" DRAFT

11/60 MICROPROGRAMMING

SPECIFICATION
(DRAFT D, 11-1-77)

" (Please direct comments to Tom Sherman
ML3-3/E71, x5300)

The information in this document is subject to change without
notice and_ should not be contrued as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsiblity for any errors that may appear in this
document.

Copyright @ 1976, 1977, by DIGITAL Equipment Corp., Maynard, MA.

PREFACE

This manual is directed to the experienced assemby-
language programmer and to the hardware engineer with

some programming experience.

Although the approach is tutorial, and some introductory
information is included, this manual is not intended to
teach a higher-level language programmer how to micro-
program. A familiarity with the PDP-11, and with machine
organization in general, is assumed.

This manual describes the 11/60 as seen from the micro-
programming level. The cache, memory management, bus
control, and floating point hardware are not described
in detail.

A subset of the ISP notation is used in this manual to
describe hardware functions. This notation is described
in Appendix B. 1In programming examples, this ISP
notation is used as if it were source code. Note that
none of these examples will run on MICRO-11l or any other
microassembler without the proper field and macro
definitions.

Appendix C contains a selective annotated bibliography
of recent work on microprogramming.

i

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1-1
1.1 What is Microprogramming? 1-1
1.1.1 The Datapath of a Computer 1-3
1.1.2 A Simple Datapath 1-4
1.1.3 Controlling the Datapath 1-5
1.1.4 Microprogramming and Machine State 1-8
1.1.5 Architecture and Organization 1-10
1.2 The 11/60 Processor 1-11
1.3 The User Control Store Option 1-14
1.3.1 The UCS Product 1-14
1.3.2 Applications of WCS 1-15
1.4 User Investment Required 1-16
1.4.1 Detailed Understanding of 11/60 1-17
1.4.2 Detailed Analysis 1-17
1.5 Fundamental Microprogramming Parameters 1-20
1.5.1 The 11/60 Microword 1-20
1.5.2 The Microcycle 1-24
1.5.3 Microprogram Flow 1-27
1.6 Structure of Manual 1-29

CHAPTER 2 THE 11/60 DATAPATH 2-1
2.1 The Heart of the Datapath 2-1
2.1.1 The ALU Field 2-2
2.1.2 The B and A Scratchpads 2-4
2.1.3 The D Register ' 2-5
2.1.4 Multiplexers 2-6
2.1.5 ALU Carry Bits 2-7
2.1.6 Setting the Condition 2-10
2.2 BUS BIN and BUS AIN ' 2-12
2.2.1 Organization of ASP and BSP 2-14
2.2.2 . Reading from the Scratchpads 2-20
2.2.3 w:iting Back of ASP and BSP 2-23
2.3 The C Scratchpad 2-26
2.3.1 The Base Constants : 2-26
2.3.2 Other Locations in the CSP A ' 2-28
2.3.3 Writing to the CSP 2-29
2.4 The XMUX and the Shift Register 2-31
2.4.1 The Shift Register 2-32

2.5 The Shift Tree , 2-33
2.5.1 AMUX and CNTR 2-38
2.5.2 The BMUX 2-38
2.5.3 The CMUX and SENDMUX 2-38
2.6 Shifting with the Shift Register 2-41
2.6.1 The SR Guard 2-41
2.6.2 Right Shift _ 2-42
2.6.3 Left Shift 2-43
2.7 Shift Examples 2-44
2.7.1 Multiple-Word Shifts ' 2-44
2.7.2 ASL RO 2-46
2.7.3 ASR RI 2-47
2.7.4 ASH #-11, RO 2-47
2.7A The Counter Register 2-48
2.8 The BA Register 2-48
2.9 The Residual Control Concept 2-50
2.9.1 Set-up Registers 2-50
2.9.2 The RES Register 2-51
2.10 Summary

CHAPTER 3 MICROINSTRUCTION SEQUENCING 3~-1
3.1 Chained and Instruction-Counter Sequencing 3-1
3.2 Timing 3-3
3.2.1 Control Timing 3-4
3.2.2 Intra-cycle Timing 3-6
3.2.3 Inter-cycle Timing 3-8
3.3 Microcode Branching 3-12
3.3.1 BUTs , 3-14
3.3.2 Timing Constraints 3-16
3.3.3 The BUT List 3-18
3;4 The Case Branch : 3-19
3.5 Subroutines 3-23
3.5.1 BUTs for Subroutines 3-27
3.5.2 Using Subroutines 3-27
3.6 Page Changing ' 3-28

CHAPTER 4 THE CENTRAL PROCESSOR 4-1

C

4.1 Intra-Processor Communication 4-1
4.1.1 BUSDIN and DOUT 4-1
4.1.2 UCON Control Interface 4-2
4.1.3 UCON Control Fields 4-4

The Inner Machine

Next Micro Address

Using the 11/60's Literal Facility
Reading the Status Registers
Writing the Status Registers

Lo S
DN

. .
U bW

Memory Operations

The Instruction Register
Microword Bus Control Fields
Internal Addresses

Timing Considerations

WwWwwww

L =~ N
> W N

The Cache/KT Section
The Cache
- Accessing KT/Cache Registers

.

B S
b
N =

The Bus Control Section
The Console

Console Datapath Registers
Console Microcode

Console Use of UCON

Bus Control BUSDIN Mux
The DS Register

Other Bus Control UCON

oot wm

R S - S I
* o & s s

N OO e W N

The WCS Section

Addressing Structure of The Array
Transfer of Control

DB Register

Array Address Register

Array Address Mux-

The WCS Array

Bus U Mux

Bus Din Mux

Control ROM

. L[]
. L] [L] [
WO JNH UL WN

AN

G SO SO SO N N G N

. . .

Using WCS As A Local Store
UCON Conventions

b
[e o BEN]

CHAPTER

wn

MICROPROGRAM INTERFACES

Flow of Base Machine Code
Overlapped Fetch
Instruction Decoding
Instruction Execution

uuvmuo;m
= e
. . .
WK

Micro-Level Interrupt Activities
Service
JAMUPP

(S NS,]
oo
.

N -

Interface Definitions
Service
Generating a Trap

(S NG N0
. . .
Lo =
. 1]

N -

rd

CHAPTER 6

CHAPTER

APPENDIX
APPENDIX
_ APPENDIX
APPENDIX
APPENDIX

APPENDIX

U s W N

~

e el i

YUt > W N

NN NN

‘4
.

o QO w »

m

WCS USAGE GUIDELINES
WCS Unibus Addresses
WCS Entry Points
TMS ROM Routines

Cautions and Warnings

Timing Considerations

Unibus Usage Conventions

Internal Scratched Use

PDP~11 Processor State Requirements
Complete Decoding of Opcode Groups

EXAMPLES

Blockmor

Instruction Specification
Specify Algorithm
Specify State

First-Pass Coding

Try To Condense The Code

Check for Interrupt Latency

Glossary

ISP Notation
Bibliography

WCS Resident Section
TMS ROM Microcode

Additional Diagrams

6-10
6-10
6-10
6-11
6-11

6-11

~
P)
,._l

\l\l\lTl\J\)\J
AN WNONE

B-1
Cc-1
D-1
E-1

F-1

" DRAFT

CHAPTER 1
INTRODUCTION

The 11/60 is a user-microprogrammable PDP-11 central processor.
The Writable Control Store option, along wit? its associated
software tools, provides a means by which you can tailor the
CPU to your specific needs. The subject.of this manual is the

hardware environment visible to the microprogrammer.

To provide a secure basis for understanding the detailed
information in later chapters, this chapter focuses on three
topics:

1. What is microprogramming?

2. What is a dahapathé

3. User microprogramming on the 11/60.
A short review of terms and concepts of hardware, architecture,
and microprogramming, addressing the first two topics, -precedes
the discussion of 11/60 microprogramming. The final section of

this chapter discusses the structure and scope of this manual.

1.1 WHAT IS MICROPROGRAMMING?

Microprogramming is a method of controlling the functions of a
computer. The essential ideas of microprogramming were first
outlined by M.V. wilkes in 19511. Wilkes proposed a structured

hardware design technique to replace prevailing ad hoc methods

lWilkes, M.V., "The Best Way to Design an Automatic Calculating

Machine." Manchester Univ. Inaugural Conference, 1951, pplé6-21.

P |

{

of logic design. He observed that a machine~-language instruction
could be subdivided into a sequence of elementary operations which
he called micro-opetations. He likened the execution of the
individual steps to the execution of the individual instructions

in a program. This concept is the basis of all microprogramming.

For many years, microprogramming remained the province of the
hardware designer. As new machines, incorporating advances in
theory ahd'technOIOgy, were designed, software for older, slowef
machines became obsolete. Microprogramming proved to be an
attractive solution to this problem of incompatibility. New
machines could be provided with additional read-only memory, or
contrdl store, which allowed them to emulate earlier computers.
The use of emulation, or the interpretive execution of a foreign
instruction set, was later extended to provide upward and down-

ward compatibility among a number of computers in a family.

' The IBM System 360 series was a landmark application of micro-
pfogramming to achieve compatibility. 1In this series, there is

a common architecture, the 360, which is the target machine.

The differént models are 360 emulators implemented on different
host machines. The'pefformance range of the series is due to the

varying characteristics of the different host machines.

Microprogramming as a tool of the user has evolved slowly. Three
things had to happen before it became truly.feasible. First,
technological advances in the field of fast random-access memories
was required. The use of read-only memories in a user environment
was troublesome and expensive, because correction of programming

errors, or bugs, required new memories. Second, user micro-

1-2

programming required the spread of previously specialized knowledge.
When only those engineers actually involved in the design of
microprogrammed computers knew what microprogramming involvéd,
users and educators were at a severe disadvantage: In recent
years, microprogramming has found a place in computer science
curricula, and has been widely used throughout the electronics
industry. The third, and most important prerequisite for user
microprogramming is the inclusion of generality and extendability
in the design of a computer. A machine designed solely to
implement a given instruction set, and with no address space for
user control programs, makes alteration an onerous task. A

corollary to this point is that software tools must be developed,

so that the user does not have to work solely with binary patterns.

1.1.1 THE DATAPATH OF A COMPUTER

The heart of the 11/60 is a three-board microprocessor, whose
operational unit is the datapath. A datapath is composed of
three types of componeﬂts:

1. Combinational units, such as adders, decoders, or other

logical circuits;

2. Sequential units, such as registers and counters;

3. Connections, such as wires.
The execution of a PDP-11 instruction involves a seéuence of
transfers from one register in the datapath to another; some of
these transfers take place directly, others involve én adder or
other logical circuié. JEach step’in this sequence is controlled by
a microinstruction; a set of such microinstructions is known as a

microprogram.

Microprograms are held in a control stdre, a block of high-speed
memory which can be accessed once per machine cycle. (A machine

cycle is the basic unit of time within a processor.)

The control of the hardware components of the datapath by a micro-

program is best explained by a simple example.

1.1.2 A SIMPLE DATAPATH

Figure 1-1 shows a simplified datapath. Its énly combinational
component isban Arithmetic/Logic Unit (ALU), which has two

inputs. VThe ALU result, or output, is stored in D, which is a
temporary holding register. The other componehts of this data-
path are B, another holding register; a scratchpad (SPAD), which

is a colleétion of 16 holding registers; and their intérconnections.

The c¢ircles in the diagram indicate gating logic.

L

Figure 1-1 A Simplified Datapath

The arrows in the figure represent the flow of data within this

datapath. Two operands are presented to the ALU inputs; the ALU
combines these and presents the result at the input to D. After
storage in D, the result can be presented at the input of one of

the registers in the scratchpad.

To route the flow of data between the components of this data-
path, a set of gates, with corresponding control signals, is
required. The set of control signals needed is determined by the
topology of the interconnections between the sequential and

combinational units of the datapath.

For this datapath, the following control signals are needed.

LOAD D - To store the ALU result in D

ALUF - To select the ALU function

LOAD B - To store data from the scratchpad in B

R/W - To specify reading from or writing to the
scratchpad registers

ADDRS - To specify a location in the scratchpad

These signals are shown in Figure 1-2.
1.1.3 CONTROLLING THE DATAPATH

Now we can construct a microprogram to control this datapath.
To perform a PDP-11 instruction, we must set up an initial
constraint: the eight PDP-1ll general registers will be stored
in the first eight locations of the scratchpad. To perform the
PDP—llloperation

ADD R2, Rl

the second and third locations in the scratchpad must be édded,

1-5

and the result stored in the second loéation R [i]. Symbolically,

this is represented as:

rR(1] ¢ r{ZJ + r[@

(The back-arrow symbol is read as "gets".)

D Reg
t LOAD D
ALU ALU Functior
T
B8 Reg
3)
LOAD B
SPAD - Read/Write
‘ ’ Q » Address

Figure 1-2 Simplified Datapath With Control Signals

1-6

It takes three steps, or machine cycles, to perform this operation
with this simple datapath. This avoids conflicting data signals
which would produce invalid results. First, R[?] is loaded into
B; next, D is loaded with the sum of B and R(i]; and lastly, ﬁhe
result is written back to R[i]. The following are the basic

machine steps:

CYCLE 1: B & R[3]
CYCLE 2: D ¢ R[] PLUS B
CYCLE 3: R] ¢ b

A time state table can be constructed to indicate which control
signals must be asserted in each of these steps, as shown in
Figure 1-3. The N/A entries indicate that the assertion of the

signal will not afffect the current operation.

CONTROL SIGNALS
TIME RIW LOADD LOADB | ALUF ADDRESS
CYCLE | R N/A YES N/A R{2]
CYCLE?2 R YES NO PLUS R{1]
CYCLE 3 w NO ' N/A N/A R{1]}
Bitss: 2 1 | 1 4 4 = 12total

Figure 1-3 Time State Table

After creating the time state table, we find that twelve bits are

needed to provide the control signals for this datapath. The ALU

is allocated four bits to allow for a variety of operations; the
scratchpad is assumed to have 16 locations, and the READ/WRITE

signal is allocated two bits for a "do nothing" state.

These twelve bits can be combined to form a format for a micro-

instruction.
1Ml 9|8]7]l6]lsa]3}2]1f0
: b ADDRS)

o ALUF

» LOAD B These
are the

= LOAD D fields

- WRITE

* READ

This microinstruction format, or microword, is divided into fields.
Each field comprises the bits which are used to control a

particular signal or function.

'Using the time state table and the microinstruction format, we

can now write a microp;ogram to perform the PDP-~11 instruction

ADD R2, R1: ,
CYCLE 1: 1 0 0 1 0 0 0 O 0 0 1 0
CYCLE 2: 1 0 1 | o 0 0 0 1 0 0 0 1
CYCLE 3: | 0 1 |o 0 0 0 0 O 0 0 0 1

1.1.4 MICROPROGRAMMING AND MACHINE STATE
The general registers form part of the processor state of a PDP-11l.
By defining the first eiqht locations of the scratchpad as the

PDP-11 general registers, we have made our simple datapath

1-8

implement, in part, a PDP-1l.

The processor state of a computer is the set of registers and

flags that hold the information left upon the completion of one
instruction available for use during the execution of the next

instruction.

Programmers working at different levels of a machine see
different machine states: an applications programmer may never
be concerned with machine state at all. A machine-language, or
macro—-level programmer knows the PDP-l11l processor state to be
defined by the contents of R$ through R7 .and the Processor Status
Word. Nearly 100 registers are included in the machine state
known to 11/60 microprogrémmers. At the nano- or hardware level,

even more machine state is seen.

This concept of machine, or processor, state is fundamental to
an understanding of microprogrammable processors like the 11/60.
State changes at the microprogramming level can affect the macro-

level processor state.

For those readers with some exposure to the theory of finite-

state machines, the analogy with a microprogrammed machine may

- be useful. A computer is made unique, or defined, by the functions
it performs and the machihe states it enters while performing those
functions. Beéause of this, two machines can be built differently
and yet perform identically. A microprogrammed machine changes
state as it reads successive locations in the control store,
emulating the state changes that would take placé in a completely

"hard-wired" machine. Additionally, the macro-level state, which

1-9

is a subset of the micro-level machine state, changes as if there
were no machine but the macro-level machine. A PDP-11 is thus

"covered" by an 11/60.

1.1.5 ARCHITECTURE AND ORGANIZATION
To additionally distinguish the macro-level machine from the

micro-level machine, it is useful to differentiate between the

terms architecture and organization.

Architécture, in this manual, refers to that set of a computer's
features that are visible to the programmer. To a PDP-1l1 |
machine-language programmer, this includes the geﬁeral registers,
the instruction set, and the PrOcessor‘Status Word. It was
architectural identity that made the members of the IBM System

360 series compatible.

Organization describes a level below architecture, and is concerned

with many items that are invisible to the programmer.

The term architecture describes what facilities are provided,
while organization is concerned with how those facilities are
provided. (Occasionally, another term is included in this
hierarchy: realization. This term is used to characterize the
components used in a particular machine implementation, such as

the type of logic and chips used.)

The macro-level organization, transparent to the macro-level
programmer, defines the micro-level architecture of the machine.

The concept is illustrated graphically in Figure 1-4.

1-10

MACRO-LEVEL ARCHITECTURE

PDP-11 Insturction set, General Registers, etc.
Programs reside in main memory

MACRO-LEVEL ORGANIZATION = MICRO-LEVEL ARCHITECURE

11/60 registers (#100) and operational capabilites..
Programs reside in control store

MICRO-LEVEL ORGANIZATION

Hard-wired logic

Figure 1-4 Hierarchical Structure of Memories,

Architecture, and Organization

1.2 THE 11/60 PROCESSOR

The 11/60 is a mid-range PDP-11 processor. It is a microprogrammed
implementation of the standard PDP-11 architecture. A floating

point unit, cache memory, stack limit, and memory management are

1-11

integral parts of the processor. With the Writable Control Store

(WCS) option, the user can augment the architecture of the PDP—ll.

The micro-level architecture of the 11/60 is radically different
from the standard PDP-11 architecture, i.e., structure, visible

to the macro-level programmer. To successfully microprogram the
11/60, you must familiarize yourself with the details of its

micro-level architecture.

The 11/60 can be divided into five logical sections, as shown in
Figure 1-5. The microprogrammer's task is to control the flow

of data within each of these five basic Sections, and sometimeé
between them. Of primary importance is the Datapath section, where
most data handling functions are perfbrmed. The Datapath is

described in detail in Chapter 2.

Each section will be discussed in more detail later in this manual;
for the moment, it is only necessary to be aware of their general

function.

The Bus Control section contains the Unibus control logic, the

timing generator, and the console interface.

The KT/Cache section contains the memory management logic (XT); the
stack limit register (KJ) and 1024 words of high-speed cache

merory.

The Processor Control section contains the control store for the

base machine in the form of a readéonly memory, or ROM; other

1-12

FIGURE 1-5

LOGICAL SECTION OF 11/60

. | 7 i ¢ | s | 4 | 3 Y S LY '
=Emamesery
SRSV IR aier
'
\ !
, ,)
B2S (ONTROL KT /CACHE ‘ DATA RATH 1 PROCESSOR (ONTROL W(CS
!
NGRS sosee N B :) '
) "'Aj:_l‘
. —O @it
- N’ | \ g;—“ :
’ A 1 e
' sasd | 1 t - - i -i '
iaverrace ! i e —_ l o '
——— — e _J"—‘“ o I e PR .
' o _mrony | o———— | ‘:.':‘ Pl z_‘ ! - ‘
A v’ ; -(-;:;v »———;——4 ',ALQ L_’“ | ' ;J‘ : W i '-E ’_-;Q_A.T aptsil <
1 « b F— b I N H f
' S s T S S t o
B = T U = Tm
— - - -~ ™. t‘:.‘.‘ . L i J - . : LIIn e Ce) ey —
v b "““ = ,:; . ! g ' -_—;:_?.":.*_,—_i:..:—.,:: Lz ——— o
CmE fese) o id J P RN - = -
g = A e T
T — @ e -
i '" “ . .cn ;—J____r'! ‘ﬂ Do = 1 . _J - —r’- 3
wzps, wer 1 ! - I H —t+ 4 1.;-."‘4':: “—L" Tov
== ! v el S B i § ==l . fa) I
. ; (RS s i Sl 2 o tah At — |
=5 ket m omm e A Tl T o
- T T T \ e “——r - TS H . N . ‘
[B H ' ! ! 1 :
. - A b + L ' 305 DIN -
e s e ' 1
.:- s::::; l n:avuc Point | l s
. WS aTjcacat roLLsrIen xe ‘pavASMTA 2 uwoRD | Ki: wiy
| | «3:06zont |
e —
A FAue \llbw.uonou.-um:. e
/o PROCESSOR
PATE: 3-19-Te
A
[
77 C:j':: T = o y
lm [ouv 2 ICARENEREM
T T 7 | 6 | 5 LR 4 I 3 I 2 l !

control logic, the Processor Status word (PS) and the Floating

Point Status regisﬁer (FPS) .

The WCS section contains additional control store for the user
micrdprogrammer in the form of a RAM (Random Access Memory) .
This RAM can also be used as a high-speed local store with the

aid of routines stored in the Transfer Micro store {(TMS) ROM.

The main entry into the Writable Control Store is initiated by the
XFC.USER opcode, 0767xx. This PDP-1l1 machine instruction causes
control to be transferred to a special location, entitled

USERDISPATCH, in the WCS RAM.

1.3 THE USER CONTROL STORE OPTION

The principal use of the.ll/60 microproceséor iz the implement-
ation of the PDP-11 instruction set. However,ithe processor has
been designed with a dynamic control structure so that other
functions can be implemented. The UCS option provides additional
‘and alterable control‘store for the 11/60, enabling you to
extend_thekcapabilities of your PDP-ll. Possible applications

~ range frqm extending the PDP-11 instruction set to emulating a

computer with a different instruction set.

1.3.1 -THE UCS PRODUCT

The Writable Control Store is a one-board hardware option for the
11/60 ceﬁtral processor, which includes a 1K—by;48 bit Random
Access Memory (RAM). This hardware by itself is not the complete

product.

To use the WCS hardware, that is, to do microprogram development

and debugging, DIGITAL provides the following software tools:

A MICRO-ASSEMBLER
A LOADER

The software tools for the WCS option are described in the UCS

Software Tools Reference Manual.

1.3.2 APPLICATIONS OF WCS

By design, the PDP-1l1l is a general-purpose computer. Thus there
arevspecial—purpose computers which will perform better than will

a PDP-11 on those applicatidns for which they have been designed.

WCS enables you to tailor, or bias, the PDP-11l to your particular
special-purpose needs. Such tailoring can be classified hierarch-
ically as follows.

Class 0 - Instruction Set Extensions |
Some functions were considered too special-
purpose to be included in the original PDP-11
design. These functions, such as block move
and decimal arithmetic, can become new ‘
PDP-11 instructions. Their definition should
conform to 1l-instruction format and style.

Class 1 - Application Kernels
Most applications and systems programs have
~sections which are executed much more
frequently than others. A useful rule of
thumb is that 10% of the code is executed
90% of the time. Kernels within these critical
sections can be microprogrammed for better
throughput. Examples include the Fast Fourier
Transform, an operating system's memory
allocation routine, and Cyclic Redundancy Check

calculation.

~ Class 2 - Emulation
The interpretive execution of an instruction set

Dy software is generally called simulation. When
this interpretation is done by hardware it is

‘called emulation. Microprogramming provides a
~means for inexpensively emulating several different
instruction sets on one piece of hardware. The
tasks involved in emulation include instruction
decode, address calculation, operand fetch, and
'1/0 operation as well as instruction execution.

Class 0 applications are relatively simple and straightforward uses
of microprogramming. Class 1 applications require more intensive
study and possibly statistical analysis if they are to improve

performance significantly.

Tﬁe final class of appliéations, emulation, is beét served by a
machine specifically designed as a general purpose emulator; The
11/60 wasbdésigned to emulate a PDP-11; hence} the orgénization of
its datapath‘is keyed to the 16-bit PDP-11 word and other
characteristics of a PDP-11 computer system. These féctors‘in
large part determine what other computers can be emulated by the

11/60.

1.3.3 EXTENDED CONTROL STORE

To Be Supplied

1.4 USER INVESTMENT REQUIRED

To gain real benefit from use of the UCS option, you should invest

time and resources in two areas of study prior to attempting any

1-16

any WCS microprogramming. These two areas are: 1) understanding

the 11/60 and 2) analyzing your proposed application.
1.4.1 DETAILED UNDERSTANDING OF THE 11/60

To microprogram the 11/60 effectively, you must study the internal
details of the microprocessor--particularly the datapath. Although
this is not a difficult task per se, users with little previous
hardware exposure may have some problems in becoming accustomed to
the hardware terminology and the notation used for hardware
description. Moreover, the largely unprotected nature of the
‘microprogramming environment may seem overly complex and unpredict-

able.

This manual discusses the 11/60 hardware at the functional level.
Occaéional references are made to the Engineering Drawings for the
11/60 (order no.): these references are provided only for those

users whose curiosity would naturally lead them to the print set.
Most users should find that this manual, used in conjunction with
the UCS Tools Reference Manual, is all that is required to micro-

program the 11/60 UCS effectively.

Appendix B of this manual contains a selective annotated biblio-

graphy of recent work on microprogramming and emulation.
1.4.2 DETAILED ANALYSIS OF PROPOSED APPLICATION

Of the three classes of microcodée use described in Section 1.3.2.,
Application Kernels are the most likely "end-user" use of the

Writable Control Store. Careful analysis is warranted.

1-17

Use of ﬁicroprogramming will not alwayé result in significant
perforﬁance gains. .Applications well-suited to micrcprogramming
may improve performance by a factor‘of 5 to 10; poorly suited onés
not at all. You must understand your application and analyze the
execution of its individual instructions. ThiS section is aimed at
helping such énalysis, but it is in no way a complete treatment of .

performance analysis.

A machine-language instruction goes through the>following processing
phases:

I-phase

Instruction fetched from memory and decoded.

O-phase

Operand addresses calculated; operands fetched from memory.

E—phése

Operation executed upon operands.
Each of these phases takes one or more microcycles. The total
execution time, assuming no overlap of the phase, is the sum of
these microcycles. Each phasé can be seen as a candidate for
elimination or for cycle-reduction.thfough microprogramming, with

resulting gains in performance.

The following generalizations can be made.

COMPOSITE OPERATIONS SAVE I-CYCLES

1

18

A block move on the PDP-11 can be programmed as:

MOV COUNT, R{@ ; INSTRUCTION 1

MOV #A, Rl ; 2: FIRST SOURCE ADDRS TO R1

MOV #B, R2 HENCH FIRST DESTINATION ADDRS TO R2
LOOP: MOV (R1l)+, (R2)+ ; 4: MOVE AND INCREMENT BOTH ADDRS

SOB R@, LOOP ; 5: DECREMENT AND TEST COUNTER

Combining these operations into one instruction,
BLOCKMOV #A, #B, COUNT
eliminates I-cycles, with the predominant Savings coming from

instructions four and five.
USING PROCESSOR STORAGE SAVES O—CYCLES

The microprogrammer can use internal CPU storage (the hardware
registers) for intermediate results. There are a number of hard-
ware registers, in addition to the general registers R@-PC, which

can be used by the microprogrammer to avoid memory cycles.

Because there is more parallelism at the micro-level, the inner
machine (the microprocessor) is potentially more efficient than
the outer machine (the PDP-11l). Moreover, the microbranching logic
structure of the microprocessor provides a broader decision logic
capability which can be exploited, for example, in table search

and string-edit operations.

In general, most cycle reductions which result from microprogramming

come for the I- and O-phases of instructions.

When analyzing instuctions, you must also consider the ratio of

the timekused by the I- ang drphaées to that of the E-phase:
I + o] | |
E
In polynomial evaluation or vector scalar multipLicatibn, for

example; the cycles saved by a composite instruction are a small

fraction of the overall execution time.

