
KD11-A
processor manual

DEC-I1-HKDAA-A-D

KD11-A
processor manual

digital eq~,:ipment corporation • maynard. massachusetts

TABLE OF CONTENTS

1 INTRODUCTION

1.1
1.2

SCOPE
ORGANIZATION

2 MICROPROGRAMMING

2.1
2.2
2.3
2.4
2.5

SCOPE
BASIC PROCESSOR
CONVENTIONAL IMPLEMENTATION
MICROPROGRAMMED IMPLEMENTATION
BASIC READ-ONLY MEMORY (ROM)

3 BLOCK DIAGRAM DESCRIPTION

3.1
3.2
3.3
3.4
3.5

SCOPE
INTERFACE LOGIC
DATA PATHS LOGIC
CONTROL LOGIC
MAJOR PROCESSOR COMPONENTS

4 MICROPROGRAM FLOW DIAGRAMS

SCOPE
HOW TO READ FLOW DIAGRAMS

Entry Point
Microprogram Word
Exit Points
Branch MicroTest (BUT) Instructions
Operation Symbols

FLOW DIAGRAM EXAMPLES

i

1-1
1-3

2-1
2-2
2-6
2-11
2-17

3-1
3-3
3-10
3-22
3-39

4-1
4-2
4-5
4-6
4-9
4-10
4-14
4-20

5 LOGIC DIAGRAM DESCRIPTION

5.1:
5.2
5.3
5.4
5.5
5.6
5.7

INTRODUCTION
PRINT FORMAT
M7231, DATA PATHS, K1 MODULE
M7232, U WORD, K2 MODULE
M7233, IR DECODE, K3 MODULE
M7234, TIMING, K4 MODULE
M7235, STATUS, K5 MODULE

6 KYII-D PROGRAMMER'S CONSOLE

6.1
6.2
6.2.1
6.2.2
6.3

KYII-D CONSOLE
KY11-D CONSOLE BOARD

Print KYD-2, Display
Print KYD-3, Switches

CABLES

7 PROCESSOR OPTIONS

7.1
7.2
7-.3
7.4

SCOPE
KJ11-A STACK LIMIT REGISTER
KM11-A MAINTENANCE CONSOLE
KW11-L LINE FREQUENCY CLOCK

5-1
5-2
5-10
5-21
5-43
5-57
5-66

6-1
6-1
6-2
6-2
6-3

7-1
7-3
7-12
7-24

ii

1 INTRODUCTION

1.1 SCOPE

This manual describes the KDll-A Processor which is the basic

component of the PDP-ll/40 Computer System. The processor is

connected to the Unibus as a subsystem and controls time

allocation of the Unibus for peripherals, performs arithmetic

and logic operations through instruction decoding and

execution. The information contained in this manual pertains

primarily to the processor itself. However, certain processor

options are also described in this manual (KYll-D, KJll-A,

KMll-A, and KWll-L).

This manual provides the reader with the information necessary

to understand the normal operation of the KDll-A processor.

Because the processor is a complex digital device, the user

must understand normal processor operations in order to fully

use its capabilities or to recognize and correct the cause of

improper operations.

1-1

Table 1-1 lists the other manuals that are necessary for a

complete understanding of the basic PDP-ll/40 System.

Title

PDP-ll/40 System
Manual

KEll Instruction Set
Options Manual

KTll-D Memory
Management Option
Manual

Table 1-1

Related Documents

Number

DEC-Il-H4oSA-A-D

DEC-II-HKEFA-A-D

DEC-II-HKTDA-A-D

Remarks

Describes overall PDP-II/40
system and includes sections
on installation, operation,
and programming.

Provides complete coverage
on both the KEll-E Extended
Instruction Set and KEll-F
Floating Instruction Set
processor options.

Provides complete coverage
on the memory management
option used with th~
processor.

1-2

1.2 ORGANIZATION

The description of the KDII-A processor itself is divided into

four main sections: microprogramming, block diagram, flow diagrams,

and logic diagrams.

Because microprogramming may be a new concept for the reader,

the section on microprogramming (Chapter 2) first discusses the

processor and briefly covers the conventional method of

implementing the instruction set. The remainder of the chapter

is devoted to a discussion of microprogrammed implementation,

the basic microprogram memory, and the structure of the

microprogram word.

The section describing the processor at a block diagram level

(Chapter 3) introduces the processor architecture by describing

the basic block diagram which illustrates all of the ~ajor logic

elements and interconnections within the processor. The narrative

in this chapter is summarized by a table that lists each functional

block on the diagram, describes the block, and lists all inputs

and outputs to and from that block.

1-3

Most of the information required to follow a sequence of machine

states on a flow diagram is included on the flow diagram itself.

Therefore, the section covering flow diagrams (Chapter 4) is

divided into two major parts. The first part explains the format

of the flow diagram and the second part provides examples of

tracing instruction operations through the flow diagrams.

The last section covering the KDIl-A processor is Chapter 5

which provides a description of the processor logic and

includes an explanation of print set conventions.

Chapter 6 of this manual provides a complete description of

the KYII-D Programmer's Console used with the processor, with

the exception of operating procedures which are covered in

the PDP-ll/40 System Manual, DEC-II-H40SA-A-D.

Chapter 7 provides a complete description of three of the

internal processor options that may be used with the KDII-A.

These options are: KWII-L Line Frequency Clock, KJll-A Stack

Limit Register, and KMll-A Maintenance Console. The other

availab1e processor options (KEll-E, KEIl-F, and KTIl-D) are

included in other manuals listed in Table 1-1.

1-4

A complete drawing set is supplied with this manual and inc1udes

the basic block diagram, microword format, function tables,

flow diagrams, and logic diagrams. The drawings are supplied

in a companion volume entitled, PDP-Il/40 System, Engineering

Drawings. Familiarity with the ISP notation (paragraph 4-2

of the PDP-ll/40 System Manual) as well as the print format

(paragraph 5.2 of this manual) will aid in understanding

the prints.

1-5

2 MICROPROGRAMMING

2.1 SCOPE

The purpose o~ this chapter is to provide a general introduction

o~ the microprogramming techniques used in the KDII-A processor.

Because microprogramming is the key to KDII-A processor operation,

it is essential to understand the basic techniques be~ore

attempting to use the block diagram, ~low diagrams, and logic

diagrams. This chapter ~irst describes the basic processor and

brie~ly covers the conventional method o~ implementing the

instruction set. An introduction into microprogrammed

implementation is then covered. The remainder of the chapter

is devoted to a discussion o~ the basic microprogrammed memory

and the structure o~ the microprogrammed word.

2-1

2.2 BASIC PROCESSOR

A computer system must be capable of manipulating, storing,

and routing data. The component of a computer that operates

on the data is the processor. Although the processor is

designed to effect complicated changes to the data that it

receives, it actually consists of elements making only simple

changes. Therefore, the complex data manipulations are

achieved by combining a large number of these simple changes

in a variety of ways.

The processor consists of logical elements, each element

designed to perform a specific function. For example, some

elements store data, some read data from another part of the

computer, and others perform simple modifying functions such

as complementing the data or combining two operands by either

addition or by logical ANDing. These simple basic opera~ions

can be combined into functional groups known as instructions.

An instruction can include a number of operations so that

data can be combined, changed, moved, or disposed of. The

instructions can be further combined into programs which use

a number of instructions to construct even more complex

operations.

2-2

The basic logical elements of a processor can perform only

a small number of operations at one time. Therefore, to

combine a number of these operations into an instruction,

the instruction must be divided into either a series of

sequential steps or into groups of functions that can be

performed simultaneously. One method of describing the

procedure the processor uses to execute an instruction is

to call each operation (or group of operations) a machine

state. An instruction then becomes a sequence of machine

states which the processor always enters in a specific,

predetermined order depending on the individual instruction.

The processor can be described in terms of the machine states

by listing all of the states in which the processor can

function. That is, all of the different operations or groups

of operations that it can perform and all of the valid

sequences in which these states occur. The sequence of

machine states is determined by the current state of the

computer system. For example, what instruction is being

executed, the values of the data being operated on, and the

results of the previous instruction.

2-3

The processor can be divided into three general functional

parts: the interface section, which exchanges data with

devices external to the processor: the data section, which

performs data handling functions: and the control section,

which includes the logic that dtermines which operations

are to be performed during a particular state and what the

next machine state should be.

The interface section basically consists of logic necessary

for transferring data between the processor, the Unibus,

and the programmer's console.

The data and control sections interact to perform the three

main processor functions of data storage, modification, and

routing.

In order for the processor to combine data operands, it must

be able to store data internally while simultaneously reading

additional data. The processor often stores information about

the instruction being executed, about the program from which

the instruction was taken, and about the location of the data

being handled, in addition to storing a number of data operands.

Whenever the processor must select some of this internally

stored data, or store new data, the control section provides

the required control signals to initiate appropriate actions

within the data storage section.

2-4

Data manipulation is performed both on data that remains

within the processor and on data being transferred between

the processor and the rest of the system. In some instances,

the data remaining within the processor is used to control

the processor by providing inputs to the sensing logic in

the control section. The various logic elements that actually

modify data are controlled by signals from the control section

which selects the particular operation to be performed.

Interconnections between the logic elements that store data

and the logic elements that manipulate data are not fixed;

they are set up as required by the specific machine state.

The control section generates signals that cause data routing

logic elements to ~orm appropriate interconnections within

the processor and between the interface and data sections

of the logic.

2-5

2.3 CONVENTIONAL IMPLEMENTATION

Berore attempting to understand the microprogramming

implementation or the control section, which is the key to

the KDII-A processor, it is advantageous to review the

conventional method or control section implementation

which uses combinational logic networks to produce the

necessary control outputs.

In a conventional processor, each control signal is the

output or a combinational network that detects all or the

machine states, as well as other conditions, ror which the

signal should be asserted. The machine state is represented

by the contents of a number of storage elements (such as

flip-flops) which are loaded from signals that are, in turn,

outputs of combinational networks. The inputs to these

networks include: the current machine state, sensed conditions

within the processor, and sensed external conditions.

2-6

The number of logical elements in a conventional processor

is often reduced by using logic networks to generate

intermediate signals that can be used to produce a variety

of control signals and/or machine states. Unfortunately,

while this sharing of logic reduces processor size, it

increases the complexity and makes it more difficult to

understand the processor logic because it is no longer

obvious what conditions cause each signal. In addition,

the distinction between sequence control and function

control is often lost, making it more difficult to determine

whether improper operation is caused by a faulty machine

state sequence or by erroneous control signals within an

otherwise correct machine state.

2-7

A simplified block diagram of a conventional control section

of a processor is shown in Figure 2-1. The instruction register

(IR) and associated decoding logic determine the logic function

(instruction) that is to be performed. The major and minor state

identification logic serves as a sequence control to determine

the order of functions to be performed. The major state logic

selects the major operation to be performed, such as fetch

(obtain an instruction), source (obtain the source operand),

destination (obtain the destination operand), execute (perform

the action specified by the instruction), or service (handle

required interrupts, traps, etc.).

Within each major state, the processor control section must

perform several minor operations. For example, the fetch

major state obtains an instruction from core memory. Minor

states during fetch include: retrieve the instruction from

memory, update the program counter, load the instruction

register, and decode the instruction.

Finally, a set of subcommands must be generated to perform

the elemental operations required by a minor state. The

subcommand set that is selected is dependent on which major

and minor states have been selected by the state control.

2-8

\~

N
I

\.0

ON ~
"'.~ \ \"\ q ClOtK ~ ,

\
CfF~

-
~"

T~ Mt\C\\\W E M~JoR.
STf\1'2.. -

Sl"f\\'e "
..

~ fOEN\\FlC.-
AT lOt-) ~J ..

~\jB <:.ct"M~~"b L-;.

'R ~\f\\~ ... r: 1) E.<:.o"DE CON1ROL GE.NERI\iOR.
~ .--0"1

N)\'NOR r-ro ..
~~~ ... I ~ 

\"bt\-\\ • 
I 

-!.o .. 
~r.._ 

~ 
\-\\~\t>R '( 

~ -

Figure 2-1 Conventional Control Section - Simplified Diagram . 

..... -

f-O 

f-o , , 
J 

I 
I 

r--Jo 



The sequence control or the processor (major state, minor state, 

and subcommand set logic) is practical only if a well-defined 

set of elementary operations is generated. This is the function 

of the state control logic shown on the block diagram. The 

state control consists or a complex array of combinational logic 

that monitors the output of the IR decoder which derines the 

instruction, the current machine states (major and minor), 

and external sources (state of processor status register, 

console switches, Unibus signals, etc.) to set the required 

major and minor machine states at the occurrence or each 

system clock pulse. It should be noted that the state control 

selects the next elementary operation as a runction of the 

current operation and external conditions. 

Although the KDII-A does not employ the type of control section 

discussed in this paragraph, the concepts presented serve as a 

reveiw of conventional control and are necessary, from a 

comparison point of view, in order to discuss the principles 

of microprogramming. In both cases, the prime function of the 

control section is the same; only the hardware implementation 

differs. 

2-10 



2.4 MICROPROGRAMMED IMPLEMENTATION 

When the control system is implemented by microprogramming 

techniques, each control signal is completely defined for 

every machine state. The section of the processor that 

selects the control signals can thus be implemented as a 

storage device (read-onlv memory). This memory is divided 

into words: there is a separate word for each machine state. 

Each word, in turn, contains a bit for every control signal 

associated with the related machine state. During each 

machine state, the contents of the corresponding word in 

the read-only memory is transmitted on the control lines. 

For most control signals, the output of the memory is the 

control signal and no additional logic is required. 

2-11 



The heart o~ the microprogrammed processor is the read-only 

memory (ROM) that stores a copy o~ the required control 

signals ~or each machine state and a list o~ the machine 

states to ~ollow the current state. Each word in the ROM 

de~ines an elementary operation and the bit pattern within 

the word corresponds to subcommands. All that is required 

to generate a unique set o~ subcommands is to read out the 

contents o~ a location in the ROM. To generate a sequence 

o~ elementary operations, the address input to the ROM is 

changed with each system clock pulse. Some o~ the bits in 

the ROM are used to de~ine the next location to be read, 

o~ten depending on conditions sensed by the processor. 

Each microprogram word that de~ines an elementary operation 

or machine state is re~erred to as a microword (sometimes 

re~erred to as a microinstruction). Sequences o~ microwords 

are re~erred to as microroutines. The register that de~ines 

which microword is to be read is re~erred to as the microprogram 

pointer. 

2-12 



An instruction fetched from core memory is loaded into the 

instruction register, decoded, and used to generate a 

microprogram address that points to the starting location 

of a group of microroutines stored in the ROM. When the 

microroutines are executed, the required subcommand sets 

are produced to activate other elements within the processor 

such as data paths or Unibus control. 

The microprogram may be viewed as a group of hardware 

subroutines carefully designed to implement the PDP-ll/40 

instruction set and permanently stored in the ROM. 

In order to maintain proper sequencing of a microroutine, 

each microword contains an address field for the next 

microword. However, provisions are made to modify this 

address when it is required to branch to other microwords 

or microroutines because of conditions sensed within the 

processor. 

2-13 



A simplified block diagram of the microprogrammed control 

logic is shown in Figure 2-2. As can be seen on the diagram, 

the instruction loaded into the instruction register (IR) 

from core memory is decoded to provide a ROM 

address. This address retrieves a specified control word 

(microword) from the ROM. This microword contains the control 

fields used by the processor to perform the selected function. 

The control word also contains a next address field and a 

branch test field which are fed back to the address generator 

to select the next microword in the sequence. 

The combination of the next address field and the branch test 

field provides the means of controlling the sequence of 

microroutines. The next address field provides a base address 

which selects the next microword to be used in the normal 

sequence. However, this base address can be modified prior 

to being loaded into the microprogram counter. 

2-14 



\R 

- R()N\ 
~c::k:h'~ ss 
~E.N cR~\c)R 

o 
, , 

-

C.lc)\. t( --. 
(~ aRJ\NC t-\ \E.~r 

F\~L1.J 

Figure 2-2 

1 
C~r-

NEXT A.1JURE.SS 
\=\ELU 

Microprogrammed Control Section - Simplified 
Block Diagram 

.2-15 



Before discussing the address modification, it is important 

to understand that modification occurs prior to storage in 

the ROM ADRS block and, therefore, is performed on the 

subsequent next address (the next, next address). For example, 

microword I in the sequence contains an address pointing to 

microword 2 and microword 2 contains an address pointing to 

microword 3. When microword I is being operated on, the next 

address field (microword 2) is already in the ROM ADRS and, 

therefore, cannot be modified. However, when word I is being 

used and word 2 is in the pointer, the address for word 3 

can be modified between the ROM output and the ROM ADRS. 

The branch test field of the microword specifies conditions 

to be tested and controls when a branch is to occur and to 

what location the microprogram is to branch to. Other logic 

within the processor permits testing of the instruction 

register, flags, and other internal and external conditions 

to determine if branching is required. If a branch is necessary, 

processor logic modifies the address of the next ROM microword. 

After the modified address has been loaded into the ROM ADRS 

block, the microprogram branches to the required location 

and retrieves the necessary microword from the ROM. 

2-16 



2.5 BASIC READ-ONLY MEMORY (ROM) 

The microprogram read-only memory (ROM) contains 256 56-bit words. 

During each processor cycle, one word is fetched from this ROM and 

stored in a buffer register. The outputs.of the buffer register 

are transmitted to other sections of the processor to act as 

control signals or to be used as the address of the next microword. 

The first eight bits of every microword (bits 08:00) are used to 

hold the address of the next microword to be used. The remaining 

bits (56:09) are various control bits. 

Figure 2-3 shows the basic structure of the microwords in the ROM. 

The detailed format of the microword is shown on print 

D-BD-KDll-A-BD. Note that this format is identical for all 256 

microwords in the ROM. The function of each bit position in the 

microword is described in Table 2-1. 

NOTE 

In the KDll-A Processor, the prefix micro (from 

the Greek Mu) is abbreviated as U (similar to ). 

The U abbreviation appears in the names for the 

microword buffer (U WORD), in the ROM ADRS 

(MicroProgram Pointer, UPP), and in other logic 

block names and signal names. 

2-17 



FO"M~T 

"'\C.9.0"",0,,, 000 
"~\)1\~$~ 
(oe,.,,&..') 

00\ 

O~~ 

# 

• 

* 
• , 

• 

I 
, CL\(, 
I 

5(. 

11It~ "-.. ~c~ Y::\I\.~ 
,.. \t ~tt'. F'~ ••• '1 

I' I~' I I 

"ET"\"'~\) t:o,,~,...,. OF ,.~~ 

Sf.~'\" .... \C.~()WO~\) \,. 

St\O ... N ,~ F\G URi. ~.'" 

:w,,: (.U(s: : o~o : srs : SA \. \) 
I I I I I I 

I 
: Sec. 
t 

OBf 
I 

st\ : RtF , 
1 
I 

UPF I 

I 
00 

I ~ __________________________________ ~t 
I 
I 

Figure 2-3 

~ S' C. 5" t.- '" T 
M \ t.Ro W 0 fI,.\)~ 

I 

Basic ROM Structure 

00 

2-18/19 





Table 2-1 

Function of Microword Bits (U WORD) 

U Bi t Hnernonic 

56 CLKI 
55 CLKO 

54 CLKOFF 

53 CLKIR 

52 vJRH 
51 NRL 

50 CLKB 

49 CLKD 

48 CLKBA 

47 CIBUS . 
46 COBUS 

45 BGBUS 

44 DAD 3 
43 DAD2 
42 DADI 
41 DADO 

40 SPS2 
39 SPSI 
38 SPSO 

37 SALur·1 

36 SALU3 
35 SALU2 
34 SALUI 
33 SALUO 

Meaning and Function 

Clock length control. Permits the microprogram 
to select one of three clock lengths. 

Permits microprogram to turn off the processor 
clock. 

Permits clocking Unibus data into the 
instruction register (IR). 

Permits writing the data multinlexer data 
into the general registers. WRH writes the 
hiqh-order byte; WRL writes the low-order byte. 

Permits clocking the entire data multiplexer 
(full word) into the B register. 

Permits clocking the ALU output into the 
D register. 

Permits clocking the bus address register. 

Specifies the type of data transfer bus 
transaction. 

Initiates data transfer bus transaction. 

Discrete alteration of data. Permits 
microprogram to alter operation of the data 
path. For example, modifying the ALU 
operation as a function of the instruction 
register. 

Controls loading and clocking of the 
processor status word. 

Selects the mode of ALU operation (mode can 
be either arithmetic or logical). 

Selects the operation to be performed by the 
arithmetic logic unit (ALU) such as add, 
subtract, etc. 

2-20 



Bit I1nemonic 

32 SBC3 
31 SBC2 
30 SBCl 
29 SBCO. 

28 SBHHI 
27 SBHHO 

26 SBHLI 
25 SBHLO 

24 SDHI 
23 SDHO 

22 SBAM 

21 UBF4 
20 UBF3 
19 UBF2 
18 UBFl 
17 UBFO 

16 SRS 

15 ;;P.D 

14 SUBZ\. 

13 SRI 

12 RIF3 
11 RIF2 
10 RIFI 
09 RIFO 

07 UPF7 
06 UPF6 
05 UPF5 
04 UPF4 
03 UPF3 
02 UPF2 
01 UPFI 
00 UPFO 

I:1eaninq and Function 

Permits the microprogram to specify the 
constants to be inserted into the B input 
of the ALU bv itlay of the B mul tiplexer. 

Selects the input to the high-order byte 
of the B multiplexer. 

Selects the input to the lo~~!-orc1er byte 
of th e B mul ti:olexer • 

Selects the source of the inDut to the 
T') Multiplexer. 

Selects the source of the input to the 
bus address multiplexer. 

Represents microbranch field. Selects the 
microhra~ch condition to he tested. (This 
test is referred to as DUT, branch 
microprogram test.) 

Permits bits(8:6>of t~e instruction register 
to be used as the source of the general 
register address. 

:?erwi ts bits<2: 0) of the instruction register 
to be used as the source of the general 
register address. 

Permi ts bi tS(3: O>oE the bus address register to be 
used as the source of the general register address. 

Enables RIF bits (12-09) for general register 
address. 
Permits microprogram to specifv general 
register address provided these bits are 
enabled bv SRI (bit 13). 

Represents an R-bit next address field that 
is used to specifv the address of the next 
microinstruction to be executed. HO~lever, it 
may be modified as the result of a branch 
test (BUT). The UOB bit is for UPFB and is 
provided by the KE11-E option. 

2-21 





3 BLOCK DIAGRAM DESCRIPTION 

3.1 SCOPE 

This chapter introduces the KDll-A Processor architecture by 

describing the basic block diagram which illustrates all of the 

major logic elements and interconnections within the processor. 

The block diagram (print D-BD-KDll-A-BD) has been divided into 

three major functional groupings: interface, data paths, and 

microprogram control. All of the components in each of these 

segments are covered in detail in paragraphs 3.2, 3.3, and 

3.4, respectively. In addition, paragraph 3.5 contains a tabular 

listing of all components on the block diagram and includes a 

brief physical description as well as related inputs and outputs. 

This abbreviated su~ry can be used as a quick reference once 

the more detailed description of the block diagram is understood, 

or it can be used for a quick overview of the KDll-A processor 

by those who are already familiar with PDP-ll processors and 

microprogramming techniques. 

3-1 



In the corner of each logic block on the block diagram is 

a K reference that indicates the module print upon which 

the logic occurs. 

3-2 



3.2 INTERFACE LOGIC 

The first section of the processor shown on the block diagram 

is the interface logic which is used to interconnect the 

KDll-A processor with other components of the PDP-ll/40 System 

such as the programmer's console, Unibus, etc. Each of the 

functional blocks shown on the interface portion of the block 

diagram is covered in the following discussion. 

3-3 



3.2.1 KYII-D PROGRAMMER'S CONSOLE 

The KYll-D Programmer's Console is an integral part of' the 

PDP-11/40 system and provides the programmer with a direct 

system interface. The console allows the user to start, stop, 

load, modif'y, or continue a program. Console displays indicate 

data and address flow for monitoring processor operations. 

The console logic that is considered to be a part of the 

processor interface section includes the switch register, 

the data display, the address display, and the console control. 

The switch register is located on the KYII-D console and 

consists of the manually-operated switches with resistor 

pull-ups gated through 8881 drivers to the Unibus. The 

microprogram addresses the switch register during console 

operation and decoding the address enables the driver gates 

so that the value set on the switch register is loaded onto 

the Unibus. 

3-4 



The data display indicates the output of the processor data 

multiplexer which gates information from a variety of sources 

within the processor,and also gates data from the Unibus. 

The display consists of indicator lights (light emitting diodes) 

and associated current limiting resistors mounted in the 

progrannner's console. These indicators are connected to the 

processor by cables. The output line of the data multiplexer 

(D MUX<15:00») always controls the display. However, because 

the mUltiplexer can select mUltiple inputs onto the output line, 

information can be displayed from a variety of sources. 

The address display indicates the contents of the processor 

bus address register (BA register). This display also consists 

of light emitting diodes and current limiting resistors mounted 

on the console and connected to the processor by cables. Note 

that there is no multiplexing involved with the address display 

as was the case with the data display. Although it is possible 

to load specific data into the bus address register for 

different situations arising in the logic flow, the contents 

of the bus address register is always displayed by the address 

display. 

3-5 



The console control logic is associated with the programmer's 

console operational switches that provide such manual functions 

as START, HALT, LOAD ADDRESS, EXAMINE, DEPOSIT, and CONTINUE. 

The console contains the manual switches and associated set/reset 

flip-flops used for preliminary contact bounce filtering. However, 

primary console control is handled by the processor by means of 

both the microprogram and combinational logic flag flip-flops. 

The microprogram senses switch activation and branches to the 

specific routine required,depending on which switch has been 

used. The flags accomodate the special needs of the START and 

CONTINUEswitch sequences as well as the incrementation 

requirements of consecutive EXAMINE or DEPOSIT sequences. 

The remaining functional components of the interface portion 

of the processor are the Unibus timing and control, the bus 

terminator and connector module, and the Unibus drivers and 

receivers. 

3-6 



3.2.2 UNIBUS TIMING AND CONTROL 

The Unibus timing and control logic provides the required 

processor control of the Unibus , controls data transfer 

functions, bus ownership functions, and other miscellaneous 

functions. The control logic includes drivers and receivers 

for Unibus signal lines as well as timing and priority logic. 

Combinational logic, pulse circuits, and discrete flip-flops 

provide control for data transfers (DATI, DATIP, DATO, DATOB) 

between the processor and the bus with associated error 

checking (odd address, stack overflow) and correction (data 

time-out). An extra processor signal (MSYN A) is included 

for faster, parallel use with the Unibus MSYN signal. The 

logic also provides the gates and signals needed for the 

processor to respond once it has been addressed from the bus. 

In addition to the data transfer function, the Unibus timing 

and control logic provides the necessary control for bus 

ownership, transfer of bus ownership for non-processor requests 

(NPRs) and bus requests (BRs), and the time-out function for 

non-response conditions. The logic also provides power fail 

timing related to BUS AC LO, BUS DC LO, and BUS INIT signals. 

Combinational logic, which includes a number of one-shot timing 

circuits, sequences these signals for power on and power off 

conditions. 

3-7 



The microprogram interfaces directly with the Unibus timing 

and control logic. The-start or error checking flip-flops 

are loaded, either directly or conditionally from the microword; 

the acceptance of bus data and the deactivation of MSYN occur 

as a function of the next microword after a DATI or DATIP 

transfer operation; and the processor transmits address and 

data information to the bus under control of the microprogram. 

Note, however, that bus ownership, as well as the power fail 

logic, operates asynchronously and is independent from the 

microprogram. 

The interface portion of the processor contains both bus 

transmitters (8881 gates) and bus receivers (7380 gates) 

provide the necessary conversion so that processor and Unibus 

signals are compatible. The transmitters (drivers) permit 

the processor to place groups of signals on the bus; the 

individual signals handled are noted on the block diagram on 

the output line of the associated gate. These signals include 

the outputs of the bus address (BA) register, the D register, 

the processor status (PS) register, and the switch register. 

Inputs to the processor from the bus are gated through the 

bus receiver to the D multiplexer which then routes the signals 

to the proper component within the data paths. 

3-8 



The final functional component in the interface section of 

the processor is the bus terminator and connector module 

which provides the means of interconnecting system units 

and also provides the termination required by the Unibus. 

In the KDII-A processor, a single set of slots (A09, B09) 

is provided for the Unibus interface and the processor is 

single ended. Note that the Unibus terminator and ccnnector 

module (M981) is located in, and powered from, the last 

device on the bus. 

3-9 



3.3 DATA PATHS 

The data paths portion of the KDll-A Processor manipulates, 

stores, and routes data within the processor. 

The prime element of the data path logic is the arithmetic 

logic unit (ALU) which operates, both logically and 

arithmetically, upon input data from the interface portion 

of the processor. To a certain extent, data path logic is 

ordered upon the ALU because of the requirements to provide 

data to each of its inputs and to store, or otherwise use, 

its output. The ALU and all other components in the processor 

data paths are described in the following paragraphs. 

3-10 



For the purposes of the following discussion, the term 

"scratch pad register" refers to one of the 16 internal 

processor registers shown on the block labled REGISTER (REG). 

The scratch pad register and the arithmetic logic unit 

interact in that the reaister supplies operands for the 

ALU. These operands either come directly from an instruction 

source or destination mode operation or they are stored in 

the scratch pad register durinq address calculations. In 

either case, the ALU receives a direct input from the 

BUS RD <15:00> line. This input is referred to as the 

"A input." Because of this input, the characteristics of 

the scratch pad register affect the data path structures. 

Only one address mav be accessed at a time and simultaneous 

read and write operations are not permissible. In order to 

provide the two ALU operands (when both operands come from 

the scratch pad register), it is necessary to provide 

temporary storaqe. This storage is provided by the B register. 

The contents of the B register can be fed through the 

B multiplexer into the B input of the ALU. 

3-11 



3.3.1 DATA PATHS, MULTIPLEXERS AND REGISTERS 

Basically, there are two inputs to the ALU: A and B. The 

A input provides variable operands, the B input provides 

variable operands, constants, and sign-extended operands. 

The A input always comes from the scratch pad register 

although it can be wire ORed with basic processor inputs 

from the scratch pad register and the processor status 

register (as shown by the dotted OR gates on the block 

diagram) • 

The B input comes from the B multiplexer (B MUX) which 

receives its input from either the B constants or the 

B register. The B register, in turn, receives its input 

from the D multiplexer which has four possible inputs. 

Therefore, the B input to the ALU comes from a variety 

of sources with two levels of multiplexing. These various 

inputs are discussed in the following paragraphs. 

The four inputs to the D multiplexer are: Unibus data 

lines BUS D <lS:OO>(which permit the ALU to receive operands 

from other devices within the system), the buffered BUS RD 

<LS:OO) lines (which permits operands from the scratch pad 

register), the output of the D register (which is the output 

of the ALU and can permit the result of a previous arithmetic 

operation to be used as an o~erand), and the shifted output 

of the D register. 

3-12 



The desired D multiplexer output can be stored in the 

B register which in turn can be fed to the ALU by means 

of the B multiplexer. It should be noted that the buffered 

BUS RD signal can be fed through the D multiplexer into the 

B register. This data path is of special interest in the 

machine instruction for the register-to-register operation~ 

where the B input of the ALU must come from the scratch pad 

register. For example, if both desired operands are stored 

in the scratch pad register, the first operand passes through 

the D multiplexer into the B register for storage. The 

second operand can then be fed to the A input of the ALU 

and the first operand fed to the B input by means of the 

B multiplexer. 

The B constants, which are applied through the B multiplexer 

to the ALU, provide elementary values (such as 18 and 2
8

) 

for incrementation or decrementation throughout machine 

operation. They also provide other values such as the switch 

register address, more complex constants such as trap vectors or 

masks for manipulating instruction offsets, and 

the conditional constants which are a function of machine 

status and jumper selection. 

3-13 



The B input to the ALU can be either the B constants value 

or one of the four possible functions of the B register. 

The four B register functions are: 

a. B register - the contents of the register are 

applied directly to the ALU. Therefore, BIN of 

the ALU equals B <15:08> and B <07:00). 

b. B extend - the B register contents are gated so 

that bit 07 (HSB of the low-order byte) provides 

an extension for the high-order byte. Note that in 

this case the value in the high-order byte is either 

all Is or alIOs depending upon bit 07 of the B 

register; the low-order byte is the B register 

directly. 

c. Byte duplication - either the low-order byte or 

the high-order byte may be duplicated. Therefore, 

BIN of the ALU equals either B <15:08> and BQ.5:08> 

or B <07:0~ and B (07:00>. 

d. Byte swapping - the high-order and low-order bytes 

may be exchanged. Therefore, BIN of the ALU equals 

B <07:00> and B <15:08> for the high byte and the 

low byte, respectively. 

3-14 



The arithmetic logic unit (ALU) provides an altered data 

output that is used for Unibus addresses and data and is 

also used by internal processor registers such as the 

scratch pad register and the processor status register. 

The output of the ALU is stored in the D register and/or 

the Bus Address Register. 

The D register storage capability permits data which has 

been operated upon in the ALU to be fed around to the 

B multiplexer for further manipulation, thus permitting 

data to be stored in another register (the B register). 

This additional path and storage capability is important 

because it is necessary for single or double operand 

register operations and is very often necessary in 

iterative operations. 

Operation of the ALU is also determined by the carry-in 

(eIN logic) and carry-out (eOUT MUX) signals. The carry-in 

signal does not come directly from the microprogrammed 

word but is a function of the microprogrammed word and 

the conditions (usually the instruction register) that 

are enabled at specific locations in the microprogrammed 

flow. 

3-15 



The carry-out multiplexer (COUT MUX) provides multiplexing 

or the speciric carry information normally used in the 

PDP-II. The signals that can be selected are: COUT 15, 

COUT 07, ALU 15, and PS(C). 

The COUT 15 signal represents the carry from a word operation 

and the COUT 07 signal represents the carry from a byte 

operation. These signals are used for condition code inputs 

and rotate/shift operations. The ALU 15 signal is the bit 

15 output of the ALU which is used for rotate/shift operations. 

The PS(C) signal is the carry bit from the processor status 

register. The signal selected by the COUT MUX is clocked into 

an extension of the D register which is called D(C). This 

storage extension is used in rotate/shift operations and in 

certain arithmetic operations. 

3-16 



3.3.2 DECODING 

The address and data decoding logic is a combinational logic 

network that decodes the output of both the D and BA registers. 

When the D register output is decoded, the decoder senses 

whether or not the output (for both byte and word segments) is 
u , 

zero (D~5:0q)= 0 H). The BA (bus address) register is decoded 

to determine if a processor address has occurred, or if the 

address is less than specified ba1ues. It should be noted that 

the decoding logic decodes the BA register and not the Unibus 

address. In the first case, the processor addresses, which 

represent only those internal registers that can be accessed 

by the processor itself, are used to gate Unibus responses for 

bus operations. If the decoded address is the address of the PS 

register or the console switch register, then either PS ADRS H 

or SR ADRS H is true. Other addresses also exist. If the decoded 

address is less than the specified value, then a stack overflow 

violation may occur and BOVFL signal is true. Stack limit errors 

are either yellow zone (warning) or red zone (fatal) indications. 

3-17 



3.3.3 ARITHMETIC LOGIC UNIT 

The arithmetic logic unit (ALU) is the heart of the data 

path logic. It performs 16 Boolean operations and 16 

arithmetic operations on two 16-bit words. The ALU is 

controlled by six input signals. One signal, ALUM H, 

selects either the logic or arithmetic mode of operation. 

Four signals (ALUSO through ALUS3) select the desired 

function. The sixth signal is the output of the carry 

(eIN) logic. Basically, the ALU receives two l6-bit words 

as inputs (AIN and BIN) and performs the operation selected 

by the six control signals. The output of the ALU is, 

therefore, altered data which is used for Unibus addresses 

and data, and is also used by the internal processor 

registers such as the scratch pad register or the processor 

status register. The output of the ALU is stored in the 

D register or the BA register for use. 

3-18 



3.3.4 PS REGISTER 

The processor status (PS) register is an 8-bit register that 

stores information on the current priority of the processor 

(bits <:07:0Q») , the result of the previous operation 

(condition cod$bits N,Z,V,C), and an indicator for 

detecting the execution of an instruction to be trapped 

during program debugging (T bit). The status register is 

located between two basic data paths: D MUX (15:00> and 

BUS RD <is:oo>'. The register is loaded from the D MUX. 
" ' 

In addition, the condition cod~control logic provides 

non-loading inputs to the N,Z,V, and C bits. The register 

output is either gated directly onto the Unibus (in cases 

where the processor has addressed the Unibus as an absolute 

address) or is gated onto the BUS RD ~15:00)line for use by 

the processor data paths. This latter case is used, for example, 

by the condition code instructions which alter the contents 

of the processor status register. 

3-19 



3.3.5 REGISTER (REG) 

The 16 internal processor registers are referred to as the 

"scratch pad register". Eight o:f these are programmable 

general registers which include the program counter (PC) 

and stack pointer (Sp). In the KDll-A processor, the 

additional eight registers (not accessible to the program) 

are used for a variety of :functions as shown on the block 

diagram. Such functions include: intermediate address (TEMP), 

source and destination data (SOURCE, DEST) , a copy o:f the 

instruction register (IR), the last interrupt vector address 

(VECT), registers for console operation (TEMPC,ADRSC), and 

a stack pointer :for operation of the KTII-D Memory 

Management Option (SP USER). 

3-20 



In summation, the data path logic is the fundamental 

section of the processor and performs data storage, 

modification, and routing functions. The other two 

sections of the processor (interface and control) 

exist primarily to support the data path logic. 

An important aspect of the data path logic is its 

expandability. The D MUX signals represent an outgoing 

bus and the BUS RD lines are a wired OR input bus. Just 

as the scratch pad register and the processor status 

register are connected between these two signal buses, 

other devices can also be connected between them. For 

example, the KEll-E Extended Instruction Set option and 

the KEll-F Floating Instruction Set option are connected 

between these two signal buses for arithmetic expansion 

of the basic processor. 

3-21 



3.4 CONTROL LOGIC 

The rinal section or the block diagram is the microprogram 

control logic which provides the required control signals 

for the data path logic and the interface logic. The prime 

element or the control logic is the read-only memory (ROM) 

which provides the various microwords. The bits in each 

microword (U WORD), in turn, control machine operation as 

described in Chapter 2. Other elements within the control 

section include address and address modification logic 

that receives inputs rrom the ROM, the instruction register 

with associated decoding logic, various processor flags, 

and basic machine timing and flag control logic. 

When an instruction is retched rrom an external data 

storage location, the instruction enters the processor 

rrom the Unibus, passes through the D MUX, and is loaded 

into the instruction register under microword control. 

The output of the instruction register is decoded by 

combinational logic (IR DECODE) to provide the microbranch 

signal (basic microbranch code, BUBC) for several branch 

conditions and the discrete auxilIary signals required by 

the condition code logic and ALU control logic. The last sections 

of logic are discussed immediately because of their interaction 

with the data path section. The operation of the basic microcontrol 

comes next. 

3-22 



3.4.1 CONDITIONAL CODES INPUT 

The condition codes are used to store information about the 

results of each instruction so that this information can be 

used by subsequent instructions. The information recorded in 

the condition code bits (N,Z,V,C) of the processor status register 

differ for each instruction type and often for the part of the 

instruction being executed. In addition, the information to be 

recorded can vary for different types of instructions. The 

condition codes logic is combinational logic that alters the 

condition codes during the latter part of an instruction cycle. 

During this time, condition codes are combinations of data 

register contents, overflow situations, etc. The decoded output 

of the IR DECODE logic and the select processor status (SPS) 

code of the microword determine which conditions are to be 

presented as the data input to the processor status register. 

In addition, the SPS code determines when the processor status 

register should be loaded directly from the D MUS. 

3.4.2 ALU CONTROL 

The ALU control combinational logic receives the DAD (discrete 

alteration of data) code from the microword as a function of the 

IR decode logic. In general, the DAD code directly alters operation 

of the ALU; however, during the latter part of an instruction, 

where common instruction flow paths exist for several instructions, 

the DAD code is combined with the instruction register to alter 

operation of the ALU· 

3-23 



3.4.3 FLAG CONTROL 

The flag control logic is closely related to the IR decode logic 

because certain instructions require specific flags such as WAIT 

and HALT. Flip-flops within the flag control logic interact 

directly with the microbranch logic to provide the required 

branch conditions in the machine flow to provide flag service. 

3.4.4 U BRANCH CONTROL 

In a microprogrammed computer, the next ROM address (next machine 

state) is dependent on a number of previous conditions. The 

purpose of the microword branch control (U BRANCH CONTROL) logic 

and the branch microtest (BUT) multiplexer is to select the next 

proper machine state. The microbranch control provides some of the 

inputs to the branch microtest (BUT) decoding logic. The 

microbranch control combines the diverse instruction decoding of 

the instruction register and encodes it into two, three, four, or 

five bits of a microaddress alteration, called Basic MicroBranch 

Codes for specific BUTs (BUBC (BUT XX)). For most of the 

complicated branches, such as the first instruction branch or 

some of the subsequent source or destination instruction branches, 

these codes are fairly extensive. On the other hand, they may be 

fairly simple, consisting of only three bits or, in some cases, 

three bits of another BUT encoded with another single condition. 

This is particularly true with the INSTR 2 BUBC and the (BYTE and 

INSTR 2) BUBC. 

3-24 



3.4.5 BUT MUX 

The branch microtest multiplexer (BUT MUX) selects sets of 

address alterations to alter data into the microprogram 

pointer (UPP) which points to the next ROM cddress. 

The BUT HOX provines a 5-bit output with 

the number of possible inputs on the lowest order bits being 

greater than the number of inputs that can be selected for 

the higher order bits. This corresponds to the fact that 

few of the branches involve all five or six bits of address 

alteration. There are a number of address alterations that 

involve only one bit, usually the lowest order bit. 

The gradation of inputs in the multiplexers is as follows: 

there are two 6-bit multiplexers for bit 0, a single 16-bit 

multiplexer for bit 1, 8-bit multiplexers for bits 2 and 3, 

and a 4-bit multiplexer for bits 4 and 5. Besides this 

ordering of multiplexers, other characteristics determining 

the required branch are the inputs to the BUT MUX. The 

microbranch control logic provides wide branch encoding 

situations for instruction situations (INSTR 1, INSTR 2, 

and INSTR 3) and a 5-bit input is possible for the BUBe 

signal. In other cases, the instruction register itself 

may be used for a single BUBC bit code when the decision 

between a bit enabled or not enabled simply chooses between 

two different microaddresses. The flag control logic also 

provides certain inputs which alter only one bit of the 

microaddress. 

3-25 



The actual selection of which or these inputs (wide or 

narr01-1 branch, branch on instruction, branch on flag) is 

to be used, is determined by the microprogram branch field 

(UBF) of the microword. The UBF field directly selects which 

inputs of the multiplexers are applied to the microaddress 

alteration logic (the NOT OR gate on the block diagram). 

3.4.6 U WORD CONTROL ROM AND U WORD REG 

The heart of the control logic is the microword control 

ROM which stores 256 56-bit words. The format and purpose 

of these control words is described in more detail in 

Chapt~r 2. Basically, each of these control words represents 

a dif.ferent machine state of the processor. The ROM provides 

a wired OR output as indicated by the ability to have 

BUS U<?6:09> and BUS U ~08:00>. This wired OR condition 

permits easy expansion of the processor as required by the 

KEll-E and KEll-F option~. 

The microword output of the ROM is applied to a buffer register 

(U WORD REG) that permits a microword to be used for machine 

control and selection of the next address while the ROM 

itself is obtaining the contents of the next address. Although 

advantageous from a time standpoint, this implementation 

increases the complexity of the hardware and concepts. 

3-26 



Each microword from the ROM consists of a control portion 

and a next address portion. At the beginning of the current 

machine state, a ROM output microword is clocked into the 

U WORD register. The bits in the control portion of the 

microword select addresses, select multiplexers, and enable 

clocking gates (these gates enable clock pulses tot-lard the 

end of the machine state). The bits in the address portion 

of the microword access the ROM to obtain the next ROM word. 

At this point, this address is fixed in the microword register 

and alteration for a BUT has not occurred. 

The delay in using the buffer (U 1;10RD register) is fixed 

by the settling time of the flip-flops (approximately 15-20 ns). 

This is significantly better than the 60-90 ns required for 

addressing the ROM. For this reason, the buffer takes the 

delayed output of the ROM, clocks it at the beginning of the 

machine state, and provides it almost immediately (in that 

machine state) to the rest of the processor (data path, 

interface, and the microprogram control itself). 

3-27 



The clock for the U WORD register is taken directly from the 

basic processor clocking and is related to the clock length 

selection bits in the microword control. The clock is a 

function of a machine cycle and is the last pulse edge of the 

previous machine cycle. 

Each microword is divided into two segments: address and control. 

The address portion of the word is represented by BUS U~08:00> 

which is the address of the next ROM word and the control portion 

is represented by BUS U <S6:09> which includes the control bits 

for the microword. The control bits are applied directly to the 

U WORD with the address bits passing through a NOT OR gate to 

the microprogram pointer (UPP) portion of the U WORD. 

The outputs of the U WORD register are diverse and are used 

throughout the processor. Outputs control the basic processor 

clock, microcontrol branching, and elements of the interface 

and data path. These outputs are indicated both by the labels 

on the U WORD REG outputs and by signals prefixed with a K2 

on other blocks in the diagram. 

3-28 



3.4.7 MICROADDRESS ALTERATION 

Each microprogrammed word contains the address of the next 

microprogrammed word to be used by the processor. This address 

is referred to as the MicroProgram Field (UPF) of the ROM. 

If this address were always constant, little attention would 

have to be given to it by the processor. However, alterations 

to this address are made for branching purposes. Therefore, 

there must be a method of modifying and storing this address 

so that the next specified word can be outputted in parallel 

with current word control. As shown on the block diagram, the 

hardware used to perform these functions consists of the 

NOT/OR gates on the UPF output (BUS U<08:00;», the output of 

the BUT MUX, and the UPP register. The base address of the UPF 

can be altered by the BUT MUX inputs resulting in a different 

next ROM word address in the UPP register. 

3-29 



In discussing the addresses in the microaddress loop, it is 

important to realize that an altered next address has been 

stored in the UPP register and that alterations for the 

subsequent next address are fed to the NOT/OR gate. Both of 

these addresses are clocked simultaneously; therefore, the 

address fed through the NOT/OR gate is clocked into the 

Upp and the address that had been stored in the UPP is clocked 

out. Consequently, in any given microword, the control portion 

of the U WORD is performing manipulations while the UPP 

address portion of that word is addressing the next ROM word. 

The last UPP contents address of the above present U WORD are 

stored in the past microprogram pointer (PUPP) for reference. 

3-30 



Another address in the address loop is the output of the 

ROM which has been selected by the next address from the UPP 

register. This address does not appear immediately in the 

machine cycle (as is the case for the UPP next address) 

because ROM access time is greater than flip-flop settling 

time. However, it is present about midway through the U WORD 

state. This ROM output address, which appears on BUS <08:00>, 

is a subsequent next address and is applied through the 

NOT/OR gate to the UPP register. The next word data is 

becoming available across the entire ROM and is to be 

clocked in after the current machine state ends. If the 

subsequent next address is fixed (i.e., no branches are 

required), then there is no real difference between the 

address and control portion of the ROM/U WORD interface. 

In effect, the NOT/OR gate simply inverts the already 

complemented address output of the ROM. However, if a 

microbranch is to occur, it must occur at this point 

before the subsequent next address is clocked into the 

fixed UPP register. The branch requires a subsequent next 

address with alIOs in it. It also requires the BUT MUX 

logic to input alterations to this address. Both of these 

occurrences require that the current microword has enabled 

appropriate control bits in the address and control sections. 

3-31 



Note that the microbranch test in a current word cannot alter 

the next word. However, it can alter the following word (the 

subsequent next word) as described below. 

Assume that there are three microwords in sequence: A, B, and C. 

When the current word is A, the address portion of that word is 

causing word B to be accessed from the ROM (the address portion 

of word A selects the next word, which is B). Word B contains an 

address segment which is used for accessing word C and is present 

on BUS U <08:00~. The address portion of word B, however, is a 

base address so that it can be altered if there is to be a branch. 

This alteration occurs in the NOT/OR gate and occurs during word A 

while selecting word B which contains the address for word C. 

The address for word C (contained in word B) can be either the 

base address for C or an altered address for C. For example, the 

altered address could be C1 or Cn depending on how wide the branch 

is. 

This technique means that selection of branch conditions and 

related enabling of that selection to the NOT/OR gate occurs a 

microword ahead of the word in which the branch takes place. 

During word A, a decision to branch can affect what word is used 

for word C, but it cannot affect word B. In other words, if a 

branch to C or Cn is desired, then conditions must be enabled to 

alter C in word A. By the time the processor goes to word B, the 

next address for word C is already fixed and stored in the UPP 

register. 

3-32 



3.4.8 JAMUPP LOGIC 

The microprogramming address loop is also affected by the 

jam microprogram pointer (JAMUPP) logic which alters the 

sequential nature of the address loop. The JAMUPP logic 

provides a means of jamming an address into the microprogram 

pointer to modify the microprogram for certain conditions 

such as bus errors, stack overflow, auto restart, etc. 

This logic provides the next microword address directly as a 

function of previous start or error conditions in the maehine. 

The output of the JAMUPP logic direct sets or direct clears 

the UPP register flip-flops to establish the required address. 

This method differs from the normal NOT/OR inputs which are 

clocked into the UPP register flip-flops. 

3-33 



3.4.9 PUPP REGISTER 

The output of the UPP register is also fed to the PUPP (past 

microprogram pointer) register at each system clock. The PUPP 

register maintains a history of the previous microprogram 

pointer and displays its contents on the maintenance console. 

Note that the previous pointer indicates the current microword addresse 

The PUPP register is clocked each time the microword is clocked 

and the data input to the register is the address of the next 

ROM word present in the UPP register. Therefore, as the 

microword changes to the next word, the address of that word 

is clocked into the PUPP register. The address of the current 

microword is therefore available and can be referenced on the 

maintenance console. The PUPP register serves to identify the 

current microword address and to permit access to the ROM 

listings to determine which control bits should be enabled or 

disabled, and which operations should be taking place at this 

time. Note that the register itself does not perform these 

functions. It is the output of the register on the maintenance 

console display that permits determination of the current address. 

3-34 



3.4.10 BUPP & SR MATCH 

The output of the UPP register is also fed to the BUPP & SR MATCH 

logic which is used for maintenance purposes. This logic compares 

the contents of the UPP register (UPP<08:00» with the low-order 

bits of the switch register (SR«08:00» and generates a match 

signal when UPP (08:00> equals SR (08:00>. This match signal can 

be used as s,ync signal to trigger an oscilloscope or can be used 

to stop the clock (halt the machine) in that word,(provided the 

appropriate switches on the maintenance console are set) For 

example, to obtain a strobe signal upon entering ROM address 

234, this address would first be set in the switch register on 

the programmer's console. When the contents of the UPP register 

matched the switch register value, the end clocking pulse of that 

machine state would be enabled as a strobe signal. Because the 

UPP register contains the next ROM address, the pulse would 

occur at the end of the machine state just prior to the state 

of the address in the switch register. 

3-35 



3.4.11 CLOCK CONTROL 

The clock logic and related timing signals are basic to any 

processor. The clock signals that are generated are either 

used directly or are gated with enabling signals. These 

enabling signals are derived directly £rom either the 

microword or £rom machine states (£lags, £lip-flops, Unibus 

states, etc.). Data transfers and processor initializations 

within the processor itself are synchronous; they occur at 

specific times within machine states. Three different clock 

cycles are provided by the logic. This synchronous operation 

is designed for continuous running of the processor as the 

ROM sequences one microword after another. The processor should, 

however, be considered as a combination of both synchronous 

operation and asynchronous operation. The asynchronous nature 

of the processor is due to the fact that, upon certain 

conditions, the clock is turned off and waits for a restart. 

An obvious turn-off situation is during Unibus data or bus 

ownership operations which are specified as asynchronous 

functions. 

There are three functional elements that comprise the 

processor clock logic: the clock pulse generator, the clock 

control, and the clock enable gates. 

3-36 



3.4.12 CLOCK PULSE GENERATOR 

The clock pulse genrator provides the system clock pulses when 

triggered by the clock control logic. These clock pulses are 

used throughout the processor and are combined with the enable 

signals of the ROM to act upon the three major segments of the 

processor (interface, data path, and microprogram control). 

There are three pulses generated by the clock pulse logic: 

CLI cycle which generates a PI pulse; CL2 cycle which generates 

a P2 pulse; and CL3 cycle which essentially combines the CLI 

and CL2 cycles and consists of P2 and P3 pulses. The prime 

purpose of the CL3 cycle is to complete a read/write cycle 

around the data path loops to allow the transfer to the 

D register and from the scratch pad register storage back 

into the scratch pad register. The specific cycle length 

(CLI, CL2, CL3) for a microword is dtermined by microword 

clock control bits in that word. See print D-CS-M7234-0-l 

for CLK waveforms. 

3.4.13 CLOCK CONTROL 

The clock control logic consists of a clock (CLK) and an idle 

(IDLE) flip-flop. The CLK flip-flop provides a pulse, and the 

IDLE flip-flop drives the RUN console light and indicates when 

the processor is sequentially processing microwords. 

3-37 



3.4.14 CLOCK ENABLE GATES 

The clock enable gates receive the pulses generated by the 

clock pulse generator. During each machine state, microcontrol 

bits control the passage of these clock pulses to specific 

registers. When it is desired to clock a register, the 

microcontrol word has the appropriate bit enabled and the 

clock pulse passes through the enable gate to the clock input 

of the specified register. 

The flag control logic recognizes a variety of asynchronous 

conditions and changes the sequence of processor operations 

in response to these conditions. The logic consists of 

discrete flip-flops and combinational logic that determines 

sequencing of trap elements, trap instructions, and error 

traps. When any of these conditions occur, the processor 

enters a trap service sequence of microprogram states and 

the logic generates a trap vector that is used to transfer 

system control to a specific trap service program. 

3-38 



3.5 MAJOR PROCESSOR COMPONENTS 

Table 3-1 lists each of the major blocks shown on the processor 

block diagram in order to present a summary of processor 

components. The table lists the name of the component, provides 

a brief physical and functional description, and lists associated 

inputs and outputs. This table can be used as a quick reference 

or to provide a brief overview of the processor. The components 

are listed in alphabetical order. 

3-39 



Table 3-1 

KDII-A Functional Components 

Component Description 

Address Display Indicator lights 
located on the 
KYlI-D programmer's 
console. 

Arithmetic 
Logic Unit 
(ALU) 

W 
I 
~ 
o 

Four 74181 IC chips 
and one 74182 chip 
provide a 16-bit 
arithmetic logic 
unit with a look­
ahead carry. 

Dependent on mode 
sel ected, can 
perform up to 16 
logic functions 
and up to 16 
arithmetic 
functions. (See ALU 

TABLE, print 
D-BD-KDll-A-BD.) 

Input 

Contents of the bus 
address (BA) register. 

Data: AIN l6-bit wide input 
from buffered BUS 
RD bus. 

BIN - l6-bit wide 
input from B MUX. 

eIN - carry insert 
to LSB of ALU from 
eIN logic. 

Control: ALUM,ALUS(3:0) 
5-bit wide control 
that specifies ALU 
function 

Output 

Displays contents of the 
BA register on console 
ADDRESS display. 

Data: Provides 16-bit 
output to either 
the D REG or to 
the BA register 
through the BAMUX. 

Status: ~OUT 7, eOUT 15, 
ALU15 to input of 
COUT mUltiplexer. 



Component 

Arithmetic 
Logic Unit 
Control 
(ALU CONTROL) 

B constants 

Description 

One 8233 IC (dual 
2-line to I-line 
multiplexer) and 

combinational logic. 

Generates control 
signals that are 
used to specify 
the ALU function. 

Combinational logic 
network providing 
elemental values 
for incrementation 
and decrementation. 
Also provides more 
complex constants 
such as trap vectors 

and masks. 

Table 3-1 
(continued) 

Input 

ALU control signals 
from: microword bits, 
IR decode logic, and 
external control (KEll-E). 

Constants generated are 
a function of the 
following inputs: 

SBC<03 :00) from the 
control section. 

STPM <04:0i(from the 
trap sensing logic. 

Output 

Five control signals, 
ALUM~ALUS(03:00) that select 
the ALU function to be 
performed. 

Selected constants 
applied to the B MUX o 



Component 

B Multiplexer 
(B MUX) 

B Register 

Description 

Eight 74153 multi­
plexer chips. 

Provides the means 
of selecting the data 
input to the B input 
(BIN) of the ALU 

Four 74174 Ie chips 
provide a 16-bi t 
temporary storage 
register. 

Table 3-1 
(continued) 

Input Output 

Anyone of the following Provides 16-bit wide 
inputs can be selected: input to the B input 

of the ALU 
a. BC <15:°°> (B constants) 

b. B <15:00> (direct) 

c. B <15:08,15:08> 
(duplicate upper byte) 

d. B <07:00,07:00> 
(duplicate lower byte) 

e. B <07:00,15:08> 
(swap bytes) 

f. B (15:08=7,07:00/ 
(sign extend) 

Input is loaded from the 
output of the D MUX and 
is therefore dependent 
on the D MUX selection. 

Provides a data input to 
the B MUX. This input (which 
is the B register output) 
is partioned into a high 
<15:08;> and low <07:00;>byte. 



Component 

Bus Address 
Multiplexer 
(BA MUX) 

Bus Address 
Register 
(BA Register) 

Bus Register 
Data (BUS RD) 

Description 

Four 8233 multiplexer 
IC chips. The BA MUX 
loads the BA register. 

Four 74174 Ie chips 
that form a l6-bit 
temporary storage 
register. 

Four 74H04 IC chips 
that provide 15 
inverters to establish 
proper input polarity 
for the A input (AIN) 
of the ALU. 

Table 3-1 
(continued) 

Input 

Receives 16-bit wide input 
from either the register 
data bus (BUS RD) or the 
output of the ALU. 

A single control signal 
selects one of the two 
possible inputs. A high 
signal selects the ALD. 

Receives a 16-bit wide 
input from the BA MUX. 

Receives input from three 
sources by means of a 
wired-OR bus: 

a. Register data (16 bits) 

b. Processor status 
(8 bits) 

c. External options 
(16 bits) 

Output 

A 16-bit wide output that 
is loaded into the bus 
address (BA) register. 

Transmits a l6-bit address 
to the Unibus. This address 
is applied through a bus 
driver to bus address lines 
BUS BA <1 7 : 00>. The addre s s 
is also applied to the 
address display. 

Output provides l6-bit data 
to either the A input .<AIN) 
of the ALU or to the bus 
address (BA) multiplexer. 



Component 

Branch micro­
test decode 
(BUT DECODE) 

Branch micro­
test multiplexer 
(BUT MUX) 

Description 

Network of combinational 
logic circuits that 
decodes the microbranch 
field (UBF) in each 
microword and generates 
auxiliary control 
signals 

Table 3-1 
(continued) 

Input 

UBF (04:00)from the 
U WORD buffer. 

Six multiplexer IC chips: Anyone of the following: 

three l6-1ine to l-line 
type 74150 multiplexers 

two 8-line to I-line 
type 74151 multiplexers 

one dual 4-line to 1-
line type 74153 multi­
plexer 

a. IR register bits 

b. branch control signals 

c. IR decode signals 

d. machine status 

e. microword UBF 
<04:00) field for 
mUltiplexer selection. 

Output 

Control signals, especially 
to the flag control logic. 

Control signals that allow 
modification of the micro­
program address field, 
UPF (07:00), prior to 
clocking the address into 
the UPP of tre U WORD. 



Component 

Buffered 
microprogram 
pointer and 
switch register 
match (BUPP & 
SR MATCH) 

Table 3-1 
(continued) 

Description 

Nine exclusive OR gates 
connected to an 
equivalence detector. 

Compares the contents of 
the microprogram pointer 
register (UPp) with the 
switch register (SR) to 

generate a match signal. 

The match signal can be 
used as a sync scope 
signal or can be used 
to stop the clock during 
maintenance operation. 

Comparing the two 
registers permits 
stopping operation or 
monitoring operation 
at a specific ROM word. 

Input 

BUPP <08: 00> and 
SR ,,",08: 00> 

Output 

UPP match signals 



Component 

Clock Control 

Clock Pulse 
Generator 

Clock Enable 
Gates 

Table 3-1 
(continued) 

Description 

Network of combinational 
logic circuits that 
controls the 
clock and idle rlip-rlops. 

Three delay lines 
selected by combinational 
logic circui ts to require 
the clock pulses 
speciried by the current 
microword. 

Combinational logic 
network that routes 
clock outputs to the 
interface, data path, 
and microword control 
portions or the 
processor. 

Input 

CLKO, CLKI, and 
CLKOFF bits in the 
U WORD. 

Same as clock control 
with pulse control 
signal rrom clock 
control. 

Timing pulse PI, P2, 
or P3 rrom the clock 
pulse generator. 

CLKIR, CLKBA, CLKB, 
CLKD, WRH, WRL bi ts 
rrom the current 
U WORD. 

Output 

Control signa~ to the 
clock pulse generator. 

Timing puls~Pl, P2, or 
P3. 

Various clock signals. 
(CLK IR,CLK D, CLK BA, etc.) 



Component 

D Multiplexer 
(D MUX) 

D Register 

Data Display 

Description 

Eight 74153 multiplexer 
IC chips. 

Four 74174 Ie chips 
form a i6~bit 
temporary storage 
register. 

Four 7380 Ie chips that 
invert the output of 
the D MUX for display 
on the console. 

Table 3-1 
(continued) 

Input 

A 2-bit control field 
selects one of the 
following four inputs: 

a. register (BUS RD) 

b. D register 

c. D register shifted 
right 

d. Unibus data 

Output of ALU. 

16-bit output of the 
D MUX. 

Output 

The DMUX distributes 
l6-bit data word to: 

a. Instruction Register 

b. General registers 

c. B register 

d. PS register 

e. Data display 

f. Internal data bus (DMUX) 

Provides a l6-bit output 
to theD multiplexer 
(D MUX) and to the Unibus 
data lines(BUS D). 

l6-bit data to the console 
DATA indicators. 



Component 

Decoding 
(ADRS & DATA) 

Drivers 

Description 

Combinational logic 
network that decodes 
the bus address and 
generates internal 
control signals for 
addressing prbcessor 
registers. Sensing is 
provided for stack 
overflow situations. 

Three 74HQ4 driver 
Ie' chips provide 
18 buffer gates 
transmitting the 
UPP address to the 
PUPP register and 
to an expansion ROM. 

Table 3-1 
(continued) 

Input 

l8-bit input from bus 
address (BA) register 

Microprogram pointer (UPP) 
output of UPP register. 

Output 

Processor status (PS) address 

Stack limit register (SLR) 
address 

General register (REG) 
address 

Switch register (SR) address 

BOVFL STOP and BOVFL signal 
Buffered UPP (BUPP) for 
application to PUPP register 

EUPP (expansion microprogram 
pointer) for an expansion 
ROM (KEll-E, KEII-F). 



Component 

Instruction 
Register (IR) 
Decode 

Instruction 
Register 
(INSTR REG) 

Description 

Large network of 
combinational logic 
circuits that decodes 
the instruction register 
instruction and 
generates appropriate 
control signals to 
perform the specified 
function. 

Four 74175 IC chips 
form a 16-bit 
storage register 
that holds the 
instruction 

Jam Microprogram Sequential logic net­
Pointer (JAMUPP) work consisting of 

flip-flops, one-shots, 
and decoders. This 
logic permits jamming 
an address into the 
UPP to modify the 
microprogram if certain 
conditions are present. 

Table 3-1 
(continued) 

Input 

16-bit instruction from 
the instruction register. 

Output of D MUX during 
the instruction fetch 
sequence. 

Internal control signals 
dependent on existing 
condition. Conditions 
causing JAMUPP are: 

a. bus errors 

Output 

Generates control signals 
that are a function of: 
the operation code, 
instruction format, and 
specified register. 

Primary control signals 
are sent to the: ALU, 
U branch control logic, 
and the BUT MUX. 

Output applied to IR decode 
logic where it is decoded 
and used to control the 
microprogram sequence 

Set and clear signals to the 
·UPp portion of the U WORD. 
Timing signals to load newly 
selected ROM word into the 
U WORD buffer. 

b. stack overflow (red zone) 

c. auto restart (PWR UP) 

d. console switches (INIT) 



Component 

Processor Status 
(PS) Register 

Past Micro­
program Pointer 
(PUPP)- Register 

Register (REG) 

W 
I 

V1 
o 

Description 

Four 7474 IC chips 
provide eight 
storage ~lip-~lops 
to hold the 
processor status 
word. This word 
contains condition 
codes and processor 
priority. 

Two 74174 IC chips 
provide a 9-bit 
storage register 
.for keeping a 
history o~ the 
previous UPP address 

Four 3101IC chips 
provide a 16 x 16 
read/write ~acility. 
Basically, this 
represents the 16 
general-purpose 
processor registers 
(referred to as the 
scratch-pad register). 

Table 3-1 
(continued) 

Input 

Input may be either ~rom 
D MUX<07:00)or may be 
~rom condition code logic 

Loaded with the contents 
of the UPP register at 
each system clock • 

Data: 16-bit input from 
the D MUX. 

Control: 4-bit address 
input ~rom 
REG ADRS input 
16gic. 

2-bit read/write 
control 

Output 

Output may be gated onto 
Unibus on lines 
BUS D <07 :00> or may be 
gated ~or processor use 
on lines BUS RD <07:00>. 

Register contents displayed 
on KMII-A Maintenance 
Console option when used 
during maintenance 
operation. 

Provides 16-bit data word 
to BUS RD buffer for 
transfer to:one of the 
following: 

a. AIN of ALU 

b. BA multiplexer 

c. D multiplexer 



Component 

Register 
Address 
(REG ADRS) 
Input -

Description 

Conlbinational logic 
network used as an 
address multiplexer 
to select one of the 
16 general-purpose 
processor registers 
for reading or 
writing. 

Table 3-1 
(continued) 

Input Output 

There are four possible 
inputs. One of the four is 
selected by the control 
signals: 

Provides address selection 
to the register (REG). 

a. IR .(02 :00)- 3-bi t field 
from instruction register. 

b. IR<08:06)- 3-bit field 
from instruction register. 

c. RIF<'0t:OO>- 4-bit field 
from wORD 

d. BA<03:00>- 4-bit field 
from bus address register. 

Control signals are: 

SRD - selects IR(02:00> 

SRS - selects IR <08:06) 

SRI - selects RIF~03:00) 

SRBA- selects BA <03:00> 



Component 

Microbranch 
Control 
(U BRANCH 
CONTROL) 

Microword WORD 
Control ROM 

(U WORD 
CONTROL ROM) 

Description 

Large network of 
combinational logic 
circuits that provide 
control signals for 
modifying the base 
ROH address. 

A read-only memory 
storing the KDll-A 
microprogram. The 
ROM stores 256 
56-bit words. 

Fourteen ROM 
chips provide 
storage for the 
256 words. Each 
chip stores 4 bits 
of the 56-bit word. 

Table 3-1 
(continued) 

Input 

Instruction register bits 

IR decode signals 

Machine status (i.e., 
switches, Unibus, 
control flip-rlops, 
etc. ) • 

Contents of Upp re~ister 
selects the next 
control word to be 
retrieved from the ROM. 

Output 

Data signals to the 
BUT MUX. These signals 
are used to modify the 
main control ROM address 
as a function of BUT MUX 
selection. 

56-bit microword divided 
into address bits 
(BUS U <08:00) ) and 
control bits 
(BUS U <56:09> ). 



W 
I 

U'1 
W 

Component 

Microword WORD 
Register 
(U WORD REG) 

Microprogram 
Pointer (UPP) 
Register 

Table 3-1 
(continued) 

Description 

A 56-bit storage register 
consisting of 74H74 and 
74174 IC chips. This 
register is used to buffer 
the output of the U WORD 
CONTROL ROM which provides 
the signals defining the 
operation of the KDll-A 
data path and control. 

Five 74H74 IC chips form 
an 8-bit address register 

The UPP register points 
to the address of the 
next microword to be 
read. 

Input 

Output of the NOT/OR 
gate that receives 
inputs from the ROM, 
the BUT MUX, and the 
EUBC for U(08:00) output 
of the ROM directly for 

U(59:09). 

Output 

Upp <08:00>are the nine 
low-order bits of the 
U word which are used 
the select the next 
U word. 

U WORD for U956:09) have a 
variety of mnemonics related 
to their control functions. 

Upp <08:00> selects 
one of 256 control words 
stored in the ROM. 

Address of ROM location 
to be read during 
current machine cycle. 
The address loaded is 
a function of: It is the address portion of 

the U WORD buffer noted above. 
a. UPF~7 :OO~ of ROM word 

presently being addressed 
by the UPP register. 

b. BUBC control 
(basic) 

c. EBUBC control 
(expansion) 





4 MICROPROGRAM FLOW DIAGRAMS 

4.1 SCOPE 

This chapter describes and explains the microprogram Flow 

Diagrams (print D-FD-KDll-A-FD) that are included in the 

KDll-A Processor print set. These flow diagrams illustrate 

the operation of the processor on a machine state level; 

each operation shown on the flow chart corresponds to one 

processor time cycle which, in turn, corresponds to one 

word of the microprogram ROM. 

This chapter is divided into two basic sections. The first 

section describes the format of the Flow Diagrams and 

explains the symbology and layout. The second section 

describes use of the flow charts. 

4-1 



4. 2 HOW TO READ FLOW DIAGRAMS 

Virtually all of the information needed to follow and understand 

the flow diagram is located on the Flow Diagram itself. However; 

it is necessary to understand the format of the diagram before 

this information can be easily used. The diagram contains two 

basic types of information: the operations performed by each 

machine state, and the flow of control from each machine state 

to all of the possible succeeding states. 

As shown in Figure 4-1, there are only three basic symbols 

used on the Flow Diagrams, the most important being the box 

that represents a specific machine state. This box contains 

information about the operations that take place during the 

machine time cycle for the microprogram word represented by 

the box. In certain cases, it also contains a test operation 

to determine the path of the control information. The oval 

represents an entry point in the flow path, the diamond an 

exit point. Figure 4-2 is a representative example taken from 

one of the flow diagrams. In this example, the flow is shown 

for logic activated when the console START flip-flop is sensed. 

The figure is annotated to indicate what type of 'information is 

found on the flows. Each of these items is discussed separately 

in the following paragraphs. 

4-2 



(--) 

Figure 4-1 

MI\(. \-\\N~ STATE. 

(11\(."O"R(H;~I\~ 'Wo~t)) 

Basic Flow Diagram Symbols 

4-3 



tl) 
dttt ,. 

STAJJ\ 

NO- 0' 

1'\ ", NO- O~ 

/(),t~s.~ Of' Nt."I·r 
t4. \ c..~,e. 'NO t\. I t\ A $ [. 
1't~\)*'t$'S \!~"'i;\ \ \(\ \) 

e'1 t1u1 I 6, 

Figure 4-2 

5 TA~T (l) k"""'l--- IS Ni I''f 
PO\t.)i 

'6\)', , .. / ~ ~Ml.loItO),,)\c.. ,..~b \),,, c.o~t 
___ ---' .ttl a~ a~M~C.\o\ tJ\\t.1l~,.~()G~~tJ. 'TEST 

~ IAS~ ~\C.~o~'\)"'t~S ,.\o\~"t c.~~ ,~ 
,,\..,.t.1\t~ , ... "~i \!t .. ~w(.t\ 
~\t.~~'t~,. (bloaT \11) 

(\0) ~S\ot~£,. Nu~e Fk Of 

¢ ''''I fLo~ C~~"l \~\) J...T \ 0 t-l 

~ 
"'bRiSS of" NM M\t~C~~~ ~ 
~Mt A •• ~'SS A \,1 ,." '''1 SUI \d 

Flow Diagram Example 

4-4 



4.2.1 Entry Point 

As shown on Figure 4-2, the entry point is 1abled START (1). 

This indicates that the section of the flow beginning at this 

point is activated when the console START flip-flop is sensed 

(1). The numbersin parenthesis above the entry point indicate 

pages of the flow containing previous flow information. Thus, 

(11) indicates print 11 which is the console loop flow diagram. 

Following this flow through to the bottom shows that START(l) 

on print 12 is one of the possible exi.t points for the console 

loop flow. The other number (12) above START (1) indicates 

that this flow can also be entered from a point on print 12.. 

In this case, START (1) is an exit point for the LOAD ADRS 

switch function provided BEGIN is true. 

4-5 



1.~. 2.2 Microprogram Word 

Each box on the flow diagram indica.tes one specific microprogram 

word (machine sta.te). As shown on Figure 4-2, this box contains 

a variety of information. 

Above the box, on the left-hand side, is a mnemonic for the 

microword. In this case it is STAOO, indicating it is the 

first (00) microword in the STA.RT (STA) sequence. Note that 

the numbers used with the mnemonic are decimal nl00bers and 

begin with 00. On the right-hand side of the box is an octal 

number indicatin~ tr_8 address of this microword in the ROM. 

Thus, whenever ROM address 032 is used, it is always the 

STA.OO microword. 

Directly below the microword mnemonic is a line containing a 

general description of the function performed by the microword. 

In this case, it is: LOAD NEW R(PC) which indicates that the 

microword's function is to load a new value into the program 

c' u ;t~.r r0r;isl:er. This ::;eneral deccription is provided in addition 

to ~hE more d0taile~ descrip~ion of the rnicroword operation, 

"hich is contained in the oain body of the 'block. 

4-6 



The main description of the microword operation is in a 

particular form which is explained more fully in paragraph 4.2.5. 

In the case shown on Figure 4-2, it states: PI: R(PC)'--D. 

This means that D register is being placed (+-) into a register R, 

called program counter, R(PC), at clock time PI in a CLI. 

The upper right-hand section of the block indicates what 

information is shown in the console DATA display during this 

microstate. In this case, the D register is displayed. Thus, 

when the maintenance console is being used and the program is 

being single clocked, the console DATA display allows the value 

being loaded into R(PC) to be observed. Operation at speed 

prevents this observation. 

The bottom portion of the box contains the microprogram branch 

test information which determines the sequence of microwords 

used to perform a specific function. In this case, the branch 

microprogram test (BUT) is BUT(HALT). The other designation 

(BUT 10) indicates the octal microbranch field (UBF) code. 

It is important to note that a BUT in any microword affects 

not the next word, but the word after the next word. 

4-7 



The purpose of the BUT (HALT) branch test is to determine if 

the HALT/ENABLE switch on the console is set to HALT. This 

condition is tested by microword 032 (STAOO). The branch 

does not occur until after the next word which is microword 

076 (STAOl). If the HALT/ENABLE switch is set to HALT, then 

HALT is true and the flow exits at SERVICE C exit point. 

If the HALT/ENABLE switch is set to ENABLE, then -HALT SW 

is true, and the flow exits at the FETCH C exit point. 

A more detailed discussion of BUT instructions is given 

in paragraph 4.2.4 

4-8 



4.2.3 Exit Points 

At the bottom of each flow there is a diamond or diamonds 

containing the name of the next entry point for the flow. 

The number in parenthesis beneath the diamond indicates the 

print of the Flow Diagrams containing the entry point. For 

example, on Figure 4-2, one of the possible exit points is 

FETCH C. The parenthesis (1) indicates print 1 of the flow 

diagrams. Turning to print 1, it can be seen that FETCH C 

is one of the entry points. The other exit point on the 

figure is SERVICE C which is on print 10. On print la, 

SERVICE C is one of the possible entry points. 

The exit points also have a number located below the flow page 

reference; this is the octal address of the next ROM (entry) 

word. When the machine is microword STAal with the microaddress 

076 in the PUPP display of the KMll-A maintenance console, the 

UPP display indicates either 016 or 017 depending upon the success 

of the branch, Microtest for BUT(HALT). Note the ORing of the low 

order address bit over the base address (016 noted next to the 

BUT 10 entry of microword STAOO) if the branch was successful; 

the next address would be 017. 

4-9 



Branch Microtest (BUT) Instructions 

Most machine states (or microprogrammed words) specify a 

unique succeeding state by means of a microprogram address 

in the microprogram word. However, the sequence of machine 

st~tcs can be altered. This allows 

a particular state, or sequence of states, to be shared by 

various larger sequences. For example, all instruction fetching 

is performed by one sequence of machine states. Once the 

instruction has been fetched, then a specific sequence is 

followed according to the requirements of the instruction 

that has been fetched. 

The BUT instructions may be divided into two functional groups: 

nEarro,;~ or wide branch. The first type of BUT is the type 

previously explained in paragraph 4.2.2. In this case, the 

condition of the ENABLE/HALT switch is sensed and the branch 

is effected depending on whether HALT SW is true or false. 

An example of a wide branch is shown on print 1 of the flo~v 

diagra~s. In thi_E Case, BUT 37 (labled BTJT(IHSTE 1)) ic a 

-F • ,... • • 1 • , t' ~un~t1on O~ Lnstruct10n reg~ster encoLLng ~n~ ~e prozra~ cay 

brench to anyone of ?5 different locations. 

4-10 



The name of the BUT indicates the possible branches that 

can be taken as a result of the BUT. For example, refer to 

page 6 of the flow diagrams at the first machine state 

after the TRAP A entry. The BUT in this machine state is 

BUT (MM FAULT) indicating it is testing for faults in the 

KTll-D Memory Management option. The line after the next 

machine state follows one of two paths: MM FAULT or -MM FAULT. 

The BUT is further defined in Note 2 on the diagram. 

Anoth~r example of the narro'vv :aUT occurrs after the RTS 

entry point on the same flow diagram. This test is called 

BUT (SERVICE C + FETCH C). Looking at the flow after the 

next machine state, it can-be seen that the program can 

branch to either the SERVICE C or FETCH C exit point. 

Whenever a BUT instruction lists two or more possible 

branches as OR conditions, the priority is always from left 

to right. For example, in the expression BUT (SERVICE B + 

FETCH OVLAP + FETCH B), the service request always takes 

precedence over both the fetch overlap and normal fetch 

cycle entry. The expression also indicates that fetch overlap 

takes precedence over a normal fetch cycle. 

4-11 



Notes on BUT instructions are included on each page of the 

flow diagrams. The notes pertain to the BUTs on that specific 

page and are used to clarify points not always obvious from 

the flows themselves. For example, there is a BUT on page 8 

of the flow diagrams that is called BUT (NOWR + BYTEWR + WORDWR). 

By the conventions used, it is known that after the next machine 

state there is a branch to one of three places and that these 

three paths are labled NOv/R, WORDvIR, and BYTEWR. However, the 

note on the flow diagram provides additional information that 

states that these branches provide for difrerent register write 

operations as a function of the instruction register (IR) 

decoding. 

In a number of instances, the machine state general description 

states that it is a NO-OP FOR BUT. This means that the previous 

entry requires an immediate branch before entering any other 

state but, because a branch can only occur after the next machine 

state, it is necessary to add a non-operational state after the 

BUT instruction. This is the purpose of a NO-OP FOR BUT. 

4-12 



Some of the notes on the flow diagrams refer to a "working BUT". 

A working BUT is a BUT that performs a specific task and mayor 

may not cause the flow to branch. As an example of a working 

BUT, refer to the second machine state in the RESET flow shown 

on page 6 of the flow diagrams. The BUT in this machine state 

is called: BUT (CBR2); INIT; DELAY. This BUT senses the HALT 

switch for~a console bus request and branches as a function 

of HALT SW or -HALT switch. In addition to the branching, it 

also activates the INIT and RESTART delay; thereby making it 

a working BUT. Another working BUT is shown on the same page 

as the last machine state under the TRAP D sequence. This BUT 

is called BUT (REG DEP). This particular BUT is used in the 

sequentially clearing of various TRAP request fla8s but docs not 

cause any branching. The branching shown below the machine 

state is caused by the previous BUT which is BUT (CBRl). 

4-13 



4.2.5 Operation Symbols 

Previous paragraphs have discussed the basic symbology and 

format of the KDII-A flow diagrams. Lnother set of symbols 

to understand is the ISP notation which provides the 

detailed description of each machine state. Although ISP is 

covered in the PDP-ll/4o Processor Handbook, this paragraph 

is devoted to explaining some of the general concepts. 

In reading the ISP notations, a few general rules are helpful. 

The first item appearing in each statement a1~J8ys h3S a specific 

clock pulse which indicates at which clock time the machine 

state operation occurs. The clock pulse is always PI, P2, or P3. 

A statement describing the machine state operation follows the 

clock pulse. These statements are always read from right to left. 

For example: 

P2: D+--RO 

In the above statement, D indicates the processor D register 

and RO indicates one of the eight general registers. The above 

statement is read: at clock time P2, the contents of register 

RO is loaded into the D regioter or D gets ROO. 

4-14 



A variation of the above is used when a register address 

appears in parenthesis after the designation R (register). 

For example: 

Pl: B4--R(SF) 

The above statement is read: at clock time PI, the contents 

of the register, addressed by the IR source field, is loaded 

into the B register. This type of notation is used because a 

number of registers or locations may be used to store the 

source field. An example of this notation is shown on print 2 

of the flow diagrams. This print carries a note which states 

that the source register is selected by the IR (instruction 

register). 

4-15 



A more complex example of machine state operation statements 

is: 

P2: D+-fDADlR(SF) AND B} DAD 14 

Before reading this expression, it is necessary to know that 

the symbol f indicates "as a function of", that the term to 

the right of the semicolon is a separate statement, and that 

the items in brac~ets are read first. Thus, beginning at the 

semicolon and reading right to left, the statement is read: 

the contents of the register containing the source field and 

the contents of the B register are loaded into the D register 

as a function of DAD (discrete alteration of data); the DAD 

14 function is used. The user can look up DAD 14 in the U WORD 

TABLES in print D-BD-KD11-A-BD to find the function of 

DAD 14. The table indicates that DAD 14 is used ror 

ALU CNTL fIR; in other words, the instruction register 

determines what function the ALU is to perform. 

4-16 



There are times that two or more completely separate actions 

occur at the same time pulse. The different actions are. either 

separated by a semicolon, or by placing them on different lines, 

or both. For example: 

P2: BA+- R(DF); DATI 
D 4-- R(DF) PLUS 2 

This indicates that three separate actions take place at clock 

time P2. First, the REGISTER defined by destination field of 

the IR is loaded into the bus address register. Secondly, a 

DATI bus transfer is begun. And finally, the REGISTER defined 

by destination field plus 2 is loaded into the D register. 

Note that the usual use of parenthesis is to further define the 

preceeding symbol. R(PC) means that the REGISTER used as the 

Program Counter in the Scratch Pad Registers is being referenced. 

This is true for all situations except R(DF), R(SF), and R(BA) 

where specific address bits in the IR (for DF and SF) or the BA 

are used to select a Scratch Pad Register. A note to this effect 

occurs on print 1 of the Flow Diagram. 

4-17 



The above example would be exactly the same ir all three 

actions had simply been separated by semicolons: 

P2: BA+--R(DF); DATI; D+-R(DF) PLUS 2 

or if each separate action had been placed on a separate 

line: 

P2: BA+-R{DF) 
DATI 
D4---R(DF) PLUS 2 

4-18 



The final item to be mentioned concerning the descriptions 

in the machine state boxes concerns statements that have an 

equal sign, such as SBC=7, DAD=IO, BUS CODE=06, etc. These 

are explanatory statements that list the codes internally 

generated during performance of the operation specified 

in the box. The meaning of these codes can be determined by 

referring to the page of tables in the block diagram prints, 

D-BD-KDll-A-BD. F9r example: 

P3: PS(C)~DOO; SFS=l 

The above expression indicates that the value on bus data 

line DOO is to be loaded into the bit C of the 

processor status (PS) word during clock pulse time P3. The 

explanatory expression after the semicolon (SPS=I) indicates 

that a specific U WORD code is used to perform 

this function. By referring to the table, it can be seen that 

SPS code I is used to clock bit C of the PS word. 

4-19 



4.3 FLOW DIAGRAM EXAMPLES 

Once the format of the flow diagrams is understood, it is 

possible to rollow the flows through any instruction sequence. 

Examples of following an operation through the rlow diagrams 

are given in Tables 4-1 and 4-2. 

In the example in Table 4-1, the following instruction (not micro) 

program 

R(SF)=(Rl) 

R(DF)=(R2) 

is present: 
Program Address 

5000 

= 300(Rl) 

= 400(R2) 

Contents 
ADD (1), (2) 

5 

5 

In effect, the operation adds two numbers together. The 

instruction ADD (1),(2), which is 061112 in octal form, 

is loaded at location 5000. The first number to be added 

(Rl) is the number 5 (octal) stored at address 300. The 

second number (octal 5) is stored at address 400. 

Based on the above conditions, Table 4-1 lists all microwords 

in the rlow when perrorming this operation. The table also 

includes a description or what is happening during each 

machine state. If the table is followed carerully while 

rererring to the rlow diagrams, the operations should be 

apparent. 

Table 4-2 describes a subtract operation and is identical to 

Table 4-1 in rormat except that the description column has been 

eliminated to allow the reader to determine if he can follow 

the table and the flows by himselr. 

4-20 



Two tables are included in this chapter as an aid in finding 

specific microwords on the flow diagrams. Table 4-3 is a 

numerical listing of all microwords in the ROM and includes 

the mnemonic, a general statement of the function, and the 

page of the flow diagrams on which it is found. 

Table 4-4 lists all microwords in al:phabetical order according 

to the microword mnemonic. The only other entry in this table 

is the ROM address. Once the ROM address is found on Table 4-4, 
then Table 4-3 can be used to find the microword on the flows. 

4-20A 



ROM Next Flow 

Microword Address Address Data 
Mnemonic (PUPP) (UPp) DisEla~ 

FET02 016 001 5000 

FET03 001 004 061112 

FET04 004 005 5000 

FET05 005 141 5002 

Table 4-1 

Diagram Example 1 

0}2eration 

PI: BA+-R( PC) ; DATI; 
CLKOFF; SPS==O 

PI: IR, R(IR), 
B+-UNIBUS DATA 

P2: D,BA .... R(PC) 
PLUS 2; DATI IF 
OVLAP FETCH; 
BUT INSTR 1 

PI: R( PC)+--D 

Description 

The contents of the PC is loaded into 
the bus address register; a data 
transfer is performed to bring the 
instruction into the processor. 
The address of the instruction 
(ADD (1),(2» is displayed. 

The instruction (Unibus data) is 
loaded into the B register, a 
scratch pad register, and the 
instruction register. The ~nibus data 
for the instruction is displayed. 

The value of PC plus 2 is loaded 
into both the bus address and D 
registers. No DATI is_performed for 
OVerLAP FETCH. Branch test 
BUT (INSTR 1) is performed which 
is the first wide branch for all 
instructions. Value of current 
PC is displayed. 

Program counter is updated by 
moving data in the D register 
(which contains next PC+2) 
into the PC. The new PC is 
displayed. Note that the display oc 
D in a given microword is a display 
of what is in D at the beginning of 
the microword - not what will be 
clocked into it this microword. 



Table 4-1 
(continued) 

ROM Next 
Microword Address Address Data 
Mnemonic (PUpp) @K) Display Operation Description 

SReaa 141 247 300 PI: BA+-R(SF) ; The register specified~by the source 
DATI; DAD=Ol; field (address of the source 
MM=14 operand) is loaded into the bus 

address register. The source addresS 
is displayed. 

NOTE 

It would be normal to expect 
the location of this microword 
to be 100 because that was the 
value of the p~evious UPP. 
However, the UPP was modified 
by BUT (INSTR 1) as a function 
of the instruction, resulting 
in ROM address 141 for this 
microword. 

SRC14 247 250 061112 PI: NO-OP; CLKOFF This is a no operation word to 
BUT (OB+INSTR 3) allow for a branch microtest 

(BUT) • 

SRCI5 250 161 5 PI: B, R(SOURCE)..- Tre source operand (the number 5) 
UNIBUS DATA is taken from external memory 

and stored in a temporary register 
R ( SOURCE). The value of the 

operand is displayed. 



Table 4-1 
(continued) 

ROM Next 
Microword Address Address Data 
Mnemonic {PUPP2 (UPP) DisElaI °Eeration Description 

DSTOO 161 266 400 PI: BA+-R(DF) ; The register specified~y the 
DATIP; DAD=07; destination field (address of 
MM=Ol the destination operand) is 

loaded into the bus address 
register. The destination 
address is displayed. Note 
that this microword address 
was modified by BUT (OB+INSTR 3). 
Referring to the flow diagram, 
the output of SRC15 followed 
the path marked -OB because an 
odd byte was not being processed. 

DST14 266 267 061112 PI: NO-OP; CLKOFF This is a no operation word to 
BUT (OB+INSTR 4) allow for a BUT. 

DST15 267 225 5 PI: B, R(DEST)+- The destination operand (the number 
UNIBUS DATA 5) is taken from external memory 

and stored in a temporary registe~ 
R(DEST), and in the B register. 
The value of the operand is 
displayed. 



Microword 
Mnemonic 

DOP03 

DOP12 

DOP20 

FET02 

ROM Next 
Address Address 
(PUPP). '(UPD 

225 367 

367 375 

375 016 

016 001 

Data 

Table 4-1 
(continued) 

Display Operation 

5 

12 

12 

5002 

P2: D4-f mAD R ( SOURCE) 
AND B} (DATOB); 
DAD=l; MM=Ol 

PI: ALTER COND CODES 
CLKOFF; DAD=12; 
SPS=3 
BUT (SERVICE C + 
FETCH C) 

PI: NO-OP 

PI: BA~R(PC); DATI; 
CLKOFF; SPS=O 

Descripti on 

The source operand and the B 
register (storing the 
destination operand) are loaded 
into the D register as a function 
of DAD. In other words, the 
source and destination operands 
are added and moved to the D 
register. The source operand is 
displayed. 

The condition codes are altered 
and the result of the addition 
of the source and destination 
operands is 'displayed. (Note 
that adding octal 5 to octal 5 
results in octal 12.) 

This is a no operation required 
by the BUT in the previous word. 
The BUT determines whether the 
processor is to enter the 
service or fetch - flows. 

Fetch of next instruction. 



Table 4-2 

Flow Diagram Example 2 

ROM Next 
~croword Address Address Data 
Mnemonic (PUPP) _ (UP~ Display Opera.tion 

CONDITIONS: 

Address Contents 
5000: SUB #20, @#6000 
5002: 20 

Address Contents 

6000: 30 

5004: 6000 
5006: NEXT INSTRUCTION 

FET02 

FET03 

FET04 

FET05 

SRCOI 

IRC03 

SRC15 

DST04 

DST12 

DST13 

DST14 

DST15 

DOP05 

DOp06 

DOP12 

IOP20 

016 

001 

004 

005 

142 

250 

163 

264 

265 

266 

267 

227 

365 

367 

375 

001 5000 

004 162737 

005 5000 

142 

240 

250 

163 

264 

5002 

5002 

5004 

20 

5004 

265 6000 

266 6000 

277 162737 

227 30 

365 20 

367 5006 

375 10 

016 10 

PI: BA4-R(PC); DATI; CLKOFF; SPS=O 

PI: IR,R(IR},B.--UNIBUS DATA 

P2: D. BA+- R ( PC) PLUS 2; 
NO OVLAP FETCH 
BUT (INSTR 1) 

PI: R(PC}+-D 

P2: BA+--R(SF); DATI; DAD=Ol; SBC=03 
D4--R(SF} PLUS 2; MM=14 

PI: R(SF)+--D; CLKOFF 
BUT (OB+INSTR 3) 

PI: B,R(SOURCE)4--UNIBUS DATA 

P2: BA+-R(DF) DATI 
D+-R(DF) PLUS 2 

P3: R(DF).-D; CLKOFF 

(NOTE: new D 
content. does 
not OCCll+ until 
end of m1croword) 

PI: B,R(DEST)~UNIBUS DATA 

PI: BA4-R(DEST} DATIP; DAD=Ol; MM=OI 

PI: NO-OP; CLKOFF; BUT (OB+INSTR 4) 
PI: B,R(DEST)""'-UNIBUS DATA 

PI: B4--R(SOURCE) 

P2: D4-R(DEST) MINUS B; DAD=lO 
DATO; MM=OI 

PI: ALTER COND CODES; CLKOFF; DAD=12 
SPS=3; BUT(SERVICE C + FETCH C) 

PI: NO-OP - If no service request, 
go to FET02 

4-25 



Ta.b1e 4-3 
Microwords (Numerica.1 Order) 

ROM Microword 
Addressl Mnemonic General Function 

Fetch next instruction 
Store instruction 
Clock for PTR 
Sign extend byte data 
Hodify reqister (PC) 
Restore modified register (PC) 
Clock for PTR 
Get new status 
Form, store trap vector 
Display register (PC) 
Await bus busy 
Fetch next instruction 
Wait for interrupt 
No-op for BUT 
Fetch next instruction 
Clock for PTR 
Clock again for PTR 
No-op for BUT 
Store vector, flags 
No-op for BUT 
Display register 
Reset delay and INIT 
Test for switch 
Contact bounce count 
No-op for console entry 
Get data, time-out flag 
Load new register (PC) 
Display zero data 
Load console address 
Load console address 
No-op after a BUT 

Print 

1 
1 

10 
4 
1 
1 

10 
6 
6 

11 
10 

1 
10 
10 

1 
10 
10 
10 
10 
10 
11 

6 
11 
11 
11 
12 
12 
12 
12 
12 
12 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 
025 
026 
027 
030 
031 
032 
033 
034 
035 
036 
037 
040 
041 
042 
043 
044 
045 
046 
047 
050 
051 
052 
053 
054 
055 
056 
057 

FETOI 
FET03 
SEROI 
MOV2l 
FET04 
FET05 
SER04 
TRP08 
TRP03 
CONOI 
SER06 
FETOO 
SER09 
SER05 
FET02 
SER02 
SER07 
SER08 
SERIO 
SERll 
CON03 
RSTOI 
CON04 
CON07 
CON05 
EXM06 
STAOO 
LAD 0 3 
DEPOO 
EXMOO 
CNTOO 
LAD 0 0 
RST02 
CON02 
RST04 
RST03 
CON08 
CONIO 
CON06 
CON09 
CONll 
LADOI 
LAD02 
EXMOI 
EXM02 
EXM05 
EXM04 
EXM03 

Get address data from switch 
No-op for BUT 

registe:q2 

Await bus busy 
No-op for fetch entry 
No-op for console entry 
Test count 
Test which switch 
No-op for BUT 
Increment count 
Load last console address 
Store data as console address 
Display console address 
Console flags 
Conditional plus I 
Read register of bus address 
Console flag 
Conditional plus I 

6 
11 

6 
6 

11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 

4-26 



ROM 
Address 

060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
072 
073 
074 
075 
076 
077 
100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 
120 
121 
122 
123 
124 
125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 

Microword 
Mnemonic 
EXH07 
EXH08 
DEPOl 
DEP()2 
DEP03 
DEP04 
DEP05 
DEP06 
DEP07 
DEP08 
DEP09 
DEPlO 
DOP2l 
SSL11 
STAOl 
TRP15 
FET07 
RTIOO 
DOP02 
DOPOO 
SSL02 
SSLOO 
RSROO 
RSR02 
NBROO 
BRAOO 
MRKOO 
TRPl2 
SERO,) 
TRP09 
CCCO() 
sceno 
D01'15 
DOP13 
conoo 
SER03 
RTSOO 
HOV22 
TRP06 
RSTOO 
SOBOO 

SXTOO 

SWBOO 
St1JBO 1 
FET06 
SRC16 

General Function 
Store data 
Displa', data 
Console flags 
Conditional plus 1 
Conditional plus 1 
Get fleposit data from switch register 
Store deposit data 
Load console address 
Load deposit data 
No-op for BUT 
Deposit data 
Deposit data 
Alter codes 
Alter codes 
lTo-op for BUT 
Enable ne'Vl status 
No-op after a BUT 
Get new register (PC), modify 
Put destination into B 
Put source into B 
Operate upon destination 
Put destination into B 
Operate upon destination 
Put destination into n 
No-op after a BUT 
Add half of offset 
Double offset 
Deske~1 T~1ord for DATO 
(;lock for PTR 
Store new status 
Hask register (IR) for PS mask 
~1ask ~egister (IR) for PS mask 
Put destination into B 
Put source into B 
nisp1av register (PC) 
r.1ock for PTR 
Get new reqister (PC) 
Alter condition codes 
Form, store trap vector 
Get reset data display 
Decrement count 

Extend sign 

Put destination into B 
Swap bytes 
Modify, store register (PC) 
Duplicate upper byte 

Print 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

8 
9 

12 
6 
1 
6 
7 
7 
7 
7 
9 
9 
7 
7 
5 
6 

10 
6 
7 
7 
8 
8 

10 
10 

6 
4 
6 
6 
7 

8 

7 
7 
1 
2 

4-27 



ROL Microword 
Address Mnemonic General Function Print 

lL10 TRP16 Load nevl status 6 
141 SRCOO Get source data 2 
142 SRCOI r.et source data, modify 2 
143 SRC04 Get address, modify, restore 2 
144 SRC02 net source data, modify 2 
145 SRC05 Get address, modify, restore 2 
146 SRC06 Get index data, modify 2 
147 SnC09 Get index data, modify 2 
150 TRP07 Form, store trap vector 6 
151 Jrl{POO Get destination address 5 
152 JHP01 Post modification 5 
153 JHP05 Get address, modify, restore 5 
154 JNP03 Get destination address, modify 5 
155 I.THP06 Get address, modify, restore 5 
156 JMP08 Overlap, modify register (PC) 5 
157 JHP07 Overlap, modify reqister (PC) 5 
160 HOV19 Get destination data 4 
161 DSTOO Get destination data 3 
162 DBTOI Get destination data, P10dify ") 

.J 

163 DST04 Get address, morl.ify, restore ") 
.) 

164 DST02 Get destination data, modify ") 
•• J 

165 DST05 Get address, modify, restore 3 
166 DST07 Overlap, modify reqlster (PC) 3 
167 DST06 Get index data, modify ") 

... J 

170 ~IfOV18 Get destination data 4 
171 HOVOO Load. destination address 4 
172 MOVOI Load destination address, modif" tl 
173 HOV() 3 (;et address, modify, restore 4 
174 MOV02 Load destination address, moo.ifv 4 
175 r10V() 4 Get address, modify, restore 4 
176 r·10V06 Overlap, modify register (PC) 4 
177 HOV05 Get index data, modify 4 
200 MOVl6 Store data 4 
201 HOVl7 Store data 4 
202 MOVl4 Load hyte data 4 
203 r10Vl3 Load byte data 4 
204 HOV20 Store destination data 4 
205 ?JtOVI5 Store justified data 4 
206 HOV08 Store index data 4 
207 ~·10VII Store address data 4 
210 HOVl2 Load destination address 4 
211 88LI0 Alter code P8 (C) 9 
212 HOV09 Store indexed destination address 4 
213 MOVIO Get indexed address 4 
214 TRP05 Store r~M vector 6 
215 TRP02 Get nelll status 6 
216 TRP04 Get HM vector (250) 6 
217 FET08 New instruction from 1111'1 1 

4-28 



ROM Microword 
Address 

220 
221 
222 
223 
224 
225 
226 
227 
230 
231 
232 
233 
234 
235 
236 
237 
240 
241 
242 
243 
244 
245 
246 
247 
250 
251 
252 
253 
254 
255 
256 
257 
260 
261 
262 
263 
264 
265 
266 
267 
270 
271 
272 
273 
274 
275 
276 
277 

Mnemonic 

SSL06 
SSL04 
SSL08 
SSL07 
DOP07 
DOP03 
DOP04 
DOPOS 
DOP09 
DOPI0 
RSR06 
RSR08 
SXTOI 
JMP02 
SSL05 
DST16 
SRC03 
SRC07 
SRcoa 
SRCI0 
SRCll 
SRC12 
SRCI3 
SRCI4 
SRC15 
SRC17 
FET09 
SSL12 
DOP22 
CON12 

HOV07 
DST03 
DST09 
DSTIO 
DSTll 
DST12 
DST13 
DST14 
DST15 
DST17 
RSROI 
RSR03 
RSR04 
RSR05 
RSR07 
RSR09 
RSRIO 

General Function 

Operate upon destination, store 
Negate destination, store 
Operate upon destination 
Negate destination 
Operate upon B, source, store 
Operate upon B, source, store 
Put source into B 
Put source into B 
Operate upon B, source 
Operate upon B, source 
Operate upon destination 
Operate upon destination 
Extend sign, store 
Get destination address 
Swap bytes, store 
Duplicate upper byte 
Restore modified base 
Store index data 
Get indexed source data 
Store index data 
Get indexed address data 
Store address data 
Get source data 
No-op for BUT 
Store source data 
Store justified data 
Store new instruction 
Alter code PS(C) 
Alter code PS(C) 
Display status 

Restore base address 
Restore modified base 
Store index data 
Get indexed destination data 
Get indexed address 
Store address data 
Get destination data 
No-op for BUT 
Store destination data 
Store justified data 
Store destination 
Operate upon destination 
Duplicate byte, store 
Alter codes 
Store destination 
Duplicate byte, store 
Alter codes, finish store 

Print 

9 
9 
9 
9 
8 
8 
8 
8 
8 
8 
9 
9 
8 
5 
9 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
9 
8 

11 

4-29 

4 
3 
3 
3 
3 
3 
3 
3 
3 
3 
9 
9 
9 
9 
9 
9 
9 



ROM Microword 
Address 

300 
301 
302 
303 
304 
305 
306 
307 
310 
311 
312 
313 
314 
315 
316 
317 
320 
321 
322 
323 
324 
325 
326 
327 
330 
331 
332 
333 
334 
335 
336 
337 
340 
341 
342 
343 
344 
345 
346 
347 
350 
351 
352 
353 
354 
355 
356 
357 

Mnemonic 

JMP04 
JHP09 
JMPIO 
\.THPll 
Jr,w 14 
JHP15 
JMP12 
JSROO 
JSROI 
JSR02 
JSR03 
JHP13 

eON11 

TR'POl 
PT101 
HTI0? 
Rr:'103 
RTSf')l 
RTSO::>' 
R'.1:'S() 3 
TRPIO 
TRPII 
TRPl.3 
TRP14 
TRP?O 
TR'J21 
TRPl8 
TRPl9 
TRPOO 
TRP17 
BRZ\Ol 
BRA02 
SOBOl 
SOB02 
SOB03 
SOB05 
SOB04 
SOB06 
CCCOI 
eee02 
seeOI 
r-~RKOI 
~,1.RK02 

ruu\03 
!1RK04 
r·1RK05 

General Function 

Store destination address 
Store index data 
Get indexed address 
Store destination address 
Store index data 
Get destination address 
Get destination address 
Modify stack pointer 
Stack linkage pointer 
Get new linkage 
Store new linkage 
Store as new register (PC) 

Tes t for svvi tch 

Form, store trap vector 
store ne";7 re<]ister (PC) 
Get ne'\v s ta tus, modi fy 
Store neH status 
Store'ne~'T register (PC) 
Get top of stack, modify 
Store top of stack 
nodify stack pointer 
Store old status on stack 
~1odify stack pointer 
Store old PC on stack 
Get new PC 
Store nev7 :DC 
Get ne,,-? status 
Store ne\', status 
Jam register SP to 4 
Form, store power up vector 
Hodify pe 
Rest of offset, modify 
Test count 
Mask IR register for offset 
Subtract half of offset 
No-op for BUT 
Subtract half of offset 
No-op for BUT 
Complement PS mask bits 
AND PS mask to PS 
OR PS mask to PS 
Modify PC with offset 
Form new stack pointer 
Stack points to old R5 
Load R5 ~7i th old R5 
Load PC with old PC 

Prine 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

11 

6 
6 
6 
6 
6 
() 

~ 
() 

6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
5 
5 
5 
5 
5 

4-30 



ROM Microword 
Address Mnemonic General Function Print 

360 DOP19 Alter codes, t',0rd store 8 
361 DOP18 Alter codes, byte store 8 
362 DOP17 Alter codes, no store 8 
363 DOPOl Subtract D from destination 7 
364 DOP03 Operate upon B, source 7 
365 DOPOG Subtract B from destination, store 8 
36fJ nOPll Duplicate lOvler byte, store 8 
367 DOP12 Alter codes, finish store 8 
370 DOP14 Subtract B from destination 8 
371 DOP16 O!"lerate upon B, source 8 
372 SSLOl negate destination 7 
373 SSL03 No-op for BUT 7 
374 SSL09 Duplicate byte, store 9 
375 DOP20 No-on for BUT 8 
376 RSRll No-op for BUT 9 
377 

4-31 



MicroHorc.s 
Table 4-L~ 

(Alphabetical Order) 

Mnemonic Address MT'!emonic Address Mnemonic Address Mnemonic Address 
DOPOO 103 ExMoo 035 tAboo 037 BRAOO 111 DOP01 364 EXH01 053 LAD01 051 BRA01 340 DOP02 102 EXN02 054 LAD02 052 BRA02 341 DOP03 225 EXH03 057 LAD03 033 
DOP04 226 EX!104 056 
DOP05 227 EXH05 055 

CCCOO 116 DOP06 365 EXH06 031 MOVOO 171 CCCOI 350 DOP07 224 EXM07 060 l-10VOI 172 CCC02 351 DOP08 EXN08 061 MOV02 174 
DOP09 230 t-10V03 173 
DOP10 231 NOVO 4 175 CONOO 122 DOPll 366 FETOO 013 HOV05 177 CON01 011 DOP12 367 FET01 000 MOV06 176 CON02 041 DOP13 121 FET02 016 MOV07 257 CON03 024 DOP14 370 FET03 001 MOV08 206 CON04 026 DOP15 120 FET04 004 HOV09 212 CON05 030 DOP16 371 FET05 005 HOV10 213 CON06 046 DOP17 362 FET06 136 r.10V11 207 CON07 027 DOP18 361 FET07 100 MOV12 210 CONoa 044 DOP19 360 FET08 217 MOV13 203 CON09 047 DOP20 375 FET09 252 MOV14 202 CONI0 045 DOP21 074 MOV15 205 CON11 050 DOP22 254 HOV16 200 CON12 JMPOO 151 lv10V17 201 CON13 315 JMP01 152 MOV18 170 
DSTOO 161 JNP02 235 HOV19 160 
DSTOI 162 JHPQ3 154 MOV20 204 CNTOO 036 DST02 164 JHP04 300 MOV21 003 
DST03 260 JrtP05 153 1-10V22 125 
DST04 163 JHP06 155 

DEPOO 034 DST05 165 JHP07 157 DEPOI 062 DST06 167 JNP08 156 NBROO 110 DEP02 063 DST07 166 JHP09 301 
DEP03 064 DST08 JHP10 302 
DEP04 065 DST09 261 JHP11 303 i1RKOO 112 DEP05 066 DSTIO 262 Jl-1P12 306 MRKOI 353 DEP06 067 DSTl1 263 J~·1P13 313 MRK02 354 ..p.. DEP07 070 DST12 264 JHP14 304 HRK03 355 ! DEP08 071 J!-1P15 305 MRK04 356 LA) DST13 265 N DEP09 072 DST14 266 MRK05 357 DEP10 073 DST15 267 

DST16 237 
DST17 270 



Mnemonic Address Mnemonic Address Mnemonic Address Mnemonic Address 

RSROO 106 SEROO 114 SSLOO 105 TRPOO 336 
RSR01 271 SER01 002 SSL01 372 TRP01 317 
RSR02 107 SER02 017 SSL02 104 TRP02 215 
RSR03 272 SER03 123 SSL03 373 TRP03 010 
RSR04 273 SER04 006 SSL04 221 TRP04 216 
RSR05 274 SEROS 015 SSLOS 236 TRPOS 214 
RSR06 232 SER06 012 SSL06 220 TRP06 126 
RSR07 275 SER07 020 SSL07 223 TRP07 150 
RSR08 233 SER08 02"1 SSL08 222 TRP08 007 
RSR09 276 SER09 014 SSL09 374 TRP09 115 
RSR10 277 SERIO 022 SSL10 211 TRPI0 3/.6 
RSR11 376 SER11 023 SSL11 075 TRP11 327 

SSL12 253 TRP12 113 
TRP13 330 

RSTOO 127 SOBOO 130 TRP14 331 
RST01 025 SOBOl 342 STAOO 032 TRP15 077 
RST02 040 SOB02 343 STA01 076 TRP16 140 
RST03 043 SOB03 344 TRP17 337 
RST04 042 SOB04 346 TRP18 334 

SOBOS 345 Slmoo 134 TRP19 335 
SOB06 347 S~m01 135 TRP20 332 

RTIOO 101 TRP21 333 
RTI01 320 
RTI02 321 SRCOO 141 SXTOO 132 
RTI03 322 SRC01 142 

SRC02 144 
SRC03 240 

RTSOO 124 SRC04 143 
RTS01 323 SRC05 145 
RTS02 324 SRC06 146 
RTS03 325 SRC07 241 

SRC08 242 
SRC09 147 

sceoo 117 SRC10 243 
SeCOl 352 SRC11 244 

SRC12 245 
SRC13 246 
SRC14 247 

.po SRC15 250 
1 
VJ SRC16 137 
VJ SRC17 251 





5 LOGIC DIAGRAM DESCRIPTION 

5.1 INTRODUCTION 

Detailed logic discussions are presented in paragraphs 5.3 

through 5.7 for each of the basic KDll-A Processor modules. 

These discussions should correlate with the previous 

information on the Block and Flow Diagrams. 

The format of the discussion is ordered toward quick 

reference with each module and each module print identified 

separately. Detailed information on specific output logic 

signals is coupled with information on overall logic 

operation. The balance between these two varies as a 

function of the logic. 

5-1 



5.2 PRINT FORMAT 

Certain print formats are usedin the Circuit Schematics and 

Wire List of the KDll-A Processor, and its Processor Options 

(KEll-E, KEll-F, KTll-D, and KJll-A). Since information is 

resident in these formats, they are noted in the following 

paragraphs. 

5.2.1 CIRCUIT SCHEMATIC FORMAT 

5.2.1.1 Logic Flow 

Logic flow is from left to right with inputs on the left and 

outputs on the right. All inputs of a given name are interconnected 

on a given print unless different module pins exist. Signals which 

output to module pins are brought to the extreme right. Signals 

which do not have module pins may not be brought to the extreme 

right. In any case, signal names are grouped in vertical columns 

wherever possible. Connectors with input signals have them named 

to the right of the connector, output signals are referenced to 

the left of the connector. 

5-2 



5.2.1.2 Module Pins 

Module pins are redundantly noted for each signal occurrence. 

If a signal occurs on several sheets of a module, the module 

pin appears for each entry. Module pins are presented in their 

backpane1 context with machine slot and section noted. For 

example, F07D1 refers to the D1 module pin in section F of 

slot 07. 

5.2.1.3 Print Prefixes 

Print prefixes are provided for each signal to identify 

the print upon which the signal was generated. Since a most 

usual manner of logic debug involves the tracing of signals 

back to their source, the print prefixes are most important. 

For example, Kl-7 BOVFL L signal indicates a source print 

of Kl-7, which is sheet 7 of the K1 print set for the M7231, 

DATA PATHS module. Print prefixes for the various modules are 

correlated as follows: 

Module Print Prefix Option 
M7231 K1 
M7232 K2 
M7233 K3 KD11-A Processor 
M7234 K4 
M7235 K5 

M7236 
M7237 
M7238 

KT 
KJ 
KE 

KT11-D Memory Management 
KJ11-A Stack Limit Register 
KE11-E Expanded Instruction 

M7239 KF 
Set 

KF11-F Floating Instruction 
Set 

5-3 



Sheet information for each print prefix occurs as a dash (-t 
number after the print prefix. BUS print prefixes occur when 

mUltiple sources for a signal can exist; these signals 

are usually associated with wired-OR signal connections. 

5.2.1.4 Signal Level Indicators 

Signal level indicators are provided by print suffixes of 

H or L. These level indicators are H for high and L for low 

and attempt to relate a level with signal activation. The 

high and low levels in the KDll-A Processor usually correlate 

with TTL logic levels. For example, K3-6 WAIT L indicates that 

the line so labled will be low when the situation WAIT exists. 

Two exceptions and qualifications to this nomenclature exist. 

The BUS U(56:09) L signals from the ROM have a low indicator 

because of the wired OR nature of the bus; in reality, the 

U WORD buffer and ROM are active for high levels out. Clock 

signals such as K4-2 CLK IR H are active on the positive 

transition of the signal as they clock D-edge type flip-flops. 

5-4 



5.2.1.5 Flip-Flop Outputs 

Flip-flop outputs are allowed two forms for a single signal 

output. The 1 output of a flip-flop can be represented as 

(l)H or (O)L with corresponding references for the 0 output 

of (O)H or (l)L. This nomenclature recognizes the duality of 

any given logic signal, but in the KDll-A processor it is 

allowed only on the flip-flops. Signals such as K3-8 CINOO L 

are not presented as K3-8 -CINOO H, where the leading dash 

represents negation of the signal name. 

5.2.1.6 Inhibit Situations 

Inhibit Situations are noted upon the input to logic gates 

when the signal level indicator of the input signal does not 

match the state indicator on the logic gate input. This 

technique allows the assignment of a singular name to a logic 

line, with the duality of names noted before, resolved in a 

gate inhibit. Instead of trying to match an input state indicator 

with a signal level indicator and a negated name, a direct 

inhibit appears in the conflict between the state indicator 

and the singularly named signals with assigned signal level 

indicators. 

5-5 



5.2.1.7 Parentheses and Colons 

Parentheses and colons are used to indicate inclusive groups 

of bits. A signal BUS U(56:09) L indicates the BUS U signals 

for bits 56 through bit 09. This grouping of bits occurs in 

actual signal names used on the prints; it is also used to 

group for discussion of signals of like nature that appear 

singularly on the prints. 

5.2.1.8 Parentheses and Commas 

Parentheses and commas are used to specify singular bits in 

a signal. The signal K4-3 CLR UPP 7,6,2 L indicates a clearing 

operation on bit 7, bit 6, and bit 2. 

5.2.1.9 Basic and Expansion Signals 

Basic and expansion signals in the machine are noted with 

leading Bs or Es. For example, Kl-7 BOVFL STOP H is a signal 

generated in the basic KDll-A processor while KJ-2 EOVFL STOP H 

is a signal generated in an option or expansion of the basic 

processor. 

5-6 



5.2.1.10 Logic Symbols 

Logic symbols for the KD11-A processor include simple logic 

gates and flip-flops, and complicated medium and large scale 

integration (MSI and LSI) gates. Symbols for the latter devices 

tend to be rectangular with function information and grouping 

provided on the symbols. Truth tables are provided on the 

appropriate logic prints. 

5.2.1.11 System Information 

System information is provided on a number of logic prints 

in the form of tables and waveforms. 

5.2.1.12 Jumper Information 

Jumper information is provided on each print for option 

connection. Fixed formats on the etch board also provide 

information. Jumper numbers (W1,W2,etc.) are etched in the rest 

(or basic) position where two jumper positions are possible. Note 

on the STATUS board that the W notations for the PWR UP jumpers 

provide the basic vector of 24. 

5.2.1.13 Cable Connection 

Cable connection information is provided on each print and upon 

the etch boards. Special attention must be given to shield 

location as noted in the prints and upon the etch. 

5-7 



5.2.2 WIRE LIST FORMAT 

5.2.2.1 Alphabetical Searches 

Alphabetical searches for signal names are eased by the listing 

of signal names without their print prefixes. The print prefix 

can still be determined by noting the source print in the 

"REMARK" column. The print prefix is needed in identifying the 

signal upon the logic prints. 

5.2.2.2 Print References 

Print references are noted in the "DRAW" column for all prints 

upon which a signal occurs. Multiple sheet entries within a 

print set are noted without commas between the sheet references. 

For example, the entry K4-235 indicates that the signal occurs 

on sheets 2,3, and 5 of the K4 print set (no print sets have 

more than nine sheets). 

5.2.2.3 Etch Backpanel 

Etch backpanel information is contained in the wire list and 

is identified by an "R" in the "Q" column and a "p" in the 

"REMARK" column. "EXCEPTION" column notations for etch 

connections should be ignored. 

5-8 



5.2.2.4 Foward Searching 

Forward searching for logic interaction (where the signals 

are used) is best done through the wire list. All signals 

for a given name are noted with appropriate print references. 

5-9 



5.3 M723l, DATA PATHS, Kl MODULE 

The data path module includes the following logic: 

a. The Arithmetic Logic Unit (ALU) with an A input and a 
B input with mUltiplexer (BMUX) and register (B), and 
an output register (D); 

b. The Bus Address Register (BA) with its input multiplexer 
(BA MUX) and output drivers to the Unibus; 

c. Processor Address Decoding upon the internal Bus Address 
Register. This address decoding is not upon the Unibus, 
therefore, these addresses only respond to processor (console or 
program) addressing. 

d. D Register Decoding for sensing when portions or all of 
D is zero. 

e. The Scratch Pad Register (REG) with its associated 
addressing selection under direct microword control. 

f. A console interface with drivers for data display of the 
D mux signals, input receivers of the switch register 
setting on the console, and XOR matching circuit between 
the lower order switch register (SR) settings and the 
buffered microprogram pointer (BUPP) to determine when 
the microprogram matches the console switch settings. 

5-10 



Kl-2 

Kl-2 Print: DATA PATHS (03:00) 

This print contains the data path for the 
data bits 03 to 00. It has the arithmetic logic unit and its 
associated A and B input logic as well as the output D register 
and Bus Addresses Multiplexer (BA MUX). 

Kl-2 DMUX(03:00) H signals at the output of the D multiplexer 
provide a main data path in the machine with inputs to the B 
register associated with the arithmetic logic unit and to each 
of the other processor registers including the scratch pad (REG), 
and the processor status (PS). These signals also are available 
on the back panel and used in processor options (KEll-E, KEll-F, 
KTll-D) . 

The following inputs are combined or multiplexed into the 
DMUX signal: the D register at the output of the arithmetic 
logic unit; the buffered UNIBUS BUS D signals; a right shifted 
output of the D register, and the buffered BUS RD signals. The 
later signals (BUS RD) are from the outputs of the various 
processor registers located in the data path section of the 
machine and include Scratch Pad Register (REG), Instruction 
Register (IR), and Processor Status (PS), as well as other 
processor option registers. The DMUX signals are displayed in 
DATA display of the console. 

Kl-2 COUT03 L signal is the carry out of the third bit of the 
arithmetic logic unit. It is a signal derived in the carry 
bridging network of the 74182. This carry bridging is used to 
allow a faster settling of the 7481 by looking ahead to determine 
if carries exist. 

Kl-2 D(03:00) (1) H output the D register as noted, inputs 
to driver 8881 gates to the UNIBUS,and feeds around to the 
DMUX on the input to the B side of the ALU. The D register is 
essential in the data path because of the need to hold data for 
Unibus operations and for rewrite to the scratch pad register (REG). 
The latch nature of the Scratch Pad Register requires a storage 
device in the data loop to avoid simultaneous read and write in 
the scratch pad. The Kl-2 DOO (1) H signal is also used for 
carry data (K3-9 C DATA H) in a Rotate Right instruction. 

BUS D (03:00) L provide the Unibus BUS D signals through appropriate 
driver (888ls) with a gating signal K4-5 BUS FM D H. 

5-11 



Kl-2 

Kl-2 CLR D H signal is noted as an output only to avoid 
repetition of the pull-up resistor throughout the next three 
prints. The clear input of the D register is essentially tied 
up and is not used as a signal at all. The D register, as many 
of the other registers in the KDll-A processor, are never 
cleared; they are assumed to have erroneous information until 
proper information is clocked into them. 

Kl-2 ALUOO H low order output signal of the arithmetic unit 
is used in the KEII-E option. 

Kl-2 BAMUX(03:00) H signals are the inputs to the Bus Address 
Register '(BA) located on the module (print Kl-6). MUltiplexed 
signals allow selection of either the output of the ALU or the 
buffered Bus RD signals as the input to the Bus Address Register. 
The choice of these inputs is a function of microcontrol for a 
flow operation in process. The Buffered Bus RD input is provided 
for speed for operations in which the machine waits upon bus 
operation, with the address coming from the Scratch Pad Register 
(REG). The ALU input accomodates those situations in which data 
is altered before use. 

5-12 



Kl-3 Print: DATA PATHS (07:04) 

Kl-3 DMUX(07:04)H 1 
Kl-3 D(07:04) (1) H 
BUS D(07:04) L 
Kl-3 BAMUX(07:04) H ) 
Kl-3 COUT07 L ~ 

With the exception of bit references, 
these signals are similar to'signals 
on the Kl-2 print. 

Kl-3 D07 (1) H signal provides sign information for byte data and 
is used as an input to the condition codes on Print K5-2. 

Kl-3 RD07 H signal is the highest order bit of byte data for the 
A input of the ALU. It is used in the Status modu1e(print K5-2) 
to determine overflow conditions in the ALU. 

Kl-3 BMUX07 H signal is the high order bit of the byte input to 
the B input of the arithmetie logic unit. It is used in the 
Status module (print K5-2) to determine the overflow condition. 

Kl-3 ALU07 H signal is the direct output of the arithmetic logic 
unit prior to the B register. It is provided for test purposes. 

5-13 



Kl-4 Print: DATA PATHS (11:08) 

Kl-4 DMUX(11:08) H 
Kl-4 D(11:08) (1) H 
BUS D(11:08) L 
Kl-4 BAMUX(11:08) H 
Kl-4 COUTll L 

Kl-4 

With the exception of bit references, 
these signals are similar to signals 
on the Kl-2 print. 

5-14 



Kl-5 

Kl-5 Print: DATA PATHS (15:12) 

Kl-5 DMUX(15: 12) H } 
Kl-5 D(15:12) (1) H 
BUS D(15:l2) L 
Kl-5 BAMUX(15:l2) H 

With the exception of bit references, 
these signals are similar to signals 
on the Kl-2 print. 

Kl-5 D(C) (1) H signal is fed around into the D Mux on this same 
sheet and is used in a rotate right situation. The D(C) flip-flop 
is an extension of the D Register for the carry bit. The COUT MUX 
allows microcontrol selection of the carry output of the ALU on 
its input for word or byte, the carry bit of Processor Status, 
PS(C) and bit 15 of the ALU output for shift or rotate. 

Kl-5 COUT MUX (L) signal is the selection of the aforementioned 
signals on the input to the D(C) flip-flop. The signal provides 
a test point. 

Kl-5 COUT15 L signal is the carry output of bit 15 of the ALU. 
It is used as one of the inputs for the COUT MUX and is used in 
the KEll-E option. 

Kl-5 RD15 H signal inputs to bit 15 of the arithmetic input on the 
A side. This signal is used in this module as an input to the DMUX 
and BAMUX as all of the buffered BUS RD signals are. It is also 
used as an input to the condition code logic for determination of 
word overflow conditions (KS-2 Print). 

Kl-5 CMUX15 H provides the bit 15 input to the ALU on the B side. 
This intermediate signal is used on the STATUS board in the 
condition code logic to determine word overflow conditions (K5-2 print). 

Kl-5 ALU15 H is the output of the bit 15 of the arithmetic logic unit 
and is used as an input to the D register, the BAMUX, and the COUT MUX. 

Kl-5 B15(1) H signal is bit 15 of the B register. It is used as an 
input to the BMUX on this print and the SWAP BYTE input on Kl-3 print. 
The KEll-E and KEl1-F options also utilize this signal. 

5-15 



Kl-6 

Kl-6 Print: BA(15:00) 

This print contains the Bus Address Register (BA) and the bus 
driving gates to the Unibus. The bus address signals for bits 
16 and 17 are derived from bit 13, 14, and 15 for the basic 
KDll-A. The Unibus drivers on the print can be disabled when 
the KTll-D option is installed; then the bus address is provided 
by logic on the M7236 module of the option. 

Kl-6 BA(17*16) H signal is a direct function of the bus address 
bits 15, 14, and 13 being set. This signal is used for display 
purposes (Kl-9 print) and in the KTll-D option. 

BUS A(17:00) L Unibus signals provide the bus address signals 
from the processor and are gated by K4-S BUS FM BA H. If the 
KTll-D option is installed, a jumper (WID) grounds the enabling 
signal of the 8881 gates. 

Kl-6 BA(lS:OO) (1) H signals are the direct output of the Bus 
Address Register. These direct outputs are used for driving the 
Unibus gates on this print; for decoding of processor addresses 
(Kl-9'print); for data display (KS-7 print); and for generation 
of Unibus addresses for the KTII-D option (if installed). Some 
of the signals are used in the KJII option for comparison against 
the Stack Limit Register. Low order signals for bits 03 to 00 are 
used as one of the REG selection address inputs. Additional uses 
for the BAOO are for odd byte address sensing and allowance of 
odd byte on K4-4 print and for byte branching information for the 
BUBC codes (K3-7 print). 

5-16 



Kl-7 

Kl-7 Print: ADRS DECODE 

The decoding of the Bus Address Register prior to the Unibus 
limits the use of these addresses to processor references. The 
addresses are not derived from the Unibus, it is not possible 
for a peripheral to access these addresses. The Bus Address 
Register is also decoded to determine the absoluteness of an 
address for stack overflow sensing. Decoding logic is also 
provided on the D Register to sense the status of its contents 
on byte or word basis. The table at the right of the sheet 
provides correlation between the mnemonic for an address and 
the octal value of that address in the bus address register. 
Notes are also provided for jumper selection. 

Kl-7 PS ADRS H decodes the Processor Status address to enable 
the combinational logic inputs to the Processor Status Register 
(KS-2 print) and sequencing of a BUS SSYN response by the 
processor (K4-6 print). The address is also utilized in the 
microbranch code to ensure a reservice of possible Bus Requests 
because of a change in machine or processor status (KS-7 print). 
The signal is provided by the KTll-D option when installed; the 
jumper (Wl) is removed and the option provides the Processor 
Status address. 

Kl-7 SLR ADRS H addresses the Stack Limit Register and is normally 
disabled by a jumper (W2) to ground, unless the option KJll-A is 
installed. vlhen installed, the signal provides selection of that 
register and the sequencing of a BUS SSYN through logic on K4-6 
print. The signal is also wired to the KTll-D slot so that if this 
option is installed it can provide the address. The jumper (W2) is 
removed and the KTII-D provides the Stack Limit Register address. 

K~-7 REG ADRS H provides Scratch Pad Unibus addresses used during 
console operation. The jumper (W3) allows generation of the signal 
from this source or from the KTll-D option if installed. The signal 
when present is utilized in the branch circuits of console operation 
to effect proper incrementation and access under console operation 
(K3-2 print). Access to the Scratch Pad Register during instruction 
operation is through Instruction Register decode. Direct specification 
of registers is done by the address selection logic of Kl-8 print 
under microprogram control. 

5-17 



Kl-7 

Kl-7 SR ADRS H provides Switch Register Address decoding and allows 
derivation from this module or by removal of the W4 jumper from 
the KT11-D option. The generation of this address, as with other 
processor addresses, results in the sequencing of BUS SSYN through 
logic on K4-6 print. 

Kl-7 BA(06:03) = 0 H signal is a test point for determining that 
those bits of the Bus Address are zero. 

Kl-7 BA(07:05) = 1 L signal is a decoding of the segment of the 
bus address bit 07-0$, and is used in the KJII-A option. 

Kl-7 BA(15:08) = 1 L signal is a decoding of the bus address 
register to determine content and not specifically an address 
situation. This output is for test purposes. 

Kl-7 BOVFL STOP H signal detects a red zone violation for stack 
operation and is utilized to interrupt the microflow (K4-4 print). 

Kl-7 BOVFL L signal is used to sense a yellow zone stack violation 
and is used to set a trap servicing flag K5-4. 

Kl-7 D(15:00) = 0 H indicates that those bits of the D register 
are zero. This signal is used as an input to the condition codes 
for the Z bit of Processor Status (K5-2 print); it is also used 
as an input to the microbranch lOgic (K3-2 print). This signal is 
also used in the KE11-E and KE11-F options. 

Kl-7 D(03:00) = 0 H signal is used for a partial indication that 
the byte data of bits D(07:00) is zero for the inputs to the 
Conditional Codes of Processor Status (K5-2 prints). 

5-18 



Kl-8 

Kl-8 Print: REG(15:00)(15:00) 

This print contains the Scratch Pad Register (REG), basic to the 
PDP-II architecture. There is address selection enabling either 
direct and complete selection by the microprogram control,or 
selection by the Instruction Register Source field, the 
Instruction Register Destination field, or the lower bits of the 
Bus Address Register. Some variations in the addressing are 
effected by jumpers (W5, W6, and W9) when the KTll-D option is 
installed. The Registers themselves take data in from the DMUX 
signals and outputs its data onto the BUS RD lines. The resistor 
terminator for this wired-OR BUS RD bus are resident on this print. 

BUS RD(15:00) L common input bus in the data paths has several 
sources. Its input is on prints Kl-2 through Kl-5, respectively, 
with sources from the Scratch Pad Register (REG) (this print), 
from the Processor Status system (PS) (print KS-2), and from the 
KEll-E and KEll-F options as well as the KTll-D options. 

Kl-8 R(X6+X7) H signal senses selection of either register 6,7 
16, or 17 (octal addresses) and is used to force an increment of 
2 on any byte operations referencing Register 6 or 7 in the 
instruction set (print K3-8). It is also used to enable the check 
overflow logic when the processor stack register is accessed 
(print K4-4). This last use requires the Kl-8 RADRSO L signal 
noted below. 

Kl-8 RADRS(3:0) L. These signals are the actual applied signals to 
the Scratch Pad register Ies. They are the complement-of the address 
inputted to the selection AND/NOR gates. The signal Kl-8 RADRS 0 L 
is used in conjuction with Kl-8 R (X6+X7) H to specifically indicate 
the stack processor stack register (REG 06) to enable the check 
overflow logic in the bus timing circuitry (K4-4 print). 

5-19 



Kl-9 

Kl-9 Print: CONSOLE AND MATCH 

This print provides a connector interface to the KYll-D console. 
The DATA display is provided to the console with 380 type gates 
buffering the DMUX (15:00) signals. In addition, the switch 
register signals from the console are brought in and enabled by 
the Kl-4 BUS FM SR H signal through 8881 gates to the Unibus 
BUS D(15:00). A matching circuit is provided with the lower order 
switch register settings, SR(08:00), compared with the basic 
microprogram pointer BUPP signals. Upon a match, a pulse, Kl-9 
P MATCH L is generated, Kl-8. This pulse occurs at the beginning 
of the microword specified in the Switch Register. The signal 
Kl-9 UPP MATCH H is used with the Maintenance Console for a HALT 
upon match (see restrictions below). 

Kl-9 SR(17:l6) H signals for the bit 17 and 16 switch register 
settings are inputted from the console through this module and 
provided to the KTll-D option, which allows a physical address 
involving these address bits (KT-9 print) during console operation. 

BUS D(15:00) L Unibus signals are enabled by K4-4 BUS FR SR H to 
allow the switch register settings onto the Unibus. 

Kl-9 UPP MATCH H signal provides a level output when the Switch 
Register settings bits (08:00) match the buffered UPP signals. This 
signal is used on the timing board in conjunction with the KMll-A 
maintenance console option to halt the machine at the specified 
microaddress. There is a limitation that the matching address must 
have a CL2 or CL3 preceding it. 

Kl-9 P MATCH L - A timing pulse occurring at the end of a machine 
cycle is gated against the aforementioned match signal to provide 
a scope triggering pulse at the beginning of the selected word. 
This occurs independent of the maintenance module and is of value 
in situations where the machine is not going to be halted. For both 
of these instructions the Maintenance Console section should be 
referenced for specifics of operation. 

5-20 



5.4 M7232, U WORD, K2 MODULE 

The M7232 module for the U WORD (Uis used in place of the 

Greek letter Mu for micro) provides the central portion of 

the microcontrol. It contains the basic processor's Read 

Only Memory (ROM), the U WORD buffer register (various 

nuemonics per function), the Past MicroProgram Pointer 

register (PUPP), as well as certain driving buffering gates 

for signals BUp-p(8:0) and EUPP(8:0). Connectors at the back 

module edge interconnect to the KEll-E option for expansion 

of the basic microword ROM. 

The U WORD logic on the M7232 module is very regular. The 

ROM has 256 words each of which has 56 bits. Output signals 

from the ROM, BUS u(S6:00), feed a resistor terminator with 

a wired-OR input from the module connectors located on the 

rear of the module. These inputs are for optional expansion 

of the ROM beyond 256 words. The BUS U signals feed the U WORD 

buffer register which controls the machine. The first segment 

of the ROM(07:00) on prints K2-2,3 is concerned with the 

microaddress and has 74HlO gates between the ROM output and 

the U WORD buffer (UPP 08:00). This allows the next base address, 

5-21 



BUS U 08:00, to be modified, if necessary, by basic microbranching 

logic (K3-2 BUBC 4:0) or expanded microbranching (KE-4 EUBC 4:1). 

Additional logic exists on the output of the UPP portion of 

theUWORD for driving expansion ROM's and for storage of the 

present microaddress, PUPP (08:00). 

The use of the BUS U (56:00) L signals and the low state indicator 

on the ROM gate output expresses the physical wired-OR nature 

of these signals. No absolute correlation should be made 

between low active and the trueness of the ROM output or 

the U WORD buf~er. In fact, for U (56:09) a high level 

indicates a true or active signal both at the ROM output and 

in the U WORD buffer. This is presented in the microflow 

diagrams on sheets 9 through 12. For U (08:00), the microaddress 

portion of the microword, a low output at the ROM output 

represents an active or true signal. This complementing of the 

ROM pattern occurs because of the inversion in the 74HIO 

gate prior to the U WORD buffer, UPP (08:00). In the U WORD 

buffer a high level represents an active or true signal. 

T~e microflow diagrams on sheets 9 through 12 show the 

complement of the ROM output for the UFF field; this is 

to allow address reference from the Flow Diagrams without 

the need to complement. Note that the UPF field represents 

the complemented ROM output of the next address without reference 

to microbranch inputs. If there are no microbranch inputs, 

then the UPF field represents the U WORD buffer, UPP (08:00). 

5- 22 



The output signals noted in detail for this module are 

mostly those of the U WORD buffer. These signals, ~ith the 

alterations possible to the UPF field, are directly compatab1e 

to the BASIC U WORD noted in the block diagram of the U WORD 

and Tables shown on engineering drawing D-BD-RDll-A-BD. 

This drawing also provides numerous tables of the microprogram 

control fields, noting the codes, the effect, and occasionally 

the purpose. 

Signals for prints K2-4,5,6,7,8 are presented in order 

from bottom to top. This is in order of assending BUS U 

allocation, and represents a logical presentation of the 

functions. 

5-23 



PRINT K2-2, U(03:00) 

K2-2 BUPP(3:0) H signals are the Buffer Micro Programmed 

Pointer for the noted bits and it is used to address 

expansion ROMs in the KT and KEll-F options. It is also 

displayed on the KMll-A Maintenance Console, and it is 

matched against the switch register for a HALT or for 

K2-2 

scope timing pulses (Kl-2 print). Note that the microprogram 

address present here is the address of the next microword. 

Alterations for microbranching have already occured on the 

input to the UPP register if they were to occur. Only a 

microjam (eLK JAM on print K4) can alter this address by 

setting or clearing the UPP register, this change is then reflected 

in these signals. 

K2-2 PUPP(03:00) (1) H signals are the output of the Past 

Micro Program register. It provides the microprogram address 

of the microword presently in the U WORD buffer and acting 

upon the machine. The PUPP register is displayed in the 

KMll-A Maintenance Console option for the basic machine. This 

register is necessary to record the present microword address 

as the microword in the U WORD register contains only the 

next address. As this word is changed (K4-2 CLK(UPP~@UPP) H) 

the next address (now the present address) is transferred to 

the PUPP register. Most searches in the microflow diagrams 

(prints 9 through 12 of the M7232) for detailed operation will 

use the PUPP address as the starting point. 

5-24 



K2-2 
K2-3 
K'2-4 

K2-2 CLR PUPP L signal is used only to hold the CLR input of 

the PUPP register high. It is labled for reference on print 

K2-3 without the need of showing the pull-up resistors again. 

PRINT K2-3, U(07:o4) 

Signals K2-3 BUPP(8:4) Hand K2-3 PUpp(8:4) (1) H are similar 

to signals on the K2-2 print with the exception of bit 

references. 

PRINT K2-4 U(16:09) 

Signal K2-4 CLR U(16:09) represents a pull-up resistor 

to the clear lines noted for the U WORD buffer. 

Signal K2-4 RIFO (0) H is used on the address input to the 

Scratch Pad Register, for the special situation where the 

KT11-D option is providing the user stack pointer instead 

of the usual REG 06 stack pointer. The RIF notation is discussed 

immediately below. 

SignamK2-4 RIF (3:0) (1) H are for Register Immediate 

Field and provide direct microprogram selection of the 

16 Scratch Pad Registers (REG) when the Select Register 

Immediate microcontro1 is enabled (see below). Direct micro 

code selection of the Scratch Pad Registers occurs at severa] 

points in the microflow. It is used during Fetch and in the 

immediate address mode to explicitly select the program 

5-25 



K2-4 

counter for incrementation. Trap sequences RTI and RTS 

instructions directly address the Stack Pointer and Program 

Counter • REG 0 is selected during the HALT instruction 

and in console operations. In addition to the selection of the 

program scratch pad registers, REG(07:00), throughout the 

microprogram implementation of instructions and trap sequences, 

the registers REG (17:10) are also selected explicitly.Those upper 

Scratch Pad Registers provide intermediate storage which is 

of use in flow implementation and in maintenance. Other 

calculations interior to an instruction are stored and can be 

examined in Single Instruction operation. The existance 

of the RIF field makes use of these registers pratical. 

Signal K2-4 R125 PULL UP H is an identification of the 

resistor pull-up noted for use on print K2-3. 

Signal K2-4 SRI (1) H is Select Register Immediate and used 

on the Scratch Pad Register selection logic Kl-8. It enables 

the Register Immediate Field provided by the microword to 

directly select a Scratch Pad Register (REG). 

Signal K2-4 SRBA (1) H is Selects Register Bus Address and 

it enables the lower four bits of the Bus Address Register 

to select a Scratch Pad Register. This selection is used in 

the EXAMINE and DEPOSIT microflow fo~ console operation. 

5-26 



K2-4 

It 1s spec1fically used when an internal Scratch Pad 

Register address is accessed. The nomenclature used in the 

F'low Diagrams is R(BA) to indicate an jnternal register 

addressed by the Bus Address Register. 

Signal K2-4 SRD (1) H is Select Register Destination and 

is used in the Scratch Pad address logic to enable the 

Destination field of the Instruction Register IR(02:00). 

This field is used throughout various instructions having 

destination addresses. 

Signal K2-4 SRS (1) H is Select Register Source and it 1s 

used in the Scratch Pad Address logic to enable -che Source 

field of the Instruc-cion Eeglster IR(08:06). This field 

is used in binary instructions. 

No'rE 

The use of discrete 74H74: flip-flops for the U WORD 

buffer for REG addressing controls, reflects emphasis 

on reducing access time for data. 

5-27 



K2-5 

PRINT K2-5 U(28:17} 

Signal K2-5 CLR U(56:1?) L is a nominally h:lgh signal 

provided by a. pull-up resistor which is used for the clear 

line of the U WORD buffer on this print and on prints K2-6,7,8. 

SignaB K2-5 UBF(4:0) (1) H are the Micro Branch Field which 

enable various test condi"tions for microbranching the 

microproFtram address. 'l'he actual switching of various 

conditions is done on the K3-2 print in multiplexers provided 

for that purpose. In all, 32 possible test microbranch tests 

are enabled throughout "the microflows and are direc"Lly 

noted in the flow diagrams by the BUT notation (Branch 

Micro Test) and in the table on print D-BD-KDll-A-BD. 

The tests that are enabled can consjst of a number of 

bits or a single bit. They can consist of tes~ relating 

to the instruction register or tests relating to a single 

flag flip-flop. 

The UBF field is also decoded on the status Board Kb-3 

to provide enablins signals dur:1.nf! cer"tain mjcrowords; 

the microwords in which this f'ield of a specifin BUT is 

present. Those decoded signals are used to clear or set rlags 

relating to the microtests upon which a Branch Micro Test 

is being performed. 

Signal K~-b SEAM (1) H is for Select Bus Address Multiplexer 

and is used on the Data Path to control the Bus Address Mult"iplexer 

(prints Kl-2,~,4,5). It selects either the buffered BUS RD 

data or the outpu"t of the a.rithmetic logic unit for input 

5-28 



K2-.5 

to the BA Address Register. A high level in this micro 

code control bit enables the ALU output to the Bus Address 

Register Data input. 

Signa:!! Kk-5 SDM(l:O) (1) ;H are Select D Multiplexer and are 

used in the Data Path (Kl-2,3,4,5) to select the DU1~UX signal 

from four possible sources. The output.code or enabling 

levels provided by this field can be directly associated 

with the 74153 multiplexer logic symbol and truth table 

located on the DATA PATH prints. Essentially a 00 SDM 

code selects the A input (RUS HD); a 01 SDM code selects 

C input ( D register), a 10 code selects the buffer Unibus data 

(BUS D),and a 11 SDM Code selects D input (right shifted D register). 

Signa~K2-b SBML(I:0) (1) H are Select B Multiplexer Low 

microcontrol and prov1.de selection signals to the lower 

eight bits of the BMUX in the Data Paths on print Kl-2,3. 

The s ep arat ion of the BMUX into an upper and lower port ion 

for micro control allows additional flexibility in treating 

with byte, sign extend, or swap byte situat:ions. The code 

enables the following to the B Innut of the Arithmetic Logic 

Uni t (ALU): 

An SB~L code of 00 selects the low bits of the B Register 

directly. 

An SBML code of 01 selects the low bit8 of the B 

Regi ster directly and is l)sed for sip'n ext ens ion 

in the upper byte (BMUX 15:08) 

An SBML code of 10 selects the upper bits of the B 

Register for a swap byte implementation. Por example, 

bit 8 of the B Register is inputted in the bit 0 position 

of the ALU: this is true in seouence for the other bits. 
5-29 



K2-5 

An SBML code of 11 selects the B Constants, BC(07:00), 

as inputs to the ALU. 

Signals K2-5 SBMH (1:0) (1) H are Select B Multiplexer 

High and provide selection signals to the upper eigbt bits 

of the BMUX in the Data Paths on print KI-4,5. The code 

enables the following to the B Input of the Arithmetic 

logic. 

An SBMH code of 00 selects the B Register directly 

for the B input. 

An SBMB code of 01 selects the sign extension bit (EO?) 

for the B input. 

AN SBMH code of 10 selects the lower byte of the B 

Register for a swap byte situation. 

An 8BMH code of 11 selects the Be constants which are 

used. These constants are not discrete for each bit 

input on the higher byte, but rather consist of 

discrete inputs for bits 11 and a composite 

input BO(15:12 , 10:08) H for the other inputs. 

5-30 



K2-6 

PRINT K2-6, U(40,29) 

Signals K2-6 SBC(3:0) (1) H are Select B Constants and 

and they provide selection through combinational logic (print K5-5) 

of a potential 16 constants for use by the B multiplexer. 

The encoding of constants selection is utilized to conserve 

micro control storage (ROM) bits;. A table of the constants 

is provided on print K5-5 or the Block Diagram Print 

D-BD-KD11-A-BD. 

Signals K2-6 SALU(3:0) (1) H are the Select Arithmetic Logic 

Unit which provide direct micro code selection of the 

functions that the arithmetic logic unit will perform. 

These signals are selected by logic on print K3-B for direct 

ALU control unless a DAD micro code of llXX is present 

(see the DAD table on print D-BD-KDI1-A-BD). The ALU 

table on the same print also notes the Instruction Register 

and ALU interaction. 

Signal K2-6 SALUM (1) H is Select Arithmetic Mode and is used 

in the same way as the Select Arithmetic Logic Unit codes 

previously mentioned. It is directly used on print K3-B logic 

and is co~promised by a DAD code which provides for the IR 

selection of the ALU function. 

Signals K2-6 SPS(2:0) (1) H are Select Processor status 

and they provide an encoded combination for various functions 

on the Processor Status. These operations on the Processor 

Status are not unlike the encoding of the microword for the 

Discrete Alteration of Data (DAD) codes. a table of 

SPS codes and functions is noted on the Block Diagram print 

5-31 



K2-6 

D-BD-KDII-A-BD. Specific bits perform certain functions 

while there is also a total decoding of these bits to 

perform other functions. The code is used in logic on 

print K5-2 to directly select the inputs to the Processor 

Status Register. It is also used on print K3-9 to effect 

the condition code inputs. 

5-32 



K2-7 

. PRINT K2-7,U(52:41) 

Signals K2-7 DAD(3:0) (1) H are Discrete Alteration of Data 

and they provide an encoded portion of the microword for 

use throughout the machine in allowing exceptions. It is used 

with Unibus cycles to check for odd address or stack overflow; 

it is used in the Arithmetic Logic Unit logic to allow 

alteration of the code as a function of the Instruction 

Register. Discrete Alteration Data code is also used within 

the console loop for setting and clearing EXAMINE and DEPOSIT 

flags on consecutive operations. A summary of usage is 

provided in the DAD table on the Block Diagram, U WORD, 

and Tables,print D-BD-KDll-A-BD. 

Signal K2-7 EGBUS (1) H is Begin Bus and it forms a clock 

bus signal with a PI or P2 pulse (print K4-4). This clock 

bus signal, in turn, is used to clock the initiating signals 

on print K4-4 to begin a bus cycle~and also to load register&' 

with various error and stack conditions which should be 

checked on each operation. Signal EGBUS on print K4-5 is 

used to clock the NPR signals. 

Signals K2-7 C(l:O) BUS (1) H consist of the CI, CO BUS 

signals usual to the Unibus. These control signals are 

clocked into holding flip-flops on print K4-4 for use 

throughout the bus cycle. 

5-33 



K2-7 

Signal K2-7 CLKBA (1) H is Clock Bus Address and it provides 

an enabling signal for pulses (print K4-2) used to clock the 

Bus Address Register. 

Signal K2-7 CLKD (1) H is Clock D and it is used on print 

K4-2 to enable pulses for clocking the D Register. 

Signal CLKB (1) H is the Clock B and it is used on print K4-2 

to enable pulses for clocking the B Register. 

Signal K2-7 WRL (1) H is Write Low used on print K4-Z to 

enable a write signal to the Scratch Pad Register for the 

low order byte. 

Signal K2-7 WRH (1) H is Write High used on print K4-2 to 

enable pulses to write into the high bit of the Scratch 

Pad Register. 

5-34 



K:2-8 

PRINT K2-8, U(56:53) AND CONNECTORS 

Signal K2-8 CLKIR (1) H~is Clock IR and it is used on print 

K4-2 to enable pulses for clocking the Instruction Register. 

It is enabled only during the FETCH cycle. 

Signal K2-8 CLKOFF (1) H is Clock OFF and is used on print 

K4-2 to provide direct microprogram control of clock continuance. 

When this bit is enabled, the clock IDLE flip-flop is clocked 

on while the clock RUN flip-flop is clocked off. The CLKOFF 

microcontrol stops the processor directly after the microword 

in which it appears. The processor then waits for an external 

asynchronous start signal on the set input of the RUN flip-flop. 

Signals K2-8 CLKL(l:O) (1) H are the Clock Length code to 

provide selection of the cycle lengths used in the current 

microword. This signal (print K4-2) directly interacts with 

the pulse stream within the delay line chains. A CLKL code 

of 00 or 01 provides for a Clock Length 1 (CLl). If the CLKL 

code 00 is used, a special overlap situation may be in effect. 

A CLKL code of 10 effects a Cycle Length 2 (CL2), a CLKL code 

of 11 effects a Cycle Length 3 (CL3). The normal duration of 

t'llese respective cycles are: CLI 
CL2 
CL3 

140 nanoseconds 
200 nanoseconds 
300 nanoseconds 

Signals K2~8 CLKL(l:O) (0) H are the complement of the 

Clock Length code and are used to assure direct and rapid 

gating of the basic clock signals within the delay line chains. 

5-35 



K2-8 

CONNECTORS - On this sheet the interconnection to the 

KEll-E and KEll-F options is provided. The BUS signals noted 

as inputs (signals to the right of the connector) are wire ORed 

throughout the module to the basic ROM's output. EUPP(7:0) 

output signals (to the left of the connector) provide the 

address ror the expansion ROM. 

5-36 



U WORD MICROPROGRAM LISTING 

Sheet 9 (ADROOO-077) 
Sheet 10 (ADR100-177) 
Sheet 11 (ADR200-277) 
Sheet 12 (ADR300-377) 

SHEET 9, 10, 11, 12 

The U WORD Miaprogram Listing presents the Read Only Memory 

(ROM) content of the M7232 module, and of the KD11-A basic 

processor. The format is as follows: 

Octal notation is used throughout the listing for word 

addresses and the contents of the individual microprogram 

fields. 

Addresses of the U WORD are presented downward in octal 

numerical sequence under the ADdRess column (ADR). The 

addresses correspond to those noted in the Flow Diagrams 

(D-FD-KD11-A-FD). Each address presents the complete 

microword for that address in the same horizontal line. 

Functions of the U WORD are across the top of each table. 

These functio~ represent individual bits in the U WORD 

and are presented in fields. The fields are associated 

with the individual U WORD bits in the Block Diagram, 

U WORD, and Tables print, D-BD-KD11-A-BD. 

The mnemonics for the U WORD fields (right to left) are 

as follows: 

UPF Micro program Pointer Field represents the next 
U(08:00) 

microword address (base) in the present ROM word. 

This field is complemented at the output of 

the ROM. The field is uncomplemented in the U WORD 

Buffer registers (uPP8:0) but may have microbranch 

alterations already made to the ROM output. At this 

5-37 



SHE~T 9, 10, II, 12 

point the address becomes that of the next ROM 

word and is used to address the ROM. 

The transfer of this address to the PUPP 

Register when that next ROM word enters the U WORD 

Buffer Register facilitates comparison of the U WORD 

and the Microprogram Listing. In single clock mode 

of the Maintenance Console option (KMII-A), the 

PUFP address can be used in the ADR column to 

find the presently controling microword. The 

Microprogram Listing can also be correlated with 

the Flow Diagram fram its microword address. 

NOTE 

With the exception of the UPF field (noted above), 

the function and states of the other fields 

are directly (uncomplemented) represented at 

the output of the ROM and in the U WORD Buffer. 

Details of operation have already been presented 

in the logic discussion on the U WORD Buffer 

signal outputs. 

RIF Register Immediate Field selects a Scratch Pad 
U(12:09) 

Address when enabled by the Select Register Immediate 

bit (U13) of the SRX field. 

SRX Select Register provides an address mode for Scratch 
U(16:l3) 

P~d Register selection where X can be Select Register 

5-38 



SEEET 9, 10, 11, 12 

Immediate (SRI), Select Register Bus Address (SRBA), 

Select Register Destination (SRD), or Select 

Register Source (SRS). 

UBF Micro Branch Field enables the logic which can alter 
U(21:18) 

the UPF microword address to allow a" branching 

of the microprogram flow. The U WORD Buffer for 

this field is UBF(4:0). A correlation is made between 

the Branch Micro Test (BUT) number and its purpose 

on print D-BD-KDll-A-BD. 

SBA Select Bus Address directly controls the Bus Address 
U22 

Multiplex on the input to the Bus Address Register. 

When enabled, the U WORD Buffer signal, SBAM, selects 

the ALU output instead of the BUSRD signal output. 

SDM Select D Multiplexer directly controls the selection 
U(24:23) 

of inputs on the D Multiplexer (DMUX). Its octal 

code 0, 1, 2, and 3 correlates respectively to the 

A, B, C, or D inputs in the logic symbol. 

SEM Select B Multiplexer directly controls the selection 
U(28:25) 

of the inputs on the upper and lower byte sections 

of the B Multiplex (BMUX). 

5-39 



SHEETS 9, 10, 11, 12 

SBC Select B constants controls the logic which 
U(32:29) 

generates B constants which are then selected by 

the B Multiplexer. The code, the constants, and the 

purpose of the codes are presented in a table on 

print D-BD-KDll-A-BD. 

ALU Arithmetic Logic Unit controls the mode of operation 
U(37:33) 

of the Arithmetic Logic Unit (ALU) of the Data 

Paths. The code is not used directly and does allow 

the Discrete Alteration of Data (DAD) microcode 

to provide ALU operation as a function of the 

Instruction Register. This interaction is shown 

in the ALU table of the Block Diagram, U WORD, 

and Tables print (D-DA-KDll-A-BD). 

SPS Select Processor Status provides a discrete and 
U (41+ :41) 

encoded micro control of the input and clocking 

of the Processor Status Word. This control is 

especially concerned with the individual response 

by the Condition Code portion to each instruction. 

DAD Discrete Alteration of Data is an encoded microcode 
U(44:4l) 

field that provides for the alteration of usual 

usages of data (including microcode data). A usual 

alteration is the checking for odd address or 

stack limit during bus operations initiated by 

"microprogram data n • A table of functions and codes 

is noted on the Block Diagram, U WORD, and Tables 

print D-BD-KDll-A-BD. 

5-40 



SHEET 9, la, 11, 12 

BUS BUS operations for the Unibus are controlled by 
U(47:45) 

this microcontrol field. Included are the bus 

control signals Cl BUS and CO BUS and their 

initiating signal EGBUS. A table of bus operations 

(including the non-data transfers) is shown on 

print D-BD-KDll-A-BD. 

CBA Clock Bus Address field provides the direct enabling 
U48 

signal for clocking the Bus Address Register. 

CD Clock D field provides the direct enabling signal 
U49 

for clocking the D Register. 

CB Clock B field provides the direct enabling signal 
u50 

for clocking the B Register. 

WR WRite field provides two directly used micro control 
U(52:51) 

bits for writing into upper or lower byte of the 

Scratch Pad Register. 

CIR Clock IR field provides the direct enabling signal 
u55 

for clocking the Instruction Register. 

CLK CLocK field contains both the clock cycle length 

control (CLKLO, CLKLl) and on-off control (CLKOFF). 

5-41 



SHEE~ 9, 10, 11, 12 

Three other columns occur in the Microprogram Listing, 

they are: 

ADR The microprogram address of the microword displayed 

on that line. This address can be obtained from the 

Flow Diagram or from direct observation of the 

STATE 

FLOWS 

PUPP Register with the Maintenance Console 

option, KMII-A. 

The mnemonic used in the Flow Diagram (D-FD-KDI1-A-FD) 

to provide an immediate identification of a 

microword. It is possible to refer to a microword 

in easier terms than its address. 

The page in the Flow Diagram (D-FD-KDII-A-FD) upon 

which the microword occurs. This reference provides 

for a backward search from an address to a microword 

in its flow context. 

5-42 



5.5 M7233, IR DECODE, K3 MODULE 

The IR DECODE module contains extensive combinational 

logic which decodes the Instruction Register (IR), 

providing discrete instruction signals, as well as 

reencoded microaddress information necessary for the 

microbranches. The Instruction Register is present on 

this module, as is the Branch Micro Tests (BUT) 

mu,];.tiplexer. In addition, comb ina tional logic exists 

for instruction control of the Arithmetic Logic Unit 

and Condition Code inputs for the Carry (C) and oVerflow 

(V) bits of Processor Status. 

5-43 



K3-2 

K3-2 Print: BUT MUX 

This print contains the Branch Micro Test multiplexer 
which combines diverse micro branch tests into a limited 
number of bits for a next microprogram address. There are 
essentially six multiplexers, two of which affect bit 0 of the 
address, the other four mUltiplexers affect bit 1 thIOugh bit 4 
of the address. The conditions gated to the address are 
occasionally singular and named by the actual signal condition, 
such as JSR . The conditions are often complex and 
affect more than one address bit; they are then named in a 
standard way, such as K3-5, BUBCO(BUT37) H. This signal is 
essentially a Basic Micro Branch Code that will effect the 0 
bit of the microaddress for the Branch Micro Test 37. There is 
a table of these branch microtests and their mneruonics on the 
Block Diagram Print (D-BD-KDll-A-BD). BUT 37 is the INSTRI branch, 
occurring in Fetch and branches to all the various response 
micro flows for instruction implementation. It has an input to 
each of the five address bits that are effected. Other branch 
micro tests BUTs only require one or two bits and therefore only 
input into one or two address bits. For this reason, the type of 
multiplexer related to specific address bits changes. On bit 0 
there are two mUltiplexers which input into the two possible 
inputs in the NOT-OR gate. For the next address bit there is a 
single l6-input multiplexer. For the next two address bits, 
there are 8-input multiplexers and the upper two address bits 
have only 4-input multiplexers. 

K3-2 BUT (37: 34) L - is a decoding of the micro branch fie ld . (UBF) 
field for branch micro tests 37 through 34 inclusively. It is a 
single pin run and is provided for test purposes. 

K3-2 BUT (3X) - signal is a decoding of the Micro Branch Field (UBF), 
used to enable the mUltiplexers on this sheet and on the STATUS 

module (prints K5-3 ~nd K5-6) as an enabling sig~al for clocking 
flag flip-flops. The sigr.al is a partial dec9ding of b~anch 
micro t§st for BUT 30 through 37 octally. 

5-44 



K3-2 

K3-2 BUBC(5:l) L - signals represent the Basic Micro Branch 
Code for the address bits 5 through 1, inclusively. They each 
represent a single input to the NOT-OR Gate where they can 
modify a base address when a branch test is called. These bits 
provide the inputs for all branch tests unlike the input for the 
o address bit, which required two distinct inputs for lower 
order BUTs and higher order BUTs. Selection of these inputs is 
a function of the micro branch field from the U WORD applied 
against the appropriate multiplexers. In conjunction with the 
basic micro branch code, there are expansion micro branch code 
bits also inputted to the NOT-OR Gate. 

K3-2 BUBCO(BUT37:20) L - provides Basic Micro Branch Code 0 
for branch micro test 37 through 20 inclusively (the notation 
is octal). It is used in conjunction with the next- signal 
to the exclusion of the expansion micro branch code for this 
bit. It is used on K2-2 print in the NOT-OR Gate. 

K3-2 BUBCO(BUT17:00) L - provides the Basic Micro Branch Code 
for bit 0 for the branch micro tests(17:00~,inclusively. The 
signal is selected as a function of the multiplexer and the 
UBF field in the U WORD, with the UBF field selecting the 
branch micro test being applied against the base address. 
This bit 0 has many test conditions applied against it, not 
only in the complex codes but the single bit codes. 

5-45 



K3-3 

K3-3 Print: IR AND DECODE 

This print contains the complete IR Register, which has input 
data from DMUX(15:00). All of the IR is brought to module edge 
for expansion and basic machine use. In addition to the 
instruction register, the first level of decoding is provided 
by the 8251 decoders. The binary instructions, the source mode, 
the destination modes, as well as intermediate IR bit patterns, 
are decoded. 

K3-3 IR(15:00) (l)H - is the (1) side of the IR Register brought 
out for use within the basic and expansion machine. It is used on 
various inputs in the IR DECODE itself, on other prints within the 
basic machine; it is also used in the KEll-E option, the KEll-F 
option, and the KTll-D option. The low order bits in the case 
for the Source or Destination registers are used in the register 
selection logic associated with the Scratch Pad Register. 

K3-3 IR(14:l2)=0 L - is a partial decoding of the IR for bits 
14 through 12 equal to 0 and is utilized on the STATUS module 
for branch instruction decoding and enabling. 

K3-3 SM=l i:L} 
K3-3 SM=2 
K3-3 SM=3 

are partial decoding of the IR (bit 11 through 09) 
for the Source Mode equal to the respective number. 
They are used on the STATUS board K5-3 for branch 
instruction decoding and enabling. 

K3-3 SM=O L - is a partial decoding of that portion of the IR 
(bits 11 through 09) for Source Mode equal to O. It is used 
throughout the IR module and on the STATUS board (K5-3) for 
branch instruction decoding and upon the KTll-D option on print 
KT-9. 

K3-3 SM=7 L - is a partial decoding of the IR for Source Modes 
equal to 7 (bits 11 thvough 09). This is a single pin entry and 
is a test point. 

K3-3 IR(08:06)=6 L - is a partial decoding of the IR indicating 
that the octal code for bits 8 through 6 inclusively is 6; it is 
utilized in the KTll-D option. 

5-46 



K3-3 

K3-3 IR(08:06)=0 L - is a partial decoding of the IR Register, 
indicating that bits 8 through 6 are 0; it is used in the 
KEll-F option. 

K3-3 DM=O 1 - is a partial decoding of the IR for a Destination 
Mode 0 used in the KTll-D option. 

K3-3 CLR IR L - signal is a pull-up resistor signal for the 
clear input of the IR Register. 

5-47 



K3-4 

K3-4 Print: IRD & OVLAP 

This print contains additional decoding of the IR with a 
relatively fast and direct decoding of the Single-Operand 
instructions. In addition, the low order bits IR(02:00) are 
decoded. Combinational logic is provided for the overlap 
signals with the signals consisting of an overlap cycle and 
an overlap instruction. 

K3-4 IR(02:00)=6 L - is a partial decode of the IR Register 
bit 2 through 0 inclusively, equal to 6 octally which is 
utilized by the KTll-D option. 

K3-4 OVLAP CYCLE L - OVerLAP CYCLE includes the next signal 
OVerLAP INSTRuction as well as additional situations. An 
OVerLAP CYCLE is based upon the same premise as an OVerLAP 
INSTRuction; that is, the next bus address desired in Fetch is the 
incremented pc. 

In certain instructions, time can be saved by 
beginning the address calculation which uses the incremented 
PC (this is true in index operations) and in this case it is 
done for Destination Modes 6 or 7 on Single Operand instructions 
of JMP and JSR. It is also done for Destination Mode 6 or 7 if the 
Source Mode of a double operand instruction is 0; it is done for 
a Source Mode 6 or 7. Here the exceptions for ?ervice 
between instructions do not prohibit the overlap cycle; the 
overlap cycles pertaining to internal instruction operations 
occur. The signal is used on TIMING (print K4-4) to initiate 
another bus cycle during fetch. 

5-48 



K3-4 

K3-4 OVLAP INSTR H - signal for OVerLAP instructions is active 
for certain instructions with certain address modes. It is also 
necessary that specific service requirements and some instruction 
modes do not exist. Overlap is a situation where, in the Fetch 
of a given instruction as the PC is being incremented, it is 
possible to initiate a bus cycle using the incremented PC. This 
can only be done when it is known that the next bus address 
desired is a DATI to the incremented PC. If this is true, the 
cycle can begin while the processor is still busy with the 
present instruction. The situations where OVerLAP instruction 
occurs are usually Single Operands with Destination Mode zero, 
or Double Operands with both Source and Destination Modes zero. 
Exceptions to this are that the destination register cannot be 
REG 07; the program counter which is being used as the next 
address cannot be in the process of change. Other exceptions 
to OVerLAP involve service requirements for Bus Requests, 
power fail, Console Bus Requests (HALT switch), and the TRACE 
bit in the STATUS word. MOVE instructions for byte operations 
are not overlapped. This signal is used on STATUS (print Ks-4) 
as a data input to the OVLAP flag. The flag ensures proper 
reentry into the Fetch micro flow. 

K3-4 IRIS H 
K3-4 IRIS L - are buffered signals provided for the additional 
drive requirements required of this particular bit of the IR. 

5-49 



K3-5 

K3-5 Print: BUBC(INSTRl) 

This signal is Basic Micro Branch Code for INSTRuction 1. The 
print contains combinational logic which further decodes the 
initial IRD decoding provided on the previous pages into 
specific instruction signals. In addition, some of these 
instruction signals from this sheet and instructions from 
oncoming sheets are reencoded into basic micro branch code (BUBC) 
for the first instruction branch. This instruction branch is 
known as INSTRl for BUT 37 and appears on sheet 1 of the 
Flow Diagram (D-FD-KDll-A-FD). 

K3-5 BUBC(5:0)(BUT 37) H - is the Basic Micro Branch Code for 
microaddress bits 5 through 0 inclusively and is activated 
upon the INSTRuction 1 branch test for BUT 37. It is decoded 
from the IR and available on the input to the multiplexer. The 
mUltiplexer itself on print K3-2 provides the selection for 
BUT 37 and this code is enabled over the base microaddress for 
this test. This branching code is especially critical and basic 
to the machine, as it is the first instruction branch in Fetch. 

K3-5 DOP*-SMO L - is a Double Operand instruction and Source 
Mode zero encoding together and provided for use within the 
IR board. 

5-50 



K3-6 

K3-6 Print: IR DISCRETE 

Combinational logic upon this print further decodes the initial 
decoding of print K2-3 and provides discrete signals for 
certain instructions. These instructions are the non-Double 
Operand and non-Single Operand instruction which often require 
a flag set or a unique function performed. These signals are at 
the right and at the interior of the print. 

Little information would be presented by listing these instructions 
and explaining that they occur when their certain IR code exists. 
Suffice to say, that most of the instruction signals noted,are 
mutually exclusive and are active (H) or low (L) as noted. Some 
signals of interest are noted below. 

K3-6 PRIV INSTR L - signal provides the KT11-D option with 
information on PRIVileged INSTRuctions (HALT and RESET) to 
make their implementation in USER mode appear as NO-OPs. Note that 
the inhibit of the discrete HALT and WAIT signals by KT02 
PS15(O)H signal. 

K3-6 I1KO(CINSTR) L - is an internal intermediate signal for 
Instruction 1 Constant for bit 0 for C INSTRuctions. It is 
used as an element of the BUBCO(BUT37) signal for bit 0 on 
print K3-5. Like other elements of the BUBC signal, it 
represents a microaddress reencoding from the decoded instruction 
Register. 

5-51 



K3-7 

K3-7 Print: BUBC (OTHER) 

Located on this print are various Basic Micro Branch Code 
(BUBC) for tests OTHER than INSTR1 consisting of different 
numbers of address bit inputs for different Branch Micro 
Tests (BUTs). The ones that are shown on the extreme right 
have no greater importance than the ones shown on the left 
or midway. Essentially BUBC codes for BUTs 20,21,25,26,27, 
31,33,34,35, and 36. There are also some additional 
instruction register type of signals such as, SERVICE, TRACE, 
and BYTE CODES. Signals within the print, as well as those 
on the extreme right, are of importance in this print. The 
majority of signals (BUBC codes) are used on print K3-2 as 
inputs to the multiplexers. A table of BUTs used exists on 
the BLOCK DIAGRAM, U WORD & TABLES print (D-BD-KD11-A-BD). 

K3-7 TRACE L - signal provides for an immediate Trace Trap 
during Service if PS(T) is set and the IR does not contain 
an RTT instruction. The Trace Trap occurs after the next 
instruction if an RTT instruction is present. The signal is 
used on this print in the BUBCl(BUT26) signal and on STATUS 
(print K5-4,5) for flag control and trap vector generation. 

K3-7 SERVICE H - is a definitive definition of the reasons 
to enter the Service section of the micro flows after 
instruction execution. It contains flags and inputs for 
internal (BUS ERRor, Basic OVerFLow on the stack, PoWER 
DowN, and TRACE) and external (BUS Request Priority flag, 
Console Bus Request, reference to Processor Status ADdRess 5) 
situations requireing service. The signal is used on this 
print in the BUBC1(BUT20) signal for microbranching and 
provided as a test point. 

K3-7 BYTE CODES H - signal indicates to the Condition Codes 
logic (print KS-2) that a byte instruction is in the IR. 
The signal is used on STATUS (print K5-2) for selection of 
input data to the Condition Codes of the Processor Status. 

5-52 



K3-7 

K3-7 BUBC(5,3,0)(BUT36) H - is the Basic Micro Branch Code 
for microaddress bits 5, 3, and 0 for the Branch Micro Test 36. 
BUT 36 is the INSTRuction 3 branch associated with the next 
flow sequences after SOURCE calculations. 

K3-7 BUBC(5,3:0)(BUT35) H - is the Basic Micro Branch Code for 
microaddress bits 5, bits 3 through 0 for the Branch Micro Test 
35. BUT 35 is the Odd Byte and INSTRuction 3 branch associated 
with byte formatting of incoming data or the next flow sequences 
after SOURCE calculations. 

K3-7 BUBC(3:0)(BUT34) H - is the Basic Micro Branch Code for 
microaddress bits 3 through 0 for the Branch Micro Test 34. BUT 34 
is the INSTRuction 4 branch associated with the next flow 
sequences after DESTination calculations. 

K3-7 BUBC(3:0)(BUT33) H - is the Basic Micro Branch Code for 
microaddress bits 3 through 0 for the Branch Micro Test 33. 
BUT 33 is the Odd Byte and INSTRuction 4 branch associated with 
byte formatting of incoming data or the next flow sequences 
after DESTination calculations. 

K3-7 ODD BYTE L - is the combination of a BYTE instruction 
decode from the IR and a one in bit 00 of the Bus Address 
Register. This signal is used within the IR DECODE module in 
the microbranching logic of BUBC(BUT33). 

K3-7 BUBC(1:0)(BUT20) H - is the Basic Micro Branch Code for 
microaddress bits 1 and 0 for the Branch Micro Test 20. BUT20 
is the Byte or Service or Fetch branch associated with the 
end of instruction execution. 

K3-7 BUBCO(BUT3l) H - is the Basic Micro Branch Code for 
microaddress bit 0 for the Branch Micro Test 31. BUT 31 is 
the NO WRite or BYTE WRite or WORD WRite associated with 
instructions of Destination Mode zero requiring REGister rewrite. 

K3-7 BUBCO(BUT27) H - is the Basic Micro Branch Code for 
microaddress bit 0 for the Branch Micro Test 27. BUT27 is the 
Service B or Fetch Overlap or Fetch B branch associated with 
the end of instruction execution where an overlap situation 
might exist. 

5-53 



K3-7 

K3-7 BUBC(1:0)(BUT26) H - is the Basic Micro Branch Code for 
microaddress bits 1 and 0 for the Branch Micro Test 26. BUT26 
is the Request branch associated with the entry into the SERVICE 
flow and provides for the proper sequence and service of 
requests. 

K3-7 BUBC(1:0)(BUT25) H - is the Basic Micro Branch Code for 
microaddress bits 1 and 0 for the Branch Micro Test 25. BUT25 
is the Bus Request or Wait or Fetch branch associated with the 
servicing of these requests in the WAIT loop of SERVICE. 

K3-7 BUBC(1:0)(BUT21) H - is the Basic Micro Branch Code for 
microaddress bits 1 and 0 for the Branch Micro Test 21. BUT21 
is the IR03 and Byte or Source branch associated with index 
address operations in the MOV address calculations. 

5-54 



K3-8 

K3-8 Print: ALU CONTROL 

This print has two sets of combinational logic. One set is 
ordered toward the Arithmetic Logic Unit control signals 
and provides for a multiplexer selection of either the 
U WORD directly or control as a function of IR decode. 
Multiplexer selection is a function of the DAD code. The 
other set of logic is the Carry-In for the ALU and control 
of the Carry-Out multiplexer. 

K3-8 COMUXS(I:O) H - provide the inputs of the COUT MUltipleXer 
Selection (print KI-5) which forms the data input of the 
D(C) flip-flop. Selection is solely a function of IR decode 
and inputs from the KEII-E option; no direct control from the 
U WORD exists. 

K3-8 CINOO L - provides the Carry IN for bit 00 of the 
Arithmetic Logic Unit (print KI-2). Control of this data input 
is a function of the IR decode and indirect control from the 
U WORD through the Discrete Alteration of Data (DAD) and 
Select Arithmetic Logic Unit (SALU). 

K3-8 BIT+CMP+TST H - is a simple combination of the BIT Test 
CoMPare and TeST instruction from IR decode. It is used with 
the IR DECODE module and upon TIMING (print K4-4) to alter 
DATIP bus cycles to DATI bus cycles, for DESTination data references. 

K3-8 ALUS(3:0) H - are the direct control for the Arithmetic 
Logic Unit Selection signals on prints KI-2,3,4, and 5. The 
multiplexer selects either direct U WORD control by the SALU 
signals, or Instruction Register control by either the basic 
processor or KEll-E option. Multiplexer selection is controlled 
by the Discrete Alteration of Data (DAD) signals of the U WORD. 

K3-8 ALUM H - is the direct control of the Arithmetic Logic Unit 
Mode on prints KI-2,3,4, and 5. Combinational logic allows U WORD 
control by the DAD microfield or IR decode. 

K3-8 DAD(3*2) L - is a decoding of discrete bits in the DAD 
microfield. It is used in the KEIl-E and KEIl-F options. 

5-55 



K3-9 Print: CODES C,V 

This print contains combinational logic associated with the 
input data required for the C and V bits of the eondition 
Codes. Conditioning of these data inputs is a function of 
IR decode and the present Processor Status. 

K3-9 V DATA L - is the V DATA input of the oVerflow bit 
of the Condition Code portion of the Processor Status word. 
This input reflects direct loading inputs (DMUXOI) as well 
as instruction data inputs V(ROTSHF), V(COMPAREl), and 
V(COMPARE2). The signal is used on print K5-2 of STATUS. 

K3-9 C DATA H - is the C DATA input of the C or Carry bit 
of the Condition Code portion of the Processor Status word. 
This input reflects direct loading inputs (DMUXOO) as well 
as instruction data inputs. The signal is used on print K5-2 
of STATUS. 

K3-9 

5-56 



K4-2 

5.6 M7234, TIMING, K4 MODULE 

Timing for the KD11-A Processor consists of the basic processor 

clock for data path and microcontrol, and the Unibus ordered 

control for data and bus ownership transfers. Microcontrol 

techniques are used in each section but discrete flip-flop, 

combinational logic, discrete timing (delay or pulse) circuits 

are necessary. These circuits and logics are discussed in context with 

the overall timing and not ordered upon output signals. 

5-57 



K4-2 

Print K4-2: CLOCK 

This print contains the basic processor clock which consists of the 
CLK flip-flop, pulse width forming delay line logic, and Cycle Length 
forming delay line logics. Necessary peripheral logic provides on-off 
control (IDLE flip-flop), asynchronous restart inputs, and output 
enabling gates. 

Assuming sequential, uninterrupted operation, the end of the last 
clock cycle is the beginning of the next clock cycle. The falling 
edge of the K4-2 RECLK H signal clocks a one to the CLK flip-flop 
(assuming continuous operation) which activates the pulse forming 
logic loop with Delay Line 1 (DL1). After delay, the DL1 loop will 
clear the CLK flip-flop. The CLK flip-flop, therefore, forms a pulse 
of approximately 40 nanoseconds (DL1 time plus gate time). This pulse 
is now passed through additional delay lines to form the various 
Cycle Lengths (CL1, CL2 and CL3). 

A CL1 is formed by passing the CLK pulse through Delay Line 2 
(adjustable per CLOCK ADJUSTMENT note) to 74HOO gates at E63 (output 
pins 08 and 11). If a CL1 was specified by the U WORD CLK field, the 
signal K2-8 CLK1 (O) H enables the eLK pulse through the upper 
74HOO gate (E63, output pin 08) where after inversion (74HOO gate 
at E66, output pin 06) it becomes K42Z P1 H. 

A CL2 is formed by the CLK pulse if, after passing through Delay 
Line 2, the bottom 74HOO gate (E63, output pin 11) is enabled by 
K2-8 CLKL1 (1) H signal. The upper 74HOO gate {E63, output pin 08} 
is disabled. The CLK pulse now passes through Delay Line 3 to the 
74HOO gates at E72 {output pins 08 and 11}. Here a P2 pulse is 
generated with the upper 74HOO gate {output pin 08} allowing the 
pulse as an end of cycle signal to the microcontrol and clock. 

If a CL3 is to be formed, the bottom 74HOO gate {E72, output pin 11} 
enables the P2 pulse to the data path and to the next delay line 
(Delay Line 4). The upper 74HOO gate {E72, output pin 08} is not 
enabled to allow the P2 pulse as an end of cycle signal. That 
signal is provided by the P3 pulse from the 74HOO gate at E72 
(output pin 03). 

Reference to the CLK WAVEFORMS table allows correlation between 
the clock output pulses, their relative timing, and the U WORD enabling 
signals. 

5-58 , 



K4-2 

The output enabling gates service the three segments of the KD11-A 
processor: the interface, the data path, and the microcontrol. 
The microcontrol clocking signals (CLK U signals, RECLK, PEND and 
PART P END) are ordered toward end of cycle pulses. For a CL1 this 
is P1 pulse; for a CL2 this is P2 pulse; and for a CL3 this is P3 
pulse. Clocking to the U WORD and the clock logic is not conditioned 
by any enabling signal and is usual on the final pulse transition. 
The end of cycle signals are also used in the flag control logic of 
STATUS, especially P END and PART P END. Here the signals may be used 
as set or clear pulses with enabling BUT signals. 

The output enabling gates for data path and interface control use a 
variety of the P1, P2 and P3 pulses. The pulses are enabled singularly 
cr in combination by specific U WORD control bits to provide the 
several CLK signals noted. The pulse signals are also provided directly 
for generation of other CLK signals in the basic (STATUS) and expansion 
(KE11-E, KE11-F, KT11-D) processor. Note that any end (enabled) 
CLK signal must have only one gate (II series) between the pulse 
signals (P1, P2, P3) and the end CLK signal; this prevents excessive 
clock skew. 

Continuance of clock cycles, one after another, is determined by 
the end of cycle signal, K4-2 RECLK H, and the data input signal 
to the IDLE flip-flop. If a new clock cycle (microword, machine state) 
is to begin, the IDLE flip-flop data input is inactive (a high 
logic level); the CLK flip-flop data input is therefore the inverse 
(74HOO gate at E73, output pin 03) and the CLK flip-flop is clocked 
to the one state. This begins the pulse forming and delay sequences 
already noted. If a next clock cycle is not to begin, the IDLE flip-flop 
data input is active (a low logic level) and the flip-flop is clocked 
to the one state: the CLK flip-flop is not clocked to the one state 
and no pulse forming occurs. Conditions to halt the clock are noted 
upon the inputs to the 74H53 gate at E77; the most usual input would 
be the U WORD control signal K2-8 CLKOFF (1) H. Note that the 
U WORD is clocked by the last pulse transition of the halting clock 
cycle, the machine halts in the beginning of the next microword and 
awaits timing signals. 

The restarting of the clock is effected by the combination logic on 
the set input of the eLK flip-flop. This input has interlocking signals 
from the CLK pulse forming logic and IDLE flip-flop to insure that 
the clock restarts without partial pulses and that the clock is 
completely off before restart. The actual restart inputs provide for 
a fast direct restart for data transfer situations (K4-6 B SSYN H 
input) and a combination of lower priority (time wise) restarts. 
Usual to each of these restart inputs is the enabling conditions for 
the restart condition and the restart signal. 

5-59 



K4-2 

An additional control flip-flop, MCLK, is provided for singular, 
manual operation. This flip-flop function in parallel with the CLK 
flip-flop to generate the beginning transition to the pulse forming 
logic. It does this as a fUnction of Maintenance Console switch 
activation (KM-2 MCLK L). The IDLE flip-flop is not directly affected 
by this manual operation mode, the CLK flip-flop is effectively 
disabled with neither its data or set inputs enabled. Details of 
Maintenance Console interaction are available in Paragraph 7.3 of 
this manual. 

5-60 



K4-3 

Print K4-3: CLK JAM 

Discontinuities exist in the microprogram flow. The majority of 
these interruptions are accommodated by halting and restarting the 
CLK logic (noted for print K4-2)1 the next microword after the 
halting signal (usually K2-8 CLKOFF (1) H) is entered and the 
machine awaits the restart signals. An interruption (or pause) has 
occurred in the microflow, but sequential flow still occurs after 
restart. 

The CLK JAM logic is ordered toward non-sequential interruptions of the 
microflow. Error conditions or power up sequences enable this timing 
such that the usual microcontrol timing is disabled (K4-3 JAMUPP H 
signal on IDLE flip-flop input) and special clocking signals are 
provided to force the microflow to specific microaddresses. The 
microflow is irrevocably JAMmed to a specific operating flow. 
The JAMUPP ADDRESS table on this print correlates the reasons 
(USE) for the microjam and the new microaddresses (UPP). 

The eLK JAM logic has three parts: error sensing or power up flag 
flip-flops: asynchronous serial timing logic: and combinational 
logic for the new microprogram address generation. 

The flag flip-flops which are clocked to the one state for activation 
are JBERR flag for odd address bus errors and red zone stock overflow, 
and JPUP flag for START switch activation in the HALT mode and 
PoWeR RESTART. Both of these flags, with addition inputs from the 
NODAT flag (print K4-6) for non-existent bus address error and 
PWRUP INIT (print K5-8), activate the timing logic. 

The JAMUPP one-shot, when activated, provides an enabling signal 
to the combination logic generating the new microaddress. This logic 
encodes the various error and power up flags to provide direct set 
and clear signals to the Micro Program Pointer (UPP) register. 
Usual machine timing is disabled (IDLE data input of print K4-2): 
less important machine flags (TRAP and INTR of print K5-4) are 
cleared; and the BERR flag and STALL flag are clocked (print K5-4). 
Deactivation of the JAMUPP one-shot removes the set and clear signals 
to the UPP register; and after a delay ( = 100 ns) provides the 
K4-3 JAM eLK H signal. This signal clocks the newly selected 
microword (see JAMUPP ADDRESSES table) into the U WORD buffer and 
activates the JAM START one-shot. The pulse output of the JAM START 
one-shot clears the NODAT flag (of print K4-6) if appropriate and 
restarts the CLK logic. 

5-61 



K4-4 

Print K4-4: BUS DATA CNTL 

Logic on this print is associated with processor Unibus data 
transfers and the variety of required error checking and cycle 
alteration. Some decoding of the Unibus BUS C signals is provided 
for processor and processor option use. The logic consists of 
control flip-flops (BUS, CKOVF, CKODA, BWAIT, BC1 and BCO) which 
are activated by UWORD and IR decode inputs. Delays for skew correction 
are provided between the bus activating control flip-flop (BUS) 
and the actual MSYN flip-flops. Appropriate checking logic combines 
error conditions with error check enabling signals. Bus cycles are 
aborted or allowed with error conditions affecting the flag flip-flops 
of STATUS (print 5-4). Tables are provided for the BUS and DAD 
fields of the microword. 

The logic discussion is ordered toward the control flip-flops and 
their overall effect. 

BUS Flip-Flop - The BUS flip-flop initiates all processor Unibus 
cycles. It is clocked to the one state by K4-2 CLK BUS H signal 
(derived from BG BUS of U WORD) except for DAD code (1X1X) in the 
Execution flow of the BIT or CMP or TST instruction and the 
non-existance of an OVer LAP CYCLE in the Fetch flow (BUT37 at 
FET04 microword). The activation of the flip-flop is gated by 
bus ownership signals in the 74H20 gate (E9, output pin 06). 
For a bus cycle to occur, the processor must be in charge of the 
bus (K4-5 BBSY (1) H), no Unibus cycles are in process 
(K4-6 B SSYN L) and the processor is not giving up bus ownership 
(K4-5 PROC RELEASE L). With these conditions met the delays 
associated with Unibus data skew and address decode are activated. 
Two delays exist: one for normal Unibus delay to the MSYN flip-flop 
and a shorter delay to the MSYN A flip-flop. (The MSYN A signal is 
used for internally mounted MM11-L memories that have fast 7380's 
Unibus receiver gates.) 

Time exists during the deskewing delay, for error conditions to 
zero the data inputs of the MSYN and MSYN A flip-flops. Normally, 
however, the flip-flops are clocked to the one state and through 
appropriate gates drive the Unibus (or specially connected twisted 
pair wired to MM11-L memories). Disabling exists for the KT11-D 
option. The MSYN, MSYN A and BUS flip-flops are pulsed cleared from 
the BWAIT flip-flop. 

5-62 



K4-4 

CKOVF Flip-Flop - The CKOVF flip-flop controls the ChecK of 
OVerFlow upon the processor Stock Pointer. Only certain address 
modes in certain bus operations need to be checked. This is 
controlled by the DAD code (X11X) of the tmORD with REGister 
selection information a disabling flag (K5-4 STALL (t) L) from 
STATUS can inhibit the check. The CKOVF flip-flop is clocked 
by the K4-2 CLK BA H signal with activation of the flip-flop is 
further conditioned by the KT11-D option and the Unibus cycle 
type. The check enabling signal enables error detection signals 
and provides for possible abortion of the Unibus cycle with 
corresponding raising of error flags. This occurs here only 
for red zone stock overflow; the yellow zone stack overflow is 
handled solely by the error flags. 

CKODA Flip-Flop - The CKODA flip-flop controls the Check of ODd Address 
errors on processor data bus cycles. The flip-flop is always clocked 
to the one state by the K4-2 CLK BA H signal unless a Byte Instruction 
exists with a DAD code (XXX1) from the UWORD. Checking however is 
further conditioned by console operation and the KT11-D option. 
The check enabling signal enables the error detection signals 
(K1-7 BADO (1) H or KT-3 FAULT H) and provides for possible 
abortion of the Unibus cycle with corresponding raising of error 
flags. 

BWAIT Flip-Flop - The BWAIT Flip-flop provides the clearing signal 
(K4-4 P CLR MSYN L) for the processor BUS, MSYN and MSYNA flip-flops. 
The flip-flop is set by activation of the IDLE flip-flop (print 
K4-2); this is usual for processor data bus cycles. The BWAIT 
flip-flop remains set during the Bus WAIT for the usual peripheral 
response (K4-6 B SSYN L) which restarts the CLK. Usual deactivation 
of BUS, MSYN and MSYNA flip-flops occurs at the end of the first 
microword (K4-2 (P1 + P3) H) when the BWAIT flip-flop is clocked 
to the zero state. Other clearing signals are combined in the 
pulse logic to accommodate situations where no peripheral response 
is made (NODAT error, microcontrol JAMUPP other bus errors) and 
processor INITializing. 

BC1 and BCD Flip-Flops - The Unibus Control signals are held in the 
BC1 and BCD flip-flop. The flip-flops are loaded from C1BUS and 
COBUS bits of UWORD by the K4-2 CLK BUS H signal (derived from 
BF BUS of UWORD). Modification of the data input for BCO is 
made for Byte Instructions (to change DATO operation to DATOB) and 
BIT or CMP or TST Instructions (to change DATIP operation to 
DATIP). Appropriate gates drive the Unibus with additional logic 
providing conditioning inputs to processor and processor options 
(KJ11-A especially) which respond through the processor to absolute 
Bus Addresses. 

5-63 



K4-S 

Print K4-S: BUS OWNERSHIP 

Provided on this print are the discrete flip-flops and combinational 
logic associated with the granting and acceptance of Unibus ownership 
by the KD11-A Processor. Processor ownership exists with the BBSY 
flag in the one state, and is necessary upon power up, console 
operation, processor data bus cycles, RESET instruction, power fail, 
and prior to release of bus ownership for Bus Requests. The 
processor usually controls the bus unless it has specifically given 
up control; the processor normally exerts bus ownership. 

The granting of bus ownership requires that peripheral requests for 
ownership are acquired by the processor in the appropriate flag 
flip-flops: the NPR flag for Non-Processor Requests; the BRPTR flag 
for Bus Request with Priority Request greater than Processor Status 
priority; and CBR flag for the console HALT switch. Clocking signals 
combining various inputs are necessary with proper sequencing of 
Unibus Bus Ownership signals (BUS SACK L, BUS NPG H.and 
the BUS BG (7:4) H) on the Unibus (see PDP-II Peripherals and 
Interfacing Handbook). 
The major clocks for priority determination and acquisitions of 
requests are K4-S CLK NPR Hand K4-S CLK PTRD H. Both clocks 
contain clocking signals with a BUS MSYN clock necessary for situations 
when the processor is inactive: no separate continuous clocking exists 
for the priority determination logic. 

The K4-S CLK NPR H signal also has clock inputs for Clock restart 
(K4-2 SET CLK L), data bus cycles beginnings (K2-7 BG BUS (1) H), 
BUT26 in Service flow, the deactivation of MSYN (K4-5 P MSYN H 
pulse) and CLK IR for OVerLAP situations. Independent of clocking 
the data input to the NPR flag provides zero data for power fail 
(K5-8 B AC LO L) and across DATIP operation. A DATIP flag flip-flop 
prevents the granting of bus control for Non-Processor Requests 
as the DATIP address location is still selected by the processor 
with the probability of a partial read/restore cycle in the 
peripheral. 

Clocking for the K4-5 eLK PTRD H also occurs for BUT26 in Service 
flow and for eLK IR for OVerLAP situations. Associated with this 
clock is the PTRD one-shot that delays the actual clocking of the 
BRPTR flag flip-flop until the comparison of peripheral Bus Requests 
priority levels can be made aqainst Processor Status priority levels 
(print K4-6). The result of that comparison is signal K4-6 BRQ H 
on the data input of the BRPTR flag. 

5-64 



K4-6 

Print K4-6: BUS RESPONSE 

Three types of BUS RESPONSE are provided by this print: the Bus 
Grant signals in response to Bus Requests; the SSYN and Bus Address 
selection of processor registers in response to processor or console 
bus cycles~ and the processor time-out flags for NO SACK and NODAT. 

The Bus Grant signals (BUS BG (7:4) H) are generated by comparison 
logic for the incoming Bus Request signals and the existing Processor 
Status signals. The results of the comparison are used in the BUS 
OWERSTP logic of print K4-5 to determine if the BRPTR flag should 
be enabled. When enabled, processor service of the flag results 
in the K4-5 GRANT BR H enabling signal to activate one of the 
BUS BG (7:4) H signals on the Unibus. 

Processor register response to absolute Bus Addresses is not completely 
specified by microprogram control. Bus Address decoding (K1-7 print) 
~nd Unibus Control decoding (K4-4 print) are combined to read or write 
these registers. Timing signals are provided for Unibus response 
(BUS SSYN L) and clocking of the registers (K4-6 PS (P PM BUS) H for 
example). Note that a read from a processor register usually results 
in data gated onto the Unibus~ a write to a processor register results 
in the data being available on the DMUX signals. The Scratch Pad 
Register (REG) does not respond to processor and console Bus Address 
references; it responds to console references and then under microprogram 
control. 

The time-out flags for NO SACK and NODATA provide a processor 
response when peripherals fail to respond. The NO SACK flag is set when 
peripherals granted bus ownership fail to respond; the NO DAT flag is 
set when data bus operation receive no SSYN response. In each case 
the time out duration is 15 microseconds. The service of the time-out 
flags differs. The NODAT flag results in microprogram interruption 
(JAMUPP) and a trap sequence. The NO SACK flag merely allows the 
processor to regain bus ownership and continue operation. 
Each time out may be disabled for maintenance operation. See the note 
on the print or details of Maintenance Module operation (Paragraph 7.3 
of this manual) . 

5-65 



5.7 M7235, STATUS, K5 MODULE 

The STATUS module contains miscellaneous combinational logic 
relating to processor status. This includes: 

Processor Status word with Priority bits for comparison 
to Bus Request, a Trace bit, and Condition eodes N,Z,V, and C. 

Branch Instruction implementation with comparison of the 
Condition Codes with IR decoding. 

Branch Micro Test (BUT) Decoding with discrete outputs 
as a function of specific microwords. 

Flag flip-flops for a variety of machine and error states 
that require unique servicing. 

B Constants decoding with Special Trap Markers (STPM) 
signals for Trap vectors. 

Console flags for START, BEGIN, and proper incrementation 
on double EXAMs and DEPs. 

Console Interface for the ADDRESS display and control inputs. 

Power Fail and Bus one-shots for proper sequence of 
bus signals. 

5-66 



KS-2 

KS-2 Print: PS(07:00) 

The Processor St.tus word consists of PS(07:00), with 
PS{07:0S) associated with the priority of machine operation. 
It is this portion of Processor Status that is compared 
agains the Bus Request signals to determine whether a 
Bus Request should be granted. These Processor Status bits 
are represented by discrete flip-flops and are loaded from 
the DMUX signals upon a specific LOAD Processor Status 
clock. Other bits of the Processor Status are the PS (T) bit 
and the Condition Codes. PS (T) is the Trace bit and its 
function is described in the Processor Handbook in detail. 
Loading of the Trace bit does not occur as a function of a 
processor reference to an absolute bus address. The Trace 
bit is implicitly altered only in RTI and RTT instructions 
and in trap sequences. 

The Condition Codes portion of the Processor Status word 
consists of the bits PS{N), PS{Z), PS{V), and PS{C). These 
bits are loaded from the DMUX upon a specific LOAD Processor 
Status clock from the processor, in addition to conditional 
inputs as a function of instruction operation and data results 
from those operations. The conditional inputs for PS{C) and 
PS{V) are already generated upon the IR DECODE module 
(print K3-9). The inputs for PS{Z) and PS{N) are generated by 
the combinational logic on this module. The major conditions 
of all these inputs are indicated in the Processor Handbook 
for each instruction. 

Other logic on the KS-2 print is the PASTA and PASTC flip-flops 
necessary for holding past A input (to the ALU) and past C 
(PS{C)) information for Condition Code operations. A multiplexer 
is used for the selection of input data (usually high byte or 
low byte for the PASTA flip-flop and other Condition Code 
logic (PS{N) and PASTB). Combinational logic is utilized in 
the generation of the Processor Status clocking signal with 
direct interaction occurring between the clock pulses 
(K4-2 PS{P1+P3)H), U WORD control (K2-6 SPS{2:0){1) H), address 
decoding (Kl-7 PS ADRS H), and instruction decoding (K3-6 
CC INSTR H). 

5-67 



K5-2 

K5-2 PS(07:05)(l) H - are the priority bits of the Processor 
Status Register and are compared against the Bus Request 
signals on the TIMING module (print K4-6). These flip-flops 
are loaded from the DMUX(07:05) lines when the Processor 
Status word is referenced by the processor or console with 
its absolute Bus Address. 

BUS RD (07:00) L - are the signals connecting the Processor 
Status Register to the internal processor Register Data bus. 
These signals allow the routing of the Processor Status word 
through the machine in trap sequences and Condition Code 
instructions. 

BUS D(07:00) L - are the Unibus signals that allow the 
Processor Status to respond to processor or console requests 
to its absolute bus address. 

K5-2 PS(T)(l) H - is the Trace bi~~f the Processor Status 
word and is used on the IR DECODE ~odule (print K3-7) to 
generate a branch to SERVICE (no RTT instruction present). 
Signals K3-7 TRACE Land K3-7 SERVICE L reflect this input 
with the appropriate flag flip-flop on the STATUS module 
(print K5-4) being set. The PS(T) bit is not loaded with the 
rest of the Processor Status word, it is implicit}y altered 
only upon RTI and RTT instructions and during trap sequences. 

K5-2 PS(N)(l) H - is the negative bit of the Condition Codes 
portion of the Processor Status word. It is loaded as a function 
of absolute bus address reference to the Processor Status or 
under microcontrol in instruction or trap operations. Input 
data for Condition Code operation comes from combinations of 
logic which selects upper or lower byte information. The signal 
is used in combinational logic generating the ALU control 
signal K3-8 ALUM H on the DATA PATHS module and in the branch 
instruction logic (K5-3 print). 

K5-2 PS(Z)(l) H - is the Zero bit of the Condition Codes portion 
of the Processor Status word. It is loaded as a function of 
absolute Bus Address reference to the Processor Status, or under 
microprogram control in instruction or trap operations. Input 
data for Condition Code operation consists simply of combinational 
logic to sense word or byte zeroing of the D register. The 
signal is used in the branch instruction logic (K5-3 print). 

5-68 



KS-2 

KS-2 PS(V)(l) H - is the oVerflow bit of the Condition Codes 
portion of the Processor Status word. It is loaded as a function 
of absolute bus address reference to Processor Status, or under 
microprogram control in instruction or trap operations. Input 
data for Condition Code operation is provided by K3-9 V DATA L 
from the IR DECODE module. The signal is used in the branch 
instruction logic (print KS-3). 

KS-2 PS(C)(l) H - is the Carry bit of the Condition Codes portion 
of the Processor Status word. It is loaded as a function of 
absolute bus address reference to Processor Status, or under 
microprogram control in instruction or trap operations. Input 
data for Condition Code operation is provided by K3-9 C DATA H 
from the IR DECODE module. The signal is used in the branch 
instruction logic (print KS-3), on the input mUltiplexer for 
D(C) (print K1-S), and in combinational logic for generation 
of signals K3-8 CINOO L, K3-9 VDATA L, and K3-9 CDATA H. 

KS-2 BUSRD FM PS H - gates the Processor Status word to the 
BUS register data lines for Condition Code instructions and 
for microcontro1 Select Processor Status (SPS) codes of 6 for 
trap sequences and console display. 

KS-2 N DATA L - is the input data to PS(N) and provides byte 
selected data (D1S(1) H or D07(1) H) to the combinational logic 
generating K3-9 V DATA L on the IR DECODE module. 

KS-2 LOAD PS L - is the enabling signal for the combinational 
logic on the data inputs of the Condition Codes to allow the 
DMUX data signals instead of Condition Codes inputs. The signal 
is used on this print and on the IR DECODE module (print K3-9). 

KS-2 PASTA (1) H - is a holding flip-flop for the most 
significant bit (word or byte) for the AIN input of the ALU. 
The signal is necessary in the calculation of Overflow data 
(K3-9 V DATA L); storage of the input is required because the 
Condition Code calculation occurs after the AIN input is removed. 

KS-2 PASTB H - is a simple gating of the most significant bit 
(word or byte) for the BIN input of the ALU. The signal is 
necessary to the calculation of overflow data (K3-9 V DATA L). 

5-69 



KS-2 

KS-2 PASTC (1) L - is a holding flip-flop for the past value 
of the PS(C) flip-flop. The signal is used in the combinational 
logic generating signal K3-9 V DATA L for SBC and DEC 
instructions, and in signal K3-9 C DATA H. 

'KS-2 SPS(02:00)=7 H - is a decoding of the Select Processor 
Status (SPS) code and is used in the KTll-D option. 

5-70 



KS-3 

KS-3 Print: BUT & BRANCH 

Two distinct sets of combinational logic exist on this print: 
Branch instruction logic for comparison of instruction decoding 
with Condition Codes; and Branch Micro Test (BUT) decoding of 
the microprogram field. 

KS-3 TRUE BR L - indicates that TRUE conditions specified by the 
instruction register for a BRanch instruction have been met by 
the Condition Codes. The signal, when active, provides BUBC 
signals (K3-S print) to flows and implement the 
instruction. 

KS-3 FALSE BR L - indicates that FALSE conditions specified by 
the Instruction Register for a BRanch instruction have been met 
by the Condition Codes. The signal, when active, provides BUBC 
signals to alter flows and implement the instruction. 

KS-3 BR INSTR L - is the decode of the Instruction Register 
for a BRanch INSTRuction. It is used in the BUBC signals 
(K3-4 print) for the INSTRI microbranch. 

BUT signals noted for this print are decoded from the Micro 
Branch Field (UBF) of the U WORD. These decoded signals are 
used throughout the processor as auxilliary timing signals 
unique to the microword in which a specific Branch Micro Test 
(BUT) is called. A table on the print correlates the numeric 
code of a BUT with its mnemonic function; BUTs that are 
decoded and used for auxilliary purposes (besides branching 
the microflow) are called "working BUTs". Flow diagram 
notations (D-FD-KDII-A-FD) indicate when and what these BUTs 
do. A usual function is to clear and set machine flag flip-flops 
such as those on STATUS module prints KS-4, KS-6, and KS-8. 
In these instances, the BUT signal acts as an enabling signal 
to a timing pulse. 

5-71 



KS-4 

KS-4 print: FLAGS 

Flag flip-flops for error conditions and machine sequencing 
are contained on this print. The logic discussion will treat 
with the interaction and function of each flag flip-flop 
instead of discussing output signals. 

Provided below, from top to bottom, is the sequence of service 
to the internal processor traps, external Interrupts, and HALT 
and WAIT. This order of sequence is effected by the interaction 
of the flag flip-flops and basic to understanding their operation. 

RUS ERROR Trap~ - Odd Address Fatal Stack Overflow (Red), 

Memory Management Violations to 250 (if KTII-D) 

HALT Instruction - Console Operation (and certain 

changes if KTII-D) 

TRAP Instructions - Illegal or Reserved Instructions, 

BPT, lOT, EMT, TRAP 

TRACE Trap - itT" bit of Processor status 

OVFL Trap - Warning (Yellow) Stack Overflow 

PWR FAIL Trap - Power down 

CONSOLE BUS REQUEST - Console operation after HALT switch 

UNIBUS BUS REQUEST - Peripheral requests compared with 

Processor Priority, usually an Interrupt. 

WAIT LOOP - LOoP on a WAIT instruction in IR until an 

Interrupt allows exit. A CONSOLE BUS REQUEST returns 

to this loop after being honored. 

5-72 



KS-4 

BERR Flag - the Bus ERRor flip-flop provides a flag for 
trap service upon the occurrence of a NO DAta or ODd address 
ERRor in a processor Unibus transfer. The flip-flop is clocked 
to the one state by the activation of the data inputs from 
NODAT flip-flop (on TIMING) or the ODd Address ERRor signal 
with the clocking signal K4-3 JAM UPP H (which also jams the 
microf1ow to a trap routine). The BERR flag output generates 
appropriate STPM constants for trap vectors and accomodates 
the ordered sequence of service for the various processor flags. 
This sequence is noted in the Processor Handbook and is 
repeated in the introduction to this print. 

Certain clearing signals are common to the BERR, TRAP, and 
INTR flag flip-flops. They are: the processor INITializing 
signal; the EXTernal Pulse CLeaR TRAP signal from the 
KEI1-E option; BUT 03 in TRP16 microword at microaddress 140 
in the trap sequence; and the establishment of a new stack 
at location 04 for a PoWeR DowN situation. Common clearing 
signals work for BERR, TRAP, and INTR flag flip-flops because 
their service is mutually exclusive. A BERR flag aborts the 
other two, TRAP service is due to instruction operation and 
INTR service occurs only after instruction operations. 

In addition to the common clearing signals, the BERR flag is 
cleared and held clear for console operation. This allows the 
bus error of NO DAta and ODd Address ERRor to occur without 
a trap sequence that would alter Processor Status, the Program 
Counter, or the Stack Pointer. No trap response to the bus 
error in console operation is considered the safe response. 
The JAM UPP signal does occur but the microflow is jammed to 
the console switch loop microflow. 

Normal sequential servicing of the BERR flag results in the 
BUT03 clearing the flag. The BERR is first priority and prohibits 
the clearing of lower order priority flag flip-flops during 
its trap service. 

5-73 



KS-4 

TRAP Flag - the TRAP flip-flop provides a flag for trap 
service in proper sequence for trap instructions (BPT, lOT, 
EMT, and TRAP). The flip-flop is clocked to a one state by 
the data input of a IR decode of a TRAP instruction with the 
clocking signal KS-6 P BUT37 H which occurs in the Fetch cycle. 
The micrologic branches to the trap sequence for service with 
appropriate STPM constants generated by the TRAP flag and the 
IR decoding. 

In addition to the common clearing signals noted under the 
BERR flag, the JAM UPP signal directly clears the TRAP flag. 
TRAP flag service is aborted if a JAM UPP signal occurs. 
Normal sequential servicing of the TRAP flag results in the 
BUT03 clearing the flag with lower priority flag flip-flops 
unaltered. 

INTR Flag - The INTeRrupt flip-flop is clocked to the one state 
by the data and clock input of K4-4 B INTR H signal (decoded 
from the Unibus) with the clocking signal requiring the non­
existence of the INTR flag, and the K4-2 SET CLK L signal for 
machine restart. (If the KMII-A Maintenance Module is present, 
Single Clock mode inhibits the K4-2 SET CLK L signal and the 
P3 signal is used to clock. Note that the INTR bus cycle waits 
for the next Single Clock before completion.) After ',INTR flag 
is set the micrologic branches to the trap sequence with the 
trap vector provided by the interrupting peripheral. Exactly 
the same clearing signals used for TRAP flag is used for the 
INTR flag. 

The INTR flag is used both within this module for the sequential 
clearing of flags and on print KS-6 for Slave SYNc response for 
the INTR bus cycle. Normal sequential clearing of this flag is 
done by BUT03 in the trap service. 

AWBY Flag - The AWait Bus BusY signal is utilized by the 
processor in its instruction flow and defines no trap service 
condition. It is set for specific U WORD BUS codes (CIBUS=O, 
COBUS=I, BGBUS=O) with .PI or P3 timing pulses. These codes are 
generated in the Service flow where the processor must have 
absolute control of the bus prior to granting the Bus Requests. 

5-74 



KS-4 

The AWBY flag is cleared by a PI or P3 pulse and the absence of 
the U WORD BUS codes previously used to set AWBY. This occurs 
directly after the machine restarts. Clearing also occurs for the 
processor INITializing signal and the operation of a new stack 
at location 04 upon PoWeR DowN. This last set of clearing signals 
is named KS-4 FLAG CLR H and is common to other flags. 

The output of the flip-flop is utilized directly on TIMING 
(print K4-2) to enable machine restart upon processor BBSY (1) H. 
It is also used on print K4-S to disable the SET CLK signal from 
clocking the NPR flag. 

BOVFLW Flag - the Basic OVerFLoW flag senses stack overflow 
error for red zone violations (K4-4 OVFLW ERR L) and for yellow 
zone violations (Kl-7 BOVFL or KJ-2 EOVFL if the KJll-A option 
is installed). The BOVFLW flip-flop is clocked to the one state 
if either error is present by the K4-4 CLK OVFLW H signal. Once 
set, a feedback signal to the data input allows further clocking 
without zeroing the flag. The output of the BOVFLW flag generates 
the STPM constants for the trap vector and provide for proper 
trap sequencing. 

A red zone stack error results in a JAM UPP signal so that the 
BERR, TRAP, and INTR flags are zeroed. The jam entry into the 
trap sequence provides for the clearing of the BOVFLW flag by 
BUTOI in the TRP20 microword at address 332. (Note that the 
T bit of new Processor Status should not be set so that the 
K3-7 TRACE L signal is not active.) 

A yellow zone stack error results in a normal microprogram flow 
with the BOVFLW flag being serviced in sequence; appropriate 
BUBC bits for a microbranch to Service are enabled on IR DECODE 
(print K3-3). The BOVFLW flag is still cleared in sequence by 
BUTOI in TRP20 microword but only if the higher priority flags 
(BERR, TRAP, or INTR) have been serviced. If they are not 
serviced, the microflow recycles through the trap sequence 
until service is complete. 

5-75 



KS-4 

PWRDN Flag - the PoWeR DowN flip-flop is clocked by the power 
fail synchronizing signal KS-8 CLK PWR DN H. The flag output 
alters microflow by enabling appropriate BUBC bits for a 
microbranch to Service on IR DECODE (print K3-3); STPM 
constants for the trap vector are also generated. Normal sequential 
service results in the flag being cleared by BUT04 of the TRP21 
microword at address 333. The higher priority flags (BERR, TRAP, 
INTR, and BOVFLW) must have been serviced or recycling through the 
trap sequence. 

If a lTAM UPP signal occurs when the PlvRDN flag is enabled, power 
fail takes precedence by clearing (KS-4 FLAG CLR H) the higher 
priority flags and using the new stack at location 04. 

STALL flag - the STALL flag inhibits the jam stack overflow 
checking and provides no trap service condition. The flip-flop 
is clocked to the one state for DoUBle Bus ERRor, red zone stack 
overflow (K4 - 4 OVFL~v ERR L) or PWRDN flag wi th the clocking signal 
K4-3 JAM UPP L. Feedback from i.tself prevents the flag from being 
lost on reclocking. The STALL flag directly inhibits the overflow 
checking logic on TIMING (print K4-4). The flag is cleared by 
processor INITialize signal and by BUT04 in TRP21 microword in the 
trap service. No inhibits exist on the BUT04 clearing of the SrALL 
flag as the error condition requiring a suspension of overflow 
checking is serviced in this first trap service. 

WAIT Flag - The WAIT flip-flop is clocked to the one state by 
the IR decode of the r~AIT instruction with the KS-4 P BUT37 L 
clocking signal during the Fetch cycle. The flag enables BUBC 
signals for a ~lAIT loop in the Service segment of the microflo\'ls. 

The flag is cleared by the common clearing siqnal already noted 
under the BERR flag for the BERR, TRAP and INTR flags .. Normal 
clearing of the flag occurs in the Bus Request service flow by 
BUT07 in SER10 microword at address 022. 

BRSV Flag - The Bus Request SerVice flag is set in the Service 
flows if a Bus Request requires service. The actual signal is 
BUT26 (in SER07 microword at address 020) and BRPTR flag active. 
The flag is used to enable asynchronous restarting signals to the 
CLK flip-flop (TIMING, print K4-2) after the Bus Request; the 
flag is also used to inhibit the clearing of BBSY and generate the 
K4-S PART GRANT BR H signal. The flag is cleared by the same signal 
used for WAIT clear with the BUT07 clearing in the Bus Request 
service flow being the most usual. 

5-76 



K5-4 

OVLAP Flag - The OVerLAP flag is clocked to the one state by the 
data input of K3-4 O"LAP INSTR H signal with the K5-4 P BUT37 L 
clocking signal during the Fetch cycle. Once set the flip-flop 
remains set (unless K5-4 FLAG CLR H occurs) for the instruction 
and provides proper microbranching information (BUBC signals of 
print K3-7) for a FETCH OVLAP entry to the Fetch flow sequence. 
The flag also enables the IDLE flip-flop (print K4-2) upon 
FETCH OVLAP entry and provides an additional PTR clock (print K4-5). 
The flag is reclocked during the next Fetch cycle and is clocked to 
one or zero depending upon the K3-4 OVLAP INSTR H signal. 

5-77 



K5-S 

Print K5-5: CONSTANTS 

Two sets of constants are generated on this print: STPM constants 
for trap vectors; and the B Constants used throughout the microflows. 
Tables note the constants and their use. 

KS-5 STPM (4,3,2) H are Special TraP Markers used for trap vectors. 
Input signals from IR decode and flag flip-flops provide the highest 
priority trap vector as the output STPM constant. The STPM signals 
input to the B Constant logic where they are enabled by a BC code 
of 00. The STPM constants and use are noted in the STPM TABLE. 

KS-5 SBC=10 L is a decoded signal of the Select B Constant microcode 
used on the KT11-D option. 

KS - 5 BC (1 5: 1 2, 1 0: 08) H 
KS-S BC 11 H 
KS-S BC (07:00) H - signals are the B Con~tants generated by the 
Select B Constant (SBC) microcode of the P WORD. Correlation 
between the SBC code, the B Constant and use can be found in the 
SBC TABLE. Of special interest are the jumpers (W2 thru W7) which 
allow a power up vector different from 24 to be used; the initial 
jumper selection, however, is for location 24. 

KS-S BCON (1+2) H is a conditi0nal B CONstant output which allows a 
B Constant of 1 to become 2 by providing a K3-8 CINOO L signal. The 
signal results from the SBC=3 code and is used throughout the flows 
in address calculations where the last andress incrementation may 
be byte or word orderen. A REG (X6+X7) inout forces the incrementation 
to 2 for byte incrementation on PC or SP REGisters. 

KS-5 SBC=16 L - is a decoded signal of the Select B Constant 
microcode used on the KT11-D option. 

5-78 



K5-6 

Print K5-6: CONSOLE 

The logic associated with this print provides the necessary flags 
and Basic MicroBranch Constants (BUBC's) for console operation. 
The logic discussion is ordered toward console operation and not 
the output signals. A functional description of console switch 
operation is presented in Chapter 3 of the PDP-11/40 System Manual. 

Console logic consists of the flag flip-flop necessary to service 
the control switches with associated combinational logic to set 
and clear the flags. Some addition logic is necessary to generate 
the Basic MicroBranch Constants (BUBC's) utilized in the console 
flow service for microbranches to the individual switch service 
flows. 

Activation of any console control switch (except ENABLE/HALT) 
results in the SWITCH flag flip-flop being clocked to the one 
state. This flag is sensed directly through the BUT MUX of print 
K3-2 in the console loop by BUT06 in CON04 microword at location 
026. The transition that clock the SWITCH flag also provided the 
signal levels necessary for the Basic Micro Branch Test 
(BUBC (2:0) (BUT30» to access the individual switch flow responses. 
Reference to the Flow Diagram (D-FD-KD11-A-FD) for console 
operation and BUT30 show the exclusive nature of the switch 
BUBC code: only one switch can be serviced. The SWITCH flag i~ 
cleared by the processor INITializing signal, by BUT37 in the 
Fetch cycle (for START), and by BUT3X (at RUT30 when switch 
type is being sensed). the PART P END signal indicates a cycle 
end pulse for a CL2 or CL3 only. 

Two switches, START and BEGIN require console flags. Each produces 
a non-filtered (contact bounce exists) INITializing signal upon console 
switch activation. Each clocks its flag flip-flop (and the SWITCH 
flag) to the one state as the switch is relea~ed. Both flag flip-flops 
then provide input to the BUBC logic for switch sensing; the BEGIN 
flag is also used for microbranching to sequence a START flow 
sequence after a LOAD ADRS flow sequence. The flags are each cleared 
by the processor INITializing signal, by BUT37 in the Fetch flow, or 
by BUT10 in the Start flow. 

The CONSL flag flip-flop is ·clocked to the one state upon entry into 
the console loop by BUT24 in CON12 microword at address 255 and by 
BUT06 in CON04 microword at address 026: both are in the console 
flow. The CONSL flag allows single instruction operation by inhibiting 
the HALT signal in the BUBC (BUT26) signal (print K3-7) in the 
Service flow. This allows the CONT switch one instruction Fetch before 
the HALT switch is serviced as a Console Bus Request. The CONSL flag 
also inhibits usual bus error responses by disabling logic for 
ODA ERR (print K4-4) and altering the JAM UPP microaddress (print K4-3) . 
Clocking for NPR's and BR's are also disabled (print K4-4). The 
flag is also used in the KT11-D option. The CONSL flag is clocked 
to the zero state by a BUT10 in the Start flow, by a BUT04 if BEGIN, 
and by a BUT26 in Service flow. -

5-79 



K5-6 

The EXAM and DEP Flags are essentially used for the same purpose. 
They provide automatic address incrementation for console operati.ons 
which are consecutive EXAM's or DEP's. The flags are clocked to the 
one state during the latter part of their respective flow sequences: 
EXAM flag is clocked by BUT04 and DADO (1) H; DEP flag is clocked by 
BUT03 and DADO (1) H. The outputs of the ORed together (K5-6 
CONSL INC H) and used in the B Constant for SBC=7. To prevent the 
incrementation when EXAM and DEP are directly intermixed the EXAM 
flag is zeroed at input to the DEP flow and the DEP flag 
is zeroed at the input to the EXAM flow: BUT03 and BUT04, respectively. 
Both flags are cleared upon entry in the console flow (BUT24) and in 
Service (BUT26) and in the START flow (BUT05). 

5-80 



K5-7 

Print K5-7: CABLES 

Two connectors are shown on this print. The KY11-D connector (J2) 
has associated logic to drive the ADDRESS display and accommodates 
the console control signals utilized on print K5-6. The other 
connector (J1) has limited capabilities which allow remote stop and 
start of the processor. This last connector is not used in the hasic 
KD11-A processor. 

5-81 



KS-8 

Print KS-8: BUS DELAYS 

Delay circuits associated with unibus and processor operation are 
shown on this print. Several delays sequence the BUS AC La Land 
BUS DC LO L signals of the Unibus for Dower fail operation. Another 
two delays provide a RESET instruction initializing signal and a 
RESET RESTART signal. Start up delays for processor operation are 
provided by the PWRUP INIT and POlVER RESTART. 

K5- 8 CLK PlVRDN H -' is the CLock PoWeR DowN clock signal to the 
PWRDN flag flip-flop on print K5-4. Necessary to this signal is the 
synchronizing LOWAC flip-flop; this flip-flop with its associated 
gating insures that no power fail indications (the activation of 
BUS AC LO L) is missed and none provides more than one clocking 
signal. Sensing of power failure occurs immediately unless the 
DELAY POWER DOWN delay is still active after the power up situation. 
Some of the other power fail delay interact (AC La delay) but these 
are mostly ordered toward the proper sequencing of BUS AC La Land 
BUS DC LO L signals on the Unibus. Typical waveforms are shown in 
the table USUAL POWER FAIL WAVEFORMS. 

K5-8 PlVR RESTART H - signal initiates a JA~ UPP to begin microprogram 
sequences (print K4-3) approximately 70 milliseconds after the 
deactivation of BUS AC LO L. The PlVR flip-flop associated with the 
POWER RESTART delay prevents the one shot from firing unless a power 
up situation exist. Variations in BUS AC LO L for power down are 
ignored. 

K5-8 P END RESET L - signal provides an asynchronous pulse restart 
signal to the CLK flip-flop (print K4-2) for the RESET instruction. 
This restart signal occurs approximately 70 milliseconds after the 
halt in the RESET flow at RST01 microword at address 025 containing 
a BUT02. 

KS-8 RESET RESTART - signal indicates the status of the 70 millisecond 
RESET RESTART one shot. 

K5-8 INIT + RESET H - signal provides a test point for the signal 
producing the BUS INIT signal. 

BUS INIT L - is the Unibus INITializing signal consisting of a RESET 
initialize and the processor initialize (INIT 1). The signal is used 
by Unibus peripherals. 

5-82 



K5-8 INIT 1 L 
KS-8 INIT 2 L 

KS-8 

K5-8 INIT H - are signals for processor INITializing of itself and 
the system. The signal consists of START and BEGIN switch initialize, 
direct BUS DC LO L initialize, and a PWRUP INIT one-shot initialize 
which becomes active at the deactivation of BUS DC LO L. The signnl 
is used by the processor control flip-flops and all Unibu? peripherals. 

K5-8 PWRUP INIT L - signal is approximately 20 milliseconds and occurs 
upon the deactivation of BUS DC LO L. The signal initiates a JM1 UPP 
in the micro control (print K4-3) to location 377 which contains all 
zeros. 

K5-8 B DC LO H - is an identification signal for the buffered 
BUS DC LO L signal. 

K5-8 B DC LO L - is the buffered BUS DC LO L signal and is used to 
directly set the IDLE flip-flop on print K4-2. 

K5-8 B AC LO L - is the buffered BUS AC LO L signal used as a 
data input to the JPUP flip-flop and as an inhibit to the clocking 
of NPR's. 

BUS DC LO L - is the Unibus signal indicating low DC voltages. See 
table of USUAL PO~vER FAIL WAVEFORMS ~ 

BUS AC LO L - is the Unibus signal indicating low AC voltages. See 
table of USUAL POWER FAIL WAVEFORt1S. 

5-83 





6 KYll-D PROGRAMMER'S CONSOLE 

6.1 KYll-D CONSOLE 

The KYll-D Programmer's Console consists of the KYll-D 

Console Board (5409701) and two cables (BC08R-06) which 

are used to interconnect the console to the KDll-A processor. 

Both power and logic signals are provided by these cables 

that connect to the DATA PATHS (M723l) board and the STATUS 

(M7235) board. Operating instructions for the console are 

included in the PDP-ll/40 System Manual. 

6.2 KYll-D CONSOLE BOARD 

The KYll-D Console board shown on print number D-CS-540970l-0-l 

consists of displays with data and control switch inputs. 

6-1 



6.2.1 PRINT KYD-2, DISPLAY 

The display on the console consists simply of Light Emitting 

Diodes (LED's) with current limiting resistors; the drivers 

for these displays are located on the DATA PATHS and STATUS 

boards of the KDll-A processor. Input signals from the 

processor are shown at the left of the displays; console 

notation for the displays is shown in parenthesis near the 

diode symbol. 

Connectors (Jl,J2) for processor interconnection are also 

shown on this print. These connectors provide for the display 

signals from the processor as well as the Switch Register data 

and control signals to the processor. 

6.2.2 PRINT KYD-3, SWITCHES 

The data switch inputs from the Switch Register are shown at 

the right. Simple resistor inputs are used. The console functions 

are shown in parenthesis (SR09, for instance) with the connector 

signals at the right. 

6-2 



The control switches have Set-Reset flip-flops to eliminate 

contact bounce,in addition to a driving gate. The console 

functions are noted in parenthesis, the connector signals are 

at the right. 

An additional switch for Off, Power, Console Lock is also 

shown. Its connectors (J3,J4) consist of two quick disconnect 

tabs to allow direct interconnection to the Power Control Unit. 

6.3 CABLES 

The BC08R-06 cables are interconnected to the KYll-D console 

(Jl,J2) and the M723l and M7235 modules according to the 

instructions on the printed circuit boards and the circuit 

schematics. Orientation of the shield is specified, and required 

for proper interconnection. Connection for power control to 

J3 and J4 is simple as this connector provides only a switch 

closure, either interconnection of two wires is acceptable. 

6-3 





7 PROCESSOR OPTIONS 

7.1 SCOPE 

This chapter provides a complete description of three of the 

internal processor options that may be used with the KDII-A. 

These options are: 

a. KJII-A Stack Limit 
Register 

b. ro~ll-A Maintenance 
Console 

c. KWII-L Line Frequency 
Clock 

In the basic machine, a fixed 
boundary is provided to prevent 
stacks from expanding into locations 
containing other information. The 
stack limit register provides a 
programmable boundary with 
both warning (yellow) and fatal 
(red) stack error indications. 

This options provides indicators 
and switches for manually 
operating the system and 
monitoring status of key signals 
during maintenance procedures. 

This option references real 
intervals and generates a 
repetitive interrupt request to 
the processor. The rate of 
interrupt is derived from the 
ac line frequency. 

7-1 



Processor options differ from bus options in two respects: they 

are physically mounted within the processor, and they interact 

with the processor without necessarily using the Unibus. 

F'o~r example, for many ~proce ssor' op tions, jumpers are 

often added or removed from the processor modules so that the 

option is logically connected directly to the processor. 

Other processor options are available for use with the 

KDll-A. Because of their size and relative complexity, they 

are covered in other manuals. The KEIl-E Extended Instruction 

Set option and KEll-F Floating Instruction Set option are both 

covered in the KEII Instruction Set Options manual. The KTll-D 

Memory Management option is covered in the KTII-D Memory 

Management Option manual. 

7-2 



7.2 KJII-A STACK LIMIT REGISTER 

The KDII-J\ processor is capable of performing hardware stack 

operations. Because the number of locations occupied by a 

stack is unpredictable, some form of protection must be 

provided to prevent the stack from expanding into locations 

containing other in.formation. In the basic machine, this 

protection is provided by a fixed boundary. The KJIl-A 

Stack Limit Register provides a programmable boundary. 

The KJIl-A consists of a single addressable register, 

accessible to both the console and the processor, that 

is used to change the stack limit and to provide warning 

(yellow zone violation) and error (red zone violation) 

indications for the stack. The stack limit register is an 

8-bit register (high-order byte) that can be addressed either 

as a high-order byte (777775) or as a full word (777774). 

During operation, the register is loaded with an address 

signifying the lower limit o.f the stack (stack violations 

occur at or below this limit). During subsequent stack 

pointer related bus operations (DATO, DATOB, and DATIP), if 

the address of the bus operation is less than the contents 

of the stack limit register, an error condition exists. 

7-3 



If the difference is less than or equal to 16 words, a yellow 

zone violation occurs. The operations that caused the yellow 

zone violation a.re completed and then a bus error trap occurs. 

This error trap, which itself uses the stack, executes without 

causing an additional violation. 

If the space between the bus address and the stack limit 

register is greater than 16 words, then a red zone violation 

occurs and the operation causing the error is aborted. The 

stack is repositioned and a bus error trap occurs; that is, 

the old PS and PC are pushed into locations 2 and 0 and the 

new PC and PS are taken from locations 4 and 6. A red zone 

violation is a fatal stack error. Other fatal stack errors 

are odd stack or non-existent stack. Note that these two 

stack error conditions exist in the basic KDll-A processor; 

however, in this case the stack limit is fixed at memory 

location 40°0 -

The KJII-A Stack Limit Register Option is a single-height 

module that plugs into slot E03 of the processor. It requires 

the movement or removal of the following jumpers on KD11-A 

processor modules. 

Module Print Jumper New Position 
M7231 KI-7 W2 Connect W2 betvleen module pin E04H2 and pin 

06 of E63. 

M7234 K4-4 WI Connect WI 
10 of E16. 

between module pin B07F2 and pin 

M7235 K5-4 WI Connect WI between module pin D06R2 and pin 
01 of E51. 

7-4 



7.2.1 Functional Description 

The Stack Limit Register logic determines if a particular 

address is within valid limits or if it is in the yellow 

(warning) or red (error) zone of the stack. The logic first 

compares the high-order byte of the address with the value 

in the Stack Limit Register. If the high-order byte is more 

than the Stack Limit Register value, then the address is valid 

and not infringing on the stack. If, however, the high-order 

byte of the address and the contents of the Stack Limit Register 

are equal, then the address is not valid and the logic must 

determine which type of violation (yellow or red) has occurred. 

The logic then examines bits~7:05>Of the low-order byte of 

the address to determine if the violation is a yellow zone 

or red zone violation. If the high-order byte of the address 

is less than the Stack Limit Register value, a red zone violation 

has occurred. 

The comparison of the high-order byte of t~ address and the 

contents of the Stack Limit Register is shown in Table 7-1. 

7-5 



Table 7-1 

Comparison of Address and SLR 

EXAMPLE 1 - VALID ADDRESS (GREATER THAN) 

Bit Position 
(high byte) l2. lli 13 12 11 10 09 08 

Bus Address o 1 1 o 1 

SLR C onten ts o 1 1 o 1 

EXAMPLE 2 INVALID ADDRESS (EQUAL) 

Bus Address o 1 1 o 1 

SLR Contents o 1 1 o 1 

EXAMPLE 3 - INVALID ADDRESS (LESS THAN) 

Bus Address o 

SLR Contents o 

1 

1 

1 0 

1 0 

1 

1 

1 o o 

o 1 o 

o 1 o 

o 1 o 

o 1 o 

1 0 o 

Octal Value 

0660 

0650 

0650 

0650 

0650 

0660 

7-6 



For the situation where the upper bytes of the Stack Limit 

Register and the Bus Address are equal, it is necessary only to 

monitor the value of bits (07:05) to determine if a red or 

yellow zone violation has occurred. If all three of these bits 

are set, then the value of the low-order byte must be 

somewhere in the range of 340 to 377 (20 octal or 16 decimal 

word locations) which is a yellow zone violation. If anyone 

of the bits is not set, then the highest possible address 

would be 337 which is the upper limit of the red zone. 

Table 7-2 summarizes the method of monitoring the low-order 

byte to determine whether a red or yellow zone violation 

is present. 

7-7 



Table 7-2 

Detecting Type of Violation 

High-Order Byte Low-Order Byte 
Bus 

Address 15. lli D 12 11:. 10 09 08 07 06 .92 Qk Ql 02 01 00 

421 ~l 0 0 0 1 0 0 0 
,..../ 

More than SLR-/ 
.,. ......... 

............ 

"" . ", . 
J-t-O O '~1 0 0 0 0 0 0 0 

377 0 1 1 1 1 1 1 1 
~ 

Equal to SLR; (' 
bits 7,6,5 are 
all set , 

" 

'\ , . ~ 
340 0 1 1 1 0 0 0 0 

337 0 1 1 0 1 1 1 1 

Equal to SLR; ~ 
bits 7,6,5 are ~ 
not all set -- " . 

000 ~O 0 0 0 0 0 0 0 

NOTES: 1. In above example, SLR is loaded with 000. 

2. In all cases, highest yellow zone address must 
end in either 377 or 777. 

3. In all cases, highest red zone address must 
end in either 337 or 737. 

1 

VALID 

OJ 

11 
YELLOW 

oj 
1\ 

~ RED 
\ 

oj 

7-8 



7.2.2 Detailed Description 

The stack limit register logic is shown on print D-CS-M7237-0-1. 

The prime elements of this logic are two 74175 10 circuits 

(D type registers) and two 7485 10 circuits (4-bit comparators). 

The high byte of the Stack Limit Register is loaded by a 

Unibus reference by the processor to the SLR Bus Address. 

The processor decodes this address and routes the data through 

the DMUX to the Stack Limit Register logic, providing a proper 

SSYN signal on the Unibus. These DMUX signals are loaded through 

the 5384 gates to the 74175 registers with the processor providing 

the clocking signals. The clock input is true when the Stack 

Limit Register has been selected for use (ADRS 777774 H is 

true) and is being loaded (DOUT HIGH H is true). Under these 

conditions, the register is clocked, storing the desired 

value, and the value of the Stack Limit Register is applied 

to the input lines of the comparators. The 8881 gates provide 

a Unibus output so that the Stack Limit Register can be read. 

A processor reference to the SLR address with a DATO or DATOB 

bus cycle enables the 8881 gates. Again, the basic KDI1-A 

processor provides all Unibus signals in addition to the 

gating signals. 

7-9 



The two comparator Ies function as a single 8-bit comparator 

circuit. The 8-bit byte that indicates the value of the Stack 

Limit Register is the A input to the comparator. When the next 

stack pointer related to bus operation occurs, the high byte of 

the Bus Address Re~ister (which indicates the address of the 

bus operation being performed) is applied as the B input to the 

comparator circuit. 

If A(B, indicating that the bus operation is not infringing 

on the stack because the bus address is higher than the stack 

limit value, no action occurs. 

If A=B, indicating that either a yellow (warning) or red (fatal) 

stack error exists because the stack limit value and the high 

byte of the bus address are identical. In this case (A=B), bits 

07 t~rough 05 are examined by the processor address decoding 

logic. If all three of these bits are set, then Kl-7 BA(07:0S)=1 L 

is true and gates are enabled and KJ-2 EOVFLW L indicates a 

yellow zone violation. This signal also sets the V bit Condition 

Code in the Processor Status word. Note that one line on the gate 

that produces KJ2 EOVFLW L is tied to +SV. When the KTII-D 

Memory Management option is installed, that fnput is used to 

inhibit all overflow conditions in user mode. 

7-10 



If anyone of the Bus Address bits 07 through 05 is not set, 

then the signa 1 Kl-7 BA (07 :05) =1 L 'is high and qua lifies an 

AND gate for KJ-2 OOVFLSTOP 11, t~lereby indicating a red zone 

violation. 

If A B, indicating that the bus operation is infginging on 

the stack because the bus address is lower than the stack 

limit value, then a red zone violation occurs and the logic 

produces KJ-2 EOVFL STOP H which is used by the processor 

to provide appropriate service of the error. 

7-11 



7.3 KMll-A MAINTENANCE CONSOLE 

The KMll-A Maintenance Console (also referred to as the 

maintenance module) provides the user with a means 

of manually operating the system and monitoring machine states 

during maintenance operations. 

The maintenance console itself contains four switches and 

28 indicators that monitor various signals within the 

processor. When an indicator is lit, it means that the 

associated logic level is high. An overlay can be attached 

to the module to indicate what signals are being monitored. 

This overlay is necessary because the console is designed 

as a general-purpose device and can be used, with 

different overlays, in many PDP-II devices. The specific functions 

monitored by the console depend on the logic signals wired 

to the device. 

If the maintenance console is to be used for monitoring 

KDIl-A processor operation, then the KDII-A overlay (Figure 7-1) 

is used and the module is inserted into processor slot FOI. 

The functions controlled by the switches and monitored by 

the indicators are listed in Table 7-3 . 

7-12 



If the console is to be used for monitoring operation of the 

KTll-D Memory Management Option and/or the KEll-E Extended 

Instruction Set and KEll-F Floating Instruction Set Options, 

then the KTll-D, KEll-E,F overlay (Figure 7-a) is used and 

the module is inserted into processor slot EOl.In this case, 

the 16 indicators at the end of the overlay are used for 

the KTll-D functions and the 12 indicators near the 

switches are used for the KEIl-E,F functions. Note that 

none of the switches are operational ~hen the console is used 

for this purpose. The functions monitored by the indicators 

are listed in Table 7-4 and must be correlated with the 

i.ll.~;·::rmetion in specific microwords of the FlotrJ Diagram~ 

7-13 



PUff put, ,utt BU" 9\) " '\)~t C 
C- '3 0 '- ~ 0 

pu~~ P\l" putt ~\)Vr "Upp &UfP ~ (fil ... 
q L\ , '1 "\ , V tl\S,.op .c 

• 'UVP fup1> rut' 1!\)~' ,UP, ~u,' -Z 
.,.. 

~ s "" I 5 ~ ~ ... ~ ... -~ 
MC\..~ ~(.\..~ 

T~Af S~~N i"'f5N T N £N~. 

Fi gure 7 - 1 KDl1- A Maintenance Cons 01 e Overlay 

(A-ss-5509081-0-12) 

peA "e ~ '6A 1>8~ 
I\~ t)Rao EtS 

'S- \~ ~ f- {c) 

'8~ tell\- ,e~ ,e~ E.C\W 
1>((6' 

£,~ 

1\. I?> \0 ? 00 (\I) .... 
'''~ 

~.,.. ,~~ peA t~'P ~SR EPS f:)w 
\'1 '''t I' I \)M~L 00 (z.) •• --

~~ ~()tI\ t\ot' t\o~ ~O~ E~~ ~'l t.ts 
A e e- n O\l~\. 0\ (~) 

Figure 7- 2 KTIl-D, KEll-E,F Maintenance Console Overlay 

(A-ss-550 9081-0 -13) 

7-14 



pontrol or 
Indicator 

Pupp(8:0) 

BUPP(8:0) 

TRAP 

SSYN 

MSYN 

T 

C 

v 

z 

N 

Table 7-3 

KMII-A Controls and Indicators for KDIl-A Overlay 

Indication (when lit) 
Print Showing 
Signal Origin 

Indicates the Previous Microprogram 
Pointer (PUPP). These nine indicators 
represent a three digit octal word 
from 000 to 377. These indicators are 
the ROM address of the present U WORD. 

K2-2, K2-3 

Indicates the Buffered output of the 
MicroProgram Pointer (UPP) register. 
In effect, displays the address of the 
next U WORD (includes branching). 

K2-2, K2-3 

Indicates that the TRAP signal is 
present. 

Unibus Slave SYNc (SSYN) is present. 

Unibus Master SYNc (MSYN) is present. 

T bit of the Processor Status word is 
present. This bit is used in program 
debugging and results in a trap 
sequence. 

K3 

K4-6 

K4-4 
K5-2 

Carry bit of the processor status ~ord K5-2 
condition code is ~resent (previous 
operation resulted in a car~y from the 
most significant bit) • 

Overflow hit of the processor status word K5-2 
condition code (operation resulted in 
arithmetic overfl;w). 

Zero bit of the processor status word K5-2 
condition code i~ nresent (result of 
operation was zero~. 

Neqative bit of the processor status word K5-2 
condition code is present (result of 
operation was negative). 

7-15 



Control or 
Indicator 

MCLK ENAB 

MCLK 

MSTOP 

Table 7-3 
(continued) 

Indication (when lit) 

When set to on (in direction of arrow) this 
switch prevents the automatic reclocking of the CLK 
flip-flop on TIMING(K4-2) print. The asynchronous 
restart of the CLK after bus cycles is also inhibited. 
The machine halts after each microword, and during bus 
cycles (including IN~R).~h~ IDLE" flip-flop is not affected. 

This spring-loaded switch, (when moved toward 
the arrow) clocks the MCLK flip-flop on 
TIMING (K4-2) print and provides the timing 
pulses for the present microword. The user 
can follow the Flow Diagrams one microword 
at a time (Chapter 4 of this manual) to 
determine the proper indications on the 
maintenance module and the programmer's 
console. Use of this Maintenance Clock is 
considered to be Single Clock operation. 

This switch is used to examine a specific 
microword in a program. the address of the 
microword to be examined is set into the 
programmer's console Switc~ Register and 
MSTOP is set to on (toward arrow). The 
program is then started in a normal manner 
and continues running until it reaches 
the microword address that has been set into 
the Switch Register. At that time, the 
Kl-9 UPP MATCH H signal loads the IDLE 
flip-flop of TIMING (print K4-2) to a ONE 
causing a machine halt. MCLK can continue 
operation. Note that MSTOP can only be used 
at the machine speed if the previous 
microword is of a CL2 or CL3 length. A CLI 
word does not allow the UPP MATCH logic 
sufficient time for comparison. If single clock 
operation is being used, all cycle lengths may be used. 

7-16 



'rable 7-4 

KMII-A Indicators for KTIl-D and KEll-E,"F' Overlay 

Indicator 

* P BA ( 15 : 06) 

* ROH A, ROn B 

* ROn c 

* ROM D 

Indication (\',Then lit) 
Print Sho':.ving 
Signal Origin 

Indicates a logic 1 in the associated 
bit of the physical bus address. Note 
that the phYsical bus address is the 
address fran the KTl1-D and may be 
different than the address in the bus 
address register of the processor. 

These t\'lO lights form a pattern to 
indicate the appropriate mode and 
the space to be used on a memory 
access. The pattern is listed be10H. 
A 0 indicates the light is off; a 
1 indicates it is lit. 

ROH A ROJ·1 

0 0 
0 1 
1 0 

1 1 

B 

current mode 
temporarv mode 
r1TPI/n, previous mode 

or 
not MTPI/D, current mode 

HFPI/D, previous mode 
or 

not !'~FT)I/D, current mode 

Indicates presence of R01'.·1 bi t C Vlhich 
is used to enable clocking of PS «(1.5 : 111) 
current mode into PS (13: l~>previous r~1oc1e 
for future controlled'acces~ and clocking 
of T<15:14>. 

Indicates pres~~ce of ROM bit D which 
is used in t~! junction to the final 
bus cycle of t··~~ I(Dl1 instructions for 
relocation in destination mode only. 

KT-4 

KT-2 

I<T-2 

KT-2. 

* These indicators are used only Hith the KTI1-D I·1emory nanagement O'ntion; 
the remaining indicators are used with the KE11-E EIS and the KEII-F FIS 
Options. 

7-17 



Indicator 

B15 

ECIN 00 

EXP UUFL 

EXP OVFL 

DROO 

DR09 

MSROO 

l-1SROl 

Print Sho':.ving 
Indication (when lit) Signal Origin 

When lit, indicates that the first division Kl-5 
step is an add function; if not lit, it 
indicates a subtract function. 

Indicates an external carry into the KE-5 
arithmetic logic unit (ALU) 

Indicates that there is an underflow condition 
in the exponent as a result of the operation. 

Indicates that an exponent overflow condition 
exists. 

This indicator is used in conjunction with 
the BIS indicator and the BPS (e) indicator. 
Vlhen used \<1i th the B15 indicator, it provides 
one of the four indications listed below. 
For use with the EPS (e) indicator, refer 
to EPS (e). 

DRoa B15 

0 0 addition step in divide loop 
0 1 subtraction step in divide loop 
1 0 same as 01 
1 1 same as 00 

Used as a test for normalization (see flo'\4Js) 

KF-4 

KF-4 

KE-2 

KE-2 

tfuen Ii t, indicates a subtraction operation in KF-2 
the addition routine of the floating divide 
loop. When off, indicates an addition operation. 

vllien lit, indicates an addition in the floating KF-2 
multiply routine. hrJ1en off, indicates a shift. 

7-18 



Indicator 

EPS (C) 

EPS (V) 

EPS (Z) 

EPS (N) 

Indication (when lit) 

Carry bit of the processor status word 
associated with the EIS option. In 
addition, is used with DROO bit to 
indicate the following: 

EPS(C) DROO 

0 a shift multipler 
0 1 add function 
1 0 subtract function 
1 1 same as 00 

Overflov.7 bit of the EIS processor 
status \vord. 

Zero bit of the EIS processor 
status word. 

Negative ~it of th~ EIS processor 
status '\'lord. 

Print Showing 
Signal Origin 

KE-6 

KE-6 

KE-6 

KE-6 

7-19 



7.3.1 Functional Description 

The KMIl-A maintenance console consists of 28 indicator lights, 

four control switches, control switch logic, and 28 indicator 

driver circuits mounted on a 2-module set. 

The 28 indicator driver circuits provide a low output level 

(activating the lamps) when a high logic level is the 

input. The driving circuits have a high input impedance 

and can be used on fully loaded outputs. 

The four control switches, and associated control switch 

logic, initiate logic sequences and conditions in the 

unit tested by generating three key logic signals (switches 

32, S3, and S4) with a grounding control signal (31). 

Switches S2 and s4 are normally used for clock enable 

and clock signals, respectively. 

7-20 



7.3.2 Physical Description 

The KMll-A maintenance console is contained on two 

modules: maintenance board I (W130 module) and maintenance 

board 2 (W131 module). The W130 module contains the 28 

indicator driver circuits and connects the control switch 

signals, and +5v between the unit under test and the 

Wl31 module. The Wl31 module contains the indicator lights, 

the control switches, and the control switch logic. ~he 

maintenance console is shown on engineering drawing 

D-BS-KMlI-0-MB. The three sheets of this drawing are labled 

KM-l, KM-2, and KM-3. The latter designations are used for 

the remainder of this discussion. 

The Wl31 module plugs into the W130 module which in turn plugs 

into the unit under test. Pin and signal designations for the 

W131 connector are shown on drawing KM-3. 

7-21 



7.3.3 Configurations 

Because of the number of functions to be monitored, some 

PDP-ll units have two slots ror use with the KMII-A. In 

theRe instances, the KMII-A C8.n be used in one slot or 

the other, depending on what is being monitored; or, two 

KMII-A consoles can be used so that all functions can be 

monitored simultaneously. Table 7-5 lists PDP-II units 

tested and includes the number of available slots. 

Power 

The KMII-A receives two voltages from the unit under test. 

The +5V power is applied at pin A2 of the W130 connector 

and is used to drive the Wl3l control switch logic. Nominal 

+8v power is applied at pin BI of the Wl30 connector and 

provides power to the indicator lights. Each indicator 

driver circuit controls the voltage to its respective 

indicator light. The driver circuits are driven by the 

logic power of the signals being monitored. 

Note that no +8v power is available in tne .KDII-A processor 

backplane so that +5v power is used for the indicator lights. 

7-22 



Table 7-5 
KMIl-A Configurations 

Available 
Unit Tested Slots Remarks 

KDII-A Processor 2 one slot used for KDIl-A 
one slot used for KTI1, 
KEll-E,F 

KTII-D Memory Management 0 uses KDll-A processor slot 
shares overlay with KEll 

KEll-E,F Extended Instruction Sets 0 uses KDll-A processor slot 
shares overlay with KTII 

TMII DECmagtape Control I peri.pheral controller 

DTII Bus Switch 

RKII-C Moving Head Disk 
Drive Control 

I 

2 peripheral controller 
overlays labled: 

RKIl-l 
RKll-2 

7-23 



7.4 KWII-L LINE FREQUENCY CLOCK 

The KWII-L Line Frequency Clock is a PDP-ll/4.0 processor 

option that provides a method of referencing real intervals~ 

This option genera.tes a repetitive interrupt request to the 

processor. The rate of interrupt is derived from the ac line 

frequency, either 50 Hz or 60 Hz. The accuracy of the clock 

period, therefore, is dependent on the accuracy of tb~s 

frequency source. 

The KWII-L Line Frequency Clock can be operated in either 

an interrupt or non-interrupt mode. When the interrupt mode 

is used, the clock option interrupts the processor each time 

it receives a pulse from the line frequency source. In the 

non-interrupt mode, the clock option functions as a program 

swi tch that the'c'processor can ei ther examine or ignore. Mode 

selection is ma.de by the program. 

The KWII-L Line Frequency Clock is installed in slot F03 

of the KDll-A Processor backpanel. Installation requires 

that a backpanel wipe between pins F03R2 and F03V2 be 

removed. This places the KWll-L option in the BG6H signal line. 

7-24 



7.4.1 General Description 

The KWll-L Line Frequency Clock is a single-height module 

containing an address selector, threshold detector~ interrupt 

control, and a 2-bit status Register. A block diagram of the 

clock is shown in Figure 7-3 with details on prints D-BS-KWII-L-O-l 

and D-CS-M787-0-l of the PDP-ll/40 System Engineerning Drawings. 

7-25 



A 
ADDRESS 

A{17:01) SELECTOR 
C1 
MSYN 
SSYN 

U 
N STATUS I -~ 

B 0(06:07) REGISTER I U INIT 
S 

~~E~UENCY-+ THRESHOLD 
D~TECTOR 

INTERRUPT I 
BR6 CONTROL 

BG6 IN 
BG6 OUT 
SACK 
INTR 
eesy 
006 

V~SSYN 11-019 

Figure 7-3 KWII-L Block Diagram 

7-26 



When the KWII-L is in i.nterrupt mode, the interrupt control 

section of the option provides the circuits and logic 

required to make bus requests, gain bus control, and generate 

interrupts. Whenever the threshold detector provides a pulse 

from the line frequency source, the interrupt control section 

of the clock initiates a bus request on priority level 6 

(BR6) which is the priority level of the clock. 

The priority logic in the processor recognizes the request 

and issues a bus grant signal, if the clock is the highest 

priority device requesting an interrupt. The KWII-L responds 

with a selection ackno-v-rledge (SACK) signal. When the requirements 

for becoming bus master have been fulfilled, the clock asserts 

bus busy (BBSY), an interrupt (INTR) signal, and an interrupt 

vector address of 100. The processor generates a slave sync 

(SSYN) signal, then responds to the interrupt with an interrupt 

service routine. The interrupt control section of the clock then 

enters a rest state until the next initialization. 

The 2-bit status register in the clock consists of bits 6 and 7 

on the data bus line. When bit 6 is set, the clock is in the 

interrupt mode; when it is clear, the clock is in the non-interrupt 

mode. Bit 6 is set or cleared by a processor DATO to the clock; 

it is also cleared by processor INIT. Bit 7 is set by a line 

clock pulse from the threshold detector or by a processor INIJr; 

it is cleared by any processor DATO to the clock. 

7-27 



Bit 7 can be used by the processor to determine which device 

caused the interrupt. The interrupt service ro'utine should 

include a DATI which reads the interrupt monitor bit (bit 7) 

to serve as a partial check on the origin of the interrupt 

vector. Thus, if bit 7 is clear, there is an indication to 

the processor that the clock did not request the interrupt. 

In the non-interrupt mode, the clock performs a more passive 

function by serving as a program switch that the processor 

can examine or ignore. The interrupt control section is 

disabled so that the clock cannot assert a bus request (BR6) 

a.nd, therefore, cannot go into an interrupt sequence. A 

programmed DATO must be used to return the clock to the 

interrupt mode; prograrn":'''1ed DATIs must be used to examine the 

sta.tus of the clock. In the non-interrupt mode, the clock is 

controlled by programmed instructions from the processo:~. 

7-28 



7.4.2 Address Selector 

The address selector logic o~ the KWll-L clock is permanently 

wired to respond to incoming address 777546. Input signals 

consist of address, BUS A(17:00); BUS Control, BUS Cl; and 

BUS MSYN (drawing D-BS-KWll-L-O). BUS ADO, which is used 

for word or byte control, is not brought into the clock 

because the KWll-L deals only with full 16-bit words. When 

the address is decoded by the address selector and BUS MSYN 

is active, gate E3 output goes high (drawing D-BS-KWIl-L-Ol), 

thereby signalling that the clock has been addressed. 

7-29 



Interrupt Control 

The interrupt control section of the KWII-L clock provides 

the necessary logic for issuing bus requests, gaining bus 

control, and generating interrupts. The interrupt logic 

uses three flip-flops: INTERRUPT REQUEST, FFI, and FF2 

(Figure 7-4). Table 7-6 lists the settings of these flip-flops 

in relation to the bus states and the signals asserted. 

vJhen the clock is not issuing an interrupt request, all three 

flip-flops are in the 0 state and no signals are asserted on 

the bus. rrhe request state is entered when the INTERRUPT 

REQ,tJEST flip-flop is set by a line clock pulse. This setting 

of the flip-flop can occur only when the status bit 6 flip-flop 

(interrupt enable) is in the 1 stat~. Setting the INTERRUPT 

HE(~UEST flip-flop generates a BR6 reques t. 

The priority arbitration logic of the processor determines 

whether priority level 6 is the highest requesting level. 

If BR6 is the highest level, then the processor asserts a 

bus grant signal (BG6 IN H) that sets the FFI flip-flop. 

Signal BG6 is blocked from being passed on to the next device 

and the assertion of BR6 is dropped. With flip-flop FFI set 

and flip-flop FF2 clear, the selection acknowledge (SACK) 

signal is asserted on the bus. 

7-30 



BU~ S SYtI H 

~~6 __ 1t_(_H-r_4 ____ / 

INTERRUPT 
REQUEST 

'1 

BRG L 

BUS 
DO 6 

~BUS L-/' ·····INTR L 

BUS 
SACK L 

BG 6 
OUT 

11-0196 

Figure 7-4 Interrupt Request Section - Simplified Diagram 

7-31 



Table 7-6 

Interrupt Control Flip-Flops 

Interrupt 
Reguest FFI FF2 State Signals 

0 0 0 Not requesting None 

1 0 0 Requesting BR6 

1 1 0 Granted SACK, BG6 OUT 
inhibited 

1 1 1 Master BBSY, INTR, BUS 
Do6 (vector 
address) 

7-32 



On receiving the SACK signal, the processor drops BG6 IN 

and flip-flop FF2 is set pr'ovided SSYN and BBSY are both 

unasserted. The BBSY and INTR signals are then asserted on 

the bus as well as interrupt vector address 100 (BUS D06). 

The processor responds to these signals by asserting a slave 

sync (SSYN) signal that clears the INTERRUPT REQlffiST flip-flop. 

Flip-flops FFI and FF2 are subsequ.ently cleared causing the 

interru.pt control section of the KWII-L clock to return to 

the non-requesting state. At the same time SSYN is asserted, 

the processor enters the interrupt service routine at 

vector address 100. 

7-33 



Status Register 

The status register of the KWII-L contains the INTERRUPT 

ENABLE and the INTERRUPT MONITOR flip-flops (Figure 7-5). 

Operation of the status register logic is controlled by 

INIT, the line clock pulse, and DATO and DATI transfers. 

The INIT signal is generated by either depressing the START 

switch on the programmer's console or by issuing a 

progrrumned RESET instruction. The INIT signal clears the 

flip-flops to initialize the status register for a new 

operation. 

The line clock pulse supplied by the threshold detector is 

used to set the INTERRUPT MONITOR flip-flop (bit 07). A 

DATO and ADDRESS H clear the INTERRUPT MONITOR flip-flop, 

provided BUS D07 is high, by applying a signal tc the direct 

clear input of the flip-flop. 

In order for DATO and DATI transfers to affect the logic of 

the status register, the address of the KWII-L and MSYN must 

be asserted on the bus to provide the ADDRESS H input as 

shown on Figure 7-5 . The ADDRESS H signal is also used, 

after a dealy, to assert SSYN on the bus. 

7-34 



BUS 
CI L 

ADDRESS H 

Figure 7-5 

E13 

BUS 5 LINE CLOCK 3 C 
SYN L 

4 

11-0198 

Status Register - Simplified Lo~ic Diagram 

7-35 



The combination of DATO and ADDRESS provides a signal to the 

clock input of the INTERRUPT ENABLE flip-flop. Depending on 

BUS Dab, the flip-flop is either set or cleared. Thus, the 

processor can read a bit into this flip-flop by issuing a 

DATO and BUS DOb::l fOr a 1; and a DAiI'O and BUS Do6=o for a O. The 

a side output of the INTERRUPT ENABLE flip-flop controls the 

interrupt function of the- clock by holding the INTERRUPT 

REQlmST flip-flop in the interrupt control section in a 

cleared state when INTERRUPT ENABLE is in the a state. 

A DATI and ADDffi~SS H provide gating that reads the contents 

of INrrERRUPT ENABLE onto BUS Do6 and the contents of 

INTERRUPT MONITOR onto BUS D07. 

7-36 



D GITAL EQUIPMENT CORPORATION 
MAYNARD, MASSACHUSETTS 01754 


	0000
	0001
	0002
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-20A
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	xBack

