed below: 

07 OR SS MUL 07 JR SS ASHC 
07 IR SS DIV 07 7R NN SOB 
07 2R SS ASH 

RA CH AO RA807 
RACH AO RAB07 is asserted for a NEG or NEGB 
instruction with OMO. Together with RACH A2 
RA BOO, it generates address 30 I. 

RACF A I RA8(02:00) 
RACF A I RA BOO L, RACF A 1 RAB01 L, and 
RACF A 1 RAB02 L generate the three least-signifi
cant bits of the ROM address for the classes of in
structions described in the following paragraphs. 

HALT Through Op Code 7 - These instructions 
generate microprogram addresses ranging from 010 
- 017: the 1 in bit 3 of the address is generated by 
RACE AO RA B03 L. The following instructions 
arc included in this group: 

oo.oo 00 
00 00 01 
00 00 02 
00 00 03 

HALT 
WAIT 
RTI 
BPT 

00 00 04 
00 00 05 
00 00 06 

IOT 
RESET 
RTT 

X/Class - The X/Class instructions, MARK, MFP 
with a destination mode of 0, and MTP, generate 
addresses of 074, 046, and 045, respectively. RAB02 
is forced to a I, and the two low-order bits are the 
complements of the corresponding bits from the In
struction Register. Bit 5 of the address is set by 
RACF A2 RAB05 L. 

U /Class - U /Class instructions include three 
groups: the binary instructions; the SOB instruc
tion: and the MU L, DIV, ASH, and ASHC instruc
tions with a destination mode of 0. 

The Binary instruction use four microprogram ad
dresses, 02 I for SM I, 022 for SM23, 024 for SM45, 
and 026 for SM67. These bits are controlled by 
A Fl R( 11 :09); bit 0 (A I RA BOO) can only be set by 
SM I (RACH BIN*(-SMOI) L]. Bit 4 of these ad
dresses is set by RACH Al RAB04 [(-BFI =7)*(
BF I =O)*(-SMO) = op codes with bits I 4: 12 from 1 -
6 and not source mode O]. The instructions in this 
group arc: 

01 SS DD MOY I I SS DD MOVB 
02 SS DD CMP 12 SS DD CMPB 
03 SS DD BIT 13 SS DD BITB 
04 SS DD BIC 14 SS DD BICB 
05 SS DD BIS 15 SS DD BISB 
06 SS DD ADD 16 SS DD SUB 

MUL, DIV, ASH and ASHC with OMO and SOB 
use addresses 050 - 053 and 57. Bits 11 :09 of the op 
code generate bits 02:00 of the address; bits 3 and 5 
of the address is asserted by RACE AO RAB05. 

RTS:CCOP - Op codes 0002XX (RST:CCOP) use 
addresses 040 - 044. Bit 0 of the address is set 
when IR(05:03) = 3 (SPL), bit 1 when IR(05:03) = 
2 or 3 (OP22, Flows 3 and SPL), bit 2 when 
IR(05:03) = 4 (CCOP). Bit 5 of the address is set 
by RACF A 1 RAB05. The instructions in this 
group include: 

00 02 OR RTS 
00 02 10 Unused 

through 
00 02 27 Unused 
00 02 3N SPL 
00 02 40 NOP 
00 02 41 CCOP 

through 
00 02 77 CCOP 

11-1-46 



RACH A I RAB04 
RACH Al RAB04 L is asserted for the following 
instructions: 

I. Binary instructions with: 

01 SS DD 
02 SS DD 
03 SS DD 
04 SS DD 
05 SS DD 
06 SS DD 

2. 

00 50 DD 
00 51 DD 
00 52 DD 
00 53 DD 
00 55 DD 
00 56 DD 
00 57 DD 
00 60 DD 
00 61 DD 
00 62 DD 
00 63 DD 
00 67 DD 

a. Both source and destination modes 
0 (addresses 20 and 30); 

b. Any source mode except 0 (ad
dresses 21, 22, 24, and 26); 

The instructions in this group are the fol
lowing, when either SMO*DMO or 
SM(1:7). 

MOV 11 SS DD MOVB 
CMP 12 SS DD CMPB 
BIT 13 SS DD BITB 
BIC 14 SS DD BICB 
BIS 15 SS DD BISB 
ADD 16 SS DD SUB 

R/Class instructions with destination 
mode 0, except MFP and the NEG .B in
structions (addresses 20 or 30); 

The instructions in this group are the fol
lowing, when DMO: 

CLR 
COM 
INC 
DEC 
ADC 
SBC 
TST 
ROR 
ROL 
ASR 
ASL 
SXT 

07 4R DD 
IO 50 DD 
IO 51 DD 
IO 52 DD 
IO 53 DD 
IO 55 DD 
IO 56 DD 
IO 57 DD 
IO 60 DD 
IO 61 DD 
IO 62 DD 
IO 63 DD 

XOR 
CLRB 
COMB 
INCB 
DECB 
ADCB 
SBCB 
TSTB 
RORB 
ROLB 
ASRB 
ASLB 

3. SW AB instructions with a destination 
mode of 0 (also addresses 20 or 30). 

RACF Al RADOS 
RACF Al RAB05 is asserted for RTS:CCOP ex
cept when IR(05:03) = I which arc unused op 
codes. 

RACH A2 RABOO 
RACH A2 RABOO generates bit 0 and 6 of the 
ROM address. It is asserted in the following cases: 

I. For NEG .B instructions with DMO, ad
dress 301. RACH AO RAB07 asserts bit 
7 in this case. 

2. For branch instructions when RACF 
TRUE! is asserted. Refer to Paragraph 
1.4.6.4. 

3. For floating point instructions, address 
IOI. 

RACH A2 RA8(02:01) 
These bits are used by the branch instructions. Re
fer to Paragraph 1.4.6.4. 

RACF A2 RAB03 
RACF A2 RAB03 asserts bit 3 of the address for 
E/class binary instructions ( = both source and des
tination modes equal to O; no address calculation), 
either when the destination field is 7 or a BRQ is to 
be serviced. RACE AO RAB03 asserts bit 3 for the 
non-binary E/class instructions. 

The instructions in this group are the following, 
when SMO*DMO and (DF7+BRQ): 

01 SS DD 
02 SS DD 
03 SS DD 
04 SS DD 
05 SS DD 
06 SS DD 

MOV 
CMP 
BIT 
BIC 
BIS 
ADD 

RACF A2 RADOS 

11 SS DD 
12 SS DD 
13 SS DD 
14 SS DD 
15 SS DD 
16 SS DD 

MOVB 
CMPB 
BITB 
BICB 
BISB 
SUB 

RACF A2 RAB05 asserts bit 5 of the ROM ad
dress for MFP instructions with DMO, and for 
MARK and MPT instructions. 

1.4.6.4 Branch Instructions - Table 1-6 lists the 
Branch Instructions, their op codes and the condi 
tions on which they branch. 

With the exception of BR, which always branches, 
the branch instructions are grouped in pairs, each 
of which checks one condition (e.g.: BNE and BEQ 
check the Z bit). Bit 08 of the op code determines 
whether the instruction branches when the branch 
condition is true (I or asserted) or false (0 or ne
gated). For example: BNE branches if Z=O and 
BEQ branches if Z= I. 

11-1-47 



RACF TRUEl and TRUE2 are asserted when the 
branch condition is met. TRUEl checks the result 
of branches that have a 1 in bit 15 of their op code; 
TR UE2 does the same for branches with a 0 in bit 
15 of their op code. These two functions cannot 
both be asserted at one time. 

Branch A Fork Address 
Table 1-7 shows the generation of RACL 
RADR(07:00) for branch instructions. 

Refer to Flows 1. Branch instructions (BXX) are 
shown on three separate branches: 

Table 1-6 
Branch Instructions 

Instruction Branch AFIR RACF (See Note 11 
Condition 15 14 13 12 11 10 09 08 TRUE2 TRUEl 

BR Always 0 0 0 0 0 0 0 1 1 0 

BNE z 0 0 0 0 0 0 1 0 x 0 
BEQ z 0 0 0 0 0 0 1 1 x 0 

BGE WV 0 0 0 0 0 1 0 0 x 0 
BLT NVV 0 0 0 0 0 1 0 1 x 0 

BGT Zv(NW) 0 0 0 0 0 1 1 0 x 0 
BLE Zv(NVV) 0 0 0 0 0 1 1 1 x 0 

BPL N 1 0 0 0 0 0 0 0 0 x 
BMI N 1 0 0 0 0 0 0 1 0 x 

BHI CvZ 1 0 0 0 0 0 1 0 0 x 
BLOS CvZ 1 0 0 0 0 0 1 1 0 x 

BVC v 1 0 0 0 0 1 0 0 0 x 
BVS v 1 0 0 0 0 1 0 1 0 x 

BCC,BHIS c 1 0 0 0 0 1 1 0 0 x 
BCS,BLO c 1 0 0 0 0 1 1 1 0 x 

NOTE 1 - "X" in the RACF TRUE 1 or TRUE2 columns means that the function is asserted if 
the "Branch Condition" is asserted. For example, if the instruction is a BNE or a 
BEQ, TRUE2 is asserted if the Z bit is set. 

NOTE 2 - The op code (AFIR < 1 S :08) for each pair of Branch Instructions differs only in bit 
08. If bit 08 is set, the instruction branches, if the Branch Condition is asserted. If bit 
08 is not set, the instruction branches if the condition is not asserted. For example: 

BNE Z=O 
Z=l 

BEQ Z=O 
Z=l 

Branch 
No Branch 
No Branch 
Branch 

11-1-48 



I. BXX*BCOK (Branch OK = condition 
met). In this case, cycles BXX.00 -
BXX.05 (all identical) are executed. 
Since the branch is successful, the PC 
plus the displacement is moved to PCA 
and PCB, a BRQ strobe is issued, the 
bus cycle started in IR D.00 is ended, 
and the microprogram goes to FET.00. 
The instruction fetch sequence then fet
ches the instruction pointed to by the 
new PC. 

Table 1-7 

2. BXX* - BCOK* - BRQ (condition not 
met and no break request). Since BRQ is 
not true and the instruction does not 
branch, control goes to FET.11 -
FET.13. 

3. BXX* - BCOK * - BRQ (condition not 
met and break request asserted). Control 
remains with the current PC, but the 
BRQ must be serviced; the next states 
are FET.01 - FET.03, after which the 
BRQ is serviced. 

Branch Instruction ROM Address 

RACLRADR Result Next State 
07 06 05 04 03 02 01 00 

1 1 0 1 
1 1 0 1 
1 1 0 1 

1 1 0 1 
1 1 0 1 
1 1 0 1 

1 1 0 1 
1 1 0 1 
1 1 0 1 

1 1 0 1 
1 1 0 1 
1 1 0 1 

0 0 0 0 BCOK * -BRQ FET.OX 
0 1 0 1 
0 1 1 0 

1 0 0 0 BCOK * BRQ FET.OX 
1 1 0 1 
1 1 1 0 

0 0 0 1 -BCOK * -BRQ FET.lX 
0 0 1 0 
() 1 0 0 

1 0 0 1 -BCOK * BRQ FET.OX 
1 0 1 0 
1 1 0 0 

i l Input to RACL RADR (07:00): 

LRACH A2 RABOO =TRUE! • BR INST 

RACH A2 RABOl = TRUE2 * BR INST 

-------RACH A2 RAB02 = AFIR08 * BR INST 

'----------RACE AO RAB03 = BRQ TRUE * BR INST 
O= -BRQ 
1 =BRQ 

,__ _ _._ _____ ..____~--------~RACEAORAB04=BRINST 

11-1-49 



Refer to Table I-7. 

I. RACL RADR(07:06) H and RADR04 
H are asserted (high) for all branch in
structions by RACE AO RAB04, which 
is a decode of all branch instruction op 
codes. 

2. 

3. 

4. 

S. 

6. 

RACL RADR05 is negated (low) for all 
branch instructions. 

RACL RA DR03 is asserted (high) when 
BRQ is true during a branch instruction 
and negated when BRQ is not true'. This 
bit is controlled by RACE AO RAB03. 

RACL RADR02 is asserted when bit 08 
of the op code is I (branch if condition 
true). 

RACL RADROI is asserted by RACH 
A 2 RA BO I when RAC F TR U E2 is 
asserted. 

RACL RADROO is asserted by RACH 
A2 RABOO when RACF TRUEI is 
asserted. 

It can be seen from Table 1-7 that a branch is suc
cessful (BCOK) under the following conditions: 

I. When the instruction requires a branch 
on condition false or not asserted 
(RAB02 = 0) and neither TR UE2 nor 
TRUE! are asserted (RABOI = 0 and 
RABOO = 0). 

2. When the instruction requires a branch 
on condition true or asserted (RAB02 = 
I) and either TR UE2 or TRUE I are as
serted (R~BOI = I or RABOO = I). 

J\ branch is not successful (-BCOK) when the 
above conditions are not met, i.e.: RAB02 asserted 
and neither TRUE! nor TRUE2 asserted, or 
RAB02 not asserted and either TRUEI or TRUE2 
asserted. 

1.4.7 C Fork Logic 
Refer to drawing IRCC. The logic shown on this 
drawing decodes the address modes and register 

specifications of the current instruction, and gener
ates signals that control register selection and ad
dress calculation in the processor. The logic also 
generates addresses for the C Fork microprogram 
address logic. The C Fork selects the address of the 
next microprogram address when a destination oper
and must be fetched. 

Two 8251-1 BCD-to-Decimal Decoders are used to 
recognize the source and destination modes, respec
tively, by decoding each 3-bit IR field. The source 
and destination modes determine the operations per
formed in the fetching of operands; these signals 
are used throughout the IRC module. Destination 
mode 0 is also used to separate the C Fork ad
dresses for this mode and all other destination 
modes, by connecting IRCC DSTMO L to the C 
Fork input for bit 7 of the ROM address (as shown 
on drawing RACL) and connecting IRCC DSTMO 
H to the input for bit 6. In this manner, the C 
Fork generates microprogram addresses ranging 
from 202 - 211 for destination mode 0, and micro
program addresses ranging from 110 - 117 for 
other destination modes. 

The address generated by the C Fork logic depends 
on: 

I. 

2. 

For mode 0, whether or not the instruc
tion is F/class. If it is not F/class, 
whether the destination field is 7 or not, 
and whether an odd byte swap is re
quired (SRO = I or 0); 

For other modes, whether an odd byte 
swap is required. 

The C Fork multiplexer is 74S 157 4-bit 2-Line-to-1-
L i ne Multiplexer that is controlled by IRCC 
DST MO L. Recognition of destination mode 0 gen
erates the four low-order bits of the microprogram 
address for the C Fork. The two high-order bits are 
directly controlled by the destination mode and bits 
..J. and 5 are always 0. Bit 3 of the address is always 
a I if the destination mode is not 0 (the input is a 
ground which generates a low output, which asserts 
the input to the microprogram address assembly 
logic on drawing RACL). For destination mode 0, 
bit 3 is controlled by the instruction class; the bit is 
set for F/ class i nstruc tions and clear for all others. 
Table 1-8 summarizes the C Fork multiplexer 
outputs. 

11-1-50 



Table 1-8 
C Fork Address Generation 

Instructions Flows ROM Cycle C Fork Mult!J.!Iexer 
Adrs Name Input Output: IRCC CO RAB 

OMO * -F /Class 4 202 007.00 
* OF7 *SRO {I) 

OMO * -F /Class 4 203 007.10 
* OF7 * SRO {O) 

OMO * -F /Class 4 204 000.80 
* -DF7 *SRO {I) 

OMO* -F/Class 4 205 000.90 
* -DF7 * SRO {O) 

OMO* F/Class 4 211 FOP.SO 

OM12 *SRO {I) 5 110 012.90 

OM12 *SRO {O) 5 111 012.80 

OM3 *SRO {I) 5 112 030.90 

OM3 * SRO(O) 5 113 030.80 

OM45 * SRO {l) 6 114 045.90 

OM45 * SRO {O) 6 115 045.80 

OM67 * SRO {I) 6 116 067.90 

OM67 * SRO (O) 6 117 067.80 

1.4.8 8 Fork Logic 
Refer to drawing IRCB. The B Fork logic gener
ates microprogram addresses that are used to select 
the next machine state after the destination operand 
has been fetched. For each instruction that operates 
on a destination operand, there is a unique micro
program word that controls the execution of the op
era ti on for that instruction. The majority of these 
instructions are included in the P /class group. The 
P /class instructions are executed by a single micro
program word that is stored in ROM location 031, 
with the exception of the NEG, ASRB, and RORB 
instructions. The exceptions are made because these 

Enabled 03 02 01 ()() 

A H H L H 

A H H L L 

A H L H H 

A H L H L 

A L H H L 

B L H H H 

B L H H L 

B L H L H 

B L H L L 

B L L H H 

B L L H L 

B L L L H 

B L L L L 

instructions may require a byte swap during the exe
cution cycle, and must use other machine states 
that permit a separate byte-swap operation for odd
byte data. 

The B Fork addresses are generated by a 74S 157 2-
i nput, 4-bit multiplexer, and by two additional 
gates. IRCB BO RAB04 Lis connected to ROM ad
dress bits 4 and 5, to generate ROM addresses rang
ing from 60 - 67. IRCB BO RAB03 L is connected 
to ROM address bits 3 and 4, to generate ROM ad
dresses ranging from 31 - 36. The ROM addresses 
used by the B Fork and the instructions executed 
hy each address, are listed in Table 1-9. 

11-1-51 



Table 1-9 
B Fork Address Generation 

Instructions Flows ROM Cycle IRCB MultiJ.!lexer Other 
Adrs Name Inputs Outputs Signals 

Enabled Asserted Asserted 

P/Class * -[(ASRB 11 031 EXC.00 A BO RABOO BO RAB03 
+ RORB) * DRO (1) + NEGB] 

TST .B + BIT .B + CMP .B 11 033 TST.10 A BO RABOl Bl RABOO 
BO RAB03 

JSR 11 034 JSR.00 A BO RAB02 BO RAB03 

JMP 11 035 JMP.00 A BO RAB02 Bl RABOO 
BO RAB03 

F/Class 7 036 FOP.40 A BO RABOl BO RAB03 
BO RAB02 

MUL 8 060 MUL.80 B BO RAB04 

DIV 9 061 DIV.00 B BO RABOO 
BO RAB04 

ASH 7 062 ASH.00 B BO RABOl 
BO RAB04 

ASHC 7 063 ASC.00 B BO RABOO 
BO RABOl 
BO RAB04 

[ASRB + RORB] * DRO (1) 11 064 SHR.00 B BO RAB02 
BO RAB04 

MFP 11 066 MFP.00 B BO RABOl 
BO RAB02 
BO RAB04 

NEG 11 067 NEG.00 Multiplexer disabled, 
output all 1 s. 

Note: All Signals on IRCB. 

11-1-52 



When the multiplexer is disabled for a NEG instruc
tion, the outputs are all Is: this generates address 
67. For all other addresses, the inputs are selected 
by a signal that is generated for the MUL, DIV, 
ASH, ASHC, ASRB, RORB, and MFP instruc
tions. When this signal is asserted, the B inputs of 
the multiplexer are used; RAB04 is forced to a 
logic I by a 0 V input. Conversely, the A inputs are 
used for F/class, J/class, K/class, and most P/class 
instructions; RAB04 is forced to a 0 by a +3 V in
put. The instructions that use the A inputs of the 
multiplexer also assert IRCB BO RAB03 L. IRCB 
BO RAB(02:00) L are generated by connecting the 
instruction group signals to the multiplexer inputs 
in the order required for each signal. 

1.5 CONDITION CODES 
The four least-significant bits of the PS word con
tain the processor condition codes. These bits store 
in l'ormation about the value resulting from, data ma
nipulation during an instruction .. The condition 
codes are not altered to reflect the results of ad
drc...;s calculations, but are changed only when an in
~truction explicitly operates on a unit of data. 

The condition codes can also be set to any specific 
value by transferring a word containing that value 
to the PS address. The value of the condition codes 
arc altered by every interrupt or trap response func
tion, and by every RTI or RTT instruction. In addi
tion, individual condition-code bits may be 
manipulated directly, with the condition-code oper
ate instructions. These instructions provide a means 
to set any one, or more, of the condition codes 
with a single instruction that requires only one 
memory reference; a similar set of instructions can 
clear any one or more bits. The condition codes are 
used in conditional branch instructions, so the vari
ous means of manipulating the condition codes are 
useful because they permit setting up the PS word 
to respond in a particular way to various branch 
instructions. 

1.5.1 Condition Code Storage 
Refer to drawing IRCH. The circuits shown on the 
top half of this drawing are used to store the pro
cessor condition codes; the remainder of the draw
ing shows circuits concerned with the subsidiary 
ROMs used in condition-code calculation, instruc
tion decoding, and Arithmetic and Logic Unit 
(ALU) control. 

The four condition-code bits, N, Z, V, and C, are 
stored in the four least-significant bits of the Pro
cessor Status (PS) word. The remaining bits of the 
PS, and the PS loading and reading logic, are on 
the PDR module and are shown on drawing 
PD RD. (Refer to Chapter 3, Control Registers.) 
The condition codes are normally loaded to reflect 
the result of each instruction that operates on data. 
When this is done (by clocking the data inputs to 
each flip-flop), each bit takes on the value of the 
corresponding signal from the condition code gener
ation logic on drawings IRCE and IRCF. Two Z 
bit flip-flops, provided to avoid the delay of a final 
stage OR gate before the clock time, are shown on 
drawing IRCF. 

Clocked Inputs - IRCH CCLK H clocks the condi
tion-code flip-flops immediately following each 
ROM cycle (T6 is the Tl of the following cycle) ex
cept when the clock is inhibited by a value of 2 in 
the Condition Code Load (CCL) bits in the micro
program. In many cases where the condition codes 
are clocked, individual bits may remain unaffected 
by loading the bit from itself, through the com
binational logic that generates the condition codes. 

BR Inputs - The condition code flip-flops can be 
loaded directly from the BR. This is done whenever 
the bus address transmitted by the processor ad
dresses the low byte of the Processor Status (PS) 
word. U BCB CC DAT A (I) H indicates this condi
tion and is used to gate the BR bits into the direct
set and direct-clear inputs of the flip-flops. Com
plements are applied to set and clear inputs, so that 
each flip-flop is correctly set or reset. 

IR Inputs - A third method of modifying the condi
tion codes allows bits to be set or cleared directly 
from the CCOP instruction. The four least-signifi
cant bits of the IR are connected to either the set 
or clear inputs of the flip-flops, but not both. The 
selection of inputs is done by two enabling signals 
that are generated from opposite polarities of IR04. 
The same polarity inputs from the IR are used for 
either setting or clearing; only bits which are Is in 
the IR are altered, the remaining bits are not 
affected. 

When the condition codes are set or cleared from 
the IR, the normal clocking of the flip-flops is in
hibited. When the condition codes are loaded from 

11-1-53 



the BR, the loading signal is present beyond the 
time when the data inputs are clocked, so the BR 
inputs take precedence. Unless one of these two 
conditions is true, the normal clocked input is used. 

The Z bit is stored in two flip-flops shown on draw
ing IRCF. The flip-flop outputs are ORed to gener
ate the value of the condition-code bit. If either 
flip-flop contains a 1, the Z bit is considered to be 
a I. Both flip-flops are set or cleared together when 
either the BR or IR bits are transferred to the con
dition codes. 

1.5.2 Condition Code Load Field 
The Condition Code Load (CCL) field of the ROM 
is decoded as shown on drawing IRCF to deter
mine how the PSW condition-code bits are to be al
tered. The CCL field is summarized in Table 1-10. 

1.5.3 Instruction Dependent Control 
When CCL = I, the Condition Code loading is in
struction dependent, i.e., controlled by the oper
ation code field of the instruction; this control is 
implemented by two subsidiary ROMs, CC CNTL 

ROM and the INSTR DECODE ROM, both 
shown on IRCH. 

1.5.4 SUBROM Address Generation 
I RCH SU BROM(04:00) H is the address, for the 
Condition Code Control and Instruction Decode 
ROMs: it is also the address for the ALU Control 
ROM (refer to Chapter 2). This address is gener
ated from I RCA IR( 15:06), by the two multiplexers 
and the OR gate on drawing IRCH. 

Each subsidiary ROM contains 32 8-bit words. The 
32 addresses are organized as follows (addresses in 
octal): 

a. Addresses 0-7 are used for instructions 
with op codes containing 06 in IR 
( 14:09). These include the rotates, shifts, 
MARK, MFP, MTP, and SXT. 

h. Addresses I 0-17 are used for instruc
tions with op codes containing 05 in IR 
( 14:09). These are the single-operand 
instructions. 

Table 1-10 
Condition Code Load 

RACA UCCL 
Output Asserted IRCF: Function 

02 01 00 

0 0 0 CC NON AFF L No change 

0 0 1 CC INSDEP H Instruction-dependent. Condition codes determined by 
subsidiary CC CNTL ROM. 

0 I 0 (IRCH SETCC H)* Set or clear CC; dependent upon IR. 

0 1 l CCFP LOAD L Load CCs from floating-point processor 

I 0 0 CCLD4 Zand N: ACC SHFR 
C and V: 0 

I 0 I CCLDS Zand N: ACC SHFR 
C: AMX15 
V: Vold+ (AMX V ALU) 

1 I 0 CCLD6 · N, C, and V: not affected 
Z: Z* SHFR = 0 

I I I CCLD7 Z, N, and V: not affected 
C: carry 

* Generated on drawing IRCH. 

11-1-54 



c. Addresses 20-27 are used for binary in
structions [IR (14: 12) contains any value 
from I to 6]. 

d. Addresses 30-37 are used for the register 
destination instructions, which have a 7 
in IR(l4:12). These include multiply and 
divide, the long shifts, and XOR. 

Instructions included in a. and b. above, have sub
rom addresses equal to IR(09:06) via the D inputs 
to the multiplexers; SUBROMA4 is low. 

For the register destination instructions, SUB
ROM A4 is asserted, SUBROMA3 is driven by a 
+3 V input to the multiplexer, and the remaining 
three address bits take on the value of IR (I I :09) 
through the C inputs of the multiplexer. For binary 
instructions, the B inputs of the multiplexer are 
used: SUBROMA4 is asserted and SUBROMA3 is 
clear. This data is summarized in Table 1-11. 

The SUB instruction is treated specially, to separate 
the ADD and SUB instructions when generating 
ROM addresses. Both SUB and ADD would nor
mally generate ROM address 26 (the op codes 
differ only in bit 15). When the SUB instruction is 
decoded, the four least-significant bits of the ROM 
address are forced to Os to generate address 20. Ad
dresses 27, 35, and 36 are not used. For the SWAB 
instruction, which is not in any of the four groups 
that generate ROM addresses, the contents of the 
IR generate the same ROM address that is used for 
the ASL instruction. The signal IRCH SW AB L is 
used to distinguish between the two instructions. 
The UA LU signals are used to recognize that the 
ALU control is instruction-dependent, and that the 
outputs of the ALU control ROM on drawing 
G RA!\ are active. 

1.5.5 C Bit Data 
The C (Carry) bit of the PSW is set when a pro
cessor operation causes a carry out of the most-sig
nificant bit. The logic that generates the C bit data 
is shown on drawing IRCF. Figure 1-13 is a sim
plified diagram of the logic that asserts IRCF 
CDATA L. Each AND gate input covers a group 
of instructions that could cause a carry. The nota
tion adjacent to each AND gate indicates the condi
tions or instructions that enable the gate and the 
resultant C bit source that asserts IRCF CDATA 
L. 

Table 1-12 lists the instruction-dependent CC 
CNTL ROM outputs that control the C bit for 
each group of instructions. IRCE WOB CARRY H 
and IRCE LOB CARRY H are derived from a 
74S 153 multiplexer. These C bit inputs are deter
mined from AMX 00, AMX 07, or AMX 15. 

1.5.6 N Bit Data 
The N (negative) bit of the PSW is set when a nega
tive result is produced by a processor operation. 
The logic that generates the N bit data is shown on 
drawing I RCF. Figure 1-14 is a simplified diagram 
of the logic that asserts IRCF NDATA L. Each 
AND gate input decodes a particular group of in
structions or processor operations for which a nega
tive result might be obtained. 

For most of the instructions, the CC CNTL ROM 
outputs IRCH MODZN H and IRCH ENZN H 
arc asserted. These control outputs condition the 
N DAT A logic to examine the SHFR output to de
termine when the N bit should be set. For word or 
odd-byte operations, the input A logic tests 
SHFRAl5, and sets N accordingly. For byte oper
ations, the input C logic tests SHFRA07. These in
puts control the N bit for most operations. 

Table 1-11 
Subsidiary ROM Address Sources 

Type of ROM Address Input Subsidiary ROM Address Source 
Instruction Multiplexer Selected A4 A3 A2 Al AO 

Select 
SI so 

IR(14:09) = 05 or 06 H H D 0 IR09 IR08 IR07 IR06 
Register destination H L c 1 1 IRll IRlO IR09 
Binary L H B 1 0 IR14 IR13 IR12 
Not used L L A Not Used 

11-1-55 



IRCF CCLD 7 L __ c_-_C_AR_R_Y _______ -o.--

IRCH CMOD 1 H ---------1 
IRCC CC !NSDEPA H---------1 

IRCH ENC H 

GRAA AMX O*ASH L 

DAPJ ALUCN L 

IRCF CEN 1 H• ENC* CC INSDEPA 

IRCH CMODO H 

!RCE cc-BR H•(PS l.OAD+LOAD FCCl--------1 
ENC*CC 
INSDEPA*"MOD1 DAPA BROO H--------1 

IRCF CC NON AFF L------------------u 

IRCF CCLD6L------------------QI--" 
IRCE PS LOAD L 

IRCH C (1) H 

IRCE LOAD FCC L 

+5V 

11-0793 

Figure 1-13 Sources of C Bit Data, Simplified Diagram 

IRCF CCLD4 L --------

IRCF CCLD5L-------~ 

IRCH MODZN H -+----'""" 
INCH SWAB L-+-+--e-_J,,.-.,,. DAPJ SHFRA15 H --1 ~--------

GRAA WORD+08 SWAP H~-----
-MODZN H 

IRCF NEN1 H 

DAPJ SHFRA07 H 

MODZN H 

GRAA WORD+ OB SWAP L-+---+-------------1'---

IRCH ENZN H 

!RCH CC 
INSDEP H 

-!RCE PS LOAD HTI-
IRCE LOAD FCC H 2 

IRCH N (1) H 

IRCF MUL+DIV NZV EN H 

IRCH MODZN H IRCF CHECKZ H 
IRCF CCLD6 L----'--

U!f.!,!LA 
(WOR0+08 SWAPHCCLD4+5+SWAB•MODZN•ENZNl 
SHFRA 15•1 =N-1 

+5 

10o----------.1~1RCF NOATA L 

INPUT E 
LOAD PS+ LOAD FCC 

11-0794 

Figure 1-14 Sources of N Bit Data, Simplified Diagram 

11-1-56 



Table 1-12 
C Bit Data Sources 

CC Control ROM 
Instruction IRCFCDATA L 

CMODl CMODO ENC Source 

ROR.B, ASR.B 0 0 0 C +-- AMXOO (VMODO= 1) 

ROL.B, ASL.B 0 0 0 C +-- AMX08 (WORD) 
C +-- AMX08 (OB) 

ASHC 0 0 1 C+-DROO 

COM.B, NEG.B, 0 1 0 C +--ALUCN 
SBC.B SUB 

MUL 0 1 1 C+--X 

CLR.B, ADC.B TST.B 1 0 0 C+-ALUCN 
CMP.B, ADD 

ASH 1 0 0 C+-AMXOO 

MFP, MTP, SXT } 
INC.B, DEC.B 

1 0 1 non-affected 
MOV.B, BIT.B, BIC.B 
BIS.B, XOR · 

DIV 1 1 0 C+--1 
C+-Oif-DRIS 

SWAB C+--0 

Condition-Code Load Signals 

IRCF CCLD4 C+--0 

IRCFCCLDS C +-AMXlS 

IRCF CCLD6 non-affected 

IRCF CCLD7 C+-ALUCN 

11-1-57 



The input B logic tests for CMP.B instructions. Un
der these conditions, if SHFRA J 5 is 0, the N bit is 
set, and if SHFRAl5 is J, the N bit is cleared. In
put D covers all cases where the N bit is not af
fected by the current operation, and is therefore 
reloaded with the previous content, IRCH N(J) H. 
Input E allows IRCF NDATA L to be asserted by 
BR03 for load PS and load FCC functions. Table 
1-13 summarizes the sources of N bit data. 

1.5.7 Z Bit Data 
The Z (Zero) bit of the PSW is set when the result 
of a processor operation is 0. The Z bit data that 
controls the condition code is generated by logic on 
drawings IRCF and GRAB. 

Figure 1-15 is a simplified diagram of the logic that 
asserts IRCF ZDATAI Land GRAB ZDATA2 L. 

These outputs are clocked into the Z I and Z2 flip
flops, whose contents are ORed to provide the Z 
bit of the PSW condition code. 

ZDAT A I Sources - The input gates that assert 
IRCF ZDATA I L cover the special conditions that 
control the Z bit, independent of the SHFR out
puts being equal to 0. For example, during the DIV 
instruction execution, MODZN and ENZN are 
both low and the Z bit is set. For the special case 
of the CM P.B instruction, the logic tests for the 
SH RF output = I condition to determine the Z bit. 
The other input gates that assert IRCF ZDATAI L 
test for load PS or load FCC operations and oper
ations that have no effect on the Z bit. Under the 
former conditions, the Z bit is loaded from BR02 
and under the latter conditions, the Z bit is un
changed [Z( I )H controls ZDATA I]. These special 
conditions are summarized in Table 1-14. 

Table 1-13 

Instruction 

CMP.B 

DIV 

MUL 

all other instruction-
dependent codes 

SWAB 

IRCF CCLD4 

IRCF CCLDS 

IRCF CCLD6 

IRCF CCLD7 

N Bit Data Sources 

CC Control ROM 

MOD ZN ENZN 

0 1 

0 0 

1 0 

1 1 

Condition-Code Load Signal 

11-1-58 

IRCF NDATA L 
Source 

N ~ 1if-SHFRA15=1 
N ~ 0 if SHFRA 15 = 1 

non-affected 

non-affected 

N ~ 1 if SHFRA 15 = 1 
(word or odd byte) 

N ~ 1 if SHFRA07 = 1 
(byte) 

N ~ 1 if SHFRA08 = 1 

N~ifSHFR =O 

N ~if SHFR = 0 

non-affected 

non-affected 



IRCH MODZN H~-H-----------"'-1 
IRCF MUL+DIV NZVEN H 

IRCF CCLD7 L~------------"-lr---.., 
IRCF CC NONAFF L~--~ 

IRCHZ(1)H 
IRCH LOAD FCC L 

IRCH PS LOAD L 

+5V 

DAPA BR02 H 
4 

IRCE cc-eR H 5•6 

IRCF NEN1 H •CC INSDEP*EN,ZN 1 ~ 

D~~~F A~~N(~5~B; ;~Jr°Ez~ 12 

DAPF A•B (7:0) H 13 

DAPJ, H SHFR <15:oa> H-n i lRCE EN HIB H•BYINA .. MODZN .. NEN1 
2 

GRAA WORD+OB SWAP L---w--1 •(WDIN+SWA~~ctio6~N';~~N~-L......::C~-
t - .-.---....._..-

HEX - lRCE EN WORD H•(CCLD4+5)+ -1--1---0C.r----.... 
INVERTERS +5V (WDIN*-SWAB*MODZN*NEN1) 

DAPJ, F SHFR <07:00> H-n_r ·-----------tt---~ 
GRAA OB SWAP H-.u-r 

NON AFFECTED 

IRCF Z1 ( 1) L 

IRCH Z ( 1) H 

GRAB ZDATA2 L 
IRCHZ2 (1)L 

Z2 

!RCH CC CLK H 

Figure 1-15 Sources of Z Bit Data, Simplified Diagram 

Instruction 

CMP.B 
MUL 
DIV 
SWAB 
all other instruction-dependent codes 

IRCF CCLD4 
IRCF CCLDS 
IRCF CCLD6 
IRCF CCLD7 

Table 1-14 
Z Bit Data Sources 

CC Control ROM 

MOD ZN ENZN 

0 1 
1 0 
0 0 

1 1 

Condition-Code Load Signals 

11-1-59 

Z Data Source 

Z +- 1 if SHFR = 1 
Z +- 2(1)H if SHFR = 0 
z +- 1 
Z +- 1 if SHFR (07:00> = 0 
Z +- I if SHFR = 0 

Z +- I if SHFR = 0 
Z +- I if SHFR = 0 
Z +- Z(l)H if SHFR = 0 
non-affected 



ZDAT A2 Sources - The logic that generates 
GRAB ZDATA2 L tests the SHFR output for 0. 
The open-collector inverters function as 0 detectors 
for SH RF( 15:08) and SHFR(07:00). The enabling 
inputs, IRCE EN HIB H, IRCE EN LOB H, and 
I RCE EN WORD H are used to test each byte of 
the SHFR separately, or together. The additional 
GRAB ZDAT A2 gate tests the SHFR output word 
for 0 under CCLD6 or MUL conditions. If the 
SH FR output is 0, the previous Z bit condition, 
Z( I )H, controls the new Z bit. 

1.5.8 V Bit Data 
The V (overnow) bit of the PSW is set when a pro
cessor operation results in an arithmetic overflow. 
The logic that generates the V bit data is shown on 

drawing I RCE. The V bit is affected by two broad 
categories of instructions: arithmetic operations, 
and word or byte operations. The results of these 
operations and other special cases determine IRCE 
V DA TA L. To simplify the description, arithmetic 
operations and special cases are grouped as VENI 
inputs. Word and byte operations are grouped as 
VEN2 inputs. Table 1-15 summarizes the V bit data 
sou recs of both groups. 

VENI 
Figure 1-16 is a simplified diagram of the V bit 
data sources that are grouped in the VEN I cate
gory. A 74SI 53 Dual 4-Line-to-1-Line Multiplexer 
is used to select the most-significant BMX bit for 
the arithmetic operations that involve the B input. 

Table 1-1 S 
V Bit Data Sources 

CC Control ROM 
Instruction 

VMODl l VMODO I ENV 

VENl 

INC.B, ADC.B 0 0 0 

DEC.B, SBC.B 0 I 0 

NEG.B, ADD I 0 0 

SUB, CMP.B I I 0 

VEN2 

MFP, MTP, SXT, CLR.B, COM.B, 0 0 I 
TST.B, MOV.B, BIT.B, BIC.B, 
BIS.B, MUL, ASH, ASHC, XOR 

DIV 0 0 1 

ROL.B, ASL.B I 0 I 

ROR.B, ASR.B I I I 

Condition-Code Load Signals 

IRCF CCLD4 

IRCF CCLDS (VEN2) 

IRCF CCLD6 (VENI) 

IRCF CCLD7 (VENI) 

*A = DAPJ AMX SIGN H 

B = DAPD BMX15 H (word) or DAPC BMX07 H (byte) 

ALU15 = DAPJ ALU SIGN H 

Il-1-60 

IRCE VDATA L Source* 

V +--A*ALU15 

V +-A*-ALUl 5 

V +-A*B*-ALU15 + -A *-B*ALUl 5 

V+-A*-B*-ALU15 + -A*B*ALU15 

V+-0 

V +-I 

V +- SHFRAI 5 \I AMXI 5 

V +- SHFRA 15 \I AMXOO 

V+-0 

V +-Vold+ (SHFRAI 5 \I AMXI 5) 

non-affected 

non-affected 



IRCF CC INSDEP H~_--___,IRCE VENt L 

IRCHENVH~ 

13 

12 
F1 4 

DAPC BMX07 H 11 DAPJ AMX SIGN H 5 
6 

VMODO: A*B*ALU 
VMODO: A .. B .. ALU 

10 

IRCH VMODI H 
11 12 

FO 
7 

DAPJ ALU SIGN H 
13 

VMODO: A* B .. ALU 
VMODO' A" B" ALU 

OAPD BMX15 H 

St so 

IRCD BYINA H-----------~ 
IRCE VDATA L 

IRCH VMODO H-------------~ 
FROM VEN2 LOGIC 

IRCE CC+-BR H 

DAPA BR01 H LOAD PS+ LOAD Fcc:v-BR01 
DIV: V+-1 

IRCF MUL+DIV NZVEN H 

VMOD1 BYTE H VMODO H FO Fl IRCF SET V H (' MODZN) 

0 (WORD) 0 -BMX15 BMX15 IRCH V (1) H 

0 BMX15 -BMX15 IRCE LOAD FCC L 

1 (BYTE) 0 -BMX07 BMX07 
IRCE PS LOAD L 

NON AFFECTED 

1 BMX07 -BMX07 IRCF CC NONAFF L 

IRCF CCLD5 L 
0 0 0 IRCF CCLD67 L 

Figure 1-16 VEN l Sources of V Data Bit, Simplified Diagram 

These arc NEG.B, ADD, SUB, and CMP.B, as in
dicated in Table 1-15. For these instruction-depend
ent codes, the CC CNTL ROM asserts IRCH 
VMOD I H, which gates the BMX outputs to the 
multiplexer inputs, and I RCE VEN I L, which en
ables the multiplexer. IRCD BYHNA H selects 
BMX 15 or BMX07 as the most··significant bit. 
IRCH VMODO H selects the BMX bit or its com
plement at each output, as shown on the multi
plexer truth table in Figure 1-16. 

The notation on Figure 1-16 indicates the condi
tions and functions for which each A ND gate input 
asserts IRCE VDATA L. 

For INC.B, ADC.B, DEC.B, and SBC.B instruc
tion-dependent codes, CC CNTL ROM output 
IRCH VMODI H is low. As a result, the BMX 
multiplexer outputs are always 0. For these instruc
tions, B is eliminated from the source function, as 
I isted in the source column of Table 1-15. 

VEN2 
Figure 1-17 is a simplified diagram of the V bit 
data sources that are grouped in the VEN2 cate
gory. A 74S 153 Dual 4-Line-to-1-Line Multiplexer 
selects the most-significant AMX bit for the word, 
odd-byte, or byte operations. The multiplexer truth 
table is shown on Figure 1-17. The multiplexer is 
only enabled by CCLD5, or those instruction-de
pendent codes for which the CC CNTL ROM as
serts IRCH VMODI H and IRCH ENV H. As 
indicated in Table 1-15, these instructions include 
ROL.B, ASL.B, ROR.B, and ASR.B. For these in
structions, the notation on Figure 1-17 indicates the 
conditions and functions for which each AND gate 
input asserts IRCE VDATA L. 

For the majority of the instructions included in the 
VEN2 group of Table 1-15, VMODI is low. As a 
result, the AM X multiplexer is not enabled and 
none of the AND gate inputs will be enabled be
cause IRCE VEN L is not asserted. Therefore, pro
cessing these instructions clears the V bit. 

11-1-61 



IRCH-SWAB H IRCE WOB CARRY H 2 
IRCH VM001 H 

IRCF CC INS OEP H 3 WOB CARRY H * SHFRA15 
IRCH ENV H 

(WORD+OB SWAP l 9 DAPJ SHFRA15 H 
(CCLD5 +VEN2 l 
tt SHFRAl5 

11 
OAPB AMXOO H 

AM X071t OB SWAP + to IRCF CCLD5 L IRCE 
AMX15tt-OB SWAP 3 IRCE VEN2 L VDATA L 

4 FROM VEN t 
DAPC AMX07 LOGIC 

5 7 
FO 

DAPJ SHFRA07 H 
(WORD+ OB SWAP l 
(CCLD5+VEN2l so * SHFRA07 

GRAA WORD+OB SWAP L 
10 

IRCF CCLD5 L 9 LOB CARRY tt SHFRA07 

IRCH VMODO H IRCE LOB CARRY H 

WORD OR 
VMODO ODD BYTE IRCE IRCE 

SWAP *CCQ)5 LOB CARRY WOB CARRY 

YES NO 0 AMX07 (ODD BYTE l 
AMX15 (WORD) 

YES YES 0 AMXOO 

NO NO AMX07 0 

NO YES AMXOO 0 

11-0792 

Figure 1-17 VEN2 Sources of V Data Bit, Simplified Diagram 

11-1-62 



This chapter describes the Data Paths of the KBI I
C Processor. The Data Paths consist of the logical 
clements that execute the data manipulations re
quired hy the Control section. The inputs to and 
the outputs from the Data Paths, as well as the 
Data Paths themselves, are described in this 
chapter. 

All the clements of the Data Paths logic are con
trolled hy the microprogram ROM; a separate field 
of the ROM output word controls each of these ele
ments. These fields, the values that they can as
sume. and the function executed by the logic unit, 
arc listed on the block diagram, Figure 2-1. 

The Arithmetic and Logic Unit (ALU), performs 
most of the arithmetic and all of the logic (AND, 
OR. EXCLUSIVE-OR) functions required by the 
instruction set (Paragraph 2.1.1 ). 

The ALU is the input to the Program Counter (PC) 
and to the Shifter (SHFR). The PC (Paragraph 
2.1.J) consists of two registers (PC A and PCB) and 
is used hoth to keep track of the next program in
struction and as an auxiliary register during data 
manipulation. The SHFR is the input to the Gen
eral Registers (GR) and to the Bus Register. The 
SHFR transfers data from the ALU or from the 
PCB. The A LU data may he either unchanged, 
shirted one hit to the right, or byte-swapped (Para
graph 2.1.2). 

The General Registers consist of two identical cop
ies of 16 registers (00- I 7x): one copy consists of the 
(iencral Source (GS) registers, the other consists of 
the General Destination (GD) registers. Both of 
tticsc· ·~rrtife~ ffrc· .. wrtrterr at ·1tre· shffie"rllffe 1u1a are· 
identical (Paragraph 2.1.4). 

II-2- l 

CHAPTER 2 
DATA PATHS 

The Source Register and Destination Register multi
plexers (SRMX and DRMX, Paragraph 2.1.)) trans
mit data from the G Rs (including the PC or G R7) 
to the Source Register (SR) and to the Destination 
Register (DR). 

The SR and DR (Paragraphs 2. 1.6 and 2.1.7), as 
their name implies, are used for source and destina
tion address and operand storage. In addition to 
this function. they are used as storage during cer
tain instructions, such as MPY, DIV, ASH and 
ASHC. The SR cannot change data, but the DR 
can shift either right or left. 

The Shift Counter (SC) is used only for instructions 
that require multiple shifting: MPY, DIV, ASH 
and ASHC. A value is loaded into the SC, which 
counts to zero: at this time the instruction is com
pleted. The DR is the input to the SC (Paragraph 
2.1.8). 

The logic clements described above, plus the BR, 
and the Constant Multiplexers (KOMX and 
KI MX) arc the inputs to the ALU, via two multi
plexers (AMX and BMX). These two multiplexers 
correspond to the A and B inputs of the ALU. 
AMX. BMX, KOMX and KI MX are described in 
Paragraph 2.1.9. 

The Bus Register Multiplexer (BRMX, Paragraph 
2.2.1) receives data from all inputs to the Data 
Paths and selects one for storage in the Bus Regis
ters (BR and BRA, Paragraph 2.2.3) and, during an 
instruction fetch, into the Instruction Registers (IR 
and A Fl R. Paragraph 2.2.4). 

The inputs to the BR MX are the Cache, the 
~m:·R·: ltfe UYrlhD~ "\'ia tMnrus 'Bl1ffet Regrnter~ and 
the I ntcrnal Data Bus (I NTD, Paragraph 2.2.2). 



B 

ALU 
(DAPF, DAPH) 

A 

PCA(T2) [51) 

l PCA J 0 NO CLOCK 
(OAP~H) 1 LOAD 

Q PCB(T2l(50-49] 

[ 
PCB J 0 NO CLOCK 2 

(DAPF,H) I LOAD 3 
SF7=LOAD 
on: LOAD 

A l 

PCB<l ~b 
SHF (T2) (48-47] 

0 SWAP BYTES 
1 PCB 

ALUCT1) [17-15) 
0 NOT A 
1 B 
2 A 
3 A PLUS B 
4 NOT USED 
5 A PLUS A 
6 A MINUS B 
7 INSTRUCTI~t'. 

DEPENDENT(~ 

[ SHFR 
(DAPF,lh_J) 

2 NO SHIFT 
3 RIGHT SHIFT 

.-------------__,TL,__ _________________________ ~ 

~ L PAD (Tl~) [43-41) PWE(TUJ (45-44) 
~ GS GD GS GO 

GS ] GO l 0 SF SF 4 SFv 1 SFv1 0 DON'T WRITE 
(16 REGISTERS~ (16 REGISTERSJJ ~ ~F gF 5 OF OF 1 CONDITIONAL 

s~x ~~;~ [61-60) IG]]''0H~ !GRN"' o~x :~;~~~::] ~ 2 2 ~ ~c\'}'Usro 
~ i~7=SHFR; l SRMX ] ORMX ~ g~7=SHFR;-DF7=GD 

BMXCT11(21-20]r-----'......_ __ _, AMX!T1l[23-22) -SF7=GS (6RAO,E,F,Hl (GRAO,E,F,H) 3 CLRDR BAX[T1lC38-37J 
0 KOMX BMX ] l AMX 0 DR 3 NOT USED IT 1- ORK (T2) [56-55) SHC (T1) (34-33) 0 OR 
1 K1 MX ( DAPB,C,D l (DAPB,C,Dl 1 PCB SRK (T2) (57) 2_ .L_ 0 NO CLOCK-l __ s_c _ __,J 0 NO COUNT I PCB 
2 SR r.,.. ~ >- ?';.. ,( >-._,.. "-->--..... ,.'-.-;i..-""7'.t.;..--,~.,..... 2 SR 0 NO CLOCK [ SR ] DR 1 SHIFT RIGHT (GRAJ) I COUNT 2 SR 
3 BR K K B S B p S 0 3 BR 1 LOAD (GRAO,F, Hl (GRAD,E,F,H) 2 SHIFT LEFT ...__-z-~-DR-~ 2 LOAD DR<5:0) 3 FP EALU (MAINTl s ~ R R R ~ R ,_R ______ L......L....L.....J'------------'I-I.__ _____ __,J l 3 LOAD J l_! 3 LOAD 17 8 DR J'\. ,..------..., 

x x ' 
____ UNIBUS 

ADDRESS 

l~l~~~ ~____._,___~~ ~~~~~~-'---'-'--'-~~~~~~~J l~~~~~~~~~~~~~~~~~~~~~SR_.__,__:,,/1 B 
,__--,-.,.-~.-------------r-r-r-r------------------------------------------..-..-~/I) A 

[ 
KOMX v ~ VIRTUAL.!'-. MEMOR'I' 

t-------../)1 MGMT 
l5I ru (OAPD) PCB J-. 

011100 ) I I --~~:.,,IDAPB, 
FROM FPP EALU ) C,D) 

v....-
SHFR 

ADDRESS v 

(SAP,SSR, 
SC Cl CACHE 
---- ADDRESS 

2 
SRCCON 

DSTCON 

CACHE 
DATA FROM 
CACHE MEMORY 

[ K1MX 
(DAPE) 

nw 
sv 

H >
B B 
R R 

KMX (T1l (19-18) 

KOMX K1MX 

0 1 START VECTOR 
I 2 TRAP VECTOR 
2 SOURCE CONST. SOB 8 MARK OFFSET 
3 DEST. CONST. BXX OFFSET 

Figure 2-1 Block Diagram 
Data Paths 

11-2-2 

BRK !T2) [63) 
0 NO CLOCK 
1 LOAD 

IN~ DATA BUS]l l luNIBUS 

BUS BUFFER ·~,,~------""'--'-------------"=> DATA TOI FROM 

REGISTER . I ~ T\. -v UNIBUS( INCL. 
,----- ., ,... CACHE 8 UNIBUS 

,___l_P_D_R_Jl_~ (T3) SHFR tl MAP REGI STERSJ s. .z v L BRX (T2) [62) 

[ 
BRMX J 0 SHFR 

(PORA) 1 BUS(DETERMINED 

.--------'j BY ADDRESS) 

11 Q Q _<l_ IRKCT2l[46] 

l BR J l BRA IR ] AFIR JO NOCLOCK 
(DAPA) (PDRB) (IRCA) (RACJ) 1 LOAD 

FROM FPP UADR/ -'\i ~ ~ 
CPU UADR ,..11 S I 

p p 

LR .1' ~ ~ 
~ y x 

r-------------6-R-.,v'I ~ 

1-----..-..-----~/) TO CONSOLE DATA LIGHTS v 

J p(PDRF) 

~------------~~----------~ l___~ ______ _.___._ ___ B_R_J\.j' DATA TO 
CACHE 

~~~~~~~___._~IJ 

LJ BR BR HR

l LR J t PS J [PIRO J
(PORO) CJRCH,PDRO) (Pf r BR ~

l (P~~C) J I (P~~C) J
I II BR)~

IBS (T1) {36-35] l j l._ ___ S_L_IP_B_ ~,
1 0 NO COMMAND '-,

1 READ SW ~---------~//1 D

2 LOAD PS 11 v M
3 READ PS PIRQ _1' X

INTERNAL ,__~~----~--------"')1

DATA BUS A PS -v
..._-----~~-----~~......., '---~--~-------------~~·'1 (PDRE)

tt -u BR if ~ -v ...____.

DATA DATA TO MEMORY
FROM FPP MGMT. REGISTER,

AND FPP DATA
'DATA FROM MEMORY MGMT.,

SWITCH,CPU ERROR,AND
SYSTEM SIZE 8 ID REGISTERS.

-v MEMORY

11-2618

The outputs of the processor Data Paths select and
supply address, data and display information:

I. The Bus Address Multiplexer (BAMX,
Paragraph 2.3. I) selects the virtual ad
dress for transmission to Memory Man
agement from either the DR, the SR, or
the PC.

2.

3.

4.

The (Unibus) Data Multiplexer (OMX,
Paragraph 2.3.2) selects the source of
data to the Unibus from the BR or from
the Control Registers (Chapter 3).

The BRA supplies data directly to the
Cache, the Memory Management regis
ters, the Floating Point Processor and
the Control Registers (Paragraph 2.3.3).

The Display Multiplexer is controlled by
the Data Display selection switch on the
Console and selects the source of the
Console data display from the SHFR,
the FPP and CPU ROM Address Regis
ters, the Light Register or the BR (Para
graph 2.3.4).

2.1 DATA MANIPULATION
Data manipulation is done mainly by the logic ele
ments, shown in the top-half of the Data Paths
Block Diagram, Figure 2-1.

The ALU is the most complex of these elements
and is the only one that can combine two operands.
It is the first one described. Its outputs are input to
the PC or to the SHFR, from where they may be
routed to the General Registers, to the SRs and
DRs and back to the ALU via the A and B
multiplexers.

2.1.1 Arithmetic and Logic Unit (ALU)
The primary data processing element in the KB I I
C (the only element that can combine two operands
to form a result) is the Arithmetic and Logic Unit
(A LU). The A LU can perform a variety of arith
metic operations on two variables (such as addition
or subtraction) and can perform a variety of logical
operations on one or two variables, such as com
plementing or ANDing. The specific operation per
formed at any time is selected by the processor

control on the basis of the microprogram word and
the current instruction. The manipulated operands
are selected by two multiplexers, one for each of
the ALU inputs. The operands can be the contents
of.the SR, the DR, the BR, the PCB, or one of sev
er a I numbers generated by the constant
multiplexers.

The output of the ALU is gated either into PCA or
into the SH FR, from which it can then be routed
to any of the General Registers, or to the SR, the
DR, or the BR (and the IR, although this path is
not used). All of these destinations for manipulated
data are internal to the processor; when data is
transferred out of the processor, it must go through
the BRA. When the ALU outputs are routed to the
PC, the signal paths do not pass through the
SH FR; this means that when shift or byte-swap op
erations are attempted with register 7 as the destina
tion, the data that enters the PCA is unchanged.
For example, an ASR PC instruction does not shift
the PC but does set the condition code as would an
ASR.

2.1.1.1 Description of ALU - Refer to drawings
DAPF and DAPH. The ALU does most of the
data manipulation in the processor. It operates on
two 16-bit words of data and a carry input to pro
duce one 16-bit word of data and a carry output.
When the M input is high, the ALU operates in the
logical mode; when this signal is low, the ALU op
erates in arithmetic mode. The carry signals are not
active when the ALU is operating in the logical
mode. Drawing DAPF shows the low byte and
DAPH shows the high byte of the ALU.

The 16-bit A LU is implemented with four 74S I 8 I
4-bit Arithmetic Logic Units. Each 74S 181 includes
look-ahead carry generation for the four bits. A sec
ond level of look-ahead carry generation is pro
vided by the 74 I 82- I Carry Generator. The carry
propagate (P) and carry-generate (G) outputs of
each 74S 18 I (except the most-significant four bits)
are connected to the corresponding inputs of the
74182- I, and the carry outputs of the 74 I 82- I are
connected to the appropriate carry inputs of the
A LU s. The least-significant bit carry input is con
trolled by GRAA ALUC H, based on the output
of the subsidiary instruction-dependent ALU con
trol ROM.

11-2-3

The ALU can perform any one of 16 logical func
tions (each output bit is dependent only on the cor
responding input bits) or any one of 16 arithmetic
fu netions (each output is dependent on the corre
sponding input bits and on a carry propagated
from lcss-signi ficant bits). The selection of a particu
lar function is controlled by five signals from the
G RA module which select the mode (arithmetic or
logical) and the function. The KBl 1-C uses only
ten of the possible 74S I 8 I functions. These ten func
tions arc listed at the bottom of drawing DAPF.

The low order byte of the ALU is controlled by the
SO - SJ inputs (DAPF LSO H - DAPF LS3 H) and
the M input (DAPF LM H). The high order byte is
similarly controlled by DAPH HSO H - DAPH
H SJ 1-1 and DA PH HM H. All of these signals are
derived from GRAA ALUSO L - GRAA ALUS3 L
and G RAA ALUM L.

In addition to the data and carry outputs, each
!\LU clement has a comparator output, which in
dicates (if the ALU is in subtract mode) that the
two inputs arc equal. These outputs, which are
open-collectors, arc wire-AN Ded for each data byte
to generate equality signals that are used in forming
the condition codes.

DAPF A = 8(7:0) H indicates that the inputs to
the low data byte arc equal.

DA PF A = 8(15:0) L indicates that the inputs to
the entire word are equal. DAPH BUS A= 8(15:8)
H is the wired-AND of the A = B outputs for the
high-byte ALUs on drawing DAPH.

Four signals that are used in the generation of the
Condition Codes are derived from the ALU:

I. DAPJ AMX SIGN H is the sign of the
A input to the A LU. This signal corre
sponds to AM XI 5 if the processor is op
erating on word data, or to AMX07 if
the processor ·is operating on byte data.

2. DAPJ ALU SIGN H is the sign of the
ALU output; it is taken from ALUl 5
for word data or from ALU07 for byte
data.

11-2-4

3. DAPJ A = 8(15:8) +BYTE H indicates
either that the high dat'a byte is all Os or
that the processor is operating on byte
data. This signal is used in determining
whether all the active data is Os for the
Z condition code.

4. DAPJ ALUCN L is the carry output of
the active portion of the ALU; it takes
the carry output from the high byte for
word data or the carry output from the
low byte for byte data. This signal is
used to generate the Carry (C) condition
code.

2.1.1.2 ALU Control - During each machine cycle,
the ALU performs the function that is specified by
the ROM ALU control bits [RACC UALU(2:0)
H]. The signals that actually control the ALU (and
also the SHFR) operations are shown on schematic
GRAA.

If the UALU bits equal 0 - 6, the control signals are
independent of instructions being executed. If these
bits equal 7, the control signals depend on the
instruction code. In this last case (instruction depend
ent), the notation "$ALU" appears on the Flow
Diagrams.

The ALU control signals generated on the GRA
module are:

GRAA ALUS(3:0) L (ALU SO - S3 control)

GRAA ALUM L (ALU mode control)

GRAA ALUC H (Carry in)

GRAA ALU INSDEP L controls the two 74Sl58
multipiexers that select the source of these ALU
control signals. G RAA ALU INSDEP L is low
when the UALU bits equal 7 (A inputs), and high
when the U ALU bits equal 0 - 6 (B inputs).

Non-Instruction Dependent Control
The ALU control field in the main microprogram
ROM is a 3-bit field that controls the values of six
control signals. There is not a one-to-one relation
ship between the ROM bits and the control signals,
and not all possible combinations of control signals
can be generated. Each control signal is the result"
of decoding the ROM bits.

RACC UALUO and UALU2 are inverted by the
multiplexer and generate G RAA ALUS3 and
ALUS2, respectively. If UALU = I or 6, the out
put of the 74S64 at the lower-left of G RAA goes
high and G RAA ALUS I goes low; for other values
of UALU, ALUSI is high. If UALU = 3, the BO
input to the multiplexer is high and ALUSO is low.

The M bit is asserted when UALU = 0 or I;
GRAA MODE H goes high and ALUM L goes
low. The carry bit is generated when UALU = 6
by GRAA CIN L, which goes low and causes
GRAA ALUC H to go high.

These control signals are all inverted on DAPF and
DAPH and input to the ALU. Table 2-1 shows the
operation performed by the ALU for each value of
the U ALU field, and the state of the control signals
atthe74Sl81.

Instruction-Dependent Control
When the ALU control signals are instruction-de
pendent, each of the six signals is controlled by a
separate output signal from the subsidiary ALU
control ROM, shown on drawing G RAA. The
ROM inputs [I RCH SUBROMA(4:0) H] are de
scribed in Chapter I, Paragraph 1.5.

When UALU = 7, the multiplexer SO inputs are
low and the A inputs are selected. Two of the ALU
select signals, GR AA A LUSO and A LUS I, take on
the value of the ROM outputs. The other two,

GRAA ALUS2 and ALUS3, are forced high when
the SWAB instruction is being executed. The
SW AB instruction does not have a unique ROM
word, and uses the same word as the ASL instruc
tion with some of the control signals modified in
this manner. Refer to the ALU Control ROM
Map, shown on drawing GRAK.

The ALUM (mode control) signal is taken directly
from the ROM, except when the SXT instruction is
executed with a negative operand [IRCH N(l) H is
high] or when both G RAA ROMM and ROMC
are high (G RAA CDEP L).

In the case of SXT and a positive operand [I RCH
N(I) H low], GRAA ROMM is high, ROMC is
low: this forces GRAA ALUM low, DAPF LM
and DAPH HM high, which puts the ALU in the
logic mode. DAPF LSO - LS3 (and DAPH HSO -
HS3) are respectively L, L, H, H and the ALU out
put is 0 (refer to the ALU table on DAPF). In the
case of a negative operand [I RCH N(I) H high],
GRAA ALUM is high, which puts the ALU in the
arithmetic mode. All other control signals being un
changed, the ALU output is a 2's complement
minus I (all Is).

GRAA ROMM and ROMC are both high for the
ROL, ROLB, ADC, ADCB, SBC and SBCB in
structions. In this case, G RAA CDEP L is low and
the ALU is put in the arithmetic mode instead of in
the logic mode.

Table 2-1
Non-Instruction-Dependent ALU Control Signals

UAlU Operation Control Signals
DAPF orDAPH Negation of

LS3H LS2H LSlH LSOH LMH GRAAALUCH
HS3H HS2H HSlH HSOH HMH

0 not A L L L L H
1 B H L H L H
2 A (plus carry) L L L L L
3 A plus B (plus carry) H L L H L L
4 not used
5 A plus A (plus carry) H H L L L L
6 A-B L H H L L H
7 instruction-dependent Instruction Dependent

11-2-5

The ALU C (Carry-in) signal is modified for two
classes of instructions. The DIV and ASHC instruc
tions operate on 2-word operands, and the instruc
tion-dependent state is one that shifts the two
words left. The carry-in must take on the state of
the most-significant bit of the less-significant word.
For the A DC on ROL instructions, a carry insert
signal is generated if the C bit is set; for the SBC in
struction, the signal is generated if the C bit is
cleared. This data-dependent carry generation is
controlled by the assertion of both ROMM and
ROMC.

GRAA SGNEX MOVB is generated when a
MOVB instruction is being executed. This instruc
tion is used to extend the sign of the byte into the
high byte when the destination is a General
Register.

GRAA WORD + OB SWAP L and H indicate
that the significant SHFR outputs include the high
byte, and the sign of the output is bit 15 (rather
than hit 7).

2.1.2 Shifter (SH FR)
The output of the ALU ts input to the program
counter (PCA) and to the SHFR. The inputs to the
SHFR include, in addition to the ALU, the output
of PCB.

The SH FR can perform right-shift or byte-swap op
erations on the data, or substitute the contents of
the PC for the ALU outputs. In many cases, where
an instruction is performed for an odd-byte destina
tion operand, the data manipulation required by
the instruction is completed in the ALU and the
transfer of the result to the odd-byte data lines is
performed in the SHFR, all during one machine
cycle.

In addition to its data manipulation (shifting and
byte S\lvapping) activity, the SHFR is used as a rout
ing clement. When General Register 7 (the PC) is
transferred to the SR or to the DR, PCB is routed
through the SHFR, to the SRMX or DRMX, then
to the SR or DR.

The output of the SHFR goes to the General Regis
ters, GS and GD, to the SRMX and DRMX, to
the BRMX and to the display multiplexer - where
it provides the Data Paths display data.

11-2-6

2.1.2.1 Description of SHFR - The SH FR is a
four-input multiplexer that provides unshifted,
right-shifted and byte-swapped outputs from the
ALU inputs. It accepts PCB as the fourth input.
Left-shift operations are performed in the ALU by
using the A plus A mode. The sum of A added to
A is equivalent to the product 2A, which in turn is
equivalent to shifting A (as a binary number) one
hit to the left.

Bits (00:06) and (08: 14) of the SHFR are similar,
and are shown on drawing DAPF and DAPH.

Special operations are required in the SHFR for
the most-significant bit of each byte. The SHFR
logic for data bits 7 and 15 are shown separately on
drawing DAPJ.

BITS 00:06 AND 08:14
Refer to Figure 2-2, which shows a typical SHFR
hit 00:06 or 08: 14.

ALU (n+1) D

ALU_n c 1/2
745153 SHFRn H

PCBn B

ALU (n±8) A

51 so
NOTE:

SHFRS1H n = oo:06
00:14

SHFRSO H
11-3107

Figure 2-2 Typical SHFR Bit

When a byte swap is required, the A inputs are se
lected, and AL U(08: 14) are switched to the outputs
of SHFR(00:06), and ALU(00:06) to the outputs of
SHFR(08: 14). Inputs B switch the PCB to the multi
plexer outputs. Inputs C transfer ALU(00:06) and
(08: 14) to SHFR(00:06) and (08:14) (no shift). A
right shift is executed by using input D, which trans
fers ALU (n+I) to SHFR n (for example, ALU05
to SHFR04).

BITS 07 and 15
Refer to drawing DAPJ. The most significant bit of
the shifter is SHFR 15. The shifter inputs are sim
ilar to the inputs for other shifter bits when the
byte-swap {A) or unshifted ALU inputs (C) are se
lected. However, the input used for the right-shift
mode is dependent on the instruction being
executed.

For some shift operations, such as ASR and
ASRB, the sign of the data word is replicated. This
is done by routing ALU 15 (the most-significant, or
sign, bit) to the right-shift inputs of both DAPJ
SHFR 15 and DAPH SHFR 14. For right rotate
(ROR and RORB) instructions and multiply in
structions, this procedure is modified by forcing a
second level 2-input 74S 157 multiplexer to select
GRAJ SHFR DATA H instead of DAPH PCB 15
H. The signal GRAJ SHFR DATA consists in this
case of the carry (C) bit and the P /class instruction
decode for the rotate instruction. For the multiply
instruction, the input is used to extend the sign of
the result during the calculation and to correct the
sign on the cycle, if necessary. In this last case, it is
high if the instruction is an I/class, and either the
SR is greater than 0 during an instruction-depend
ent cycle, or the contents of the SR are negative
(SR 15 1) during a non-instruction dependent cycle.

The shifter logic for data bit 7 must operate the
same as the normal bits for word data, and as the
most-significant bit for byte data. The right-shift in
put must be able to receive one of three values;
ALU08 for word data; ALU07 for byte shifts (if
not a rotate instruction); or the Carry (C) bit for an
RORB instruction. This is accomplished by multi
plexing the C bit with the PCB input and forcing
the SHFR to accept input B for an RORB instruc
tion: for any other byte shift, the SHFR is forced
to accept input C, the no shift input, so that
SHFR07 and SHfR07 both receive ALU07.
SHFRA 15 and SHFR 15 signals and SHFRA07 and
SH FR07 signals are logically identical and appear
only for additional loading capacity.

GRAB Z DAT A2 L detects all Os at the SHFR out
put. Depending on the operation being performed,
either the entire word of data or only one byte of
data may be significant. For word data, both
wired-A ND circuits must detect all Os. For normal
byte operations, only the low byte (SHFR07 -
SH FROO) must be all Os. During operations on odd

bytes, or during a SWAB instruction, only the high
byte is tested. A fourth input, enabled by IRCF
CHECKZ H, is used when the final result is two
words, to clear the 0 (Z) bit if the second word
does not contains all Os. If the second word is all
Os, the Z bit retains the previous value. Thus, only
if both words are all Os will the Z bit be set.

2.1.2.2 Shifter Control - The SH FR is controlled
by DAPF SHFRSO and SHFRSI H, which are in
verted from GRAA SHFRSO and SHFRSI L.
These signals, in turn, are generated by the same
subrom that controls the ALU, and they are instruc
tion-dependent when the ALU control signals are.
Refer to Paragraph 2.1. l .2.

G RAA SHFRSO and SHFRSI, when instruction
dependent, take on the value of the subrom output,
except in the case of the ASRB, ROROB, NEG
and NEG B instructions if the destination mode is
not 0, and in the case of the SW AB instruction. In
both of these cases, DAPF SHFRSO and SHFRS l
arc forced low by G RAA SW AP L.

2.1.3 Program Counter (PCA and PCB)
The Program Counter (PC) provides the address of
the next instruction to be fetched. The PC is imple
mented as two 16-bit registers, PCA and PCB.

PC;\ accepts data only from the ALU; this data is
clocked in at TS by DAPJ CLKPCA H when the
PC A ROM bit =I. The output of PCA goes only
to PCB, and is the only input to PCB.

PC A is clocked into PCB at Tl by DAPJ CLKPCB
H when the PCB ROM bits =I, 2 or 3: l is an un
conditional load; 2 loads if the source field = 7; 3
loads if the destination field = 7, unless the instruc
tion is I/class and the UPWEOO ROM bit is high.

(l /class instructions are those that cause a high out
put of the ITCH R (I CLASS) output of the instruc
tion decode subrom. They are listed in the R
(I/CLASS) column of the table on IRCJ).

2.1.4 General Registers
In all instructions that transfer data, each address
reference specifies one of eight General Registers.
The specific register (of the 16 in the KBl 1-C Pro
cessor) used for each reference depends both on the
val uc of the 3-bit register specification and on the
processor state, as represented by the contents of
the Processor Status (PS) word.

11-2-7

Two of the eight General Registers that can be spec
ified in the instruction code are also used by the
KBl 1-C as special-purpose registers. If the register
specification has a value of 7, it specifies the Pro
gram Counter (PC). This always refers to the hard
ware PC register described in Paragraph 2.1.3. If
the specification has the value 6, it specifies the
hardware Stack Pointer (SP) register.

One of three hardware registers, within the General
Register data storage elements, is selected in this
case, depending on the processor mode: register 6 if
the processor is in Kernel mode, 16 if it is in Super
mode. or 17 if in User mode. If the register specifi
cation has the value 0 - 5, one of two registers is se
lected. depending on the register set selection bit
(hit 11 in the PS word).

Figure 2-3 illustrates the General Register selection
in ._the KBl 1-C Processor. Figure 2-4 shows the for
mat of the Processor Status word (PS).

REGISTER
ADDRESS--------.

0

2

3

4

5

6

7

10

11

12

13

14

15

16 SUPER SP (RG) t----------1
17 USER SP (R6) ----------

NOTE:

GENERAL REGISTER
SET 0
PS<11>=0

GENERAL REG I STER
SET 1
PS<l1>=1

} PS<15: 14> = 01

} PS<15:t4>= 11

Register 7 is the PC ,which is stored separately.

Figure 2-3 General Register Storage in
GS and GD Storage Elements

11-0963

15 14 13 12 11 10 8 7 5 4 3 2 1 0

I I NOT USED PRIORITY I T I N l z l v l c I
~

CURRENT MOOE"__J f
PREVIOUS MODE•
GENERAL REGISTiR
SET(0,1)

•MODE: 00 •KERNEL
01 •SUPERVISOR
11 •USER

Figure 2-4 Processor Status Word

Each of the 16 General Registers is duplicated. The
duplication allows the processor to access more
than one register at a time. Each General Register,
with the exception of register 7, is implemented by
two copies in the two General Register storage
clements.

The General Source (GS) registers include 16 regis
ters allocated as shown in Figure 2-3. The General
Destination (G 0) registers contain 16 registers used
in an identical manner. When data must be written
into a General Register, it is written into both cop
ics to ensure that all attempts to read the data will
read the same value. However, by specifying differ
ent register addresses to the GS and GD storage ele
ments, it is possible to read the contents of a
different register from each. This feature is used pri
marily in reading the contents of the two registers
speci ficd by double-operand instructions.

Whenever the General Registers, as a group, serve
as a data source, the PC (register 7) can be selected
as one of the General Registers. This is accom
plished by selecting the PCB input to the SHFR,
and allowing the source or destination multiplexer
to select the SHFR input, if register 7 is selected,
and the GS or GD input if any other register is
selected.

Refer to schematics GRAD-GRAH. The General
Registers arc implemented in two sets of four
310 I A 64-bit random-access memories that are ar
ranged in sixteen 4-bit words. Each General Regis
ter is made up of one word from each of four
memories, and the same word selection signals are
sent to all four memories for one copy of the regis
ters. A different set of selection signals can be sent
to the second copy of the registers while reading,
hut not when data is being written.

Data is written when the W input is low. The write
enable signals are G RAC G RWE LOB L for the
low order byte, and GRAC GRWE HIB L for the
high-order byte. The conditions for these signals
arc explained in a table on G RAC.

11-2-8

Individual registers are selected for reading and
writing by GRAC GDA (0:2) H and by GRAC
GSA (0:2) H, all four of which go to the AO - A2
inputs to the 310 I As. The register sets are selected
by G RAC GD REG SETI H and GS REG SETI H,
which go to the A3 inputs to the 3 IOIAs.

The multiplexers are disabled when PAD =6; GSA
(0:2) and G DA (0:2) are low in this case.

General Register Selection
Source: and Destination Address Multiplexer
[GRAC GSA(0:2), GDA(0:2)] - The microprogram
selects the sources of the scratch pad addresses. The
microprogram includes a 3-bit PAD field that se
lects one of seven sets of sources; the value of 3 in
the PAD field is not used. Some of the sources are
constants, and are generated by +3 V and 0 V in
puts to the G DAM and GSAM multiplexers; oth
ers are taken from the IR source and destination
register specifications of the instruction. Table 2-2
shows the multiplexer inputs used for each PAD
value. Table 2-3 shows the values of these inputs.

PAD

0
1
2
3
4
5
6
7

Table 2-3
Multiplexer Input Values

Input Value

Bits 1and2

Table 2-2
Multiplexer Input Selection

GSAM and GDAM

GSAM GDAM

A A
A B
c c

not used
A A
B B
GS and GD MX disabled
D D

Bit 0

A Source Field [IR(07:08)] If IR06=1, high. If IR06=0, low, unless current mode is User
and the source field = 6 or 7.

B Destination Field [IR(Ol :02)]

C GSA(2:0) and GDA(2:0) = 5

D If PS15=0, GSA(2:0) and
GDA(2:0)=6 (Register 6, Kernel
or Super)

If PS15=1, GSA(2:0) and
GDA(2:0)=7 (Register 6, User)

If PAD=4, same as above, but GRAC PLUS 1 is ORed with
IR06 to force an odd register address. Used only during MUL,
DIV and ASHC.

IF IROO= 1, high. If IROO=O, low if the console is not active; or
if the destination field is not =6; or if PS 15=0 (Kernel or Super
current mode) and the instruction is other than MFP or MTP
with destination mode O; or if PS13=0 (Kernel or Super previous
mode) and the instruction is MFP or MTP with destination
mode 0.

11-2-9

General Register Set Selection (GRAC GDREG
SET I and GS REG SET I) - The most-significant
bit of the scratch pad address selects which General
Register set is used. This selection is, in general,
done by the multiplexer; in several cases, the pro
cessor forces the selection of General Register Set
I. Note that these multiplexers are always enabled.

Table 2-4 shows the multiplexer inputs selected for
each PAD value.

PAD

0
1
2
3
4
5
6
7

Table 2-4
Multiplexer Input Selection
GSREG and GDREG SET 1

GSREGSET 1 GDREGSET 1

A A
A B
c c

not used
A A
B B
c c
D D

GRAB SRC SET I L and DST SET I L are, re
spectively, the A and B inputs to both source and
destination multiplexers.

Both gates are asserted (low) when the Console is
not active, PS 11 is asserted, and registers 0 - 5 are
specified by the source [I R(06:08)] or destination
[I R(00:02)] fields of the current instruction; regis
ters 0 - 5 are selected if not both IR08 and 07 (for
the source field) or IR02 and 01 (for the destination
field) are asserted.

Set I is also selected when the Console is not ac
tive, PS14 is asserted (Super or User modes), and
register 6 is specified ·by the instruction source or
destination fields. This,· in conjunction with the
GRAC multiplexer outputs, forms address 16. If
PSI 5 is asserted, the A input to G RAC GDAO and
GSAO is forced high, thus generating address 17
(G RAC PLUS I). If the instruction is an MFP or
an MTP, and UPEWOO =I (conditional), and the
destination field = 6 or 7, and the mode is User or
Super, and the Console is not active, GRAB DST
SET I L is also asserted.

The C input to the Set 1 multiplexers is PSI I,
which defines the register set.

The D input to these multiplexers is PS14(l)L
which, when asserted (low), specifies User or Super
modes.

The output of these multiplexers, when low, causes
the selection of General Register Set l through the
GRAC GDREG SETI H and GSREG SETI H
OR gates.

The two other inputs to the OR gates cause the se
lection of SETI:

I.

2.

During a Console operation, bit 3 of the
address selects the Register Set and is
clocked into IR03; it is then input to the
0 R gates to select the proper set.

In the case of an MFP or MTP instruc
tion with destination mode 0 and destina
tion field =6, if UPWEOO=l
(conditional) and PSl2= I (previous
User or Super modes), set l is also se
lected. In an M FP instruction, the
source is always specified in the field nor
mally designated as destination. The des
tination is the current mode stack.

2.1.5 Source and Destination Multiplexers (SRMX
and DRMX)
The SR MX and DRMX select the input to the
Source and Destination Registers (SR and DR). Re
fer to drawing GRAD.

The select inputs to these multiplexers are G RAC
SRMX SEL L and DRMX SEL L, which are con
trolled by the SRX and DRX ROM bits and by
IRCB SRCF 7 L.

When the SRX and DRX bits =O, the SHFR is se
lected as the input to the SR and DR. When SRX
and D RX =I, the General Source and Destination
registers (GS and GD) are the SR and DR inputs.
If SRX and DRX =2, the inputs are either the
SHFR, if the Source or Destination fields =7, or
the GS and GD if this is not the case. SRX = 3 is
not used; DRX =3 clears the DR at GRAJ
TP(3:5), which is a flip-flop set by T3 and reset by
TS.

II-2-10

2.1.6 Source Register (SR)
The Source Register (SR) performs two major func
tions. It is the output buffer for the General Regis
ters when addressed as the SR in an instruction,
md it provides temporary storage during the source
fata-fetch operations.

1\11 output from the GS registers must be trans
ferred through the SR. When the PC is selected as
.t source register, the data from the PCB is routed
lhrough the SHFR and the SRMX to the SR.
From the SR, data can be routed anywhere in the
processor through the ALU inputs, or the contents
of the SR can be used as an address for external
data transfers through the BAMX. The SR is also
used as a temporary storage register during trans
fers of data within the processor; e .. g., when the old
PC and PS are being stacked during an interrupt or
trap service sequence, the SR holds the vector
address.

The SR is used as a data storage element for inter
mediate results during instruction execution. The
register and operand group instructions, such as
multiply, divide, and the arithmetic shifts, use the
SR to hold both operands and results.

The outputs of the SRMX are connected directly to
the inputs of the SR and are clocked by TI if en
abled by the microprogram bit RACA USRK H.
The outputs of the SR are routed to the ALU input
multiplexers and to the bus address multiplexer. Bit
0 of the SR is also sent to the IRC module for use
in one of the microprogram address generation cir
cuits, the C Fork, for odd-byte source branches.

The output of the SR is checked for two condi
tions: SR ~ 0 and SR = + 1, by GRAE SR LEQ
ZERO H and SR EQ ONE L. The two flip-flops
are clocked by the ~ame signal that clocks the SR.
They are both set if GS(Ol: 15) = 0.

GRAE SR LEQ ZERO H is asserted if both flip
flops are set and GRAD SROO H is low (SR=O) or
if GRAH SR15 Lis asserted (SR is negative).

GRAE SR EQ ONE Lis asserted if both flip-flops
arc set and GRAD SROO H is asserted (SR=+ I).

2.1.7 Destination Register (DR)
In addition to performing two functions similar to
the major functions of the SR, the Destination Reg
ister (DR) also operates as a data manipulation ele
ment; specifically, the DR is used as a left or right
shift register during register and operand instruc
tions such as ASH, ASHC, MUL, and DIV.

All output from the GD registers (and from the
PC, when it is selected as a destination register)
must be through the DR. Data from the DR can
be routed anywhere in the processor through the
A LU, or used as an address in external data trans
fers through the BAMX. To transfer the contents
of either the SR or the DR to an external data stor
age location, the data must first be transferred from
the SR or DR through the ALU to the BR, and
then from the BR to the Cache, the Unibus, or the
Internal Data Bus.

The DR is used as a control register and to accumu
late the less-significant part of the result during reg
ister and operand instructions such as multiply,
divide, or the arithmetic shifts. The DR is also the
source for data to be loaded into the Shift Counter
(SC) register.

Refer to GRAD through GRAH. The DR can be
loaded with a left shift of one bit, a right shift of
one bit, or no shift. The shift inputs are used when
the processor must operate on two words of data at
the same time (for example, during a multiply or di
vide instruction) and the operation includes shift
ing. The type of loading is determined by RACA
UDRK(OO:OI), as shown on GRAD. During a right
shift, DAPF ALUOO is loaded into G RAH DR 15.
During a left shift, DAPJ LEFT DATA is loaded
into GRAD DROO; DAPJ LEFT DATA is high
when both DAPJ COUTI5 H (the ALU carry out)
and the instruction is I/class. This input is used dur
ing the DIV instruction. When no shift is required,
DRMX(OO: 15) are loaded into DR(OO: 15).

The DR is cleared when the DRMX control bits
U DRX(OO:OI)=3.

At Tl, when UDRK(OO:Ol)=3 (load DR),
DRMXOO is clocked into the GRAB OBD (Odd
Byte Destination) flip-flop. When set, this flip-flop
indicates that the destination field contains an odd
byte address.

11-2-11

2.1.8 Shift Counter (SC)
The Shift Counter [GRAJ SC(00:05)] is used to
count the repetitive cycles of data manipulation in
the multiply (MUL), divide (DIV), arithmetic shift
(ASH), and arithmetic shift combined (ASHC) in
structions. The SC can be loaded either with the six
less-significant bits of the DR (for ASH or ASHC
instructions) or with a constant, 17(8), (for MUL
or DIV instructions). The SC is controlled by the
RACC USHC(OO:Ol) ROM bits. The outputs of the
SC are used in the Branch Conditions logic on
RACK.

The SC consists of two 74191 counters and associ
ated logic. They are loaded with the value present
at the D inputs when the LOAD input is low. The
74191 counts on the positive transition of the clock
signal, if the EN ABLE input is low. The counter
counts down if the ON input is high, and counts
up if ON is low. The MAX/MIN output goes high
when the outputs are all high (= 1111), and the
count direction is up (ON= low), or when the out
ruts arc all low (=0000) and the count direction is
down (DN=high). The R/CLK (ripple clock) out
put goes low when MAX/MIN is high and CLK is
low. The R/CLK from the low order SC clocks the
high order SC. If RACC USHC(Ol :00)=0, the SC
is inoperative.

If USHC= I, the ENB input is low and one clock
pulse is generated at G RAJ TP(3:5) H.

If USHC=2, the complement of DR(05:00) is
loaded with the sign extended to the two unused
high order bits of the SC.

If USHC= 3, the eight bits of the counter are
loaded with Is. This is used to count to 16(10)
(=I 7x) during MU L and DIV. In this case, only the
four low order bits [SC(03:00)] are counted.

Refer to Figure 2-5. When 17s is loaded, SC05L is
low, and the counter is made to count up, since
SC05L is input to both ON inputs. At the first
clock pulse, SC(00:03) goes to all Os (1111+0001).
Neither MIN/MAX nor R/CLK are generated at
this time, and SC(04:05) stay high. Each clock pulse
increments the contents of SC(00:03) by I. When
their value equals 1111, MIN/MAX goes high, and
since SC(04:05) are still high, GRAJ SC=O L is as
serted. This occurs on the sixteenth clock pulse.

2 3 4 5 6

SCf/l5

SC04

SCf/l3

SC02

SC01

SC('6¢

MIN/MAX L
R/CLK

ON COUNT DOWN

11-3108

Figure 2-5 SC Loaded With 00101

Refer to Figure 2-6. When an ASH or ASHC speci
fies a right shift, bits (0: 5) of the instruction word
contain a negative value. This causes a positive
value to be loaded into the SC (SC05=0), and the
counter will count down (G RAJ SC05 L = ON are
high). Assume that a 6-bit shift is desired: -6 in
2's complement, or 11010, is entered into bits (5:0)
of the instruction word and then loaded into the
DR. The I's complement of this value, or 00101, is
the numb.er loaded into SC(05:00). Since the ON in
put is high, successive clock pulses cause the
counter to count down to 00000. At this time,
MIN/MAX goes high, but since SC05 is low,
G RAJ SC 0 L is not asserted. At the next clock
pulse, the sixth, R/CLK is asserted. Since the
counter is still counting down, alJ five SC bits
change from 00000 to 11111. G RAJ SC05 L and
the ON input both go low, which defines count up.
MIN/MAX stays high, SC04 and SC05 are high,
causing G RAJ SC 0 L to be asserted, thus ending
.Lhe count.

11-2-12

SC{a2 HI ... _______ _
SC~I HI._ ___ __,

R/CLK

SC(ll!5 H

_2.J..9 ALU Inputs
The A multiplexer (AMX) is the "A" input to the
ALU. It can select one of four signals: DR, SR,
PCB, or the Bus Register (BR).

The B multiplexer (BMX) is the "B" input to the
ALU. It can select the SR, the BR or one of two
constant multiplexers, KOMX or KI MX.

General information on these inputs is listed in
Table 2-5.

----------~------~_,,__ ____ __
2.1.9.1 A Multiplexer (AMX) - The A multiplexer
(DAPB AMXOO H - DAPD AMXI5 H) is con
trolled by RACC UAMX(Ol :00) and selects one of
four registers for input to the A operand of the
ALU. The values of RACC and the registers se
lected are listed in the table on drawing DAPB.

SC'1!4 H

MIN/MAX r----1
_, r--------,

SC•~ L L_ 2.1.9.2 8 Multiplexer (BMX) - The B multiplexer
(DAPB BMXOO - DAPD BMXI5 H) selects the B
input to the ALU. It is controlled by RACC
UBMX(OJ:OO) H. Table 2-6 shows the outputs of
the BMX for the several values of UBMX.

11-3109

Figure 2-6 SC Loaded With 17s

Table 2-5
ALU Input Multiplexers

Multiplexer Output To Input From Type of Input

AMX A input of ALU source register variable operand
destination register variable operand
bus register variable operand
program counter variable operand

BMX B input of ALU source register variable operand
bus register variable operand
KOMX constants
KlMX constants and sign-extended operands

KOMX BMX 1 fixed constant
2 fixed constant
source constant generated constant
destination constant generated constant

KIMX BMX trap vector generated constant
start vector fixed constant
BR (SOB & MARK) shifted and sign-extended operand
BR(branch) shifted and sign-extended operand

11-2-13

Table 2-6
BMX Output Selection

BMX RACC UBMX(Ol:OO) H
00 01 10 11

00 KOMXOO 0 SROO BROO
01 01 KlMXOl 01 01
02 02 02 02 02
03 03 03 03 03
04 0 04 04 04
05 0 05 05 05
06 0 06 06 06
07 0 KlMX07 07 07

*08 KOEX Kl EX*UKMXOO 08 08
*09 KOEX Kl EX 09 09
*10 KOEX Kl EX 10 IO
*11 KOEX Kl EX*UKMXOO 11 11
*12 KOEX KlEX 12 12
*13 KOEX KlEX 13 13
*14 KOEX KlEX 14 14
*15 KOEX KlEX SR15 BR15

*Note: If GRAA SGNEX MOVB Lis asserted, KOEX H
becomes the output of BMX(l 5:08) H.

Sign Extension - When RACC UALU(2:0) H = 7
(ALU instruction dependent), and the instruction is
MOVB (IRCB MOVB H is high), GRAA SGNEX
MOVB L is low. This forces the two signals that
control BMX(l5:08) high (DAPD BMXSl HIB L
and BMX SO HIB L), thus putting DAPD KOEX
H on the high order byte BMX output line. KOEX
takes on the value of BR07 when the BR is selected
(U BMX =3), or that of SR07 when the SR is se
lected (U BMX =2).

2.1.9.3 Constant Multiplexer 0 (KOMX) - Con
stant Multiplexer 0 [DAPD KOMX(03:00)] supplies
values required for incrementation of ALU oper
ands. The KOMX is controlled by RACC
UKMX(Ol:OO) H.

When UK M X =O, a constant of I is generated.
When UK M X =I, a constant of 2 is generated, ex
cept in the case where FRMJ ADDR INC L
(request by the FP 11 fo: an address increment) is
not asserted and TMCE FC H is asserted. FC
(Floating Point Condition) is asserted when the Bus
Condition bits (BSC)=4, signifying that the pro
cessor is executing a memory operation for the
FPll.

When U KMX =2, a constant of I is generated if
IRCC SRCCON-1 H is asserted. A constant of 2 is
generated if IRCC SRCCON-1 H is asserted. The
conditions for these functions are shown on draw
ing IRCC and are mutually exclusive. They nor
mally indicate an auto-increment or auto-decrement
addressing mode for the source register.

When UKMX=3, constants of I, 2, 4, or IO may
be generated by IRCD DSTCON-1 (or 2, 4, or IO)
H. 1 ncrements of 4 or I 0 are only used for FPl l in
structions. The conditions for these functions are
shown on drawing IRCD.

DAPD KOEX H is described in Paragraph 2.1.9.2,
B Multiplexer (Sign Extension).

2.1.9.4 Constant Multiplexer 1 (KIMX) - Con
stant Multiplexer I [DAPE KI MX(07:0 I) H and
KI EX H] generates vector addresses and program
counter offsets. The KI MX is controlled by RACC
UKMX(Ol:OO) H.

Table 2-7 shows the output of the BMX for the sev
eral values of UK MX when the KI MX is selected
(UBMX=I).

When UK M X =O, DA PE SV(07:02) H are selected.
This is the start vector, which is selected in ROM
state I 00 (PU P.00 on Flows 12) during the power
up sequence. The address may be selected either in
the ran~e of 000 000 to 000 174(8), or in that of
173 200 to 173 374(8), depending on the jumper for
SV07. This is due to the logic for DAPE BMX08
~11H.l 11 combined with the KI MX circuitry, which
extends the sign to all high order bits except bits 08
and 11.

The trap vector (TV) is used to select a new PC
and PS following a trap operation. The trap vectors
for a variety of internal conditions are defined by
the logic in the lower-left corner of the drawing.
The chart on DAPE defines the specific vector for
each condition. If none of these conditions is pre
sent, but the processor is doing a trap operation,
the trap vector is set to 4. This occurs for non-ex
istent memory references, memory parity errors,
odd address errors, fatal stack violation errors, and
executing the Halt instruction in User or Supervisor
modes of operation. The KI MX constants for
EMT and TRAP instructions are one-half their as
signed values. This is because they are executed by
the same machine states (Flows 12) that cause the
vector for reserved instructions to be left shifted (so
that vector 4 for ms vector I 0).

11-2-14

Table 2-7
BMX Output From KlMX

Bit BMXRACC
UBMX=l 00

00 0 0
01 KlMXOl 0
02 02 SV02
03 03

1~ 04 04
OS OS OS
06 06 06
07 KlMX07 SV07
08 Kl EX*UKMXOO 0
09 KlEX SV07
10 KlEX SV07
11 Kl EX*UKMXOO 0
12 KlEX SV07
13 KlEX SV07
14 KlEX SV07
lS Kl EX SV07

The third input to K 1 MX, B R(07:00)H, is used for
the offset in SUBTRACT 1 AND BRANCH
(SOB), and MARK instructions. This offset is al
ways, in full words and is always a positive quantity
that is subtracted from the PC in the ALU. Be
cause all PDP-11 Systems use byte addresses, the
offset, as it appears in the instruction, must be mul
tiplied by 2 to generate the proper value to be sub
tracted from the PC. This is done by shifting the 6-
bit offset I bit to the left. For example, BROO is the
input to the multiplexer for bit 01. The BR is used
because it contains the same value as the I nstruc
tion Register (IR) at the time of the PC modifica
tion, and is directly-accessible to the data path
logic.

The fourth input to KI MX is used for the offset in
successful branch instructions. The branch offset
can be either positive or negative; the value taken
from the instruction is first multiplied by 2 (shifted
left) and then sign-extended, and the resulting 16-

_bit number is added to the PC. The branch offset
can have values from + 12710 to -12810 words; BR
(07:00) provide the offset and the left shift provides
word (rather than byte) addresses.

RACC UKMX(Ol:OO) H
01 10 11

0 0
TVOl BROO

t 02 r 03 02
TV04 03
TVOS*07 04
TV06 BROS
TVOS*07 0 BR06

0 0 BR07
0 0 BR07
0 0 BR07
0 0 BR07
0 0 BR07
0 0 BR07
0 0 BR07
0 0 BR07

2.2 INPUTS TO PROCESSOR DATA PATHS
The Processor Data Paths receive data through the
Bus Register Multiplexer (BRMX) from the Cache
Memory, the Console (Switch Register), the Mem
ory Management registers, the optional Floating
Point Processor and the Unibus. The Unibus input
is buffered by PDRJ 0(15:00) H, the Bus Buffer
Register, which is clocked at every TIG D T3 L.

The BRMX also has an input for internal data
from the SHFR. The most generally used path
from the SHFR to the ALU is through the BRMX
and the BR.

The BRMX is the input to the two Bus Registers
(BR and BRA) and to the two Instruction Registers
(IR and AFIR).

2.2.1 Bus Register Multiplexer (BRMX)
All data input to the processor is routed through
PORA BRMX(l5:00) H; in addition to the external
data from the Unibus, the BRMX also accepts in
puts from the Cache Memory, the SHFR, and the
Internal Data Bus.

11-2-15

The four inputs to the BRMX are:

I. PDRJ 0(15:00) H (Bus Buffer Regis
ter clocked each T3 from the Unibus
lines);

2. PORA INT 0(15:00) H (Internal Data
Bus)

3.

4.

DTML CDM(l5:00) H (Cache Memory
data)

DAPF-DAPJ SHFR(l5:00) H (Shifter
output).

Refer to Figure 2-7. These signals are selected by
PORA BRMX S(l:O) H. The SHFR is selected
when RACA UBRX H is low, making SI and SO
both high.

The other three inputs can only be selected when
UBRX is high.

The Cache is selected when TMCF SEL MEM L is
low; the address is a Cache address, an interrupt
pause is not in progress, and the Internal Data Bus
is not selected.

S1 S0 BRMX OUT

L L UNIBUS

L H INT D

H L CACHE
H H SHFR

SCCD INT REG (1) L

IBS(210 L

BCT(21(21 H

BCT01L
TMCF FP

BCT02 L READ L

SAPN NOT CACHE ADR H

BSD00 H

BSD(211 L

TMCF SEL
INTL

The Internal Data Bus is selected if TMCF SEL
INT L is low. One of three conditions may cause
this: an internal register is being addressed, or the
I BSOO ROM bit is asserted (read Switch Register or
read PS), or the BCT(02:00) ROM bits = I (read
Floating Point data).

The Unibus is selected when UBRX, TMCF SEL
M EM L, and TMCF SEL INT L are all high.

The B RMX is the input to both Bus Registers (BR
and BRA) and to both Instruction Registers (IR
and AFIR).

2.2.2 Internal Data Bus (INTO)
The Internal Data Bus [PORA INT D(l 5:00) H] is
a wired-OR bus that transmits the following data
to the BRMX:

I. Switch Register (from Console)

2.

3.

RACA UBRX H

Memory Management Registers (MMR3
to MMRO and APR, which is a multi
plexer that can select either a PAR or a
PDR)

System ID and System Size Registers

PORA
BRMX

SHFR D

CACHE c

INT D B

UNIBUS A
S0 S1

PORA BRMX S0 H

PORA BRMX SI H

TMCE INTR PAUSE L

11-3110

Figure 2-7 BRMX Selection, Simplified Schematic

11-2-16

4. Processor Error Register (TMCD
TRAPS TO 4)

When IBS= I, 2 or 3, the Memory Management in
puts are also disabled. IBS= I selects the Switch
Register. I BS= 3 selects the PS.

5. Processor Status Word (PS)

6. Floating Point Processor Data [FXPD
DOMX(15:00)].

Figure 2-8 is a block diagram of the Internal Data
Bus. The data put on the bus is a function of the
JBS (Internal Bus) and BCT (Bus Control) ROM
bits. Refer to schematic TMCF. TMCF GET OFF
H is asserted when the IBS field equals I (Read
Switches), 2 (Load PS) or 3 (Read PS), or when the
BCT field equals I (Read Floating Point Processor
Data). TMCF GET OFF H is inverted on SSRJ
and becomes SSRJ GET OFF L.

When IBS=O and BCT is not equal to I, the Mem
ory Management inputs are enabled. The selection
of the register that is to be put on the INT D bus is
made by register address decoding in Memory Man
agement. Four schematic drawings (SSRJ, SCCH,
SCCM and SCCN) show the Memory Management
inputs to the Internal Bus. These inputs are:

I.
2.
3.
4.
5.

MMRO- MMR3
APR (PAR/PDR multiplexer)
System Size and ID registers
TMCD traps to 4 error register
Switch Register

When BCT= I, data from the FPl 1 is enabled onto
the bus and all the Memory Management inputs
arc disabled by TMCF GET OFF.

One of these inputs is put on the Internal Bus if
SSRJ GET OFF L is high, and if the operation is a
read (SSRJ CI B L not asserted).

rT;;zF- - - - - , ;sc_C_H - - - - ,

I SWITCH REG 'I
I SCCL MMR3--+l---------t I
', ~ READSW--t--~~--·1-} II ~ ADDRESS DECODE •1

I -----~ ·-----
' SSRJ

SAPM APR-~------t

I SSRH MMR2-o--------1

SSR! MMR1-~--------1 I SSRC MMR0-l---------t I
ADDRESS DECODE -·it---} I

RACC !BS I
(01:00)--....

RACC BCT _J
<02:00> I

I
I
I
I
I
I
I

TMCD
TRAPS TO 4

L _____ _J

r-sCC'N-----,
SCCM I

I SYS ID (00:07) I
I

SYS SIZE LO

SYS SIZE HI

I SYS SIZE (07-00) I
ADDRESS}+ SYS ID (15:08) I

GET OFF DECODE }-------~ ,___ ____________ - -- - - - J
fP'DRo .- - - - - I

PS <15 ·00) (1) H BUS INT D

I (15:00> I
!BS I

L _______ _J

L _____ _J FXPD DOMX
(15:00> --1-------1/

Figure 2-8 Internal Data Bus Block Diagram

11-2-17

BUS INT D
(15:00)L

r;~-----,

INT D I
(15:00) H

UNIBUS I
BRMX

I CACHE I
SHIFTER

L-----~

11-3401

Address decode determines which one of the inputs
goes onto the bus.

2.2.2.1 SSRJ Multiplexer - The inputs to the mul
tiplexer on SSRJ are MMRO, MMRI, MMR2 and
the APR multiplexer (PAR or PDR). This multi
plexer is enabled when SCCC INT REG B H is as
serted and SCCC MM R3 is cleared in addition to
GET OFF and Cl.

Input select signals are SCCC MMR REG (1) H
(MMRO, I, 2), SSRH VA(02:01) L (virtual address
hits 02:01) and SCCD APR REG L. VA(02:01) de
fine which MM R is being addressed.

2.2.2.2 SCCH Bus Output - The Switch Register
[SCCJ SWR(15:00) H] is transmitted from the Con
sole to Connector J2 on SCCJ. It is multiplexed
with MM R3 to make up the second Memory Man
agement input to the Internal Data Bus.

Since MMR3 consists of only five bits (00, 01, 02,
04 and 05), only these bits need be multiplexed.

The MMR3 input is selected when SCCC READ
MM R.3 L is asserted.

The Switch Register is selected by SCCC SW REG
(0) H when the reference is an explicit one and by
TMCF READ SW L if the reference is implicit.
This last signal is asserted when the ROM JBS field
is equal to I.

2.2.2.3 SCCM Multiplexer - The Multiplexer on
SCCM transmits the following data on BUS
INTD(07:00) L:

I. The System ID Register, bits (07:00),

2. The CPU Error Register (refer to Chap
ter 3), which consists of TMCD ILL
HALT H, ODD ADRS H, CACHE
NXM H, UBUS TIMEOUT H, YEL
TRAP H and SL RED ERR H, and

3. The two System Size Register low-order
bytes.

The Multiplexer is enabled by SCCD INTO REG
L. Address decode signals select the output signal
and, in conjunction with SCCC CI B L and SSRJ
GET 0 FF L, enable the output drivers.

2.2.2.4 SCCN Multiplexer - The high-order bytes
of the System ID Register [SCCN SYS 10(15:08)
H] and the System Size Register are gated onto the
Internal Bus on SCCN by their respective address
decode signals and by GET OFF and the negation
of Cl.

2.2.3 Bus Registers (BR and BRA)
The Bus register consists of two slightly different
registers, the BR and the BRA.

The BR MX is the input to both BR and BRA.
This last register, however, also accepts the parity
bits from Cache Memory (DTML HI BYTE PAR
H and LO BYTE PAR H). These bits appear on
the BRA outputs as PDRB HI PAR H and LO
PAR H and are ~sed only to generate PDRH IND
HI PAR H and IND LO PAR H, which transmit
hyte parity information to the Console indicators.

The BR outputs are designated DAPA BR(15:00)
H and DA PA BR 14 L. The high outputs are the in
puts to the AMX, the BMX and the KI MX.
DAPA BRl4 Lis an input to RACK BRCAB 05
L.

The BRA outputs are called PD RB BR(l 5:00) A
H. They are also inverted as PDRB BR(l5:00) B L.
They are the inputs to the Control Registers (LR,
PS, Pl RQ, SL, PB), the OMX, the Display Multi
plexer, Cache Memory, Memory Management and
the FPP.

The BR and the BRA are clocked by TIGA CLK
BR H and CLK BRA H, during the 15 ns of the
duration of TIGC TPB L, when RACA UBRK H
(load BR) is high and TIGA GATE BR (I) L is
low. This last flip-flop is set at the rising edge of
TPB L when the output of the 0 R gate is high.
This always occurs at Tl (refer to Chapter 4).

2.2.4 Instruction Registers (IR and AFIR)
When an instruction is fetched from an external
data storage location, the data word enters the pro
cessor through the Bus Register Multiplexer
(BRM X), and is loaded into the BR. To retain the
instruction word for decoding during the execution
of the instruction, while releasing the BR for other
data transfers that may be required during the exe
cution of the instruction, the outputs of the BRMX
are simultaneously loaded into the instruction regis
ter [I RCA IR(l 5:00)] and into the A Fork Instruc
tion Register [RACJ AFIR(l5:00)].

11-2-18

The IR and AFIR are· clocked only during data
transfers that fetch instructions. The BR is clocked
during every external data transfer that brings data
into the processor. Both IR and AFIR are clocked
by TIGC TI or TI B if RACA UIRK H is asserted
(Load IR).

The IR is used for decoding circuits which operate
the subsidiary ROMs, the program ROM B and C
Forks, and a variety of instruction class selectors.
The instruction decoding logic is shown on the con
trol section block diagram, Chapter I. The AFIR is
used only by the program ROM A Fork.

2.3 PROCESSOR DATA PATHS OUTPUTS
The output of the Data Paths is routed through
one off our logic units:

a. The Bus Address Multiplexer (BAMX)
selects the source of the Unibus address

b. The Display Multiplexer selects the
source of the console data display

c. The Data Multiplexer selects the source
of Unibus data

d. 'The Bus Register (BRA) supplies data
directly to the Cache Memory, the Mem
ory Management registers and the op
tional Floating Point Processor.

2.3.1 Bus Address Multiplexer (BAMX)
The Bus Address Multiplexer (DAPB BAMXOO H
to DAPD BAMX 15 H) accepts as inputs the DR,
PCB and SR registers, as well as an input, used for
maintenance purposes only, from the FPl l Float
ing Point Processor. Its output is the program vir
tual address, which is the input to Memory
Management, which in turn generates the physical
address for the Cache and the Unibus.

The BAMX output is selected by RACB
UBAX(OI :00), as shown on the table on drawing
DAPB.

2.3.2 Unibus Data Multiplexer (DMX)
Refer to drawing PDR E. The Processor data out
put to the Unibus is BUS 0(15:00) L, which con
sists of DEC 8881 bus drivers. The input to these
drivers are the Data Multiplexer (OMX), and
U BCA CPBSY B H, which gates the OMX outputs
onto the Unibus. CPBSY generates BUS BBSY L
during a Unibus transaction (refer to Chapter 5).

The inputs to the OMX (data outputs to the
Unibus) are:

a. The Bus Register (BRA), which is used
as the data output of the processor to
Unibus devices. BRA is always selected
during a processor DATO.

b. The Control Registers: PS (Processor
Status word), SL (Stack Limit), PI R and
PIA (Program Interrupt), PB (Program
Break). When explicitly addressed (by
Unibus address), these registers are read
by the program from the Unibus during
a processor DA TI.

c. During any DA TI other than those dur
ing which the processor reads the Con
trol Registers, the output of the D MX is
0. This is because the data is coming
from a Unibus device and the processor
data lines must not be asserted.

The high order byte of the OMX corresponds to
BUS D(15:08) and is enabled by TMCD HI BYTE
EN H: the low order byte corresponds to BUS
D(07:00) and is enabled by TMCD LO BYTE EN
H. When these signals are not asserted, the corre
sponding outputs of the OMX are not asserted
(low). 1 n the case of the Control Registers (PS, SL,
Pl R and PIA, PB), one or the other, or both, of
these signals are asserted when an internal address
is decoded (SCCE INTERNAL ADRS H) by Mem
ory M anagcmcnt and a Unibus transaction has
hccn started (UBCA MSYN SET H). Both signals
arc asserted in the case of the BR (DATO =
TMCD Cl BL).

The select signals (TMCD OMX SI H and SO H)
arc enabled hy U BCA MSYN SET H and the nega
tion of TMCD CI B L (=DA TI). The combination
or select signals for each register is determined by
register address decoding on drawing SCCE. If
none or the Control Registers are selected, both se
lect signals arc low and the BR is selected.

During a DATO, both OMX SI H and SO H are
low (CI L is low) and the BR is selected.

Tahlc 2-8 shows the selection of data outputs to the
lJ nihus.

11-2-19

2.3.3 Bus Register A (BRA)
PDRA BR(15:00) A H transmits data to the Cache
Memory write multiplexer COPE WRITE
M UX(15:00) H, to which the other input is Unibus
data from the Unibus map [MAPA DATA(I 5:00)
H].

The BR is also the input to the Memory Manage
ment registers, and the data input to the Floating
Point Processor.

2.3.4 Display Multiplexer
The Display Multiplexer [PDRF DISP(l 5:00) H] se
lects the input to the Console data display [KNLA
DISP(15:00) H].

The multiplexer select signals (PDRF DISPSI L
and SO L) are the inversion of PDRH DISP DATA
SFLI H and SELO H, which in turn are the en
coded outputs of the Console Data Display switch
(KNLD DISP DATA SELi Hand SELO H).

Tahlc 2-9 shows the register displayed for each
switch position.

Table 2-8
Data Output to Unibus

Unibus SCCE UBCE TMCD PDREDMX
Output INT MSYN Cl* HI LO DMX DMX Input Byte

ADRSH SETH BYTE BYTE St H SOH
ENH ENH

PS H H DATI H H H H A HI,LO

SL H H DATI H L L H c HI

PIR H H DATI H H H L B Hl,LO
PIA

PB H H DATI L H L H c LO

BR L H DATO H H L L D Hl,LO

NONE L H DATI L L L L None None

*NOTE: TMCD Cl BL low= DATO, high= DATI.

Table 2-9
Display Register Selection

Switch Position KNLD DISP Register Displayed
DATA SEL
1H OH

BUS REGISTER L L BR(lS:OO)
DATA PATHS L H SHFR(lS:OO)
DISPLAY REGISTER H L LR(lS:OO)
µADRS FPP/ H H FRMA/B CRAR(7: 1)

CPU H H RACD RAR(7: 1)

11-2-20

The KBl 1-C Processor contains registers which con
trol processor operations or provide information rel
ative to these operations. These registers, which are
listed below, are described in this chapter (in order
of ascending addresses):

Address
17777570
17 777 760
17 777 762
17 777 764
17 777 766
17 777 770
17 777 772
17777774
17777776

Register
Switch and Light Registers
Lower Size Register
Upper Size Register
System ID Register
CPU Error Register
Microprogram Break Register
Program I nterrrupt Request Register
Stack Limit Register
Processor Status Word

Information on Memory Management, Unibus
Map and Cache Registers are contained in Sections
IV through VI of this manual.

3.1 SWITCH REGISTER (SWR) AND LIGHT
REGISTER (LR)
The Switch Register is the output of the Console
switches. It shares address 17 777 570 with the
Light Register, whose input is the BR and whose
only output is the Console Display indicators
through the Display Multiplexer when the Console
Data display switch is in the DISPLAY REGIS
TER position.

CHAPTER 3
PROCESSOR CONTROL REGISTERS

The SWR is read-only and the LR [PDRB
LR(l5:00)] is write-only. They are both described in
Section III of this manual.

3.2 LOWER SIZE REGISTER
This read-only register [SCCN SYS SIZE(2I:14),
bits 13:06 are all Is] specifies the memory size of
the system. It indicates the last addressable block of
32 words in memory (the high order byte indicates
the number of 8K blocks of available memory
minus I). It is used by Memory Management to de
termine the validity of an address. It is read on tht:
Internal Data Bus (INTO) at address 17 777 760
(bit 0 is equivalent to bit 6 of the Physical Ad
dress). Refer to Section IV, Memory Management.

3.3 UPPER SIZE REGISTER
Th is register is an extension of the system size,
which is reserved for future use. It is read-only and
its contents are always read as zero. Its address is
17 777 762. It is read on the Internal Data Bus
(INTO).

3.4 SYSTEM ID REGISTER
This read-only register [SCCN SYS ID(l 5:08),
SCCM SYS 10(07:00)] contains information
uniquely identifying each system. Its address is 17
777 764. It is read on the Internal Data Bus
(INTD).

11-3-1

3.5 CPU ERROR REGISTER
The CPU Error Register (Figure 3-1) is a read-only
register, consisting of six bits which identify the
source of the abort or trap that used the vector at
location 4. These bits, which are set when the error
occurs, are:

Bit

7

6

5

4

3

2

Name

Illegal Halt

Odd Address
Error

Non-existent
Memory

Unibus
Timeout

Yellow Zone
Stack Limit

Red Zone
Stack Limit

15

Function

Set when trying to execute a
HALT instruction when the
CPU is in User or Supervisor
mode (TMCD ILL HALT).

Set when a program attempts
to do a word reference to an
odd address (TMCD ODD
ADRS).

Set when the CPU attempts to
read a word from a location
higher than indicated by the
System Size register. This
does not include Unibus ad
dresses (TMCD CACHE
NEXM).

Set when there is no response
on the Unibus within approxi
mately 10 microseconds
(TMCD UBUS TIMEOUT).

Set when a yellow zone trap
occurs (TMCD YEL TRAP).

Set when a red zone trap
occurs (TMCD SL RED ERR).

8 7 6 5 4 3 2 I 0 · ... >~ I l __ L_LJ.I~i£?J
ILLEGAL HALT r J J J_J ODD ADDRESS ERROR----------~
NON-EXISTENT MEMORY(CACHE) -------·
UNIBUS TIME-OUT-----------
YELLOW ZONE STACK LIMIT __ : ___ _
RED ZONE STACK LIMIT

Figure 3-1 CPU Error Register

11-3-2

The CPU Error Register cannot be loaded by the
program. It is read via the Internal Data Bus
(INTO) at address 17 777 766. The individual bits
of this register remain set until they are cleared by
a DA TO. The several bits of this register are de
scribed in Chapter 6.

3.6 MICROPROGRAM BREAK REGISTER
(PB)
The Microprogram Break Register (PB) is intended
for use as a maintenance tool. When the processor
is being operated under the control of the mainte
nance card, the processor can be halted during any
specific microprogram state by loading the address
of that state in the PB and setting the switches on
the card to the proper positions. A sync point that
generates a pulse at Tl (when the microprogram ad
dress matches the contents of the PB) is provided
on TIG B. During normal operation of the pro
cessor, any value can be loaded into the PB without
affecting operation of the processor.

The PB is loaded directly from the BR whenever
the PB address is generated during an external data
transfer; refer to Chapter 5. The PB is an 8-bit regis
ter that is loaded from the eight least-significant
bits of the BR. When the PB is read, the data must
be transferred through the OMX to the BR by a
Unibus data transfer operation. The PB is selected
by physical address 17 777 770.

The PB [PD RC PB(07:00)] and its use are de
scribed in detail in Chapter 4 of this manual.

3.7 PROGRAM INTERRUPT REQUEST REGIS
TER (PIRQ)
The Programmed Interrupt Request register (Pl RQ)
allows a program to schedule the execution of vari
ous subprograms according to a priority scheme,
and at the same time, allowing various levels of
hardware interrupt priority to interact with the soft
ware priority levels. The register stores interrupt
requests set by transferring request data to the
Pl RQ, and provides information about the requests
through encoded data transferred from the PIRQ.
Ref er to Figure 3-2.

15 9 8 7 5 4 3 I 0

Figure 3-2 Program Interrupt Register

Data is transferred to the PIRQ through the BR
whenever the processor recognizes that the physical
address is the address assigned to the PIRQ (ad
dress 17 777 772). The contents of the PIRQ are
then input to the priority arbitration logic of the
processor, which uses the information from the
Pl RQ with information .from the Unibus and the
PS priority level to determine when requests should
be honored.

The data in the Pl RQ can be transferred to other
devices or to other registers in the processor by ad
dressing the Pl RQ during an external data transfer.
Because the only outputs from the Pl RQ are to the
OMX (Unibus Data Multiplexer), all transfers
which access the PIRQ are Unibus data transfers.
Refer to Chapter 5.

PIRQ [PORO PIR(l5:09)] and PIA [PORO
PIA(02:00)] are described in Chapter 6 of this
manual.

3.8 STACK LIMIT REGISTER (SL)
Because the number of locations occupied by a
stack is unpredictable, some form of protection
against the stack expanding into locations contain
ing other information must be provided. If the pro
cessor is operating in Kernel mode, the processor
provides for stack overflow detection through the
USC or the Stack Limit register (SL). Refer to Fig
ure 3-3.

[.
8 7 0 - 11-3099

Figure 3-3 Stack Limit Register

The SL is an 8-bit register that is loaded from the
eight most-significant bits of the BR whenever the
SL is selected by the physical address generated in
an external data transfer. This requires address 17
777 77 5 during a byte transfer, or address 17 777
774 during a word transfer. The data is transferred
directly from the BR to the SL; refer to Chapter 5.
To read the contents of the SL, however, the SL
must be selected by the OMX and the data trans
ferred from the Unibus to the BR. This requires a
Unibus data transfer operation. Although the SL
and the PB registers share a common OMX input,
each register uses a different byte, and only one set
is selected at a ti me. Therefore, when the SL is
transmitted on the eight most-significant data lines,
all Os are transmitted on the eight least-significant
data lines.

The SL [PDRC SL(07:00)] and the stack limit
check operations are described in detail in Chapter
6.

3.9 PROCESSOR STATUS WORD (PS, PSW)
The Processor Status Word [PORO PS(l 5:00), Fig
ure 3-4] contains information regarding the pro
cessor mode (both current and previous), the
register set currently in use, the processor priority,
the Trace bit and the Condition Codes. Table 3-1
lists the fields of the PSW. The address of the PS is
17 777 776.

15 14 13 12 11 10 8 7 5 4 3 2 1 0

j j j NOT USED PRIORITY jr [_~J z J vTc-)
~