In summary, you should analyze your application to develop
candidate sections for microprogramming, then apply detailed
analysis to the instruction execution sequence within these

sections before coding a microprogram.»k
1.5 FUNDAMENTAL MICROPROGRAMMING PARAMETERS

' This section gives an overview of several topics which represent

fundamental parameters of the microprogramming environment.

First, the 11/60 microword is described in genérai terms. Next,
the basis for later discussioh of timing is laid by a description
of thé microcycle. Finélly, the central program flow of the base
machine is describéd, and related to the discussion 6f I-, O-, and

E-cycles in Section 1.4.2.
1.5.1 THE 11/60 MICROWORD

This section reviews the general concept of instruction formats as

a foundation for describing the format of the 11/60 microword.

1-20

Note that an 11/60 microinstruction is exactly equivalent to one
word of control store. Thus, the terms microword and micro-

instruction are interchangeable. 1In this manual, however, a slight

distinction has been made in the interest of clarity. Microword
is used as a generic term for a control store word. Micro-

instruction is used when focussing upon the control exerted by a

particular microword.

1.5.1.1 INSTRUCTION FORMATS -- An instruction, whether at the
macro-level or the micro-level, is the basic mechanism that
causes a procedure to be invoked. Instructions usually take two
source operands and produce a single result. This kind of

instruction has five logical functions:

1 and 2) Specify the address (location in storage) of the
two source operands

3) Specify the address at which the result of the
operation is to be stored

4) Specify the operation to be performed on the
two source operands

5) Specify the address of the next instruction in
the sequence.

These specifications may be explicit or implicit. Implicit
specification saves space in the instruction at the expense of

additional instructions in the sequence.

There are four common formats for instructions: three-address,
two-address, single-address, and zero-address (stack-type). These

categories indicate how many of the address specifications are

1-21

explicit in the instruction.

A normai PDP-11 instruction of the form OPR SRC DST uses a two-
address instruction format. The address of both the source
operands are explicitly specified. The result address is impiicitly
specified by the address of the destination operand. The next
instruction to be executed is’implicitly identified by the

contents of the Program Counter.

The 11/60 microword, on ﬁhe other hand, uses a four-address
instruction format: two source operand addresses; fesult address;
and next instructioh address are all explicitly identified_ih
each instruction. There is no;micropfogram coﬁnter analog¢us to

the PDP-11 PC.

1.5.1.2 SEQUENCING AND BRANCHING -- Because there is no

incremenial program Couinter ai the microprogramming level in the
11/60, each microinstruction specifies the address of its successor.
Therefore, there is no requirement that microinstructions execute

sequentially according to their storage address.

Moreover, each microinstruction. can also specify a branch condition
to be tested before the next microinstruction is fetched. The
result of the test can cause a different microinstruction to be

fetched.

1.5.1.3 MICROWORD FIELDS -- The 11/60 microword is divided into

fields, each of which is associated with a particular functional

unit or control function. Not all fields are contiguous, and they

1-22

can overlap. That is, a single bit can be used to generate

more than one control signal.

The interpretation of some overlapping fields in the 11/60 micro-
word are controlled by a technique known as bit steering. A few
bits in the microword are set aside to specify how the bits in

other fields of the microword are to be interpreted.

For example, there are two bits in the 11/60 microword that can be .
used either to control scratchpad writing or to clock registers on
the datapath. A third bit is used to specify what the first two

bits mean, as illustrated in Figure 1-6.

A B C
=g
Scratchpad
Control <-[L
A B C
=1

—

Figure 1-6 Bit Steering

Register <
Control

Other cases where fields overlap are protected from conflicts
because the different uses of the same bits are mutually exclusive.
For example, the literal field overlaps the ALU function field. A
microinstruction which specifies a literal vaiue will generally
specify operations to store that data correctly in thevdatapath.

Another microinstruction would manipulate that literal data.

1.5.1.4 WIDTH AND ENCODING OF THE MICROWORD -- The standard width
of a control store word on the 11/60 is 48 bits. There are
extensions in some sections of the base machine control store
which make the microword 56 bits wide. This manual will discuss
only the 48 bits available-to the UCS user, because the 8 extension

bits are highly specific to PDP-1ll emulation.

The 11/60 employs what is known as a "horizontai” microword. That
means tha£ a majority of the bits in the microword are directly
used to generate some signal within the machine. Some of the fields
are encoded, meaning that the value represented by ﬁhe bits in that

field must be decoded before control signals are generated.

The term horizontal also implies a significaht degree of parallelism
within the 11/60 datapath. One microinstruction can, in some

‘circumstances, be nuch more powerful than one macro-level instruction.

Figure 1-7 is a éummary diagram of the 11/60 microword. Most of

-the notation will not make sense to you now, since each of the fields
will not be described in detail until latef’chapters. It will be
‘useful to refer back to this diagram from time to timeAto see

how the pieces fit togéther.
1.5.2 THE MICROCYCLE

Timing is extremely important to the microprogrammer. It imposes
constraints on the operations that can be done within one micro-
instruction, as well as what can be done within a group of micro-

instructions. An awareness of what happens when will help to avoid

trivial, but troublesome, errors.

1-24

43 24 1 o 13
Scrdkl,ma
ALuF (Busg Busﬂgj Cw"‘j U8 | | Rewrily Sequene /v e
] l
o -
i | 2
) J
: e mapu! RETURN PAGE
(TAcEl AORRESS
| | | l
I
I .
-1 -
E M
TR
Figure 1-7 . Microword Summary

A new microword is given control of the 11/60 at the beginning of
each processor cycle, or microcycle. This microword controls the

activity on the datapath throughout that microcycle.

The 11/60 microcycle is 170 nanoseconds long. During this time,
there are four clock pulses: Pl, P2, P3, and pP3 (micro-P3). The
microcycle is defined as the time period between two consecutive

trailing edges of pP3.

The other pulses, Pl, P2, and P3, control the timing of events on
the datapath. You will primarily be concerned with the timing of
register loading. 1Inputs to a register must be stable before the

register is loaded, or invalid data will be stored.

For example, the result of an ALU operation can be loaded into

- a storage register at P2.

A microword, and the microcycle during which it is in.control of ﬁhe
11/60, is but one step in the execution of a PDP-11 instruction.
Each of the three clock pulses Pl, P2, and P3 further divide this
step: a number of data transfers can occur during one 11/60 micro-

cycle.

Figure 1-8 shows the relationship of the clock pulses to the micro-

- — . —Lun

4]

cycle.

Pl

Figure 1-8 The Microcycle
1-2A

1.5.3 MICROPROGRAM FLOW

The basic interpretive loop of instruction execution in 11/60

microcode is as follows:

—— FETCH memory word addressed by PC

INCREMENT PC

l

DECODE

EXECUTE

T

Every microprogram invoked by a PDP-11 opcode follows this pattern.
The instruction currently pointed to by the contents of the PC is
brought into the prbcessor from main memory and stored in the
Instruction Regisﬁer, or IR. The PC is incremented by two so that

it points at the next location to be accessed. The decode step
identifies what instruction is to be executed, and dispatches control
to the proper section of microcode. After the operation is per-

formed, another instruction is fetched.

A slightly more detailed flow structure is shown in Figﬁre 1-9.
Note that at the completion éf the instruction execution, a test
is made for service conditions. If no service condition, such as
an interrupt, exists, the next instruction is fetched. If a

service condition does exist, control passes to another micro-

1-27

f
FETCH
getinstr.,
') increment PC
I-phase . < '
Decode
.
r
Memory
Operands Yes
Required
'\? 1
No ' Compute
Operand
) Addresses
O-phase <
Y
FETCH
Operands
Increment
PC
\.
r ' Y
Execute
E-phase <
Service Yes
Condition & To Service Routine
L L y

FIGURE 1-9 Program Flow in the 11/60

1-28

program which handles the interrupt or other condition. The I-,

O-, and E-phases are noted at the left side of the diagram.

1.6 STRUCTURE OF MANUAL PRESENTATION

Two aspects of the 11/€o hardware are of prime concern to the
microprogrammer: the data flow and the control flow, or control

structure.

There are three distinct kinds of data flow in the 11/60:
Data flow within the datapath
Data flow within the inner machine

Data flow to the rest of the world.

This data flow implies the model of the 11/60 in Figure 1-10. This
model provides a different logical structure from that presented
in Figure 1-5; this manual uses this new model as a conceptual

framework for the discussion of the 11/60 hardware.

The microprogrammer's world is the Inner Machine: the datapath
and processor control sections of the processor. There are three
interfaces between the Inner Machine and the rest of the computer

system: data in, data out, and address out.

This manual focusses on the Inner Machine and the microprogramming
techniques for controlling it. Becuase these two major topics
are interrelated, and because both must be understood before you

can microprogram the 11/60, this manual discusses them in parallel.

s

The data flow within the 11/60 datapath is described in Chapter 2,

with minimal reference to other parts of the model.

Chapter 3 introduces the control structure of the 11/60, and
discusses timing considerations. Further details are contained

in Chapter 5.

Chapter 4 extends the discussion of data flow to the inner machine;

and then to the rest of the CPU.

The material in Chapter 2, 3, and 4 is highly interdependent. One
result is the Chapter 2 mayAseem overly detailed until you have

finished reading Chapter 4.

Similarly, the UCS Usage Guidelines and the Examples have been
placed at the end of the manual so that they may be discussed in

the context of previously presented information.

Te€-1

01-1 aindyy

SNEINN

cPU
- INNER MACHINE
MEMORY *DATA
sus- ouT
SYSTEM
(Cache, DATAPATH
KT, etc.)
D PROCESSOR
CONTROL
DATA
AND
RESS
B8 Al
ouT A ICONTROL
IR
MD
DATA
IN

DRAFT

THE 11/60 DATAPATH

The datapath1 section of the 11/60 routes, manipulates, and
stores data within the processor.

This chapter describes the basic functional components of the
datapath and the corresponding control fields in the micro-
word. Looking at each component individually provides a
secure basis for understanding the relationship of the data-
path hardware to the overall problem of microprogramming the
11/60.

At the end.of this chapter is a block diagram of the complete
datapath (Figure 2-37). As you read through the chapter,
refer to this fold-out diagram to see how the pieces fit
together.

2.1 - THE HEART OF THE DATAPATH

The heart of the 11/60 datapath is the computational loop
shown in Figure 2-1.

There are two scratchpads (ASP and BSP), each connected to a
tri-state bus (BUS AIN and BUS BIN). These buses provide
input to the ALU. The other ALU input comes from the CIN
multiplexer, which provides the carry-in bit.

D is a l6-bit register which holds the output of the ALU.
This data can be directed back to the scrathpads after

L7874

storage in D. D(C) holds the selected carry-out bit from

the ALU operation.

Y
K
ALY e
Buse | gus A
1 r T
Bse | ASP
R

Figure 2-1: The Heart of the Datapath

Control of the data flow among these components is orovided
by the microword.

§
¢

2.1.1 The ALU Field of the Microword

The ALU? receives two 16-bit words from BUS BIN and BUS AIN,
performs an arithmetic or logical operation upon them, and

produces a 1l6-bit result.

The operation performed by the ALU is determined by the ALU
field of the microword. This field occupies bits 47 through,
44, which is represented as u<47:44>. Each of the sixteen
possible values of this field selects a unique ALU function3.

2748181 in semiconductor vendors' catalogs.

3The function codes shown in a vendor's catalog for the 74S181
are not the same as the codes used in the 11/60 pword.

2-2

‘l?‘ fl&“‘lé_p‘l‘l
i /\lft*“'i _ .i:i

Figure 2-2: ALU Field of the yword

Table 2-1 shows the function invoked by the various values
of the ALU field and the corresponding source for the carry-in
bit. (The carry-in is described in detail in Section 2.1.5).

TABLE 2-1
ALU CONTROL FIELD ENCODING

AOCTAL VALUE 'VERBAL DEFINITION CIN SOURCE

0 Complement A : 1

1 A plus B plus PS(C) PS(C)
2 (NOT A) and B PS(C)
3 Generate 0 PS{C)
4 A plus B plus D(C) D(C)
5 A plus (NOT B) plus D(C) D(C)
6 " A Exclusive OR B D(C)
7 A AND (NOT B) D(C)
10 Subtract B from A if D(C) =1

Add if D(C) =0 0

11 A plus B 0

12 Select B 0

13 A AND B 0

14 A plus B plus 1 1

15 A minus B 1

16 A Inclusive OR B 1

17 Select A 1

Notice that ALU operations :such as A plus B plus PS(C) and
A plus B plus D(C) serve the same function as PDP-11
instructions like ADC, without requiring a separate

micro-instruction for handling the carry.

2.1.2 The B and A Scratchpads

Primary data storage for the datapath is provided by the
A and B scratchpads, each of which contains 32 registers.

Each of these scratchpads is divided into two sections of
16 words each; a HI section and a LO section: (refer to
Appendix B for an explanation of the notation)

BSPLO := BSP([0:17]<15:00>

BSPHI := BSP[20:37]<15:0C>
ASPLO := ASP([00:17]1<15:00>
ASPHI :=

ASP(20:371<15:00>

BSPLO and BSPHI have separate outputs onto BUS BIN; similarly,
ASPLO and ASPHI have separate outputs onto BUS AIN, as shown
in Figure 2-3. '

; | ALV

| 177
Bus$g . T ‘
Tr r T _Tr .

BSP | | 8P ASP ASP
Ml Lo LO Hi

Figure 2-3: BSP and ASP

2-4

2.1.3 The D Register

The purpose of the D register is to store the ALU output, either
for testing or for routing elsewhere in the datapath or the
processor. The ALU result can be clocked into D either at P2
or P3. (When a register is clocked, the data at its input is
immediately transferred to its output; the output does not
change until the register is clocked again or cleared.)

Two fields in the microword, each one bit wide, control the
D register. CLKD, u<28>, specifies whether or not D will be
loaded in the current microcycle. The time at which D is
clocked is determined by the WHEN field, u<29»>.

The D register is clocked only if the CLKD field contains a 1.
If WHEN contains a 0, clocking occurs at P2; if WHEN contains

a 1, clocking occurs at P3.

QAW 28

Figure 2-4: WHEN, CLKD Fields

After an ALU result has been clocked in the D register, it can
be directed to a variety of places: other datapath logic;
other sections of the processor; main memory; or temporary

storage in the scratchpads.

2.1.4 ' Multiplexers‘

A multiplexer is a component which has several data input ports
and only one output. Selection signals control which inpﬁt
port's data is gated to the output. Data is neither modified
no stored whenvit passes through a multiplexer.

Both the input ports and the selection signals for a multiplexer
are numbered. The (control) data at the selection ports forms
a binary number which designates one input port.

For example, a four-to-one multiplexer, a&% shown in Figure 2-5,
has two selection signals, S0 and S1. There are four input
ports, A, B, C, and D; where A is the low-order, or 0, port.

INPUTS ‘ ARUTH TABLE
l l l L St SF Pt Select O
0 & e & A
‘ S¢ KSeleckion ¢ i 6
5 KSBa\a\s 1 ¢ C
' t 4 D

[«1¥0) ey
Figure 2-5: Four-to-One Multiplexer

If SO and S1 are both 0, then the data at port A is transferred
to the output of the multiplexer. If S1 is 1, and SO0 is 0, then
the C port is selected. The truth table in Figure 2-5
illustrates this correspondence.

2-6

2.1.5 ALU Carry Bits, CIN and D(C)

Section 2.1.1 described ALU function control and mentioned
the carry-in bit, CIN. This section examines both the carry-
in and carry-out bits of the ALU and their relationship to
each other. Both CIN and the carry-out bit D(C) are selected
by multiplexers. - The multiplexer which selects the CIN bit
has four inputs: 0, 1, PS(C) (the C-bit of the PSW), and
D(C), the last carry-out. Selection of this multiplexer is
controlled by the ALU function code.

After an ALU operation is complete, the 16-bit result can be
clocked into the D register. 1If the D register is clocked,
D(C) is clocked at the same time. The bit which becomes D(C)
may be the actual carry, or overflow bit of the ALU; hence
the term carry-out is used. However, the overflow is not the

only source for D(C).

It is best to consider D(C) as a state bit retained from an
ALU operation - sort of an internal condition code. It has
a number of different functions. As the carry output of the
ALU, D(C) can be fed back into another ALU operation through
CIN, thur providing a facility analogous to the PDP-11
operations ADC and SBC. D(C) is also used to load the C-bit
of the Processor Status Word, and is also used as a test
condition for microcode branching.

The source for D(C) is chosen by the COUT MUX. Unlike the
multiplexer for CIN, the COUT MUX is controlled directly
from the microword. Indirectly, this does affect CIN
selection when the ALU function of the next microword uses
D(C) as the CIM source. In these cases, the selection for
the COUT MUX in one instruction will determine the source

for the CIN bit in the next microinstruction.

Figure 2-6 shows the relationship between the ALU, the CIN .
MUX, and the COUT MUX.

2© J)

6

il ey

coutT M

)

_CIN MUX

g 4L s I

Figure 2-6: CIN, COUT of ALU

2.1.5.1 Selection of D(C) Source

COUT07 and COUT1S5 are, respectively, the byte and word carries
from the ALU operation. This carry bit can then be clocked
into the Processor Status word, PS, or fed back into a sub-
sequent ALU operatidn; For example, during a 32-bit add, the
carry-out bit from the addition of the low-order words becomes
the carry-in bit for the addition of the high-order words.
COUT@7 and COUT1S are undefined when a logical operation is

performed.

ALUl5 is bit 15 of the ALU result, the sign bit. Testing for
a negative result and some shifting operations would select
this source for D(C).

ALU@7 is bit 7 of the ALU result, which is the sign bit of a
byte quantity.

ALU@P is the @ bit of the ALU, which indicates an odd or
even result.

CIN is the output of the CIN MUX, the same carry-in bit
presented to the ALU. This allows you to select a 1 or a 0
for D(C) directly, depending on the ALU code.

PS(C) is the C bit of the Processor Status word; the base machine
uses it as the D(C) source for those PDP-11 instructions in which
the C bit of the PSW does not change.

D(C) is the D(C) bit generated by the previous CLK D specifi-

cation. This allows you to save, or recycle, a D(C) value from
the last time an ALU result was clocked into D.

2.1.5.2 Control of COUT MUX -- The COUT MUX is controlled
by the COUT field of the microword, u<32:30>.
3z 3\ 3o
T

| - 1 B .
ST cour [B[E
- J | ’

Figure 2-7: COUT Field of Microword

zeg

The encoding of the COUT field of the microword is shown in
Table 2-2.

Note that, regardless of COUT, D(C) is not changed unless
CLK D = 1; D(C) is clocked at the time specified by the
WHEN field.

Table 2-2
COUT FIELD Encoding
D(C) SOURCE MNEMONIC COUT FIELD VALUE

Output of CIN MUX CIN -0
C bit of the PSW PS(C) 1
Bit 0 of ALU result ALUGY 2
Bit 7 of ALU result ALU@7 3
Bit 15 of ALU result ALU15 4
Byte Carry couT7 , 5
Word Carry : ‘ COUT15 6
Carry-out from | ' _

previous operation : D(C) : 7

2.1.6 Setting the Condition Codes

The condition codes, N, Z, V, and C of the Processor Status
Word, are macro-level state indicators whose values are defined
for every PDP-1l1 instruction., Their purpose is not to record
the status of the micro-level machine after every microcycle,
and hence these bits are cldcked‘only when specifically
indicated by the microprogrammer.

' There are two ways to set the condition codes; only one of them
will be discussed here. A second, more general method is
described in Chapter 4.

The Set Condition Codes (SCC) field, u<25>,

loading of the PDP-11 condition codes.

controls the

When SCC contains

a one, the condition codes are altered during the next

micro-cycle. D and D(C) must be clocked at P2 for the

condition codes to be set correctly.
ship is illustrated in Figure 2-8.

This timing relation-

& ycycle n ———3p | ———jcycle n + 1 =———————>

yword: CLKD/YES, WHEN/P2,
SCC/YES, COUT/ALU1S

action: P2, D « ALU
P2, D(C) <« ALU1S

P2,
P2,
P2,
P2,

PS(C)
PS (N)
PS(2)
PS (V)

Figure 2-8: Condition Code Clocking

If the IR contains an XFC or other reserved opcode, then the

PDP-11 condition codes are clocked as follows.

D(C), you can see that there are actually eight sources for the
PS(C).) The N and Z bits reflect the status of the D register

at P2 of the microinstruction in which SCC was set. The V bit

is loaded with 0.

b4t

D(C)
D<15>
D<15: 00>

The C bit of
the PSW is loaded with D(C). (From the previous discussion of

D and D(C) must remain stable through P2 of the microcycle

following the SCC/YES speci€ication.

g

Whether or not you, as a WCS user, set the contition codes
during a microcycle depends on the requirements, or
expectations, of’the macro-level program. For example, if
your macro-level program needs to branch upon conditions
resulting from an XFC instruction, you would clock the
-.condition codes.

2.2 BUS BIN AND BUS AIN

The buses that provide operand input to the ALU are tri-
state buses; that is, they connect a number of tri—state
devices. The use of tri-state logic in the 11/60 allows
a multiplexing function to be performed without actually
using a multiplexer, with resulting hardware savings.
The symbol [’Idenotes a tri-state device.

A number of sources on either side of the ALU can be-
selectively enabled onto BUS BIN or BUS AIN. Figure 2-9
shows the relationship of the ALU input sources to the
portion of the datapath previously discussed.

On the B-side of the ALU, there are three sources: the

‘two sections of the BSP, and another 1l6-location scratchpad,
the CSP. On the A-side, there are four locations: ASPLO,
ASPHI, thé XMUX, and the Shift Tree. Each of these components
will be described in detail in succeeding sections.

The BEN field of the microword, u<43:42>, controls which
source is enabled onto BUS BIN; the AEN field, u<39:38>,
determines which source is enabled onto BUS AIN. Table
2-3 defines the encoding of these fields. Two BEN codes
are dedicated to the CSP because there are two methods of
providing addresses to this scratchpad.

43 42

4l .

40

|

peN 7

]

bty =+

Clemrm——— 5L
o ——

e ——- ._‘ ?,,_.,_.

< -

.y

29 3%

AEN

Eq

Figure 2-9:

BEN, AEN Fields of Microword

i

I | gus an @

SHIFT
TREe

L

Te

’T‘f

:D(c)
{ D
——
1
ALY
Bus 8N
T
ese| B
| M|

Asp A$P
HI

Figure 2-10:

2-13

BUS BIN and BUS AIN Sources

“Table 2-3
Bus Enable Field'Encoding

BUS B | BUS A

SOURCE) MNEMONIC BEN : SOURCE MNEMONIC AEN
ENABLED) VALUE ENABLED VALUE
BSP[0:17] " BSPLO 0 XMUX XMUX 0
BSP[20:37) ~ BSPHI 1 Shift Tree CMUX 1
Arbitary CSP

location Csp 2 ASP[0:17] ASPLO 2
‘Base Constants - BASCON 3 ASP([20:37] ASPHI 3

2.2.1 Organization of ASP and BSP

The organization of the B and A scratchpads is shown in
Figure 2-10.

The first eight locations of ASPLO and BSPLO are reserved for
the PDP-11 geheral registers RO-PC. These registers are
duplicated to allow concurrent access of two registers. This
allows register-to-register operations to be performed in a
single microinstruction. The User Stack Pointer is duplicated
in BSP[16] and ASP[16].

Three locations are reserved for the WCS user; these are
‘indicated in the illustration as WCSB[n] and WCSA[n]. The
contents of these registers is not altered by any of the base
machine or'floéting point microcode.

The standard microcode floating point implementation uses
ASsP[10:15 , 30:35] and BSP(10:15, 30:35] as the floating
point accumulators. If the FPll-E floating point processor
is present, these locations are also available for the WCS
user. No other standafd microcode uses these registers.

The remaining registers fall into two classes: those which
the WCS user may alter, and those which you must not alter.

8sPlo: 33 - asrlw: 532 ASP[pi7] ASPlao:33]
250LO 8sPHI ASPLD ASPHI

e | | wessl1 | | Ry WeSA (8]

-

R s BG | R4 WESADR

R2 : R(ve CTSA_V-;- R2 6EN- WAH:

—— pere e e e e et e awm o e e oo

R3 R(ztko) | V'R'ys | | CNSL.TMASY |

- - o - o e - o

| R4 R(‘MB) R4 R(T1A)
& | [remey | [rs] [&eaAy
r‘w-?‘;;—fﬂ | __FPA e R6 | | ensisw |

— —_

" R? l CNSL.CNTL 3?? L CN SL.ADR

L2 e cren e o CE— ~o -

9 v coamrme e i s — i - et e e+ et e ea e e e em———

racale] | | Facgol | | FAC3E] | | FAcaE]

b - e e a8 v —— - —

[racita] [Facgca| [eacsta| [meecd

o s - —— . 2

'L' FAZ;{E;J . FAC ¢t:z,1 F" FAc.s’t}z'j”‘ e FA&LEE
_fred=) L 2RET eS|
CFacalBl | | FAgDBI | [Fac3pI --—F]\—cffij i

——) e omt seon s e B R [s s e et e ———

FACZ.Cﬂ L FAcgJM]f,. | FAcs Lﬂ] FACLE‘IJ‘

) _FAc1C53 }

Facarsa| | eaeami| | Facabss]

l_
L; sHt—FEci

TuseR®e | | FeA | | useR R |

FDSTL |

o e]

|
. posta. | | fosTg | | FDST’3 o

[
H

E'J.gure 2-11: BSP and ASP Layout

2-16

2.2.1.1
can use the registers which the base machine and floating point

Temporary Storage Registers —-- A WCS microprogram

use for temporary storage during instruction execution.

The temporary storage registers used by the base machine are:

BSPHI[4] := R(T1B)
BSPHI[5] := R(T2B)
ASPHI[4] := R(T1A)

= R(T2A)

ASPHI[5] :

The state of these fegisters is not saved if the base machine
code is invoked. Thus, data stored in these registers may be
overwritten by the base machine microcode that handles error

conditions, or if a new macro-level instruction is fetched.

The following registers are used for temporary storage by the
floating point microcode and by the FPll-E.

BSPLO[17] := FDST2
BSPHI[17] := FDSTO
ASPLO[17] := FDST3
ASPHI[17] := FDSTL

User data stored in these registers will be lost if a floating
point instruction (17xxxx) is fetched.

2.2.1.2

registers in the B and A scratchpads are used to store

Regserved System Registers -- The remaining 11

These
registers are reserved for use by the base machine and must

console, status, address, and constant information.

not be altered. They may, however, be read.

WCSADR, ASPHI[1], has the contents of Unibus address 177542.
It is used to specifiy an address within the WCS control store
space to which data is to be written. (See Chapter 6)

- R(VECTSAV), BSPHI[2], contains the vector address of the last
interrupt serviced. This address is saved to aid error
diagnosis. ’ a

'FPA, BSPHI[6], is uséd by the floating peint microcode and the
FP11-D to hold the address (incremented by two) of the last

floating point instruction.

CNSL.CNTL, BSPHI[7], contains console control and status
information. It also contains the two high-order bits of the
switch register, the temporary switch register, and the'consolev
address'register.‘

FEA, BSPHI[16], contains the address of the last floating point
instruction that incurred an exception.

The WHAMI (What Am I) register, ASPHI[2], contains status

information for the micro-machine. Layout of the WMAHI
register is shown in Figure 2-1.

