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ABSTRACT 

A . study was undertaken to evaluate the capabilities of two microprogrammable 
'processors: the MLP-900, a vertically-encoded 36-bit machine at the Information 
Sciences ,Insti tute and available Over the ARPA Network; and the PDP-I! / LlOE, a 
horizontally-encoded I6-bit microprocessor at Carnegie-Mellon University. The paper 
presents a, description of the two machines, and compares their performance 'on n 
number of benchmark programs (including an emulator for the NOVA computer). In 
addition, the machines are compared along dimensions of two-way conditional branch 
costs, basic architecture, and difficulty of programming. The PDP-ll/40E performed 
between 10'1: and 25~ faster 'on all the benchmarks except the multi-word integer 
multiply, where the MLP-900 was four times faster (because of its wider data path). 

This .work is supported by the Advanced Research Projects Agency (ARPA) of the 
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A Comparison of Two Microprogrammable Processors 

I. I ntroductioll. 

The ongoing project at Carnegie-Mellon University investigating the ~ymbolic 

manipulation of computer descriptions (SMCO) has the following primary goals: to 

design a language able to describe precisely an arbitrary target machine in a 

convenient fashion [1]; to create a compiler for this language which will transform 'a 

source machine description into a more usable representation; and to utilize this 

compiled machine description in a range of applications, from computer-aided machine 

design to efficient compiler-compilers [2]. A multi-level simulator for the target 

machine, capable. of operating on the gate level, regiser-transfer level, or functional 

level, is also being designed, and will be important in many of the applications. This 

simulator will be implemented on a, microprogrammable processor for effic!ency 

reasons. Eventually, an optimizing micro-compiler will be developed whch will 

automatically produce an efficient simulator directly from a compiled target machine 

description. 

Two possible machines for the simulator are currently being considered. The 

first is the MLP-900, a vertically-encoded microprogrammable processor which exists 

at the Information Sciences Institufe at USC and is available over the ARPA Network. 

The second is a POP-11/40, a horizontally-encoded microprogrammable processor, 

which has been modified at CMU to include a read/write control memory and other 

hardware' extensions to make it a general purpose microprogrammable machine. The 

extended machine is known as the POP-11/40E. 

The MLP-900 was originally designed by' the Standard Computer Corporation, 

, and has been described in [3]. The machine never reached production, though a single 

prototype was constructed which now exists at lSI. Various hardware modifications, 
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have been incorporated in the MLP-900 at 151, and the machine is described in [4]. 

The MLP-900 is linked to one of lSI's PDP-lOs (which runs TENEX and is on the ARPA 

Network). Software support exists to enable easy access to the' MLP-900 from the ; , . 

PDP-lO, including a high-level assembler, debugging facilities, and 'I/O routines. To 

,facilitate multiple users of the MLP-900, a protected "microvisor" progra~ resides In 

the MLP's m!crostore to handle swapping of user microprograms. This mini-supervisor 

also handles I/O requests from the MLP to the PDP-IO. Since the MLP uses the main 

memory of thePDP-IO, the TENEX memory management features of virtual memory and 

paging are incorporated in the microvisor. Page table maintenance and PDP-lO, 

communication ar~ transparent to the MLP user. 

The' PDP-Il/'40E constitutes an ongoing research project in itself [5], and 

documentation and support are not necessarily complete. At the time of writing, there 

is a micro-assembler and ~ simulator available on the PDP-la, with a link available to 

transmit the assembler output to the PDP-l1/40E. 'Also, a prototype micro-debugging 

package exi'sts to aid hands-on debugging. Work is currently In progress to 

incorporate the PD~-11/40E into C.mmp, CMU'~ multi-miniprocessor system [6~ 

T~ble 1 enumerates the major parameters of the PDP-ll/40E and MLP-900 

microprocessors. 

II. Machine Do!cription of tho M LP-900. 

The MLP-900. is a synchronous, vertic~lIy-encoded microprogrammable machine, 

with a fixed clock cycle of 250 nsec. In, appearance, its instruction set is similar in' 

structure to the 'instruction set of a regular general-purpose machine; hence, 

programming it is, at least superficially,' reasonably straightforward. 
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.. The' MLP is separated into two distinct parts. Each part has its own processor, 

,instruction set, and data storage' (registers). The two parts are designated the 

"Operating Engine" (OE) and the "Control Engine" (CE). The basic idea behind .this 

. approach is to factor out independent functions (ie, arithmetic and control) into distinct 

pieces of hardware -- and consequently achieve a low-level parallelism by being able 

to execute two 'microinstructions simultaneously .. 

. The MLP-900 has 4K of 32-bit memory for microinstructions in which both OE 

and CE instructions reside. A conventional program-counter is used to address the 

next microinstruction to be executed. The op-code field of each word contains a bit 

'which indicates to the fetching unit whether the instruction should be routed to the OE 

or the CE for decodi.ng and execution. However, whenever the program-cQunter points 

to an OE instruction followed immediately by a CE instruction, the effect is to fetch 

both and route them to their respective engines simultaneously. Parallel execution of 

the two instructions is thus achieved (except in certain cases of interaction where an 

extra cycle is required). There is no restriction on how the OE and CE instructions are 

arranged in the micro-instruction memory, but if the entire microprogram is arranged 

inOE-CE pairs. the effective speed of the program will be doubled over a 

(hypo~hetical) single-engine machine. See Fig. 1 for a schematic diagram of the MLP 

components. 

The Operating Engine contains the following memory components: 

32, x 36-bit general purpose registers (with octal designation R.O -
R.37). 

32 x 36-bit mask registers (M.O - M.37). 
lK x 36-bit 200 nsec. auxilliary memory (A.O - A.1777). 
32 x 36-bit miscellaneous registers with dedicated functions (MISC.O 

- MISC.37). 

The OE also contains hardware to perform the following functions: 
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Arithmetic/logical opera,tions on a 36 bit data path. including 
shifting-masking operations (GEAR, SHIN instructions). 

Communication with 'main memory (CEDE instructions). 
Intra-OE data transfers (GENT instructions). 

All of the OE memory is availa~le to the microprogram user, with the exception of most 

of the MISC registers and 16 of the mask registers (which are only accessible in 

microvisor mode). 

T.he Control Engine contains the following memory components: 

256 individually 'addressable flip/flops (F.O - F.377).' 
16 x 8-bit pointer/counter registers (P.O - P.17). 
16 )( I6-bit subroutine-stack registers (5.0 - 5.17) . 

. 8 x 16-bit. miscellaneous registers with d~dicated functions (CE.60 -
, CE.77). . ' 

Tre CE also contains hardware to perform the following functions: 

Conditional and unconditional branches (BRAT, BEAD instructions). 
Conditional and unconditi'onal subroutine calls and returns (BENT, 

BORE, BEAD instructions). 
Flag manipulation (MAST instructions). 
Loop control operations (BRAD, BLOT instructions). 
Intra-CE data transfers (MOVE instructions). 

For consistency in referencing; all the CE memory is addressable as 96 8-bit 

registers (named, CE.O ,;.. CE.137), or 16-bit double-registers. A considerable portion of 

the ~E ~emor~ has dedicated functions, representing various internal states of, the 

MLP and is, frequently, writable only in microvisor mode. However, the rest of the CE 

memory is for general use by the microprogram user. 

For the most p.~rt, the OE and CE have little interaction (which was clearly a 

. design decision). There are a couple of exceptions, however: OE ALU instructions 

(GEAR ~nd SHIN) have side, effects on status flip/flops in the CE, and can use a pointer 
. ' 

register (P~O - P.l7) in their operation. Also, an Exchange Bus (XBUS) Is addressable 

by both engines, and is used to explicitly transfer data between the two engines. One 

cycle and an OE/CE instruction pair (GENT/MOVE) are necessary to do this. 
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Two CEDE instructions are required to perform a memory reference on the MLP-

900: a fetch-operand/wait-for-operand (FOP/WOP) pair for input; and a set-

address/store-operand (SAD/SOP) pair for output. Intervening instructions can occur 

betwe~n each pair to effect overlap with memory access time. Memory access time is 

approximately 700 nsec. with the current configuration on the MLP-900, including page 

table translation time. In addition, 600 nsec. total is required for· the execution of the 

CEDE pair, for a total of 1300 nsec/memory reference. Three 250 nsec. cycles can 

usefully be overlapped during the reference. 

Appendix A gives some examples of MLP-900 microinstructions. 

] 11. M achino Dmtcription of tho P DP-ll/40E. 

The PDP-l1/40 is a horizontally-encoded microprogrammable machine with basic 

cycle times of 140 to 300 nsec. and a data path width of 16 bits. The unmodified 

machine has a 256-word x 56-bit ROM which contains microcode to implement the 

st andard PDP-I! instruction set. 

Though not designed explicitly for modification for generai purpose operation, a 

model 40 at CMU has been modified to include the following: 

! K x 80-bit read/write microstore (instr~ctions and data). 
16-word x I6-bit hardware stack. . 
General field extraction (Le., shift/mask). 
Expanded carry propagation logic. 

The· enlarged microword (80 bits instead of 56) is for control of the additional 

hardware. See Fig. 2 for the internal data paths of the PDP-I! /40E. 

Each microinstruction contains the following information: 

(a) For each multiplexor (Le., DMUX, BMUX, BAMUX, SMUX, etc.) a 
field which selects one of the possible sources for that 
multiplexor. (Thus, these fields control what rs on the various 
buses.> 
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(b) For each register (i.e., 8, STK, 0, any QM general register, etc.) 
a fIeld which indicates whether that register is selected (for 
loading) from the specific source bus it is connected to. 

(c) A next-address field giving the address of the next 
microinstruction to be executed (i.e., an embedded 'GOTO' 
field) . 

. (d) Miscellaneous' fields controlling such things as: 
ALU function (add, subtract, AND, OR, etc.) 
Siack function (push, pop, reset pOinter, etc.) 
Shift/mask specification 
RAM read/write 
Unibus read/write 
Carry propagation 
Conditional branching 
Clock pulse generation 

, There are three basic clock pulses possible during each microinstruction: 

Pl, at t=140 'nsec., enables possible loading of B, PS, R[i] (Le., a 
single general register)' from the DMUX bus, and SA from the 
RD bus. 

P2, at t=200 nsec., enables possible loading of 0 and SA registers 
from the ALU output. 

,P3, at t=300 nsec., enables possible loading of the B, PS, R[i] , 
registers from the OMUX bus. This pulse is 'similar to Pl, 
without the SA enabling. 

Each microinstruction contains a field designating the pulse sequence to be used in its 

execution. There are only three possible sequences: 

ClK=1 generates a Pl pulse (at t=140 nsec). 
ClK=2 generates a P2 pulse (at t=200 nsec). 
,CLK=3 generates a P2-P3 pulse (at t=200 and t=300 nsec). 

The stack and Unibus are "loaded" (i.e., written if selected)' at the end of the 

microinstruction execution" regardless of pulse sequence. Note that it is impossible to 

specify a Pl pulse and a P2 pulse in the same instruction. 

The micro-assembler for the 40E normally computes what pulse sequence is 

requi,red for each. instruction. However, k.nowledge of the clock mechanism is 

necessar.y to understand what functions ca~ be combined in a microinstruction. For 

example, it is not possible, in a single instruction, to load a general register R[i] from 0, 
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and then perform an ALU operation into D. (The non-existent P I-P2 sequence would 

be necessary for, this., While this sequence might be useful to have, it was not Included 

in the original desigh of the PDP-ll/40 microprocessor' by Digital Equipment 

Corporation. Presumably cost effective or technical reasons precluded its inclusion). 
, . ' 

The control memory RAM can be read and written as data, via an address on the 

top of the stack. However; this can not be done simultaneously with fetching 'a new 

microinstruction from the RAM, so some special juggling of where the next 

microinstruction is com'ing 'from (while the RAM is being read/written) must be done. 

This tends to limit the usefulness of tlie RAM for storing data. 

A memory reference on the PO'P-l1/40E requires two microinstructions, though 

other functions can be performed in the same instructions. Since the Unibus of a PDP-

1 t is asynchronous, explicit synchronizing must take 'place in the processor during a 

m~mory reference. The method used is to supply a "clock-off" bit in the 

microinstruction which stops the processing of. subsequent microinstructions when set. 

'When the Unibus completes its activity, it supplies a signal which restarts the 

processor, clock. Overlap of microinsruction processing with memory referenc~s is 

done simply by waiting to turn the clock off until two or three instructions after the 

start of the memory reference. However, since the Unibus restart signal is not latched, 

the clock-off operation must be done before the restart signal is received, or else the 

processor will hang up. 

Memory read access time on the PDP-l1/40 machines is, on the average, 700 

nsec.; thi~ value can fluctuate from about 500 to 900 nsec., however, depending on the 

time 'since the' last memory reference. (The longer the interval since the previous 

,access, the less time required for the current reference.) Since two instructions are 
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required for a memory reference (both reads and writes), the minumum overall time for 

a r~ference !s the access time plus two P1-cycle instructions, or 780-1180 nsec. 

A conditional branch is performed on the PDP-l1/40E in the following manner. 

Assume the current microinstruction is at address A in the microstore, A's successor is 
, ' 

at addre'ss B, and 8's successor is at address C. The desired condition is tested in the, 

current microinstruction at A, with a result of 1 or 0, if the condition is true or false. 

This bit is te'mporarily ,ORed into the next-address field of the following 

microinstruction, located at 8 (the condition result is generated too late In the cycle to 

do the OR with A's next-address field). Assuming that C is an even address, the effect 

then is to ,branch to. either address C or C+l, if the condition is false or true, 

respectively. Note that the miCroinstruction at 8 is required, even if it is only a NOOP. 

The "condition bit" can actually be selected from a dat,a word on the t~p of the 

stack vi,a the shift/mask unit. In fact, n bits ca~ be selected, and'temporarily ORed into 
, ',' ~ 

the ,successor's next-address field to effect ,a 2 -way branch. "In this case, the lower 

!1 bits of address· C ih the above example must be 0 for the case branch to perform 

correctly. Such bookkeeping is conveniently I~ft for the micro-assembler. 

See ,Appendix' 8 for some' examples of PDP-l1/40E microinstructions. 

IV. Perforlnanco Comparison~ 

, ,Four primary benchmark programs were written for each machine to' compare 

their performance on specific tasks: 

(1) MMPY: 64-bit unsigned integer multiply (128-bit result). 
(2) TRANS: Translate routine for a string of 8-bit characters. 
(3) ALLOe: Memory allocation routine using Knuth's boundary-tag 

method [7~ 
(4) NOVA: Emulator for the NOVA minicomputer (without Interr'upts 

or 1/0). 
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The four benchmarks were chosen for various reasons: ~MPY compared multi-word 

arithmetic on the two machines; TRANS exercised their byte-handling capabilities; 

ALLOC compared their performance on a list-processing application; and NOVA 

compared their performance on a real-life ,emulation task. 

Each benchmark went through a writing, debugging, improving sequence several 

times.' Substantial improvements were made in the programs over the course of 

sever al weeks, as various tricks or better ways of performing the same function were 

recognized. (This was especially true for the PDP-ll/40E microinstructions.) Hence, 

there is some' hope that the benchmarks represent an example 'of fairly good 

microcode for both machines. 

For the MMPY, TRANS, and ALLOC benchmarks, an attempt was made to keep the 

number of microinstructions to a minimum on both machines, consistent with at most 

only a small time increase. This is obviously of great importance on the PDP-11/40E 

with its smaller amount of microstore. For the NOVA benchmark, however, the 

emphasis wa's solely on speed, except where space could be saved at no cost in speed. 

The NOVA benchmark constituted a complete task so that the whole microstore was 

assumed available. The first three benchmarks, however, might well be considered 

small parts of a mu~h larger program, hence attempts were made to conserve a 

possibly scarce resource. 

The MLP-900 programs were assembled, and run on the actual machine at lSI via 

the ARPA Network. The MLP does not have a timer available to the program, so timing 

data was computed by hand, including estimates for the memory reference time. 

All' four of the PDP-ll/40E programs were assembled and run on the simulator 

available on a PDP-IO at CMU, and two (TRANS and NOVA) were also run on the actual 
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mac~ine. The simulator was more convenient for debugging and timing than the actual 

PDP-ll!40E~ so this· method was preferred. The execution time included .fairly good 

estimates on the memory reference time. 

Tables 2 to 5. show the results of the benchmarks on the two machines. The 

MMPY program, shown. in Table 2, leaves the PDP-ll/40E at a severe disadvantage 

because of th~ PDP-11 's small data path widtl:l. The program was a double-word 

mult.iply on the MLP-900 and a quadruple-word operation on the 40E. There was 

sufficient fast registers in both microprocessors' to hold all the inte~mediate results~ 

though t~is resource was being stretched on the PDP-11/40E. The MLP-900 

performed' ~ar better on the multiple-word task: slightly more than one third as many 

instructions and over four times faster than the PDP-l1/40E. 

On the TRANS benchmark, shown in Table 3, the PDP-l1/40E was about 2510 

faster than the MLP-900. This was not unexpected, since the PDP-11 machine is 

oriented towards 8-bit bytes, and hence the PDP-ll/40E microprocessor has some 

features which facilitate byte-handling: byte swapping and byte-writes with registers, 

a write-byte operation .to. memory, etc. The MLP-900 has no special byte-handling 

operations outside of its general mask/shift capabilities. These capabilities have 

. certain restr'ictions, however: shifts of only a few specific values are allowed (thus 

possibly requiring more than one instruction for a single shift); also, while a field can 

possibly be isolated from a register in one instruction, storing a value into an arbitrary 

field always takes at least two microinstructions. Indeed, a four character/word 

version of TRANS for the MLP-900 was longer and ran slower· than its two 

charac~er /word counterpart in Table 3, even though fewer memory references were 

required. . The extra time came from the slightly awkward field extraction/storing 

methods required. 
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Table 4 shows that the PDP-ll/40E was slightly faster than the MLP-900 on the 

ALLoe benchmark. No particular architectural shortcomings of either machine were 

exercised by this benchmark since mostly full-word operations were used, with 16 bits 

being an adequate, width. However, a fair number of distinct memory reference 

sequences were necessary in the program. These turn out, to be generally less costly 

on the PDP-l1/40E, both in instructions and in time,' than on the MLP-900. Also, it is 

worth pointing out that the MLP-900 did not perform as well when the information was 

packed into fewer words. For example, an attempt to pack the forward and backward 

list links int~ the two halves of a single word increased the number of instructions and 

memory references 'over having them in separate words (the version in Table 4). This 

suggests that the wider data path of the MLP-900 may be most useful when the data 

in a word is homogeneous (as in MMPY). Packing several fields into a wide word to 

save space may cause significant additional execution time costs . 

. 'The' results o~ the NOVA benchmark are given in Table 5. In a sense, this 

program is the true test of the two machines, since it represents the type of program 

which certainly the MLP-900, and toa lesser extent the PDP-ll/40E, were designed to 
/ 

. run. For brevity, input/output instructions and interrupts were omitted from the NOVA 

benchmarks; in all other respects, the programs qualif~ as bonified emulators. 

The NOVA is a IS-bit minicomputer, similar in flavor to the PDP-8 but with four 

general registers, more varied addressing modes, and a wider data path. As in the 

. PDP-B, the ALU instructions only reference registers, and several 10w.;.level operations 

can be performed in a single ALU instruction (e.g., carry-bit setting, ALU operation, 

shifting, and skip-on-condition). The memory reference instructions are fairly typical. 

Finally, autoindexing' of certain memory locations can occur within an' indirect address 

chain. For more information on the NOVA computers, see [8]. 
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The PDP~11/40E version of the NOVA emulator was adapted from an emulator 

written at CMU by Paul Drongowski. Several modifica.tions and corrections were 

added. The programs for both machines were written quite painstakingly, with strong 

emphasis on speed. As Table 5 shows, the PDP-I1/40E did con'sistently better than 

the MLP-900 on all 'the instructions. In the sample NOVA programs, the 40E was about . ' , 

30'Z faster. Several reasons suggest themselves for this result. First, the PDP-11/40E 

might be expected to do well, since it~s a I6-bit minicomputer emulating another 16-bit 

minicomputer. If the NOVA operated on only 12-bit words, for example, the ALU 
, , ' 

instructions on the 40E would probably experience a greater increase in overhead 

than on the MLP-900. Second, a reasonable amount of field extraction was necessary 

in the NOVA emlator, which raised the instruction-decoding overhead on the MLP-900. 

It is not clear, howe.ver, that this situation would be greatly different in emulating 

other machines. Third, the ,longer memory reference time on the MLP-900 contributed 

up to an extra microsecond over the PDP-11/40E version for some of the NOVA 

instructions (those requiring several accesses, to memory). 

It should be noted that the MLP-900 has the capability for greatly increas'ing its· 

il')struction-decoding speed of target instructions. This is done by using a changable 

"language board", which is essentially 'combinatorial circuitry tailored for a particular 

application (e.g,., instruction decoding for a specific t~rget machin~). The MLP allows ~p 

to four such ,boards to be connected at one time. with programmed switching between 

them. 8pth the 9E a~d CE have parts of their address space which serve as inputs to 

and outputs' from the language board. Hence, tailor-made combinatorial circuitry could 

isolate all the, important fields, of' a target instruction very quickly. Presumably, a . . 

language board would only be designed where the expense would be justified by doing 

a great deal of emulation of ' that specific machine. 
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Several conclusions can be reached from these benchmarks. While the MLP 

microinstructions seem to be higher level (capable of more complexity, in some sense) 

than the· PDP-11 /40E instructions, the latter are capable of significant data-path 

·parallelism,. which seems to substantially offset ~heir primitiveness. The' MLP 

instructions also are relatively expensive in time compared to the 40E instructions. 

The MLP's strong points are its large microstore and its data path width, though there 

is some reason to doubt that effective use of the wider word can always be made 

without incurring significant extra execution time costs. 

V. Neutral Benchmark Comparison. 

In addition to the straight performance benchmarks, an attempt was made ,to see . ' 

how the two machines performed doing the same basic operation sequence, without 

appeal to their specific strengths or weaknesses. This is essentially a comparison of 

the basic architectures of the two machines. 'The most reasonable meth~d of doing this 

seemed to be ,to compare "neutral" benchmarks (Le., ones favoring neither machine), 

though it requires a decision on what constitutes a "neutral" program. In this case, 

programs were selected which (a) used primarily full-word operations, without field 

extraction, and (b) did not require a word wider than 16 bits. The basic unit of 

comparison was the number of instructions required to implement the desired 

operation sequence. Comparing execution times only has meaning if the final results of 

'the two versions is the same. A double-word multiply, for example, is the same basic . ' 

operation sequence, but the results are quite different on the two machines, due to the 

difference in data p'ath widths. 

Se'veral programs were selected: ALLOC, the memory allocation benchmark 

13 



A Comparison of Two Microprogrammable Pr~cessors 

already if'.ltroduced, and. RLIST, a ~outine to reverse a circular list, were both 

considered fairly neutral. Also, the MMPY benchmark was modified to produce two-

word, three-word, and four-word integer multiply routines (~MPY2, MMPY3, and 

MMPY4) on each machine. The comparison of program sizes is shown in Table 6. The 

execution time ratio for ALLOC and RLIST (the only programs where an execution time 

comparison was meaningful) was ·0.88 and 0.86 respectively, assuming long list .Iength 

-- that is, the PDP-ll/40E was someYlhat more than 10'Z faster on both programs. 

The space comparison illustrates a couple of points. When the PDP-l1/40E 

'performed a task which did not require a large number of internal registers (e.g., 

. . 
ALLOe, RLIST, and MMPY2), then the number of instructions required was perhaps 10-

20'70 more than on the MLP"900 (for "neutral" programs). However, when the regi.sters 

were stretched thin (as in MMPY3 and MMPY4), then the PDP-l1/40E version became 

significantly longer. The MLP-900, having many more registers than the PDP-ll/40E, 

suffered considerably.less on programs that m~de large temporary storage demands. 

The main conclusion of this particular comparison is the following. For "neutral" 

pr'ogams which only require a small amount of intermediate storage, one can expect 
. . 

that each MLP-900 instruction' will be worth about 1.1-1.2 PDP-l1/40E instructions. 

The small amount of timing data on the neutral programs suggests that the 40E will 

execute th.ese 1.2 instructions slightly faster than the MLP-900 will execute its one 

instruction. Obviously, this .number of 1.2:1 will not. be valid outside of the 

~eutral/small-memory class of programs; however, it is still interesting as a base value 

in comparing the two machines, and perhaps useful in some cases as a point to 

extrapolate from. 
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V I. Comparison 0/ Branch' Costs. 

Superficially, at least, a two-way conditional branch on the PDP-ll/40E can be 

very costly in space and time. Consider the following e,xample, which decrements R[O] 

by one and tests if 'it is zero: 

D~RIO J-1; RIO J~D; 
SKIPZERO; 
NOOP; 
SET 

COTD LOOP; 
COTO NEXT; 

TES 

Decrement R[O] by 1, restore into R[O] 
Test the condition "0 equals zero". 

Go to label LOOP if D;-!O 
Go to label NEXT if 0=0 

Note that each line is a new instr~ction, and the semicolons simply delimit ,the functions 

of a single, microinstruction. SET and TES are not instructions but rather delimiters' 

tnat tell the, micro-assembler to place the enclosed instructions in consecutive 

locations, starting on, an even boundary. When no. explicit GOTO field occurs in an 

instruction, the assembler defaults the next-address field to the address of the next 

instruction in' the source file~ SKIPZERO is a mnemonic for a test-condition field which 

senses whether r~gister 0 is equal tc? zero (in general, this cannot be done in the same 

instruction that loads the value to be tested into D). 

The instructions "SKIPZERO"" "NOOP", "GOTO LOOP", and "GOTD NEXT" are all 

capable of performing, several other functions' in the same instruction. Thus in this 

example, they are all essentially "place-holding" instructions, whose execution time Is 

was~ed. With care in programming, useful computation can usually be performed in all 

or most of the "place-holders". . For example, the two GOTD instructions c,an be 

considered the first instructions of their respective control paths, instead of just the 
, . 

branches to the' first instructions. Furthermore, the fi'rst one or two instructions, of 

one Of the diverging paths can frequently be pushed up into the NOOP and SKIPZERO 
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instructions, as long as this h~s no conflicting effect on the other possible path. In 

short, two-way conditional branches are usually not nearly as costly as one might 

initia~ly think. 

, To support this cI·aim, a count was made of all the unused instructions in two-

way conditional branches for five of the PDP-lll40E benchmark programs. An unused 

instruction was defined as either a NOOP, or one that contained only a GOTO field. or a 

SKIPZERO field .(or similar condition-~ensing specification). Out of a total of 19 two-

way conditional branches, 9 unused instru~tions were found, or an average of about 

0.5 unused instructions/branch. Since a place-holding instruction requires only a PI 

clock pulse (140 nsec.), the expected wasted time/branch was 70 ~sec. 

These measu~ements were also done on early versions of the same prog~ams. 

Interestingly, 20 unused instructions were found out of 18 conditional branches, with 

the expected cost thus being about one instruction and 140 nsec .. This suggests that 

the cost of conditional branches may be considerably higher for certain situations, such 

as· .an early stage of program design or a non':proficient programmer. 

The expected cost of a MLP-900 conditional branch instruction can also be 

calculated, though in a completely different way. On the MLP-900, a simple boolean 

function of two variables (i.e., flip/flops) can be evaluated in a single branch 

instruction. If the' result is true, the jump address replaces the current instruction 

c~unter; if false, the next sequential instruction is executed. Since all branch 

instruction are executed by t.he control engine, the conditional branch can be 

overlapped if immediately preceeded by an OE instruction. Thus the cost of a 

conditional branch, .if overlapped,· is one instruction and 0 nsec. or if not overlapped, 

one instruction and 250 nsec. 

16 
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The conditional branches out of five benchmark programs were examined. Out 

of a total of 16 conditional branches, 11 were overlapped with a preceeding OE . . 

instruction, or 70'70. Hence,the expected cost of a conditional branch on the MLP-900 

is' one instruction and 0.3*250 nsec., or 75 nsec. 

. Thus, the PDP-1! /4o'E conditional branches are, in practice, not as expensive as 

they appear. The expected costs of conditional branches on the two machines seem to 
. . 

be, ~pproximately equal, at least as far as the limited statistics collected indicate. 

V I I. Other Considerations: Ease 0/ Programming. 

One's initial impression about writing microcode for the PDP-l1/40E is that, it is 

fairly difficult to write good code. This impression is confirmed in practice. To achieve 

the performance that the 40E is capable of, one has to "think parallel" in programming 

it. This is complicated, however, by the inevitable hardware quirks which tend to 

break a unified scheme into 'a number of special cases., On the 40E, for example, 

selecting a general register for loading from the DMUX bus also causes the register's 

cont~nts to be ORed onto the RD bus. Thus, the following instruction, an apparently 

perfectly valid example of a parallel data path operation, will perform incorrectly 

. (unlessR[ 1] is initially zero): 

. R/lj+-D; BIJ+-S; Load R[l] from 0, and BA from Stack 

There are more examples of such low-level hardware restrictions on the 40E, 

but the real difficulty in writing good micrOcode is the breadth of the solution space: 

many alternate ways of programming the same task exist (the intra-instruction 

parallelism essentially contributes another degree of freedom). Some of the 

alt~rnative$ are clearly inferior, but deciding which is the best or near-best frequently 

requires some sort of search technique. 

17 
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One such technique' is to see if the functions of an instruction can be moved up 

into preceeding instructions, thus allo,#ing that instruction to be . eli mated. For 

example, consider the following microcode segment: 

. Ll: 

L2: 

.. COM: 

Sf-D; 
Sf-RIO/; COTO COAl; 

Df-RI1}+1; Rll}f-D; COTO COM; 

Bf-RIO); 
BAf-RIIJ; 

Not~ that "S+-.. <' me~ns push a val'ue onto the stack, while ", , ,+-S" me~ns pop the top 

value off. the stack. The object will be to eliminate one of the i!,,!structions starting at 

" COM, if possible. Assume COM has only the two predecessors shown (Ll and L2). Both 

of these paths must incorporate the function(s) that are eliminated in the 'COM . . 

segment. " Consider the function "8f-R[O]", the first instruction in the COM portion. This 

can be added to the instruction at LI without conflict, making "S,Bf-R[O]". However, 

"8f-R[O]" can not be added to L2 because R[I] is" aready specified," Hence, "Bf-R[O]" 

cannot be eliminated. So, consider the second instruction in the COM section, 

"BAf-R[l l". We can move it over .the "Bf-R[O]" instruction, since they are logically 

independent. This function cannot be overlappe"d with Ll, but it ~ be <?verlapped 

with Ll's predecessor, making "Sf-Oj 8A~R[l ]".' "Since there are not data" 

dependencies or conflicts, the same effect is achieved. In addition, "BAf-R[l]" can be 

overlapped with L2, thus we can eliminate t~e "BAf-R[i]" instruction entirely. The 

"resulting code segment looks like: 

Sf-D; BAf-RIIJ; 
Ll: . Sf-RIO); COTO COM; 

L2: BA,Df-Rllj+1; Rllj+-D; coro COM' 

COM: Bt-RIO); 

18 
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This has saved one instruction and 140 nsec. on both control paths. In fact, We can 

save an additional 140 nsec. on only the L1 path by incorporating the "84-R[O]" 

function in the' instruction at Ll and then branching to the successor of COM. This 

does not affect the time on the L2 path, however. 

One's initial impression about the MLP-900 is that it is considerably easier to 

program than the PDP-11/40E. This is undoubtedly true if one is not concerned with 

achieving maximum performance. If very high performance!.§. a goal, however, then 

the issue is not so clear. Maximum parallelism on the MLP-900 occurs with an even 

mix of DE and CE instructions. The objective is thus to maximize the OE/CE pairing 

while minimizing the overall number of instructions (or pairs). This requires not only 
, ' 

selecting the appropiate microinstructions to carry out the desired operation, but also 

determining the best ,distribution of data within the two engines to facilitate selection' 

of the appropiate microinstructions. 

To illustrate the problem of data distribution, consider the storage of a target 

machine instruction in the MLP-900. Parts of a target-machine instruction take place 

in arithmetic operations (which is an OE. function), and other parts are used in bit. 

testing and' case, statement i'ndexing (which are both CE functions). Storing the 

instruction in only one engine would hinder access by the other engine to its 

necessary data, so a solutio!,) is to keep 'a copy of the farget instruction' in both 

engine,s~ ~ometimes, however, data r~quired by the CE must first be operated on by 

the OE, so other complications arise~ 

The point is that programming the MLP-900 for optimum speed can be 

surprisingly time-consuming, since other factors can have a pronounced effect' on the 

. speed besides simply the algorithm selected. 
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V I'll. Conclusions. 

For the two timed "neutral" benchmarks (ALLOC and RLlST),the PDP-11/40E 

appeared, to be 10-157. faster than the MLP-900. For the benchmarks which included 

more byte-:-handling and fiel~ extraction (TRANS and. NOVA), the 40E was 25'-307. 

faster. The MLP-900, on the other hand, was over four times faster than the 40E for 

the data-path benchmark (MMPY). This last result reflects the fact that the 40E had to 

perform roughly four times as many operations for the same result as the MLP-900. 

The choice of which machine to use may come down to deciding whether the 

MLP-900's two strong points, a 36-bit data path and 4K microstore, are necessary to 

the ~pplication. The two machines seem fairly equivalent in speed (except on wide 

data-path applications). Thus, if one is primarily interested in emulation of mac~ines 

. with 16-bit words or less, then the PDP-ll/40E is probably preferred. (The 40E also 

has the advantage that the console switches can be programmed to emulate the target 

machine's console for hands-on debugging and operation.) 

On the other hand, if particularly large machines are to be emulated, especially if 

they have a wide word-Iength,then the MLP-900 is probably preferred. The 

alterna,tive for the 40E might be to program frequently-needed primitives in microcode 

(such as multi-word operations to simulate a wider data path), while using regular PDP-

11 ·machine code for the more mundane parts of the simulation. This would be quite 

slow compared to the MLP-900, of course. 

There are a couple of other external factors which might influence a choice 

between the two machines. First, if the application will involve automatic compilation 

?f mi.crocode (as eventually intended in the SMCD project), then ease of producing a 

compiler' to generate highly-optimized microcode would certainly be a factor. For 
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eit~er machine the task would be an extremely difficult one; a subjective impression, 

however, is that the PDP-ll/40E would be ,slightly ~asier than the MLP-900 because 

of the mor~ regular manner in which data is handled, and the more straightforward 

optimization goals. On the MLP-90~, both these aspects seem much more ill-defined., 

. ' 

The, second external factor is accessibility, a more pragmatic topic. The 

extensions to the PDP-II/40E, while conceived and executed as a research pro,ject at 

~MU, hold the possibility of eventually being offered as an option by Digital Equipment 

Corporatio'n on future PDP-II/40's. The MLP-900, though originally a prototype 

machine that never reached production, is a usable system at lSI and has fairly wide 

availability via the ARPA Network. Thus, each machine has its own type' of 

, accessibility which will be appropiate to different types of users. 
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Table 1. 

Major Parameters' of the PDP-ll/40E and MLP-900 Microprocessors. 

'Parameter PDP-l1/40E MLP-900 

Year Designed ·1970 (40E: 1973) 1968 

Data. Path Width 16 bits 36 bits 

Basic Cycle Times 140, 200, 300 nsec. 250 nsec. 

Microstore Size lK x 80-bits 4K x 32-bits 

Bits/Instruction 80 32 

Total Time for Memory Reference 780-1180 nsec. 1300 nsec. 
(includjng microinstruction times) 

Table 2. 

MMPY: 64-Bit Integer M~ltiply Benchmark 

Measure PDP-11/40E MLP-900 Ratio: 40E/MLP 

# Instructions ('70 avail ustore) .. 85 (8.3%) 32 (0.8'70) 2.7 

Execution time (usec) 421.2+5.2N 108.4+.75N 

Average exec. time (usec) . 587.6 132.4 4.4 

Maximum exec. time (usee) 754.0 156.4 4.8 

N= number of one-bits in multiplier. 
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Table 3 • 

. TRANS: CharaCter Translation Benchmark 
(Two characters/word) 

PDP-11/40E MLP-900 Ratio: 40E/MLp· 

# Instructions (7. avail ustore) 26 (2.57.) 25 (0.67.) 1.04 

Execution time (usee) .88+3.2N* 

N = # characters in string.· 
.:Ii N assumed even 

Table 4. 

.75+4.23N* 0.76 (large N) 

ALLOC: Memory Allocation Benchmark 
(Bo~ndary-tag method) 

Measure . 

# Instructions (7. avail ustore) 

Avg. execution time (usee) 

PDP-l1{40E 

52 (5.17.) 

11.24+3.4N 

MLP-900 Ratio: 40E/MLP 

51 (1.27.) 1.02 

13.0+3.85N 0.88 (large N) 

N = # of blocks in list checked unsuccessfully. 
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< Table 5. 

NOVA: Minicomputer Emulator Benchmark 

Measure PDP-11/40E 

169 (16.510) 

MLP-900 Ratio: 40E/MLP 

# Instructions (10 avail ustore) 259 (6.310) 0.65 

Execution times - Memory reference instructions (usec) 

LOA: 3.96 
STA: 3.84 
ISZ, DSZ: . 5.08* . 
JMP: 2.86 
JSR: 3.34 

If PC-relative, add: 0.30 
It AC-relative, add: 0 
If Indirect Address, add: 2.30 
If Autoindexing, add: 0.90 
* If skip occurs, add: 0.16 

Execution times - ALU instructions (usec) 

COM, MOV, INC, ADD, AND: 4.32 
NEG, SUB: 4.62 
AOC: 4.62 

If NOLOAO, subtract: 0.32 
If L shift, add: 0.46 
If R shift, add: 1.00 
If Swap-bytes, add: 0.10 
If Skip-field specified, add: 0.28** 
**. If skip occurs, add:· 0.30 

Execution times - Sample NOVA programs (usec)*** 

Sum-ot-integers (1-20): 
I6-bit. integer multiply: 

249.8 
310.9 

4.85 
4.85 
5.90 
3.80 
4.05 

0.50 
0.50 
1.80 
1.55 

0 

6.50 
6.50 
9.00 

0.25 
0.25 
0.75 
0.50 

0** 
0.25 

356.2 
424.2 

0.82 
0.79 
0.86 
0.75 
0.82 

0.66 
0.71 
0.51 

0.70· 
0.73 

. Note: . Variation in the memory reference time of the PDP-l1/40E may 
cause the execution times for the individual instructions to vary a few 
hundred nanoseconds. depending on the instruction mix being 
executed. The timings of the sample NOVA programs, however, take 
this into account. ',0 

*** The slowest NOVA computer performs Sum and Multiply in 293.4 and 
334.3 usee.,' respectively. The fastest NOVA (800 Series) performs 
them in 50.6 and 57.8 usec .. 
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. Table 6. 

Neutral Benchmark Comparison. 
(Comparison of .. Instructions) 

Program PDP-l1l40E MLP-900 

ALLOe: Memory allocation 52 51 

RLIST: List reverser 16 14 

MMPY2: Two-word multiply 38 32 

MMPY3: Three-word multiply 71 39 

MMPY4: Fo'ur-word multiply 85 44 
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,APPENDIX A. 

MLP-900 Microinstruction Examples. 

The 'following examples should give an idea of the types of functions that MLP-

900 microinstructions can perform. R.i are 36-bit general arithmetic registers' in the 

OE, M.i are 36-bit mask registers in the OE, P.i are 8-bit pointer registers in the eE, 

and F.i are flip/flops in the' CEo 

(1) R.I~R.I+R.2(M.0); (GEAR instr) 

Add the contents' of R.2 to R.l using only the masked-in bits 
specified in mask register M.O. The round parentheses around "MO" 
indicate 'that the masked-out bits in R.l are left unchanged afte'r the 
store -- i.e., only the masked-in bits of R.l are replaced. 

(2) , R.O~R.O AND 377 \10 I M.l}; (GEAR instr) 

AND R.O, with the octal literal 377 (using mask register M.1), and 
then shift the result left 10 (octal) bits. The square brackets 
around "M.l" indicate that the entire result is to be stored back into 
R.l. 

(3) R.37~R.37 OR @P.1.; (GEAR instr) 

P.I should have a value between 0 and 37, pointing to a general 
register. The effect is to OR R.37 with the general register 
indicated by P.I, and replace the result into R.37. The default mask 
register of M.O is used. 

(4) IF F.IOO OR NOT F.101 GOTO Ll; (BRAT instr) 

Test the two flip/flops F.IOO and F.IOl. Under the logical operation 
show'n, branch to label LI if the result is true. Ll must be within 
-177 to +200 (octal) instructions away from the current instruction. 
There is also a branch instruction (BEAD) that allows a full absolute 
address'into control memory. 

(5)' P.4t-P.4~1, IF NOr F.47 coro L2; (BRAD instr) 

This is a single instruction that increments/decrements a pointer 
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register by a small literal, and simultaneously performs a test on a 
flip/flop'. There are a number of flip/flops whose function is to 
monitor an assigned pointer register and be set true only when the 
pointer register contains a specific value (e.g., 0, -1, etc.). Hence 
this instruction can readily be used for loop control. 

(6) FOP R.O+l: WOP R.7: (CEDE instrs) 

These are two CEDE instructions. The FOP does an implicit 
"R.O+-R.O+ 1" (where "1" can be replaced by any small number or a 
geperal register' name), and then starts a memory fetch from the' 
virtual address in R.O. One or more instructions later, a WOP is 
done, which waits for the data word, and loads it into R.7 when it is 
available'., ' 

(7) The following is a simple program to calculate the sum of Integers 

LOOP: 

from 1 to 100 (decimal). ' 

R.O~145; 

R.1E-O; , 
R.O+-R.O-1; 
R.l+-R.l+R.O; 
IF NOT ZRF.l'GOTO LOOP; 
RETURN; 

Initialize counter to 101 
Initialize sum to 0 
Decrement counter by 1 
(OE/ 

CE pair) , 

ZRF.l is the name of one of the status flip/flops Implicitly set by' a 
GEAR or SHIN inst.ruction. It has the value true if the last GEAR 
operation (though not the one in the current cycle) produced a zero 
result. In the program 'above, there is an OE/CE pair which is 

" executed in one cycle, hence the ZRF.l usage refers to the cOtmt
decrement operation at LOOP. 

LOOP: 

An improved ver.sion of this program is shown below. This version 
uses a pointer register to hold the count, so only counts up to 255 
can be used. Note that pointer registers can take part in a GEAR 
op,eration, even though they are part of the CEo 

R.l+-ll; 
P.O+-144; 
R.l+-R.l+P.O; 
P.O+-P.O-l, IF NOT ZSI.O'GOTO LOOP; 
RETURN; , 

(DE/ 
CE pair) 

(DE/ 
CE pair) 

ZSI.O is a flip/flop that is true when P.O contains zero. Note ~hat 
the pre-modification value of P.O is used for the addition to R.1 and 
the ZSI.O flip/flop. Hence one additional pass through the loop' 
occurs, adding zero to R.I. This version executes about twice as 
fast as the previous version, since the loop is only one cycle long 
instead of two. 
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APPENDIX B. 

PDP-11/40E Microinstruction Examples. 

: To clarify the text' description, here are some simple examples of some PDP-

11/40'E microinstructions. (Note: the semicolons delimit functions within a single 

microinstruction. not microinstructions themselves.) 
'(1) BIJ,D+-R{O/+l; 

Shorthand for: Select R[O] as source for RD bus. 
Select Constants as source for BMUX. 
Select the constant 1 from constants. 
Initiate ALU operation of addition. 
Clock ALU output into 0 and SA registers on a 

P2 pulse. . 

A P2 pulse is required,since D can be loaded only by a P2 pulse. 
SA is loaded at the same time. If B (for example) were also 
selected for loading, a P3 pulse would also be necessary. thus 
implying CLK=3 and an execution time of 300 nsec (instead of 200 
in this example). 

'(2) S.B+-R/2j; 

Shorthand for: Select R[2] as source for RD bus. 
Select RD bus as source for DMUX. 
Clock DMUX into 8 reg on a PI pulse. 
Push value on DMUX bus onto stack (S) at end of 

instruction execution. 

Since only the B register is selected, a Pl pulse is required. A P3 
pulse would also work, but since D is not selected, there is no point 
in requir'ing 300 nsec instead of 140 nsec, hence ClK.::} in this 
instruction. ' 

(3) D..-Rllj-B; 811/+-D; 

Shorthand for: Select R[}] as source for RD bus. 
Select B reg as source for BMUX. 
Select 0 reg as source for DMUX bus. 
Initiate AlU operation, of subtraction. 
Clock AlU outp~t into 0 register on P2 pulse. 
Clock DMUX bus into R[i] on P3 pulse. 
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Only one general register can be selected in any microinstruction. 
Since R[l] is selected as input to the ALU, only R[l] can be selected 
to be ,loaded also. Note that R[l] ~an be clocked on either a PI or 
a P3 pulse. However, P2 is already required in this microinstruction 
(to load D), and there is no P I-P2 pulse sequence, so P2-P3 (Le., 
CLK=3) is required., The net effect is to decrement R[i] by the 
contents of 8. 

(4) Here is a simple program to calculate the sum of integers from 1 to 
100 (decimal): 

LOOP: 

D+-144; B+-D; 
D+-O; R/l}+-D; 
D+-R/IJ+B; R/l}+-D; 
D+-B-l; B+-D; 
SKIPZERD; 
NDOP; 
SET 

COTD LOOP; 
EXIT; 

TES' 

Initialize 8 to 100 (decimal) 
Initialize sum 
Increment sum by count 
Decrement count by 1 
Test jf 0 is 0 
(Place-holder) , 

Continue if 0"0 
Done if 0=0 

The SET and TES are not microinstructions, but rather delimiters 
which tell the micro-assembler to place the enclosed instructions on 
an even (in this example) boundary. The SKIPZERO function tests if 
register D. equals zero. If true, then the EXIT instruction is 
executed. 

By a realization of two f acts, th~ ~ize and execution time of this 
program can be reduced. First, ifGOTO LOOP" can be the first 
instruction of the new control path, rather than just a place-holder. 
Thus, w,e can combine tile first instruction of the loop with "GOTO 
LOOP" in the SET /TES 'pair, ;F, r : simpl\ branch to this' instruction 
af'ter initialization. Second, by realizing that an extra add to the 
sum is harmless after tl)e count is decremented to zero, the loop 
can be rolled up another instruction, with the following equivalent 
program (which is 2510 cheaper in both space and time). 

D+-144; jj~-D; 

LOOP: 
[NIT: 

D+-O; R/l}+-D; 
SKIPZERO; 
D+-R/IJ+B; R/l}+-D; 
SET 

D+-B-l; B+-D; COTO LOOP; 
EXIT; 

TES 

This example illustrates the sort of low-level optimization that goes 
on when programming a horizontally-encoded microprocessor. 
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