~~~~~~i~~~E··_J f 
GENERAL REGISTiR 
SET(0,1)-----~ 

' MODE: 00 •KERNEL 
01 •SUPERVISOk 
11 •USER 

Figure 3-4 Processor Status Word 

Refer to drawing PD RD. The PS stores several 
types of data that are dependent on the process 
being performed. This data must be stored when
ever the processor changes processes; typically, this 
occurs every time there is an interrupt or a trap. Be
cause the contents of the PS control many parts of 
the operation of the processor, modifications of the 
contents are carefully controlled. 

11-3-3 



Bit Name 

15-14 Current Mode 

13-12 Previous Mode 

11 Register Set 

10-08 Unused 

07-05 Priority 

04 Trace 

Condition Codes: 

03 N 

02 z 

01 v 

00 c 

Table 3-1 
Processor Status Word Bit Assignments 

Utilization 

Specifies the current processor mode as follows: 

1. When PS(15: 14) = 00, the processor is in Kernel mode; all opera
tions are legal. 

2. When PS(15:14) = 01, the processor is in Supervisor mode; HALT, 
RESET, and SPL instructions are illegal; SUPER address space is 
used if Memory Management is enabled. 

3. PS{l 5 : 14) = 10 is an illegal mode; if Memory Management is 
enabled, a Memory Management abort occurs (refer to Section IV 
of this manual). 

4. When PS(15: 14) = 11, the processor is in User mode; HALT, 
RESET, and SPL instructions are illegal; USER address space is 
used if Memory Management is enabled. 

Specifies the processor mode prior to the last trap, interrupt, or loading of the 
PS. 

Specifies which General Register set is used; if PSl 1 = 0, register set 0 is 
selected; if PSl 1 = l, register set 1 is used. 

Unused 

Sets the processor priority; this priority determines which levels of programmed 
and external device interrupt requests are honored. 

When PS04 = l, the processor traps to the trace trap vector address after each 
instruction fetch; this facility is used for debugging'programs. 

This bit is set when the result of the last data manipulation is negative. 

This bit is set when the result of the last data manipulation is 0. 

This bit is set when the result of the last data manipulation is incorrect because 
of an arithmetic overflow. 

This bit is set when a carry occurs during data manipulation. 

II-3-4 



The four fields of information in the PS are: 

1. Processor condition codes 

2. Trace (T) bit 

3. Processor priority 

4. Processor mode control and register set 
selection bits 

Some of the PS bits control the operation of the 
processor, while others indicate the value of the re
sult of the last data manipulation operation. 

In addition to accepting inputs from the BR, the 
PS receives inputs from the condition-code gener
ation logic. In certain circumstances (the current 
mode field replaces the previous mode field), some 
hits of the PS also receive inputs from other bits of 
the PS. The outputs from the PS during data trans
fers can be directed to the processor data paths 
through the BR [by selecting the PS inputs to the 
internal hus (I BS) and the JBS inputs to the 
BR MX ], or directed to the Unibus through the PS 
inputs to the Data Multiplexer (DMX). The JBS 
path is used only for data transfers that implicitly 
select the PS, such as the stacking operations dur
ing interrupt and trap service sequences. When the 
PS is addressed explicitly, the data is transferred on 
the Unibus, even if the transfer is to the processor 
data paths (through the BR). 

3. 9.1 Reading the PS 

1. Implicit reference - The PS word can be 
gated to the Internal Data Bus by 
PDRD READ PS H, which is generated 
by a microprogram JBS field value of 3. 
This vafue is used in microstates 
RSD.00, RSD.O 1, RSD.02, BRK.20, 
BRK.80, TRP.00, TRP.01, TRP.02, and 
H L T.00 to get the current PS into the 
BR. This is shown on the Flows by 
BR-PS. 

2. Explicit reference - The PS word can be 
read by the program with a reference to 
address 17 777 776. In this case, the 
PSW is gated onto the Unibus, from 
where it is read during a DATI by the 
processor. 

3.9.2 Loading the PS 
All used PS bits, with the exception of bit 04, (the 
T bit) can be written by the program when the PS 
address (17 777 776) is used (SCCE PS ADRS His 
asserted). In this case, the input is BR(l5:00) and 
the clock is a function of MSYN and of UBCB HI 
BYTE and LO BYTE. These signals are both as
serted if the PS is referenced as a word. 

I. The Control Codes (bits 03:00) are 
shown on IRCH and are clocked by 
UBCB CC DATA. 

2. The Priority bits (07:05) are clocked by 
TMCE CLK LO PS. 

3. The Processor Mode bits and the Regis
ter Set bit ( 15: 11) are clocked by TMCF 
CLK HI PS. 

The PS may also be loaded under microprogram 
control (implicit reference). Since the loading logic 
varies from bit to bit, it is explained with each bit 
group. 

3.9.3 Processor Mode Bits [PS( 15:12)] 
The current processor mode is stored in PS(l5:14) 
and the processor mode previous to the current one 
is stored in PS(I3:12). 

If the current mode is other than Kernel, the 
HALT, RESET and SPL instructions are illegal: A 
HALT in Supervisor or User modes causes a trap 
to 4: RESET or SPL in these modes are NOPs. 

When Memory Management is enabled, the mode 
bits affect PAR /PD R selection, and thus the phys
ical address generated from the virtual address. Re
fer to Section IV, Memory Management. 

11-3"'.5 



3.9.4 Current Processor Mode [PS( 15:14)) 
The Current Processor Mode bits determine 
whether certain instructions are allowed or prohib
ited. The processor mode can be set by moving a 
data word to the PS at its Unibus address, or 
through a trap or interrupt service function (which 
loads a new PS value from the trap or interrupt vec
tor), or through an RTI or RTT instruction (which 
restores an old PS from the hardware stack). In this 
last case, PS( 15: 14) can only be changed to a higher 
value (i.e., these bits can only be set and not 
cleared). This allows a Kernel mode program to re
turn to Kernel, Supervisor, or User mode; a Super
visor mode program to return to Supervisor or 
User mode; and a User mode program only to re
turn to User mode. A User or Supervisor mode pro
gram cannot use the RTI instruction to enter the 
·Kernel mode. When a new PS is loaded from the 
trap or interrupt vector, the old contents of PS 15 
and PS 14 are loaded into PS 13 and PS 12. 

When Memory Management is enabled, the current 
processor mode selects the mapping for the virtual 
machine, except for trap and interrupt processing. 
Supervisor and User programs shou Id not be al
lowed to change the contents of this field. If the cur
rent processor mode is changed, the. mapping 
registers in Memory Management are selected by 
the set for the new mode. The result of attempting 
to continue with the same PC value in the new vir
tual address space is unpredictable. 

The entire PS word can be protected from direct 
transfers by being mapped only into Kernel address 
space. Refer to Section IV. 

PS bits PSI 5 and PSl4 control and indicate the cur
rent processor mode. The source of input data is al
ways BRISA and BRl4A, whether the PS is loaded 
by an RTT or RTI instruction, or if a new PS is 
loaded from a trap or interrupt vector, or explicitly 
referenced. 

3.9.5 Previous Processor Mode [PS( 13:12)] 
The previous processor mode is used primarily by 
the M FP and MTP instructions to define which ad
dress space to communicate with. During User 
mode operation, these bits are set to reflect User 
mode, so that the User program cannot move data 

11-3-6 

into or out of any other address space. During trap 
or interrupt service, these bits are set to reflect the 
value contained in the current mode bits prior to 
the interrupt or trap. In this case, a KERNEL 
DATI data transfer is used to fetch the new PS 
value from the vector address; this causes bits 13 
and 12 of the PS to be loaded from the old value of 
bits 15 and 14 instead of from BR(l3:12). 

During the return from a trap or interrupt service 
program (via an RTI or RTT instruction), the old 
PS value is restored from the stacked value. The 
previous mode bits are protected in the same way 
as the current mode bits. 

3.9.6 PS( 15:12) Implicit Write 
Refer to Figure 3-5. PS( 15: 12) can only be set, and 
not cleared, by their direct-set inputs; they can be 
both set and cleared when they are clocked. They 
arc clocked only in three machine states (R Tl.50, 
SVC.30 and ZA P.30) when appropriate conditions 
exist. 

When JBS = 2 (LOAD PS) bits 15 - 12 are direct
set if the BSC bits do not require a KERNEL 
DA TI and if the corresponding DAT A input is 
high. These bits cannot be cleared in this manner. 

JBS = 2 clocks PS( 15: 12), thus allowing bits to be 
cleared, when one of three conditions are present: 

I. 

2. 

3. 

PS 14 = 0, or the mode is Kernel. This is 
used during RTI and RTT instructions 
when JBS = 2 in R Tl.50. 

TMCE KERNEL DATI, which is as
serted during the service flows (abort, 
trap and interrupt service, see Chapter 
6). IBS = 2 is asserted during SVC.30, 
when the PS is loaded from the BR. 

SSRA PS RESTORE is asserted when a 
Memory Management abort occurs dur
ing the service flows. When this hap
pens, the PC and PS of the instruction 
that caused the abort are restored before 
servicing the Memory Management 
abort. In ZAP.30, JBS = 2 and the old 
PS value is loaded back into the PS. 



RACB UIBS01 H---.-----. PORO LOAD PS H 

PDRB IBS~0 B L------.----t 

*CLOCK-SEE TIMING 
DIAGRAM BELOW --+--+~ 

PORO PS14 <0> L RTI. 50 

TMCE l<ERNEL DATI L SVC. 3o 

SSRA PS RESTORE H 

UBCB HI BYTE H-----. 

**DATA-REFER TO TEXT-~---1 

IMPLICIT 
REFERENCE 

.....__ ______ D 

PORO PS CLK H PS 
.... (15:11) 

::.~•------tC 
~~PS14 ONLY PORO 

EXPLICIT 
REFERENCE 

UBCB MSYN SETH------
TMCF CLK HI PS L 

T4H__ll__ 

T5H ______jL_ 

DIRECT-SET PS14 

CLOCK PS14 

{
DIRECT-SET PS15, 13, 12 
CLOCK PS15, 13, 12 

11-3112 

Figure 3-5 PSW Clock and Direct Set Simplified Schematic 

Ref er to drawing PD RD. Figure 3-5 shows the 
DATA input to PS(l5:12). This input is BR(l5:12), 
except in the case of KERNEL DATI. When KER
NEL DATI is asserted, bits 15: 14 are clocked from 
BR(l5:14) and bits 13:12 are clocked from 
PS(l5:14). The new processor mode is thus loaded 
into PS( 15: 14) and the old processor mode into 
PS(l3:12). 

3.9.7 General Register Set Bit (PSI 1) 
PS 11 indicates that General Register Set 0 is in use 
(when cleared), or that General Register Set I is in 
use (when set). 

The input to PSI I is BRI IA. This bit is loaded in 
the same manner as PS 15 (Paragraph 3.9.6). 

3.9.8 Priority [PS(07:05)] 
The proeessor priority is stored in PS(07:05). The 3-
hit priority field is interpreted as one of eight prior
ity levels. This level is compared with other 
requests for control of the system. These requests 

can be external to the processor, in the case of 
Unibus requests (BR), or internal, in the case of 
Program Interrupt Requests (PIR). In general, the 
purpose of requesting control of the system is to in
terrupt the current processor program and to run a 
service routine or higher priority program before re
turning control to the interrupted program. Refer 
to Chapter 6 for a description of the priority 
scheme. 

The processor priority level may be set by directly 
transferring data to the PS, by popping a new PS 
from the hardware stack, or by loading the PS 
from an interrupt or trap vector. In addition, the 
processor priority may be explicitly set by the set 
priority level (SPL) instruction. 

Refer to drawing PORO. PS(07:05) are clocked in 
a manner similar to the mode bits (Paragraph 
3.9 .6 ), but are not direct-set. The 74S 157 multi
plexer selects the input: in all cases, except during 
an SPL instruction, the input is BR(07:05),while 

11-3-7 



during the SPL the input is BR(02:00) A, which cor
responds to the position of the new priority bits in 
the instruction word. TMCE SET PRIORITY H 
(MSC = 4) controls the multiplexer and gates the 
clock. 

In User or Supervisor modes, the processor priority 
can only be changed by a transfer to the explicit ad
dress of the PS ( 17 777 776). This is possible only if 
Memory Management mapping allows it. 

3.9.9 Trace Bit (T Bit, PS04) 
The Trace (T) bit is provided as a software diagnos
tic aid. When this bit is set, a processor trap will be 
vectored through location 14. This trap occurs at 
the end of the instruction that is being performed 
when the T bit is being set, unless: 

I. The instruction is a Return From Trap 
( RTT) instruction. In this case, the trap 
is delayed until the end of the following 
instruction. 

2. 

3. 

The instruction is a Set Priority Level 
(SPL) instruction. No BRQ STROBE is 
generated during the execution of an 
SPL. 

Some other trap or interrupt condition is 
honored. In this case, the PS containing 
the T bit is pushed onto the stack and 
all Trace operations are deferred until 
the PS word is popped off the stack at 
the end of the trap or interrupt service 
routine. 

The T hit cannot be set by moving data to the PS: 
the only way the T bit can be set is by popping a 
word off the hardware stack with bit 4 set. This can 
be done with an RTI, an RTT, or any trap instruc
tion (TRAP, JOT, BPT or EMT), even when the 
processor is not in Kernel mode. The purpose of in
hibiting other methods of loading the T bit is to 
protect the user from inadvertently setting the T bit 
while changing the processor priority or condition 
code...;. 

The presence of the T bit precludes the use of 
FXC.80 hy E/class*DMO instructions, since the T 
hit is a trap request. EXC.90 is executed in this 
case. 

11-3-8 

3.9. IO Condition Codes 
The four least-significant bits of the PS word con
tain the processor condition codes. These bits store 
information about the value resulting from any 
data manipulation during an instruction. The condi
tion codes are not altered to reflect the results of ad
d n;ss calculations, but are changed only when an 
instruction explicitly operates on an explicit unit of 
data. 

The condition codes can also be set to any specific 
value hy transferring a word containing that value 
to the PS address. The value of the condition codes 
arc altered by every interrupt or trap response func
tion. and by every RTI and RTT instruction. In ad
dition. individual condition-code bits may be 
manipulated directly, with the condition-code oper
ate instructions. These instructions provide a means 
to set any one, or more, of the condition codes 
with a single instruction that requires only one 
memory reference: a similar set of instructions can 
clc;1 r any one or more bits. The condition codes are 
used in conditional branch instructions, so the vari
ous means of manipulating the condition codes are 
useful because they permit setting up the PS word 
to respond in a particular way to various branch 
instrLICti()nS. 

The logic that senses data conditions and stores the 
selected indications is on the IRC module and is de
scribed in Chapter I: the gates that control the read
ing of the condition codes onto the internal data 
bus arc shown on drawing PDRD. When the PS is 
explicitly addressed at physical address 17 777 776, 
the data transfer is on the Unibus: the internal bus 
is used only under direct microprogram control. 

The condition codes are loaded automatically with 
the results of most data manipulations. In addition, 
the codes can he manipulated by a microcoded in
st ruction that can set or clear individual condition 
code bits. Any operation that transmits data 
directly to the processor status word inhibits the set
ting or the condition codes, because the data trans-
111 ittcd is loaded into PS(OJ:OO) directly. This is 
done for move instructions that address the PS, 
RTI instructions that pop a value off the hardware 
stack into the PS, or interrupt service sequences 
that load the PS from the interrupt vector. 



The Timing Generator supplies the clock signals 
which control the various operations of the KBl 1-C 
Processor System. The M8 I 39 module contains all 
the components of the Timing Generator. 

Refer to Figure 4-1. The synchronizer selects one of 
three clock sources: A 33 MHz crystal clock, an 
R/C maintenance clock (variable) or a pulse gener
ated by a manual stepper switch. The selected clock 
signal is routed through a phase splitter /buffer, the 
output of which consists of two 180° out-of-phase 
ciock signals. These two signals are buffered again 
and are called TIGC TPB H, TPB L, TF H and TF 
L. TPB H and TF H are identical and are 180° out 
of phase with TPB L and TF L, which are also 
identical. 

Separate TPB and TF pulses are provided to sepa
rate the timing source required by the TIG module 

PAR. 4.1 

I 
SOURCE 
CLOCKS 

XTAL CLOCK 

33 MHz 

PAR.4.2 a 4.3 

~ 
SYNCHRONIZER 

AND PHASE 
SPLITTER 

PAR. 4.4. 

CHAPTER 4 
TIMING GENERATOR 

(TPB) from that required by the other modules. A 
TF failure does not stop the clock. 

The TPB pulses drive a five-stage ring counter, the 
output of which generates gates to generators for 
time pulses Tl - T5 and for time states TS I - TS5. 

The ring counter is generally stopped during a 
pulse cycle to allow the data transfer operation in 
progress to accept the data. It is stopped in T2 for 
Unibus, Internal Data Bus, interrupt and mainte
nance operations, and in T5 for Cache operations. 
The ring counter is also stopped during mainte
nance operations such as single cycle. 

4.1 CLOCK SOURCES 
The three sources of timing are the crystal clock, 
the R/C clock, and the MAINT STPR switch SO 
(on the maintenance card). These timing sources 
arc shown on drawing TIG B. 

STOP CLOCK 
Cl RCUITRY. 

PAUSE CYCLES 

TIGA 

PAR. 4.8 a 4.9 

PAR. 4.5 

RING COUNTER 

BUFFERED 
TIMING 

PULSES 

RIC CLOCK 

MAINTENANCE 
STEPPER SW. 

XMAA S4 

TIGB 

(SELECTS ONE 
OF THREE 

SOURCE CLOCKS) 

TIGl8 

TPB H 
TPB L 
TF H 
TF L 

TIGC 

TIGC. TIGD 

Figure 4-1 Timing Generator Block Diagram 

11-4-1 

PAR.4.7 

TIME STATES 
TSl-TS5 

TIGE 

11-3116 



4.1.1 Crystal Clock 
The crystal clock provides a constant square wave 
output of 33 MHz. The oscillator frequency is deter
mined by the LC tuned-collector network and is 
stabilized by the crystal connected between emit
ters. The bias network in the base circuits ensures 
that the oscillator will start when + 5 V is applied 
to the module. The amplified output, TIG B XT AL 
H, is a + 3.5 to 0 V square wave with a 30-ns 
period. 

4.1.2 R/C Clock 
The R/C clock is provided for maintenance pur
poses and can be enabled only when the mainte
nance card is plugged into the CPU backplane. The 
frequency of the square wave output, TIG B RC H, 
can be adjusted as high as 37 MHz by varying po
tentiometer RI 04 in the RC feedback network. 
Thus, the clock pulse period can be narrowed to ap
proximately 27 ns to test for race conditions in the 
logic. 

4.1.3 MAINT STPR Switch 
The third source of timing is the manually-oper
ated, single-step MAINT STPR switch S4, located 
on the maintenance card. This switch is only en
abled when maintenance card switches S2 and S3 
are both set to I. Each operation of S4 creates one 
transition of a given timing pulse. It therefore re
quires two actuations of S4 to complete a given 
time pulse. 

4.2 SOURCE SYNCHRONIZER 
The timing source synchronizer is shown on draw
ing TIGB. The purpose of the source synchronizer 
is to select only one timing source at any time and 
to inhibit the two remaining sources. The synchro
nizer prevents cycles of improper length and en
sures that TIGB SOURCE CLOCK L is in the 
high (non-asserted) state when switching between 
sources. Timing source selection is determined by 
the setting of switches SI, S2, and S3 when the 
maintenance card is plugged in. If the maintenance 
card is not installed, the crystal clock is the only 
source of timing. The following paragraphs describe 
timing source selection when the maintenance card 
is plugged in. 

4.2.1 Crystal Clock Selection 
When maintenance carq switch S3 is not set, 
XMAA S3 L is high. When the RC EN and MS 

EN flip-flops are not set, the XTAL SYNC flip
flop is set. With maintenance card switches SI and 
S2 equal to 0, MS EN will be cleared, as will RC 
SYNC and RC EN. Therefore, XTAL SYNC is set 
and the source multiplexer output, TIG B SOURCE 
CLOCK L, will follow the XTAL H input. 

Note that the XT AL EN flip-flop inhibits the 
maintenance module switch S3 inputs to the RC 
EN flip-flop. Therefore, the XTAL SYNC flip-flop 
must be cleared before a timing source change can 
be accomplished. The RC EN and MS EN gating 
input to the XT AL SYNC flip-flop ensures that 
these sources have been disabled before XTAL EN 
is allowed to gate the XT AL H pulse through the 
source multiplexer. 

4.2.2 RC Clock Selection 
The RC clock is selected as the timing source when 
maintenance card CLK switch S3 is on RC, and S2 
and SI are both set to 0. When the XMAA S3 Lin
put is low, the RC SYNC flip-flop will be set. As a 
result, the RC EN flip-flop will be set and the 
source multiplexer output, TIGB SOURCE 
CLOCK L, will then follow the TIG B RC H input. 
TIGB XTAL EN (0) H and TIGB MS EN (0) H 
arc fed back to inhibit TIG B RC SYNC D inputs 
to ensure that the enable flip-flops are cleared be
fore the timing source can be changed. 

4.2.3 MAINT STPR Selection 
The maintenance card S2 and SI switches are both 
set to I to allow single timing pulses to be gener
ated by MAINT STPR switch S4. The XMAA SI 
Land XMAA S2 L inputs are both low. The result
ant input to the MS EN flip-flop D input causes 
the nip-nop to be set. On the following TIG B 
XTAL 1-1 and TIGB RC H clock pulses, the XTAL 
SYNC and RC SYNC flip-flops will be reset. Suc
ceeding clock pulses will then reset the XT AL EN 
and RC EN flip-flops. MS EN (I) H is A NDed 
with STEP (I) H to assert the TIG B SOURCE 
CLOCK L output of the source multiplexer. Each 
time the MAINT STPR switch S4 is operated, the 
STEP flip-flop toggles. The MAINT STPR switch 
must be actuated twice to complete a single TIG B 
SOURCE LOCK L output pulse. Removing the S2 
or SI input conditions the MS EN flip-flop to be 
cleared. MS EN (0) L direct-clears STEP to condi
tion it for the next time the ING TP function is 
selected. 

II-4-2 



4.2.4 Synchronization 
A feature of the source synchronizer is that the out-, 
put level is maintained high (non-asserted) while 
the timing source is being changed. The timing dia
gram in Figure 4-2 shows the TIG B SOURCE 
CLOCK L output as the maintenance card CLK 
switch is changed from XTAL to RC. With the 
XMAA S3 L input low (RC clock selected), the 
XT AL SYNC flip-flop is cleared on the next TIG B 
XT AL L clock pulse going low. 

One XT AL H clock pulse later, XT AL EN will be 
cleared, enabling the D input to the RC SYNC 
flip-flop. The next time TIG B RC H goes low, RC 
SYNC will be set. The difference in XTAL H and 
RC H pulse widths is exaggerated in Figure 4-2 to 
indicate that the clock pulses are completely 
indcper1dent. 

Note that the SYNC and EN flip-flops are clocked 
on the trailing edge of the source locks so that the 
gating level to the source multiplexer is always re
moved as the clock input is non-asserted. This pro
vides a clean leading edge for TIGB SOURCE 
CLOCK L. Note also that only half a clock period 

TIGB XTAL H 

TIGB XMAA S3 L 

TIGB XTAL SYNC 

TIGB XTAL EN 

TIGB RC H 

TIGB SOURCE 
CLOCK L 

is available for the enable flip-flop to change states 
and gate the associated clock source through the 
multiplexer. 

4.3 PHASE SPLITTER/BUFFER 
The Phase Splitter/Buffer, shown on drawing 
TIGB, is driven by TIGB SOURCE CLOCK L 
from the source synchronizer to produce timing 
pulse outputs TIGB CLOCK Land TIGB CLOCK 
H. The TIGB CLOCK L output pulses are in 
phase with TIGB SOURCE CLOCK L. 

4.3.1 Level Converter 
Transistors Q65 and Q66 convert the TIB 
SOURCE CLOCK L output to the level required 
at the phase splitter inputs. A low logic input at the 
base of Q65 causes this transistor to conduct, thus 
grounding the common emitter of Q65 and Q66. 
The + V2 reference voltage applied at the base of 
Q66 cuts this transistor off, causing no current to 
flow through Q66 and R 122. Thus, a low input pro
vides a low output. When TIGB SOURCE 
CLOCK L goes high, Q65 cuts off, and the + V2 
ref crence at the base of Q66 allows current to flow 
through Q66 and R 122 to provide a high output. 

11-0788 

Figure 4-2 Timing Source Synchronization 

11-4-3 



4.3.2 Phase Splitter 
The phase splitter consists of two emitter-coupled 
2N 3009 transistors, Q61 and Q62. When TIG B 
SOURCE CLOCK L is not asserted (high), Q61 
turns on. A fixed bias at the Q62 base holds that 
transistor cut off. Under these conditions, the 
TIGB CLOCK H output provided by buffer Q53 
and Q54 is low because Q61 is conducting. Q54 is 
on. 

When TIG B SOURCE CLOCK L starts to go low, 
as the result of a clock pulse, the base of Q61 goes 
negative with respect to the Q62 base. More current 
nows through Q62, causing a greater voltage drop 
across the Q62 collector resistor, R 109-R 111. Less 
voltage is developed across common emitter resist
ors R89-R 96, increasing the forward bias on Q62. 
As a result, when Q62 starts to conduct more cur
rent. Q() I starts to cut off. This circuit is a differen
tial amplifier that responds to slight changes of the 
input signal at high speed. When TIG B SOURCE 
CLOCK L starts to go positive, Q61 turns on and 
Q62 cuts off in the same manner. The switching ac
tion of Q61 and Q62 follows the TIG B SOURCE 
CLOCK L signal with about a I ns difference be
t ween TIGB CLOCK Hand TIGB CLOCK L. 

4.3.3 Buffers 
Each bu ff er stage consists of a 2N3009 and a 
2N4258 transistor. When Q6 I turns off as a result 
of a low source synchronizer output, Q53 is turned 
on and Q54 is cut off. Thus, the TIG B CLOCK H 
output goes high, 180° out-of-phase with the TIG B 
SOURCE CLOCK L input. At the same time, Q62 
turns on and the positive collector cuts off Q5 and 
forward-biases Q56. Therefore, TIG B CLOCK L 
goes I ow in phase with the TI GB SOURCE 
CLOCK L input from the source synchronizer. 

4.4 TIGC TPB AND TF 
The outputs of the Phase Splitter/Buffer, TIGB 
CLOCK H and CLOCK L, are buffered to gener
ate the Time Pulses Buffered, TPB H and TPB L 
and the Free Clock pulses, TF H and TF L. TPB 
H and TF H are in phase with TIGB CLOCK H, 
and arc the complement of TPB L and TF L. 

The TF pulses are used throughout the KBI 1-C for 
synchronization. The TPB pulses are used only on 
the M8 I 39 module. 

TPB H and TF H are driven from CLOCK H; 
TPB L and TF L are driven from CLOCK L. With 
'this exception, the circuits that generate these four 
pulses are identical: when TIG B CLOCK is high, 
the NPN transistors conduct, the PNPs are cut off, 
and the output is high. When TIG B CLOCK is 
low, the NPNs are cut off, the PNPs conduct, and 
the output is low. 

4.5 RING COUNTER 
The Ring Counter is shown on drawing TIGA. It 
consists of the two edge-triggered D flip-flops, TI 
and TI A, of the six J-K flip-flops T2 - T5, T2A 
and T5A, and their associated circuitry. Refer to 
Figure 4-7 for the description that follows. 

Start-Up and Normal Cycle 
The ring counter is cleared by ROM INIT, which is 
asserted on power-up, power-down, and when the 
Console ST ART switch is depressed while the 
HALT /ENABLE switch is in the HALT position. 
T4 is not cleared by ROM INIT directly, but by a 
nip-nop that is set by ROM INIT. When ROM 
IN IT is negated, the trailing edge of the next TPB 
L clears this flip-flop. 

When the ring counter has been cleared, the J input 
of T4 is high [TS (0) H, T2 (0) H and TIA (0) H 
arc all high] and the next TPB sets T4. 

It should be noted that the D flip-flops (TI and 
TI;\) are clocked by the trailing edge of TPB L, 
while the J-Ks are clocked by the trailing edge of 
TPB H. Both of these trailing edges occur at the 
same time. 

The next TPB after the one that sets T4, sets T5 
and T4 complements (both J and K high) and is re
set. If TIGA STOP TI L is high, the next TPB com
plements T5 (resets it) and sets Tl. T5 (0) H is now 
high and asserts STOP Tl L. The TPB that follows 
clears TI and sets T2 but, since the common input 
to T2-K and T3-J is low at this time [due to T2 (0) 
H] T3 is not set. T2 (0) H is now low, and the next 
TPB toggles T2 (clears it) and sets T3. T5 (0) H, T2 
(0) H and TI A (0) H are all high, thus allowing T4 
to be set as T3 toggles. 

11-4-4 



The ring counter flip-flops are used to gate the tim
ing pulses TI - T5. Note that there are two T2 and 
two T5 flip-flops. In both cases, the second flip-flop 
(T2A and T5A) is used to generate its correspond
ing timing pulse. These flip-flops are used to pre
vent the generation of more than one timing pulse 
(T2 or T5) during Pause cycles: T2A and T5A are 
reset by the TPB H following the one that sets 
them, while T2 and T5 remain on for the duration 
of the Pause. 

4.6 TIMING PULSES, Tl-TS 
The switching times of the flip-flops used in the 
ring counter are not very precise; therefore, the flip
flop states are not used directly for processor tim
ing. Instead, high-speed transistors are used to gen
erate the timing pulses. The timing pulse generator 
schematics are shown on drawing TIGC and 
TIGD. 

Each of the timing pulse generators gates the Phase 
Splitter /Buffer clock output, TIG B CLOCK H or 
L with a ring counter output to generate the tim
ing pulse associated with that state. Figure 4-3 
shows how T5A {I) H and T5A ( O L are gated 
with CLOCK H and CLOCK L to provide the T5 
H and T5 L timing pulses. 

Note on drawing TIGC that the TIGB CLOCK H 
and L signals are carried by two separate lines to 
the timing pulse drivers; these lines are terminated 
at the TIGD T5 L circuits by diode terminators 

TIGB CLOCK L 

TIGB CLOCK H 

TIGA T5A (1) H ____ ... ~6.J 

and at T5 H by a 33 ohm resistor to ground. These 
lines are transmission lines, designed to guarantee 
the integrity of the CLOCK H and CLOCK L sig
nals from the phase splitter to the intended pulse 
generator. 

The + V and -V voltages shown on the schematics 
are taken from diode dividers shown on TIG B for 
+VS to +VI and on TIGE for V3 to -VI. 

Since the circuits for T(I :5) H are identical, as are 
those for T( I :5) L, only the T5 schematics are ex
plained below. 

Figures 4-4 and 4-5 are simplified schematics of 
TIGD T5 H and L, respectively. Q53 and Q54 on 
the first figure and Q55 and Q56 on the second, are 
the output of the Phase Splitter /Buffer, TIG B 
CLOCK H and L. The diode terminators are se
lected to produce a pulse amplitude of approx
imately 0 to +3.0 V for T5 H and of approximately 
+ 3.0 to 0 V for T5 L. Q32 and Q50 are not shown 
on Figures 4-4 and 4-5. These transistors are turned 
off when TIGA T5A is asserted, thus allowing Q31 
and Q49 to conduct. Q32 and Q50 conduct when 
TIG A T5A is negated and turn Q3 I and Q49 off. 

NOTE 
The voltages shown on Figures 4-4 and 4-5 are ap
proximate. They are based on a diode voltage drop of 
0.7 v. 

L TYPICALLY_J 
I 30ns I 

TIGD T5 H --------

TIGA T5A.(1)L 

TIGD T5 L 

11-0766 

Figure 4-3 Timing Pulse Generation 

11-4-5 



4.6.1 TS H 
Ref er to TI GD and to Figure 4-4(a). The output 
transistor pair, QI and Q2, is arranged to give a 
push-pull type output. Diode D2 between the two 
bases, along with the resistor network consisting of 
Rl2 (15K to +15 V) and RIO (3K to -15 V), biases 
the transistor pair QI and Q2 so that a small volt
age change at the base input turns one transistor on 
and the other off. This arrangement has the effect 
of reducing the propagation time from the CLOCK 
H signal to the output time pulse TIGD T5 H. 
Diode DI clamps the bias at a level such that T5H 
is at approximately 0 V when either CLOCK H is 
low or the gate transistor Q3 l is off. Diode D3 pre
vents the bias circuit from saturating Q2 by clam
ping the signal to + V5, or approximately 4 V. 

When TIGA T5A (I) H is low, Q32 conducts and 
Q3 I is cut off. When TSA (I) H goes high, Q32 
cuts off. Q31 cannot turn on at this time, since its 
emitter is negative (CLOCK H at approximately 0 
V, determined by the base voltage of Q54) with re
spect to its base (-15 V - D36 to + Y2 = approx
imately +0.7 Y). The voltage at the base of QI is 
approximately -0.7 V and that at the base of Q2 is 
one diode drop more positive, Q2 is off and QI con
ducts: T5 H is low. 

Figure 4-4(b) shows the circuit when TIGB 
CLOCK H goes high. Q54 is now off and Q53 is 
on. The emitter of Q54 is now positive with respect 
to its base and it conducts. The voltage at the base 
of QI and Q2 becomes more positive; QI conducts 
and Q2 is turned off. TS H goes high. 

11-4-6 

+5V 

0V 

+5V 

TIGB CLOCK H 

+V5 +15V 

02 

-0.7V 

01 

-15V 
TIGB CLOCK H 

+ 
TIGA T5 (I) H _r-l__ 

TIGB CLOCK H L_Jl__ 
TIGOT5H~ 

Figure 4-4a 

+V5 

+5V 

10 

33 

11-3113 

+V5 

......+-\\----r----·~-TIGB CLOCK H 

100 

+4.2V 

TIGB CLOCK H 

~33 
+ -::-

TIGA T5 (1) H ~ 

TIGB CLOCK H --uL 
TIGO T5 H __IL 

Figure 4-4b 

11-3114 



Figure 4-4(c) shows the· end of the T5 H pulse. 
TIG B CLOCK H goes low: Q53 turns off and Q54 
turns on. TIGA TSA (I) H goes low and turns Q31 
off. Q21 turns on and the voltage at the base of QI 
and Q2 goes negative, turning Q2 off and QI on, 
thus making TIGD T5 H low. Q2 I sp·eeds this tran
sition by providing a discharge path for the charge 
left in the base bias circuit. 

4.6.2 TS L 
Refer to TIG D and to Figure 4-5(a). The output 
transistor pair, Q 19 and Q20, is arranged to give a 
push-pull type output. Diode D29 between the two 
bases, along with the resistor network consisting of 
R61 (IK to +IS V) and RIO (4.7K to -15 V), 
biases the transistor pair Q 19 and Q20 so that a 
small voltage change at the base input turns one 
transistor on and the other off. This arrangement 
has the effect of reducing the propagation time 
from the CLOCK L signal to the output time pulse 
TIG D T5 L. Diode D30 clamps the bias at a level 
such that T5 L is at approximately +3 V when ei
ther CLOCK L is high or the gate transistor Q49 is 
off. Diode D28 prevents the bias circuit from satu
rating Q 19 by clamping the signal to ground. 

When TIG A T5 (I) L is high Q50 conducts and 
Q·-l9 is cut off. When T5 (I) L goes low Q50 cuts 
off. Q49 cannot turn on at this time, since its emit
ll'r is positive (CLOCK Lat approximately +3.5 V, 
determined by the base voltage of Q55) with respect 
to its base ( 15 V - D49 to + V3 = approximately 
+ 2.8 V). The voltage at the base of Q20 is approx
i nwtely + 3.5 V and that at the base of Q 19 is one 
diode drop more negative. Q20 is conducting and 
Ql9 is off: T5 Lis high. 

11-4-7 

+5V 

9JV 

r.---""'TiGB'CLocKH -- -

031 

02 

-0.7V 

01 

-15V 
TIG B CLOCK H 

+5V 

+V5 

33 r--------. -
054 TIGAT5(1)H_JL 

-V3A 

+5V 

+3.5V 

TIG B CLOCK H UL 
TIGO T5H_JL_ 

049 

Figure 4-4c 

TIGB CLOCK L 

+V4 +15V 

IK 

029 

+2.BV 

028 4.7K 

-15V 
TIGB CLOCK L 

+ 
TIGA T5 (1) L L_f" 

TIGB CLOCK L _ll_J 

TIGOT5L -u 
Figure 4-5a 

11-3115 

+V4 

-V1A 
+5V 

10 

+2.BV 

+V4 
-V3B 

-VIA 

11- 3117 



Figure 4-5(b) shows the circuit when TIG B 
CLOCK L goes low. Q55 is now off and Q56 is on. 
the emitter of Q49 is now negative with respect to 
its base and it conducts. The voltage at the base of 
Q20 and QI9 becomes more negative; Q19 con
ducts and Q20 is turned off. T5 L goes low. 

hgurc 4-5(c) shows the end of the TS L pulse. 
TIG B CLOCK L goes high; Q56 turns off and Q55 
turns on. TIGA T5A I L goes high and turns Q49 
off. Q.30 turns on and the voltage at the base of 
Q 19 and Q20 goes positive, thus making TIG D T5 
L high. Q30 speeds this transition by providing a 
discharge path for the charge left in the base bias 
circuit. 

11-4-8 

+5V 

-0.7V 

+5V 

+3.5V 

TIGB CLOCK L 

100 

+V4 +15V 

Q49 

TIGB CLOCK L ~ 

TIGD T5 L -u--

Figure 4-5b 

+V4 

-Vt A 

+5V 

10 

Q20 

11-3118 

I +V4 
l _________ _,. 

TIGB CLOCK L 

100 

Q30 -VIA 

+5V 

+V4 +15V 
10 

+ 2.8V 

+2.8V 
..--..~--.---I 

049 

t---t-\......,.,_ _ _._ --== __ T_l_GB_C_L~_C_K_L==---1=5 :=-l: Q\

9

V3B l 
TIGA T5 (1 l L ~ -VIA 

TIGB CLOCK L __r-u
TIG D T 5 L-u--

Figure 4-5c 

11- 3119 



4.7 TIME STATFS (TIGE TSI L-TSS L) 
Refer to Figure 4-6. The Time State pulses, TIGE 
TS I L through TS5 L are generated from the ring 
counter flip-flops and TIGB TPB H. The leading 
edge of these pulses corresponds to that of the tim
ing pulse of the same number (e.g., TSI to Tl) 

The time states are used throughout the KBI 1-C 
and are on for two time pulse durations (e.g .• TSI 
is on from the leading edge of TI to the leading 
edge of T3). 

These time state pulses are provided for use in 
areas where timing is not critical, in order to reduce 
the load requirement of the timing pulses. 

TIGA Tl UI H 

TIGA T2A (1) H 

TIGA T3 (1) H ____ n .... _____ ___.r 
TIGA T4 (t) H ---+---fTl-------

1 II r--: TIGA T!5A (I) H ! I._. ----

TIGB TPB H 

TIGE TS2 L 

TIGE TS3 L 

TIGE TS4 L __j 

TIGE TS5 L 

TPX H 

Figure 4 .. 6 Time States 

4.8 PAUSE CYCLES AND CLOCK BR 

L_ 
L_ 

11-3120 

The ring counter is stopped during Pause cycles, ex
cept in the case of a Cache read hit cycle. The stop 
occurs during T5 for Cache Pause cycles and dur
ing T2 for Unibus, Interrupt (INTR) or Internal 
Data Bus (INT D) cycles. The INTR Pause cycle is 
one where UBS D =I; for all other Pauses, 
PB~D:=2, qr 3 [fIGA PAUSE H=ROM 40 as
serted (U BSDOI =I)]. 

Table 4-1 is a summary of Stop and Pause 
conditions. 

4.8.1 Synchronous Pauses 

4.8.1.1 Internal Bus (INT D) Pause (T2) - Refer to 
Figure 4-7. During a Pause for an INT D read, a 
90-ns delay is inserted between T2 and T3 by the 
SO and SI flip-flops. 

The ring counter is stopped by the low output of 
the 74S65 gates which cause a low input to the K 
input of the T2 flip-flop. The flip-flop cannot be re
set until this input becomes high. The low is caused 
by the two gates that have SAPN NOT CACHE 
A DRS H as inputs. Since the INT D registers have 
Unibus addresses, this signal is high. SI (0) H and 
SO (0) H are also high, as well as TIGA PAUSE H 
(UBSD= 2 or 3, Bus Pause). SI and SO are clocked 
by TPB H and count up to 3. At this time; both SI 
(0) H and SO (0) H are low, the output of the 
74S65 gates goes high, and on the net TPB pulse, 
T2 (I) H is cleared, T3 (I) H is set, and the ring 
counter is restarted. 

4.8.1.2 Cache Pause (S) - Refer to Figure 4-7. The 
ring counter stops in TS during a Pause for a 
Cache cycle. A read hit Cache Pause cycle is the 
only Pause cycle in which the ring counter is gener
ally not stopped; all other Cache cycles stop the 
counter. CCBC MEMSYNC H is asserted by the 
Cache when it has completed a memory cycle. 

TMCF CACHE ADRS H is asserted during a 
pause for a Cache cycle and, in conjunction with 
TIGA PA USE; if there is no abort pending, and if 
TIGA MEMSYNC is not asserted, then TIGA 
STOP Tl L is asserted and prevents Tl from being 
set until CCBC MEMSYNC H is asserted by the 
Cache. When this occurs, TIGA MEMSYNC (0) H 
goes low. The next TPB sets TI, clears T5 and res
tarts the ring counter. 

4.8.2 Asynchronous Pauses 
Synchronizing flip-flops are required during asynch
ronous Pause cycles in order to minimize the pos
sible instability of flip-flops when clocked at the 
same time that their data input is changing. 

4.8.2.1 Vnibus Pause (T2) - Refer to Figure 4-7. 
Dur:ing a Unibus, Pause cycle, the-ring -00uriter is 
stopped during T2, as for the INT D Pause. 

TIGC TPB L 

TIGC TPB H 

I I I 
TIGA Tt (I) H _____ ri .. _____ _.r-1._ __________ ~I 

1 
I I 

TIGA T2 (1) H -----:..,._,...r1._ _____ ,... I 11 
I I 

TIGA SQJ (1) H ?77ZJ : rl __ __,, __ ... rrt-Jl--........ -""'i!l t 
TIGA s1(1)H 77ZZI 1 n , 1 1 1 

I I .._-----~1~1 

TIGA T3 (1) H -----~' .................... ra I n I 
--------~1----- -----H 

TIGA T4 (I) H I 

I I 

----------------------~ 
~I 

---------~' I I TIGA PSEUDO T3 ---------------------- ~I 

*NOTE: 

UNIBUS OR 
INTR PAUSE 

CACHE PAUSE 

Refer to figure 4-8 

r 

l 

I· UNIBUS OR INTR PA,USE f YCLE-1 ---· 

TIGA Tt (1) H;--i I u I I 
I I u I 

TIGA T2 (1) H ,_L......j -~Ii--------~ 
I I 

NOTUSEO{TIGA S0(1)H~1 
FOR INTR I I 
PAUSE TIGA SI (t) H I I I I 

I I ~...,_---..... ---------
UBCB TIG RESTART H I I ~ I 

1 I I 
TIGA 1ST SYNC F/F .,_____, I I ' 

..... ---~,- I I 
TIGA 2ND SYNC F/F~---------li----1 ---t.___..,.l _ __,'i 

I I I I 
TIGA T3 CO H ,__ ___ ....,... ___ -'i ,_ ___ ---...: ___ _.rl._ __ : -+I -r 

T!GAT4 CtlH,__.1 -------~,.--~: ___ __, 
1 

T!GA T5 (1) H,__1 ---------"ll"--,...1 _____ .... 11 . 
I I I I 

TIGC:O Tx H I ffi1 fiil I I ~ i-r-· _, -..., I I I 
TIGA PSEUDO T3 I I Uto---"""1------., I 

(I I !.---( 

j+--- CACHE PAUSE CYCLE -T----1 : 
TIGA Tl (1) H.....r-i u I rt I 

I I 
TIGAT2(t)H~1 rJ I 

I 
TIGA T3 (1)H I n l I ____ ,,_______ I 

TIGAT4 (t)H~,._1 ---,------~I 
~ ,....----ll ~ 

TIGA T5 (1) H L-----..J I I I 
I I 

TIGA MEM SYNC (llJ) H 

*FLIP-FLOP # 2 

*FLIP-FLOP# 1 

~.._____ I 

I .___ ___ r-1 
I I 

LJ I 
I I 

TIGA CLK BR H~--------·n·----·-n ... __ -+-1 -~ 
. . I· I 

TIGC :o TX H ~ _JTilJT2(_jr(JT41_j'T5 
11-3121 

Figure 4-7 Timing Generator and Pauses 
(Figure repeated on next page) 

11-4-9 



START-UP r- NORMAL CYCLE 

TIGC TPB L 

TIGC TP& H 

TIGA T1 (1) H ____ ___. 
I I I 
ri rl I r 
I I I 

TIGA T2 (1) H _____ .,___, I rl I I I r I I 
TIGA S!if (1) H??ZZJ _._..._ __ _... __ _. 

I I r1 ITLJI 1 r 
I 

TIGA S1 (1) H '-7ZZ21"'-"-..._---+------'1-.._......;, ___ _,,_ n I I 
I I It 

rl TIGA T3 (1) H _____ ..,__ _ __, n I 

TIGA T4 (1) H 

I I 
...._ __ _,,_ ______ ~ 
~ 

r-------...;' I TIGA PSEUDO T3 
_____ ;._.. _________ __, 

~ 

*NOTE: 

UNIBUS OR 
INTR PAUSE 

CACHE PAUSE 

Refer to fioure 4-8 

I· 
TIGA T1 (1) H JI 

I 

UNIBUS OR INTR PA,USE ,cYCLEI 

I u I I 
n I 

TIGA T2 (1) H ~ 
I I I 

FOR INTR I I t 

.. 

NOT USED{TIGA se (1) H ~ 

PAUSE TIGA S1 (1) H I I I I 
l I ~~1---+--------+-~ 

UBCB TIG RESTART H I I ~ 
I I 

r-----i_...__ __ ..... TIGA 1ST SYNC F/F 

I 
I I r 

I I I 

TIGA 2ND SYNC F/F --.... '--ti 
TIGA T'3 (1) H.._,,. ___ -+-----t~-.....:.-....-....,jn ... __ : _..,.I ...i 

... I I t 

I TIGA T 4 (1) H .._.I ---..,.....---·O·-__;,-...;..._ _ ___,,j 

I 
TIGA T5 (1) H I r-1 . ----.... , ----...i ""'----i--~----1 I 
TIGC:OTxH~1 ~ 

I I 
TIGA PSEUDO T3 I ,..l ---~Hl!----+1--I -----ii 1 

(I I ......__..__. 

j+-- CACHE PAUSE CYCLE --T----1 : 
TIGA T1 (1) Hn u I n I 

I 1 I 
TIGAT2(1)H~t I r! I 

I I 
TIGA T3 Cl) H I rl'-------t~-.....__.;.. __ _. 

'1 I 
TIGAT4 (OH I II r--1 
~ '----t~Z---i------------1 ~ 

TIGA T5 (1) H1..____j
1 

I I r 
I I 

r----i___ I 
I 

TIGA MEM SYNC (flt) H 

"'FLIP-FLOP # 2 
___ ......... 

I 

*FLIP- FLOP# 1 LJ I 
I I 

T IGA c LK BR H )-1--------n-----' .... n"" ____ -+:---...i 
I 

TIGC:OTXH~ ~5 

Figure 4-7 Timing Generator 
and Pauses 

11-3121 

Table~l 

Ring Counter Stop and Pause Conditions 

STOPINT2 

Internal Bus Pause Stop: 

Restart: 

Unibus Pause CPU Control Registers Stop: 

Restart: 

Interrupt Pause Stop: 

Restart: 

Single ROM Cycle Stop: 

Restart: 

STOP IN TS 

Cache Pause Stop: 

Restart: 

Single Bus Cycle Stop: 

Restart: 

11-4-10 

SAPN NOT CACHE ADRS H 
TIGA PAUSE H (UBSD = 2 or 3) 
TIGA SO (0) H or TIGA SI (0) H 

SO and SI count to 3 (90 ns). 

Same as Internal Bus Pause 

Same as Internal Bus AND 
UBCB TIG RESTART H 
(BUS SSYN) 

UBSD = 1 (INTR Pause) 
UBCD EXT BRQ H 

UBCB TIG REST ART H 
(Passive Release or BUS INTR) 

TIGB ROM+UPB (1) H 

CONTINUE or MAINTENANCE 
(XMAA S4) switches 

TMCF CACHE ADRS H 
TIGA PAUSE H (UBSD = 2 or 3) 
No Aborts (not TMCC ABORT H) 

TIGA MEMSYNC (1) H 

TIGB SINGLE CY L 
TIGAPAUSEH 

CONTINUE or MAINTENANCE 
(XMAA S4) switches 



The Unibus Pause is started by the same two gates 
that start the INT D Pause, in addition to the gate 
that has UBCA UNIBUS ADRS H as an input. 
SCCD INTO REG (I) L is high, since the address 
does not refer to an Internal Bus register. 

There are two synchronizing flip-flops for this gate: 
the first rank flip-flop is the one that has UBCB 
TIG REST ART L as its input; the second rank 
flip-flop has the output of the first rank flip-flop as 
its input. The output of the second rank synchro
nizing flip-flop is high at this time. The output of 
the 74S65 gates is low, T2 (I) H is not cleared, and 
T3 (I) H is not set. The SO and SI flip-flops count 
to 3, at which time the NOT CACHE ADRS gates 
are disabled. When BUS SSYN is received, UBCB 
TIG RESTART is asserted. The first rank'synchro
nizing flip-flop is set by the next TPB L, and the 
second rank flip-flop by the TPB after that. This 
disables the UN I BUS A DRS gate, and the output 
of the 74S65S goes high, allowing the ring counter 
to restart. 

When reading the Control Registers (PS, SL, PIR, 
PIA and PB - see Chapter 2, Paragraph 2.3.2) 
SSYN is generated by the processor; in this case 
the 90 ns SO-SI delay and the synchronizing flip
flop delays may be concurrent. 

4.8.2.2 INTR Pause (T2) - Refer to Figure 4-7. 
The interrupt (INTR) Pause cycle is similar to the 
Unibus Pause cycle. 

The ring counter is stopped in T2 by the UBCD 
EXT BRQ H gate on the lower 74S65. This gate is 

A'AC.8 ~OM 40 (. 

asserted during an INTR Pause cycle (UBSD= I); 
the output of the second rank synchronizing flip
flop is high at this time. UBCD EXT BRQ H is as
serted when any of TMCA HONOR BR(4:7) are as
serted. The T2 flip-flop remains set and the T3 flip
flop cleared until the second rank synchronizing 
flip-flop is set. SI and SO count up but have no ef
fect, since they are ANDed with TIGA PAUSE H 
(UBSD= 2 or 3), which is low. UBCB TIG RES
T A RT H is asserted either by the receipt of INTR 
or by a passive release of the Unibus (UBCA PAS
SIVE L). The first rank synchronizing flip-flop is 
set by the next TPB L, and the second rank flip
flop by the TPB after that. This disables the EXT 
BRQ gate, and the output of the 74S65 goes high, 
allowing the ring counter to restart. 

4.8.3 CLK BR, BRA 
During any cycle during which UBRK (load BR) is 
asserted, the BR is loaded at the proper time. Dur
ing a Cache Pause cycle, the data is loaded into the 
BR at MEMSYNC+30 ns. During any other type 
of cycle, the BR is loaded at T5+30 ns. These oper
ations arc independent of when TI occurs. 

4.8.3. l Non-Cache Cycles - Refer to Figures 4-8 
and 4-9. TMCF CACHE ADRS H is asserted dur
ing all Cache cycles. RACB ROM 40 L is asserted 
and TIGA PAUSE H is high during all Bus Pause 
cycles (UBSD=2 or 3). When either CACHE 
ADRS or PAUSE are low, gate 2 is high, T5A(I) is 
gated through gate 3 and the 0 R gate and sets flip
flop I one clock period later. The following TPB L, 
which occurs at Tl, asserts TIGA CLK BR (and 
BRA) if RACA UBRK H is asserted. 

Figure 4-8 Clock BR Circuit (Part of D-CS-M8139-0-1, Sheet 3) 

11-4-11 



TIGC TPB H 

CLK BR, NOT CACHE PAUSE 

T3 T4 TS T1 T2 T3 T4 

__._I __ l ___ la...--...... 1 --.&-I ----.!H I I 
I 

I 
I 

TS 

I 

CLK BR, CACHE PAUSE 

T2 T3 T4 

I I I 

TIGA T1 (1) H-------lfl'----o-----t-------=----...,"-~ 

TIGA T5 (1) H 

*FLIP-FLOP# 1 

TIGA CLK BR H 

*NOTE: 

Refer to figure 4-8 

I 
I 

CCBC MEM SYNC H 

TIGA MEMSYNC (1) H 

TIGA STOP T1 L 

*FLIP-FLOP #2 

11-3123 

Figure 4-9 Clock BR Timing 

4.8.3.2 Cache Cycles - Refer to Figures 4-8 and 4-
9. M EM SYNC gates the data from the Cache into 
th'e BR during a Cache DA TI or DA TIP. Flip-flop 
2 is set prior to the Pause cycle by T3. 

Upon entering a Cache Pause cycle, gate 1 is en
abled. When CCBC MEMSYNC H causes TIGA 
MEMSYNC to set, the output of gate 1 goes low, 
the output of the OR gate goes high, and flip-flop I 
is set at the same time as Tl (I) H (the ring counter 
is restarted by TIGA MEMSYNC). Since RACA 
UBRK is asserted, CLK BR is asserted 15 ns later 
by TPB L, which occurs at the same time as Tl. 

Flip-flop I is on for only one clock period to en
sure that only one BR clock pulse is generated. 

4.9 MAINTENANCE STOPS 

4.9.1 Single Cycle Mode 
When the proces~or is halted and placed in the S 
BUS CYCLE mode of operation from the console, 
the TIGA SNGCY flip-flop is direct-set to assert 
TIGA STOP Tl and cause the processor to halt af-

ter each single bus cycle is completed (TIGA 
PA USE). When the CONT switch is pressed, TIGB 
CONT is asserted and clocks the J-K flip-flop that 
sets TIGA CONT (I) on the next TIGB TPB pulse 
going high. This enables the K input to the 
S NGCY flip-flop so it will reset on the next TPB 
pulse going high. 

The processor enters TI and proceeds through an
other bus cycle. As soon as T 1 is entered, the flip
flop controlled by the CONT switch is reset. The 
CONT flip-flop resets on the next clock pulse and 
the SNGCY flip-flop is again set on the trailing 
edge of that clock pulse. As a result, STOP Tl is 
again asserted to stop the processor after a single 
bus cycle. 

Since TIGA CLK BR is generated by either MEM
SYN C or T5A (I), independently of TI, the data is 
loaded into the BR JO ns after T5. During Single 
Cycle, the clock is stopped in T5, and the data 
from the current cycle could not be displayed if the 
BR were clocke<l by Tl (after the clock has been 
restarted). 

11-4-12 



4.9.2 ROM+ UPB 
SINGLE ROM CYCLE operation (SI =0, S2= 1) 
stops the clock in T5 of every ROM cycle. 

The UPB STOP (SI= I, S2=0) operation stops the 
clock in T5 when PDRC PB COMP H is high. This 
signal is asserted when the microprogram ROM ad
dress equals the contents of the Program Break Reg
ister [PDRC PB(07:00)]. This read/write register is 
accessed at address 17 777 770. 

Maintenance module switch inputs XMAA SI and 
S2 are decoded, ORed and input to the TIG B 
ROM+ U PB (I) H flip-flop, which is cleared by T5 
(I) L and clocked by the following TPB L (at the 
trailing edge of Tl (I) H). Since the CONT flip
flop is cleared, the clock is stopped in T2. 

4.9.3 TIC,8 CONT L 
It should be noted that, except for single clock 
cycle operation, either the Console CONT switch 
or the maintenance stepper XMAA S4 can be used. 
X M AA S4 must be used for single clock cycling. 

11-4-13 





This chapter examines the types of processor data 
transfers (Paragraph 5.1 ), discusses the Unibus inter
face, in general terms (Paragraph 5.2), ·and de
scribes processor data exchange with the Unibus 
(Paragraph 5.3). 

In order to execute instructions, the processor ex
changes data with the Cache and with Unibus de
vices; it contains the Unibus arbitrator, which 
decides which device obtains the use of the Data 
Section of the Unibus. The Unibus arbitrator is a 
part of the processor priority network, which is de
scribed in Chapter 6. 

In order to exchange data with either the Cache or 
with a Unibus device, the processor must supply 
the following information: 

l. An Address, which defines the device or 
the location in memory with which the 
data exchange is to take place; address 
generation is described in Section IV of 
this manual. 

2. Control information, which specifies the 
direction of the data transfer; the C bits 
determine the type of transfer and are de
scribed in this chapter. 

3. Data, in the case of a transfer from the 
processor to the Cache or to the Unibus; 
data is supplied to the Cache by the BR 
and to the Unibus by the Data Multi
plexer (D MX), both of which are de
scribed in Chapter 2. 

5.1 PROCESSOR DATA TRANSFERS 
The processor requires two ROM states to execute 
a data transfer; a BUST (BUs STart) cycle and a 
Bus Pause cycle, during which the tr::insfer 0f data 

11-5-1 

CHAPTER 5 
DATA TRANSFERS 

takes place. A BEND (Bus END) cycle may replace 
the Pause cycle if the transaction is not to be com
pleted (either due to error or to the microprogram). 
Stack and Address errors (aborts, refer to Chapter 
6) are detected prior to the completion of a Bus 
cycle and cause a BEND. Conditions in the micro
program which can cause a BEND are those where 
Bus cycles are started in anticipation of certain 
forks or branches. If the fork or branch results in a 
condition which does not require the Bus cycle to 
he completed, it is stopped by a BEND. An ex
ample of this is found on Flows 5: Dl2.00, Dl2.80 
and D 12.90 all do a BUST and branch to one of 
three cycles; one of these, D12.70, does not require 
a Bus cycle and does a BEND. 

Refer to Figure 5-1. During the BUST cycle, the vir
tual address is generated from the BAMX; Memory 
Management in turn generates the physical address. 
RACH BUST H is received by the Cache, which 
starts a CPU cycle if it is idle. During the BUST 
cycle, the type of transaction is determined by de
coding the BSC ROM field (refer to Paragraph 
5.1.1 ). 

Cache Address 
If the physical address is a Cache reference, SAPN 
NOT CACHE ADRS is negated and TMCE CON
TROL OK is sent to the Cache, which allows the 
data cycle to start. The clock is stopped in T5 and 
is restarted upon receipt of the assertion of CCBC 
MEMSYNC H, by which the Cache indicates com
pletion of its data cycle, i.e., data is ready on read, 
or taken in on write (refer to Section VI, Cache). 
At TI, the data from the Cache is strobed into the 
BR (refer to Chapter 4). In the case of a read-hit 
(i.e., the word is in the Cache and a Main Memory 
cycle is not necessary) the clock generally does not 
stop, because the data is ready and MEMSYNC is 
asserted before T5. 



BUST 
T1 - - - - - - - - - - - -·-------.... 

VIRTUAL ADDRESS 
SELECTED FROM 
BAMX 

T3----------------_._l __ 

CACHE CONTROL 
BEGINS CP CYCLE 
IF IDLE 

T1 - - - - - - - - - _P_A_u_s_E ___________ l.__ ____________________ B_E_N_D..,, 

T2 - - - - - -----------

CACHE 
ADDRESS 

PHYSICAL ADDRESS 
IS FORMED. ADDRESS 
DECODE IS COMPLETE. 
TIMING GENERATOR 
IS STOPPED FOR 90 ns 
IF NOT CACHE 
ADDRESS• 1 
'-----~---- UNIBUS 

ADDRESS 

ODD ADDRESS 
SL ERROR 
NEXM 

MEMORY 
MANAGEMENT 
VIOLATION ,_ _____ ...._ ____ __,,_ _______________ ..... __________ ...., 

T2+30--- - - -- ------...... ---.. 
CP BUSY IS SET IF 
-(NPR + NPG + SACK 
+ DSACK +ABORT). 
ISSUE BEND TO 
CACHE 

INTD(11 

CLEAR CP BUSY. 
DISABLE SETTING 
MSYN. COMPLETE 
90 ns DELAY. 

INTD(OI 

KEEP TIMING 
GENERATOR 
STOPPED. DESKEW 
ADDRESS AND 
DATA 150 ns AND 
ASSERTMSYN 

TIMEOUT 

RESTART TIMING 
GENERATOR. 
DESKEW DATA 
75 ns VIA 
SYNCHRONIZER. 

T3- - - --------• - I-- -- - - ____ .__ __ _ 
ISSUE CONTROL 
OK TO CACHE 

TS-----------WAIT FOR MEMSYNC 
IF MISS+ WRITE+ 
PARITY ERROR 

LOAD DATA TO 
BUFFER. CLEAR 
MSYN. DESKEW 
ADDRESS FROM 
T3-T1. 

ABORT CONDITION. 
ZAP ROM TO 200. 
VECTOR THRU 4. 
ISSUE BEND TO 
CACHE. 