ISH I3 69 38726543210

togfirst T TF T i e
Digeosts Moo : . ' Evror T.u', \‘QMS
Caclre Contra) g ¢ - ‘ | Ercor on Erver Occurred
Ko e ~ Bcneulii'aﬁcﬂn«wnL{
AU braskt Trap_ | | F.P Opbicw Fresent -
DCS WES Resent
WES/ECS Enablac) E.CS Fresent

Figure 2-12: WHAMI Register

CNSL.TMPSW, ASPHI[3], is used to assemble numbers from the
console keypad before transfer to the switch register. It is
also used in the display subroutine in the console microcode.

CNSL.ADR, ASPHI[7], is the console address register. It is
loaded with CNSL.TMPSW data on LOAD ADRS. On moves to
777570, the data is loaded into CNSL.TMPSW before being
displayed on the console.

The high bvte of FPSHI-FEC, ASPHI[16], contains the high byte
of the Floating Point Status Register. The low byte of FPSHI-
FEC contains the exception code of the last floating point
instruction that caused an exception.

R(ZERO), BSPHI[3], contains the value zero. It is used when-

ever a § is needed from the B-side during a cycle in which the
CSP is written. This location must always contain the value 0.

2.2.1.3 Integrity of the General Registers -- For the 11/60

to operate correctly, the scratchpad locations reserved for the
PDP-11 general registers must contain those registers. The
contents of the corresponding registers in ASPLO and BSPLO
must be identical at the start of every PDP-11l instruction.

Floating point microcode uses all the registers in ASPLO to

store some state of the machine during the execution of certain
instructions. This is indicated by setting the General Registers
Unequal bit, WHAMI<3>, Restoration always occurs at the end of
the floating point instruction; the WHAMI bit is cleared
following restoration.

2.2.2 Reading From the Scratchpads

To move data from a particular scratchpad location to the ALU
input, the microword must enable the correct section onto
the bus, and it must specify the location within that section.

Three fields in the microword control address selection for the
A and B scratchpads: BSEL, ASEL, and RIF.

‘iS' 4z 4y ‘ He 37; 36 3?! 26 36
%‘;‘ BeN | Bsel | AeN | ASel| RIFE
S

| R A

— * ~—t

BSEL and ASEL specify the way in which a location within the
scratchpad is addressed. Addressing can be either direct or
indirect} that is, an address in the scratchpad can actually
be specified, or a pointer to the source of the address can
be specified. |

When,the scratchpads'are addressed directly, the Register
Immediate field (RIF), u<35:33>, is used in conjunction with
BSEL and ASEL to provide a full‘five-bit address specification.

The selection codes IMMEDO and IMMED1 specify thé low=-order
bit of the scratchpad address, and the RIF field‘Specified
the thfee high-order bits. For timing reasons, RIF<2>,‘u<35>
is asserted low, and so that bit is inverted when used for
scratchpad addressing.

Figure 2-13 shows how the BEN, BSEL, and RIF fields work
together to specify an address in the BSP. The ASP works the
same way. Since there is only one RIF field direct addressing
places constraints on which registers can be concurrently

accessed by this method.

BeM

_ BeNAspO |

Figure 2-14:

L RIFfR
—__RESE
____xz.sé%:-wi

| RIE/2_ |
L eEA]

Bie/mment) . REA

.. RIESE
___RIFJo..

S 4 Eﬂ_:_o

. RIF Jof
RIf/1 :
e RIF(2
“__._.IKUEda_,.-_¢

_Bsajead _ RIEA

| — RIE/S

R‘;r—ﬁle%——— -
| RIE /] :

e RIF/2
m.__,-._me%._.___;

—_RIEE

e REfe
RIF/F

.

M 7

ocnﬂoﬂ
léoozssstn.

BsP Ligd
BsP [12]
BSP Li«4]
oAy
8spLa

BspLy]
B8SPLé]

sl -
gsp i3]
Bse [is]
gsP L13]
BsP (13
BsP L31]
8sP Ls]
8se [31

gsP[Bagl
QsP [s2]
B3P L34]
8sp £3¢]
&sp[a0]
gsP a2
8sP L2447
gsPrae]

8sP[31]
BSP[s3

- B3P [3s

8sPL3?]
esp a3l
asp C23]
Bspla2s
gsp L2173

Direct Addressing of BSP

Alternatively, ASEL and BSEL can specify that fields in the
current macro-level instruction are to provide the scratchpad

address. The instruction's spurce register field, IR<8:6>,
or the destination register field, IR<2:0>, may be specified.
This allows more generality at the microcode level.

For example, if the PDP-11 instruction ADD R2, R3 is to be
executed, there are two ways of addressing the operands:

R{2] FROM BSP
R[3] FROM ASP

-

A: BEN/BSPLO, BSEL/IMMEDO, RIF/S,
AEN/ASPLO, ASEL/IMMED1, '

~e

B. BEN/BSPLO, BSEL/SF,
AEN/ASPLO, ASEL/DF

R[2] FROM BSP
R{3] FROM ASP

e

-.

You can see that the specifications in A are useful only when
R2 and R3 are to be added, while those in' B would work for any
‘register-to-register add. '

The encoding of the~scratchpad addressing fields is shown in
Table 2-4

Table 2-4: BSEL, ASEL Encoding

Enable Type of Value . Field value
field | Addressing ; Name '
AEN/ASPLO .
v or RIF O IMMEDSZ 0
AEN/ASPHI | pip IMMED1 1
~ R(DF) | DF 2
R (SF) _ SF 3
BEN/BSPLO ,
or R (DF) DF 0
BEN/BSPHI R (SF) SF 1
RIF O IMMEDO 2
RIF 1 ‘ IMMED1 3

Table 2-5 summarizes how the inversion of RIF<2> affects
direct register selection.

Table 2-5
RIF Summary

TOP 3 BITS ,
OF REGISTER RIF CONTENTS
SELECTED

000
001
0lo0
011
100
101
110
111

W N HF O Nd O o

2.2.3 Writing Back to ASP and BSP

After clocking an ALU result into D at P2, you can write the
data into the A and B scratchpads during the same microcycle.
The primary purpose of the write-back is to update a
particular register, so address selection for write-back is
dependent upon the address chosen for reading.

This does not mean, however, that you have to write the same
location that was read. For example, consider the PDP-11
instruction ADD R2, R3 again. After execution, only the
contents of R3 should have changed. The implementation of this

instruction would contain the following specification:

ALU/ADD, BEN/BSPLO, BSEL/SF,
AEN/ASBLO, ASEL/DF, WHEN/P2, CLKD/YES

2-23

This indicates that R2 is to be read from the BSP, and R3
from the ASP. Recalling the rule mentioned earlier that
identical copies of the general registers must be maintained,
you can see that both BSP[3] and ASP[3] must be updated on
write-back. The address seléction used to read from the ASP
should be used to write both scratchpads.

Therefore, while you can write the contents of D into BSP and
ASP simultaneously, the data goes into the same location in
both scfatchpads. This mechanism ensures that both copies of
the destination register are updated correctly.

The Scratchpad Rewrite field, u<19:14>, is divided into a
number of subfields, as shown in figure 2-~14. 4

<18> <17>

<19> <16> <15> <14>

SCRATCHPAD REWRITE

|WR |HI/ WR

cSp LO SEL WRSP MOD

Figure 2-15: Scratchpad Rewrite Fields

MOD, u<14>, controls the interpretation of u<18:15>: it is
a steering bit as described in Section 1.5.1.3. The MOD
field must be 0 to write to ASP and BSP. '

The Write Scratchpad (WRSP) field determines which scratchpad
is to be written: ASP, BSP, or both. |

The Write Select (WR SEL) field specifies which address, as

specified in ASEL and BSEL, is to be used as the write-back
address.

2-24

HI/LO specifies which section of the scratchpad(s) is to be
written. You can write-back to a different section than that

specified by the Bus Enable fields.

Write CSP (WR CSP) controls writing of the C scratchpad.

The encoding of these fields is shown in Table 2-6.

Table 2-6
Scratchpad Rewrite Fields

, . FIELD
FIELD ACTION MNEMONIC VALUE
MOD, u<l4> u<1l8:15> controls CLKSP 0
scratchpad rewrite
WRSP, p<16:15” Write ASP only WR A 1
Write BSP only WR B 2
gg;te both ASP ?nd | WR A AND B 3
:Dc }‘- oo 'l Y '! "";pf'n.-l‘t lc b:
WRSEL, u<l7> Use ASP address A ADDRS 0
Use BSP address on rewrite B ADDRS 1
HI/LO, u<ls> Write LO section of SPAD LO 0
Write HI section of SPAD HI 1l

Now we can add some more specifications to our microinstruction

for ADD R2, R3:

ADD: ALU/ADD, BEN/BSPLO, BSEL/SF

AEN/ASPLO, ASEL/DF, WHEN/P2, CLKD/YES, HILO/LO,
WRSEL/A ADDRS, WRSP/WR A and B,

MOD/CLKSP
2-25

Scratchpad rewrite always occurs at P3, so the D register must
be clocked at P2 if you wish to write back to the scratchpads
during the same microcycle.

2.3 THE C SCRATCHPAD

The third source on BUS BIN is the C scratchpad (CSP), which-is
16 registers deep. It is the means by which data from the out-
side world (i.e., main memory or other sections of the processor)
is introduced into the datapath.

The CSP is also used to store constants and error log
information. ;

2.3.1 The Base Constants

Three locations in the CSP are permanently reserved for the
base constants of the machine: 2zero, one, and two. CSP{17]
contains the value one; CSP[16] contains the value zero; and
CSP[14] contains the value two. These locations MUST NOT

be changed.

By convention, CSP[15] stores data from the outside world.
Since this is usually data from memory, Csp[15] is called
the Memory Data register, or MD.

These four locations in the CSP, CSP [14:17], have a special
addressing mechanism, and a special BEN field value may be
used to access them.

LOCATION NAME (S) _CONTENTS

CsP(0) CNST4 000004
LOG,JAM
CsP(1) CNSTS 000010
LOG,SERVICE
CsP(2) RESRIGHT 020000
LUG,.PBA
CsP(3) EXPMASK 077600
LOG.CUA
CsP(4) RESLEFTD(C) 050000 -
LOG.FLAG/INTR
CsP(%) RESLEFTGD 054000
LUG.WHAMI
CsP(s) EMITCON
1LUG,CACHEDATA
CsP(7) RESRIGHTGD 024000
L.OG,TAG/CPU
CsP(10) HIBYTEMASK 177400
CNSL,CNST100000
CsP(11) ' SEXPMASK 177600
CNSL,CNST177770
CsP(12) SIGNBIT 100000
CNSL,CNST30000
CNST100000
CsP(13) CNST200 000200
HIDDENRIT
EXPUNE
SETDMASK
CsP(14) 2 ' 000002
CsP(15) MD I
CsP(16) $ 0 000000
CsP(1) ’ s 1 000001
Figure 2-16 CSP Layout

When the BEN field of the microword contains the value 3,

the

BSEL field'selects’one of the four special locations in the

CSP.
When BEN/3,
BSEL/0
BSEL/1
BSEL/2
BSEL/3
2.3.2

The encoding is as follows:

then:

selects CSP[17]
selects CSP[16]
selects CSP[15]
selects CSP[14]

Other Locations in the CSP

You may use CSP[0:13] to store data,

restrictions.

These locations usually hold constants,

(1)
(0)
(MD)
(2)

subject to certain

such

as a mask for isolating the exponent field in a floating point

number, which are needed by various segments of the base machine

code.

The 11/60's Emit facility, described in Chapter 4, enables you

to store arbitrary constants in the CSP,

in another section of the processor.

after setting a flag

When the value of the BEN field'is not equal to 3, the CSPADR

field provides the CSP address,

provides an address in the ASP and BSP.

CSPADR, u<23:20>,
CSP. That is,

in much the same way as RIF

holds the complement of an address in the

the bits in the CSPADR field are complemented

before they select a location; as shown in Table 2-7.

o 35 2L 2\ 3¢ 19
- e
4 cs PA D Q..! s S

Figure 2-17:

CSPADR, WRCSP Fields

<-28

Table 2-7
CSP ADDRESSING

CSPADR Bit Complemented CSP Location
Field Patterns Pattern Selected
0 0000 1111 17
1 0001 1110 16
2 0010 1101 15
3 0011 1100 14
4 0100 1011 13
5 0101 1010 12
6 0110 1001 11
7 0111 1000 10
10 1000 0111 7
11 1001 0110 6
12 1010 0101 5
13 1011 0100 4
14 1100 0011 3
15 1101 0010 2
16 1110 0001 1
17 1111 0000 0

Thus to read from the CSP, use BEN codes BASCON or CSP, and
specify the address with BSEL or CSPADR, respectively.

2.3.3 Writing to the CSP

The CSP's input data comes from the DMUX, which accepts data
from the Cache and from main memory and other sections of the
processor. You do not have to control this multiplexer: it
will automatically select the correct source.

The WRCSP field, u<19>, controls writing to the CSP. If the
WRCSP field contains a 1, the output of the DMUX will be
written to a location in the CSP at P3. If WRCSP contains a

0, no data will be written.

If the microinstruction contains the specifications
BEN/BASCON, BSEL/MD, WRCSP/YES

then the data will be written into CSP[lS],‘MD. (Remember that

you must not over-write any other base constant.) Otherwise, the

WRCSP/YES specification will cause data to be written into the
location specified by the complement of the CSPADR field.

Y2
(

CsSP

CACHE

X

J

c

N

MD

i s, St—— c— ap—— .)

l
e . JATAPATH

Figuré 2-18: Writing Data to CSP

If you write data to any location in the CSP other than MD,
you must set a flag in the Processor Control Section. This
flag, CSP CONSTANTS INVALID, indicates that the constants

. needed by the floating point microcode are not available.
mechanism for setting the flag is described in Section 4.2.4.4.

The

The constants used by the floating point microcode are shown in
Figure 2-16; if the CSP CONSTANTS INVALID flag is not set, you
can use these constants in your routines.

Note that the two methods of CSP addressing are mutually

exclusive. You cannot read one CSP location and write to
another in the same microinstruction.

2.4 THE XMUX AND THE SHIFT REGISTER

The XMUX is a two-to-one multiplexer which, when selected by
AEN, puts its output onto BUS AIN. One of the XMUX sources is
the 16-bit Shift Register, described in Section 2.4.1.

When AEN = 0, the XMUX field of the microword, u<36>, controls
XMUX selection. Note that this field overlaps the ASEL field.
Be careful not to specify WR SEL/A ADRS if writing back to the
scratchpads after using the XMUX as the AIN source.

A0 4L A8 uld

L v

Figure 2-19: XMUX, AEN, and ASEL Fields

When the value of the XMUX field is 0, the output of the
SR goes onto BUS AIN. When the XMUX field contains the value
1, a word of the form shown in Figure 2-20 is put on BUS AIN.

15 |14 (13 [12 |11 10]9]8]7 |65 |4 |3]2f1]o

p(c)) o 0 0 0 0 0 0 O]+ SR<6:0>——

Figure 2-20: S1 XMUX Input

2-31

2.4.1 The Shift Register

The Shift Register is a 16-bit bidirectional shift register.
It has four distinct modes of operation:

H

Parallel load from ALU output (default)
Shift right one bit per microcycle
Shift left one bit per microcycle

Do nothing

Mode control for the SR is provided by the Residual Control

register, which is described in Section 2.9.

The SR, when in parallel load mode, is loaded with the output
of the ALU.

Regardless of the operating mode of the SR, its clocking is
controlled by the WHEN, u<29>, and CLKSR, u<27%, fields of the
microword. The SR is clocked if the CLKSR field contains a 1.
Clocking occurs at P2 is WHEN equals 0, and at P3 if WHEN .
equals 1. If both D and SR are clocked in the same microcycle,
they are clocked at the same time, and receive the same data.

A l6-way branch can be performed on the basis of SR¢3:0>. This
facility, called the CASE branch, is described in Section 3.6.2.

{29) <28) <av)

AW ek lelk]
1
B ISR

zn

Figure 2-21 WHEN, CLKSR Fields of uword

2.5 THE SHIFT TREE

The final A-side source is the Shift Tree, or barrel shifter.
This is the major element cf the 11/60's field isolation unit.
The Shift Tree performs various operations on data from the

D register; these operations include:

Left Shift 1 bit per microcycle

Right Sshift 1,2,3, ... 14 bits per microcyle
Sign Extend

Byte Swap

Unlike the Shift Register, the Shift Tree is a combinational
logic element and thus does not hold its output across micro-
cycles. It is designed so that data clocked into D in a
previous microcycle can be modified in the Shift Tree, operated
upon by the ALU, and the result stored -- all during one micro-
cycle.

The data to be manipulated must be stored in D by P2 of the
microcycle preceding the Shift Tree operation. The data can
then be clocked into D and stored in the scratchpads, as
illustrated in Figure 2-24.

Figure 2-24: D to D to Scratchpad in one Microcycle

&—— ncycle a > | €&=—ucycle a + 1 >
P2: D <« DATA D
TREE
BUS AIN

ALU <« BUS BIN DATA

P2: D <« DATA

P3: SPAD <+« DATA

Although you will use macros to control the Shift Tree, you
must look closely at the hardware involved.

There are three levels of multiplexers, interconnected to
effect shifting, in the Shift Tree. This layout is shown in
Figure 2-26. The contents of D are input to the AMUX, the
output of the AMUX is the input for the BMUX; the BMUX
output goes into the CMUX, and the CMUX output goes onto

BUS AIN.

To perform a particular operation, you must specify a malti-
plexer selection for each stage of the Shift Tree. Thus, to
shift the D output right by six, specify:
k AMUX/DIRECT, BMUX/RIGHT-FOUR, CMUX/RIGHT-TWO.
To specify a right shift of seven:
AMUX/RIGHT-EIGHT, BMUX/DIRECT, CMUX/LEFT-ONE
Note that the Shift Tree is not a circular shifter. That is,

bits shifted off one end are not shifted into the other end
of the word.

The Ehree fields in the'micr0word that control the selection

of the stages of the Shift Tree are: AMUX, u<22:20>;
BMUX, u<23>; and CMUX, u<37:36>.

2-34

7 L

\Amuxii /' \amuo f
L |

i BMux 7

\ cMUX /

k |

¢ BUsS AIN

Figure 2-26 Simplified Shift Tree

23 20..

\
(e
\‘
L
()

.
L e

-

RIF

Figure 2-27 Shift Tree Control Fields

X CZO

i
|
i‘AMUX‘

Again, you will notice that these fields overlap fields
previously discussed. Because the AMUX and BMUX fields occupy
the same bits as CSPADRS, CSP access during Shift Tree oper-
ations is contrained to those locations which can be addressed
with BSEL: the base constants. |

The encoding of the Shift Tree control fields is shown in
Table 2-8. The detailed diagram of the Shift Tree (see Figure
2-28) should clarify the entries in Table 2-8. The bits in

the microword fields are the source of selection signals for
the three levels of multiplexer. Thus CMUX<0> is the source

of the signal CMUX S¢@, and so forth.

Figure 2-28 also shows how the choice of signals going into
each input data port effects the shifting actions of the
Shift Tree,

N2
CNTR
L <
o¢ L) d ¥
o) (, ¥ J
—75 y
EYIR-1 4 ? 'e. 8 } % N é
AR, / A AMUXLO 3¢
L I
4 o
0 1
Lf %04
A 2
8 A Z
\ 37\ BMux g
AMUX <O
b $R<ISD o
4

H® FTt 0C &

‘v eMuX SZ
St AMUX LO SF
52 SENQMUX S2

’ Dl
/ . 198> 1 44:00 “-————jli
3 lLfe_ Ly
¥
5 /-é

ya RUS A L

Figure 2-28: Details of the Shift Tree
2-37

2.5.1 AMUX and CNTR

AMUXHI provides the high byte of the AMUX output; AMUXLO
provides the low eight bits. The high and low bytes of the
D output are separate inputs into each AMUX. This allows
duplicating either byte, swapping bytes, and shifting eight
bits to the right. (The right shift consists of selecting
D<15:08> as the low byte of the AMUX output, and filling in
the high byte with D(C).)

The Counter (CNTR) register, at the top of Figure 2-28, is

an iteration counter. It is not part of the Shift Tree.
However, the AMUX can introduce the contents of CNTR into the
datapath. It is described in Section 2.7.

2.5.2 The BMUX
The BMUX can either pass the output of the AMUX without change,

or it can shift the AMUX output right by four, filling in
the high bits with D(C).

2.5.3 The CMUX and SENDMUX

The CMUX can perform a right shift by one or two; pass the
BMUX output without change; or shift left by one bit. The
Sshift End Multiplexer, SENDMUX, provides the low-order bit
when the CMUX is shifting left. D(C) £fills in high-order bits
when shifting right.

Table 2-8
Shift Tree Control

AMUX FIELD (u<22:20>) ENCODING

PP

Function (Output) Mnemonic - Field Value
D unchanged ' DIRECT g
D<7:0>in both bytes DLO#DLO 1
D(C) fills high byte, D<7:0> SIGNEXT 2

in low byte

Contents of Counter in high COUNTER 3
byte, D<7:0> in low

D415:08> in both bytes DHI#DHI 4

Swap bytes’ SWAB 5
D(C) fills high byte, RIGHT-8 6

D<15:08> in low byte

Counter in high byte, COUNTER#DHI 7
D<15:08>in low byte

.

S Tpu— - . a- et -
e —

Iy

1
1

BMUX FIELD (p<23>) ENCODING

Output of AMUX unchanged DIRECT ')
Shift output of AMUX right RIGHT-4 1
four, D(C) fills high

bits

CMUX FIELD (u<37:36>) ENCODING

Output of BMUX left one LEFT-1 g
with SENDMUX into low bit

Output of BMUX unchanged DIRECT 1

Output of BMUX right one RIGHT-1 2

with D(C) into high bit

Output of BMUX right two RIGHT-2 3
with D(C) into high bits

You cannot control the SENDMUX directly from the microword
because the source of the bit shifted into the zero bit of
the CMUX output usually depends on what was done in the
higher stages of the Shift Tree. To illustrate how this
woiks, look again at the example of a right shift by seven.

The final CMUX output should be a word with D(C) in the high
seven bits, and D<15:07> in CMUX<8:0>. In the example:

AMUX/RIGHT-8 (8*D(C) # DHI)
BMUX/DIRECT (No Change)
CMUX/LEFT-1 (Left One)

But you can see from Figure 2-28 that D<07> will not go through
the BMUX to the CMUX; in effect, it falls off the end of

the AMUX. The SENDMUX "catches" this bit. When AMUX<02>, u<22>,
is set - making D<15:08> the output of AMUXLO - and no shift is
indicated for the BMUX, the SENDMUX output is D<07>. This
becomes the low bit of the CMUX output, and the shift is
completed correctly.

Similarly, if a shift of 11 right (AMUX/RIGHT-8, BMUX/RIGHT-4,
CMUX/LEFT-1) or 3 right (AMUX/DIRECT, BMUX/RIGHT-4, CMUX/LEFT-l)
is specified, bit 3 of the AMUX output falls off the end of

the BMUX. In both cases, the SENDMUX correctly feeds this bit
into the CMUX.

These effects are possible becahse the S@ and S1 selection
ports of the SENDMUX are controlled by BMUXS@ and AMUXLOSH,
respectively. The thrid selection port, S2, is controlled
from the RES register (see Section 2.9). Table 2-9 is the
SENDMUX truth table. | |

2-40

2.6 SHIFTING WITH THE SHIFT REGISTER

The shifting capabilities of the Shift Tree and the Shift
Register are somewhat interdependent, thus, before presenting
more examples of Shift Tree operations, the following sections
describe the Shift Register's shifting modes.

2.6.1 The SR GUARD

There is a 4-bit extension to the Shift Register called the
SR Guard (GUARD), for use by the microcode floating point.
The GUARD is the same type of register as the SR, and has
the same four operating modes. It is clocked at the same
time as the SR when it is enabled from the RES register.

When the RES register specifies parallel load for the SR,
the GUARD is loaded with zeroes.

Conditional braches can be made on the contents of GUARD <3:2>;
see Section 3. 3.

N
2
— P 14 Gk SR
| |
AL WU SRC%:00 £ é(t;\ g}o
.) (4)
A< 4l U
Y it

A
/ZAMUX

pus AN

Figure 2-22: SR, GUARD Registers

2-41

2.6.2 Right Shift

When a right shift is indicated, the previously loaded 16-bit
word in the SR is shifted right one bit position. BMUX<00>,
from the Shift Tree, fills SR<15>. If the Guard register

is enabled, SR<00> fills GD<03>. Bits shifted out of GD<00>
are lost. ‘ ‘

The wiring of the SR and Guard registers for a right shift is
shown in Figure 2-22.

BMU X2

Lt

ENB QUARDINH]

Figure 2-22: Right Shift of SR

2-42

2.6.3 Left Shift

When a left shift is indicated, either GD<03> or D(C) can be
shifted into SR<00>. SR<15> is shifted into SENDMUX<0>,
where it can be directed into CMUX<00> (see Section 2.5).

The high-order Guard bit is shifted into the SR only if the
Guard register is enabled from the RES register. Figure
2-23 illustrates the wiring of the SR and Guard registers
for a left shift.

DwecToN OF SHir

G bl

T
. 160 L(—¢
ENG 6UARRLY H. '\‘X_?‘;“_.
AL
15. L

SRLIs: #F> 5O

ENB 6UARD () H

i}
\v_st_uomuiA /

Figure 2-23: Left Shift of SR

The particular routing of the shift outputs and inputs for
the SR are designed to allow the SR and D to function as a

32-bit shift register. Examples are shown in Section 2.7.

2.7 SHIFT EXAMPLES

2.7.1 Multiple~-Word Shifts

When AMUXLO selects the low byte of the D data, and the BMUX
passes its input without alteration, SR<15> can.be directed
into the CMUX from the SENDMUX. This enables the Shift Tree
to act as the high-order part of a 32-bit shift register.
While the low-order word is shifted one bit to the left in
the SR, the high-order word, previously stored in D can be
shifted in the Shift Tree and ;eturned to the D register.
This action is illustrated in Figure 2-29.

In previous cYcles 1 microcycle
RES set up for : ‘ AEN/CMUX, ALU/SELECT A,
left shift :

AMUX/DIRECT, BMUX/DIRECT,
CMUX/LEFT-1, CLKD/YES,
CLKSR/YES, WHEN/P2

High-order word in
D register

Low-order word in
Shift Register

Figure 2-29: Left Shift on 32 Bits of Data

A right shift on 32 bits of data can be accomplished in a
similar fashion. Recall that when the SR is shifted right,
the low bit of the BMUX output is shifted into SR<15>. So
by setting up the data and the SR mode control for a right
shift, and then specifying:
ALU/SELECT A, AEN/CMUX, AMUX/DIRECT, BMUX/DIRECT,
CMUX/RIGHT~-1, CLKD/YES, CLKSR/YES, WHEN/P2

you will shift D<00> into SR<15>. Figure 2-30 illustrates
the result if the Guard register was enabled.

A: dddddddddddddddd
D
[ssssssssssssssss| 0000
SR GD
B: D (C)ddddddddddddddad
D
dsssssssssssSssss s000
SR GD

Figure 2-30: Right Shift on 32 Bits of Data

Table 2-9

SENDMUX TRUTH TABLE
52 Sl sg CMUX< 00> inout
0 0 0 SR<15>
0 0 1 AMUX<03> .
0 1 0 D<07>
0 1 1 AMUX<03>
1 0 0 0
1 0 1 AMUX<03>
1 1 0 undefined
1 1 1 undefined

2’5' Shift Examples

[y

This section contains simple microcode equivalents for a
number of PDP-11 shift instructions. A symbolic description
of the actions of each microinstruction and the field value
specifications are shown.

