
KE11-E and KE11-F
instruction set
options manual

i

DEC-11-HKEFA-A-D

digital equipment corporation • maynard, massachusetts

Copyright© 1973 by Digital Equipment Corporation

The material in this manual is for infonnational
purposes and is subject to change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL
UNIBUS

PDP

FOCAL

COMPUTER LAB

First Edition January 1973

2nd Printing May 1973

CHAPTER 1

l.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3

CHAPTER 2

2.1
2.1.l
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.2.4

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.l.5.1
3.1.5.2
3.1.5.3
3.1.5.4
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4

CONTENTS

GENERAL DESCRIPTION

KLl. 1-E Extended Instruction Set
Purpose
Configuration
Specifications

KEl 1-F Floating Instruction Set
Purpose
Configuration
Specifications

PROGRAMMING

KEl 1-E Extended Instruction Set
Operation
Formats
Instructions

KEl 1-F Floating Instruction Set
Operation
Formats
Instructions
Programming Example

THEORY OF OPERATION

KE 11-E Extended Instruction Set
Binary 2's Complement Notation
Multiplication
Division
Basic Shift Opera ti on
Algorithms For KEl 1-E Operations

Multiplication
Division
Arithmetic Shift
Arithmetic Shift Combined

KEl 1-F Floating Instruction Set
Polish Mode
Floating-Point Arithmetic

Floating-Point Addition and Subtraction
Floating-Point Multiplication and Division

Algorithms for KEl 1-F Operations
Floating-Add and Floating-Subtract
Floating-Multiply
Floating-Divide
Normalize, Round and Store

iii

Page

1-1
1-1
l-1
1-l
1-2
1-2
1-2
1-3

2-1
2-1
2-1
2-2
2-5
2-5
2-5
2-6

2-8

3-1
3-1
3-2
3-3
3-5
3-5
3-()

3-X
3-10
3-1 1
3-12
3-12
3-13
3-13
3-14
3-15
3-16
3-IX
3-18
3-20

CHAPTER4

4.1
4.2
4.3
4.4
4.5
4.6
4.6.l
4.6.2
4.7
4.7.1
4.7.2
4.7.3
4.7.3.1
4.7.3.2
4.7.3.3
4.7.3.4
4.7.4
4.7.4.l
4.7.4.2
4.7.4.3
4.7.4.4
4.7.4.5
4.8
4.8.l
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9
4.8.10
4.8.11

CHAPTERS

5.1
5.2
5.2.l
5.2.2

CONTENTS (Cont)

LOGIC DESCRIPTION

Scope
Functional Block Diagram Discussion
Detailed Block Diagram Discussion
Interface
ROM Programming Philosophy
Control ROM

KDl 1-A ROM Word
KEl 1-E/F ROM Word

Flow Diagram Discussion
Symbology of the Flows
KDI 1-A Flow Discussion
KEl 1-E Flow Diagram Discussion

Destination Calculation
Arithmetic Shift and Artihmetic Shift Combined
Multiply
Divide

KEl 1-F Flow Diagram Discussion
FIS Entry
FADD and FSUB
FMUL
FDIV
Normalize, Round and Store

Logic Descriptions
Basic CPU Timing
BR and DR Registers (Dwg KE-2)
RDMUX (Dwg KE-3)
EUBC Control (Dwg KE4)
Control (Dwg KE-5)
EPS and Count (Dwg KE-6)
KE ROM Word (Dwg KE-7)
KD ROM Word (Dwgs KE-8 and KE-9)
HSR and MSR (Dwg KF-2)
FRDMUX(15:00) (Owg KF-3)
ROM and Control (Dwg KF-4)

INSTALLATION AND MAINTENANCE REFERENCE INFORMATION

Installation
Maintenance

Diagnostic Programs
Troubleshooting Test Procedures

APPENDIX A GLOSSARY OF TERMS

Page

4-1
4-1
4A
4-6

. 4-10

. 4-11

. 4-11

. 4-11

. 4-18

. 4-18

. 4-24

. 4-26

. 4-27

. 4-27

. 4-30

. 4-33

. 4-36

. 4-36

. 4-38

. 4-42

. 4-43

. 4-45

. 4-48

. 4-48

. 4-49

. 4-50

. 4-51

. 4-52

. 4-54

. 4-55

. 4-56

. 4-57

. 4-58

. 4-58

5-1
5-1
5-2
5-2

A.I General . A-1

iv

Figure No.

2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
5-1

Table No.

1-1
1-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

ILLUSTRATIONS

Title

EIS Number Formats
EIS Instruction Format
ASH Opera ti on . . .
ASHC Operation ...
FIS Number Format .
FIS Instruction Format
KEl 1-E MUL Algorithm
KE 11-E DIV Algorithm
KEl 1-E ASH Algorithm
KEl 1-E ASHC Algorithm
Floating-Point Representation
Floating Entry Algorithm
KEl 1-F FADD and FSUB Algorithm
KEl 1-F FMUL Algorithm
KEl 1-F FDIV Algorithm
KEl 1-F Normalize, Round & Store Algorithm
EIS/FIS Functional Block Diagram
KEl 1-E/F/KDl 1-A Interfacing Signals
KDl 1-A ROM Format
KEl 1-E/F ROM Format
KDl 1-A ROM Words Generated by the Options (Sample)
Comparable EIS/FIS ROM Words (Sample)
Flow Diagram Conventions
ASH and ASHC Locations of Operands and Answers
MUL Flow, Block Diagram
DIV Flow Block Diagram
Floating-Point Arguments Order on the Stack
FMUL Flow, Block Diagram
FDIV Flow Block Diagram
Basic KDl 1-A Timing
KEl 1-E/F Maintenance Module Overlay

TABLES

Title

KEl 1-E (EIS) Specifications
KEl 1-F (FIS) Specifications
KEl 1-E/F/KDl 1-A Interface
KDl 1-A ROM Word
KEl 1-E/F ROM Word
KE-2 Output Signals
KE-3 Output Signals
KE-4 Output Signals
KE-5 Output Signals
KE-6 Output Signals

v

Page

2-2
2-3
2-4
2-5
2-6
2-6
3-6
3-8

3-11
3-12

. 3-14
3-15
3-17
3-19
3-19
3-19

4-2
4-7

4-12
4-15

. 4-16

. 4-16

. 4-19

. 4-28

. 4-30

. 4-33

. 4-37

. 4-42

. 4-44
4-49

. 5-4

Page

1-1
1-3
4-8

. 4-13

. 4-17

. 4-49

. 4-50

. 4-51

. 4-52

. 4-54

TABLES (Cont)

Table No. Title Page

4-9 KE-7 Output Signals 4-55
4-10 KE-8 and KE-9 Output Signals . 4-56
4-11 KF-2 Output Signals . 4-57
4-12 KF-3 Output Signals 4-58
4-13 KF-4 Output Signals 4-58
5-1 KEl 1-E and KEl 1-F Diagnostic Programs 5-2
5-2 KEl 1-E/F Maintenance Module Indicators 5-3
A-1 Glossary of Terms A-1

vi

INTRODUCTION

This manual describes the KEl 1-E Extended Instruction Set (EIS) and KEl 1-F Floating Instruction Set (FIS)
Options to the KDl 1-A Programmed Data Processor for the PDP-11/40 System. These two options are described in
one manual because of their interdependency, in that KEl 1-F cannot be installed without the KEl 1-E being first
installed. The purpose of this manual is to:

1. Provide an overall understanding of the functions of these options in a PDP-11/40 System.

2. Explain how the KEl 1-E and KEl 1-F can be used in software operating systems.

3. Describe the options in sufficient detail to enable maintenance personnel to perform on-site
troubleshooting and repair.

In this manual each chapter is split in two with the first half of the chapter presenting information concerning the
KEl 1-E Option and the second half being devoted to comparable information for the KEl 1-F Option. This
organization is intended to facilitate greater ease in use by those customers who utilize only the EIS hardware. Note
that due to the dependency of FIS hardware on the inclusion of EIS hardware, this split is not used in Chapter 4.

Chapter 1 provides an introduction to the options and lists brief specifications. Chapter 2 contains programming
information, listing instructions and illustrating their formats. Chapter 3 gives a discussion of the theoretical
principles implemented by these options. Chapter 4 comprises a block diagram discussion, a flow diagram discussion,
and detailed descriptions of the logic functions. Content and organization of this chapter are based on the block
schematics contained in a separate Engineering Drawings volume. Chapter 5 references the installation and
maintenance procedures provided in the PDP-11/40 System Maintenance Manual. Specific procedures are given for
modifications necessary to the processor, and for use of the Maintenance Module Overlay for these options.

Detailed descriptions of processor, console, Unibus, and memory logic that interface with these options are provided
in the following related documents:

PDP-11/40 System Maintenance Manual
KDl 1-A Central Processor Unit Maintenance Manual
PDP-11 Unibus Interface Manual (2nd Edition)

DEC-l 1-H40SA-A-D
DEC-11-HKDAA-A-D
DEC-11-HIAB-D

CHAPTER 1

GENERAL DESCRIPTION

This chapter contains a general description of both the KEl 1-E and KEl 1-F Options. Mechanical descriptions are
given together with engineering specifications for each option. The chapter is divided in half with the EIS
information presented first, followed by comparable information for the FIS hardware.

1.1 KEl 1-E EXTENDED INSTRUCTION SET

The KEl 1-E Extended Instruction Set is a hardware option to the basic PDP-11/40 Computer System. It is supplied
as a pluggable option to the KDl 1-A Central Processor.

1.1.1 Purpose

The KEl 1-E Option expands the instruction set of the KD 11-A Central Processor to provide extended manipulation
of fixed-point numbers. When installed, it adds the capability of Arithmetic Shift, Arithmetic Shift Combined,
Multiply, and Divide. With these additional instructions, the system can multiply and divide signed 16-bit numbers,
and can shift signed 16-bit or 32-bit numbers. Condition codes are set in the processor on the result of each
instruction.

1.1.2 Configuration

The KEl 1-E Option consists of one module. The single-hex X 8-1/2 in. M7238 module plugs directly into slot 2
(A--F) of the processor system unit. This is a dedicated prewired slot such that no other modules need be moved to
accommodate its installation. When installed, the module functions as an extension of the basic KDl 1-A data paths,
branch control, and control ROM. Basic timing of the processor is not degraded by use of this module, nor is the
NPR latency affected when its instructions are being executed. Interrupts are serviced at the end of each instruction
in the standard manner.

1.1.3 Specifications

Specifications for the KEl 1-E Option are given in Table 1-1.

-----·---
Instructions

Operations

Table 1-1
KEl 1-E (EIS) Specifications

Arithmetic Shift (ASH)
Arithmetic Shift Combined (ASHC)
Multiply (MUL)
Divide (DIV)

Multiplication and division of signed 16-bit numbers
Arithmetic shifting of signed 16-bit or 32-bit numbers

1-1

Addressable Registers

Timing

Size

Power Required

Table 1-1 (Cont)
KE 11-E (EIS) Specifications

None in option. Operands fetched from core or processor general registers.

Time = SRC Time + EF Time

Instr
MUL
DIV

SRC Mode
0
1
2
3
4
5
6
7

ASH (right)
ASH (left)
ASHC (no shift)
ASHC (shift)

Single Hex module (M7238)

+SV, 2.3A

SRC Time
0.28 µs
0.78 µs
0.98 µs
1.74 µs
0.98 µs
1.74 µs
1.74 µs
2.64 µs

FF Time
8.88 µs

Notes

11.30 µs
2.58 µs
2.78 µs
2.78 µs
3.26 µs

+0.30 µs/shift
+0.30 µs/shift

+0.30 µs/shift

1.2 KEll-F FLOATING INSTRUCTION SET

The KEl 1-F Floating Instruction Set is a hardware option to the basic PDP-11/40 Computer System. It is supplied
as a pluggable option to the KDI 1-A Central Processor and requires that the KEl 1-E described above be installed as
a prerequisite.

1.2.1 Purpose

The KEl 1-F Floating Instruction Set (FIS) enables direct operations on single-precision 32-bit words in
floating-point arithmetic. Since the KEl 1-E is a prerequisite to the KEl 1-F, extended manipulation of fixed-point
numbers is available as well. The KEI 1-F Option further extends the PDP-11/40 instruction set to include Floating
Add, Floating Subtract, Floating Multiply, and Floating Divide. As with the KEl 1-E, condition codes in the
Processor Status Register are set on the result of each instruction. The prime advantage of this option is increased
speed without the necessity of writing complex floating-point software routines.

1.2.2 Configuration

The KEI 1-F Option consists of one single-quad X 8-1/2 in. M7239 module with the KEl 1-E Option described above
being a prerequisite. This FIS module plugs directly into slot 1 (A-D) also a dedicated prewired slot in the basic
KDI 1-A. No degradation of processor timing or NPR latency is effected by the use of this option. Floating
instructions are aborted if a BR request is issued before the instruction is within approximately 8 µs of completion,
at which time the Program Counter (PC) is adjusted to point to the aborted floating instruction so that the
instruction will be restarted upon return from the interrupt.

1-2

1.2.3 Specifications

Specifications for the KEl 1-F Option are given in Table 1-2.

Prerequisite

Instructions

Operations

Addressable Registers

Size

Power Required

Timing

Table 1-2
KEl 1-F (FIS) Specifications

KEl 1-E Extended Instruction Set Option

Floating-point Addition (FADD)
Floating-point Subtraction (FSUB)
Floating-point Multiply (FMUL)
Floating-point Divide (FDIV)

Single-precision floating-point addition, subtraction, multiplication,
and division of 24-bit numbers

None in option. Operands fetched from core.

Single-quad module (M7239)

+SV, l.lA (typical)

Time= Basic Time+ Binary Point Alignment Time+ Normalization Time

Instr Basic Binary Point Normalization Time
Time* µs Alignment Time Per Shift µs

Per Shift µs

FADD 18.78 0.30 0.34
FSUB 19.08 0.30 0.34
FMUL 29.00 0.34
FDIV 46.27 0.34

.-..... -~-- '·~·-----"

*Basic instruction times for F ADD and FSUB assume exponents are equal or differ by one.

1-3

CHAPTER 2
PROGRAMMING

This chapter is devoted to general programming information for the KEl 1-E and KEll-F Options. It provides
general descriptions of their operation, the formats and instructions for each. In addition, programming examples arc
supplied for each option. This chapter is intended merely as an introduction to the programming of this hardware.
For more detailed information refer to the pertinent software documentation generated for these options. As with
Chapter 1, information has been separated for each option.

2.1 KEI 1-E EXTENDED INSTRUCTION SET

There are no addressable registers in the KEl 1-E Option. EIS operands are fetched from either core memory or from
the general processor registers. The result of each operation is stored in the general registers.

2.1.l Operation

When the Arithmetic Shift (ASH) instruction is used, the contents of the selected register is shifted right or left the
number of places specified by a count. This shift count is a 6-bit, 2's complement number which is the least
significant 6 bits of the source operand. If the count is positive, the number is shifted left; if it is negative, the
number is shifted right. This allows for shifts from 31 positions left to 32 positions right (+31 to -32) although a
shift of greater than 16 places loses all significance. A count of 0 causes no change in the number.

When the Arithmetic Shift Combined (ASHC) instruction is used, the contents of the register (R) and the register
ORed with-1 (RVl) a-;; tre;ted as a single 32-bit word. Register RVl represents bits (15:00), register R represents
bits (31: 16). This 32-bit word is shifted right or left the number of places specified by a count. This shift count is the

same as that described for the ASH instruction and permits shifts from +31 to -32. If the selected register (R) is an
odd number, then R and RVl are the same. In this case, the right shift becomes a rotate and the 16-bit word is
rotated right the number of bits specified by the count for up to 16 shifts.

When the MULtiply (MUL) instruction is used, the contents of the Destination Register and the source are
multiplied as 2's complement integers. The result is stored in the Destination Register Rand the register ORed with
1 (RV 1). If the register is odd, only the low-order product is stored. This instruction multiplies full 16-bit numbers.

When the DIVide (DIV) instruction is used, a 32-bit dividend in Rand RVl is divided by a 16-bit divisor to provide
a 16-bit quotient and a 16-bit remainder. The sign of the remainder is always the same as the sign of the dividend
unless the remainder is 0. Overflow is indicated if more than 16 bits are required to express the quotient. In this
case, the instruction is aborted. If the content of the Source Register is 0, indicating divide by 0, an overflow is
indicated.

2.1.2 Formats

The number formats for the KEl 1-E Option are shown in Figure 2-1. A single word is 16-bits long and a double
word is 32-bits long. In the single word, bit 15 is the sign of the number; and in the double word, the sign bit is bit
15 of the high number part. The S bit is 0 for positive quantities and is 1 for negative quantities.

2-1

11-1602

Figure 2-1 EIS Number Formats

2.1.3 Instructions

The EIS instruction format is shown in Figure 2-2. It is a double operand instruction in which bits (15 :09) comprise
the Op code, bits (08:06) designate the Destination Register field (RRR), bits (05:03) indicate the Source Address
Mode (SSS), and bits (02:00) specify the Source Address Register (SSS). The octal coding is in the form 07XRSS.
There are four EIS instructions, as follows:

MUL 070RSS

MULtiply

Operation:

Condition Codes:

Description:

Example:

R, RVl +- R X(SRC)

N: set if product is< O; cleared otherwise.
Z: set if product is= O; cleared otherwise.
V: cleared
C: set if the result is less than -21 5 or is greater than or equal to 21 5 ·-1; cleared

otherwise.

The contents of the Destination Register R and source taken as 2's complement integers
are multiplied and stored in the Destination Register R and the succeeding register RVl
(if R is even). If R is odd, only the low-order product is stored. Assembler syntax is:

MUL S, R. (Note that the actual destination is R, RVl which reduces to just R when R is
odd.)

16-bit product (R is odd)

000241
012701, 400
070127, 10
1034xx

CLC
MOV #400, Rl
MUL #10, Rl
BCSERROR

Before
(R 1)=000400

2-2

;Clear carry condition code

;Carry will be set if
;product is less than
;-21 5 or greater than or
;equal to 21 5

;no significance lost

After
(Rl)=004000

DIV 071RSS

DIVide

Operation:

Condition Codes:

Description:

Example:

ASH 072RSS

Arithmetic SHift

~~~_JLL._ __ [:L~ SOURCE l 
REGISTER FIELD 

. . . -------SOURCE MODE FILED * 
. DESTINATION 

- -- -------REGISTER FIELD 

11-1604 

*Note that for the EIS instructions the Source Register is 
considered the Destination since the answer is stored in that 
register. The Destination Mode and Register Field are 
considered to be the source. This is not consistent with other 
PDP-11 family instruction formats but is used throughout the 
discussions of the EIS instructions in this manual. 

Figure 2-2 EIS Instruction Format 

R ~ R, RVl 7 (SRC) RVI ~Remainder 

N: set if quotient< O; cleared otherwise. 
Z: set if quotient= O; cleared otherwise. 
V: set if source = 0 or if the absolute value of the register is larger than the absolute 

value of the source. (In this case, the instruction is aborted because the quotient 
would exceed 16 bits.) 

C: set if divide by 0 attempted; cleared otherwise. 

The 32-bit 2's complement integer in Rand RVl is divided by the source operand (SSS). 
The quotient is placed in R; the remainder is placed in RVl with the same sign of the 
dividend. R must be even. 

005000 
012701,20001 
071027,2 

Before 
(RO)=OOOOOO 
(Rl )=020001 

CLRRO 
MOV #20001,Rl 
DIV #2, RO 

After 
(RO)=OlOOOO 
(Rl )=000001 

2-3 

Quotient 
Remainder 



Operation: 

Condition Codes: 

Description: 

Example: 

R 

ASHC 073RSS 

R +- R shifted arithmetically NN places to right or left, where NN = low-order 6 bits of 
source. 

N: set if result < 0; cleared otherwise. 
Z: set if result= O; cleared othe1wise. 
V: set if sign of register changed during left shift; cleared otherwise. 
C: loaded from last bit shifted out of register. 

The contents of the register are shifted right or left the number of times specified by the 
shift count. The shift count is taken as the low-order 6 bits of the source operand (SSS). 
This number ranges from -32 to +31. Negative is a right shift and positive is a left shift 
(Figure 2-3). 

ASHRO,R3 

Before 
(R3)=000003 
(RO)=OO 1234 

After 
(R3)=000003 
(RO)=O 12340 

15 0 r+CC-·--·r·-.. · .. -·--=i::--7-.-··-·· .... r ... _] -+ rci LJ I _I _i_l-1 1J I 1-1 I L.:'.J 

RIGHT SHIFT IF COUNT IS NEGATIVE 

15 0 -I ']+--o R 
I L-l-

LEFT SHIFT IF COUNT IS POSITIVE 
11-1605 

Figure 2-3 ASH Operation 

Arithmetic SHift Combined 

Operation: 

Condition Codes: 

Description: 

R, RVl +- R, RVl. The double word is shifted NN places to the right or left, where NN = 
low-order six bits of source. 

N: set if result< O; cleared otherwise. 
Z: set if result= O; cleared otherwise. 
V: set if sign bit changes during the left shift; cleared otherwise. 
C: loaded with the last bit shifted out of the register. 

The contents of the register and the register ORed with 1 are treated as one 32-bit word. 
RV 1 (bits 15 :00) and R (bits 31: 16) are shifted right or left the number of times 
specified by the shift count. The shift count is taken as the low-order 6 bits of the source 
operand. This number ranges from -32 to +31. Negative is a right shift and positive is a 
left shift (Figure 24). When the register chosen is an odd number, the register and the 
register ORed with 1 are the same. In this case, the right shift becomes a rotate. The 
16-bit word is rotated right the number of bits specified by the shift count for up to 16 
shifts. 

24 



31 16 

R DC~! ___.___,_;4J.~ l_L_EL:__...__._l ___._,,_..I I] 
I-- -
15 0 

RV1 [..--I -......--l__l~ _ _Lj·=_.__, _.._.E__.___.___.T ,__.__, J __. GJ 
RIGHT SHIFT IF COUNT IS NEGATIVE 

31 16 

0 ._ cr=-r~ --L~=-·---' ...___._! : _ __.____._........__.; 1 R 

r 
,_,, .. ,_. ________ ..J ..... 

15 0 [ • ..---, -.... 
,..._,,.__.___.___,_1,~J-._._J=;]__.___,__,___..___.__..__.._1 ...... 1 ..... 0 RV1 

LEFT SHIFT IF COUNT IS POSITIVE 

11-1606 

Figure 2-4 ASHC Operation 

2.2 KEl 1-F FLOATING INSTRUCTION SET 

There are no addressable registers in the KE 11-F Option. FIS operands are fetched from core memory and the result 
of each operation is stored in core memory. Operands are ordered on the stack in Polish Notation (Paragraph 3.2), 
thereby reducing the number of operations necessary to achieve a result. 

2.2.1 Operation 

For £loating ADD, the A argument from the stack is added to the B argument from the stack with the result stored 
in the A argument position on the stack. 

For .floating SUBtract, the B argument from the stack is subtracted from the A argument on the stack with the 
result stored in the A argument position on the stack. 

The floating MULtiply instruction multiplies the A argument on the stack by the B argument on the stack and 
stores the result in the A argument position on the stack. 

The floating DIVide instruction divides the A argument on the stack by the B argument on the stack and stores the 
result in the A argument position on the stack. 

2.2.2 Formats 

The number format for the KEll-F Option is shown in Figure 2-5. The KEll-F word is 32 bits long with bit 15 of 
the high argument designating the sign of the fraction. Note that the 8-bit exponent separates the fraction from its 
associated sign. In floating point, representation of binary numbers is in three parts: a sign bit, an exponent, and a 
mantissa. The mantissa is a fraction expressed in sign and magnitude format with the binary point positioned to the 
left of the most significant bit of the mantissa. The mantissa is assumed to be normalized. The MSB of the mantissa 
is not stored in core because it is redundant. Leading Os are removed by shifting the mantissa left; however, each left 
shift of the mantissa must be followed by a decrement of the exponent value to maintain the true value of the 
number. The exponent value represents the power of 2 by which the mantissa is multiplied to obtain the value to be 
used. 

2-5 



23-BIT ~RACTION 

. ~----·---·-··-----····-·-·-··'---·--··-·"····· ·--··---·-· 

BINARY POINT__/~ -·--------···---··--·------ ) 

L H •I',,..,,,. by,,, •• ,, ..... ,. ,,.,,,;,, " 
operands if exponent fie Id ::!- a II zeros. 

11-1607 

Figure 2-5 FIS Number Format 

The KE 11-F Option stores the exponent in excess 2008 (128 1 0 ) notation. As a result, exponent values from -128 to 
+127 are represented by the binary equivalent of 0 to 255 (octal 0-377). Mantissas are represented in sign 
magnitude form. 

The binary radix point is to the left. The results of the floating-point operations are always rounded away from 0, 
increasing the absolute value of the number. 

If the exponent is equal to 0, the number is assumed to be 0 regardless of the sign bit or fraction value. The 
hardware generates a clean 0 (32-bit word of all Os) in this case. 

2.2.3 Instructions 

The FIS instruction format is shown in Figure 2-6. It is a double operand instruction in which the low three bits 
(R,R,R) specify a register that is utilized as a stack pointer for the floating-point operands. The register may be any 
one of the eight general registers, but some caution must be used if using the PC (R 7). It is unlikely that the PC 
would be desirable as a pointer. 

15 14 3 2 0 

E~-~=~~J~~~-~I~~-:-~I~~~~--~~~l 
'----·-· ·····-. -- --.. ·-··-----y-------------·· .. -' '----y---' 

OP CODE STACK 
POINTER 

11-1603 

Figure 2-6 FIS Instruction Format 

The operands are located on the stack as follows: 

(R) = 

(R)+2 = 

(R)+4 

(R)+6 = Low A Argument 

2-6 



The floating-point answers are stored as follows: 

(R)+4 = High Answer 
(R)+6 = Low Answer 

The floating-point stack pointer is repositioned to point to (R)+4 (High Answer). 

The floating-point octal coding is in the form 0750XR. There are four FIS instructions, as follows: 

FADD 07500R 

Floating-ADD 

Operation: 

Condition Codes: 
(See Note Below) 

Description: 

FSUB 07501R 

Floating-SUBtract 

Operation: 

Condition Codes: 
(See Note Below) 

Description: 

FMUL 07502R 

Floating-MULtiply 

Operation: 

Condition Codes: 
(See Note Below) 

[(R) +4 0 (R) +6] +- [(R) +4 D (R) +6] + [(R) D (R) +2], if result~ 2- 12 8
; 

else [(R) +4 0 (R) +6] +- 0 

N: set if result < O; cleared otherwise. 
Z: set if result= O; cleared otherwise. 
V: cleared 
C: cleared 

Adds the B argument to the A argument and stores the result in the A argument position 
on the stack. A +- A+ B 

[(R) +4 D (R) +6] +- [(R) +4 D (R) +6] - [(R) D (R) +2], if result~ 2- 128
; 

else [(R) +4 0 (R) +6] +-0 

N: set if result< O; cleared otherwise. 
Z: set if result= O; cleared otherwise. 
V: cleared 
C: cleared 

Subtracts the B argument from the A argument and stores the result in the A argument 
position on the stack. A+- A-B 

[(R) +4 [J (R) +6] +- [(R) +4 0 (R) +6] * [(R) D (R) +2], if result~ 2- 128
; 

else [(R) +4, (R) +6] +- 0 

N: set if result< O; cleared otherwise. 
Z: set if result= O; cleared otherwise. 
V: cleared 
C: cleared 

2-7 



Description: 

FDIV 07503R 

Floating-DIVide 

Operation: 

Condition Codes: 
(See Note Below) 

Description : 

Multiplies the B argument by the A argument and stores the result in the A argument 
position on the stack. A ~ A *B 

[(R) +4 0 (R) +6] ~ [(R) +4 0 (R) +6] / [(R) D (R) +2], if result~ 2- 128
; 

else [(R) +4 0 (R) +6] +-0 

N: set if result <O; cleared otherwise. 
Z: set if result= O; cleared otherwise. 
V: cleared 
C: cleared 

Divides the A argument by the B argument and stores the result in the A argument 
position on the stack. If the B argument (divisor) is equal to 0, the stack is left 
untouched. A~ A/B 

NOTE 
If a trap occurs as a function of a floating instruction, the 
condition codes are reinterpreted as follows: 

N: set if underflow, cleared if overflow. 
Z: cleared 
V: set if underflow, overflow, divide by 0 (error 

conditions). 
C: set if divide by 0, otherwise cleared. 

Traps occur through the vector 244. (R) is reset to point to 
high B argument on the stack. The arguments are left 
untouched. 

2.2.4 Programming Example 

A sample floating-point program is given below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

000000' ,CSECT 
,TITLE F'ISEXM 

COPYRIGHT i972 av DIGtTA~ EQUIPMENT CORPORATION, 
MAYNARD, MASSACHUStTTSi 

EXAMP~E Of PDP•11/4~ rLoATING INSTRUCTION SET USAGE CP!S> 

COMPUTE LARGER ROOT or QUADRACTIC EQUATIONI 

AL.GORlTHM ISi 

RQOT1 = C•B + SQRT<B•B • 4•A•C))/(~•A) 

2-8 



19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3.1 
32 
33 
34 
35 
36 
37 
38 
39 0~000 

40 0012l04 

42 00014 

43 1C.Hrn20 

44 00024 
45 00026 
46 00030 

47 00034 

48 0012l40 

49 00044 
50 00046 

51 00052 

52 00056 
53 00060 
54 00062 
55 00064 
56 00066 

57 0012172 

58 00076 

59 00H'l2 
60 00H'4 
61 00106 

62 00112 

; 
J 

000000 R0 
0~0001 R1 
000002 ~2 
000Q'l03 RJ 
000004 R4 
000005 R; 
0~0006 SP 
0(?1012107 PC 

. , 

INITIA~ VA~UES or A, a, AND c ARE 
?~ACED IN MEMORY ~OCATIONS A, B, ANO C1 
RESULT IS COMPUTED ANO STORED AT ROOT1 1 

NORMA~ TERMINATION IS A HA~T AT ~OCATJON CONE, 
tr DISCRIMINANT IS NEGATIVE THEN HA~T AT ~OCAT!ON 
IMAG. HA~T AT A~ERO IP A 1 0, 

NORMA~ REGISTER DEC~ARATIONSI 
=!"0 
= "1 
;"2 • "3 
~"· 
r; "' = "6 
= "' 

PROGRAM STARTS HERE 

012706 START: 
000442' 
016746 

MOV 

MOV 

MOV 

MOV 

MOV 

F'MUL 
Cl,R 
MOV 

#STACK,SP 

B•2, .. (SP) 

Br•CS?) 

JINITlALI~E PRocrssoR STACK 

J B TO STACK 
~00204 
016746 
1()00176 
016746 
0~0174 
016746 
elt?J0166 
075026 
005046 
012746 
04060~ 
016746 
00015e 
016746 
000142 
rll0t457 
016746 
000146 
016746 
000140 
075026 
075026 
0?5016 
U'0446 
012667 
00013et 
012667 
000126 
0214567 
000000G 
k'.'100401 
000222 
~1!2l067 
K'l00l14 
01'!J167 
000112 

MQV 

MOV 

BE:Q 
t-10V 

MOV 

F' MUL. 
F'MUL. 
F'SUB 
BMI 
MOV 

MOV 

JSR 

BR 
,WORD 
MOV 

MOV 

SP 
•(SP) 
#tF'4,f21, .. CSP> 

AiH:Ro 
C•2, .. (SF') 

SP 
SP 
SP 
IMAG 
(5P)+ 1 TEMP1 

(SP)+ 1 TEMP1+2 

R5,$QRT 

,•4 
TEMP1 
R0, TEt-tP2 

R11TEMP2•2 

JAGAlN 

IF"ORM 8•8 
14 1 0 TO STACK 

JA iO STACK 

HULT IF A • 0 1 

IC TO SUCK 

JF'ORM A•C 
H'ORM 4 1 •A•C 
JPORM B•B••,•A•C (OISCRIMlNANT) 
J8RANC~ l' NEGATIVE 
JSTORE OlSCR!M?NANT 

ICALL roRTRAN SQU4RE ROOT ~OUT!NE 

JSTORE: RESUL.T 

63 ;COMPUTE ROOTl 
64 00116 016746 MOV 8+2,~(SP) I 8 TO STACK 

00Q!f2172 
65 00122 016746 MOV B1•(SP> 

000064 
66 00126 062716 ADD #i00000,@SP JN~GATE 8 ON STACK 

l,00000 

2-9 



67 00132 016746 MOV TEMP2•21•(SP> ISOUARE ROOT TO STACK 
00l0~72 

68 00136 016746 MOV TEMP21•<SP> 
000064 

69 00142 075006 rAOD SP IF"ORM •B•SQRT 
70 00144 "'16746 MOV CONST•21•(SP> 12 1 0 TO SUCK 

2100064 
71 0~150 2116746 MOV CONST 1•<SP> 

elt'1'21056 
72 00154 016746 MOV A+2,•(SP> JA TO STACK 

00003e 
73 0~160 016746 MOV A1•(SP> 

000~22 
74 0W1164 075026 F'MUL SP If ORM 2 1 •A 
75 ~0166 075036 POlV SP IF'ORM C " B • S Q R T ) I < 2 '1 • A ) 
76 00170 012667 MQV (5P)+ 1 ROOT1 JSAVE RESUl.T 

000042 
77 00174 01266? MOV CSP)• 1 ROOT1+2 

000040 
78 00200 000000 DONEi l-IAI. T 
79 00202 2100000 IMAGI HAL.T 
80 00204 00121000 Ai!ERO: l-IAl..T 
81 J 
82 J 
83 00206 A: ,BL.KW 2 
84 00212 8: I SL.KW 2 
85 00216 c; ,Bl.KW 2 
86 00222 TEMP11 ,SL.KW 2 
87 00226 TEMP2; ,Bl.KW 2 
88 00232 2140400 CONST; ,F'l .. T2 2,0 

00234 12100000 
89 00236 ROOT1; ,Bl.KW 2 
90 , Gl..081. SQRT JEXTERNAL. SUBROUTINE 
91 ,Bl.KW U0 JROOM roR STACI< 
92 00442 STACK; I 91.,KW 1 J SURT OF' STACI< IS TOP or AREA 
9J 0000211' ,ENO 

2-10 



CHAPTER 3 
THEORY OF OPERATION 

This chapter describes KEll-E and KEll-F theory ofoperation with the EIS principles described first, followed by 
those principles applying to the FIS hardware. A review of the basic requirements for the operations is presented as 
well as the algorithms for those operations. Each algorithmic description is first given in basic terms, followed by a 
more specific treatment of the operation involved. 

3.1 KEll-E EXTENDED INSTRUCTION SET 

The KEl 1-E Option is used for fixed-point operations in the KDl 1-A Central Processor. The principles involved in 
these instructions are given in the following paragraphs. 

3.1.1 Binary 2's Complement Notation 

The KEl 1-E Option requires a numerical notation that expresses both the sign and the magnitude of each number in 
binary digits. The simplest class of notation that meets this requirement is based on the following property: a 
number added to its own negative equals 0. Thus, adding the negative of a number to another number is the same as 
subtracting the number. The 2's complement of a number is created by complementing and incrementing the 
number, i.e., replacing each 0 bit with a 1 and each 1 bit with a 0, and then adding a 1 to the resultant number in the 
least significant position. Adding a number and its negative in 2's complement notation always produces all Os (the 
only representation of the quantity 0 in 2's complement). 

It is important to remember that the representation of a number differs greatly from quantity represented. For 
example: the quantity - l is represented in 2's complement notation by 11 111 111 (in eight bits). The quantity + 1 
has a 2's complement representation of 00 000 001. 

Example 1 

Adding + 1 to -1 yields the following: 
00 000 001 = +l 

+11 111 111 = -1 
100 000 000 = 0 (The left-most (carry) bit is not a significant bit and is ignored.) 

Example 2 

Adding +5 and -3 yields the following: 
00 000 101 = +5 

+11111101=-3 
100 000 010 ~ +2 (Carry bit not significant.) 

A disadvantage of 2's complement notation is that the representation of numbers is not symmetrical. That is, one 
more negative number than positive number can be expressed. In n bits, the maximum positive number that can be 
expressed is 2n-l, but the maximum negative number is -2n-l (because there is no negative 0). 

3-1 



3.1.2 Multiplication 

Multiplication is repeated addition. Multiplying 3 times 7 is simply adding 7 three times. However, 21 5 times a 
number requires 21 5 additions (the K.El 1-E uses a short-cut method that requires only 16 operations). 

In practice, the KEl 1-E adds multiples of the multiplicand. The multiples are formed by shifting. Each time a binary 
number is shifted one bit to the left, it is multiplied by two; thus, if it is shifted 5 places to the left, it is multiplied 
by 25 (32). The multiplier is broken down into individual bits that determine which multiples of the multiplicand 
are added to form the product. 

The multiplication process is complicated by ii1e representation of negative numbers used in the PDP-11 Systems .. 
Negative 2's complement numbers cannot be multiplied by the addition of multiples unless a correction step is 
added at the end. To avoid this step, the KEl 1-E uses a method that provides for negative numbers and produces the 
same results as the addition-of-parts method for positive numbers. This method is based on a different breakdown of 
a binary number into positive and negative parts. 

In binary numbers, 10--1=1. Representing each 1 bit of a binary number as the difference between that bit and the 
next most significant bit produces a string of alternating positive and negative powers of 2. 

For example: 

11010111=100000000-10000000+10000000-1000000+100000-10000 
+1000-100+100-10+10-1 
=100000000-1000000+100000-10000+1000-1 

Multiplying a multiplicand by each of the numbers in the last string (preserving the signs) and then adding the 
products of the multiplications is equivalent to multiplying the chosen multiplicand by the original number 
(11010111). This can be done by shifting the multiplicand left and adding or subtracting at each position that 
corresponds to one of the numbers in the series. 

The series of alternating positive and negative powers of 2 is easily generated because: 

a. Each pair of powers of 2, one positive and a smaller negative, represents a string of ls. The positive 
number is one digit higher than the most significant 1 in the string, and the negative number is in the 
same position as the least significant 1 in the string. 

For example, in the number 11010111: 

100000000-1000000=11000000 
100000- 10000=00010000 

10000- 1=00000111 
11010111 

b. Strings of 1 s are separated by strings of Os. Each string is one or more digits long. 

For example, in the number 11010111: 

-1000000+100000=0X25 

-10000+ 1000=0X23 

llQlQlll 

3-2 



c. Thus, each string of 1 s can be replaced by a string of Os with a -1 in the least significant place, and each 
string of Os can be replaced by Os with a+ 1 in the least significant place. 

For example, the digits in the number 11010111 can be replaced as follows: 

Original digit: 
Replacement: 

1 
0 -1 

0 
+1 -1 

0 
+1 

1 
0 

1 
0 -1 

d. Therefore, if for any bit of the multiplier the previous (less significant) bit is the same, the multiplicand 
is not added to the partial product (or it is multiplied by 0 and 0 is added to the product). If the 
previous bit is a 1 and the current bit is a 0, the multiplicand is added; if the previous bit is 0 and the 
current bit is 1, the multiplicand is subtracted (negated and added). In each case the multiplicand is 
shifted (with respect to the product) before the addition, because the number added to the product is 
actually the multiplicand multiplied by some power of 2. 

For example, to multiply N by 11010111, the sum of the products of N times each replacement digit, 
times the appropriate power of 2, is the product as follows: 

NX 1101011 l=NX(OX27 -1X26 +1X25 -1X24 +1X23 +0X22 +0X21 -1X2°) 

3.1.3 Division 

Division is repeated subtraction. Division is more complicated than multiplication for two reasons: 

a. The product of two integers is always an integer; the quotient of two integers is rarely an integer. 
Division produces two results, a quotient and a remainder, that interact. The correct quotient is 
dependent on a correct remainder. 

b. The maximum value that results from the multiplication of two numbers can be no larger than the 
source of the maximum number. However, the maximum value that can result from a division is infinite, 
because the divisor can be much smaller than the dividend. Some quotients cannot be expressed in the 
number of bits available in the physical representation and are considered to have overflowed. 

The quotient in a division is the number of times that the divisor can be subtracted from the dividend without going 
beyond 0 (changing sign). The result can be determined by counting subtractions until the remainder does go 
beyond 0 (which produces a condition called underflow), then reducing the count by one. The remainder must also 
be corrected by restoring the value of one subtraction. 

Rather than do as many as 21 5 subtractions, the KE 11-E uses a short-cut method similar to that used in 
multiplication. The results of dividing by multiples of the divisor, where each multiple is a power of 2 times the 
divisor, can be combined to form the quotient. 

This division procedure operates by subtracting a large multiple (2n-l) of the divisor from the dividend. If the 
remainder does not go beyond 0 (there is no underflow), the next smaller power-of-2 multiple of the divisor is 
subtracted. For each successful subtraction, the quotient is increased by the same multiple (the same power of 2) as 
the multiple of the divisor used in the subtraction. 

If a subtraction causes underflow, however, the corresponding quotient bit is cleared (the corresponding power of 2 
is not added to the quotient). However, rather than restoring the previous value of the dividend, the KEl 1-E now 
approaches the correct remainder from the opposite direction. Successively smaller multiples of the divisor are added 
to the remainder (instead of subtracting) until the remainder again underflows, thus restoring the original sign. When 
the KEl 1-E is adding, instead of subtracting, the corresponding quotient bits are set only if the sign of the remainder 
returns to its original value; if the remainder does not change sign, the quotient bit is set to 0. 

3-3 



For example, dividing 17 (21 8 ) by S yields a quotient of 3 and a remainder of 2 as follows: 

1. Subtract divisor X 23 from the dividend. 

00 010 001 = 21 8 

11 011 000 = -5 X 23 = -508 

11 101 001 (The partial remainder has the wrong sign, underflow occurred.) 

2. Add 0 X 23 to the quotient = 0. 

3. Add divisor X 22 to the partial remainder. 

11 101 001 
00 010 100 = 5 X 22 = 248 

11 111 101 (The partial remainder has the wrong sign, no underflow.) 

4. Add 0 X 22 to the quotient= 0. 

5. Add divisor X 21 to the partial remainder. 

11111101 
00 001 010 = 5 X 21 = 128 

00 000 111 (The partial remainder has the right sign, underflow occurred.) 

6. Add 1 X 21 to the quotient= 2. 

7. Subtract divisor X 2° from the partial remainder. 

00 000 111 
11 111 011 = -5 x 2° = - 5 
00 000 010 (The remainder has the right sign and is 2, no underflow.) 

8. Add 1 X 2° to the quotient= 3. 

Th.is procedure is valid for positive or negative numbers, provided that the dividend and divisor have the same sign. 
However, if the signs are originally different, subtracting multiples of the divisor drives the remainder away from 0. 
Therefore, the KE 11-E adds multiples of the divisor until the remainder underflows (at which point, a quotient bit is 
set) and then subtracts until the remainder regains its original sign. 

NOTE 
In the KEl 1-E, if the dividend is negative, its 2's complement 
is taken before dividing. Adding the 2's complement is the 
same as subtracting. 

This procedure can handle any combination of binary numbers, regardless of sign. Implementation of the procedure 
is simplified by the following considerations: 

a. If the signs of the divisor and the dividend are originally the same, the KEl 1-E subtracts until they differ 
(because the sign of the remainder changes), then adds until they are the same. If the signs are originally 
different, the KEl 1-E adds until they are the same, then subtracts until they differ. 

34 



b. Therefore, for each operation, the KEll-E compares the signs of the remainder and divisor. If they 
differ, the KEl 1-E adds the divisor, shifted to form the proper multiple (power of 2 times the divisor); if 
the signs are the same, the KEl 1-E subtracts. 

c. A quotient bit is set if the sign of the remainder remains the same after a subtraction or changes after an 
addition, the quotient bit is cleared if the sign changes after a subtraction or remains the same after an 
addition. 

d. A subtraction is done if the signs of the remainder and divisor are the same, and an addition is done if 
the signs are different. A changed sign after an addition means that the signs are now the same, while no 
change after a subtraction also means the signs are the same. 

e. Therefore, after each operation, the corresponding bit of the quotient is set if the signs are the same or 
cleared if the signs differ. 

3.1.4 Basic Shift Operation 

In the KEl 1-E, a basic shift operation is used as a primary operation in the sequences for all other operations. The 
register that is being shifted is treated as a sequence of bits, each shifted separately. The following descriptions 
illustrate the features of a basic shift: 

a. In general, the bit at a particular location is replaced by another bit that is shifted into that location. No 
bit of information is moved more than one location. 

b. One bit is shifted out of the register and is lost. 

c. One bit is vacated. The original contents of that bit are shifted to the next bit, and a 0 replaces the 
previous bit if shifting left. 

d. The bit lost is at the end toward which the bits are shifted, and the bit vacated is at the end away from 
which the bits are shifted (bit positions are numbered in ascending order from right to left). 

3.1.5 Algorithms For KEl 1-E Operations 

Figures 3-1 through 3-4 illustrate the sequence of operations for multiplication, division, and shifting. These flow 
charts emphasize the conceptual organization of the device that does each calculation. Chapter 4 relates the KEl 1-E 
logic to these algorithms and explains how the logic structure reduces the hardware and timing requirements. All 
KEl 1-E arithmetic operations are performed in the 16-bit ALU in the PDP-11/40 Central Processor KDl 1-A. This 
ALU has two 16-bit inputs. The B input is supplied (for the sake of the following discussions) by the B Register. The 
A input is supplied by all of the following sources: 

a. The CPU general registers (I 7 8 - 008 ). 

b. The KEl 1-E registers BR, DR, and (BR (14:00) * DR15). 

The KEl 1-E also supplies a carry-in signal to bit 0 of the CPU ALU. The BR is simply a holding register whereas the 
DR is a left/right shift register. 

The ASH right operation is implemented by the right data port of the CPU DMUX. Similarly for ASHC the high half 
of the operand is shifted by the DMUX while the DR shifts the low half of the operand. 

The high half of the operand for ASHC left and the entire operand for ASH left are shifted by the ALU function A 
plus B, while the low half of the ASHC operand is shifted by the DR Register. 

3-5 



In MULtiplication, the DR holds the multiplier and, therefore, controls the summation of partial products; as the 
multiplier is shifted out, the low order word of the product is shifted in. In DIVision, the DR holds the low order 
dividend, and is used to assemble the quotient; as the dividend is being shifted out, the quotient is being shifted in. 

3.1.S.1 Multiplication - As shown in Figure 3-1, as the flow is entered at MUL, the multiplier is loaded, as is the 
Step Counter, and the C bit in the Extended Processor Status Register is cleared. 

MUL 

1
--LOAO MULTIPLIER. 

LOAD STEP COUNTER. 

EPS(CI +-0 

NO __ c= 
LOAD MULTIPLICAND 

NO 

YES 

fMAP ~1UL TIPLICAND 

& MULTIPLIER 

YES ______ ...,.,.__ ___ < 

MULTIPLICAND -

MULTIPLIER. SHIFT SHIFT MULTIPLICAND 

PARTIAL PRODUCT RIGHT. EPS(CI - DROO 

RIGHT. EPS(C) - DROO DECREMENT COUNT. 
DECREMENT COUNT. 

NOTE: EPS(C) ~LOCAL C 

BIT. DROO 2 LSB OF 

MULTIPLICAND. 

NO 

STORE PRODUCT 

MULTIPLICAND+ 

MULTIPLIER. SHIFT 

PARTIAL PRODUCT 

RIGHT. EPS(CI - DROO 

DECREMENT COUNT. 

SPECIAL CASE -] GENERATE & STORE 

PRODUCT 

(040000, 0000001 

______ ,,_ •u---·-~----·---<-~-.......---------

SET LOCAL CONDITION 

CODES 

TRANSFER LOCAL 

CONDITION CODES TO 

CPU STATUS 

DONE 

Figure 3-1 KEl 1-E MUL Algorithm 

3-6 

11-1608 



At this point, a test is made to determine if the multiplier is equal to 100000 (the most negative number). If it is 
not, the multiplicand is loaded and the multiply loop is entered; if it is equal to 100000, the multiplicand and 
multiplier are swapped and the multiplicand is tested to see if it is the most negative number. If the multiplicand 
proves to also be the most negative number, a special case exists in which the answer can be generated. The product 
is stored, local condition codes are set and transferred, and the operation is done. 

If the multiplicand is not the most negative number, the multiply loop is entered as above. At this point, the 
hardware looks at the two least significant bits (DROO and EPS(C)) to decide whether to either add or subtract and 
then shift, or to just shift. In all cases, DROO is sent to EPS(C) as the hardware executes the loop. This action 
continues, each time testing to see if the Step Counter is equal to 0. When it is, the operation in the loop is 
complete. To conclude the operation, the loop is left, the product is stored, and local condition codes are set before 
being transferred to the CPU Status Register. 

In the KEll-E hardware, the multiplier (the contents of the calculated destination address) is in the DR and the 
multiplicand (from R(SF)) is in B. BR and EPS(C) are clear. 

If DROO (the LSB of the multiplier) is (1), B is subtracted from BR. The result, shifted one place to the right, is 
loaded back into BR with the LSB of the result shifted into DR15. The DR is shifted right so a bit of the multiplier 
is shifted into EPS(C). The sign of the result is loaded into BR15 and BR14. If DROO is (0), the BR and DR are 
shifted right one place, with BROO being shifted into DR15. The BR is shifted by the DMUX right data port. 

In each subsequent step, only the shift is performed if the bits in DROO and EPS(C) are the same. If they are 
different, addition or subtraction is performed along with the shift. If DROO = (O) and EPS(C) = (1 ), B is added to 
BR. If DROO = (1) and EPS(C) = 0, Bis subtracted from BR. 

Consequently the low order bits of the running sum of the partial products are shifted into DR as the multiplier is 
shifted out. At each step, the effect of the multiplicand in B on the partial sum in BRl 5 is binarilly one order of 
magnitude greater than in the preceding step because the partial sum was shifted right. B can consequently be 
combined directly with BR. The first arithmetic operation will always be subtraction. If DROO is initially (0), no 
subtraction will be performed until a (1) is shifted into it. Shifting will then continue until DROO is (0) and EPS(C) 
is (1 ). 

This process continues, subtracting when DROO is (1) and EPS(C) is (0), adding when DROO is (O) and EPS(C) is (1), 
and simply shifting when DROO is the same as EPS(C). 

After 16 steps, the DR holds the low half of the product and the BR holds the high half of the product. 

The following example shows that the above procedure produces the correct product. 

1 0 0 1 1 0 0 1 = Binary Integer 
7 6 5 4 3 2 1 0 = Powers of 2 for each position 

This number is equal to 
10000000 

+ 11000 

+ 

A string of ls whose ri~ht-most bit corresponds to 2k is equal to 2k+n_2k or equivalently 2k(2n-2°), i.e., 2n-2° is a 
string of n ls and the 2 shifts the string left k places. Therefore, 

1 0 0 0 0 0 0 0 = 21+1-27 = 28 -27 

1 1 0 0 0 = 23+2 -23 = 25 -23 

1 =21+0_20 =21-20 
2s-21+2s-23+21-20 

3-7 



In the last representation, each power of 2 that is subtracted corresponds to a transition from (0) to (1) (from right 
to left) whereas each power of 2 that is added corresponds to a (1) to (O) transition. The largest term corresponds to 
the transition to the sign bit, whlch is (O) for a positive number. The multiplication algorithm interprets the 
multiplier in the above manner, alternatively subtracting and adding the multiplicand to the partial sum in the 
order-of-magnitude positions corresponding to the transitions. 

3.1.5.2 Division - As shown in Figure 3-2, as the flow is entered at DIV, the divisor, dividend, and step count are 
all loaded. At this point, a test is made to determine if the divisor is equal to 0. If it is, the local condition codes are 
set to indicate the error, they are transferred to the CPU Status Register, and the flow ends at that point. 

ND 

DROO• 815 

L_ --------- .~ 

YES 

2'S COMPLEMENT OF ] 
DIVIOEND 

DROOf 615 

SHIFT DIVIDEND LEFT] 
OIVIDEND+DIVISOR 

{OIVOUITJ 

SET LOCAL CONDITION 

CODES TO INDICATE 

ERROR 

SET LOCAL co~:-~::i 
CODES _J 

TOO LARGE 

SET LOCAL CON[;;-;;;;-J 
CODES TO INOIC1\ TE 

QUOTIENT WOULD BE 

.____ ______________ . ______ y·-
TRANSFE~ LOCAL 

CONDITION COO ES TO 

CPU STATUS 

DONE 

Figure 3-2 KEl 1-E DIV Algorithm 

3-8 



If the divisor is not equal to 0, a test is made to see if the dividend is negative. If it is not, the flow continues to test 
the sign of the divisor, but if it is a negative dividend, the 2's complement is taken of it to determine if it is the most 
negative number (=100000). If this condition exists, division is impossible and the DIV QUIT path is taken to set the 
local condition codes to indicate that the quotient would be too large. The codes are then transferred to the CPU 
and the flow is ended. 

If, however, after 2's complementing the dividend, it proves not to be the most negative number, the flow continues 
to test the sign of the divisor as above. This is the first division step; and, if the divisor is negative, it is necessary to 
add it to the dividend since adding a negative number is equivalent to subtracting a positive number. But if the 
divisor is positive, it is simply subtracted. Before either the add or subtract operation, however, the dividend is shifted 
left. 

At this point, the hardware is caused to look for the result of this initial add or subtract operation as indicated by 
the presence of or absence of a cany-out from the ALU. If a carry-out is not seen, this indicates that the scaling of 
the dividend vs the divisor will produce the proper number of bits in the quotient. If a carry-out is seen (underflow), 
however, it indicates that more than 16 bits are required to display the answer and the DIV QUIT path is taken to 
set local condition codes before they are transferred, and the flow is terminated. 

If the first division step does not produce an underflow, the division loop is entered and the operation continues. In 
the divide loop, two conditions are monitored for each pass through the loop. These conditions are DROO (which 
represents the carry-out result of the last pass through the loop), and BIS (the sign of the divisor). This test is made 
for each pass through the divide loop, up to the number set in the step count. Each pass, the two bits arc sampled, 
and the appropriate action taken. If the divisor is indicated as being negative and a carry-out was detected for the 
last pass, the indication is that too much was either added or subtracted in that last step, causing the reverse action 
to take place in the currrent step. This continues until the step count reaches 0, at which time the loop is left and 
the flow continues. 

At this point in the flow, a test is made to see if either the sign or value of the remainder is incorrect. This is the 
fix-up step in which the sign or value of the remainder is corrected. The sign of the remainder should match the sign 
of the dividend. Once done, the remainder is stored and the sign of the quotient is tested for correctness. If it is 
incorrect, the 2's complement of the quotient is taken and, in either case, the quotient is stored. 