ABORT CONDITION. 
ZAP ROM TO 200. 
VECTOR THRU 250. 
ISSUE BEND TO 
CACHE. 

[ 

ISSUE BEND TO I 
CACHE CONTROL. 

T1- - - -------- - - - - - -------.. - --------.... -- - - - ...... - - - - - _,_ 
LOAD DATA TO 
BR IF READ 
CYCLE 

CLEAR CP BUSY 
IF -DATIP, SHIFT 
BUFFER TO BR 

CLEAR CP BUSY 
IF UNIBUS 
TIMEOUT 

Figure 5-1 Processor Data Transfers 

11-5-2 

11-3134 



Unibus Address 
If the physical address is a Unibus reference, SAPN 
UNIBUS A DRS L and SAPN NOT CACHE 
AD RS H are both asserted and the clock is 
stopped for a minimum of 90 ns in T2. TMCE 
CACHE BEND H is asserted and causes the Cache 
to stop its CPU data cycle. Refer to Section VI. 

Thirty ns after the assertion of T2, UBCA CPBSY 
is set, if all NPRs have been serviced and if no 
abort is pending. 

SCCD INTO REG (I) Lis asserted if the Unibus 
address is a reference to one of the registers that 
arc read on the Internal Data Bus (refer to Chapter 
2, Paragraph 2.2.2). If this is the case, CPBSY is re
set, M SYN is disabled, the 90 ns SO-SI delay is 
completed, the clock is restarted, and the contents 
of the register that is being referenced is clocked 
into the BR at the end of the PAUSE ROM state. 

If the Unibus reference is not to an INTO register, 
a Unibus data cycle is executed. The TIG clock is 
stopped and stays stopped past the 90 ns SO-SI de
lay. Address, type of transaction (Cl, CO) and, if re
quired, data are put onto their respective Unibus 
lines and deskewed. MSYN is asserted. The Unibus 
device that is being addressed executes the transac
tion and responds by asserting SSYN. The clock is 
restarted 75 ns after receipt of this signal. 

At T3, MSYN is negated and the data is clocked 
into the PDRJ buffer. At TI of the next cycle, ex
cept in the case of a DA TIP, the Unibus lines are 
cleared by negating CPBSY. If the transaction was 
a DATI P, CPBSY is not negated, the address lines 
are not changed (except if the data-out is to be a 
DA TO B, in which case, AOO is changed from 0 to I 
for an odd byte address), the C lines are adjusted, 
and the data is put on the D lines. 

In the case of a DA TI or DA TIP, the data is 
clocked into the BR at Tl. 

Aborts 
If an abort occurs, the microprogram forces the 
ROM address to 200 (ZAP.00). This occurs at T2 
of PA USE for all aborts except parity aborts, 
which ZAP at T2 of the cycle following the 

PA USE. A Memory Management abort vectors 
through address 250. A parity error abort vectors 
through address 114. All other aborts vector 
through address 4. (Refer to Chapter 6.) 

5.1.1 Types of Data Transfers 
Four types of data transfers are used by the KB I I
C. ·These types are defined by the condition of the 
Control bits CI and CO (TMCE Cl H and TMCE 
CO H): 

CI =O, CO=O - Data-in or DATI. One word 
of data is transferred to the processor from 
memory or from the Unibus. 

Cl =O, CO= I - Data-in, PAUSE or DATIP. 
Same as DATI, but a data-out must be exe
cuted to the same address immediately follow
ing the DATIP. This type of data transfer 
may be considered as the first part of a 
read/modify /write operation. 

Cl= I, CO=O - Data-out or DATO. One 
word of data is transferred from the processor 
to memory or to the Unibus. 

CI= I, CO= I - Data-out, byte or DA TOB. 
One byte of data is transferred from the pro
cessor to memory or to the Unibus. The high 
order byte address is odd and its data is 
stored in bits 15:08 of a word; the low order 
byte address is even and its data is stored in 
bits 07:00 of a word. 

The CI and CO signals are obtained by decoding 
the BSC bits as shown on drawing TMCE. 

I. When RACC UBSC02 H is negated 
(low or BSC = 0 - 3) the 74S 153 multi
plexer is disabled, and both of its out
puts are low. Thus, TMCE Cl H and 
CO H are low and call for a D ATI. 

2. When RACC UBSC02 H is asserted 
(high or BSC = 4 - 7), the BUS COND 
multiplexer is enabled and its output is a 
function of RACC UBS CO I and 
U BSCOO, as defined by the table on 
TMCE. 

11-5-3 



The BUS CONDITION (BSC) bits of the micro
program ROM determine the type of data transfer 
by its control of the C lines [TMCE Cl (and CO) 
HJ. The significance of the BSC bits is defined 
below: 

BSC =000 - DATI (data-in), a transfer of one 
word of data from a slave to the processor. 

BSC=OOI - SRCI DATI (SouRCe I DATI), 
a DA TI used in odd address error detection 
to distinguish the first bus operation of source 
calculation. During a byte instruction, this 
transaction cannot use an odd address if the 
source mode is 3, 5 or 7. These are deferred 
addressing modes and this transaction reads a 
word containing the address of the operand; 
this word cannot be odd. 

BSC=OIO - KERNEL DATI; a DATI is exe
cuted, and Memory Management selects the 
KERNEL PAR/PDR set (refer to Section IV, 
Memory Management) used in the Trap and 
Interrupt Service routines to obtain vectored 
PC and PS from Kernel PAR 0. KERNEL 
DA Tl also affects the processor mode bits 
[PS(15:12)] as explained in Chapter 3. 

BSC=Ol I - SRC2 DATI (SouRCe 2 DATI), 
a DA Tl used in odd error detection to dis
tinguish the second bus operation of a source 
calculation. During a byte instruction, this 
transaction may use an odd address. 

BSC= 100 - FC (Floating Point Processor 
Conditions). Used during FPP Unibus transac
tion: TMCE Cl H follows the FPP Cl line 
(FRMJ FP Cl H) and CO is always negated, 
since the FPP does only word operations. 

BSC= IOI - DATO (data-out), a transfer of 
one word of data from the processor to a 
slave. 

BSC= 110 - BSOPI (BuS OPeration 1): In
struction-dependent bus transaction, specified 
in execute ROM cycles, common to several in
structions that require different types of bus 
operations. An 0 /class instruction calls for a 
DATO, a P /class instruction for a DA TIP, 
and one that is neither 0 / nor P /class for a 
DATI. No instructions are both 0/ and 
P /class. Instruction classes are defined in 
Chapter I and on Flows 3 and 5. 

11-5-4 

BSC= 111 - BSOP2 (BuS OPeration 2). In
struction-dependent bus transaction. If the in
struction is a byte instruction, a DATOB 
(data-out, byte) is executed; if it is not a byte 
instruction, a DATO is executed. 

5.1.2 Types of BUST Cycles 
There are two types of BUST cycles: conditional 
and unconditional, which are described in Chapter 
I (Paragraph 1.2.5.1 ). 

A BU ST cycle is one in which the MiSCellaneous 
(MSC) bits of the microprogram ROM equal 5 or 
7: 

MSC=5 - CONDITIONAL BUST. This 
value occurs only in I RD.00 (Flows I), which 
generates the A Fork. RACH BUST H is as
serted during this cycle, except when the cycle 
that follows is also a BUST cycle. 

MSC=7 - BUST, unconditional. 

5.1.3 Types of Pause Cycles 
The BUS DELAY (BSD) bits of the microprogram 
ROM determine the type of Pause cycle to be exe
cuted, if any. The significance of the BSD bits is de
fined below: 

BSD=OO - No Pause. 

BSD=OI - Interrupt Pause or INTR PAUSE. 
The Timing Generator is stopped in T2. A 
Bus Grant is issued. The Timing Generator is 
restarted by INTR, NO SACK or Passive Re
lease of the Unibus. 

BSD= 10, BSD= 11 - Bus Pause. Used for In
ternal Data Bus (INTO), Unibus and Cache 
transactions: 

INTO - The Timing Generator is 
stopped in T2 for 90 ns. 

UNIBUS - The Timing Generator is 
stopped in T2 and restarted after a min
imum 90-ns delay by SSYN, Timeout or 
TMCC ABORT. 

CACHE - The Timing Generator is 
stopped in T5 and restarted by MEM
SYNC or TMCC ABORT. 



5.1.4 BEND Cycle 
Refer to drawing TMCE. When the ROM BCT 
(Bus Control) field equals 7, TMCE ROM BEND 
L is asserted. This condition is indicated by 
"BEND" on the Flows. 

TMCE CACHE BEND H causes the Cache to stop 
a data cycle. It is asserted by a ROM BEND, when 
the physical address does not indicate a memory ref
erence (TMCF CACHE ADRS not asserted), by a 
Memory Management abort (SSRC KT ABORT 
FLG). by a fatal stack violation (TMCD SL RED) 
or by an odd address error (TMCC ODD ADRS 
ERR). 

TMCE KT BEND L, when asserted, prevents the 
modification of the contents of some Memory Man·· 
agement registers and the setting of the KT 
ABORT FLAG. 

5.2 UNIBUS INTERFACE 
The Unibus is the transmission medium that inter
connects the various components of the PDP-I I /70 
:-.ystem, such as peripheral devices, the KBl 1-C Pro
cessor and the Cache Memory via the Unibus Map. 
The principal connection between the processor and 
the Cache, however, is direct and does not use the 
Unibus. Main Memory can only be accessed 
through the Cache. 

The Data Section of the Unibus is used for data 
transfers between a master device, which controls 
the transaction, and a slave device, which responds 
to the master. A master asserts BBSY (Bus Busy); 
it determines the type of data transfer and is the 
only device that may assert MSYN (Master SYNc); 
a slave executes the transaction requested by the 
master and asserts SSYN (Slave SYNc). The pro
cessor is generally a master during Unibus transac
tions, but in the special case of interrupts, it acts as 
a slave device. 

Only one data transfer may occur at a time on the 
Unibus, and the priority arbitration logic decides 
which device may use the data transfer lines on the 
Unibus. (Refer to Chapter 6, Paragraph 6.3). 

5.3 UNIBUS DATA INTERFACE 
The KBll-C uses the Data Section of the Unibus 
for the following types of data transfer: 

I. To transmit or to receive data from 
Unibus devices such as peripheral con
troller control registers. 

2. To access memory via the Unibus Map 
and then through the Cache; this path is 
used mainly for diagnostic purposes. 

3. To read (only) its control registers (PS, 
SL, PIR, PIA and PB). 

4. To receive a vector during an interrupt 
transaction. 

The transactions listed in (I) and (2) above are iden
tical, and (3) is very similar. These operations are 
described in this paragraph. The interrupt transac
tion is explained as part of the Unibus arbitration 
interface in Chapter 6, Paragraph 6.4. 

5.3.1 Unibus Data Transfer Protocol 
In order to execute a data transfer on the Unibus, 
the processor must obey the Unibus protocol: 

I. The processor obtains the use of the 
Unibus from the Unibus priority arbi
tration logic (refer to Chapter 6). 

2. The processor asserts BBSY, thus becom
ing bus master. 

3. The processor defines the slave device 
with which it wants to communicate. To 
do this, the processor puts a Unibus ad
dress on the A lines [BUS A(l 7:00) L on 
SCCL]. Memory Management generates 
this address (refer to Section IV of this 
manual). 

4. The processor defines the type of data 
transfer to be execuuted, which is deter
mined by the C lines (BUS CO L and 
BUS CI L on U BCC). Data transfers 
may be either from the processor to a 
slave (data-out: DATO or DATOB) or 
from a slave to the processor (dat::i-in: 
DATI or DATIP). 

11-5-5 



5 If the intended data transfer is a DATO 
or a DATOB, the processor puts the 
data word or byte on the Unibus D lines 
[BUS 0( 15:00) L on PORE]. Data selec
tion is described in Chapter 2, Para
graph 2.3.2. 

6. When these bits (Unibus A, C and D 
lines) become valid, they are deskewed 
for 150 ns to allow for decoding in the 
slave and for variations in bus driver 
and receiver characteristics (address 
deskew). 

7. The processor then asserts MSYN: 

a. If it is executing a DA Tl or a DA
TI P, when the negation of SSYN 
from the previous Unibus transac
tion has been received, 

b. If it is executing a DATO or a DA
TOB, 150 ns after receipt of the ne
gation of SSYN from the previous 
transaction. 

8. The slave receives the assertion of 
MSYN and either accepts the data from 
the D lines (DATO or DATOB), or puts 
the data requested by the processor on 
the D lines (DA Tl or DATIP). The 
slave then asserts SSYN. 

9a. DA TI or DATIP - Upon receipt of the 
assertion of SSYN, the master deskews 
the data received for a minimum of 75 
ns. The master then strobes the data and 
negates MSYN. 

9b. DATO or DATOB - The master may ne
gate MSYN upon receipt of the asser
tion of SSYN. The KB 11-C, however, 
waits 75 ns before negating MSYN. 

10. The master waits a minimum of 75 ns af
ter negating MSYN, then removes the 
address and control bits from the A and 
C lines. The master then negates BBSY, 
except in the case of a DATIP, where 
this signal must remain asserted during 
the DATO or DATOB that follows the 
DATIP. 

11-5-6 

11. The slave typically negates SSYN upon 
receipt of the negation of MSYN. 

12. If the assertion of SSYN is not received 
within a specified amount of time (Time
out Delay), the instruction is aborted. 

5.3.2 Unibus Data Interface 
The Unibus data interface is shown on drawings 
U BC A, U BCB and U BCC. This interface imple
ments the Unibus data transfer protocol. 

The description that follows refers to processor 
Unibus device references, which include the Mem
ory via the Unibus Map. Processor Control Regis
ter references differ in some details from these 
transactions. These differences are described at the 
end of this paragraph. 

5.3.2. l Unibus Device References 

I. During the BUST state, Memory Man
agement generates the Unibus address, 
which becomes valid by TI of the 
PAUSE state. SAPN UNIBUS ADRS 
L, when asserted, informs the processor 
that a Unibus transaction is required. 
The Bus Condition (BSC) ROM bits are 
asserted during the BUST and during 
the PA USE states. 

2. During Tl and T2 of the PAUSE state, 
the Unibus Data Multiplexer (PORE 
OMX) selects the input to the Unibus 
data drivers [BUS 0(15:00) L]. Refer to 
Chapter 2, Paragraph 2.3.2). 

3. Refer to drawing UBCA and to Figure 
5-2. SAPN UNIBUS ADRS L enables 
the gate that clocks the U BCA CPBSY 
nip-flop. 

The TIG clock is stopped in T2 of the 
PAUSE state (refer to Chapter 4). TIGA 
PSEUDO T3 H is asserted 30 ns after 
T2. 

When all NPRs have been serviced, and 
if no abort is present, and when the pre
vious master has negated BBSY, UBCE 
CPBSY is clocked and the processor be
comes master by asserting BUS BBSY 
L. 



BUST I 
T1 T2 T3 T4 T5 T1 T2 

DATl-DATIP-DATO I I I I I I I 
VIRTUAL ADDRESS w 

PHYSICAL ADDRESS ™ 
SAPN NOT CACHE ADRS H 

SAPN UNIBUS ADRS H 

TIGA PSEUDO T3 H 

CP BUSY CLOCK H SEE NOTE 

IJBCA START BUS (1) H SEE NOTE# 3 

UBCA MSYN (1) H 

TIGC T3 H 

TIGA BR CLK H 

T2 T2 T2 PAUSE 
+ + + 
30 60 90 T3 T4 T5 T1 T2 

I I Li I I I I I I 
I I I 
I ' ~ I I \__ I I I 
I I I 

fl 
I I 
I \__ I 
I 

\__ 

\__ 

....+-----1 ~-----------------.... 1.. SEE : l:::.§:.E # 2 

150 NS ADRS 
DESKEW 

SEE NOTE #4 

I 
I 

I 

----~~--~-------------( 
SEE NOTE # s---=fl.__ 

NOTES: 

1. Set CP BUSY if -(NPR + NPG +SACK 
+DSACK + ABORT + BBUSY). 

2. CP BUSY is not cleared if DATIP cycle. 
It is cleared on DATO portion of DATIP/ 
DATO. 

3. Used to start DATO address deskew on 
DATIP/DATO operation. 

4. 75 ns data deskew is obtained by 2 stage 
synchronizer on TIGA. Unibus data is 
loaded into PDRH buffer register at T3. 

5. Address & control are deskewed from 
T3 to T1. PDRH buffer register loaded 
to BR at T1. 

Figure 5-2 Unibus Data Transfers 

11-5-7 

11-3124 



UBCE CPBSY B H gates the address 
[BUS A( 17:00) on. SCCL], the data 
[BUS 0(15:00) on PORE] and the Con
trol bits (BUS CI and BUS CO on 
U BCC), onto the Unibus. 

4. TIGA PSEUDO T3 also clocks and sets 
UBCE START BUS. If the transaction 
is a DATO or a DATOB (UBCC Cl B 
H asserted) and SSYN is negated, the 
150 ns address deskew is started. If the 
transaction is a DA Tl or a DA TIP, the 
deskew is started without regard to the 
state of SSYN. 

5. Upon completion of the delay, if SSYN 
is negated, BUS MSYN is asserted by 
UBCA MSYN. 

6. Upon receipt of the assertion of (U BCB) 
BUS SSYN from the slave, and since 
MSYN is being asserted by the pro
cessor [UBCE MSYN (I) H], UBCB CP 
SSYN is asserted. This signal clears 
UBCA START BUS and thus disables 
the direct-set input to UBCA MSYN (I) 
H. 

7. UBCB CP SSYN L also causes UBCB 
TIG RESTART to be asserted. This sig
nal causes the clock to be restarted. T3 
is asserted 75 ns (minimum) after TIG 
RESTART is asserted (refer to Chapter 
4). T3 clocks the UBCA MSYN flip-flop 
off and negates BUS MSYN. 

If the transaction is a DA Tl or a DA
Tl P, the data is clocked into the Bus Buf
fer Register [PD RJ D( 15:00) H] at T3. 
The 75-ns delay between the assertion of 
TIG RESTART and that of T3 is the re
quired data deskew. 

8. At TI of the microprogram state that fol
lows the Pause cycle, in the case of a 
DA Tl or of DA Tl P, the data from 
PD RJ 0(5:00) H is clocked into the BR. 
This is shown as "T6 BR +-BUS" of 
PAUSE on the Flows. 

11-5-8 

At the same time {Tl) CPBSY is direct
cleared and BUS BBSY L is negated, ex
cept in the case of a DA TIP, when 
BBSY must remain asserted until the 
end of the DA TO or DATOB that fol
lows the DA TIP. This is controlled by 
the 74S74 flip-flop on UBCA whose D 
input is UBCC DATIP L; UBCE 
M SYN (I) H clocks this flip-flop, which 
controls the direct-clear input to UBCE 
CPBSY. 

When UBCA CPBSY B H is negated, 
the address, data and control bits are re
moved from the Unibus. 

5.3.2.2 Unibus Timeout - If SSYN is not received 
in response to the assertion of MSYN by the pro
cessor within I 0 µs a Unibus Timeout occurs. 

I. Refer to drawing UBCA. The 74193 
binary counter is kept cleared by UBCA 
MSYN (0) H. When the MSYN flip-flop 
is set, the counter is free to count up. It 
is clocked by U BCD FREE CLK (0) H 
(30 ns pulse every 90 ns) refer to Para
graph 6.4.1 ). On the 16th clock pulse, a 
carry is generated which sets the UBCA 
STA RT TIMEOUT L latch. This 
counter allows single clock cycle mainte
nance module operations when referen
cing Cache registers (or the Cache via 
the Unibus Map). If the Timeout one
shot was started immediately upon the 
assertion of MSYN, the Cache, which 
uses the processor time pulses, could not 
complete the transaction and Timeout 
would always occur. 

1 Refer to drawing UBCB. The latch 
starts the timeout 74123 one-shot (I 0 
µs). 

If the assertion of BUS SSYN L is re
ceived before the end of the I 0 µs, the 
one-shot is cleared. 



If the assertion of BUS SSYN L is not 
received by the end of the I 0 µs the one
shot times out, UBCB TIMEOUT is set 
and disables the direct-set gate to UBCA 
MSYN (I) H. TMCC BUS ERROR L 
and TMCC ABORT H are asserted. 

3. Since the clock is stopped in T2 of the 
Pause cycle (RACB UBSDOI H as
serted), TMCC ABORT H asserts 
UBCB ABORT RESTART H. This sig
nal restarts the TIG clock as ii) (7) 
above. The microprogram goes to 
ZA P.00, thus ending the data transfer 
cycle. 

UBCB TIMEOUT B H sets TMCD 
UBUS TIMEOUT H (bit 04 of the CPU 
Error Register) when TMCC ABORT 
CLK L is asserted at T3 of PA USE. The 
CPU Error Register may be read from 
address 17 777 766. 

5.3.2.3 Control Register Reference - The processor 
Control Registers (PS, SL, PIR, PIA and PB) are 
described in Chapter 3. They present a special case 
of data transfers: 

II-5-9 

I. They are written directly from the BR, 
whether they are referenced by Unibus 
address or by the microprogram. A 
Unibus cycle is performed as described 
below when the reference is by Unibus 
address. 

2. The PS can be read either via the Inter
nal Bus (Chapter 2, Paragraph 2.2.2) or 
via the Unibus. The SL, PIR, PIA and 
PB can only be read via the Unibus, and 
not via the Internal Bus. 

When ref crenced by its Unibus address, the register 
to be read is selected by the D MX. Refer to Chap
ter 2, Paragraph 2.3.2. 

The logic sequence is the same as that for Unibus 
device references, with the exception that the pro
cessor itself must generate SSYN. 

Refer to drawing UBCC. SCCE INTERNAL 
ADRS H is asserted when any one of the addresses 
in the range of 17 777 770 - 17 777 776 is decoded 
hy Memory Management. These addresses are 
those of the Control Registers. 

Fifty nanoseconds after UBCA MSYN ( 1) is as
serted, BUS SSYN L (UBCC) is asserted. This sig
nal is received by the bus receiver on UBCB and 
asserts UBCB TIG RESTART H, which restarts 
the TIG clock. 





An Abort is the non-completion or interruption of 
a data cycle due to error. This may be a non-recov
erable error or, if Memory Management is enabled, 
a prohibited transaction. Aborts are serviced imme
diately, prior to the completion of the instruction 
during which they occur. 

A Trap is an interruption of the normal program 
now by internal machine conditions. These condi
tions can be, but are not necessarily errors. A Trap 
is executed after the instruction during which it oc
curs is completed. 

An Interrupt is similar to a Trap, but is caused by 
conditions external to the machine. These condi
tions may be program action (Pl R) or external de
vice service requests (BR). Interrupts are controlled 
by bits 7 - 5 of the Processor Status Word (PSW). 

All of the above use the microprogram Service 
Flows, which are described in Paragraph 6.1. 
Aborts are explained in Paragraph 6.2, traps and 
processor interrupts in Paragraph 6.J, and external 
(Unibus) interrupts in Paragraph 6.4. 

6.1 SERVICE FLOWS AND VECTORS 
The microprogram Service Flows (Flows 12 and 13) 
are used during all aborts, traps and interrupts. 
During these cycles, the PC and PS of the sub
routine that is required by the abort, trap, or inter
rupt are read from memory and the PC and PS of 
the instruction that caused the entry into the Ser
vice Flows are pushed onto the new stack, as deter
mined by the processor mode bits of the new PSW 
[PS( 15: 14)]. 

CHAPTER 6 
ABORTS, TRAPS AND INTERRUPTS 

6.1.1 Vectors 
During all aborts, traps and interrupts a Vector is 
obtained. The vector is the address of the location 
where the PC for the required subroutine is stored. 
The vector+ 2 is the address of the location that 
contains the ne'w PSW. 

During an external interrupt, the vector is provided 
by the device causing the interrupt, and is read 
from the Unibus. Refer to Paragraph 6.4. During a 
power-up, it is read from the Start Vector (SV). 
During all aborts, internal traps and processor PI R 
interrupts, it is read from the Trap Vector (TV) 
logic. 

Refer to drawing DAPE. The SV (power-up) is gen
erated by jumpers and is input to the ALU by the 
BMX. The jumpers may be cut to provide a SV be
tween 00 000 000 and 00 000 174 or between 17 173 
200 and 17 173 374. 

The TV bits [DAPE TV(Ol:04) H, TV06 H and 
TV05*07 HJ are controlled by functions generated 
on TMCB and IRCD. The vectors generated for 

·each function are listed on DAPE. If none of these 
is asserted, the vector is 4 (TV02). 

I RCD decodes the operation code of the IOT, BPT 
(0PCODE3), EMT and TRAP instructions, which 
do nothing but generate an interrupt. They are 
shown on Flows 3, on the A Fork. 

11-6-1 



6.1.2 CPU Error Register 
The CPU Error Register allows the program to de-
termine which abort or trap to location 4 caused en-
try into the Service Flows. It contains the following 
bits: 

Bit Name Function 

7 Illegal Halt (trap) Set when trying to execute 
a HALT instruction when 
the CPU is in User or 
Supervisor mode (not 
Kernel). 

6 Odd Address Set when a program 
Error (abort) attempts to do a word 

reference to an odd ad-
dress. 

5 Non-existent Set when the CPU at-
Memory (abort) tempts to read a word 

from a memory location 
higher than system size 
register. This does not in-
elude Unibus addresses. 

4 Unibus Timeout Set when there is no 
(abort) response on the Unibus 

within approximately 10 
microseconds. 

3 Yellow Zone Set when a yellow zone 
Stack Limit (trap) trap occurs. 

2 Red Zone Set when a red zone abort 
Stack Limit (abort) occurs. 

The CPU Error Register is read on the internal 
data bus (INTO) at address 17 777 766. 

6.1.3 Service Flows 

6.1.3.1 Entry into the Service Flows - Aborts and 
Power-up enter the Service Flows through ZAP.00; 
traps and interrupts enter through BRK.90. The 
EMT, TRAP and reserved operation codes (from 
the A Fork, Flows 3) enter through RSD.00. The 
BPT (OP3) and JOT (also from the A Fork), and 
the illegal HALT, enter through TR.00. 

11-6-2 

RSD.00 and RSD.10 generate a trap vector (TV) of 
4 and shift it left to obtain the correct vector, 
which is I 0. TRP.00 generates the correct TV. 
These cycles all enter SVC.00 through TRP.10. 

6.1.3.2 BRK.90 and ZAP.00 - These two cycles do 
a BEND, which ends any bus operation that may 
have been started during the previous cycle. 

In addition, ZAP.00 does a BRQ STROBE, which 
allows setting the CONF after BRK.00 if the 
HALT switch is down and the S BUS CYCLES 
INST switch is in S INST. 

The BEN06 branch after ZA P.00 checks SSRA PS 
RESTORE (I) H (Memory Management abort dur
ing SVC.70 or SVC.90). Refer to Paragraph 6.2.1.3. 

6.1.3.3 BRK.00 and BRK.10 - The INTR PAUSE, 
during which the vector is read from the Unibus 
during an external interrupt, occurs during 
BRK .00. INTR PA USE is described in Paragraph 
6.4. The PC of the instruction preceding the service 
sequence is stored in the SR. 

During BRK.10, the INTR vector is moved into 
the DR. 

6.1.3.4 Branch Enable 13 - The logic that controls 
Branch Enable 13 (BEN 13) is shown on TMCB. 
All the errors and requests that might be honored 
to cause an internal trap are ORed to provide an 
output called TF (and its complement, -TF). The 
74H 50 gates provide the following two outputs: 
TMCB PF (O)*(SF+TF) Hand TMCB PF (O)*(SF+
TF) H. These outputs control which of four micro
branch paths will be followed: 

I. PU PF (0) L - If the Power-up flag is set, 
neither output will be asserted. Micro
state PUP.00 (I 00) will be entered. 

2. TF - When the Power-up and Stack Er
ror flags are both cleared [PUPF (0) L 
and -SERF (I) L] and a trap condition 
exists, only the TMCB PF (O)*(SF+TF) 
H output will be asserted. This output 
causes microstate BRK.80 (140) to be 
entered. 



3. -TF - When the Power-up and Stack Er
ror flags are both cleared and no inter
nal trap conditions are present (-TF), 
only the TMCB PF (O)*(SF+-TF) Hout
put will be asserted. This causes micro
state BRK.20 (120) to be entered. 

4. SF - If the Stack Error flag is set and 
the Power-up flag is not, SERF (I) L 
will assert both outputs. This will cause 
the SER.00 microstate (160) to be 
entered. 

The Power-up sequence is described in Paragraph 
6.5 and the INTR in Paragraph 6.4. 

6.J.3.5 Red Stack Error (SER.00 and SER.IO) -
The PC and PS pushes in SVC.60 - SVC.80 must 
be made to locations 0 and 2 of the stack. For this 
reason, SER.00 and SER. IO set the stack pointer, 
GR(6), to 4. 

After this cycle, the Red Stack Error flows reJom 
the flows for all other internal traps by entering 
BRK.80. 

6.1.3.6 BRK.80 and BRK.20 - During BRK.80 the 
trap vector is read into the DR. The PS is loaded 
into the BR in both cycles. 

The ACKN in BRK.20 clears the INTR flag. 

6.1.3. 7 BK.30 - Th is cycle is followed by SVC.00 
- SVC.90, which are common to all aborts, traps 
and interrupts. The ACKN in this cycle sets and 
clears several functions related to the service flows. 

6.1.3.8 Entry into SVC.00 - SVC.00 is entered 
from either TRP.10 or from BRK.30. At this time, 
the vector (address of the new PC, which is read 
first) is in the DR, the old PC is in PCB and in the 
SR, and the old PS is in the PSW and in the BR. 

6.1.3.9 SVC.00 - SV.90 - During these cycles, the 
PC and PS for the software service routine are read 
from the Kernel stack during SVC.00 - SVC.20. 
KERN EL DA Tl forces Kernel mode but does not 
change the status bits in the PSW [PS( I 5: 14)]. Re
fer to Chapter 3. 

The new PS is loaded into the PSW during SVC.30. 
SYC.40 loads the SP into the DR and SVC.50 decr
ements the SP. 

SVC.60 - SVC.90 push the old PS and PC onto the 
current mode stack as determined by the new PS. If 
a Memory Management abort occurs during these 
cycles, the PS RESTORE branch is taken after 
ZA P.00. Refer to Paragraph 6.2.1.3. 

SYC.90 does a BRQ STROBE. It is followed by 
FET.00. 

Table 6- I shows in detail the movement of data in 
the processor registers during these cycles. 

6.2 ABORTS 
Aborts are grouped under three headings in this 
paragraph: Address, Stack and Parity. The several 
errors, and their timing, are described under these 
headings in this paragraph. 

6.2.1 Address Errors 
An address error causes the Address Error flag 
(TMCC AERF (I) H) to be set. An address error 
may be one of the following: 

I. Odd Address error, 
2. Non-Existent Memory error, 
3. Memory Management abort, 
4. (Unibus) Timeout error, 

provided the bus cycle during which the error oc
curs is not a push to the Kernel stack. 

6.2.1.1 Odd Address Error - An odd address is per
missible only during a byte instruction, and then 
only when the transaction is a SRCI DATI and the 
source mode is not 3, 5 or 7, a SRC2 DA TI, a 
BSOPI or a BSOP2. TMCC ODD ADRS ERR L 
is asserted when the address is odd (BAMXOO= I) 
and these conditions are not met. The bus cycle is 
aborted and a trap to 4 is executed. 

SRC I DA Tl is the first bus operation of source cal
culation: if the source mode is 3, 5 or 7 (all de
ferred modes), this transaction reads the address of 
the operand, which cannot be odd. SRC2 DA TI 
reads the operand, whose address during a byte in
struction may be odd. 

BSOPI generates DATIP for a P /class instruction, 
a DA Tl for an instruction that is neither P /class 
nor O/class and a DATO for O/class instructions; 
no byte instructions are 0 /class. 

BSOP2 generates a DATOB for byte instructions 
and a DATO for all others. 

11-6-3 



--
°" 1. 

µcycle Type of DR 
µcycle 

Initial Conditions Vector 

BRK.30 ! 
TRP.10 

BUST 

SVC.00 PAUSE 

SVC.IO BUST VEC+2* 

SVC.20 PAUSE 

SVC.30 old PS* 

SVC.40 

SVC.SO new SP* 

SVC.60 BUST new SP-2 

SVC.70 PAUSE 

SVC.80 BUST new SP-4 

SVC.90 PAUSE 

FET.00 

FET.10 or ! 
BRK.90 

*Occurs at Tl, shown as T6 on Flows. 

SR BR 

old PC old PS 

new PC* 

old PC* 

new PS* 

old PS* 

old PC* 

Table 6-1 
Service Flows 

PCA PCB 

old PC 

old PS 

new PC old PS* 

old PS new PC* 

BAMX PS 

old PS 

Vector 

VEC+2 

new PS 

new SP-2 

new SP-4 

GR[6] Comments 

l ACKN new PC to BR from 
Kernel space. 

l New PS to BR from Kernel 
space. 

New PS toPSW 

New SP (GD[6]) to DR 

new SP-2 Decrement SP 

l First Push: 
new SP-4 old PS to new Stack; 

decrement SP 

l Second Push: 
old PC to new Stack 

l BRQ STROBE if not SERF 
orPWRF 

l CLEAR FLAGS 
(SERF or BLOCK STROBE ) 



TMCD ODD ADRS ERR L is asserted under the 
following conditions: 

I. The address is odd (BAMXOO= I) and 
the instruction is not a byte instruction 
(IRCD BY IN H negated). The third 
gate from the top is asserted in this case. 

2. If the address is odd and this gate is not 
asserted, the instruction is a byte instruc
tion, and either the top or the bottom 
gate can cause ODD ADRS ERR to be 
asserted: 

a. If the BSC field calls for a DA TI, 
a KERNEL DATI, a Floating 
Point Bus Operation or a DATO 
(BSC=O, 2, 4, or 5), the top gate is 
asserted; 

b. If the BS field calls for a SRCI 
DA TI or a DATI (BSC=O or I) 
and a source mode of 3, 5 or 7, the 
bottom gate is asserted. Note that 
a DA TI causes the top gate to be 
asserted without regard to the 
source mode. 

6.2.1.2 Non-Existent Memory Error - TMCC 
N EX M L is asserted when an address is neither a 
Unibus nor a Cache address. This is determined by 
!\N Ding SAPN NOT CACHE ADRS H and 
S!\PN UNIBUS ADRS L. Refer to Section IV of 
this manual for a description of these functions. 

The bus cycle is aborted when reference is made to 
an address larger than that specified by the System 
Si1e Register. The Trap vector is 4 for an NEXM 
error. 

6.2.1.3 Memory Management Aborts - Memory 
Management aborts are described in Section IV of 
this manual. SSRC KT ABORT FLG L informs 
the TMCC logic of such an abort condition. This 
signal is inhibited when a Stack Limit Red, Odd 
!\ ddress or Non-Existent Memory error is asserted 
(TMCE KT BEND L). In other words, a Memory 
Management abort is allowed if no Stack or Ad
dress abort is flagged. 

KT ABORT asserts TMCC ABORT Hand, at T3 
of the Pause cycle, sets TMCC SEG ABORTED 
(I) H, except in the case of a Console operation 
(U BCF CNSL ACT (0) H). 

The SEG ABORTED flip-flop generates the Trap 
vector for a Memory Management abort. This TV 
is 250 unless the bus cycle during which the error 
occurs is a push to the Kernel stack; in this case, 
the vector is 4 (Stack error, see Paragraph 6.2.2). 
Refer to TMCB: TMCB SEGT L, when asserted, 
generates vector 250 on DAPE. SEGT is asserted 
for an abort when TMCC SEG ABORTED and 
!\ERF are both asserted. AERF, however, cannot 
be asserted when the error is a Stack error (i.e., 
when TMCC KERNEL R6 is asserted). In this last 
case, the vector is 4 instead of 25. 

PS RESTORE 
The Service Flows first fetch the new PC and PS 
from the vector address; the Kernel stack is used 
for this operation (SVC.00 - SVC.50). The old PS 
and PC are then pushed onto the new stack 
(SVC.60 - SVC.90). 

If the new stack is not the Kernel stack, and if 
Memory Management is enabled and causes an 
abort during the pushes in SVC.70 or SVC.90, this 
abort may be a length error, which in this case is a 
non-Kernel stack error. (A Red Stack error would 
have occured if the Kernel stack was being used). 

I. The microprogram goes to ZAP .00. 
SSRA PS RESTORE (I) H has been as
serted during the push cycle that causes 
the abort and the microprogram 
branches to ZAP. I 0. At this time, the 
PC and PS of the instruction that caused 
entry into the Service Flows are in the 
SR and PCA. PCB and PSW contain the 
values for the abort, trap or interrupt 
that was being serviced. 

2. ZAP. JO - ZAP.30 restore the PC and PS 
of the instruction that caused entry into 
the service routine. The Service Flows 
are now reentered via B RK.00, BRK.10, 
and BRK.80. This last cycle fetches the 
trap vector, which is 250 (Memory 
Management). 

3. BRK.30 - SVC.30 get the Memory Man
agement subroutine PC and PS. This sub
routine is typically a Kernel subroutine, 
and the pushes in SVC.70 and SVC.90 
are then to the Kernel stack, and no er
ror should occur. 

11-6-5 



4. 

5. 

At the end of the Service Flows, control 
is transferred to the Memory Manage
ment software subroutine. This sub
routine typically finds the error that 
caused the abort and corrects the error. 
In this case, it may allocate more space 
for the stack. 

When the software subroutine returns 
control to the main program, the instruc
tion that originally caused entry into the 
Service Flows is executed again and 
causes a new entry into the Service 
Flows. Since more stack space has been 
allocated by the software subroutine, the 
pushes are not successfully executed. 

Refer to Section IV of this manual for a description 
of Memory Management aborts. 

6.2.1.4 Timeout Error - UBCB TIMEOUT B L is 
asserted when a processor Unibus cycle cannot be 
completed because no device responds to MSYN 

within approximately 10 µs. The bus cycle is 
aborted in this case. Refer to Chapter 5, Paragraph 
5.3.2. The Trap vector is 4 for a Unibus Timeout 
error. 

A Main Memory timeout on a processor (not a 
Unibus) cycle is flagged by CCBD CP TIMEOUT 
L. This signal direct-sets PDRH CACHE PERF L, 
the Cache parity abort flag, and a Main Memory 
timeout is processed as a fatal parity error. Refer to 
Paragraph 6.2.3, Parity Errors. The Trap vector is 
114 for a Main Memory timeout error. 

6.2.1.5 Timing of Address Error Aborts - Refer to 
Figure 6-1. The timing diagram shows the approx
imate time at which TMCC ABORT H is asserted 
and negated by the several errors. It should be 
noted that NEXM is derived from the BAMX and 
is not gated: the times shown in this case, indicate 
the time during which NEXM is valid, i.e., during 
a Pause cycle. 

TMCC ABORT asserts RACA ZAP L at TS2 of 
the Pause cycle (U BSDOI ). 

BUST PAUSE ZAP. 00 BRK. 30 SVC. 90 FET. 00 

TMCC ABORT H 

TMCC AERF (1) H 

TMCC SEG ABORTED (1) H 

TMCC BLOCK STROBE (1) H 

UBCB ABORT ACKN L 

TMCC PRIORITY CLR L 

---- • • 4----+ 

T1 T5 T1 T5 T1 T5 T1 T1 T5 T1 T1 T5 T1 T1 T5 T1 

I I I I I 11 I I I I I I I I I .. I I I I I I .. I I I I I I .. I I I I I I 
ODD ADRS 

NEXM 

ODD ADRS 

NEXM 

~,..____~-

~----
~1------~1----
~ 

~Inhibited by 
,t' . BLOCK STROBE 

TMCE BRQ STROBE H 1--1 rl 
--------------------'------~~------------l~ ~~-~~~-

RACA ZAP L 

11- 3126 

Figure 6-1 Address Error Aborts 

11-6-6 



TMCC AERF (I) H is set during TS2 of a Pause 
cycle by any of the address error conditions, if the 
reference is not to the Kernel stack (KERNEL R6 
is negated) and if the bus cycle is not generated by 
Console action (UBCF CNSL ACT (0) H). 

TMCC ABORT direct-sets BLOCK STROBE and 
asserts PRIORITY CLR during TS3 of the Pause 
cycle. BLOCK STROBE, while asserted, inhibits 
BRQ STROBE by asserting TMCC STROBE INH. 
BLOCK STROBE and PRIORITY CLR prevent 
any requests previously strobed in from generating 
vectors during an INTR PAUSE. In this case, since 
BLOCK STROBE is cleared by its ACKN clock in
put during BRK.30, the BRQ STROBE during 
ZAP.00 is inhibited. TMCC PRIORITY CLR 
clear-; the request register on TMCA. This allows 
new requests to be clocked in SVC.90, and a new 
hrn11 1 to BRK.90 after FET.00. 

AERF and BLOCK STROBE are cleared by 
ACKN in BRK.30. 

6.2.2 Stack Errors 
!\ Stack is an area of memory set aside for tempo
rary storage. Data is added to a stack ("pushed" 
onto the stack) in sequential order and is retrieved 
from the stack ("popped" from the stack) in re
verse order. A stack starts at its highest address 
and expands toward its lowest address as data is 
added to it. 

The address of the last valid item pushed onto the 
stack is stored in a general register which is called 
the Stack Pointer (SP). When an item is pushed 
onto a stack, the SP is first decremented to the next 
lower address, then the item is written using the SP 
as the address. When an item is popped from a 
stack. the item is read using the SP as the address, 
then the SP is incremented to the next higher ad
dress. Further details on stacks and their use are in
cluded in Chapter 9 of the PDP-11/70 Processor 
11 and/wok. 

There are three Hardware Stacks, one each for Ker
nel. Supervisor and User modes. The particular reg
ister (R6) for each mode is the SP for that mode's 

hardware stack. These stacks are word-oriented and 
the SPs can only be incremented or decremented by 
2. 

The Kernel stack differs from the other two in that 
it is hardware-protected. 

The Supervisor and User stacks are not protected 
by hardware, but may be checked by Memory Man
agement and appropriate software. Refer to Para
graph 6.2.1.3 (PS Restore). 

A stack error is one which occurs during a push to 
the Kernel stack. When such a push occurs, TMCC 
KERNEL R6 (I) H is asserted. If an error occurs 
during this push, TMC SERF (I) H (the Stack Er
ror flag) is set. 

A stack error may be any of the address errors 
listed in Paragraph 6.2.1 or a Stack Limit Red 
error. 

The above errors all cause aborts. Stack Limit Yel
low is a stack error, but traps instead of aborting. 
Refer to Paragraph 6.2.2.2. 

Both SL YEL and SL RED vector to 4, with the ex
ception of an SL RED that occurs during a power 
fail. Refer to Paragraph 6.5. l. 

6.2.2.1 Kernel R6 - TMCC KERNEL R6 (I) His 
a J-K flip-flop that is clocked at T4. It is set during 
a data-out (including DA TIP) BUST cycle if the ref
erence is to the Kernel stack. It is reset during the 
Pause cycle that follows the BUST. 

The J input to the flip-flop is a 74S64 gate. All the 
0 R inputs to this gate must be asserted if the out
put of the gate is to be high (asserted). 

I. The second gate from the top is asserted 
during a BUST cycle that calls for any 
type of data transfer except a DATI. 

2. The third gate is asserted when General 
Destination Register Set 0 is addressed 
(G RAC G RA3 L is asserted when GD 
Set I is addressed). 

11-6-7 



3. The top and bottom gates are asserted in 
two cases: 

a. When BAX = 0 or 2 and the 
BAMX selects the contents of ei
ther the DR or the SR (RACB 
U BAXOO H is negated) and Gen
eral Destination Register 6 is se
lected (G RAC G D6 L is asserted). 
In this case, GD register 6, Set 0, 
is used as the address for a data
out operation: this is a push onto 
the Kernel stack. During these cy
cles, the General Registers are ad
dressed using the destination field 
(G D[D F]) on the Flows, and the 
description of the cycle includes 
the sentence: "Check Stack Limit." 

b. During a JSR, the contents of the 
source field register are pushed 
onto the stack. This is done during 
JSR.30 (Flows 11) where BCT = 5 
(STACK REFerence). If PDRD 
PS 14 (0) H is asserted, the pro
cessor is in Kernel mode, and the 
push is to the Kernel stack. The 
74S20 NANO gate is asserted, as 
are the top and bottom gates of 
the 74S64. 

The K input to KERNEL R6 (I) 
H is TMCE PAUSES H, which is 
asserted during Bus Pauses (BSD 
= 2 or 3) to clear the flip-flop. 

6.2.2.2 Stack Limit Errors - The lower limit of the 
Kernel stack is set by program control of the Stack 
Limit Register (SL). Any bus cycle that does a push 
beyond this lower limit is aborted (Stack Limit 
RED or SL RED). A warning zone of 16 words ex
ists where any push causes a trap (Stack Limit YEL
iow or SL YEL). 

The default boundary for stack addresses is 400. 
This is the case when the SL contains 0. The Stack 
Limit Register allows this lower limit to be raised, 
providing more address space for interrupt vectors 
or other data that should not be destroyed by the 
program. This limit may be varied in increments of 
400x words, up to a maximum virtual address of 
177 400 by modifying the content of the Stack 
Limit Register (SL). This register contains eight bits 

11-6-8 

and can be addressed as a word at location 17 777 
774, or as a byte at location 17 777 775. The regis
ter is accessible to the processor and Console, but 
not to any Unibus device. The 8 bits, PDRC 
SL(07:00), contain the stack limit information and 
are compared with BA MX( 15:08). These bits are 
cleared by System Reset, Console Start, or the RE
S ET instruction. The lower 8 bits are not used. Bit 
8 corresponds to a value of ( 400)8 or (256)10. 

Stack Limit Violations 
When instructions cause a stack address to exceed 
(to go lower than) a limit set by the programmable 
Stack Limit Register, a Stack Violation occurs. 
There is a Yellow Zone (grace area) of 16 words be
low the Stack Limit which provides a warning to 
the program so that corrective steps can be taken. 
Operations that cause a Yellow Zone Violation are 
completed, then a bus error trap is executed. The er
ror trap, which itself uses the stack, executes with
out causing an additional violation, unless the stack 
has entered the Red Zone. 

J\ Red Zone Violation is a Fatal Stack error. (Odd 
stack or non-existent stack are the other Fatal 
Stack errors). When detected, the operation causing 
the error is aborted, the SP is set to point to ad
dress 4, and a bus error occurs. The old PC and PS 
arc pushed into location 0 and 2, and the new PC 
and PS arc taken from locations 4 and 6. 

Stack Limit Addresses 
The contents of the SL are compared to the stack 
address during a push to determine if a violation 
has occurred. 

Ir the contents of the SL are zero: 

Yellow Zone = 340 - 376: execute, then trap; 

Red Zone = 000 - 336: abort, then trap. 

If the contents of the SL are greater than zero: 

Yellow Zone = (SL)+(340 - 376): execute, 
then trap; 

Red Zone =(SL)+(336): abort, then trap. 

Stack Limit Yellow 
Refer to Figure 6-2. PDRC ST ACK LIMIT H is as
serted when the high order eight bits of the virtual 
address [BAMX(l5:08)] equal the contents of the 
Stack Limit Register [PDRC SL(07:00)]. 



When bits 7 - S of the virtual address are all ones, 
the value of bits 7 - 0 of the address is between 377 
and 340. TMCD YEL ZONE H is asserted. 

Thus, when PDRC STACK LIMIT H and TMCD 
YEL ZONE are both asserted, a Yellow Zone stack 
violation exists. 

TMCD SL YEL (I) His then set at T2 + IS ns of 
a Pause cycle (UBSDOI H) that is pushing onto the 
Kernel stack (KERNEL R6). 

SL YEL is cleared by setting the SERF flip-flop 
(ACKN in BRK.30); SERF inhibits the BRQ 
STROBE in SVC.90. 

Stack Limit Red 
Refer to Figure 6-2. If a Yellow Zone condition ex
ists and the address is further decremented, TMCD 
YEL ZONE goes low and the bottom gate of 

STACK LIMIT 
REGISTER 

•000(000) 

SCCE STACK OVERFLOW H { 1---1_1_1_11_6 __ 

TMCD SL RED is asserted. SL RED is a latch, 
and is set by this gate at TS of the BUST cycle. 

TS is gated with KERNEL R6. This gate is dis
abled if BLOCK STROBE and SERF are both as
serted, i.e., SL RED cannot be asserted again 
during the pushes to 0 and 2 in SVC.60 and 
SVC.80. 

SCCE STACK OVERFLOW H is asserted if the 
virtual address equals 177 776. This gate asserts SL 
RED in the case that the SP is decremented from 0 
to protect the Processor Status word. 

PDRC RED ZONE H is asserted when the virtual 
address is less than the SL. 

SL RED is cleared by ABORT ACKN in BRK.30. 
Figure 6-2 is a summary of the conditions that 
cause a Stack Limit error. 

STACK LIMIT 
REGISTER 
=001(000) 

001400 

000000 

PDRC RED ZONE H 

177776 SCCE STACK OVERFLOW H 

11-3125 

Figure 6-2 Examples of Stack Limit 

11-6-9 



6.2.2.3 Timing of Stack Error Aborts - Refer to 
Figure 6-3. The timing for stack errors is similar to 
that for address errors, with the following 
exceptions: 

I. TMCC KERNEL R6 (I) H is asserted 
at T4 + 15 ns of BUST and cleared at 
T4 + 15 ns of PAUSE. 

2. KERNEL R6 causes TMCC SERF (I) 
H to be set (instead of AERF). 

3. Since SERF is asserted, BLOCK 
STROBE and therefore PRIORITY 
CLR are asserted until TS3 of FET.00, 
when SERF and BLOCK STROBE are 
cleared by CLEAR FLAGS (BCT= 3, 
TMCC). 

BRQ STROBE is thus inhibited, not only during 
ZAP.00, but also during SVC.90, thus guaranteeing 
the execution of the first instruction of the error 
subroutine before any other error can be processed. 

6.2.3 Parity Errors 

6.2.3.1 Description - A parity error may be de
tected either by the Cache or by a Unibus device. 

Cache parity errors are either "hard", if bad parity 
is detected in the word requested by the processor, 
or ··soft", if the Cache can recover without pro
cessor intervention. Hard errors are signalled by the 
assertion of CCBJ PARITY ABORT H and cause 
the processor to abort; soft errors are signalled by 
CCBJ PARITY TRAP H and cause a trap. 

It should be noted that Main Memory Timeout is 
included in the Cache parity error logic: CCBD CP 
TIMEOUT L direct-sets the flip-flop (PDRH 
CACHE PERF) that stores CCBJ PARITY 
ABORT. 

All Unibus parity errors are hard and cause an 
abort; a device asserts BS PB L (UBCB) when it 
senses a parity error (BUS PA is never asserted). 

BUST PAUSE ZAP. 0¢ 
4----+. . . . 

BRK. 30 FET.00 

TMCC KERNEL R6 (1)H 

TMCC SERF (1) H 

TMCC BLOCK STROBE (1) H 

UBCB ACKN B H 

TMCC PRIORITY CLR L 

(TMCC) CLEAR FLAGS L 

RACA ZAP L 

T1 T5T1 T5T1 T5Tf T1 T5T1 T1 T5T1 

I I I I I I I I I I I I I 11 I .. I I I I 11 .. I I I I I I 
ODD ADRS 

----

SL RED 
NEXM 

KT ABORT 
TIMEOUT 

(UBCT= 3 <Ci) T53) 

ODD ADRS 

NEXM 

Figure 6-3 Stack Error Aborts 

11-6-10 

11- 3127 



The vector for both parity aborts and parity traps 
is 114. UBCB PARITY ERR L enables the Trap 
Vector on OAPE. 

6.2.3.:Z Timing of Parity Error Aborts - Refer to 
Figure 6-4. 

Unibus Parity Error 

I. BUS PA L and BUS PB L are clocked 
into the 74S 175 flip-flop (UBCB) at T3 
of a Unibus Pause cycle (MSYN ne
gated). At TI of the cycle following the 
PAUSE, the 74SIO NANO gate is en
abled by the negation of TMCE 
PAUSES L. The output of the. NANO 
gate is asserted if PB is asserted and PA 
negated {parity error), and if TMCE 
PAUSEs is negated. PAUSES prevents 
the assertion of the NANO gate and of 
PE ABORT during the PAUSE state. 

PAUSE 
• Ill• 

UBCB UBUS PAR ERR H resets trap 
request flip-flop on CCBK (Refer to Sec
tion VI, Chapter 4). 

2. This Unibus parity error signal is ORed 
with the Cache parity error signal and in
put to UBCB PE ABORT L. This 
NANO gate is enabled by the 74S74 
flip-flop, which is set during all cycles 
that follow a Pause. 

3. PE ABORT then asserts TMCC 
ABORT H, BLOCK STROBE (I) H 
and PRIORITY CLR L, as in other 
aborts. RACA ZAP L is then asserted 
by PE ABORT at TS2 of the micro
program state following the PA USE 
cycle. 

4. BLOCK STROBE is cleared by UBCB 
ACKN during BRK.30, which allows a 
BRQ STROBE in FET.00. 

BRK.30 SVC. 90 • FET. fllfll • 

T1 T5 T1 T5 T1 T5 Tl T1 T5 T1 T1 T5 T1 T1 T5 T1 

I I I I I I I I I I I I I I I I .. I I I I I I .. I I I I I I .. I I I I I I 

(UBCB) PA, PB FLIP-FLOP 

PDRH CACHE PERF L 

TMCC ABORT H 

UBCB PE ABORT L 

TMCC BLOCK STROBE (1) H 

TMCC PRIORITY CLR L 

UBCB ABORT ACKN L 

TMCE BRQ STROBE H 

~Inhibited by 

i l ....... BLOCK STROBE ~;i.------

RACA ZAP L 

11-:-1128 

Figure 6-4 Parity Abort 

11-6-11 



Cache Parity Error 

I. CCBJ PARITY ABORT H is clocked 
into PDRH CACHE PERF L by TIGA 
CLK BRA H, which occurs at Tl of the 
cycle following a Pause. (CCBJ CP 
TIMEOUT direct-sets CACHE PERF, 
thus combining the Cache Parity and 
Timeout errors). 

2. This Cache parity error signal is 0 Red 
with the Unibus parity error signed and 
input to UBCB PE ABORT L. This 
NANO gate is enabled by the 74S74 
flip-flop, which is set during all cycles 
that follow a Pause. 

3. PE ABORT then asserts TMCC 
ABORT H, BLOCK STROBE (1) H 
and PRIORITY CLR L, as in other 
aborts. RACA ZAP L is then asserted 
by PE ABORT at TS2 of the micro
program state following the Pause cycle. 

4. BLOCK STROBE is cleared by UBCB 
ACKN during BRK.30, which allows a 
BRQ STROBE in FET.00. 

6.3 TRAPS AND INTERRUPTS 
Trap and interrupt requests are clocked into the 
request storage (or "Q") register on TMCA and 
TMCB. TMCE BRQ CLK H clocks these requests 
into the register at least once during the execution 
of each instruction (with the exception of SPL). 
BRQ CLK may be inhibited by an abort which 
may also clear the Q register in order to give high
est priority to the abort (refer to Paragraph 6.2). 

The requests are examined by the priority arbi
tration network (TMCA, TMCB), which allows 
only the highest priority request to be honored. 
One of the signals in the Output column of Table 
6-2 is then asserted. 

If the request is not an external interrupt (UBCD 
EXT BRQ L) the ENB VEC flip-flop is set and en
ables the gates that generate the vector addresses 
for the requests. Table 6-3 lists the requests, the 
gates enabled and the vectors that are generated. 

All instructions except SPL end with a BEN12 
branch to microaddress 240. If TMCB BRQ TRUE 
L is asserted, BRK.90 is entered instead of a Fetch 
cycle, and the Service Flows are executed, followed 
by the subroutine determined by the new PC. 

6.3.1 Illegal Halt 
A trap to 4 is executed, instead of a HALT at the 
end of a HALT instruction, if the processor is not 
in Kernel mode, as determined by PS 14. If the 
mode is Kernel, the Console Flag is set and a 
branch to CON.00 is executed. 

Refer to drawing TMCE. During HL T.10 (Flows 
3), MSC=3, SET CONF if Kernel mode; TMCE 
SET HALT His asserted. At TS3, if the processor 
is in Kernel mode [PD RD PS 14 (0) HJ, the Con
sole Flag is set and the processor halts. This is 
shown on Flows 3 as CONF~I IF PS14(0). 

If. on the other hand, PS14= I (Supervisor or User 
modes), BEN06, which examines BR 14, causes a 
branch to TRPOO. (The PS is stored in the BR dur
ing H L T.00.) 

6.3.2 Console Flag 
TMCA CONF (l) H causes a processor HALT by 
causing it to branch to CON .00 (Flows 14). Refer 
to Section III (Console) of this manual. 

6.3.3 Cache Parity Trap 
CCBJ PARITY TRAP H is asserted by the Cache 
if it detects a non-fatal parity error, i.e., one which 
does not affect the processor bus cycle in progress. 
Refer to Section VI of this manual for a complete 
description. 

6.3.4 Memory Management Traps 
Refer to Section IV (Memory Management) of this 
manual. 

6.3.5 Yellow Zone Trap (SL YEL) 
Refer to Paragraph 6.2.2. 

6.3.6 Power Down Trap (PDNF) 
Refer to Paragraph 6.5. 

6.3. 7 FP Exception Trap 
Refer to Floating Point Processor Manual. 

11-6-12 



Table 6-2 

Processor Service in Order of Priority 

Order Condition Input Output* Result* 

l console flag UBCF STOP L TMCA CONF (l) H do console control 
function 

2 cache parity CCBJ PARITY TMCB PART L trap (114) 
TRAPH 

3 memory management SSRD MEM MGMT TMCB SEGT L trap (250) 

traps TRAP L TMCA HONOR SEGT H 

4 warning stack TMCD SL YEL TMCA HONOR SLY H trap (4) 

violation 

5 power fail UBCE PDNF (l) H TMCA HONOR PWRF L trap (24) 

6 floating-point FRHH TMCA HONOR FPTRAP L trap (224) 

exception trap FP EXCTRAP L 

CP LEV 7 

7 priority interrupt PDRD PlRl 5 (l) H TMCA HONOR PlR7 L trap (240) 

request PIRQ7 

8 bus request, level 7 BUS BR7 L TMCA HONOR BR7 L interrupt 

interrupt 

CP LEV 6 

9 priority interrupt PDRD PIR14 (I) H TMCA HONOR PIR6 L trap (240) 

request PI RQ6 

10 bus request, level 6 BUS BR6 L TMCA HONOR BR6 L interrupt 

interrupt 

CP LEV 5 

11 priority interrupt PDRD PIRl3 (I) H TMCA HONOR PIRS L trap (240) 

request PI RQS 

12 bus request, level 5 BUS BRS L TMCA HONOR BRS L interrupt 
interrupt 

CP LEV 4 

13 priority interrupt PDRD PIRI 2 (I) H TMCA HONOR Pl R4 L trap (240) 
request PIRQ4 

14 bus request, level 4 BUS BR4 L TMCB HONOR BR4 L interrupt 
interrnpt 

CP LEV 3 

15 priority interrupt PDRD PIRI I (I) H TMCB HONOR PIR3 L trap (240) 

request PIRQ3 

CP LEV 2 

16 priority request PDRD PIRI 0 (]) H TMCB HONOR PIR2 L trap (240) 

PIRQ2 

CP LEV I 

17 priority request PDRD PIR09 (I) H TMCB HONOR PIR I L trap (240) 

PIRQI 

18 T bit set and not RTI PDRD PS04 (I) H TMCB HONOR T L trap (14) 

and -(IRCD RTI L) 

* Only if no higher priority request has been received. 

11-6-13 



Table 6-3 

Trap Vectors Enabled 

Trap Request Honored 

TMCBPARTL 
TMCA HONOR FPTRAP H 
TMCA HONOR SEGT H 
TMCA HONOR PWRF H 
TMCB HONOR T H 
TMCB HONOR PIRQ H 

(OR of PIR (7: D) 

Output 

UBCB PARITY ERR L 
TMCB FPTRAP L 
TMCB SEGT L 
TMCB PWRF L 
TMCBTOK L 
TMCB PIRQ L 

Trap Vector* 

114 

244 
250 

24 
14 

240 

*Trap vector generator is shown on drawing DAPE. 

6.3.8 Program Interrupt Request 
The Program Interrupt Request (PIRQ) Register al
lows a program to schedule the execution of vari
ous subprograms, according to a priority scheme, 
at the same time allowing various levels of hard
ware interrupt priority to interact with the software 
priority levels. The register stores interrupt requests 
set hy transferring request data to the PIRQ, and 
provides information about the requests through en
coded data transferred from the PIRQ. 

A request is booked by setting one of the bits 15 -
9 (for Pl R 7 - Pl R I) in the Program Interrupt Reg
ister at location 17 777 772. The hardware sets bits 
7-5 and 3-1 to the encoded value of the highest 
Pl R hit set. This Program Interrupt Active (PIA) is 
used to set the Processor Level and also to index 
through a table of interrupt service routines for the 
seven soft ware priority levels. Figure 6-5 shows the 
layout of the PIR. 

9 8 7 5 4 3 I 0 

PIRlf'<~ P l 
1 

A r0a P l~ 

Figure 6-5 Program Interrupt 
Request Register 

11-3097 

When the Pl R is granted, the processor traps to lo
cation 240 and picks up the PC in 240 and the 
PSW in 242. It is the interrupt service routine's re
sponsibility to queue requests within a priority level 
and to clear the PIR bit before the interrupt is 
dismissed. 

Refer to drawing PORO. PIR(l5:09) (1) H is 
loaded from BR( 15:09) when MSYN is set and if 
the PIR address is decoded (SCCE PIR AORS H). 
The clock signal is TMCF CLK PIR H. The PIR 
bits are encoded by the 9318, which generates 
PORO PIA(02:00). 

Both PIR and PIA are read on the Internal Data 
Bus (INTO). The PIR is read as bits 15:09, and the 
PIA is repeated in bits 07:05 and 03:01. Bits 7 - 5 al
low the program to move the PIA into the pro
cessor status register and thus set the processor 
priority to the level of the request honored, if de
sired. This locks out all requests on the same level 
or below. Bits 3 - 1 can be used as an index con
stant in dispatching to an interrupt service routine 
for the appropriate priority level request. 

6.3.9 External Interrupt (BUS BR) 
Refer to Paragraph 6.4. 

6.3. IO T Bit Trap 
When the T bit is set (refer to Chapter 3), and if 
there arc no higher priorities, a trap to 14 occurs 
through RSD.00. 

Detailed information on the execution of the T bit 
trap is contained in the PDP-I I /70 Processor 
I lallllhook. 

6.4 UNIBUS ARBITRATION AND INTER
RUPT INTERFACE 
An N PR transfer is a data transfer between a 
Un ihus device and memory; the processor is not in
volved in this transfer except to the extent that it 
cannot use the Unibus or memory during its execu
tion. AN N PR transfer can be executed at any time 
that the processor is not using the Unibus. 

11-6-14 



A BR transfer is a data transfer during which a vec
tor is transmitted to the processor by a Unibus de
vice, which requires the execution of a service 
routine by the processor. The vector is the address 
of the PC that is to be used for this subroutine. A 
BR can only be executed at the end of an 
instruction. 

The priority arbitration network (Paragraph 6.3) ex
amines the requests received from the Unibus, com
pares their priorities against that of the processor, 
and decides which device may become master when 
the U nihus is released by the current master. 

The Unibus Request signals received by the KBI I
C arc listed below: 

NON-PROCESSOR REQUEST, BUS NPR l 
( U BCD): A signal from an asynchronous 
running device requesting the use of the data 
section of the bus, sent to arbitrator by a de
vice that requires the use of the Unibus in or
der to execute data transfers. These transfers 
arc made without active participation by the 
rroccssor. They do not affect processor oper
ations, except to the extent that Unibus de
vices using the bus for a data transfer can 
force the processor to wait in the PA USE 
state until all NPRs have been serviced. 

NPR transfers are executed between processor 
Unibus cycles (i.e., when the processor is not 
using the Unibus), and not necessarily after 
completion of an instruction. NPRs may be as
serted at any time that the device is ready to 
start a data transfer. NPRs have a higher pri
ority than processor data transfers or than 
any of the BR lines. 

BUS REQUEST, BUS BR7 L - BUS B4 L 
(TMCA, TMC.B); A signal from an asynch
ronous running device, requesting the use of 
the data section of the bus. Typically, one of 
these signals is sent to the arbitrator by a de
vice that requires the use of the Unibus to 
transmit an interrupt vector to the processor. 

An interrupt is a transfer of control to a sub
program that handles device or task servicing. 
An interrupt vector points to the address of 
this subprogram; the vector is transmitted to 
the processor during an interrupt (INTR) 
transaction. 

I ntcrrupt transactions require processor ac
tion, and can only be executed after the cur
rent instruction is completed. 

A BR may be asserted at any time that the de
vice is ready to interrupt the processor, but 
cannot be serviced until the processor is ready 
to do so. B Rs have lower priority than NP Rs 
and than a processor priority of the same 
level (7 - 4 ). 

Priorities permitting, the KBl 1-C responds to these 
requests by asserting one of the following GRANT 
signals: 

NON-PROCESSOR GRANT, UBCD PROC 
NPG H- unless INIT, RESET or ACLO are 
asserted, or during a read/modify /write 
(UBCC DATIP L), or if the Console 
HALT /ENABLE switch is in HALT and the 
S INST /S BUS CYCLE switch is in S BUS 
CYCLE. During a DA TIP, no grants are is
sued in order to minimize NPR latency. 

BUS GRANT, UBCD PROC BG7 - BG4 H -
if the priority arbitration network has asserted 
the corresponding TMCA HONOR BR7 -
BR5 L. 

Only one grant (NPG or BG) may be asserted at a 
time. 

The requesting device, upon receipt of a grant, as
serts BUS SACK L, then negates its request. When 
the assertion of SACK is sensed (UBCD), the grant 
is negated. No grants may be asserted while SACK 
is asserted. When the requesting device negates 
SACK, a new grant may be issued. 

If no device responds to a grant by asserting SACK 
within I 0 µs, U BCD NO SACK (I) H is asserted, 
forces SACK, thus allowing the assertion of a new 
grant. A NO SACK timeout does not cause a trap 
or abort. It should be noted that some Unibus ter
minators (e.g., 9302), when used at the end of the 
Unibus that is opposite to the processor, receive 
NPR (if no device has accepted it), and assert 
SACK. The Timeout delay is thus not used. 

An N PG may only be used by a device for data 
transfer. No interrupts are allowed on an NPG, 
and the processor is not affected by an NPR 
transaction. 

11-6-15 



-IBR4 + BR5 + BR6 + BR7) 

T3 

WAT.20 

BRK.00 } 

INTR PAUSE 
RACBUBSD 
<00:01> • 1 

BR4 + BR5 + BR6 + BR7 

NPR + SACK + NPG 

-INPR +SACK + NPGI 

1 
GRANTBR-1 
DISABLE NPG'S 

ASSERT BUS 
GRANTON 
APPROPRIATE 
LEVEL 

WAIT FOR BUS 
SACK FROM 
DEVICE 

-SACKl11 

10 µs: NO SACK TIME OUT 

SACKl11 

l USE NO SACKl1 I 
TO FORCE BUS 

l 
SACK 

WAIT 90 ns AND 
THEN CLEAR 
GRANT 

WAIT FOR BUS 
INTR AND VECTOR 
OR BUS BBSY TO 
GO AWAY; SERVICE 
NPR'SWHEN 
-ISACK +GRANT 
BRI 

-BBSY ..... 

BUS .lTR 

l 
RESTART TIMING 
AND DESKEW 

RESTART TIMING; 
VECTOR 

IF NO SACK TIME 
OUT OR PASSIVE 
RELEASE 

STROBE VECTOR 
TO PDRH BUFFER 
REG 

T1__ - ------ --~- -
CLOCK VECTOR 
INTO BR 

Figure 6-6 BR -Interrupt Sequence 

11-6-16 

--e ENTER NEXT 
ROM STATE 

11'3136 



A BG, on the other hand, is used for an interrupt. 
Refer to Figure 6-6. When an interrupt is sensed, 
the microprogram branches to the BRK sequence 
(Flows 12). BRK.00 is the INTR PAUSE cycle 
(BSD= I) in this sequence. A similar cycle, 
WA T.20, is part of the WAIT instruction. The 
I NTR PA USE cycle is the only condition in which 
the processor acts as a Unibus slave (i.e., asserts 
SSYN). 

During the INTR PAUSE cycle, the clock is 
stopped in T2 if an external interrupt is to be ser
viced (BR4+ BR5+ BR6+ BR 7). After all pending 
N PRs have been serviced, the Bus Grant (BG) is as
serted on the level corresponding to the level of the 
request that is to be serviced. 

When the requesting Unibus device receives the BG 
it acknowledges this by asserting SACK and then 
negating its BR. The device that asserts SACK as
serts B BSY when the previous master negates it. 

The processor negates the BG 90 ns after receiving 
the assertion of SACK: typically, a device asserts 
I NTR and the vector just before it negates SACK. 

Two parallel and generally unrelated sequences now 
occur: 

I. 

2. 

The assertion of I NTR is received from 
the Unibus. The clock is restarted at T3, 
the vector is strobed, and SSYN is as
serted. The Unibus device negates INTR 
when it receives the assertion of SSYN. 
The processor negates SSYN when it re
ceives the negation of INTR. 

The negation of SACK is received and., 
after a minimum wait of 90 ns, allows 
N PRs to be processed. 

6.4.1 Unibus Arbitration Interface Logic 
The Unibus arbitration interface logic is controlled 
by U BCD FR EE CLK which consists of the two 
74S 112 J-K flip-flops clocked by TIGC TF L. The 
l-'RFE CLK generates a 30-ns wide pulse within a 
period of 90 ns. The D flip-flops (74S74S) on 
U BCD use the inverted output of this clock, while 
the J-K flip-flops (74S I I 2s) other than those that 
make up the clock use the non-inverted output. 
Tlrns, the two sets of flip-flops are clocked at t~e 
same time. Figure 6-7 shows the output of the 
FRl-T CLK. 

30ns-i '4--- 1-e----- 90ns --1 
TIGC TF L 

FIRST FLIP-FLOP 

UBCD FREE CLK (1)H 

Lusco FLIP-FLOPS CLOCKED 
11-3129 

Figure 6-7 UBCD Free Clock 

The relationship between the FREE CLK and the 
TIG timing pulses (Tl-T5) and time states (TS1-
TS5) is such that the leading or trailing edge of the 
1-'R FF CL K and the first FREE CLK flip-flop out
puts always coincide with the leading edge of Tl-T5 
and TS l-TS5. There is no other relationship to the 
TIG clock. 

6.4.2 NPR-NPG Sequence 
Refer to drawing U BCD and to Figure 6-8. 

I. 

2. 

When BUS NPR L is asserted, and if 
none of the disabling conditions are pre
sent, the D input to UBCD NPR (I) H 
becomes high and this flip-flop is set by 
the first FREE CLK pulse to occur. 
UBCD NPR (0) H disables the input to 
UBCD GRANT BR (I) H: no BRs may 
be granted while an NPR is present. The 
next clock pulse, 90 ns later, sets U BCD 
NPG (I) H, which asserts UBCD PROC 
N PG H on the Unibus, starts the 10-µs 
NO SACK timeout one-shot and negates 
UBCD ENAB BR H, which also dis
ables U BCD GRANT BR. 

When a device receives and accept this 
N PG, it asserts BUS SACK L and ne
gates BUS NPR L. The first clock pulse 
to occur after receipt of these signals sets 
the SACK and clears the NPR flip-flops. 
The clock pulse after that sets UBCD 
DSACK (l) H (delayed SACK, 90-ns de
skew) and clears NPG. The only arbi
tration signal now asserted on the 
Unibus is SACK. 

11-6-17 



UBCDFREECLKH~~~ 
I I I I I 

BUS NPR L * I I ~ : I I 

: Ill ~~ : II II 
UBCD NPR (1) H q . 

---~ : I 

UBCD NPG (1) H 

UBCD PROC NPG H ------' 

BUS SACK L * 

SACK F-F (1) H 

* ASYNCHRONOUS SIGNALS FROM UNIBUS 
U-3130 

Figure 6-8 NPR-NPG Sequence 

J. The device asserts BBSY when the 
Unibus is free (BBSY negated by pre
vious master), executes its data trans
f er(s) and negates SACK. The SACK 
and DSACK flip-flops are cleared by the 
first and second FREE CLK pulses after 
receipt of the negation of SACK. If an
other N PR is pending, PROC NPG H 
may be asserted 90 ns after DSACK is 
cleared. 

4. If the assertion of BUS SACK L is not 
received IO µs after UBCD NPG (I) H 
is set, UBCD NO SACK (I) H is as
serted. This signal forces a sequence sim
ilar to that described in (2) above. When 
UBCD NPG (0) H goes high, UBCD 
NO SACK (I) H is negated and the 
SACK and DSACK flip-flops are 
cleared as in (3) above. 

When the assertion of BUS SACK L is 
received before the end of the 10 µs time
out, the 74SI23 one shot is reset. 

6.4.3 BR-BG Interrupt Sequence and Passive 
Release 
The processor checks for both internal and external 

traps (or interrupts) toward the end of every instruc
tion. This is done by clocking all request lines into 
the priority flip-flops on TMCA and TMCB 
fTMCE BRQ STROBE H when RACC 
UMSC(02:00)=6, at TS3]. If a Unibus request 
(BUS BR 7 L - BUS BR4 L) is asserted, and if its 
priority is higher than that of any other request pre
sent. TMC ;\ HONOR BRn L is asserted (n is the 
same number as that of the request line being 
serviced). 

The BEN bits of the microprogram cycle, immedi
ately preceding FET.10, always equal 12 and its 
LJ/\DR field, 240. If TMCB BRQ TRUE L is not 
asserted (no interrupt request), the microprogram 
branches to FET. I 0 (instruction fetch). If TMCB 
BRQ TRUE L is asserted, the microprogram does 
not branch, but goes to BRK.90 (Flows 12). This 
cycle docs a BEND to cancel the BUST in the pre
vious cycle. 

BRK.90 is now entered. If UBCD EXT BRQ His 
asserted(= any one ofTMCA HONOR BR7 - R4 
L asserted) the clock stops in T2, since this is an 
INTR PAUSE cycle (BSD=I) and UBCD EXT 
BRQ 1-1 is asserted. Refer to drawing TMCA and 
to Chapter 4, Timing Generator. 

11-6-18 



Refer to UBCD and to Figure 6-9. 

I. TS2 and TMCE INTR PAUSE H gate 
U BCD EXT BRQ H to the input of 
UBCD BRQ (I) H. This flip-flop is 
clocked by FREE CLOCK and its out
put goes high. 

UBCD ENA8 BR H 

UBCD CLR BG (1) H 

UBCO GRANT BR (1) H 
UBCO PROC BGn H 

** BUS SACK L 

SACK F-F (1)H 

UBCD DSACK (1) H 

(UBCC) BUS SSYN L* 

UBCC INTR B H** 
UBCB TIG RESTART H---------;i i---------t 

tST TIGA RESYNC F-F* 

2ND TIGA RESYNC F-F* 

TIGA T3 (1) H * 

When all N PRs have been serviced and 
when all grant service is completed, 
GRANT BR (I) H is set by the first 
FREE CLK pulse following the one that 
set BRQ (I) H. This signal gates the 
TMCA HONOR BRn L signal that is as
serted onto the Unibus as UBCD PROC 
BGn H. 

NPG MAY BE GRANTED 
AT THIS TIME. 

*NOT CLOCKED BY UBCO FREE CLK. 

**ASYNCHRONOUS SIGNALS FROM UNIBUS. 

VECTOR CLOCKED INTO J 
PDRJ BUS BUFFER REG (T3l 

11-3131 

Figure 6-9 INTR Sequence 

All NPRs have been serviced if no NPR: 
is pending [NPR (0) H high]. All granti 
service has been completed if ENAB BR' 
H is high; this is the case when the last 
NPG is done [NPG (0) H high], the last 
BG is done and no new grant has been, 
issued [CLR BG (0) HJ, and DSAK (0)/ 
His high. j 

2. When the assertion of BUS SACK is re-/ 
ceived, the SACK flip-flop is set at thel 
first FREE CLK pulse. The next cloc~. 
pulse sets DSACK (I) H. Since GRAN 
BR (I) H is high, the same pulse set 
CLR BG (I) H, which causes ENAB BR 
H to be negated. The same clock pulse 
also clears GRANT BR (I) H by com-1

1 

plementing it (J-K flip-flop with both in
puts high). I 

3. The Unibus device now puts the vector 
on the D lines, asserts I NTR and ne
gates SACK. 

I 
'1 

I 

The first FREE CLK pulse after receipt1 
of the negation of SACK clears thei 
SACK flip-flop; the second clears 
DSACK. , 

i 
The assertion of INTR causes UBCBI 
TIG RESTART to be asserted. This sig-

1 

nal causes the main clock to be restarted' 
(refer to Chapter 4). A minimum of 75 
ns after the assertion of TIG RES-. 
TA RT, T3 is asserted. At this time, the,, 
vector is clocked into PDRJ D( 15:00)1 
from BUS D(I5:00) L. At T4, the BRQ 
flip-flop is cleared (-TS2 and FREE 
CLOCK); the next clock pulse clears 
CLR BG (I) H. ENAB BR H is as
serted, and the NPR input to NPG (I) 
H is enabled. An NPR can now be: 
serviced. 

At TI of the next cycle ( = T6 on Flows 
12) this data is clocked into the BR: 
(BR4-BUS). BUS SSYN L (UBCC) is 
also asserted by the processor at T3. The 
device responds to the assertion of 
SSYN by negating INTR. This, in turn, 
causes SSYN·tcr b'e negated; thus· en·ding··· 
the INTR Unibus transaction. 

4. BUS INTR L also sets UBCC INTRF 
(I) H. After BRK.00, BRK.10 is exe
cuted. TMCB PF(O)*(SF+-TF) H is as
serted and TMCB PF(O)*(SF+TF) H is 
negated at this time, and the branch is 
to BRK.20(120). Since INTRF is set, 
TMCB PWRF+INTRF L is asserted 
and BRK.20 branches to BRK.30 and 
ihe Service Flows (SVC.00 - SVC.90) be
fore fetching the first instruction of the 
subroutine pointed to by the vector. 

5. The above is the general case. Passive 
Release is said to occur when a device 
that becomes master, by asserting a BR 
and obtaining a BG, releases the Unibus 
without doing an INTR. UBCA PAS
SIVE nags this condition: after a min
imum delay of 90 ns, following the 
receipi by the processor of the negation 
of SACK, the UBCA flip-nop, whose D 
input is UBCD CLR BG (I) H, is 
clocked by the trailing edge of U BCD 
DSACK; when the device negates 
BBSY, UBCA PASSIVE L is asserted 
and restarts the clock via UBCB TIG 
RESTART H. 

BRK.00 is followed as in (4) above by 
BRK.10 and BRK.20. UBCC INTRF 
(I) H is not set in this case because BUS 
INTR L was not received. TMCB 
PWRF + INTRF Lis thus not asserted, 
BR K .20 branches to RTl.60, and the 
program resumes at the instruction fol
lowing that from which the INTR se
quence (described above) was entered. 

6. The NO SACK logic is the same as that 
for the NPR-NPG sequence. The nega
tion of DSACK clocks the PASSIVE 
flip-nop and the sequence in (5) above is 
followed. 

6.5 UNIBUS POWER MONITOR 
The processor monitors the condition of all power 
supplies in the system. 

I, Two Unibus signals, BUS ACLO L and 
BUS DCLO L, inform the processor of 
rtte stale of tTie Unibus power supplies: 
The assertion of BUS ACLO L informs 

11-6-19 



2. 

the processor that the ac power input to 
a power supply, whose failure might 
make the bus inoperable, has ceased to 
be within specifications. The negation of 
BUS ACLO L informs the processor 
that all power supplies, whose failure 
might make the bus inoperable, can 
maintain de power within specifications 
long enough for a complete power
up/power-down sequence. 

The assertion of BUS DCLO L informs 
the procesor that de power to any bus 
drivers, receivers or terminators, whose 
failure would make the system inoper
able, is about to -fail. The negation of 
BUS DCLO L informs the processor 
that de power to all bus drivers, receiv
ers and terminators, whose failure would 
make the Unibus inoperable, is within 
specifications. 

Two signals from the Cache, ADM L 
MAIN ACLO L and MAIN DCLO L, 
monitor the Main Memory power sup
plies. These signals have the same signifi
cance and effect as the BUS ACLO and 
DCLO signals, but are input only to the 
processor power-up/power-fail circuits, 
and not to BUS ACLO and BUS 
DCLO. 

These bus signals are input to the Cache, 
which performs its power-up in
itialization sequence upon receipt of the 
negation of both BUS ACLO and BUS 
DCLO. 

J\CLO is always asserted before DCLO; DCLO is 
always negated before ACLO. Whenever ACLO is 
asserted. the power supplies must be capable of sup
plying enough de power for 5 ms of system oper
ation: this time allows for a 2-ms power-down 
sequence, plus a 2-ms power-up sequence. 

During the power-down sequence, the program 
stores the contents of volatile registers into core 
memory: this information is thus preserved during 

a power failure or power down. It can be retrieved 
by the power-up sequence, and the program res
tarted where it was interrupted. 

AC LO and DCLO control the power-up and 
power-down logic shown on drawing UBCE. 

6.5.1 Power-Down 
Refer to UBCE and to the timing diagram shown 
in Figure 6-IO. When BUS ACLO L is asserted dur
ing normal operation, the Power-Down flag, UBCE 
PDNF (I) H, is set, because UBCE BLOCK 
DOWN (I) H has been reset at the end of the pre
vious power-up sequence. PDNF is applied to the 
priority arbitration logic on TMCE; the first BRQ 
strobe generates TMCE BRQ CLK H, which 
docks the interrupt flags into the priority logic. If 
no higher priority flag is up (CCBJ PARITY 
TRAP, Memory Management Trap or SL YEL), 
TMCE HONOR PWRF L is asserted. At the end 
or the current instruction, the ROM branches to 
the Service Flows (BRK.90). 

At microstate BRK.20, UBCB ACKN B H goes 
high at TS3 and sets TMCC BLOCK STROBE (1) 
H. /\t microstate SVC.90, if no aborts are pending, 
this signal and TMCE CLK CONF H (BRQ 
STROBE at T3) generate TMCC AC CLEAR L, 
which clocks the UBCE PF CLR (I) H flip-flop. 
This tlip-nop is set at this time, since TMCA 
HONOR PWRF L is asserted. The Q register is 
cleared to ensure that the first instruction of the 
power fail routine is executed, in case a request of 
lower priority than power fail is present. 

PF CLR does the following: 

I. It asserts TMCA BRQ CLR L, which re
sets the TM CE priority flip-flops. 

2. It resets UBCE PDNF. 

3. It starts the 2:..ms timer which, at the end 
of its delay, fires the 1-µs one-shot~ the 
pulse thus generated goes out on the 
Unibus as BUS DCLO L. 

4. It sets UBCE BLOCK DOWN (I) H, 
which disables the set input to PDNF. 

BUS ACLO L 

UBCE PDNF {I} H 

BRQ STROBE1 

T1 T3 

I I I 

BRK. 3!1f 

T1 T5 Tl 

I I I I I I 

SVC. 9GI FET. fl-

T1 T5 Tl T5 Tl 

I I I I I I I I I I I 

TIG CLOCK 

rSTOPS 
i . . . . 
I 

~11------1! ... -----------------....L-.i--
I 
I 

~------------~a--
1 

~-------1!~1--

I 
I 

UBCB ACKN B H rl I 
---til-----.,...____J ~ >-+-------------1+a--

TMCC BLOCK STROBE II l H 

TMCE CLK CONF H 

I 
I 
~P-

l 

'-ol-.P.-.----1.~lo-
I ----t,__ ____ ~~-----------,___., __ ----------~~a--

TMCC AC CLEAR L 1 

I 

UBCE PF CLR C11H ----t ____ ,__ _________ - ~--- l__,.......__ 
I 

---+-----~a--
UBCE BLOCK DOWN (1) H 

----t>-------~~------------t,____,,._.J 
I 
I 

-----t~------~~-------------.1>---•• {UBCE) 2ms ONE-SHOT ...,. ___ ..,_ 

----t>-------~~------------t:i.----------~ lTMCC) CLR FLAGS L 

~~---~~------~~--------------------.1 BUS DCLO L (UBCEI (GENERATED BY PROCESSOR} 

UBCE PUPF (II H 

----t1--------~~-------------.i:i.----------------....i I 

---t>--------~ ~---------~ >------------.....!..., --
(UBCE) INIT L (oll) l-...t.----

*NOTE: Power-Down subroutine executed durinQ lhi1 lime. 
11-5152 

Figure 6-10 Power-Down 

By this time, all the internal traps and service rou
tines should have been executed; no further bus 
transactions can occur, because DCLO asserts the 
initializing signals: 

I. UBCE INT BUS INIT L - clears inter
nal registers PIR, SL, the priority arbi
tration tlip-nops (TMC) and Memory 
Management. 

2. UBCE ROM INIT H - forces the ROM 
to ZAP.00 (200), and stops and clears 
the Timing Generator and the Cache 
timing. 

11-6-20 

J. UBCE INIT - clears processor, Floating 
Point Processor, and Cache registers. 

4. BUS INIT L - initiaizes Unibus. 

I 11 addition, the DCLO generated by the processor 
sets the U BCE PU PF (power-up) nip-nop, which 
sets ,up the power-up sequence, should the DCLO 
signal not he generated by the power supply, or 
should /\CLO be negated before DCLO is asserted 
hy the power supply. 



SL RED During Power Fail 
An SL RED abort can only occur during a push to 
the Kernel stack. Two such pushes are executed dur
ing the power fail service routine, in SVC.70 and 
SVC.90. 

If an SL RED error is flagged during one of these 
pushes, the trap vector is 24 (power fail) but the 
pushes are made to locations 2 and 0 of the stack, 
where no SL RED can occur (refer to Paragraph 
6.2.2.4, Stack Limit Red). This allows the power 
fail subroutine to proceed. 

I. BLOCK STROBE, STROBE INH, and 
HONOR PRF are asserted when the 
abort occurs. 

2. TMCC PRIORITY CLR is not asseited 
because both HONOR PWRF and SL 
RED are asserted. 

TIG CLOCK STARTS l ZAP ,a~ 

3. SL RED sets SERF, which, together 
with HONOR PWRF, asserts TMCB 
PWRF L. This signal generates the 
power-fail vector (24). 

4. Since SERF is asserted, SER.00 is en
tered instead of BRK.80. SER.00 and 
SER.JO set the Kernel SP to 4. 

5. The Service Flows can now be com
pleted by doing the pushes to 2 and 0 
without stack error. 

6.5.2 Power-Up 
Refer to UBCE and to Figure 6-11. When DC 
power reaches a level at which the logic can oper
ate. but before BUS DCLO L is negated, both 
UBCE PUPF (I) H and UBCE BLOCK DOWN 
(I) H are direct-set by DCLO. AH INIT signals are 
asserted by both DCLO and ACLO. While !NIT is 
asserted, the ROM address is forced to 200 
(ZA P.00) and the clock is cleared. 

PUP. rara RT1.6e' 

T4 T5 T1 T5 T1 T1 T5 T1 T1 T5 T1 

I I I I I I I I I I I I I I I I I I I I 
P----------.i ,__ ______ P------...... ~ 

BUS ACLO L (UBCE) 
---l~ 

r ..... -'~------......i ,__ ______ ~-----...... ~ 
BUS DCLO L (UBCE)----l._j (RECEIVED FROM UNIBUS OR CACHE) 

UBCE BLOCK DOWN (1) H~ ~ 

UBCE PUPF (1) H ~ 

(UBCE) INIT L (all)~ 

TMCE BRQ STROBE H rl 
----1 ~ ~~ L---i~----.j-./---
----l ~ ~P----------.i ......_ __ 

UBCB ABORT ACKN L 

----l ~ lo---l P---------; P--~ *NOTE 
(UBCE) 2m1 ONE-SHOT L \. l4------2m1------1~.1 

*NOTE; Power - up s1.1broutine executed d11ring lhis time. 
UBC.E PONF (1) H cannot be set 

E. DC power cominCJ up. 
11-3133 

Figure 6-11 Power-Up 

As the ac power level rises, BUS DCLO L is ne
gated. When ac power reaches its specified level, 
BUS ACLO L is negated, UBCE ACLO L goes 
high and, in conjunction with the assertion of 
PU PF (I) H, starts the 70-ms timer. During this in
terval, all I NIT signals are asserted and the Cache 
initializes its tag and data stores. 

!NIT is negated at the end of the 70-ms delay, the 
TIG clock is started in T4 (refer to Chapter 4) and 
the ROM cycles from ZAP.00 - BRK.10 to PUP.00 
are executed. 

At T3 of PUP.00, UBCB ABORT ACKN Lis as
serted; this clears PUPF. When PUPF is cleared, 
UBCE PUPF (0) L initiates a 2-ms delay by trigger
ing the 74123 one-shot. For this period of time, 
BLOCK DOWN remains set and prevents any 
BUS ACLO L assertion from setting PDNF. This 
ensures that the processor will complete the power
up sequence before another power-down is in
itiated. BLOCK DOWN is reset at the end of the 
2-ms delay. 