2.6.2 ASL RO

The execution of ASL RO would take at least two microcycles.
In the first, o
P2: D + ASP [0]
and in the second,
P2: D + D LEFT ONE
P3: ASP [0] « D
P3: BSP [0] « D
The field specifications would be as follows:

INSTR1: _
ALU/SELECT A, AEN/ASPLO, ASEL/IMMEDO
RIF/4, CLKD/YES, WHEN/P2 ‘

INSTR2: ALU/SELECT A, AEN/CMUX, BEN/BSPLO,

BSEL/IMMEDO, RIF/4, AMUX/DIRECT,
BMUX/DIRECT, CMUX/LEFT ONE, CLKD/YES,
WHEN/P2, MOD/CLKSP, HILO/LO, WRSEL/B ADDR,
WRSP/A AND B

Notice that in the second microinstruction, a BEN and a BSEL
value were specified, even though the ALU function was only
to pass the data on BUS AIN to D. The BSP address selection
is used to set up the correct write-back address. The
SENDMUX would have to be set up from RES if you wanted a @
shifted into the low-order bit.

2.6.3 ASR R1

Symbolic specification:
INSTR1: P3: D «+ R1
P3: D(C) +« ALU<15>

INSTR2: P2: D « D RIGHT ONE
P3: ASP[l] « D
P3: BSP[1l] « D

Field value specifications:

INSTR1:
ALU/SELECT A, AEN/ASPLO, ASEL/IMMED1
RIF/4, COUT/ALUl5, CLKD/YES,
WHEN/P2
INSTR2:
ALU/SELECT A, BEN/BSPLO, BSEL/IMMEDI1,
AEN/CMUX, AMUX/DIRECT, BMUX/DIRECT,
CMUX/RIGHT ONE,. MOD/CLKSP, HILO/LO,
WRSEL/B ADDRS, WRSP/A AND B, CLKD/YES,
WHEN/P2

2.6.4 ASH #-11, Rf

In this example, the indirect ‘addressing of the B and A scratch-
pads is exploited to make the example more general.

Symbolic specification:

INSTR1: P2: D « R(SF)
P2: D(C) + ALU<13>

INSTR2: P2: D <« D RIGHT 11
P3: R[SF}] « D

Field value specifications:

INSTR1: ALU/SELECT A, AEN/ASPLO, ASEL/SF,
CLKD/YES, WHEN/P2, COUT/ALU1lS

INSTR2: ALU/SELECT A, BEN/BSPLO, BSEL/SF,
AEN/CMUX, CLKD/YES, WHEN/P2,
AMUX/RIGHT EIGHT, BMUX/RIGHT FOUR,
CMUX/LEFT ONE, MOD/CLKSP, HILO/LO,
WRSEL/B ADDRS, WRSP/A AND B

2.7 The Counter Register

The Counter Register (CNTR) is an eight-bit counter. It can

be used to control repéated loops through the datapath. Its

loading is controlled by MOD, u<1l4>, and CLK CNTR, u<lé>. If
both MOD and CLK CNTR contain the value 1, the CNTR is loaded
from BUS BUS<07:00>. (If MOD equals 0, u<16> is interpreted

as part of the WRSP field.) '

The COUNTER counts»up, not down, so the value loaded from
BUS BIN must be the complement of the actual count. For
timing reasons, it must be loaded with the 2's complement of
the count.

Incrementing and clearing the COUNTER are controlled by Active
Branches, which are described in Section 3.6.

2.8 THE:; BA REGISTER

Because addresses are relocated through the KT unit, the physical
addressing of main memory is transparént to &he 11/60 micro-
programmer. To access a Unibus location, you will specify its
virtual address. (only the console microcode uses physical
addresses)

2-48

The Bus Address (BA) register holds the address for data
coming from or §oing to a Unibus location. Thus, when data
from memory is to be moved into MD (by a DATI), you load

BA with the virtual address of the location to be read.
Similarly, when data in D is to be written to main memory (by
a DATO), specify the address of the location with BA.

The virtual address is loaded into BA from BUS AIN, as shown
in Figure 2-31. The two high-order bits can, in special cases,
be loaded from BUS BIN<01l:00>; normally they are set to 0 by
Bus Control logic. You do not have to worry about the data

on BUS BIN affecting the Bus Address.

The output of the BA register goes to the Memory Management
unit (KT), where it is mapped to a physical address. This

physical bus address is then used by both the Cache and the
Unibus.

If, on a DATI, the location specified by the BA and relocated
by the KT unit is available in the Cache, no Unibus access is
made. If a Unibus DATI cycle is performed, however, the
Cache is updated when the data is brought in from main
memory. On a DATO cycle, main memory and Cache are both
updated. Crée P

Ius BIN J Bus AN

Figure 2-31: The BA Register

2-49

v

BA loading is controlled by the CLKBA field of the microword,
u<26>. When CLKBA contain the value 1, the BA register is
loaded at P1. (The value.of the WHEN field has no effect
upon the clocking of BA.) The BA is clocked earlier than
other registers to allow for cache cycle time. The requested
data is available at the CSP input at P3 of the following

microcycle.

.an}.An$§>Au§6}

- TR | (LK

Figure 2-32: CLKBA Field of uword

2.9 THE RESIDUAL CONTROL CONCEPT

Two of the primary design goals for a microprogrammable
machine are flexible control of the elements of the data-
path and efficient use of the control store. These goals
are occasionally at odds with one another, and various
techniques have been developed to minimize the trade-off

penalties}

One of these techniques is the use of distributed control, in
which the central control store does not control all of the
functional untis of the processor. Residual control (which
is essentially a special case of distributed control) is used
in the 11/60 to avoid widening the microword.

2.9.1 Set-up Registers

Much of the control information for a microprocessor is
relatively static; that is, it is not changed everv micro-
cvcle. This static information can be filtered out of the

2-50

microword and placed in special registers, called set-up
registers or stats. These set-up registers can then be used
in association with fields in the microinstruction to fully
define the control for a particular resource. This situation
is illustrated in Figure 2-33.

Reseurce A
-—-—-—.)

Regoura B

M- ‘Mw s‘?‘j:‘u *

Figure 2-33: Set-up register

2.9.2 The RES Register

The Residual Control register, RES, controls the operating mode
of the SR and GD registers; selects the shift left input of

- SR<00>; sets up SENMUX S2 for the end-shifted bit for CMUX in
the Shift Tree; and controls clocking of the Guard Register.

RES is loaded from BUS BIN<14:11> at P2 when MOD, #-14%>, and
CLKRES, u<18>, are both equal to 1. Inputs and corresponding
outputs of the RES register are shown in Figure 2-34.

aus aqap__bo__, 1 p——s3eNOMUx sz () M

eusS B8 <. :
| ——3SR S4@) M
Bus B <2)_
——SR SE (FH M
Bus g < T ENB ©@UARD (1) H
—— ENB 6UARD (B) H
euT(cu“
' “ps"f_&féi >
CLKRﬁum'l"—rl

Figure 2-34: The RES register

2.9.2.1 SENDMUX S2 (1) H -- BUS BIN<14> is inverted before
it is stored into RES. The corresponding output signal is
SENDMUX S2 (1) H, which controls the S2 selection port of

the Shift End multiplexer.

If the SENDMUX S2 (1) signal coming from the RES register is
low, and both the AMUX and BMUX pass their input data unmodified,
then SR-15> becomes CMUX<00>. SENDMUX S2 will be low only if it

is loaded with B<¢1l4: equal to one.

12.9.2.2 SR Mode Control -- Mode control for the Shift
Register is provided by RES outpﬁts SR S1 (@) and SR Sg (9).
These bits are the inverse of the values loaded from BUS BIN
<13:12>. Table 2-10 shows the truth table for the SR.

Table 2-~10: ‘SR Truth Table

s1 s§ SR Function BUS BIN<13:12> Values
0 0 Do nothing 11
0 1 Right Shift 10
1 0 Left Shift 01
1 1 Load | g9

The default mode, that is, the SR mode when RES is cleared,

is to parallel load.

2.9.2.3 Guard Enable

The Guard register is clocked only if ENB Guard (1) is high.
The BUS BIN<11l> input to the RES register provides two output
signals: ENB GUARD (1) and ENB GUARD(0). The Guard register
is clocked only if ENB GUARD (1) is high; -that is, if

BUS BIN<1ll> is equal to one when RES is loaded.

When ENB GUARD (&) is high, the GUARD register is not clocked.

Moreover, during a left shift, D(C) is shifted into the low bit
of the SR.

2.9.2.4 Constants for Loading the RES Register =-- The

simplest way to load the RES register is to store a constant
in the CSP, and direct it onto BUS BIN when you want to load
RES. Table 2-11 shows the constant with which to load the RES

register for particular functions.

Table 2-11: Constants for Loading RES

Function : Constant BUS BIN Bits
14 13 12 11

Shift SR righkt; GUARD register - 020000 0 1 0 0
not enabled _)

Shift SR left; D(C) into SR<00>,
SR <15> into CMUX<0> if AMUX and 050000 1 0 1 0
BMUX go direct: Guard not enabled

Shift SR left; GUARD<3> into :
AR<0>; SR<15> into CMUX<00>

if AMUX and BMUX pass their | 054000 1 0 1 1
input data unmodified; Guard ’
enabled.

=

Shift SR right; SR<0> into
GUARD<3>; Guard Enabled. 024000 o 1 o

Direct AMUX<03> into CMUX<00>
SR and GUARD not enabled (note
that because -of inversion of 000000 0 0 0 0
BUS BIN<14>, this is not the ‘ .

same as clearing RES).

Notice that both RES and CNTR can be loaded from BUS BIN at
the same time, because

CNTR « BUS BIN<7:0>

RES « BUS BIN<14:11>

For example, suppose you want to do 16 right shifts, as in a

multiply loop. The constant 020360 from the CSP would set up
the CNTR for a cocunt of 16, and RES for a right shift in the

SR, as shown in the Figure on the following page

BUS BIN bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2

020360 = 0 0. 1 0 Q 0 0 0 \i 1 1 1 0 O

don't care
don't care

set SR S1 to.0

set SR SO to 1

GD not enabled

don't care

2's comp;ement of 16lo - 208

2.9.2.5 Clearing RES -- RES is cleared at P3 when a

BUT (CLEAR FLAGS) is issued. (BUT codes are described in
Section 3.xxx) Note that RES can be cleared also by loading
it. '

Note that when the RES register is cleared its outputs default
to the following:

SEND MUX S2 SEL (1) H --§

SR S1 (0) H -- 1

SR SO (0) H --1
GD ENABLE (1) -- @
GD ENABLE (0) -- 1

This means that the SR will be in parallel locad mode, the
GD 1is not enabled, and the CMUX<00> input is either SR<15>,
D<07>, AMUX<03>.

r'd

2.10 Summarx

This chapter has described qhe functional components of the

11/60 datapath.
components of the datapath.
functions of these fields.

The fields shaded in Figure 2-36 control the

Table 2-12 summarizes the

Table 2-12

Datapath Control Field'Summary

Field Name uword bits Function
ALU 47:44 ALU function control
BEN 43:42 BUS BIN Enable
BSEL 41:40 BUS BIN address selection
AEN 39:38 BUS AIN Enable
ASEL 37:36 BUS AIN address selection
XMUX 36 XMUX port selection
CMUX 37:36 CMUX port selection
RIF 35:33 Immediate addressing of
ASP & BSP; used in conjunction
with ASEL, BSEL
couTt 32:30 COUT MUX selection (for D(C))
WHEN 29 P2 or P3 clocking
CLKD 28 Clock D register
CLKSR 27 Clock SR register
CLKBA 26 Clock BA at Pl
cce 25 Clock Condition Codes at
P2 of NEXT ucycle
BMUX 23 ' BMUX port selection
AMUX 22:20 AMUX port selection
CSPADR 23:20 Complement of arbitrary address

in CSP

2-56

Table 2-12 (cont.)

Field Name ﬁword Bits Function

WRCSP 19 Write CSP at P3

HILO 18 HI or LO sections of SPADS
(MOD=0)

CLKRES 18 Clock RES register
(MOD=1)

WRSEL 17 A or B address on writeback

WRSP 16:15 Write BSP, ASP, or both

CLKCNTR 16 Load CNTR from BUS BIN

(MOD=1) Bit Steering.
MOD 1 =0, Scratchpad Writeback

=1, RES, COUNTER

Figure 2-37 is

a block diagram of the 11/60 datapath.

Fqare A-36 Patara™ (oniror Frecos

Gase ALY |aen Bses) M gls[gi8 w [WA ™
AN (ASeL fa ou Bus Wi

Placsine RIF | CouT 1 ED131a 1< |8|8] oot |5[°}|'¥ |8 “°F M uUPF
csmo ,Bz.m CSPADR .w:

SHIFT cHux , “m. AMUR

TREE fm

EMIT, | f ’ m
LOADKEG i L , . ()

Re TukrN Return ETUR NEAT
PASING ‘ PAGE RETURN PAGE
RESBITS, |15 1 m | hunag
@ﬂ\z:su 81 &) .
u 0>\ see|SELIFL N g o7y 5 m m _h

C m A wva« UCON L M&ilﬂ. UconH ctlt m : w

PROC @ - ﬂ,ﬂ Tl
ycow . : k —L ! * :mJ;L aww&«dw bw

e [] []

ILfo ; D
ucon LL |

4

1t SELOATE b

82 (10 -

puvx (s:0) >———@o+’3——!

JouT o) .
116 g CNTRY 13 H
\ 24109
e - 1 DX18:e |
1 i
i) ' » D<)
e e 16 fsoxcy 18 48 B m
1 ' 4 Y Y v
r p < & a (Y
D ‘«xmmo DOMUK AMUX HI AMUX LO
K403 ¥Ad4 e
hodsiey o 45 G50,6covTgIcouns) T-) N
416 (560
¢ W * SEND
173 BrMUX v -
{ CNTR ‘ ALU e SR }— Gor o T e M
x4pg 3 «“ e]
y § Tn p ‘ Yarp— - .
T e - * be |7 Y
’Ll" 4 s
o S KN ’{ wuxgsed BHCRGS.0ND] puuisoo) BMUNQY o
P K fadr bio [| ar fw) %.5 e syt
BA 7L <orcoy Y 4 * i) RES K RES { ¥ A
Ll t® Y] [A]
7 XMUX CMuUX
g x4
J ’4(14;")) Cine “Ci38CC AND
KALD - ALY CLTROL.
wa! cLkdh BUS BIN(TRI-TATE) ius AW (Tri-sTATE)
1c W | W ¢ | W4 ,
* 1)
csp BspP BSP ASP ASP PORT £ PORT [
A CiMUX € ALUIS
K407 P K125 x4ge s Psec) v @ory
X i i i il < Ao | o cwns
. 0 ALUBT] O
cspP BSP ASP
ADRS ADRS ADRS]
4zt i.nm ’N’»‘i_: SP CONTRCUL
’ BUS AIN, BUS BIN 4 Hicao Covmmon
. © CONTROL
K405

g (SP COMTROL

F>1 f.1u e 1.-37

7874 -2-{

DRAFT

MICROINSTRUCTION SEQUENCING |

CHAPTER 3

This chapter examines two aspects of microinstruction
sequencing: address geheration and the timing of microinstruction

fetches.

3.1 CHAINED AND INSTRUCTION-COUNTER SEQUENCING

Two basic techniques for microinstruction sequencing exist,
although they are used with many variations in different machines.
le will ‘call these methods chained sequencing and

instruction-counter sequencing.

In chained sequencing, the current microinstruction contains
the address of the next microinstruction. In this case, every
microinstruction that is not a conditional branch is, in
effect, an unconditional branch. This technique is derived from
that originally proposed by Wilkes!'.

Instruction-counter sequencing is familiar to PDP-ll programmers.
This method uses an incrementing microinstruction-counter
register; microinstructions execute from sequential locations
in the control store(with the exception of branches). In this
second SCheme, it is neceésary to include an unconditional

branch facility not required in the chained scheme.

! Wilkes, M.V., The Best Way to Design an Automatic Calculating
Machine‘IQSl

Both sequencing niethods muét make special provisions for
conditional branches. When a microinstruction contains the
address of its successor, it is common to include a field
~in the microword to specify a test to be applied before the
next address is selected. Alternatively, a microword might
contain fields for two or more next addresses, selection
among them being made on the basis of conditions in the
machine. Incremental sequencing schemes may provide a field

tor specifying a conventional two-way branch-on-conditon or
skip-on-condition opcode or may provide a facility to gate
the contents of a register into the microinstruction
register, thus replacing the sequentially generated addreSs.

Selection of a sequencihg method is based primarily upon the
organization of the microword and the micro-level architecture
of a machine. When there is a high degree of parallelism in
the datapaths of a system, and very few microinstructions

may be required to execute a single macro-level instruction,
the incidence of unconditional branches is high, and the
chained sequencing scheme is more efficient.

For these reasons, the u,{eo uses a chained sequencing method.
The MicroPointer Field (UPF) of the microword contains the
address of the next microinstruction to be executed. A
microprogram forms a chain, similar to a linked-list

data structure, as shown in Figure 3-1. The address specified
in the UPF field cah‘be modified before it is used to select
the next microinstruction. : P

Before proceeding to a detailed discussion of branching, you

must look again at the issue of timing.

uPF VPF UPF
e > Ot v oy _ *ds)

wier lo

Fiest »-6"55’“&"\

Figure 3-1 Chained Seguwo\cc»\P

3.2 TIMING

Section 1.5.2 stated that the 11/60 uses a clock with three
outputs, or pulses: Pl, P2, and P3. An additional time point,
uP3, follows P3 by a few nanoseconds. This section examines

how those clock pulses are used, in combination with control
signals from the microword, to cause state changes in the 11/60.

In general, the clock pulses are used to tell a memory device

to load itself with the data currently at its input. In some
cases, the clock pulse signals the device directly, so that

the device is loaded every time the pulse occurs. In other cases,
the device is loaded at a clock pulse only if some other
caondition ahg@'exists; for example, the D'register requires

CLK D from the microword as well as P2 or P3.

The memory devices in the 11/60 have a variety of names -- registers,
scratchpads, flip-flops, latches, etc. The type of loading signals
required by these devices divides them into two major groups:

those which are loaded on the edge of a pulse; and those for which
the input signal must be a level asserted over some period of time.

3.2.1 Control Timing

As preViously stated, a new microinstruction takes control of the
11/60 every microcycle. The timing associated with the fetching
of microinstructions determines the control timing of the 11/60.

3.2.1.1 Fetch Timing

The terms serial and parallel, or non-overlapped and overlapped,

can be used to characterize when instruction fetches take place.

In the serial, or non-overlapped fetch, the next microinstruction
is not fetched until the current microinstruction is completed

(see Figure 3-3). This ensures that all information required to
select the correct microinstruction is available before the fetch

occurs.

The parallel, or overlapped system fetched the next microinstruction
while the current microinstruction is executing. This method has
obvious speed advantages, but can have problems handling
conditional branches. If the chioce of the next address depends

upon information generated during the execution of the current
microinstruction, the overlapped fetch will obviously fail.

Becadse the 11/60 takes advantage of the faster overlapped fetch,
careful attention to timing constraints when using conditional

branches will avoid unexpected loss of control.

a. Serial Fetch:
L Fl Fl __ _ 4

L
r + ¥

. - S

b. Overlapped Fetch:
‘ Fl , El |
v F2
1

E2

——

|
+

Figure 3-3 Fetch Timing

31

3.2.1.2 A Model for 11/60 Control Timing -- A very simple,
conceptual model for the control timing for the 11/60 is shown

in Figure 3-4. It consists of a microword register, branching
logic, and a control store. ’

The microword register is an edge-loaded memory device. Its
loading signal is generated unconditionally by uP3; that is,

it is loaded every time uP3 occurs. Its input data is the output
of the control store, which may be modified by machine state.

Lrooes Maghie
Contvel o Rranclud
Steve VL L'j \((M"‘ 2
§W cqie
_ R
[0 ng
ﬂ\achkwku_______f?“ .

wP3

Figure 3-4; Control Timing Model

The output of the microword register basically controls the
actions of the 11/60 until the next uP3. Part of the microword
register is directed to the branching logic, along with some
machine state; the output of the branching logic selects the

next address in the control store.

Note

Figure 3-4 is a conceptual model only, it
does not represent the actaul control structure
on the 11/60.

3-S

Some of the control signals which come from the microword must -

be held constant through two microcycles. Cases where this is
necessary are discussed elsewhere.

3.2.2 Intra-cycle Timing

The primary constraints on intra-cycle timing come from the
makeup of the basic computational loop of the 11/60 datapath.

The BSP and ASP are each composed of 32 level-loaded memory
devices, each loaded by different signals generated conditionally
from P3. Since the scratchpad must be enabled for loading
(writing), as well as for reading, the data on the corresponding
bus becomes undefined while the scratchpad write takes place.
’fhis means that, for examples, when a location in the ASP is
being written, the data on BUS AIN .is undefined for the time
period starting just after the leading edge of P3 until just
after the trailing edge of P3.

The ALU is a combinational logic element, whose output is a
binary function of its inputs. Even if the ALU function selected
is a unary operation such as "Select B", both inputs to the

ALU must be defined to produce the expected output.

The D register is an edge-loaded memory device whose loading
signal is erated conditionally at P2 or P3.

This information about the datapath shows that the following
operation can be performed in one microcycle:

P2, D&—ASP[n] PLUS BSP[n]
P3, ASP[n]l&— D

3-b

Look at another operation, which at first glance seems feasible:
" P3, D4BSP[n] , ASP[n]l<&._D

The intent is to move data from the B scratchpad into D while
moving the previous contents of D into the A scratchpad. Since
D is not loaded (and thus its output does not change) until the
trailing edge of P3, the constraint imposed by the level-logded
scratchpad is satisfied. However, while the ASP is enabled for
loading, the BUS AIN input to the ALU is undefined. Hence the
ALU result is also undefined during that period, and the
correct result will not be loaded into D at P3.

The Shift Register (SR) is an edge-loaded memory device whose
loading is conditionally generated by P2 or P3. When functioning
as a shift register, the shift takes place, like the load, when
the trailing edge of the pulse occurs. Whenever both D and SR
are signalled in the same microcycle, their signals must be
generated from the same clock pulse. This prevents such operations
as

P2, SR LEFT 1

P3, D<€ SR

However, it is easy to see that operations such as the following
are possible:

P2, D<€ SR PLUS BSP[n]

P3, ASP[nl&«- D
or:

P2, SR «BSP[n]

Note that the ALU delay is slightly longer for arithmetic
operations than it is for logic operations.

3-F

3.2.3 Inter-Cyc le Timing

Due to both the physical and logical structure of the 11/60,

operations on sections of the processor other than the datapath
generally require more than one miérocycle (and hence more than
one microinstruction) for completion. A number of factors affect

considerations of timing across successive microcycles.

3.2.3.1 Memory Operations Timing

Data from memory 1is introduced into the datapath through the C
scratchpad. This scratchpad : an be loaded only at P3. The virtual
address for a memory operation comes from the BA, which can be

laded at Pl.

The cache and memory management logic take a finite amount of time to
process a request. Thus, even if the requested data is in the cache,
there is not enough time between the trailing edge of Pl (when the BA
is loaded) and the leading edge of P3 (when CSP data must be stable)

- for the data to be fetched. The loading signal for the CSP must.be
delayed until the next microinstruction. This situation is illustrated

in Figure 3-5.

3-&

Al ‘LUO?‘J K /a“’)mé)a*i

y %
ML 13 5 ﬂ‘/? P\s,a,/oj
- | =l
CLK BA wL

CACHE s P
<—— CYae
TIMG

Figure 3-5: Requested Data in Cache

If the data is not in the cache, it must be fetched from main
memory. Since the main memory cycle time is much slower than that'
of the cahce, the data cannot be ready at the CSP input within

the normal time.

This asynchrony is handled by the generation of a "Pulse Supress"
signal. This signal is generated when the requested data is not
found in the cahce, and it prevents the generation of any clock
pulses until the Unibus cycle is completed. Figure 3-6 shows how

the pulse supression affects a data fetch fmm memory.

A word o e L -IOrIX | A
wuFL uts
p s Pzl _[ez L-]LIHL_ITQ____
ORTI ~
CLk b

PULSES
SPbessep

Figure 3-6 Data Not In Cache

3-9

When the memory reference is to an internal location, the

interrupted cycle should do nothing except clock the CSP, because

it will be executed twice. The base machine's JAM flow is used

to detect and service references to UNIBUS addresses located within the

processor: clocks are not supressed and datapath state is destroyed.

\‘______/u»wséro(_.a&-—/luﬁ# o{-l»/ —_— - f__._/umﬂ‘r o4/ ____)

- 3
wP3 4 uf3 JAM '3
i [*1]]le—“@LHW“P‘ RL Rourmx— I

e e

LK BA Lok, 3P we

Figure 3-7 DATI, Internal Address

Every "DATA OUT" to a valid Unibus address involves a Unibus
cycle as well as a cache cycle. The clock pulses are supressed

after P2 of the microcycle following the DATO specification.

The cache update, with the address specified by the BA register, and
the data specified by the contents of the D register, begins at P3

of the first microcycle. The Unibus cycle does not begin until

after P2 of the second microcyclé. Hence, the data to be written

must be clocked into D by P2 of the first microcycle and kept constant
until P3 os the cycle following the DATO. The procedure for doing

'DATOs to valid Unibus addresses is shown in Figure 3-8.

310

“""‘/‘W‘h’ﬂ(/\< /(uléﬁ"ﬂffl

uf3 ,1,(?3
(2 JPSI L. Pl
, 1
ORTO CLXBA cme
CLKD UPDATe
POLS
SUPLESS
¢ 0 1S \
CONSTANT K4

Figure 3-8 DATO Timing

A DATA OUT to an internal location looks very much like the

corresponding DATA IN, as shown in Figure 3-9. The microinstruction

following the DATO should be a null word. During the JAM routine,

datapath clockingggre repeated.

r

4.—--,u nsfrod —-)(——-,u -imefrod | —2

P
r‘lﬂ w2 R e L m @’”f
A T | ROUTING
ATO CL—KD Braa
CLK BA

_ &— D CONSTANT —

Figure 3-9 DATAOUT, Internal Address Timing

Since every memory reference requires two microcycles to complete,

memory references MUST NOT be specified in two successive micro-

instructions.

2 -

3.3 MICROCODE BRANCHING

This discussion of branching looks at two fields in the
microword. The MicroPointer field (UPF), u<08:00>, contains

the address of the next microinstruction, as explained in Section
3.1. You can modify this sequence by using the MicroBranch

fieltd (UBF), 4<13:09>. The UBF field serves three purposes:

1) it provides for conditional branches based on the state of

the machine; 2) it provides for subroutine calls and returns;

and 3) provides extra code=-points for control signals.

Lo T B
~| UBF uPF

| T 1 |
/‘/(3!Llll¢‘i8765‘132lo-

Figure 3-10 UBF, UPF Fields of the uword

The mechanism for modifying the next microaddress is quite
simple. In the Processor Control Section, the Next MicroAddress,
which is used to address the control store, is generated by
ORing'the contents of the UPF field with the output of the BUT
MUX. The UBF field provides the selection signals for the
BUT MUX, as shown in Figure 3-11. The data inputs to the BUT
MUX are various elements of machine state, such as the
contents of SR<03:00>, '

. M!.<1 .“i,
20 ¢ PF OUS] iA
0 o " Sh—‘ﬁ‘Aseiff fac “Ytiomwm b Tl
et o (Qﬁ ’ftlu) hu < ¢w_‘.‘
S Pty

..|1

»\CL\-V‘Q
Mo N Mk

State

=

i

L FitA<T o
—

Figure 3-11 NUA Generation

When an unconditional branch (normal sequencing) is specified,
the output of the BUT MUX is all Os. The'ORing operation
does not mod&fy the UPF, and the<contenﬁsxé%/the UPF field
becomes the NUA.

s hcék"t/(ér"
In conditional branching, the binary value ‘the UPF field
is important because a UPF bit with a : of 1 is not

affected by the ORing operation.