The flow ends in the usual manner with the local condition codes being set and transferred. 

In the KEl 1-E hardware, the divisor (the contents of the calculated destination address) is in the B Register. The BR 
and DR hold the high and low dividend, respectively. If the dividend is negative, the 2's complement is taken and 
loaded into BR and DR. 

Before the division process is initiated, a check for the divisor being 0 is made. If a 0 divisor is detected, the division 
is aborted with the condition codes (Z, V, C) set to indicate the error. 

The first step of division is performed so that a test for underflow may be made to determine if the quotient is too 
large to be expressed in 16 bits. If overflow does occur, the instruction is aborted. If not, the remaining 15 division 
steps are performed. 

Note that the dividend is shifted left one place before each addition or subtraction, dropping the current MSB of the 
dividend. As the dividend is shifted out, the quotient is shifted in. 

The test for underflow that determines whether the ALU should add or subtract is based on the following 
considerations: 

a. If the divisor is negative and the dividend is positive, adding the divisor to the dividend should produce a 
result closer to 0 than the original dividend. If the result is negative, underflow has occurred and a 0 is 
shifted into the DR. 

3-9 



b. If the divisor is negative and the dividend is also negative, an underflow condition already exists. The 
divisor is subtracted from the dividend to return the dividend to a positive number. If the result is still 
negative, a 0 is shifted into the DR; if the result is positive, the underflow has been corrected and a 1 is 
shifted in. 

c. For a positive divisor and dividend, a subtraction is performed. If the result is positive, a 1 is shifted into 
the DR, but if the result is negative, underflow has occurred and a 0 is shifted in. 

d. If the divisor is positive and the dividend is negative, an addition is performed to correct an existing 
underflow. If the result is positive, the underflow has been corrected and a 1 is shifted into the DR, 
otherwise a 0 is shifted in. 

As a result of these considerations, if the divisor is positive (B 15 is 0) and there is no underflow (DROO is 1 ), or if 
the divisor is negative (B 15 is 1) and there is underflow (DROO is 0), the KE 11-E performs a subtract operation and 
shifts the carry-out of the ALU into DROO. A carry-out of the MSB of the ALU indicates that underflow has 
occurred; if an uncorrected underflow existed, the carry indicates that it has been corrected. 

If the opposite conditions exist (divisor is positive and DROO is 0 or divisor is negative and DROO is 1 ), an addition is 
performed, followed by a shift of the carry-out of the ALU into DROO. Note that the cases for which a carry-out of 
the MSB of the ALU exists are equivalent to the cases described above for which DROO is set. 

If, after the last division step, the LSB of the quotient is a 0, an underflow condition still exists. This condition can 
be corrected (unless an overflow condition also exists) by adding a positive divisor or subtracting a negative divisor 
to correct the remainder. If no remainder correction is needed and the remainder has the wrong sign or has the 
wrong sign after correction, the remainder is complemented and stored. 

If EPS (N) is set, the original dividend was negative. The complemented remainder, which is negative because the 
corrected remainder is positive (if all underflow conditions are corrected), is stored as the final value of the 
remainder. If both the dividend and the divisor were positive, the quotient, which is also positive (the most 
significant bit of the quotient must be positive or an immediate overflow condition aborts the division), is written 
into the appropriate general register. 

Similarly, if both dividend and divisor are negative, the quotient should be positive and is written in its present form. 
If the original signs of the dividend and divisor were different, the quotient should be negative. One special case in 
which the quotient is the most negative number is considered an error. 

3.1.5.3 Arithmetic Shift - As shown in Figure 3-3, as the flow is entered at ASH, the Shift Counter is loaded with 
the number of bit positions to be moved (if any). A test is then made to determine the direction of shift, or whether 
no shift will occur at all. 

If no shift is called for (no count set in the Shift Counter), the local condition codes are set and transferred to the 
CPU Status Register as the flow concludes. 

If a shift left is called for, the operand is shifted left one bit position, stored and the count incremented. This repeats 
until the shift count is exhausted, at which time the local condition codes arc set and transferred. 

3-10 



LEFT 
-------·--~--

SHIFT OPERAND LEFT 

& STORE. INCHEMENT 

COUNT. 

ASH 

LOAD SHIFT COUNTER 

NO SHIFT 

SET LOCAL CONDITION 

CODES 

TRANSFER LOCAL 

CONDITION CODES TO 

CPU STATUS 

DONE 

SHIFT OPERAND RIGHT 

& STORE. DECREMENT 

COUNT. 

Figure 3-3 KEl 1-E ASH Algorithm 

11-1610 

If a right shift is called for, the opposite occurs with the shift count being decremented on each pass through the 
loop. 

In the KEl 1-E hardware, the operand to be shifted is in R(SF) and is sent first to the D Register and from there to 
both the BR and to a precleared B Register. The contents of BR (05 :00) determines the direction of shift. If these 
contents are greater than 0, the shift will be to the left. If they arc less than 0, a right shift is called for. If they arc 0, 
no shifting will occur. Setting of condition codes for transferral is implemented identically to MUL and DIV. 

3.1.5.4 Arithmetic Shift Combined - As shown in Figure 34, as the flow is entered at ASHC it can be seen that 
the flow is similar to the ASH flow except that in this case the hardware is dealing with 32 bits instead of 16. The 
Shift Counter is loaded from the least significant 6 bits of the source operand, and the low shift operand is sent to 
the shift register. 

As in ASH, the value of the shift count with respect to 0 is tested to determine right or left shift. If a right shift is 
called for, the operand is shifted right one position and the partial high answer is stored while the count is 
decremented for each pass through the shift loop until the shift count is exhausted. For the left shift condition, the 
count is incremented; for the right shift, it is decremented for each pass through the loop. 

When the shift count is exhausted for either loop, the low answer is stored (the high answer is already stored), the 
condition codes are set, transferred to the CPU Status, and the flow is terminated. 

3-11 



C ASHC ' _.,...,.. .... ,... __ , __ J 

~
~TCOUNTER 
OW SHIFT OPERAND TO 

~IFT REGISTER ---- ------

NO SHIFT 

STORE LOW ANSWE~ -·-c __ _ 
[~L C~-;:m;-~ION CODES 

[

-TR-AN-S;;;R LOCAL 

CONDITION CODES TO 

CPU STATUS 
.......-----' 

_L_ c DONE =:) 

RIGHT 

Figure 34 KEl 1-E ASHC Algorithm 

11-1611 

In the KEll-E hardware, the contents of the register designated by the source field (R(SF)) and that register ORed 
with one (R(SFVl)) are loaded into the BR and DR Registers concatenated such that the high operand is in the BR 
and the low operand is in the DR. These are then shifted until the count is exhausted, at which time the low answer 
is stored in the odd register and the high answer is already stored in R(SF) by the shifting action within the loop. 

Setting condition codes and transferral is identical to ASH. 

3.2 KEll-F FLOATING INSTRUCTION SET 

The KEl 1-F Option is used for floating-point operations in the KDl 1-A Centeral Processor. The principles involved 
in these instructions are given in the following paragraphs. 

3.2.1 Polish Mode 

In the KEl 1-F, floating operations take place on the top of a hardware stack by what is termed Polish Accumulator 
Technique. This technique is based on a form of mathematical notation developed by the Polish logician 
Lukasiewicz. The procedure allows complex logical expressions to be stated in a nonambiguous manner without the 

3-12 



necessity of relying on hierarchical delimiters such as parentheses. Its use in the KEl 1-F greatly simplifies scanning 
mechanisms. By determining interrelationships between operands in various mathematical operations, Lukasicwicz's 
technique allowed rearrangement of terms so that ordering of operands on the stack minimized the number of 
operations required to achieve the desired mathematical result. Operations could then be performed in sequence 
with intermediate results being stored automatically by the stack, then used in the next sequential operation until 
calculation was compJt>te. Without this scheme, each equation term would have to be calculated separately, stored, 
then called for use in sequential steps. 

Polish notation permits the writing of algebraic or logical expressions in a manner that eliminates the need for 
grouping symbols and conventions as to operator precedence. 

In the expression X(Y+Z), the parentheses are necessary so that the reader (or interpreting device) can understand 
the grouping intended, and the precedence of operations to be performed. 

Certain operators have precedence over others. For example in the expression X+Y/Z, the divide operator(/) is 
understood to have higher precedence than the add operator(+) so that it is understood that the operation is to be 
interpreted as X+(Y/Z) rather than (X+Y)/Z. 

ln right-hand Polish notation, the operators are located to the right of the operands. For example, the expression 
X+Y is written XY+. Similarly the expression X+Y+Z can be written either as XY+Z+ or XYZ++. In this latter 
example, the first add operator adds Y and Z while the second adds X to that sum. 

In Polish notation, the following juxtapositions can be made to basic logical expressions: 

Basic Expression 

X(Y+Z) 
X+Y/Z 
Q=X(Y-Z)/(R+S) 

Polish Notation 

Either YZ+XX, or XYZ+X 
Either YZ/X+, or XYZ/+ 
XYZ--XRS+/Q= 

The last listing is an example of how Polish notation can be used to reorder many variables. 

3.2.2 Floating-Point Arithmetic 

Floating-point representation of a binary number consists of three parts; a sign bit, an exponent, and a mantissa. The 
mantissa is a fraction in magnitude format with the binary point positioned to the left of the most significant bit of 
the mantissa. All mantissas are assumed to be normalized; therefore, all leading Os are eliminated from the binary 
representation. The most significant bit is thus a logical 1. Since all mantissas are assumed to be normalized, the 
MSB, which will always be a 1, is not stored because it is redundant. Leading Os are removed by shifting the mantissa 
left; however, each left shift of the mantissa must be followed by a decrement of the exponent value to maintain the 
true value of the number. The exponent value represents the power of 2 by which the mantissa is multiplied to 
obtain the value to be used. Figure 3-5 shows an unnormalized number in floating-point notation and then the same 
number after it has been normalized. 

3.2.2.1 Floating-Point Addition and Subtraction - For floating-point addition or subtraction operations, the 
exponents must be aligned or equal. If they are not aligned, the mantissa with the smaller exponent is shifted right 
until they are. Each shift to the right is accompanied by an incrementing of the exponent value. When the exponents 
are aligned or equal, the mantissas can be added or subtracted, whichever the case may be. The exponent value 
indicates the number of places the binary point is to be moved to obtain the actual representation of the number. 

3-13 



NOTE: 

24 BITS OF UNNORMALIZED MANTISSA 

~~--~~-l--;--1--1 ~--;~·-···~--;-~--;-~~·--z;-0-0,--;-] 
t..:.....:.__,_J,. _______ L.,._,.,.,,.,.., __ .._ ___ _,,_ ____ .___ ________ .____ 

23 0 
EXPONENT= 00 100 011 

24 BITS OF NORMALIZED MANTISSA(SHIFTED 6 PLACES TO THE LEFT) 

BHEli~~~~~-~ ... J~-~-.-~~-~- 1 1 ~--~~- 0. 1 0 0 0~~] 
23 0 

EXPONENT= 00 011 101 
(ORIGINAL EXPONENT DECREMENTED 6 TIMES) 

23 BITS OF NORMALIZED MANTISSA 

HIDDEN 1 --~- 1 1 1 O 0 1 1 0 0 0 0 ; ·. 0.---;-·~--;·-~--;-·;-;] 
REMOVED -~L.....----L------ --L-. 

22 0 

_,, __________ -·--y------ ··-·---- ........... _ -·--· 

HIGH ARGUMENT 
AS STORED ( 16 BITS) 

EXPONENT= 00 011 101 

LOW ARGUMENT 
AS STORED ( 16 BITS) 

Mantissa becomes 24 bits after hidden 1 is inserted by the hardware. 

11-1612 

Figure 3-5 Floating-Point Representation 

In the example below, the number 71 0 is added to the number 4010 , using floating-point representation in 
binary-octal notation. Note that the exponents are first aligned and then the mantissas are added; the exponent value 
dictates the final location of the binary point. 

401 0 = 508 = 0.101 000 X26 

+ 7 1 0 = 7 8 = 0 .111 000 x 2 3 

a. To align exponents, shift the mantissa with the smaller exponent three places to the right and increment 
the exponent by 3. 

4010 = 508 = 0.101 000 X26 

+ 710= 7s=0.000111X26 

-----~ 
4710 =57 8 =0.101111 X2 

b. Move the binary point six places to the right. 

5 7 
,-..... r"""' 

0.101111. 
\...____/ 

3.2.2.2 Floating-Point Multiplication and Division - In floating-point multiplication, the mantissas are multiplied 
and the exponents are added. For floating-point division, the mantissas are divided and the exponents are subtracted. 

There is no requirement to align the binary point in the floating-point multiplication or division. 

3-14 



In the following example, the number 71 0 is multiplied by the number 51 0 • An 8-bit register is assumed for 
simplicity. 

71 o = 7 8 = 0.1 110 000 X23 

x 5 1 0 = 5 8 = 0 .1 010 000 x 2 3 

00000000 
1110000 

0 
1110000 

0.10001100000000 x 26 

Move the binary point six places to the right. 

35 10 = 43 8 = 0\10001 ~00000000 

3.2.3 Algorithms for KEl 1-F Operations 

Figures 3-6 through 3-10 illustrate the sequences of operation for the floating-point operations. Note that to 
complete its function, the KEl 1-F hardware utilizes much of the KEl 1-E hardware. 

FIS 

FETCH B ARGUMENT 

DISASSEMBLE HIGH 

WORD OF B ARGUMENT 

SAVE B EXPONENT IN 

SCRATCH PAD REGISTER 

INSERT HIDDEN 1 IN HIGH 

PART OF B MANTISSA 

GENERATE ZERO B 

ARGUMENT (SIGN, 

EXPONENT, MANTISSA) 

FETCH B ARGUMENT 

DISASSEMBLE HIGH 

WORD OF A ARGUMENT 

SAVE A EXPONENT IN 

SCRATCH PAD REGISTER 

INSERT HIDDEN 1 IN HIGH 

PART OF A MANTISSA 

GENERATE ZERO A 

ARGUMENT (SIGN, 

EXPONENT, MANTISSA) 

Figure 3-6 Floating Entry Algorithm 

3-15 

11-1613 



When a floating instruction is executed, the flow is entered at FIS (Figure 3-6). The B argument is fetched from 
core, high B first and then low B. The high B argument consisting of sign, exponent, and high mantissa is then 
disassembled separating the sign, exponent and mantissa. The expone!lt is saved in the low byte of one of the 
Scratch Pad Registers. 

As previously stated, all mantissas are assumed to be normalized, meaning that the most significant bit of the 
mantissa is always a 1. Therefore, the MSB (referred to as the hidden 1) of the mantissa is not stored in core. This 
hidden 1 is now reinserted into the mantissa. 

Next, a test to determine if the B exponent is equal to 0 is made. If it is 0, a clean 0 is generated as the B argument 
(sign, exponent, and mantissa). 

The A argument is now fetched from core and the same procedure described above is followed. A test is now made 
to determine which floating instruction is to be executed. 

3.2.3.l Floating-Add and Floating-Subtract - As shown in Figure 3-7, the floating subtract flow enters at FSUB 
and immediately complements the sign of the subtrahend. From that point on, it proceeds as in floating-add. This is 
mathematically valid since adding the negative of a number is identical to subtracting it. 

The floating-add flow is entered at FADD. A test is then made to see first if the B Addend is negative and then if the 
A Addend is negative. If either or both are, the 2's complement is taken of either or both. 

The A exponent is subtracted from the B exponent and a test is made to see if the B exponent is equal to or greater 
than the A exponent. If it is not, then the A and B Addends and exponents must swap positions. The swap is made 
so that the mantissa with the smaller exponent is in position to be shifted later to align the binary points. Since there 
are only 308 bits of mantissa, an attempt to align binary points by shifting the smaller mantissa right more than 308 

places would result in that mantissa being lost. Because of this, another test is made to see if the exponents are in 
range (difference :::;;;308 ). If they are not in range, the argument with the larger exponent is taken as the answer. 

If the exponents are in range (difference ~308 ), a check is made to see if they are equal to each other. If so, A 
Addend is added to B Addend next. If the exponents are unequal, then the Addend with the smaller exponent is 
shifted right. This corresponds mathematically to lining up the decimal (binary) points. The larger exponent then 
becomes the initial exponent of the answer. The term "initial" exponent is used because normalization of the answer 
has not as yet taken place. 

At this point, the A Addend is added to the B Addend. The sign of the answer is checked, and the answer is 
complemented if the sign is negative. The answer is then normalized, rounded, and stored, as described in Paragraph 
3.2.3. 

As stated before, floating subtract is implemented by changing sign of the subtrahend and adding. 

It should be noted that there are two extra bit positions on the low end of the mantissa for rounding purposes. 
These bits hold the last two bits shifted out of the mantissa when aligning binary points. One of these bits is dropped 
before going to the normalize round and store flow. It will be seen in Paragraph 3.2.3.4 that the rounding bit is 
added to the remaining extra bit. The second extra bit was maintained in case the answer was negative. When the 
answer was complemented, the lower extra bit could affect the upper extra bit. 

3-16 



'---F-~ 

B EXPONENT MINUS 

A EXPONENT 

YES 

COMPLEMENT SIGN OF ] 

SUBTRAHEND 

2'S COMPLEMENT OF-] 

ADDEND B 

2'S COMPLEMENTOF ...... ] 

ADDEND A . 

--. --- -.L. ___ .. 
ADDEND & EXP. B l 
CHANGE PLACES WITH···· 
ADDEND & EXP. A 

... --·-··1 SHIFT ADDEND WITH 
SMALLER EXPONENT . 

RIGHT. INCREMENT 

EXPONENT. -··-- -=--"---~·_..._ 

Figure 3-7 KEl 1-F FADD and FSUB Algorithm 

For example: 

Negative Answer (uncomplemented) 
(complemented) 

Rounding bit added to this position. 

Mantissa ··1· Extra ~its 
0 1 1 1 0 1 
1 0 0 0 1 1 

_. __ J 

YES 

2'S COMPLEMENT OF 

ANSWER 

11-1614 

It can be seen from the above example that the second extra bit can have an effect on the mantissa when rounding 
takes place, i.e., cause a carry into the mantissa. 

3-17 



3.2.3.2 Floating-Multiply - As shown in Figure 3-8, the flow is entered at FMUL and a check is made to determine 
if either argument is equal to 0. If so, there is no need to go any farther with the operation and a 0 answer is 
generated. The local condition codes are set and the flow proceeds to STORE on Figure 3-10. 

If neither argument is equal to 0, the XOR of the sign bits is saved and the exponents of the A and B arguments are 
added to produce the unnormalized exponent of the answer. 

At this point, the step counter is loaded with 308 and the multiply loop is entered. In this loop, the state of the least 
significant bit of the multiplier {MSROO) is monitored. In any pass through the loop, if this bit is a {O), both the 
multiplier and the partial product are shifted right one position and the step count is decremented. If, however, on 
any pass through the loop the LSB of the multiplier is seen to be a {l), both the multiplier and partial product are 
shifted right one position and then the multiplicand and partial product are added before decrementing the Step 
Counter. 

Tills process continues until the count is exhausted (each bit of the multiplier has been monitored), at which time 
the flow proceeds to the NORMALIZE, ROUND & STORE flow in Figure 3-10. 

It can be seen from the above description that multiplication of the mantissas is identical to the way in which it was 
taught in Grade School. The multiplicand is added to the partial product each time a 1 is encountered in the 
multiplier, followed by a right shift of the partial product. For each 0 encountered in the multiplier, the partial 
product is simply shifted right. 

3.2.3.3 Floating-Divide - As shown in Figure 3-9, the flow is entered at FDIV. At this point, a test is made to see if 
either the divisor or dividend are equal to 0. If they are, there is no reason to continue the computation. 

If the divisor is equal to 0 (divide by 0), the local condition codes are set to indicate an underflow, then are 
transferred to the CPU Status Word. At this point the flow terminates. 

If the dividend is equal to 0, a 0 answer is generated, the local condition codes are set, and the flow proceeds to 
STORE on Figure 3-10. 

If, however, neither argument is equal to 0, the XOR of the signs of the arguments is saved, the exponents are 
subtracted to produce the initial exponent of the answer, and the Step Counter is loaded. The divisor is then 
subtracted from the dividend and the carry-out of the ALU is saved. Both the dividend and quotient are shifted left 
one bit position as the saved carry-out is shifted into MSROO, and as the LSB of the quotient and the Step Counter is 
decremented. 

At this point the divide loop is entered. In this loop, the state of the least significant bit of the quotient (MSROO) is 
monitored. In any pass through this loop, if this bit is a (1), the divisor is subtracted from the dividend and the 
carry-out of the ALU is saved. Both the dividend and quotient are shifted left, the carry-out of the quotient is sent 
to MSROO, and the Step Counter is decremented. If, however, upon entering this loop the LSB of the quotient 
(MSROO) is seen to be a (0), the divisor is added back into the dividend and the carry-out of the ALU is saved. Once 
again the dividend and quotient are shifted left, the saved carry-out of the ALU is sent to MSROO, and the Step 
Counter is decremented. 

This process continues until the step count is exhausted, at which time the flow proceeds to the NORMALIZE, 
ROUND & STORE operation described in Paragraph 3.2.3.4. 

Note that division of the mantissas is also identical to the method taught in Grade School. The divisor is subtracted 
from the high part of the dividend and, if the divisor was smaller than or equal to the portion of the dividend being 
subtracted from, a 1 is shifted into the answer. The quotient and dividend are then shifted left. If the divisor was 
larger than the dividend, a 0 is shifted into the quotient. Since the hardware cannot look ahead to determine how 
many places the dividend must be shifted left before the ne~ · :mbtraction will be successful, the divisor will be added 
back into the dividend until the dividend is larger than or equal to the divisor and then a 1 will be shifted into the 
answer. 

3-18 



FMUL 

SAVE XOR OF SIGN BITS 

OF A AND B ARGUMENTS. 

ADD EXPONENTS. 

LOAD STEP COUNTER 308 

ADD MULTIPLICAND TO 

PARTIAL PRODUCT. 

DECREMENT STEP CTR. 

NORMALIZE 

ROUND & STORE 

YES 

=O 

SHIFT MULTIPLIER RIGH 

SHIFT PARTIAL PRODUCT 

RIGHT. DECREMENT STEP 

COUNTER. 

GENERATE ZERO ANS 

SET LOCAL CDNDITION 

CODES 

i 
I 

~ 
11-1615 

Figure 3-8 KEl 1-F FMUL Algorithm 

SET LOCAL CONDITION 

CODES TO INDICATE 

UNDERFLOW (DIVIDE BY 

ZERO) 

TRANSFER LOCAL 

CONDITION CODES TO 

CPU STATUS 

DIVISOR= 0 

c ___ D_o_N_E __ ) 

FDIV 

SAVE XOR OF SIGN BITS 

OF A AND B ARGUMENTS. 

EXPONENT OF DIVIDEND 

MINUS EXPONENT OF 

DIVISOR. LOAD STEP 

COUNTER. 

DIVIDEND MINUS 

DIVISOR 

SHIFT DIVIDEND LEFT 

SHIFT QUOTIENT LEFT. 

DECREMENT STEP CTR. 

ADD DIVISOR BACK INTO 

DIVIDEND. SAVE CARRY 

OUT OF ALU. 

SHIFT DIVIDEND LEFT. 

SHIFT QUOTIENT LEFT. 

CARRY OUT TO LSB OF 

QUOTIENT (MSROO). 

DECREMENT STEP CTR. 

NORMALIZE 

ROUND & STORE 

DIVIDEND= 0 

= 1 

GENERATE ZERO 

ANSWER. SET LOCAL 

CONDITION CODES 

SUBTRACT DIVISOR 

FROM DIVIDEND. SAVE 

CARRY OUT OF ALU. 

( 

j 
I 
I 

I 
I 

* STORE ) 

11-1616 

Figure 3-9 KEl 1-F FDIV Algorithm 

UNDERFLOW 

SET LOCAL CONDITION 

CODES TO INDICATE 

UNDERFLOW 

NORMALIZE 

ROUND & STORE 

SHIFT MANTISSA LEFT 

DECREMENT EXPONENT 

ROUND MANTISSA 

(MANTISSA+ 1) 

ASSEMBLE HIGH ANSWER 

(SIGN, EXPONENT, 

MANTISSA) 

STORE ANSWER 

TRANSFER LOCAL 
CONDITION CODES TO 
CPU STATUS 

DONE 

NO 

DR09 = 0 

SHIFT MANTISSA LEFT 

DECREMENT EXPONENT 

OVERFLOW 

SET LOCAL CONDITION 

CODES TO INDICATE 

OVERFLOW 

~ 
I 
: 

11-1617 

Figure 3-10 KEl 1-F Normalize, Round & Store Algorithm 

3-19 



3.2.3.4 Normalize, Round and Store - As shown in Figure 3-10, the flow can be entered either at NORMALIZE, 
ROUND & STORE, or at STORE. The STORE flow is entered from FDIV after determination that the dividend was 
equal to 0, or from FMUL after it has been determined that one of the arguments was equal to 0. In these flows 
(FDIV & FMUL), local condition codes were set and upon entering this flow the answer is stored, the local 
condition codes are transferred to the CPU Status Word, and the flow terminates. 

The NORMALIZE, ROUND & STORE entry is made from all other flows if no unusual conditions are detected in 
the process. The first test is made to see if the mantissa is normalized. This is indicated by the state of DR09, the 
MSB of the mantissa. If this bit is not set, the mantissa is not normalized and, as a result, is shifted left one bit 
position while decrementing the exponent. This is formed into a loop until DR09 becomes set, at which time the 
mantissa is normalized and ready to be rounded. 

As noted earlier, an extra bit position is carried on the low end of the mantissa. This bit is the position the rounding 
bit is added to. If the extra bit is a l, then there will be a carry into the least significant bit of the mantissa, thus 
increasing the absolute value of the number. If the extra bit is a 0, there will be no carry-in. 

For example: 

Mantissa 
1 0 0 1 0 0 

+ 
1 0 0 1 0 1 0 

Extra Bit 
1 
1 
0 

Rounding Bit 

The extra bit position is dropped before the mantissa is stored. After rounding, a test is made to see if the mantissa is 
still normalized. It is possible for the mantissa to become unnormalized as a result of rounding, i.e., carries could 
propagate all the way through and beyond the most significant bit of the mantissa. 

For example: 

l 1 1 I 1 
+ 1 
10 0 0 0 0 0 0 0 0 

If this happens, the mantissa must be shifted right one place and the exponent incremented to renormalize the 
mantissa. 

The high answer (comprising the sign, the exponent, and the mantissa) is now assembled. Remember that the 
mantissa is always assumed to be normalized, which means that the most significant bit is always going to a (1). 
Because of this, there is no point in storing the most significant bit in core. This (1) in the MSB of the mantissa is 
termed the hidden 1 and is dropped when the high answer is assembled. 

Next a check for either overflow or underflow is made. If underflow is indicated, the local condition codes are set 
appropriately, transferred to the PSW, and the flow terminates. Likewise if overflow is indicated, the same action 
occurs. If, however, neither is indicated, the local condition codes are set and the answer is stored in core. The flow 
terminates after transfer of condition codes to the CPU Status Word. 

3-20 



4.1 SCOPE 

CHAPTER 4 
LOGIC DESCRIPTION 

This chapter describes the hardware associated with both the KEI 1-E and KEll-F. Because of their 
interdependence, these two options are not separated in this chapter as they are in other chapters but rather are 
described as one entity. The options are described at both a block diagram level and a logic level. In addition, the 
philosophy behind ROM programming is discussed together with a guide to reading the flows. Where necessary, 
interaction on a flow level with the KDI 1-A is also given. For convenience, logic descriptions are ordered as to their 
appearance in the Drawing Set. 

4.2 FUNCTIONAL BLOCK DIAGRAM DISCUSSION 

Figure 4-1 is a functional block diagram of the KEI 1-E and KEI 1-F showing the interconnections with the KDl 1-A 
Central Processor. Both options are shown. The dotted line separates the EIS on the left and the FIS on the right. 

The KEll-E comprises one 16-bit input register (BR); a holding register that receives data from the KDl 1-A; a 
16-bit left/right shift register (DR); an 8-bit up/down counter that receives data from the input register; a local 
condition code register that records the status of the KEll-E operations; a dual 4:1 multiplexer (RDMUX) that 
channels data via BUS RD drivers from the two KEll-E registers and status to the KDl 1-A; and a 256-word by 
68-bit ROM that is used to control both the KDl 1-A and KEI 1-E during the execution of the EIS instruction. The 
two 16-bit registers (BR and DR) arc simply an expansion of the basic KD 11-A data path. 

The KEl 1-F comprises all KEI 1-E hardware plus two 16-bit left/right shift registers (HSR and MSR) that function 
also as holding registers; a dual 4: 1 multiplexer (FRD MUX) that assembles data for channeling from the KEI 1-F 
registers to the KDI 1-A via separate bus drivers; a constants generator that creates the offsets required in FIS 
computations; and a 256-word by 8-bit ROM used together with the EIS ROM to control both the KDl 1-A and 
KEI 1-F during the execution of an FIS instruction. 

The input to the BR Register (DMUX(15 :00)) is one of the buses in the KDl 1-A. All data to the KEI 1-E or KEl 1-F 
·options is received over this bus. The BR Register is similar to the B Register in the processor in that it is clocked by 
the Pl and P3 timing pulses from the basic machine. Normally, without the KEI 1-E/F installed, data in the KDI 1-A 
might be moved from the scratch pad, over the BUS RD through the buffer and the ALU. From the ALU, it would 
move to the D Register, onto the DMUX, and into the B Register (this can be followed by referring to drawing 
KDI 1-A-BD). With the KEI 1-E/F installed, however, if one of the EIS or FIS instructions were issued, the data on 
the DMUX might not enter the B Register but might continue on and into the BR Register in the EIS option. The 
BR is merely a holding register and every register within the option is loaded from it. 

4-1 



EIS BOARD 
M7238 

DMUX [15:00] 

16 BITS 

BR 

BR<07:00> 

8 BITS (UP/DOWN) 

COUNTER 

}cLK 

ENABLES 
AND 
CLOCKS 

BUS RD (15:00] 

16 BITS 

BUS RD DRIVERS 

16 BITS 

RD MUX 
BR EPS 

BR (14:00] DR (N:C) 

(16) (16) (4) 

I STATUS 

16 BITS L/R SHIFT) 

DR 

EN 

JSEL. 

}
MODE 
SEL 

I 
I 
I 
I 
I 
I 

11 

FIS BOARD 
M7239 

BUS RD DRIVERS 

FRO MUX 
CONS HSR 

ASSEMB MSR 

(6) 

CONSTANT 

16 BITS (L/R SHIFT) 

HSR 

BUS U(56:00) EUBC (04:01) 

· ·u(80:57) 

EIS 
U REG r 

EIS/FIS ROM 
256 WORDS X 68 BITS 

EUPP(8:0) 

su~'~~~------------..-------11 Bu.f 1~ux 

Figure 4-1 EIS/FIS Functional Block Diagram 

EN 

} SEL 

}
MOOE 
SEL 

16 BITS (L/R SHIFT) 

MSR 

U(88:81) 

FIS ROM 
256 WORDS X 8 BITS 

BUPP(8:0) 

}
MOOE 
SEL 

11-1618 



The BR feeds the DR, the RD MUX concatenated with DRIS, and the RD MUX straight through. It feeds the 
counter with bits (07:00) to keep track of the number of steps performed. When the FIS is installed, the BR is used 
to feed the "assemble" input of the FRD MUX and to load both the HSR and MSR Registers. 

NOTE 
For the EIS option, only bits (05:00) are required for the 
counter even though bits (07:00) are loaded. Bits (07:00) are 
required for the FIS option. 

In multiply and divide operations, the counter keeps track of how many steps have been executed in the various 
loops. In arithmetic shift and arithmetic shift combined instructions, it holds the count or number of shifts that are 
to be made. 

The DR Register is clocked by Pl + P2 and is fed directly from the BR Register. The mode selected determines 
whether it will shift right, shift left, or simply be loaded. At times it is used concatenated with the BR to hold the 
lower portion of the operand being shifted while the upper portion is shifted in the DMUX of the basic machine. 
The DR can feed either the RD MUX (EIS) or the FRD MUX (FIS), depending upon the mode of operation. The 
DR Register feeds the BUS RD via the RD MUX for transmission back to the basic machine. 

The RD MUX is a multiplexer with four input ports. From right to left, depending upon the combination present at 
its select input, it is fed with the following: 

1. Local status (EPS(N:C)). This input records the condition codes of the instruction as to whether it is 
negative or equal to 0, or whether there is any carry bit, or if there is overflow. This information is 
assembled here and transferred back to the basic machine as the last event when an instruction is 
complete. From here, it is loaded into the basic machine's Status Register. 

2. The entire 16 bits of the DR Register are put on the RD BUS and fed either through the ALU or into 
the general registers, or any place in the basic machine accessible from BUS RD. 

3. The BR shifted left one place concatenated with DRl 5 (BR(14:00),DR15). As in the case of Arithmetic 
Shift Combined, the BR and DR are concatenated and shifted left through that port with the DR being 
the lower register. 

4. The entire 16 bits of the BR Register where it is fed, with no shifting, onto the BUS RD. 

The EIS ROM word is physically 68 bits wide (i.e., the ROM bits that are actively being used), but the KDl 1-A 
ROM contains 56 bits while the KEl 1-E ROM has 24 bits of its own. Since the KEl 1-E must control the KDl 1-A 
data path, most of the 56 ROM bits in the basic machine must be duplicated. Not all need be duplicated, however, 
just those that are to be used by the option. The others are driven low by hardware in the option, thereby effectively 
loading Os into those positions in the U Register. As a result the KEl 1-E effectively sends 56 ROM bits back to the 
basic machine, not all of which are active, and generates 24 bits of its own which it feeds to its own U Register. 
These bits are used to control the EIS data path, to clock the BR and DR Registers, to control which way the DR 
Register will shift, to load the counter, and to cause the counter to count. They are used further to control what 
port on the RD MUX is active, and to clock the status bits (see ROM U word descriptions in Paragraph 4.6.2). 

4-3 



The option also contains a branch microtest multiplexer (BUT MUX) which is used for testing conditions that 
determine selectable changes in microprogram flow. This BUT MUX is similar to the one in the KDll-A and is 
duplicated here to control conditions peculiar to the option. Bits in the ROM are used to control inputs to the 
multiplexer which, in turn, checks for the true or false state of some testable condition. The result of that test then 
is used to alter the "next address" residing in the present ROM word UPF field. The output of the BUT MUX goes 
back to the basic machine to an OR gate in front of the UPP Register where ls may be inserted in appropriate 
positions to alter that base address to as many different addresses as there are branches called for. 

In the KE 11-F, the HSR and MSR Registers are both fed by the BR when an FIS instruction is called for. Their 
mode of operation is selected similarly to the DR in the EIS option except that here three bits are used to control 
two registers. In operation, normally the HSR can be loaded at any time unless conditions require that both the HSR 
and MSR be loaded. In this event, the MSR is loaded before the HSR. An examination of the mode selection for the 
HSR and MSR on print KF-2 illustrates why the latter statement is true. 

The FRD MUX is similar to the RD MUX in the EIS option. In this case, a constants generator is also multiplexed to 
the BUS RD. Select bits control the inputs from the HSR or MSR Registers, the constants generator, or the assemble 
input from BR and DR in which the high 7 bits of the mantissa are in the DR Register, the 8-bit exponent is held in 
the BR Register, and the sign is taken from the EPS(N) bit. 

The BUS RD drivers (74H01s) are identical to those used in the EIS option but are enabled only when an FIS 
instruction is called for. 

The FIS ROM is a further horizontal extension of the microinstruction word. It supplies the extra control bits 
required for floating-point operation. It should be noted that the ROMs on the EIS board are also used to execute 
the FIS instructions. 

Additional control logic is provided in this option to allow branch control of bit 1 of the ROM address from this 
hardware rather than from the EIS option. Provision is also made to enable DATO operations on the bus so that 
answers may be stored back in core. This feature is not needed in the EIS option. 

4.3 DETAILED BLOCK DIAGRAM DISCUSSION 

The descriptions in this paragraph are intended to supplement those in Paragraph 4.2. The detailed block diagrams 
for the KEl 1-E and KEl 1-F are shown on drawings KEl 1-E-BD and KEl 1-F-BD, respectively. These block diagrams 
have been arranged such that the inputs and outputs match the outputs and inputs of the KDl 1-A bloc:k diagram in 
drawing KDl 1-A-BD. Note that each block contains the drawing number on which the logic may be found, e.g., the 
BR Register is found on drawing KE-2 of the EIS schematics. 

As shown on KEll-E-BD, the option is fed from the processor DMUX output. This is sent directly to the BR 
Register through which all data to both options is fed. 

The output of the BR Register feeds the RD MUX and the DR Register. All 16 bits of the BR go to the DR while 
bits (07:00) go to the counter. As explained earlier, BR(14:00) can be shifted left one position and fed to the RD 
MUX with bit 15 of the DR sent to the low bit position. BR(l 5 :00) is also sent off the page to the FIS block 
diagram, as is DR{l 5 :00). The RD MUX is selected by combinations of SRDMl and SRDMO, two bits in the EIS 
extension of the ROM word. Its output feeds a 74H01 driver which is in turn enabled by STRDM{l)H, the latter 
being the ERD field in the extension ROM word. When asserted, this data is enabled out onto BUS RD from the RD 
MUX. 

44 



The COUNT, fed by DR(07:00), is used in both the KEll-E and KEl 1-F. The coumer is loaded by LD COUNT L 
and is clocked by CLK COUNT H. It is used to test whether or not the count is equal to 0, thereby keeping track of 
where the operation is in a loop. 

The EPS(N ,Z,V ,C) block is used to compile the local condition codes (EPS means External Processor Status) for 
transmission back to the Processor Status Word via the RD MUX at the conclusion of each instruction. An inhibit 
signal (KE-5 INH PS CLK (1) L) is also generated at this time that prevents clocking any other bits in the basic 
machine status. In the case of an aborted instruction, these bits are not transferred but rather are stored here for 
information after servicing the abort. This leaves the basic machine's condition codes untouched as further 
information in servicing the abort. 

The AUXILIARY ROM CONTROL block consists of some combinational logic that looks at a general purpose code 
(GPC=2) and the decoding of the MUL and DIV instructions to feed ESALU(3 :0) back to the processor. These are 
select bits sent to the basic machine's ALU via a multiplexer into which the ROM bits are also sent. When selected, 
this auxiliary combinational logic replaces ROM word control of the ALU, causing the add, subtract, or straight 
through operations to be controlled by special conditions during the multiply and divide instructions. 

The box CLOCK ENABLE GATES is shown to indicate that Pl, P2, and P3 from the basic machine are used to gate 
internal conditions when generating the clocking signals for the various registers in the option. 

The EUBF MUX box is a multiplexer that looks at 5 EUBF bits in the extended ROM word. These bits serve a 
similar function to the EUB bits in the basic machine ROM word. They are used for microbranch testing within the 
option. When just the EIS is installed, only 4 bits are used with the 5th bit pulled up. When the FIS option is 
installed, all 5 bits are used. Signals EUBC( 4: 1) are sent back to the basic machine for branch control. 

The box marked U WORD CONTROL ROM stands for the KEl 1-E U Word Control ROM, comprising 256 words X 
80 bits. Its output feeds a KEll··E U WORD REGister, which is 24 bits wide, with the EIS ROM bits (bits 57 
through 88). The lower 56 bits are sent back to the KDl 1-A U Word Register (K2) over BUS UxxL. This is actually 
44 bits since in the KE 11-E U Word some of the bits are used to drive two bits back to the basic machine. The BUS 
U is a wired-OR of the CPU ROM output. Eight bits (BUS U(O?:OO)) are sent back to the Microprogram Pointer 
Register in the processor for feeding the KDl 1-A U Word Control ROM. 

There are eight non-duplicated ROM bits that are hardware driven. They may be considered as wire-ORed with the 
ROM outputs. Note that they are not ROM bits but rather open-collector gates. 

The FIS block diagram on drawing KEl 1-F-BD contains all that was contained on the EIS block diagram plus the 
hardware representations for the FIS option. The EIS descriptions will not be repeated here. 

As shown, BR( 15 :00) are used to feed both the HSR Register and the MSR Register. Both are clocked by 
E(Pl +P2)H. This clock comes from the EIS board and is always present at both registers. It is not effective, however, 
until a register is selected by select bits generated in the FIS ROM Register. The same is true of the MSR Register 
except that an additional select bit is required to enable this register. 

Both the HSR and MSR Registers feed the FRD MUX which is similar in operation to the RD MUX in the EIS. BUS 
RD is fed with either HSR(l 5 :00) straight-through; with the MSR(15 :00) straight-through; with the input from the 
9-bit constants generator; or it will assemble the EPS(N) bit (which is the sign bit) with the 8-bit exponent field 
(BR(07:00)) and with the high 7 bits of the mantissa (DR(06:00)), all of which constitute the high answer from a 
floating operation. 

4-5 



The output from the FRD MUX is fed through an enabled driver similar to the drivers for the EIS option. In this 
case, a special enable is provided (STFRDM(l)H) that is called up for only floating instructions. The FUB MUX box 
is an 8: 1 branch multiplexer that controls EUBC 1 for the FIS operations. When enabled, it disables its counterpart 
in the EIS option and allows this multiplexer to control bit 1 of the ROM address. 

The KEll-F U Word Control ROM (256 words X 8 bits) provides the additional extension of the microinstruction 
word for the FIS option. It interfaces the processor data path and control in similar fashion to the ROM in the EIS 
option. This ROM is addressed by another buffered version of the Microprogram Pointer (BUPP(8:07)) rather than 
the (EUPP(8:0)) used for the EIS ROM. This ROM feeds an 8-bit wide U Word Register similar to the register used 
in the EIS. 

4.4 INTERFACE 

The KEl 1-E Option (M7238 module) and the KEl 1-F Option (M7239 module) both interface the KD l 1-A Central 
Processor via module slots in the KDll-A (A-F2 for the KEll-E and A-Dl for the KEll-F). In addition three (3) 
"over-the-back" cables from the M7238 module (EIS) connect the 40-pin Berg connectors on the M7232 (U Word) 
module at location A-D3. These cables wire-OR the outputs of the "main" KDl 1-A ROM with the "auxiliary" 
KEll-E and/or KEll-F ROMs. 

The KEll-E receives data from the KDll-A via DMUX(lS:OO)H. The KEll-F, in turn, receives data from the 
KEll-E. Data is returned from both options over the wire-ORed bus BUS RD(lS:OO)L. 

When the KEll-E is installed, J1 on the processor module M7233 (IR DECODE) at location A-·FS must be 
removed. When the KEl 1-F is installed, jumpers Wl, W2, and W3 on the EIS option must also be removed. For more 
information on installation, refer to Paragraph 5 .1. 

When either the KEl 1-E or KEl 1-F are in operation, the KDl 1-A ROMs are disabled and both the KDl 1-A and the 
options are controlled by the auxiliary ROMs. The processor fetches instructions from core and decodes them. If the 
instruction contains a reserved code, the KDll-A ROM address bit UPP8 is set when BUT(INSTR I) in the basic 
PDP-11/40 ROM flow is executed. The setting of UPP8 disables the ROMs in the U Word (M7232) module and 
enables the auxiliary ROMs on the EIS module (M7238). 

The KE 11-E does another decode of the instruction, and if the instruction is in the EIS or FIS (~f installed) group, it 
will branch to the specified address calculation. If the instruction does not fall within these groups, main ROM 
address UPP8 is cleared, thus disabling the option ROMs and re-enabling the KDl 1-A ROMs. The KDl 1-A will then 
execute a reserved instruction trap. This sequence of events can be followed by tracing words FET03~, FET04, and 
FETOS on the KDl 1-A flows and word EIO on the KEl 1-E flows. This flow sequence is described in more detail in 
Paragraphs 4.7.2 and 4.7.3. 

The interfacing signals between the KEl 1-E/F and the KD 11-A are shown in Figure 4-2 and listed with their 
definitions in Table 4-1. 

4-6 



KD11-A 
CENTRAL 

PROCESSOR 

K2-3 EUBC 5 l ---------·---·-----·-··-·- ·-· ··--·-------- KF-4 

K2-7 --·-~-L~ P ~ 1 Ltt ____ . --··-··------·-···-· ·-···· 
K1-7 _g_ ~1 !? 0..0.L':_QJ:I_ ____________ _ 

K1-2 -~L,~_OQ H 

K1-5 ____ ~15 ! 1J H-----------·-··-------- .. ~ E_.-_'!L!?_.__ KE·'!_ 

.,...._K_1_-_2_, 3_,_4_,_5 _________ B_u_s_~~-(15=0._0_l_L ________ _ 

K1-5 COUT ~-5 _l.:_ __________________ __155...:_~ 

K3-8 DAD (3 *2) 

K 1-5 __ .Q1~ (,I !:!_ __ _ 
1-----· .. --------·-·· -·-

K1-2,3,4,5 DMUX (15:00) =O H 

K3 ____ E_C_I NOO H 

K4-2 ECLK U l ------ ---·--~------------

BUS U (56:00) l KE-2,4 

ECOMUXS1 l KE-5 
--~-------------------------- - ---------·--- --~-- ----· ···----

-----------.. - .. - -------------~C_Q~U!S_Q___l:: ________ ··---·-··· K E-5 

ENPRCLK l KE-5 -------------- .. ----------------- --------·--·-- ------- ----~---

----------------·~ALLJ_(_3_:o_l_L ___________ ~ __ K_E_-5 __ -t 

____ E_UBC (4=1 l l KE-4 

EUBC 8 l KE-4 
---···- - ·-- ----------·------------ - ---------- --~ 

__ KE-7,8 

-----------------~X_!_P CLR TRAP l KE-5 -- - --·--· ---~----

INH PS CLK l KE-5 ..... _ ... ______ ,_ .. ____ . ______ -····- -· ··------ ---------------- ------ ---

K3-4 __ l_R_1_5 l ------------ ______ -------~-~-::~--

K3-6 IR(1412)=7H KE-4 

I R ( 11 09) ( 1) H KE -4 1-----------------'-------------·----·-·-····-· ----- ·--K3-3 

K3-3 1 R (05:03)(1) H 

K4-2 _____________ __J_P~~_i=>?_• P3) -~------·-------- _____ KE-5, KF·4 

K4-2 Port P END H KE-5 
---------------------·-- --·· -·- - ------~----- ·-·---------------~------·-- ----------

K4-2 P CLK UPP8 H KE-5 --·------ -

K4-2 P END H KE- 5 
---·----~----- --·-- -- ----------·--··------· .. -

K3-6 RSVD INSTR l KE-5 
----·---~----·---·--- ---------- -- ------ --·-

~-K_2_-2_,_3~~~-~~~-~---B_U_P_P_(_7_=0_l~H~~~~-~~~~KE_-_7_,B,9,KF-4 

t--_K_5_-3 _________________ ~u_T 37 _H ______ ·----·-····---·---. KE-5 

Figure 4-2 KE 11-E/F /KD 11-A Interfacing Signals 

4-7 

KE11-F 

KE11-E/ 
KE11-F 

EIS/FIS 

OPTIONS 

II ·1619 



Table 4-1 
KEl 1-E/F/KDl l-A Interface 

Signal Definition 

ALUOOH 

BIS (1) H 

BUS RD(IS:OO) L 

COUTIS L 

DAD(3*2) L 

DIS (I) H 

D(l 5 :00)=0 H 

DMUX(l 5 :00) H 

ECINOO H 

ECLK UL 

BUS U(S6:00) L 

ECOMUXSI 
ECOMUXSO 

ENPRCLK 

ESALU(3 :0) L 

Bit 0 output from the CPU ALU, used to shift into the BR Register. 

Bit 15 from the CPU B Register. 

Sixteen lines over which data is transferred from the KEll-E/F to the CPU. A 
wire-ORed bus. 

The carry-out from bit 15 of the CPU ALU. 

Bits 3 and 2 of the CPU DAD code field. Allows option auxiliary control of the CPU 
ALU rather than direct (KDI 1-A) ROM control. 

Bit 15 from the CPU D Register. Used in the branch table. 

A signal from the CPU which indicates when the CPU D Register is equal to 0. The 
resultant output from combinational logic (D(l S :00)=0) is used on the branch 
BUT(D=O). 

Sixteen lines from the CPU over which data is transferred to the KEll-E BR Register. 
From here, it is sent to the KEI 1-F, when installed. 

An external carry-in from the option to bit 0 of the CPU ALU. This is the signal line 
from which the jumper is removed on the M7233 module when the EIS is installed. 

A clock pulse from the CPU that is gated with an enable to generate the U Register 
clock for the EIS and FIS. 

Fifty-six ROM output lines that wire-OR the option ROM outputs with the KDI 1-A 
ROM outputs over three 40-pin Berg connectors on the back of the module. Note that 
the option ROM always controls the basic machine when activated. The basic machine 
ROM never controls the option. 

"External Carry-Out Mux Select" -Two signals to the CPU that allow the option to 
control the carry-out multiplexer of the CPU data path. 

"External NPR Clock" - A signal from the option that allows clocking of the CPU 
NPR flag and BR flag, and clears the CPU BBSY flag so that NPRs may occur during 
the EIS and FIS instructions. 

"External Select ALU" - Four signals to the CPU that allow the KEI 1-E auxiliary 
ALU control to specify what arithmetic function to perform. Used only in special 
situations such as loops during which external control is needed. Normally, the ALU is 
controlled by the CPU ROM word in which case the EIS feeds bits directly into the 
CPU U Register for ALU control. 

4-8 



Signal 

EUBC(4:1) L 

EUBC8 L 

EUPP(7:0) H 

EXT P CLR TRAP L 

INH PS CLK (1) L 

IR 15 L 
IR(14: 12)=7 H 
IR(l l :09)(1) H 
IR(05 :03)(1) H 

(Pl ,P2,P3) H 

Part PEND H 

PCLK UPP8 H 

PENDH 

Table 4-1 (Cont) 
KEl 1-E/F/KDl l-A Interface 

Definition 

Four signals to the CPU that may modify the base ROM address when a branch test is 
executed. When an address is brought out of the ROM, i.e., 100, the 6 lower bits of 
this address would be Os. The EIS would OR ls into any of bits 04:01 to modify that 
base address. Note, bits 04:01 are the only bits available for modification by the EIS. 

A signal to the CPU that is essentially the reserved instruction gated back to the CPU. 
When true, it is used as data, causing the ROM address bit UPP8 to be clocked set, 
thereby disabling the CPU ROM and enabling the KEll-E ROM. Whenever UPP8 is 
clocked after that, it clears, reversing the conditions. 

Eight signals to the option which specify the ROM address currently in the UPP 
Register. UPP8 controls which ROM is enabled while bits 7:0 control which address is 
in the ROM. In the CPU, addresses range from 0 to 377:: in the auxiliary, they range 
from 400 to 777. This is because of bit 8. Address 400 is actually bit 0 inside the 
ROM~ with bit 8 being the enable for the ROM. 

A signal to the CPU that allows the option to clear the CPU trap flag on a reserved 
instruction that the option has decoded as being either an EIS or FIS instruction. 

A signal to the CPU that inhibits clocking of CPU status bits (07 :04). This signal 
allows the modification of the N, Z, V, and C bits in that word by comparable bits in 
the option EPS Register but protects the priority bits already resident in the Processor 
Status Word. If the KTl 1-D Memory Management Unit is also installed, this signal also 
inhibits clocking of bits (15: 12) in the CPU status as well. Permits clocking only of 
CPU status bits (03 :00). 

Selected bits and conditions of the IR Register that are used to decode whether or not 
the reserved instruction is really an EIS or FIS instruction. Bits 0, 1, and 2 are not 
essential for this decoding process. 

Three clock pulses from the CPU that are gated with enabling signals from the ROM 
word U Register to generate the various clocking signals for the registers and flip-flops 
in the options. 

A signal from the CPU generated as a function of the END pulse for cycle length 2 and 
cycle length 3. It is equal to P2 or P3. 

A signal from the option that clocks ROM address bit UPP8 in the CPU. This signal 
results from P END (described below) gated with CLOCK UPP8, bit 64 of the EIS 
ROM word. Once the option is active, by virtue of UPP8 having been set, asserting 
CLOCK UPP8 in the ROM will result in this signal which, in turn, will disable the 
option ROM and enable the CPU ROM. 

A signal from the CPU that is equal to (Pl +P2+P3). This iis the end pulse in each cycle 
length. In a cycle length 1, it is Pl; in a cycle length 2, it is P2; in a cycle length 3, it is 
P3, even though a P2 exists. 

4-9 



Signal 

RSVDINSTRL 

BUT 37 H 

EUBCS L 

CLKD(l)H 

Table 4-1 (Cont) 
KEl 1-E/F/KDl l-A Interface 

Definition 

A signal to the option that indicates that the CPU has fetched a reserved. instruction 
code and that the instruction may be an EIS or FIS. This signal is used as data gated 
with EUPP8 H to yield EUBC8 L described above. 

A signal from the CPU which when gated with PART PEND produces the signal P 
CLKUPP8 H. 

A signal from FIS to CPU that is used to modify the base ROM address on branch 
tests. 

A signal from the CPU to FIS which is used to enable clocking the ARGA flip-flop. 

4.5 ROM PROGRAMMING PHILOSOPHY 

The PDP-11/40 System, and consequently the KEl 1-E and KEl 1-F Options, uses the principle of read-only-memory 
(ROM) microprogramming in their basic architecture. The use of this technique drastically reduces the requirements 
for discrete combinational logic and results in a system that is easier to understand and to maintain. 

In hitherto conventional processor design, each control signal was the output of a combinational network that 
detected all the machine states and conditions for which the signal should be asserted. The machine state represented 
the contents of a number of storage elements (e.g., flip-flops) that had been loaded from signals that were, in turn,, 
the outputs of other combinational networks. These outputs were based on such conditions as current state, sensed. 
internal conditions, and sensed external conditions. Although many times the number of logical elements could be 
reduced by sharing outputs of networks, thereby reducing the size of the processor, this often increased the 
complexity of the machine and the difficulty in maintaining it. 

In the PDP-11/40 System, however, the principle of microprogrammed control has been implemented in which the 
various control signals are stored in a self-contained ROM at time of manufacture. This storage is separate from the 
data storage element. Since each control signal can be completely defined if its value is known for each machine 
state, the ROM becomes the function generator divided into words. There is a word for each machine state and for 
each functional step of all operations. Each word contains a bit for every control signal. During each machine state,, 
the contents of the corresponding word in the ROM are transmitted on the control lines. For most control signals, 
the output of the ROM is the control signal and no additional logic is required. 

The two tasks of a sequence control section are to select the next machine state, and to provide information about 
the current machine state to the function generator. The only information that the function generator in a 
microprogrammed processor requires is which word to use as control signals. The sequence control then merely 
supplies an address that selects the correct word. The sequence control must also select the address of the next word 
to determine the machine state sequence. 

Because the next machine state is determined in part by the current machine state, information is stored in the 
microprogram that aids in the selection of the next state. In a ROM programmed device, the microprogram word 
contains the control signal values and the address and sensing control information required by the microprogram 
address generation logic. Thus, this logic functions as the sequence control. 

4-10 



4.6 CONTROL ROM 

The KEl 1-E control ROM word consists of 256 X 80 bit words. The KEl 1-F control ROM comprises 256 X 8 bit 
words. In the EIS, 24 ROM bits are used to control the KEl 1-E itself while 44 bits actively control 47 of the 56 bits 
in the CPU ROM word. The remaining 9 bits of the CPU ROM word are not utilized by the KEl 1-E or KEl 1-F and 
are driven low when the options are enabled. The outputs of the ROM and driver that duplicate the CPU ROM bits 
arc wire-ORed to the outputs of the CPU ROMs. 

The low eight bits of each ROM word specifies the next address of the microprogram. Occasionally there may be a 
desire to branch to one of several possible microroutines. Based upon certain conditions~, the branch may be effected 
by executing a Branch Micro-Test (BUT) to test the desired condition. If a condition is met, the base address 
specified by the ROM will be modified by ORing a (1) into a (O) bit of the address and the microprogram will 
branch to the modified address. If the branch condition is not met, the next address will be the one specified by the 
control ROM. 

Certain conditions can cause the microprogram to jam to a specific ROM address, thus aborting the normal 
microflow. The jam may be caused by a bus data timeout or an odd address error occurring on a bus data cycle. A 
red zone stack overflow error will also cause the jam. 

4,6.1 KDl 1-A ROM Word 

The KDll-A ROM microinstruction format is shown in Figure 4-3 and described in Table 4-2. Although much of 
this information is included in the KDJJ-A Maintenance Manual, it is repeated here for clarity and also to permit 
special reference as regards the KEl 1-E and KEl 1-F Options. Reference is also made to drawing KDl 1-A-BD, sheet 
2 of 2 for more information and tabular data not included in Figure 4-3. 

4.6.2 KEll-E/F ROM Word 

The KEl 1-E/F ROM microinstruction format is shown in Figure 44 and described in Table 4-3. Note that this is an 
extension of the basic KDl 1-A format shown in Figure 4-3 and described in Table 4-2. The option ROMs duplicate 
all bits shown for the basic ROM in addition to generating these bits. Reference is also made to drawing KEl 1-E-BD, 
sheet 2 of 2 for more information and tabular data not included in Figure 44. 

In both the figure and the drawing) the bits are represented identically to the representation for the processor. Note 
that in the top box of the drawing, the mnemonic for the field is given while the mnemonics below that are the bits 
in that field. For example, the field EUB contains bits EUBF(3:0). Their states represent an octal number appearing 
in the flow diagrams. Refer to word EIO on the EIS flows, drawing KEll-E-F, sheet 1 of 5. Note that for a branch 
microtest of Extended INSTRuctionL, EUB must equal 17 8 • 

A line printer printout showing all the octal values of each field of every ROM word in the flows has been made part 
of the print set. A portion of the first page of this printout is shown in Figures 4-5 and 4-6, with a legend to aid in 
their use. Arrangement is by U Word Address in numerical order. Note that the address is the basic address and does 
not include the 4008 offset, e.g., in Figure 4-5, NOM14 on F6 lists the address as 140 but in the flow it is shown as 
540. This holds for all addresses in this printout, as they represent only the states of ROM bits during an EIS or FIS 
instruction. Figure 4-6 gives the EIS/FIS ROM words while Figure 4-5 lists the KD 11-A ROM words as generated by 
the EIS and FIS. Figure 4-6 is the extension left of Figure 4-5. 

4-11 



CLOCK LENGTH CONTROL -
~---------- ALLOWS MICROPROGRAM TO ALLOWS CLOCKING THE BUS 

CLOCK OFF-ALLOWS MICROPROGRAM TO TURN SPECIFIES TYPE OF DATA 
OFF THE PROCESSOR CLOCK TRANSFER BUS TRANSACTION 

ALLOWS CLOCKING THE UNIBUS DATA ALLOWS INITIATING DATA 

SELECT ONE OF THREE CLOCK LENGTHS i..------------ ADDRESS REGISTER 

~--~--~ INTO THE INSTRUCTION REGISTER i~---'---~I ~TRANSFER BUS TRANSACTION 

56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 

CLKL1 CLKLO CLKOFF CLKIR 

36 35 34 33 

SALU3 SALU2 SALU1 SALUO 

WRL I CLKB I CLKD I CLKBA C1BUS COBUS BGBUS 

T ~ L ALLOWS CLOCKING THE ALU I OUTPUT INTO THE D REG. 

~---- ~~~o~~Ec~o;EKd.NG DMUX ( 15:00) 

DAD3 OA02 DA01 DADO 

DAO (3:0) -DISCRETE ALTERATION 
OF DATA-ALLOWS MICROPROGRAM 
TO ALTER OPERATION OF THE 
DATA PATH (eg: MODIFY ALU 
OPERATION AS A FUNCTION OF [IR] 

~-------- ALLOWS WRITING OMUX ( 7: Ol INTO THE GENERAL REG. 

~-----------ALLOWS WRITING DMUX (15:8) INTO THE GENERAL REG. 

32 31 30 29 28 27 26 25 24 23 22 21 

SBC3 SBC2 SBC1 SBCO SBMH1 SBMHO SBML1 SBMLO SDM1 SOMO SBAM UBF4 

40 39 38 37 

SPS2 SPSt SPSO SALUM 

~---....------~ 

20 

CONTROLS LOADING 
AND CLOCKING 
OF THE PSW 

19 18 

UBF3 UBF2 UBF1 

SELECTS 
MODE OF 
ALU OPER­
ATION 
(ARITHMETIC 
OR LOGICAL) 

17 

UBFO 

~--~--~ L--y----J ~--------~--------~ 

16 

SELECTS OPERATION TO BE 
PERFORMED IN THE ALU eg. 
(ADD, SUB, etc.) 

15 14 13 

ALLOWS MICROPRGRAM TO 
SPECIFY CONSTANTS TO BE 
INSERTED IN BIN OF ALU 
VIA BMUX 

ALLOWS MICROPROGRAM TO SPECIFY 
GENERAL REGISTER ADDRESS IF 
ENABLED BY SRI (BIT 13 l 

12 11 10 09 

SRI RIF3 RIF2 RIF1 RIFO 

SELECTS INPUT SELECTS INPUT 
TO HIGH SIDE TO LOW SIDE 
OF THE BMUX OF THE BMUX 
(15:8) (7:0) 

UP:
8 

} DISABLES MAIN CONTROL STORE 

SPECIFY MICRO INSTR. I 
ALLOWING AN AUX. CONTROL TO 

l 07 06 05 04 

UPF7 UPF6 UPF5 UPF4 

SELECTS 
SOURCE 
OF INPUT 
TO DMUX 

03 02 

UPF3 UPF2 

SELECTS 
SOURCE 
OF INPUT 
TO BUS 
ADDRESS 
MUX 

UBF(4:0)-MICROBRANCH FIELD-ALLOWS 
MICROBRANCH CONDITION TO BE TESTED (BUT) 

01 00 

UPF1 UPFO 

Tj t I._ _____ ~~~~~~ g: ~~~0iRT~L BREEg~sET~~~~REss 
_ ALLOWS IR (2:0) TO BE USED AS A 

SOURCE OF GENERAL REGISTER ADDRESS 

UPF (7:0)-8 BIT NEXT ADDRESS FIELD. USED TO SPECIFY ADDRESS 
OF NEXT MICROINSTRUCTION TO BE EXECUTED BUT MAY BE 
MODIFIED AS A RESULT OF A BRANCH TEST. 

11-1620 

Figure 4-3 KDl 1-A ROM Format 



Bit No. 
(Uxx(l)H) 

Field 
Mnemonic 

Bit 
Mnemonic 

Table 4-2 
KDl 1-A ROM Word 

Definition 

____ _._ _________ , ______ ......._,,_ 

(07:00) UPF 

08 

(12:09) RIF 

(16:13) SRX 

(21 :17) UBF 

22 SBA 

(24:23) SDM 

UPFx 

UPF8 

RIFx 

SRI 

SRBA 

SRD 

SRS 

Eight bits that yield the 256 basic locations. Note that they 
designate the next unmodified address of next 
microinstruction in the flow. Modified as a result of a branch 
test. 

Note, this is hardware, not in ROM. When clear, enables basic 
machine ROM. When set, disables basic machine ROM and 
enables the option ROMs. Controls which ROM will control 
the basic machine. 

Register Immediate Field. Provides the address of the internal 
registers. In conjunction with a bit in the SRX field, these 4 
bits provide 16 possible addresses to select one of the general 
registers. 

Select Register Immediate. When set, designates the RIF bits 
as the address of the scratch pad. 

Allows BA(03 :00) to be used as source of general register 
address. 

Select Register Destination. Uses the destination field of the 
instruction IR(02:00) to select the Scratch Pad Register in a 
destination address calculation. 

Select Register Source. Uses the source field of the instruction 
IR(08 :06) to select the general register to be used. 

NOTE 
The RIF field is 4 bits wide and the SRBA enables 4 bits in the 
BA. Therefore, these functions can access all 16 registers. The 
SRD and SRS bits, however, enable only 3 bits each; 
therefore, these functions can access only the lower 8 registers. 

UBFx 

SBAM 

SDMx 

The microbranch field. Allows microbranch conditions to be 
tested so next address can be modified. This field is not used 
by the EIS or FIS. See EUB field in Table 4-3. 

Select BA Mux. Selects source of input to Bus Address Mux, 
either via BUS RD or via the ALU. 

Select DMUX. Selects DMUX input whether D Register 
straight through, the RD bus, D Register shifted right, or the 
Unibus. This function is used primarily in the basic machine. 

____ __._. ______ .....&... ______ ,.,_,.,,,,,_. 

4-13 



Bit No. 
(Uxx(l)H) 

(28:25) 

(32:29) 

(37:33) 

(40:38) 

(44:41) 

(47:45) 

48 

49 

50 

(52:51) 

Field 
Mnemonic 

SBM 

SBC 

ALU 

SPS 

DAD 

BUS 

CBA 

CD 

CB 

WR 

Table 4-2 (Cont) 
KDll-A ROM Word 

~---·-.. -···---- ----------
Bit 

Mnemonic 

SBMHx and 
SBMLx 

SBCx 

SALUM and 
SALUx 

SPSx 

DADx 

BG BUS 

CIBUS and 
CO BUS 

CLKBA 

CLKD 

CLKB 

WRLand 
WRH 

Definition 

Selects input to high side of BMUX. 
Selects input to low side of BMUX. Controls the two 8-bit 
bytes of the BMUX independently. The BMUX can load the B 
Register straight through into the ALU, load a constant into 
the ALU, swap the two halves, or extend bit 7 of the B 
Register into the upper byte and load the lower byte with its 
sign extended into the upper byte. In addition, any 
combination of these can be used and. are used by EIS and FIS 
operations. 

Select B Constant. Allows microprogram to specify one of 16 
constants to be loaded into B IN of the ALU via the BMUX. 

Select ALU mode (arithmetic or logical). 
Select ALU operation {add, subtract, OR, AND, etc). There 
are 16 operations for each mode. 

Select Processor Status. Controls loading and clocking of the 
PSW. Various combinations of these 3 bits perform separate 
operations on the PSW. See table on engineering drawing. 

Discrete Alteration of Data. Allows microprogram to alter 
operation of the data path. For example, allows checking for 
stack overflow during a data cycle, or allows execution of an 
odd address, or control of the ALU by an auxiliary function 
rather than directly, etc. 

Bus Control Bits. 
Begin Bus. When set, permits DATI, DATIP, DATO, or 
DATOB, depending upon setting of Cl BUS and CO BUS. 
When cleared, sets AWBBY (Await Bus Busy) or restart on 
peripheral release, depending upon setting of C 1 or CO BUS. 

Unibus control bits which perform the standard PDP-11 
functions in conjunction with BGBUS bit. 

Clock Bus Address. Gated to clock the Bus Address. 

Clock D Register. Allows clocking ALU into D. 

Clock B Register. Allows clocking DMUX into B. 

Write enables for the general registers. 01 enables the low byte 
of the DMUX to be written, 10 enables the high byte to be 
written, and 11 enables both bytes to be written . 

...... _ .......... ,,...._. ____ ........ ~ ... ~·· .. ,~,. ... ---·-·-..... ___ ----·--~-----·--- ..................... __ , _____________ ,..,,_. 

4-14 



Table 4-2 (Cont) 
KDll-A ROM Word 

-----
Bit No. Field Bit Definition 

(Uxx(l)H) Mnemonic Mnemonic 
"- .....--- -·------,---"'"'"""·"'·"'·"-"'-·-"""""'·'~-· 

53 CIR CLKIR Clock the Instruction Register. Allows Unibus data to be 
clocked into the IR. 

(56:54) CLK CLKOFF Clock Off. When asserted, allows microprogram to shut off 
processor clock. 

CLKl and Clock length control. 00 or 01 enables a cycle length 1. 10 
CLKO enables a cycle length 2 and 11 a cycle length 3. 

-

I· ,_,,, ______ FIS ROM-------- -----EIS ROM-----------,--

88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 

CON1 CONO E~ SHSR• -:-.~ s~~•o3 STROM SRDM1 SRDMO SDRM1 SDRMO SCVM2 SCVMI SCVMO 

~__J L-,--J ~ L_---,------- _j ~_j ~L-~--~ L__,-__ _____JL___ __ ,-_______ J 

CONTROLS THE ALLOWS EXTENDS 
GENERATION OF A DATO EUBF IN 
CONSTANTS FOR FIS EIS 

CONTROLS LEFT OR STROBES 
RIGHT SHIFT OR DATA 
LOAD OF MSR a HSR ONTO RD 
REGISTERS BUS 

STROBES SELECTS ALLOWS THE D ALLOWS INPUT 
DATA INPUT TO REGISTER TO SELECTION FOR 
ONTO RD BE GATED SHIFT RIGHT OR THE CV MUX 
BUS ONTO RD LEFT OR NOT AT 

BUS ALL 

-------EIS ROM-------

72 71 70 69 68 67 66 65 64 63 62 61 

SNZM1 SNZMO CLK NZ CLK V I GPC< I GPC~ ,__UC-PL-PK8--''--LC_N_T__._EC_N_T__._E, :~ 
60 59 

EUBF2 EUBF1 

58 

EUBFO 

57 

CLK 
BR 

, _ _J~---~------ _J ~ __J L---------------r------ ,, ___ ,_,_,J ~J 

ALLOWS INPUT 
SELECTION 
FOR THE NZ 
MUX 

CLOCK CONDITION CODES -
CLK C ALLOWS CLOCKING 

OF EXPANSION C BIT 

CLK V ALLOWS CLOCKING 
OF EX PANS ION V BIT 

CLK NZ ALLOWS CLOCKING 
OF EXPANSION N 8i 
Z BITS 

GENERAL PURPOSE 
CODE TO DECODE 
SELDOM PERFORMED 
FUNCTIONS 

ALLOWS ALLOWS EUBF(3:0)EXTERNAL MICROBRANCH ALLOWS 
UPP8 ENABLING AND FIELD-ALLOWS MICROBRANCH CLOCKING 
TO BE COUNTING OF CONDITION TO BE TESTED (BUT} OF THE BR 
CLEARED THE COUNTER REGISTER 

Figure 4-4 KEl 1-E/F ROM Format 

4-15 



l'LOwS STAlE AOR CLK CIR WR Ctl co CSA BUS DAD SPS ALU SBC SBM SOM SSA UBF SIU RIF UPF 

Fb NOr-114 11.10 b 00 11 01 17 2 00 01 1!:i 142 
u MUL2b 11.11 2 00 00 00 00 2 00 10 00 177 
Fb EXIO 11.12 2 00 00 00 00 0 00 00 00 332 
El MUL.11 11.13 I.I 00 20 00 .oo 0 00 00 00 oos 

Fl FP\2 11.11.1 2 .3 00 0 00 00 00 2 0 00 01 11 21.11.1 
c: 1 L)ST 12 11.1S 2 3 00 0 00 00 00 1 0 00 01 12 27S 
Fl FP10 lllb a .s 00 0 23 00 00 2 0 00 01 13 2')2 
El.I OIVll.I 11.17 2 0 00 0 00 00 00 0 0 00 10 00 Ob2 

Fl.I f'f'll.S 150 t> 3 0 0 0 00 0 Ob 00 00 2 0 00 01 l'l 3bS 
Fl FPt.1 1':11 b 3 0 0 0 00 0 11 00 00 2 0 00 01 1.s 1.ss 

1~2 0 0 0 0 00 0 00 00 00 0 0 00 00 00 000 
El.I DIV20 1 !>3 b 0 0 0 lll 0 00 00 00 2 0 00 00 00 1 'l.3 

Fb NOM1 1511 b 0 3 00 11 01 17 2 0 00 01 1s .32ll 
Fl FPb 1 SS b 0 .s 00 11 00 00 2 0 00 01 11 ns 
f'b NOM8 1 'lb b 0 0 00 11 01 17 2 0 00 00 00 171.1 
ES l>lV21 157 LI 0 0 00 00 00 00 0 0 00 00 00 107 

F5 FD Vb lbO 00 11 00 00 0 0 00 00 00 31.11.1 
Fb C: ~I I.I 1 bl ti 00 00 00 00 0 0 00 00 00 2so 
F'l FDv!:i 102 b 00 23 00 00 2 0 00 01 15 1/b 
f2 ADO\"\ lb.3 10 Ob 00 00 0 0 00 00 00 31.10 

f2 ADOS 1 bll 2 00 00 00 00 0 00 01 11 10s 
r2 AQ,)b 1 o') I.I 00 Ob 00 00 0 00 00 00 202 
FS FOv3 lbb LI 00 00 00 00 0 00 00 00 .350 
t..3 MUL2il tb7 2 00 00 00 00 2 00 10 00 14 .3 

Et OSTll 170 .3 3 00 00 00 00 2 0 00 011 00 271 
r'j FDVll 171 2 0 00 00 00 ilO 0 0 00 01 10 0112 
Fl.I FML8 1"12 2 o 00 00 00 00 0 0 00 01 10 210 
F':) fDv 13 tH t> o 111 00 00 00 2 0 00 00 00 Hl 

Fb NOM9 1711 2 0 00 00 00 00 00 00 00 273 
F 1 FP7 1 7'l 4 1 00 .32 00 lb 00 00 00 .Sb7 
fb NOM.3 1 lb 2 0 Ob 00 00 00 00 01.1 00 220 
f2 A6ti1 S 177 b 0 00 00 00 00 00 00 00 J23 

Figure 4-5 K.Dl 1-A ROM Words Generated by the Options (Sample) 

FLOwS tiT A 1 E ADR CON FCt F Ul:l MHR fRD ERO SRO SDH CVM NlM CCC GPC CEE CNT l:.Ufl CBR 

fb N0!-1111 1110 o o 0 1 0 o 1 o 0 0 0 0 0 00 1 
E.3 MUL2b 1'11 () 0 0 0 0 0 0 1 3 ') 0 0 0 00 0 
F ti uro 1 llc 0 o 0 o 1 2 0 o 0 0 0 o 0 00 1 
u MUL11 1'13 o 0 0 o 0 3 0 2 0 2 0 0 0 01.1 o 
r 1 rp 12 1411 0 o 00 
t:.1 LlS Tl 2 1 ur; o 0 00 
F 1 Ff' 10 1 llb 0 o 00 
E4 DIV 111 14 I .3 0 00 

r" fML'j 1'>0 0 00 
Fl Ff' 4 1s1 0 00 

1'>2 0 00 
tA l>IV20 l'l.3 2 1 0 

r o NOMI 1'ill 0 0 0 0 04 
FI Ff',., 1sr; 0 0 o o 10 
r o NOM8 15b o 1 1 0 00 
f::'j 01v21 1'>7 o 0 3 o 12 

f'j FD Vb lnO 0 0 o .s o 0 b 00 
Fb EX 14 101 2 0 o 3 0 0 o 00 
r r; FDV? 11>2 0 o 0 o o 0 0 00 
F2 ADDD lb3 0 0 o 0 0 4 0 00 

F2 ADDS lb4 00 
~2 ADl)6 lb~ 00 
r':> r uv; lbb 00 
u t1UL20 11>7 O'j 

u lJST II I 7 iJ lb 
r r; FD V 11 1 71 00 
Fil FMLB 172 00 
r r; rDvtJ 17 3 05 

Fn N0119 1 711 0 0 00 o 
F 1 f"' 7 U'.:> o o 10 0 
Fa NOMj 17b 0 2 00 0 
F2 ASHtS 177 0 0 00 0 

Figure 4-6 Comparable EIS/FIS ROM Words (Sample) 

4-16 



Bit No. Field 
(Uxx(l)H) Mnemonic 

Bit 
Mnemonic 

Table 4-3 
KEl 1-E/F ROM Word 

Definition 

-----~-------------·"~~---------------------

57 CBR 

(61:58) EUB 

{63:62) CNT 

64 CEE 

(67:65) GPC 

(70:68) CCC 

(72:71) NZM 

(75 :73) CVM 

(77:76) SDR 

(79:78) SRD 

80 ERD 

CLKBR 

EUBFx 

LCNT and 
ECNT 

CLK UPP8 

GPCx 

CLKNZ 

CLKV 

CLKC 

SNZMx 

SCVMx 

SDRMx 

SRDMx 

STRDM 

Enabling signal for the BR Register clock. 

External Microbranch Field - Allows extended microbranch 
condition to be tested. 

Load Counter. 
Enable Counter - Allows loading and enabling of counter so 
that it may count up or down. 

Clock Expansion Enable. Enables clocking of UPP8 to disable 
expansion ROM and enable basic ROM. 

General Purpose Code -- Decodes seldom performed functions 
(see table on engineering drawing). 

Clock the N and Z bits in the External Processor Status 
Register. In the option, both are clocked simultaneously. 

Clock the V bit in the EPS. 

Clock the C bit in the EPS. 

N Z Multiplexer Select - Control the source of data for these 
two EPS bits (N ,Z). 

C V Multiplexer Select - Control the source of data for these 
two EPS bits (C,V). 

Select DR Register - Control whether the DR Register will 
load, shift right, shift left, or do nothing. 

Select RD Multiplexer - Selects which source will be gated 
out onto the RD bus. 

Strobe RD Multiplexer - While the SRD determines what data 
will be put on BUS RD, this bit enables the drivers to that bus 
and actually gates the data to BUS RD. 

NOTE 
The following signals are available only when the KEll-Ir is 
installed. 

_8_1 ___ _.___ __ FR-~ STFRDM 
Strobe Floating RD Multiplexer - Performs the same function 
as the ERD does in the EIS option. 

-----------------·-·-~---·--·------

4-17 



Table 4-3 (Cont) 
KEl 1-E/F ROM Word 

-----......------------·-··-~····-··-·- ---------.,.,----·--·-------·---·---·----
Bit No. 

(Uxx(l)H) 

(84:82) 

85 

86 

(88:87) 

Field 
Mnemonic 

MHR 

FUB 

FCl 

CON 

Bit 
Mnemonic 

SMSR and 
SHSRx 

EUBF4 

FCl BUS 

CONx 

4. 7 FLOW DIAGRAM DISCUSSION 

Definition 

Select MSR Register - Is gated with the Shift HSR Register 
bits to enable the same function in the MSR Register as 
selected for the HSR Register. The x bits determine whether 
the HSR (and MSR when selected) will shift left, shift right, 
load, or no op. 

Extension of EUB field in EIS, providing the additional branch 
tests for FIS option. When asserted, it disables the low bit 
multiplexer in the EIS and enables a similar multiplexer in the 
FIS to control the low bit of ROM address modification. 
There are six tests with this function, see table on engineering 
drawing. 

This replaces the FCl bit of the basic machine. Note that in 
the EIS no DATOs are required since nothing is stored back 
into core. This enables the FIS to do a DATO for writing 
answers back into core. 

Constants decoding bits. See table on engineering drawing. 

The flow diagram in conventional computer design has always played a major role in the understanding of the 
operation of the equipment. It is in a sense a road map of operation guiding the reader from one event to the next 
based upon sets of intervening conditions. In the PDP-11/40 System, however, the flow diagram plays a much more 
important role than before since it ties the operations to the major sequencing device in the machine, the ROM. 
Indeed, understanding the flow is a major prerequisite for the understanding of the KEl 1-E and KEl 1-F Options. 

Because of the added responsibility intrinsic to this portion of the documentation, some changes have been made to 
the conventional flow diagram symbology to accommodate the added functions it serves. In this paragraph, these 
new conventions are discussed and explained. In addition, representative operations are followed through the flows 
so that, once familiar with the procedure, the reader can follow any operation through from its initiation to 
completion. 

4. 7 .1 Symbology of the Flows 

Figure 4-7 illustrates the common drawing conventions used in both the KDl 1-A and KEl 1-E/F flow diagrams. 
General flow is from top to bottom unless further continuation is required, in which case it is carried to the top of 
the page before continuing. 

Horizontal flow is indicated and limited by the direction of the arrow on the line. Branching flow is dictated by the 
prevailing conditions that result from the branch test. The conditions for the branch are indicated to the right of 
each branch flow. For the most part, to the degree possible, the branches have a priority with the highest priority to 
the left and the lowest to the right. A double squiggley line in any flow line indicates that a time delay is 
experienced before continuing. 

4-18 



SOURCE FLOW 
(#) PAGE NUMBER 

ENTRY POINT 

------------- - -- FLOW LINE 

U WORD MNEMONIC-----~ 
XX# 

r--- U WORD ADDRESS 
### 

(#) 

### 

-- FLOW STEP BLOCK 
DESCRIPTION OF ACTION CONSOLE DISPLAY 

CYCLE LENGTH: ACTION/S 
>-------~---------------! 

BRANCH TEST MNEMONIC AND CODE (NOTE REF) 
--i--- ### __ SASE U WORD ADDRESS 

---- __ .l________ ._, FOR BRANCH 

INTERVENING WORD I o ----1 Os INDICATE NOTHING 
_ ENABLED ON BUS RD 

BRANCH POINT~-X __ INDICATES A 

T:
"-' WAIT FOR THE BUS 

BRANCH COND. 1 .. RA. NCH COND. 2 LRANCH COND.3 

DIRECTION 
LIMITATION •-- -- -- - -- -·TIME DELAY 

(#) 

### 

XX# -### 

NEXT U WOFW L. ----,---] ---- -···- ~=- -·- - ----. -

(#) - DESTINATION FLOW PAGE NUMBER 

###-ADDRESS OF MICROPROGRAM CONTINUATION 

11-1622 

Figure 4-7 Flow Diagram Conventions 

Entry into the flow is indicated by a lozenge (ellipse) containing the name of the operation to be performed in the 
flow. A decimal number in parentheses above this indicator refers to the number of the page from which the flow 
enters. In some instances, this is accompanied by a description of the flows if they are for a different piece of 
equipment than that described by the flow page. 

Each step of the sequence is designated by the Flow Step Block, which contains either two or three divisions. The 
top division contains a general description of the action taken by the step, with a description of what is displayed on 
the console within a further subdivision of that area. This data is visible only in maintenance clock mode. 

The second division of the Flow Step Block contains a description of the actions taken by that step in ISP notation. 
This is preceded by the cycle length for the action expressed by either Pl, P2, or P3. 

The third division of the block does not always appear. It is set aside to indicate that a branch test is to be made and 
expresses that test in mnemonic form. This block occurs in all cases two·words prior to the branching point. 

The octal number at the upper right-hand corner of the block indicates the Micro-Word Address of that word in the 
ROM. 

The number at the lower right-hand corner of the block is given only when branch tests are made. It indicates the 
base ROM address for the branch before modification by the branching conditions. 

4-19 



Exit from the flow is indicated by a diamond containing the mnemonic used in the entry point of the destination. A 
decimal number within parentheses below the diamond indicates the page number of that continuation. An octal 
number appearing below this page number designates the address of the microprogram continuation. 

References to notes on the flow sheet are either given within the general description subdivision of the Step Block or 
are located to the right of the block opposite the subdivision that they illuminate. 

The symbology used in the operator division of each block follows the convention of ISP notation as defined in the 
Appendix of the PDP-11/40 Processor Handbook, 1972. To supplement this information, a few examples of the 
more complex statements are given and described here. From these sources, the reader can decipher any statement in 
the flows. 

The use of the back arrow (+-), or data transmission operator, is shown at word EI2 on page 1 of the EIS flow 
diagram. 

UPP8+-0 

Basically, this means that the UPP8 bit in the basic machine is cleared. There are several ways of stating this such as 
"UPP8 gets O" or "O is sent to UPP8." 

Brackets are used to further define a quantity in the statement. For example, at word ADD20 on page 2: of the FIS 
flows, the following statement is used: 

P2:D+-R[l4] 

This means that at time P2, the contents of register 14 are sent to the D Register. 

The definition, however, may be indirect as shown in the following example at word DST2 on page 1 of the EIS 
flows: 

P2:BA+-R[DF] 

In this case, DF means "Destination field." This statement then is saying, "The contents of the register designated 
by the destination field of the IR is sent to the BA Register." The P2 preceding that statement means that the BA 
Register will be loaded upon the occurrence of P2. During the cycle length of that word, the data path is steering the 
data to the BA Register. Once it is set up, the pulse does the loading. 

The bracket can be used on the left-hand side of the transmission operator. This is illustrated in word DSTl on page 
1 of the EIS flows. The following statement appears: 

Pl :BR,B,R[DEST] +-D 

This statement means that at Pl, the contents of register D are sent to three registers: 1) the BR, 2) the B, and 3) 
the register specified by the contents of the destination field of the IR. 

In some instances, the use of the bracket can produce confusion on the part of the reader, if the specific use is not 
clearly defined. An example of this is shown at word DST2 on sheet 1 of the EIS flows. That statement reads as 
follows: 

D+-R[DF] PLUS 2 

In this instance, the bracket pertains to "the contents of." This statement says that the contents of a register 
designated by the destination field of the IR will be incremented by two then sent to the D Register. Note that it 
does not say that the D Register will receive the contents of a register two locations away from the register 
designated by DF. 

4-20 



An example of the use of two types of brackets is seen at word MUL9 on sheet 3 of the EIS flows. This also 
illustrates that conditional transfer can be a function of more than one variable. 

P2:IY-f(DROO & EPS(C) BR & B ; 

This statement says that the BR and B Registers are to be sent to the D Register in a cycle length 2; but they will be 
acted upon in that transfer as a function of bit DROO and bit EPS(C). On that same sheet, off to the right, a table is 
given for the four possible sets of conditions for these two function bits. From this:, it can be seen that for two 
conditions of these bits, the contents of BR will be put into D; but for the other two sets, B will be either added to 
BR or subtracted from BR and that result will be put into D. 

The semicolon is used to designate separate action(s) to occur at the same time pulse: 

P2:D,BA~R[DF] MINUS 2;DATI 
P3:CLKOFF 

This is shown at DST9 of sheet 1 of the EIS flows. DATI follows the semicolon for P2, indicating that a DATI will 
be performed also on P2. In that same word, the clock will be turned off (CLKOFF) at pulse P3. 

Note also at DST9 the notation SBC=l in the lower right-hand corner of the block. This refers to the SBC (or Set B 
Constant), indicated by ROM bits U(32:29) in the basic machine (see table on KDl 1-A·BD). Although this refers to 
the basic machine, it should be remembered that these bits are being driven by the duplicating bits of the ROM in 
the option. In this case, it brings in a constant for the MINUS 2 condition. The ALU is performing the operation 
A-B-1. This brings in a 1, causing the ALU to perform an A-1-1 or A-2. 

A comma to the left of the back arrow separates the blocks that receive data simultaneously. A comma to the right 
of the back arrow separates the sets of data to be transferred. 

At word El2 on sheet 1 of the EIS flows, the following statement is made: 

D~f(SBC=OO(STPM)) 

STPM refers to what the signal is eventually called in the hardware. SBC=OO is sent to the D Register and becomes 
signal STPM. The SBC=OO looks at discrete logic in the processor and could get any one of several values. The 
SBC=OO does not always select the same value to be sent to the D Register. This word is actually forming a trap 
vector, with the error that is set at the time determining what that vector shall be. 

In many places in the flows, a general statement is often made before a branch and then is further defined after the 
proper branch is entered. An example is shown in ASHl on sheet 2 of the EIS flows. 

; CLOCK COUNT 

Note that this indicates that the clock will be caused to count, but that it does not indicate which way. If the flow 
enters ASH3, the following notation is given: 

Pl :COUNT~PLUS 1 

This indicates an incrementing count. If the flow enters ASHS, the following notation is given: 

Pl :COUNT~MINUSl 

This indicates a decrementing count. 

4-21 



At ASH4 on that sheet there is an example of a number of things occurring at the same time, yet not necessarily as a 
result of each other, stated as follows: 

P2 :D<E--R [SF) ;D(C)<E--ALUI 5 ;EPS(C}<-ALUOO 

These are separated by semicolons, and a transmission operator is given for each. This says: at P2, the contents of 
the register specified by the source field of the IR is sent to D; at the same time, ALU bit 15 is sent to the D(C) flop; 
and simultaneously, ALU bit 00 is sent to the EPS(C) bit. 

The comma indicates inclusion as illustrated by the P3 operation of that same word: 

P3:BF,B,R[SF) +-D(C),D[15:01) 

In this case, all the information on the right-hand side of the arrow is being sent to all the destinations on the 
left-hand side of the arrow. Only bits D( 15 :00) are being sent from the D Register. The 16th bit is the D(C) bit. By 
referring to the ROM output, it can be seen that the right data port of the DMUX is being selected and that data is 
being shifted right. Bit 1 of the D Register becomes the new bit 00, and everything else is shifted right. 

In ASH7 of this page, the following notation is given which indicates another use of the bracket in specifying a 
register. 

BR+-R[SFVl) 

This states that the BR receives the contents of the register specified by the source field of the IR ORed with 1. This 
is of course the odd register being specified. 

Many times in the flow, it is not always obvious what is contained in a specified register unless the flow is traced 
back a few steps to see what was last put into that register. A case in point is at word ASHl 7 of this same page. 

P2:D<E--R[SF] PLUS B 

This says: at P2, the contents of the register specified by the IR source field plus the contents of Bare sent to D. 
This means little unless the contents of B at that moment are known. Looking back in the flow to word ASH8 will 
show that at P2, R[SF] went to D, and at P3 of the same word, it went from D to B. This means that in ASHl 7 
what is really happening is that the contents of R[SF] are being added to itself. This is equivalent to shifting it left 
one place. 

This same word (ASHl 7) also illustrates the use of the "IF" statement in the next line. 

EPS(V)+-1 IF BR15:/=BR14 

This means that EPS(V), the overflow bit in the status word, will be set if a difference in BRl 5: 14 is noticed, thus 
sensing an impending transition in the bit stream. 

The next line in that word's statement deserves mention also: 

DR+-DR[l4:00] ,0 

This indicates that the DR is being shifted left and (0) is being shifted into the low bit. 

In contrast to this, the notation at word MUL24 on sheet 3 of the EIS flows is as follows: 

DR+-0,DR(l 5 :01) 

4-22 



In this notation, the DR Register is being shifted right with a (0) being shifted into the hilgh bit. 

A functional condition can be implied without the use of the "f' operator. A case in point is shown in ASH20. 

EPS(Z)+-D=O 

Back in ASH19, both the BR and R[SF] were ORed on the RD BUS to determine the zeroness of the answer. 
(P2 :D+-R [SF] ,BR). In this word then the condition set in the Z bit is determined by the result of that test. If the D 
Register was 0, then the Z bit is set. If it was not 0, the Z bit remains cleared. 

An example of the role played by the arrows on flow lines, to reduce confusion as to which direction to take, is 
illustrated on sheet 3 of the EIS flows at the output of word MUL3. The horizontal flow line entering the output of 
MUL8 shows that the MUL8 flow cannot go to MUIA whereas the output of MUL3 can go to either MUL4 or 
MUL19. Likewise the decision notes on these lines pertain to the output conditions of MUL3 and not of MUL8. 
This is further indicated by the fact that the D 15 BUT was made back in MUL2. 

In word MULl 1, the following notation is made: 

P2:~--BR 

The use of - BR indicates that the 1 's complement of the contents of BR is sent to D. To indicate 2's complement, 0 
MINUS 1 is used as illustrated on sheet 4 of the EIS flows at word DIV6: 

P2 :D+-0 MINUS B 

An instance of multiple branches in sequence is given also on sheet 3 of the EIS flows at MUL20. In this word, a 
BUT for DRl 5 is made, and in the next word MULl 1, a BUT for D=O is made. This results in four branches: two 
for DRl 5 and two each for D=O. The BUT(D=O) in MULl 1 tests for the branch at MULl 6 while the BUT(D=O) in 
MULl 2 tests for the branch at MULl 3. 

For customers with the FIS option as well, certain terminology in those flows is illuminating to the understanding of 
the flows. These examples are separated here to avoid confusion on the part., of those customers with only the EIS 
option. 

The bracket can be used to designate a choice of registers, based upon other variable conditions defined by the 
symbol "f' which means "as a function of." This is illustrated at word FPlO on page 1 of the FIS flows. 

P3 :BR,B,f ARGA(R [ 12+ 13] )~-D 

In this case, the contents of register D are sent to the BR Register, to the B Register, and to either register 12 or 
register 13 as determined by the condition of the ARGA flip-flop. The ROM will always select the odd register in the 
floating hardware if the ARGA flip-flop is clear. If it is set, the even register will be selected. 

The XOR function is illustrated in word FPl 5 on page 1 of the FIS flows. The statement is as follows: 

P2:D+-BVMSR 

In floating multiply or floating divide, the XOR of the sign is used to give a negative sign to the answer if the signs of 
the two operands are unlike. 

An example of a parenthetical statement used as a description is seen in word FP7: 

P2 :D(l 5 :08)+-fSBCOO; (ZERO) 
D(07:00)+-B(15 :08) 

4-23 



This says: at P2, bits D(15:08) will get Os as a function of SBCOO while bits D(07:00) get B(15:08). In effect the 
high bits of the constant called for by SBCOO are 0, thereby putting Os into the upper byte of the D Register; while 
loading the low byte of the D Register with the high byte of the B Register. 

The insertion of the hidden 1 is illustrated in word FP9. 

P2:D~OO PLUS(OOO,B(07:00)) 

This means the high byte on the B leg of the ALU is equal to 0 and the low byte will be B(07 :00). The c:onstant 400 
is added to insert the hidden 1. 

Concatenation is illustrated in word FML12 on sheet 4 of the FIS flows. The statement is as follows: 

Pl :MSR~HSROO,MSR(lS :01) 
HSR~DROO,HSR(l S :0 l) 
DR~BROO,DR(lS:Ol) 

BR~D(C),D(15:01) 

From this it can be seen how the four registers are concatenated with MSR the LSB and BR the MSB. This is a 
SHIFT EVERYTHING RIGHT operation. A comparison can be made with the notations listed in FDV16 on sheet S 
of the FIS flows for a SHIFT EVERYTHING LEFT operation. 

4.7.2 KDll-A Flow Discussion 

A complete discussion of the KDl 1-A is contained in both the PDP-11/40 System Manual (DEC-11-H40SA-A-D) and 
in the KDl 1-A Maintenance Manual (DEC-11-HKDAA~A-D). The discussion here is general, containing merely that 
information necessary for an understanding of the K.El 1-E/F Options and the ways that they interact with the 
processor. 

Referring to the KDl 1-A block diagr~m on drawing KDll-A-BD, the Unibus is shown on the left with its 16 data 
lines received and driven, and its 18 address lines that are driven onto the Unibus. In addition, the Unibus is driven 
by the Switch Register KYll-D (which can oftentimes be addressed to retrieve data, e.g., in diagnostics) and by 
processor status from the PS Register (K5-5). 

The heart of the processor data path is the arithmetic logic unit (ALU). This unit has two inputs: the AIN fed by 
BUS RD(l S :00) through a buffer and the BIN fed by the BMUX. Note that the BUS RD is also the bus on which 
data from the EIS and FIS options are fed back into the processor. 

The BMUX is fed by 1) the B Register straight through, 2) the B Register with bit 7 extended into the high byte (a 
sign extension), 3) the B Register with the two bytes swapped, and 4) the B constants of which there are many 
including address increments, switch register address, and masks. 

There are five ALU control bits originating in the control ROM. The SALUM determines the mode (arithmetic or 
logical). The other four (SALUx) select one of 32 functions that the ALU can perform (16 in idle mode). These 
include (among others) carry-in logic from the EIS (only if the ALU is in arithmetic mode) and carry-out 
multiplexing of four inputs to the D(C) flip-flop. The latter is used in ASH right in which the data is loaded into the 
D Register through the ALU and the D(C) gets bit 15 of the D Register so that the sign can be extended down 
through the DMUX during shifting. 

NOTE 
This is used on word operations. In byte operations, carry-out 
7 is used for this purpose. 

4-24 



The COUT MUX also receives the C bit of the processor status for use in rotates. 

During any of these operations, the B Register, which feeds the BMUX, functions as a storage register. Note that this 
is the only holding register on the BIN side of the ALU. The general registers are on the AIN side via the BUS RD, 
although they can feed the BIN side through the BMUX and B Register by virtue of a feed back through the DMUX. 
Note also that the DMUX can also feed the options. The DMUX is not wire-ORed, it is TTL and is used to feed data 
to the EIS and FIS. 

BUS RD also feeds the bus address multiplexer (BA MUX). An address can be brought out of the general purpose 
registers and fed directly into the BA through the BA MUX, or can be fed through the AIN of the ALU, added to, 
subtracted from, or operated on in the many ways possible, and then fed to the BA via the BA MUX. 

The processor status is also fed to the BUS RD for internal use, e.g., for a condition code instruction, and does not 
have to be fed out onto the Unibus. It can be operated on in similar fashion as above without interrupting the 
Unibus. 

The BA Register contains logic on its output for decoding processor status address, stack limit register address (an 
option), register address (internal registers are being addressed), and switch register address. There is also logic on the 
D Register output to determine whether or not the D Register is equal to 0. The latter is used in the EIS option as 
described later. 

The instruction register feeds logic to decode all the discrete instruction Op codes. These 16 bits are converted into 
many signals which are then encoded back down into the U Branch Control which is 6 bits wide. The IRD code then 
is used in the first FETCH branch so that the proper U Word can be accessed to perform the proper instruction. 

The ALU control block is actually an auxiliary ALU control fed by the ALU field in the ROM and by some discrete 
logic. This is functionally a multiplexer used in common routines in which the discrete logic is used to control the 
ALU rather than a separate ROM word for each instruction. In this case, a common ROM word is used to point to 
auxiliary control. 

The U Word Control ROM contains 256 words, 56 bits wide, 8 bits of which comprise an address which doubles 
back to a NOT OR into a pointer register (UPP). This register functions as a PC for the ROM with these 8 bits 
specifying the next ROM address to be looked up. The rest of the ROM bits ( 48) control the internal machine and 
the data paths, clock the BA and D Registers, and determine which multiplexer port will be active. Some bits are 
gated with the basic clock pulses to control cycle length, others enable different registers to be clocked such as 
CLKD which is gated with P2 to clock the D Register. 

The JAMUPP logic is used to jam the UPP Register to specific addresses for specific error conditions. 

The PUPP Register holds the previous microprogram pointer or the address of the word that is in the U Register. 
This is used to feed the maintenance console display. 

The condition codes input block is used to set up the condition code bits in the PS Register to indicate the results of 
the last operation or instruction. 

The Data Display on the console is fed by the DMUX. Since the DMUX can contain either Unibus data, the D 
Register straight through, the D Register shifted right, or the contents of the BUS RD, there are basically four 
sources for display; and since the BUS RD can have many things on it such as the general registers, status, or option 
data, the range of data displayed is very wide. In single instruction mode, processor status is displayed at the end of 
the instruction. 

NOTE 
On a HALT instruction, the contents of RO are displayed and 
not PS, t!Ven if in single instruction mode. 

4-25 



By referring to sheet 1 of the KD 11-A flows (drawing KD 11-A-F), the way in which the EIS/FIS options are enabled 
can be followed. Entry is at FETCH A and proceeds to word 013 (FETOO). This is the "Fetch Next Instruction" 
word in which, during a cycle length Pl, the contents of the program counter (R[PC]) are loaded into the BA, a 
DATI is performed, the clock is turned off (CLKOFF), and the R[PC] is displayed. 

NOTE 
FETCH OVERLAP does not apply to EIS or FIS instructions. 

A wait is indicated in the flow followed by entry into word 001 (FET03) to "store the instruction." Here, in Pl, the 
Unibus data is sent to the B Register, to the general register, to R(IR) which holds a copy of what is to be loaded 
into the IR, and to the instruction register. Bus data (Instruction Word) is displayed. 

NOTE 
The R[IR] copy provides a convenient way to access this 
infonnation when the IR is not accessible. 

In the next word (FET04), the PC is incremented (R[PC]+2) and put into the BA and D Registers. In addition a 
branch test is made (BUT(INSTR I)), numerically BUT 37, to determine which flow exit indicator to take. Once 
again the R[PC] is displayed. 

The flow then goes to FET05 to store the modified R[PC]. This is done by transferring the R[PC] +2, which was 
put in Din FET04, from D back into R[PC] in FET05. 

Normally, without the options installed, an EIS or FIS instruction would not be recognized by the processor. The 
machine would branch off to address 100, the base U Word address for the branch, and take the TRAP B exit. But 
when the options are installed, the BUT(INSTR I) signal (BUT 37) is sent to the option where it is gated with a pulse 
and sent back to the KDl 1-A to UPP bit 8 as the clock for bit 8 of the ROM address. The signal RSVD INSTR, 
gated with EUPP8, is sent back to the KDll-A as the data for UPP8. Setting bit 8 modifies the next address to be 
looked up from 100 to 500. Note that now the flow exits through the expansion diamond and enters the EIS flows 
at word BIO (location 500). Bit 8 remains set to enable the option ROM and disable the basic ROM. 

If the option is installed and a reserved instruction is issued, the flow still follows this path and exits to TRAP D. 

4.7.3 KEll-E Flow Diagram Discussion 

The KE 11-E flows are shown on drawing KEl 1-E-FD, sheets 1 through 5. The format of these flows is identical to 
that of the KDll-A and the conventions follow those described in preceding paragraphs. 

As described in Paragraph 4.7.2, entry into the expansion flows is at BIO after the CPU has stored the EIS/FIS or 
Reserved Instruction in the IR, decoded the IR, made a branch microtest, set ROM bit UPP8, modified the address 
to 5008 , and set the CPU Trap flag. 

At this point the KEl 1-E ROMs are enabled and EIS ROM word BIO is present on the wire-ORed BUS U(56:00) 
lines at the input of the CPU U Register, as are the outputs of the KEll-E Control ROMs U(80:57) at the input of 
the EIS U Register. The KEll-E performs another decode of the CPU IR and does a branch microtest 
(BUT(EINSTR I)) to determine what address calculation flow to enter. The CPU Trap flag is cleared. 

NOTE 
If the instruction was not one of the EIS instructions, the CPU 
Trap flag would not be cleared here in order that a RSVD 
INSTR trap would occur upon exit back into the CPU Trap 
flow. 

4-26 



The above sequence occurs for each EIS instruction. Upon completion of the EIS instruction, the microflow returns 
to the basic KDll-A microprogram at microword SER02 at ROM address 17 8 . 

Note that if it had been a reserved instruction and not an EIS/FIS instruction, the flow would be from EI 1 to 
address 640 (EI2) to form the vector 10 and clear the UPP8 bit. Then at EI3, the Special Trap Pointer Marker 
(STPM) previously sent to D is stored by transfer to Scratch Pad Register R [VECT] and B. Exit is to TRAP D at 
microprogram address 7 ,on sheet 6 of the KDl 1-A flows. The entry point of TRAP D into traps differs from that of 
the TRAP B, used by the basic machine. TRAP B forms the vector and stores it, whereas at TRAP D this has already 
been done in the option. 

There is an overlap in this transition back to the basic machine that is similar to the transition from the basic 
machine to the option. At the end of EI2, UPP8 was cleared and at that instant the expansion ROM was disabled 
and the basic ROM enabled. Iri word EI3, while the data path is setting up to store the vector, a new ROM word is 
being looked up. That new word comes from the basic ROM so that the last expansion word is being executed at the 
same time that the basic ROM word is being fetched. The same thing happened when the CPU vectored for the 
expansion. Bit UPP8 was set at the end of FET04 and the contents of FETOS were loaded into the U Word Register. 
While the FETOS was being executed in the data path, the next word being looked up was in the expansion ROM. 

4.7.3.1 Destination Calculation - Sheet 1 of the EIS flows describes the destination calculation operations 
required to perform the four fixed-point instructions. 

NOTE 
The FIS exit is directly from word EI 1. 

The BUT(EINSTR I):EUB=l 7 in EIO tests the path to be taken in terms of destination mode of addressing (DMO 
through DM7) as determined from the destination mode bits in the instruction. Each path performs the functions 
necessary to calculate the destinations as a function of these modes. In all paths, two words prior to the instruction 
exit, the branch test BUT(EINSTR II):EUB=16 is made to determine which instruction is called for. This is 
determined from the Op code of the instruction. 

The operation of this flow is almost identical to the basic DEST flow for the processor as described in the KDll-A 
Maintenance Manual (DEC-11-HKDAA-A-D). One exception is word DST8, through which all other paths flow 
before branching. In this word, the Unibus data (which is the data from the final destination address) is sent to 
R[DEST] (the register specified by the destination field of the instruction). It is also sent to B and BR. The 
exception is word DSTl which does not go through DST8. Note that both words accomplish the same operation 
except that DST8 gets data from the Unibus and DSTl gets it from an internal register. In DMO, there is no need to 
go to the bus for data since the register contains the operand. 

At the conclusion of this flow, the data retrieved from the calculated destination resides in BR, B, and R(DEST). 

4.7.3.2 Arithmetic Shift and Arithmetic Shift Combined - The shift flows are shown on sheet 2 of the EIS flows 
and in Figure 4-8. In this operation, the data fetched from the calculated destination is a shift count that also 
indicates the direction in which to shift. The bits to be shifted are in a register designated by the source field of the 
instruction. If the instruction is ASH, 16 bits are to be shifted and the result will be stored in BR, B, and R(SF). If 
the instruction is ASHC, 32 bits are to be shifted, with the high 16 bits taken from an even register specified by the 
source field and the low 16 bits from that register ORed with 1. The results are stored in BR, B, and R(SF) (high 
answer); and in R(SFVl) (low answer). 

4-27 



NOTE 
In ASHC, if an odd register is specified by the source field of 
the IR, the ORing process in the hardware will result in two 
duplicate operands being fetched. If an odd Source Register is 
specified, the low 16 bits of the answer will overlay the high 
16 bits of the answer. 

ASH is entered at word ASHO at location 605. At Pl, the 8 bits of data in the BR(07:00) are loaded into the 
counter and the BR is cleared. Prior to that pulse, however, bits(OS:OO) of the BR are tested (EUB=13) to determine 
the branch after ASHl. 

ASH 

LOCATION 
OF OPERAND 

ER[SF~ 
NO 
_,_. __ 

LOCATION 
OF ANSWER 

r:.~~;;~~ 
~R_J 

ASHC 

LOCATIONS OF OPERANDS 

BR, B, R [SF] DR ( R [S~~i 
HIGH OPERAND LOW OPERAND 

·-----

LOCATIONS OF ANSWERS 

BR, B, R [SF] 

HIGH ANSWER 
DR ( R [SF VI]) 

11- 1625 

Figure 4-8 ASH and ASHC Locations of Operands and Answers 

In ASHl at P2, the register specified by the source field (R[SF]) is sent to the D Register, the V bit in the local 
status is cleared, and the count is clocked one time. At P3, the contents of the D Register (R[SF]) are loaded into 
the BR and B Registers. This is the data to be shifted. 

If, back in ASHO, the result of that BUT indicated that bit OS of the BR was set, a shift right operation was 
indicated, causing the flow to proceed now to ASH3 where the count is incremented and the branch microtest 
(EUB=lO) is set up for the shift loop in ASH4. The count is clocked at this point so that the shift loop in ASH4 will 
not be executed more than the specified amount. Note that in one word loops, the word is always executed one time 
more than the count on initial entry would indicate. This is because of the overlap of executing the present word 
while looking up the next word, and by the fact that branch tests are made two words ahead of the actual branch 
point. 

In ASH4, the right shift is implemented by putting the general register specified by the source field through a buffer 
and through the AIN of the ALU into the D Register. At the same time, ALU bit 15 is sent to the D(C) flop via the 
COUT MUX and ALU bit 00 is sent to EPS(C). This occurs at P2 Of a cycle length 3. At P3 of that word, D(C) and 
D(lS:Ol) are fed through the DMUX right shift data port back into the general register R(SF). Remember, in this 
operation D(C) is equal to Dl S. In addition to this, data is sent to the B and BR Registers and the count is 
incremented. This operation continues, shifting right one bit position for each pass through the loop, extending the 
sign down and putting the low bit of the ALU into the EPS(C) bit until the count is equal to 0. At th.is point, the 
answer is in three places: R(SF), B, and D. Note that the counter is disabled from counting when count bits S 
through 0 are equal to 0. 

4-28 



In ASH14, the contents of B are sent to D for the zeroness test at P2, and the flow progresses to ASH20 where 
BRIS (the sign of the answer) is sent to the N bit of the BPS and the result of the zeroness is sent to EPS(Z). If the 
contents of D were 0, EPS(Z) will be set. 

This word continues on to ASHl 5 in which the status bits EPS(N) through EPS(C) are transferred to the processor 
status in the basic machine. Note that in ASH20 there is no need to set either the V bit (set in ASHl) or the C bit 
(set in ASH4). In ASHIS, the UPP8 bit is also cleared to transfer ROM control back to the basic machine. 

ASH21 is a No-Op word that loads Os into the upper 24 bits of the ROM Register. This is done for housekeeping 
reasons so that upon reentry to the option, no extraneous bits will be left in that register. 

From here the flow exits to SERVICE C (location 17 8 ) on sheet 10 of the KD 11-A flows. Everytime the option is 
exited, the flow is through this route to test if an interrupt or trap is pending. If one is pending, it is serviced before 
continuing to the next instruction. 

If, back in ASHO, bit 05 of the BR was cleared and BR(04:00):f.O, a shift left operation was indicated, causing the 
flow to proceed from ASHl to ASHS where the count is decremented instead of being incremented as in ASH3. The 
same BUT is made (EUB=lO) and ASH6 is entered for a shift left operation. 

In this case, shifting does not take place in the DMUX but rather in the ALU by the function A PLUS A. In this 
case, BRIS goes to C rather than ALUOO. The statement EPS(V) gets 1 if BR15:f:BR14 refers to the sensing for sign 
change. If when shifting, these bits are different, an impending change in sign is indicated and the EPS(V) bit will be 
set. This bit will then remain set even if more shifting is necessary so that at the end of shifting the programmer has 
an indication of sign change. This shifting continues with the count being decremented for each pass until the count 
is exhausted. The sequence from that point on is identical to a right shift. 

In the instance of no shift (BR(OS :00)=0), the EPS(V) and EPS(C) bits are both cleared, BRl 5 is sent to the EPS(N) 
bit, and the EPS(Z) bit is conditioned by the zeroness test of D. This progresses to A.SHI 5 for transfer, ASH21 for 
cleanup, and out to SERVICE C. 

The ASHC flow is similar to the ASH flows except that now 32 bits are involved instead of 16. Entry is at ASHC to 
word ASI-17 at location 607. At Pl, the low 8 bits of the BR are loaded into the counter and the low operand 
(R [SFV 1]) is put in the BR. At the same time the EPS(V) bit is cleared. Prior to that, before the count has been 
transferred out of the BR, a BUT is made to determine what branch to take (shift right, shift left, or no shift). 

In ASH8, the low 16 bits that are now in the BR are sent to the DR Register and the high operand is taken from the 
even register (R[SF]) and put into the D Register. These operations occur on P2. On P3 of that word, the high 16 
bits, now in D, are transferred to the BR and B Registers. At the same time the count is clocked. At this point, the 
data to be shifted comprises 16 bits of low operand in the DR and 16 bits of high operand in the BR and B 
Registers. Note that the low operand went through the BR and was moved out to the DR before the high operand 
was put into it. 

If the result of the BUT indicates no shift, the flow is to ASH9 where the R(SFV 1) and BR are simultaneously sent 
to D, effectively ORing the high and low operand on the BUS RD to determine zeroness of the full 32-bit operand. 
In ASH2, the local status is set and moved to the processor in ASHl 5 as before. 

If a right shift is indicated, the count is tested for zeroness in ASHl 0, the BUT is set up for the loop and the right 
shift loop is entered (ASHl 1). Here the lower 16 bits are shifted in the DR Register while the high 16 bits are sent 
through the ALU and shifted in the right data port of the DMUX. This operation is identical to that in ASH. Since 
the BR and DR are concatenated, BROO goes into the high bit position of the DR while the low bit of the DR is put 
into the EPS(C) bit. All this occurs on P2. At P3, the right data port of the DMUX is fed back into the source 
(R [SF]), the B, and the BR Registers, and the count is incremented. This loop continues until the count equals 0 
(EUB=lO) at which time the loop is left and the flow continues to ASHl 2. 

4-29 



The low answer in the DR is sent to Din ASH12 and stored into the odd Source Register in ASH13. In ASH19, the 
high answer (BR) and the low answer (R(SFVl)) are sent to D so that the zeroness test of the 32-bit answer can be 
made by ORing on the BUS RD; and in ASH20, the EPS(N) and EPS(Z) bits are loaded prior to transfer in ASH15. 

Operation of ASHC left is similar to ASHC right except that the count is decremented and the operation of the shift 
loop differs in the same way that it did in the ASH instruction. In shift left ASHC, the low half is shifted in place in 
the DR Register, with 0 being put in the low bit (DROO). The high half is shifted by the A PLUS A function of the 
ALU. At P3 of ASHl 7, the D is put back in the BR, B, and Source Registers. In ASHl 8, the low answer is put into 
D (same as ASHl 2) and the flow continues as in ASHC right. 

Note that in ASHC operation, the high part of the answer does not have to be stored as that was accomplished in the 
loop. 

4.7.3.3 Multiply - The multiply flow is shown on sheet 3 of the EIS flows and in Figure 4-9. In this operation, the 
data fetched from the calculated destination is the multiplier, and the data from the register specified by the source 
field (R(SF)) of the instruction is the multiplicand. The two 16-bit numbers are multiplied and the 32-bit result is 
stored in R(SF) (high product) and in R(SFVl) (low product). 

NOTE 
In MUL, if an odd R(SF) is specified in the instruction, the 
low product will overlay the high product. 

Entry is at MUL to MULO at location 601. The multiplier from the destination address had been loaded into the BR, 
B, and R(DEST) Registers during DSTl or DST8. The count (178 ) is generated and put into D at P2 and into BR 
from D at P3. A BUT is set up for the sign of the multiplier (EUB=3). 

...____ . ...,_D _._}-----

--i .... _(_M_uL_r_f3p_u_ER_> __ 

HIGH ;;Q:~l-- --- ------- ·-·· 
----···-···- ---------------9"1 

DR 

MULTIPLICAND 

LOW PRODUCT 

Figure 4-9 MUL Flow, Block Diagram 

-·-----~ ~~~ I 
11-1626 

In MULi, the 2's complement of the multiplier is taken. This is done at this point in case the negative multiplier 
branch is called for. In this word, the EPS(C) bit is cleared and the count is transferred from the BR to the counter. 

If BRl 5 was set on the BUT, the next word is MUL2 in which the multiplicand is put into the BR from the source 
field designated register and a BUf is made for the state of Dl 5 (EUB=l). 

4-30 



In MUL3, the multiplicand is put into the DR and the contents of the Source Field Register is put into D. If as a 
result of the BUT in MUL2 D15 was 1 (note, this was what was in D at that time or the 2's complement of the 
multiplier), then the multiplier is determined as being the most negative number since that is the only number that 
can be 2's complemented and remain negative. In this event, the flow goes to MUL4 where the copy of the 
multiplier in R [DEST] is now sent to the BR. 

NOTE 
This is the uncomplemented multiplier. The complementation 
done in MUL 1 was for testing purposes. 

Another test for Dl 5 is made in this word, and in MULS the multiplier (in BR) is sent to DR and BR is cleared. 

NOTE 
Normally the multiplier would be put in B when the loop was 
started, but the most negative multiplier must be put in 1the 
normal position of the multiplicand to produce the correct 
result. 

If the multiplier had proven to be positive in MULO, flow would have gone to MUL 7 where the Source Register 
would have been loaded into the BR Register, and from BR into DR in MUL8, and then the count would have been 
decremented in MULl 9 to take care of the one-word loop discrepancy described in ASH. 

In MULS, returning once again to the flow for the most negative multiplier, the flow branches again as to the sign of 
the multiplicand. This is indicated by the state of D15 since the multiplicand (R [SF]) was loaded into D back in 
MUL3. In this flow, the sign of the multiplicand must be tested also since a most negative number can never be 
placed in the B Register. Since one operand has been determined to be most negative, the other operand must be 
tested for that characteristic as well. 

If DIS is clear at MULS, no problem exists and the multiplicand is put into Bas the count is decremented. If DlS is 
set, however, the flow goes to MUL21 where it (the multiplicand) is tested for being the most negative number. This 
time the 2's complement is taken by subtracting the Source Field Register from the B Register (already established 
as being the most negative number). 

NOTE 
BUT(COUNT=O):EUB=lO is done here to clock the NPR and 
Bus Request flags and to clear the Bus Busy flag in the 
KDl 1-A (see Note 2 on sheet 3 of EIS flows). 

If the result of the comparison just done in MUL21 is 0, the indication is that the multiplicand is also the most 
negative number and the answer can be generated at this point in the flow without continuing with the 
multiplication. 

After zeroing the low answer in MUL23, the flow branches to MUL24 and the high product is shifted right one 
place. 

NOTE 
The most negative number times the most negative numb<~r is 
equal to that number shifted right one place as the high 
product and with 0 as the low product. 

4-31 



In MUL25, the answer in DR is put into D and stored in the Source Field Register in MUL26. The local condition 
codes are set and the flow exits to the MOVE EPS point in the ASH/ASHC flows. This is ASH15, the common 
transfer point to the Processor Status Word before returning to the service routine. 

If, back in MUL23, the multiplicand proved not to be the most negative number (-D=O), it is put into the B Register 
at MUL27 and the count is decremented. 

This brings the flow to the common point of all flows described for multiply so far. This is the entry point to the 
multiply loop at MUL9. 

The multiply operation is essentially a right shift operation through the right data port of the DMUX. It is a 
functional operation of the ALU, determined by the instantaneous conditions of bit 00 of the DR Register and the 
EPS(C) bit. (See the table to the right of this block.) The contents of BR and B will be either subtracted or added in 
the ALU before being shifted one bit postion to the right through the DMUX, or the ALU will put the data straight 
through before it is shifted. 

One of these operations will occur prior to each shift for each pass through the loop, depending upon the states of 
the two conditioning bits for the ALU. At P3 of each pass, the high product is being assembled in the BR and the 
count is decremented. This continues for 16 passes, at which time the count equals 0 and the loop is left. 

NOTE 
The notation GPC=2; DAD=14 at P3 of MUL9 pertains to 
generation of auxiliary ROM control. The DAD code is for the 
basic machine auxiliary ROM control enable and the GPC code 
is for the option auxiliary ROM control enable. 

In MULl 0, the high product that has been assembled in BR is sent to D; in MUL20, it is stored in the even Source 
Field Register. At this word, a test is made of the sign of the low product (BUT(DR15):EUB=5) in preparation for 
setting the C bit in the EPS. If the result is less than -21 5 or is greater than or equal to 21 5 -1, this bit must be set, 
otherwise it is cleared. The result is represented in BR (high product) concatenated with DR (low product); and to 
determine the proper setting of the EPS(C) bit, the high bit of the DR (bit 15) must be compared with the entire 
contents of the BR. IF BR contains all ls and DR15 is also a 1, the answer can be represented by just the low 16 
bits. Similarly, if DRl 5 is 0 and the BR is all Os, the high 16 bits are still an extension of the MSB of the low 16 bits 
and the answer can still be expressed in one word. 

In MULl 1, the high product is complemented and sent to D. The EPS(V) bit in the local status is cleared, and the 
BUT for D equal to 0 (EUB=4) is made. This is done because if Dis equal to 0 after complementing, then it was all 
ls. 

Coming out of MULl 1, the branch is made. If DR15 was 0, the low product was positive and the flow proceeds to 
MULl 6 where the EPS(C) bit is set and the DR is put into D. At the branch coming out of MULl 6, the result of the 
test for the state of Din MULl 1 determines the flow. If it had not been 0, the EPS(C) bit is left set, the other status 
bits are set, and the low product now in Dis sent to the odd Source Field Register. This occurs in MUL18 from 
which the flow exits to MOVE EPS on sheet 2 of these flows. 

If D, in MULl 1, had been 0, the flow is to MULl 7where the EPS(C) bit is cleared once again, the other status bits 
are set, and the low product is sent to R(SFVl) as in MUL18. 

If, back in MUL20, DR15 was seen to be 1, similar actions take place in MUL12, MUL13, and MUL14 or 15. The 
status bits are set accordingly with the EPS(N) bit set if the product is less than 0 or cleared if it is more than 0. The 
EPS(Z) bit is set if the product is equal to 0 and is cleared otherwise. The EPS(V) bit is cleared and the EPS(C) bit is 
set or cleared according to the already stated criteria. 

4-32 



From all of these flows, the resultant status is transferred to the Processor Status Word (MOVE BPS), the high 
product was stored in the even register in MUL20, and the low product in the odd register in the steps just described. 
The flow then proceeds to SERVICE as in other operations. 

4.7.3.4 Divide - The divide flow is shown on sheets 4 and 5 of the EIS flows and in Figure 4-10. In this operation, 
the data fetched from the calculated destination is the divisor, and the data from both the register specified by the 
source field of the instruction and that register ORed with 1 is the dividend. The high dividend is taken from the 
even register and the low dividend from the odd register. The 32-bit dividend is divided by the 16-bit divisor and the 
results are stored in R(SFVl) (remainder) and R(SF) (quotient). 

NOTE 
In DIV, an even R(SF) must be specified. 

Entry is at DIV to DIVO at location 603. In this word, the count is generated from the SBC code of 12. This 
generates an octal 17 or decimal 15, providing the 16 passes through the divide loop. This is loaded into D at P2 and 
from there to the BR in P3. 

RDMUX 

SHIFT LEFT 

B 

DIVISOR 

DR15 DR 

LOW DIVIDEND 

QUOTIENT 

Figure 4-10 DIV Flow Block Diagram 

!l-1627 

At DIVl, the divisor in B is sent to D; and in DIV2, the count is loaded from BR. At the same time (P2), the high 
dividend in the even Source Register is loaded into BR and a test is made of the D Register which holds the divisor. 
If it is 0, then the divisor is 0 and the flow will go through DIV3 (a No-Op) to DIV4 where the EPS(Z,V,C) bits are 
set before exiting to MOVE EPS. Divide by 0 is undefined and is not executed. 

If the divisor is not 0, DIVS is entered where the low dividend (R(SFVl)) is put into Band the EPS(N) bit is set to 
the state of BRl 5. This is the sign of the dividend. The test BUT(BRl 5):EUB=3 is set to test the sign of the dividend 
for the branch from DIV6. 

In DIV6, the 2's complement of the low dividend is taken. This is done in the event the negative dividend path at 
DIV7 is to be taken, and it affords a chance to make the dividend positive before operating on it. If the negative 
path is not taken, nothing is destroyed by this complementing. At the same time, the carry-out of bit 15 of the ALU 
(COUTl 5) is stored in EPS(C) for future use. 

4-33 



At P3 of DIV6, the complemented dividend is put into the BR and the BUT(COUNT=O) is made to clear any 
hinderances to NPRs. 

If BRlS was (1) in word DIVS, the flow is to DIV? where the high dividend is sent to B so that a 2's complement of 
it can be taken in DIVS. Note that the carry-out stored in EPS(C) in DIV6 is now used as a carry-in to effect the 2's 
complement. This arrangement provides the 2's complement of the total 32-bit dividend. A BUT is made here to 
determine whether or not the dividend is the most negative number (EUB=3) which tests bit 1 S of the BR. 

In DIVlO, the divisor in R(DEST) is sent to B for use in DIV16; but if BRlS proved to be a (1) in DIV9, its not 
needed and the DIV QUIT path is taken to DIVl 1 (a No-Op) and DIV12 where the condition codes are set 
appropriately and the flow exits to MOVE EPS. 

NOTE 
DIV QUIT is taken because division into the most negative 
number results in more than 15 bits of answer. 

If BRI S proved to be a (0) in DIV9, the indication is that the dividend is not the most negative numbeir and DIVI 6 
is entered for the first division step. 

Before entering DIVl 6 in this discussion, the flow is taken back to DIVl 3 which would be entered if the dividend 
was determined, in DIVS, to be positive. In this case, the low dividend is moved to BR and from BR to DR in 
DIVI4. At the same time, the high dividend is put into BR. Then in DIVIS, the divisor is put into the B Register. 
From either path, the entrance into DIVl 6 sees the divisor in B and the full dividend in BR and DR, with BR 
holding the high I 6 bits. 

The first division step is done at DIVI 6. The operation in this step, in DIVI9 and in the loop of DIV20, is to shift 
then add, or shift then subtract. 

Note from the statement in DIVI6 that the D Register will be loaded with BR(14:00), DRIS and Bas a function of 
BIS. This process can be followed on the block diagram to the top right of the sheet. There it can be seen that the 
BR concatenated with DRIS, shifted left one bit position through the RDMUX, and fed to the AIN of the ALU, 
while the B Register (the divisor) is fed to the B input of the ALU. Depending upon the state of Bl S, the ALU will 
add B to or subtract B from the AIN data of the ALU and feed it to D, through the DMUX to BR. The carry-out, bit 
IS of the ALU, is shifted into the low end of DR as the partial quotient, while a remainder (if there is any) is being 
formed in the BR. 

For divide, there are two possible criteria that determine auxiliary ALU functions. One has already been mentioned 
(BIS) and this is the determinant whenever DAD==l4 in the basic ROM is asserted. The ALU functions for the two 
states of BIS are given in a table to the right of word DIV16. The other criteria are given in the table to the left of 
DIV20 in which the dual conditions of both BIS and DROO are the determinants. These are used upon the 
simultaneous assertion of GPC=2 in the option ROM and DAD=I4 in the basic ROM. Note DROO is the result of the 
last add or subtract. 

At DIVI6, just the state of BIS is used (DAD=I4 is asserted). Since the 2's complement of the divisor has already 
been taken, and since if after complementing the high bit was still a I, the most negative number would have been 
indicated; it is known at this point that BIS is 0. Thus, the first shift will take place, followed by a subtract 
operation. The count is decremented, making the count equal to I 4. 

The flow then progresses to DIVI 7 where the size of the quotient is determined with respect to the ability of the 
hardware to express it. If it is greater than 16 bits, it exceeds the capability of the machine and the DIV QUIT path 
is initiated. As such, DIVI 7 is a No-Op merely to establish the test BUT (DIV QUIT) :EUB=7. This test looks for the 
three possible sets of conditions expressed in the formula to the right of this word. This is really a test for overflow. 

4-34 



In DIVIS, the count is decremented and the C bit is cleared to indicate that divide by 0 was not attempted. This 
reduces the count to I 3. 

At this point , if DIV QUIT was not indicated back in DIVI 7, the flow is to DIVI 9 which is the second division 
step. Here another shift is accomplished as described above except that now both BIS and DROO are used as criteria 
for adding or subtracting after the shift (GPC=2 is asserted). The count is decremented, putting the count at I 2. 

Word DIV20 is the divide loop in which the arithmetic operations are performed according to the same determinants 
(BRIS and DROO) until the remaining I4 passes are completed. The BUT for count equal to 0 is also set in this 
word. 

Upon completion of the count, the flow exits to DIV A on sheet S of the EIS flows for the completion of the divide 
operation. 

The object of the steps on this sheet is to ensure that the sign of the remainder is the same as that of the dividend. If 
the dividend is negative, the remainder must be stored as a negative number and vice versa. Further, the sign of the 
quotient must follow the algebraic rule that division of two negative number (or of two positive numbers) produces 
a positive quotient, whereas one of each produces a negative quotient. Furthermore, since the division process 
subtracts ascending orders of the divisor, an excess operation may occur. Therefore, the remainder might have to be 
corrected away from 0 before it is stored. 

Entering the flow on this page shows the remainder stored in D (DIV2I) and then stored in the odd register 
(DIV22). The test in DIV2I (EUB==I2) is made to determine which path to take at the branch from DIV22. This test 
looks at the states of BIS (the sign of the divisor) and DROO (the low bit of the quotient). The latter indicates 
whether or not a correction must be made. If DROO=I, no correction is required, but if DROO=O, a correction is 
required. If B 15=0, a positive divisor is indicated; if BI S=l, a negative divisor is indicated. 

Note that the extreme left-hand path to DIV23 is taken if the divisor is positive and no remainder correction is 
needed. The next path is taken if the divisor is positive and remainder correction is required. Note here (DIV27) that 
the correction adds the divisor (B) to the remainder (BR), correcting away from 0. The next path to DIV31 is taken 
if remainder correction is required for a negative divisor in which correction away from 0 results in the divisor being 
subtracted from the remainder. And the last path to the right is taken to DIV23 if the divisor is negative and no 
remainder correction is called for. 

The second word in these two central correction paths stores both the corrected remainder in Din the odd Source 
Register and in the BR Register. The copy in BR is used for 1 's complementing and is transferred to Din case the 
dividend is deemed to be negative by the BUT (EUB=2) in either words DIV23 or DIV33. In words DIV24 or 
DIV34, the complemented remainder is returned from D to B and BR. 

At this point in either DIV23 or DIV33, the results of the BUT(SDIV) are used to guide the flow either to the 
positive dividend paths (-SDIVD) or the negative dividend paths (SDIVD). Note that at this point the sign of the 
divisor is already implicit in the pa th. 

The path from DIV24 to DIV25 is taken if both the dividend and divisor are positive. This indicates that the 
quotient will also be positive. In DIV2S, therefore, the quotient is sent to D and BR from DR; in DIV26, it is stored 
in the even register from D, while the status bits are appropriately set before exit to MOVE EPS. 

The path from DIV34 to DIV35 is taken if both the dividend and divisor are positive. Once again the quotient will 
be positive and the same exit path as above is taken through DIV26, after the remainder is 2's complemented in 
DIV35 and stored in DIV36. 

The other two paths (from DIV24 to DIV29 and from DIV34 to DIV37) are taken if the signs of dividend and 
divisor are different, yielding a negative quotient. From DIV34 to DIV37, no complementing of the remainder is 

4-35 



required before complementing the quotient. The corrected remainder was already stored back in DIV32; however, 
from DIV24 to DIV37 the remainder must be complemented before complementing the quotient. This is done in 
DIV29 and DIV30 where the remainder is stored in the odd register. 

Entering DIV37, the remainder has been properly stored and the flow is concerned with storing the quotient as a 
negative number, together with determining if that quotient is or is not the most negative number (100000). 

At DIV37, the quotient is l's complemented (in the event that it needs to be at the branch out of DIV39); in 
DIV38, it is stored in the even register (as well as in B). DIV38 also sets up the BUT for DlS (EUB=l), the high bit 
of the complemented quotient. This is done to see whether or not the quotient is negative after l's complementing. 

In DIV39, at P2, 1 is added to the l's complement of the quotient to see if it is a most negative number after 2's 
complementing. This test occurs between P2 and P3 of that word. 

NOTE 
This is one of the few cases in which a BUT is made in the 
same word with the modification of that data. The data is 
modified on P2 and tested from P2 to P3. 

At P3 the 2's complemented quotient is stored in the even register. If the result of the BUT in DIV38 found Dl 5 set, 
the quotient is not the most negative number and the quotient is stored in DIV26 where the status bits are also set 
before exiting to MOVE EPS. If, however, the result of the BUT in DIV38 found DlS cleared, the quotient was 
indicated to be a negative number, and in DIV40, the local condition codes are set to indicate that. 

Coming out of DIV 40, the results of the BUT in DIV39 come into play and if D 15 tested to be clear, the quotient is 
deemed to be negative but not the most negative. This flows through a No-Op at DIV42 to MOVE EPS; but if Dl5 
tested to be set in DIV39, the quotient is the most negative number and in DIV41 the EPS(V) bit is altered to (1). 
The flow exits to DIV QUIT. 

4.7.4 KEl 1-F Flow Diagram Discussion 

The K.El 1-F flows are shown on drawings D-FD-KEll-F-FD, sheets 1 through 6. The format of these flows is 
identical to that of the KDll-A and the K.Ell-E, and the conventions follow those described in preceding 
paragraphs. 

Entry into the FIS flows is through the K.El 1-E, initialized in a similar manner to that described for the EIS option 
in which the flow follows through FETCH and then BUT 37 sets bit 8 of the ROM address. This sends the flow over 
into the expansion ROM entering the EIS flows as described before. When BUT(EINSTR I) is raised in the EIS, 
decoding takes place to recognize whether it is an EIS or FIS instruction; and if the outputs of that decoding yield 
IR=75xxxx, that signal is sent to the FIS hardware where it is gated with the proper IR bits for an FIS instruction. If 
they compare, a signal is sent back to the EIS branching logic, forcing a branch to the FIS EXIT and from there to 
the FIS entrance on sheet 1 of the FIS flows. 

4.7.4.1 : FIS Entry - Sheet 1 of the FIS flows describes the FIS entry operation. Entry to this flow is at FIS to FPO 
at location 642. Here the floating stack pointer (R(DF)), pointed to by the destination field of the instruction, is put 
into the BA. Also the DATI is initiated and the clock is shut off to await memory response. The contents of R(DF) 
point to the high B argument on the stack containing the sign, the exponent, and the high part of the mantissa. 

4-36 



There are two passes through this flow in fetching and storing the arguments. The first from FPO through FP13 
fetches and adjusts the B arguments. The second from FPl through FP14 fetches and adjusts the A arguments 
(Figure 4-11). 

R+s ~~~~:~NT I LOW MANTISSA 

R+ • I HIGH·. AR~-.~"~'~T I SIGN, EXPONENT, 
_ __ HIGH MANTISSA 

R+ 2 LOW B ARG~:E-NT J LOW MANTISSA 

R r::="MENT I SIGN, EXPONENT, c _ __ HIGH MANTISSA 

11-1624 

Figure 4-11 Floating-Point Arguments Order on the Stack 

FPl strobes the argument in off the bus and places it in three places: 1) in BR, 2) in B, and 3) in R{l l), the odd 
register. Note that the general purpose register that is used for storage (10 or 11) is a function of ARGA. The ROM 
always specifies the odd register in this flow, but when ARGA is set (only during the second pass through the flow), 
its setting diverts the argument fetched to the even register. 

In FP2, at P2, the high B argument in the BR is put into the DR, the pointer is incremented by 2, and a DA TI is 
initiated in preparation for getting the low B argument. At P3 of FP2, the incremented pointer is returned to R(DF) 
and the clock is turned off. After a wait for memory response, FP3 strobes the low B argument into R{l 3) and into 
B. 

The low B argument is shifted left in FP4 by adding it to itself. Note that in FP3 the low B argument is sent to B, 
and in FP4 those contents are added to the same data in R(13), then sent to Das the carry-out 15 is saved in 
EPS(C). At FP3 then, the shifted data is returned to R(13). 

FPS puts the high B argument, which was stored in R{l l) in FPl, in B; and FP6 shifts it left. This single bit-shift to 
the left puts the entire exponent that was partially in the low byte into the high byte. In so doing, the sign bit is 
shifted out (not lost, still in BR) and the EPS{C) bit is inserted at the low end. The carry-in to the ALU is enabled by 
GPC=4. This double-precision shift operation makes it appear that the full 32 bits were shifted at once and provides 
an extra bit position on the low end of the low B argument for future rounding purposes. At P3 of that word, the 
shifted high B argument is returned to B and R{l l ). 

Word FP7 is used to separate the exponent and high mantissa and to put the exponent in the low byte of a testable 
word. To do this, the high byte of D is forced to 0 (SBCOO) and the exponent (B{l 5 :08)) is sent to the low byte of 
D. This is done for future overflow or underflow testing. These conditions will be indicated by what happens to the 
high byte of D {Is from the right= overflow, Is from the left= underflow). 

In FP8, the separated exponent is sent from D to R{IS) and if D was equal to 0 {O exponent) the EPS(Z) bit is set. 
Note that ZB is not relevant on the first pass through this flow. The zeroness of the exponent is also tested for 
branching at FPIO {BUT{D=O):EUB=4) so that if it is 0, a 0 argument will then be generated. 

4-37 



At FP9, the hidden 1 is inserted (all numbers are assumed to be normalized). A CON field=O is asserted, generating a 
constant of 4008 which is gated onto the BUS RD to AIN of the ALU and then added to Os for the high byte, and 
to B(07:00) for the low byte of the BIN port of the ALU. 

NOTE 
At this point, the B Register holds the high mantissa (shifted 
left in FP6). The previously separated exponent is in RlS, and 
the sign is in the copy of the high B argument stored in BR 
back in FPL 

Word FP9 also BUTs the state of the ARGA flop which for this first pass is cleared. Coming out of FP9, the results 
of the test for exponent (D=O) in FPS are felt. 

If the exponent was 0 at that time, the flow goes to FPlO where a 0 is generated for the whole argument. The D 
Register is first zeroed and that is then used to 0 every appearance of the low B argument (BR, B, and R(13)). At 
FPl 1, the Dis used to zero the high B argument in R(l 1) and the ARGA flop is set. Note that the ARGA BUT was 
in FPlO, however, directing the flow now to FP13. 

If, back in FPS, the exponent proved to be not equal to 0, the flow from FP9 is to FP12 where the: pure high B 
mantissa in Dis stored in R(l 1) and the ARGA flop is clocked before proceeding to FP13. 

NOTE 
The hidden 1, inserted at FP9, is used only if the exponent -::/= 

0. If exponent is 0, the 1 is destroyed in FPlO and FPl l. 

In FP13, the sign of the B argument, still in BR, is saved in MSR and in EPS(N). The stack pointer is updated in the 
D Register to point to the high A argument, and then put back in R(DF) at P3 of this word. Once again the DA TI is 
initiated and the clock is turned off to wait for memory to respond. 

From FP13, the flow is to FPl to fetch the A argument. The fact that ARGA flop is now set overrides the low bit of 
the register address and causes the even general registers to be selected. Now fARGA will select R(lO) for storage of 
the high A argument, R(12) for the low A argument, and R(14) for storage of the A exponent. All other operations 
are identical to the fetching of the B arguments previously discussed, except that this time in FPS the zeroness of the 
B exponent in EPS(Z) is transferred to ZB, and the zeroness of the A exponent is put into EPS(Z). Now the status of 
both exponents can be used in FMUL and FDIV to determine automatic generation of a 0 answer. Also, this time 
the ARGA flop is clocked to the clear state so that odd or even register selection can be determined by the ROM or 
the instruction. 

Coming out of FPl 1 or FP12 in this pass, flow is to FP14 since ARGA was set at FP9. In this word, the high A 
argument (stored in DR at FP2) is sent to Band the decoding of the instruction is made (BUT(FINSTR I):EUB=15). 

At FP15, the high A argument in B and the high B argument in MSR (stored in FP13) are sent through the ALU to 
be XORed. The MSR is also sent to the BR via the DMUX. The XOR is taken at this point to determine the sign for 
FMUL and FDIV. 

From here, the flow exits to the appropriate page as determined by the BUT in FP14. 

4.7.4.2 FADD and FSUB - Entrance to this flow is either at FADD or FSUB. As shown in the diagram, the 
operations are identical except for one extra step in floating subtract instructions. This is SUBO at location 522 in 
which the high B argument in MSR (subtrahend) is complemented in D (merely to change sign), and put into BR. 
Flow is then diverted to the add flow at ADDO. 

4-3S 



In a floating-add instruction, entrance through F ADD is to ADDO at location 520. Here the low B argument in 
R(13) is sent to B and the sign of the B argument (BRl 5) is tested for the branch out of ADDl. For FADD 
instructions, BR is loaded with the high B argument at FP15 and for FSUB instructions it is reloaded at SUBO. 

In ADDl, the 2's complement of the low B argument is taken, DAD=lO inserts the carry into the ALU, and the 
carry-out is saved. This whole operation is done in case the B argument is negative. In that case, the branch is to 
ADD4 where the 2's complement of the low B argument is stored in R(l 3). 

At ADDS, the high B argument (R(l 1)) is put into Band complemented in ADD6 with the carry-out of the previous 
2's complement inserted to yield a 32-bit 2's complement. In ADD7, this complemented high B argument is stored 
back in R(l 1) and flow proceeds to ADD2. 

If BRl 5 was (O) in ADDO, the B argument would have been positive, flow would have gone directly to ADD2, and 
complementing of the high B argument would not have occurred. 

At ADD2, the low A argument (R(l 2)) is put in B and BR, and the high A argument sign is tested (DRl 5). The DR 
was loaded with the high A argument at FP2. The low A argument is then put in HSR in ADD3, the 2's complement 
is also taken (in case the argument is negative) and put into BR, and BUT(COUNT=O) is done for NPRs. 

If the A argument is positive, the flow proceeds to ADDS where the high A argument, uncomplemented, is put into 
the BR. If it is negative, ADD9 is entered instead where the complemented low A argument is stored in HSR and the 
high A argument (R(lO)) is put into B. The 2's complement is then taken in ADDIO and put into BR. Note that 
either flow (DRl 5(0) or DRl 5(1 )) results in the high A argument being stored in BR. 

Now the exponents are considered (they were separated back in the fetching of the arguments), and in ADDl 1, the 
high A argument is put into the DR while the A exponent in R(14) is put into B. At the same time, the EPS(Z) bit is 
cleared for later use. 

In ADD12, the A exponent in Bis subtracted from the B exponent in R(15) and that difference (which is used as a 
shift count for lining up binary points) is put into Band BR. Note that between P2 and P3, D15, which indicates the 
relationship of argument exponents, is tested for the branch out of ADD13. 

If, in ADDl 2, Dl 5 was set, it indicated that the A exponent (R(14)) was greater than the B exponent (R(l 5)), and 
in that case, positions of all arguments and exponents must be swapped. This is necessary later on when binary 
points arc lined up so that the proper argument is in position to be shifted. 

ADDI 3 performs a 2's complement in case A>B, and the flow proceeds to either F ADDA exit if B~A, or to ADD 14 
where the general swapping operation begins. Note that if the exponents are equal (D=O), the setting of EPS(Z) in 
this word (ADD13) indicates that fact. 

If A and B arguments must change places, ADD14 moves the A exponent in D (actual count) to BR, ADD15 moves 
it from BR to the count, and moves the low A (in HSR) to D. In ADD 16, the low B argument is put into the BR, 
and in ADD39 the low A is put in R(l 3) from D. 

NOTE 
At this point, low A is where low B was. 

At ADDI 7, low Bin BR is put in HSR so that low Bis now where low A used to be, and at the same time the high A 
in DR is sent to D. 

In ADDIS, the high Bin R(ll) is put in BR; in ADD19, it is put in the DR while the high A in Dis put in R(l l). 
Now both arguments are swapped and in ADD20 and ADD21 the A exponent is put where the B exponent was. This 

4-39 



completes the swap of arguments and exponents. Only the A exponent is moved in this operation. The B exponent is 
lost since their difference was determined in ADD 12 and A has been determined to be the larger. 

NOTE 
If B was ~ A, R(lS) would still contain the larger exponent 
(B). 

Flow then proceeds through the exit F ADDA to the next sheet of this flow. 

The floating add and floating subtract flows continue on sheet 3 of the FIS flows, then on through F ADDA to 
ADD22 at location 740. Here the low B argument is shifted left to provide an additional bit position on the low end 
for rounding. This is done by adding R(13) to itself, saving the carry-out, and putting the result in Band BR. This 
makes two extra rounding positions, as the first was gained in fetching the arguments. 

NOTE 
Although arguments are identified in the discussion from this 
point on, it must be remembered that due to swapping, what is 
called the low B here may be the low A. What is termed the 
low B should be thought of as the larger of the two arguments 
to avoid confusion. 

Since a shift is performed, the counter is checked for a count greater than 308 . This condition would exceed the 
range of the machine. The mantissa consists of 24 bits including the hidden 1 (241 0 =308 ). If the difference in 
exponents exceeds this, the hardware will not perform any shifting but will take the argument with the larger 
exponent as the answer before rounding and normalization. 

The BUT (COUNT>30):FUB1, EUB3 is made at P2 of ADD22, and at P3 of that word, the count is decremented. 

ADD23 performs the same shift of the high B argument by adding R(l 1) to itself with the carry-in inserted from the 
previous word, yielding a resultant 32-bit left shift of which only 24 bits are looked at. The high bits are considered 
sign extension. 

Coming out of ADD22, if the count was sensed greater than 308 , the path to ADD29 is taken, thereby bypassing the 
binary point alignment procedure and putting the low answer in HSR and the high answer in BR. BUT COUNT=O 
accommodates NPR servicing and the flow proceeds to ADD33. Note that this enters the flow after the steps that 
would have been taken if the exponents had been in range. If this were the case, flow would be to ADD24 from 
ADD23. 

At that point in the flow, the DR (high mantissa) is concatenated with HSR (low mantissa). When these bits are 
shifted right, the sign of the DR must be duplicated. The statement at Pl (ADD24) performs that function by 
placing DRl 5 (sign) into BROO. As shifting continues, the state of DRl 5 is duplicated. The BUT in this word is 
testing for the equality of exponents. EPS(Z) and ZB have previously been set to indicate this equality. If the 
exponents are equal, EPS(Z) will be set, no shifting due to exponent difference is required, and the flow is to 
ADD28 through ADD25 where the count is decremented again. Note that no shifting due to exponent difference is 
required, but that binary points still require lining up due to the two extra rounding bits already added to the low 
end of the B argument. Thus, the A argument (that picked up one extra bit in fetching) must pick up an additional 
extra bit to be aligned with the B argument. This is done in ADD28 where the high A argument in DR and the low A 
argument in HSR are shifted left one place. HSROO picks up a 0 from MSRl 5. This word then carries off to ADD30 
to begin the add operation. 

440 



If as a result of the BUT in ADD24 the exponents were determined not to be equal, the indication is that shifting is 
required to align the binary points. In this event, the flow would proceed through a decrement in ADD25 to 
ADD26. The count, however, had also been decremented in ADD22 so that the original difference in exponents was 
reduced by one. Thus, if the BUT(COUNT=O) in ADD25 is true, an original difference of one in exponents existed 
and no alignment is required; i.e., an additional bit position was picked up on the B argument in ADD22 and, by not 
shifting the A argument right one place to exhaust that difference, an extra place on the A argument has effectively 
been gained. In this event, the flow out of ADD26 will not be to ADD27 but rather to ADD30. 

In the event that the result of the BUT(COUNT=O) in ADD25 was =f. 0 (note: this BUS is after the decrement in 
ADD22 but before the decrement in ADD25), the decrement in ADD25 will cause the BUT in ADD26 to indicate 
that an original difference of two existed and just one pass is required through ADD27, thereby shifting the A 
argument one additional position to account for the extra bit on the low end. 

In ADD27, the number of passes will always be one less than the original count for the reasons just stated, and in the 
example just given, the decrement in ADD26 will carry the flow out of ADD27 to ADD30. 

An add of the low A and low B arguments is performed in ADD30 and the results (low answer) are stored in BR. 
The low answer is then sent to HSR in ADD31 and the high B argument (R(l 1)) is put in B. 

An add of the high A and high B arguments is performed in ADD32 and the results (high answer) are stored in BR. 
The high answer is sent to DR in ADD33 and the low answer in HSR is put in B. The sign of the answer (BRlS) is 
put in EPS(N). 

A 2's complement of the low answer in B is taken at ADD34 and stored in the BR. This is done in case the answer is 
negative. At the same time, BUT(BRlS) is made to test the sign in the high answer for the branch out of ADD35. 

In ADD35, P2, the high answer in DR is ORed with the low answer in B through the ALU to D. This is done to 
accommodate the BUT(D=O) test in the first word in the normalize flow. At P3, the high answer in DR is sent 
through the DMUX to B. 

At this point, the effects of the sign of the answer are felt. If the answer is positive, it is shifted right in ADD38 to 
get rid of the second extra bit on the low end and the flow exits to NORMALIZE. If the answer is negative, the 2's 
complement of the high answer is taken in ADD36, and in ADD37, the answer is put in DR and B for the ORing 
operation again in ADD35. This time the BUT (BRl 5) will find a positive answer (because of the complementation) 
and exit through ADD38 to NORMALIZE. 

There are exits in this flow for bus requests. These tests, made by hardware assertion of GPC=7, are not made on the 
BUT MUX. This code will assert bit 5 in the UPP and cause the ROM to branch to BRQ if a bus request has been 
docked in. The bus data cycle master sync would have clocked the BR request flags in the processor. The 
BUT(COUNT=O) in the option also clocks that flag and throughout these flows that BUT appears periodically 
whenever the length of time for an operation has taken a considerable period. 

If a bus request had been flagged at ADD25 when the flow was to proceed to ADD28 for example, the GPC=7 
would have been asserted in ADD25, causing bit 5 of the UPP to be asserted thereby changing the next address from 
717 (ADD30) to 757 (BRQl). 

If the flow was from ADD25 through ADD26 to ADD27, rather than go to 713 (ADD27), the flow would proceed 
to 75 3 (BRQO). Also in ADD27, this code is asserted for each pass through the loop so that anytime a bus request is 
present, the flow will immediately branch to BRQO. 

When a bus request is sensed by a GPC=7 code, the instruction is aborted, the stack pointer is backed up to the high 
B argument, and the PC is backed up to the floating instruction. This allows return to a restart of the floating 
instruction after servicing the request. 

441 



Both BRQO and BRQl perform this same operation by generating a constant of 68 (fCON=2) to decrement the 
pointer. It exits through BRQ to BRQ4 at location 755 where the constant in Bis subtracted from R(DF), the stack 
pointer. UPP8 is cleared to switch ROMs and word BRQ5 decrements the PC by 2 to point to the floating 
instruction. 

The final exit is to SERVICE C in the KD 11-A flows. 

4.7.4.3 FMUL -The floating multiply flow is shown on sheet 4 of the FIS flows and in Figure 4-12. Entry to this 
flow is through FMUL to FMLO at location 524. In this word, the contents of the D Register is put into the BR. 
This is the result of the XOR of B and MSR performed on sheet 1 at FPl 5 prior to entry and represents the sign of 
the answer. 

RDMUX 

~-·-·-_--_--_--.._-----~-~-~w_L_--_·--_···-

11-1628 

Figure 4-12 FMUL Flow, Block Diagram 

In FMLl, the B exponent (R(14)) is put in Band the sign of the answer (BR15) is put in EPS(N). The zeroness of 
the A and B exponents is tested with BUT(ZB+EPS(Z)). These bits were set while fetching the exponents in FPS. 

Word FML2 adds the A and B exponents and then proceeds to either FML3 or FML4. Note that adding two 
exponents, each of which is expressed in excess 200 notation, yields a result that is in excess 400 notation. This will 
be corrected in subsequent steps. 

If the result of the BUT in FMLl indicated that one or both exponents (arguments) was equal to 0, the flow is taken 
to FML3 where the answer is zeroed before exiting to ZERO A on the NORMALIZE flow. In this case, the fact that 
the addition of exponents produced excess 400 notation has no meaning and is ignored. 

If neither argument was determined in FMLl to be equal to 0, the flow is to FML4 where the exponent is corrected 
to excess 200 notation by forming a constant of 200. That value is then subtracted in FMLS. Note that the 
subtraction includes a "MINUS 1 ".Subtracting this additional 1 is done to accommodate the entry to normalize. 

The multiply loop count is formed in FML6 as generated by fCON=3 (308 or 241 0 ) so that once the multiply loop 
is entered at FMULl 1, the hardware will keep track of the number of passes through the loop until all 24 bits of 
significant mantissa have been monitored. 

4-42 



FML 7 loads the count and puts the low multiplier (R(l 2)) into BR. This proceeds to FML8 where the low multiplier 
is transferred from BR to MSR to make room for the high multiplier (R(lO)) from which it is put in HSR in FML9, 
where the BR is also cleared. At this point, the full multiplier is in MSR concatenated with HSR. 

At FMLl 0, the zeroed condition of BR is used to clear the DR, and the low multiplicand (R(l 3)) is put into B. This 
sets up the full 64-bit concatenation with the BR and DR cleared ready to receive the product, and with the 
multiplier in HSR and MSR. The flow is then to the entry of the multiply loop at FMLl 1. 

In this word, a shift right through the DMUX is done with D(C) getting ALU15. The D Register gets the low partial 
product (BR) and the count is decremented. Note that the state of MSROl is tested in this word rather than MSROO. 
This is because MSROO is actually the extra bit picked up by shifting during the fetching of the arguments on sheet 1 
of these flows and is consequently not significant at this time. 

On each pass through the multiply loop, this bit position always contains the current least significant bit of the 
multiplier. It is this bit that is used to determine whether to add and then shift or to just shift without adding. 
Whenever MSROl is a (1), the multiplicand must be added to the partial product before shifting. If it is (O), a simple 
shift of the partial product and multiplier is executed. 

In this multiply loop, the flow is from FML12 to FML14 through FMLl 7 and back to FMLl 1 whenever MSROl is a 
(1); or whenever MSRO 1 is a (0), the route is FMLl 2 to FMLl 3 and then back to FMLl 1. In each pass the count is 
tested, and when COUNT=O, the loop is exited and flow is to FML18 to store the products for normalization. 

There arc two bus request escapes. These are BRQ2 (653) and BRQ3 (657). BRQ2 is used for breakouts during any 
pass through the loop except the last. On the last time through, however, coming out of FML13, the base address 
613 can be modified from two sources at the same time. The fact that COUNT=O modifies 613 to 617 (FML18) and 
a bus request can modify that address to 657 or BRQ3. Once entered, the BRQ routine is identical to that described 
for F ADD and FSUB. 

During the multiply loop, data is swapped from register to register to accommodate the instantaneous needs of the 
operation. The low multiplicand is always being added to the partial product held in the DR and the BR. As the 
operation progresses, the low multiplicand is added to the DR, the carry is saved, that sum is loaded into the D 
Register, and the BR is loaded into the DR. The high part is brought up where it can be operated on, the two halves 
are added, and then everything is moved around again. 

In FML14 and FML15, the low multiplicand (B~R(13)) is added to the partial product (D~DR PLUS 
B:EPS(C)+-COUT 15). The contents of BR are saved in the DR to make room for the low partial product in D. 

At FMLl 6, the high multiplicand (R(l 2)) is put into the B Register, and at FMLl 7, the rest of the double-precision 
add is done with the previous cany-out (EPS(C)) being used as the carry-in. This is sent to D. The low partial 
product in BR is put back in DR and the high partial product in Dis put back in BR. The flow then goes back to 
FMLl 1 to look at the next LSB of the multiplier and continues for a count of 308 , unless interrupted by a bus 
request. 

When the count is exhausted, the flow proceeds to FMLl 8 where at P2 the low product in DR is put into the D 
Register and the high product is put into the DR Register. At P3 of that word, the low product is transferred from D 
to BR. 

In FMLl 9, the low product in BR is sent to the HSR while the B and BR Registers are cleared. This results in the 
final assembly of the product in the DR and HSR Registers concatenated where it needs to be for the normalization 
process. 

4.7.4.4 FDIV - The floating divide flow is shown on sheet 5 of the FIS flows and in Figure 4-13. Entrance is 
through FDIV to FDVO at location 526. As in multiply, this word takes the XOR of the high A and B arguments put 
in D at FPl 5 and loads that result (sign of the answer) into BR. 

4-43 



l RDMUX J 
~ ~ 

--··--------------·--····----.. ------' 

--------·-----------' 

DR HSR MSR 
--···--_,..---~-z-- ----

LOW DIVIDEND HIGH QUOTIENT LOW QUOTIENT 

11-1629 

Figure 4-13 FDIV Flow Block Diagram 

Word FDVl sends the B exponent R(l S) to B, and the sign of the mantissa (BRl 5) is put in EPS(N). The BUT in 
this word differs from the similar test in FMUL in that this is the ANDing of ZB and EPS(Z) whereas in multiply it 
was an OR function. This test of the A and B exponents determines whether either the divisor or the dividend, or 
neither is equal to 0. If the divisor is 0, an underflow is indicated; and if the dividend is 0, a 0 answer will be 
generated without going through the divide loop. 

In FDV2, the B exponent (divisor) put in the B Register in FDVl is subtracted from the A exponent (dividend) in 
R(14) and the difference is put in B. This will be the "initial" exponent, so called because it has not as yet been 
modified by normalization. This subtraction removes the excess 2008 factor in the notation and will be corrected 
later. 

If, at FDVl, the ZB flop was set, the indication is that the divisor (B argument) is 0 and flow is to FDV3 where the 
trap vector for the floating point (244) is formed by fCON=l and the EPS(C) bit is set to indicate division by 0. The 
vector is stored in FDV4 and exit is to the underflow routine on sheet 6 of these flows. 

If, at FDVl, the indication was that the dividend (A argument) was 0 (ZB=O and EPS(Z)=l), flow is to FDVS where 
a 0 answer is generated by zeroing D, BR, B, and R(l 5), and then exiting to ZERO A on sheet 6. 

If, at FDVl, both ZB and EPS(Z) were found to be clear, this would indicate that neither the dividend nor the 
divisor were 0 and flow would proceed to FDV6. Here the exponent is returned to excess 2008 notation by adding 
2008 to the difference in exponents. GPC=6 generates the constant 2008 . 

Word FDV7 stores the corrected exponent and FDV8 forms the constant 328 or 268 , (the number of times the 
divide loop must be executed). 

At FDV9, the count is loaded from the BR, and BR gets the low dividend (R(l 2)). The low dividend is then put in 
the DR at FDVlO and the BR is cleared. The fact that )3R is all Os is then used in FDVl 1 to clear the HSR and MSR 
after which the high dividend (R(lO)) is put into BR. FDV23 then puts the low divisor (R(13)) into B. The data is 
now set up for the first division step in FDV24. 

444 



The first division step is always a subtract operation, and in FDV24, the low half of a double-precision subtract of 
the low arguments is performed. The high dividend (BR) goes to DR, the low divisor (B) is subtracted from the low 
dividend (DR), the carry-out is saved in EPS(C), and the result is put in BR. 

In FDV21, the high divisor (R(l 1)) is put in B while the count is decremented before proceeding to FDV22. Here 
the result of the low subtraction (BR) is put in DR. At the same time, the high divisor (B) is subtracted from the 
high dividend (DR), and the carry-in is inserted from the previous carry-out. At the same time, the carry-out 15 from 
this result is stored in EPS(C) which will now become the MSB of the quotient. Later on this bit will shift into the 
MSR Register as part of the quotient. At P3 of FDV22, the result of this subtraction (high result) is put into BR. 
The BUT(COUNT=O) is done both for NPRs and to see if this is the last time through the loop. 

The flow here is to FDV16 where everything is shifted left. Note that these registers: are concatenated and that 
EPS(C) goes into MSROO. That is the carry-out from the subtraction that indicates whether or not the division step 
was successful. If it is, a carry-out is seen and a (1) is shifted into the answer. If the step is not successful, no 
carry-out occurs and a 0 is shifted into the answer. 

If this is not the last pass through the loop (COUNT:f-:0), flow is to FDVl 2 where the low divisor (R(13)) is put in B 
and the BUT for BRQ is made (GPC:=7). 

At FDV13, the division step for the low dividend is done. The BR is put into DR, then DR and B are processed 
according to the function of MSROO (see table at bottom of sheet). MSROO, remember, is the result of the last 
subtraction or addition and is an indication of whether division was successful or not. 

On each pass through the divide loop, the hardware determines whether the last subtraction was successful. If it was, 
a subtraction at FDVl 3 and FDV22 will occur on the next pass through the loop. If it was not, an addition at 
FDVl 3 and FDVl 5 occurs on the next pass. If a carry-out occurs, a subtraction is tried on the next pass and a 1 is 
inserted in the answer. If no carry-out occurred, a 0 is inserted. 

Each pass decrements the count and the loop continues until the count is exhausted. Note that a BUT for COUNT=O 
is done in either FDV22 or FDVl 5 since in the last pass the flow could be through either word. 

When COUNT=O, the flow is to FDVl 7 to set up the quotients for normalization. In FDVl 7 and FDV18, the high 
quotient in HSR is put in DR. In FDV19 and FDV20, the low quotient in MSR is put in HSR. The last operation 
before exit to NORMALIZE is to zero the B and BR Registers so that they may be used in the rounding routine on 
sheet 6 of these flows. 

The one BRQ breakout facility in this flow is tested at FDVl 2 where, if a bus request has been clocked in, the UPP 
Register address is modified from 731 to 771 (BRQ6). 

4. 7.4.5 Normalize, Round and Store - Sheet 6 of the FIS flows contains the routines for normalization, rounding, 
and storing; the flows for F ADD, FSUB, FMUL, and FDIV all exit to this flow before storing their answers. Their 
points of entry differ, however, depending upon the instruction being performed. 

Entrance to ZERO A is from FMUL or FDIV (the only instructions that detect whether one or the other argument 
equals 0 so that a 0 answer may be stored). 

Upon entering at ZERO A, the 0 answer has already been generated and flow is to NOM3 at location 576. Here the 
BR, already cleared, is used to 0 the HSR and DR. BR15 is used to 0 the sign (EPS(N)). The FClBUS is set to enable 
a DATO. Note that it is enabled one word early because it is double buffered by the FIS U Register and CPU U 
Register. 

The statement BA+-R(DF);DAD=6 is done to check overflow. R(DF) is the stack pointer and if it should happen to 
be register 6, as specified by the destination field of the IR, a decrement into a protected area could occur later on 

445 



when answers are stored. The BA is loaded here so that the CLOCK BA signal will be generated which, with DAD=6, 
will set the Check Overflow flag and check for overflow if R(DF) is register 6. Flow then is to the STORE routine 
described later at the end of this discussion. 

Entry at NORMALIZE is from the F ADD or FSUB flow and enters word NOMO at location 727. In this word, the 
BR and B Registers are zeroed for use later in rounding. BUT(D=O) tests for a 0 answer as set up previously in 
ADD35. If D=O, it indicates that a 0 answer should be generated and the flow is through NOMl and NOM2 where a 
0 answer is generated. 

Entry at NORMALIZE A is from the FMUL or FDIV flows and enters word NOMl at location 554. This entry 
bypasses the zeroing action in NOMO because this has already been done in FMUL or FDIV. 

In NOMl, the exponent (R{l5)) is adjusted by incrementation in D and restored to R{l5). In that same word, the 
BUT{NORMALIZED) test is made with GPC=l also asserted. This combination looks at DR09 for the branch out of 
NOM4. DR09 is the MSB of the mantissa and, if it is set, it indicates that the mantissa is normalized. If it is 0, the 
mantissa is not normalized. 

NOTE 
Most BUTs in this option look for a condition to be asserted to 
OR a 1 into the ROM address. In this case, assertion does not 
modify (705) whereas non-assertion does (707). 

Flow is then directly to NOM4 and not to NOM2 because the BUT(D=O) is not felt by the NORMALIZE A entry. 
NOM4 sets up the R6 overflow check as described for NOM3 and takes the appropriate normalization branch. 

If the BUT in NOM 1 indicated that the mantissa was not normalized, NOM5 is next where the exponent is 
decremented because the mantissa is shifted left. GPC=S allows HSR15 to be concatenated with DROO. As HSR is 
shifted left one place, a 0 is brought in. Note that the BUT{NORMALIZED) does not assert GPC=l in this word. 
This causes the hardware to check normalization before the shift by looking at DR08. If DR08 is set at this time, 
DR09 will be set after the shift and, as a result, the flow will be to NOM7 after the decremented exponent is stored 
in NOM6. Of course it could take several passes to normalize the exponent (up to 31 8 places), so the 
BUT{COUNT=O) in NOM6 serves to clock NPRs. Note also that the exponent is decremented for each pass. 

At NOM7, the answer is shifted right one place to put the extra bit on the low end in position for rounding. NOM8 
rounds the low part of the answer by adding 1 and the carry-out is saved in EPS(C). In NOM9, the rounded low 
answer is returned to HSR. 

At NOMlO, the high answer is rounded by adding 0 to the DR, and bringing in the previous carry-out (EPS(C)) as 
the carry-in. In NOMI I, the result is sent via the BR to DR. By adding 0 to the high part and bringing in the carry, 
the effect of adding the 1 may ripple up from the low answer to the high answer via the carry. At this point, the 
rounded high answer is in the DR and the rounded low answer is in the HSR. 

Now that rounding has been done, the extra bit on the low end is no longer needed so in NOM12 it is dropped by 
shifting everything right one place. The BR is also cleared. At the same time, normalization is checked by looking at 
DR09 (at this point DR08 is the MSB). This is to be sure that it is still normalized after rounding. If, as a result of 
rounding, the added 1 had rippled all the way across, the answer would have become unnormalized. To become 
renormalized, an additional shift is required along with an increment of the exponent. NOM13 sends the exponent 
(R{l3)) to the D, BR, and B Registers in case adjustment is not required. 

Coming out of NOM13, the effects of the BUT in NOM12 are felt and, if the answer was not still normalized 
(DR09{1)), NOM14 is entered to effect renormalization and to increment the exponent. The adjusted exponent is 
then stored in R(15), Band BR. 

446 



If, however, the answer was normalized (DR09(0)), the ROM address is modified to 542 and the flow exits to EXIO. 

NOTE 
At this point, the answer has been rounded and normalized, 
the exponent has been adjusted to the correct value, and the 
hardware is ready to assemble the answer and store it. 

EXIO assembles the high answer by putting the sign bit (EPS(N)) in BR15, the exponent (BR(07:00)) in BR(14:07), 
and the high mantissa minus the hidden bit (DR(06:00)) in BR(06:00). 

Word EXl14 sets up the D Register for the BUT to be made in EXIl for underflow, overflow, or store. This is done 
by zeroing the upper 8 bits of the D Register with SBC=OO. The EPS(Z) bit is loaded with whether or not the 
exponent is equal to 0 as set up at P2 of NOM13. This establishes one of the conditions for underflow. The low 8 
bits of the D Register are loaded with the high byte of the register that held the exponent (R(l 5)) (previously loaded 
into the B Register at P3 of NOM13 or NOM14). In addition EPS(C) is zeroed. 

At EXll, the trap vector 244 is formed (fCON=2) in case underflow or overflow are indicated by the BUT in that 
word, and in EXI2 that vector is stored along with setting the DATO control bit (FClBUS). 

If, at EXI 1, the D Register contains any data, overflow exists indicating that what was the high byte of the exponent 
had some carryover from the low byte of the exponent. In this event, flow will be to EXIl 2. Underflow is indicated 
if either EPS(Z) is set, indicating a 0 exponent; or B15 is set, indicating that decrementation of the exponent 
produced a negative number. In this case, the flow will be to EXI3. If neither underflow or overflow are indicated, 
the answer is determined to be legal and flow is to EXI7 for a store operation. 

NOTE 
If overflow or underflow are indicated, the FC 1 BIT set in 
EX12 will have no effect since on the next bus cycle the basilc 
ROM is used and the FIS U Register is cleared. 

If overflow is indicated, EXl12 and EXI14 load the EPS(N) bit via BR with a 0 (top bit of 244 8 in Dis a 0). If 
underflow is indicated, EXI4 generates the stack pointer adjustment constant of 6, zeros the EPS(Z) bit, and sets the 
EPS(V) bit. The condition codes for overflow and underflow are as follows: 

EPS (N) 
EPS (Z) 
EPS (V) 
EPS (C) 

Condition Codes for Overflow and Underflow 

OVFL 
0 
0 
1 
0 

UNFL 
1 
0 
1 
0 

FDIV By Zero 
1 
0 
1 
1 

By referring to the condition codes in the table above, it can be seen that all codes are properly set by these word 
combinations, including the divide by 0 combination in which the EPS(C) bit was set prior to entry at UNFL A. In 
this same path then, EXIl 5 moves EPS to the Processor Status Word and clears the extension ROM enable bit UPP8 
while EXIl 6 adjusts the stack pointer and exits to KDl 1-A Trap D flow. 

If the STORE path is taken, flow is to EXl7 where the low answer in HSR is sent to D, a DATO is initiated, and the 
clock is shut off to wait for the memory response. 

447 



At EXl18, the high answer assembled in BR in word EXIO is brought into the B Register, and at EXl19 the stack 
pointer is decremented by 2 and put into the BA. The DAD=6 checks for a register 6 stack overflow, the modified 
stack pointer is put back in R(DF), and the FCIBUS is set. 

At EXllO, the assembled high answer (sign, exponent, and high mantissa) in Bis stored in D, the DATO is initiated, 
and the clock is turned off. Then at EXll 1 the local condition codes are set before exiting to MOVE EPS. 

4.8 LOGIC DESCRIPTIONS 

The K.Ell-E logic diagrams are shown in drawing D-CS-M7238-0-l, sheets 2 through 9. The sheets are designated 
KE-2 through KE-9, as follows: 

KE-2 
KE-3 
KE4 
KE-5 
KE-6 
KE-7 
KE-8 
KE-9 
KE-10, 17 

BR{l 5 :00),DR{l 5 :00) 
RDMUX{l 5 :00) 
EUBC MUX AND CONTROL 
CLOCKING AND CONTROL 
EPS AND COUNTER 
KE ROM AND U WORD REGISTER 
KD ROM EXPANSION 
KD ROM EXPANSION AND CONNECTORS 
EIS ROM LISTING 

The K.El 1-F logic diagrams are shown in drawing D-CS-M7239-0-l, sheets 2 through 4. The drawings are designated 
KF-2 through KF4, as follows: 

KF-2 
KF-3 
KF4 
KF-5, 12 

HSR&MSR 
FRDMUX(l 5 :00) 
ROM & CONTROL 
FIS ROM LISTING 

In these paragraphs, the logic is described in this sequence for convenience only. The sequence bears no relationship 
to their logical arrangement. These descriptions, together with the Glossary in Appendix A, provide an adequate 
description of'the logic diagrams associated with the K.Ell-E and F Options. 

4.8.1 Basic CPU Timing 

As the KE 11-E and KE 11-F operate on the basic timing of the KD 11-A, a brief description of this timing is given at 
this point. 

There are three basic timing cycle lengths used in the KDll-A. For a description of their generation refer to the 
KDJJ-A Maintenance Manual DEC-11-HKDAA-A-D. 

The three cycle lengths are designated CLI, CL2, and CL3. Cycles CLI and CL2 have one clocking pulse which 
occurs at the end of the cycle. Cycle CL3 has two pulses associated with it. The time relationship of the cycle 
lengths and their respective pulses are shown in Figure 4-14. All clocking action takes place on the trailing edge of 
the clock pulse. 

448 



11-1623 

Figure 4-14 Basic KDll-A Timing 

4.8.2 BR and DR Registers (Dwg KE-2) 

The BR Register is a 16-bit holding register which receives data from the CPU via DMUX(l S :00) H. The BR is used 
to hold data during the EIS and FIS instructions. This register is loaded on the trailing edge of Pl or P3 pulses. 

The DR Register is a 16-bit left-right shift register which receives data from the BR. The DR is also used as a holding 
register. During the multiply instruction, the low product is shifted into the DR via DRl S as the multiplier is shifted 
out at DROO. During a divide, the quotient is shifted into the DR via DROO while the low dividend is shifted out at 
DR15. Output signals are listed in Table 44. 

Mnemonic 

BR(lS:OO) H 

DR(15:00) H 

Table 4-4 
KE-2 Output Signals 

Description 

Output from the BR Register, fed to DR(lS:OO) and through the EIS option. Also to pins 
for distribution to EIS and FIS options. 

Output from the DR Register. Used in ASHC, MUL, and DIV operations in the EIS and in 
all FIS instructions. 

On the left-hand side of this sheet are shown the three hex flip-flop registers, 74174s that comprise the BR Register. 
Inputs to this register are DMUX(l 5 :00) coming from the basic machine. All input data from the KDl 1-A comes 
into this register from which it is distributed to the rest of the EIS and FIS options. It functions as a holding register 
and buffer. 

The outputs of the BR Register feed four 74 l 94s that comprise the DR Register. These are left-right shift registers 
having the ability to also be loaded in parallel. The DR is used extensively in ASHC, MUL, and DIV to shift and 
store data. Likewise, it is used in FIS instructions to temporarily store and shift data. 

The shift input to bit 00 of the DR Register has several sources, some from the EIS and others from the FIS; one is 
enabled during an ASHC instruction. 

449 



The bit 00 input to the DR Register is important only if a left shift operation is being performed. In a right shift, 
this line is insignificant. 

In ASHC, while shifting left, Os must be shifted into the LSB. The DR holds the lower portion of the operand being 
shifted, and as the data is being shifted left, the ASHC Lon the gate at E48 keeps a constant 0 asserted at the shift 
input so that each succeeding shift brings in another 0. 

Another source for this shift input is at gate E42. The jumper Wl is present if just the EIS is installed and is removed 
if the FIS is installed as well. When inserted, it disables the upper input to the gate. When removed, a floating divide 
instruction in combination with GPC=S L will cause a 0 to be shifted into the DR on a left shift operation. 

This action can be referred to the flow diagrams in sheet 5 of the FIS flows at word FDV16. Here the high quotient 
is being assembled in the HSR as the concatenated low dividend is being shifted left in the DR. Everything is being 
shifted left after the add or subtract. A 0 is brought into the 0 shift-in of the DR Register. If GPC=5 is not true, Os 
will be enabled through. If GPC=5 is true, HSRl 5 is enabled to the shift input of bit 0. Since the use of HSRl 5 as a 
shift input is not dependent upon any particular instruction, but rather is supplied by the GPC code, it can be used 
at anytime that particular combination is set in the ROM word. 

The DR Register is clocked by E{Pl +P2) H, generated on drawing KE-5 at location D-6. There is no signal in the 
basic machine called Pl +P2, these two signals are ORed here for this function. 

The BR Register is clocked by CLK BR H, generated on KE-5 at location C-6. It is a function of Pl or P3 and CLK 
BR( 1) H generated on KE-7. 

DR Register bit 15 shift input is used for shifting the register right. Normally BROO is enabled into DR15. This is 
when the BR and DR are concatenated with the BR holding the higher bits. In this case, everything may be shifted 
right with BROO going into DRI 5. During multiply instructions, however, ALUOO is used as the shift-in with ALUOO 
providing the partial answer being shifted into the DR. 

There are two select lines on the DR Register, KE-7 SDRO and KE-7 SDRI. The truth table for these two signals is 
given on the right-hand edge of sheet KE-2. If both select signals are low, nothing will occur when the register is 
clocked (No-Op). Note that the clock pulse is always present on any Pl or P2. A binary 1 combination produces a 
shift right, a binary 2 combination produces a shift left, and a binary 3 permits parallel loading of the register. These 
two bits are generated in the EIS ROM. 

Both the DR and BR Register outputs are brought out to pins for use elsewhere in the options and for testing 
purposes. 

The BR can be used for buffering the loading into either the count or DR in the EIS, or into either the HSR or MSR 
in the FIS option. 

4.8.3 RDMUX (Dwg KE-3) 

The RDMUX is a 16-bit-wide 4: 1 multiplexer which selects one of four sets of 16-bit inputs to be fed to the CPU via 
the 16-bit wire-ORed BUS RD{l5:00). Output signals are listed in Table 4-5. 

Table 4-5 
KE-3 Output Signals 

Mne~onic--~-:~r--: .. ·.... ----=--~-e_sc~~;n -=~==---· ·----~----· 
BUS RD{l 5 :00) L Output of the RDMUX. Feeds data directly back to the processor. 

----~- - -~~ - "- ~- . -- ·---·--- -· --·- -~--~~--- ··--- ---- -- - ···-·-- . - __ ,. __ . -~--~·-·=·~=···-·-

4-50 



This is the hardware that enables data onto the BUS RD to be sent back to the basic machine. These are 74153 dual 
4: 1 multiplexers controlled by combinations of SRDMl and SRDMO as generated in the Expansion U Word (see 
truth table on this sheet). 

A binary 0 combination sends the EIS status (EPS(C,V,Z, and N)) back to the basic machine. This operation is called 
out in the flows as MOVE EPS. Note that in this mode the upper 12 bits of the multiplexer inputs are grounded. 

A binary 1 sends the contents of the DR Register straight through and back to the basic: machine. 

A binary 2 concatenates the BR and DR Registers, essentially shifting both registers left, and either losing the high 
bit of the BR or using it elsewhere. 

A binary 3 sends the BR Register straight through and back to the processor. 

Note that these enables are set up one word before the enable for the 74H01 drivers where possible. This is the AND 
of EUPP8 (set if the option is enabled) and STRDM(l) H, another bit set in the ROM word. This allows putting data 
out to the RDMUX as quickly as possible without any timing problems. Note that the multiplexer strobe inputs 
(STB) are grounded (always enabled). 

The outputs of the 74HOls feed BUS RD(15:00) of the CPU. 

4.8.4 EUBC Control (Dwg KE-4) 

This is the External Microbranch Control that serves as a supplement to the branch control logic in the basic 
machine. The EUB field of the KEl 1-E ROM is used to select various inputs to the EUBC multiplexer for testing in 
order to enable the microprogram to branch to alternate paths of flow. Output signals for this sheet are listed in 
Table 4-6. 

Mnemonic 

EUBC(3 *4 )ENB L 

D(15:00)=0 L 

EUBC(4:1) L 

IR=075xxxL 

Table 4-6 
KE-4 Output Signals 

Description 
-----------------

Enables EUBC(4:3) MUX. Used as a partial enable on KE-5 8-D 7402 gate at El9. 

Inversion of D(l 5 :00)=0 H from the basic machine. Is used by FIS board as part of 
OVFL/UNFL test on that board. 

Four bits that modify a base address on a microbranch test. They are sent to OR gates on 
the M7232 module in the basic machine. 

The Op code that indicates a floating instruction. It is sent to FIS board where it is gated 
and is returned as FIS INSTR L at location D-6. If true, allow the bni.nch to the FIS flow. 

In the upper left-hand corner of this sheet is the 8251 decoder which is enabled by a 07 condition in the upper two 
octal digits of the IR (IR(l 5: 12)). It then decodes IR bits 11 :09 to detect whether an EIS (070 through 074) or FIS 
(075) instruction is called for. Any other code is not recognized and results in a reserved instruction trap. The 
IR=075xxxL signal goes out to the FIS module decoder logic. 

The four decoded instructions are fed to a 7420 NOT OR gate that yields EIS INSTR H used to feed the 
conditioning inputs of the input gates on the EUBC multiplexers. 

4-51 



The EUBC MUX comprises four multiplexers. The 74153 dual 4:1 multiplexer controls EUBC(4:3) while a single 
8:1 74151 controls EUBC2. EUBCl is controlled by two 7415ls operated in tandem. When EUBCl MUX Bis 
operating, EUBCl MUX A is disabled and vice versa. EUBCI MUX A at E37 provides testing of octal combinations 0 
through 7 of the EUBC field and EUBC MUX B at E24 tests combination 10 through 17 (see table at right-hand side 
of this sheet, KE-4). This provides 16 possible conditions that may be used to control EUBCI.Note that when the 
FIS option is installed, the EUBF consists of 5 bits. When it is not installed, the 74Hl 0 AND gate at location C-3 on 
the drawing has pin 03 (EUBF4(0)H) held high via R2 (1 K). There is an additional 8: 1 multiplexer in the FIS to be 
described later that provides 8 more branch conditions for EUBCl control. If EUBF4 from the FIS board is asserted, 
the EUBCl MUX A is disabled. 

The outputs of these multiplexers (EUBC(4:l)L) are sent to OR gates on the M7232 module in the basic machine 
where they are used to modify the base address on a branch. 

Conditioning of the inputs to these multiplexers is effected by combinations of EUBF(4:0) as set in the Expansion 
U Word. These are fed to the multiplexers as selection signals. The operation performed by their combination may 
be derived by reference to the truth tables at the bottom of the page and the BUT chart at the right of the sheet 
(KE-4). 

4.8.5 Control (Dwg KE-5) 

This sheet contains much of the discrete logic used to generate the many control signals used throughout the EIS 
logic. It utilizes inputs from the ROM, together with clock pulses generated by the basic machine, to generate these 
control signals. Most of the input signals on this drawing are fairly obvious and as such are not described. Some are 
enables from the ROM word, others are covered elsewhere as interfacing signals. Output signals are described in 
Table 4-7. 

In the center of the sheet is the 8251 GPC decoder with inputs GPC(2:0). These bits are set in the Expansion U 
Word. 

The input logic in the upper right-hand corner of this sheet at location C-4 pertains to auxiliary ALU control where 
several conditions are monitored to determine what function the CPU ALU will perform. The jumper W2 is normally 
inserted unless the FIS option is installed. When removed, it allows the FIS option to control auxiliary ALU control 
also. 

Mnemonic 

EXT P CLR TRAP L 

CLK EPS(N ,Z) H 

CLK UPP8 H 

CLK EU(88:57) H 

Table 4-7 
KE-5 Output Signals 

Description 

Clears the Trap flag in the processor which was set as a result of EIS or FIS instruction 
being sensed during a FETCH. 

Clocks the EPS N and Z bits. Made up of the enable bit of the EIS microregister and 
Pl or P2 from the CPU. 

Is sent back to basic machine to clock UPP bit 8. Gated with an enable bit from the 
EIS ROM word and a clock pulse. Once the option has been enabled, bringing up the 
enable bit allows UPP bit 8 to be clocked clear. 

This is the clock pulse for the external U Register bits 88 through 57. (Bits 88:81 are 
on the FIS board, M7239.) 

4-52 



Mnemonic 

Table 4-7 (Cont) 
KE-5 Output Signals 

Description 

---------+---------···--· 
ESALU(3 :0) L 

ECINOO H 

GPC=2 L 
1 L 
7L 
6L 
SL 

INHPS CLK L 

EUPP8 B H 

EUPP8 L 

EUBC8 L 

ECOMUXSO L 
1 L 

EUPP8 AL 

ENPRCLKL 

E(Pl +P2) H 

CLK EPS(V) H 

CLKBRH 

External Select ALU. These are the select bits for the ALU when operated in auxiliary 
control mode. Discrete ALU control is provided by bits in the ROM word where it is 
known ahead of time what function the ALU should perform. Auxiliary ALU control 
is provided in instances where the operation to be performed by the ALU is dependent 
upon incidental conditions of the operation. These signals then are made dependent 
upon combinational logic that decodes conditions within the operation. The functions 
performed by the ALU for the various states of these signals are given in a table to the 
right of the print (KE-5). Note that the four signals are really two signals, each of 
which are brought out to two separate pins. 

External Carry-In to the CPU ALU. Used in auxiliary control mode of the ALU to 
insert a carry-in to correct the A MINUS B MINUS 1 function during subtraction. 

Output combinations of the GPC decoder. These are used for special case applications 
such as operations to be performed only once or twice in a flow. Some of these signals 
go to the FIS board. 

Used to inhibit clocking all bits in the Processor Status Word except PS(N,Z,V,C). This 
signal is also used in the memory management option (KTl 1-D). 

External microprogram pointer bit 8. Used in the EIS and FIS options as an enable 
signal. 

Same as above. 

External microbranch code bit 8. Used as data in the basic machine to set or clear 
UPP8 when clocked by P CLK UPP8. 

External Carry-Out Mux. (Same source to two pins.) Selection signal to the 4: 1 
multiplexer on the output of the CPU ALU, causing ALU bit 15 to be selected into 
the Carry-Out Mux. 

Same as EUPP8 B H above. Duplication for loading purposes. 

External NPR Clock. Provides the clock for the NPR and Bus Request flags in the 
basic machine while the EIS and FIS options are active. Made up of the branch 
micro test BUT(COUNT=O) performed periodically in the flow, particularly in ]oops 
where long periods of time could be consumed. 

The Pl and P2 from the basic machine used to clock the DR and the counter. Also 
clocks the MSR and HSR Registers in the FIS board M7239. 

A clock for the EPS(V) bit. Made up of CLK(V) (1) H from the EIS U Word gated 
with Pl or P2 from the CPU. 

Clock for the BR Register, enabJed from the EIS U Word and Pl or P3 from the CPU. 

4-53 



Table 4-7 (Cont) 
KE-5 Output Signals 

-----------...---·-------------····---------------·--------------------~------·-----·- __________ ,, ______ _ 
Mnemonic 

LDCOUNTL 

CLKEPS(C) H 

BEUPP8 AH 

CLKCOUNTH 

Description 

Load Count. When true, loads the counter with BR(07 :00). 

A clock for the EPS(C) bit. Gated with an enable by a bit from the EIS U Register and 
P 1 or P2 from the CPU. 

Buffered external microprogram pointer A. Another source for bit 8 of the ROM 
address to enable various points in the logic. 

This is essentially the end pulse in each cycle length. Generated by an enable from the 
EIS U Register and with the fact that the counter is not equal to 0. When the count 
goes to 0, this clock is disabled preventing any further counting during testing of that 
condition. 

4.8.6 EPS and Count (Dwg KER6) 

This drawing contains the external processor status, which records the condition codes of the EIS and FIS 
instructions; and the count, an 8-bit up-down counter used to count the number of shifts for the ASH and ASHC 
instructions and to keep track of the number of steps in the MUL and DIV instructions. The count is loaded from 
the BR. The logic contains multiplexers for gating information into the external status. Output signals are listed in 
Table 4-8. 

Mnemonic 

EPS(N) (1) H 

EPS(Z) (1) H 

EPS(V) (1) H 

EPS(C) (1) H 

COUNT(7:0) (1) H 

COUNT=O H 

Table 4-8 
KE-6 Output Signals 

Description 

The output of the external processor status N bit. Used to store the sign of operands. 

The output of the external processor status Z bit. Used to store whether an operand is 
equal to 0 or not. 

The output of the external processor status V bit. Used to record overflow conditions. 

The output of the external processor status C bit. Used to store carry data. 

The outputs of the counter used to keep track of the number of steps executed in the 
EIS and FIS instructions. These signals also go to the FIS board (M7239). 

This signal is asserted when COUNT(S :0) is equal to zero. 

The counter consists of two 74191s at E64 and E56, operated in tandem and fed by BR(07:00) H. It is an up/down 
counter that can be loaded by LD COUNT L. This is not a clock type load but rather a write type load in which the 
counter is loaded without a clock whenever pin 11 is low. Pin 05 is used to determine direction of count. Note that 
this signal is derived from bit 5 of the count through a 74H04 inverter at E52. When bit 5 is set, the output of the 
inverter is low, causing the counter to count up. When bit 5 is ciear, the count is down. This is used in ASH so that a 
right shift will count up and a left shift will count down (always toward 0). 

4-54 



The counter always counts if it is clocked (CLK COUNT at pin 14). If the load input is low it will override the clock 
input. The clock is enabled by COUNT=O L inverted. This way whenever the count has reached 0, counting ceases. 

The 741-150 at E46, operated as an XOR of BR15 and BR14, is used during an ASH or ASHC left operation to 
forecast an impending change in sign. The output of this gate feeds an OR (7402) which is also fed by the EPS(V) 
bit. This provides a latch path for the EPS(V) flip-flop so that once it is set it will remain set regardless of what 
happens at the XOR from that point on. 

Each output of the counter is fed to the FIS board (M7239) for use in branch tests during floating instructions. 

There are three multiplexers on this sheet each used to set control flip-flops for each external status bit in the 
option. The flip-flop outputs go to the RDMUX and the EPS(Z) is also fed to the FIS board. The dual 4: 1 
multiplexers are used to control the bits. Because there were more than four conditions required to control the C 
bit, an additional half 74153 is ORed in to control the (EPS(C)) bit flip-flop. In the CV MUX at E53, the V portion 
of that multiplexer is always enabled, but the C portion is disabled by SDVM2(1) H when the C MUX at E66 is 
enabled. 

The combinations of the basic select bits (SCVM(2:0) and SNZM(l :0)) required to perform multiplexing operations 
are listed with their results in the truth tables provided on this drawing. 

4.8.7 KE ROM Word (Dwg KE-7) 

This logic contains the basic KE ROM word (U80:57), 24 bits of ROM that control the KEl 1-E. All outputs from 
the ROMs are fed into 74174 hex registers except bit CLK UPP8 which is a discrete flip-flop. Output signals arc 
listed in Table 4-9. 

This sheet contains six 4-bit ROMs (23-BXXA2), feeding 24 bits into four 74174 hex register gates. One exception, 
EUPP8 at coordinate C-2, is fed to a discrete flip-flop. The enable for the ROMs is EUPP8 L. The signal CLR EU H is 
just a pull up for the registers. Registers are clocked by CLK EU (33:57) H generated on KE-5. 

The boxes labeled 13-11003-02 on the outputs of each ROM bit are resistor divider networks which are part of a 
16-pin IC package (see table on this drawing (KE-7) for schematic and values). 

Mnemonic 

CLK BR (1) H 

EUBFO(l) H 
1 
2 
3 

ECNT(l) H 

CLK UPP8(1) H 

LCNT(l) H 

Table 4-9 
KE-7 Output Signals 

Description 
'--~--------' ·---

An enable for the clocking of the BR Register. Gated with P3 on KE-5. 

External Microbranch Field. Used on KE4 for the EUBC MUX. Also used on FIS 
board for the one EUBC MUX on that board. 

Enable Count. An enable to clock the count gated with P END H on KE-5. 

Enable for clocking bit 8 of the UPP. Gated with ECLK UL on KE-5. 

Load Count. An enable for the signal that is gated to load the counter. Gated with Pl 
and P2 on KE-5. 

-------""'----------~'-' ___ .,_,, _______ , -
4-55 



Mnemonic 

GPCO(l) H 
1 
2 

CLKC(l) H 

CLKV(l) H 

CKLNZ(l) H 

SNZMO(l) H 
1 

SCVMO(l) H 
l 
2 

SDRO(l) H 
l 

SRDMO(l)H 
1 

STRDM(l) H 

Table 4-9 (Cont) 
KE-7 Output Signals 

Description 

The three bits in the GPC field of the U Word used on KE-5 as an input to the GPC 
decoder. 

Clock C. Used on KE-5 gated with Pl and P2 to generate the clocking signal for the 
EPS(C). 

Clock V. Enable for the EPS(V) bit clock. 

Clock NZ. Enable for the EPS(N ,Z) bits clock. 

Select bits for the N,Z multiplexer used on KE-6. 

Same as above for the C, V multiplexer. 

Select bits for the DR Register that determine a shift left, a shift right, a load or 
No-Op. Used on KE-6. 

Select bits for the RD MUX. Determines which MUX input is sent back to the basic 
machine via the BUS RD(lS:OO). Used on KE-3 and KF-3. 

Strobe RD Mux. Used on KE-3. Enables the 74H01 drivers to the BUS RD(15:00). 

4.8.8 KD ROM Word (Dwgs K.E-8 and KE-9) 

This logic (2 sheets) contains only those ROM bits in the basic machine that are actively duplicated. Those that are 
not actively duplicated are driven low by the KEl 1-E during the time that the option is enabled. These outputs are 
wire-ORed with the outputs of the basic machine ROMs; and when the option is enabled (by UPP8 being set), these 
bits control the inputs to the basic machine U Register rather than those in the KDl 1-A ROM which is disabled by 
the setting of UPP8. Output signals are listed in Table 4-10. 

Mnemonic 

BUS U(43:00) L 

Table 4-10 
KE-8 and KE-9 Output Signals 

Description ________ , ___ _ 
Micro bus output signals. All go to the three Berg 40-pin connectors on the back of the 
module. There are three cables to the basic machine. The connectors are shown on 
KE-9. 

4-56 



An example of one ROM bit feeding two U Register bits is seen at coordinates C-6. Here one bit from the ROM is 
feeding two bits back to the basic machine through a pair of 74H01 gates (BUS U40 Land BUS U39 L). It is not 
necessary to actively duplicate all the bits in the basic machine, but they do have to be driven low if they are not 
used. As long as the option is enabled, these bits are driven low and always register Os. These bits are the SPS field (a 
3-bit field) in the basic machine U word from which only 2 codes are required in the EIS. The terminators for the 
BUS U bits are not shown on this sheet because they are located in the basic machine. There is a terminator, 
however, for the signal feeding the 74H01-ls on this drawing because that signal is not sent directly back to the basic 
machine. The 74H01-1 is an open collector gate and its terminator is back in the processor. 

On sheet 9 at coordinates D-6, the jumper W1 must be removed when the FIS option is installed. This is used when 
fetching the floating arguments. A common flow is provided for fetching both arguments, and the first time through, 
the ROM always specifies an odd general register address in which to store the argument. The first time the odd 
address is used and the second time through the even address is used. This is done by input signal ARGA at D-7. It 
enables that gate when ANDed with an active option to drive BUS U9 low. This is the low bit of the register address 
that is being negated to yield an even register address. 

4.8.9 HSR and MSR (Dwg KF -2) 

This is the first drawing for the M7239 module constituting the FIS option. The same timing prevails for this option 
as that described for the FIS option (Paragraph 4.8.1). These paragraphs pertain to only those customers utilizing 
the Floating-Point Option. 

Drawing KF-2 contains the HSR and MSR Registers. Both are left/right shift registers and both are fed from the BR 
in the EIS option. They are used as either holding registers or shift registers. Output signals are listed in Table 4-11. 

Mnemonic 

MSR(l 5 :00)(1) H 

MSROO L 

HSR15 L 

HSR(15:00)(1) H 

Table 4-11 
KF-2 Output Signals 

Description 

The outputs from the MSR left/right shift registers. 

The inverted output of MSROO. Used on KE-5 to determine auxiliary ALU functions 
for floating divide instructions. 

The inverted output of HSR15. Used on KE-2 as DROO shift input data. 

The outputs from the HSR left/right shift registers. 

These registers consist of 74194s fed in parallel by BR(l 5 :00)(1) H. Both registers are clocked by E(Pl +P2) H 
generated on the EIS board. This clock is always present at both registers but no action will occur until the proper 
select bits are present on the register. Selection is accomplished by a 3-bit combination of SHSRO(l) H, SHSRl (1) 
H, and SMSR(l) H. The HSR select bits are fed directly to the HSR Register, and are also gated into the MSR 
Register by the common signal SMSR(l) H. When only the SHSR signals are asserted, only the HSR is loaded. When 
SMSR is asserted as well, the MSR is also loaded. This is why in the flows whenever both registers are to be used, the 
MSR is loaded first and then the HSR is loaded without affecting the MSR. 

The clear inputs to these registers are tied to pull ups. There are shift inputs to the high bit and low bit of both 
registers. 

Generally, these registers are used to shift data. In FMUL, they are concatenated with the MSR being the lower 
register and the HSR the higher. In this application, HSROO(l) H enters the shift input of MSRI 5 at DS3, 
coordinates D-7. The low shift input to the MSR is EPS(C) at coordinates C-3 used in shifting left. 

4-57 



The high bit shift input to the HSR is DROO(l) Hat coordinates B-7. In FMUL, the low DR bit will enter the high 
shift input of HSR. The low shift input of the HSR is either MSRl 5 gated with the code GPC=S, or Os. When GPC=S 
is not present, Os are shifted into the HSR. 

4.8.10 FRDMUX(lS:OO) (Dwg KF-3) 

The FRDMUX is a 16-bit-wide '4-: 1 multiplexer that selects one of four sets of 16-bit inputs to be fed to the CPU via 
the BUS RD(l 5 :00). This operates similarly to the RD MUX in the EIS option, using the same select bits as used in 
that logic with a separate strobe {STFRDM) to enable this set of drivers instead of the EIS drivers. Output signals are 
listed in Table 4-12. 

Mnemonic 

BUS RD{lS:OO) L 

Table 4-12 
KI•-3 Output Signals 

Description 

The outputs of the 74H01-1 drivers to the BUS RD over which data from the FIS 
option is transferred to the CPU. 

Outputs of the dual 4:1 multiplexers (74153) are fed to open collector NAND gates {74H01-l). These then drive the 
BUS RD where the data is transferred back to the processor. As in the RDMUX of the EIS, the FRDMUX is selected 
by combinations of SRDMl{l) H and SRDMO{l) H but information is not transferred to the BUS RD until the 
drivers are enabled by STFRDM(l) H. A similar enable is provided on the FIS counterpart, whose input to the 
multiplexers is transferred to the bus and is listed in the truth table on this sheet as a function of the select bits. 

A 00 combination selects the MSR Register while a 01 selects the HSR Register. If the combination is 10 the C input 
is selected. Here the high argument of the floating point is assembled into one 16-bit word. A 11 combination selects 
the constants as generated on KF4. Note that not all bit postions are needed for this transfer. Those that are not 
required are tied to ground. 

4.8.11 ROM and Control (Dwg KF-4) 

This logic provides the extra control needed for the FIS instructions. It comprises combinational logic and two 
ROMs that supply the extra ROM bits required by the FIS logic. The logic controls the registers in the FIS and 
generates the constants. Output signals are given in Table 4-13. 

Mnemonic 

STFRDM{l) H 

SHSRO{l) H 
I 

SMSR{l)H 

Table 4-13 
KF-4 Output Signals 

Description 

Strobe floating RD multiplexer bit, used on KF-3 to enable the FRDMUX to the BUS RD. 

Select bits for the HSR Register. 

Select bit for the MSR Register. Enables the SHSR{l :0) (l) H bits to control the MSR 
Register. 

4-58 



Table 4-13 (Cont) 
KF-4 Output Signals _________ ,_, _, ____________________ _ 

Mnemonic 

EUBF4 

FCIBUS(O) H 

CONO(l) H 
1 

FAUXALUH 

FDIVH 

FIS INSTR L 

EUBCS L 

FUBCl 

ZB+EPS(Z) H 

AB(l) H 

ARGA(l)H 

UNFLH 

OVFLH 

Description 

Provides additional branch test conditions for the FIS. Disables the EUBC 1 branch 
multiplexer in the EIS and enables FUB MUX on this print (KF-4). Allows the FIS to 
control bit 1 (EUBC 1) of the ROM address rather than its counterpart in the EIS. 

Sets the appropriate bit (BUS Cl) on the C lines to initiate a DATO operation for 
floating-point operations. 

These are the two bits that select the constants generated by the FIS option. These together 
with GPC=6 combine in the logic to generate CONxx signals that are used to generate the 
octal constants 400, 244, 6, 30, and 200. 

Floating auxiliary ALU control. Used in the floating divide loop to enable auxiliary ALU 
control on KE-5 of the EIS prints. 

Floating divide. Used here to enable the generation of FAUX ALU H, and on KE-2 of the 
EIS board as one of the shift input enables for the DR Register. 

Allows a floating instruction to enable the option ROM and to branch to the FIS flow. 

Inputs to the M7232 module U word in the basic machine. When low, ORs into the ROM 
address to modify the address. Used only to abort the floating instruction in event of a bus 
request. 

Controls the lowest modifiable bit (1) of the ROM address to provide additional branch tests 
for the FIS option. 

The OR of ZB (previous) and EPS(Z) present Z status information. 

Output of the ZB flop (see above). 

Sent to the EIS, gated with bit 8 of the ROM address. When set, forces selection of the even 
register for storage of floating arguments even though the ROM is selecting the odd register. 

Underflow, indicated by either the EPS(Z) bit being set or B 15( 1 ). 

Overflow, indicated by both BIS being clear and the D Register not equal to 0. 

------.&....--------------·----------~---·-

The two ROMs (23-BXXA2) are fed by BUPP(7:0) Hand are enabled by EUPP8 H. Their outputs feed two 74175 
quad registers that supply the resultant outputs to the logic. The clear inputs to these registers are tied to a pull up 
resistor and they are clocked by CLK EU(88:57) H, generated on KE-5 of the EIS board. 

The 74151 (FUB MUX) is an 8:1 multiplexer that controls bit 1 (EUBCl) of the ROM address, thereby providing 
extra branch tests not available with the EIS logic. This MUX is strobed by EUBF4(1) H ANDed with bit 8 of the 
ROM address. When EUBF4. is asserted, the 0 side of that bit disables the multiplexer EUBC MUX A on KE-4 of the 
EIS board and enables the FUB MUX. Inputs to this MUX are selected by combinations of EUBF(2:0)(1) H. The 
table on this sheet (KF-4) gives the results of these combinations. 

4-59 



When DO is selected, the state of ARGA flip-flop is tested during floating argument fetching to determine if the A 
argument has been fetched. When Dl is selected, MSROl is tested. This is used in the floating multiply loop to 
determine the need for addition. 

D2 tests the OR of ZB and EPS(Z). Note that the ZB flip-flop gets its input from the EPS(Z) flop and is clocked at 
the same time as EPS(Z). 03 looks at counter bits 7 :0 to determine when the count exceeds 308 • 

D4 tests to see if the answer is normalized. There are two tests here: 1) is the answer now normalized? (DR09(1) 
H), or 2) will the answer be normalized after the shift? (DR08(1) H). The 74HSO is a NOT OR AND gate in which 
one of the inputs on each OR gate must be satisfied. If GPC=l is asserted, pin 02 of E09 will be enabled causing the 
logic to look at DR09 on pin 05. If GPC=l is not asserted, the inverter output at pin 04 will be low causing DR08 at 
pin 03 to be examined. 

If DS is selected, MSROO(l) H is tested. This is used to determine whether to add or subtract the high divisor in the 
FDIV loop. 

4-60 



CHAPTER 5 

INSTALLATION AND MAINTENANCE 

REFERENCE INFORMATION 

5.1 INSTALLATION 

When the KEI 1-E is included as part of the initial PDP-11/40 System, the M7238 module is installed prior to 
shipment. If it is being added to an existing system, proceed as follows: 

a. Insert the M7238 module in 2(A-F). 

b. Remove the jumper (Jl) on processor module M7233 (IR DECODE) at location S(A-F). 

c. Install the three "over the back" cables from JI, J2, and J3 of the M7238 module to Jl, J2, and J3 
respectively of the M7232 (U Word) module at location 3(A-D). 

When the KEI 1-F is to be added to a system, the KEll-E must also be added. Proceed as follows: 

a. Perform steps a. through c. above. 

b. Insert the M7239 module in l(A-D). 

c. On the M7238 module, remove the following jumpers: 

1. WI from C02F2 to ground. 

2. W2 from A02B 1 to ground. 

3. W3 from D02Ll to ground. 

NOTE 
If these jumpers are not removed, the KEl 1-E Option will still 
execute EIS instructions but will not execute FIS instructions. 

When the above steps are performed, the KEl 1-E and KEI 1-F Options are ready to be checked out using the 
diagnostic programs supplied with the options. 

5.2 MAINTENANCE 

The design, construction, and implementation of the M7238 and M7239 modules used in these options are similar to 
those used in the KDI 1-A Central Processor and other options. Maintenance procedures for the entire system are 
described in the PDP-11/40 System Manual, Chapter 7. There are no special maintenance procedures for these 
options. 

5-1 



5.2.1 Diagnostic Programs 

Table 5-1 lists the KEl 1-E and KEl 1-F diagnostic programs. These programs are part of a complete package of basic 
processor and option diagnostics. The sequence of running the diagnostics is set up to completely test the KD 11-A 
Central Processor before attempting to run the diagnostic programs for these options, thus eliminating the KDl 1-A 
as a possible cause of failure. 

Table 5-1 
KEI 1-E and KEI 1-F Diagnostic Programs 

·-··-~-~---·-·--------------

MAINDECNo. 

KEI 1-E EIS Option 

MAINDEC-11-DCKBL 
MAINDEC-11-DCKBK-A-PB 
MAINDEC-11-DCKBJ 
MAINDEC-11-DCKBI 
MAINDEC-11-DCQA 

KEI 1-F FIS Option 

MAINDEC-11-DBKEA 
MAINDEC-11-DBKEB 
MAINDEC-11-DBKEO 

Function 
--- ----·-·~·-·--------····-- ---

Divide instruction 
Multiply instruction 
Arithmetic shift combined instruction 
Arithmetic shift instruction 
MUL/DIV Exerciser 

Basic instruction tests 
Exerciser 
GTP overlay 

The MAINDEC (maintenance descriptions) for each diagnostic program indicates how the program is to be loaded 
and run. The program listing indicates the functional logic that is being tested by each routine. The diagnostic 
programs are written along functional lines to test and exercise all of the KE 11-E and KE 11-F logic. 

5.2.2 Troubleshooting Test Procedures 

The KMl 1-A Maintenance Module (also referred to as the maintenance console) provides the user with a means of 
manually operating the system and monitoring status during maintenance operations. 

The maintenance module is a WI 30/Wl 31 board containing 4 switches and 28 indicators that monitor various signals 
within the processor. When an indicator is lit, it means that the associated logic level is high. An overlay can be 
attached to the module to indicate what signals arc being monitored. This overlay is necessary because the module is 
designed as a general-purpose device and can be used, without modification other than using different overlays, in 
many PDP-11 devices. The specific functions monitored by the module depend on the logic signals wired to the 
device receptacle that receives the module. 

When the module is used for monitoring operation of the KEl 1-E Extended Instruction Set and KEl 1-F Floating 
Instruction Set Options, addition of the KEl 1-E/F overlay (Figure 5-1) is necessary. In this application, the module 
is inserted into processor slot El and the 12 indicators on the right of the overlay are used for the KEl 1-E/F 
functions. Note that none of the switches are operational when the module is used for this purpose. The functions 
monitored by the indicators are listed in Table 5-2. 

5-2 



Indicator 

BIS 

ECIN 00 

EXPUNFL 

EXPOVFL 

DROO 

DR09 

MSROO 

MSROl 

EPS(C) 

EPS (V) 

EPS (Z) 

EPS (N) 

NOTE 
The functions described in Table 5-2 indicate the general 
purpose of the indicator. At times, a single indicator may show 
a number of functions, depending on the current state of th1e 
processor and option. This is why in order to use tbe 
maintenance module properly, the flow diagrams should be 
followed to determine the significance of an indication at any 
one time. 

Table 5-2 
KEl 1-E/F Maintenance Module Indicators 

Indication 

Bit 15 of CPU B register. In divide, used with DROO to 
determine the ALU function to be performed in division loop. 

An external carry-in to the ALU. 

Indicates exponential underflow during EXI 1 of floating point 
flows. 

Indicates exponential overflow during EXII of floating point 
flows. 

Used in conjunction with other bits to indicate various 
conditions, e.g., with Bl 5 in divide to determine ALU 
functions and to determine need for divisor correction. See 
EPS(C) for other use. 

Used as test for normalization (sec floating point flows page 
6). 

Bit 00 of MSR register. Indicates ALU function in FDIV. 

Bit 0 l of MSR register. Indicates ALU function in FMUL. 

C bit of extended processor status. In MUL, used with DROO 
to determine ALU function in multiply loop. 

Overflow bit of the extended processor status 

Zero bit of the extended processor status 

Negative bit of the extended processor status 

5-3 

Print 

Kl-5 

KE-5 

KF-4 

KF-4 

KE-2 

KE-2 

KF-2 

KF-2 

KE-6 

KE-6 

KE-6 



0 EPS 
(C) 

09 EPS 
(V) 

R EPS 
(Z) 

-- --- ····--·--· 
R EPS 
I (N) 

Figure 5-1 KEl 1-E/F Maintenance Module Overlay 

54 

LL. 

ow 
I I 

11-1630 



A.l GENERAL 

APPENDIX A 

GLOSSARY OF TERMS 

Table A-1 contains a collection of some of the terms used in this manual that may need defining. It does not include 
all terms, only those that it is thour)lt might be confusing. Listing is in alphabetical order. 

ADD 
ADR 
ALU 
ALUM 
ARGA 
ASH 
ASHC 
BBSY 
BRQ 
BUS 
BUSU 
BUSY 
BUT 
CIN 
CLK 

Term 

CLKB 
CLKBA 
CLKD 
CLKOFF 
CLR 
CON 
COUTMUX 
Cl BUS 
DAD 
DEST 
DIV 
DMUX 
EINSTR 
EIS 

Table A-1 
Glossary of Terms 

A-1 

Definition 

Add (instruction) 
Address 
Arithmetic Logic Unit 
Arithmetic Logic Unit Mode 
Argument A ( f If) 
Arithmetic shift (instruction) 
Arithmetic shift combined (instruction) 
Bus busy 
Bus request 
Unibus 
Bus microprogram 
Busy 
Branch microprogram test 
Carry-in (ALU) 
Clock 
Clock B Register 
Clock BA Register 
Clock D Register 
Clock off 
Clear C,V,N,Z (instruction) 
Constant 
Carry-out multiplexer (ALU) 
Cl of Unibus 
Discrete alteration of data 
Destination 
Divide (instruction) 
Data multiplexer 
Extended Instruction 
Extended arithmetic instruction set 



EPS 
EUB 
EUPP 
EXP 
f 

Term 

FADD 
FCIBUS 
FDIV 
FETCH 
FINS TR 
FIS 
FMUL 
FSUB 
FUB 
IR 
ISP 
JAM UPP 
MUL 
MUX 
NO-OP 
OVFL 
PC 
PS 
R(x) 
RSVDINSTR 
SALU 
SALUM 
SBC 
SERVICE 
SET COND CODES 
SF 
SFVl 
SRC 
STPM 
TRAP 
u 
UBF 
UNFL 
UPP 
UWORD 
VECT 
XOR 
ZB 

Table A-1 (Cont) 
Glossary of Terms 

Definition 

Extended Processor Status 
Extended microprogram bus 
Extended microprogram pointer 
Exponent 

A-2 

Function of 
Floating add (instruction) 
Floating Cl Bus 
Floating divide (instruction) 
Fetch (Processor State) 
Floating Instruction 
Floating instruction set 
Floating multiply (instruction) 
Floating subtract (instruction) 
Floating microprogram bus 
Instruction register 
Instruction set processor 
Jam microprogram pointer 
Multiply (instruction) 
Multiplexer 
No operation 
Overflow 
Program Counter 
Processor Status Register 
Scratch Pad Register 
Reserved instruction 
Select arithmetic logic unit 
Select arithmetic logic unit mode 
Select B constant 
Service 
Set condition codes 
Source field 
Source field ORed with 1 
Source (processor major state) 
Special Trap Pointer Marker 
User call 
Microprogram 
Microprogram branch field 
Underflow 
Microprogram pointer 
Microprogram word 
Vector 
Exclusive OR (V) 
"Z" bit previous state (flip-flop) 



- - - - -- -- -- -- -- -- Fold Here - - - - - -- -- - ·- -

- - - - - - - - - Do Not Tear - Fold Here and Staple - - - -- -- -- --- -

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

. ,, ... 

Digital Equipment Corporation 
Technical Documentation Department 
146 Main Street 
Maynard, Massachusetts 01754 

FIRST CLASS ] 
PERMIT NO. 33 

MAYNARD, MASS. 

• 

• • • • 

• • 



READER'S COMMENTS 
KEl 1-E and KEl 1-F INSTRUCTION SET 
OPTIONS MANUAL 
DEC-11-HKEF A-A-D 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 

written, etc.? Is it easy to use? 

What features are most useful? -------
----- -···-----------

--------------------·-··----

What faults do you find with the manual? 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? Why? -------

Would you please indicate any factual errors you have found. 
------~------

-----------·-------·---···------------

Please describe your position. 

Name ------------------- Organization ------·----·· . 

Street ----------------------- Department -----------------

City ---------- State------------ Zip or Country 


	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	replyA
	replyB