The power-up microprogram sequence (PUP.00 -
PU P.40) gets a new PC and PS from the location 
specified by the start vector (SV). Refer to Para
graph 6.1. 

6.5.3 PDP-11/70 System Power Control 
Each Main Memory drawer power supply and both 
processor cabinet power supplies contain an I 1086 
Power Control Card. The ac power monitor circuits 
(ACLO and DCLO) are on this card. ACLO and 
DCLO both have two independent open collector 
output drivers on each 11086. Refer to the Engineer
ing Print Set for a schematic of this circuit. 

Tahle 6-4 lists the processor cabinet and Main 
Memory cabinet ACLO and DCLO signals. 

6.5.3.1 ACLO Connections - Refer to Figure 6-12. 
The AC LOW signal from all Main Memory power 
supplies are wire-ORed and transmitted to the 
Cache (ADM L) on the Main Memory Bus cable. 
The signal is buffered, renamed (ADM L ACLO H) 
and is one of two inputs to the processor power
up/power-down circuits on UBCE. 

Table 6-4 
ACLO and DCLO Dri•er Outputs 

Unit 

ACLO 

AC LO! Upper processor H7420 
AC L02 Lower processor H7420 
AC L03 Lower processor H7420 
AC L04 Upper processor H7420 
AC LOW Main Memory P /S 
AC LOW Main Memory P/A 

DCLO 

DC LO I Upper processor H7420 
DC L02 Lower processor H7420 
DC LOX Lower processor H7420 
DC LOY Upper processor H7420 
DC LOW Main Memory P /S 
DC LOW Main Memory P /S 

Connector 
& Pin 

P/J!5-8 
P/J22-8 
P/J22-10 
P/Jl5-10 
P/J6-3 
P/J6-8 

P/JI 5-12 
P/J22-9 
P/J22-12 
P/J15-9 
P/J6-l 
P/J6-2 

The processor power supply AC LO I, AC LO 2, 
AC LO 3 and AC LO 4 signals are connected to 
the Unibus AC LO line (BUS AC LO L) at the 
hackplane. This signal is the other input to the pro
cessor power-up/power-down circuits on UBCE, 
where it is ORed with ADML ACLO. 

The output of the OR, UBCE ACLO L, is also in
put to the Cache power-up circuits (AD MJ). 

6.5.3.2 DCLO Connections - Ref er to Figure 6-12. 
There are two separate DCLO lines in the PDP-
11 /70: BUS DCLO (Unihus) and MAIN DCLO 
(Main Memory). Two signal lines are required 
bccuuse: 

I. The signal level on the Unibus (0 V - 5 
V) is different from that on the Main 
Memory Bus (0 V - 3.5 V), and 

2. The impedance of the Unibus (120 
ohms) is dilTcn:nt from that of the Main 
Memory Bus (75 ohms). 

II-6-21 



llJll llEllORY 
POWER SUPPLY 

IUP TO II 

IPOW[R CONTROL 
CARO 5411011 

OR 54110HYAI 

llEllORl CONTROL 

llAIN 
llEllORY 

BUS CABLE 

HARNESS 
7010!111 

r;;;-M-;,;-8 - - --, r.o~ - - - - - - -
llJl1 BACKPLANE' J3 J4 I I M8143 

A;;;;----1 
P/Jlll I NOTE I I JZ 

>----~ TT lT llAIN DC LOW L 

i------o MAIN AC LOW L 

PROCESSOR 
HARNESS 70110!11 

A18EI 

MAIN DCLO L 

M8143 

Al8CI Al801 

r-----, 
I I 
I CACHE POWER I 
I UP CIRCUIT I 

L - ...J 

Al8L2 Cl8R1 

I 
I 
I 
I 
I 

_J 

AOllL MAIN AOML llAIN UBCE OCLO UBCE ACLO L 
DCLO H ACLO H 8 L 

Ct2F2 E12LI 

UBCE 
M8136 

B12K2 Dl2LI 

.-------.P15 PROCESSOR BACKPLANE 

r--
1 

PROCESSOR 
POWER SUPPL l 

15411015 IN 
UPPER 74201 

PROCESSOR 
POWER SUPPLY 

15411011 IN 
LOWER 74201 

Pl 

Ftl1F1 

844F2 

B44FI 

Fl1F2 

UNIBUS 

llUS ACLO L 

BUS DCLO L 

BUS 
ACLO L 

BUS DCLD L 

F12E2 

Figure 6-12 PDP-11/70 ACLO and DCLO Connections 

1. ProcHIOr Power-down I powr-up circuit. R•fer to KB11-B 
ProCHIOI' llonUGI Section :I, Chopl9r. I. 

2. c-tor J4 c-ec•• llaln _, lht - to J3 oa 
111141 01 ... 1 ... _, , __ 

BUS DCLO L is the wire-OR of DC LO Y (upper 
processor H7420 power supply), DC LO X (lower 
processor H7420) and the DCLO signals from all 
devices on the Unibus. It is one of two inputs to 
the processor power-up/power-down circuits on 
UBCE. 

MAIN DCLO is the wire-OR of DC LO I (upper 
processor H7420), DC LO 2 (lower processor 
H7420) and both DC LOW outputs from all Main 
Memory drawers (via the Main Memory Bus 
cable). MAIN DCLO is buffered in the Cache, re
named (A DML MAIN DCLO H), and is the sec
ond input to the processor power-up/power-down 
circuits. 

BUS DCLO and MAIN DCLO are ORed (UBCE) 
and input to both the Cache power-up and to the 
processor power-up/power-down circuits. MAIN 
DCLO, however, is the only input to the Main 
Memory protection circuitry (MCTH). This circui-

11-6-22 

try inhibits the memory write operations on power 
down 3 µs after receipt of DCLO. 

6.5.3.3 Power Down - In the PDP-11/70, these in
terconnections are such that a power failure from 
any device (Unibus device, processor or Main 
Memory) 

1. Causes the processor to trap to location 
24 and to perform the power-down sub
routine, and 

2. Causes the Cache to prevent all access to 
Main Memory when DCLO is asserted 
at the end of the 2-ms power-down sub
routine time allotment. 

In addition, when the power failure is a processor 
or a Main Memory failure, the Main Memory pro
tection circuits are activated when MAIN DC 
LOW is asserted by either the processor or the 
Main Memory power supplies. 



SECTION III 

CONSOLE 

Un less otherwise indicated, references within this sec
tion pertain to this section only. 





CHAPTER 1 

1.1 
1.1.1 
1.1.2 
1.1.3 
1.1.4 
1.1.5 
1.1.6 
1.1.7 
1.1.8 
1.1.9 
1.1.10 
1.2 
1.2.1 
1.2.2 
1.2.3 
1.2.4 
1.2.5 
1.3 
1.3.1 
1.3.2 
1.3.3 
1.3.4 
1.3.5 
1.3.6 
1.3.7 
1.3.8 
1.4 
1.4.1 
1.4.1.1 
1.4.1.2 
1.4.2 

CHAPTER2 

2.1 
2.2 
2.3 
2.4 
2.5 
2.5.1 
2.5.2 
2.5.3 
2.5.4 
2.5.5 
2.6 
2.6.1 
2.6.2 
2.6.3 
2.6.4 

SECTION III CONSOLE 
CONTENTS 

SWITCHES, INDICATORS AND OPERATION 

Page 

OPERATIONAL SWITCHES ............................... III-1-1 
Power and Lamp Test Switches ........................... IIl-1-1 
LOAD ADRS Switch ................................. III-1-1 
EXAM Switch .................................... 111-1-1 
DEP Switch ...................................... 111-1-1 
Step Operations ................................... III-1-1 
CONT Switch .................................... III-1-3 
ENABLE/HALT Switch ............................... IIl-1-3 
S INST/S BUS CYCLE Switch ............................ III-1-3 
START Switch .................................... III-1-3 
Switch Register ................................... III-1-3 

ADDRESSING AND DATA DISPLAY .......................... III-1-3 
ADDRESS SELECT Switch ............................. III-1-3 
ADDRESS Display Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-1-4 
DATA SELECT Switch ............................... 111-1-4 
DATA Display Indicators .............................. III-1-4 
PARITY Indicators ................................. IIl-1-4 

EXECUTION INDICATORS ................................ 111-1-4 
PAR ERR Indicator ................................. III-1-4 
ADRS ERR Indicator ................................ III-1-4 
RUN Indicator .................................... 111-1-4 
PAUSE Indicator ................................... 111-1-4 
MASTER Indicator ................................. III-1-4 
KERNEL, SUPER, USER, Indicators ........................ III-1-4 
ADDRESSING (Mapping) Indicators ........................ IIl-1-5 
DATA (Space) fodicator ............................... 111-1-5 

USAGE .......................................... 111-1-5 
Memory Reference .................................. 111-1-5 

Unmapped Reference ............................. 111-1-5 
Mapped Reference ............................... III-1-5 

General Register Reference ............................. III-1-6 

LOGIC DESCRIPTION 

POWER CONNECTOR J4 (KNLA) ............................ IIl-2-1 
POWER SWITCH S31 (KNLA) .............................. IIl-2-1 
SI - S22: SWITCH REGISTER .............................. III-2-1 
S24 - S30 ("LOAD ADRS" - "START") ........................ III-2-1 
CONSOLE BRANCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-2 

Idle State . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111-2-2 
LOAD ADRS . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . 111-2-2 
RACK BRCAB(02:00) L ............................... III-2-2 
ST ART and CONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-2 
EXAM and DEP Switches .............................. 111-2-2 

ENABLE/HALT SWITCH IN HALT POSITION ...................... III-2-3 
Single Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-3 
Continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111-2-4 
Single Bus Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-4 
Console Reset ................................. III-2-4 

III-iii 



CONTENTS (Cont) 

Page 

2.7 ENABLE/HALT SWITCH IN ENABLE POSITION .................... III-24 
2.7.1 Continue ....................................... 111-2-4 
2.7.2 Single Bus Cycle ................................... IIl-24 
2.7.3 Console Start ..................................... III-2-4 
2.8 LOAD ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-5 
2.9 EXAM AND DEP OPERATIONS ............................. III-2-5 
2.10 ADDRESS DISPLAY ................................... III-2-5 
2.10.1 General Register (GR) Address ............................ III-2-5 
2.10.2 Memory Address ................................... III-2-5 
2.11 DATA DISPLAY ...................................... IIl-2-6 
2.12 MISCELLANEOUS INDICATOR LOGIC ......................... III-2-6 

Figure No. 

1-1 
2-1 

Table No. 

1-1 
2-1 

ILLUSTRATIONS 

Title Page 

PDP-11/70 Console . . . . . . . . . . . . . . . . . . . . . . . . . . ....... III-1-2 
Step Branch Address Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-2-3 

TABLES 

Title Page 

General Register Addresses ................................. III-1-6 
Address Display ...................................... III-2-5 

III-iv 



INTRODUCTION 
The PDP- I I /70 Console, drawing D-CS-54-11294-
0-1, allows direct control of the KBI 1-C computer 
system. The Console is used for starting, stopping, 
resetting and debugging. Its power switch may be 
used as the master switch for a system. Indicator 
lights and the other switches provide facilities for 
monitoring, system control and maintenance oper
ations, during which the KBI 1-C can be made to ex-

III-I-I 

INTRODUCTION 

ecute single instructions or single Unibus or 
Memory cycles. The contents of any memory loca
tion or of any register can be examined, and data 
can he entered manually from the switches. 

Chapter I describes the various components of the 
Console and their use; Chapter 2 describes the logic 
that controls Console operations. 





CHAPTER 1 
SWITCHES, INDICATORS AND OPERATION 

Refer to Figure 1-1. 

1.1 OPERATIONAL SWITCHES 

1.1.1 Power and Lamp Test Switches 
The POWER switch is a three-position, key-oper
ated switch. 

OFF - Causes power to be removed from the 
switched outlets of the Power Controller. Ren
ders the system inoperative. 

POWER - Power is applied to the system. All 
switches are operational. 

LOCK - Same as POWER, except that the 
LOAD ADRS, EXAM, DEP, CONT, EN
ABLE/HALT, S INST /S BUS CYCLE and 
ST ART switches are disabled. All other 
switches are operational. 

The LAMP TEST switch is the white switch be
tween Switch Register 0 and LOAD ADRS. When 
raised, it turns all the indicators on. It is used for 
maintenance. 

1.1.2 LOAD ADRS Switch 
The LOAD ADRS s~itch is a momentary action 
switch. When this switch is depressed, bits 21 - 16 
of the Switch Register are loaded into SCCK 
SWR(21:16) B (I) H, and bits 15 - 00 into the PCA 
and the SR. The address displayed in the AD
DRESS display indicators is a function of the AD
DRESS SELECT switch (Paragraph 1.2.1 below). 

1.1.3 EXAM Switch 
The EXAM(ine) switch is a momentary action 
switch. When it is depressed, the contents of the lo
cation specified by the ADDRESS display is shown 
by the DAT A indicators, if the DAT A SELECT 
switch is in the DATA PATHS position. 

The A DD RESS display shows either a virtual or a 
physical address, as determined by the ADDRESS 
SELECT switch. Refer to Paragraph 1.2. I. 

1.1.4 DEP Switch 
The DEP(osit) switch is a momentary action 
switch. When it is raised, the contents of bits I 5 -
00 of the Switch Register are written into the loca
tion specified by the physical address generated by 
the last LOAD A DRS operation. The data written 
is shown by the DAT A indicators if the DAT A SE
LECT switch is in the DATA PATHS position. 

The A DD RESS display shows either a virtual or a 
physical address, as determined by the ADDRESS 
SELECT switch. Refer to Paragraph I .2.1. 

1.1.5 Step Operations 
If several consecutive EXAM operations are per
formed, the address is incremented by 2 for each op
eration after the first one. Thus, it is possible to 
examine a series of consecutive word addresses with
out doing a LOAD ADRS for each EXAM. 

In the same manner, it is possible to execute a 
series of DEP operations without doing a LOAD 
AD RS for each one. 

The following sequence illustrates these operations: 

Operation 
(Activate Switch) 

Location Shown in 
ADDRESS Display 

LOAD ADRS X 
EXAM X 
DEP X 
EXAM X 
EXAM X+2 

(Result is EXAM - STEP) 
DEP X+2 
EXAM X+2 

III-I-I 



IIl-1-2 

I 
Q.. 

0 
Q.. 

-~ 
I 



1.1.6 CONT Switch 
The CONT(in ue) switch is a momentary action 
switch whose action depends upon the position of 
the HALT /ENABLE switch: 

ENABLE - Resumes program execution at 
the point where it was stopped by the HALT 
switch or by a HALT instruction. 

HALT - Used in conjunction with the S 
INST /S BUS CYCLE switch. See Paragraph 
1.1.8. 

The CONT switch has the same effect as the 
Maintenance Module Stepper Switch, XMAA S4, 
when executing single ROM cycles or UPB stops, 
but not when executing single clock cycles. 

1.1.7 ENABLE/HALT Switch 
The ENABLE/HALT switch ts a two-position 
switch: 

ENABLE - Used in conjunction with the 
ST ART or CONT switches, allows program 
execution. 

HALT - Stops program execution. 

1.1.8 S INST /S BUS CYCLE Switch 
The S(ingle) INST(ruction)/S(ingle) BUS CYCLE 
switch is used in conjunction with the CONT 
switch when the HALT /ENABLE switch is in the 
HALT position: 

S INST - When CONT is depressed, a single 
instruction is executed and the processor stops 
in CON.00. EXAM and DEP operations may 
then be executed. The contents of the DAT A 
Display indicators may only be determined by 
examination of the microprogram Flows for 
the instruction that has just been executed. 

S BUS CYCLE - When CONT is depressed, 
execution is resumed but stops in TS of 
PAUSE of the first Unibus or Memory cycle 
to be executed. 

The A DD RESS display then contains the ad
dress of the location at which the bus cycle 
was performed (virtual or physical, depending 
on the position of the ADDRESS SELECT 
switch). 

If the DATA SELECT switch ting 
BUS REG (Bus Register), the DA Jlay 
lights, on a read operation, will contain the 
data that was read (this could be an instruc
tion or data). During a write operation, the 
lights will contain the data just written (except 
during a stack operation or Floating Point in
struction). LOAD ADRS, EXAM and DEP 
are disabled in this mode. If an EXAM or 
DEP operation is desired, the S INST /S BUS 
CYCLE switch should be changed to S INST 
and the CONT switch should be depressed 
once. (This will cause execution until the end 
of the current instruction). The system will 
then be ready to perform an EXAM or DEP. 

The switch has no effect when the 
HALT /ENABLE switch is set to ENABLE. 

1.1.9 START Switch 
The ST ART switch is a momentary action switch 
whose action depends upon the setting of the 
HALT/ENABLE switch: 

l:N AB LE - Starts program execution at the 
address previously loaded by a LOAD ADRS, 
after resetting the system (INIT). 

II ALT - Resets the system. 

The ST ART switch has no effect when the pro
cessor is in the RUN state. 

1.1.10 Switch Register 
The Switch Register consists of the 22 switches la
beled 0 th rough 21. These numbers correspond to 
the bit positions of their respective switches. The 
Switch Register is used to manually enter both ad
dresses and data into the KBl 1-C, and its bits, 15 -
00, may be read under program control; its address 
is 17 777 570, which is the same as that of the Dis
play Register. 

1.2 ADDRESSING AND DATA DISPLAY 

1.2.l ADDRESS SELECT Switch 
The ADDRESS SELECT switch is an eight-posi
tion rotary switch: 

VIRTUAL - Six pos1t1ons: KERNEL, SU
PER and USER I space and KERNEL, SU
PER and USER D space. The address 
displayed is a 16-bit virtual address; bits 21 -
16 arc always off. 

III-1-3 



During Console DEP or EXAM operations, 
bits 15:00 of the Switch Register are consid
ered to be a Virtual Address. If Memory Man
agement is enabled, this Virtual Address is 
relocated. The set of PAR/PDRs indicated by 
the switch position is used. 

CONS PHY - (Console Physical). The 22-bit 
address entered by a LOAD ADRS is the 
physical address of the Console operation. 

PROG PHY - (Program Physical). Displays 
the 22-bit physical address generated by Mem
ory Management for the current Unibus or 
Memory cycle. 

The A DD RESS SELECT switch indicator lights 
are driven directly by the switch. 

Refer to Paragraph 1.4 which explains the use of 
the ADDRESS SELECT switch. 

1.2.2 ADDRESS Display Indicators 
The A DD RESS display indicators show the address 
of the data deposited or being examined. The ad
dress is interpreted as a virtual or physical address 
in accordance with the position of the ADDRESS 
SELECT switch. (Paragraph 1.2.1 below). 

1.2.3 DATA SELECT Switch 
The DAT A SELECT switch 1s a four-position 
rotary switch: 

DA TA PATHS - Displays the output of the 
Shifter. This position is the normal display 
mode, and is used to show the data examined 
or deposited by Console operations. 

BUS REG - Displays the output of the Bus 
Register (BR). 

µADRS FPP/CPU - Bits 15 - 08 display the 
current address of the Floating Point Pro
cessor microprogram ROM. 

Bits 07 - 00 display the current address of the 
processor microprogram ROM. 

DISPLAY REGISTER - Displays the con
tents of the Light Register. The LR may be 
written into by using address 17 777 570, 
which is the same as that of the Switch 
Register. 

1.2.4 DATA Display Indicators 
The DAT A indicators display the output of the 
Data Display Multiplexer. The output of the multi
plexer is selected by the DATA SELECT switch. 
Refer to Paragraph 1.2.3. 

1.2.5 FA RITY Indicators 
The PARITY indicators display the parity bits asso
ciated with the HIGH and LOW bytes of the word 
read from Cache Memory. These indicators are off 
during a write operation. 

1.3 EXECUTION INDICATORS 

1.3.1 PAR ERR Indicator 
The PAR(ity) ERR(or) indicator is on when a Un
ibus or a memory parity error is flagged. 

1.3.2 ADRS ERR Indicator 
The ADRS (Address) ERR (Error) indicator is on 
when an addressing error occurs. Address errors 
are: non-existent memory, access control violation, 
page length error, Stack Limit Red, odd address er
ror and Un-ibus Timeout. This is a dynamic in
dication of address errors that occur during 
program execution. It is a static indication during 
Console functions (i.e., EXAM or DEP). 

1.3.3 RUN Indicator 
The RUN indicator is on when the processor is ex
ecuting instructions, but is off during Pause cycles. 
The RUN indicator is on during a WAIT 
instruction. 

1.3.4 PA USE Indicator 
The PAUSE indicator is on during all Bus Pause 
and Interrupt Pause cycles, indicating that the pro
cessor is waiting for either Memory or a Unibus 
device. 

1.3.5 MASTER Indicator 
The MASTER indicator is on either when the pro
cessor is Unibus master (U BCA CPBSY) or during 
Con sole operations [TM CA CONF ( 1) L asserted]. 

1.3.6 KERNEL, SUPER, USER, Indicators 
The KERNEL, SUPER and USER indicators show 
the actual mode in which the processor is operating 
during each cycle. Refer to Section JV of this man
ual (M cmory Management). 

III-1-4 



1.3.7 ADDRESSING (Mapping) Indicators 
The 16-, 18-, and 22-bit indicators show the Mem
ory Management mapping that is being used during 
each cycle. 

1.3.8 DAT A (Space) Indicator 
The DAT A indicator shows whether I or D space 
is used during each cycle. It is on when D space is 
used and off when I space is used. 

1.4 USAGE 

1.4.1 Memory Reference 
Memory references from the Console may be either 
mapped (i.e., using a virtual address) or unmapped 
(using: a physical address), when Memory Manage
ment is enabled. Mapped references are possible 
only when Memory Management is enabled. 

1.4.1.1 Unmapped Reference 

I. Set the A DD RESS SELECT switch to 
CONS PHYS. 

2. Enter the 22-bit physical address into the 
Switch Register. 

3. Depress the LOAD ADRS switch. The 
physical address in shown by the AD
D RESS display. 

4. Set the DAT A SELECT switch to 
DATA PATHS. 

5a. If the EXAM switch is depressed, the 
contents of the physical memory loca
tion entered by the LOAD ADRS oper
ation is displayed by the DATA 
indicators. 

5b. If the DEP switch is raised, the contents 
of bits 15 ...: 00 of the Switch Register are 
written into the physical memory loca
tion entered by the LOAD ADRS oper
ation .. This same data is displayed by 
the DATA indicators. 

111-1-5 

1.4.1.2 Mapped Reference 

I. Set the ADDRESS SELECT switch to 
one of the virtual positions (refer to Par
agraph 1.2.1 ). 

2. Enter the 16-bit virtual address into the 
Switch Register. 

3. Depress the LOAD ADRS switch. The 
virtual address is shown by the AD
D RESS display. Bits 21 - 16 are off. 

4. Set the DAT A SELECT switch to 
DATA PATHS. 

5a. If the EXAM switch is depressed, the vir
tual address loaded by the LOAD 
A DRS operation is relocated by Mem
ory Management. Memory Management 
(if it is enabled) uses the mapping shown 
by the ADDRESSING indicators (Para
graph 1.3.8) and the PAR/PDR pair is 
selected by the ADDRESS SELECT 
switch. The contents of this address are 
read and displayed by the DAT A 
indicators. 

5b. If the DEP switch is raised, the virtual 
address is relocated as in the EXAM op
eration. The contents of the Switch Reg
ister are written into the physical 
memory location pointed to by the phys
ical address. The new contents of this lo
cation are displayed by the DAT A 
indicators. 

6. If the ADDRESS SELECT switch is 
now turned to PROG PHY, the physical 
address corresponding to the virtual ad
dress used during the EXAM or DEP op
eration is displayed by the ADDRESS 
indicators. 



1.4.2 General Register Reference 
EXAM and DEP references to the processor Gen
eral Registers may be executed by entering the ad
dress of the register (see Table 1-1) into the 
SWITCH REGISTER, depressing LOAD ADRS, 
and then EXAM or DEP, as required. The AD
DRESS SELECT switch setting is ignored; map
ping to a General Register is not possible. 

EXAM-STEP and DEP-STEP operations can be 
performed on the General Registers, in a manner 
similar to that for memory locations, except that: 

I. A DD RESS display is incremented by 
(instead of 2). 

2. The STEP after address 17 777 717 is 17 
777 700, such that the addresses are 
looped. 

3. It is not possible to STEP up to the first 
General Register ( 17 777 700) from 17 
777 676. 

111-1-6. 

Table 1-1 
General Register Addresses 

SETO 

Register 0 17 777 700 

Register 5 
Register. 6 Kernel 
Program Counter 

Register 0 

Register 5 
Register 6, Super 
Register 6, Us((r 

SET I 

17 777 705 
17 777 707 
17 777 707 

17 777 710 

17 777 715 
17 777 716 
17 777 717 



The Console assembly consists of a printed circuit 
board, drawing D-CS-5411294-0-1 (K NLA -
KNLD), an indicator panel, drawing D-IA-
7413126-0-0, and a bezel, E-IA-7409306-0-0. This as
sembly is mounted on the front of the processor 
mounting box. It is connected to the PDP-I I /70 by 
the power harness, whose Pl plug connects to the 
Console J4 connector, and by three flat ribbon cab
les. One of these connects JI on the Console to JI 
on the M8134 module (PDRH). Another connects 
12 on the Console to JI on the M8140 module 
(SCCJ). The third cable connects J3 on the Console 
to J2 on the M8140. 

This chapter describes the Console Power Con
nector and the logic that controls the Console 
Switches (Paragraphs 2.2 through 2.9) and the Dis
plays (Paragraphs 2.10 through 2.12), in that order. 

2.1 POWER CONNECTOR J4 (KNLA) 
14 connects to the Power Harness. It consists of the 
following lines: +5 VA, which powers the light 
emitting diode (LED) indicators: GND A which is 
the n·turn for the LAMP TEST switch (KNLD 
LAMP TEST L); and with the Power Controller 
GN DIN and GND OUT (refer to Paragraph 2.2). 

2.2 POWER SWITCH S31 (KNLA) 
The Power Switch controls power to the system 
through the GND OUT/GND IN connections to 
the Power Controller, and enables/disables switches 
S24 - S30 (LOAD ADRS, EXAM, DEP, CONT, 
ENABLE/HALT, S INST/S BUS CYCLE and 
ST ART). 

Power Controller - Pins 3 and 4 of J4, GND IN 
and GN D OUT go to the Power Controller by way 
of the power harness. When there is no connection 
between these two pins, power is removed from the 

CHAPTER 2 
LOGIC DESCRIPTION 

switched outlets of the controller. When the pins 
are connected, power is applied to these outlets. 
GND IN and GND OUT are not connected when 
the power switch is in the OFF position; they are 
connected when the switch is in the ON (terminals 
9 and 10) or in the LOCK positions (terminals 11 
and 12). 

S24 - S30 (KNLC) use the KNLA SWITCHED 
GROUND from the power switch; there is no 
ground connection in the LOCK position, and 
these switches are then disabled. In addition, 
KN LA PN L LOCK L is also generated in this posi
tion, and forces the HALT /ENABLE switch out
put to the ENABLE logic value (low). Thus, when 
the power switch is in the LOCK position, the pro
cessor is enabled, the HALT switch is inoperative, 
and the other switches are disabled, since they can
not be used when the KBI 1-C is running. KNLA 
SWITCHED GROUND is connected to GND B 
when SJ I is in the OFF position (terminals 2 and 
3) and in the ON position (terminals 4 and 5). 
KNLA PNL LOCK His brought out to the KBI I
C backplane by the SCC module, but is not used 
by any other part of the processor. 

2.3 SI - S22: SWITCH REGISTER 
The Switch Register, SI - S22 [KNLC SWR(21:00) 
HJ, is transmitted from KNLC J3 to J2 of the 
M8140 module (SCCJ), where it becomes SCCJ 
SWR(21:00) H. It is read by the processor on the 
Internal Bus from the multiplexer on SCCH. 

2.4 S24 - S30 ("LOAD ADRS" - "START") 
S24 - S30 are input to latches (KNLC) for bounce 
suppression and transmitted from J3 of the Console 
to 12 of SCCJ (SCCJ CONT SW H - SCCJ HALT 
SW H). CONT, SINGLE CYCLE, LOAD ADRS, 
START and HALT are buffered on SCCJ. 

III-2-1 



SCCJ EXAM SW H and DEP SW H are gated 
with SCCF GEN RG (I) H and (0) H to generate 
SCCF REG EXAM H and REG DEP H when a 
General Register address has been decoded during 
a LOAD ADRS operation. When any address 
other than a General Register address is detected, 
SCCF GEN REG (0) H is high and SCCF EXAM 
H or DEP H are generated. 

The signals derived from S24 - S30, with the excep
tion of EN ABLE/HALT (S28), clock the flip-flop 
shown on U BCF. When any of these switches is ac
tuated, and if the Console Flag is asserted, UBCF 
CNSL ACT is set at TS3. 

These flip-flops are reset at T4 when BCT= 2 
(CNSL ACKN), at T2 when BSD= I (ITR 
PA USE), or by INIT. 

When the processor is halted, it cycles in the 
CON.00 microprogram state. 

When any of the LOAD ADRS, EXAM, DEP, 
CONT or ST ART switches are activated, a micro
program branch from CON .00 occurs. 

2.5 CONSOLE BRANCH 
The Console microprogram flows are shown on 
Flows 14. 

2.5.1 Idle State 
CON.00 is the KBI 1-C idle state which is entered 
upon a HALT. This cycle loops upon itself until 
one of the Console switches sets UBCF CNSL 
ACT (I) H. This function is low during the idle 
state: the Branch Enable field of CON.00 is 14, 
making both RACK BEF(3:2)3 H and RACK 
BEF( I :0)0 H high. RACK BRCAB06 L is thus as
serted. Since the UADR field of CON.00 is 070, bit 
6 is forced to I, the ROM address [RACL 
RA DR(07:00) H] becomes I 0, the address of 
CON.00, which thus succeeds itself. RACK 
BRCAB06 L is not used by any other microstate. 

2.5.2 LOAD ADRS 
If the LOAD A DRS switch is now depressed, 
U BCF CNSL07 (I) H and U BCF CNSL ACT (I) 
H are both asserted; this causes RACK BRCAB07 
to be asserted, thus generating a ROM address of 
270 (A DR.00). [U BCF CNSL07 (0) H forces 
UBCH CNS(02:00) H low]. RACK BRCAB07 Lis 
used only by LOAD ADDRESS. 

2.5.3 RACK BRCAB(02:00) L 
These bits determine the branch required by the 
eight remaining functions: START, CONT, 
EXAM, DEP, STEP EXAM, STEP DEP, REG 
EXAM/DEP and REG EXAM/DEP STEP. The 
hits arc shown on UBCH. 

2.5.4 START and CONT 
START and CONT are encoded on UBCH. Since 
BCF CNSL07 (0) H is high (LOAD ADRS is not 
depressed), UBCH CNSL(02:00) equals 6 for 
ST ART and 7 for CONT. Since the processor is in 
the idle state, RACK BRCAB(02:00) L force the 
next cycle microaddress respectively to 076 or 077. 

2.5.5 EXAM and DEP Switches 
As described in Chapter I, every successive depres
sion of the EXAM switch after the first one causes 
the address to be incremented, thus making it pos
sible to examine successive locations without reload
ing the address. This same procedure is followed 
for DEP, or when operating on General Registers. 
Operations following the first one are called STEP 
operations. Refer to Flows 14. 

The logic shown on UBCH stores UBCH 
CNSL(02:00) H and UBCH MSB DATA L, in the 
74S 175 register, the output of which is decoded by 
the 7442S. The functions generated by the outputs 
of these decoders are gated with the outputs of the 
U BC H switch flip-flops and thus generate a modi
fied U BCH CNSL(02:00) H value, which in turn 
causes a different branch address to be generated 
when EXAM or DEP are depressed more than 
once. Note that when R3( I) of the 74S 175 is high, 
the lower 7442 decoder is disabled (no outputs fO -
f7 can be true), while the upper 7442 is enabled, 
since R3(0) is low: if R3 is reset, the opposite is 
true. 

Register operations are similar to Memory oper
ations. The branch after CON.00 determines 
whether the operation is or is not a STEP oper
ation. A second branch after this executes either an 
EXAM or a DEP. 

Figure 2-1 shows a sequence of operations, shown 
above the waveshapes, the condition of the various 
modifying functions, and the inputs to the RACK 
logic. 

III-2-2 



REG REG 
LOAD EXAM DEP LOAD REG EXAM REG DEP 
ADRS EXAM STEP DEP STEP ADRS EXAM STEP DEP STEP 

I I I I I I 
I I I I I I 

I I I I I I I I 

(t)H.n 

I I "1 I I 
0 I 0 0 I 0 0 I 0 I 0 0 

UBCF CONS¢7 I I I 
I I I 

I I I I 
I I I I 

( U BCH ) R 3 ( t ) H 

UBCH CONS02 H 
0 0 0 0 

0 0 0 0 0 
UBCH CONS01 H 

0 0 0 0 
UBCH CONS00 H 

UBCH REG EXAM+ STEP H 

UBCH REG EXAM +STEP L 

UBCH REG DE P +STEP H .--;.--""------"'--------1----------1 

UBCH REG DEP+ STEP L 

UBCH STEP DEP + DEP H ~---+--------t 

UBCH STEP DEP+DEP L 

UBCH EXAM+STEP EXAM H __.... ___ 

11-3137 

Figure 2-1 Step Branch Address Modification 

2.6 ENABLE/HA.LT SWITCH IN HALT 
POSITION 
Paragraphs 2.6.1 through 2.6.4 describe the effect 
of the operational switches when the EN
ABLE/HALT switch is in HALT. When this is the 
case, KNLC HALT SW H and SCF HALT Hare 
~igh. 

2.6. l Single Instruction 
If the S INST /S BUS CYCLE switch is in the S 
INST position, KNLC SINGLE BUS CYCLE SW 
H and SCCF SINGLE CYCLE H are low, and 

U BCF STOP L is asserted. At the next BRQ strobe 
(MSC=6), TCE CLK CONF H is asserted at T3 
and sets the Console Flag [TMCA CONF (I) H]. 
TMCB BRQ TRUE is then asserted and the instruc
tion currently being executed branches (when com
pleted) to BRK.90 (refer to Flows 12) on a 
microprogram cycle where BEN= 12 and 
UAD=240. BRK.00 follows BRK.90, and its BEN 
hits= 12, with UAD= 130. Since the Console Flag is 
set (CON F), the next microprogram state is 
CON.00 (Flows 14), in which the processor cycles 
until Console action is initiated by the operator. 

III-2-3 



2.6.2 Continue 
If the CONT switch is now depressed, CON.JO is 
entered, followed by BRK.IO and BRK.20 (Flows 
12). Since neither BUS INTR nor power-down 
(TMCA HONOR PWRF L), nor an internal trap 
has caused entry into the BRK sequence, UBCC 
(PWRF+INTR) L is not asserted and a branch is 
made to RTI.60 (Flows 2). During this cycle, the 
Console Flag is cleared during TS3 by UBCH CLR 
CONF L [BCT=2, or CONS.ACKN and UBCF 
CONT (I) H]. The CONT switch flip-flop [U BCF 
CONT (I) H] is cleared at T4 by UBCF ACKN T4 
(BCT=2 and TS4). 

The instruction following the one at which the pro
cessor stopped is now fetched (FET.00) and exe
cuted; since the ENABLE/HALT switch is still in 
the HALT position, the Console Flag is again set 
by the B RQ strobe and the processor stops after ex
ecuting one instruction. 

2.6.3 Single Bus Cycle 
If the S INST /S BUS CYCLE switch is in the S 
BUS CYCLE position, the processor stops in TS of 
the current Unibus or Cache cycle. Refer to Section 
IL Chapter 4 (Paragraph 4.9) of this manual. NPRs 
are not allowed when the switch is in this position 
(UBCF DISABLE NPR L). 

2.6.4 Console Reset 
If the STA RT switch is depressed when the EN
ABLE/HALT switch is in the HALT position, 
U BCF CNSL RESET L is asserted. This signal gen
erates all three INIT signals and sets the Console 
Flag. 

2.7 ENABLE/HALT SWITCH IN ENABLE 
POSITION 
Paragraphs 2.7.1 through 2.7.3 describe the effect 
of the operational switches if the ENABLE/HALT 
switch is put into the ENABLE position. When this 
is the case, KNLC HALT SW Hand SCCF HALT 
H go low. 

2.7.1 Continue 
When the processor is halted and the CONT switch 
depressed, the sequence is similar to that described 
in Paragraph 2.6.2. The Console Flag, however, is 

not set at the end of the first instruction, and pro
gram execution continues instead of stopping. 

2. 7.2 Single Bus Cycle 
The SINGLE BUS CYCLE switch is disabled when 
the HALT /ENABLE switch is in the ENABLE 
position. 

2. 7.3 Console Start 
UBCF START (I) H can only be set if the Console 
Flag has previously been set. ST ART asserts U BCF 
ST A TUS CL R L which sets the processor mode 
hits [PS(l5:14)] to 00 or Kernel. The START 
switch signal, U BCF ST ART L, clocks SCCF 
HALT H into a flip-flop on U BCE; this flip-flop 
sets if the HALT /ENABLE switch is in the EN
ABLE position. 

The KST.00 (Flows I4), RES.00 and RES.IO 
(Flows 3) cycles are then executed. 

In RES. IO, BCT=4 (INIT if Kernel Mode). Since 
PS(l5:14) have been set to 00 by UBCF STATUS 
CLR L, UBCC START INIT (I) H is set at T3. 
This function: 

I. direct-sets UBCC RIP+ FPSYNC H and 

2. starts the 100 µs UBCC RESET WAIT 
one-shot. 

RES.20 is now executed, and the microprogram cy
cles in this state until RIP+ FPSYNC H is negated. 

I. RESET WAIT is still on. When it goes 
off, at the end of the 100 µs, the RESET 
ABORT (I µs) and UBCC RESET (I) H 
( 10 ms) one-shots are started. 

2. RESET (I) H clears UBCC START 
INIT (I) H and keeps RIP+ FPSYNC H 
asserted. 

3. RESET (I) H is A NDed with the flip
flop on U BCE that was set by the 
START switch. This asserts UBCE 
START INIT L, which in turn asserts 
all the I NIT signals with the exception 
of ROM INIT. 

III-2-4 



4. At the end of 10 ms, RESET (1) H goes 
low and INIT is negated. RESET (0) H 
goes high and a T3 RIP+ FPSYNC H is 
also negated. This causes a branch to 
FET.03 instead of to RES.20 at the end 
of the cycle (BEN= 10, UADR=334), 
and the instruction whose address is dis
played is fetched and executed. 

5. The BUST in FET.03 clears (at T3) the 
flip-flop on U BCE that was set by the 
START switch. 

2.8 LOAD ADDRESS 
During CON .00, bits 15 - 00 of the Switch Register 
are loaded into the BR. During ADR.00 (LOAD 
ADDRESS), the contents of the BR are loaded 
into the SR and into the PCA. These bits are used 
in any subsequent Console operation other than a 
LOAD ADRS. 

The actual physical address used during these oper
ations is determined by Memory Management from 
the position of the A DD RESS SELECT switch. 

2.9 EXAM AND DEP OPERA TIO NS 
EXAM, DEP, REG EXAM/DEP and their respec
tive STEP operations are described by Flows 14. 

2.10 ADDRESS DISPLAY 
The ADDRESS DISPLAY indicators are driven by 
KNLB VA(03:00) and KNLB DISP ADRS(21:04) 
H. These signals are received on 12 by the Console. 
They originate on the M8140 module (SCCJ) con
nector J 1. SCC A VA(03:00) H, SCCF DISP 
ADRS(05:04) Hand SCCK DISP ADRS(21:06) H 
arc the sou recs for the KN LB signals. 

Refer to Table 2-1. The address displayed depends 
on whether or not it is a General Register (GR) ad
dress ( 17 777 700 - 17 777 717). 

2.10.1 General Register (GR) Address 
If the address is a GR address, bits 00:03 display 
the register number (0 to 17), bits 4 and 5 are Os 
(off), and bits 06:21 are 1 s (on). 

SCCF GEN REG ADRS is asserted (Switch Regis
ter bits 21 - 06 high, bits 05 and 04 low) and SCCF 
GEN REG (1) H is set when the LOAD AD
DRESS switch is depressed. This forces SCCF 
DISP ADRS(05:04) low and their corresponding in
dicators off, and also forces low both select inputs 
to the SCCK DISP ADRS(21:16) H multiplexer, 
thus selecting its A inputs (+3 V) and forcing the 
corresponding indicators on. The SCCK DISP 
A DRS( 15:06) H multiplexer is disabled by SCCF 
GEN REG ( 1) H and its outputs are high, thus 
forcing their corresponding indicators on. 
V A(OJ:OO) determine the state of address indicators 
03-00. 

2.10.2 Memory Address 
If the address is not a GR address, the address dis
play is a function of the ADDRESS SELECT 
switch, described in Paragraph 1.12. The output of 
this switch is encoded on the Console board. Three 
signals, N LD DISP A DRS SEL(2:0) H are thus 
generated. They are decoded on SSRK and used in 
the Memory Management logic. Two of these sig
nals control the multiplexers on SCCK and deter
mine the source of the address display, as shown in 
Table 2-1. V ;\(05:00) are used for all three map
pings, si nee these bits never change (they are not 
relocated). V;\(15:06) is used for the VIRTUAL 

Table 2-1 
Address Display 

Address Select Switch General 
Display Virtual CONS PROG Register 

Indicators ( 6 positions) PHY PHY Address 

00--03 VA(00:03) VA(00:03) VA(00:03) VA(00:03) 

04,05 VA04,05 VA04,05 VA04,05 OFF 

06--15 VA(06:15) VA(06:15) VA(06:15) ON 

16-21 OFF SWR(16:21) PA(16:21) ON 

III-2-5 



and CONS PHYS positions (the Switch Register is 
loaded into the SR after a LOAD ADRS and read 
from the BAMX). In VIRTUAL, bits 21:16 are 
forced off. In CONS PHY, SCCK SWR(21:16) H 
arc read. I PROG PHY, PA(21:06) are displayed. 

2.11 DATA DISPLAY 
The DATA indicators [KNLA DISP D(l5:00) H 
and DI SP PAR HI (and LO) H] receive their input 
from the Data Display multiplexer, PDRF DISP 
D(IS:OO) H. and from two flip-flops, PDRH IND 
Ill (or LO) PAR H. 

PDRF DISP D( I 5:00) H selects one of four inputs. 
(Refer to Paragraph 1.20.) The select inputs to this 
multiplexer arc encoded from the DATA SELECT 
switch [KN LD DISP DATA SELL (or SELO) H] 
and input to SI and SO of the multiplexer (PDRF 
DISPS I L and DISPSO L) after being inverted. 

The PARITY indicators receive their input from 
the parity nip-flops on PDRH. The Cache parity 
hits, DTML HI (or LO) BYTE PAR Hare clocked 
into the same flip-flop IC as PDRB BR(15:12)A H. 
The output of these nip-flops, PDRB HI (or LO) 
PAR H arc clocked into PDRH DISP HI (or LO) 
PAR hy UBCA IND CLK H. This signal is as
serted at T4 during the ROM state following the 
Pause cycle of all Cache DA TI/P cycles. The in
dicators arc cleared at T4 of PAUSE of all Unibus 
cycles or Cache DATO/B cycles by UBCB CLR 
IND (0) H. 

III-2-6 

2.12 MISCELLANEOUS INDICATOR LOGIC 
The Console indicators not described in Paragraphs 
2.10 and 2. 11 are driven by the logic signals listed 
below (in the same order as they appear in Chapter 
I). 

ADDRESS SELECT SWITCH (1.2.1) - The 
indicators are driven directly by the switch. 

DATA SELECT SWITCH (1.2.3) - The m
dicators are driven directly by the switch. 

PARITY ( 1.2.5) - PDRH IND HI PAR H 
and LO PAR H. 

PAR ERR (1.3.1) - UBCB IND PAR ERR 
H 

ADRS ERR (1.3.2) - SCCF IND ADRS 
ERR H 

RUN ( l.J.3) - TMCF IND RUN H. 

PAUSE ( 1.3.4) - TMC IND PAUSE H. 

MASTER (1.3.S) - UBCF IND MASTER H. 

KERNEL SUPER, USER (1.3.6) - Driven 
by a decode (on the Con sole board) of SSR B 
MMRO MODE 0 Hand MMRO MODE I H. 

ADDRESSING (Mapping) (1.3.7) - SCCF 
IND 16 (or 18 or 22) BIT MODE H. 

DATA (Space) (1.3.8) - SAPK IND DATA 
H. 



SECTION IV 

MEMORY MANAGEMENT 

Unless otherwise indicated, references within this sec
tion pertain to this section only. 





SECTION IV MEMORY MANAGEMENT 
CONTENTS 

INTRODUCTION - PDP-11/70 ADDRESS SPACE 

CHAPTER 1 GENERAL DESCIUPTION 

CHAPTER 2 MEMORY MANAGEMENT MAPPING FUNCTION 

Page 

2.1 CONSTRUCTION OF A PHYSICAL ADDRESS ..................... IV-2-1 
2.2 MANAGEMENT REGSITERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-2-2 

CHAPTER 3 PAR AND PDR ADDRESSING DURING RELOCATION 

3.1 MEMORY MANAGEMENT ROM (SSRA) ......................... IV-3-1 
3.2 ROM OUTPUTS, 04 - 16 ................................. IV-3-1 
3.3 K, S, OR U MODE SELECTION (SSRB) ......................... IV-3-3 
3.4 I ORD SPACE SELECTION [SAPK ADDR 3 (K, SOR U) L] .............. IV-3-4 
3.5 REGISTER SELECTION [SAPK ADDR(2:0) L] ..................... IV-3-5 

CHAPTER 4 GENERATION OF THE PHYSICAL ADDRESS 

4.1 16-BIT MAPPING ..................................... IV-4-1 
4.2 VIRTUAL ADDRESS ................................... IV-4-2 
4.3 18-BIT MAPPING ..................................... IV-4-2 
4.4 22-BIT MAPPING ..................................... IV-4-4 
4.5 RELOCATION LOGIC .................................. IV-4-7 

CHAPTER S ADDRESS VALIDITY 

5.1 UNIBUS ADDRESS .................................... IV-5-1 
5.2 NOT CACHE ADDRESS .................................. IV-5-1 
5 .2.1 18-Bit Mapping .................................... IV-5-4 
5.2.2 22-Bit Mapping .................................... IV-5-4 
5.2.3 Console Mapping ................................... IV-5-4 

CHAPTER 6 DESCRIPTION OF PDR 

6.1 ACCESS CONTROL FIELD (ACF) ............................ IV-6-1 
6.2 ACCESS INFORMATION BITS (A and W) ........................ IV-6-2 
6.3 EXPANSION DIRECTION BIT (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-6-3 
6.4 PAGE LENGTH FIELD (PLF) ............................... IV-6-3 
6.4.1 Example of Upward Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-6-3 
6.4.2 Example of Downward Expansion .......................... IV-6-4 

CHAPTER 7 ADDRESS DECODERS AND READING/WRITING OF PAR/PDR REGISTERS 

7.1 REGISTER ADDRESS DECODING ............................ IV-7-1 
7.2 ADDRESSING OF PAR AND PDR REGISTERS FROM THE UNIBUS ......... IV-7-3 
7.2.1 PAR/PDR Adldresses ................................. IV-7-3 
7 .2.2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-7-3 
7.2.3 PAR/PDR Read ................................... IV-7-3 
7.2.4 PAR Write ...................................... IV-7-3 
7 .2.S PDR Write ...................................... IV-7-3 

IV-iii 



CHAPTERS 

8.1 
8.1.1 
8.1.2 
8.2 
8.2.1 
8.2.2 
8.2.3 
8.3 

CHAPTER 9 

9.1 
9.1.1 
9.l.2 
9.1.3 
9.1.4 
9.1.5 
9.1.6 
9.1.7 
9.1.8 
9.1.9 
9.2 
9.3 
9.4 
9.5 
9.6 

Figure No. 

1-1 
1-2 
1-3 
1-4 
2-1 
2-2 
2-3 
2-4 
2-5 
3-1 
4-1 
4-2 
4-3 
4-4 

SECTION IV MEMORY MANAGEMENT 
CONTENTS (Cont) 

Page 

MEMORY MANAGEMENT ERROR HANDLING 

PAGE LENGTH ABORTS ................................. IV-8-2 
Length Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-2 
Illegal Processor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-2 

ACCESS CONTROL FIELD ABORTS AND TRAPS . . . . . . . . . . . . . . . . . . . IV-8-2 
Non-Resident and Read-Only Protection ....................... IV-8-2 
Access Faults (Aborts) ................................ IV-8-3 
Abort Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-3 

MEMORY MANAGEMENT TRAPS . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-3 

MEMORY MANAGEMENT REGISTERS (MMRO, l, 2, and 3) 

MMRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-1 
Aborts ........................................ IV-9-2 
Traps and Trap Enable . . . . . .......................... IV-9-2 
Maintenance/Destination Mode . . . . . . . . . . . . ............. IV-9-2 
Instruction Complete . . . . . . . . . . . . . . . . . . . . . . . . IV-9-2 
Processor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-3 
Address Space and Page Number . . . . . . . . ............. IV-9-3 
Enable Relocation ............. /. .................... IV-9-3 
Read/Write Under Program Control . . . . . . . . . . . . . . . . . . IV-9-3 
Bits Controlled by Memory Management . . . . . . . . ....... IV-9-5 

MMRl ........................................... IV-9-5 
MMR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-7 
CLEARING STATUS REGISTERS FOLLOWING TRAP/ABORT ............ IV-9-7 
MULTIPLE FAULTS ................................... IV-9-7 
MMR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-7 

ILLUSTRATIONS 

Title Page 

Example of Physical Memory Page ......................... IV-1-3 
Construction of PA .................................... IV-1-3 
Relocation . . . . . . ........................... IV-1-4 

. ........................... IV-1-4 
........................ IV-2-1 

. ........................ IV-2-1 

Block Diagram . . . . . . . . . 
Interpretation of VA . . . . . . 
Displacement Field . . . 
Construction of PA ........................... IV-2-2 

................................. IV-2-3 

................................. IV-2-4 
MM Relocation Function 
PAR/PDR Read/Write . 
Addressing of PAR/PDR 
16-Bit Mapping ..... 

. . . . . . .......................... IV-3-2 
. . . . . . . . . . . . . . . . .......... IV-4-1 

16-Bit Mapping: Generation of PA . . . . . . . . . . . . . ..... IV-4-2 
18-Bit Mapping ......... . . . . . . . . . . . . . ..... IV-4-2 
18-Bit Mapping: Cache Address . . . . . . . . . . . . . . . . . ..... IV-4-3 

IV-iv 



4-5 
4-6 
4-7 
4-8 
4-9 
4-10 
5-1 
5-2 
5-3 
6-1 
6-2 
6-3 
6-4 
8-1 
8-2 
9-1 
9-2 
9-3 
9-4 
9-5 
9-6 

Table No. 

7-1 
7-2 

SECTION IV MEMORY MANAGEMENT 
ILLUSTRATIONS (Cont) 

Page 

18-Bit Mapping: Unibus Address ............................. IV-4-3 
22-Bit Mapping ....................................... IV-4-4 
22-Bit Mapping . . . . . . . . . . . . . . . . . . .................. IV-4-4 
Physical Address Generation: Example 1 ......................... IV-4-5 
Physical Address Generation: Example 2 ......................... IV-4-6 
Generation of Physical Address .............................. IV-4-8 
Wraparound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-5-2 
18- and 22-Bit Overflow .................................. IV-5-3 
Console Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-5-4 
Page Descriptor Register (PDR) .............................. IV-6-1 
A and W Bit Timing .................................... IV-6-2 
Upward Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-6-3 
Downward Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-6-4 
Traps and Aborts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-1 
Trap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-8-5 
MMRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-1 
Clocking of MMRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-4 
MMRO Write Timing .................................... IV-9-5 
MMRl . . . . . . ................................. IV-9-6 
MMR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-7 
MMR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV-9-7 

Register Address Decode Signals 
P AR/PDR Unibus Addresses . . 

TABLES 

Title 

IV-v 

Page 

. ....... IV-7-2 

........ IV-7-4 





Processor-generated addresses differ from those 
that address memory; thus, the processor addresses 
are termed Virtual Addresses (VA}, and the mem
ory addresses are termed Physical Addresses (PA). 

The VA is that generated by the program. It con
sists of 16 bits. The PA is the result of modifying 
the VA in 18- or 22-bit mapping. It is the address 
sent to the Cache (22 bits) or to the Unibus ( 18 
bits). Three separate address spaces are used: 

I. 16 bits, program virtual space 

2. 18 bits, Unibus space 

3. 22 bits, physical space 

The KBI 1-C Processor System generates a 22-bit ad
dress, which allows a possible address space of 
2048K words (2 21 = 2,097, 152). Addresses 00 000 
000 - 17 777 777 can be used; they are called Phys
ical Addresses. 

Refer to Figure 1-1, which shows the components 
of the PA Space. 

I. Unibus Reference includes 128K PAs, 17 
000 000 - 17 777 777, which correspond 
to Unibus addresses 000 000 - 777 777. 
The Unibus reference in turn includes 
the following: 

a. The Peripheral Page, which is re
served for Unibus device registers; 
it consists of 4K PAs, 17 760 000 -
17 777 777 (Unibus addresses 760 
000 - 777 777). 

b. The remaining I 24K addresses, 17 
000 000 - 17 757 777 (Unibus ad
dresses 000 000 - 757 777) may be 
used by Unibus devices to access 
memory. 

N-1-1 

INTRODUCTION 
PDP-11/70 ADDRESS SPACE 

{17) 777 777 } 

r--_(~7J !~<!..~OE ___ 
(17) 757 777 

(17) 000 000 

16 777 777 

) 

SYSTEM SIZE 
BOUNDARY 

) 

00 000 000 
1-' 

PERIPHERAL 
PAGE (4K} 

UNIBUS 
REFERENCE 
(128K} 

NON-EXISTENT 
MEMORY OR NXM 

MEMORY 
REFERENCE 

11-4002 

Figure 1-1 Physical Address Space 

2. Memory Reference includes PAs from 
00 000 000 through the system size 
boundary, which is the highest address 
available in the system Main Memory. 
There may be no discontinuity in Main 
Memory, i.e., available memory loca
tions must be numbered sequentially -
from 00 000 000 through the system size 
boundary. The highest possible address 
is 16 777 777. Maximum possible mem
ory is 1920K words (221 - 211 = 
1,966,080, or 2048K - 128K = 1920K). 

3. Non-Existent Memory or NXM includes 
the PAs from the system size boundary 
plus I - 16 777 777. 



ADDRESS RELOCATION 
The PDP-11/70, like all other PDP-I ls, generates a 
16-bit Virtual Address in the range of 000 000 -
177 777. In order to access the Unibus, which re
quires an 18-bit address, and Main Memory, which 
uses a 22-bit address, the VA must be relocated. In 
the same manner, Unibus devices generate an 18-bit 
address, which must be expanded to 22-bits in or
der to access Main Memory. 

Refer to Figure 1-2. The 16-bit VA is expanded to a 
22-bit PA by Memory Management. If the four 
high-order bits of this PA are all 1 s (bits 21: 18), the 
Unibus is referenced. If these four bits are not all 
1 s (addresses 00 000 000 - 16 777 777), Main Mem
ory is referenced. 

n~e Unibus Map performs a function similar to 
that of Memory Management: it expands Unibus 
addresses from 18 to 22 bits. This function is also 
called .. mapping." The Map accepts Unibus ad
dresses 000 000 - 757 777 and relocates them to the 
PA space (00 000 000 - 16 777 777). 

7 77 777-760 000" PERIPHERAL PAGE 

18 

16 777 777 

UNIBUS MAP 1 
00 000 000 

22 

UNIBUS 

7 77 777 - 000 000 

18 

UNIBUS 
ADDRESS SPACE 

22 

(17] 777 777 

[17] 000 000 

16 777 777 
00 000 000 

MEMORY ADDRESS 
SPACE 

16 777 777 
00 000 000 

CACHE MEMORY a 
MAIN MEMORY 

Relocation is controlled by the program, which can 
enable or disable the Unibus Map and/or Memory 
Management. The program also specifies the man
ner in which the addresses are modified when these 
devices are enabled. 

MEMORY MANAGEMENT MAPPING 
Three methods of mapping are available to Mem
ory Management: 

I. 16-bit mapping, when MMRO is cleared. 
(Refer to Figure 1-3.) 

2. 18-bit mapping, when bit 4 of MMR3 is 
cleared and bit 0 of MMRO is set. (Refer 
to Figure 1-4.) 

3. 22-bit mapping, when both bit 4 of 
MMR3 and bit 0 of MMRO are set. (Re
fer to Figure 1-5.) 

MM RO responds to Unibus address 17 777 572, 
MM R3 to address 17 772 516. 

17 777 777 

VIRTUAL ADDRESS 
SPACE 

177 777 

1 MEM MGMT 

00 000 000 

16 
I PROCESSOR 

000 000 

11-4019 

Figure 1-2 11 /70 Address Space 

IV-1-2 



777777 

UNIBUS 
(18 BITS) 

000000 

FLOW 

PERIPHERAL PAGE 

17600000 

' ' 
'-'1'-"70-'-000~00'------'.~~-" ""'"' 1 

M~ 

' ' ' 'i-------1 
00757777 19 20K 

177777 96K l 
160000 

'""oo=o=~g-=--~-1~~-~-+·--- _________ ~:~:~~5:o=7~=~~-~-_-_-~ ~ ~ ~ ~ ___ .-:-~-::-~-~-____, 
INCOMING PHYSICAL ADDRESS 
ADDRESS ADDRESS SPACE LOCATIONS 

- •RELOCATION 
- - - -- •NO ADDRESS 

(22 BITS) (MAX. AVAILABLE 
MEMORY 1024K) 

RELOCATION 11-3196 

In 16-bit mapping, only addresses in the ranges of 17 760 000 - 17 777 777 (Per
ipheral Page) and of 00 000 000 - 00 157 777 (Main Memory) may be generated. 
In 16-bit mapping, the PDP-11/70 operates as the PDP-11/20, or as the PDP-
11/45 with Memory Management disabled. 