For example, consider a two-bit-wide branch, in which two
signals (s,;, s,) are to be OR'd with the two low-order bits of
the UPF field. Potentially, this is a four-way branch. But if
either or both of the low-order UPF bits is a 1, the number

of potential target addresses is decreased. Figure 3-12

3-1(3

illustrates this effect. Note that you can use this to mask
out a signal in which you are not interested, as well as to
decrease the range of a branch.

Potential Target Addresses
a. UPF x xx 00

S182

® XXX
» XXX
XK XX
OO
HOMO

NUA X X X 8182

B. UPF xxx 10

$182

NUA X x x 1 s

C. UPF xxx 11
s. s Xxxx11 The state of the
132 signals has no

effect upon the NUA.

NUA Xxxx11

Figure 3-12 Microaddress Modification

3.3.1 BUTs

The UBF codes, which control the branching logic, are given the
generic name BUT, for Branch Micro-Test. Since not all of the
code-points available in the UBF field are needed for conditional
branches, the BUTs are divided into two groups. The ®*reqular"

BUTs only cause the ORing of the BUT MUX output with the UPF. The
Active BUTs 3+ well change some micro-level state as well Nt

. ' ~ a
as causing the ORing operation. Jcwu achve Buts per for m

Bux bj Oﬁmg lY\OV\\)/ Zevroes,

3—“{

An example of an Active BUT is BUT (COUNT) (UBF/25). This

BUT is used both to increment and to test the contents of

the CNTR (see Section 2.6). Every time BUT(COUNT) is

specified, the CNTR is tested for overflow; after the test,

the CNTR is incremented. If the CNTR contained all 1ls when

the test was performed, a 1 is OR'd with the low-order bit

of the microinstruction's UPF field. This provides a branch for
exiting when a loop is completed. Figure 3-13 illustrates

how the use of BUT(COUNT) affects the flow through a loop.

3 A Bctt (OQM\)
e

LOAD ?éa)bt OUJ(??bx
CNTR J4¢4UFJ

START
LOOP

PERFORM
l OPERATIONS

b <o oo g ansaned

o | T T
INCREMENT | GO TO ,
CNTR i —

UPF V 1

[} -

e _

i INCREMENT

i CNTR
GO TO UPF 3)/

N

Figure 3-13 BUT (COUNT)

-|5

After the test, control will go either to the microinstruction

at the address specified by the UPF field or to the micro-

instruction stored at UPF OR 1. .s that the first

microinstructi within the loop (pointed to by the UPF) is
Kggg%ﬂgy) ,

stored at ocation one less than the address of the

first microinstruction handling the exit from the loop.

This example emphasizes the impact which chained sequencing

has upon the programmer. In this case, the microinstructions
within the loop cannot be stored in sequential locations.

3.3.2 Timing Constraints on Branching

Conditions to be tested in a branch must be set up in a
microinstruction prior to the one which Specifies the BUT code
and the UPF base. ' MuUA frmatiow begins ot uP3’
; thus, the machine state

at the inputs to the BUT MUX is that which wss clockid by the

eno of the previous microcycle. On other words,
conditions set up in microcyle 1 can be tested in microcycle 2
to affect the address of the microinstruction which controls
microcycle 3, as shown in Figures 3.14 omd 3.15.

Hcycle 1 ucycle 2 ucycle 3
| Hold (onorhons
Set-up Test by pinstruction Seleckieon
conditions issuing BUT . dependSon result
code of ORing

Figure 3-14 Setting Up Branch Conditions -

3-10

eyl eyete 1 megele 2

0(9 Ccmho\ “.L %2]s'l
" in corfival incowtval
MP3 /ap3 | _uP3 ,0'7’3
+ o} \
Feterof Fetch of Feteh of
K, o(z T “3 ,]\
Clock Cloc
ClocRrs Clgors g
form Form FoR N
Address AdDtess Ao tess
of oy of A4 of %4
1 1 A
-
NEXT ADORESS FORMAT oM
Fraune 3‘(5 NUA = UWPF V Bul Mux

3-*

The NUA w not clocked Wwhe a regislin 4‘00’0014 K w waed Yo secean e cextred
SYOre S0 Qlkerakions Tn BUT COUDIHONS Will UNTUfesc woTte LOM aeerss. B you sheudd)
hold the tested condition stablﬁ afelgf:?g‘fchg% in)i(c’;f%ggcle

in which the BUT code is issued.AThis is illustrated in the symbolic
code below. This example uses BUT(DZERO) (BUT15), a 2-bit

branch. The top bit, OR'd into UPF<1l> is 1 when D<14:00> is

all 0s; the bit OR'd into UPF<0> is D<15>,

- 600: ! Arbitrary starting address
P2: SR + R(DF) ! Put data in D and SR at P2
P2: D « R(DF)
v J/602 ! Go to next microinstruction
602:
P42 D «NOT SR ! Complement data
BUT (DZERO) { Test previous D data; if non-zero,
J/601 ! go to 601; if zero, go to 603
601:
{ Continue-
603:

! Error return

The UPF specification (J/601) in the second microinstruction
masks out the D<15> bit, so that only a test for D<14:00> = 0
is performed. The data stored into D in the first
microinstruction is tested during the next, and the second
clocking of D has no effect upon the branch.

-

3.3.3 The BUT List

Table 3-1 lists all the UBF codes (BUTs), their composition,
and mnemonics. Many of the BUTs are described in detail in
later sections of this manual; "~ the others . perform as

3-8

indicate BUTs which are least likely to be of any use to the
WCS microprogrammer. These BUTs were designed specifically to
aid in the implementation of the PDP-11.

Notice that the NULL BRANCH, that is, the UBF code that causes

only Os to be OR'd with the UPF and changes no state in the

machine is BUT30. The UBF is the only field in the microword

in which a value of 0 is not an acceptable defaulE;LL@L the
3¢ as yeur defe ‘

All BUT conditions are active high; and all branch widths are

justified to the low order microaddress.

3.4 THE CASE BRANCH

The CASE branch, BUT ASE), causes the four low-order bits of
the SR to be OR's into the UPF field.

Using BUT (CASE), control can be directed to any one of 16
locations within the current page. Thus, if the UPF field
contains the address 340, (011100000,), the next micro-
address could be any one of the following:

340 344 350 354
341 345 351 355
342 346 352 356
343 347 353 357

You may not always need the full sixteen-way branch capability
of BUT(CASE). If the UPF address in the example above were
343, instead of 340,, the branch could only go to four

locations: 343, 347, 353, and 357. Only the condition of SR<3:2>

Qy -

Table 3-1

BUT LIST
UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE

-~ (Bits OR'd into UPF) SYNONYMS

g SR<03:00> 4 BUT (CASE) See Section 3.4

01 - IR<15:12> .4 BUT (DOP) Decodes opcodes of
double operand instrs,

02 INSTR 5 BR<4;0> 5 BUT (INSTR5) Decodes opcodes

03 IR11Q FLTPT BR<3:0>: 5 BUT (FLPDECODE) Floating point decode

04 IR<09:06> 4 BUT (SOP) Decodes opcode of single
operand instructions

05 sYg@ MOV A FLPT V DR7 A FLPT® IR<05:03> S Indicates whether IR
contains a MOV instr.,;

P —— i e - or a floating point
opcde with destination
register 7 (PC); and-what
the Destination mode is.

06 INSTR 1 BR<7:0> 8 BUT (INSTR 1) ‘Initial PDP-11 instr.
decode.
07 #a BGINTERNAL V. FLPT SRvVC®a D(C) 5
GFLTPT ACK® FRETH
10 couTg7ua DOUTS7a FES 05 3 BUT (FNORM) Used in normalization in
floating point
11 DM@ o SM@Q BYTE 3 BUT (DM@ SMGBBYTE) Indicates whether current

instr, nas destination
mode §, source mode f, and
if it is a BYTE operation.

TABLE 3-1

BUT LIST (CONT.)

1 e Gy § el — —— gt e T\ . mar e e mme g e B U T
UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE
(Blts OR'd into UPF) SYNONYMS
12 GUARD<3:2> : 2 BUT (GUARD) Top two bits of GD
are OR's into UPF; use
for checking results of
shifts, etc
13 SR<01:00°R@CNTR&7:0»=1"s 3 BUT (MULSTEP) Used in Multiply loop;
tests CNTR, ingrements
it, and indicates what
is in SR 01:00
: 14 BGINTERNAL®@G MF INSTRMMULTI BR 3 BUT(MFINCGMULTIPLE) If you mask out the top
BUT (MULTIPLE) two bits, can use _
BUT (MULTIPLE) See Sec. X.X
! 15 (D<14:00”> = @g's)l D<15> 2 BUT (DZERO) Indicates if D<14:00>is
: all §s, and what D<15>is
I 16 IR11l@ PS15 2 BUT (JMP, JSR) IR<11>distinguishes JMP
BUT (IR11p PS15) and JSR instrs., PS<15>
indicates current mode.
17 (CNTR<7:0> =1's)8 D(C) 2 BUT (ASHBR) Tests and increments CNTR,
o — e shows what D(C) is.
20 NO INSTR OVERLAP b SERVICE 2 BUT (FOV & SERVICE) Indicates nbo PBP-11 instr.
BUT (SERVICE) fetch overlap; SERVICE
checks for service conds.;
must be performed before
every PDP-11 instr.
- i i o b s L aran . aeiA em—— P - I -
21 PSSYN INTERNALO ”‘("R & v 7) 2
az2 a ACTIVE BUT (ROR1) Low bit of IR source field
is OR'd with 1; use to
address multiple regs.

ve.~g

TABLE 3-1

BUT LIST (CONT.)

germl L oglo0 >
AR S Mo € D < M08

UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE
(Bits OR'd into UPF) SYNONYMS
23 D(C)m BA<OQ0> 2 BUT (D (C)QODD ADDRESS) 1Indicates carry and
, o odd address
24 OTHER JAMUPP@GFLAGO5 A EXFLAGOL 2 BUT (OTHERJAMUPPG HOTWARM) Used by base machine
25 CNTR<7:0> ALL 1s 1 BUT (COUNT) Use to test and increment
CNTR regq.
26 INTR REQ® NO BR INSTR 2 BUT (INTR RE@SUCBRANCH)
27 FOVLAP SAVE@® FPS07 -2 BUT (FOVPSAVp FPS07),
BUT (FD)
30 g ACTIVE BUT (NULL) This is the NULL BRANCH;
UBF and machine state
_ unchanged
31 g ACTIVE BUT (TRACK) BUT (TRACK) enables CUA
: tracking, which is
disabled upon JAMUPP
32 g ACTIVE BUT (CLEAR FLAGS) Clears RES register and
Short Term Flags (MFPI,
MIPI, T-Bit maskb%dsE"'g
L2k LA C QL)
33 " ACTIVE BUT (DIAGNOSE) Reserved for DCS
34 ') ACTIVE BUT (SUBR B), Return<11:00> « RETURN,
BUT (GO TO) Page<2:0> + PAGE
35 ') ACTIVE BUT (SUBR A) Loads Return and Page regs.
Return<l1l:00> « D<14:03>
Page<2:0> « PAGE
i e —1
36 ACTIVE
T Anads NUA, “*"“:“‘3 ¢ ﬁ&’ [
37 ACTIVE BUT (RETURN) Poge C210> € Return W

would affect the outcome of the branch.

A simple example that uses the CASE branch is testing whether
an ALU result is even or odd. (Obviously, there are other ways
of doing this,} To ensure that you test only the desired
condition, UPF<3:2%> are 1s. The first microinstruction specifies the
ALU operation and clocks the result into the SR; the second
specifies BUT (CASE) and the base address for the branch.

INSTR 1l:

P2: SR<—A PLUS B,
BUT(NULL, J/INSTR 2
INSTR 2: ‘

BUT (CASE), J/NEXT ! Go to NEXT if result
1 is even, NEXT+1l if odd

Using the microassembler, you would specify a constraint field
of 1110 for NEXT.

3.5 SUBROUTINES

The well-proven programming technique of subroutine
structure is available to the IMP microprogrammer. Use of
subroutines generally results in smaller microprograms,
more systematic microprogramming, and more easily shared
microroutines.

3.5.1 BUTs for Subroutines

There are three BUTs to control entry to and exit from
microcode subroutines. They are BUT(SUBR B), BUT(SUBR A), and
BUT (RETURN). All are Active BUTs.

A jump to the beginning of a subroutine is distinguished from
an unrestricted jump by the storing of a return address
prior to the jump. On the IMP, the return address is stored
in the Return register in the Processor Control Section. The
jump is then made in the normal way to the location specified
in the UPF field. At the end of the subroutine, BUT (RETURN)
causes a jump to the previously stored return address by
loading the NUA with the contents of the Return register.

The return address can be loaded from the D register or

directly from the microword. You will :qenerally load the

return address from the microword for first-level sutroutines,

and load it from D when nesting or dispatching on preVKxuﬁ/ extradec)
bit patterns.

BUT (SUBR B) stores the contents of the RETURN PAGE and RETURN ADDRESS
fields of the microword, u<46:44> and u<4l:3 >, in the

Return register. Note In Figure 3-16 that these fields aﬁafrik\
overlap the ALU function field and some of the4553'23§€§81

fields. Hence, attempt no datapath manipulations in a

- microinstruction that specifies BUT (SUBR B).

?P“ZE“‘ M| ReurnN AODRESD
ACC > -)

AL.U\ &N [BSELJACN [Asew| R (&

Figure 3-16 RETURN PAGE, RETURN Fields of uword

3-24

The following example shows how BUT(SUBR B) and BUT (RETURN)

can be used when no nesting is involved.

MAIN FLOW SUBROUTINE
. SUB1: .
. ENDSUB:
JMP: _ BUT (RETURN)
RETURN <« MAIN1g,
PAGE + 1,
BUT,(SUBR B),
J/SUB1

& MAINLg:

Both BUT(SUBR A) and BUT(RETURN) load the Return register
from N<14:03>, This allows you to use a previously calculated

or stored return address.

Although you can use BUT(SUBR A) and BUT(RETURN) for

general subroutine calling like BUT(SUBR B), they are
especially useful for nested subroutines. When going through
successive levels of subroutines, you must save the return

addresses in the scratchpads.

The following sample microcode illustrates the use of BUT (RETURN)
to take a return address out of the CSP2 Note that the caller

stores the return address. Siy1a EMaT

MAIN:
P3, (SPBLMDT< MAIN L ! @spP GETS RETURN ADDRS
PAGE « 1, BUT(SUBR B),
J/SUBL
MAINL: ! RETURN ADDRS FOR SUBROUTINE 1

SUE1l:

J/SUBIN

SUBIN:

RETURN <« SUBI1M,
BUT (SUBR B), J/SUB2

SUB1M:

BUT(RETURN)

SUB2:

J/SUB2N

SUB2N:

P2: D Csp(MD],
J/SUB2N+1

SUB2N+1:

BUT (RETURN)

ISUBROUTINE 1 CODE
!LOAD REUTRN ADDRS FOR SUB2
! RETURNS CONTROL TO MAIN1

LENTRY POINT

THIS INSTR SETS UP
"D SO THAT RETURN WILL BE
!' CORRECTLY LOADED IN SUB2N+1

!
H
!
.

THIS INSTR RETURNS
CONTROL TO MAIN 1 AND
LOADS THE RETURN REG FROM
D

!
!
!
!

The function of this code may be clarified by the flow diagram

below.

QA Ewpw

AIN] Syove
Renun 200tS
Arp. SUBL

<op (moJe My
AT [SUBR B)

suafQuTINEL
XA
Scmua
Cocoe

Akl sa’ﬁ“g

6ur6u0n8)

Su Bm [
mehxrn
MmaAanvi
Bu T(KETURY)

)

N

3-3%L

I VWVE

‘Suezj

Co o

ug 2

Mli—dd"-

D<€ corlmog

haszmwl|
Retean tu
S‘,;eﬂj toad

] A i ¥
BuT (Re uen)
)

N

345.2 Using Subroutines

In structuring your microprograms, it is important to
understand how the chained sequencing scheme of the IMP
affects the use of subroutines. In higher-level languages
where the instruction flow is sequential, a subroutine

can be seen as a "black-box" nrocess occuring between two
main-program instructions. That is, the subroutine process
is isolated, and is generally called from and returns

to the same program flow.

On the IMP, there is no automatic distinction between
in-line and called code because every microinstruction can
call any other microinstruction in the control store.

In addition, a microcode process can be isolated merely

by ensuring that entry to and exit from its flow occurs
only at specific points.

The most general approach to understanding and using the
microcode subroutine facility of the IMP is to consider it

a method for sharing code sequences. Thus, if flows
A,B, and C contain common code, only one copy of the common
code is required. The main flows A, B, and C specify
BUT (SUBR B), thus loading the return address, in the
microinstruction that specifies the jump to the common
code sequence. The last instruction in the shared code
includes a BUT(RETURN), which returns control to the
proper main flow. |

Note that control does WOtLRiX% Eg‘return to the calling
flow. Within a subroutinE%%E'EEﬁETﬁ?gnal branch

which can preclude the execution of the
BUT (RETURN) .

3.& PAGE CHANGING .

Heretofore, we hove \cwokuoonly at the low nine bits of
the microaddress. Twelve bits are needed to specify a
unique control store location on the IMP.

The IMP ccntrol store is divided into 512-word pages.
The 9+«bit address selected by the UPF field represents
the displacement within a page. Three additional
address bits are used to specify the page.

Unnecessary page changing is to be avoided, since it

can add overhead.

The top three bits of the -microaddress are specified by
the contents of the Page register in the Processor
Control section of the IMP. The Page register is loaded
whenever BUT (SUBR B), BUT(SUBR A), or BUT(RETURN) is
specified. Thus, »nage changing can only occur when one
of these BUTs is specified in the UBF field of a

microinstruction.

The contents of the PAGE field of the microword,‘u<32:30>,
areé loaded into the page register whenever BUT(SUBR B) or
BUT (SUBR A) is specified. Do not confuse this field

with the RETURNPAGE field, M<46:44>; refer to Figure 3-1%

When BUT (RETURN) is used, the top three bits of the

Return register are loaded into the Page register. (Note

that the ordginal source of these bits was the RETURNPAGE

field when BUT(SUBR %y BUT (SUBR A), or BUT(RETURN)was specified,)

mmm——— e m————

l__,_/ L__iﬁc D 12,2‘97\\124\)
/Uﬁﬁ 3-38

LU &

Pase | 1

Rerua REaISTER BeE

AuT (sure é}

., . « S) — 33 20
F:? Reuan ﬁ""’[Returm Address PA’GF

- an———————

T.D <i4to3)

L R
e D Reqisler 2
PUt (SUBR A
D Reqistir]
w93 l»?ff"_i?f.i

[

NUA gur (ee TLEN)

Figure 3-17 Three Ways of Loading the Page
Register _

These three BUTs were discussed in the context of subroutining,

but it is important to note that oage changing is not
restricted to subroutine dispatching. Although the three BUTs
load the Return register. as well as the Page register, that
loading is significant only if a BUT(RETURN) is issued.

Thus, if the microinstruction at location 6056 (page 6,
location 56) looks like this:

6056:
PAGE/7, BUT(SUBR B), J/220

the next microinstruction will be at 7220 (page 7, location
220). The dat loaded into the Return register by the

BUT (SUBR B) in 6056 doesn't matter unless 7220, or one of
its successors, specifies a BUT(RETURN).

The following is an example of changing pages while calling
a subroutine:

6056:

CALL:

RETURNPAGE/6, RETURNADDRESS/057, PAGE/7,
BUT (SUBR B), J/220

7220:
BUT (RETURN)

6057:

Because the subroutine BUTs are also the page-changing BUTSs,
there is a danger of jumping off the current page inadvertently.
You can avoid this problem by making sure that microinstructdons
using BUT(SUBR B) and BUT(SUBR A) have the proper value in

the PAGE field. A normal subreldonu must net “ijm b

hecorir A wodd d&ﬂ}wcgj Lhas. (&3u§huui3 Yl PCTUFE zyiKﬂv
o) AV allsfe 4(1)//1[« C g ng uc

’ . - ¥ ; J 3 ‘Q’l(__l'/)
(7)1.(& {hod /‘hu,lj * ,(.wr A\(UA/ 7y 4) (()(47 Pl D /

/«ﬁ Gy Vo T SR FHor
L U
(JM s 1o naliiie o P& Q&""’/U(O Jult o

ZWHM'MO/‘U&I/\) 61
3-30

s DRAFT

THE CENTRAL PROCESSOR g

While you will work almost exclusively with the “ﬁo Inner
Machine (the Datapath and Processor Control sections),
potentially useful features exist in other sections of the
processor. In addition, it is important to be familiar with
the inter-relationships of the various sections of the

processor.

The fold-out block diagram of the processor, Figure 4-
will be a useful reference while reading this chapter.

4.1 INTRA-PROCESSOR COMMUNICATION

- The Datapath can send data to, and receive data from, each of
the other four sections of the processor. The following sections
discuss the mechanism for these data transfers, and the means

of controlling them.

4.1.1 BUSDIN and DOUT

BUS DIN and DOUT -connect all the sections of the IMP
processor, and are the main data channels within the
machine. Both are 16 bits wide.

The only device that can put data on BUS DOUT is the D
register. This data is then available to all other sections of
the processor. No explicit enable signal is ngeéea to put

the contents of D onto DOUT. Thus, if the contents of D

are unstable, so is DOUT.

BUS DIN supplies data to the Datapath: every section of the
processor except the Datapath can put data on BUS DIN.

BUS DIN is connected to the DMUX (which provides the CSP input).
llence a WR CSP specification is needed to get BUS DIN data

into the datapath. All the other sections of the processor
have tri-state multiplexers connected to BUS DIN. Selection

and enabling of these multiplexers is controlled by the UCON

registerg O
C ALTIO
ﬁl.wqhmrixx Lse of UCON) COon Caunse %uawm ad&xubsgp

4.1.2 UCON Control Register

The UCON register is a l6-bit set-up register, located in the
Processor Control section. (The general concept of set-up

registers is explained in Section 2.8.) UCON controls intra-
‘processor communication, that is, micro-level data transfers

between sections of the ||&C processor.

The contents of the UCON register determine which section of
the processor is to be accessed from the datapath, and in
what manner. It is simplest to look at the UCON register in
two parts, according to the function of the bits. The low-
order five bits control the selection of a section of the
processor and any necessary enabling. The remaining 11 bits
provide further control of the section selected.

The UCON register is loaded at uP3 whenever BGB, u<24>,

BUSBOX, u<23>, and CONO, u<20>, are all equal to one. Figure
4-1 shows how the UCON register is loaded from the micro-
word. Since the interpretation cof the control bits depends upon

the section of the procegsor selected, their functions are not
shown in this illustration.

tNIT
euﬂw‘a:D————

‘loow
. 5 LCONIS

P———3 UcoN 14
—> WCON I3

—.

2> UWCONIZ

. <3
vl { & <312
/14<§9
AN (I]
M
heo¥ S

u(.ﬂJ(‘ i /4 (JI?)
btz

/uﬁn)

— WCON W

——— W CON ¥
—> uconNng9
f—— ucoNg¥

UeoN b

’AxdﬂL______}

F—— UucCconN ¢'?‘

AL 39
n3R),

ABD

5 ucONPe
| > WLCONE 5

r 4

——— UWCON BeL FP

A0

> UCON Sesa PROC

s

> UCOMN SeL T/
> Wcon SeL OCS

AT

Mete: p1d383 @ & hegh

Bos u 24y
BUSAOX 4t

Figure 4-1

The order in which the bits are loaded into

transparent to the microprogrammer.

— WCON Setw. KT
LOAD

Cak)o, #<ao>

UCON Register

the register is
It is the mapping of

microword fields to eventual effects (signals) that impacts

the microprogrammer.

The UCON register sets up a r‘ouhhs Path for data
whenever an intra-processor bus cycle is specified by the
microprogrammer. Thus, when writing of datapath data is
specified, UCON determines which section(s) of the

processor is to take data off BUS DOUT, and to which register
in that section the data is written. When data is to be
introduced into the datapath, UCON provides the appropriate
enable and disable signals to the tri-state multiplexers
attached to BUS DIN. |

Once this path is set up, it does not change until you~
reload UCON. You can set up UCON before it is needed,
and use it repeatedly until the register is relgpaded.

Specific details of the UCON interface to each section of the

processor, such as the function of the control bits, are
included in the remaining sections of this chapter.

4.1.3 ol Control Fields

The BUS/UMN control fields, which span u<24:20>, serve to
distinguish between and provide control signals for both
Unibus cycles and Intra-processor data transfers. Their use
for Bus (Unibus) control is described in Section 4.3.

The BGB field (think of it as Begin(XDN or Begin BUS), u<24>
determines i f activity over BUS DIN or . DOUT is _
going to occur. If BGB is equal to 1, bus activity is allowed.

This bit avoids inadvertent bus cycles when setting up the

Shift Tree or addressing the CSP due to the overlapping_ bit
fields. A BGB value of 1 indicates that either a Unibus
cycle or UCON activity is going to take place.

BUSBOX, u<23>, determines how the remaining bits are to be
interpreted. If BUSBOX is 1, then u<22:20> are used in
controllingc}ntra—processor communication.

1/*""((/"
FLTPT, u<22>, is used by the floating point hardware and
should always be 0 when performing UCON activity from the
WCS control store.

DATTB, u<2l>, is used in different ways by different sections

of the processor.

CONO, u<20>, is used in conjunction with BGB and BUSBOX to
load the UCON register.

4.2 THE INNER MACHINE

The Inner Machine is composed of the datapath and the
Processor Control sections. This section describes the
features of the Processor Control section and its interactions
with the datapath.

The Processor Control section, as well as providing control
signals to the datapath, contéins a number of important data
register$. Understanding how these registers can be accessed
from the datapath will give you added flexibility, both at
the macro- and micro-code levels. |

3 |1 O .

9-%

K4 DOUT

CONTROL

SrenALY
10

DATAPAIM

.e

&
MUK

PAGE

wes/ECS

PFROM

- wasmyPrr P ¢

NUA C15:93>

SACNING
STATE

IR DECODS

9 2] L
NCTLE-

L Tré P06 £2R TCNTEOL £, NSTION IS
TES L THD BIARSS: ywOAD
SE.

2Bl LUMMERY DR
7 613 FemmAT CF 'ﬂl COnTROL
N BuSy .

T SIGNALS

r_{ INITSAL !

PEISOE

FETIN

Houu_v

eesnierd
i e
—

Down <S5:00>

8ur mux

44

A <8 8>

JoouTC 2478

Dot <7 4]

¢ o

FLAGS

DouT¢s:8>

EROM
L

a

1

couris

DOVTI)

l LOUTC3 8y
| DOUFCI ¢

cond
Coof
[1

A E 1 1
—] {mv:o)] lsnu:z,‘ r:u::'nl frs<r:45) F:o:»

Le Je

DMUX C11: 08>

= |

Ml’m
N'l:y

Fovrsavy

S
FLORTI S,
PIINT

=

ro—
EECCOE -

S Y wesjecs

=1 INP MICROPROGPAIANING SPEC

¢ ‘.urs &
. % — PROCESSOR CONTROL
1% BLOCK DIAGRAM
z BUSOIN Mux L I OATE: 1-22-76 canre mudce
~
‘ BUSDIN . :

. WA AR -i:v_
. |0| I A
L ICANBRERREN 1

=T s] 7 i B s 1 4 | | !

L

Figure 4-2 is a block diagram of the Processor Control
secticn of the IMP, At the top and bottom of the diagram.
are the two data busses: BUS DOUT and BUS DIN. Data from the
D register can be moved into the Processor Control section
over DOUT; data from the processor control section can be
moved into the CSP over BUS DIN.Data is placed on BUS DIN by
the BUS DIN MUX.

In the middle of the diagram is BUSU, which carries the
microword signals through the processor.

4.d.1 Next Micro Address, NUA

The Next Micro Address, NUA, selects the next microinstruction
to be executed from the control store (either base machine

or WCS). NUAL11:09% are the contents of the Page register,

as shown in Figure 4-3. The Page MUX selects between the

two sources for the page register: Return4ll:09)» or
M<32:30). NUAL8:0Yis the result of ORing the output

of the RUA register with the output of the BUT MUX. Both

‘the Page Mux and the BUA Mux select the microword input except

when BUT (RETURN) is specified.

Chapter 3 describes, from a functional viewpoint, the loading

0of the Return register. You can see in Figure 4-3 that specifying
BUT (SUBR B), BUT(SUBR A), or BUT(RETURN) causes the Return

Mux to select one of its inputs; the Return Mux output

is input to the Return register.

/L(‘léf«;ll ©33> - DouT<r:03>

BuT(SUGRA) or BUT (AETLR L)

' € lesqic
NUA Lnio4)>
NuA <% >
e L o
Bk E =

<,9.

Tigure 4-3: 'IUA Formation

Looking at the Page and BUA registers again, you will notice

a JAMUPP signal going into both.of them. JAMUPP stands for

JAM MicroProgram Pointer, and the effect of this signal ié

to "jam" a unique address into the NUA. This is used to dispatch
into the JAM routine, which services synchronous error conditions,
internal addresses, . etc. The JAM routine is described
in more detail in Skction 5.3.

4.2.2 BUS DIN MUX

The BUS DIN multiplexer determines what data from the Processor
Control section is gated onto BUS DIN to be sent to the CSP.
This multipléxer has four inputs; selection among these

inputs is controlled by bits from the UCON register, as

shown in Figure 4-4.

Since the BUS DIN MUX is a tri-state device, it requires an
enable signal as well as selection signals. The enable signal
is also generated from a combination of bits from the UCON

register. ﬁ&*L” do Table 4-1.

INH WEON
(pus xFcR) b

ucoN' geL. PROC

e .,_.._....J—-ucou ErT (0

—p

an

Bus DIN

Figure 4-4 Selection and Enabling of
BUS DIN MUX

There are two ways in which the BUS DIN MUX can be enabled
and selected. The signal UCON EMIT (1) L is true whenever

the UCON register has been cleared by BUT(CLEAR FLAGS) or
INIT. OCON EMIT (1) L enables the multiplexer and forces
the selection to port D, which is the EMIT input. This
allows you to select EMIT without using a microword to set
up the UCON register.

The other method of selecting and enabling BUS DIN MUX does
require you to set up the UCON register from the microword.
The microword fields to use are KPROC, u<36>, and 1I/u, u<46>,
(in the UCON SELECT row of the microword summary), and KPROC
READ, u<39:38>, in the UCON READ CONTROL row of the mciroword
summary.

| 43 46 45 44 39 38 3 33
VCconN T, W FLEEN . 5] |F
SeLceceT %gc{g KT . §;" el Lo
L - R L \. s N
C.O!Q . a- 3 1 SN AP e - ,.;_« - : . R S
e A D o e, & | KPe - ..~>“~.'~ Rih .
C ONWOL- R S e T °c o '\-a w‘”,'&__‘“' g

Figure 4-5 uword Fields for Controlling BUSDIN MUX

The logic for enabling the BUSDIN MUX works according to the
equation:
ENB BUSDINMUX = UCON SEL I/O A UCONL A (UCON SEL PROC V UCON EMIT)
A INH UCON (BUS XFER)

From this, you can see that to enable the BUS DIN MUX, you must
have KPROC, u<36> equal to 1 and I/0, u<46>, equal to 0 in :

the microinstruction which loads the UCON register. The encoding

of the KPROC READ field, u<39:38>, is shown in Table 4-1.

TABLE 4-1
KPROC READ FIELD ENCODING
KPROC READ MNEMONIC EFFECT
L _Field Value
0 FLAGS, FPS BUS DIN<15> « FLAG<03>
BUS DIN<14:11> «FLAG<07:04>
BUSDIN<10: 08>« FLAG<02:00>
BUSDIN<07:00>« FPS<07:00>
§ 1 PS BUSDIN<15:14> +« PS<15>
BUSDIN<13:12> « PS<13> a
BUSDIN<11:08> « @ f
BUSDIN<Q07:00> <« PS<07:00>
2 cua BUSDIN<15> « @ |
BUSDIN<14:03> « CUA<11:00> }
BUSQIN<02:01> « EXFLAG<2:1>
BUSDIN<00> +« INSTR PREFETCH
3 EMIT BUSDIN<15: 00> +« EMIT<15:00> t

The signal INH UCON (BUS XFER) L is generated by the Bus
Control section of the processor. It disables all the UCON-
controlled multiplexer on BUSDIN so that UNIBUS data can be

gated onto BUS DIN.

4.2.3 Using the IMP's Literal Facility

The EMIT field of the microword allows you to introduce a

l6-bit literal into the :‘datapath from the microword.

The contents of the EMIT field of the microword, u<47:44, 41:30>,
is gated onto BUSDIN when both the S1 and S0 inputs to the
BUSDIN MUX are high. BMIT is selected when the UCON register

is loaded with a KPROC READ value of 3, and when BUT (CLEAR

FLAGS) is issued. ' (BUT (CLEAR FLAGS) selects EMIT because it
forces UCON EMIT (1) L to go to the low, or true state.)

Because the EMIT field overlaps the BSEL field (u<41:46>),
you must use the CSPADR field to specify the address in

the CSP to which you wish to write the literal data. Remember
that the contents of CSP are complemented before the CSP is
addressed.

As long as you issue a BUT(CLEAR FLAGS) and do not load the
UCON register before the microword in which the EMIT léteral
is specified, BUSDIN MUX will always be enabled onto BUSDIN,
and the EMIT port will be selected.

The following example writes the number 3263 to CSP[MD].

INSTRL: ,
BUT (CLEAR FLAGS), J/INSTR2

INSTR2:
EMIT/326, BEN/CSP, CSPADR/2, WRCSP/YES

Besides using EMIT to supply literals for datapath computation,
you will find it useful for providing constants, such as

those for loading the RES register. You can also load
subroutine return addresses by using EMIT and then issuing
BUT (SUBR A) or BUT(RETURN) in a later microinstruction.

v4r12

4.2.4 Reading the Status Registers

The remaining three inputs to the BUSDIN MUX are status
registers. To get data from these registers into the data-
path, set up the UCON register for BUS DIN MUX enabling and
selection and write a location in the CSP. If you write the
data into EMITCON, CSP[6], the UCON set-up and CSP write can
be done during the same microcycle.

4.2.4.1 Current MicroAddress (CUA) -~ The Current Micro-
Address register, CUA, tracks normal microcode flow. It is
loaded with the NUA at P3. When the JAMUPP routine 1is

-+
‘ . . S fo \lewe™
invoked, CUA tracking of the microaddress is dlaablej;—igg”'ﬁyvéb

the CUA contains the address of the microinstructionvcausing
the JAMUPP. | "D_,L“D”?
The CUA is gated onto BUSDIN<14:03> when the UCON register is
set up with KPROZ SELVequal to one and KPROC READ equal to 2.
BUSDIN<15> is loaded with zero, BUSDIN<02:01> is loaded with
EﬂyﬁAGs<2;l> , which are currently unused and reserved, and
BUSDIN<00> is loaded with INSTR PREFETCH, which indicates the
overlapped fetch of a'macro-level instruction. As there is

no macro-level instruction fetch overlap on XFC instructions,
this bit should always be 0.

4.2.4.2 The Processor Status Registers -- The PDP-1l1

Processor Status Word (PS) is implemented on the IMP as three
separate registers so that each of its parts can be written
separately.

7

6

PS<15:12> are the mode bits. Because the IMP does not implement
Supervisor mode, PS<14> always has the same value as PS<15>,

and PS<12> always has the same value as PS<13>.

PS<15>

indicates the current processor mode. A value of 1 indicates

the current mode is User;

a 0 indicates the current mode is

Kernel. PS<13> indicates the previous processor mode; 1 for

User,

and 0 for Kernel.

PS<7:4> contains the current processor priority and the

T-bit,
and C.

and PS<3:0> contains the condition codes N,

z, Vv,

The PS is gated ontc BUSDIN when the UCON register is set up

with KPROC SEL-

4.2.4.3

= 1 and KPROC READ =

1.

=

Floating Point Status (Low Byte) -- When the UCON

register is set up with KPROC SEL 1 and KPROC READ equal to

0, the low byte of the Floating Point status word is gated
onto BUSDINK07:00). (The high byte is stored in FPSHI-FEC in

the ASP.) The format of FPSLO is shown in Figure 4-6.
7 6 5 4 3 2 1 0
I Fp | FL | FT | FMM | FN Fz | v | FC

Floating Double Precision Mode (FD)

Fioating Long Integer Mods (FL)

Floating Truncate Mode (FT)

Determines the precision that is

used for Fiosting Point calcula- =

tions. When set, Double preci-

sion is assumed; when reset .

Floating precision is used.

Active in convergion between In-
teger, and Floating Point format.
When set, the integer format as-
sumed is Double Precision two's
compiement (i.e. 31 bits 4+ sign).
When reset, the integer format
is assumed to ha Single Praci.
sion two’'s compiement (l.e. 15
bits + sign).

When set, causes the resuit of
any arithmetic operation to be
truncated. When reset, the re-
suits sre rounded.

4-14

Figure 4-6

Floating Maintenance Mode (FM
Floating Negstive (FN)

Floating Zero (FZ)

Floating Overfiow (FV)

Floating Carry (FC)

FPSLO

M)

The result of the last operation
was negative.

The result of the last opaeration
was 2ero.

The result ‘of the last operation
resuited in an arithmetic over
fiow. :

The resuit of the'ast opertion
resuited in a carry of the most
significant bit. This cen only ec-
cur in integer-Floating conver
sions.

4.2.4.4 Flag Register --

The Flag register contains a

number of micro-level state indicators for the base machine.

The register contains two types of flags:
long-term. The short-term flags are cleared by BUT (CLEAR FLAGS).
The layout of the Flag Register is shown in Figure 4-7.

short-term and

I

T-bit

HWBreak Service Fast CSP
Enable Request (Spare) i;;?;d gg::fiq_yFPI MIPI Mask
A 7} 7, N L\
Enables ubrk ::ikngs(T)
for MED '
MTPI in
To WCS on) progress
BUT (SERVICE)————-'Q on exists
(€ no otar sex! MFPI in
Fast FLTPT enabled progress
If set, csp
does not contain
Floating Poifffn) Constants
Figure 4-7 Flag Register

The CSP Constants invalid bit, FLAG<3>,

is set whenever

Csr[0:13] are used to store anything other than the Floating

Point constants described in Section 2.3.

The contents of the Flag register are gated onto BUSDIN when
the UCON register is set up with KPROC SEL equal to 1 and

KPROC READ equal to O,

as shown in Table 4-1.

4.2.5 Writing the Status Registers

The registers which provide input to the Processor Control's
BUSDINMUX can be loaded from the D register. You must set

up the UCON register to indicate which registers are to be
written; set up the D register, and specify the write.

After setting up the UCON register, you specify the write by
setting the microword fielcs BGB, BUSBOX, and DATTB all
equal to 1.

4.2.5.1 PS « D

The fields which set up the UCON register for writing the PS
are KPROC SEL; PS<3:0>, u§47>; PS<7:4>, u<34>; and PS<15:12>,
u<31l>. The three sections of the PSW may be loaded at the
same time or independently. The loading of the PS from the

D register is as follows:

PS<3:0> « D<3:0>
PS<7:4> « D<7:4>
PS<13:12> « D<13>
PS<15:14> « D<15>

~ With the UCON register set up, the indicated sections of the
PS are loaded from BUS DOUT when BGB, BUSBOX, and DATTB all
equal 1. The condition codes, PS<3:0>, are clocked at P2; the
other sections of the PS are clocked'at P3. Thus you must set
"up the D register one microcycle before you try to load the

PS . and keep D stable until P2 of the microcycle
¥ 1 aydh

L .
in which the wrlte is specified for r§<50> oM Reep L o

, adp cowdois e WrdE o
,\Lﬁ Psuﬁ % oy ‘

l

You may prefer to set the condition codes with this method,
rather than use the CCC microword field. The logic associated
with CCC is especially designed to handle the PDP-11
instruction set. Setting the condition codes directly allows

ou to have more control over the state information)
Y ou coulo xet tha

transmitted to the macro-level program.~337-‘f ' ¢
\/—jj/t #tom MmAc0code a0 B wa o BV'S e ot the Mo
Yool J

For example, the following example loads the condition codes
with values previously stored in SR<3:0>.

LDUCON: |Set up UCON prior to anything
KPROCSEL/YES, lelse.
PS<3:0>/YES,
BGB/YES, BUSBOX/YES,
CONO/YES, J/NEXT

SETUP:
P2: D « SR, IThis exapands to: AEN/XMUX,
J/CLOCK ! XMUX/SR, ALU/SELECT A, WHEN/P2,
{ CLKD/YES
CLOCK:
BGB/YES, BUSBOX/BOX, !Condition codes loaded at P2.
DATTB/YES

Note that you do not specify any ALU activity in the micro-
instruction that sets up the UCON register. Because of the
overlapping microword fields, an ALU specification could

cause an inadvertent UCON selection.

4.2.5.2 FPSLO<7:4> « D<7:4> -- The four high bits of the
low byte of the Floating Point Status register are loaded
from D<7:4>. The UCON register myst:ibe set up with KPROC SEL
and FPS<7:4>, u<35>, both equal to 1. FSPLO<7:4> is clocked
"at P2 of the microcycle in which BGB, BUSBOX, and DATTB all
equal 1. ‘

Clocking of FPSLO<3:0> is controlled by an extension of the
microword and cannot be performed from the WCS control store.

The high byte of the Floating Point Status word is stored in
ASPHI[1l6].

4,2.5.3 PLAG<7:0> +« D<15:08> -- The Flag register is
loaded from D<15:08>. The UCON register must be set up with
KPROC SEL and FLAGS, u<36>, both equal to 1. The Flag
register is loaded at P3 when BGB, BUSBOX, and DATTB are all
equal to 1.

Remember that if you store ANYTHING in CSP [0:13], you must
set the CSP invalid flag, Flag<3>.

4.3 MEMORY OPERATIONS

The hﬁd)lnner Machine has three interfaces with the rest
of the system:

DATA IN ® s e o8 00 0 00 CSP’ IR
DATA OUT D register
ADDRESS OUT BA register.

The memory management unit, the cache memory, and the Unibus
are all invisible to the microprogrammer. To access a main
memory location, you must set up the appropriate registers
in the datapath and specify a Unibus cycle.

Data from the Unibus is placed on BUSDIN, which provides one
of the DMUX inputs. The other DMUX input comes from the cache.

The DMUX output goes to the CSP and to the Instruction
Register (IR), ond s FPU-EL

4.3.1 The Instruction Register

The Instruction Register, IR, is in the Processor Control
section of the processor. The IR holds the first word of

a PDP-11 instruction. Control store dipatching is based on
the decoding of the contents of the IR.

Input to the IR is the same as that of the CSP: the output of
the DMuUX. Obviously, not all words fetched from memory contain
PDP-11 instructions. Therefore, clocking of the IR is under

microprogram control.

There are two ways in which you can clock a word of data

into the IR. The normal method is to issue a DATA IN AND CLOCK

IR bus code, as described in gection 4.3.2. The other

method, which may be used to take advantage of the IR-based

BUTs, is to specifv_IR lcadihg with the UCON register. If the

UCON register is set up with KPROC SEL and IR, u<32>, both

equal to 1, the IR will be loaded from the DMUX during the

next microcycle in which BGB, BUSBOX, and DATTB are all equal

to 1. WheqllR clocking is specified, the load occurs at P2,
ever

If you refer to the BUT list in Section 3.3.3, you will see

that there are a number of branches which test the contents

of the IR. Although these branches were designed to facilitate

decoding of PDP-1ll instruction, it is possible to make more

general use of them.

For example, consider
[Anyone have a good idea for the example
needed here?]

4.3.2 Microword Bus Control Fields

The Bus Control Fields span u<24:20>, as illustrated in Figure
4-8. These are the same bits that are used to control intra-
processor (UCON) communication cycles.

24 23 a2

Figure 4-8 Bus Control Fields

4-20

BGB, u<24>, must be 1, indicating that the remaining bits are
to be used to control a bus cycle.

BUSBOX differentiates between a main memory (unibus) cycle
and an intra-processor (UCON) cycle. A value of 0 in the
BUSBOX field indicates that a main memory cycle will take

place.

The BC, or Bus Control field, u<22:20>, indicates what type

of memory cycle is to take place. There are two basic types of
memory cycles: DATIs and DATOs. During , the contents

of the location specified by the BA register (as relocated by
the memory management unit) is gated through the DMUX, and

can be clocked into the IR or the CSP. During a DATO, the

data in the D register is written to the location specified

by the BA register (after relocation by memory management).

Table 4-2 lists the BC codes, their mnemonics, and their
functions.

(fpayo
DATI and DATIB cause word,égd byte reads respectively. If the
location specified by the VBA register is in the cache, no

Unibus cycle is performed.

If the BA specified an Internal address (see Section 4.3.3)
when DATI NO INT 1is issued, an Illegal Internal Address Access
Trap will be issued.

DATIP has two functions. For core memories, it inhibits the

restore cycle for locations that will be immediately written

with new data. In the case of devices which can respond to

more than one Unibus, the DATIP prevents the device from

responding to any other requests. When a DATIP is issued, the

bus will remain busy until the next bus cycle or BUT(SERVICE)
4-21

Table 4-2
BUS CONTROL CODES

VALUE MNEMONIC FUNCTION

g DATI&CLKIR Data In, IR loaded

l‘ DATINOINT -Data In, No internal
' address allowed

2 DATO v Data Out

3 DATIB Data In, odd Ba

address allowed
4 | DATIP "Data In, locks bus
5 DATOB Data Out, allows

odd BA address

6 DATI Daf_a In
7 INVALIDATE One cache location ;
invalidated :
NoTes | |
Ohl\/ Byt epccoes (A—oos,ac) com 15u DAT\By o
09%985, ‘

An INVALIDATE BC code does not cause a Unibus cycle. The
specified location in the cache is invalidated. The next
reference to that location causes a main memory reference.
Subsequently, the location is again cached.

DATO and DATOB cause word and byte writes respectively. A
Unibus cycle is always performed, and the cache is updated.

Note that addresses in the I/0 page are never cached.

4-22

4.3.3 Internal Addresses

Some registers with Unibus addresses are not actually
connected to the Unibus, but are located within the processor

itself. These locations are called Internal Addresses.

These locations are not accessed by the Bus Control section of
the[quo. When the contents of the BA register specifies an
Internal address, the JAM routine is invoked. The JAM routine
accesses the internal register and gates its contents

through the DMUX to the CSP. When the data is ready, control
returns to the microword which issued the bus code.

Invocation of the JAM routine by specifying an Internal Address
. does alter the state of the datapath. More significantly[the
JAM routine uses the Return register, so an Internal Address
within a subroutine will cause a return to the wrong location.

Table 4-3 lists the Hkb's Internal Addresses. Notice that a
DATOB cannot be rerformed to some of these registers; the DATOB
converted to a DATO.

is

Table 4-3
n{oo INTERNAL ADDRESSES

ADDRESS REGISTER DATOB CHANGED TO DATO?
772300 Kernel PDR 0 No
772302 Kernel PDR 1 No
772304 Kernel PDR 2 No
772306 Kernel PDR 3 No
772310 Kernel PDR 4 No
772312 Kernel PDR 5 No
772314 Kernel PDR 6 No
772316 Kernel PDR 7 No
772340 Kernel PAR O No
772342 Kernel PAR 1 No
772344 Kernel PAR 2 No
772346 Kernel PAR 3 No
772350 Kernel PAR 4 No
772352 Kernel PAR 5 No
772354 Kernel PAR 6 No
772356 Kernel PAR 7 No
777540 WCS Status Register Yeé
‘777542 WCS Address Register Yes
777544 WCS Data Register “Yes
777570 Switch Register YES

TABLE 4-3 (Cont.)

ADDRESS REGISTER DATOB CHANGED TO DATO?
777572 MMRg No
777574 MMR1 Yes
777576, MMR2 Yes
777600 User PDR 0 No
777602 User PDR 1 No
777604 User PDR 2 No
777606 User PDR 3 No
777610 User PDR 4 No
777612 User PDR 5 No
777614 User PDR 6 No
777616 User PDR 7 No
777640 User PAR 0 No
777642 User PAR 1 No
777644 User PAR 2 No
777646 User PAR 3 No
777650 User PAR 4 No
777652 User PAR 5 No
777654 User PAR 6 NO
777656 User PAR 7 No
777744 Memory System Error Regq. Yes
777746 Cache Control Register Yes
777752 Hit Miss Reéister Yes

‘Pable 4-3 (Cont.)

ADDRESS REGISTER - DATOB CHANGED TO DATO ?
777766 CPU Error Register Yes.
777770 Ubreak Register No
777774 Stack Limit Register Yes
777776 Processor Status Word No

4.3.4 Timing Considerations

Data from memory is introduced into the datapath through

the CSP. The loading signal for the CSP occurs at P3 if
WRCSP is specified in the microword.

The cache and memory management logic take a finite amount

of time to procesSfa'request. Thus, even when the requested
data is in the cache, there is not enough time between Pl
(when the BA is loaded) and P3 (when CSP data must be valid)
for the data to be gated through the DMUX. The loading signal
for the CSP must be delayed until the next microinstruction.
This situation is illustrated in Figure 4-9.

4-26

’IU.‘— - -
g oe— — —

s
L 2 uP3 B3] ue3

]

ATI, CLKBA | WR |

‘ l CSPl

[hb-—-cache cyfle time--_____4 ‘

l d 2

pword 1 | Hwor '
[execution | execution
{

Fiqure 4-9 DATI Timing

Every DATO to a valid Unibus address involves a Unibus cycle
as well as a cache cycle. The cache update, with the address
specified by the memory management unit and the data specified
by the D register, begins at P3 of the first micreccycle. The
Unibus cycle does not begin until after P2 of the second
microcycle. Hence, the data to be written must be clocked into
D during the first microcycle, and kept constant until P3

of the cycle following the DATO (i.e., until the Unibus cycle
is complete). The procq:Hure for doing DATOs to valid Unibus
addresses is shown in Figure 4-10.

: ——o coNnsTanT ~ |
up3 Pl P2 P3 u?3 Pl P2 P3 WP3

S T N S o IR Y v N]

DATO l i
i CdkBA cLkp ‘] '
! Cache Unibus |
| Update Cycle
| Begins Done |
uword 1 i pword 2 ‘ ‘

J

Fiqure 4-10 DATI Miming

Because both DATIs and DATOs require two microcycles to
complete, do not specify memory references in two successive
microwords. The invocation of the Unibus in two consecutive
microcycles will put the machine in an undefined state.

4.3.5 Examples

T.B.S.

4.4 THE CACHE/KT SECTION

The Cache/KT section of the processor contains the memory
management logic, the cache, the stack limit, and the DMUX.
Virtual addresses from the BA register are relocated by the
memory management logic, and the resultant Physical Bus
Address is directed to the Unibus and to the Cache. A hit

(data in cahce) on a DATI causes the Cache port of the DMUX

to be selected; on a miss, the Bus Control section places the
data on BUS DIN and it is written into the cache from the

DMUX output. The NPR address monitor invalidates cache locations
which have been altered during DMA transfers. The stack limit
unit compares the stack address with a previously loaded value,
and causes an error if the stack goes below the stack limit.

4.4.1 The Cache

The 11/60 cache memory consists of 1024 words of direct-mapping
cache. Each word consists of a tag field and a data field. The
tag field has seven‘address identification bits, a wvalid bit,
and byte parity. The data field consists of two eight-bit bytes,
each with a parity bit.

Each location in backing store can be directly mapped, or
allocated, to one specific cache slot and each cache slot can
accept data from up to 128 different backing store locations.

The Cache Controi Register, CCR, is used to modify cache operation
for diagnostic purposes. CCRC6) is used to write wrong parity.
When set, it causes opposite (0dd) parity to be generated in the
tag and data fields. When read, those locationswill cause a parity

<—UNIBUS | >

—— baurT

%
 J
N
“tkd |

X9 :
cead
INT.
ADDR

4
ROM \ R/W REG MUX

kc3::*:="*- .. ;
«ral.

-

CACHE CONTROL REGTISTER (777746)

NY

T

L WITE NOG MR
‘e 00 0% |

HIT/TAG (777752)

L% e 4
L 6 Fiew ‘m WY RCISTER |

STACK LIMIT REGISTER (777774)

A

[STAK Lt

-
‘e ASORT-READ OOLY OFERATION
e AJOIT-P0QE LEIE™H (ORI
e AT -EDD-REZ 1 BT

MMR2(777576) - READ ONLY

L]
I8 BI1 VIO ARESS]

(772340 - 772356) KERNEL
PAGE ADDRESS REGISTERS (777640 - 777656) USER

13 12 41 [
SSsN——Fw]

(772300 ~-772316) KERNE L
Past DESCRIPTOR REGISTERS (777600 - 777616) USER

T U T\ A

bOMRI(TTI9T4) RRAGE A6 AL €°S
2. BRXN1I798) WY UNED
) 16 R0« RO Gy BT

error and inhibit the hit signal. CCR{7D is CPE JAMUPP, which, if
set, causes an access to be abo;ted if a cdbﬁb parity erroir occurs.
CCi(3:2>are used to force misses. CCRC2 will causes misses
whenever PBAC10 »is 0 (cache locations 0 -511). CCR(3> will

cause misses whenever PBA §0) ie 1 (locations 512- 1023).

The Hit/Miss register indicates whether the six most recent references
by the CPU were hits or misses. A 1 indicates a hit, and a 0 '

a miss. The most recent cycle is tracked in the low-order bit. This re
register is read-only.

4.4.2 Accessing KT/Cache Registers

These cache registers, along with the memory management registers
and the stack limit register, can be accessed from the datapath |
over the UCON interface. Some of the registers are read-only
at the microcode level, as they are at the macro-code level.

The KT/Cache section has three devices which can gate data onto
BUS DIN: the internal address ROM, the Read-Write multiplexer,

and the Read-only Register multiplexer. The enable signals for
these devices are provided by UCON data bits: multiple enables can
cause hardware damage. Thus you must be very careful to properly
set up the UCON register, and not attempt ALU operations during
the same cycle as a UCON set-up. :

The particular PAR or PDR gated onto BUS DIN is determined by the
current processor mode (User or Kernel) and, within those sets,

by BA<15:13).

KT/CACHE UCDN INTeREACE .

kv | -
Stz loa¥ 2L s | FuNeioN

£Ee-v

1 400 0@ x x x XX TyrieT ReLoCATE

4 X X X X X ENARLE DispATcH Ge InT Aoe

1044988 x » xx x Bus DINE [NT ADR <is- 005 !

10004 PP x x x x RUS DIN« MMR2 <IS!'0o) . ReAD

10004 B Ly x x v BUSDINCGS) & CACHE VALID i REGISTEELS
Bus DINC/IY:083 « CAcHe ADPRLm! Y L '

BUS DIN <os:p@g e HITKS5:0D> |
QO RUSDINLIsI06DE LRS! OB > CCR<F0)!

A0000 4 x ©0O
100004 x0O0 4L RUSDIN €« MMRG,
400001ix004o0 SUSPI <14 08,0t 03:01> 4 PPR
{ 000040011 RuspoNe PAR ‘
1 {1 OoCc. 00 x04 S0 CCR<&76 3,0 Dout (74,32) !
I 4 C000CXkolL Ol MMRGTEDS<OOUT LB > |
4 1 cOO0COoOXx011 0O PDPR<KO3.0I> « DOUT <0310 ‘ W RITE
{ {1 0O000OCXOL | | AR ONE DOUTLTIOD> g ReG(sTeRs
1 400 CTCOXI OO0 &LRKISI08S€ pourlis:i08) !
1 41 C0Y00x!1 ol NuRGHBIAEE—soUT<IS 08D :
1 1 0coooxlol 06 PORAY:®> < doukiyioe> ‘
14 400000 Xl Ol PAR &.08Bye~Doul <11 COS
1 {f oo Xt &0 ec,e SLE €« DouT
{1 120000% 1 1O MR <15:13.08 g JeDouT dis1398 o>
1 { Q000X |, | © ?OR(Naaos.oD*-DouT(NOB o3.a)
1 100D 00X, 1t | P9Q<|ng>e-00ur<um; —

4.5 THE BUS CONTROL SECTION

The Bus Control section of the 11/60 has four main functions:
Unibus interfacing and arbitration
Console interfacing
Timing control
Status control

This section has three interfaces to BUS DIN, as shown in
Figure 4-xx. The DU (Data-Unibus) register buffers Unibus data
on DATIs. The BUS DIN multiplexer gates console data, service
flags, error information, and the physical bus address onto
BUS DIN. The Data Storage (DS) register allows data from DOUT
to be gated onto BUS DIN. This is used for cache updating on
DATOs, and for writing data into the CSP and IR.

Nearly all of the activities on this board are transparent to
the user microprogrammer. Furthermore, meddling with this
logic offers the greatest potential fcr putting the CPU into an
undefined state. Thus the following sections do not suggest
using the facilities of this section. It is described here for
informational purposes.

Note that the signal IHN UCON (BUS XFER), which must be false

for other UCON activities to take place, is generated in this
section. When either the DU or DS registers has data to be gated
onto BUS DIN as a result of a DATI or DATO, it takes precedence
over all other BUS DIN devices. Thus, the signal IHN UCON (BUS XFER)
is gnerated by the hardware when either of these conditions is

detected.

4-34

¢ UNI BUS >
AV | * a
‘:;;g,“s:::, DouT
| N —
—-’f CONSOLE
T"tmTERFAc'E_
PBA <
11/60
TIMING
[FHON [eawcE
DATA BUS DIN MUX DA TA
(UNIBU;I \ , (STOR AGE)
H—-—ucou:;/o
BUS DIN Y

Microprogram control of the Unibus is essentially limited to
issuing bus codes and checking for Unibus requests (BRs)
via BUT(SERVICE) or BUT(BG).

4.5.1 The PDP-11/60 Console

The PDP-11/60 operator's console is shown in Figure 4-
There are five discrete visual displays which indicate
the current operation of the processor. These lights and
their meanings are as follows.

RUN -- when 1lit, indicates CPU is running code

PROC -~ when lit, indicates CPU is Unibus master

USFR -- when lit, KT-11D is in User mode

CONSOLE -- when 1lit, indicates processor is in console mode

BATTERY -~ if on steadily, battery backup is present and
charged. Slow flashing indicates battery is
charging; rapid flashing indicates battery is
discharging. If off, battery is not present or dead.

The numeric display register contains six octal charachters.
It can display data or addrea#es. When displaying addresses,
all decimal points are lit.

They key switch has five positions. The panel lock position
deactivates all keypad functions, and inadvertent operation
of the slide switch has no effect..

436

The three-position slide switch allows a choice of action to
be taken on power-up. If the gwitch is in the HALT position,
the CPU will power-up in console mode. If the switch is in the
RUN position, power-up will trap to location 24 (power-fa%l
vector). If the battery backup on MOB memory has failed, the
M9301 bootstrap will be invoked, which is the action taken if

the switch is in the BOOT position.

The hardware for control of the operator's console is in
the bus control section of the processor. (M7877). Keypad
entris are encoded on the console board (KY-1llP) and
trasnmitted to the status board by means of a 40-wire cable.
This interface is shown in FPigure 4- .

Keypad entries are read twice and compared: the five-bit
key code is directed to the BUS DIN MUX. If the keycode
is valid and the comparison showed both readings equal, the
console service request flag is set.

Console microcode is entered from the service flow when a
service request is detected and no higher-priority service
condition exists.

9 5}&& COnaole‘Datapath"Regdsters == The
registers are reserved for use by the consol

following datapath
e microcode:

CNSL.TMPSW := BSPHI[7]
CNSL. CNTL := ASPHI[37]
CNSL. SW := ASPHI[6]
CNSL. ADR := AsPHI[7]

DECIMAL_DISPLAYS

CisPLAY ¢

obthee

DISPLAY SEL<? §>n
3

~ KETH® PACKOLANE

;
L,

SR YT
/‘r—” (ARLE T PACKFLANE

¥ SEENDTE

U 7 6 | 5 L 4 4 | 3 | [FT 279 5 '
oo, en e a9 vz REMOTE o = == =12
¥) - - e EIAIE .
TG T 8 "ok s AT OB g NS Le it e e ,E .J: < CONSDLE FILTR MOTES

I OALL CABLE STGMALS HAVF RECEIVERS AND DRIVERS
2.% THESE SIGNALS FOR REVWOTE COMSOLE OPTION
3. % B FOR DETAIL CONNECTIONS SEE CONSOLE

AR 2 g T FILTER PRINT <41224%-0 1,
‘lL J e CONSGLE LOGIC ON STATYS wODULE w7877 ‘ r{um IN ARBOWMEATS INOKCATE MODULE Ping
) R S ek . ALUNALS GENERATED wiTwiN A 8LOCH (ARR
ciseLay DISPLAY] DISPt AY I i | LAY (,' FMOTE O MEAQE M FRINT PREFIX OF THAT BLOCK, AND ARE WY' e
X3 DRIVER DHIVEH B .":-lvt:.! V3P W) REMOTE VALID L REWRITTEN WITH ThE SIGNAL NAME
AT s v wer! Vo W Y R AEMCTE SEL L N -
- o |k B K 1LF) AEMOTE SEL O L I <ig-
! ¥ -:)T—:——- B uv(CE) REMOTE LOAD L £ DOUT <15:98> H
[| [
| ¢t “f XAF3 0OUT <08: 3> M
' . X706 (LA DECIMM DISPLAY
DISPLAY 3 DISPLAY 2 lclsvuv ' Pl e LEDSDECIWALY . [oedmal PoINY _SET DECIMAL DISPLAY L ¢
N [T) R LaTch
A A A !
e e oo . : \ : o Lyomseiar sec <z e 0 _
(l_n_c el _l w e A LEpICoNsOLEM CONSOLE LATCH
: al a [FE SE
wry s xv3 o an 7
TY VAl 3 !
I 1 I roa !
k, L}
PR —
BCD/7 SEGMENT 3, XY (CEYOISPLAY CODE <2 8> L TR DISELAY ScRATty
DECODER DRIVIR F e g (- o
BLANX KY3 | 'y I WA WAl WAD_ |
by
«¥2 REMOTE L L WR DISPLAY STORAGE IR B -
Py —_
LED DISPLAYS I, wR ACh i wf i D3h—H299 UCOM 13 111K
. WRADRS | ;] DISPLAY| S prseLay
) ' : wh CHTR VL ke w209 UEON 12 (110
| o
ey DISPLAY WR (NTR
Vo . . e e CLubey———" Dij—r209 ULON 11 1M
T BACKPLANE CONNECT !
' 1 ' : "‘(Iv’]LL(D‘égli gﬁ’LONSxA N (lﬂ_DISPI.‘V WA CNTR L |
. b S st T T ancomsoe senvice] g o g
L) S LR M, A
* 1) LD (Aumi o a7 Aur pesran o "SOT UYL
BOOT, AUN, MALT 2,REMOTE 2! L oy PUN) | W23 gren e -——.
KEYPAD CODE TABLE)yt w2k jlror -
KEY PAD CODE <4-9>L | FLNCTION SLIoE ! X7 (CFYSW CLOSURE 1.8 consaLt 1202 o e
= swlr:»az Ty T LOSURE L3 L SERVICE | X299 UCON 101m o
< Y, L3
ot LSt [o Ut x4 x 207 uCON ifER W ;
e = T -
[
1 V!
] oy CEVCO0E L Lf o ke veooe comonne ¢
_ [j—eA-C> NE YCODE VALID ™
£ r!' —Q——"‘———'_"AIA ENTRY KEV-—'—PAD] I : REG/COMP 5; XEYPAQ CODE <4 @>0:H
t o
X fovsons] 7 Tenan | oer Jray, LN rtn) (ONSOLE IMIT L
hges) @)) [{3) Ay toy - 5 g e
iﬁ 1 kiaors| o) 6 CONT L | " “¥Tee> Awen- dceaioa> (80)
N KETPAT ENCODING | 8 xf 1Al (" Cisd ¢> 1
Ll (RY IN) [£]] F)) = Y NET Sttt (gl BRI Bl o semnst BUS DIN MUY 1<TATYS)
R F 3 800 K2 t : 1 e
18) [£+)] (1] 16) (4] ACLULLL I TR b HERUS v - P 00~
neaet &) Jwawt | @ [Torac [cwtac | stanr I KEY CODE REG/COMP BUS TIN- 15 =
) Py wy [(= READS SWITCHES TWICE COMPARES, LAT(HES T = et
1 o) 1 FEaDs ¢
o CETC SR LF THE TWOQ READINGS ANRFE VBLOCK CIAGHAM) (KYIY
g S
PP e
e
g w0
CONT AU RCARD
o] o W
ThoT
3 GO AR S i I
ey [) ! 7 6 5) 4 I 3 | [!
. - y-29

The Temporary Switch register, CNSL.TMPSW, is used to hold

the value displayed in the octal display on the console. When

any numeric key is pressed, its binary value is placed in

the low-order three bits of the temporary switch register, with
the previous contents shifted left three bits. Program

movements to the Switch register are diaabled/ gur oy boaneess

\

-

The Console Control register, CNSL.CNTL, contains control and -
gstatus bits, as well as CNSL.SW4l7:16>, CNSL.TMPSWZ17:16>,
and CNSL.ADR<17:16>. The layout of this register is shown in

Figure 4- .

The Switch Register, CNSL.SW, has Unibus aAAress 777570. It

is loaded with the contents of CNSL.TMPSW when the Load
Address and Control keys are simultaneously pressed. It can be
accessed by a macro-level program; however, if the Display
Lock (DISLOCK) bit in CNSL.CNTL is set, the move will be
treated as a no-op.

CNSL.ADR, the console address register, is loaded from the
temporary switch register when Control and Load Address are
pressed simultaneously.

15 14 13 12 11 1@ 9 g 7 o 5 <4 3 2 ! L4
C |10

efc |% o|swres| rsr 5 Pyl
76 |x ¢ s b ADDRESS
ol P ¢

&~ 17 e |7 1 1@ o 17 |10

R (CNTL) IN 8 sP.

pe
t IO'..U" 4 ¥
\

/

4.5.3 Console Microcode

The BUT(SERVICE) at the end of every macro-level instruction dispatches
to the console microcode if the console service resquest flag

is set. The entry point is CSR0l. The console microcode loads

console constants into the CSP and sets the CSP Invalid flag

(see Section 2.). This is done by calling two subroutines.

FLG reads the Flag register from the Processor Control section

and places it in R(TEMPl) . FLGS ORs a constant from MD with

R(TEMPl) and re-writes the Flag register. The 'EXAM', 'DEP',

and 'DON'T CLR CSR' bits in CNL.CNTL are then cleared. The

console tests for single-step mode and halts if SI is set.

If single~stepping is not indicated, the A-port of the BUS DIN
multiplexer (in Bus Control) is selected, and the data is
read into MD. Microcode branches decode the keypad code

and dispatch to the appropriate console service routine, as
shown in the console flow diagram, Figure 4- .

4.5.4 Console Use of UCON Interface

Data to be displayed on the console is moved‘from CNSL. TMPSW
onto DOUT, and then written into the Display Scratchpad. The
display scratchpad is continously read (sequentially) to
drive the octal display.

Control for the dipaly Scratchpad, the console mode indicator,
the decimal displays, and for clearing the console service
request flag comes from the Display Control decoder. This
decoder uses UCOM 13:11 as its data inputs and is enabled
when BEGIN, UCON, and XFER‘M<24,23,21> are all equal to 1, and
UCON <15) and UCON <14 are both equal to 0. Table 4~ shows
the console UCON codes and their functions.

4-43,

. L7 | s | s ! ‘ L 3 1 — . £ !

2ot et e PRSP
15014 13 12 4 8 9 8 7 6 S5 4 3 2 1 B
ole IONSZLE
. N
TORG 5CA SCNITANTS Eapinec] T8 1 g apoRess
] o wre
CLEAR EXAM) CES, DUTZACS) 48 M n'/a ,7]75 s " e
CLEAR EXAN.DEP) R (CNTL) IN B SP.
YES s,
. 7
\ter
[orseeay rsn] [s1e—¢]
CLEAR Commp LATCH
3€7'CLocK”
PEMD S TCH CODE
@ P C"‘r:)" BrANCH TN SAITEN CODE
’ i
ALL OTHER CaDEs) (E4CEPT TWE (iswe) cswa
UNGIED COCES)
€MD COMPLETE . C)
CMND REVECT SwreG rsa TSR <12:0¢>
r—Gr=r >ie - GETS cers (saorrs
TSR SwREG B ara o> o
CMND ILLEGAL]

e
(DISPLHV Tsa

I I ! I
C oolor) C 3rflwr D¢ cc;l/vr) (e) LADRS DADRS WALt/ ST
i

consate'— @] [consore -2 EXAM e O ‘DrocKe— 2
'CSR e— 2 SR g ‘pep’ e— ¢ TSR&CCNSILE
TSR @ TSR @ CARa— TSR D,‘:E,“”

[pee—nicacas)] [cmmo comnerc]

1 I MAINT £xAM
Icnmccouﬁurq (FET @1)

CONSOLE "€t

DBUF LATCH ExAM
seceer ‘wes' SETS R(sV) ROUTINE
HOT BoxX IR g TSRe-DATA 3

WAECMITRITRIZRAVMING Srfl
CONSOLE FLOW
DIAGRAM

0uTE: 32311

sen sra

TG il =

e Tw] 4-43 .
e ' P ' S TITLE s/ tfcooy TR
Phbrad - plFo
Cant P — Tswueer oF s LT I T 11
ad romes

T S BN

Conso;e UCQN codes

Table 4-

—- ;
i 4 UCON SET-UP_ | @GNABLE __
1/0 SEL <15:142 <13:11>| BEGIN,UCON,XFE
1 00 001 YES L
1 00 010 YES
1 00 011 YES
1 00 100 YES
1 00 101 YES
1 00 110 YES
1 00 111 | YES)
4.5.5 Bus Control BUSDIN Mux

Console data is moved into

.. FUNCTION
R |

CLR Display WR Counter
INC Display WR Counter
CLR Console Service Rgst

|
i
i

WR Display Storage
CLR Console LED
SET console LED
Set Decimal Display

the datapath through the BUS DiIN

multiplexer. This multiplexer is enabled onto BUS DIN when the
UCON register is set up with UCON<15> =0 and UCON I/O SEL = 1
and the INH(UCON(BUS XFER) signal is not asserted. Slection

of the multiplexer is done by UCON(10:3>. The data placed on
BUS DIN by each of the selection codes is shown in Table 4- .

N ALS DIN MUX FOR STATUS
‘*’TF"‘"‘“ ToTmes———— T em— P -
s _ ORI 10:94>
om © 1 1 A
15 (]] o0 ADRS "N
_— _)
0 [% SHvICG] AN
= ——— {1} N
1 ’ [St] W ON |
(YN
2 [] oW TIEDT WL
M (H W
" s DATOS (1) D 20 YN
- — e DR
" * DATD (1) H WCS PAR B N WL
] [} 10 PAGE XD(PR) YL
R S B 1N DI SOWRED L
] s 10 PAGE’ L Y] Y L
I X 1 [TIL S |
n SLIE S L WIBITE SSW TIEQn Y
. R L (¥ o
= SLIDE SW L LOWNYTE TAOE oM AW
PAR EMR L i UL _
) PREL LD L TAG PAR B BETVY - ' L E(DN
R . 1. ey (O N
[KEYPO COOE FLTPY SEWICE W 09 ARRT M (DH
| jamn —_— (M -
n YR CO0E CDGOLE SERVICE %D 210N MB(DH
YUY (N (HN
(4 KEYWD CODE R FAIL ()M 0D A0S £ Y XX
L. 2(_3_)" U S (1) e]
n KEYPRO CODE CADE R (1) H WS H Mo (DK
IBULR R
- EYPO X TELDR 2 U WEAK (1) H Y 10X
®i R}

4.5.6 The DS Register

The primary function of the DS register is to provide a latch
~for DOUT data fop writing DATO data into the cache. However,

since DIN is gated into the DMUX in the Cache/§T section of

the proceséor,'ns also provides a path from D to the CSP and the
IR. A DATO Unibus cycle is not required to enable DS onto BUSDIN.

The DS register can be loaded (at p3) from DOUT by setting up
UCON with I/O SEL and UCON <15»both equal to 1. The DS register
is ¢l oCked at P3 of the microinstruction in which UCON XFER
(BEGIN UCON XFER) is specified. '

4.5.6.1 -- The DMUX The DIN port of the DMUX (see Figure 4-)

Figure 4- DMUX

A1

is the default selection. Although the DMUX is in another section
of the processor, UCON<08) is used in conjuction with UCON I/O SEL
to select the cahce port of the multiplexer. This is used only
vhen there is a Cache hit on a DATI.

4-45%

BUS CONTROL UCor) TN IEP FACE

9y~

i

:t%%‘i*???ﬁ 51432 11103 87 6 §__QLOCK Func TION)
i 1 DECO L v xx 2 % fg FeLen BT DSPLhY R CNTE
1 1L FOOL0O vy T & DPLAY 1O TR
4 1 20114 vXxxxx X Pj CLI2 CoNsoLe —SRVICE FLAC
4 4. €100 »X X XX x £2 LOR. DiSfeAY STORARGE
4 4 BT L0414 XX XXX x £3 CLR CcDNSOLE (€D
1 1. ZFLLO x x X XXX K3 =T CONVSOLE LED
44 PR LLL o x xx PR seT . DECIMA L. _
.' 1 YA AXY * P XOO4 P2 CLR RWER FAIL MORE
1 1 R R ISR W p2 CLR JAM FERRORS
4 4 * XY AN X444 P2 CLR MPR TiMeouUT
1 4 Y yaxx ¥ 400 P2 CAR PolX¥1e FAIL FLAG
L L xx¥XxxYxdiol P2 ClR YellOWZONE
i 4 vrraxed x40 y2
A L Y e N R Pz IBUS RESET (QCOI\)\ _
@ L P XX xXO0 v xvx NA AUSONCE 0B 01:06 >< SLSO 08 Bulixky
& 1 FrxxxO 1L ANy A BUSOIN «— STATUS INFO > oY 00D € &Y@OF
3 1 Forxxr*40O v s kA BULDIN <= JAMUPL 1NF O
84 FxrF L v x o MR BepINSIS 0o > & BEA £15:00>
1 4 Lxx_xxy"xxy>>/ P32 DS < DouT Lis o>
L F 4L A sy X M BUS DINE Os<i5:00>
‘ { rorxxex xdxxx NA Serect Cacre Data Rer aF Duu)g

* UCON XFeR = Beain) A pATTB ACOND

4.5.7 Other BUS Control UCON

The remaining UCON data bits are used to clear various error and
service flags. These functions are included in Table 4- , which
summarizes the UCON interface to the Bus Control section.

4.6 The WCS Section

The Writable Control Store section of the IMP can function
either as a 1K-by-48 control store or as a high-~speed
3K-by-16 local store. Most users will configure the store
to be part control store and part local store.

The store is loaded 16 bits at a time from DOUT, under control
of the UCON interface. When the memory is read, data goes

out on BUSU<47:00> if the WCS is in control store (CS) mode,
or on BUSDIN<15:00> if in local store (LS) mode.

When in LS mode, the WCS is cycling as a data store and so is
not available as a source of control signals for BUSU. An
auxiliary sourceé for BUS U signals is proviced by the TMS
(Transfer Micro Store) ROM. The TMS ROM is a 512-by-16

store which controls datapath activity while the WCS is

acting as a data store.

This section describes the organization of the WCS option;
the user interface is described in later chapters. The distinction
between organization and use can be shown by a discussion of

the loading mechanism.

DOUT provides the path for passing a 16-bit word and its
associated 12-bit address to the WCS section. The UCON inter-
face is ysed to select and then set-up the WCS to receive

the address and data. Once the WCS section has been set up,
its local control takes over. This local control, implemented
by CROM (Control ROM) , effects such actions as clocking the
Address Register, selecting the Addmess Mux, and generating a
write pulse for the array.

4-4¢

Do

X o
44— TPF
LAT ¢l PS
="
/ BUS L MUN
; UPPcATCH ug
CROMCYIO) .
A%
™ S
RoM CRON WIS s {T8
(12 X WD) PERAY —rt
. (4 ¢ 5¢)
EuTRY PT ADRS Ree L= toons 7
kou(wuy_:} o 2 | Io
4’5! . .
 /ADR MUX \" P LLLSE
_’ era
»M«Q.l Qloy
ADRREG
—K
Da<un:aed 1’2. |
A
v
PAR ERR fraig> E ‘
a1ty
CENEIDE
o
SrAT':U.S Moy PR
L g b JJ:"’ *
ASRREC i “’_——\ Bus O Mux /
4 | SCOmmramme-
_ BUsS OIN |
Faure 4-1d WL Blocl Piagrom -1

However, you will not interface to the WCS section at this
level. Using a macro-level program, you will move data into
the WCSDR and WCSAR registers in the PDP-11 I/O page. An
instruction which addresses these register, e.q.,

MOV #501, WCSAR, is executed by the base machine using the
primitives described in the precediné paragraph.

A block diagram of the WCS section is shown in Figure 4-14,

4.§.1 Addressing Structure of the Array

The WCS array s divided into three secfions, as shown in
Figure 4-15. Each section is 1024 words long and 16 bits wide.
The array is addressed by the output of the ADRMUX,

U Q

[x Vo 1K ¥l | {K =1k

A
Figure 4-15

When the WCS is in local store mode, each section, or colunmn,
is linearly addressed 0-1023. APRRE& <11:10> provides the column
address, and ADRMUX<9:0>provides the row address. 506.

r\iuw* 4- b,

When the WCS is in control store mode, ADRAEa<11:10> S always

equal to ll;, The entire row (48 bits) indicated by ADRMUX<9:0>
is put on BUS U.

A feasible user configuration of the WCS array is shown in

Figure 4-17. There are three section of local store, A, B,

CS meoe

NAS moéé [léo(.

Figure 4-16

m 10 9 J2)
14 NUA <a:o
o ? ' 4
oW
L& ~——
Lo Frowm ADR MUY
PORRES

and C, each linearly addressed fromBil to mﬂg. Page b of

the .nﬁpo control store address space is allocated for

WCS control store.

NUA <3:0>

Sechion C Sectow & Section A 0
ADR<moy 240 | ADR €16 ® @\ | ADRLI0>= 0O
LS L_E, L\S
Sil
5l
CS
NUA<ad>=b
Q..

Figure 4-17

4-51

Typical User Configuration

Mm“ux<¢0>

4.0.2 Transfer of Control

PO E€RTRY fOINT AODRESS RGB\sTC L

The TMS Pointer register, éﬁSPTR, addresses both the TMS ROM
and the CROM. The TMS Pointer is loaded with UCON<14:06>,
which defines the starting address of a TMS routine. In
subsequent cycles, TMSPTR is incremented if CROM<2> is a 1.

- The TMS pointer is loaded when WCS SEL , u<45>, BGB, BUSBOX,
DATTB, and CONO are all equal to 1. ‘The TMSPTR value is
specified by the bits loaded into the UCON register. For
example, the following field value specifications would
load the TMSPTR with 0{0:

TMSPTR « 0i0 := WCS/l, BGB/l1, BUSBOX/1l, DATTB/l1, CONO/1,
UCONH/0, UCONM/0, UCON10/0, UCONL/20

4.6.3 DB Register

The DB register stores the contents of DOUT so that 16 bits

can be written into the WCS Array during each microcycle. It

is clocked at P3. When the WCS is set up, the first word clocked
into DB is the starting array address. Subsequently, the

DB register gets the data to be written, while the Array

Address register selects the array addresses. The data in DB

is written into the array only if CROM<3> is asserted.

4.£.4 Array Address Register

The Array Address register (ADRREG) is initially loaded with
DB<11:00> , defining the starting address in the array. In
subsequent cycles, this register acts as a counter, incrementing
if CROM<1l> is a 1.

4. 6.5 Array Address Mux

The Array Address Multiplexer (ADRMUX) selects between the
output of the ADRREG and the NUA signals from the Processor
Control section. When the WCS is being loaded, or used as a
local store, this mﬁltipléxer selects the ADRREG output to
address the WCS array. When the WCS is in control store
mode, the array is addressed by the NUA in the same way as
the base machine control store is.

4..6 The WCS Array

The WCS Array is a lK-by-51 RAM. Each 16-bit section has

a parity bit associated with it. Even parity is generated.
Only 16 bits of the array can be written at one time. When
functioning as a control store, 48 bits are read onto

BUS U<47:00>.

4.60.7 BUS U MUX

The BUS U multiplexer selects between the two sources of
control located in the WCS section: the TMS ROM and the
_WCS RAM. It is a tri-state mux, and is enabled by NUA<10>
andHEUA<11>l which indicate f:he top 1K of address space is
being accessed. Whafien is cowrrallsd b:) CROM <22
Lcﬁuzﬁyni*ud—,

4.p.8 BUS DIN MUX

Wheh l6-bit words are read from the WCS array (LS mode), the
BUS DIN multiplexer selects which 16 bits of the 48 are

put on BUS DIN. In this situation, the multiplexer selection
is controlled by ADRREG<11:10>. If a status cycle is underway,
this multiplexer puts status information on BUS DIN.

4.6.9 Control Rom

BIT _____FUNCTION
0 Address Register load enable
1 Address Register Count Enable
2 Array Address Mux select,
Entry Point count enable
3 Write Pulse enable

4.7 USING WCS AS LOCAL STORE

While the WCS array is being used as a local store, the TMS
Rom provides the control signals for the datapath. Routines
in the TMS ROM provide control for loading WCS locations
from any of the scratchpad register or for loading a set of
scratchpad registers from locations in the WCS array.

To use this facility, you issue a Local Store Function Code (LSFN)
over the UCON interface, passing a local store address in

the D register as a parameter.