Figure I-3 16-Bit Mapping 

FLOW 

777777 17777777 - - - - - - - - - - .-17=77-.,7=77=7-----, 

4K PERIPHERAL PAGE 

~"~-

~~~-~, UNIBUS 16777777 1 
"""" ~ :~~ \ 00=7=57=77~7-----t

1920K

17760000
17757777

UNIBUS
(18 BITS)

124K

000000 17000000

'""'~""':-'-~""'::_~_~r _ __,-_---__ :_J_::_T---~'""'o=oo~'·=::~~~~ __________ -~o~oo~o-=-~'=~'~o -~ l
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS

- •RELOCATION
-----+•NO ADDRESS

RELOCATION

(22 BITS) (MAX AVAILABLE
MEMORY 1024K)

11-3197

In 18-bit mapping, only addresses in the ranges of 17 760 000 - 17 777 777 (Per
ipheral Page) and of 00 000 000 - 00 757 777 (Main Memory) may be generated.
In 18-bit mapping, the PDP-11/70 operates as the PDP-11/45, with Memory
Management enabled.

Figure I-4 18-Bit Mapping

IV-1-3

777777

UNIBUS
(18 BITS)

000000

177777

000000

INCOMING
ADDRESS

~MEM
/ MGMT

- •RELOCATION
----- •NO ADDRESS

RELOCATION

FLOW

....,...,.,17=77=7=77=7----.-----------~17_7_77_77_7 _ __,

4K

17760000
17757777

124K

17000000
16777777

1920K
ADDRESS

00000000

PHYSICAL
ADORE SS SPACE
(22 BITS)

PERIPHERAL PAGE

17600000

16777777

ADDRESS
LOCATIONS
(MAX.AVAILABLE
MEMORY 1024K)

11-3198

In 22-bit mapping, the VA may be relocated to any address in the PA space (00
000 000 - 17 777 777). This is the only mapping in which P As 17 000 000 - 17
757 777 can be generated; they correspond to Unibus addresses 000 000 - 757
777, or the 124K Unibus locations which are not reserved for the Peripheral
Page. The addresses in this range can be used by the program to access Main
Memory via the Unibus Map.

Figure 1-5 22-Bit Mapping

FLOW

~-------------777777 '""11==1=11=1=77,.----,- - - - - - - - - - - ~17_7_77_77_7 _ __,

4 K PERIPHERAL PAGE

...,,:~=~~~~,:.,~~~~----ic:---- -- -- - -- -- 17600000

UNIBUS
(18 BITS) 124K ' '

~~-" ""'"' 1 000000 17000000

INCOMING
ADDRESS

- •RELOCATION

PHYSICAL
ADDRESS SPACE
(22 BITS)

M~

' ' ' ,.___ ___ __.
00757777 1920K

l-----l124K l
00000000

ADDRESS
LOCATONS

----- •NOADDRESS 11-4oeo
RELOCATION

Figure 1-6 Unibus Map Address Space

IV-14

Software written for the PDP-11 /20 or
11/45 runs without modification on the
PDP-11/70 because the Unibus Map
should not be enabled by this software,
and because Memory Management will
be enabled as required, i.e., the 18-bit
mode enabled or disabled, and the 22-bit
mode disabled. This does not take into
account the difference in speed between
these processors.

UNIBUS MAP ADDRESSING MODES
The Map is enabled when bit 5 of the Memory
Management Register #3 (MMR3) is set. MMR3 re
sponds to PA 17 772 516. Refer to Figure 1-6.

l. The Unibus Map never responds to the
Peripheral Page addresses (17 760 000 -
17 777 777).

2. When the Map is disabled, Unibus ad
dresses 000 000 - 757 777 reference.
Main Memory addresses 00 000 000 - 00
757 777, i.e., they are not modified.

3. When the Map is enabled, a Unibus ad
dress in the range of 000 000 - 757 777
is relocated by adding to it the contents
of a Mapping Register.

It should be noted that the operations mentioned in
2 and 3 above are subject to fixed upper and lower
address limits. These limits may be changed by add
ing or removing jumpers in the Unibus Map.

The Unibus Map is described in Section V of this
manual.

IV-1-5

Memory Management receives all Virtual Ad
dresses generated by the program, relocates them if
necessary and then transmits the physical addresses
to the Cache or to the Unibus. Address modifica
tion is the main function of Memory Management.
This modification of addresses is called Relocation
because it consists of adding a fixed constant to
every virtual address (Refer to Chapters 2 through
4).

Memory Management also allows the user to pro
tect one section of memory from access by pro
grams located in another section. It divides the
memory into sections - called pages (Chapter 8).
Each individual page has a protection or access key
associated with it that defines access to the page.
With the Memory Management unit, a page can be
keyed non-resident (memory neither readable nor
writable) or read-only (no write operations to mem
ory). These two types of protection, in association
with other features, enable the user to develop a se
cure computer operating system. With the non-resi
dent key, memory not specifically assigned to a
program can be made unavailable to it (Chapter 9).

It is often desirable to load a program into one
area of physical memory and then execute it as if it
were located in another area of memory, e.g., when
several user programs are simultaneously stored in
memory. When any one program is running, it
must be accessed by the processor as if it were lo
cated in the set of addresses beginning at 0. This
process is called Relocation. When the processor ac
cesses virtual address 0, a base address is added to
the address; thus, the relocated 0 location of the
program is accessed. Typically, this same base ad
dress is added to all references while the program is
running. A different base address is used for each
of the other programs in memory.

CHAPTER 1
GENERAL DESCRIPTION

Memory Management specifies relocation on a
page basis, which allows a large prograrr: to be
loaded into discontiguous pages in memory. This
ability eliminates the need to shuffle programs to ac
commodate a new one. It also minimizes unusable
memory fragments, allowing more users to be
loaded in a specific memory size.

A program and its data may occupy as many as 16
pages in the memory. The size of each page may
vary and can be any multiple of 32 words, up to
4096 words in length. This feature allows small
areas in memory to be protected, i.e., stacks, buf
fers, etc., and also allows the last page of a pro
gram, exceeding 4K words, to be of adequate
length to protect and relocate the remainder of the
program (Chapter 8). As a result, the memory frag
mentation problem inherent with fixed-length pages
is eliminated. The base address of each page can be
any multiple of 32 words in the Physical Address
space, thus ensuring compacted core. Finally, the
variable page size enables pages to be dynamically
changed at run time.

The Memory Management unit provides two bits
of active page status information: an "accessed" bit
and a "written into" bit. These bits can be used by
the operating system program to determine whether
the page has been accessed and, if so, whether it
was written into. The accessed bit can be used by
operating system programs to determine which
page should be overlaid with the new program page
in systems that swap programs back and forth from
a disk. The written into bit can be used to deter
mine whether the page to be overlaid must be
swapped back to the disk or whether it is identi
calto a copy already there.

IV-1-1

Memory Management provides three separate sets
of pages for use in the processor's Kernel, Super
visor, and User modes. These sets of pages increase
system protection by physically isolating User pro
grams from service Supervisor programs and the
Kernel program. The service programs (compilers,
editors, file system, assemblers, etc.) are also sepa
rated from the Kernel program (exception han
dling, 1/0, memory management, etc.). Separate
relocation register sets greatly reduce the time neces
sary to switch context between mapping. The three
sets also aid the user in designing an operating sys
tem that has clearly defined communications, is
modular, and is more easily debugged and main
tained. During development cycles, these features re
sult in time and cost savings; in the final system
design, they result in an efficient and reliable
system.

The Virtual Address space is further divided, within
each of the Kernel, Supervisor and User pages, into
Instruction Space and Data Space (I and D space).
I space contains code, i.e., any word that is part of
the program, such as instructions, index words and
immediate operands. D space contains information
that can be modified, such as data buffers.

By using this feature, Memory Management can
relocate data and instruction references with sepa
rate base address values; thus, it is possible to have
a user program of 64K words consisting of 32K of
instructions and 32K of data. Moreover, a conven
ient means of building reentrant shared programs is
provided (these programs keep a separate data area
for each user). The ability to relocate data with sep
arate base address values enables shared compilers,
assemblers, editors, and supervisors to be
developed.

PDP- I I stacks expand by pushing words into lower
addresses and thus growing downward; procedure
sections increase by growing into higher addresses.
All memory pages can be expanded downward or
upward by adding lower addresses (stack) or higher
address (procedure, data). As a result, it is easy to
expand both stack and program pages.

An Abort is the non-completion or interruption of
a data cycle due to an error. Abc-rts are serviced im
mediately, prior to the completion of the instruc
tion during which they occur. A Trap is an
interruption of the normal progr'am flow by inter
nal machine conditions. These conditions can be,

but are not necessarily, errors. A trap is executed af
ter the instruction during which it occurs is com
pleted. Both aborts and traps generated by Memory
Management transfer control to location 250. Three
status registers (Chapter 9) record all information
necessary to recover from a Memory Management
abort. This information includes the page number
that faulted, the type of violation that caused the
fault (exceeded length, read-only violation, etc.),
and all information needed to easily restart the
aborted instruction once the Virtual Address has
been corrected.

Three protection keys cause a trap, i.e., an auto
matic transfer of program control to location 250
at the end of the current instruction. The trap fea
ture is useful for gathering "frequency of page use"
statistics.

DEFINITION OF PAGE
A "Page" is a collection of contiguous addresses.
Memory Management divides the 32K Virtual Ad
dress space into eight 4K sections called Virtual
Pages. The lowest Virtual Address in each page is a
whole multiple of 4096. The three high order bits of
the VA [VA(15: 13)] are the page number (0-7) and
select a PAR/PD R pair within the current mode
(Kernel, Super or User) and space (I or D).

This PAR/PD R pair in turn defines the Physical
Page. The PAR contains the base address of this
page, which may be on any whole multiple of 32
words. A block consists of 32 words, and a physical
memory page may consist of up to 128 blocks. The
Page Length Field (PLF) of the PDR (bits 14:08)
determines the allowable length of the page. A page
may expand upward (from lower to higher ad
dresses) or downward. Expansion direction is deter
mined by bit 3 of the PDR (ED).

PHYSICAL MEMORY PAGE
Refer to Figure 1-1. A block consists of 6410 = IOOs
bytes or 3210 = 408 words. The 6-bit word number
(bits 05:00) field of the VA specifies an address (00
- 77) within the block (refer to Chapter 4).

A page consists of a maximum of 200s blocks (000
- I 77), or 2008 X I OOs bytes = 20,000 bytes or
10,000 words. Thus, a page starting at PA = 00 000
000 has a maximum possible PA of 00 17 777. A
block starting at 00 000 000 ends at 00 000 077.

IV-1-2

PHYSICAL
MEMORY

00 017 777

BLOCK 177

00 017 700

00 017 677

BLOCK 176

00 017 600

00 017 577
r---" -

00 000 200

00 000 177

BLOCK 1

00 000 100

00 000 077

BLOCK 0

00 000 000

-

}

1 BLOCK
• 100 BYTES
= 40 WORDS

BASE
,.__ADDRESS

1 PAGE=
20000 BYTES MAX.
= 10000 WORD MAX.

11-4017

A Physical Address is constructed as follows (refer
to Figure 1-2): the base address of the page is con
tained in the selected PAR. The block number field
of the VA (bits 12:06) is added to this base address
to give the base address of the block. The word
number field of the VA specifies the Displacement
In the Block (DIB).

The relocation example shown in Figure 1-3 illus
trates several points about memory relocation:

ALL NUMBERS IN OCTAL

I. Although the PAs appear to the pro
gram to be in contiguous address space,
the 32K-word VA space is actually relo
cated to several separate areas of phys
ical memory. As long as the total
available physical memory space is ade
quate, a program can be loaded. The
physical memory space need not be
contiguous. Figure 1-1 Example of Physical

Memory Page

15 13 12 06 05 00

VIRTUAL ADDRESS= 157 7461 ~ _1-L..~~o~l_1~~~~~~~~~~~~~0~-o~~~~~o~J

ACTIVE PAGE FIELD
SELECTS PAF =

PAGE BASE ADDRESS

PAR 6=13 546 000

21

0

~'----------~--~A------...--------;

APF : BLOCK NUMBER DISPLACEMENT :
I IN BLOCK I
I I
I I
I I
I I
I l
I I

:12 06 I

0 0 0 0 0 0 0

l
I
I
I

i __________ ,_A_+R I i
(21 ------------------. oo!

22-BIT RELOCATED! 0 I
ADDRESS= I 0 0 0 0 0 0

13 565 746 ~--L.~~~~.....a..~~~~-L-~~~~L--~~~---'~~~~---L~~~~-'-~~~~-'

BASE ADDRESS OF BLOCK

Figure 1-2 Construction of PA

IV-1-3

DISPLACEMENT
IN BLOCK (DIB)

11-4082

2.

3.

MEMORY PHYSICAL
PROGRAM MANAGEMENT MEMORY

VIRTUAL ADDRESS PAGE
PAGE BASE

RANGES NO.

000000 - 017776 0

020000 - 037776

040000 - 057776 2

060000 - 077776 3

100000 - 117776 4

120000 - 137776 5

140000 - 157776 6

160000 - 177776 7

104000XX

003200XX

012500XX

000600XX

000200XX

071000XX

000200XX

001500XX

00037776} PAGES
00020000 4 a 6

f 00000000

11-4016

Figure 1-3 Relocation

Pages may be relocated to higher or
lower PAs, with respect to their VA
ranges. In the example, Page I is relo
cated to a higher range of PAs, Page 4 is
relocated to a lower range, and Page 3 is
not relocated at all, since the Page Base
(=PAF) restores to the VA the three bits
(15: 13) which are stripped during
relocation.

Each page is relocated independently.
Two or more pages can be relocated to
the same physical memory space. Using
more than one page address register in
the set to access the same space is one
way of providing different memory ac
cess rights to the same data, depending
on which part of a program was referen
cing that data. In Figure 1-3, note that
the same relocation constant is assigned
to Pages 4 and 6. As a result, V As
within both address ranges access the
same PAs in memory, using different
page address registers.

IV-1-4

BLOCK DIAGRAM
Refer to Figure 1-4. Memory Management receives
the VA from the processor. It generates the PA,
which is received by the Cache or by the Unibus.
As a result of its management functions, Memory
Management informs the processor of traps and
aborts.

Chapters 2 through 5 of this section describe the
generation of the Physical Address. Chapters 6
through 9 explain the address checking and error re
porting functions of Memory Management.

UNIBUS

KB11-B
PROCESSOR----.,,

CONTROL
CACHE

MEMORY

11-4015

Figure 1-4 Block Diagram

CHAPTER 2
MEMORY MANAGEMENT MAPPING FUNCTION

When Memory Management is enabled, the normal
16-bit, direct-byte address is no longer interpreted
as a direct Physical Address (PA) but as a Virtual
Address (VA) containing information to be used in
constructing a new 22-bit PA. The information con
tained in the VA is combined with relocation infor
mation contained in the Page Address Register
(PAR) to yield a 22-bit PA. Using the Memory
Management Unit, memory can be dynamically al
located in pages each composed of from I to 128 in
tegral blocks of 32 words.

The starting PA for each page is an integer multiple
of 32 words, and each page has a maximum size of
4096 words. Pages may be located anywhere within
the PA space. The determination of which set of 16
page registers is used to form a PA is made by the
current mode of operation of the CPU, i.e., Kernel,
Supervisor or User mode.

2.1 CONSTRUCTION OF A PHYSICAL
ADDRESS
All addresses with memory relocation enabled refer
ence information in either Instruction (I) space or
Data (D) space. I space is used for all instruction
fetches, index words, absolute addresses and imme
diate operands. D space is used for all other refer
ences. I space and D space each have 8 PARs in
each mode of CPU operation, Kernel, Supervisor,
and User. Using Memory Management Register #3,

15 13 12

the operating system may select to disable D space
and map all references (Instructions and Data)
through I space, or to use both I and D space.

The basic information needed for the construction
of a PA comes from the VA, which is illustrated in
Figure 2-1, and the appropriate PAR set.

The Virtual Address consists of:

12

DF

I. The Active Page Field (A PF). This 3-bit
field determines which of eight Page Ad
dress Registers (PARO-PAR?) will be
used to form the PA.

2. The Displacement Field (OF). This 13-
bit field contains an address relative to
the beginning of a page. This permits
page lengths up to 4K words (2 13 = 8K
bytes). The OF is further subdivided
into two fields as shown in Figure 2-2.

6 5

, ' o:• , .J BN
I I I

BLOCK NUMBER DISPLACEMENT IN BLOCK

11-4045

Figure 2-2 Displacement Field

0

.1 I APF I
I I I I

ACTIVE PAGE
FIELD

DISPLACEMENT FIELD

11-4044

Figure 2-1 Interpretation of VA

IV-2-1

The Displacement Field (DF) consists of:

I. The Block Number (BN). This 7-bit field
is interpreted as the block number
within the current page.

2. The Displacement in Block (DIB). This
6-bit field contains the displacement
within the block referred to by the Block
Number (BN).

The remainder of the information needed to con
struct the PA comes from the 16-bit Page Address
Field (PAF), the Page Address Register (PAR) that
specifies the starting address of the memory page
which that PAR describes. The PAF is actually a
block number in the physical memory, e.g. PAF=3
indicates a starting address of 96 (3 X 32) words in
physical memory.

The formation of the PA is illustrated in Figure 2-
.3. The logical sequence involved in constructing a
PA is as follows:

I. Select a set of PA Rs, depending on the
space being referenced.

2. The A PF of the VA is used to select a
PAR (PARO-PAR 7).

15 13 12

VIRTUAL ADDRESS (VA) APF I

15 13

SELECT PAR (VA (15: 13)) APF

12

OFFSET INTO PAGE (VA (12 :OO))

21

3. The PA F of the selected PAR contains
the starting address of the currently ac
tive page as a block number in physical
memory.

4. The Block Number (BN) from the VA is
added to the PAF to yield the number
of the physical block in memory which
will contain the PA being constructed.

5. The Displacement in Block (DIB) from
the Displacement Field (DF) of the VA
is joined to the physical block number to
yield a 22-bit PA.

2.2 MANAGEMENT REGISTERS
Memory Management implements three sets of 32
16-bit registers. One set of registers is used in Ker
nel mode, another in Supervisor, and the other in
User mode. The choice of which set is to be used is
determined by the current CPU mode contained in
the Processor Status word. Each set is subdivided
into two groups of 16 registers. One group is used
for references to Instruction (I) space, and one to
Data (D) space. The I space group is used for all in
struction fetches, index words, absolute addresses
and immediate operands. The D space group is
used for all other references, providing it has not
been disabled by Memory Management Register

00

OF

06 05 00

BN 018

6

PAR
+ .___I ___.H.....___ __ PA_F __ ___....

21 00

PHYSICAL ADDRESS PA

11-4043

Figure 2-3 Construction of PA

IV-2-2

#3. Each group is further subdivided into two parts
of eight registers. One part is the PAR, whose func
tion has been described in previous paragraphs.
The other part is the Page Descriptor Register
(PDR). PARs and PDRs are always selected in
pairs by the top three bits of the VA. A PAR/PDR
pair contain all the information needed to describe
and locate a currently-active memory page.

The various Memory Management Registers are lo
cated in the uppermost 4K of PD P-11 PA space
along with the Unibus 1/0 device registers.

This chapter and Chapters 3 through 6 describ~ the
address relocation function of Memory Manage
ment, and the reading and writing of relocation reg
isters hy the program.

Refer to Figure 2-4. Relocation is essentially the
process of adding the contents (PAF) of a register
(PAR) to the program or VA. This sum is then
modified, depending on the mapping selected, and
hecomcs the PA.

PROCESSOR ---".I
ROM ADDRESS ----'•

BR

CHAPTER 3

SCCL ENAB 22 BIT MOOE

Chapter 3 describes the selection of the PDR and
PAR. The VA, the Processor Status Word (PSW or
PS), the processor ROM address, and Memory
Management Register #3 (MM R3) bits 2 - 0 (en
able data space for User, Supervisor, or Kernel
modes) make this selection.

Chapter 4 describes the generation of the PA. The
PAF and the VA are summed (except in 16-bit
mode), examined by the PA generation circuits, and
output to the Unibus or to Memory.

Chapter 5 describes the generation of two func
tions: SAPN NOT CACHE ADRS and SAPN
UNIBUS ADRS, which are used by other parts of
t11e KBl 1-C for purposes of address checking for
non-existent memory (NEXM) or control of the
Timing Generator during bus cycles.

The contents of the PARs and PDRs are controlled
hy the program, which can load or read them.

CHAPTER 4

SCCN SYS

ADDRESS
LIMIT

CHECK

SIZ < 21 :14 > CHAPTER 5

SAPN NOT
CACHE ADRS

SAPN UNIBUS
AORS

H-4009

Figure 2-4 MM Relocation Function

IV-2-3

Refer to Figure 2-5. Chapter 7 describes these
read/write operations. The address decoders on the
sec module, which are also explained in this chap
ter, decode the incoming PA and select the PAR or

VA

READ

WRITE

ADDRESS
DECODERS

sccc
INT

REG

SAPK 11-----".I
APR
ADR

PAR I PDR

SELECTION

BR-----------

C1

PD R indicated by this address. The outputs of
PARs and PDRs are driven onto the Internal Data
Bus.

VA!i15

SAPM
APR

BIT<15:oo>
MUX.

BUS INTO L

READ

WRITE

11-4010

Figure 2-5 PAR/PDR Read/Write

IV-2-4

NOTE
A working knowledge of the processor microprogram
ROM (Section II, Chapter I) is required for the un
derstanding of this chapter.

Refer to Figure 3-1. There are 48 PARs and 48
PDRs, which are arranged in PAR-PDR pairs. The
outputs of all PARs are wired-ORed [SAPA+B+C
PA F(2 I :06)], as are those of the PD Rs. Both the
PAR and the PDR, in a pair, are selected and read
at the same time.

Each mode (Kernel, Supervisor and User) has 16
PAR /PDR pairs available, eight for I space and
eight for D space.

One of the Kernel, Supervisor or User PAR/PDR
sets is selected by the PSW current mode bits
[PS(15: 14)] in conjunction with its previous mode
bits [PS(1.3: 12)] and the K, S, U space logic on
drawing SSRB.

Either the I space set or the D space set for the cur
rent mode is selected by Memory Management Reg
ister #.3, bits 2 - 0 (Enable K, S or U D space) in
conjunction with the I space enable logic, which is
also shown on drawing SSRB.

One of the eight PAR/PDR pairs in the selected set
is then chosen by bits 15 - 13 of the Virtual
Address.

3.1 MEMORY MANAGEMENT ROM (SSRA)
The Memory Management ROM shown on draw
ing SSRA controls many Memory Management
functions. This ROM uses the same address
[RACO RAR(07:00) HJ as the processor micro-

CHAPTER 3
PAR AND PDR ADDRESSING

DURING RELOCATION

program ROM, and thus reflects the current state
of the processor.

Drawing SSRL is a truth table of the output of the
Memory Management ROM. The column headed
Octal Location refers to the address of the pro
cessor ROM state listed in the second column.
Truth Value ROMOUT columns I - 16 show, for
each processor ROM state, the bits that are as
serted by the Memory Management ROM. These
bits are called SSRA ROM OUT(l6:01) H. Refer
to Section II, Chapter I of this manual for a de
tailed explanation of the processor ROM.

The two 74S 157 multiplexers on SSRA are used as
decoders for ROM OUT(03:01). Their output is
clocked into the 74SI 74 flip-flops by SSRK
PULSE23 H, which is a buffered TIGE TS2 L.

The functions generated by Memory Management
ROM outputs I - 3 are discussed as required where
they are used. ROM outputs 4 - 16 are used indi
vidually and are explained in the following
paragraphs.

3.2 ROM OUTPUTS, 04 - 16
SSRA ROM OUT(04: 16) inform the Memory Man
agement logic of the occurrence of certain condi
tions in the processor. The significance of these
outputs is described below.

ROM OUT04 (Destination Mode) is used during
mai ntcnance mode only; this bit is asserted during
certain Destination Mode memory cycles. It is used
in conjunction with bit 08 of MMRO (Maintenance
Mode) to enable relocation during the execution
cycle of the instruction.

IV-3-1

Selected by
SSRB KERNEL SPACE,
SSAB SUPER SPACE and
SSAB USER SPACE logic

-------------------------SAPE KERNEL PAR L

000

001

010

0 11

100

1 01

1 1 0

1 11

000

001

010

0 11

1 00

101

110

1 11

KERNEL

PAR

•
PAR

~

~:~::

-------------------------SAPE KERNEL CSL

PDR

~

PDR

•

ADDR0 L

ADDR1 L

ADDR2 L

j
.....----1.-----_ -r-=-E~~

' r-SAPE

SUPER PAR L

SUPER CS L

USER PAR L

USER CSL

SUPERVISOR USER

PAR PDR PAR PDR

I SPACE

~ ~

PAR PDR PAR PDR

D SPACE

•

Figure 3-1 Addressing of PAR/PDR

IV-3-2

{

SAPK ADDR 3K L
SAPK ADDR 3$ L
SAPK ADDR 3U L

I or D SPACE selected
by MMR3 (2:0> and
by SSAB I SPACE A
and SSAB I SPACE B.
When SAPK ADDA 3 K,
3 Sand 3 U are high,
I space is selected;
when they are low, D
space is selected.

11-4012

ROM OUT05 [CLOCK PREY MODE (MT /FP)]
is asserted during ROM cycles that assert BSOPl.
This is shown on the Flows as BC-BSOPl. BSOPl
is normally called for in an execute cycle that is
common to several instructions which have differ
ent bus operation requirements. Thus, BSOPl is a
DATI for MFP instructions and a DATO for MTP
instructions. ROM OUT05 is used to clock the pre
vious mode [PS(13: 12)] into the K, S, U flip-flops
during M FP and MTP instructions.

ROM OUT 06 (KERN DATI) is asserted when the
BSC ROM bits=2 and forces Kernel mode dµring
the Service Flows (Section II, Chapter 6). During
these cycles, the new PC and PS are loaded from
Kernel space. This condition appears on the Flows
as BC-KERN DATI and occurs only in ROM cy
cles SVC.00 - SYC.30, BRK.30 and TRP.10. These
cycles all force Kernel mode but do not change
PS(l5:14). BRK.30 and TRP.10 are followed by
SYC.00, I 0, 20 and 30. In this last cycle, the cur
rent mode bits, PS(15: 14) are stored in the previous
mode bits, PS(13: 12), and the new current mode
bits are loaded into PS(l5:14) from BR(l5:14)
(IBS=2).

ROM OUT07 (BUST) is asserted during all BUST
cycles. AN Ded with TI, this bit is used as a clock
in several places in Memory Management.

ROM OUT08 (I SPACE IF MT /FPI) is asserted
during destination cycles that are used by MFP and
MTP instructions, along with other instructions. I
space is forced when this bit is asserted if the in
struction is an M FPI or an MTPI [(IR 15 =O)*(I RCC
M FP+ MTP)]. See ROM OUT 14.

ROM OUT09 (I SPACE ON IND WORD
FETCH) is asserted during all fetch cycles and dur
ing cycles that read index words. Since these are all
in I space, I space is unconditionally forced when
this hit is asserted. ROM OUTIO is not used.

ROM OUT IO is not used.

ROM OUTll (I IF INST START IN I) is asserted
during the EXC.00, EXC.10, NEG.20 and SHR.10
111 icroprogram cycles (Flows 11). These cycles exe
cute the DATO/B portion of a DATIP/DATO
transaction and thus must be executed in the same
space as the previous DATI P data transfer cycle.

ROM OUTl2 (DEPOSIT+EXAMINE) is asserted
only during Console EXAM or DEP cycles
(DEP.10, DEP.20, EXM.10, EXM.20, Flows 14).

These cycles are executed in the space designated
by the Console ADDRESS SELECT switch.

ROM OUTl3 (SRCM= 1 +2+3+4+5) is asserted
during cycles that fetch the source operand for
binary instructions with source modes 1 - 5. If the
sou rec register field is 7, this operand is the second
word of the instruction and as such is in I space.
These cycles are Sl3.00, Sl3.0I, Sl3.10 and S45.10
on Flows 1.

ROM OUTl4 (DSTM = 1 +2) is asserted during
Destination Mode I or 2 cycles that are common to
MTP and M FP and to other DAC or O/class in
structions. If the destination register field is 7, the
operand is in I space. ROM OUT08 is also asserted
when ROM OUT14 is asserted (Dl2.00, Dl2.0l,
D 12.10, D 12.60, D 12.80 and D 12.90, Flows 5), so
that I space is addressed when ROM OUT14 is
asserted

I. If the instruction is either MFPI or
MTPI (I space is accessed, by defini
tion), or

2. The Destination Mode of the instruction
(not MF PI or MTPI) is 7 (the word ac
cessed is in I space). See ROM OUT08.

ROM OUTI 5 (DSTM =3) is asserted during Desti
nation Mode 3 cycles (D30. IO, D30.80 and
030.90). If the destination register field is 7 during
these cycles, the addressing mode is Absolute and
the address word should come from I space.

ROM OUTl6 (FLOATING POINT INST) is as
serted for FPP Immediate Mode bus operations
(FSY .00 and FSV .10, Flows 12). It is used to en
sure that the immediate operand comes from I
space if DM2 and DF7.

3.3 K, S, OR U MODE SELECTION (SSRB)
The chip select signals for PA Rs are SA PE KER
N EL (or SUPER/USER) PAR L; for PDRs, these
signals are SAPE KERNEL (or SUPER/USER)
CS L. Because SCCC INT REG H is low during re
location and the B inputs to the multiplexers are se
lected. both the PAR and PDR chip select signals
have the same source: SSRB KERNEL (or SU
PER/USER) SPACE (I) L. These signals are the
outputs of three flip-flops on SSRB that are
clocked on the trailing edge of TI of all BUST cy
cles (SSRB CLK SPACE H). The input to these
nip-nops are the AND-OR-invert gates SSRB KS
(or SS/US) L.

IV-3-3

I. During a Console cycle (ROM OUT12),
the Console ADDRESS SELECT switch
determines the mode [SSRK CNSL
KERNEL (or SUPER/USER) H].

2. A KERNEL DATI (ROM OUT06) un
conditionally forces Kernel Mode during
the Service Flows.

3. During th-e BSOPI (execute) cycle
(ROM OUT05) of an MFP or MTP in
struction, the mode is forced to the pre
vious mode, as determined by PS(13: 12).
Note that MFP instructions are
I/class*DAC*BSOPl, which causes their
destination cycle to be a DA TI, and that
MTP instructions are 0 /class*BSOPI,
which causes their output cycle to be a
DATO. IRCC MFP+MTP His asserted
during the execution of all MFPI,
M FPD, MTPI and MTPD instructions.

4. K, S, or D space is selected by the cur
rent mode PS bits [PS(15: 14)], if the cur
rent cycle is not the BSOPI cycle (ROM
OUT05) of an M FP or MTP instruction
(SSRB MF /TP SPACE L), and if the
current cycle is not a Console cycle
(ROM OUTl2). An additional condition
that applies only to Super or User
modes is that the current cycle not be a
Kernel DATI (ROM OUT06).

3.4 I OR D SPACE SELECTION [SAPK ADDR
3(K,SORU)L]
SAPK APR ADDR3 K L, APR ADDR3 S L, and
APR ADDR3 U L determine whether the I space
or the D space PAR/PDR set is selected; when
they are high, I space is addressed, when they are
low, D space is addressed. The state of these bits is
determined by bits 0, I, 2 of MMR3 and by the I
space logic on SS RB. During address relocation,
SCCC INT REG A L is high, and the B inputs to
the SAPK APR ADDR3 multiplexer are selected.
An input to this multiplexer is high (thus selecting
D space) if its corresponding MM R3 bit [SCCL
INBL D K (or S/U) (I) H] is high and if I space is
not required by the logic on SSRB.

IV-3-4

MM R3 is controlled by the program [BR(02:00)].
The output of the I space logic (SSR B I SP ACEA
L and SSRB I SPACEB L) is clocked on the trail
ing edge of Tl of BUST cycles (SSRA ROM
OUT07 l-1) into the SAPK I SPACE flip-flops,
which in turn are gated with the MMR3 outputs to
generate the SAPK APR ADDR bits.

I space is forced whenever the output of either of
the SSRB I SPACE gates is asserted (=low).

SSRB I SPACEA L is asserted under the following
conditions:

I. During a Console DEP or EXAM
(ROM OUTl2) if the ADDRESS SE
LECT switch is in any of the I space po
sitions (Kernel, Super or User) as
indicated by SSRK CNSL I SPACE H.

2. During all instruction and index word
fetch cycles (ROM OUT09).

3. During FPP Immediate Mode bus oper
ations (ROM OUTl6 and IRCC
DSTM2 and SSRB DSTF7).

4. During Absolute Mode address word cy
cles (ROM OUTl5 and SSRB DSTF7).

SSRB I SPACES L is asserted under the following
conditions:

I. During cycles that fetch the source oper
and for binary instructions in source
modes I - 5 (ROM OUTl3) when the
source field is 7 (I RCB SRCF7). This in
cludes Immediate and Absolute Modes.

2. During DATO or DATOB cycles that
complete a DATIP operation (ROM
OUT 11), if the previous mode was I
(SSRB PREV=I). This ensures that the
DATIP-DATO/B operation is per
formed to the same memory location.

3. During destination cycles (ROM
OUT08) when the instruction is either
M FPI or MTPI [I RCC M FP+ MTP and
not IRCA IR15 (I) H], unless both cur
rent and previous modes are User and
the instruction is an MFPI(IR07=0). In
other words, the Destination Mode of
M FPI and MTPI is executed in I space,
except that the M FPI is executed in D
space if both previous and current
modes are User. This prevents a pro
gram from using M FPI to read from a
read-only page in his I space, thus pre
serving the integrity of proprietary pro
grams (Execute-Only= I space and read
only).

For example - assume that a User pro
gram rcq uests service from the Kernel
program by doing an EMT. After this in
struction, the mode bits in the PSW are:

current [PS(l5:14)] ==Kernel
previous [PS(l3:12)] =User

After executing the User program's
rcq ucst, the Kernel program returns con
trol to the User program by an RTI. Be
fore doing this, the Kernel program

ensures that both current and previous
mode bits are set to User. If this were
not done, the User program could read
the Kernel proprietary code via the
MFPI.

4. During Destination Mode I or 2 cycles
(ROM OUT 14), and if the destination
field is 7 (Immediate Mode) and the in
struction is not M FP or MTP.

3.5 REGISTER SELECTION [SAPK ADDR(2:0)
L]
The select bits for a PAR/PDR pair [SA PK A PR
ADDR(2:0) L] arc common to all PARs and
PDRs. SCCC INT REG A L is high because a
PAR or a PD R is not directly referenced, and the
B inputs to the multiplexers on SAPK are selected.
SAPK APR A DDR(2:0) and APR A DDRA(2:0)
<trc the same as BAMX(l5:13) H. ADDRA(2:0),
which arc identical to ADDR(2:0), are used only
ror the 3101As that contain PAF(09:06), and are
not huffered (as arc the ADDR bits). The address
is implemented in this manner to speed up the gen
er:1tion or hits 09 - 06 of the PA. These bits, to
µet her with V A(05:00) are the index field of the
<tddress input to the Cache.

IV-3-5

CHAPTER 4
GENERATION OF THE PHYSICAL ADDRESS

In 16-bit mapping, the Virtual Address (VA) is not
modified, and the relocated address is the same as
the VA.

In 18·- and 22-bit mapping, the VA is added to the
contents of the selected PAR. This sum is the relo
cated address. [The contents of the selected PAR
are also referred to as the Page Address Field
(PA F)]. The logic that executes this operation is
shown on drawing SAPJ.

In 16- and 18-bit mapping, the relocated address is
examined to determine whether it is a Unibus ad
dress. If it is, the high order bits are set to Is; if it

FLOW

is not, these bits are set to 0 to form the Physical
Address (PA).

In 22-bit mapping, the PA is the same as the relo
cated address.

4.1 16-BIT MAPPING
Refer to Figure 4-1. In 16-bit mapping, the PA
space consists of 28K memory locations (PA=OO
000 000 - 00 157 777) and the 4K Peripheral Page
(PA= 17 760 000 - 17 777 777).

Physical Addresses 00 160 000 - 17 577 777 cannot
be generated by the processor when using this
mapping.

~--~----------~--~ 17777777 17777777

4K PERIPHERAL PAGE

J-17_76'-'-00"-'-0"--0 _ _, ___ - -- --- -- - - 17600000

16777777

1
1920K

r':~::~~;~p-~-~ --;. _________ --- .-=::=:0=7:i=f~--...-----~ ~ ~~~=-- ~::=0o=1 :7=::=:~==: l
INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS

(22 BITS)

- •RELOCATION
- - - - - •NO ADDRESS

RELOCATION

Figure 4-1 16-Bit Mapping

IV-4-1

11-4049

v 1RTUAL ADDRESS. 151 746 -="=~=1 ::;:1 =~=:ii,_'....._ __ ' _'_'_' __ 1 ...__' _o_o_.,.._' __ ' _

0

....J: I
16-BIT MAPPING 121 16115 13 00 I
PHYSICAL ADDR. 0 D 0 0 0 0 I I I 0 1 1 I I I I 0 0 I I 0

• 00 157 746 t:· =' ===:::::===· ::::::· =:::::::;;--"----....._ __ __._ ____ .___-....J,

NOT UNI BUS ADDRESS

VIRTUAL ADDRESS•l67 746=' '=,

5
:!::1 :::;:,=

1

,

3

::;;'-0-''-' ___ ' 1_1 ___ ' ..__' _o_o....._1_1_

0
_:1

21 16 15 13 00

16-BIT MAPPING I I I 0 I PHYSICAL ADDR. I I I I I I D I I I I I 1 1 0 0 1

• 17 767 746 t:· =' =====:::;:::==· ::::::· ===;--~---'-----'----'------'
UN I BUS ADDRESS

Figure 4-2 16-Bit Mapping: Generation of PA

Refer to Figure 4-2. A 16-bit VA is a PA if bits
15:13 are not equal to 111. In this case, bits 21:16
of the PA are made Os, and bits 15:00 are the same
as in the VA. If bits 15: 13 of the VA are equal to
111, a Unibus address is intended by the program,
bits 21: 16 of the PA are made Is, and bits 15:00 are
unchanged from the VA.

2.

3.

Bits 12:06, the Block Number (BN).
These bits are added to the PAF to form
bits 21 - 06 of the PA.

Bits 05:00, the Displacement in Block
(018). These bits are not altered and be
come bits 05 - 00 of the PA.

4.2 VIRTUAL ADDRESS
The VA consists of three fields: 4.3 18-BIT MAPPING

I. Bits 15: 13, the Active Page Field (APF).
These bits select one of PARs 0 - 7
within the mode and space selected.

FLOW

17777777
4K

Refer to Figure 4-3. In 18-bit mapping, the VA is
added to the selected PAF to generate the PA. This
address has a range of l 28K, from address 00 000
000 - 17 777 777.

- - - - - - - - - - .--17=77=77=77:----.

Pt:RIPHERAL PAGE

;..;1_n~60-'-oo~o _ ___, ___________ 17600000

l/__~00757777 _____________ ,_,_______,'"""' 1
00757777

1920
K

177777

VIRTUAL
(1681TS)

___..MEM-
____.- MGMT

124K 124K

=oo=o..::..;oo=o __ _, ______ .,.=o=oo"'-oo=-=o=oo'--__, ___________ 00000000

INCOMING PHYSICAL ADDRESS
ADDRESS ADDRESS SPACE LOCATIONS

122 BITS)

- 'RELOCATION

l
-----+'NO ADDRESS 11·4048

RELOCATION

Figure 4-3 18-Bit Mapping

IV-4-2

If bits 17:00 of the PA are 000 000 - 757 777, it is a
Memory reference and PA(2 I: J 8) are forced to ze
roes. If PA(l7:00) are 760 000 - 777 777, it is a
Unibus reference and PA(21:18) are forced to ones.

Physical Addresses 00 760 000 - J 7 757 777 cannot
be generated when using this mapping. Refer to Fig
ures 4-4 and 4-5, which show examples of J 8-bit
PA generation.

Figure 4-4 shows the case of an 18-bit PA that is
not a Unibus reference, i.e., bits 17: 13 are not all
Is. In this case, bits 21:16 of the PA are modified
to zeroes, which causes a memory reference.

Figure 4-5 shows the case of an 18-bit relocated ad
dress that is a Unibus reference, i.e., bits 17: 13 are
all Is. In this case, bits 21 :16 of the PA are changed
to Is, which causes a Unibus reference.

VIRTUAL ADDRESS• 157 746'-f

5

-1 J.-I -1 -~-
3

.... (

2

1 __ _.... ___

06

.0

5

_0 __ 0_._1 __ 1 _:_.OI
..________.,'-----~----'---~~--~

APF :

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6•13 546 000

21

I
I
I
I
I
I
I
I
112

0 I 1 0 0

$

BLOCK NUMBER

06

I 0 0 0 0

DISPLACEMENT
IN BLOCK

17 13

1 0 I 0 1 0
INPUT TO I 1·
~3u;~1;L7~ERS • 1.._1 -1-.0_1_.....J ___ _._ __J_..,...-_ _._ ___ ..1..-1_0_0---1. __ ___,o

21 17 13 00

18-81T MOOE I I I PHYSICAL ADOR 0 0 0 0 I 0 I I 1 0 I 0 I I I 0 I 0

•00565 746 L..'---------1..I ___ ~·-----'----~-----'-----'-------'---~·
NOT UNIBUS ADDRESS

Figure 4-4 18-Bit Mapping: Cache Address

VIRTUAL. ADDRESS. 157 746('--1 ... 1 _1 -~-
3

.... (

2

1 __ _.... ___ ~
6

..... 1_
0

~ __ 0 __ 0_.__1 _1 _:

0

1

..________.,'-----~----'---~~--~

APF : BLOCK NUMBER :

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6 • 13 746 000

21

I I

: I
I I
I I
I I
I I
I I
112 os1

1 0 0 1 0 0 0 0

DISPLACEMENT
IN BLOCK

121 17 00

INPUT TO c ,.
MULTIPLEXERS • I 0 I I 0 1 0 1 0 0 0
13765746 ____ _.__ __ ___..__ __ _.__ __ ___..__ __ _._ ____ ~----'·

21 17 13 00

18-BIT MODE I I I PHYSICAL ADDA 1 1 I 1 1 1 1 0 1 0 1 1 1 0 I 0

•17765 746 1..L__l__,_ ____ ~·----L------''-----J.----~------'----'·
UNIBUS ADDRESS

Figure 4-5 18-Bit Mapping: Unibus Address

IV-4-3

4.4 22-BIT MAPPING
Refer to Figures 4-6 and 4-7. In 22-bit mapping,
the VA is relocated in the same manner as in 18-bit
mapping, but the relocated address becomes the PA
without modification. Thus, all PAs from 00 000
000 - 17 777 777 can be generated.

Addresses 17 760 000 - 17 777 777 are Unibus 1/0
Page references. Addresses 00 000 000 - 16 777 777
are memory references. The I 24K of addresses
from 17 000 000 - 17 757 777 may be used to ac
cess memory via the Unibus Map (dotted lines on
drawing).

177777

000000

?MEM
/ MGMT

FLOW

~---~-----------~----17777777 17777777

'K PERIPHERAL PAGE

17760000 17600000

..... :'-~-~-::_,: _ _..S
16777777 UNIBUS 16777777

1920K
ADDRESS

00000000

MAP

~ 1920K

INCOMING
ADDRESS

PHYSICAL
ADORE SS SPACE
(22 BITS)

ADDRESS
LOCATIONS

- •RELOCATION
- ---- •NO AOORESS

RELOCATION 11-4047

Figure 4-6 22-Bit Mapping

VIRTUAL ADDRESS• 157 746 r_ . .i...1 _1 _~_
3

11...
12

_1 "'------L.---~
6

..J..1°_~_0 __ 0....1.-1_1 __ :

0

1

ACTIVE PAGE FIELD

SELECTS PAR 6

PAR 6•13 746 000

21

0 1

'---....---''-----~----"---~---~!
APF : BLOCK NUMBER : DISPLACEMENT 1

I IN BLOCK I
I I I
I I I
I I I
I I I

I : I

: I I
112 o&1 I

1 0 0 1 0 0 0 0
I
I
I
I

I ~ I

i ~ i
:21 11 -~ oo!

22 BIT PHYSICAL I 0 I
ADDRESS • 1 0 1 1 0 I 0 1 1 1 0 0
13 765 746 .___,_ __ ~---.....a....--~----'----.._ __ _.. __ __,

Figure 4-7 22-Bit Mapping

IV-4-4

VIRTUAL ADDRESS. 157 746r .__I .._! -1 -~-
3

... r_I ..._ __ __.. ___ ~· ... l°_~_D __ D _I --1 _:

0

1

-----------~, ----.....---~,------------:I
APF : BLOCK NUMBER I DISrNL~~~~~NT :

I I I
1 I I

ACTIVE PAGE FIELD
SELECTS PAR 6

I I I
I I I
I : I
I I I

:12 061 I

PAR 6 • 13 546 000

21

0 1 I 0 I 0 0 I 0 0 0 0

I
I
I
I

: I I $ I

!21 11 ~ Doi
22-BIT MAPPING I : 0 I
PHYSICAL ADDR • 1 0 1 I 0 1 I 0 1 0 I I I 0 0 I
13 565 746 __.. ___ ___ .__ ___ ___ .__ __ __.. ___ _., ___ _,

21 17 13

18 - BIT MAPPING I
0 0

11
0 1 1 I 0 1 0 PHYSICAL ADDR • 0 0

oo 565 746 I
1 I I 0

NOT UNIBUS ADDRESS

21

0 ,I~ 16-BIT MAPPING I
0 0 0 I 0 I 1 I PHYSICAL ADDR • 0 0

oo 151 74& I
I I 1 D 0

Figure 4-8 Physical Address Generation: Example 1

Refer to Figures 4-8 and 4-9. It should be noted
that if the mapping is changed, the PA may also be
changed. In Figure 4-8, three different PAs are gen
erated from the same VA and PAF:

I. In 22-bit mapping: 13 565 746

2. In 18-bit mapping: 00 565 746

3. In 16-bit mapping: 00 157 746

These PAs are all memory references.

IV-4-5

00

VIRTUAL ADDRESS• 157 746 ._f

5

-1 .._! _1 _0_

13

.._f _~ ~---"-----0
6

...,0_S_o __ o__.__1 -1---iOO

,_______,~I -~~~---~~~A--~~------~~~
APF : BLOCK NUMBER 01srNL~~~~~NT

I
I

ACTIVE PAGE FIELD I
SELECTS PAi. 8 I

I
PAR 6 • 13 746 000 I

I
21 112

1 0 0

I

'"I" I I
I
I
I
I
121 17 13

22-BIT MAPPING I
0 1 1 0 PHYSICAL ADDR • I

13 765 746

21 17 13

11 - BIT MAPPING I
1 1 1 11 1 1 0 PHYSICAL ADDR • I

17 715 741

UNIBUS ADORE SS

21 15

le·lllT MAPPING I
0 0 0 011 1 0 1 PHYSICAL ADDR• 0 0

I oo 151 10 I

08

1 0 0 0 0

' 0 0 0

1 0 I 1 1 0

1 0

Figure 4-9 Physical Address Generation: Example 2

In Figure 4-9, also using the same VA, three differ
ent addresses are generated, two of which are mem
ory references and one a Unibus reference:

I. In 22-bit mapping: 13 765 746

2. In 18-bit mapping: 17 765 746

3. In 16-bit mapping: 00 157 746

IV-4-6

oo!

0 I
00

0 I
00

1
0 I

4.S RELOCATION LOGIC
The relocation logic shown on schematic SAPJ 1s
controlled by three functions:

I. SSRA KY PH MEM AC (1) H, which
is a flip-flop that is set during all ROM
Console EXAM or DEP cycles if the
ADDRESS SWITCH is in PROG PHY
or CONS PHY.

2. SCCL ENAB 22BIT MODE H, or bit
04 of MM R3 (address 17 772 516),
which is controlled by the program.

3. SSRE RELOC L, which is controlled by
bits 00 and 08 of MMRO (address 17
777 572). These bits are also generated
by the program. Bit 00 causes RELOC
to be asserted when SS RA KY PH
M EM AC (refer to I below) is cleared.
Bit 08 allows one additional condition to
assert RE LOC: SS RA DST (I) H set;
this flip-flop is set on the trailing edge of
TI of bus cycles that write into a destina
tion address. (See 5 below.)

RELOC controls the ALU function, as
it is the SO and S3 control input to the
74S 181 A LU I Cs. The three functions
are combined to generate SAPJ SELO
and SELi H, which control the four PA
multiplexers.

Refer to Figure 4-1 O.

I. Console Mapping
If SSRA KY PH MEM AC (I) His set,
both SELi and SELO are high and Mem
ory Management is in Console Mapping.
The D inputs to the 74S 153 multiplexers
and the B inputs to the 74S 157 are se
lected. SAPJ PA(21:16) equal SCCK
SWR(21:16), PA(l5:13) equal VA(15:13)
[SWR(15:00) are stored nn the SR during
a LOAD A DRS and read back via the
BAMX]. Since RELOC is negated in
Console mapping, PA(l2:00) also equal
VA(12:00).

2. 16-BIT Mapping
If KY PH M EM AC is cleared and RE
LOC is not asserted, SELi is high and

IV-4-7

SELO is low. The C inputs to the
74S I 53s are selected. If SAPH EX MEM
FLAG H is high, a Unibus address is re
quired [VA(l5:13)=1 I I], and PA(21:16)
become all Is; if VA(15:13) are not all
ls, EX MEM FLAG is low, PA(21:16)
become all Os. In both cases, PA(15:00)
equal VA(15:00), since the B inputs to
the 74S 157 are selected and the ALU
function is A (RELOC not asserted).

3. 18-BIT Mapping
If RELOC is now asserted and SCCL
ENAB 22BIT MAPPING H is not (18-
bit mode), the ALU mode becomes
A+ B and all addresses are relocated.
SEL I and SELO are both low, the B in
puts to the 74S I 53s are selected, and the
ALU function is A+B. If PA(17:13) are
all Is (Unibus address), PA(21:18) also
become all Is. If PA(l7:13) are not all
Is, PA(2I:18) become all Os (memory ref
erence). In both cases, the remainder of
the PA equals the output of the ALU
(bits 15: 13 are selected through the
74S 157 multiplexer).

4. 22-BIT Mapping
If ENAB 22BIT MAPPING is now as
serted, SEL I is low and SELO becomes
high, thus selecting the A inputs to the
74S I 53s. The A~U function is A+ B.
The output of the ALU becomes the PA
without modification.

5. Destination or Maintenance Mapping
If MM RO bit 00 is cleared and bit 08 is
set, Memory Management operates in
16-bit mapping, except during certain
destination mode ROM cycles, which it
executes in either 18-bit or 22-bit map
ping (depending on the state of SCCL
ENAB 22BIT MAPPING). The ROM
cycles during which this occurs are those
for which the Memory Management
sub-ROM bit 04 is asserted.

This mapping should only be used for di
agnostic purposes.

21

SELO H • H
SEL 1 H • L

22.SITMODE

00

..... -----ADRS<21:00'1 ----
PA

21 18 17 1312

SELOH • L
SELl H • L

YES

111 111 11----ADRS<12:00>

21 18 17 13

YES

NO

00

00

SELO H • L
SEL1 H • H

16.SIT MODE

YES
21 1615

SWR <21:16>

SELO H • H
SEL1H•H

CNSL PHYS.

--------- VA<15:00'1 __ _.,.PA

21 1615 1312 00

1 111 111 11-VA<12:00'1 PA

1615 13 00

0 000 oo----VA<15:00'1---MPA

11 -4011

Figure 4-10 Generation of Physical Address

ROUTING OF PHYSICAL ADDRESS fore the processor MSYN. The output
of the drivers is BUS A(17:00) L.

I. Unibus Drivers - SAPJ PA(l 7: 12),
SCCA PA(l 1:06), and SCCA VA(05:00)
are input to the Unibus drivers on
SCCL. The gating function is U BCA
CPBSY B H, which is asserted 150 ns be-

IV-4-8

2. Cache - SAPJ PA(2 I :06) are an input to
the Cache address multiplexer, A DME
AM X(2 I :06). The Cache receives address
bits 05 - 00 directly from the BAMX.

Memory Management examines an address for the
purpose of determining whether it is a Unibus ad
dress, or a valid Cache address. The signals gener
ated as a result of this examination are used by the
TM C and U BC modules during data transfer
operations

5.1 UNIBUS ADDRESS
SA PN UNIBUS ADRS L is asserted whenever the
PA points to a Unibus reference.

The four AND inputs to SAPN UB ADRS Leach
decode the Unibus address for the four mapping
modes:

I. In 18-bit mapping, when PA bits (17:13)
are all Is;

2. In 22-bit mapping, when PA(21: 18) are
a II Is~

3. In 16-bit mapping, when SAPH EX
MEM FLAG H is high. [i.e., when
VA(15: 13) are all asserted]

4. In Console mapping, when switch regis
ter bits (21: 18) are all Is.

The output of SAPN UB ADRS L is ORed with
SCCC INT REG B L, which dt!codes PAR and
PD R addresses. These are Unibus addresses and as
such are decoded by SAPN UB ADRS L; SCCC
11\JT REG B L, however, is stable until Tl of the
next BUST cycle, and keeps SAPN UNIBUS
AD RS L asserted if the reference was to a Memory
Management register.

CHAPTERS
ADDRESS VALIDITY

5.2 NOT CACHE ADDRESS
SAPN NOT CACHE ADRS is used to notify the
CP that the address generated by Memory Manage-
1ment does not exist in the Cache. This signal is the
result of a comparison between the PA and the Size
Register.

I. 16-bit Mapping - All 16 bit mapping ref
erences are legal memory references or
Unibus addresses; therefore no com
parisons are necessary.

2. 18-bit Mapping - If there is more than
I 28K of memory on the system, then all
addresses that can be generated are valid
addresses. If, however, there is less than
I 28K of memory, invalid addresses are
possible and must be tested for.

3. 22-bit Mapping - The PA is checked
against the Size Register.

Two arithmetic signals are used to generate NOT
CACHE ADRS: OVERFLOW and
WRAPAROUND.

WRAPAROUND is asserted and disables NOT
CACHE ADRS if there is a carry out of the MSB
of the PA being generated.

e.g., 18-bit mapping:

If the PAR contains 007 777 and the VA is 000
I 00, the address generated is 00 000 000 (a valid
memory reference) and 18 BIT WRAPAROUND L
is true.

e.g., 22-bit mapping:

IV-5-1

If the PAR contains 177 777 and the VA is 000
J 00, the address generated is 00 000 000 (a valid
memory reference) and 22 BIT WRAPAROUND L
is true.

OVERFLOW H is asserted when the PA is greater
than the highest legal address in memory.

The first time OVERFLOW H is asserted is when
the PA is greater than the value in the Size Regis
ter, i.e., the PAR is equal to the Size Register and a
VA of 000 100 is used. For instance, if the Size Reg
ister contains 5777, there is 96K of memory. If the
PAR contains 5777 and the VA equals 000 I 00, the
PA generated is 00 600 000, which is the first non
existent memory address.

SAPN NOT CACHE ADRS His asserted when ei
ther SAPN U B A DRS L or the A ND-OR-invert
gates are asserted. This last gate is asserted if the
PA is above the size boundary.

This is checked by the WRAPAROUND and
OVER FLOW functions, except in the case of
SCCC INT REG H.

WRAPAROUND is generated by the relocation
logic on SAP J for 18-bit and for 22-bit mapping.

21

PAF

+

VA

r~
AORS 1 ~ o o o o

!_ SAPJ 22BIT WRAPAROUND L

=

0 0 0

+
12

=

SAPJ 18-BIT WRAPAROUND L is the carry out
put of bit 17 of the adder; 22 BIT
WRAPAROUND is the carry output of bit 21. Re
fer to Figure 5-1. A carry can only be generated at
bit 21 when the PAF bits (21:13) are all ls and a
carry is generated by the sum of bits J 2 of the PAF
and the VA. Figure 5-1 shows the generation of the
greatest PA possible with WRAPAROUND : 00
017 6(77). This is a Cache address. The J 8-bit
WRAPAROUND also generates the same max
imum address, which is also a Cache address in 18-
bit mapping.

OVERFLOW is generated on SAPN for 18- and
22-bit mapping and on SCCN for Console mode to
determine if the address is greater than the System
Size Boundary. In both cases, the adders are used
as comparators and only the carry output is used.
A J's complement subtraction is implemented in
both cases. A number Q is subtracted from another
number P by adding the 1 's complement of Q to P.
A carry is generated only when Q<P, as illustrated
by the following examples:

Q<P Q=P Q>P

p 5 101 5 101 5 101
Q -3 +100 -5 +010 -6 +001

I 001 0 111 0 110

carry no carry no carry

06

06 05 00

0

11-4036

Figure 5-1 Wraparound

IV-5-2

The carry therefore flags a Q< P condition which in
dicates a legal memory reference.

Overnow is generated for 18- and 22-bit mapping
on SA PN. There is an overflow if the PA is greater
than the system size: PA>SIZ. Refer to Figure 5-2.
This is tested by the function

PA-SIZ

But

PA= (PAF+VA)

therefore

PA-SIZ=(PAF+ V A)-SIZ or PA+(VA-SIZ)

Since the subtraction is done by adding the com
plement of the subtrahend to the mi:nuend,

PA-SIZ= PAF+ [VA +(notSIZ)]

This is the function implemented by the adder on
SAPN:

I. PA F(12:06) are added to VA(l 2:06). The
ALU function is A plus IB.

21 14

-SIZ ==:J+I I
VA + (- s IZ ,I _ __........__ ______ ,

+
21

12

2. PAFl3 is added to 0. The ALU function
is A plus B.

3. SCCN SYS SIZ(21:14) is subtracted
from PAF(2I:14). The ALU function for
these bits is A minus B, which is accom
plished internally by adding A to the I's
complement of B.

For Console mapping, overflow is generated on
SCCN. SCCN CONS OVERFLOW H is the in
verted carry output of an 8-bit adder, the inputs to
which are the System Size Register and the nega
tion of the Console switch address. Bits (15: 14) of
the Switch Register are read from SCCA VA(15: 14)
C L, while bits (21: 16) are read directly from the
switches: this is because bits (21: 16) of the Switch
Register are loaded into the SR during a LOAD
ADRS cycle, and read from the BAMX.

Refer to Figure 5-3. The arithmetic operation con
sists of summing the System Size Register with the
negation of the switch address, and taking the nega
tion of the final carry (=borrow) as the indication
of an OVER FLOW. This operation gives the same
result as would subtracting the System Size Register
from the Switch Register and taking the non-in
verted carry as the indication of an OVERFLOW.

00

VA

I

+
06

PAF I PAF_I_...._ __________ ~----"'--------------------------'
21 17 00

PA-SIZl ____ ______ _._ ________ ..__ ______ _... ________________ __.. ________ _._ ______ --11

~ ~-sAPN 18BIT OVERFLOW H

'----------•• SAPN AORS OVERFLOW H
11-4034

Figure·5-2 18- and 22-Bit Overflow

IV-5-3

21 14

SI.Z

+

-SWR

15 14

B
-f' 141

~SCCN CNSL OVERFLOW H

11·4035

Figure 5-3 Console Overflow

S.2.1 18-Bit Mapping
The logic for 18-bit mapping, SAPN NOT CACHE
A DRS. is the same as that for 22-bit mode with the
exception of the added wired-OR gate; the output
of this gate is high only when in 18-bit mode (SAPJ
SELO and SEL I H both low) and when the System
Size Boundary is less than or equal to 00 777 777

[SYS SIZ(21: 18) are all Os]. If this is true, there is
less than I 28K of memory in the system. In this
case, the 18-bit input AND gate to the AND-OR
invert gate is enabled, and an OVERFLOW with
no WRAPAROUND means that the address is too
high, and thus not a Cache address. The output of
the gate is low either when not in 18-bit mapping,
or if the System Size is greater than 00 777 777.
Since this address is the greatest that can be gener
ated in 18-bit mapping, OVER FLOW is mean
ingless and the 18-bit mapping gate is disabled.

5.2.2 22-Bit Mapping
If there is a 22-bit OVERFLOW (SAPN ADRS
OVER FLOW H asserted), and if there is no
WR APA ROUND (SAPJ 22-BIT WRAPAROUND
L is high), then the address is not a Cache address
in 22-bit mode.

5.2.3 Console Mapping
The PA is not a Cache address if, during a Console
DEP or EXAM operation with the address switch
in either of the PHYSICAL positions, the Switch
Register contains an address greater than the Sys
tem Size Boundary (SCCN CNSL OVERFLOW
H).

SSRA KY PH MEM ACC is the output of a flip
flop, clocked at every TI, whose input is the AND
of SSRA ROM OUT 12 and SSRK CNSL PHY
A DRS H. The first function is asserted only during
EX M or DEP ROM cycles: the second when the
ADDRESS SELECT switch is in either PROO
PHY or CONS PHY positions. Note that PROO
PHY is used only for readout and is meaningless
during a DEP (write) Console operation. Refer to
Section 111, Chapter I.

IV-5-4

CHAPTER 6
DESCRIPTION OF PDR

In addition to its relocation function, Memory Man
agement has supervisory or memory protection
functions.

The keys of access control are as follows:

000 non-resident abort all accesses

The Page Description Register (PDR) is read at the
same time as its corresponding PAR during reloca
tion and contains all the information required for
the supervisory functions. Figure 6-1 shows the
PDR bit pattern.

6.1 ACCESS CONTROL FIELD (ACF)
Th is three-bit field, occupying bits 2-0 of the PDR
contains the access rights to a particular page. The
keys specify the manner in which a page may be ac
cessed and whether or not a given access should re
sult in a trap or an abort of the current operation.
A memory reference which causes an abort is not
completed while a reference causing a trap is com
pleted. In the context of access control, the term
··write" is used to indicate the action of any instruc
tion which modifies the contents of any addressable
word.

15 14

00 I read-only

010 read-only

011 unused

I 00 read/write

I 0 I read/write

110 read/write

111 unused

8 7 6 s 4

abort on write attempt
memory management trap on
read

abort on write attempt

abort a 11 accesses;
reserved for future use

Memory Management trap
upon completion of
a read or write

Memory Management trap
upon completion of a write

no system trap/ abort action

abort all accesses;
reserved for future use

3 2 0

~ I I 'PLF I A I w W%ia ED I N:..F

PAGE LENGTH FIELD __J r
I A BIT (TRAP)--------

PAGE WRITTEN INTO (TRAP)-----------'

EXPANSION DIRECTION}
(O•UP, t•DOWN) -----------------

ACCESS CONTROL FIELD-----------------......
11-4033

Figure 6-1 Page Descriptor Register (PDR)

IV-6-1

It should be noted that the use of I Space in con
junction with read-only access, provides the user
with a further form of protection, Execute Only.

6.2 ACCESS INFORMATION BITS (A and W)
A bit (bit 7) - This bit is used by software to deter
mine whether or not any accesses to this page met
the trap condition specified by the Access Control
Field (ACF). (A = I is affirmative). The A bit is
used in the process of gathering Memory Manage
ment statistics.

W Bit (bit 6) - This bit indicates whether or not
this page has been modified (i.e., written into) since
either the PAR or PDR was loaded (W = I is af
firmative). The W bit is useful in applications
which involve disk swapping and memory overlays.
It is used to determine which pages have been modi
fied and hence must be saved in their new form,
and which pages have not been modified and can
simply be overlaid.

The A and W bits are reset to 0 whenever either
the PAR or the PDR associated with it is modified
(written into) by the program, as described in Chap
ter 7 (Paragraph 7.2).

When the PDR (or its corresponding PAR) has just
been loaded by the program, the A and W bits are
0. Refer to Figure 6-2. When the PDR is next used
during relocation, its output becomes available dur
ing the BUST· cycle. At T5 of this cycle (ROM

SAPO BUST C (1) .H _J
SAPE KERNEL (SUPER, USER) CS L

OUT07= BUST) the contents of the A and W bits
(SAPD+E+F RAM ATTN H and SAPD+E+F
RAM WRTN INTO H) are clocked into the SAPD
ATTN and SAPD WR TN INTO flip-flops. This
saves the previous contents of these bits.

At T4 of the pause cycle that follows (SAPC
PULSE BC9D H), if RELOC is asserted, and if the
PDR is not being read or written (SCCC INT REG
B L is high or not asserted) and if Memory Man
agement is enabled (RELOC asserted), the write en
able (W) input of the 3101 A is enabled (SAPD WR
A+ W L asserted), and SAPD ATTN DAT A L and
SAPD WRTN DATA L are written, respectively,
into the A and W bits of the selected PDR. These
two gates are enabled during relocation by SCCC
INT REG B L, which is high at this time.

If there is no abort condition (SSRC KT ABORT
FLG L = high), and if there is a trap condition
(SA PL M EM MG MT H), or if the previous con
tents of the A bit = I, then SAPD ATT DATA L
is asserted, and a I is written into the A bit of the
PDR (SAPD+E+F RAM ATTN H).

Similar logic is used for SAPD WRTN DATA L,
which is loaded into the W bit: if there is no
abort condition, and if the cycle is a DATO,
DATOB or DATIP (SAPL WRITE CYCLE H), or
if the W bit was previously a I [SAPD WRTN
INTO (I) L], then WRTN DATA is asserted.

-------11..._ ___ PAUSE ·I
1___Fl_A_

L __

(CLOCK ATTN and WRTN INTO) ______________ n ___ --t ,__ ______ _

SAPL MEM MGMT H

SAPO WR A+W L

11-4023

Figure 6-2 A and W Bit Timing

IV-6-2

6.3 EXPANSION DIRECTION BIT (ED)
Bit 3 of the PDR specifies the direction in which
the page is to expand. If ED = 0, the page expands
upward from block number 0 to include blocks
with higher addresses. If ED = l, the page expands
downward from block number 1778 to include
blocks with lower addresses.

Upward expansion is typically used for program
space, and downward expansion for stack space.

6.4 PAGE LENGTH FIELD (PLF)
The seven-bit field occupying bits 14:08 of the PDR
specifies the block number (BN) which defines the
boundary of that page. The BN of the VA is com
pared against the PLF to detect length errors.

An error occurs when expanding upward if the BN
is greater than the PLF, and when expanding down
ward if the BN is less than the PLF.

A page length error causes an abort.

6.4.1 Example of Upward Expansion
A page starting at location 00 017 000 and contain
ing 52x blocks is to be defined. The page is to ex
pand upward.

Refer to Figure 6-3. When the page expands up
ward. ED = 0, and the PLF is set to the number of
blocks authorized for page, minus I. As shown in
the Figure:

PL F = 51 x, which authorizes 528 blocks
(0-51) for the page.

PA F = I 70x, which establishes the physical
base address = 00 017 000.

PLF + PAF = 170 + 51 = 24111, which is the
PA of the last block that may be used.

Any block number [VA(l2:06)] greater than 5lx
will cause an abort.

The l;i-;t legal PA in this example is 00 024 176.

-...;..------------ACTIVE PAGE REGISTER (APR)------------

21

PAR

0 0 0 1 1 I

I
PAF

t
PAF=OOO 170 8

AUTHORIZED PAGE
LENGTH• 529 BLOCKS

(0-519)

06

00024176

PLF

t
PLF • 529-1•519 •

LARGEST BLOCK NO.

ANY BLOCK NUMBER
GREATER THAN 519

A W ED ACF

t
ED• 0•

UPWARD EXPANSION

(VA (12: 06) GREATER THAN 51 8)

WILL CAUSE A PAGE
LENGTH. ABORT

BLOCK 518 01 70XX START OF PAGE
00024100 + 5 1 BLOCKS

00017276
BLOCK 2

00017200

00017176
BLOCK 1

02 4 1 XX LAST BLOCK

L
00017100

00017076
BLOCK 0

00017000______. BASE ADDRESS OF PAGE

11-4026

Figure 6-3 Upward Expansion

JV-6-3

6.4.2 Example of Downward Expansion
A page whose base address is 00 017 000 is to con
tain a 52x block stack (downward expansion).

367x - 52x (or + l 26x) = 3158, which defines the
first illegal address as 00 031 576.

Refer to Figure 6-4. When the page expands down
ward, ED = l, and the PLF is set to the 2's com
plement of the number of blocks authorized for the
page. As shown in the Figure:

Another method for calculating downward expan
sion follows:

PLF = 126x. \\ '1ich is the 2's complement of 528,
the numher of hi cks authorized for the page.

PA F = I 70x, which establishes the physical base ad
dress of 00 017 000.

PAF + 177x (Maximum number of blocks per
page) = 367x, thus making the starting word ad
dress 00 036 776, and the initial setting of the stack
pointer 00 037 000.

PL F = l 26x, which is the 2's complement of
52x. the number of blocks authorized for the
page.

PA F = 1701, which establishes the physical
hase address of 00017 000.

PLF+PAF = 126+170 = 3168, the last legal
block address.

3 I 6x+ 52x = 370x, which is the highest legal ad
dress + 2, and gives the initial setting of the
slack pointers, or 00 037 000.

-------------ACTIVE PAGE REGISTER (APR)-------------

21

0 0 0

I
PAF

t

1 1

PAF • 0001709

* 2'S COMPLEMENT• 1'S COMPLEMENT+ 1:

!52 8 • 0101010
1°S COMP• 1010101

+1
"""iOiCi1iQ' 1 2 6 8

AUTHORIZED PAGE
LENGTH• !52 1 BLOCKS

(177,-1269)

ADDRESS RANGE
OF POTENTIAL PAGE

EX PANS I 0 N BY
CHANGING THE PLF

06

00036576
BLOCK 175s

00036500

00031676
BLOCK 126s

00031600

14 08 07 06 03 02 00

PLF A W ED ACF

t t
PAF. 2's COMPLEMENT*

OF 52e • 1261 •
LOWEST BLOCK NO.

ED• 1 •
DOWNWARD EXPANSION

170 PAGE BASE ADDRESS
+177 MAX. BLOCKS I PAGE
367 FIRST BLOCK ADDRESS
-52 BLOCKS

315 FIRST ILLEGAL ADDRESS

126PLF
+170 MAX. BLOCKS/PAGE

316 LAST LEGAL BLOCK
+ 52 NO. OF BLOCKS

37000•STACK POINTER

A BLOCK NUMBER
REFERENCE LESS
THAN 126 8
(VA <12,06> LESS THAN 126sl
WILL CAUSE A PAGE
LENGTH ABORT.
(00 017 000-00 031 576)

- BASE ADDRESS OF PAGE

Figure 6-4 Downward Expansion

IV-6-4

CHAPTER 7
ADDRESS DECODERS AND READING/WRITING

Register addresses are decoded; the decoded signals
are used as addresses in the processor as well as in
Memory Management.

This chapter contains a description of the Memory
Management register address decoders and of the
reading and writing of the PAR/PDRs.

PA Rs and PD Rs are loaded (written into) only un
der program control (with the exception of the W
and A bits in the PD Rs). The program may also
read these registers. Both accesses are accomplished
by using appropriate Unibus addresses.

7.1 REGISTER ADDRESS DECODING
Register address decoders are shown on drawings
SCCB, SCCC, SCCD, SCCE, and SCCF. Ad
dresses are buffered for various purposes on
SAPH .SSR H and SCCA.

Most of the decode signals refer to the Memory
Management registers, but other signals decode the
address of processor registers.

Table 7-1, at the end of this paragraph, lists the sig
nals that refer to more than one register address.

The logic on SCCB decodes all the Memory Man
agement register addresses plus the Switch Register
address:

SCCB KERNEL PDR ADRS L
I 7 772 300-17 772 336

SCCB KERNEL PAR ADRS L
17 772 340-17 772 376

SCCB SUPER PDR ADRS L
I 7 772 200-17 772 236

OF P AR/PDR REGISTERS

SCCB SUPER PAR ADRS L
17 772 240-17 772 276

SCCB USER PDR ADRS L
17 777 600-17 777 636

SCCB USER PAR ADRS L
17 777 640-17 777 676

SCCB MMR3 ADRS L
17 772 516

SCCB MMR ADRS L (MMR0,1,2)
I 7 777 572- I 7 777 576

SCCB SW REG ADRS L
17 777 570

SCCB SWR+MMR ADRS L
17 777 570-17 777 576

A II these address decode signals are clocked into
the flip-flops on SCCC by TIGA PSEUDO T3,
which occurs approximately 30 ns after T2 of
PAUSE; they are cleared by SCCD INT CLR (Tl
of BUST). The Memory Management register ad
dress flip-flops are ORed to generate SCCC INT
REG H.

The PAR and PDR flip-flop outputs are ORed on
SCCD; SCCD APR REG H is asserted when any
PAR or PDR is addressed. The unlatched version
of these same signals, plus SCCB MMR3 ADRS L,
SCCB SWR+MMR ADRS Land SCCE SYS INT
REG L are ORed to generate SCCD INT REG
ADRS H. This signal is stored in a flip-flop whose
output is SCCD I NTD REG (I) L. It is asserted
when any one of the registers that are read out on
the Internal Data Bus (I NTD) is addressed.

IV-7-1

The logic on SCCE decodes the addresses of the sys
tem registers that are located on, or read from, the
SCC module (the two size registers, the ID and the
Trap to 4 Error register) and the addresses of the
processor Control registers (PB, PI R, SL, PS):

SCCE PIR ADRS H
17 777 772

SCCE SL ADRS H
17777774

SCCE SYS INT REG L
17 777 760-17 777 766

SCCE SYS SIZL ADRS L
17 777 760

SCCE SYS SIZH A DRS L
17 777 762

SCCE SYS ID ADRS L
17 777 764

SCCE ERR REG ADRS L
17 777 766

SCCE INTERNAL ADRS L
17 777 770-17 777 776

SCCE PB ADRS L
17 777 770

Module

SCCB

sccc

SCCD

SCCE

Signal

MMRADRSL

SWR+MMR ADRS L

INT REG H

APRREGH

INT REG ADRS H
INTO REG (I) L

SYS INT REG L

SCCE PS ADRS H
17777776

It should be noted that PSEUDO T3 is inhibited by
SSRC INH PSEUDO T3 L. This signal is asserted
when Memory Management is enabled and a condi
tion exists that causes a Memory Management
abort condition. INH PSEUDO T3 thus prevents
changing the contents of the Memory Management
registers during an abort condition caused by a ref
erence to a Memory Management register.

SCCF GEN REG ADRS is asserted for Switch reg
ister addresses 17 777 700-17 777 717 (Console GR
addresses). This signal is clocked into the SCCF
GEN REG (I) H flip-flop by the LOAD ADRS
switch. The flip-flop is cleared by INIT, by the
CONT switch or by a LOAD ADRS to an address
other than a GR address.

Table 7-1
Register Address Decode Signals

Addresses Decoded

MMRO, MMRl, MMR2

MMRO through 2, Switch Register

MMRO through 3, PARs and PDRs

PARs and PDRs

All registers read on Internal Data Bus: MMRO through
MMR3, PARs and PDRs, Switch Register, System Size Land
H Registers, System ID Register, Traps to 4 Error Register

System Size Land H, System ID, and Traps to 4 Error
Registers

INTERNAL ADDRS H PB, PIR, SL and PS Registers

SCCF GEN REG ADRS H
GEN REG (1) H

General Register addresses from Switch Register (22-bit
address).

IV-7-2

7.2 ADDRESSING OF PAR AND PDR REGIS
TERS FROM THE UNIBUS

7.2.1 PAR/PDR Addresses
The Unibus addresses for the PARs and PDRs are
listed in Table 7-2. The address bit configuration se
lects a PAR/PDR register as follows:

I. Bits (17-06) of a PAR/PDR address de
termine the set desired:

KERNEL:
SUPER:
USER:

17 772 3xx
17 772 2xx
17 777 6xx

2. Bit 05 of the address distinguishes be
tween a PAR and a PDR:

PD R: bit 05 =O
PAR: bit 05= 1

3. Bit 04 defines I and D space:

I SPACE: bit 04=0
D SPACE: bit 04== 1

4. Bits (03:01) select one of eight registers.

7.2.2 Addressing
Address Bits 0-3 - Since SCCC INT REG A L is
low, the A inputs to the multiplexers on SAPK are
selected. SAPK APR ADDR(3:0) and APR AD
DRA(3:0) are the same as SAPH VA(04:01) B H.

PAR CHIP SELECT - The Kernel, Super and
User PAR address decode signals [SCCC KER
NEL PAR (I) L, SUPER (I) Land USER (1) L]
are selected by the multiplexer and become the CS
inputs to their respective PARs.

PDR CHIP SELECT - SCCC INT REG H is high
whenever a PAR or a PDR address is decoded, and
selects the A inputs to the SAPE KERNEL (or SU
PER/USER) CS L multiplexer. These three signals
arc the chip select signals for the PDRs. A PDR is

selected whenever its own address, or that of the
corresponding PAR are decoded.

7.2.3 PAR/PDR Read
The outputs of the selected PAR [SAPA+B+C
PA F(2 I :06) H] and/or PDR are input to the multi
plexer on SAPM [SAPM APR BIT(15:00) H]. The
PAR is selected if SAPH V A05 is high, and the
PDR if VA05 is low.

SAPM APR BIT(15:00) His in turn input to the In
ternal Bus data multiplexer on SSRJ.

7.2.4 PAR Write
A PAR is written at T4 of DATO or DATOB
Pause cycle if TMCE KT BEND Lis not asserted.

There are WRITE LOBYTE and WRITE HIBYTE
write signals for each of the modes (Kernel, Super
and User). Each is gated by an address decode sig
nal [SCCC KERNEL (or SUPER/USER) PAR (1)
H], by SAPK WR OK (Cl =DATO or DATOB
and not KT BEND), and timed by SAPC PULSE
BC9B H (T4 of Pause cycle). Byte information is
supplied by SAPK LO and HI BYTE B H, which
are derived from the U BCB functions of the same
name, which decode V AOO, DATO and DATOB.
The WRITE LOBYTE and WRITE HIBYTE sig
nals are low when asserted and enable the W inputs
to the 3 IOIAs.

7 .2.5 PD R Write
All PDR bits, with the exception of the A and W
bits (bits 07 and 06), are loaded in almost the same
manner as the PAR bits. The only difference is that
the gating signals include a PDR instead of a PAR
address decode signal. These signals are SCCC
KERNEL (or SUPER/USER) PDR (1) H.

Refer to Chapter 6 for a description of the several
PD R fields. During a write operation, BR(15:08)
are loaded into the Page Length Field (PLF), BR03
is loaded into the Expansion Direction Bit (ED),
and BR(02:00) are loaded into the Access Control
Field (ACF).

IV-7-3

I Space

No. PAR

0 17 772 340
1 17 772 342
2 17 772 344
3 17 772 346
4 17 772 350
5 17 772 352
6 17 772 354
7 17 772 356

I Space

No. PAR

0 17 772 240
1 17 772 242
2 17 772 244
3 17 772 246
4 17 772 250
5 17 772 252
6 17 772 254
7 17 772 256

I Space

No. PAR

0 17 777 640
1 17 777 642
2 17 777 644
3 17 777 646
4 17 777 650
5 17 777 652
6 17 777 654
7 17 777 656

Table 7-2
PAR/PDR Unibus Addre~es

Kem el

PDR No.

17 772 300 0
17 772 302 1
17 772 304 2
17 772 306 3
17 772 310 4
17 772 312 5
17 772 314 6
17 772 316 7

Supervisor

PDR No.

17 772 200 0
17 772 202 1
17 772 204 2
17 772 206 3
17 772 210 4
17 772 212 5
17 772 214 6
17 772 216 7

User

PDR No.

17 777 600 0
l7 777 602 1
17 777 604 2
17 777 606 3
17 777 610 4
17 777 612 5
17 777 614 6
17 777 616 7

IV-7-4

D Space

PAR PDR

17 772 360 17 772 320
17 772 362 17 772 322
17 772 364 17 772 324
17 772 366 17 772 326
17 772 370 17 772 330
17 772 372 17 772 332
17 772 374 17 772 334
17772376 17 772 336

D Space

PAR PDR

17 772 260 17 772 220
17 772 262 17 772 222
17 772 264 17 772 224
17 772 266 17 772 226
17 772 270 17 772 230
17 772 272 17772232
17 772 274 17 772 234
17 772 276 17 772 236

D Space

PAR PDR

17 777 660 17 777 620
17 77' 662 17777622
17 777 664 17 777 624
17 777 666 17 777 626
17777670 17 777 630
17 777 672 17 777 632
17 777 674 17 777 634
17777676 17 777 636

The A and W bits are written when SAPD WR
A+ W L is asserted. The upper gate causes this sig
nal to be asserted when Memory Management is en
abled (R ELOC) and an address other than a PAR,
a PDR or MMRO - MMR3 is being referenced.
The lower gate causes WR A+ W to be asserted dur
ing a write to a PAR or to a PDR.

The A and W bits are set to 0 whenever a PD R or
the PAR that corresponds to it is written into:

I. SCCC INT REG B L is low during both
of the above conditions. This causes
SAPD ATTN DATA L (A bit) and
SAPD WRTN DATA L (W bit) to be
negated when the PDR or the corre
sponding PAR is addressed.

IV-7-5

2. The A and W bits are written when
SAPD WR A+W Lis asserted. This sig
nal is similar to the PAR and PDR write
pulses, the difference being the omission
of byte information and of the address
decode function. SCCD APR REG H
(=all PARs and PDRs) is the address de
code signal in this case.

3. Thus, the A and W bits of a PDR are
cleared whenever a PD R or its corre
sponding PAR are loaded.

CHAPTER 8
MEMORY MANAGEMENT ERROR HANDLING

Illegal memory references cause an immediate
abort, i.e., the memory reference is not completed
and an interrupt is sent to the processor. It should
be noted that the instruction containing the aborted
memory reference is not completed.

Refer to Figure 8-1. Three kinds of faults cause an
abort: page length violation, non-resident memory
and read only violation.

A length fault is caused by a memory reference out
side the limits set by the Page Length Field and ED
bit of the PD R. It is explained in Paragraph 8.1.

A non-resident fault is caused by an attempted ac
cess to a prohibited page. A read-only fault is
caused by an attempted write to a page for which
only read accesses are allowed. The Access Control
Field (ACF) of the PDR determines the allowable

BR(14 :oa> !1 !1 BR03 BR(02:00) {PROGRAM WRITE TO PDR
ADDRESS (CHAPTER 7).

SAPL
WRITE

CYCLE H

CHAPTER 6

ACF PDR

KEY 1 S READ
KEY 5 S WRITE
KEY 4

KEY 1 S WRITE

KEY 2 S WRITE

KEY 0
KEY 3
KEY 7

SAPL
MEM MGMT H

SAPL READ

ONLY FAULT

SAPL NON
RESIDENT
FAULT H

PAR. 8.2

VA(12:06>---

SAPL
LENGTH

FAULT L

PAR. 8.1

{

NON RESIDENT

ABORT PAGE LENGTH ERROR----'

READ ONLY ------~

Figure 8-1 Traps and Aborts

IV-8-1

PAR. 8.3

SSRD
MEM MGMT

DET (1) H

SAPL
ABORT
COND H

BR!ll9

SSRD
ENABLE

MGMT (1) H

TMCA

CHAPTER 6

SSRC KT
ABORT
FLAG L

11-4020

TMCE

access modes of a given page. These two faults are
described in Paragraph 8.2.

Paragraph 8.3 explains the Memory Management
traps. Certain access keys in the ACF cause a trap
instead of an abort. A trap is only executed at the
end of the instruction, and the memory reference
causing the trap is executed.

Finally, the A and W bits are set in the PDR to aid
in statistics gathering by the executive program.
The A bit is set every time that access to the se
lected page results in a trap condition; the W bit is
set if the page is written into (modified). This mech
anism is explained in Chapter 6.

Information on aborts and traps is stored in bits
15:09 of MMRO. Additional information, to help
the program determine the origins of aborts and
traps, is stored in the remaining bits of MMRO as
well as in MMRI, MMR2, and MMR3. Chapter 9
describes these registeis.

All aborts and traps generated by Memory Manage
ment are vectored through Kernel space address
250.

8.1 PAGE LENGTH ABORTS
When Memory Management is enabled, i.e., in 18-
or 22-bit mapping, the VA is examined to deter
mine whether it falls within the selected page. If it
does not, the VA is illegal and the instruction is
aborted. An illegal processor mode [PS(l5:14)= 10]
also causes a page length abort.

8.1.1 Length Fault
SAPL LENGTH FAULT L and MM LENGTH
FAULT H are asserted when VA(l2:06) (block
number) is greater than the PLF and the expansion
is upward (SAPL PGE EXPN DOWN L is not as
serted, or ED = 0), or when VA(12:00) (block num
ber) is less than the PLF and the expansion is
downward (SAPD+ E+ F PGE EXPN DOWN H is
asserted, or ED = I).

SAPL LENGTH FAULT L is stored in bit 14 of
MMRO (SSRC MMRO BIT 14). (Refer to Chapter
9).

IV-8-2

LENGTH FA ULT is also ORed with the read-only
and non-resident faults to generate SAPL ABORT
COND H. This function in turn generates SSRC
KT ABORT FLAG L, which notifies the processor
abort logic of the abort condition. (Refer to Para
graph 8.2).

8.1.2 Illegal Processor Mode
A length fault occurs if the PSW contains an illegal
processor mode [PS(l5:14) = JO].

If this is the case, none of the mode flip-flops on
SSRB are selected, and no PAR/PDR set is se
lected, since the mode generates the Chip Select in
put to these registers (refer to Chapter 3). This
causes the output of the PAR to be all ones, SAPD
PGE EXPN DOWN H to be high, and LENGTH
FAULT to be asserted.

8.2 ACCESS CONTROL FIELD ABORTS AND
TRAPS

8.2.1 Non-Resident and Read-Only Protection
A Page Descriptor Register (PDR) is selected in the
same manner as a Page Address Register (PAR).
After the selection occurs, three bits from the PDR
are decoded as an access key. If the access rights
designated by the key are inconsistent with the cur
rent memory reference, the memory reference is not
completed and an abort to Kernel space 250
occurs.

When the access key is set to 0, the page is defined
as non-resident, and an abort prevents any attempt
by a program to access a non-resident page. Using
this feature to provide memory protection, only
those pages associated with the current program are
set to legal access keys. The access control keys of
all other program pages are set to 0, which prevents
illegal memory references.

The access control key for a page can be set to 2, al
lowing read memory references to the page, but
aborting any attempt to write into the page. This
read-only type of memory protection can be given
to pages that contain common data, subroutines, or
shaded algorithms. This type of memory protection

makes certain that access rights to a given informa
tion module are user-dependent, i.e., the access
right to a given information module may be varied
for different users by altering the access control
key.

A PAR in each of the sets (Kernel, User, and Su
pervisor modes) may be set up to reference the
same physical page in memory and each may be
keyed for different access rights. For example, the
User access control key might be 2 (read-only ac
cess), the Supervisor access control key might be 0
(non-resident), and the Kernel access control key
might be 6 (allowing completer read/write access).

8.2.2 Access Faults (Aborts)
The Access Fault (ACF) is decoded on SAPL to de
tect abort and trap conditions.

Non-resident (key = 0) and unused keys (3 or 7)
cause SAPL NON RES FAULT L to be asserted
and stored in bit 15 of MM RO (SSRC MM RO BIT
15).

If PS(l5:14) contain JO (illegal mode), none of the
mode flip-flops on SSRB are selected, and no
PA R/PDR set is selected, since the mode generates
the Chip Select input to these registers (refer to
Chapter 3). This causes the output of the PDR to
be all Is. The ACF is thus 7 and SAPL NON RES
FAULT L is asserted.

SAPL WRITE CYCLE H is asserted when the bus
cycle is either a DATO, a DATOB, or a DA TIP. It
is used to detect all write or read/modify /write
(DATIP followed by DATO or DATOB) cycles.

WRITE CYCLE is ANDed with both abort-on
write keys (I and 2) to generate SAPL READ
ONLY FAULT, which is stored in bit 13 of
MMRO (SSRC MMRO BIT 13).

The non-resident and read-only fault decoders are
ORed with SAPL LENGTH FAULT (refer to Para
graph 8.1) to generate SAPL ABORT COND H.

8.2.3 Abort Flag
SAPL ABORT COND H asserts SSRC KT
ABORT FLG L (which informs the abort logic on
TMCE that a Memory Management abort condi
tion has been detected) if R ELOC is asserted, and
if the cycle is not a BEND.

KT ABORT FLG is the input to the SSRC ABT
FLG flip-flop, which is clocked by SSRK PULSE
BC89 H (=TS3 of Pause cycle) and latches SSRC
KT ABORT FLG L. The flip-flop is cleared by
UBCB ABORT ACKN H.

8.3 MEMORY MANAGEMENT TRAPS
A timeshared system swaps programs, or parts of
programs, in and out of memory using secondary
storage facilities such as disk systems. In a swap
ping environment, the operating system must provide
the software routines that decide which programs
should be swapped and when and how these pro
grams can be swapped between memory and second
ary storage.

The operating system routines can be simple or
complex depending on system requirements, e.g.,
the amount of overhead time that can be tolerated.
The operating system may also have to decide
which active page is least likely to be required in
the immediate future and may therefore be
swapped out to make memory space available for a
new program.

To make such a Memory Management decision,
the operating system requires statistics on the use
of active pages. Some indication of whether a pro
gram has been modified during its residence in
memory is also desirable. If it has been modified,
the program must be swapped (rewritten) into sec
ondary storage. If no modification has been made,
and the program can always be recalled from sec
ondary storage, the space it occupies in memory
can be overlayed, thus eliminating the swapping
delay.

The logic provides the kind of information required
by an operating system to gather Memory Manage
ment statistics on the use of active pages. The avail
ability of this information in the hardware reduces
the overhead time of any routine, simple or com
plex, in the efficient management of memory.

The Page Descriptor Register associated with each
active page includes a W (written into) and an A
(attention) bit. When any active page is written
into, the W bit is set by the logic; therefore, by test
ing the W bit, the Memory Management software
routine can decide whether a page can be overlayed
or if it needs to be swapped out (e.g., copied onto a
disk).

IV-8-3

The A bit has several uses. To use this feature, the
system programmer may enable the Memory Man
agement trap logic. He then sets the access control
keys of the active pages of interest for special trap
conditions. Access control keys are provided to
cause:

I. Memory Management trap on read (in
cluding instruction fetch)

2. Memory Management trap on write

3. Memory Management trap on read or
on write.

The A bit for the active page is then set when the
page is accessed and a Memory Management trap
condition occurs. The vector at trap location 250
Kernel address space causes the operating system
routine to service the Memory Management trap.
The routine can test the A bit to accumulate statis
tics on the use of that page. When a swapping deci
sion is required of the operating system, these
statistics can be examined to determine the more ac
tive pages (which might therefore be retained in
memory).

Access Control Traps
Keys I, 4, and 5 of the ACF are examined to deter
mine whether a trap condition exists .. The follow
ing functions are generated:

SAPL KEY= 1.WRI L= key I during a write
cycle (DATO, DATOB or DATIP).

SA PL KEY =4 L = key 4 on read or write.

SAPL KEY=5WR L = key 5 during a write
cycle.

These three functions are ORed to generate SAPL
M EM MG MT H which is stable by the end of T5
of a BUST cycle. If Memory Management is en
abled (SSRE RELOC H) and if the address is not a
Memory Management register (SCCC INT REG
L), then SSRD CLK TRAP His asserted.

Refer to Figure 8-2. If bit 9 of MMRO [SSRD EN
ABLE MG MT (I) H] is set, and if the abort flag is
not set, and if SSRD MGT TP DET DLY Lis not
asserted (see below), SSRD MEM MGMT TRAP
L is asserted via its "pre-Mem Management Trap"
gate. This occurs during a Pause cycle, and if
TMCE BRQ CLK H is asserted (at TS3) during
this cycle, MEM MGMT TRAP is clocked into the

.Priority nip-nop on TMCA.

At SSRK PULSE BC89 H (which occurs at TS3 of
every Pause cycle), and if there are no abort condi
tions, SSRD MEM MGMT B L is asserted and
sets SSRD MEM MGMT DET (I) H, which is bit
12 of MMRO. At the same time, if MMRO bit 9 is
set, and if SSRD MGT TP DET DLY Lis not as
serted, SSRD MGMT HOLD L sets the latch flip
flop. This nip-nop keeps SSRD MEM MGMT
TR AP L asserted; it is cleared when the trap is ac
knowledged by the processor trap logic or until a
Memory Management abort is detected.

This hold nip-nop is necessary because, 50 ns after
SSRD MEM MGMT DET is set, SSRD MGT TP
DET DL Y L is asserted and disables the "pre-Mem
Managment Trap" input gate to SSRD MEM
MGMT TRAP L. This gate stays disabled until the
program clears the M EM MG MT DET flip-flop
(MM RO bit 12) by writing a 0 into it. The A and
W bits are clocked at T4 of Pause (PULSE BC9D).

The logic thus ensures that only one trap can be
sensed per instruction, and that no subsequent trap
can be clocked by the TMCA logic until the pro
gram has reset bit 12 of MMRO.

IV-8-4

SSRK PULSE BC89 H

SSRD MEM MGMT TRAP L

SSRD MEM MGMT BL

SSRD MEM MGMT DET (1) L

SSRD MGT TP DET DLY L

(PRE-MEM MGMT TRAP)

SSRD MGMT HOLD (1) H

SAPD WR A+W L

T1+12.0ns +150ns

/

/
/

Figure 8-2 Trap Timing

IV-8-5

11- 4022

CHAPTER 9
MEMORY MANAGEMENT REGISTERS

(MMRO, 1, 2, AND 3)

A horts and traps generated by the Memory Man
agement hardware are vectored through Kernel vir
tual location 250. Memory Management Registers
0, I, 2, 3 are used in order to distinguish an abort
from a trap, to determine why the abort or trap oc
curred, and to allow for easy program restarting.
Note that an abort or trap to a location which is it
self an invalid address will cause an-other abort or
trap. Thus, the Kernel program must ensure that
K ernd VA 250 is mapped into a valid address, or a
loop will occur which will require console
intervention.

9.1 MMRO
MM RO contains error flags, the page number
whose reference caused the abort, and various other
status flags. The register is organized as shown in
hgurc 9-1. Its address is 17 777 572.

,___s_s R_c_ 5510

This paragraph first defines the meaning of the vari
ous hits in MM RO, then the logic that controls
these hits.

Setting hit 0 of this register enables address reloca
tion and error detection. This means that the bits in
MM RO hccome meaningful.

Bits 15-12 are the error flags. They may be consid
ered to he in a .. priority queue" in that "flags to
the right" are less significant and should be ignored
i r more than one of them is set: i.e., a "non-resi
dent" fault service routine would ignore length, ac
cess control. and Memory Management flags. A
"page length" service routine would ignore access
conlrol and Memory Management faults, etc.

SSIRDSSIRC ~----"------~ ,_ SSRE

15 14 13 12 11 10 9 e 1 6 5 4 3 2 0

I I l~·t I ·I
G~51~NT~Jj • ~ + ~ ~ I,,, .J p '---._----) ~

~ ABORT-NON
ABORT-PA
LENGTH ER ROR}

AD ONLY}
LATION

ABORT-RE
ACCESS VIO
TRAP-MEMO
NOT USED·
NOT USED
ENABLE ME
MAINTENAN
INSTRUCTIO
PAGE MODE

RY MANAGEMENT

MORY MANAGEMENT TRAP
CE MODE
N COMPLETED-

PAGE ADDRESS SPACE IID------------------'
PAGE NUMBER--------------~---------'
ENABLE RELOCATION--------------------------'

11-4046

Figure 9-1 MMRO

IV-9-1

Bits 15-13 when set (error conditions) cause Mem
ory Management to freeze the contents of bits 1-7
and of Registers I and 2. This is done to facilitate
error recovery.

These bits may also be written under program con
trol. No abort will occur, but the contents of the
Memory Management registers will be locked up as
in an abort.

Bits 15-12 are enabled by SSRE RELOC. RELOC
is true when an address is being relocated by the
Memory Management unit. This implies that either
MM RO, bit 0 is equal to I (Relocation operating)
or that MM RO, bit 8 (Maintenance) is equal to I
and the memory reference is the final one of a desti
nation calculation (Maintenance/Destination
mode).

9.1.1 Aborts
Bit 15 is the .. Abort- Non-Resident" bit. It is set by
attempting to access a page with an Access Control
Field (ACF) key equal to 0, 3, or 7. It is also set by
attempting to use Memory Relocation with a pro
cessor mode of 2. [PS(l5:14)= 10].

Bit 14 is the "Abort-Page-Length" bit. It is set by
attempting to access a location in a page with a
block number (VA bits, 12-6) that is outside the
area authorized by the Page Length Field (PLF) of
the Page Descriptor Register (PDR) for that page.
Bit 14 is also set by attempting to use Memory Re
location with a processor mode of 2.

Bit 13 is the "Abort-Read-Only" bit. It is set by at
tempting to write in a .. Read-Only" page. "Read
Only" pages have access keys of I or 2.

The logic that generates these aborts is explained in
Chapters 8 and 9.

9.1.2 Traps and Trap Enable
Bit 12 is the "Trap-Memory Management" bit. It is
set whenever a Memory Management trap occurs;
that is, a read operation which references a page
with an Access Control Field (ACF) of I or 4, or
by a write operation to a page with an ACF key of
4 or 5.

Bits 11 and I 0 are spares. They are always read as
O. and should never be written. They are unused
and reserved for possible future expansion.

Bit 9 is the "Enable Memory Management Traps"
bit. It is set or cleared by doing a direct-write into
MM RO. If bit 9 is 0, no Memory Management
traps will occur. The A and W bits will, however,
continue to log potential Memory Management
trap conditions. When bit 9 is set to I, the next
Memory Management trap condition will cause a
trap. vectored through Kernel VA 250.

Note that if an instruction which sets bit 9 to 0 (dis
able Memory Management Trap) causes a Memory
Management trap condition in any of its memory
references, prior to and including the one actually
changing MM RO, then the trap will occur at the
end of the instruction.

The trap logic is described in Chapter 8.

9.1.3 Maintenance/ Destination Mode
Bit 8 specifies that only Destination mode refer
ences will be relocated using Memory Management.
This mode is only used for maintenance purposes.
Ref er to Chapter 4.

9.1.4 Instruction Complete
Bit 7 indicates that the current instruction has been
completed. It will be set to I during T bit, Parity,
Odd Address, and Time Out traps and interrupts.
This provides error-handling routines with a way of
determining whether the last instruction will have
to be repeated in the course of an error recovery at
tempt (after an abort). Bit 7 is Read-Only (it can
not he written). Note that EMT, TRAP, BPT, and
IOT do not set hit 7.

Bit 7 fSSRE INSTR COMP (I) HJ is set by SSRA
BR K .30 (I) H if there has been no previous Mem
ory Management abort condition. [SSRC ND ER
ROR (I) H = none of bits 15:13), BRK.30 is
asserted at SSRK PU LSE23 H (TS2) when the out
put of the Memory Management ROM bits 03:00
equal 100: this occurs during the BRK.30 cycle
(Flows 12).

IV-9-2

Bit 7 is cleared, if there is no abort, at TS3, when a
new instruction is fetched (SSRH LOAD IR H =
U IRK asserted).

The following conditions may occur during the
course of program execution:

I. If the first abort is a Memory Manage
ment abort, NO ERROR clears at T4 of
PA USE, before entry into the Service
Flows. Therefore, INSTRUCTION
COMPLETE is not set by BRK.30.

2. If the first (and only) abort is not a
Memory Management abort, INSTR UC
TION COMPLETE is set by BRK.30,
hut is cleared by FET.00 (217) at the be
ginning of the instruction fetch sequence
(after the pushes to the stack have been
successfully executed).

3. If the first abort is not a Memory Man
agement abort, then INSTRUCTION
COMPLETE is set at BRK.30 (because
NO ERROR is set). If a Memory Man
agement abort then occurs during the
Service Flows, NO ERROR is cleared at
T4 of PAUSE. This prevents INSTRUC
TION COMPLETE from being cleared
until the abort condition bits in MM RO
arc cleared. In this case, MMR2 con
tains either a vector address or the stack
pointer. and not a program address.

9.1.5 Processor Mode
Bits 5. 6 indicate the CPU mode
(User/Supervisor/Kernel) associated with the page
causing the ahort. (Kernel = 00, Supervisor = 0 I,
User = 11.) If an illegal mode (10) is specified, bits
15 ;111d 14 will he set and an abort occurs.

Bits 05 and 06 of MM RO show the actual Processor
mode fas decoded by SSRB MMRO MODEO (and
I) 11 from the mode nip-flops]. The actual mode
may not he the same as that shown by PS(15: 14).
Refer to Chapter 3.

9.1.6 Address Space and Page Number
Bit 4 indicates the type of address space (I or D)
the unit was in when an abort occurred (0 = I
Space. I = D Space). It is used in conjunction with
hits 3-1. Page Number.

Bits 3: I contain the page number of a reference
causing a Memory Management fault. Note that
pages. like hlocks, are numbered from 0 upwards.

SAPK IND DATA H is stored in bit 4 of MMRO.
The SS RB space nip-flop that is asserted during a
given cycle gates the I or D Space information
from MMRJ [SAPK D SK (or S/U), H] to gener
ate this signal. The SAPK D S signals are described
in Chapter 3.

Bits 03:01 of MMRO are loaded with VA(l5:13),
which give the address of the selected PAR/PDR
set.

9.1.7 Enable Relocation
Bit 0 is the "Enable Relocation" bit. When it is set
to I. all addresses are_ relocated by the unit. When
hit 0 is set to 0, the Memory Management Unit is
inoperative and addresses are not relocated or pro
tected. Chapter 4 explains the logic associated with
this hit.

9.1.8 Read/Write Under Program Control
MM RO is read by the processor on the Internal
Data Bus through the multiplexer on SSRJ. Refer
to Section II, Chapter 2.

Bits 00. 08. 09. and 12: 15 can be written into by the
program from the BR.

Refer to Figures 9-2 and 9-3. SCCB MMR ADRS
L decodes the addresses of MMRO - MMR2. At
TIGA PSEUDO T3 H, it is clocked into the SCCC
SSR REG flip-flop, whose output is ANDed with
TM CE CI H to generate SCCC WRITE MM RO
REG H [MM RO is the only writable register of the
three (MMR0-2)]. Since the address of MMRO -
MM R2 differ only by bits 02 and OJ of the VA,
this signal. when NANDed with VA(02:01), in
dicates a write to MM RO, and selects the A inputs
f BR (15: 13)] to the multiplexer input to the SSRC
MM RO BIT(15: 13) flip-flop.

IV-9-3

SCCB MMR ADRS L

TIGA PSEUDO T3 H

UBCB HI BYTE H

TMCE KT BF.ND L

SSRE RELOC H

SSRC NO ERROR (1) H

SCCC INT REG BL

UBCB HI BYTE H

SSRK TS3 H

TMCE PAUSES B H

UBCB LO BYTE H

SSRK PULSE 23 H

TMCE PAUSES B H

BR12 12

SSRE STROBE OK L

.--------IC

BR09 09

i---------IC

BR0B OB

SSRD MMR0 HI B CLK L

00
SSRE MMR{a' LOB CLK L

p--_.__-----------------------lc

11- 4014

Figure 9-2 Clocking of MMRO

IV-9-4

TIGA PSEUDO T3

TIGE TS3
SSRK PULSE BC89 H

SSRK PULSE 23 H

SCCC INT REG H ---------

SCCC WRITE MMR~ REG H}
SSRE WRITE MMR¢ H

CLOCK BITS l.5:\3___j r r
CLOCK BIT 00-------'-

CLOCK BITS 08,09,12,06:01----------'
11-4021

Figure 9-3 MMRO Write Timing

SSRF WRITE MM RO H is the same as the multi
plexei· sclcet: si-gnal, but not inverted.

I. Gated with UBCB HI BYTE H and
SSRK PULSE BC89 H (TS3 of
PA USE), it clocks the output of the mul
tiplexer [SSRC PRE MM RO BIT(15: 13)
Hl into MMRO bit 15: 13 at T3.

1

3.

NANDed with UBCB HI BYTE H,
TMCE PA USES B H and SSRK TS3
1-1, it clocks BRl2, 09 and 08 into the
corresponding bits of MM RO at T5.

NANDed with UBCB LO BYTE H,
TMCE PAUSES B H and SSRK
PULSE 23 H (TS2), it clocks B ROO into
hit 00 of M M RO at T 4.

9.1.9 Bits Controlled by Memory Management
Bits 15: 13 arc also clocked automatically on abort
conditions. Bits 06:01 are clocked on every memory
rcl'crence. hut cannot be changed once an abort bit
(I): I _li) is set.

SSR I· STROBE OK is asserted when Memory Man
;ig:ement is enabled (SSRE RELOC is asserted), if

then; has been no previous Memory Management
;ihort condition (SSRC NO ERROR), if no Mem
ory Management register is being read or written
(SCCC INT REG B L not asserted), and if TMCE
KT BFN [) is not asserted.

SSRE STROBE OK is gated with SSRK PULSE
BC89 H (TS3).

I.

1

On the leading edge of the pulse, at T3,
the abort bits from SAPL are gated into
hits 15: 13 of MM RO (since the register is
not being read or written, the multi
plexer select signal is high, and the B in
puts are selected).

On the trailing edge of the pulse, at TS,
hits 06 - 0 I are clocked into MM RO.

9.2 MMRI
MM RI records any autoincrement/decrement of
the general-purpose registers. MM RI is cleared at
the beginning of each instruction fetch if no abort
condition is present. Whenever a general-purpose
register is either autoincremented or autodecre
mcntcd, the register number and the amount (in 2's
complement notation) by which the register was
modified, is written into MMRI.

IV-9-5

The information contained in MMRI is necessary
to accomplish an effective recovery from an error
resulting in an abort. The low order byte is written
first and it is not possible for a PDP-I I instruction
to autoincrement/decrement more than two gen
eral-purpose registers per instruction (refer to Sec
tion 11. Chapter I). Only three bits are available to
record the register number: thus, it is up to the soft
ware to determine which set of registers
(User /Supervisor /Kernel-General Set O/General
Set I) was modified, by determining the CPU and
Register modes at the time of the abort. The 6-bit
displacement on R6 (SP) that can be caused by the
MARK instruction cannot occur if the instruction
is ahorted.

MM RI is read on the Internal Data Bus through
the multiplexer on SSRJ. Its address is 17 777 574.
Refer to Section 11, Chapter 2.

Figure 9-4 shows the format of MM RI. Its logic is
on drawing SSRF.

I. The register number is taken from the
General Register address bits, G RAC
G RA(3:0) L and are encoded to fall in
the range of 0 - 7. Refer to Section II,
Chapter 2 of this manual (Data Paths).

1 The amount of the increment or decr
ement is that shown by the KOMX multi
plexer input to the ALU. This logic is
described in the same chapter as the Gen
eral Register address bits. The multi
plexer to which they are input selects the
complement of the KOMX if the cycle
calls for a decrement.

15 ,, 10 8 7

3. Bits 03:00 of the Memory Management
ROM informs the MMRI logic of the
autoincrement or decrement. A decr
ement causes a ROM output of 011, an
increment an output of 010. SSRA ONE
CHANGED (I) H is asserted when the
ROM output is either 010 or 011. SSRA
AUTO DEC is asserted when the output
is 011. This signal supplies the sign bit
to the increment/decrement value.

4. A Memory Management abort [SSRC
NO ERROR (I) H not asserted], latches
the contents of MM RI.

M tv1 RI and ONE AUTOED are both cleared, if no
previous Memory Management aborts have oc
curred (NO ERROR),

I. during an instruction fetch (SSRH
LOAD IR), or

2. during the Service Flows (SSRA
BRK.30), or

3. if INIT is asserted.

For the first increment or decrement, SSRF ONE
!\ UTOED (0) H is high (the flip-flop is cleared). At
T.5B. if there is a change to the register, and if
SSRA ONE CHANGED (I) H is asserted, the
change to the register and the register number are
written into the low order byte of MMRI (bits
07:00).

The ONE AUTOED flip-flop is then clocked by
the trailing edge of TS and its (I) output goes high.

3 2 0

AMOUNT CHANGED
(2'S COMPLEMENT)

REGISTER AMOUNT CHANGED REGISTER
NUMBER NUMBER (2'S COMPLEMENT)

11-4042

Figure 9-4 MM R 1

IV-9-6

Thus, if there is a change to another register during
the same instruction, it will be stored into the high
order byte (bits 15:08) of MM RI.

9.3 MMR2
MM R2 is the VA Program Counter. (Refer to Fig
ure 9-5.) It is loaded with the 16-bit VA at the be
ginning of each instruction fetch., or with the
address Trap Vector at the beginning of an inter
rupt, .. T" Bit trap, Parity, Odd Address, and Time
out traps. Note that MM R2 does not get the Trap
Vector on EMT, TRAP, BPT and IOT instructions.
MM R2 is Read-Only; it cannot be written.

MM R2 is loaded at TS4, if there has been no pre
vious Memory Management abort, when the IR is
loaded during instruction fetch, or during the
BRK.30 cycle. Note that the EMT, TRAP, BPT
and JOT instructions do not use the BRK.30 cycle.

MM R2 is shown on drawing SSRH. Its address is
17 777 576. It is read on the Internal Data Bus
through the multiplexer on SSRJ. Refer to Section
II. Chapter 2.

9.4 CLEARING STATUS REGISTERS FOL
LOWING TRAP/ABORT
At the end of a fault, service routine bits 15-12 of
MM RO must be cleared (set to 0) to resume error
checking. On the next memory reference following
the clearing of these bits, the various registers will
resume monitoring the status of the addressing oper
ations. MM R2 will be loaded with the next instruc
tion address. MM RI will store register change
information and MMRO will log Memory Manage
ment status information.

15

9.5 MULTIPLE FAULTS
Once an abort has occured, any subsequent errors
that occur will not affect the state of the machine.
The information saved in MM RO - MM R2 will al
ways refer to the first abort that it detected. How
ever. when multiple traps occur, the information
saved will refer to the most recent trap that
occurred.

In the case that an abort occurs after a trap, but in
the same instruction, only one stack operation will
occur: and the PC and PS at the time of the abort
\\ill he saved.

9.6 MMR3
Refer to Figure 9-6. MM R3 enables or disables:

I. The use of the D space PA Rs and
PD Rs,

22-hi.t mapping,

U nihus Map mapping.

When [) space is disabled, all references use the I
space registers: when D space is enabled, both the I
sp~1ce and D space registers arc used. Bit 0 refers to
the User's Registers, bit I to the Supervisor's and
hit 2 to the Kernel's. When the appropriate bits are
set. [) space is enabled: when cleared, it is disabled.
Bit 03 is read as zero and never written; it is re
served for future use. Bit 04 enables 22-bit map
ping .. Ir Memory Management is not enabled, bit
04 is ignored and 16-bit mapping is used.

'oo

11-4041

Figure 9-5 MMR2

15 6 5 4 3 0

~ MODE I MMR3 17 772 516

ENABLE UNIBUS MAP - j r ! 1
ENABLE 22-BIT MAPPING
KERNEL
SUPERVISOR
USER

H-4040

Figure 9-6 MMR3

IV-9-7

Ir hit 4 is clear and Memory Management is en
abled (hit 0 of MM RO is set), the computer uses
18-hit mapping. If bit 4 is set and Memory Manage
ment is enabled, the computer uses 22-bit mapping.
Bit 5 is set to enable relocation in the Unibus Map:
the hit is cleared to disable relocation. Bits 6-15 are
unused. On initialization this register is set to 0 and
only I space is in use.

The following tahle 1s a summary of these
L"t)nditions:

Bit State Operation

5 0 Unibus Map relocation disabled

Unibus Map relocation enabled

4 0 Enable 18-bit mapping if bit 0 of
MMRO is set

Enable 22-bit mapping if bit 0 of
MMRO is set

2 Enable Kernel D Space

Enable Supervisor D Space

0 Enable User D Space

MMR3 is loaded from BR(05:00) by SCCL MMR3
CL K L [=T4+ 15 ns of PA USE during a write
cycle and the address decode, SCCC MMR3 (I)
HJ.

MM RJ is shown on drawing SCCL. Its address is
17 772 516. It is read on the Internal Data Bus
through the multiplexer on SCCH. Refer to Section
I I. Chapter 1.

IV-9-8

SECTION V

UNIBUS MAP

Un less otherwise indicated, references within this sec
tion pertain to this section only.

CHAPTER 1

1.1
1.2
1.3
1.4

CHAPTER2

2.1
2.2
2.3
2.4
2.5
2.6

CHAPTER3

3.1
3.2
3.3
3.4
3.5

Figure! No.

1-1
2-1
2-2
2-3
2-4
3-1
3-2

Table No.

3-1
3-2

SECTION V UNIBUS MAP
CONTENTS

GENERATION OF THE PHYSICAL ADDRESS

Page

CONSTRUCTION OF A PHYSICAL ADDRESS . V-1-1
REGISTER SELECTION . V-1-2
ADDER .. V-1-2
ADDRESSING LIMITS V-1-2

UNIBUS/CACHE INTERFACE

UNIBUS DATA CYCLE . V-2-1
DATO ORDATOB V-2-5
DATI OR DATIP . V-2-5
END OF DATA CYCLE . V-2-6
PARITY ERROR V-2-6
CACHE TIMEOUT . V-2-6

READING AND WRITING THE MAPPING REGISTERS

READING AND WRITING MAPPING REGISTERS V-3-1
REGISTER SELECTION V-3-2
DATO ... V-3-2
DATI .. V-3-3
REGISTER ACCESS . V-3-3

ILLUSTRATIONS

Title Page

Construction of the PA . V-1-1
Urubus Map Flowchart . V-2-2
Unibus Map Block Diagram . V-2-3
Unibus Map Interface . V-2-4
Cache/Unibus Transactions . V-2-5
Addressing of UB Map Register . V-3-1
UB Map Register Read/Write . V-3-2

TABLES

Title Page

Unibus Data Selection . V-3-3
Access to Unibus Map Registers . V-3-4

V-iii

INTRODUCTION
The Unibus Map is the interface between the
Unibus and Cache. It responds as a slave device to
Unibus signals and converts 18~bit Unibus ad
dresses to 22-bit Cache addresses.

The reader of this section should be familiar with
the concepts related to PDP-I I /70 Address Space.
The Introduction to Section IV of this manual
(Memory Management) describes PDP-11 /70 Ad
dress Space in detail.

The top 4K word addresses of the I 28K Unibus ad
dresses are reserved for CPU and I/O registers and
are called the Peripherals Page (see Figure 1-1). The
lower I 24K addresses are used by the Unibus Map
to reference physical memory.

PERIPHERAL
PAGE

(4K WORDS)
1------------i

124K

(TO UNIBUS MAP)

17 777 777

17760000
17 75 7 777

......__ ______ ____, 17 000 000

11-4051

Figure 1-1 Unibus Address Space

V-1-1

INTRODUCTION

The Unibus Map is the interface to memory from
the Unibus. The operation is transparent to the
user, if it is disabled.

Relocation Disabled
If the Unibus Map relocation is not enabled, an in
coming 18-bit Unibus address has 4 leading zeros
added for referencing a 22-bit Physical Address
(PA). The lower 18 bits are the same. No relocation
is performed.

Relocation Enabled
There are a total of 31 mapping registers for ad
dress relocation. Each register is composed of a
double 16-bit PDP-I I word (in consecutive loca
tions) that holds the 22-bit base address. These reg
isters have Unibus addresses in the range 17 770
200-17 770 372.

If Unibus Map relocation is enabled, the 5 high or
der bits of the Unibus address are used to select
one of 31 mapping registers. The low order 13 bits
of the incoming address are used as an offset from
the base address contained in the 22-bit mapping
register. To form the PA, the 13 low order bits of
the Unibus address are added to 22 bits of the se
lected mapping register to produce the 22-bit PA .
The lowest order bit of all mapping registers is al
ways a zero, since relocation is always on word
boundaries.

The Unibus Map is disabled upon the occurrence
of any of the following:

I. Power-up

2. Depressing the START switch on the
Console, and

3. The execution of a RESET instruction.

These all cause the assertion of INIT, which clears
MM R3. It should be noted that after a power-up
the contents of the mapping registers are not
defined.

V-1-2

There are 32 mapping registers which may be writ
ten and read. These registers are 21 bits wide, and
require two Unibus transactions for each read or
write; 64 addresses on the I Page (17 770 200 - 17
770 376) are thus allotted to them. The contents of
the mapping registers are added to the Unibus ad
dress during the relocation process. It should be
noted that the last mapping register (addresses 17
770 374 and 17 770 376) can be read and written,
but cannot be used to map Unibus addresses be
cause it would be used by addresses in the range of
17 760 000 - 17 777 777; the upper limit jumpers
cannot recognize these as valid Cache Unibus ad
dresses. Refer to Chapter 4.

CHAPTER 1
GENERATION OF THE PHYSICAL ADDRESS

Relocation expands the 18-bit Unibus address to
the 22-bit Main Memory address. This allows the
Unibus to access any location in Main Memory.

·This relocation, or mapping of addresses, is done
by adding the contents of one of the mapping regis
ters to bit.s (12:0 I) of the incoming Unibus address.

I.I CONSTRUCTION OF A PHYSICAL
ADDRESS
A II mapping registers in the Unibus Map are 21
bits wide. A .. 22nd" bit, which is not writable and
is always read as a zero, acts as the lowest order bit
for each register. Each register specifies the 21-bit
Physical Address (PA) of a 4K page residing on
any word boundary in memory. The reason for us
ing word boundaries in the mapping registers is

that the mapping box does not know if a byte oper
ation is being executed, and if so, what byte is
required.

Refer to Figure 1-1. Bits (17: 13) of the 18-bit
Unibus address select which register a device is us
ing. The remaining bits (12:00) of the Unibus ad
dress act as an offset into the page to which the
mapping register is pointing.

When an address is taken off the Unibus, the map
ping register is automatically selected and the con
tents read out.. That 21-bit address is added to the
13-bit offset in the Unibus address to form the PA.
This mapping function is very similar to that per
formed by Memory Management.

17 13 12 01 00

BUS A (17:00> .=I =====:ti==' =====::::::::=======::::ll~I
BUS A <17:13> select

.------------1 one of 32 Mapping
Registers, 00-37 •

r:~'-• .:_-~PH-=--=--1-l I ·~111--1-11 ===M=,APL======01~

,, D ""
CACHE ADDRESS Irl..__ _ ___._ __ __,_! --..... '-----'-' __ _._ __ _.___ I _I

MAPE CA (21 :01) H, MAPA CAOO H
H•4029

Figure 1-1 Construction of the PA

V-1-1

The program controls this process both by selecting
the contents of the mapping registers and by its abil
ity to enable and disable the Unibus Map reloca
tion function.

The Unibus address lines, BUS A(17:00) L are re
ceived by the Map. The output of their bus receiv
ers is labeled MAPA ADRS(l7:01) H and MAPA
CAOO H. Address bit 0 is always transmitted, un
modified, to the Cache, since the Map ignores byte
instructions.

The address used by the Cache during a data trans
action consists of MAPA CAOO H, the output of
the Map receiver for BUS AOO L, and of MAPE
C A(2 I :01) H. These bits are the output of a 21-bit
adder which is enabled when MAPD ENAB MAP
is asserted, and disabled when ENAB MAP is ne
gated. The state of this signal reflects that of SCCL
ENAB MAP H (bit 5 of Memory Management
Register 3).

When the adder is disabled, its output is the same
as the incoming Unibus address, with bits 18 - 21
equal to 0.

Refer to Figure 1-1. When the adder is enabled,
bits 17 - 13 of the Unibus address~select one of the
mapping registers [MAPC+D RA(21:01) H]. The
contents of this register are summed with bits ! 2 to
I of the Unibus address [MAPA ADRS(l2:01) H]
to generate the Cache address [M APE CA(12:0 I)
H].

The mapping registers consist of the 12 3101A 16-
word by 4-bit scratch pad memories, shown on
drawings MAPC and MAPD.

1.2 REGISTER SELECTION
During a Cache Unibus cycle, MAPB REG OP L
is high (i.e., the address does not point to a map
register). MAPA ADRSl7 H then causes either
MAPC EN LO REG Lor EN HI REG L to be as
serted. These signals enable, respectively, the regis
ters on MA PC (addresses 17 770 200 - 17 770 276)
or those on M APO (addresses 17 770 300 - 17 770
376) through their CS inputs.

V-1-2

One of 16 regis~ers is selected by MAPA
A DRS(16: 13) H via the multiplexer on M APC.
MAPC INDA(4:1) H address the mapping register
that is being selected.

1.3 ADDER
The Adder consists of the five 74S 181 ALU I Cs,
and the full adder circuit for bit 21 shown on
MAPE.

When MAPD ENAB MAP H is negated, the in
coming Unibus address is transmitted, unmodified,
through the Adder.

When MAPD ENAB MAP H is asserted, the Ad
der is enabled. In this case, bits 0 I - 12 of the ad
drt!ss are added to bits 0 I - 21 of the selected
mapping register (adder function A plus B). The
output of the Adder then goes to the Cache as the
PA.

1.4 ADDRESSING LIMITS
Refer to schematic MAPF. There are 31 mapping
registers which can be accessed by the Unibus for
relocation. The actual number is determined by two
sets of five jumpers which set the upper and lower
address limits to which the Unibus Map will re
spond. The jumpers for the lower limit can be cut
so that the Map will start to respond at Unibus ad
dress OK, 4K, up to 124K on 4K boundaries. Sim
ilarly, the jumpers for the upper limit can be set so
that the Map will stop responding at Unibus ad
dress I 24K, l 20K, and down to OK on 4K bound
aries. The Map will not respond to the uppermost
4K of Unibus address space. The maximum range
of Unibus addresses that the Map can accept is 000
000 - 757 777.

Bits(17: 13) of an incoming Unibus address are
checked against the jumpers to ensure that the ad
dress lies inside these limits. If the address is
greater than or equal to the upper limit, or less
than the lower limit, it is assumed that some other
device is being addressed and no request is made to
the Cache. The Unibus Map can be bypassed alto
gether by cutting both sets of jumpers to all zeroes.
This would mean that Main Memory cannot be ac
cessed from the Unibus.

Th is chapter describes the Unibus/Cache interface,
excluding address relocation, which is explained in
Chapter I.

Figure 2-1 outlines this interface function of the
Map, and Figure 2-2 is a functional block diagram.
DATA exchanged between the Unibus [BUS
D(l.5:(X))] and the Cache is buffered by the Unibus
Mar and transmitted, without modification, in
hoth directions. The Unibus Control bits (BUS CO
and CI) arc received by the Unibus Map and trans
mitted directly to the Cache. BUS MSYN is sent to
the Cache as MAPF UB REQUEST (I) L if the
Un ihus address f BUS A(17:0 I) L] is recognized as
a valid Cache data or register address. A parity er
ror in the Cache causes BUS PB L to be asserted
hy the Unibus Map. BUS SSYN L is asserted by
the Unihus Map when it is informed by the Cache
that the data cycle is finished (CCBC UB DONE
1-1).

The Unihus address is decoded by the Unibus
Map. Ir it is a Cache register address (17 777 740 -
17 777 752), MA PB CACHE REG L is sent to the
Cache: this signal, in addition to Unibus address
hits MAPA ADRS(03:01) H allowstheCachetose
lcct the register required for the current data
transaction.

If the address is a valid Cache address (as deter
mined hy the limit jumpers), it is either sent to the
Cache unmodified (if the Map is not enabled), or
relocated (if the Map is enabled). The Map is en
abled if bit 5 of Memory Management Register 3 is
set (Unihus address 17 772 516). Figure 2-3 shows
the signals exchanged between the Unibus, the
Map, and the Cache.

The Map responds as a slave to the two major
types of Unibus transactions: DATI (or DATIP)

CHAPTER 2
UNIBUS/CACHE INTERFACE

which requires a read from memory, and DATO
(or DATOB), which requires a write into memory.
The Map does not distinguish between DA TI
(data-in) and DA TIP (data-in, pause), nor between
DATO (data-out) and DATOB (data-out, byte): it
transmits Unibus control bit CO, which dis
tinguishes DATI from DATIP and DATO from
DATOB, to the Cache.

2.1 UNIBUS DATA CYCLE
The Unibus address lines, BUS A(l7:00) Lare re
cci"ved by the Map. The output of their bus receiv
ers is labeled MAPA ADRS(l7:01) H and MAPA
CAOO H. Address bit 0 is always transmitted, un
modified, to the Cache, since the Map ignores byte
instructions.

MAPA ADRS(l7:02) are decoded and MAPS
CACHE REG is asserted if a Cache register ad
dress is sensed [(17) 777 740 - (17) 777 752). This
signal and MAPA ADRS(03:0.I) H constitute a
Cache register address.

MA PA AD RS(17: 13) H are compared with the up
per and lower limit jumpers shown on schematic
MA PF. If the address falls within the limits set by
the j um pc rs, or if a Cache register address has been
decoded (MAPS CACHE REG L), MAPF
CACHE BUS ADRS Lis asserted.

Refer to Figure 2-4. Upon receipt of the assertion
of BUS MSYN L, the flip-flop MAPF UB
REQUEST (I) L is set; its output starts a Cache
read or write sequence. The UB REQUEST flip
flop is reset by CCBC UB ACKN L, which is as
serted by the Cache when the Unibus memory cycle
is initiated. MAPJ ENBUS H is asserted at the
same time as UB REQUEST H. It gates SSYN and
the data onto the Unibus lines.

MAPB
CACHE REG. L
Iii MAPA
ADRS <03:01>

YES

DECODE
ADDRESS

UNIBUS
ADDRESS
UNMODIFIED

CACHE

UNIBUS
A <17:00l MSYN

NO ACTION

UNIBUS
ADDRESS
RELOCATED

r--
1
I
I
I
I

_J

Figure 2-1 Unibus Map Flowchart

V-2-2

YES

YES

MAPF UB
REQUEST
(1) L

SSYN

SSYN

11. 4013

R

MSYN

MAPB

CCBC UB ACKN L

SCCL ENAB MAP H

R

UB
DATA

MAPA

R

MAPA

R
Cl, CO

MAPB

(17:13)

A(l7:13)

A (06:02)

ADD RS
DECODE

MAPB

UPPER a LOWER
LIMIT JUMPERS

LIMIT
COMPARATOR

MAPF

NOT PERIPHERAL
PAGE

MAPD ENAB MAP

CACHE REG L

MAP REG OP

FF
MAPF UB REQUEST (t) L

MAPF

MAPA DATA(15:00) H

MAPE CA(21 :01) H

MAPA CA00 H

MAPA ADRS(03:01)H

MAPB CACHE REG L

MAPB CIH, Cf6 H
.._~~~~~~~t--~~~~~~-+-~~~-+~~~~~~-+-~~~~~~~~~~~-.

CCBD UB TIMEOUT L

CCBC UB DONE H

DTML CDMX 0(15:00) H

CCBF REG D(15:00) H

DTML BAD PARITY H

BUFFER

REG

MAPH

D
BUS SSYN

(15:01)

<o5 :oo> BUS D

t-~~~~~~~~~~~~~~~~---~

MAPJ

MAPB PB DATA H

NOTE: 1t-401e
D • UNIBUS DRIVER, R =UNIBUS RECEIVER

Figure 2-2 Unibus Map Block Diagram

V-2-3

UNIBUS UNIBUS MAP

MAPF UB REQUEST (1) L

MAPB Cf,J H

MAPB C1 H

CPA
CAfl{I H

MAPE CA< 21: f.J1 > H

MAPA ADRS <03:0'1> H

MAPB CACHE REG L

MAPJ DATA <15:00> H

(MAPJ) BUS 0<1~:00> L

(MAPB) BUS PB L

MAPB PB DATA H

(MAPBl BUS SSYN L

MAPD ENAB MAP L

CACHE

(
CCBB PRE UBUS F/F

CCBC U B ACKN L

ADMJ C{J H

ADMJ READ L

} ADME AMX <21:00> H

} CCBH, CCBJ (REG. LOGIC)

COPE WRITE MUX <15:00> H

DTML CDMX D< 15:00> H

CC BF REG D < 1 5: 00 > H

OT ML BAD PARITY

CCBJ (REG.LOGIC)

CCBC UB DONE H

CC BO UB TIMEOUT L

SCCL ENAB MAP H

11·4052

Figure 2-3 Unibus Map Interface

V-2-4

MAPA ADRS(17:00) H ~
**MAPA OATA(15:00> H

MAPB MSYN H

MAPB CACHE REG H

MAPF CACHE BUS AORS L

MAPJ ENBUS H \,, ___________ ..,__ __
MAPF UB REQUEST (1) L =G

-------t ~~

CCBC UB ACKN L

CCBC UB DONE H

BUS SSYN L

*MAPH CA OATA(15:01) H

nBUSD(15:00)L, PBL

*NOTE: DATI or DATIP only.

**NOTE: DATO or DATOB only.

< 60ns)

11-4025

Figure 2-4 Cache/Unibus Transactions

A long with the Control bits CI and CO, the Cache
receives the address MAPE CA(21:01) H and
MAP/\ CAOO H for memory references, or MAPA
A DRS(03:01) H and MAPB CACI-IE REG L for a
Cache register reference. When U B REQUEST is
received, it executes the write (DATO /B) or read
(DA Tl/P) operation required of it.

2.2 DATO OR DATOB
In the case of a data-out, the Cache accepts the
data. MAPA DATA(l5:07) H. It then asserts
CCBC UB DONE H.

2.3 DA Tl OR DA TIP
Ir the transaction is a data-in, the Cache puts the re
quested data on DTML CDMX 0(15:00) H, in the

V-2-5

case or a memory reference: if tne operation refers
to a Cache register, the data is transmitted on
CCBF REG 0(15:00) H. One of these two sets of
data is selected hy MAPB CACHE REG L via the
multiplexer shown on drawing M APH.

The output of this multiplexer is clocked into the
MA PH CA DAT A(15:00) (I) H nip-flops hy the ris
ing edge ofCCBC UB DONE H. (UB DONE is as
serted hy the C~tche when its data operation is
completed.) MAPH CA DATA is then multiplexed
with the map register data (MAPJ): since MAPB
R FG OP 1-1 is low (not a map register operation),
the Cache data is the input to the U nihus data driv
ers rs US D(15:00) L]. which are en a hied hy MAP J
FNBUS H.

2.4 END OF DATA CYCLE
The falling edge of CCBC UB DONE H, which oc
curs 60 ns after its rising edge, sets a flip-flop on
MAPB which in turn causes BUS SSYN L to be as
serted. When the negation of MSYN is received at
the Map, MAPJ ENBUS His negated. This causes
SSYN and. in the case of a DATI or DATIP, the
data and PB, to be removed from the Unibus.

2.5 PARITY ERROR
BUS PB L is asserted when a parity error is de
tected hy the Cache. DTM L BAD PARITY H is
clocked into a latch on MAPH at the same time as
the Cache data. The output of this latch is M APH

V-2-6

PAR ERR (I) H: it is gated with Ct and MAPF
PAR ADRS OK H to generate MAPB PB DATA
H. which is input to the Cache error registers.
MAPB PB DATA H is also ANDed with ENBUS
to generate BUS PB L. MAPF PAR ADRS OK H,
when asserted, signifies that the address of the cur
rent transaction lies within the limits of the upper
and lower limit jumpers.

2.6 CACHE TIMEOUT
CCBD UB TIMEOUT L is asserted by the Cache
when a timeout has occurred on the Main Memory
Bus during a Unibus transaction. When asserted, it
sets a llip-flop on M APB which prevents the asser
tion of BUS SSYN L.

The mapping registers are loaded and read by the
program via the Unibus. These registers are 21 bits
wide: two Unibus cycles are required to read them
or to write into them. There are 32 mapping regis
ters which require the 64 1/0 Page addresses in the
range of 770200 - 770376. Each of the registers con
sists of l wo parts (for the purposes of reading and
writing): a high word, MAPH (bits 21 - 16) and a
I ow word, MA PL (bits 15 - 0 I). Bit 0 does not ex
ist. since the Map ignores byte operations.

17 07 06 02 01 00

CHAPTER 3
READING AND WRITING

THE MAPPING REGISTERS

3.1 READING AND WRITING MAPPING
REGISTERS
Refer to Figure 3-1. The Unibus Map responds to
64 Unibus Addresses [(17) 770 200 - (17) 770 376].
This allows reading and writing of the mapping reg
isters. Once the Map has recognized one of these
addresses, it uses bits (06:02) to select the correct
register [as opposed to bits (17: 13) for a mapping
operation]. Sixty-four addresses are needed due to
the 22-hit register width.

_I _1 _1_1,_.__1_1_1__._1_0_0 __ 0_0 __ 1 1-.ii.-----'-__._l-.il o__,I BUSA<11:00>

BUS A (06:02> select
one of 32 Mapping
Registers, 00-37 8

Bit A01 = 0 enables

--------------• data transfer between
BUS D (15:01) and

Bit A01 = 1 enables
transfer between
BUS D (05:00> and
bits (21: 16) of a
regi;ster.

00 MAPH

15

00

16 15

bits (15:01) of a
register.

BUS D (15:01)

MAPL ...________...!
37

Figure 3-1 Addressing of UB Map Register

V-3-1

01 00

01

11-4030

Also as a result of this, two Unibus cycles are re
quired to complete a read or write operation to a
mapping register. The bit assignment in the regis
ters is divided so that Unibus address (17) 770
X XX will access bits (15:0 I) of the register and ad
dress (17) 770 XXX + 2 will access bits (21: 16).

3.2 REGISTER SELECTION
MAPB REG OP is asserted when an Unibus ad
dress in the range of 770 200 - 770 376 is decoded.

Refer to Figure 3-2. MAPB REG OP H is gated
with MAPA ADRS06 H to select either registers 00
- 17x on MAPC (MAPC EN LO REG L), or regis
ters 20x - 378 on MAPD (MAPC EN HI REG L)
by enabling the 310 Is via the enable (CS) input.

MAPB REG OP L gates MAPA ADRS(05:02) H
to MAPC INDA(4:1), which in turn select one of
16 registers (either one of 00-178 or 20-378, depend
ing on which set of CS inputs is low).

MAPB MSYN H

MAPB REG OP H

MAPJ ENBUS H

MAPB REG SSYN L

**MAPB WRITE HI WORD L}
**MAPB WRITE LO WORD L

BUS SSYN L

*BUS D(15 :00) L

*NOTE: DATI only

**NOTE: DATO only

MAPB REG OP L gated with MSYN causes
MAPJ ENBUS H to be asserted. ENBUS gates
SSYN and, during a DA TI, the register data onto
the Unibus.

3.3 DATO
A DATO is a write to a register. MAPB CI His as
serted and, when MSYN is received, either MAPB
WRITE HI WORD Lor WRITE LO WORD Lis
asserted, depending upon the state of MAPA
ADRSOI. WRITE HI WORD gates bits 05 - 00 of
Unibus data into bits 21 - 16 of the selected regis
ter: WRITE LO WORD gates bits 15 - 01 into bits
15 - 01 of the register.

The receipt of MSYN also starts a 70-ns delay,
which allows for the write propagation time of the
3 IOIAs. At the end of the delay, MAPB REG
SSYN L turns off the write pulse and causes BUS
SSYN L to be asserted. When BUS MSYN is ne
gated, SSYN is negated.

11-4024

Figure 3-2 UB Map Register Read/Write

V-3-2

3.4 DATI
When a register has been selected, the output of the
selected register [MAPC+D RA(21:01) H] is read
and input to the data multiplexer shown on draw
ing MAPJ. Since MAPB REG OP H is high,
MAPA ADRSOI selects (via the multiplexer) either
the low word (MAPL) or the high word (MAPH)
of the register that is being addressed, as shown in
Table 3-1. When the MAPH part of a register is se
lected [RA(2I:16)] the A inputs to the 74S 157 multi
plexers are selected. This is the Cache data input
[MAPH CA DATA(l 5:06) H], but it is 0, since the
nif'-tlops on drawing MAPH were cleared by the
negation of M SYN on the previous reference.
Thus, bits 15 - 06 of BUS D are all 0, and BUS
0(05:00) contain the high order bits (21: 16) of the
selected register.

The multiplexer is enabled if the operation is a
DATI (MAPB Cl H is low). The 8881 bus drivers
[BUS 0(15:00) L] are enabled by MAPJ ENBUS

H. thus putting the contents of the selected register
on the Unibus D lines.

When MSYN is received, the 70-ns delay is in
itiated to allow for the access propagation times of
the 3101As. When MAPB REG SSYN L is as
serted after the delay, BUS SSYN L is asserted on
the U nihus. SSYN is negated upon receipt of the
negation of MSYN.

3.5 REGISTER ACCESS
Ta hie 3-2 shows the correspondence between the
Un ih us addresses that select each mapping register
and the two addresses used for reading or writing
the same register.

Note that register 37 is selected by Unibus ad
d resscs (17) 760 000 - (17) 777 777. Since these ad
dresses arc higher than the maximum allowed by
the upper limit jumpers, register 37 cannot be used
as a mapping register. It can, however be read and
\\Titlcn into by using addresses (17) 770 374 and
(17) 770 37().

Table 3-1
Unibus Data Selection

MAPB MAPA Bus 0(15:06) Bus D(OS:Ol) BusDOO
REGOPH ADRSOl

L H

H L H 0 MAPC+D MAPC+D
RA(21: 17) RA16

H H L MAPC+D MAPC+D 0
RA(15:06) RA(15:01)

V-3-3

Table 3-2
Access to Unibus Map Registers

Register No. Unibus Address Unibus Address for
Read or Write Memory Reference

MAPL MAPH

0 17 770 200, 02 17 000 000 - 17 01 7 777
1 17 770 204, 06 1 7 020 000 - 17 03 7 777
2 17 770 210, 12 17 040 000 - 17 057 777
3 17 770 214, 16 17 060 000 - 1 7 077 777

4 17 770 220, 22 17 100 000 - 1 7 11 7 777
5 17 770 224, 26 17 120 000- 17 137 777
6 17 770 230, 32 17140000-17157777
7 17 770 234, 36 17 160 000 - 1 7 177 777

10 17 770 240, 42 17 200 000 - 1 7 21 7 777
11 17 770 244, 46 17 220 000 - 17 237 777
12 17 770 250, 52 1 7 240 000 - 1 7 25 7 777
13 17 770 254, 56 17 260 000 - 17 277 777

14 17 770 260, 62 1 7 300 000 - 1 7 31 7 777
15 17 770 264, 66 17 320 000 - 17 337 777
16 17 770 270, 72 17 340 000 - 17 357 777
17 17 770 274, 76 17 360 000 - 17 377 777

20 17 770 300, 02 1 7 400 000 - 1 7 41 7 777
21 17 770 304, 06 17 420 000 - 17 437 777
22 17 770 310, 12 17 440 000 - 1 7 45 7 777
23 17770314, 16 17 460 000 - 1 7 4 77 777

24 17 770 320, 22 17 500 000 - 17 517 777
25 17 770 324, 26 17 520 000 - 17 537 777
26 17 770 330, 32 17 540 000 - 17 557 777
27 17 770 334, 36 17 560 000 - 17 577 777

30 17 770 340, 42 1 7 600 000 - 1 7 617 777
31 17 770 344, 46 17 620 000 - 17 637 777
32 17 770 350, 52 17 640 000 - 1 7 657 777
33 17 770 354, 56 17 660 000 - 17 677 777

34 17 770 360, 62 1 7 700 000 - 1 7 71 7 777
35 17 770 364, 66 17 720 000 - 17 737 777
36 17 770 370, 72 17 740 000 - 17 757 777

*37 17 770 374, 76 17 760 000 - 17 777 777

*Note: Can be read or written into, but not used for mapping.

V-3-4

SECTION VI

CACHE

Unless otherwise indicated, references within this sec
tion pertain to this section only.

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

CHAPTER2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.3.4
2.2.3.5
2.2.3.6
2.3

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
~.:4
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.8.10

CACHE CONCEPTS

SECTION VI CACHE
CONTENTS

Page

SCOPE ... Vl-1-1
OVERALL ORGANIZATION OF A CACHE MEMORY SYSTEM VI-1-1
PROGRAM LOCALITY VI-1-1
BLOCK FETCH VI-1-2
FULLY ASSOCIATIVE CACHE VI-1-2
DIRECT MAPPING CACHE VI-1-3
SET ASSOCIATIVE CACHE VI-1-5
WRITE-THROUGH AND WRITE-BACK VI-1-6

PDP-11/70 CACHE

SCOPE . VI-2-1
PDP-11/70 CACHE' VI-2-1

Data Memory Organization . VI-2-2
Address Memory Organization . VI-2-2
Cache Operation . VI-2-4

Read lfit VI-2-4
Read l\1iss . VI-2-4
Write I-lit Vl-2-4
Write Miss . Vl-2-6
Power-Up Initialization . VI-2-6
Overview VI-2-6

EXAMPLE OF PDP-11/70 CACHE OPERATION VI-2-6

THEORY OF OPERATION

SCOPE ... VI-3-1
PDP-11/70 SYSTEM VI-3-1

Data Parity . VI-3-3
Address Parity . VI-3-3

CACHE DATA PATHS VI-3-3
Address Paths VI-3-3
Read Data Path . VI-3-4
Write Data Paths VI-3-4

PROCESSOR-CACHE INTERFACE VI-3-4
UNIBUS MAP-CACHE INTERFACE . Vl-3-9
RH70-CACHE INTERFACE . VI-3-9
MAIN MEMORY BUS VI-3-15
OPERATIONAL FLOWS VI-3-19

Processor Read Hit . VI-3-20
Processor Read Miss . VI-3-20
Processor Write . VI-3-23
Processor BUST-BEND Cycle . VI-3-24
Unibus Map Read lit . VI-3-27
Unibus Map Read Miss . VI-3-29
Unibus Map Write . VI-3-30
Cache Register Read/Write . VI-3-32
MBC Read From Memory VI-3-32
MBC Write to Memory . VI-3-37

VI-iii

CHAPTER4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.6
4.6.1
4.6.2
4.6.2.1
4.6.2.2
4.6.3
4.7
4.8
4.8.l
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8

CONTENTS (Cont)

Page

DETAILED LOGIC

SCOPE ... VI-4-1
BLOCK DIAGRAM DESCRIPTION VI-4-1

MBC Address Latch VI-4-1
Address Multiplexer VI-4-1
Main Memory Bus Control Generator VI-4-2
Main Memory Bus Address Drivers VI-4-3
Address Field Inverter . VI-4-3
Index Field Inverter-Drivers . VI-4-3
Address Memory . VI-4-3
Valid Bit Generator VI-4-4
Address Memory Parity Generator VI-4-4
Tag 0 and Tag 1 Parity, Address, and Validity Checker Vl-4-4
Write Data Multiplexer . VI-4-5
Data Parity Generator . VI-4-5
Main Memory Bus Data Drivers VI-4-5
Main Memory MBC Data Drivers VI-4-5
Main Memory Bus Data Receivers . . . VI-4-5
Bus Data Register . VI-4-6
Even Multiplexer and Odd Multiplexer ,' . . VI-4-6
Main Memory Data Parity Check .. VI-4-6
FDM Index Field Drivers .. VI-4-6
Fast Data Memory (FDM) .. VI-4-7
FDM Data Parity Check VI-4-8
Even and Odd Multiplex Inverters VI-4-8
Cache Data Multiplexer VI-4-8
Register Logic VI-4-9

CACHE TIMING . VI-4-9
Cache Timing Sequence Vl-4-9
Read Hit Timing . VI-4-10
Main Memory Bus (Slow Cycle) Timing VI-4-10
Timing Restart After Main Memory Cycle VI-4-11

POWER-UP LOGIC VI-4-11
REQUEST ARBITRATOR LOGIC VI-4-12
MBC ARBITRATION LOGIC VI-4-13

Request Block Logic (Drawing CDPH) VI-4-13
Address and Data Select Logic . VI-4-13

Single Request Operation . VI-4-13
Multiple Request Operation . VI-4-15

Data Ready Logic . VI-4-16
GROUP SELECTION AND VALID BIT LOGIC VI-4-17
CACHE REGISTERS AND REGISTER LOGIC VI-4-17

Low Error Address Register (17 777 740) VI-4-18
High Error Address Register (17 777 742) VI-4-18
Memory System Error Register (17 777 744) VI-4-19
Control Register (17 777 746) VI-4-19
Maintenance Register (17 777 750) VI-4-21
Hit/Miss Register (17 777 752) . VI-4-21
Use of Cache Registers . VI-4-22
Register Logic . VI-4-24

VI-iv

Figure No.

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

Table No.

2-1
2-2
3-1
3-2
3-3

ILLUSTRATIONS

Title

Relationship of Cache to Processor and Main Memory
Fully Associative Cache Memory System
Direct Mapping Cache Memory System
18-Bit Byte Address Breakdown (4 Words per Block, 64 Blocks)
Set Associative Cache Memory System {Two-Way)
22-Bit Byte Address Breakdown (2 Words per Block, 256 Sets of Blocks)
Fast Data Memory Organization
Address Memory Organization
PDP-11 /70 Cache Simplified Data Pa th Diagram
PDP-11 /70 System
Cache Data Paths Block Diagram
Processor - Cache Protocol
Unibus Map - Cache Protocol .
RH70 - Cache Protocol
Cache - Main Memory Protocol
Flowchart Symbol Definitions
Processor Read Hit .
Processor Read Miss
Processor Write . . .
Processor Bust-Bend Cycle
Unibus Map Read Hit
Unibus Map Read Miss .
Unibus Map Write
Register Read and Write
MBC Read From Memory
MBC Write to Memory .
Cache Clock Waveforms
Cache Timing Sequence
Power-Up Sequence Timing Diagram
Relationship of the MBC Arbitrator to the Cache
MBC Arbitrator Block Diagram
MBC Request Timing (MBC A Requesting)
MBC Address and Data Select Timing (Multiple Requests - Straight Priority)
Low Error Address Register
High Error Address Register
Memory System Error Register
Control Register
Maintenance Register
Hit/Miss Register . .
Register Logic Block Diagram

TABLES

Title

Example Program
Summary of Cache Operations Example .
Master Timing and Initialization Control Lines
Processor-Cache Data Transfer Control
Unibus Map-Cache Interface Signals

VI-v

Page

. VI-1-1
.. VI-1-3

. .. VI-1-4
. VI-1-4
. VI-1-5
. VI-2-1
. VI-2-2

.. VI-2-3

.. VI-2-5

.. VI-3-2
... VI-3-5

. VI-3-8

. VI-3-9
VI-3-12
VI-3-16
VI-3-19
VI-3-21
VI-3-22
VI-3-25
VI-3-26
VI-3-27
VI-3-28
VI-3-31
VI-3-33
VI-3-35
VI-3-36
. VI-4-9
VI-4-10
VI-4-12
VI-4-13
VI-4-14
VI-4-14
VI-4-15
VI-4-18
VI-4-18
VI-4-19
VI-4-21
VI-4-22
VI-4-25
VI-4-25

Page

. VI-2-9

. VI-2-9

. VI-3-6

. VI-3-6
VI-3-10

Table No.

34
3-5
3-6
4-1
4-2
4-3
44
4-5
4-6
4-7

TABLES (Cont)

RH70-Cache Interface Signals
Main Memory Bus Signals
Memory Bus Signal Pin Connections
MBC Selection Priorities ...
Cache Registers
High Error Address Register
Memory System Error Register
Control Register
Control Register Bits 5 :2
Maintenance Register

Title

VI-vi

Page

VI-3-13
VI-3-17
VI-3-18
VI4-13
VI4-17
Vl4-18
VI-4-20
Vl4-21
VI-4-22
VI4-23

1.1 SCOPE
This chapter explains the purpose of cache memory
systems and describes various methods used to im
plement such systems. Parameters and strategies in
volved in cache memory design are introduced,
described, and analyzed in order to facilitate the
reader's understanding of the specific Cache imple
mented in the PDP-I I/70 system.

1.2 OVERALL ORGANIZATION OF A CACHE
MEMORY SYSTEM
The cache memory system is intended to simulate a
system having a large amount of fast memory. To
do this, the cache system relies on a small amount
of very fast memory (the cache), a large amount of
slower memory (the Main Memory), and the statis
tics of program behavior.

The basic idea is to store some data in the fast
memory and some in the slow memory. If it can
somehow be arranged that data is in the fast mem
ory when the processor needs it, the program will
execute quickly, slowing down only occasionally for
Main Memory operations. Conventional mixed
MOS-Core systems attempt to achieve this goal by
having the programmer guess beforehand which sec
tions of his program should go in each memory.
This is often awkward, and usually only moderately
successful. The cache memory system tries to
achieve the same goal by automatically, dynam
ically shuffling data between the two memory types
in a way which gives a high probability that useful
data will be in the fast memory. All of the follow
ing discussions of cache organizations and strate
gies are intended to show implementable methods
of shuffling data so that the data most likely to be
needed next will be in the fast memory instead of
the slower Main Memory.

CHAPTER 1
CACHE CONCEPTS

Figure I-1 illustrates the relationship of a cache to
the processor and Main Memory.

PROCESSOR

MAIN MEMORY BUS

MAIN
MEMORY

11·2833

Figure I- I Relationship of Cache
to Processor and Main Memory

1.3 PROGRAM LOCALITY
A cache memory works because it can usually pre
dict successfully which words a program will re
quire soon. If programs used words completely at
random from all of memory, it would be impossible
to predict which words would most likely be
needed next. Under these circumstances, a cache
memory system could perform no better than a con
ventiona 1 mixed memory system with a small
amount of bipolar memory.

Fortunately, programs do not generate random ad
dresses. Instead, programs have a tendency to make
most accesses in the neighborhood of locations ac
cessed in the recent past. This is the basis of the
principle of program locality. The fact that pro
grams display this type of behavior makes cache
memory systems possible.

VI-I-I

An understanding of why the principle of program
locality is true can . be obtained by examining the
small scale behavior of typical program data struc
tures. Code execution itself generally proceeds in
straight lines or small loops; the next few accesses
are most likely to be within a few words ahead or
behind. Stacks grow and shrink from one end, with
the next few accesses near the current top. Charac
ter strings and vectors are often scanned through
sequentially.

The principle of program locality is a statement of
how most programs tend to behave, not a law
which all programs always obey. Jumps in code se
quences, seemingly random access of symbol tables
by assemblers, and context switching between pro
grams are examples of behavior which can ad
versely affect the locality of addresses generated by
a processor. The procyss of guessing which words a
program will reference next can never be com
pletely successful. The percentage of correct guesses
is a statistical measure affected by the size and or
ganization of the cache, the algorithms it uses, and
the behavior of the program driving it.

1.4 BLOCK FETCH
The principle of program locality states that for the
cache to have the best chance of having the word
the program needs next, the cache should have
words near those recently used. The basic method
of accomplishing this is the block fetch. When the
cache controller finds it necessary to move a word
of data from slow memory to fast memory because
the data was not in the fast memory when needed,
the controller will move not just the word required,
but a block of several adjacent words at once. Typi
cally, the block will contain one (degenerate case),
two, four, or eight words starting on an even block
boundary.

The block fetch can provide either look-behind,
look-ahead, or both, depending on the position of
the originally requested word within the block.
Since many important generated address sequences
(e.g., most code) tend to move in increasing order,
the originally requested word is usually the first in
the block, so the block fetch generally provides
look-ahead.

The block size is one of the most important parame
ters in the design of a cache memory system. If the
block size is too small, the system will have in
sufficient look-ahead and performance will suffer
slightly, particularly for programs which do not con
tain many loops. Also, as will be discussed later,
small block sizes require the system to store more
addresses than large blocks, for the same total mem
ory size.

If the block is too large, there may not be room for
enough blocks in the cache to provide for adequate
look-behind. Large blocks also tend to mean more
memories operating in parallel within the slow mem
ory, and therefore wider buses between slow and
fast memory, resulting in increased cost. As the
block gets larger, each additional word in the block
is less likely to be useful, since it is further from the
originally requested word and less likely to be
needed soon by the program. It has been found em
pirically that while a block size of two words in
creases memory system performance dramatically,
further increases in block size produce much
smaller improvements which are seldom worth
implementing.

1.5 FULLY ASSOCIATIVE CACHE
If a cache memory system was designed so that the
fast memory held one contiguous block of I 000
words, it would fail miserably. Most programs
make reference to code segments, subroutines,
stacks, lists, and buffers located in scattered parts
of the whole address space. Ideally, a 1000-word
cache would hold the 1000 words the controller esti
mated as most likely to be needed, no matter how
scattered these words were throughout the address
space of Main Memory.

Since there would be no relation of all the ad
dresses of these thousand words to each other or to
any single register or mapping function, each of the
I 000 data words in the fast memory would have to
carry its address with it. Then, when the processor
requested a word from memory, the cache would
simply compare (associate) the address from the
processor with each of the thousand addresses of
words in the fast memory. If a match were found,
the data for that address would be sent to the proc
essor. This is the principle of an associative mem
ory (Figure 1-2).

VI-1-2

BLOCK

3

2

0

CACHE

MAIN
MEMORY

----- ADDRESS

44322

2214

1736

•1 ·2834

Figure 1-2 Fully Associative Cache Memory System

This system, called fully associative because the in
coming address must be compared (associated) with
all tht: stored addresses, gives the cache controller
maximum nexibility in deciding which words it
wants in fast memory, i.e., any words at all until
the memory is full. Unfortunately, IOOO address
comparisons would be unacceptably slow and/or ex
pensive. One of the basic issues of cache organiza
tion is how to provide minimum restrictions on
what groups of words may be present in fast mem
ory, while limiting the number of address com
parisons required.

1.6 DIRECT MAPPING CACHE
At the opposite extreme from the fully assoc1at1ve
cache is the direct mapping cache. Instead of one
address comparison on every block, the direct map
ping cache requires only one address comparison.

The many address comparisons of the fully associ
ative cache are necessary because any block from
Main Memory can be placed in any block of fast
memory. Thus, every block of fast memory must be
checkt~d to see if it has each requested address. The
direct mapping cache allows each block from Main

Memory only one possible location in fast memory
(Figure 1-3). Consider each incoming address as
being made up of three parts. The first part starts
at hit 0 and contains enough bits to specify which
byte out of a block is being requested. The next
lield, called the index field, starts where the first
field leaves off and contains enough bits to specify
any block in fast memory. The third field, called
the address field, contains the rest of the bits.

As an example, consider an 18-bit PDP- I I byte ad
dress as input to a 256-word, 4 word per block di
rect mapping cache. (This cache would thus be 4
words wide and 64 blocks deep. Assuming four
words per block allows us to break down the ad
dress conveniently, using octal notation.) As illus
trated in Figure 1-4, the word field in this case
comprises bits 2, I, and 0, where bit 0 indicates tht".
byte, and bits 2 and I indicate the word. The index
field comprises bits 8 through 3, and indicates the
block. The address field comprises bits 17 through
9.

If the processor requests word 274356, the cache
controller looks at the address which goes with the
information currently in block number 35 in fast

VI-1-3

BLOCK

7

6

5

4

3

2

0

CACHE

MAIN
MEMORY

r-------. ADDRESS

----t========I 2 5 7 4 §.0

./1------1 2 0 I 6 f 0

13Q2

,, ·2835

Figure 1-3 Direct Mapping Cache Memory System

17 16 15 14 13 12 11 09 OB 07 06 05 04 03 02 01 00

'--~~~~~~~~~---~~~~~~~~~~--~~~~~------~~~~~-''~---,--~~
ADDRESS FIELD INDEX FIELD WORD BYTE

INDICATE WORDS
AND BYTES

WITHIN A BLOCK

11-2836

Figure 1-4 18-Bit Byte Address Breakdown (4 Words per Block, 64 Blocks)

memory. If this address field is 274, the controller
sends the third word in that block to the processor.
If the stored address field is not 274, the controller
must fetch block 27435 from Main Memory, trans
mit the third word in the block to the processor,
load the block into block 35 of fast memory, replac
ing whatever was there previously, and change the
address field stored with block 35 to 274.

Any address whose index field is 35 will be loaded
into block 35 of fast memory, and therefore this is
the only place the cache controller has to look if
the processor requests the data from an address
whose index field is 35.

Notice also that only the address field of the ad
dress need be stored with each block, because only
the address field of the address is required for com
parison. The index field need not be compared be
cause anything stored in fast memory block 35 has

VI-1-4

an index field of 35. The word field need not be
compared because if the block is there, every word
in the block is there.

This is how the direct mapping cache uses in
expensive direct addressing of fast memory to elimi
nate almost all comparison operations.

Of course there are disadvantages to this simple
scheme. If the processor in the example above
makes frequent references to both location 274356
and location 6352, there will be frequent references
to slow memory, because only one of these loca
tions can be in the cache at one time. Fortunately,
this sort of program behavior is infrequent, so that
the direct mapping cache, although offering signifi
cantly poorer performance than fully associative, is
adequate for some applications. Usually the system
of choice is a compromise between a direct map
ping cache and fully associative cache, called the set
associative cache.

1.7 SET ASSOCIATIVE CACHE
The set associative organization is a compromise be
tween the extremes of fully associative and direct
mapping. This type of cache has several directly
mapped groups (Figure 1-5). For each index posi
tion in fast memory there is not one block, but a
set of several, one in each group. (The set of blocks
corresponding to an index position is called a
"set.") A block of data arriving from Main Mem
ory can go into any group at its proper index
position.

Since there are several places for data with the
same index field in their addresses to be stored, the
type of excessive Main Memory traffic possible in a
direct mapping organization is less likely to occur.
This gives a set associative cache higher perform
ance. In fact, a four-way set associative cache (four
groups) will normally perform very nearly as well
as a fully associative cache.

The price that is paid for higher performance is
some increase in complexity. There are several
places in fast memory where any given piece of
data can be stored, so the controller must do sev
eral compares (i.e., must associate) to determine in

INDEX
FIELD BLOCK y 3

2

0

which place (if any) the requested data is located.
The number of times it must compare (associate) is
of course equal to the number of groups, usually
two, three, or four. A set associative cache can be
classified as an n-way set associative cache, where n
is the number of compares performed (i.e., the num
ber of groups).

Another aspect of the increased complexity be
comes apparent when a block of fast memory must
be overwritten. There are now several locations in
fast memory where the new data from Main Mem
ory may be written (one in each group), so the con
troller must have some means of deciding which
block will be overwritten. The decision could be
made using any of the following considerations:

Least Recently Used (LR U) - The block least re
cently used is replaced.

First In-First Out (FIFO) - The block which has
been stored the longest time is replaced.

Random - Blocks are replaced in a random
manner.

MAIN
MEMORY

----""' ADDRESS

--"J------t 4 2 5 3~2

_..__ ___ -t 4 2 s 3,g_o

1410
14Q6

2Q4

11·2837

Figure 1-5 Set Associative Cache Memory System (Two-Way)

Vl-1-5

A replacement strategy based on LRU or FIFO in
formation requires the storage· of LRU or FIFO
bits, along with the address fields in the address
memory, and the logic necessary to generate and de
code these bits. The random strategy is far easier
and cheaper to implement, yet provides perform
ance only slightly lower than that obtainable by the
other strategies.

The extra performance of a set assoc1at1ve cache
usually justifies the slightly extra complexity of at
least two-way associativity in all but low perform
ance applications.

l.8 WRITE-THROUGH AND WRITE-BACK
Assume that the following sequence of events oc
cur. First, the processor does a read of location
200, resulting in the block containing this address
being copied into fast memory. Then the processor
writes new data into location 200, updating this lo
cation in fast memory. Next the processor does a
reference which causes the cache controller to over
write the block in fast memory containing location
200. If the processor reads location 200 again, the
obsolete data in Main Memory will be loaded into
fast memory. This is unacceptable, and two meth
ods have been devised to deal with the problem.
The methods are called write-through and write
back.

With write-th rough, whenever a write reference oc
curs, the data is not only stored in fast memory,
but is also immediately copied into Main Memory.
This means that the Main Memory always contains
a valid copy of all data. If the controller wants to
overwrite a block in fast memory, this can be done
immediately, without losing any data.

The advantages of write-through are its relative sim
plicity and the fact that the Main Memory always
has correct data. The primary disadvantage is some
reduction of speed due to the need to access the
slow memory on every write reference. This is off
set somewhat by the fact that write references are a
small fraction of all references to memory. In addi
tion the cache does not have to wait for the Main
Memory to finish before starting the next cycle.

VI-1-6

Since a reasonable design would only cycle the
memory being written into and not all the parallel
memories in Main Memory, the system should not
even be held up by multiple sequential writes. How
ever, some fraction of the time, the system will
have a read miss following a write, or two writes to
the same memory stack within Main Memory, and
then the system must wait. This causes the system
to run slightly slower than first-order estimates
would indicate.

The other method of handling the stale data prob
lem in a cache system is called write-back. Under
th is method, data written by the processor is only
stored in the fast memory, leaving the Main Mem
ory unaltered and obsolete. A bit in the address
field of the block in fast memory, called the altered
bit, is set to indicate that th is block contains new in
formation. When the controller wants to overwrite
a block of fast memory, the uttered bit is inspected
first. If this bit is set, the controller must write the
block into Main Memory before overwriting it.

The primary advantage of write-back is higher per
formance. For almost any program, the number of
times an altered block must be copied into Main
Memory is less than the number of write references,
so write-back is noticeably faster than write
through. One disadvantage of write-back is in
creased complexity. A write-back system must have
the ability to regenerate addresses from tags and
the extra sequencing logic to do double cycles.

A no th er disadvantage of write-back is the power
fail problem. When power fails, fast memory will
be holding the only valtd copies of some arbitrary
set of locations. If these are not copied into Main
Memory, they will be lost. Since there is no way of
knowing which locations were lost, the entire mem
ory must be considered volatile. If Main Memory is
volatile anyway, there is no problem; otherwise,
steps must be taken. One possibility is to require
the power fail program to do a sequence of reads
calculated to ensure that every block in the cache
has been overwritten. A more reliable, but more ex
pensive system would automatically ensure that all
altered blocks are copied into Main Memory, after
the program halts, but before power disappears.

2.1 SCOPE
Th is chapter describes the specific Cache which has
been implemented in the PDP-11/70 system. The
reader should be familiar with the cache concepts,
classifications, and definitions described in the pre
vious chapter.

2.2 PDP-11 /70 CACHE
The Cache used in the PDP- I I /70 is two-way set as
sociative. It consists of two groups of 256 blocks
each. Each block consists of two words; therefore,
the total data storage capacity of the fast memory
is I K words. The 11 /70 Cache is implemented us
ing a random replacement strategy and write
through.

Since the PD P-11 /70 system uses a 22-bit address
space, the address is broken down into address
field, index field, and word field as illustrated in
Figure 2-1 and outlined below.

I. Bits 21-10 comprise the address field
used to identify a block of data in fast
memory.

2.

3.

4.

CHAPTER 2
PDP-11/70 CACHE

Bits 9-2 comprise the index field used to
designate a set. A set consists of two
blocks, one in each group, located at the
index position designated by the index
field.

Bit I designates the word (one of two in
the block).

Bit 0 indicates the byte, as in all PDP- I I
addresses.

NOTE
This manual uses the term "address
field" to designate that part of an
address which is stored in the Ad
dress Memory. The term "address
tag" designates the tag used to iden
tify data stored in the Cache. The
address tag thus consists of an ad
dress field, a Valid bit, and two par
ity bits.

21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I
'--~~~~~~~~~-----~~~~~~~~~--"--~~~~~~....-~~~~~--''-v--'~

ADDRESS FIELD INDEX FIELD
INDICATES A SET OF

BLOCKS

Figure 2-1 22-Bit Byte Address Breakdown (2
Words per Block, 256 Sets of Blocks)

Vl-2-1

WORD BYTE

"WORD" FIELD
INDICATES WORD

AND/OR
BYTE WITHIN

A BLOCK

H-2838

ADDRESS BIT 1

(WORD FIELD)

9:2) _,
DI

ADDRESS BITS (
(INDEX FIEL

BLOCK/SET

000

256
INDEX

POSITIONS

•
3771e

I-

r- 36 BITS

GROUP 0

~EVEN

,...
~ BLOCK

14--- WORD

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

DATA OUT

72 BITS

•~18BITS
36 BITS

·I· 18BITS-

I ~EACH 18BIT WORD

GROUP 1 CONSISTS OF

loDD 1EVEN looo I
16 DATA BITS PLUS
2 PARITY BITS

SET -
BLOCK

WORD-

I I
I I

I I
I I
I I
I I
I I
I

I I
I I
I I
I I
I I
I I
I I
I I
I

j l DATA OUT j
----- ---·--- -- - --(FOR REFERENCE)

~

MUX
L.._

HIT ON GROUP 0

HIT ON GROUP 1
11-2839

Figure 2-2 Fast Data Memory Organization

2.2.1 Data Memory Organization
Figure 2-2 illustrates the organization of the PDP
! I /70 Cache Fast Data Memory (FD M). Note that
the FDM consists of 256 sets = 512 blocks = I 024
words, and is subdivided into two equal groups
(Group 0 and Group I). Bits (9:2) of the incoming
address index into the FDM and select one of the
256 sets. (A set consists of two blocks, one in each
group.) Bit I of the incoming address enables either
the low (even) word or the high (odd) word within
the blocks that comprise the selected set to be gated
out of the FDM to a Cache Data Multiplexer. One
of these words will be selected if a hit is detected
upon address field comparison. The word selected
will he from the group upon which the hit occurs.

VI-2-2

2.2.2 Address Memory Organization
The organization of the Address Memory, illus
trated in Figure 2-3, is determined by the Fast Data
Memory organization. The Address Memory is di
vided into two equal parts: the Tag 0 Address Mem
ory and Tag I Address Memory, corresponding to
Group 0 and Group I of the Fast Data Memory.
Since an address tag field must be stored to identify
each hlock in the FDM, 512 locations are required
for address tag fields: 256 of these locations are in
Tag 0 Address Memory, while the remaining 256 lo
cations are in Tag I Address Memory. Each ad
dress tag consists of 15 bits. Therefore, the total
width of Address Memory is I 5 X 2 = 30 bits.

ADDRESS Bl TS (9: 2 l
(INDEX FIELD)

1 BIT

VALi D BIT

000

256
INDEX

f,OSITIONS

377

ADDRESS BITS (21 :
(ADDRESS FIE

- 15 BITS 15 BITS --
~

r.:12 BITS •1 1-t-- 2 BITS

PARITY i VALID BIT

u RESS FIELD ·n ADDRESS FIELD
DPARITY

i.--1 1- ADDRESS TAG FIELD --

1 1 l
10)
LO)

'==!:I PARITY] BPARITY J """l CHECK CHECK --• ~ _; ~ ~ I A - Bl
PAR [A • B

PAR

COMPARATOR OK COMPARATOR OK

A=B A=B

MATCH09

HIT 0

MATCH19

HIT 1

11-2840

Figure 2-3 Address Memory Organization

Vl-2-3

The address tag is organized as follows:

I. Twelve bits are required to store the ad
dress field.

2. One bit is used to store a Valid bit; this
bit indicates whether the address tag
(and therefore the FDM data corre
sponding to the tag) is valid.

3. The remaining two bits are used to store
the address tag parity bits which verify
that the address tag has been properly
loaded into the Address Memory.

When a memory cycle is performed, bits (9:2) of an
incoming address index into the Address Memory
and select an address tag in Tag 0 Address Memory
and Tag I Address Memory. The two address fields
are read from the Address Memory and compared
with the address field (bits 21: I 0) of the incoming
address. If either comparison results in a match, if
the corresponding Valid bit is set, and if no address
tag parity error is detected, HIT 0 or HIT I is as
serted. These signals perform the final selection of
the words output from the FDM, as illustrated in
Figure 2-4.

2.2.3 Cache Operation
When a 22~bit address arrives from the processor
or Unibus, bits (9:2) (the index field) are immedi
ately used as an index into the 256 by 30 bit Ad
dress Memory, which contains the high order bits
(address field) of the addresses presently stored in
the Cache and their Valid bits. At the end of the
Address Memory access time, two tags are avail
able for use. Each tag consists of a 12-bit address
field, a Valid bit, and two parity bits. The two ad
dress fields go directly to two comparators, where
they are compared with the 12 high order bits of
the incoming address. (The stored address tags are
checked for correct parity while the address fields
are compared. The following discussion assumes
that no address tag parity errors are detected.)

2.2.3.1 Read Hit - Assume that one of the address
comparisons results in a match and that the corre
sponding Valid bit is set. This condition is called a
"hit" and means that the word requested is in the
Fast Data Memory. The appropriate select signal is
therefore sent to the Fast Data Memory.

VI-2-4

Ten bits are required to select one of the 1024
words in Fast Data Memory. Eight of these bits are
the same index bits used to index into the Address
Memory. These bits select a set of two blocks, one
block in each group. Also required is bit 1 of the in
coming address, which selects either the high or low
word of the blocks within the set. The last selection
is provided by the comparison signal from the ad
dress field comparators, which determine which of
the two groups (or equivalently, which of the two
blocks within the set) has the desired data. After
this last signal arrives, the data is available from
the data memory and will be sent to the processor
or Unibus as required.

2.2.3.2 Read Miss - If neither address field from
the Address Memory matches the address field of
the incoming address, then the requested data is
not in fast memory. This is called a miss condition.
When the Cache controller determines that there is
no match, it must start a Main Memory cycle to
fetch the required block. The block address will be
the 20 high order bits of the incoming address.

During the Main Memory access time, the Cache
controller can decide where to put the incoming
data when it arrives. The index field determines
which block within a group is replaced. The con
troller determines in which group the new block
will be placed by examining an internally generated
Random bit. When the data block arrives from
Main Memory, it is written into the selected block
of fast memory, while the requested word is passed
along to the processor or Unibus. At the same
ti me, the address field of the block is loaded into
the corresponding location in Address Memory
along with a set Valid bit. (A set Valid bit is loaded
into Address Memory whenever the Fast Data
Memory is loaded as a result of a read miss.)

2.2.3.3 Write Hit - During a write cycle initiated
from the processor or Unibus, the initial sequence
of events in the Cache is the same as during a read
cycle: the address comes in, the Address Memory is
accessed, and the address fields are compared. If
the address fields match and the corresponding
Valid bit is set, a hit is indicated and the new data
is written into the appropriate word or byte of fast
memory, as selected by the index, word, and byte
fields of the address and the comparator outputs.
Since the PDP-11/70 Cache is implemented using
write-through, the data is also written into Main
Memory. This ensures that the data in the Main
Memory and in the Cache are never different.

'

ADDRESS BITS (9:2 l
!INDEX FIELD)

ADDRESS BITS (21:10)
!ADDRESS FIELD)

ADDRESS BITS 1, 0
(WORD/BYTE SELECT)

'

ADDRESS BITS (9:2)
(INDEX Fl ELD)

VALID BIT -1
TAG 0

ADDRESS MEMORY
PARITY

] ADDRESS FIELD

000 ~ t-ADDRESS TAG FIELD
~

I
25i I

INDEX I
ftOSITIONS I

I
I
I
I

t
377

1

.....

TAG 1
ADDRESS MEMORY

VALID BT

[
I

ADDRESS FIELD

I
I
I
I
I
I
I
I

1

_CPARITY

~PAl'llTYJ !I CHECK
B PARITY J

CHECK

i ' ; ~

[A • !]
PAR A . B

COMPARATOl'I OK COMPAAATOR
A•I A•i

MATCH 0 MATCH 1

HIT 0

4>- GROUP 0 l GROUP 1

looo EVEN J>DD 1EVEN

000 I.. SET

' BLOCK BLOCK ~

t-i--WORD WORD-

I I I I
256 I I

I I
INDEX I I I

POSITIONS I I I I
I I I

I I I
I I I I
I I I I
I I I I I I I

t
377

DATA OUT J 1 DATA OUT J
L~ DATA OUT

2
Figure 2-4 PDP-11 /70 Cache Simplified Data

Path Diagram

VI-2-5

PAR
OK

~

.....

~

lt-2953

2.2.3.4 Write Miss - If, during a write operation
from the processor or Unibus, a miss is indicated
by the address comparison in the Cache, a write
cycle is performed to the specified address in Main
Memory. The contents of the Address Memory and
the Fast Data Memory are left unaltered.

2.2.3.5 Power-Up Initialization - On power-up, the
Cache performs a power-up sequence during which
all of the Valid bits in the Address Memory are
cleared. This is done because anything stored in the
Cache immediately after a power-up must not be
construed as valid data. As program execution be
gins, the density of read misses is high (because of all
the negated Valid bits), and data must be fetched
from Main Memory. As a result, the FDM gets filled
and Valid bits get asserted. This in turn results in
fewer misses, i.e., a higher hit rate and greater speed
as program execution continues. The time interval
required for the memory system to achieve nominal
speed is only on the order of I ms.

At the same time that the Address Memory Valid
bits arc negated, all the remaining bits in the Ad
dress Memory and FDM are loaded with bit pat
terns having correct parity. This is to ensure that
the bit patterns resident in the Address Memory
and FDM upon power-up will not generate parity
errors when program execution begins.

2.2.3.6 Overview - It should be apparent to the
reader that the mechanisms described in the preced
ing paragraphs ensure that:

I. The recently used data tends to be m
fast memory.

2. The Main Memory always has a correct
copy of all data.

3. The same Main Memory location never
ends up in two different Fast Data Mem
ory locations at the same time.*

2.3 EXAMPLE OF PDP-11/70 CACHE
OPERATION
The following is an example illustrating Cache oper
ations. Assume that the following sequence of
events has occurred. The system was powered up,
and the machine code listed in Table 2-1 was man
ually loaded into core memory at the locations spec
ified. Assume that the code was properly loaded

*This condition can occur, however, if the Control Register Force
Replacement bits are manipulated.

VI-2-6

and that no verification (read operation) was per
formed. At this point, none of the Valid bits in the
Address Memory of the Cache are asserted. Ad
dress I 000 is now loaded into the processor PC, the
ENABLE/HALT switch is set to ENABLE, and
the ST ART switch is depressed. Program execution,
summarized in Table 2-2, begins as follows:

NOTE
The program used in this example is designed to illus
trate Cache operations, not a typical use.

I. The processor initiates a fetch of the con
tents of address 1000.

a. This results in a miss, because the
corresponding Valid bits are
u nasserted.

b. The contents of addresses 1000 and
I 002 are fetched from Main Mem
ory and loaded into block (index
position) 200 of Group 0 of the
FDM, as determined by the Ran
dom bit.

c. The address field (0000) is loaded
at index position 200 of the corre
sponding Address Memory along
with an asserted Valid bit. At the
same time, the contents of address
1000 are sent to the processor.

2. The processor initiates a fetch of the con
tents of address I 002.

3.

a. The address field (0000) is com
pared with the contents of the Ad
dress Memory at index position
200. This results in a hit on Group
0 of the FDM. (The match occurs
with the tag field loaded at step
I c.)

b. The requested word is sent to the
processor.

The processor initiates a fetch of the con
tents of address location 5000.

a. The address field (0002) is com
pared with the contents of Address
Memory at index position 200.
This results in a miss.

b. The contents of addresses 5000 and
5002 are fetched from Main Mem
ory and loaded into block (index
position) 200 of Group 0 of the
FD M as determined by the Ran
dom bit. The previous contents of
block 200 of Group 0, loaded at
step I c, are overwritten. This is be
cause of the random nature of
group selection; the Random bit,
as assumed in Table 2-2, happens
to be in the same state as it was
when the FDM was previously
loaded. The corresponding position
in Address Memory is also over
written with the new address field
(0002). At the same time, the con
tents of location 5000 are sent to
the processor.

4. The processor initiates a fetch of the con
tents of location 1004.

a. The address field (0000) is com
pared with the contents of the Ad-
dress Memory at index position
20 I. Since the Valid bits at this in
dex position are unasserted, this re
sults in a miss;

b. The contents of address I 004 and
1006 are fetched from Main Mem
ory and loaded into block (index
position) 201 of Group 0 of the
FDM, as determined by the Ran
dom bit.

c. The address field (0000) is loaded
at index position 20 I of the corre
sponding Address Memory along
with an asserted Valid bit. At the
same time, the contents of address
1004 are sent to the processor.

5. The processor now initiates a write to lo
cation 3000. (The data being written was
previously fetched from location 5000.)

a. The address field (0001) is com
pared with the contents of Address
Memory at index position 200.
This results in a miss.

VI-2-7

b. The Cache therefore writes the
data from the processor into the
specified location (3000) in Main
Memory. (This illustrates write
through .) The contents of the
FDM and Address Memory are
left unaltered.

6. The processor initiates a fetch of the con
tents of location I 006.

a. The address field (0000) is com
pared with the contents of the Ad
dress Memory at index position
201.

b. This results in a hit on Group 0 of
the FDM. (The match occurs with
the address field loaded at step 4c.)

c. The requested word is sent to the
processor.

7. The processor initiates a fetch of the con
tents of location 1010.

a. The address field (0000) is com
pared with the contents of the Ad
dress Memory at index position
202. This results in a miss.

b. The contents of addresses IO 10 and
I 012 are fetched from Main Mem
ory and loaded into block (index
position) 202 of Group 0 of the
FDM, as determined by the Ran
dom bit.

c. The address field (0000) is loaded
at index position 202 of the corre
sponding Address Memory along
with an asserted Valid bit. At the
same time, the contents of address
JOJO are sent to the processor.

8. The processor now initiates a fetch of
the contents of address location 3000.

a. The address field (000 J) is com
pared with the contents of Address
Memory at index position 200.
This results in a miss.

b. The contents of addresses 3000 and
3002 are fetched from Main Mem
ory and loaded into block (index
position) 200 of Group I of the
FDM, as determined by the Ran
dom bit.

c. The address field (000 I) is loaded
at index position 200 of the corre
sponding Address Memory, along
with an asserted Valid bit. At the
same time, the contents of address
3000 are sent to the processor.

9. The processor now initiates a fetch of
the contents of address location 3002.

a. The address field (000 I) is com
pared with the contents of the Ad
dress Memory at index position
200.

b. This results in a hit on Group I of
the FDM. (The match occurs with
the tag field loaded at step 8c.)

c. The requested word is sent to the
processor.

IO. The processor now initiates a DA TIP
type fetch of the contents of address loca
tion 1012.

a. The address field (0000) is com
pared with the contents of Address
Memory at index position 202.

VI-2-8

b. This results in a hit on Group 0 of
the FDM. (The match occurs with
the tag field loaded at step 7c.)

c. The requested word is sent to the
processor.

I I. The processor increments the received
word and then initiates a DA TO to
write it back into address location IO 12.

a. The address field (0000) is com
pared with the contents of Address
Memory at index position 202.

b. This results in a write hit on
Group 0 of the FDM. (The match
occurs with the tag field loaded at
step 7c.)

c. The Cache performs a write cycle
to Main Memory. (This is an illus
tration of write-through.) It also
updates the high word at index po
sition (block) 202 of Group 0 of
the FD M. If the write operation
had been a DATOB, only the speci
fied byte in the FDM (and Main
Memory) would be altered.

12. The processor would now fetch the
HALT instruction at address 3004 (read
miss), execute it, and halt. It should be
clear that if the Random bit is asserted,
the contents of locations 3004 and 3006
will be loaded into block 201 of Group I
of the FDM.

Address
Loaded

001000
001002
001004
001006
001010
00!012

003000
003002
003004

005000

Processor

REF PC Operation

I 1000 Fetch (1000) = 013737

2 1002 Fetch (I 002) = 005000

3 1004 Fetch (5000) = 005237

4 1004 Fetch (1004) = 003000

5 1006 Write 005237 into 3000

6 1006 Fetch (I 006) = 000137

7 !010 Fetch (IOIO) = 003000

8 3000 Fetch (3000) = 005237

9 3002 Fetch (3002) = 001 O l 2

10 13004 Fetch (001012) = 177776

II 13004 Write 177777into00101'.!j

I
12 j3004

I
j Fetch (3004) = 000000

I

Machine
Code

013737
005000
003000
000137
003000
177776

DONTCARE
001012
000000

005237

Random
Bit Hit I

Assumed) Miss Block

0

I

0

I

0

l

0

l

0

1

0

Read
Miss
Hit
on
Read
Miss
Read
Miss
Write
Miss
Hit
on
Read
Miss
Read
Miss
Hit
on
Hit
on
Hit

I on j

I
I Read

Miss

200

200

200

201

202

202

202

Table 2-1
Example Program

(all numbers in octal notation)

Index Address
Field Field Mnemonics Remarks

[]

r l
MOY (i>i#5QOO(a1#3000 This program

200 5000 moves the INC

[201] 0000 3000 instruction at
JMP («#3000 address 5000

[202 1 3000 to address 3000.

J

l J
then jumps to
address 3000,
performs the
INC instruction,
and HALTS

[200]
[201] HALT

0001

INC(a'#

0002

Table 2-2
Summary of Cache Operations Example

Fast Data MemQ!Y_ Address Memo...!l'._
GROUPO

Contents
Low Word

(1000) =
013737

(5000) =
005237

(1010)=
003000

I r10JO) =

I unaltered

I
I

I
I

High Word

(1002)=
005000

f
(5002) =
xxxxxx

' (1012)=
177776

' (1012)=1
177777

GROUP I
Contents

Block

201

200

200

I
I

Low Word

(1004)=
003000

(3000) =
005237

2011 (3004) =
000000

I

High Word

(1006) =
000137

(3002) =
001012

'
(30061 =
xx xx xx

I

TAGO
Address MemC!l}'

Address Field Loaded

0000

'
Hit

0002

0000

'
Hit

0000

I '
Hit

• Hit

TAG I
Address Memory

Address Field Loaded

0001

' Hit

Remarks

Fetch MOY instruction

Fetch source address

Fetch contents at source address

Fetch destination address

MOY contents of source to
destination address
Fetch JMP instruction

Fetch destination address

JUMP; Fetch INC instruction

Fetch destination address

I Fetch contents of destination
address (DA TIP)
!NC Jnd r~s:0:;; (DATO;

I Fetch and execute HALT
instruction

VI-2-9

3.1 SCOPE
This chapter provides a detailed explanation of
Cache operation within the PDP-11 /70 system.
Areas covered include PD P-11 /70 data paths,
Cache data paths, Cache interfaces, and operational
nows for the various operations that the Cache can
perform. The latter is the key to a full under
standing of the PDP-I I /70 Cache.

3.2 PDP-11/70 SYSTEM
Figure 3-1 is a block diagram of the PDP-I I /70
System showing the address and data lines which in
terconnect the functional components of the sys
tem. The data lines connecting the Cache to the
Main Memory and to the Massbus Controllers are
36 bits wide, and comprise 32 bits of data plus 4
parity bits. The remaining data lines are 16 bits
wide.

The Cache, because of its function and position rel
ative to the other functional components of the sys
tem, acts as a clearing house for all accesses to
Main Memory. Requests for Main Memory access
come from three sources: processor, Unibus Map,
and Massbus Controllers. When more than one of
the above require memory access concurrently, pri
ority is given according to the following structure:

I st Priority: Unibus Map
2nd Priority: M assbus Controllers
3rd Priority: Processor

In addition, concurrent requests for memory access
by Mass bus Controllers are arbitrated in the Cache.

CHAPTER 3
THEORY OF OPERATION

The address inputs to the Cache are 22 bits wide.
The 22-bit address from the processor is derived by
mapping the processor's 16-bit virtual address. The
22-bit address from the Unibus Map is derived by
mapping the 18-bit Unibus address. The 22-bit ad
dress from an M BC is the contents of a Memory
Address Register (MAR). (The MAR is an ex
tended register, and requires two Unibus DATO op
erations by the processor to specify a complete 22-
bit address.)

Data can be read from the Cache Fast Data Mem
ory (FDM) only during processor and Unibus Map
memory accesses. During MBC memory accesses,
the Cache merely performs the required data trans
fers from the Main Memory Bus to the MBCs and
vice versa. It can therefore be said that MBC cycles
are not "cached." The reason for this is expained in
Paragraph 3.6. Note that because the data lines be
tween the MBCs and the Cache are 36 bits wide,
two 16-bit words (plus their associated byte parity
bits) can be transferred simultaneously.

A 22-bit address input to the Cache is converted
into a Main Memory Bus address by stripping off
the two least significant bits of the address. This is
done because Main Memory is organized into two
word (i.e., double word) blocks. Each double word
consists of two 16-bit data words plus their associ
ated parity bits. When data is read from Main
Memory, a 36-bit double word is transferred via
the Main Memory Bus. However, when data is writ
ten into Main Memory, it is written on a byte-by
byte basis. There are lines on the Main Memory
Bus which determine which bytes will be operated
on. During a read operation, these lines are
ignored.

VI-3-J

<: -I w
I

N

'I"

UNIBUS
PERIPHERAL

DEVICE {S)

n D

UNI BUS

A C D

i
.

17e11-B,"c P°ROCE5s0"R - - - -+ - -
I SYSTEM

I
I
I
I
I
I
I
I
I
I
I

A UNIBUS MAP
c

PROCESSOR 1 .. o I of ol ~f Ar--fRo

i....D AND
MEMORY

MANAGEMENT ~ ~

_J t ,

CACHE

--,
I
I
I
I
I
I
I
I
I

A __._

c I

Loi
• D l

I L_ _______ _ - ____ _J

LEGEND
A: ADDRESS
c:coNTROL
O:OATA
RO: REGISTER DATA

Al

Figure 3-1 PDP-I I /70 System

UNIBUS

TERMINAL {S)

• A c D

MBC

A

• • •
MASS BUS MASSBUS
DEVICE(S) DEVICE(S)

11-4007

3.2.1 Data Parity
During processor and Unibus Map write oper
ations, data parity bits are generated in the Cache.
The parity bits are written into Main Memory
along with the data. During a write hit, the data
and parity bits are also written into the Fast Data
Memory. Parity bits stored in memory (FDM or
Main Memory) are treated as data within the mem
ory system. The Cache checks for correct parity
when the data is read from memory by the pro
cessor or Unibus Map. If a parity error is detected
by the Cache, a corresponding bit in the Memory
System Error Register is set. If, during a processor
read, a parity error is detected on the word re
quested by the processor, an abort results. How
ever, a parity error on the non-requested word
results in a trap (unless traps are disabled). Parity
errors during Unibus Map read operations result in
a trap. If the parity error is on the requested word,
the Unibus parity error line (PB) is asserted.

NOTE
An abort occurs if the processor cannot be supplied
with valid data. If a requested word stored in the
FDM is found to have bad parity, the Cache fetches
the backup copy of the word from Main Memory. If
the requested word fetched from Main Memory has
incorrect parity, an abort results.

During an M BC cycle, data parity genera ti on and
checking is performed in the MBC. MBC parity er
ror handling is thus performed by the M BC's ser
vice routine.

3.2.2 Address Parity
The Cache generates parity bits for the address
fields which are stored in the Address Memory as a
result of a read miss. When the Address Memory is
accessed to determine whether a memory cycle is a
hit or a miss, the contents of the Address Memory
are checked. Detection of a parity error in the Ad
dress Memory results in a trap.

The Cache also generates a parity bit for the ad
dress and control lines of the Main Memory Bus.
The Main Memory checks for correct parity on
these lines; if incorrect parity is detected, a parity er
ror line on the Main Memory Bus is asserted. Fur
thermore, the addressed memory controller will not
respond, and a time-out will occur ..

3.3 CACHE DATA PATHS
Figure 3-2 is a detailed block diagram of the data
paths in the Cache. Each block in the diagram refer
ences the location in the engineering drawings
where the logic schematics can be found. A detailed
description of the block diagram is given in Para
graph 4.2.

3.3.1 Address Paths

Based on arbitration among its three ports, the
Cache gates in address and control bits from the se
lected source. This function is performed by the Ad
dress Multiplexer. The incoming address is
processed as described below.

Address bits (9:2) index into the Address Memory
to select two address tags (one from Tag 0 Address
Memory and one from Tag I Address Memory).
The two tags are checked for correct parity and, at
the same time, compared against bits (21: IO) of the
incoming address. If either address field com
parison results in a match, if the corresponding
Valid bit is set, and if correct parity is determined,
a hit has been detected. This means that the data
referenced by the incoming address is currently
stored in the FDM.

The address and operation control bits selected by
the Address Multiplexer are also used to generate
address and control for the Main Memory Bus.
Bits (21 :02) of the incoming address are driven onto
the Main Memory Bus directly. Incoming address