Each LSFN maps directly to a starting address of a TMS routine,

VDO ANE N

MICRO

G G G Bw P G G B e P P P = P B P Gm G Gw Gw B Guw

G G G G B P G G G B B BB O G B G G P G B G G B B G Qe G Gun Gun

VOBAe] 13151138 18eMAR=TY PAGE 2

TM8 ROM MICROCOOE FOR {1/60

THIS MICROCODE GOES INTO THE TMS ROM (TRANSFER MICROSTORE
ROM), THI8 ROM RESIOES ON THE WCS BOARD AND ALLOWS A PROGRA¥
RUNNING IN THE WRITEABLE CONTROL STORE OF THE 11/69

TO USE PART OF THIS SAME CONTROL STORE AS A BLOCK DATA STORE,
(LOCAL STORE) THIS ABILITY IS REALIZED BY ROUTINES WHICH
PERFORM BLOCK LOADS AND STORES OF VARIOUS PARTS OF THE INTERNA
STATE OF THME 11/67, THE FOLLOWING PORTIONS OF THE MACWINE
ARE LOADED OR STOREDS

(1) GENERAL REGISTERS

(2) WARM FLOATING POINT REGISTERS

(3) C SCRATCHPAD EXCEPY BASE CONSTANTS
(4) USER SCRATCK REGISTERS

(S) ENTIRE A SCRATCHPAD

(6) ENTIRE B SCRATCHPAD

(7) ENTIRE C SCRATCHPAD

THIS MICROCOOE ALSO WANDLES ALL WCS SUPPORT NEEDED BY THE
BASE MACHINE TO PERFORM ITS PUNCTIONS, TYHE FOLLOWING I8
A LIST OF THESE ENTRY POINTS AND THEIR FUNCTIONSI

TMS ADORESS FUNCTION

0001 USED BY WCSINIT FLOW, USED TO SET ADDREZSS
REGISTER TO ZERO AND ALSO WRITES ZERO IN
THE WORD,

IF USED BY WCS CODE THEN LOADS ADDRESS REGISTE
WRITES ADDRESS VALUE INTO THAT ADDRESS AND INC
THE ADDRESS REGISTER By ONE,

anad USED BY WCSINIT FLOW, WRITES A COUNT INTO WC
THEN INCREMENTS THE ADDRESS REGISTER,

faie LOADS WCS ADDRESS REGISTER WITH VALUE AND THEN
DATA INTO THIS ADDRESS,

na2e LOADS WCS ADDRESS REGISTER WITH VALUE,
’ (RASE MACHINE ALSO SAVES THIS SAME VALUE IN TH
SCRATCHPAD 21), THIS ROUTINE ALSO PUMPS ONTO
THE DATA FROM THIS LOCATION,) _

fa3a USED AY FIRST WORD IN ROUTINE THAT READS WCS 8
NOTE THAT THE WCS STATUS I8 NOW READ BY THE UC
INTERFACE, THIS WORD CAN PROBABLY BE REMOVED
BASE MACHINE AND THIS ROUTINE FROM THME TMS ROM
LY NOT REFERENCED BY THE BASE MACHINE,

THE WCS USER CAN ALSO USE THESE ROUTINES IN THE TMS ROM,

4-5%5

B B G B B G B G Gm Pm Pn B Sn S B G P P G P P Bn G P G P P B G B S S G Gun Pur S G Goe

.T0C TM8 MICROCOOE
USING ROUTINES IN THE TMS ROM,

THE ROUTINES IN THE TMS ROM ARE DESIGNED TO SAVE OIFFERENT
SETS OF THE 11/60 MACHINE STATE INYO WCS ACTING AS A LOCAL STORE
AND ALSO TO RESTORE THESE SETS FROM DATA IN THE LOCAL STORE,

THESE ROUTINES ARE DESIGNED FOR OPTIMUM DATA FLOW TO FACILITATE
IMPLEMENTATION OF FUNCTIONS SUCH AS CONTEXT SWITCHING WHICH MUST
HAPPEN A8 FAST AS POSSIBLE, BECAUSE QF THIS OTHER USES OF THESE
ROUTINES AND SURSETS OF THESE ROUTINES MAY NOY BE AS EASY TO USE AS
WOULD BE LIKED,

ALL ROUTINES ARF ENTERED WITH THE WCS LOCAL STORE MINUS ONE (LSADRe{)
CLOCKED INTO P, RETURN TO THE WCS ROUTINE WILL OCCUR AFTER THE
FUNCTION HAS BEEN COMPLETED, THESE RNUTINES ARE IMPLEMENTED .

BY SETTING UP A PIPELINE IN THE DATAPATH WHERE TWN DIFFERENT

PARTS OF THE OATAPATH MOVE DURING THE SAME MICROCYCLE, THE PIPELINE
CONTINUES UNTIL ALL DATA IN THIS SET WAS BEEN MOVED,

USING SUBSETS OF THESE ROUTINES TO MOVE ONLY A FEW OF THE DATA
ITEMS AND NOT THE WHOLE SET IS NOT EASY, AS AN EXAMPLE THE
FOLLOWING IS THE PROCEDURE TO SAVE REGISTERS R3IeRO

(1) USE A ROUTINE TO LOAD THE ADORESS=2 INTO THME ADDRESS REGISTER,
2) CLOCK R3 INTO THE O REGISTER,
(3 SET THE TMSPTR WITH ADDRESS THAT WRITES R4 INTO THE

ARRAY AND MOVES R3 THROUGH THE DATAPATHM AND CLOCKS IT
INTO O, ONLY THE CROM BITS ON THIS INSTRUCTION WILL BE
EXECUTED, THE TMS§ RITS WILL NOT BE ACCESSED, THIS WILL
WRITE R3 INTO THE LOCAL STORE ADORESS=1,

(4q4) THE NEXT INSTRUCTION WILL WRITE R3 INTO THE ADDRESS AND
MOVE R2 INTO O, THE REST OF THE ROUTINE WILL WR1TE
R2=RA@ INTO THE ARRAY AND RETURN CONTROL TO THE WCS
ROUYINE AT THME THIRD INSTRUCTION AFTER THE ONE THAT
SET THE TMSPTR VALUE,

THIS EXAMPLE SHOWS THAT A SUBSEY OF THE DATA ITEMS
CANNOT BE STORED IN THE SAME MANNER AS THE ENTIRE SET SINCE

To illustrate how to invoke a TMS routine, the following
example loads the nine 16-bit words in LS[jJ, ... Ls[3+8]
into ASPLO[0:5, 16,6:7) and BSPLOJ0:5,16,6:7].

SETUP1: oses. 3/seruee) U 0/\) st~
TMS PTRé LOADSES, ¢ ’r' o mamq elks
SETUP2: e

1)4r;£poﬁu4s.1g,q7ﬁex7'

4.9 UCON CONVETIONS

I. Don't do a UCON Select in the cycle following a BUT(CLEAR FLAGS).

II. Keep EMIT on BUSDIN most or all of the time -its a real

time-sgaver.

III. Watch out for accidentally enabling multiple UCONs by
trying to perform an ALU-related function in the same word
as a UCON setup. Dedicate a microword to enabling and loading

the UCON register.

" | ’ | 6 i 5] 4 | 3 1.1 - ld¥ 21 ! :
TS TR 2 i
B e T S T)
ShET AT
ETETE IR e !

]
BUS '4(4m:90) BUZ DINCIGIET) :
]
D ‘1
) PaRZ D PATERP
H Nuh 18 ‘ Iy wion(Eas rAn)
J /—'O:wnu i UCON WiS(s i
PI—w] LPT LATCH BuE U Mux B S PARITY BUS DIN MUK tale—smrengra
A A A o 8 CHECKER oo A >
3
. " [t
T 1S MAINT Lo Ju1_‘u !
CROM(3:D) | e
c J"“ri@ | .
CROM | PoM RAM AREAY SEITE
512¢ 4 |5 06 -) 1K x 51 B s
ADRMUCEL A ADSHUACEL B PABEEN WRITE BN ST | oFae To
)
H l - l ’ il
PI—mENTRY POINT tAR-AY ALSS . PARITY WRITE Puse |
. Un o i . ALrarSEL B i < s FI% .
AORSTUN SELL - crom 2 —ef Abrz2s ki | Lo o 5T GERERATLR GENERATOR | TATUS FE 5
T) f I : T .
1 |
P3 CROMZ - UCON €I85 XCE NUALED : W:ITE ATPFES(E OPLF3 233
BEEGGHIC WRCLY !
ADEFEGG I PARITY :E
/N -14 [l
E% Voriiy, : LN P3 ——=1 ADLRTSS 223 !
v st b - vC
s 2 |ADRS M SEL CROMUI:0>—»] RECISTER wl
ENTA ¢ FONT G ; =
1 JAURS Ri 6 UG K 2 L o i
® JADKSREG LOAL EN B
|
!
v
PI—et DB KE3 {
_T __
DOUT U150
F'j wRE 4 N 53 .
AEV1S ONY - N
om] cmanctnd Tarv

! ' nne HEL] SVt NoMpER at

1 Co~To=ll oale e ol oo

: Yo | X o ERTR I R A O O A Y
=T s] 7])] 5 t 4 | 3 2 1 '

CHAPTER 5 {:)}:e;n&}:-}-

MICROPROGRAM INTERFACES

The preceding chapters have focu ssed on the aspects of the

11/60's hardware most visible to the user microprgrammer.

However, the 11/60's architecture is not completely defined

by specifying tis hardware organization because it is a

highly microprogrammed machine.

The microcode architecture is important to the WCS user for

the following reasons:

1.

It determines the environment that exists
upon entry to the WCS

It expects certain state conditions to exist
after the completion of WCS control

The user can cause base machine code to ke invoked
without intentionally exiting from the WCS

The base machine code has capabilities not
available to WCS code

The base machine code provides a large set of
examples, both of hardware usage and of
microprogramming the 11/60.

This discussion is also motivated by the fact that no

description of a microprogrammedmachine is complete without

some discussion of the microcode.

5.1 FLOW OF THE BASE MACHINE CODE

The overall structure of the base machine code is shown in
Figure 5-1. The instruction fetch uses two microinstructions,
FETOl and FETQ2. FETOl is the primary entry point to which
control must be returned. FET03 issues a BUT(INSTRI1Y, a

brach which performs initial instruction decodé to approximately
75 targets. Any necessary source and destination calculations_
are Ehen made, and the instruction is executed. A test foi
service is made, using BUT(SERVICE). If no service condition

exists, control is returned to the fetch sequence.

5.1.1 Qverlapped Fetch

In certain circumstances, the PDP-11/60 performs an overlapped
macro-level fetch. Register-to register operétions, for
example, only require one microcycle to complete, sd the
overhaed of FETOl and FETO2 are eliminated by fetching the
next instruction while the register-to-register instrﬁction is
being executed. Figure 5-2 indicates the logical flow of the
overlapped and non-overlapped fetch. Hard-wired logic deﬁects
those instructions which cannot be overlapped, and inhibits

the overlapped fetch in FETO3.

5-2

: . -

7_ { 6 i s Y 1 T 3 e e LT T

N, |
D J o D
SER B -FOvF SEN @ FOuR S TStna Fove -56% & -Frove
r ; rirgr [Baerc, e Pc el
1 B OATL § CANIR { NOT SNTERANAL
SERP7 L SERviCE Sén g l PC - PC - CECOOF,
PR e rc,
ERROE [— Tn
b wCn-FATAL [F s0v] oAt ¢ vOT INTE®I.AL rsrer] IR~ DA“
EPRIPS C’F scusd ¢ zingk, MD ¢— DA -
C ranitn.rry oe—Pc e, f.“:”:‘_..‘..
f o iy
Frn fet b i
€. USER, i-LVEL b /
3Cr EDULED
REQUEST
£ DEFALLY
] — — — ——— — —— — W— G— o — — — — —— —— — — — — r— — —— - —— v — —— S— — T — —
c! r [rasccA) L tnstm 1 aranch —} ¢
! Sme omr o a-n R swncH Jume racy cse nr.er OTNER
) ; »sag i
wnrar | amee urr | ©4T SOLACE R EIECLTES BrAnCH —ovE - FLOATING werarnang | |
- i | OPERAND (0om e w3 (orxx) EcuTEs POINT TnsTRUCTIONS |
WUOw Bose \ i Fom DOPs ARD T B) FaeCcuTe (sme0) EvTRY - FuaTHER |
& POWER LP oECooE
N 8 C. INTERNAL
ALORCSS | [-
\ & omrs Efsect -
i JAMERC | | -
€. pEFALLY i GET DESTINATICN » ExECUTES Jum e RESTORE \
ﬂ 1 OPERAND FoR SO witM exgcores FLOAT. %6 POINT -
s0r'S awp Dv g Om=9~? CoONS PaTS TO]
1 DOP’s wrTH csr
[} SM=e : i
: FURTNER (ETATLS ON FOLLOWING PAGE § |
' L fraus 4]
B
— ’ pe
‘ , FIGURE 5-1 E
| Base MACHINE FLOW
® ’
- A vl
Cl‘l Coe "8 WG lm
H R I 7 T7] 13
H .
H D

,;'im'a/ Y

BA =P
D« Pc+2
PCc=—D
INITIATE:
DATICLNIR

Firée

MD=-04TA
IRe-DATA

FETCH

OVERLAP

BR==PC

D e—pc+2
TNLTIATE:

DATI

Alow
PRE. F?ln'#

!

YES)

INHIBIT:
OATT
DEFEAT:

e

1

PC=aD
ALTER.: DATT TO
DRTICLATR

.]_'i_______

MODE 6 +7 Flow

/WY P LV A

-
=0

(ONVE WORD)
EXECUTE
MD = 0BTA
TR~ DATA

EXECUTE

EXECUTE

!

|

5-4

" NS ZHL/6

- InSTRUCTION. SeciUeNCE %

MoV R¢) R4 vti) the Rﬂgiﬂ’er-'ﬁ*qb&r Jutucthon

ANy A B w2, a nwn &q\ﬂu— ch sbv Tnstruchiown
1 : hloch ce
FeTEL |FeT@®2 | FeTE3 | MOWL y -
gl
' FeTOle | FeToze | FETB 3 |exccute
m/croc:/c(n. = / R 3 4 1 (7

" oeries T]

Overlsp of idlar- to —Rn istir
wrth non Rq:s’ﬁriao Poja ster Insﬁu chon

g-g

*3

;m:cmc‘:jc/a, =

Tusmwucthon Sequence H

MoV Rp, RI 1) hest reqistie - reqslir instuchiow
MoV Ri‘R?. “2, Secono reqislv ~reqisler instructiown |
Mov R2,R3 "SJ thiro rg.‘.sm—rgqlsbx insthucthon
| RA<RY| clock ce
 fetgs [FeTpe | FETEI noveps| ¥
R2ERUE ek ce
#rgue FeTdle | FeTg3|Moves] |
R3<R2| ke
| FETle | FETP2e| FETRZ| MOwL| |
\ 2 3 qQ s G £, 8 9
- -
ovnrlap g -2
F==-7- =4

Onr\ap of Re3~ Res with Inather Eeer- Eﬂ\tm

Figures 5-3 and 5-4 illustrate in more detail how the
overlapped fetch works. XFC instructions are never
overlapped, so the non-overlapped entry point to service

routines in the base machine should be used.

5.1.2 Instruction Decoding

Base machine decode is done in two steps: BUT(INSTR1l) and
BUT (INSTRS). A large amount of logic is dedicated to this
initial IR decoding. Since this special purpose logic is not
tailored for XFC decoding, you will generally need to

do multi-step microprogrammed decoding. This method.

is used by some sections of the base machine code such as the
status group of floating point instructions, which decode

IRL7:6).

The instruction in the IR is also clocked into MD at P3 of
FETO2. It can then be mowed through the ALU, masked or
shifted in the shift tree, and then placed in the SR for a

CASE branch decode.

5.1.3 Instruction Execution

Execution of a PDP-11 instruction in the base machine
is usually done in one step. For example, the execution step
(E-phase) of an ADD instruction with source mode 0 and

destination mode 2 (ADD Rn, (Rm)+) requires the following:

P2, D& R(SF) PLUS MD ! the destination calculation
D(C)d= COUT15 ! put the correct data in MD
DATO
SET CONDITION CODES ! clocking occurs in next
J/BRAOS luinstr, which will do a

! BUT(SERVICE)

Because WCS routines are likely to be doing more complicated
activities in the datapath, multi-step execution will be

more common. The MUL instruction in EIS is an example of
multi=step execution: in addition to set-up steps, sixtqen

shift-and-add steps are performed.

5.2 MICRO-~-LEVEL INTERRUPT ACTIVITIES

There are two mnethods by which the base machine handles

service and error conditions: Service and JAMUPP,
5.2.1 SERVICE

The service flow, which starts at SERCO1 or SER0OZ2, handles
non-fatal errors, interrupts, asynchronous errors, and WCS

micro-level service requests,

Bur (Fov @ SekvICcE),

J/FeETOL
Feroi rel;'as 72.1'? P (
9&¢zn
Sejp'z
[SERVICE
DISPATCH

L L Ll

TBITOL Yo S . PFG{ CIRoL: FP ™ot o7
i ScPEQ) 9 . -

T ke Y R i

) M
€ ¢ m‘}

Figure 5-5 Service Dispatch

Each event recquiring service sets a flag which is later
read by the service dispat’cl"routine. If any of the flags
are set, any of the branches which test for service (e.g.
BUT(SERVICE)) will be true. A BUT on service is done at the
end of every macro-level instruction and at the end of the

shared trap flow.

service conditions are handled in priority order. The
priority ranking is:

Yellow Zone

Cache Parity Error

Power Fail

Console Service Request

Floating Point Exception

Interrupt

Figure 5-5 shows the service flow.

5.2.2 JAMUPP

A JAM is a hardware-forced transfer of control to location 777,
which is the beginning of the JAM dispétch routine. In
general, those events which cause a JAM cannot be recovéred
from, and therefore cause thé macro instruction (including

XFC) currently being executed to be aborted.

Ho&ever, a JAM is alos caused by a reference to internal
Unibus addresses, such as the KT or Cache registers. When

an internal address is specified at the micro-Level»with a
DATI or DATO, the following microinstruction should do nothing
except clock data into the CSP. The JAM routine will destroy
datapath state, and the timing of the hardware JAM is such
that the microword following the internal address reference
will, in effect, be executed twice. Thus no data manipulations

should be attempted in that mieroinstruction.

The JAMUPP routine services the following conditions:

Power-up

Internal Address

Microbreak

WCS Parity Error

0dd Address Error

Red Zone

KT A™ort

Illegal Internal Address Reference
Cache Parity error ‘
Unibus Timeout

Unibus Memory Parity Error

5.4 INTERFACE DEFINITIONS

5.4.1 Service
At the end of every macro-level instruction, or at least every
15 microseconds, a test for service must be performed. BUT(SERVICE),

issued when the UPF field contains the address of FETO1l,

5-11

causes the service routine to be invoked if needed. Service

starts (for non-overlapped fetch) starts at SER02 (0703).

The WCS user cannot use the same method the base machiné
uses because the Page register must be clocked to jump to
page 0. Only BUT(SUBR B), BUT(SUBR A), and BUT (RETURN)

clock the page register.

To get around this, the user can finish execution with the

following branch:

LAST: BUT (SEBRVICE)
\[7 service not service
PAGE€—0 PAGE €&~ 0
BUT (SUBR B) ‘ BUT (SUBR B)

J/SER02 J/FETO1

To eliminate this overhead, a location in the base machine
is provided to do the service test on a FETOl base. It is
called BRAO5, at location 0003. Finish with:

- LAST:
PAGE & O
BUT (SUBR B)
J/3RA05

{

5.4.2 Generating a Trap

The 11/60 trap sequence begins at TRPOO. It expects the

trap vector to be in the MD when invoked.

For example:

TRPA:
BUT (CLEAR_FLAGS) | Select EMIT
TRPB:
EMIT/244, !Generate trap vector
P3, MD & EMIT
PAGE 4=) !
J/TRAPOO ! TRAPOO is at 0271

5-13

CHAPTER 6

WCS USAGE GUIDELINES D RAFI"

This chapter is intended to summarize the programming
conventions which will enable you vo make effective use of the
Writable Control Store option, without damaging other

sections of the PDP-11/60.

6.1 WCS UNIBUS REGISTERS

You will use two Unibus locations to load the WCS array: the
WCS Address Register, WCSAR, and the WCS Data Register, WCSDR.

WCSAR has Unibus address 777542. Its format is shown in
Figure 6-1. ‘

15 12 11 10 9 g

7' al |
o

—Row Address
t———- ---Column Address

L_,_““_—~——————Masked out

Figure 6-1 WESAR Format

WCSDR has Unibus address 777544. A 16-bit word moved to this
address will be loaded into the WCS array at the location
specified by WCSAR. A 16-bit word read from WCSDR will come
from the array location specified by the current contents of
the WCS Address register.

&=

e

Figure 6-2 shows a feasible user configuration of the WCS
address space. The three sections of page'7 are set aside
for local store use, while page 6 is used for control store.
The following program illustrates how one can use the Unibus
registers to load the microwords for that partitioning.

6000
Control
SYor=
7000
Lo Ch L
TR [

Figure 6-2 Possible User Configuration

This example assumes that the load image exists in main
memory as shown in Figure 6-3. The program loads the 1536
16-bit words (512 microwords) beginning at location LOADIM
in main memory into the control store, beginning at location
g (microaddress 6000,) .

931;1 4§mb> i
_ 23 2.

= o - = o e o

Figure 6-3 Load Image

(p - Z,.

FITLE WCSLD

"ILENAME LOAD.MAC

$LOADIM IS STARTING ADDRESS OF ARRAY

sLOAD FAGE & ONLY
iMASK FOR INVERTING UPF

#START WITH ROW Or COLUMN O

#MOVE LOW-ORDER WORD SO CAN XOR
INVERTS UPF FIELD BITS

"$BACK TO COLUMN Oy ROW PLUS 1

=SECT
.GLOBL LOADINs WCSLD
JIRPC X»012345
R’X=%’X e
ENDM |
SP=%é
PC=%7 BT
WCSADR=177542
WCSDR=177544 ,
CSLD: MOV $LOADIM,RO
MOV #512.yR1
MOV $000777 yR2
CLR = @8UCSADR T
0OF: MOV (ROY+yR3
XOR R2sR3 B} a
MOV R3sWCSDR $SEND TO ARRAY
ADD #2000/WCSADR __ SCOLUMN 1 NOW
MOV (RO)+yWCSDR
ADD #2000 WCSADR $COLUMN 2 NOW
MOV (ROY+sWCSDR
ADD #4001, WCSADR
SOE R1,1.00P
EXIT - o
"~ +END START

The WCS status register has Unibus Address 77754g, Its format

is shown in Figure 6-4. It is provided for maintenance purposes.

Parity Error
WCS ID Code

15 14 13 12 11 10 9

|

7 6 S

4
v

Not Used

T T

Maint. Enable — - -

Not Used - -
Par. Gen -. .

N

|

Write Enable —— -~ o o s
Write Wrong Parity

Figure 6-4 WCS Status Register

6-5

| Tl

*

'
i

L

!

|
]
'
:
v
)

|

L

0
1
’{ {Lot Used
... Par 1
- Par 2

L—~——————Par 3

Parity Disable

6.2 WCS _Entry Points

There are many ways that control of the machine is passed into
“WCS. The following is a list of the entry points into the WCS

address space and what the default instructions for each entry

point are:

ENTRY POINT

6000

6001

6002

6003

DESCRIPTION

WCS Microbreak Entry

A microbreak occurs when the value loaded

in the register is encountered and the
microbreak enable bit is set. (FLAG<08>).
Default response is to return to the console
flow.

XFC 076@gXX Dispatch

This is a reserved insgtruction for DEC's
future use. Default response is a reserved
instruction trap. (trap vector 10)

XFC 0767XX Dispatch
User XFC Dispatch

This is the entry point for the user's
extended function codes. The user XFC
(0767NX) is now further decoded according
to bits 3-5 of the instruction to enter to
one of the eight entries of the XFC dispatch
table located at 6030.

Regserved Instruction

When the 11/60 executes one of the reserved
instructions such as FIS or FASTx1 then
control is passed here. Default response
is a reserved instruction trap. (trap
vector 10)

4

ENTRY POINT DESCRIPTION

6004 ODD PC Dispatch

Whenever the base machine encounters a

New PC value of an interrupt or trap vector
which is odd then control is passed to this
point. Default response is to return into

the trap routine as if WCS was not present.
(TRPO7)

6005 Default Service Condition Two

The Service Condition is checked once
between each macro instruction. If the
WCS Service bit of the flag register is
one (FLAG<07>) then control ié passed to
this point. Default response is to
FETO1l.

6006 Default Jam Condition

When the XCS Extra Jam Pin is asserted low
and the internal suppressed clocks are
suppressed then control immediately passes to
this point. Default response is to go to the
the console flow.

6007 ' Default Service Condition One

Service passes control to this point if the
pin Extra Service is asserted. Default response
is to return to execute another instruction.

6010 Diagnostic Entry

When diagnose on the console is pressed
control passes to here. Default response
is to pass control to the End of Service
Routine.

b-5

ENTRY POINT DESCRIPTION

ggié - o XFC 0761XX through 0765XX Dispatch

These instructions are reserved for DEC's
future use. Default response is a reserved
instrugtion trap. (trap vector 10)

Further explanation of the entry points can be found in the listing
of resident section of WCS found in Appendix D.

rd

6.3 TMS ROM ROUTINES FOR THE 11/60 WCS

This ROM resides on the WCS board and allows a program running
in the writeable control store of the 11/60 to use part of this
same control store as a block data store (local store), This
ability is realized by routines which perform block loads and
stores of various parts of the internal state of the 11/60. The
following portions of the machine are loaded or stored:

General Registers

-Warm Floating Point Registers

C Scratchpad except Base Constants
User Scratch Registers

Entire A Scratchpad

Entire B Scratchpad

Entire C Scratchpad

There are also routines to read and write one data item (with
and without loading the address register), read and write two
data items (with and without loading the address register),
read and write one data item indirectly.

Every TMS routine is invoked by a UCON function which loads the
Entry Point Register with the starting address of the TMS routine
wanted. All of the block move routines are entered with the WCS
local store address minus one (LSADR-1) clocked into D. Two null
cycles must be placed after the instruction that loads the Entry
Point Register. Return to the WCS routine will occur after the
function has been completed. The following example set of code
saves the general registers into local store address specified

in WCSB [0]-B: ‘ '

6~ 7

Exis

Pa-T, DB, WCsSBLel-8B, ! D & local atore aldress,
NEXKT, /R xa
Exa:

-

TMSPTR . (STOREGRS),

Inveke GR stera reutira.
N&XT, I/5x3 | -

ExS: .

NRxT, 3/Bx¢] Finet Null Werd ,
Exy: | ' -

NExT, T/tns | Second N2 Wed |

The following routines exist in the TMS ROM:

ROUTINE NAME DESCRIPTION
READ READ DATA

READANDINCR READ DATA TO MD, INCREMENT ADDR
LOADANDREAD LOAD ADDRESS AND THEN READ DATA
LOADREADINC LOAD ADDRESS AND THEN READ DATA

WRITE WRITE DATA

WRITEANDINC WRITE DATA AND THEN INCREMENT ADDRESS
LOADANDWRITE LOAD ADDRESS AND THEN WRITE DATA
LOADWRITEINC LOAD ADDRESS, WRITE DATA, INCREMENT ADDRESS
INCANDREAD - INCREMENT ADDRESS AND THEN READ DATA
LOADADDRESS LOAD ADDRESS

LOADGRS LOAD FR'S FROM LOCAL STORE

STOREGRS SAVE GR'S INTO LOCAL STORE

LOADFP ‘ LOAD FP REGISTERS FROM LOCAL STORE

STOREFP SAVE FP REGISTERS INTO LOCAL STORE

LOADCSP LOAD CSP [@@-13] INTO LOCAL STORE

STORECSP SAVE CSP [@@-13] INTO LOCAL STORE
LOADWCSAB LOAD WCS WORK REGISTERS FROM LOCAL STORE
STOREWCSAB SAVE WCS WORK REGISTERS INTO LOCAL STORE
SETLOAD S