bits AOI and AOO are used along with operation
control bits CI and CO to generate Main Memory
Bus control lines MAIN BYTE MASK 3:0 and
MAIN Cl :0. (Note that the MAIN Cl :0 lines are
coded differently from the Unibus CI :CO lines.) In
addition, a parity bit is generated for the address
and control lines of the Main Memory Bus.

Bits (21: I 0) of the incoming address are applied to
a parity generator along with the internally gener
ated Valid bit. The parity bits generated are applied
to the inputs of the Address Memory along with
bits (21: I 0) of the incoming address for possible
loading. The Address Memory will be written if ei
ther a read miss or a write hit occurs.

VI-3-3

3.3.2 Read Data Path
Data is read from Main Memory as 36-bit double
words when a read miss is detected. The 36-bit
double word is received by Main Memory Bus data
receivers and loaded into the Bus Data Register.
The even addressed word within the 36-bit double
word is gated by the Even Multiplexer to the Cache
Data Multiplexer and to the FDM. The Odd Multi
plexer performs the same function for the odd ad
dressed word within the 36-bit double word. The
data fetched from Main Memory is checked for cor
rect parity at the outputs of the Odd and Even M ul
tiplexers. The Cache Data Multiplexer gates out the
word requested to the device that initiated the read.
At the same time, the double word is written into
FDM Group 0 or Group I as selected by the
Cache control logic. The index position which is
written is determined by bits A09:02 (the index
field) of the incoming address.

During a read hit, data is read directly from the
FDM. Bits A09:02 of the incoming address index
into the FDM. Bit AOI of the incoming address en
ables either the odd or even word at the indexed lo
cation to be output from Group 0 and I of the
FD M. (Note that the odd and even word outputs
of each FDM group are common collectored.) The
two words (both odd or even addressed) are
checked for correct parity and applied to the Cache
Data Multiplexer. The Cache Data Multiplexer se
lects the word from the group on which the hit oc
curred and routes it to the device which initiated
the read operation.

During an M BC read operation, a 36-bit double
word is received in the Cache by Main Memory
Bus data receivers and routed to the Massbus
Controllers.

3.3.3 Write Data Paths
The data to be written into memory is selected by
the write multiplexer, based on whether a processor
or Unibus Map cycle is being performed.

NOTE
Processor data is selected by default if a Unibus
Map cycle, MBC cycle, or power-up sequence is not
being executed. During an MBC cycle or power-up
sequence, the write multiplexer outputs are forced to
all high. This keeps the data lines stable while data
parity is generated.

The outputs of the write multiplexer are applied co
the data parity generator, which generates byte par
ity bits for the 16 bits of data. The data and parity

VI-3-4

bits are then driven onto the Main Memory Bus
data lines. The data is driven on both the low word
(MAIN DATA BYTE 1:0) and high word (MAIN
DAT A BYTE 3:2) lines of the Main Memory Bus.
The data can thus be written into either the low
word or high word locations in Main Memory.

The output of the write multiplexer and the gener
ated data parity bits are also applied to both the
Odd and Even Multiplexers. During a write oper
ation, the Odd and Even Multiplexers select write
data as input to the FDM. When a write hit is de
tected, the write data is therefore available to up
date the FDM group on which the hit occurred.
The FD M is written on a byte-by-byte basis; only
the byte(s) referenced by the write operation are
altered.

During an M BC write to memory the Cache drives
the data from the Massbus Controller onto the
Main Memory Bus data lines. The MBCs can trans
fer single bytes, single words, or double words. If
the Cache detects a hit during an MBC write oper
ation, the FDM data on which the hit occurred is
invalidated. This is accomplished by negating the
Address Memory Valid bit which corresponds to
the FDM block on which the hit occurred. The en
tire FDM block (i.e., four bytes) is thereby
invalidated.

3.4 PROCESSOR-CACHE INTERFACE
The signal lines routed between the processor and
the Cache may be categorized into two types:

I. Master Timing and Initialization
Control

2. Data Transfer Control

The master timing and initialization control lines,
originating in the processor, are required by the
Cache for its overall operation. These lines route
system failure signals, initialization signals, and pro
cessor clock signals to which Cache operation is
synchronized. For reference, the signals which
make up the master timing and initialization con
trol lines are listed in Table 3-1, along with the
functions they perform.

The data transfer control lines are active in the
transfer of data between the processor and Cache
memory. For reference, the signals are listed in
Table 3-2, along with their functions.

< -I w v.

MBC
MBC ADRS a CTRL ADDRESS t---,

(
MBCBUS A21:00 L,) LATCH
MBCBUS CO,C1,CXL (ADMH)

MAIN MEMORY BUS
ADDRESS 6 CONTROL LINES

MAIN MEMORY
BUS CONTROL

LOGIC BYTE MASK 3:oc1:0, r-------
ADDRESS MULTIPLEXER (ADMJ) ADRS PARITY MAIN MEMORY

POWER -UP ADDRESS (ADME, F, J) BUS ADDRESS a
UNIBUS MAP ADDRESS a CTRL CONTROL DRIVERS

(MAPA CA21:00 H MAPB CO, Cl HI (ADML)
PROCESSOR ADDRESS a CTRL bits 9:1 bits 21:10 bits 9:2 bits 21:10 bits 21 :10 bits 9;2 bits 21 :2

IDAPB BAMX 0!5:00, SAPJ PA21:06L UBCC CO,C1 H) INDEX FIELD INDEX FIELD

...1'

~

- - - - - - - - - --, INVERTER INVERTER
UNIBUS ADDRESS BITS DRIVERS DRIVERS lbi1s 21: 10

' (MA~A ADRS 03:01 LI REGISTER I (ADM) (ADMC) c

C/-V:Ht 1·~<. >!';>I <- READ/WRITE I _j

ADDRESS
MEMORY

PARITY GEN~
(ADMJ)

VALID BIT
GEN

'Tl
<JO"
c: ..,
0
w
N

(J
~
n
::r
0

0
~

;; .,,
~ :;.
c;fl

o:;
0
n
7""

0 ;·
(IQ ..,
~

3

H LOGIC
(CCBF, J, Kl

TO CCBF REG Dt!5:oo
UNIBUS
MAP

REGISTER
MUX
CCCBFJ

CACHE
REGISTERS t----J

(CCB H,J,K,L)

----+----_J

]"

I - ------,
I I

DATA IN DATA l'N I I TAG 0 ADDRESS TAG 1 ADDRESS

I MEMORY (ADMA,B) MEMORY(ADMC,0) I
ADRS ADRS I

DATA OUT DATA OUT ADDRESS

L_ __ ---- ----~M~~

~
... , P_A_R ~-;-:-~-D-OD_R_,t.E._SJ

AND VALIDITY
CHECK (ADMK)

HIT 0

TAG 1
PARITY ADDRESS

AND VALIDITY
CHECK (ADMK)

HIT 1

----·------1---------------------1--1-

UNIBUS DATA WRITE MUX
MAPA DATA 1!5'.00 H) (COPE) bits 15:0

PROCESSOR DATA

(PDRB BR 15:00 BL)

DATA FROM MBCs

(MBC BUS D31 :00 L, MBC BUS B3:.0 PA LI

DATA PARITY
GENERATOR

(CDPF)

data parity bit]

v ...--------.
......

MAIN MEMORY
BUS

MBC DATA
DRIVERS (CDPC,D)

bits 15:0

:::I
MAIN MEMORY

BUS DATA
DRIVERS
(CDPC)

bits 15:0

1
MAIN MEMORY

BUS DATA
DRIVERS
(CDPDI

MAIN DATA BYTE MAIN DATA BYTE
o-o: 0:8, 1-o: 1-8 L 2-0: 2-0, 3-o: 3-8 L

MAIN MEMORY BUS DATA LINES

MAIN DATA B1~~~ L I I ~AIN DATA BYTE _s;.-o: 0-~, 1-0~-0: 2-8, 3-0 :3-8 L

MAIN MEMORY
BUS DATA

RECEIVERS
(CDPC)

MAIN MEMORY
BUS DATA

RECEIVERS
(CDPD)

(CDPD MEM 016:31 H, CDPD MEM BYTE 3 ,2 PAR H l

~~:: (CDPC MEM 015:.0.0 H, CDPD MEM BYTE 0, 1 PAR H) J I
BUS DATA

(LOW WORD)
REGISTER

(COPA)

HEVEN MUX
){ 'ccDPB, F)

MAIN MEMORY
1--f DATA PARITY

CHE,CK (CDPF)

BUS DATA
(HIGH WORD)

REGISTER
(COPA)

~
MAIN MEMORY
DATA PARITY t-
CHECK (CDPF)

ODD MUX
(CDPB, Fl

---------1----+-- -- --+-- - -- --- ----+----+-+-+-

AORS BITS 2: 9

~
FOM IN
FIELD DRIVERS
(OTMA)

ADRS BIT1 - ------ --
(WORD SELECT) .r - 1

WRD 0 A09 :02.1 GROUP 1 I
WRD 1 A09 :02

wRD 2 A09 :o;I I
WRD 3 A09 :oil I

FAST DATA

L_ -~~J

FDM DATA
PARITY CHECK

(DTMNI

......
-~

I"'..,.. •1

tr,t
/

t-"1
...1

I
\I I

FDM DATA
PARITY CHECK

(DTMN)

EVEN MUX
INVERTERS (DTMPl

CACHE DAT!!!=
MUX (DTMM)

ODD MUX
INVERTE~

DATLAo~FcLECT I: I I
(DTMB,M CCBDJ

DATA TO PROCESSOR AND UNIBUS MAP
______ _,

(OTMM CDMX 15:00 H)

11-282~

Signal

UBCEACLOH

UBCEDC LOH

UBCE ROM INIT H

UBCE INIT H

TIGC TF H

TIGC T2B H
TIGC T3B H

Signal

DAPB BAMX 05-00 H

SAPJ PA 21-06 H

Table 3-1
Master Timing and Initialization Control Lines

Function

This signal is transmitted from the processor to the Cache to notify it
that ac input power to one of the power supplies in the system is
failing.

This signal is transmitted to the Cache to notify it that ac input power
to one of the power supplies in the system is below the point that
guarantees de outputs to be in regulation.

Upon the negation of both of the above signals, the Cache performs its
power-up initialization sequence, clearing all the Valid bits in its Address
Memory.

This signal is asserted by the processor when it receives DC LO, AC LO,
or when a console reset (START switch depressed while in HALT) is
performed; it causes the initialization of all the timing state flip-flops
in the Cache.

Asserted by the processor upon receipt of AC LO or DC LO or when
the console ST ART switch is depressed while the ENABLE/HALT
switch is in the ENABLE position. This signal clears the Cache registers.

This is the processor free running clock to which Cache operations are
synchronized.

These are the processor T2 and T3 ROM time states (buffered) used
in the Cache to synchronize several particularly critical (timewise)
operations. [Examples are generation of CCBC MEM SYNC H and
generation of CCBC T2 DLY (1) H.]

Table 3-2
Processor-Cache Data Transfer Control

Function

These are the six low order bits of the physical address, gated directly
from the Bus Address Multiplexer (BAMX) in the processor. (The six
low order bits of the processor-generated virtual address are unaltered
in generating the 22-bit physical address.) Bit 00 is used to address the
FDM during DATOB operations. Bit 01 addresses the FDM to select
the desired word within a two-word block.

Bits 05 through 02 are part of the index field, and are used to in<l'ex
into the FDM and Address Memory.

These are the 16 high order bits of the physical address, generated from
the virtual address by the Memory Management. Bits P A09-P A06 are
part of the index field, and are used to index into the FDM and Address
Memory.

VI-3-6

Signal

SAPJ PA 21-06 H (cont)

PDRB BR 15-00 BL

UBCC Cl B H
UBCC COB H

RACHBUSTH

TMCE CACHE BEND H

TMCE CONTROL OK H

CCBC MEM SYNC H

DTMMCDMX
Dl5-DOO H

DTMM HI BYTE PAR H
DTMM LO BYTE PAR H

DTMM BAD PARITY H

CCBD CP TIMEOUT L

CCBJ PARITY ABORT H

Table 3-2 (Cont)
Processor-Cache Data Transfer Control

Function

Bits P A2l-PA10 comprise the address field, and are compared with the
address fields stored at a selected Address Memory index position. They
will be loaded into the Address Memory should a read miss occur.

These are the outputs of the processor Bus Register (BR), and comprise
a 16-bit data word to be stored in memory.

These are the operation control lines, and indicate the type of operation
to be performed, as follows:

Cl co Operation

0 0 DATI
0 1 DATIP

0 DATO
DATOB

Asserted by the processor during the "BUST" ROM state to initiate the
operation indicated by the C 1, CO bits.

Asserted by the processor to abort a memory operation initiated by
BUST H.

Asserted by the processor during the "PAUSE" ROM state if it desires
to continue with the memory access operation initiated by BUST H.

Asserted by the Cache and transmitted to the processor at the conclusion
of a memory access operation. This signal allows the processor to pro
ceed past TS of the PAUSE ROM state. During a DATI/DATIP, it also
causes the read data to be loaded into the processor's BR register.

These 16 lines comprise the data word requested by the processor (or
Unibus Map) during a DA TI/DA TIP operation.

These signals are the parity bits for the low and high bytes of a requested
data word. They are loaded into the processor along with the data word,
and are used for console display purposes only.

Transmitted by the Cache to the processor when a parity error has been
detected on a requested data word which has been fetched from Main
Memory.

Transmitted by the Cache to the processor when a Main Memory Bus
time-out occurs during a CP cycle.

Aborts the processor cycle when good data cannot be given to the
processor.

VI-3-7

Table 3-2 (Cont)
· Processor-Cache Data Transfer Control

Signal Function

CCBJ PARITY TRAP H Transmitted to the processor by the Cache to indicate a soft* parity
error during a CP cycle or Unibus Map memory (i.e., nonregister) cycle.

PDRH CACHE PERF L Parity Error flag; this signal is transmitted by the processor to the
Cache upon receipt of CCBJ PARITY ABORT H or CCBD CP
TIMEOUT, and sets bit 15 (CPU ABORT) or bit 14 (CPU ABORT
AFTER LOCK) of the Cache Error Register.

TMCA PERF ACKN L Transmitted by the processor to the Cache in response to CCBJ
PARITY TRAP H; causes its negation.

UBCB UBUS PAR ERR H Negates CCBJ PARITY TRAP H when processor performs Unibus
parity error trap. Sets Error Register bit 09.

*A soft parity error is one which the Cache can recover from without processor intervention and still provide correct data, e.g.,
parity error in the nonrequested word; parity error in the Address Memory or FDM (if the copy of the requested word in Main Mem
ory is fetched without error).

Processor Cache Protocol
To initiate a data transfer, the processor asserts
BU ST, and generates an address, operation control
bits CI :0, and (if a write is being performed) data.
BUST initiates Cache timing. If the processor is per
forming a BUST-BEND sequence, or if the address
generated by the processor is a Unibus address,
CACHE BEND is transmitted to the Cache, and
brings it to its quiescent state. If the processor is
performing a memory access, the Cache receives
CONTROL OK from the processor. CONTROL
OK indicates that the processor-generated address,
control, and data bits are stable and valid, and is
treated as a "go ahead" signal by the Cache.

The processor must receive MEM SYNC in order
to proceed past TS of the "PAUSE" ROM state.

Figure 3-3 illustrates the processor-Cache protocol.

BUST

ADDRESS,CONTROL
AND DATA

CONTROL OK

MEM SYNC

BUST

__s--i____,'----_
r---i_

__ ____.rr---i_

----fL-
a.WRITE

If the processor is performing a read and the Cache
detects a hit, the read data is accessed from the
FD M. The data is routed to the processor and the
Cache asserts M EM SYNC, which causes the data
to be loaded into the processor's BR register.

ADDRESS AND CONTROL L
___ _____.r'1 L

If a read miss is detected, the Cache fetches the
data from Main Memory. The Cache routes the re
quested word to the processor and then asserts
M EM SYNC. (Main Memory Bus protocol is de
scribed in Paragraph 3.7)

During a write operation, the Cache writes the data
into Main Memory and then notifies the processor
by asserting MEM SYNC.

Vl-3-8

CONTROL OK

DATA -------'.r--L
MEM SYNC -------\r--IL-

b. READ

11-4003

Figure 3-3 Processor - Cache Protocol

3.5 UNIBUS MAP-CACHE INTERFACE
Memory references by Unibus devices are inter
faced by the Unibus Map to the Cache. The pro
cessor can also access memory via the Unibus and
Unibus Map; this is normally done only for mainte
nance and diagnostic purposes. However, in order
to read or write any of the device registers located
in the Cache, the processor must do so via the
Unibus Map.

For reference, the signals which make up the
Unibus Map-Cache interface are listed in Table 3-3
along with their functions.

Unibus Map-Cache Protocol
The Unibus Map interfaces the Unibus data trans
fer lines to the Cache. When a Unibus device per
forms a data transfer to or from memory, the
device asserts an 18-bit address, operation control
bits, and (if performing a write) data on the
Unibus. After a deskew delay, the device asserts
MSYN.

The Unibus Map generates a 22-bit address from
the 18-bit Unibus address and gates the operation
control bits and (if performing a write) data to the
Cache. When the Unibus Map receives MSYN on
the Unibus, it asserts UB REQUEST. UB
REQUEST initiates Cache timing. The Cache re
sponds by asserting UB ACKN; this negates UB
REQUEST in the Unibus Map. As Cache timing
progresses, the address from the Unibus Map is
used to access into the FDM and Address Memory.

If the operation is a read and a hit is detected, the
requested word is routed from the FDM to the
Unibus Map, and the Cache asserts UB DONE.
This latches the data in the Unibus Map. If a read
miss is detected, the Cache must fetch the data
from Main Memory. The Cache routes the re
quested word to the Unibus Map and then asserts
U B DONE. During a write operation, the Cache
writes the data into Main Memory and then no
tifies the Unibus Map by asserting UB DONE.
When the Unibus Map receives UB DONE, it ter
minates its transaction on the Unibus by issuing
SSYN. Figure 3-4 illustrates Unibus Map-Cache
protocol during read and write operations.

Cache Register Accesses
Unibus Map-Cache protocol during register ac
cesses is similar to normal protocol except for the
following points:

I. When the Unibus Map detects that the
Unibus address references a Cache de
vice register, it asserts CACHE REG.

2.

3.

4.

When CACHE REG is asserted, the
Cache uses bits (03:01) of the Unibus ad
dress (gated by the Unibus Map) to ac
cess the desired register.

The data in the accessed register is gated
to the Unibus Map, where it is latched
by U B DONE if a register read oper
a ti on is being performed.

If a register write operation is being per
formed, the Unibus data (gated by the
Unibus Map) is written into the speci
fied register, and then the Cache asserts
UB DONE.

3.6 RH70-CACHE INTERFACE
The Cache handles memory accesses by RH70
M assbus Controllers (M BCs) very differently than
processor or Unibus Map memory accesses. MBC

ADDRESS ,CONTROL ~ \-----,
ANO DATA __J . L__

UB REQUEST~----

UBACKN n. ______ , ~------
UB DONE n

------i. t--J '---
a. WRITE

ADDRESS ANO CONTROL~~

UB REQUEST~-----

UB ACKN n _______ _., ~.,..._ __ _
DATA-----------\ rL

UB DONE . n
---T--J 1---

b. READ

11-4004

Figure 3-4 Unibus Map - Cache Protocol

VI-3-9

Signal

MAPA CA 21-00 H

MAPA DATA 15-00 H

MAPA ADRS 03-01 H

MAPBClH
MAPBCOH

MAPF UB REQUEST (1) L

MAPB CACHE REG H

CCBC UB ACKN L

Table 3-3
Unibus Map.Cache Interface Signals

Function

These 22 lines are the physical address generated by the Unibus Map
from the 18-bit Unibus address.

Bit 00 is used to address the FDM during DA TOB operations.

Bit 01 addresses the FDM to select the desired word within a two-word
block.

Bits 09 through 02 comprise the index field used to index into the FDM
and Address Memory.

Bits 21 through 10 comprise the address field, and are compared with
the address field stored at a selected Address Memory index position.
They will be loaded into the Address Memory should a read miss occur.

Bits 21 through 02 are also gated onto the Main Memory Bus in case a
cycle to Main Memory should be required.

These are the Unibus data lines gated by the Unibus Map, and comprise
a 16-bit data word to be stored in memory (or writteninto a Cache de
vice register).

These three address bits are gated from the Unibus by the Unibus Map
to access a Cache register.

These are the operation control lines gated from the Unibus by the
Unibus Map. They indicate the type of operation to be performed, as
follows:

Cl co Operation

0 0 DATI
0 1 DATIP
1 0 DATO
1 DATOB

Asserted by the Unibus Map to initiate the operation indicated by the
Cl, CO bits. This occurs after receipt of an address within the Unibus
Map response range, and MSYN, on the Unibus.

Asserted by the Unibus Map to indicate that a Cache device register,
rather than memory, is being accessed. When a Cache device register
is accessed, the Cache utilizes only bits 03 to 01 of the nonrelocated
Unibus address gated by the Unibus Map (MAPA ADRS 03-01 H).

Asserted by the Cache when the Unibus cycle has been initiated, to
negate UB REQUEST (1) L.

VI-3- IO

Signal

CCBC UB DONE

CCBF REG D 15-00

DTMM CDMX DlS-DOO H

DTMM BAD PARITY H

CCBD UB TIMEOUT L

MAPB PB DATA H

Table 3-3 (Cont)
Unibus Map-Cache Interface Signals

Function

Asserted by the Cache to indicate that the Unibus Map memory
cycle (or Cache device register access) has been performed. This
causes the Unibus Map to accept read data from the Cache and to
complete the transaction on the Unibus.

These lines transmit read data from the Cache device registers to the
Unibus Map.

These 16 lines comprise the data word requested from memory by the
Unibus Map during a DA TI/DA TIP operation.

Asserted by the Cache when a parity error has been detected on a re
quested data word which has been fetched from Main Memory.

Asserted by the Cache when a time-out has occurred on the Main Mem
ory Bus during a Unibus Map memory access cycle.

Transmit1 ,~d by the Unibus Map to the Cache in response to DTMM
BAD PAidTY H if the parity error occurred on a valid access, i.e., on
an address within the Unibus Map's response range. MAPB PB DATA H
inhibits clocking of the Cache Error Address register and sets various
bits in the Cache Error Register.

memory accesses always require cycles on the Main
Memory Bus, whether or not the operation per
formed is a read or a write, a hit or a miss. The
M BCs never read from or write into the FDM.
They only require the Cache to perform the Main
Memory Bus protocol needed to access Main Mem
ory. Because the M BCs never read or write into the
FDM, it can be said that the MBCs are not
cached." The M BCs are handled this way for the
following reasons:

For reference, Table 3-4 lists all the signals which
comprise the R H70-Cache interface, along with
their functions.

MDC-Cache Protocol
To initiate a data transfer to or from Main Mem
ory an M BC asserts its request signal (Figure 3-5)
CTR LA (or B, or C, or D) REQ.

The Cache arbitrates the simultaneous reqµests
from possibly four M BCs. The protocol proceeds
as follows if the request from M BC A is recognized I. MBC data transfers differ in their statis

tical behavior from processor data trans
fers for which the Cache was designed.
If the MBCs "cached," data and codes
required by the processor would be
swept out of the Cache.

2. Only single words can be output from
the FD M, whereas the M BCs are ca
pable of transferring double words.

The Cache transmits SELADRS A to the selected
M BC, which responds by gating out address and
control lines to the Cache. When the Cache begins
executing the M BC cycle, the address and control
lines are latched in the Cache. As Cache timing pro
ceeds, the Cache transmits SEL DATA CTRL A to
the selected M BC. If the M BC is performing a
write operation, this enables it to gate out write

VI-3-11

data. The Cache then asserts MBC REQ ACKN,
which negates the selected MBC's request signal
and allows the M BC to alter the address and con
trol bits transmitted to the Cache. The Cache now
performs a cycle on the Main Memory Bus. When
Main Memory responds with MAIN ACK, the
Cache transmits ADRS ACK to the MBC.

If a write to memory is being performed, this termi
nates the M BC-Cache transaction.

CTRL REO

SEL AORS

ADDRESS ANO CONTROL

SELOATA

DATA

If a read operation is being performed, the Cache
routes the double word received from Main Mem
ory to the MBC. When Main Memory asserts
MA IN DAT A REA DY, the Cache transmits
DATA RDY CNTL "X" to the appropriate MBC.
(Although the Cache may be executing some other
cycle, it keeps track of which MBC is performing
the read operation.)

Ti..__ __ _

MSC REO ACKN

AORS ACKN

---~._____ __
___ ____,,Jr __

a. WRITE

CTRL REQ _J

SEL AORS

ADDRESS AND CONTROL

SELDATA

MBC REQ ACKN --------~-~~--~-
ADRS ACKN ----~--

DATA --------.~r-L
DATA ROY -----~~~~\--H-JL--

b. RE AD

II- 4005

Figure 3-5 R H70 - Cache Protocol

VI-3-12

Signal

CSTC CTRLA REQ L
CSTC CTRLB REQ L
CSTC CTRLC REQ L
CSTC CTRLD REQ L

CDPJ SELADRS CTRLA H
CDPJ SELADRS CTRLB H
CDPJ SELADRS CTRLC H
CDPJ SELADRS CTRLD H

MBCBUS A21-AOO L

MBC BUS Cl, co, ex L

CDPJ SEL DATA CTRL AH
CDPJ SEL DATA CTRL B H
CDPJ SEL DATA CTRL CH
CDPJ SEL DATA CTRL D H

Table 3-4
RH70-Cache Interface Signals

Function

These are the memory access request signals generated by MBC A, B, C,
or D, respectively, and transmitted to the Cache Mass bus Arbitrator.

One of these signals is asserted by the Cache Massbus Arbitrator to
select an MBC requesting memory access. The MBC which receives an
asserted SELADRS CTRL X signal is enabled to gate out a memory
address and control signals.

These lines transmit a memory address from a selected MBC to the
Cache. The address is latched in the Cache MBC Address Register prior
to the start of the MBC Main Memory cycle.

Bits 09 through 02 of the address index into the Cache Address Memory
(and FDM). Bits 21 through 10 are compared with the address field
stored in the Address Memory to determine whether a hit or miss con
dition exists. (On a write hit, the corresponding data stored in the FDM
must be invalidated.)

Bits 21-02 of the address are also gated onto the ,address lines of the
Main Memory Bus in order to perform the required Main Memory Bus
operation.

These are the operation control lines transmitted from the selected MBC
to the Cache. They are latched in the Cache along with the MBC
address. C 1, CO, and CX determine the type of operation to be per
formed, as follows:

Cl co ex Operation

0 0 0 Read double word
0 1 0 Read double word

1 0 Write byte
0 0 Write single word
0 Write double word

One of these signals is transmitted by the Cache to the corresponding
selected MBC. The selected MBC is thereby enabled to gate out data
and parity bits to the Cache, if it is performing a write to memory. If
it is performing a read, it ignores the SEL DATA signal.

Vl-3-13

Signal

MBCBUS D3 I -D24 L
MBCBUS B3 PA L
MBCBUS D23-DI6 L
MBCBUS B2 PA L
MBCBUS DIS-D08 L
MBCBUS Bl PAL
MBCBUS D07-DOO L
MBCBUS BO PA L

CCBE MBC REQ ACKN L

ADML ADRS ACKN L

CDPD MEM D3 l -D24 H
CDPD MEM BYTE 3 PAR H
CDPD MEM 023-016 H
CDPD MEM BYTE 2 PAR H
CDPC MEM 015-008 H
CDPC MEM BYTE I PAR H
CDPC MEM 007 -000 H
CDPC MEM BYTE 0 PAR H

CDPK DATA RDY CNTL AH
CDPK DAT A RDY CNTL B H
CDPK DATA ROY CNTL C H
CDPK DATA RDY CNTL DH

CCBD MBC TIMEOUT L

Table 3-4 (Cont)
RH70-Cache Interface Signals

Function

These are the byte data lines and their corresponding parity bits. An
MBC performing a write operation gates out data and parity bits onto
these lines when it receives a SEL DATA signal.

Asserted by the Cache as it begins servicing an MBC request. This signal
is transmitted to all MBCs, and notifies the selected MBC to remove its
request and enables it to alter the current memory address.

This signal (received by the Cache from Main Memory as MAIN ACK L)
is transmitted to all MBCs. The MBC which last received a SEL DAT A
signal from the Cache is thereby notified that:

l. Main Memory is responding.

2. If a write to memory is being performed, the current MBC
Cache write data transaction is now terminated.

These are the data lines and their corresponding parity bits received
from the Main Memory Bus in the Cache, and then transmitted to the
MBCs.

When the Cache receives DAT A READY from Main Memory during an
MBC memory (read) access operation, it transmits DATA RDY CNTL
"X" H to the MBC which initiated the read. DATA RDY CNTL X
loads the Main Memory data into MBC X and terminates the MBC
Cache transaction.

Asserted by the Cache when an MBC cycle results in a time-out on the
Main Memory Bus.

VI-3-14

3.7 MAIN MEMORY BUS
The Main Memory Bus interfaces the Cache with
the Main Memory. The Main Memory Bus is a de
fined bus with bidirectional data lines. The address
and control lines of the bus are unidirectional and
can only be asserted by the Cache. The Cache is
thus the sole master of the Main Memory Bus; only
the Cache can initiate data transfers on the Main
Memory Bus.

The Cache can perform two types of memory oper
ations: a read and a write. When a read operation
is performed, the Main Memory transmits a 36-bit
double word to the Cache. A write operation, how
ever, can be performed on specified bytes or words
within an addressed double word.

The Main Memory Bus is made up of four type
BC06R cables. Two cables carry the Main Memory
Bus data lines, while the other two carry the Main
Memory Bus address and control lines. Each cable
contains 40 conductors. Alternating conductors and
the cable shield are grounded to reduce crosstalk;
this leaves 20 conductors in each cable to carry the
Main Memory Bus interface signals. The Main
Memory Bus signals are asserted low ("'0.4 V), and
are high ("' 3.2 V) when negated.

For reference, Table 3-5 lists all the Main Memory
Bus signals and their corresponding cable con
ductor number and connector pin number, while
Table 3-6 describes the functions of these signals.

Main Memory Bus Protocol
To initiate a memory operation, the Cache per
forms the following steps (refer to Figure 3-6):

I. The Cache places the address of the de
sired double word on the Main Memory
Bus address lines (MAIN A24:02)

Vl-3-15

2.

3.

4.

5.

The Cache places six control bits
(MAIN Cl :0 and BYTE MASK 3:0) de
fining the operation to be performed on
the Main Memory Bus.

The Cache places a parity bit correspond
ing to the above address and control
lines on the Main Memory Bus.

NOTE
Address lines MAIN A24:22 and
MAIN CO are always maintained in
the negated state in the PDP-11/70.
The Cache selects a read operation
by negating MAIN Cl and selects a
write operation by asserting MAIN
Cl. During a write operation, the
four Byte Mask bits determine
which of the four bytes within the ad
dressed double word will be operated
on. If BYTE MASK "X" is as
serted, byte "X" of the double word
will be written. The Byte Mask bits
are negated by the Cache during a
read operation; this is done only to
ensure that the lines remain stable
while Main Memory checks for cor
rect parity for the address and con
trol lines. The Byte Mask bits are
otherwise ignored by the Main Mem
ory during a read operation.

If a write operation is to be performed,
the Cache gates out data onto the Main
Memory Bus data lines (MAIN DATA
BYTE 3-8:0-0). The Cache must wait un
til the bus data lines become unoccupied
(MAIN BOCC negated) before it can
gate out the data.

After an access and deskew delay for the
address, control, parity, and data lines,
the Cache issues MAIN START.

ADDRESS -
AND CONTROL

BYTE MASK 18
SIGNALS FROM AO~:R~i~ rA CACHE TO

MAIN MEMORY

DATA~

START~ -~

ACKNOWLEDGE

SIGNALS TO BUS OCCUPIED-------------
CACHE FROM

MAIN MEMORY
DATA--------------

DATA READY--------------

a. WRITE

ANO~~~~~~~~

BYTE MASK -:r~~~~x~::£;qftT~¥,;~~XE§:Jt~E~fL~~:::-

~~-------~-
START

ACKNOWLEDGE 1 MINIMUM ACCESS TIME -.!

BUS OCCUPIED
SIGNALS TO ----

CACHE FROM
MAIN MEMORY

DATA ------Rf35_7ns __ •I

DATA READY
-----------_.. t-50ns

b. READ

Figure 3-6 Cache - Main Memory Protocol

Vl-3-16

L_

11- 4006

Signal

MAIN A (21:02) L

MAIN BYTE MASK 3 L
MAIN BYTE MASK 2 L
MAIN BYTE MASK 1 L
MAIN BYTE MASK 0 L

MAIN C (1 :0) L

MAIN APARL

MAIN START L

MAIN PAR ERR L

MAIN ACK L

Table 3-5
Main Memory Bus Signals

Function

This is the 20-bit address of a 2-word block located in Main Memory.
They are the high order bits of a 22-bit physical address gated onto the
Main Memory Bus by the Cache. (Main Memory Bus address lines
MAIN A24:22 are not used by the Cache, and are always maintained
in the negated state.)

These bits define which of the 4 bytes within the block addressed by
MAIN A (21 :02) will be operated on. There is a one-to-one correspond
ence between bytes 3 to 0 and byte mask 3 to 0. If MAIN BYTE
MASK "X" is asserted, byte ''X" will be operated on. The byte mask
signals are derived by the Cache from the two low order bits of an in
coming address, operation control bits C 1 and CO, and the CX bit if an
MBC operation is being performed. The Main Memory ignores the mask
bits on all DA TI/DA TIP operations.

These bits, gated from the Cache, determine which operation is to be
performed by Main Memory. They are decoded as follows:

CI co Operation

0 0 Read
0 1 Not used
1 0 Write
1 1 Exchange (not used by PDP-11 /70 Cache)

This is an odd parity bit generated by the Cache (on drawing ADMJ)
for the 26-bit control word consisting of MAIN A (21 :02), MAIN C(I :0)
and MAIN BYTE MASK (3:0). This bit is received and checked by the
Main Memory.

Asserted by the Cache to initiate the Main Memory cycle designated by
the MAIN C (1 :0) bits on the Main Memory address locations designated
by the address and Byte Mask bits.

Asserted by the Main Memory if it detects a parity error in the 26-bit
address and control word described above when START is asserted.

This signal is asserted by the addressed memory controller within
Main Memory when it has actually started execution of the commanded
memory cycle. Receipt of MAIN ACK in the Cache allows it to alter
MAIN A (21 :02), MAIN C (1 :0), MAIN BYTE MASK (3:0), and
MAIN ADDR PAR lines on the Main Memory Bus, and to negate MAIN
START. If a write operation was just initiated, MAIN ACK indicates
that the Main Memory Bus transaction is now terminated.

Signal

MAIN BOCC L

MAIN DATA BYTE (0-0:0-8) L
MAIN DATA BYTE (1-0:1-9) L
MAIN DATA BYTE (2-0:2-8) L
MAIN DATA BYTE (3-0:3-9) L

MAIN DATA READY L

MAIN AC LOW L

MAIN DC LOW L

Function

During a read operation, this signal is asserted coincidentally with MAIN
ACK by the active memory controller within Main Memory, and is kept
asserted until the data is removed from the Main Memory Bus data lines
[MAIN DATA BYTE (0-0:0-8; 1-0:1-8; 2-0:2-8; 3-0:3-8)]. The Cache
may gate data onto the Main Memory Bus data lines only when MAIN
BOCC is not asserted.

These are the data and data parity lines of the Main Memory Bus. Odd
parity is utilized. MAIN DATA BYTE 1-9 and 3-9 Lare not used in the
PDP-11 /70 implementation. The MAIN DATA BYTE lines are organ
ized as follows:

MAIN DATA BYTE (0-0:0-7)
MAIN DAT A BYTE 0-8
MAIN DATA BYTE (l·O: 1-7)
MAIN DAT A BYTE 1-8
MAIN DATA BYTE (2-0:2-7)
MAIN DATA BYTE 2-8
MAIN DATA BYTE (3-0:3-7)
MAIN DAT A BYTE 3-8

- Byte 0 data
- Byte 0 parity
- Byte 1 data
- Byte 1 parity
- Byte 2 data
- Byte 2 parity
- Byte 3 data
- Byte 3 parity

During a write operation, the Cache gates out data and data parity bits
onto these lines while MAIN BOCC is negated, and then asserts MAIN
START. Bytes are written into memory along with their parity bits.
Which bytes are written is determined by the MAIN BYTE MASK bits.
The parity bits are generated in the Cache if a processor or Unibus Map
write cycle is performed. The parity bits are received from an MBC if
an MBC write to memory operation is being performed. During a read
operation, Main Memory brings up all four bytes and their correspond
ing parity bits and places the information on the MAIN DAT A BYTE
lines.

This signal is asserted by Main Memory during a read operation, after it
has placed data on the MAIN DATA BYTE lines, to indicate to the
Cache that the requested data is available.

Asserted by Main Memory to inform the processor that the ac power
input to a Main Memory power supply is failing.

Asserted by the Cache or Main Memory to inform the rest of the system
that input power to a power supply somewhere in the system is below
the point that guarantees de outputs to be in regulation.

VI-3-17

:$
0 -00

Memory Bus Cable
Conductor No.

l

2

3

4

5

6

7

8

9

IO

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40*

*(Cable Shield)

Bus Master or
Memory Controller

"OUT" Connector Pin

B

A

D

c
F

E

J

H
L

K

N

M

R

p

T

s
v

u
x

w

z
y

BB

AA

DD

cc
FF
EE

JJ

HH
LL

KK

NN

MM

RR
pp

TT

SS

VY

uu

Table 3-6
Memory Bus Signal Pin Connections

Data Cable A Data Cable B Address Cable A Address Cable B

MAIN DAT A BYTE 0-0 L MAIN DATA BYTE 2-0 L MAIN A02 L MAIN A22 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-1 L MAIN DATA BYTE 2-1 L MAIN A03 L MAIN A23 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-2 L MAIN DATA BYTE 2-2 L MAIN A04 L MAIN A24 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0 3 L MAIN DATA BYTE 2-3 L MAIN AOS L MAIN A PAR L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-4 L MAIN DATA BYTE 2-4 L MAIN A06 L MAIN COL

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-5 L MAIN DAT A BYTE 2-5 L MAIN A07 L MAIN Cl L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-6 L MAIN DATA BYTE 2-6 L MAIN A08 L MAIN BYTE
MASK 00 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 0-7 L MAIN DATA BYTE 2-7 L MAIN A09 L MAIN BYTE
MASK 01 L

Gnd Gnd Gnd Gnd

MAIN DAT A BYTE 0-8 L MAIN DATA BYTE 2-8 L MAIN AlO L MAIN BYTE
MASK 02 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-0 L MAIN DATA BYTE 3--0 L MAIN All L MAIN BYTE
MASK 03 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-1 L MAIN DATA BYTE 3-1 L MAIN Al2 L MAIN ACK L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-2 L MAIN DATA BYTE 3-2 L MAIN Al3 L MAIN PAR ERR L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-3 L MAIN DATA BYTE 3-3 L MAIN Al4 L MAIN START L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-4 L MAIN DATA BYTE 3-4 L MAIN Al5 L MAIN BOCC L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-5 L MAIN DATA BYTE 3-5 L MAIN Al6 L MAIN MARGIN 0 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1-6 L MAIN DATA BYTE 3-6 L MAIN Al7 L MAIN MARGIN I L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE 1--7 L MAIN DATA BYTE 3-7 L MAIN Al8 L MAIN MARGIN 2 L

Gnd Gnd Gnd Gnd

MAIN DATA BYTE I 8 L MAIN DATA BYTE 3--8 L MAIN A19 L MAIN AC LOW L

Gnd Gnd Gnd Gnd

MAIN DAT A BYTE 1--9 L MAIN DATA BYTE 3-9 L MAIN A20 L MAIN DC LOW L

Gnd Gnd Gnd Gnd

MAIN DAT A READY L SPARE MAIN A21 L SPARE

Gnd Gnd God God

Response of Main Memory
Each memory controller in Main Memory checks
for correct parity in the address and control lines.
If a parity error is detected when MAIN START is
received, MA IN PAR ERR is asserted on the bus.
If the addressed memory controlle:r detects a parity
error, execution of the memory cycle is inhibited
and a time-out results.

Write Operation - When Main Memory begins exe
cuting the requested memory cycle, it latches Main
Memory Bus address, control, and data lines, and
asserts MA IN ACK on the bus. With the required
information latched in Main Memory, active partici
pation by the Cache is no longer necessary. When
the Cache receives MAIN ACK, it is notified that
the Main Memory transaction is terminated.
MAIN ACK negates MAIN START in the Cache.
When MA IN ACK becomes negated, the Cache
can again assert MAIN START if address, control,
and data (if applicable) have been sufficiently
deskewed.

Read Operation - When Main Memory begins exe
cuting the requested memory cycle, it latches Main
Memory Bus address and control lines, and asserts
MAIN ACK and MAIN BOCC. After the Main
Memory access delay, read data is placed on the
hus. After a data deskew delay, the Main Memory
asserts MAIN DATA READY for approximately
50 ns. The Main Memory then removes the read
data from the bus, and simultaneously negates
MAIN BOCC.

If the Cache is performing a processor or Unibus
Map cycle, the DATA READY signal latches the
Main Memory Bus data in the Bus Data Register
of the Cache. If the Cache is performing an M BC
cycle, the Main Memory Bus data and a data ready
signa! arc routed by the Cache to the M BC per
forming the read from memory.

Initiation of Overlapped Cycles
When performing an MBC read operation, the
Cache docs not need to wait for the assertion of
DATA READY before it can initiate the next
Main Memory cycle.

Ir the next cycle is a read operation, the Cache can
assert MAIN START as soon as MAIN ACK is ne
gated., providing that the Main Memory Bus ad
dress and control lines have been stable for the
required time period. Thus, two MBC read oper
ations may be performed back to back~ this is

termed .. stacking M BC reads." When M BC reads
are stacked, the Cache routes the DAT A REA DY
signals from Main Memory to the appropriate
MBC.

If the next cycle is a write operation, the Cache
must also wait for MAIN BOCC to become unas
serted, indicating that Main Memory is no longer
driving the bidirectional data lines of the Main
Memory Bus. The Cache may then assert write
data on the bus, wait the required data deskew de
lay. and issue MAIN START.

3.8 OPERATIONAL FLOWS
This paragraph provides a dynamic description of
Cache operations. Flowcharts and flowchart descrip
tions are provided for each type of operation that
the PD P-11 /70 Cache can perform. The flowcharts
illustrate the relationships and interdependence of
the various Cache functions. Specific references to
the Cache schematic diagrams are made for each
discrete function, allowing direct use of the flow
charts, along with the schematics, in trouble
shooting the Cache hardware.

Only five different symbols are used in the flow
charts: these are defined in Figure 3-7.

s

Figure 3-7

OPERATION OR PROCESS

OPERATION OR PROCESS REQUIRING TWO
OR MORE CONDITIONS TO BE MET

FIXED DELAY

CONDITIONAL BRANCH
(ALSO USED TO IMPLEMENT
UNFIXED DELAYS)

PARALLEL FLOW
(FOLLOW BOTH PATHS)

11·28!17

Flowchart Symbol Definitions

Vl-3-19

3.8.1 Processor Read Hit
Figure 3-8 is a flowchart illustrating Cache oper
ation during a processor read hit. The processor
may initiate a data transfer only when it is in a
.. BUST' ROM state. When the processor performs
a read operation, it generates a 16-bit virtual ad
dress and control bits Ct and CO. Memory Manage
ment converts the virtual address to a 22-bit
physical address which is routed to the Cache. Dur
ing the BUST ROM state, the processor asserts
BUST: this causes "BUST" HOLD to be asserted
in the Cache. A CP cycle will be initiated by the
Cache u:

I. The Cache is not presently servicing the
request of some other device.

2.

3.

The Cache is not presently waiting to ex
ecute the write portion of a DATIP in
itiated by some other device.

There are no other requests pending
(i.e., PRE UBUS or PRE MBC is not
asserted).

If the a hove conditions are satisfied when (or while)
BU ST is asserted, or even if the above conditions
arc satisfied when only BUST HOLD is asserted,
the Cache asserts CP CYCLE and LOCK. LOCK
indicates that the Cache is presently "locked" into
an operating cycle (CP CYCLE in this case) and
that no other requests will be serviced until the
present cycle is completed. CP CYCLE causes the
address generated by the Memory Management to
he gated into the Cache by the Address Multi
plexer. This address is processed in the Cache and,
at the same time, gated to the Main Memory Bus
(along with control bits), in case a slow cycle to
Main Memory will be required. Incoming address
hits (9:2) address the FDM to select data to be
read. Incoming address bits (9:2) also address the
Address Memory. Incoming address bits (21 :10) are
checked against the contents of the Address Mem
ory to determine whether the contents of the ad
dress referenced are currently stored in the Cache.
HIT 0 or HIT I will be asserted if the data being re
quested is in the FDM. Since this paragraph dis
cusses processor read hits, assume HIT 0 is asserted
and that an odd word address (XXXXXX2 or
XXXXXX6) is being read. Address bit I = I (odd
word address) causes the odd areas of the FDM to
he enabled: therefore, an odd addressed word is out
put from each group of the FDM. HIT 0 asserted

causes the Cache Data Multiplexer to gate out only
the odd addressed word from Group 0 of the
FDM: this word is routed to the processor.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. If the processor does not wish
to abort the read operation, it asserts CONTROL
OK. which, when received by the Cache, allows the
generation of M EM SYNC and the negation of
BUST HOLD at Tl80 of the Cache timing se
quence. BUST HOLD negated prevents the Cache
from responding twice to the same processor BUST
cycle. M EM SYNC is routed to the processor;
receipt of M EM SYNC allows the processor to con
tinue past time state T5 of the "PAUSE" ROM
state. M EM SYNC also causes the data from the
Ca1;he to be loaded into the processor's BR.

At Tl80 of the Cache timing sequence, DONE is as
serted in the Cache. This negates LOCK and
thereby brings the Cache to its quiescent state.
With LOCK negated, the Cache can begin servicing
other requests for memory access.

3.8.2 Processor Read Miss
Figure 3-9 is a flowchart illustrating Cache oper
ation during a processor read miss cycle. The pro
cessor may initiate a data transfer only when it is in
a "BUST' ROM state. When the processor per
forms a read operation, it generates a 16-bit virtual
address and control bits CI and CO. Memory Man
agement converts the virtual address to a 22-bit
physical address which is routed to the Cache. Dur
ing the "BUST" ROM state, the processor asserts
BUST: this causes BUST HOLD to be asserted in
the Cache. A CP cycle will be initiated by the
Cache u:

I. The Cache is not presently servicing the
request of some other device (i.e:,
LOCK is not asserted).

2. The Cache is not presently waiting to ex
ecute the write portion of a DATIP in
itiated by some other device.

3. There are no other requests pending
(i.e., PRE UBUS or PRE MBC is not
asserted).

Ir the above conditions are satisfied when (or while)
BU ST is asserted, or even if the above conditions
arc satisfied when only BUST HOLD is asserted,

Vl-3-20

CPU

TIME

ST ATP

Tl

T2

T3

T4

T5

Tl

T2

T3

T4

T5

Tl

PROCESSOR

CPU ENTERS

BUST ROM

STATE

ADDRESS &

OPERATION
CONTROL BITS
GENERATED

ASSERT BUST
!RACHI

CPU ENTERS

PAUSE ROM

STATE

ASSERT
CONTROL OK

ITMCEI

CPU RECEIVES
MEMSYNC
ITIGCI

llR
LOADED

•The proceuor time states are intended
as a frame of reference only for events

CACHE

ASSERT

BUST HOLD
ICCBCI

INITIATE CACHE
TIMING SEQUENCE

CCCBEI

NEGATE

BUST HOLD
ICCBCI

T30

TGO

T90

T120

ASSERT LOCK
ICCBBt •

T150 i:::::===::::::::i

T180

ASSERT MEM
SYNC

ICCBCI

ASSERT DONE
ICCBCI

NEGATE LOCI<
ICCBBl

ASSERT CP

CYCLE
ICCBBI

ADDRESS

PROCESSED

ASSERT

tADMKI

CACHE
QUIESCENT

ADDRESS Si
OPERATION
CONTROL BITS
GATED INTO
CACHE
IADME,F,JI

ADDRESS&
OPERATION
CONTROL BITS
GATED ONTO

MAINMEMOAV
BUS
IAOlllLI

FOM DATA
SELECTED

IDTMC-MI

DATA GATED
OUT OF CACHE
IDTMMI

whichoccurintheprocessor. 11.2110

Figure 3-8 Processor Read Hit

VI-3-21

"'Tl
ciQ"
c: ...,
OI

VJ

'°
~ '"'O ...,
w 0

(")

N OI
00

N 00
0 ...,
:;:l:l
OI
~
0.

~
t;;•
00

CPU
TIME
STATE*

T1 I

T2

T3 I

T4

T5

T1

T2

T3

PROCESSOR

CPU ENTERS
BUST ROM STATE

ASSERT BUST
IRACHI

I

CPU ENTERS
PAUSE ROM
STATE

ASSERT
CONTROL OK
ITMCE!

I
•

ASSERT I BUST HOLD
ICCBCI

INITIATE CACHE
TIMING SEQUENCE
(CCBEI

ASSERT LOCK
ICCBBI

T30

T60

T90

T120

T150
NEGATE
BUST HOLD
ICCBCI

T4

T5

T5

*The processor time states are intended
as a frame of reference only for events
which occur in the processor.

T150
HOLD

ONE DATA WORD
GATED TO
PROCESSOR
ICDPB.F .DTMM.Pl

ASSERT
START SLOW
ICCBDI

ASSERT
SLOW CYCLE
ICCBDI

LOAD BUS DATA
IHl&LOI
REGISTER
ICOPAI

HI & LO WORDS
LOADED INTO
FDM
IOTMB·Ll

CACHE

YES

ASSERT
CP CYCLE
ICCBBI

ADDRESS &
OPERATION
CONTROL BITS
GATED INTO
CACHE
(ADME,F,Jl

MISS

DATA DESKEW
100 NS (CCBDI

ASSERT START
ICCBDI

GENERATE
WRITE PULSES
(CCBE.DTMB)

TAG LOADED
INTO ADDRESS
MEMORY
(ADMA·Dl

ADDRESS &
OPERATION
CONTROL BITS
GATED ONTO
MAIN
MEMORY BUS
IADMLI

CACHE
QUIESCENT

ASSERT
RESTART
ICCBEI

ASSERT DONE
(CCBC!

NEGATE LOCK
(CCBBI

I
I
I
I
I
I
I
I
I
I

MAIN MEMORY

L.ATCH ADDRESS
& OPERATION
CONTROL LINES

START READ
MEMORY CYCLE

36-BIT DOUBLE
WORD PLACED ON
D·LINES OF MAIN
MEMORY BUS

DATA DESKEW

ASSERT MAIN
DATA READY

the Cache asserts CP CYCLE and LOCK. LOCK
indicates that the Cache is presently "locked" into
an operating cycle (CP CYCLE in this case) and
that no other requests will be serviced until the
present cycle is completed. CP CYCLE causes the
address generated by the Memory Management to
be gated into the Cache by the Address Multi
plexer. This address is processed in the Cache and,
at the same time, gated to the Main Memory Bus
(along with the control bits), in case a slow cycle to
Main Memory will be required. Incoming address
hits (9:2) address the FDM to select data to be read
if a hit occurs. Bits (9:2) of the incoming address
also address the Address Memory. Bits (21:10) of
the incoming address are checked against the con
tents of the Address Memory to determine whether
the contents of the address referenced are currently
stored in the Cache. HIT 0 or HIT I will be as
serted if the data being requested is in the FDM.
Since this paragraph discusses processor read
misses, assume that neither HIT 0 nor HIT I is as
serted. Assume also that an odd address
(XXXXXX2 or XXXXXX6) is being read. Address
hit I = I (odd word address) causes the odd areas
of the FDM to be enabled and therefore an odd ad
dressed word is output from each group of the
FDM. However, because SLOW CYCLE is as
serted during this cycle (see below), the Cache Data
Multiplexer ignores the outputs from the FDM.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. While this sequence is occur
ring, the processor may abort the read operation by
issuing a BEND during T2 of the ROM state fol
lowing the "'BUST" ROM state. However, if the·
processor docs not wish to abort the read oper
ation. it asserts CONTROL OK at T3 of the
"PAUSE" ROM state following the "BUST"
ROM state.

CONTROL OK, when received by the Cache, al
lows the generation of ST ART SLOW and the nega
tion of BUST HOLD at TISO of the Cache timing
sequence. BUST HOLD negated prevents the
Cache from responding twice to the same processor
BUST cycle. STA RT SLOW generates SLOW
CYCLE and, after a 100 ns deskew delay, START
is asserted on the Main Memory Bus. START
c<1uses the address and control bits presently on the
Mai1/ Memory Bus to be loaded into Main Mem
ory. A memory cycle is then started, and MAIN
ACK is transmitted from the Main Memory to the
Cache. The memory cycle results in two 18-bit
words hei ng placed on the data lines of the Main

Memory Bus and, after a data deskew delay, the as
sertion of DATA READY. DATA READY, when
received in the Cache, loads the data on the Main
Memory Bus into the Bus Data Registers. The out
puts of the Bus Data Registers are gated to the
FD M and also to the Cache Data Multiplexer.
Since we have assumed that the processor is request
ing an odd word, A DRS bit I is asserted, and
causes the Cache Data Multiplexer to select the
data stored in the Bus Data (High Word) Register
and gate it to the processor.

The receipt of both MAIN ACK and DATA
REA DY in the Cache indicates that the Main Mem
ory has responded properly. Therefore, these sig
nals inhibit the generation of a Main Memory Bus
time-out by negating CCBE ALLOW TIMEOUT
L. When the time-out is inhibited, write pulses are
generated. The write pulses load the two words
(block) brought from Main Memory into the FDM
and their address tag into the Address Memory.
Whether Group 0 or Group I of the FDM (and
corresponding Tag 0 Address Memory or Tag I Ad
dress Memory) is loaded is determined as described
in Paragraph 4.7. When time-out is inhibited,
M EM SYN<? SLOW is asserted and causes the as
sert ion of MEM SYNC. MEM SYNC is routed to
the processor. Receipt of M EM SYNC allows the
processor to proceed past TS of the PAUSE ROM
state. and also causes the data from the Cache to
he loaded into the processor's BR. When time-out
is inhibited. RESTART is also asserted in the
Cache. This asserts DONE, which negates LOCK
and brings the Cache to its quiescent state. With
LOCK negated, the Cache can begin servicing
other requests for memory access.

3.8.3 Processor Write
Figure 3-10 is a flowchart illustrating Cache oper
ation during a processor write cycle. The processor
may initiate a data transfer only when it is in a
"BUST" ROM state. When performing a write to
memory, the processor/ Memory Management trans-
111 its data gated from the BR, a 22-bit physical ad
dress, and operation control bits CI, CO to the
Cache. During the "BUST" ROM state, the pro
cessor asserts BUST; this causes BUST HOLD to
he asserted in the Cache. A CP cycle will be in
itiated by the Cache (f

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK is not asserted).

Vl-3-23

2. The Cache is not presently waiting to ex
ecute the write portion of a DA TIP in
itiated by some other device.

J. There are no other requests pending
(i.e., PRE UBUS or PRE MBC is not
asserted).

If the above conditions are satisfied when (or while)
BUST is asserted, or even if the above conditions are
satisfied when only BUST HOLD is asserted, the
Cache asserts CP CYCLE and LOCK. LOCK in
dicates that the Cache is presently "locked" into an
operating cycle (CP CYCLE in this case) and that no
other requests wiH be serviced until the present cycle
is completed.

CP CYCLE causes the Cache Write Multiplexer to
select the processor data, thereby routing it to the
FDM and the high and low word Main Memory
Bus Data Drivers. When the Main Memory Bus
data lines become free (MAIN BOCC L negated),
the Cache enables the data word onto the Main
Memory Bus.

CP CYCLE also causes the address generated by
the processor and Memory Management to be
gated into the Cache by the Address Multiplexer.
This address is processed in the Cache and, at the
same time, gated to the Main Memory Bus (along
with the control bits). Incoming address bits (9:2)
address the FDM to select a block in Group 0 and
Group I which will be updated in case a hit occurs.
Bits 0 and I of the incoming address select the
word or byte in the selected blocks which will be
updated in case a hit occurs. Bits (9:2) of the in
coming address also address the Address Memory.
Bits (21: I 0) of the incoming address are checked
against the contents of the Address Memory to de
termine whether the contents of the address refer
enced are currently stored in the Cache. HIT 0 or
HIT I will be asserted if the data being referenced
is in the FDM.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. While this sequence is occur
ring, the processor may abort the read operation by
issuing a BEND during T2 of the ROM state fol
lowing the "BUST" ROM state. However, if the
processor does not wish to abort the read oper
ation, it asserts CONTROL OK at T3 of the

.. PA USE" ROM state following the "BUST"
ROM state. CONTROL OK, when received by the
Cache, allows the generation of START SLOW
and the negation of BUST HOLD at TISO of the
Cache timing sequence. BUST HOLD negated pre
vents the Cache from responding twice to the same
processor BUST cycle. START SLOW generates
SLOW CYCLE and enables the assertion of
ST ART on the Main Memory Bus 100 ns after the
bus becomes unoccupied (START WRITE as
serted). ST ART causes the address, data, and con
trol bits presently on the Main Memory Bus to be
loaded into Main Memory. A memory cycle is then
started, and M Al N ACK is transmitted back to the
Cache.

The receipt of MAIN ACK in the Cache indicates
that Main Memory has responded properly, and
therefore inhibits generation of a Main Memory
Bus time-out by negating CCBE ALLOW TIME
OUT L. When the time-out is disabled, write pulses
arc generated if a hit has been detected. The write
pulses (DTMA LO BYTE WP O*I L, HI BYTE WP
O* I L. LO BYTE WP 2*3 L, and/or HI BYTE WP
2* J L) load the word or byte being written into the
FD M group· on which the hit occurred at its proper
position within the currently indexed block.

When time-out is inhibited, M EM SYNC SLOW is
asserted and causes the assertion of M EM SYNC,
which is routed lo the processor. Receipt of MEM
SYNC allows the processor to proceed past TS of
the PAUSE ROM state.

When time-out is inhibited, RESTART is also as
serted in the Cache. This asserts DONE, which ne
gates LOCK and brings the Cache to its quiescent
stale. With LOCK negated, the Cache can begin
servicing other requests for memory access.

3.8.4 Processor BUST-BEND Cycle
Figure 3-11 is a flowchart illustrating Cache oper
ation during a processor BUST-BEND cycle. The
processor often initiates a data transfer (by assert
ing BUST) that is immediately aborted in the next
ROM state (by asserting BEND). This allows the
processor to operate more quickly; data transfers
can be initiated earlier than otherwise possible and,
if they arc not required, they are then aborted.

VI-3-24

.,,
ciQ"
s::,
~

w
I

< 0 -w .,,
t'..>

....,
0

V> (")
~
v.>
v.>
0,

~,
~·
~

CPU
TIME
STATE*

Tl

T2

T3

T4

T5

Tl

T2

T3

T4

f5

T5

Tl

PROCESSOR

CPU ENTERS
BUST ROM ST ATE

ASSERT BUST
(RACHI

CPU ENTERS
PAUSE
ROM STATE

ASSERT
CONTROL OK
ITMCEI

WAIT FOR
MEMSYNC
ITIGCI

CONTINUE
OPERATION

ASSERT BUST HOLD
!CCBCI

INITIATE CACHE
TIMING SEQUENCE
(CCBEI

I T60

I T90

I T120

I

ASSERT LOCK
ICCBBI

I T150 I

+I :~:~~LO I
(CCBCI

T150
HOLD

ASSERT
START SLOW
(CCBDI

ASSERT
SLOW CYCLE
ICCBDI

*The processor time states are intended
as a frame of reference only for events
which occur in the processor .

ADDRESS
PROCESSED

CACHE

DETECT HIT
OR MISS
(ADMKI

ASSERT
CP CYCLE
ICCBBI

ADDRESS. DATA &
OPERATION
CONTROL BITS
GATED INTO CACHE
(ADME.F.J.DCPEI

ADDRESS&
OPERATION
CONTROL BITS
GATED ONTO
MAIN MEMORY
BUS
IADMLI

DATA DESKEW
IOONS
(CCBD)

GENERATE
WRITE PULSES.
UPDATE FDM
IF HIT
ICCBE,DTMA·LI

DISABLE
TIME OUT
ICC BE.DI

ASSERT MEM
SYNC SLOW
(CCBEI

CACHE
QUIESCENT

ASS~RT RESTART
(CCl!EI

N~GATE LOCK
ICfBBI

I
I
I
I
I
l
I
I
I

MAIN MEMORY

LATCH ADDRESS,
DATA&
OPERATION
CONTROL BITS

ASSERT
MAIN ACK

START WRITE
MEMORY CYCLE

WRITE DATA
WORDS/BYTES
INTO MEMORY

11·2826

CPU

TIME

STATE•

T1

T2

T3

T4

T5

Tl

T2

PROCESSOR

CPU ENTERS
BUST ROM
STATE

ASSERT BUST
IRACHI

CPU ENTERS
BEND ROM STATE

ASSERT
T3 CACHE

T4

T5

BENDITMCEI

CONTINUE
OPERATION

•the procellOI time states are intended
as a frame of ref•ence only for events
which occur in the processor.

Figure 3-11

CACHE

ASSERT
BUST HOLD
ICCBCI

INITIATE CACHE
TIMING SEQUENCE
ICCBEI

NEGATE
BUST HOLD
CCCBCI

T30

T60

T90

T120

T150

ASSERT LOCK
ICC881

T180 ASSERT DONE

ICCBCI

NEGATE LOCK
ICC8BI

ASSERT CP
CYCLE
ICCBBI

AOOAESS.OATA•
OPERATION
CONTROL LINES
GATED INTO CACHE
6 PROCESSED IN
NORMAL-EA

CACHE
QUIESCENT

11-2131

Processor Bust-Bend Cycle

VI-3-26

Cache timing during a BUST-BEND cycle is sim
ilar to that or a processor read hit, as illustrated in
Figure J-8. During the "BUST" ROM state, the
processor asserts BUST; this causes BUST HOLD
to he asserted in the Cache. A CP cycle will be in
itiated hy the Cache if

I. The Cache is not presently servicing the
request or some other device.

1 The Cache is not presently waiting to ex
ecute the write portion of a DATIP in
itiated by some other device.

J. There are no other requests pending
(i.e., PRE UBUS or PRE MBC are not
asserted).

If the a hove conditions are satisfied when (or while)
BU ST is asserted, or even if the above conditions
an: satisfied when only BUST HOLD is asserted,
the Cache asserts CP CYCLE and LOCK. (The pro
cessor could assert BEND prior to the assertion of
LOCK. in which case BUST HOLD is immediately
negated and the cycle is aborted before the Cache
actually hegins executing the cycle.) LOCK in
dicates that the Cache is presently "locked" into an
operating cycle (CP CYCLE in this case) and that
no other requests will be serviced until the present
cycle is completed. CP CYCLE causes the address,
control, and data bits currently being output from
the processor/Memory Management to be gated
and processed in the Cache, in the same manner
they normally would be for a read or write
operation.

\\'hen LOCK is asserted, a timing sequence is in
itiated in the Cache. While this sequence is occur
ring. the processor may abort the operation by
issuing a BEND during T2 of the ROM state fol
lowing the BUST ROM state. When it does so,
BUST HOLD is negated in the Cache and BEND
HOLD is asserted. BEND HOLD asserted causes
the assertion of DONE at T 180 of the Cache tim
ing sequence. This negates LOCK and thereby
hrings the Cache to its quiescent state. With LOCK
negated. the Cache can begin servicing other
requests for memory access.

Note that during a BUST-BEND cycle, the pro
ce~~9r do_~s .. not _issue~ C,ONTROI,.. OK.~ This pre
vents the Cache from starting a slow cycle or
asserting MEM SYNC.

3.8.5 Lnibus Map Read Hit
Figure J-12 is a flowchart illustrating Cache oper
ation during a Unibus Map read hit cycle. When
performing a read operation via the Cache, the
Unihus Map transmits a 22-bit address (generated
from the 18-hit Unibus address) and Control bits
Cl. CO to the Cache, and asserts UB REQUEST.
UB REQUEST, delayed and synchronized by a
Cache internal clock (SYNC CLK), generates PRE
U BUS (Pre Unibus Cycle), which will initiate
Cache operation to service the Unibus request tf

I. The Cache is not presently servicing the
request of some other device.

1 The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

tr the above conditions are satisfied, the Cache as
serts UB CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed. U B CYCLE causes the address gener
ated by the Unibus Map to be gated into the Cache
by the Address Multiplexer. This address is pro
cessed in the Cache and, at the same time, gated to
the Main Memory Bus (along with control bits), in
case a slow cycle to Main Memory will be required.
Incoming address bits (9:2) address the FDM to se
lect data to be read in case a hit occurs. Bits (9:2)
of the incoming address also address the Address
Memory. Bits (21:10) of the incoming address are
checked against the contents of the Address Mem
ory to determine whether the contents of the ad
dress referenced are currently stored in the Cache.
HIT 0 or HIT I will be asserted if the data being re
quested is in the FDM. Since this paragraph dis
cusses Unibus Map read hits, assume that HIT 0 is
;1sserted and that an odd address (XXXXXX2 or
XXXXXX6) is being read. Address bit I = I (odd
;1ddress) causes the odd areas of the FDM to be en
;1blcd and therefore an odd addressed word is out
put l'rom each group of the FDM. HIT 0 asserted
causes the Cache Data Multiplexer to gate out only
the odd addressed word from Group 0 of the
FDM: this word is routed to the Unibus Map.

\\hc:n LOCK is ctss~rtcd, a ~iming sequence is in
it.iated in.Jh~. C;,i,cbe. At. DO, u B ACKN is asserted
and transmitted to the Unibus Map. This signal ne
gates the Unihus Map request, thereby preventing

UNIBUS MAP

UNIBUS MAP
GENERATES
ADDRESS &
OPERATION
CONTROL BITS

ASSERT
UB REQUEST

NEGATE UB
REQUEST

DATA LOADED

UNIBUS
TRANSACTION
~LE TED

I
I
I
I
I
I I

i
I

INITIATE CACHE
TIMING SEQUENCE
(CCBE)

T30

T60

T90

T120

T150

T180

ASSERT UB
DONE

ICCBCl

CACHE

ASSERT UB
ACKN
(CCBCI

ASSERT DONE
ICCBCI

NEGATE LOCK
(CCBBI

NEGATE

UBCYCLE

ICCBBI

ADDRESS &
OPERATION
CONTROL BITS
GATED INTO
CACHE
IADME,F,JI

ADDRESS&
OPERATION
CONTROL BITS
GATED ONTO
MAIN MEMORY

ADDRESS BUS
PROCESSED (ADMLI

ASSERT FOM DATA
HIT (O OR 1) SELECTED
(ADMK) IDTMC-MI

CACHE
QUIESCENT

11·2829

Figure 3-12 Unibus Map Read Hit

VI-3-27

"Tl oo·
c: ..,
(D

lf
w

c < - ::s
w ~
N c:

Cl>
00

3::
~

"Cl

~
(D
~
0.

3::
;;;;·
Cl>

UNIBUS MAP

UNIBUS MAP
GENERATES
ADDRESS &
OPERATION
CONTROL BITS

ASSERT UB
REQUEST

NEGATE
UB REQUEST

LOAD DATA
WORD

I
UNIBUS
TRANSACTION
COMPLETED

I

I
I
I
I

I

I ' .
I

INITIATE CACHE
TIMING SEQUENCE
lCCBEI

T30

T60

T90

T120

T150

T150
HOLD

ASSERT LOCK
(CCBBI

ASSERT
ue ACKN
lCCBCI

ASSERT
START SLOW
(CCBDI

ASSERT
SLOW CYCLE
(CCBDI

I

LOAD BUS DATA
(HIS.LOI
REGISTER
ICDPAI

HI& LO WORDS
LOADED INTO
FOM
IDTMB-Ll

CACHE

VES

ASSERT
UBCVCLE
lCCBBI

MISS

DATAOESKEW
100 NS (CCBDI

ASSERT START
lCCBDI

ADDRESS &
OPERATION
CONTROL BITS
GATED INTO
CACHE
(ADME,F.JI

ADDRESS&
OPERATION
CONTROL BITS
GATED ONTO
MAIN
MEMORY BUS
(ADMLl

I

DISABLE
TIME OUT
(CCBE,DI

TAG LOADED
INTO ADDRESS
MEMORY
lADMA-01

ASSERT I I NEGATE LOCK UB DONE
ICCBBI (CCBCI

NEGATE
UBCYCLE
ICCBBI

I
CACHE
QUIESCENT

MAIN MEMORY

I LATCH ADDRESS

I & OPERATION
CONTROL LINES

I ASSERT START READ
MAIN ACK MEMORY CYCLE

I

DATA DESKEW

I

I ASSER~MAI I

I
I
I
I
I
I
I
I
I
I

11-2828

the same request from being serviced twice. At
Tl 80, DONE is asserted in the Cache. This signal
generates UB DONE, which loads the FDM data
gated out of the Cache into the Unibus Map, and
causes the Unibus Map to terminate its transaction
on the Unibus by issuing SSYN. DONE also brings
the Cache into its quiescent state by negating
LOCK, which in turn negates UB CYCLE. With
LOCK negated, the Cache cam begin servicing
other requests for memory access.

3.8.6 Unibus Map Read Miss
Figure 3-13 is a flowchart illustrating Cache oper
ation during a Unibus Map read miss cycle. When
performing a read operation via the Cache, the
Un ihus Map transmits a 22-bit address (generated
from the 18-hit Unibus address) and control bits
Cl. CO to the Cache, and asserts UB REQUEST.
U B REQUEST, delayed and synchronized by a
Cache internal clock (SYNC CLK), generates PRE
U BUS (Pre Unibus Cycle), which will initiate
Cache operation to service the Unibus request if

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA.TIP initiated by
some other device.

If the ahove conditions are satisfied, the Cache as
serts U B CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will he serviced until the present cycle is
completed. U B CYCLE causes the address gener
ated hy the Unibus Map to be gated into the Cache
hy the Address Multiplexer. This address is pro
cessed in the Cache and, at the same time, gated to
the Main Memory Bus (along with the control
hits). in case a slow cycle to Main Memory will be
required. Incoming address bits (9:2) address the
FDM to select data to be read in case a hit occurs.
Bits (9:2) of the incoming address also address the
A ddrcss Memory. Bits (21: I 0) of the incoming ad
dress arc checked against the contents of the Ad
dress Memory to determine whether the contents of
the address referenced are currently stored in the
Cache. Since this paragraph discusses Unibus Map
read misses, assume that neither HIT 0 nor HIT I
is asserted. Assume also that an odd address
(XXXXXX2 or XXXXXX6) is being read. Address
hit I = I (odd address) causes the odd areas of the
FDM to he enabled and therefore an odd ad-

dressed word is output from each group of the
FDM. However, because SLOW CYCLE is as
serted during this cycle (see below), the Cache Data
Multiplexer ignores the outputs from the FDM.

When LOCK is asserted, a timing sequence is .in
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne
gates the Unibus Map request, thereby preventing
the same request from being serviced twice. At
T 180. STA RT SLOW is asserted in the Cache. This
asserts SLOW CYCLE and, after a 100 ns skew de
lay, ST ART is asserted on the Main Memory Bus.
ST A RT causes the address and control bits pres
ently on the Main Memory Bus to be loaded into
Main Memory. A memory cycle is thoo started,
and MA IN ACK is transmitted back to the Cache.
The memory cycle results in two 18-bit words being
placed on the data lines of the Main Memory Bus
and. after a data deskew delay, the assertion of
DATA READY. DATA READY, when received
in the Cache, loads the data on the Main Memory
Bus into the Bus Data Registers. The outputs of
the Bus Data Registers are gated to the FDM and
also to the Cache Data Multiplexer. Since we have
assumed that the Unibus Map is requesting an odd
word. A DRS bit I is asserted, and causes the
Cache Data Multiplexer to select the data stored in
the Bus Data (High Word) Register and gate it to
the U nihus Map.

The receipt of both MAIN ACK and DATA
R FA DY in the Cache indicates that the Main Mem
ory has responded properly. Therefore, these sig
nals inhibit the generation of a Main Memory Bus
time-out hy negating CCBE ALLOW TIMEOUT
L. When the time-out is inhibited, write pulses are
generated. The write pulses load the two 18-bit
words (i.e., the block) brought from Main Memory
into the FDM and their identification bits into the
Address Memory. Whether Group 0 or Group I of
the FDM (and corresponding Tag 0 Address Mem
ory or Tag I Address Memory) is loaded is deter
mined as described in Paragraph 4.7.

When time-out is inhibited, REST ART is asserted,
which in turn asserts DONE. DONE generates UB
DONE. which loads the data word gated out of the
Cache into the Unibus Map. The Unibus Map will
place the data word on the Unibus and then com
plete its Unibus transaction. DONE also brings the
Cache into its quiescent state by negating LOCK,
which in turn negates UB CYCLE. With LOCK ne
gated. the Cache can begin servicing other requests
for memory access.

Vl-3-29

3.8.7 Unibus Map Write
Figure 3-14 is a flowchart illustrating Cache oper
ation during a Unibus Map write cycle. When per
forming a write to memory, the Unibus Map
transmits data gated from the Unibus, a 22-bit phys
ical address (generated from the 18-bit Unibus Ad
dress). and operation control bits Cl and CO to the
Cache. and then asserts UB REQUEST. UB
REQUEST. delayed and synchronized by a Cache
internal clock {SYNC CLK), generates PRE UBUS
(Pre Unibus Cycle), which will initiate Cache oper
ation to service the Unibus request if

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

If the above conditions are satisfied, the Cache as
serts UB CYCLE and LOCK. LOCK indicates that
the Cache is presently .. locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed.

U B CYCLE causes the Cache Write Multiplexer to
select the Unibus data, thereby routing it to the
FDM and the (high and low word) Main Memory
Bus Data Drivers. When the Main Memory Bus
data lines become free (MAIN BOCC L negated),
the Cache enables the data word onto the Main
Memory Bus.

U B CYCLE also causes the address generated by
the Unibus Map to be gated into the Cache by the
Address Multiplexer. This address is processed in
the Cache and, at the same time, gated to the Main
Memory Bus (along with control bits). Incoming ad
dress bits (9:2) address the FDM to select a block
in Group 0 and Group I which will be updated in
case a hit occurs. Bits I and 0 of the incoming ad
dress select a word or byte in the selected blocks

which will be updated in case a hit occurs. Bits
(9:2) of the incoming address also address the Ad
dress Memory. Bits (21: I 0) of the incoming address
are checked against the contents of the Address
Memory to determine whether the contents of the
address referenced are currently stored in the
Cache. HIT 0 or HIT I will be asserted if the data
being referenced is in the FDM.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne
gates the Unibus Map request, thereby preventing
the same request from being serviced twice. At
Tl80. START SLOW is asserted in the Cache. This
asserts SLOW CYCLE and enables the assertion of
ST ART on the Main Memory Bus 100 ns after the
bus becomes unoccupied (START WRITE as
serted). START causes the address, data, and con
trol bits presently on the Main Memory Bus to be
loaded into Main Memory. A memory cycle is then
started, and MAIN ACK is transmitted back to the
Cache.

The receipt of MAIN ACK in the Cache indicates
that Main Memory has responded properly, and
therefore inhibits generatioh of a Main Memory
Bus time-out. When the time-out is inhibited, write
pulses arc generated if a hit has been detected. The
write pulses (DTM B LO BYTE WP O* I L, HI
BYTE WP O* I L, LO BYTE WP 2*3 L, and/or HI
BYTE WP 2*3 L) load the word or byte being writ
ten into the FDM group on which the hit occurred
at its proper position within the currently indexed
block. When time-out is inhibited, RESTART is as
serted. which in turn causes the assertion of
DONE: DONE generates UB DONE, which is
transmitted to the Unibus Map and informs it that
the write operation has been executed; this allows
the Unibus Map to terminate its transaction on the
Unibus by issuing SSYN. DONE also brings the
Cache into its quiescent state by negating LOCK,
which in turn negates UB CYCLE. With LOCK ne
gated, the Cache can begin servicing other requests
for memory access.

VI-3-30

"Tl
crci"
s::
'"'1
('!)

~
~ I < c

0 ::s
u.J ~

s::
fJJ

~
i:.:i

-0

~
:l.
~

UNIBUS MAP

UNIBUS MAP
GATES DATA
•OPERATION
CONTROL BITS
•GENERATES
ADDRESS

ASSERT
UB REQUEST

NEGATE
UB REQUEST

UNIBUS
TRANSACTION
COMPLETED

INITIATE CACHE
TIMING SEQUENCE
ICCBEI

T150
HOLD

T30

T60

T90

T120

T150

ASSERT LOCK
(CCBB)

ASSERT
UBACKN
ICCBCI

ASSERT
START SLOW
ICCBD)

ASSERT
SLOW CYCLE
ICCBDI

CACHE

YES

DETECT HIT
OR MISS
IADMKI

DATA DESKEW
100 NS ICCBDI

ASSERT START
ICCBDI

GENERATE
WAITE PULS~S
UPDATE FDM
IF HIT
ICCBE,DTMA·LI

ASSERT
UBDONE
ICCBCI

ADDRESS 11o
OPERATION
CONTROL BITS
GATED INTO
CACHE
IADME,F.JI

ADDRESS&
OPERATION
CONTROL BITS
GATED ONTO
MAIN
MEMORY BUS
(ADMLI

DISABLE
TIME OUT
ICCBE,Dl

ASSERT RESTART
ICCBE)

NEGATE LOCK
ICCBBI

NEGATE
UBCYCLE
ICCBBI

CACHE
QUIESCENT

MAIN MEMORY

3.8.8 Cache Register Read/Write
Figure 3-15 is a flowchart illustrating Cache oper
ation during a Cache register read or write. A
Cache register read or write operation is quite sim
ilar to a Unibus Map read hit. When the Unibus
Map decodes a Cache register address on the
Unibus, it gates bits (03:01) (MAPA ADRS 03:01)
of the Unibus address and transmits MAPB
CACHE REG L to the Cache. When the Unibus
Map. receives MSYN on the Unibus, it asserts UB
REQUEST. UB REQUEST, delayed and synchro
nized by a Cache internal clock (SYNC CLK) gen
erates PRE U BUS (Pre Unibus Cycle), which will
initiate Cache operation to service the Unibus
request if

I.

2.

The Cache is not presently servicing the
request of some other device.

The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

If the above conditions are satisfied, the Cache as
serts U B CYCLE and LOCK. LOCK indicates that
the Cache is presently "locked" into an operating
cycle (U B CYCLE in this case) and that no other
requests will be serviced until the present cycle is
completed. UB CYCLE causes the 22 physical ad
dress bits and the operation control bits (CI and
CO) to be gated into the Cache by the Address M ul
tiplexer. The 22-bit physical address gated out of
the Unibus during a Cache register operation is not
a valid address. It is gated into the Cache, indexes
into the FDM and Address Memory, and may
cause HIT 0 or HIT I to be asserted; however, be
cause MA PB CACHE REG L is asserted, assertion
of CC BO ST ART SLOW (I) H is inhibited; there
fore. reading or writing into the FDM or Main
Memory is also inhibited. Address bits MAPA
A DRS (03:01) select the desired Cache register. The
selected register data is gated out of the Cache to
the Unibus Map on the CCB REG D 15:00 lines
(whether or not a read or a write is being
performed).

When LOCK is asserted, a timing sequence is in
itiated in the Cache. At T30, UB ACKN is asserted
and transmitted to the Unibus Map. This signal ne
gates the Unibus Map request, thereby preventing
the same requ~st from being serviced twice.

If a register write operation is being performed, a
register write pulse is generated (CCBH WRITE
ERR REG L, CCBH CLK MAINT REG L, or
CCBH CLK CONTROL REG L) at T60 of the
Cache timing sequence.

At T 180, DONE is asserted in the Cache. This sig
nal generates U B DONE, which enables the Unibus
Map to accept register data (if it is performing a
read) and to terminate its transaction on the
Unibus. DONE also brings the Cache into its quies
cent state by negating LOCK, which in turn ne
gates U B CYCLE. With LOCK negated, the Cache
can begin servicing other requests for memory
access.

3.8.9 MBC Read From Memory
The flowchart in Figure 3-16 shows a single MBC
(M BC A) requesting memory access. If two or
more M BCs request memory access concurrently,
Cache operation is similar. Multiple M BC requests
are discussed in Paragraph 4.6, which describes the
Mass bus arbitrator.

M BCs requesting memory access assert their respec
tive request signals [CSTC CTRLA (B, C, or D)
REQ L]. The Cache MBC arbitrator receives these
requests and arbitrates among the requesting
M BCs. The M BC arbitration logic asserts M BC
REQ and transmits SEL ADRS CTRL "X" H to
the selected M BC (M BC A in this case). Receipt of
the SEL A DRS signal enables MBC A to gate out
an address and operation control lines Cl, CO, and
CX to the Cache. M BC R EQ, delayed and synchro
nized by a Cache internal clock (SYNC CLK), gen
erates PRE MBC (Pre MBC Cycle), which causes
the address and control bits gated out by the se
lected M BC to be loaded into the M BC Address
Latch. PRE MBC will initiate Cache operation to
service the M BC request if

I. The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

2. The Cache is not waiting to execute the
write portion of a DA TIP initiated by
some other device.

3. There are no Unibus Map requests cur
rently pending (i.e., PRE UBUS is not
asserted).

VI-3-32

UNIBUS MAP

UNIBUS MAP
GATES ADDRESS,
6 OPERATION
CONTROL BITS 6
(IF WRITE) DATA
FROM UNIBUS

ASSERT
UB REQUEST

(MAPFI

NEGATE UB
REQUEST

DATA LOADED

(IF READ)

UNIBUS

INITIATE CACHE
TIMING SEQUENCE
CCCBEI

T30

TSO

T90

T120

T150

T180

ASSERT UB
DONE
(CCBCI

CACHE

ASSERT UB
CYCLE
CCCBB)

ASSERT UB ADDRESS 6 DATA OPERATION ACKN
(CCBC)

LINES GATED CONTROL BITS
INTO CACHE II< GATED INTO
PROCESSED IN
NORMAL MANNER

CACHE CADMJ)

YES

WRITE
NO SELECTED

REGISTER
(CCBH,J,K)

ASSERT DONE
!CCBC)

UBCYCLE CACHE
QUIESCENT

CCCBBI

TRANSACTION 11-2832
COMPLETED

Figure 3-15 Register Read and Write

VI-3-33

ADDRESS
BITS SELECT
REGISTER
READ DATA
ICCBF)

If the above conditions are satisfied, the Cache as
serts M BC CYCLE and LOCK. LOCK indicates
that the Cache is presently "locked" into an oper
ating cycle (M BC CYCLE in this case) and that no
other requests will be serviced until the present
cycle is completed. M BC CYCLE causes the ad
dress generated by the selected M BC to be gated
into the Cache by the Address Multiplexer. This ad
dress is processed in the Cache and, at the same
time. gated to the Main Memory Bus along with
control bits CI and CO. Incoming address bits (9:2)
address the FD M and the Address Memory. Bits
(21: I 0) of the incoming address are checked against
the contents of the Address Memory to determine
whether the contents of the address referenced are
currently stored in the Cache. HIT 0 or HIT I will
he asserted if the data being requested is in the
l·D M: however, since data is not read from the
1-'DM during M BC cycles, these signals are not
used.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. At T30 of the timing sequence,
DISABLE REQ is asserted. DISABLE REQ clocks
the M BC arbitration logic and causes SEL DATA
CTR L A to be transmitted to the selected M BC:
the M BC ignores this signal during a read from
memory. While DISABLE REQ is asserted, the
M BC arbitrator is prevented from arbitrating new
incoming requests.

At H)O, MBC REQ ACKN is asserted. MBC REQ
ACK N is transmitted to all the M BCs and notifies
the selected M BC that it can negate its request and
alter the address and operation control bits.

At T 120 of the Cache timing sequence, CLK PRI
H (Clock Priority) rs generated, and clocks the
M BC priority arbitration logic: this records that
M BC "A" is currently selected and will influence fu
ture selections.

At Tl 50 of the Cache timing sequence, DISABLE
R EQ is negated. DISABLE REQ negated enables
clocking the M BC priority arbitration logic, caus
ing selection of the next MBC if an MBC request is
pending.

At T 180, ST ART SLOW is asserted in the Cache.
This asserts SLOW CYCLE and, after a 100 ns
skew delay, ST ART is asserted on the Memory
Bus. ST A RT causes the address and control bits
presently on the Main Memory Bus to be loaded
into Main Memory. A memory cycle is then
started, and M Al N ACK is transmitted back to the
Cache.

The receipt of MAIN ACK in the Cache indicates
that the Main Memory is responding properly:
therefore, this signal inhibits the generation of a
Main Memory Bus time-out by negating CCBE AL
LOW Tl M EOUT L. Also in response to MAIN
ACK, the Cache transmits ADRS ACKN to the
M BCs. Time-out inhibited causes the assertion of
REST ART, and this in turn causes the assertion of
DONE. DONE brings the Cache into its quiescent
slate by negating LOCK. With LOCK negated, the
Cache can begin servicing other requests for mem
ory access.

The memory cycle just initiated results in two 18-
hit words being placed on the data lines of the
Main Memory Bus and, after a data deskew delay,
the assertion of DATA READY. The Main Mem
ory Bus data is received in the Cache and routed to
the M BCs. The M BC Arbitration Logic in the
Cache routes DATA READY to the MBC per
rorming the read operation (M BC A in this case)
hy asserting CDPK DATA RDY CNTL A H. This
causes M BC A to accept the read data. Note that
while the Cache is routing the M BC data and
DAT A R DY signals, it may already be in the midst
or servicing some other request for memory access.

VI-3-34

< -I
~
w
Vi

.,,
60"
c: ..,
(ti

~

°"
s:
t::t1
()

:;o
(ti
~
0. .,, ..,
0
3
~
(ti

3
0 ..,
'<

MBCA CACI-IE

ICSTCI

USED ON WRITE
TOMEMORVJ

I
I
I
I

COCCURS PRIOR]
TO ASSERTION
OF PRE MBC

ASSERT LOCK

ICCBBI

INITIATE CACHE
TIMING SEQUENCE

ICCBEI

ASSERT SEL I ASSERT
T30 I DATA CTRL A DISABLE

(CDPJI REC lCCBEJ

T60

ASSERTMBC
REOACKN

lCCBE)

TOALLMBCs --.----tr---------------_j

NEGATE

ASSERT
SLOW

T150

CYCLE ICCBDI

ASSERT

tCCBEI

DISABLE

ICCBEI

DATA DESKEW
100NS

(CCBDI

ASSERT

START lCCBDl

ASSERT DATA

ICDPK)

ASSERT
MBC

ASSERT

A REO lCOPH)

MBC REC lCOPJJ

ASSERT
PRE MBC

ICCBBI

CYCLE (CCBBJ

LOAOMBC
ADDRESS
LATCH

ADDRESS
PROCESSED

DETECT HIT
OR MISS

IAOMHJ

SELECTMBC
ADDRESS

IADME,F,J)

GATE ADDRESS &
OPERATION CON·
TROL BITS ONTO
MAIN MEMORY
BUS (AOML)

IAOMK)

MULTIPLE
MSC REQUESTS

MAIN MEMORY

LATCH ADDRESS &
OPERATION CON·
TROL LINES

ASSERT
MAIN ACK

START READ
Ml; MORY
CYCLE

ASSE:R1

MAIN eocc

36·BIT DOUBLE
WOROPLACED
ONO LINES OF
MAIN MEMORY
BUS

DATA DESKEW

'Tl
o'Q"
c
'"1
(11

"'f
-....)

~ ~

0 °' (")
w

~ °' '"1
M-"
(11

.....
0

~
(11

3
0
'"1

'-<

TO

MBCA

ASSERT
CTRL A
REQ

ICSTCI

GATE OUT
ADDRESS&
OPERATION
CONTROL BITS

GATE OUT DATA

ALL MBCs

TO ALL MBCs

MSC MAY Al TER
ADDRESS &
OPERATION
CONTROL LINES

NEGATE
CTRL A

CONTINUE
OPERATION

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

CACHE

[

OCCURS PAIO~
TO ASSERTION
OF PRE MBC

ASSERT LOCK

ICCBBI

INITIATE CACHE

NO

TIMING SEQUENCE '-----
ICCBEJ

TJO

ASSERT SEL
DATA CTRL A

ICDPJI

TSO

TSO

T120

T150

ASSERT
SLOW

CYCLE (CCBDl

ASSERT
ADAS ACK

IADMLI

ASSERT
DISABLE

REO (CCBEI

ASSERTMBC
REQ ACKN

ICCBEI

ASSERT
CLK PRI

100 NS

ices£~

(CCBEl

ICCBOJ

.--..$SERT . ---1
I START {CCBDI

I

DISABLE
TIME OUT

ICC BE.DI

ASSERT
RESTART

ICCBEI

ASSERT
DONE

MBC

ASSERT

MBC REO ICOPJI

ASSERT
PRE MBC

(CCBBI

ASSERT CLK
MBC ADAS

(CCBBI

CYCLE (CCBBI

LOAD MBC
ADDRESS
LATCH

IADMHI

SELECT MBC
ADDRESS

IAOME,F,JI

DETECT HIT
OR MISS

(AOMKI

GENERATE WRITE
PULSES/INVALI
DATE FDM DATA
If HIT ICCBE.
DTMB ADMA·Dl

ONLY ON
MULTIPLE
MBC REQUESTS

NO

GATE ADDRESS &

OPERATION CON·
TROL BITS ONTO
MAIN MEMORY

BUS IADMLI

GATE DATA ONTO
MAIN MEMORY

BUS ICDPC.DI

NEGATE MBC I CACHE
CYCLE

ICCBBl
QUIESCENT

I
-1

I
I
I

LATCH DATA,
ADDRESS&
OPERATION
CONTROL
LINES

ASSERT
MAIN ACK

MAIN MEMORY

START WRITE
MEMORY
CYCLE

DATA WORDS/
BYTES WRITTEN
INTO MEMORY

3.8.10 MDC Write to Memory
The nowchart in Figure 3-17 shows a single MBC
(M BC A) requesting memory access. If two or
more M BCs request memory access concurrently,
Cache operation is similar. Multiple M BC requests
are discussed in Paragraph 4.6, where M assbus arbi
tration is described.

M BCs requesting memory access assert their respec
tive request signals [CSTC CTRL A (B, C, or D)
R EQ L]. The Cache M BC arbitrator receives these
requests and arbitrates among the requesting
M BCs. The M BC arbitration logic asserts M BC
REQ and transmits SEL ADRS CTRL "X" H to
the selected M BC (M BC A in this case). Receipt of
the SEL A DRS signal enables M BC A to gate out
an address and operation control lines Cl, CO, and
CX to the Cache. M BC REQ, delayed and synchro
nized hy a Cache internal clock (SYNC CLK), gen
~rates PRE M BC (Pre M BC Cycle), which causes
the address and control bits gated out by the se
lected M BC to be loaded into the M BC Address
Latch. PRE M BC will initiate Cache operation to
service the M BC request (f

I.

2.

. l

The Cache is not presently servicing the
request of some other device (i.e.,
LOCK not asserted).

The Cache is not waiting to execute the
write portion of a DATIP initiated by
some other device.

There arc no Unibus Map requests cur
rently pending (i.e., PRE UBUS is not
asserted).

Ir the a hove conditions are satisfied, the Cache as
serts M BC CYCLE and LOCK. LOCK indicates
that the Cache is presently "locked" into an oper
ating cycle (M BC CYCLE in this case) and that no
other requests will be serviced until the present
cycle is completed. M BC CYCLE causes the ad
dress generated by the selected M BC to be gated
into the Cache by the Address Multiplexer. This ad
dress is processed in the Cache, and, at the same
time. gated to the Main Memory Bus along with
control hits CI and CO. Incoming address bits (9:2)
address the FDM and the Address Memory. Bits
(2 I: I 0) or the incoming address are checked against
the contents of the Address Memory to determine
whether the contents of the address referenced are
currently stored in the Cache. HIT 0 or HIT I will

he asserted if the data being requested is in the
FD M. If HIT 0 or HIT 1 is asserted, the corre
sponding data in the FDM will have to be in
validated by loading a negated Valid bit into the
Tag 0 Address Memory or Tag I Address Memory,
respectively.

When LOCK is asserted, a timing sequence is in
itiated in the Cache. At T30 of the timing sequence,
DISABLE REQ is asserted. DISABLE REQ clocks
the M BC arbitration logic and causes SEL DATA
CTRL A to be transmitted to the selected MBC;
this enables the selected M BC to gate write data to
the Cache. The write data is gated onto the Main
Memory Bus by the Cache when MAIN BOCC be
comes unasserted. While DISABLE REQ is as
serted. the M BC arbitrator is prevented from
arbitrating new incoming requests.

At T60, MBC REQ ACKN is asserted. MBC REQ
ACK N is transmitted to all the M BCs and notifies
the selected M BC that it can negate its request and
alter the address and operation control bits.

At Tl20 of the Cache timing sequence, CLK PRI
JI is generated and clocks the M BC priority arbi
tration logic: this records that M BC A is currently
~elected and will inOuence future selections.

At T 150 of the Cache timing sequence, DISABLE
R FQ is negated. DISABLE REQ negated enables
clocking the M BC priority arbitration logic, caus
ing selection of the next MBC if an MBC request is
pending .

At Tl80, START SLOW is asserted in the Cache.
This asserts SLOW CYCLE and enables the asser
t ion or START on the Main Memory Bus 100 ns af
ter the hus becomes unoccupied (START WRITE
asserted). ST ART causes the data, address, and con
trol hits presently on the Main Memory Bus to be
lo:1ded into Main Memory. A memory cycle is then
started. and MAIN ACK is transmitted back to the
Cache. The memory cycle results in the data being
written into Main Memory. In response to MAIN
ACK. the Cache transmits ADRS ACK to the
M BCs: the M BC which initiated the write to mem
nry is thereby notified that the Main Memory oper
ation has heen executed.

The receipt of MAIN ACK in the Cache indicates
that the Main Memory has responded properly.
Therefore, this signal inhibits the generation of a
Main Memory Bus time-out.

VI-3-37

When time-out is inhibited, a write pulse is gener
ated if a hit has occurred during the cycle. The
write pulse loads a negated Valid bit into the Ad
d rcss Memory (Tag 0 or Tag 1), thereby in
validating the FDM data words on which the hit
occurred.

When time-out is inhibited, RESTART is asserted,
which in turn causes the assertion of DONE.
DONE hrings the Cache into its quiescent state by
negating LOCK, which in turn negates MBC
CYCLE. With LOCK negated, the Cache can begin
servicing other requests for memory access.

VI-3-38

4.1 SCOPE
This chapter provides detailed descriptions of
Cache logic functions. Paragraph 4.2 provides a de
tailed description of the Cache data paths. Para
graphs 4.3 through 4.7 describe Cache timing and
control logic. Paragraph 4.8 provides Cache register
definitions and describes the register logic.

4.2 BLOCK DIAGRAM DESCRIPTION
Figure 3-2 is a block diagram of the Cache, show
ing the major functional areas of the data paths.
Each block on the diagram references the location
of the represented logic in the schematics of the en
gineering print set.

The Cache is implemented on four hex-height
modules:

M8142 CCB (Cache Control Board)
M8143 ADM (Address Memory)
M8144 DTM (Data Memory)
M8145 CDP (Cache Data Paths)

The ADM, DTM, and CDP modules contain al
most all of the data path logic illustrated in the
block diagram. The CCB module contains the regis
ter data paths and almost all the timing and control
logic in the Cache.

4.2.1 M BC Address Latch
The M BC Address Latch (Drawing ADMH) is
clocked by CCBB CLK MBC ADRS Land loaded
with an address (M BC BUS A2 t-AOO L) and oper
ation control bits (M BC BUS CI, CO, CX L) gener
ated by a selected MBC. CCBB CLK MBC ADRS
is asserted just prior to the execution of an MBC
cycle by the Cache. With the address and operation
control bits latched in the Cache, the MBC may
unassert or alter these lines upon receipt of CCBE
MBC REQ ACKN L from the Cache. The outputs
of the M BC Address Latch are routed to the Ad
dress Multiplexer.

CHAPTER 4
DETAILED LOGIC

4.2.2 Address Multiplexer
The Address Multiplexer (Drawings ADME, F, J)
multiplexes address and operation control bits from
one of four sources to various logic in the Cache.
The four sources are:

I. Unibus Map - A 22-bit physical address
and CI, CO operation control lines are
selected when a Unibus Map cycle is
being executed by the Cache.

2. Processor/Memory Management - A 22-
bit, physical address and Cl, CO oper
ation control lines are selected when a
processor cycle is being executed by the
Cache.

3. M BC Address Latch - A 22-bit address
and CI, CO, CX operation control lines,
generated by a selected MBC and pres
ently stored in the MBC Address Latch,
are selected when an M BC cycle is being
executed by the Cache.

4. Power-Up Address Logic - An 8-bit ad
dress generated by a counter within the
Cache (Drawing A DMJ) is selected dur
ing the Cache power-up initialization se
quence. During the power-up sequence,
this address is incremented from 0 to
255 while, at the same time, it is used to
index into the Address Memory. At each
address, both Tag 0 Address Memory
and Tag I Address Memory are loaded
with negated Valid bits and correct par
ity. The negated Valid bits indicate that
the address tag fields (and therefore the
corresponding data in the FDM) are in
valid. This is equivalent to the FDM
being empty.

VI-4-1

Selection is based on the state of signals CCBB
A.MS SO H and CCBB AMX S 1 H, which are as
serted as follows:

Operation SI so

CP Cycle 0 0
Power-Up 0 I
MBC Cycle 1 0
UB Cycle I 1

The outputs of the Address Multiplexer are used as
follows.

Address Bits (21:10)

Address Bits (09:02)

Address Bit 0 I

Address Bit 00

Cl, CO

Used for comparison
with the address fields
at the selected Address
Memory index position.

Used to index into the
FDM and Address
Memory.

Used to select a desired
word in the FDM dur
ing read or write oper
ations. Also used to
select the desired word
in Main Memory during
write operations.

Used to select a desired
byte in the FDM and
Main Memory during
DA TO B operations.

Determine the operation
to be performed. Used
to generate the Main
Memory Bus operation
control bits MAIN
CO:Cl L. Also used to
generate the Main Mem
ory Bus Byte Mask bits
and address bits AOl
and AOO.

NOTE
Operation control bits Cl, CO are multiplexed by an
extension of the Address Multiplexer, located on
Drawing ADMJ.

ex

Address Bits (21 :02)

Used to generate Main
Memory Bus Byte Mask
bits (during MBC cycles
only).

The Main Memory Bus
operation control bits
and Byte Mask bits are
gated onto the Main
Memory Bus along with
a parity bit correspond
ing to these lines.

4.2.3 Main Memory Bus Control Generator
This circuitry (Drawing ADMJ) generates the Main
Memory Bus Byte Mask bits (BYTE M:\SK 3:0),
operation control bit MA IN CO, and the address
and control parity bit (ADMJ ADRS PARITY H).

Main Memory Bus operation control bit MAIN Cl
is always maintained in the negated state, as illus
trated on Drawing ADML. The state of MAIN CO
therefore solely determines whether the Main Mem
ory operation will be a read or a write. MAIN CO
is derived from the Cl operation control bit that is
selected as input to the Cache by the Address Multi
plexer. If the selected C 1 input is negated, A DMJ
READ Lis asserted, and in turn negates MAIN CO
L on the Main Memory Bus. The MAIN Cl:O sig
nals are thereby encoded for a read operation.

The Byte Mask bits are generated by decoding oper
ation control bits Cl :0 (and CX during MBC cy
cles) and address bits AO 1 :00, which are selected by
the Address Multiplexer. The decoding is per
formed by a pair of type 74S 153 dual 4 to 1 multi
plexers. If a read operation is to be performed on
the Main Memory Bus, ADMJ READ L is as
serted. This negates the multiplexer strobe inputs
and forces all the multiplexer outputs (ADMJ
BYTE MASK 3:0 H) low. During a write oper
ation (ADMJ READ L negated), the multiplexers
are strobed and cause Byte Mask bits to be gener
ated as listed in the table on drawing ADMJ.

An address and control parity bit (ADMJ ADRS
PARITY H) is generated for the address and con
trol lines of the Main Memory Bus. The parity bit
is generated in a slightly unconventional manner, in
order to minimize the required logic.

VI-4-2

The following signals are input to the final parity
generator chip:

l. ADMJ PARA GEN H -This signal is a
parity bit for address lines 21: 15.

2. ADMJ PARB GENO H - This is a Tag
0 Address Memory parity bit for bits
14: I 0 of the address and the Tag 0 Valid
bit (CCBM VALID 0 INPUT L).

3. CCBM VALID 0 INPUT L-This sig
nal counteracts for CCBM V AUD 0 IN
PUT L used in generating ADMJ PARB
GENO H.

4. ADMJ DATOB H -This signal repre
sents parity for the Byte Mask bits. An
odd number (actually one) of Byte Mask
bits will be asserted only if this signal is
asserted.

5. A DMJ READ H - This signal, used to
generate MAIN CO, represents parity for
MAIN Cl :0, since MAIN Cl is always
negated.

6, The remaining input represents parity
for bits (09:02) of the Main Memory Bus
address.

Main Memory address bits (24:22) are always main
tained in the negated state, and therefore are not
used in generating the parity bit.

4.2.4 Main Memory Bus Address Drivers
These drivers (Drawing ADML) drive bits (21:2) of
the address selected by the Address Multiplexer
(along ~ith operation control lines MAIN Cl :0)
onto the Main Memory Bus. The Cache thus antici
pates a cycle to Main Memory whenever the Ad
dress Multiplexer makes an address selection. Note
that signal MAIN Cl is always maintained in the
negated state.

4.2.5 Address Field Inverter
The Address Field Inverters (Drawings ADME, F)
perform a simple inversion of bits 21 through IO to
allow for comparison in the parity, address, and
validity check circuitry. The inverters compensate
for the inversion performed by the Address
Memory.

Vl-4-3

4.2.6 Index Field Inverter-Drivers
The Index Field Inverter-Drivers (Drawings
ADMA, C) are used to invert bits (9:2) (index field)
of the incoming address, and simultaneously to pro
vide sufficient drive to allow these signals to ad
dress all the chips that comprise the Address
Memory. The Index Field Inverter-Drivers consist
of two sets, as illustrated in the block diagram. One
set supplies drive for the Tag 0 Address Memory
address inputs (Drawings ADMA, B). The other set
performs the same function for the Tag 1 Address
Memory (Drawings A DMC, D).

4.2. 7 Address Memory
The Address Memory (Drawings ADMA, B, C, D)
is comprised of the Tag 0 Address Memory and
Tag I Address Memory, each containing 256 15-bit
address tags. The tags consist of a 12-bit address
field, a Valid bit, and two parity bits. The Tag 0
Address Memory (Drawings ADMA, B) contains
the address tags for data stored in Group 0 of the
FDM, while the Tag 1 Address Memory (Drawings
A DMC, D) contains address tags for data stored in
Group I.

The Tag 0 Address Memory consists of 15 type 19-
12069 random access memory chips. Each chip
stores I bit position of the 15-bit address tag. Eight
address inputs provide 256 address locations. Data
being accessed is available at the Y (pin 6) output.
Data to be stored is applied to the DI input (pin
13), and is written by a low pulse at pin 12.

The Tag I Address Memory is structured in an
identical manner.

The index field of an incoming address (bits 09:02)
is used to index into the Tag 0 and Tag 1 Address
Memory. The address tags thus accessed are then
checked against the address field of the incoming
address (bits 21: I 0) by the Tag 0 and Tag I Ad
dress, Parity, and Validity Checkers (Drawing
ADM K) to determine whether the contents of the
incoming address are presently stored in the Cache.

The address memory is written with a new address
tag whenever new data is loaded into the FDM as
a result of a read miss. Also, whenever an MBC
write hit occurs, the Valid bit of the address tag on
which the hit occurred is negated; this invalidates
the corresponding block in the FDM. (When a
non-M BC write hit occurs, the Address Memory is
written, but its contents do not change; the address
tag written is the same as the old address tag.)

Note that the Tag 0 Address Memory is written
whenever data in Group 0 of the FDM is modified
or invalidated (A DMJ WP H and CCBM WRITE
SEL 0 H is asserted), while the Tag 1 Address
Memory is loaded whenever data in Group 1 of the
FDM is modified or invalidated (ADMJ WP H
and CCBM WRITE SEL 0 H asserted).

4.2.8 Valid Bit Generator
The Valid Bit Generator (Drawing CCBM) gener
ates the Valid bits to be stored in the Address Mem
ory. If data is loaded into the Fast Data Memory
as a result of a read miss, the Valid bit associated
with the corresponding location in Address Mem
ory is asserted. Two Valid bits are generated by this
circuitry: CCBM VALID 0 INPUT Land CCBM
VALID 1 INPUT L. They are generated as inputs
for the Tag 0 Address Memory and Tag I Address
Memory, respectively. The circuit used to generate
these signals is discussed in detail in Paragraph 4.7.

4.2.9 Address Memory Parity Generator
The Address Memory Parity Generator logic gener
ates the following odd parity bits (Drawings
A OM F, J) for loading into the Address Memory:

I. One parity bit (ADMF PARA GEN L)
is generated for bits (21: 15) of the in
coming address, and can be loaded into
either the Tag 0 Address Memory or
Tag 1 Address Memory.

2. One parity bit (ADMJ PARB GEN 0
H) is generated for bits (14: IO) of the in
coming address plus the V AUD 0 IN
PUT bit, for loading into the Tag 0
Address Memory.

3. One parity bit (ADMF PARB GEN
H) is generated for bits (14: I 0) of the in
coming address plus the V AUD I IN
PUT bit, for loading into the Tag I
Address Memory.

4.2.10 Tag 0 and Tag 1 Parity, Address, and Valid
ity Checker
This logic, represented by two blocks on the block
diagram, is located on Drawing ADMK. The Tag 0
Parity, Address, and Validity Checker determines
whether valid data, corresponding to the incoming
address selected by the Address Multiplexer, is
stored in Group 0 of the Fast Data Memory
(FDM). The Tag 1 Parity, Address, and Validity

VI-4-4

Checker performs a parallel check to determine
whether valid data corresponding to the same ad
dress is stored in Group 1.

The Tag 0 check is performed by comparing ad
dress bits (21: IO) coming from the Address Multi
plexer with address bits (21: 10) stored in the Tag 0
Address Memory location selected by incoming ad
dress bits (9:2). If bits (21: 10) of the incoming and
stored addresses match and the Valid bit in the ad
dressed location of the Tag 0 Address Memory is
asserted, the Tag 0 Parity, Address, and Validity
Checker asserts ADMK GROUP 0 AMATCH H.
If no parity errors were detected on the address tag
ADMK GROUP 0 PARA OK H and ADMK
GROUP 0 PARB OK H are asserted), ADMK
GROUP 0 HIT L is asserted. This indicates that
the content of the memory address being accessed
is presently in Group 0 of the FDM. A hit on
Group 0 results in the following:

I. During a non-M BC read, data will be
fetched from the FDM at high speed
without requiring a slow cycle to Main
Memory (unless an FDM parity error is
detected on the requested word).

2. During a non-M BC write, the data word
in Group 0 of the FDM on which the
hit was made will be updated.

3. During an M BC write, the data word in
Group 0 of the FDM on which the hit
was made will be invalidated by negating
the Valid bit stored in the Tag 0 Address
Memory location selected by bits (9:2) of
the incoming address. Negating this
Valid bit invalidates both the odd and
even words in Group 0 addressed by bits
(9:2) of the incoming address.

Detection of a hit on Group 0 and/or Group I can
be inhibited by setting bits 4 and/ or 5 of the Con
trol Register (17 777 746). This asserts CCBH
FORCE MISS GPO and/or CCBH FORCE MISS
G Pl, thereby preventing detection of address equal
ity by the comparators.

Setting bits (11 :08) of the Maintenance Register (ad
dress 17 777 750) forces detection of parity errors
by the parity checkers.

4.2.H Write Data Multiplexer
The Write Data Multiplexer (Drawing CDPE) se
lects write data from either the BR of the processor
or from the Unibus Map, depending on whether a
memory access is being performed from the pro
cessor or the Unibus Map.

The output of the Write Data Multiplexer is fed to
the Main Memory Drivers to be driven across the
Main Memory Bus to Main Memory. The data is
placed on the Main Memory Bus as soon as the
bus becomes vacant (BOCC not asserted and MBC
read cycle not being performed).

The write data output of the Write Multiplexer is
also applied to the A inputs of the Even Multi
plexer and the Odd Multiplexer. During a write op
eration, the A input is selected by the Even
Multiplexer and the Odd Multiplexer, and switched
to the Fast Data Memory. The write data thus be
comes available to update the data memory if a hit
occurs. The output of the Write Data Multiplexer
is also applied to the Data Parity Generator, which
generates data parity for the word being written,
for use on the Main Memory Bus and possible stor
age in the Fast Data Memory.

During an MBC cycle (CCBB MBC CYCLE Las
serted) and during the power-up sequence (CDPJ
IN IT A L asserted), the select inputs to the Write
Data Multiplexer are both high. This forces all Is
to be output from the multiplexer and ensures that
the data lines are stable while data parity bits are
generated. The all Is pattern thus generated is writ
ten into the FDM during the power-up sequence,
and also when an FDM location is invalidated as a
result of an M BC write hit.

4.2.12 Data Parity Generator
The Data Parity Generator (lower left of Drawing
CDPF) generates odd parity bits (CDPF WRITE
MUX LO GEN H and CDPF WRITE MUX HI
GEN H) for the two 8-bit bytes gated by the Write
Multiplexer. WRITE MUX LO GEN H corre
sponds to the high byte (WRITE MUX 15:08 H).

The two parity bits are routed to the Main Mem
ory Bus Data Drivers and will be gated onto the
Main Memory Bus along with the data from the
Write Multiplexer when the write-through oper
ation is performed.

The two parity bits are also routed, along with the
data from the Write Multiplexer, to the Even Multi
plexer and Odd Multiplexer to allow updating of
the Fast Data Memory if a write hit occurs.

4.2.13 Main Memory Bus Data Dril'ers
These drivers (Drawings CDPC, D) drive the data
selected by the Write Data Multiplexer (i.e., pro
cessor or Unibus Map data) and the corresponding
byte parity bits (generated by the Data Parity Gen
erator from the selected data) onto the data lines of
the Main Memory Bus. The 18 bits of data and
data parity are driven concurrently on the MAIN
DATA BYTE (0-0:0-8) (1-0:1-8) and MAIN DATA
BYTE (2-0:2-8) (3-0:3-8) data lines of the Main
Memory Bus. Since the processor and Unibus Map
are capable of only single word or byte transfers,
this arrangement allows writing into either
word/byte within a Main Memory block.

Data is gated onto the Main Memory Bus when
CDPC CACHE DAT A EN H is asserted. This oc
curs when the Main Memory Bus data lines be
come unoccupied (CDPD OCC L negated), while a
non-M BC write to memory operation is being exe
cuted by the Cache.

4.2.14 Main Memory MBC Data Dril'ers
These drivers (Drawings CDPC, D) drive data
(M BC BUS D3 l-DOO L) and associated byte parity
bits (M BC BUS B3PA-BOPA L) from the Massbus
Controllers onto the data lines of the Main Mem
ory Bus during a write Cache MBC cycle, when
MAIN BOCC becomes unasserted (i.e., when the
Main Memory Bus data lines become unoccupied).

Note that the 36 M BC BUS data and data parity
lines allow the M BCs to perform double word trans
fers to and from Main Memory.

4.2.15 Main Memory Bus Data Receil'ers
The Main Memory Bus Data Receivers (Drawings
CD PC, D) are represented by two blocks in the
block diagram. One group of receivers receives the
low (even addressed) word (i.e., bytes 0 and I) and
the associated byte parity bits that are asserted on
the Main Memory Bus. The other group of receiv
ers receives the high (odd addressed) word (i.e.,
bytes 2 and 3) and the associated byte parity bits
that are asserted on the Main Memory Bus. The
outputs of the receivers, only used when data is

Vl-4-5

being read directly from Main Memory, are routed
directly to the MBCs (for MBC reads) and to the
Bus Data (Low Word and High Word) Registers
(for non-M BC reads).

4.2.16 Bus Data Register
The Bus Data Register (Drawing COPA) is active
during a non-M BC read miss cycle. The Bus Data
Register is loaded with the 36-bit double word
being read from the Main Memory when the Cache
receives DAT A REA DY asserted on the Main
Memory Bus. The Bus Data Register is clocked by
COPA BD CLK H. This signal is asserted in re
sponse to DATA READY (CDPC DATA ROY H
asserted) provided that an M BC read is not in prog
ress (CDPK RIP L negated).

Data read from Main Memory is always read in
two-word pairs by the Cache. Each double word
consists of an even word (AD RS BIT I = 0) and
the next higher odd word (A DRS BIT 1 = 1).
These words are stored in the Bus Data (Low
Word) Register and the Bus Data (High Word)
Register, respectively.

The output of the Bus Data (Low Word) Register
is applied to the B inputs of the Even Multiplexer.
The output of the Bus Data (High Word) Register
is applied to the B inputs of the Odd Multiplexer.

4.2.17 Even Multiplexer and Odd Multiplexer
This logic, located on Drawings CDPB, F, is repre
sented by two blocks on the block diagram. The
Even Multiplexer switches data to the even word
Fast Data Memory and to the Cache Data
Multiplexer.

During a read operation in which a cycle to Main
Memory occurred, the Even Multiplexer selects the
even word which was brought from Main Memory
and is presently stored in the Bus Data (Low
Word) Register. This data word is applied to the in
puts of the even word Fast Data Memory and will
be stored in one of the memory locations. The data
word is also applied to the Cache Data Multiplexer
(DTM M), and will be transmitted to the device in
itiating the read operation if the even word was the
one requested by the device.

During a write operation, the Even Multiplexer
switches the 16 bits of write data from the Write
Data Multiplexer, plus two data parity bits, to the

VI-4-6

even word sections of the Fast Data Memory for
possible use in updating the Fast Data Memory. If
the write operation is to an address presently stored
in the Cache (write hit), the data in the correspond
ing Fast Data Memory location must be updated if
it is to remain valid. If the write operation is to an
address not stored in the Cache (write miss), the
Fast Data Memory is not updated, and the output
of the Even Multiplexer is not used.

The Odd Multiplexer operates in a manner similar
to the Even Multiplexer, switching data from the
Bus Data (High Word) Register to the Fast Data
Memory and Cache Data Multiplexer during a read
operation, and switching write data to the odd
word sections of the Fast Data Memory during a
write .operation.

An extension of the Even and Odd Multiplexers, lo
cated at the lower right of Drawing CDPF,
switches the byte parity bits.

During the power-up sequence, CDPJ INIT A L is
asserted, and causes the Even and Odd Multi
plexers to select the all Is pattern generated by the
Write Data Multiplexer.

4.2.18 Main Memory Data Parity Check
Th is circuitry (Drawing CDPF), represented by two
blocks in the block diagram, checks for correct par
ity on data words brought from Main Memory.
The checks are made at the outputs of the Even
Multiplexer and Odd Multiplexer, i.e., on the low
word and the high word brought from Main Mem
ory. If a parity error is detected, CDPF MAIN LO
PAR OK L or CDPF MAIN HI PAR OK L are
negated, and the corresponding bits in the Memory
System Error Register are caused to set.

Setting bits (15:12) of the Maintenance Register (ad
dress 17 777 750), causes byte parity bits to be
checked as Is. This will cause parity errvrs to be de
tected on bytes having negated parity bits.

4.2.19 FD M Index Field Drivers
The FDM Index Field Drivers (Drawing DTMA)
provide the drive necessary to allow bits (9:2) (in
dex field) of the incoming address to address all the
chips that comprise the FDM. The drivers have
four sets of outputs (DTMA WRD 0 A09-02 H,
DTMA WRD I A09-02 H, DTMA WRD 2

A09-02 H, and DTMA WRD 3 A09-02 H). Each
set of outputs addresses the chips in the FDM that
store a particular word, as listed below.

WR D 0 A09-02 address The even addressed
words in Group 0.

WRD I A09-02 address The odd addressed
words in Group 0.

WRD 2 A09-02 address The even addressed
words in Group I.

WRD 3 A09-02 address The odd addressed
words in Group I.

4.2.20 Fast Data Memory (FDM)
The 1024 data words that the Cache is capable of
storing are stored in the FDM (Figure 2-2). The
FDM is divided into two sections or groups
(Group 0 and Group I), each capable of storing
512 18·-bit words. The words comprise an eight-bit
low byte, a low byte parity bit, an eight-bit high
byte, and a high byte parity bit.

Each group is divided into two equal areas (256
words each). In one of the areas, the contents of
even addresses (address bit I = 0) are stored; the
contents of odd addresses (address bit I = I) are
stored in the other.

The FDM is implemented using type 19-12069 256
X I bit random access memory chips. Nine chips
(as shown on Drawing DTMC) can therefore store
256 nine-bit bytes (eight data bits plus one parity
bit). The organization on Drawing DTMC is dupli
cated on Drawings DTMD through DTML. Draw
ings DTMC-F illustrate Group 0 of the FDM;
Drawing DTM H-L illustrate Group I.

FDM chip select signals DTMB CS3:0L (Drawing
DTM B) enable the FDM chips to be written and to
output data. The FDM is enabled on a word-by
word basis. DTM B CSO and CS I enable the even
and odd words (respectively) in Group 0 of the
FDM. Similarly, CS2 and CS3 enable the even and
odd words (respectively) of Group I.

During the power-up sequence [A DMJ POWER
UP (I) H asserted], all four chip selects are
asserted.

During a write cycle (DTMB WRITE H asserted),
either DTM B CSO L and DTM B CS2 L or DTM B
CS I L and DTM B CS3 L are asserted, depending
on whether the address being referenced is odd or
even (as determined by signal ADME AMX 01 H).
Thus, the even word in each FDM group or the
odd word in each FDM group will be enabled. If a
hit is detected, write pulses will be generated only
for the byte/word in the group on which the hit
occurred.

During a read hit cycle (CCBD SLOW CYCLE L
negated), chip selection is performed in the same
manner as during a write cycle.

During a read miss cycle, (A DMJ READ L and
CCBD SLOW CYCLE H asserted), either DTMB
CSO L and DTMB CSI L or DTMB CS2 L and
DTM B CSJ L are asserted, as determined by sig
nals CCBM WRITE SEL 0 H and CCBM WRITE
SEL I H. The CCBM WRITE SEL 1:0 signals are
generated by the Group Selection circuitry (Para
graph 4.7).

DTMB LO BYTE WP O*I L, DTMB HI BYTE WP
O* I L, DTM B. LO BYTE WP 2* 3 L, and DTM B HI
BYTE WP 2*3 L are the FDM write pulses. The
first pair of signals writes the low and .high bytes
within Group 0 of the FDM. The second pair
writes the low and high bytes in Group I. FDM
chips enabled by a chip select signal are written
when the write pulse is low.

NOTE
The chip select signals and the write pulses operate
together to write the desired byte, word, or double
word into the FDM. the chip select signal must be as
serted and the corresponding write pulse must be
generated.

During the power-up sequence, CCBM WRITE
SEL I :0 H are asserted; this enables all four write
pulses to be generated.

During a read miss, only one of the WRITE SEL
signals is asserted; therefore, only the pulses which
write into the selected group will be generated.

During a write hit, write pulses are generated for
the word/byte in the group on which the hit oc
curred, as determined by the WRITE SEL signals,
ADME AMXOO Hand ADMJ DATOB H.

VI-4-7

During a write miss, the WRITE SEL signals are
negated, and no write pulses are generated.

The contents of a Main Memory location (i.e., a
two-word block) is loaded into the FDM whenever
a non-M BC read miss occurs. The block is loaded
into either Group 0 or Group 1 (depending on the
state of an internally generated Random bit; refer
to Paragraph 4. 7) at an index position determined
by the index field (bits 09:02) of the incoming ad
dress. The words within the block become available
for future reference by either the processor or
Unibus Map. When one of these words is read in
the near future (assuming that they are not over
written by another pair of words having an address
with an identical index field), it will be fetched at
high speed because a Main Memory Bus cycle will
not be required.

During a non-M BC write hit, the data word (or
byte) written into Main Memory is also written
into the FDM. If the word to be written into the
FDM has an even nddress, it is applied via the
Even Multiplexer to the even word storage areas of
both Group 0 and Group 1 of the FDM. It thus be
comes available to replace the obsolete even ad
dress word in the group on which the hit occurs.

M BC read hit, read miss, and write miss operations
do not affect the FDM. However, when an MBC
write hit occurs, the FDM location on which the
hit occurred is loaded with all Is (i.e., correct data
parity). At the same time, the corresponding Ad
dress Memory location is loaded with a negated
Valid bit, invalidating the block.

Within each group of the FDM, the odd word and
even word outputs are common collectored. When
data is read from the FDM, only the even or odd
word in each group is read out. The two words
(both odd or both even) are checked for correct par
ity, and also applied to the Cache Data Multi
plexer. During a non-M BC read hit, the Cache
Data Multiplexer selects the word from the FDM
group (Group 0 or Group I) on which the hit
occurred.

4.2.21 FDM Data Parity Check
This logic (Drawing DTMN), represented by two
blocks in the block diagram, checks for correct par
ity on the data output from Group 0 and Group I
of the FD M. One parity check is performed on
data output from Group 0; the other check is per
formed on the data output from Group I. If a par
ity error is detected on data output from Group 0

VI-4-8

or Group I, DTMN DATA PARO OK L or
DTMN DATA PARI OK L are negated, respec
tively, and the corresponding bits in the Error Reg
ister are set.

If, during a read hit operation, the requested word
stored in the FDM is found to have bad parity, the
Cache initiates a cycle to Main Memory to fetch
the (hopefully error-free) backup copy of the word.
The newly fetched word will be loaded into the
FDM, replacing the word on which the error
occurred.

Setting bits (7:4) of the Maintenance Register (ad
dress 17 777 750) causes the FDM data byte parity
bits to be checked as Os. Thus, an FDM data parity
error will be detected on bytes having asserted par
ity bits.

4.2.22 Even and Odd Multiplex Inverters
These inverters (Drawing DTMP) invert the data
and data parity bits being read from Main Memory
during a non-M BC read miss cycle. The inversion
is performed so that all inputs to the Cache Data
Multiplexer are at a true high when asserted. The
inversion is required to compensate for the extra in
version performed on data being read directly from
the Fast Data Memory.

4.2.23 Cache Data Multiplexer
The Cache Data Multiplexer (Drawing DTM M)
switches data being read out of the Cache to the
BR of the processor and to the Unibus Map. The
data switched may be from one of four sources, de
pending on the memory address requested (odd or
even address), and whether a hit occurred on FDM
Group 0, Group I, or neither group.

I. Input A to the Cache Data Multiplexer
is the output of Group I of the FDM.
An odd or even word is gated out of
Group I of the FDM, depending on
whether the address input to the Cache
is odd or even. If a hit on Group I oc
curs, this input is selected by the Cache
Data Multiplexer.

2. Input B to the Cache Data Multiplexer
is the output of Group 0 of the FDM.
An odd or even word is gated out of
Group 0 of the FDM, depending on
whether the address input to the Cache
is odd or even. If a hit on Group 0 oc
curs, this input is selected by the Cache
Data Multiplexer.

3. Input C is the even word received by the
Cache from Main Memory. If the ad
dress input to the Cache is an even ad
dress (AD RS BIT I = 0) and a read
miss occurs, this input is selected by the
Cache Data Multiplexer.

4. Input D is the odd word received by the
Cache from Main Memory. If the ad
dress input to the Cache is an odd ad
dress (ADRS BIT I = I) and a read
miss occurs, this input is selected by the
Cache Data Multiplexer.

The output of the Cache Data Multiplexer becomes
available to both the processor and the Unibus
Map. If the processor initiated the read operation,
the Cache will respond with MEM SYNC to the
processor when the data is ready; this will cause the
transfer of the data. to the BR of the processor.

If the Unibus Map initiated the read operation, the
Cache will respond with CCBC UB DONE
(Unibus Done) when the data is ready. This will
cause the transfer of the data to the data latch in
the Unibus Map.

4.2.24 Register Logic
The register logic shown on the Cache data paths
block diagram is described in Paragraph 4.8

4.3 CACHE TIMING
The PDP- I I /70 Cache operates synchronously with
the processor. This synchronous operation aids in
achieving overall high operating speeds.

The Cache is synchronized to clock signals gener
ated on the TIG module (M8 I 39). The processor
free clock, TIGC TF H, is buffered to generate
CCBJ\ ARB CLK H. The buffering circuitry, com
prising discrete components (located on Drawing
CCBA) is designed for minimal propagation delays
and rise and fall times. This is achieved by oper
ating the transistors at or near their active region.
CCBJ\ A RB CLK H is inverted by a 74S 140 gate
to generate CCBA SYNC CLK H. Figure 4-1 illus
tr{1tes these two waveforms, and emphasizes the
6-10 ns delay introduced by the inversion. Only the
negative-going edge of CCBA ARB CLK His used
for clocking purposes. Likewise, only the positive
goi ng edge of CCBA SYNC CLK H is used. Thus
the active edges of these two clocks are separated
by the 6-10 ns inversion delay.

CCBA ARB CLK H

CCBA SYNC CLK H

-..li.-6-10ns
11 - 2843

Figure 4-1 Cache Clock Waveforms

The operating speed of the PDP- I I /70 Cache is
achieved by using fast logic and running the Cache
synchronously with the processor. The short time
between clock pulses makes Cache timing very criti
cal. To speed up signal processing, a parallel imple
mentation is generally used in place of a serial
implementation. For this reason, type 74S64 2-2-3-4
AND-OR-INVERT gates are often used in the de
sign wherever signal delays must be minimized.

4.3.1 Cache Timing Sequence
The cache timing sequence is generated using
CCBA ARB CLK H. (Refer to Drawing CCBE.)

The Cache timing sequence is a series of time states
generated whenever the Cache begins executing a
memory access cycle. These time states are used to
synchronize various Cache functions as indicated in
Paragraphs 3.8.1 through 3.8.10.

The timing sequence is initiated (Figure 4-2) as a re
sult of the assertion of LOCK. Generation of more
than one timing sequence during any Cache cycle is
inhibited by gating LOCK with signals CCBD
START SLOW (0) H, CCBE T60 (0) H, CCBE
Tl20 (0) H, and CCBE TISO HOLD (0) H.

When LOCK is asserted, the T30 flip-flop is
clocked set by the falling edge of ARB CLK. The
T60 flip-flop is then clocked set on the next falling
edge of ARB CLK. With T60 (1) H asserted, the
T30 flip-flop is cleared on the next negative-going
A RB CLK pulse. This in turn causes CCBE T90 H
to be asserted. On the next negative-going ARB
CL K pulse, the T 120 flip-flop is set. At the same
ti me, the T60 flip-flop is cleared and CCBE T60 (I)
H and CBE T90 H are negated. The TISO HOLD
flip-flop is clocked set at the next ARB CLK pulse,
while at the same time the Tl20 flip-flop is cleared.
The Tl SO HOLD flip-flop remains set until either
CCBD START SLOW (I) Lor CCBC DONE (I)
L is asserted. During TISO HOLD, the Cache de
cides whether or not to assert CCBD ST ART

VI-4-9

ARB CLK

LOCK

T 30

T 60

T 150 HOLD

START SLOW

DONE

Dashed lines indicate timinc;i durinc;i
write and read miss cycles.

1-----·H- -- -,
. L---

.---- -~~---,
___ ..J L---

.----,
1~ _...J L-

11-284 4

Figure 4-2 Cache Timing Sequence

SLOW (I) H and thereby initiate a cycle to Main
Memory. Thus if a processor cycle is being per
formed, the Cache must receive CONTROL OK
from the processor during or prior to the assertion
of Tl50 HOLD.

4.3.2 Read Hit Timing
If a read hit is detected during the Cache timing se
quence, the Done flip-flop is clocked set (by the
first CCBA ARB CLK H pulse during T150
HOLD) and asserts CCBC DONE (I) H. CCBC
DONE (I) H resets much of the Cache logic, includ
ing the Lock flip-flop. With CCBB LOCK (I) H ne
gated, the Cache is in its quiescent state and may
begin executing the next cycle.

If a processor cycle is being executed, CCBC MEM
SYNC H is asserted synchronously with processor
timing. CCBC MEM SYNC H is asserted at the
start of T 150 HOLD if the Cache has already re
ceived TMCE CONTROL OK H, or during Tl50
HOLD when the Cache receives TMCE CON
TROL OK H.

4.3.3 Main Memory Bus (Slow Cycle) Timing
When the Cache begins executing a processor,
Unibus Map, or M BC cycle, bits (21 :02) of the in
coming address are placed on the Main Memory
bus, along with Main Memory control bits (MAIN
BYTE MASK 3:0 and MAIN CJ :0) and an address
parity bit. While the Cache timing sequence is pro
gressing, these signals are deskewed on the Main
Memory Bus. During Tl 50 HOLD of the timing se
quence, the Cache decides whether or not to per
form a Main Memory Bus cycle. If a cycle to Main
Memory is required, the Cache asserts CCBD
ST A RT SLOW. If a write operation is being per
formed, CDPC ST ART WRITE is asserted when
the Main Memory data lines become unoccupied
(MA IN BOCC negated). At the same time, write
data is gated onto the Main Memory Bus by the
Cache. ST ART WRITE asserted enables ST A RT
SLOW to generate CCBD START Hafter a 100 ns
data deskew delay. CCBD START H is driven
onto the Main Memory Bus as MAIN START,
and initiates the Main Memory cycle. In response
to MAIN ACK from Main Memory, ADML
AD RS ACK N H is asserted in the Cache and ne
gates CCBD START H.

VI-4-10

During a read operation, CDPC ST ART WRITE is
asserted throughout the Cache cycle. This allows
CCBD START H to be asserted 100 ns after the as
sertion of START SLOW.

NOTE
During Main Memory read cycles, the 100 ns delay
is still necessary in order to ensure sufficient deskew
for the address and control lines of the Main Mem
ory Bus. This is required because the high order bits
of the 22-bit physical address generated by Memory
Management may not be valid until the Cache is in
the midst of its operation cycle.

4.3.4 Timing Restart After Main Memory Cycle
Cache timing is restarted when proper Main Mem
ory response causes the negation of CCBE AL
LOW TIMEOUT L. CCBE ALLOW TIMEOUT L
is negated when the Cache receives MAIN ACK
from Main Memory after initiating a write oper
ation or an M BC read operation. If a non-M BC
read operation is being performed, the Cache must
also receive MAIN DATA READY. The Cache
write pulses (CCBE WP L), which write the Ad
dress are generated upon negation of CCBE AL
LOW TIMEOUT L.

The negation of CCBE ALLOW TIMEOUT L is
synchronized by CCBA SYNC CLK H, CCBA
ARB CLK H, and TIGC TF H to generate CCBE
MEM SYNC SLOW (I) H and CCBE RESTART
(I) H. CCBE MEM SYNC SLOW (I) H causes the
assertion of CCBC M EM SYNC H during pro
cessor cycles which result in Main Memory oper
ations. CCBE RESTART (I) H enables the
assertion of CCBC DONE (I) H. CCBC DONE (I)
H resets much of the Cache logic, including the
Lock flip-flop. With CCBB LOCK (I) H negated,
the Cache is in its quiescent state, and may begin
executing the next cycle.

4.4 POWER-UP LOGIC
On power-up, the Cache performs a power-up se
quence during which all of the Valid bits in the Ad
dress Memory are cleared. This is done because
anything stored in the Cache immediately after a
power-up must not be construed as valid data. At
the same time that the Address Memory Valid bits
arc negated, all the remaining bits in the Address
Memory and FDM are loaded with bit patterns
having correct parity. This is to ensure that the bit
patterns resident in the Address Memory and FDM
upon power-up will not generate parity errors when
program execution begins.

The power-up control logic is located on Drawing
A DMJ. The circuitry consists of a pulse generator,
a counter, and the PUP (Power-Up) flip-flop.

The following discussion describes operation of the
power-up circuitry upon initial power turn on. It
should, however, be kept in mind that the same se
quence of events occurs when power returns after a
momentary failure.

Figure 4-3 is a timing diagram illustrating the
power-up circuitry operation.

As ac power is appearing at the power supply in
puts, AC LO L is asserted and clears the eight-bit
Power-Up Address Counter. When DC LO L is as
serted, the Power-Up flip-flop is direct set; this en
ables the Power-Up Pulse generating oscillator to
begin operation when power has reached normal
levels (i.e., when AC LO Lis negated).

When POWER UP (I) H is asserted, the following
events occur:

I. CCBB AMX SO H is asserted, causing
the Address Multiplexer to select the
power-up address generated by the
Power-Up Address Counter. (During
power-up, CCBB AMX SI H is unas
serted due to INIT.)

2. CCBM VALID 0 INPUT L and CCBM
VALID I INPUT L are negated, and
CCBM WR OK H, CCBM WRITE
SEL 0 H, and CCBM WRITE SEL I H
are asserted.

3. DTMB GROUP 0 H and DTMB
GROUP I H are asserted and, in turn,

enable assertion of DTM B LO BYTE
WPO*I L, DTMB HI BYTE WPO*I L,
DTMB LO BYTE WP2*3 L, and DTMB
HI BYTE WP2* 3 L when write pulses are
generated.

4. The FDM chip selects (DTMA CS 0 L,
DTMA CS I L, DTMA CS 2 L, and
DTM A CS 3 L) are asserted.

5. The output of the Write Multiplexer
(COPE) is forced to all ones.

6. The Even Multiplexer and Odd Multi
plexer (CDPB,F) select the outputs of
the Write Multiplexer.

Vl-4-11

AC LO L ''----------41.----'

DC LO L

POWER UP (1) H ~

COUNT CLK L ~
OFLO

POWER UP ADDRESS 0 • • 2 •3H 37718 •

ALLOW WP H

PUP WP L

11-2 8 4 5

Figure 4-3 Power-Up Sequence Timing Diagram

When AC LO L is negated, the oscillator begins
generating pulses. The pulses produced clock the
FDM and Address Memory (causing the locations
indexed by the Power-Up Address Counter to be
loaded) and increment the Power-Up Address
Counter. Each FDM word position indexed by the
Power-Up Address Counter is loaded with all ones.
The Address Memory word locations are loaded
with negated Valid bits and correct address parity.
As the Power-Up Address Counter is clocked from
000 to 377x, all the locations in the FDM and Ad
dress Memory are loaded, and the contents of the
Cache arc thereby invalidated.

When the Power-Up Address Counter is clocked to
overflow, the Power-Up flip-flop is clocked clear;
this inhibits further PUP WP L pulses and termi
nates the power-up sequence.

4.5 REQUEST ARBITRATOR LOGIC
The Request Arbitrator (Drawing CCCBB) deter
mines whether the Cache will perform a processor,
Unibus Map, or M BC memory access.

Two request signals arc input to the Request
Arbitrator:

I. MAPF UB REQUEST (I) L from the
Unibus Map.

2. CDPJ MBC REQ L from the MBC Ar
bitration Logic.

The request signals are synchronized and delayed
(90 ns and 180 ns, respectively) and then assert
PRE UBUS and/or PRE MBC. PRE UBUS causes

the U BUS flip-flop to be set when LOCK is ne
gated, provided that no non-Unibus DA TIPs are in
progress. PRE M BC causes the M BC flip-flop to
he set when LOCK is negated, provided that no
non-M BC DA TIPs are in progress.

If the UBUS flip-flop is set, CCBB UB CYCLE H
is asserted: the Cache will perform a Unibus Map
memory access cycle. If the M BC flip-flop and the
U BUS flip-flop are set, CCBB U B CYCLE H is as
serted, and the Cache will perform a Unibus Map
memory access cycle; th is is what gives Unibus
Map requests priority over MBC requests. CCBB
M BC CYCLE is asserted when the M BC flip-flop
is set and the U BUS flip-flop is not; the Cache
would then perform an M BC memory access cycle.

Processor memory access cycles are performed only
when neither the Unibus Map nor the MBCs are re
questing memory access. When neither the UBUS
flip-flop nor the MBC flip-flop is set, CCBB CP
CYCLE H is asserted. This is a default condition,
and therefore gives the processor the lowest priority
status. The priority structure is thus:

-Isl priority: Unibus Map
'2nd priority: M BCs
3rd priority: Processor

Whenever a memory access cycle is performed, the
CCBB AMX SI, SO H signals are generated to en
able the Address Multiplexer (ADM H) to select ad
d rcss and operation control bits from the correct
source.

YI-4-12

4.6 MDC ARBITRATION LOGIC
The M BC Arbitration Logic, located on the CDP
module (Drawings CDPH through CDPK), selects
one of four possible Massbus Controllers and per
forms with it the protocol required to transfer data
on the R H70-Cache Interface.

As illustrated in Figure 4-4, the MBC Arbitrator
can be considered a discrete device which just hap
pens to be located on the Cache modules.

f'CACHE - - -1
I
I
I
I
I

ADDRESS a DATA LINES

I MBC

I ARBIT- ----+--''------~ I RATOR ___ 1......,1-f1 _________ ___,

L I ,, MBC REQUEST a.
- - - - - .I SELECTION LINES

,,_ 2846

Figure 4-4 Relationship of the M BC Arbitrator
to the Cache

The selection of an M BC is based on a number of
criteria:

I. If an MBC DATIP/DATO memory
cycle is not in proggress and no M BC
requests are pending or being executed,
thhe first request received will be granted.

2. If an MBC is performing a DA
TIP/DATO memory cycle, requests
from other M BCs are not recognized un

til the DATO portion of the DA
Tl P /DATO cyycle has been initiated.

3. Jumpers (WI, W2, W3) on the CDP
module allow M BC selection to be based
on the history of the most recent selec
tions. Table 4-1 lists the~ selection pat
terns obtainable for the different jumper
configurations. If two or more MBCs
request memory access concurrently, se
lection will be based on the pattern of
previous selections, in a manner deter
mined by the jumper configuration.

Table 4-1
MBC Selection Priorities

Jumper Configuration Priority Structure *
Wl W2 W3

OUT OUT OUT (A~ B)~ (C~D)

OUT OUT IN (A~ B)~ (C~ D)

OUT IN OUT (A~ B) ~(c~ D)

OUT IN IN (A~ B)~ (C ~ D)

IN OUT OUT (A~B) ~(c~o)

IN OUT IN (A~ B) ~ (C # D)

IN IN OUT (A #B)~ (C ~ D)

IN IN IN (A~ B) ~ (C ~ D)

*SYMBOLS~,~ are defined in the text.

Figure 4-5 is a block diagram showing the three ma
jor sections of the M BC Arbitration Logic: Request
Block Logic, Address and Data Select Logic, and
Data Ready Logic.

4.6.1 Request Block Logic (Drawing CDPH)
Requests from the RH70s are input to the Request
Block Logic. If one of the M BCs is currently per
forming a DA TIP, this circuitry inhibits requests of
other M BCs from being processed by the Cache. Al
though none of the Massbus devices presently man
ufactured by DEC utilize DATIP cycles, the
Request Block circuitry has been implemented to
cover their utilization in the future.

4.6.2 Address and Data Select Logic
Refer to Drawing CDPJ and Figure 4-6.

4.6.2.1 Single Request Operation - The Address
and Data Select Logic input latch (consisting of the
four D-type flip-flops at the left-hand side of Draw
ing CDPJ) is clocked when MBC REQ L is as
serted. This causes SEL ADRS CTRL X H (where
X is A, B, C, or D) to be transmitted to the request
ing M BC. At T30 of the Cache MBC cycle, the Ad
dress and Data Select output latch (a type 74S 175
data latch at the center of Drawing CDPJ) is
clocked by DISABLE REQ H asserted, and SEL
DAT A X H is transmitted to the selected M BC.

Vf-4-13

}

SELECT DATA LINES
.....-----• (ONE TO EACH MBC)

.....-----
.----}SELECT ADDRESS LINES

(ONE TO EACH MBC)

{

REQ A
4 REQUEST B

LINES
CONE FROM C
EACH MBCl D

REQUEST
BLOCK
LOGIC

lCOPH)

ADDRESS
ANO

DATA
SELECT
LOGIC

lCOPJ)

DISABLE
REQ MBC REQ

DATA
READY
LOGIC

(COPK)

READ IN
PROGRESS

TO ANO FROM CACHE CONTROL
CCCB)

Figure 4-5 MBC Arbitratm Block Diagram

}

DATA READY
LINES
(ONE TO EACH
MBC)

11-2847

CSTC CTRA REQ·L --i I
J,.____ _ _..\,.____---\P---

CDPJ MBC REQ L L__ J
(

COPJ SELADRS CTRLA H ~
180ns

CCBB PRE MBC H -----~I L-'-------~~:====== CCBB CLK MBC ADRS L _ ~

CCBB LOCK (1) H fi@x2@119f.Z1 ~----------.:1.._ __ _
CCBB MBC CYCLE H

T30

CCBE DISABLE REQ H

CDPJ SEL DATA CTRLA H -

* CDPJ SELADRS CTRL
11
X

11
sent to

next MBC if request is pending.

T150

T60 I*

Figure 4-6 MBC Request Timing (MBC A Requesting)

VI-4-14

~

H-2848

When CCBE CLK PRI H is asserted at T120, the
Priority Generator (upper-right of Drawing CDPJ)
is clocked and records the current MBC selection.
Future selections are based on the output of the Pri
ority Generator.

4.6.2.2 Multiple Request Operation - Multiple
M BC requests are handled in a manner similar to a
single request. In fact, the first of the multiple
requests to arrive is always serviced first, and is han
dled in the same way as a single request. The re
maining requests are handled slightly differently
because CDPJ MBC REQ L remains asserted_; this
enables the Address and Data Select Logic input
latch to be clocked by the trailing edge of DIS
ABLE REQ H at TISO of the MBC cycle. The in
put latch is thus loaded with any MBC requests
still pending.

Figure 4-7 is a timing diagram of the Address and
Data Select Logic during multiple request oper
ation. It is assumed that a straight priority struc-

MBC A REQUEST ______J

MBC B REQUEST

MBC C REQUEST

ture (A over B ovver Cover D) has been selected via
the priority jumpers, and that the MBC requests ar
rive in the following sequence: B, C, A. The MBC
B request, first to arrive, asserts MBC REQ, which
in turn asserts SEL ADRS. CNTR B. Therefore, the
M BC B request is serviced first. The MBC A
request is serviced next because of the straight prior
ity struucture, and finally the M BC C request is
serviced.

The Priority Generator determines which request
will be granted when more than one MBC request
is pending. Jumpers WI, W2, and W3 allow control
of the priority structure. When all jumpers are out,
a pseudo round-robin priority structure results as
follows:

The symbol ~ indicates that selection alternates be
tween the expressions on either side of the symbol.

MBC REQ)

--- ~------- {POSSIBLE UB CYCLES l
LOCK MBC CYCLE ~~~ MBC CYCLE ~~~J L MBC CYCLE

SEL ADR B

DISABLE REQ

SEL DATA B

SEL ADR A

SEL DATA A

SEL ADR C

SEL DATA C
11 -2849

Figure 4-7 MBC Address and Data Select Timing (Multiple Requests - Straight Priority)

VI-4-15

With all three jumpers out, the signals output by
the Priority Generator indicate the true history of
past M BC selections, as follows:

CDPJ BLAST (I) H

CDPJ D LAST (I) H

CDPJ C OR D LAST
(I) H

M BC A has not been se
lected since M BC B was
last selected.

M BC C has not been se
lected since MBC D was
last selected.

MBC A or B have not
been selected since
MBC C or D was last
selected.

Each of the above signals can be forced to assertion
by installing jumpers WI, W2, or W3, respectively.
When jumpers are installed, MBC selection is based
on a distorted view of past history, and therefore,
some M BCs ccan be given priority over others. For
example, if all the jumpers are installed, a straight
priority structure results:

(A-~B)-+ (C-+D)

where the symbol-+ indicates that the expression on
the left is given priority over the expression on the
right.

Table 4-1 lists the M BC selection priorities result
ing from the eight jumper configurations.

4.6.3 Data Ready Logic
The Data Ready Logic (located on Drawing
CDPK) keeps trackk of which MBCs are currently
performing read operations and routes the DAT A
RDY signal originating in Main Memory to the cor
rect M BC. A read operation can be initiated on the
Main Memory Bus before a previous read oper
ation has been completed. This is termed "stack
ing" operations on the Main Memory Bus. The
Data Ready Logic can keep track of two con
current reads, thereby allowing two M BC read oper
atiions to be stacked on the Main Memory Bus.

Refer to Drawing CDPK. When an MBC read
cycle is performed by the Cache, one of the flip
flops at the left-hand side of the drawing is direct
set at T300 of the Cache timing sequence. If no
other M BC is currently performing a read from
memory (i.e., waiting for data ready), CDPK RIP
H (Read In Progress) is in the negated state. This
allows one of the flip-flops in the center of the
drawing to be direct set, causing the assertion of
CDPK RIP H.

As a specific example, assumme that MBC A per
forms a read from memory. When the Cache as
serts CCBE M BC REQ ACKN L at T30 of the
Cache timing sequence, the flip-flop at the top left
of CDPK is direct set. If no other MBC read is in
progress (RIP negated), the top center D-type flip
flop is also set. This enables the top 74S 11 to gate
DATA RDY originating in Main Memory control
to M BC A. Assume, however, that before Main
Memory responds with DATA ROY, the Cache be
gins executing a read from memory initiated by
M BC D. When thhe Cache asserts CCBE MBC
R EQ ACK N at T30 of the current Cache timing se
quence, the D-type flip-flop at the lower left of
CDPK is direct set. The flip-flop at the lower cen
ter is not dir~ct set at this time because CDPPK RIP
H is asserted; the Cache is waiting for Main Mem
ory to respond with DAT A R DY to a read in
itiated by MBC A. When DATA ROY is received
in the Cache, CDPK DATA ROY CNTL A is as
serted and routed to MBC A. At the trailing edge
of DATA RDY, the RIPP A flip-flop is clocked
clear. This negates RIP H momentarily, and allows
the RIP D flip-flop to be direct set. RIP H is
thereby reasserted, and the transmission of CDPK
DATA R DY CNTL D is enabled.

The Cache th us keeps track of two concurrent
M BC reads, and remembers for which MBC a
DATA RDY response from Main Memory is
intended.

A third M BC read cycle is inhibited by the asser
tion of CCBD READ IN PROG (I) H. This signal
is asserted during the second of two stacked MBC
reads and inhibbits negation of CCBE ALLOW
Tl M EOUT L until the ffirst M BC read is
terminated.

VI-4- I 6

4.7 GROUP SELECTION ANID VALID BIT
LOGIC
The Group Selection and VValid Bit Logic is located
on Drawing CCBM. The group selection circuitry
produces outputs CCBM WRITE SEL 0 H and
CCBM WRITE SEL I H. These signals enable
Group 0 and Group I of the FDM and correspond
ing Tag 0 or Tag I Address Memory to be written.

The Valid Bit Logic asserts CCBBM VALID 0 IN
PUT Land CCBM VALID I INPUT L, the Valid
bit inputs to the Tag 0 and Tag I Address
Memoryy.

The heart of the circuitry is the D-type flip-flop at
the lower left of Drawing CCBM. This is the Ran
dom bit generator. At T60 of every Cache timing se
quence, the Random flip-flop is clocked and causes
the Random bit to change state. During normal er
ror-free operation, the state of the Random bit de
termines which group of the FDM is loaded when
a non-M BC read miss occurs. If CCBM RAN
DOM (I) H is asserted during a non-M'BCC read
miss cycle, CCBM WRITE SEL l H and CCBM
VALID I INPUT L are asserted. Likewise, if
CCBBM RANDOM (I) His negated during a non
M BC read miss cycle, CCBM WRITE SEL 0 H
and CCBM VALID 0 INPUT Lare asserted.

A four-bit latch (type 74175) is clocked by CCBD
START SLOW (I) H just prior to the initiation of
a slow cycle on the Main Memory Bus. The out-

. puts of this latch represent conditions detected in
the FDM and Address Memory during the Cache
timing sequence. The R3(I) output will be high if a

parity error has been detected in either Group I of
the FDM or Tag I Address Memory. The R2(1)
output will be high if a parity error has been de
tected in either Group 0 of the FDM or Tag 0 Ad
dress Memory. The Rl(I) output will be low if a
write hit on Group 0 has been detected. The RO(I)
out.pput will be low if a write hit on Group I has
been detected. If any of the above conditions is de
tected, the Random bit is overridden. If a parity er
ror is detected, the group in which the error
occurred is selected for replacement. On a write hit,
the group on which the hit occurs is selected for
replacement.

The Random bit is also overridden during the
power-up sequence and during M BC cycles. During
a power-up, ADMJ POWER UP (I) L asserted
causes the .assertion of CCBM WRITE SEL 0 H
and CCBM WRITE SEL I H, and the negation of
CCCBM VALID 0 INPUT Land CCBM VALID I
INPUT L. During an MBC cycle, the Valid bits are
also negated, while the assertion of CCBM WRITE
SEL 0 H and WRITE SEL I H is inhibited if the
cycle is a read from memory.

4.8 CACHE REGISTERS AND REGISTER
LOGIC
Th is section defines the Cache registers and the bits
they contain: a description of the actual implemen
tation is also provided.

Table 4-2 lists the six registers located in the Cache,
along with their addresses. The following para
graphs describe each register.

Table 4-2
Cache Registers

Register Address Access

Low Error Address 17 777 740 Read only

High Error Address 17 777 742 Read only

Memory System Error 17 777 744 Read/selective clear

Control 17 777 746 Read/write

~Maintenance 17 777 750 Read/write

Hit/Miss 17 777 752 Read only

VI-4-17

lb

4.8.1 Low Error Addre~ Register (17 777 740) 4.8.2 High Error Address Register (17 777 742)
This register, illustrated in Figure 4-9, ccontains the
six high order bits of the 22-bit physical address
being accessed when an error occurred. The type of
memory cycle being performed when the error oc
curred is indicated by register bits 15 and 14, which
store the operation control bits (C 1 and CO) of the
memory cycle. Table 4-3 lists the register bits.

Th is register, illustrated in Figure 4-8, contains the
~·low order bits of the 22-bit physical address

being accessed when an error occurred. The least
significant bit is bit 0. The high order bits of the ad
dresses are contained in the High Error Address
Register.

All bits are read only. The bits are undetermined af
ter a power-up. They are not affected by a Console
Start or RESET instruction.

All the bits are read only. The bits are undeter
mined after a power-up. They are unaffected by a
Console Start or RESET instruction.

Bit

15-14

5-0

15 0

LOW ADDRESS (16 BITS) J
.~~~___.________.______,______

Figure 4-8 Low Error Address Register

15 14 8 6 0

CYCLE

Name

Cycle Type

Address

HIGH ADDRESS

Figure 4-9 High Error Address Register

Table 4-3
High Error Address Register

Function

These bits are used to encode the type of memory cycle which
was being requested when the parity error occurred.

Bit 15

0

0

Bit 14

0

0

Cycle Type

Data In (read)

Data In Pause

Data Out

Data Out Byte

These bits contain the highest 6 bits of the 22-bit address of
the first error. The most significant bit is bit 5.

Vl-4-18

4.8.3 Memory System Error Register (17 777 744)
The Memory System Error Register, illustrated in
Figure 4-10, keeps track of hard and soft errors
within the memory system.

A soft error is an error which does not result in the
processor receiving erroneous data; a soft error
causes a trap .. An error which causes the processor
to receive erroneous data is a hard error; this type
of error causes an abort.

Table 4-4 defines the bits in the Memory System Er
ror Register. All the bits are read/write. The bits
are cleared on power-up or by Console Start: They
are unaffected by a RESET instruction.

When writing to the Memory System Error Regis
ter, a bit is unchanged if a 0 is written to it, and it
is cleared if a I is written to it. Thus, the register is
cleared by writing the same data back to the regis
ter. This guarantees that if additional error bits
were set between the read and the write, they will
not be inadvertently cleared.

4.8.4 Control Register (17 777 746)
Th is six-bit register, illustrated in Figure 4-11, con
trols several important internal functions; these are
outlined in Table 4-5. The Control Register allows
running thhe PDP-I I /70 in a degraded mode; this
may be desirable if parts of the Cache are malfunc
tioning. If Group 0 of the Cache is malfunctioning,
it is possible to force all operations through Group
I. Setting bit 4 or bit 5 allows the internally gener
ated Random bit to be overridden and causes data,
fetched from Main Memory as a result of a read
miss, to be replaced in the specified group. If bits 5
and 2 of the Control Register are set and bits 4 and
3 are cleared, the CPU will not be able to read data
from Group 0, and all Main Memory data replace
ments will occur within Group I. In this manner,

15 14 13 12 11 10

CPU ABORT __J J dlJ l l CPU ABORT AFTER ERROR
UNIBUS PARITY ERROR -
UNIBUS MULTIPLE PARITY ERROR
CPU ERROR---
UNIBUS ERROR --
CPU UNIBUS ABORT --

half the Cache will be operating. Bus system
throughput will not decrease by 50 percent, since
the statistics of read hit probability will still provide
reasonably fast operation. If Group I is malfunc
tioning, bits 4 and 3 should be set and bits 5 and 2
cleared so that only Group 0 is operating. If all of
the Cache is malfunctioning, bits 3 and 2 should be
set. The Cache will be bypassed, and all references
will.be to Main Memory.

Control Register bits 5 and 4 can also be used to
keep a desired routine in the Fast Data Memory.
For example, if bit 5 is cleared and bit 4 is set prior
to execution of a desired routine, the routine will
be loaded into Group 0. If bit 5 is cleared and bit 4
is set when the desired routine is not being exe
cuted, the routine will remain protected in Group 0
for future reference. The routine can be protected
in Group 0 while it is being executed if bit 5 is set
and bit 4 is cleared.

Table 4-6 summarizes the uses of Control Register
bits (5:2).

Bits I and 0 can be set to disable trapping. With
these bits set, the processor will not spend time per
forming trap service routines each time a non-fatal
error occurs. Overall system operation will produce
correct results; however, more Main Memory Bus
cycles may be performed.

The Control Register can also be used in trouble
shooting. For example, by setting register bits 3
and 2, the Cache is effectively disabled. If the sys
tem operates with these bits set and does not oper
ate if they are cleared, a malfunction in the Cache
is indicated.

Bits (5:0) are read/write. The bits are cleared on
power-up or by Console Start. They are unaffected
by a RESET instruction.

6 3 0

DATA ERRORS

ERROR IN MAINTENANCE --------~
DATA MEMORY GROUP 1-----------'
DATA MEMORY GROUP 0 ----------------'
ADDRESS MEMORY GROUP 1 ------------~
ADDRESS MEMORY GROUP 0----------------'
MAIN MEMORY ODD WORD-·---------------~
MAIN MEMORY EVEN WORD----------------~
MAIN MEMORY ADDRESS PARITY ERROR---------------~
MAIN MEMORY TIMEOUT-·-------------------~

Figure 4-10 Memory System Error Register

VI-4-19

Bit

15

14

13

12

11

10

9

8

7-6

5-4

3-2

0

Table 4-4
Memory System Error Register

Name

CPU Abort

CPU Abort After
Error

Unibus Parity
Error

Unibus Multiple
Parity Error

CPU Error

Unibus Error

CPU Unibus Abort

Error in Maintenance

Data Memory

Address Memory

Main Memory

Main Address
Parity Error

Main Memory
Time-out

Function

Set if an error occurs which causes the Cache to abort a
processor cycle.

Set if an abort occurs with the Error Address Register
locked by a previous error.

Set if an error occurs which results in the Unibus Map
asserting the parity error signal on the Unibus.

Set if an error occurs which causes the parity error signal
to be asserted on the Unibus with the Error Address
Register locked by a previous error.

Set if any memory error occurs during a Cache cycle
from the processor.

Set if any memory error occurs during a Cache cycle
from the Unibus.

Set if the processor traps to vector 114 because of a
Unibus parity error on a DA TI or DA TIP cycle by the
processor on the Unibus.

Set if an error occurs when any bit in the Maintenance
Register is set. The Maintenance Register will then be
cleared.

These bits are set if a parity error is detected in the Fast
Data Memory in the Cache. Bit 7 is set if there is an
error in Group 1, bit 6 for Group 0.

These bits are set if a parity error is detected in the Address
Memory in the Cache. Bit 5 is set if there is an error in
Group 1, bit 4 for Group 0.

These bits are set if a parity error is detected on data from
Main Memory. Bit 3 is set if there is an error in either byte
of the odd word, bit 2 for the even word. An abort occurs
if the error is in the word needed by a CPU reference. A
trap occurs if the error is in the other word, or if it is a
Unibus reference.

Set if there is a parity error detected on the address and
control lines on the Main Memory Bus.

Set if there is no response from Main Memory. For CPU
cycles, this error causes an abort. When a Unibus device re
quests a non-existent location, this bit will not set.

Vl-4-20

0

I I
FORCE REPLACEMENT GRi::>_U_P_l ________________ ___.! I l FORCE REPLACEMENT GROUPO-----------------'
FORCE MISS GROUP 1 -----------------~
FORCE MISS GROUP 0
DISABLE UNIBUS TRAP
DISABLE TRAPS

Figure 4-11 Control Register

Table 4-5
Control Register

Bit Name

5-4 Force Replacement

3-2 Force Miss

Disable Unibus Trap

0 Disable Traps

4.8.5 Maintenance Register (17 777 750)
This register, illustrated in Figure 4-12, is used for
memory system maintenance. Table 4-7 lists the
functions of the register bits.

The Maintenance Register is read/write. It is
cleared on power-up or by Console Start. It is also
cleared whenever any memory system error is
detected.

This register is for maintenance use only.

Function

Setting these bits forces data replacement within a group
in the Cache by Main Memory data on a read miss. Bit 5
selects Group 1 for replacement; bit 4 selects Group 0.

Setting these bits forces misses on reads to the Cache. Bit 3
forces misses on Group 1 ; bit 2 forces misses on Group 0.
Setting both bits forces all cycles to Main Memory.

Set to disable traps to vector 114 when the parity error
signal is placed on the Unibus.

Set to disable traps from soft errors.

4.8.6 Hit/Miss Register (17 777 752)
The Hit/Miss Register, illustrated in Figure 4-13, in
dicates whether the six most recent references by
the CPU were hits or misses. A one indicates a
read hit: a zero indicates a read miss or a write.
The lower numbered bits are for the more recent
cycles.

All the bits are read only. The bits are undeter
mined after a power-up. They are not affected by a
RESET instruction.

This register is for maintenance use only.

VI-4-21

Table 4-6
Control Register Bits S: 2

Control Register Bits Bit Patterns

5 Force Replacement to Group 1 1 0 x 1 0

4 Force Replacement to Group 0 0 1 x 0 1

3 Force Miss on Group 1 0 1 1 0 0

2 Force Miss on Group 0 1 0 1 0 0

F Disables Group 0

u
N Disables Group 1

c Disables Cache (Group 0 and 1)
T

I Protects and maintains code in Group 0 while it is executed
0

N Protects and maintains code in Group 1 while it is executed -··

15 12 11 8 7 4 3 0

. . . 1 1 1 . rm
MAIN MEMORY PA~---...-------..---~!
FAST ADDRESS PARITY---------'
FAST DATA PARITY----------------'
MEMORY MARGINS--------------------'

Figure 4-12 Maintenance Register

4.8. 7 Use of Cache Registers
When a memory system error is detected, the pro
cessor traps to location 114. If location 114 is used
as a trap catcher, the operator can examine the
Memory System Error Register to determine the
type of error which has occurred. The Low Error
Address and High Error Address Registers can
then be examined to determine where in the pro
gram, and during what type of cycle, the error oc
curred. If statistics on the hit ratio are desired, the
Hit/Miss Register can be read. The Control Regis
ter can be read to determine what the control condi
tions were at the time the error occurred.

If location 114 is not used as a trap catcher, the
above tasks must be performed by the trap service
routine.

If bit 14 (CPU Abort After Error) or bit 12
(Unibus Multiple Parity Error) of the Memory Sys
tem Error Register is set, the address stored in the
Low Error Address and High Error Address Regis
ters is the address of the first error and not the ad
dress at which the most recent error occurred. The
address at which the most recent error occurred
must be reconstructed from the contents of the SP
(which points to the virtual address incremented by
2) and the appropriate Memory Management PAR.

The contents of the Memory System Error Register
and the High and Low Error Address Registers in
dicate the failing section of the memory system.

For example, if type MJ 11 16K core memory is
used in the system, and a Main Memory parity er
ror bit is set in the Error Register, all the informa
tion required to determine the failing 16K section

VI-4-22

Bit Name

15-12 Main Memory Parity

11-8 Fast Address Parity

7-4 Fast Data Parity

3-1 Memory Margins

Table 4-7
Maintenance Register

Function

Setting these bits causes the four Main Memory parity bits
to be checked as 1 s.

There is one bit per byte; there are four bytes in the data
block.

Bit Set
15

14

13

12

Byte
Odd word, high byte

Odd word, low byte

Even word, high byte

Even word, low byte

Setting these bits causes the four parity bits for fast address
memory to be wrong.

Bits 11 and 10 affect Group 1 ; bits 9 and 8 affect Group O.

Setting these bits causes the four parity bits to be checked
as Os.

Bit Set Byte
7 Group 1, high byte

6 Group 1, low byte

5 Group 0, high byte

4 Group 0, low byte

These bits are encoded to do maintenance checks on Main
Memory.

Bit 3 Bit 2 Bit 1

0 0 0 Normal operation

0 0 Check wrong address
parity

0 0 Early strobe margin

0 Late strobe margin

0 -o Low current margin

0 High current margin

0 Reserved

Reserved
All of Main Memory is margined simultaneously.

Vl-4-23

of memory is present. The Low and High Error Ad
dress Registers indicate the 32K section of memory
in which the error occurred. The Error Register in
dicates whether the error occurred on the odd or
even addressed word. If, for instance, the error oc
curred in the odd addressed word, the 16K section
containing odd addressed words should be
replaced.

If an FD M parity error bit is set in the Error Regis
ter, the bad chip is on the M8144 (DTM) module.
Knowing which group failed and the state of ad
dress bit AOI (from the Low Error Address Regis
ter), it can be determined which of the four word
sections of the FD M (Group 0 even and odd,
Group I even and odd) has failed.

If an Address Memory parity bit is set in the Error
Register, the problem is on the M8143 (ADM) mod
ule. The Error Register indicates whether the error
occurred in the Tag 0 or Tag I Address Memory.

If the Main Memory Address Parity bit is set, there
may be a problem in the parity generator (Drawing
A DMJ) or in a memory controller parity checker.
A failure in the Main Memory Bus address and con
trol lines is the most likely cause for this error.

If the Main Memory time-out bit is set, the most
probable cause is a memory controller failure. An
other possible cause is a misconfiguration of the
System Size Register in the processor.

4.8.8 Register Logic
The Cache device registers and their associated
logic are located on Drawings CCBF, H, J, K, and
L. Figure 4-14 is a block diagram showing the
Cache device registers and associated logic. Each
block in the figure references the page of the engi
neering schematics on which the logic is located.

Read Multiplexer - The Read Multiplexer gates the
contents of one of the Cache registers onto the
REG Dl5-00 H lines. Register bits 15, 14, and
05:00 are multiplexed by 8-line to I-line multi
plexers on Drawing CCBF. These multiplexers are
controlled by a decode of Unibus address bits
MAPA ADRS 03:01 H (gated by the Unibus Map).

The remaining register bits are multiplexed by dual
4: I line multiplexers shown on Drawing CCBF.
These multiplexers are controlled by an independ
ent decode of the Unibus address bits.

Register Write Select logic - The Register Write Se
lect Logic consists of a BCD to one of ten decoder
(type 7442) and some gating. The A, B, and C in
puts of the decoder are bits (03:0 I) of the Unibus
address. When input D of the decoder goes low,
one of the three writable Cache registers may be
written. Input D goes low at T60 of the Cache tim
ing sequence when the Cache is performing a
Unibus Map write operation during which MAPB
CACHE REG H is asserted. If the A, B, and C in
puts indicate a binary 2, 3, or 4, the .. 2," .. 3," or
''4" output of the decoder goes low when input D
goes low: this causes the assertion of CCBH CLK
CONTROL REG L, CCBH CLK MAINT
REGL,or CCBH WRITE ERR REG L.

CCBH CLK CONTROL REG L clocks the Con
trol Register and loads it with the data gated from
the Unibus. CCBH CLK MAINT REG L clocks
the Maintenance Register (Drawing CCBL) and
loads it with the data gated from the Unibus.

CCBH WRITE ERR REG L is input to a set of
four type 8266 multiplexers (Drawings CCBJ and
CCBK), selecting the data gated from the Unibus.
This data is inverted and applied to the clear inputs
of the Error Register flip-flops. Thus a I bit is in
verted to a low level which clears the corresponding
Error Register bit.

Trap and A hort logic - The Cache asserts CCBJ
PARITY TRAP H when one of the two trap
request nip-flops is set. One of the flip-flops is set
when the Unibus Map asserts PB on the Unibus
(M APB PB DAT A H asserted). The other flip-flop
is set when CCBK ANY ERR (I) His asserted dur
ing a valid processor cycle (CCBJ VALID CP CYC
H asserted) or a Unibus Map memory (i.e., non
register) cycle.

CCBK ANY ERR (I) His asserted as a result of:

I. A time-out on the Main Memory Bus
during a non-M BC cycle.

2. A parity error on data read from the
FDM.

J. A parity error on address tags read from
the Address Memory.

4. A parity error on data read from Main
Memory during a non-M BC cycle.

VI-4-24

15 6 0

-+-----FLOW

Figure 4-13 Hit/Miss Register

HIT/ MISS
REGISTER

(CCBL)

~UN~l~B~U~S_M_A~P__;;D_A_TA ______________________________ -+1MAINTENANCE

{

CACHE REG
FROM

UNIBUS ADDRESS BITS 3'.0
MAP

REGISTER
WRITE
SELECT
LOGIC

(CCBH)

FROM
ADRS

MUX

REGISTER t---__.,
(CCBL)

ERROR
REGISTER

(CCBJ,K)

CONTROL
REGISTER

(CCBH)

LOW ERROR
ADDRESS
REGISTER

(CCBH)

HIGH ERROR
ADDRESS

REGISTER
(CCBH)

REGISTER
READ

MULTIPLEXER

(CCBF)

REGISTER
SELECT

CONTROL
(CCBF ,Hl

Figure 4-14 Register Logic Block Diagram

VI-4-25

REGISTER
DATA

[0~1sus] MAP

,, -28 50

If traps are disabled (CCBH DIS TRAPS L and
CCBH DIS UNI TRAPS L asserted), assertion of
CCBH PARITY TRAP His inhibited.

The trap request flip-flops are cleared upon in
itialization (CCBA INIT D L asserted) or when the
processor acknowledges receipt of a trap request
(TMCA PERF ACKN L asserted) or abort ac
knowledge (PDRH CACHE PERF L asserted).
The trap request flip-flops are also cleared when
the processor traps due to a Unibus parity error
(U BCB U BUS PAR ERR H asserted); this is done
because the Unibus parity error trap routine will
also handle other concurrent trap conditions.

The Cache asserts CCBJ PARITY ABORT H to
abort the processor. This occurs if the Cache can
not supply good data {DTMM BAD PARITY H
asserted) to the processor, or when a Main Mem
ory Bus timeout occurs during a processor cycle
(CCBD CP TIMEOUT 'L asserted).

The processor acknowledges receipt of CCBJ PAR
ITY ABORT H by asserting PDRH CACHE
PERF L. In an abort due to a timeout, the pro
cessor asserts PDRH CACHE PERF Lin response
to CCBD CP TIMEOUT L; PDRH CACHE
PERF L then asserts CCBJ PARITY ABORT H.

Error Address Register Logic - The Error Address
Register (Drawing CCBH) is in an undetermined
state at power-up, and is loaded with a 22-bit phys
ical address and operation control bits at T60 of
each Cache cycle. If any error is detected, further
clocking of this register is inhibited by the negation
of CCBJ CLK ADRS H. Thus, the address at
which the error occurred is maintained in the Error
Address Register.

CCBJ CLK A DRS H is negated when one- of the
trap request flip-flops is set.

Clocking of the Error Address Register may again
be enabled by servicing the error condition that
caused CCBJ CLK A DRS H to be negated. Note
that CCBJ CLK ADRS H can be immediately as
serted by simultaneously clearing Error Register
bits 15 and 13.

Negation of CCBJ CLK ADRS H causes the asser
tion of CCBJ AOK (0) H. Therefore, if another er
ror occurs after the error that caused the Error
Address Register to lock, bit 14 or 12 of the Error
Register is set.

VI-4-26

APPENDIX A

BLOCK DIAGRAMS

/\

MEMORY MANAGEMENT ~

~ ~
v "' <{ v a.. <{

a..
/\ /\
<D 0

MX BITS <21:16> i8122 BIT 0 0
16 BIT ~ "' SAPJ + v 0

0 c B A SAPJ B <{ v
a.. <{

>

PAGE LENGTH ABORT
SWITCH REG <21:16 >

SCCKt----------------'

ACF ABORTS
8 TRAPS

ACCESS CONTROL
FIELD LOGIC

SAPL

~~;;; ~A-;;H-S- --

KERNEL
PDR

SAPD

..._ ___ __.

ED BIT

PDR<14:08 >

SUPER
PDR

SAPE

USER
PDR

PAGE LENGTH
COMPARATOR

B

SAPF

SAPL
A

---------1

I
I
I
I

I
I
L

EX MEM
FLAG

SAPH B

ALU BITS <21:06 >
SAPJ
A

/\
<D
0

V N

VA<15:13>

~ v
...._ __ __._.._ ____________ ~~-----------

KERNEL
PAR

SAPA

PAF<21:06>

SUPER
PAR

SAPB

D

USER
PAR

SAPC

SYS SIZE
/\...._ ________________ ~
0
~.-------------------.
0
v
<{
>

(TO UBCAI UNIBUS ADRS

(TO TMCCI NOT CACHE AORS

UNIBUS

UNIBUS
ADDRESS DRIVERS

SAPN

/\
0
0
,._

..L-

•!-4096

Figure A-1 PDP-11/70 Address Paths
Block Diagram (Sheet 1 of 2)

A-1

UNIBUS MAP

I
CACHE MBC BUS PA <21:00> FROM RH70

I [ms <O•'" > J
POWER UP LOGIC

MBC BUS ex L

UB REQUEST l ADMJ GMBC BUS COL

l
~

_S. MBC BUS Cl L

® ~
PA <21=00>

r MBC ADDRS REG UBCC
BITS<2t:OO> CPU UNIBUS

}

UB MAP PA <21:00> [A,.,! [C!11,C1
[""'

C!ll, Cl

I

~ ADO"SS LIMIT
COMPARE

MAPF ALU

SWITtHES

ADRS BITS <21•01>
FUNCTION: A+B

A-B
MAPE

TI 0

l l
21:01

UNIBUS MAP REGS UNIBUS MAP REGS
37'20 17'00

BITS I BITS BITS BITS
<21:16> <15'01> <21:16> <15:01>

MAPD MAPC

t

f [_
/\

~
~
v WRITE ENABLE <[/\

WRITE ENABLE
LO REGISTERS

1 0
HI REGISTERS MUX ,...

1 MAPC v
B A <

0-0
UB MAP
REG OP

/\ /\
UNIBUS MAP REGISTER ~ "' 0

DECODE ~ "' MAPB,C 0 v, v

G <II <

BUFFERS /\
BITS<l7:t3> Ci

i:: AO
MAPA v

'

t <

.______.
~

l
UNIBUS

ADDRESS
RECEIVERS

MAPA

~ _J
~~ -- -- -- -- -- --- ~-- - ---- --

I
b 2_ UNIBUS I

MBC MBC MBC
co Ct ex

S222 SL ~
D A B c BYTE MASK

CACHE ADDRESS MUX BYTE MASK LOGIC
< 3:0>

BITS <2t:OO> ADME,F <Ot:OO> ADMJ
r----CCBD READ L _U_ 5[<01:00> ,....--ADMJ C!ll H

lz
21:00

l VALID
BIT ~ROUP

SYS ADRS

0""' "'il ERROR REG

CCBH
[VALID

PARITY PARITY
BIT ~ROUP

GENERATOR "A" GENERA TOR "9"
<21:15> < 14:10> 1 ADMF ADMF ,J

PARITY ~
GENERATOR

<21:02> f\-. ~
ADMJ '< l ~

2-
I

I I
MAIN MEMORY BUS ADRS

I LINE DRIVERS

ADML

CCBM

J
TAG

VALID
PARITY

BIT
"B"

• •

21: 10 21

_s. CCBM--=i

TAG GROUP 0 TAG TAG
TAG STORE ~ 09:0~ VALID

PARITY PARITY PARITY
"A"

<21:10> BIT "s" "A"
ADMA,8 5?
/\

~ i\i

C\i
v
<

Q 2 j •
ADDRESS COM PARA TORS

l l l
TAG 0 PARITY ERR HIT TAG 1 PARITY ERR

Figure A-1 PDP-11/70 Address Paths
Block Diagram (Sheet 2 of 2)

A-2

(/)

:::>
ID

>-
10 cc

0

li
::e
w
::e
~
<[

::e

GROUP 1
TAG STORE
<2t:OO>

ADMC,0

/\
?.
;;;
v
<

Q

ADMK

11-4097
I

PROCESSOR DATA PATHS

DATA FROM FPP

MEMORY MGMT

PA Rs PDRs

A

REG MUX 8 DRIVERS

SSRJ

(!)
0 :c LU

ct: _J

N ~ ~
iii (f) If)

>-
If)

A B c D

MUX 8 DRIVERS

SCCM,N

INTERNAL DATA BUS

,..,
0

!\
IS)

0
.n
v
(!)
LU
ct:

/\
0
0

C\J
0
v
;\
<t
0
I()
0
v
(!)
LU
ct:

DRIVERS

SCCH

/\
0
0
(\J

0
v
;\
<t
0
I()

0
v

UNIBUS
DATA

DRIVERS

PORE

UNIBUS
DATA

RECEIVERS
PDRJ

UNIBUS MAP

UNIBUS
DATA

RECEIVERS

MAPA

BR

CACHE DATA

37:00

MAPC,D

0
_J

(!)
LU
ct:

A
CACHE

CONTROL
REG DATA

B
CACHE
DATA

MAPH

Figure A-2 PDP-11/70 Data Paths
Block Diagram (Sheet 1 of 2)

A-3

11-3444

CACHE

MAIN MEMORY DATA BUS< 35'00>

I 1
0

ii ~

1~ "' "'

I
2

TI MAIN MEMORY DRIVERS MEMORY RECEIVERS USED
32 BITS (COPC,0) AS MBC DRIVERS

32 BITS+ 4 BYTE PARITY

I
BYTE PARITY (CDPF)

CDPC,D

~+2P "'o~
,---J l

35:00

I
0.. 0..

"' "' [+ +
0 0

I
PARITY } 0 0
GENERATE ---- r Q Q

MAIN MEMORY
(CDPF) DATA AND

WRITE MUX PARITY BUS

COPE
MEMORY DATA BUFFER DRIVERS

I
A B ODD WORD I EVEN WORD CDPC,D

31 0 ~ 32 BITS+ BYTE PARITY
BO REGISTER COPA

~ n11 @~:L
~ ~ _iZ Iv

A B A B

I l CACHE REG HIGH WORD .t LOW WORD
MUX DEPOSIT

32 BIT MUX
CCBH

L {PARITY

I
t--- ___ CHECKED

ON
CDPF

CJl _r=

fl ~ _il_ _il_ _il_
GROUP I GROUP 0 v 52 I LO WORD HI WORD LO WORD HI WORD

DTMH DTMJ DTMK DTML DTMC DTMD DTME DTMF
INVERT 15:00 +2P 15:00+2P 15:00+2P 15:00+ 2P '"'" l

I
CS2L CS3L CS!/JL CSIL

DTMP DTMB DTMB OTMB OTMB DTMP

DTMJ,H,K,L DTMC,O,E, F

-c=J L__J J I FDM }-PARITY _ _ ________
i---· CHECK .

I (OTMN) 2 ZS 2
D A B c

I CACHE DATA MUX

OTMM

J
@: ~

« UNIBUS

I RH70

j

l
I
I
I
I
I
I
I
I
I
-'

I
I
I
I
I
I
I
I c
I UB DATA UB DATA

DRIVERS RECEIVERS

BCTC,D BCTO

I Q J
I

MBC BUS

"'
0
0

15:00

-tl~
~

~ v
B A A B

B MUX A MUX

MOPC MOPB

_iZ ~
RB REG

RB/RA E NB
RA REG

MDPC MDPD MDPB

J=>
PARITY PARITY ~

CHECK a CHECK a
GENERATE GENERATE~

MDPC

RD/RC ENB
RD REG

MDPD

L

l ~ z
MBC BUS B A
DRIVERS

<3t:t6>
MIXER

MDPH MDPB

iZ
MBC BUS

R b ~ z
WRITE B A
CHECK RE REG

COMPARE
MOPE MDPF

_U
PARITY

~ CHECK 8
RF REG GENERATE

MOPE MDPF

_U
OUT BUF V1- --REGISTER

~
RF REG

MDPF MDPF

LJ l
FD _SJ:

~ A I MUX
M:PHJ

Figure A-2 PDP-11/70 Data Paths
Block Diagram (Sheet 2 of 2)

A-4

MDPC

RC REG

MDPB

J

l
MBC BUS
DRIVERS
<15:00>

MDPH

TI

l
MASSBUS

RECEIVERS

MBSA,B,C

ca"'"' n
MASSBUS
DRIVERS

MBSA,B,C

{

v

~

11-3445

ADM (M8143)
VI 4.2, 4.8.7

ADMA
VI 4.2.6, 4.2.7

ADMB
VI 4.2.6, 4.2.7

ADMC
VI 4.2.6, 4.2. 7

ADMD
VI 4.2.7

ADME

INDEX

This Index lists the principal references to the CPU
modules (slots 6 through 22 of the processor back
plane). Each module schematic sheet is listed sepa
rately. Roman numerals indicate the Section of this
manual which contains the reference; arabic numer
als indicate the Chapter and the Paragraph within
the Section.

CCBA
VI 3.8.5, 3.8.6, 3.8.7, 3.8.8, 3.8.9, 3.8.10, 4.3,
4.3.1, 4.3.2, 4.3.4

CCBB
VI 3.8.1, 3.8.2, 3.8.3, 3.8.4, 3.8.5, 3.8.6, 3.8.7,
3.8.8, 3.8.9, 3.8.10, 4.2.I, 4.2.2, 4.2.I I, 4.3.2,
4.3.4, 4.4, 4.5

CCBC
II 4.8.1.2, 4.8.3.2, 5.1, V 2.0-2.4, VI 3.4, 3.5,
3.8.1, 3.8.2, 3.8.3, 3.8.4, 3.8.5 3.8.6, 3.8.7,
3.8.8, 4.2.23, 4.3.2, 4.3.4, Table 3-2, Table 3-3

CCBD

IV 4.5, VI 4.2.2, 4.2.5, 4.2.20
II 6.2. l.4, 6.2.3. I, V 2.6 VI 3.8.2, 3.8.3, 3.8.6,
3.8. 7' 3.8.8, 3.8.9, 3.8.10, 4.2.20, 4.3.1, 4.3.3,
4.6.3, 4.7, 4.8.8, Table 3-2, Table 3-3, Table 3-
4 ADMF

VI 4.2.2, 4.2.5, 4.2.9

ADMH
VI 4.2.1, 4.5

ADMJ
II 6.5.3.1, VI 3.7, 4.2.2, 4.2.3. 4.2.7 4.2.9,
4.2.20, 4.4, 4.7, 4.8.7

ADMK
VI 3.8.5, 3.8.6, 3.8.7, 3.8.8, 4.2.7, 4.2.10

ADML
II 6.5, 6.5.3.1, 6.5.3.2, VI 3.6, 4.2.3, 4.2.4,
4.3.3, Table 3-4

CCB (M8142)
VI 3.8.8, 4.2

CCBE
VI 3.6, 3.8.2, 3.8.3, 3.8.6, 3.8.7, 3.8.9, 3.8.10,
4.2.1, 4.3.1, 4.3.4, 4.6.2.1, 4.6.3 Table 3-4

CCBF
V 2.3, VI 4.8.8, Table 3-3

CCBH
VI 3.8.8, 4.2.10, 4.8.8

CCBJ
II 6.2.3.1-6.2.3.2, 6.3.3, VI 4.8.8, Table 3-2

CCBK
II 6.2.3.2, VI 4.8.8

CCBL
VI 4.8.8

INDEX-1

CCBM
VI 4.2.3, 4.2.7, 4.2.8, 4.2.20, 4.4, 4.7

CDP (M814S)
VI 4.2

COPA
VI 4.2.16

COPB
VI 4.2.17, 4.4

COPC
VI 3.8.2, 3.8.3, 3.8.6, 3.8.7, 3.8.9, 4.2.14,
4.2.15, 4.2.16, 4.3.3, 4.3.13 Table 3-4

COPO
VI 4.2.13, 4.2.14, 4.2.15, TABLE 3-4

COPE
II 2.3.3, VI 4.2.11, 4.2.12, 4.4

COPF
VI 4.2.12, 4.2.17, 4.2.18, 4.4

COPH
VI 4.6

COPJ
VI 3.6, 3.8.9, 3.8.10, 4.2.11, 4.2.17, 4.5, 4.6,
4.6.2, 4.6.2.1, 4.6.2.2, Table 3-4

COPK
VI 3.6, 3.8.9, 4.2.16, 4.6, 4.6.3, Table 3-4

DAP (M8130)

OAPA
II 2.2.3

DAPB
II 2.1.9.1-2.1.9.2, 2.3.1, VI Table 3-2

OAPC
II 2.1.9.1-2.1.9.2

OAPO
II 2.1.9.1-2.1.9.3, 2.3.1

OAPE
II 2.1.9.4, 6.1.l, 6.2.1.3

OAPF
II 2.1.1.1-2. l.2.2, 2.1. 7, 2.2.1

OAPH
II 2. l. l.l-2.1.1.2, 2.1.2. l

OAPJ
II 1.2.6.2, 2.1.1. l, 2.1.2.1, 2.1.3, 2.1. 7, 2.2.1

DTM (M8144)
VI 4.2, 4.8. 7

OTMA
VI 3.8.3, 4.2.19, 4.4

OTMB
VI 3.8.7, 4.2.20, 4.4

OTMC
VI 4.2.20

OTMO
VI 4.2.20

OTME
VI 4.2.20

OTMF
VI 4.2.20

OTMH
VI 4.2.20

OTMJ
VI 4.2.20

OTMK
VI 4.2.20

OTML
II 2.2.1, 2.2.3, III 2.11, V 2.3, 2.5, VI 4.2.20

OTMM
VI 4.2.17, 4.2.23, 4.8.8, Table 3-2, Table 3-3

OTMN
VI 4.2.21

OTMP
VI 4.2.22

GRA (M8131)
II 2.1.1.2

INDEX-2

GRAA
II 1.5.4, 2.1.1.1-2. l. l.2, 2. l.2.2, 2. l.9.2

GRAB
II l.4.2, l.5.7, 2.1.2.I, 2.1.4, 2.1.7

GRAC
II 2.1.4, 6.2.2. I IV 9.2

GRAD
II 2.1.4-2. l. 7

GRAE
II 2.1.6

GRAH
II 2.1.4, 2.1.6-2.1.7

GRAJ
II 2.1.2.1, 2.1.5, 2.1.8

GRAK

INIT

II 1.2.6.2

II 1.2.2, 1.4. I, 4.5, 6.5.1-6.5 .. 2, III 1.1.9, 2.4,
2.6.4, 2.7.3, IV 7.1, 9.2, V 1.0, VI 4.2.11,
4.2.17

IRC (M8132)
II 1.2.3, 1.4.7, 2.1.6, 3.9.10

IRCA
11 l .4.5, 1.5.4, 2.2.4, IV 3.4

IRCB
II 1.4.8, 2.1.5, 2.1.9.2, VI 3.4

IRCC
II 1.4.7, 2.1.9.3, VI 3.2-3.4

IRCD
II 1.5.8, 2.1.9.3, 6.1.l, 6.2.1.l

IRCE
II 1.2.6.2, 1.5.l, 1.5.5, 1.5.7-1.5.8

IRCF
II 1.2.6.2, 1.5.1-1.5.2, 1.5.5-1.5.7, 2.1.2.l

IRCH
II 1.5.1, 1.5.3-1.5.4, 1.5.6, 1.5.8, 2.1.1.2, 3.9.2

IRCJ
II 1.2.6.2, 2.1.3

MAP (M8141)

MAPA
II 2.3.3, V 1.1-1.2, 2.0-2.2, 3.2-3.4, VI 3.8.6,
3.8.8, 4.8.8, Table 3-3

MAPB
V 1.2, 2.0-2. l, 2.3-2.6, 3.2-3.4, VI 3.5, 3.8.8,
4.8.8, Table 3-3

MAPC
v 1. l-1.2, 3.2, 3.4

MAPD
v 1. l-1.3, 3.2, 3.4

MAPE
V I. I, 1.3, 2.1

MAPF
V 1.4, 2.0-2. l, 2.5 VI 3.5, 3.8.5, 3.8.6, 3.8.7,
3.8.8, 4.5, Table 3-3

MAPH
'\/ 2.3, 2.5, 3.0, 3.4-3.5

MAPJ
'\/ 2. l' 2.3-2.4, 3.2, 3.4

MAPL
'\/ 3.0, 3.4, 3.5

PDR (M8134)

PORA
II 2.2.1-2.2.2, 2.3.3

PDRB
II 2.2.3, 3. l, III 2.11, VI Table 3-2

PORC
II 3.6, 3.8, 4.9.2, 6.2.2.2

PORO
II 1.5. l, 3.7, 3.9-3.9. l, 3.9.6, 3.9.8, 3.9.10,
6.2.2. l, 6.3. l' 6.3.8

PORE
II 2.3.2, 5.3. l, 5.3.2. l

INDEX-3

PDRF
II 2.3.4, III 2.11

PDRH
II 2.2.3, 2.3.4, 6.2.1.4, 6.2.3.1-6.2.3.2, III 2.0,
2.11-2.12, VI 4.8.8, Table 3-2

PDRJ
II 2.2-2.2.l, 5.1, 5.3.2.1, 6.4.3

RAC (M8133)
II 1.2.3

RACA
II I. I, 1.4. l, 2.1.6-2. l.7, 2.2. l, 2.2.3-2.2.4,
4.8.3.1-4.8.3.2, 6.2.1.5, 6.2.3.2

RACB
II 1.1, 1.4.l, 2.3.l, 4.8.3.l, 5.3.2.2, 6.2.2.l

RACC
II I.I, 2.1.1.2, 2.1.8, 2.1.9.1-2.1.9.4, 5.Ll,
6.4.3

RACO
II 1.4.1-1.4.2, 2.3.4, IV 3.1

RACE
II l.4.6.1-1.4.6.4

RACF
II l.4.6.3-1.4.6.4

RACH
II 1.2.5.1, l.2.6.2, 1.4.5, 1.4.6.3-1.4.6.4, 5.1,
5.1.2 VI 3.4, 3.8.1, 3.8.2, 3.8.3, 3.8.4, Table 3-
2

RACJ
II 1.4.5, 2.2.4

RACK
II 1.4.4, 2.1.8, 2.2.3, III 2.5.1-2.5.5

RACL
II 1.2.1, 1.4-1.4.2, 1.4.4, 1.4.6.2, 1.4.6.4, 1.4. 7
III 2.5.1

SAP (M8137)

SAPA.B.C
IV 3.0, 7.2.3

SAPC
IV 6.2, 7.2.4

SAPD
IV 6.2, 7.2.5, 8.1.2

SAPD.E.F
IV 6.2, 8.1.1

SAPE
IV 3.3, 7.2.2

SAPH
IV 4.5, 5.1, 7.1, 7.2.2-7.2.3

SAPJ
IV 4.0, 4.5, 5.2-5.2.2, VI Table 3-2

SAPK
III 2.1.2, IV 3.4, 3.5, 7.2.2, 7.2.4, 9.1.6

SAPL
IV 6.2, 8.1.1, 8.2.2-8.3, 9.1.9

SAPM
IV 7.2.3

SAPN
II 4.8.1. l, 4.8.3.2, 5.1, 5.3.2.1, 6.2.1.2, IV 2.2,
5.1-5.2.2

sec (M8t40)
III 2.2, IV 2.2, 7.1

SCCA
III 2.10, IV 4.5, 5.2, 7.1

SCCB
IV 7.1, 9.1.8

sccc
II 2.2.2.1-2.2.2.3, IV 3.3-3.5, 5.1-5.2, 6.2, 7.1,
7.2.2, 7.2.4-7.2.5, 8.3, 9.1.8-9.1.9, 9.6

SCCD
II 2.2.2.1, 2.2.2.3, 4.8.2.1, 5.1, IV 7. I, 7 .2.5

SCCE
II 2.3.2, 3.9.2, 5.3.2.3, 6.2.2.2, 6.3.8, IV 7.1

SCCF
III 2.4, 2.6-2.6.1, 2.7, 2.7.3, 2.10-2.10.l, 2.12,
7.1

INDEX-4

SCCH
II 2.2.2, III 2.3, IV' 9.6

SCCJ
II 2.2.2.2, III 2.0, 2.3-2.4, 2.10

SCCK
III 1.1.2, 2.10-2.10.2, 4.5

SCCL
II 5.3.1, 5.3.2. I, 3.4, 4.5, 9.6, V' 1.1

SCCM
II 2.2.2, 2.2.2.3, 3.4

SCCN
II 2.2.2; 2.2.2.4, 3.2, 3.4, IV' 5.2, 5.2.3

SSR (M8138)
IV' 9.1.8

SSRA
II 3.9.6, 6.1.3.2, 6.2.1.3, IV' 3.1-3.2, 3.4, 4.5,
5.2.3, 9.1.4, 9.2

SSRB
III 2.12, IV' 3.0, 3.3-3.4, 8.1.2, 8.2.2, 9.1.5-
9.1.6

SSRC
II 5.1.4, 6.2.1.3, IV' 6.2, 7. I, 8.1.l, 8.2.2-8.2.3,
9.1.4, 9.1.8-9.2

SSRD
IV' 8.3

SSRE
IV' 4.5, 8.3, 9.1, 9.1.4, 9.1.8-9 .. 1.9

SSRF
IV' 9.2

SSRH
II 2.2.2.1, IV' 7.1, 9.1.4, 9.2-9.3

SSRJ
II 2.2.2-2.2.2.1, 2.2.2.3, IV' 7.2.3, 9.1.8, 9.2-9.3

SSRK
III 2.10.2, IV' 3.1, 3.3-3.4, 5.2.3, 8.2.3-8.3,
9.1.4, 9.1.8-9. l.9

SSRL
IV' 3.1

TIG (M8139)
V'I 4.3

TIGA
II 2.2.3, 4.5-4.6.2, 4.8, 4.8.1.1, 4.8.l.2, 4.8.2.2,
4.8.3.1-4.8.3.2, 4.9.1, 5.3.2. I, 6.2.3.2, IV' 7.1,
9.1.8

TIGB
II 3.6, 4.1-4.1.2, 4.2-4.4, 4.6-4.7, 4.8.3.2, 4.9.1-
4.9.3

TIGC
II 1.4.1, 2.2.3-2.2.4, 4.0, 4.4, 4.6, 6.4. I, V'I 4.3,
Table 3-1

TIGD
II 1.4. I, 2.2, 4.6-4.6.2

TIGE
II 4.7, IV' 3.1

TMC (M8135)
IV' 5.0

TMCA
II 4.8.2.2, 6.2.1.5, 6.3, 6.3.2, 6.4, 6.4.3, 6.5.1,
Ill 1.3.5, 2.6.1-2.6.2, IV' 8.3, V'I 4.8.8, Table 3-
2

TMCB
II 6.1.1, 6.1.3.4, 6.2.1.3, 6.3, 6.4, 6.4.3, 6.5.1,
III 2.6.1

TMCC
II 1.4.1, 4.8.3.2, 5.1.3-5.1.4, 5.3.2.2, 6.2.1-
6.2.1.3, 6.2.1.5-6.2.2.1, 6.2.2.3, 6.2.3.2, 6.5.1

TMCD
II 2.2.2, 2.2.2.3, 2.3.2, 3.5, 5.1.4, 5.3.2.2,
6.2.1.1, 6.2.2.2

TMCE
II 2.1.9.3, 3.9.2, 3.9.6, 3.9.8, 5.1-5. l. I, 5.1.4,
6.2.1.3, 6.2.2.1, 6.2.3.2-6.3.1, 6.4.3, 6.5.1, III
2.6.1, 2.12, IV' 7 .2.4, 8.2.3-8.3, 9.1.8-9.1.9, V'I
3.4, 3.8.2, 3.8.3, 3.8.4, 4.3.1, 4.3.2, Table 3-2

INDEX-5

TMCF
II 2.2.1-2.2.2, 2.2.2.2, 3.9.2, 4.8.1.2, 4.8.3.1-
4.8.3.2, 5.1.4, 6.3.8, III 2.12

UBC (M8136)

UBCA
II 2.3.2, 4.8.2.1-4.8.2.2, 5.1, 5.3.2-5.3.2.3,
6.4.3, III 1.3.5, 2.11, IV 4.5

UBCB
II 1.4.1, 1.5.1, 3.9.2, 4.8.2.1-4.8.2.2, 4.8.3.2,
5.3.2-5.3.2.3, 6.2.1.4, 6.2.3.1-6.2.3.2, 6.4.3,
6.5.1-6.5.2, III 2.11-2.12, IV 7.2.4, 8.2.3, 9.1.8,
VI 4.8.8, Table 3-2

UBCC
II 5.3.1-5.3.2.1, 5.3.2.3, 6.4, 6.4.3, III 2.6.2,
2.7.3 IV Table 3-2

UBCD
II 4.8.2.2, 4.8.3.2, 5.3.2.2, 6.3, 6.4-6.4.3

UBCE
II 2.3.2, 5.3.2.1, 6.5-6.5.2, 6.5.3.1, III 2.7.3, VI
Table 3-1

UBCF
II 6.2.1.3, 6.2.1.5, III 2.4, 2.5.1-2.5.2, 2.5.4,
2.6.1-2.6.4, 2.7.3, 2.12

UBCH
III 2.5.2-2.5.5, 2.6.2

INDEX-6

-1-
0
Q

z
0
(--!
::::>
0

KBl 1-C PROCESSOR (PDP-11/70)
EK-KBllC-TM-001

Reader's Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful? --

What faults do you find with the manual?

~ Does this manual satisfy the need you think it was intended to satisfy?
u

Does it satisfy your needs? -------------- Why? --------------------------~--

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization

Street -------------------------- Department ---------------

City State------------------ Zip or Country

- - - - - - - - - - - Fold Here - - - - - - - - - - -

- - - - - - - - DoNotTear-FoldHereandStaple - -- - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY ,IF MAILED IN THE UNITED ST ATES

Pm•tagc will be paid by:

Digital E<1uipmcnt Corporation
Techoical Documentation Department
146 Main Strt.·l·t
Maynard, Mas."nchusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

	001
	002
	003
	004
	005
	006
	1_001
	1_002
	1_003
	1_004
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	2_001
	2_002
	2_003
	2_004
	2_005
	2_006
	2_007
	2_008
	2_009
	2_00a
	2_01-01
	2_01-02
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_1-09
	2_1-10
	2_1-11
	2_1-12
	2_1-13
	2_1-14
	2_1-15
	2_1-16
	2_1-17
	2_1-18
	2_1-19
	2_1-20
	2_1-21
	2_1-22
	2_1-23
	2_1-24
	2_1-25
	2_1-26
	2_1-27
	2_1-28
	2_1-29
	2_1-30
	2_1-31
	2_1-32
	2_1-33
	2_1-34
	2_1-35
	2_1-36
	2_1-37
	2_1-38
	2_1-39
	2_1-40
	2_1-41
	2_1-42
	2_1-43
	2_1-44
	2_1-45
	2_1-46
	2_1-47
	2_1-48
	2_1-49
	2_1-50
	2_1-51
	2_1-52
	2_1-53
	2_1-54
	2_1-55
	2_1-56
	2_1-57
	2_1-58
	2_1-59
	2_1-60
	2_1-61
	2_1-62
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	2_2-14
	2_2-15
	2_2-16
	2_2-17
	2_2-18
	2_2-19
	2_2-20
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_6-07
	2_6-08
	2_6-09
	2_6-10
	2_6-11
	2_6-12
	2_6-13
	2_6-14
	2_6-15
	2_6-16
	2_6-17
	2_6-18
	2_6-19
	2_6-20
	2_6-21
	2_6-22
	3_001
	3_002
	3_003
	3_004
	3_01-1
	3_01-2
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	4_001
	4_002
	4_003
	4_004
	4_005
	4_006
	4_01-1
	4_01-2
	4_01-3
	4_01-4
	4_01-5
	4_01-6
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_2-01
	4_2-02
	4_2-03
	4_2-04
	4_3-01
	4_3-02
	4_3-03
	4_3-04
	4_3-05
	4_3-06
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_4-07
	4_4-08
	4_5-01
	4_5-02
	4_5-03
	4_5-04
	4_6-01
	4_6-02
	4_6-03
	4_6-04
	4_7-01
	4_7-02
	4_7-03
	4_7-04
	4_7-05
	4_7-06
	4_8-01
	4_8-02
	4_8-03
	4_8-04
	4_8-05
	4_8-06
	4_9-01
	4_9-02
	4_9-03
	4_9-04
	4_9-05
	4_9-06
	4_9-07
	4_9-08
	5_001
	5_002
	5_003
	5_004
	5_01-1
	5_01-2
	5_1-01
	5_1-02
	5_2-01
	5_2-02
	5_2-03
	5_2-04
	5_2-05
	5_2-06
	5_3-01
	5_3-02
	5_3-03
	5_3-04
	6_001
	6_002
	6_003
	6_004
	6_005
	6_006
	6_1-01
	6_1-02
	6_1-03
	6_1-04
	6_1-05
	6_1-06
	6_2-01
	6_2-02
	6_2-03
	6_2-04
	6_2-05
	6_2-06
	6_2-07
	6_2-08
	6_2-09
	6_3-01
	6_3-02
	6_3-03
	6_3-04
	6_3-05
	6_3-06
	6_3-07
	6_3-08
	6_3-09
	6_3-10
	6_3-11
	6_3-12
	6_3-13
	6_3-14
	6_3-15
	6_3-16
	6_3-17
	6_3-18
	6_3-19
	6_3-20
	6_3-21
	6_3-22
	6_3-23
	6_3-24
	6_3-25
	6_3-26
	6_3-27
	6_3-28
	6_3-29
	6_3-30
	6_3-31
	6_3-32
	6_3-33
	6_3-34
	6_3-35
	6_3-36
	6_3-37
	6_3-38
	6_4-01
	6_4-02
	6_4-03
	6_4-04
	6_4-05
	6_4-06
	6_4-07
	6_4-08
	6_4-09
	6_4-10
	6_4-11
	6_4-12
	6_4-13
	6_4-14
	6_4-15
	6_4-16
	6_4-17
	6_4-18
	6_4-19
	6_4-20
	6_4-21
	6_4-22
	6_4-23
	6_4-24
	6_4-25
	6_4-26
	A-0
	A-1
	A-2
	A-3
	A-4
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB

