
dec
DATA BASE MANAGEMENT SYSTEM

PROGRAMMER'S PROCEDURES MANUAL

Order No. AA-0901C-TB

OPERATING SYSTEM AND VERSION: TOPS-10 V6.02, 6.03

SOFTWARE VERSION: DBMS V5
COBOLV11
FORTRAN'V5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, May 1977

The information in this document is subject to change without notice and should not be construed as a commit
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
iliat may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trddemarks of Digital Equipment Corporation:

DIGITAL DECsystem-IO MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-IO
DECCOMM DECSYSTEM-20 T'{PESET -I I

12/77-14

CONTENTS

Page

PREFACE. .. vii

CHAPTER 1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.3
1.3.1
1.3.2

. 1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.4.1
1.4.4.2
1.4.4.3
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.4.1
1.5.4.2
1.6

CHAPTER 2
2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.2
2.1.3
2.1.4
2.1.4.1
2.1.4.2
2.1.4.3
2.1.4.4
2.1.5
2.1.5.1
2.1.5.2
2.2
2.2.1

INTRODUCTION TO DBMS. 1-1
DBMS FEATURES. .. 1-1

Reduced Program-Development Time. .. I-I
Integration of Data " I-I
Simplified Program Maintenance I-I

DBMS-ASSOCIATED TERMS 1-2
DBMS LANGUAGES 1-3

Data Description Languages (DDLs) 1-3
Device Media Control Language (DMCL) 1-3
Data Manipulation Language (DML) 1-3

UNDERSTANDING DBMS RECORDS AND SETS 1-3
Types of Sets and Records 1-4
Occurrences of Sets and Records 1-5
Main Characteristics of Sets and Records 1-7
Set Relationships. .. 1-7
Sequential Structures 1-8
Tree Structures ... 1-8
Network Structures. .. 1-8

OPERATIONAL ENVIRONMENT. .. 1-8'
Run-Unit ... 1-8
Data Base Control System (DBCS) .. 1-8
User Working Area (UW A) 1-8
Protection of Data I -8
Privacy of Data ... 1-9
Integrity of Data. .. 1-9

A TYPICAL DBMS APPLICATION 1-10

USING THE DATA BASE 2-1
READING THE SCHEMA AND SUB-SCHEMA 2-1

Location Mode ... 2-3
DIRECT ... 2-4
CALCulation ... 2-4
VIA Set Name ... 2-4
Set Mode ... 2-4
Set Order 2-4
Set Membership ... 2-5
Automatic Set Membership 2-5
Manual Set Membership 2-5
Mandatory Set Membership 2-5
Optional Set Membership " 2-5
Set Occurrence Selection 2-5
Current Of Set ... 2-5
Location Mode Of Owner .. 2-5

WRITING DML STATEMENTS IN AN APPLICATION PROGRAM 2-6
Invoking a Sub-Schema 2-6

iii

2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.4
2.2.5
2.2.5.1
2.2.6
2.2.7
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.3
2.3.4
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

CHAPTER 3
3.1
3,2
3.2.1
3.2.2
3.3

CONTENTS (Cont.)

Page

Accessing a Sub-Schema Invoked in another Program-unit 2-7
Opening Areas ... 2-8
Opening Areas Simultaneously with Other Run-Units 2-8
Using Areas Simultaneously with Other Run-Units 2-9
Walking through Structured Data 2-10
Retrieving Data ... 2-11
Currency Status Indicators 2-12
Performing Updates. .. 2-12
Closing Data Areas 2·12

CREATING A JOURNAL FOR BACKUP AND RECOVERY 2·13
Journaling within Simultaneous Update 2-13
Journaling by Command and by Transaction 2·14
Images Ordered by Command 2-14
Images Ordered by Transaction .. 2-14
Specifying a Journal File 2-15
Assigning the Journal File to a Device 2-16
Information in the Journal File .. 2-16
Adding Transaction Headers·Trailers (JSTRAN-JETRAN) 2-16
Adding Comments (JRTEXT) 2-17
Adding Nonprinting Data (JRDATA) .. 2-17
Adding Checkpoints (JRDATA) 2-18

UNDERSTANDING DBCS CONTROL DURING PROGRAM EXECUTION. .. 2·18
Program Ret urn to Monitor Level 2-18
DBCS or Data Base in Undefined State 2-19

EFFICIENCY CONSIDERATIONS 2·19
Automatic Insertion of Records into Sets 2-19
Implied Deletion of Records .. 2·19
Maintenance of Sorted Sets 2-19
Journaling .. 2·20
Guidelines for Efficient Use of DML 2·20

DATA MANIPULATION LANGUAGE 3~1

DML STATEMENT CONVENTIONS. .. 3-1
EXCEPTION HANDLING 3·1

Error Special Registers. .. 3·2
Classes of Exceptions " 3-3

DML STATEMENTS: DESCRIPTIONS AND FORMATS 3-4
ACCESS ... 3-5
CLOSE 3-6
DELETE ... 3-7
END. .. 3·9
FIND ... 3-10
FIND rse 1•.......•.................. " 3-11
FIND rse 2 3·12
FIND rse 3 .. 3-13
FIND rse 4 ... 3·15
FIND rse 5 .. 3-16
GET ... 3-17
IF .. 3-18

iv

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

CONTENTS (Cont.)

Page

INSERT. .. 3-20
INVOKE ... 3-22
MODIFY '............................. 3-23
MOVE STATUS .. 3-25
OPEN ... 3-26
REMOVE ".......................... 3-28
STORE , , , , . , ... , . , . , 3-29
USE FOR COBOL , ,., ",., .. , , 3-31
USE FOR FORTRAN .. , , , , , . .. 3-32

3,4 FORTRAN INTRINSIC FUNCTIONS, , . , . , , , .. , , . , ... , . , , , 3·33

4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2

4.3.3

5
5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4

A
A.I
A.2

B
B.1
B.2
B.3
B.4

C
C.I
C.2
C.2.1

EMP1'Y Function "., ,." ,.,... 3-34
MEMBER Function , .. , ,. 3-35
OWNER Function , ,................ 3-36
TEN ANT Function .. 3-37

USING THE DML IN COBOL PROGRAMS 4-1
BUILDING A COBOL-DML PROGRAM , , . , , , , ... , , , 4-1
PLACING DML STATEMENTS WITHIN COBOL " ,.,...... 4-1

The INVOKE Statement " ,....... 4-1
The ACCESS Statement , , ,....... 4-2
Other DML Statements , ... ,., .. , ... ""... 4-3

EXAMPLES , ,.,., " ... , ,., .. """. 4-3
Example I: Calculation of Salesmen Commissions and Bonuses , .. , .. , .. 4-6
Example 2: Generation of First Quarterly Salesman Commission and Bonus

Report , . , . , . , , . , , , , .. , , , , . , . .. 4·10
Example 3: Generation of Prediction Accuracy Report,. 4·13

USING THE DML IN FORTRAN PROGRAMS 5-1
BUILDING A FORTRAN-DML PROGRAM ., , .. , .. "",.,." 5-1
PLACING DML STATEMENTS WITHIN FORTRAN ."".""",.", 5-1

The INVOKE Statement .", , , ,.",.",.,."" 5-3
The ACCESS Statement ".""" ", .. """"".. . 5-4
Other DML Statements , , ,... 5-4

RUNNING THE PREPROCESSOR, FORDML , 5-4
EXAMPLE USING DML IN FORTRAN PROGRAMS , ,.... 5-5

RESERVED WORDS AND USER-REFERENCABLE DBCS NAMES A-I
RESERVED WORDS ",.""." .. ". A-I
USER-REFERENCABLE DBCS NAMES ."" .. """".,.,."", A-2

EXCEPTION CONDITION CODES AND ERROR MESSAGES ., ,... B-1
EXCEPTION CONDITION CODES .", ",.""" B-1
DBCS RUN-TIME MESSAGES " ,. , ... , ... , , B-5
COBOL COMPILER ERROR MESSAGES ,., ,."..... B-5
FORDML PREPROCESSOR ERROR MESSAGES , B-6

SCHEMA DATA DECLARATIONS: FORTRAN AND COBOL CONVERSIONS C-I
ALPHANUMERIC DATA , , C-I
NUMERIC DATA, .. ", C-I

Schema Precision Declaration and COBOL Conversion .,."."".,." C-2

v

CONTENTS (Cont.)

Page

APPENDIX D PASSING STRING ARGUMENTS TO DBes 0-1

APPENDIX E GLOSSARY ... E-)

INDEX ... Index-I

FIGURE 1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
4·1
4·2

5·1
5·2

TABLE 2·1
3·1
3·2
A·I
A·2
B-1
B-2
C·I

C·2

C·3
D·I

FIGURES'

Generalized Representation of Set Occurrence .. 1-5
Specific Set Occurrence: the Drafting Department 1-6
DBMS Data Struct ures: Sequential, Tree, and Network. I· 7
Data·Base Environment 1-9
BARH Ltd. Application Showing Sets in a Tree Structure. 1-10
Sample Schema and Sub·Schema Listing .. 2-1
Set Representation for Sample Schema 2-3
Walking through Structured Data 2-11
Program-Building Process for COBOL with DML 4-2
The DML with COBOL: Example Schema BARHEX and Sub·Schema
SUB·SCHEMA·I ... 4-3
Program-Building Process for FORTRAN with DML 5-2
The DML with FORTRAN: Example Schema BARHEX and Sub-Schema
SUB-SCHEMA-I 5-5

TABLES

Usage Modes with OPEN; Suggestions for Efficient Use 2-9
DML-Statement-Associated Functions and Codes .. 3-3
Usage-Mode Conflicts for OPEN 3-27
DBMS Keywords and Assigned Values A-2
DBCS Entry Points and Arguments A-3
DML-Statement-Associated Functions and Codes .. B-1
Exception Condition Codes B·I
Alphanumeric Data: Schema Declarations; FORTRAN and COBOL Usage·Mode
Conversions ... C·I
Numeric Data: Schema Declarations; FORTRAN and COBOL Data·Type
Conversions ... C-2
Schema Binary Precision; Corresponding COBOL Decimal Precision C-2
FORTRAN Data Types; DBCS Interpretations. .. D·I

vi

PREFACE

This manual describes the DECsystem-l0 Data Base Management System (DBMS). The information is addressed to
the application programmer who wishes to access the data base.

As an application programmer using DBMS, you should also have a working knowledge of COBOL or FORTRAN,
since either may be used as the host language. Descriptions of these languages can be found in the DECsystem-10
COBOL Programmer's Reference Manual and the FORTRAN Reference Manual, respectively. In addition, you
may wish to read portions of the Data Base Management System (DBMS) Data Base Administrator's Procedures
Manual to understand overall system functioning.

Because DBMS·IO is a CODASYL-based system (a subset of the 1971 Data Base Task Group specification with ex
tensions) you may also wish to read the CODASYL documents to understand data base concepts and implementa
tions.

This manual is intended to complement the Administrator's manual. Chapter I deals brielly with concepts ami
terms and describes a typical DBMS application. Chapter 2 discusses the schema and the keywords associated with
it, and illustrates use of the Data Manipulation Language (DML) to access the data base. Chapter 3 defines the
conventions used to write DM L statements; discusses exception handling; and describes the formats and rules for
each DML statement. Chapters 4 and 5 specify the DML use for COBOL and FORTRAN programs. respectively.
and provide examples for each.

The appendices include

I. reserved words and uscr-referencable DBCS terms
2. exception condition codes and error messages
3. schema data declarations and FORTRAN and COBOL conversions
4. passing strings to DBCS
5. a glossary.

The glossary briefly defines DBMS-unique terms.

vii

CHAPTER 1

INTRODUCTION TO DBMS

The Data Base Management System (DBMS) is a framework for creating, maintaining, and referencing
groups of interrelated data. These groups - called data bases - have been structured and linked in a way that per
mits you to selectively access and manipulate the data in the data-bases. Responsibility for defining, organizing,
protecting, and documenting the data base itself lies with the Data Base Administrator (DBA).

The main elements of data base management software comprise:

• DDL the data description language and its processor. Refer to Section 1.3 and to the
DBMS-JO Data Base Administrator's Procedures MlInual.

• DML the data manipulation language for COBOL and FORTRAN programs. The main
portion of this manual is devoted to explaining the DML and its use.

• DBCS the data base manager module of reentrant run-time routines. Refer to Section 1.5
and to the DBMS-JO Data Base Administrator's Procedures Mallual.

• DBU the data base support utilities. Refer to the DBMS-JO Data Bas(' Administrator's
Procedures Manual. Chapter 6.

1.1 DBMS FEATURES
DBMS allows the building and manipulation of data structures that are complex or simple. depending on the needs
of your application. Some of the advantageous features of this system are reduced program-development time, data
integration, and simplified program maintenance.

1.1.1 Reduced Program-Development Time
DBMS allows you to call generalized run·time routines to handle many program-development functions in a standard
way thereby reducing the amount of time required to design and code an application.

Many application programs require data structures more complex than a simple sequential series of records. They
may require randomized data, direct access to data, and a method of allowing one record to point to another. Many
application projects therefore recode the same basic routines for access methods and pointer handling. Because
these requirements are common to many application projects, however, standardization has been possible with
DBMS.

1.1.2 Integration of Data
Since DBMS can support tree and network data structures and multiple-access methods, one physical data base
can serve many applications. This integration minimizes data redundancy and its resultant multiple-update
problems.

1.1.3 Simplified Program Maintenance
With DBMS, an application program is isolated from the structure of data formats by the schema. (The run-time
system (DBCS) performs a binding operation which, in effect, causes the required formats and data description
information to be copied into the source program.) Functionally, this centralizes required data format changes to
one location and renders them purely mechanical.

1-1

Introduch'on to DBMS

As an application programmer, you have traditionally been required to develop and specify the data descriptions,
record formats, and buffer sizes for your programs. When changes occur in these descriptions, formats, or buffer
sizes, you edit and recompile the sources. Moreover, applications that require data structuring (creation of pointers
that relate records to one another) or special search techniques have the code for implementing these functions
embedded in the program. Changes in record sizes or formats for these applications can invalidate the structure or
search techniques and require that the program be rewritten. With DBMS many of these maintenance functions
become simple and mechanical.

The next section describes terms associated with data-base management to familiarize you with their use in this
manual.

1.2 DBMS-ASSOCIATED TERMS
The description of a data base is made using the names and characteristics of such terms as data-items, data
aggregates, records, areas, and sets. Because some of these terms are used in a special way in DBMS, their definitions
and implications are important to you. As such, they are described in some detail here. Those terms describing
aspects of DBMS function that primarily concern the Data Base Administrator are not emphasized - although
they are discussed.

A DATA-ITEM is the smallest unit of named data. An occurrence of a data-item is a value. Data-items can
be alphanumeric or numeric (fixed or floating point).

A DATA-AGGREGATE is a named collection of data-items within a record. Aggregates are of two types:
vectors and repeating groups. A vector is a one-dimensional, ordered collection of data-items, all of which
have identical data types. A repeating group is a collection of data that occurs an arbitrary number of times
within a record occurrence. The collection may consist of data-items, vectors, and repeating groups.

A RECORD is a named collection of one or more data-items or data-aggregates. A data base can contain any
number of occurrences of each record described in the schema. Each record described defines a record type.
(For example, for each employee in a company using DBMS, the data base would contain one occurrence
of the record type PAYROLL-RECORD.) This distinction between the actual occurrences of a record and
the type of the record is an important one for DBMS users.

A SET is a named collection of record types. As such, it establishes the characteristics of an arbitrary num
ber of occurrences of the named set. Each set type specified in the schema must have one record type de
clared as its OWNER and one or more record types declared as its MEMBER records. Each occurrence of a set
must contain one occurrence of its owner record and may contain an arbitrary number of occurrences of each
of its membe r record types.

An AREA is a named sub-division of the addressable storage space in the data base and can contain occur
rences of records and sets. Areas can be opened by a run-unit with USAGE MODES which permit or forbid
concurrent run-units to open the same area. An area can be declared in the schema to be a TEMPORARY
AREA. This provides a different occurrence of the temporary area to each run-unit opening it. At the termi
nation of the run-unit, the storage space involved becomes available for re-use; any data stored in the temporary
area is lost.

Use of the area concept allows the Data Base Administrator to divide a data base and to control placement of
an area for efficient storage and retrieval of da tao It allows efficient access to the data base (since each run
unit uses only a specified portion of the data base); and a convenient unit for recovery (since duplication and
backup can be carried out selectively).

1-2

Introduction to DBMS

A SCHEMA, defmed by the Data Base Administrator, consists of Data Description La~guage entries and is a
complete description of a data base. It includes the names and descriptions of all the areas, sets, records, and
associated data-items and data-aggregates that compose the data base.

A SUB-SCHEMA, also defined by the Data Base Administrator, consists of DOL entries delineating those
areas, sets, records, and associated data-items and data-aggregates known to an application. Descriptions are
in the form known to the application using the sub-schema.

A OAT A BASE consists of all the record occurrences, set occurrences, and areas defined by its schema. Each
data base has its own schema. The contents of different data bases in a facility are disjoint.

1.3 DBMS LANGUAGES
The DBMS provides four languages - each having a different function:

• Schema Data Description Language (DOL)
• Sub-Schema Data Description Language (DOL)
• Device Media Cont~ol Language (DMCL)
• Data Manipulation Language (DML)

The Data Base Administrator uses the DDLs and the DMCL; therefore they are not treated in detail here. You use
the DML - in conjunction with a host language - to access the data base. The body of this manual is therefore
devoted to describing the DML and illustrating its use.

1.3.1 Data Description Languages (DDLs)
The Data Base Administrator uses the DDLs to define the schema and the sub-schema. The Schema DOL enables
the DBA to describe the overall logical and physical mapping of the data base. The Sub-Schema DOL allows him to
describe a specific subset of the data base to be accessed by an application.

1.3.2 Device Media Control Language (DMCL)
The DBA uses the DMCL to specify how the physical storage space on mass storage devices will be used to record
the data base.

1.3.3 Data Manipulation Language (DML)
As the application programmer, you use the DML to access data in the data base. The DML is not a complete language.
Rather, it is a host-language extension relying on COBOL or FORTRAN to offer a framework; from this the DML
can provide the interface with the data base. The DML commands and the host-language statements coexist in an
application program. The distinction between them is merely conceptual. From your point of view, you are using one
unified language that has the capabilities of both the host language and the DML. The host language manipulates
data in primary storage, and the DML interfaces with the data base. All calls to retrieve data, to add new data, to
modify existing data or data relationships, and to delete existing data or data relationships in the data base are written
in the DML.

The main body of this manual describes the DML, its use, the commands associated with it, and its relation to COBOL
and FORTRAN. Chapter 3 defines the specifications for the DML.

1.4 UNDERSTANDING DBMS RECORDS AND SETS
A record description in the Schema DOL is similar to a COBOL record description. It is a named collection of data
items or data-aggregates. The DBA describes the record when he creates the data base. A record from the data base
looks exactly like a COBOL data record to the application program and can be treated as such. The difference is that
you do not describe the records in your program. Rather the compiler or preprocessor inserts these records into your
program.

1-3

Introduction to DBMS

Records are organized into sets within the data base. A set is a named collection of records. Sets have one owner
record and can have one or more member records.

A set is normally arranged for a specific application; if other applications use some of the data in that set, another
set can be created to include that data in an arrangement suitable for these applications. This avoids redundancy of
data and provides ease of accessing the data required for a given processing task.

For example, suppose a company has a data record for each employee. One set of records used by the Personnel
Department contains the names of the employees in each department. The Personnel Department or the department
manager is the owner in this set and each employee in the department is a member. The Payroll Department needs
a different kind of set, however, because its applications are different. Its set may consist of wage class as the o~ner
record and the employees in that wage class as members. The Accounting Departmen t can then use the same
employee records grouping them into a different type of set. This set consists of an employee record as the owner
and his dependents as members. If an employee has no dependents, the set has an owner record but no member
records. All company applications that use employee records can use the same data records. The records are logically
arranged into different sets, however, to meet the needs of each application.

1.4.1 Types of Sets and Records
The description of a set in the schema defines a set type. The description of a record in the schema defines a record
type. The description of a set type is a named collection of record types. A set type consists of an owner-record type
and one or more member-record types. Schematically, a set type can be represented as:

OWNER-RECORD
TYPE

Set Type

,

MEMBER-RECORD
TYPE

A department set type can therefore be represented as:

DEPARTMENT
RECORD

Department
Set

,
EMPLOYEE

RECORD

1-4

Introduction to DBMS

1.4.2 Occurrences of Sets and Records
A collection of one or more logically related record occurrences defines a set occurrence; this is the act ual data in the
set. You are primarily concerned with occurrences of sets and records - since your interest is processing the act ual data
and not the structure of the data base. A set occurrence consists of ~an owner-record occurrence and zero, one, or
more member-record occurrences linked in some way. Schematically, then, a set occurrence can be represented as it
is in Figure I-I.

Figure 1·1 Generalized Representation of SCi Occurrence

I·S

Introduction to DBMS

A record occurrence is a specific record of a record type. For example, John Smith's employee record is a specific
record occurrence of the employee-record type. The Drafting Department set containing the names of the employees
in that department constitutes a set occurrence. The Drafting Department set occurrence can be illustrated
schematically as done in Figure 1·2. It looks this way:

Figure }·2 Specific Set Occurrence: the Drafting Department

The arrows in the figures show the way the records in the set occurrence are linked. For each set occurrence a chain
of pointers is created that provides for serial access to all records in the set occurrence. These pointers are embedded
in the records themselves; they link one record in the chain to the next record in the chain. From any given record
in the chain, processing can be forward, backward, or directly ·0 the owner record - depending on the linkage defi·
nition the DBA indicates in the schema.

In the set occurrence illustrated by Figure 1·2, the arrows indicate that the records are linked in the forward (NEXT)
direction and in the backward (PRIOR) direction. Records could also be linked to the owner (LINKED TO OWNER);
this would be shown as an arrow from a member record to the owner record.

1-6

Introduction to DBMS

1.4.3 Main Characteristics of Sets and Records
The following items further characterize sets and records.

I. No intrinsic limitation exists on the number of set types that can be declared in a schema.
2. Each set type must be defined by an owner-record type. It can have one or more member·

record types.
3. A record type cannot participate as both owner and member of the same set type.
4. A record type can be declared as the owner record of any number of set types. Likewise,

a record type can participate as a member record in one or more set types. Furthermore,
a record type can be the owner of one or more set types and - at the same time - a memo
ber in any number of set types.

5. A record occurrence cannot appear in more than one occurrence of the same set.
6. A set occurrence is a collection of one or more logically related record occurrences. Each

occurrence of a set includes an owner record occurrence and zero, one, or more member·
record occurrences.

7. A singular set is one in which the owner is the system.

1.4.4 Set Relationships
Three data structures are used in DBMS to show set relationships: sequential. tree, and network. Refer to Figure).)
a. b, and c, respectively, for a schematic representation of these three data structures.

a. Sequential b. Trees

C. Networks

Figure 1-3 DBMS Data Structures: Sequential, Tree, and Network

1-7

Introduction to DBMS

1.4.4.1 Sequential Structures - A sequential structure shows intra-set relationships. Each element (record) in a
DBMS sequential structure is related to the element following it in the structure. The simplest representation of a
DBMS sequential structure is a set occurrence linked in the forward direction (with NEXT pointers, Figure 1-3a). This,
in effect, is a one-way ring. If linkages in the backward direction are included (that is, PRIOR pointers), the set occur
rence is a two-way ring. (See Figures I-I and 1-2 for a detailed representation of set occurrences - a basic construct in
DBMS). Linkages to the owner record from each member record provide a further facility for processing.

1.4.4.2 Tree Structures - A tree structure shows inter-set relationships. A tree data structure is hierarchical; each
element is related to one or more elements at any level below it, but only to one element in the level immediately
above it. The highest element of the tree is called the root; and it has only dependent elements. Each node of the
tree, then, has one branch entering it, but may have any number (including zero) exiting. (Figure 1-5 shows setsin
a tree structure describing the application discussed in Section 1.6.)

1.4.4.3 Network Structures - A network structure also shows inter-set relationships. The network is the most
general form of data structure. In such a structure, any given element may be related to any other element in the
structure. Unlike a tree, no restriction exists on the number of branches entering a node. Networks are the most
widely used data base structures available in DBMS.

1.5 OPERATIONAL ENVIRONMENT
This section describes those aspects of the DBMS operational environment that are of particular interest to you as
the application programmer. These include the run-unit, the Data Base Control System (DBCS), the User Working
Area (UWA), and the techniques used to ensure protection of data in shared data bases.

1.5.1 Run-Unit
A run-unit is the execution of a program. A program consists of one or more program-units. Program-units are the
smallest collection of source-language statements that can be independently compiled or preprocessed. For example,
a FORTRAN program-unit is defined as one of the following:

FUNCTION

< END

1.5.2 Data Base Control System (DOCS)
The Data Base Control System (DBCS) is the set of routines caUed by the run-unit's DML statements to perform the
data manipulation functions. Figure 1-4 illustrates the general relationships between the data-base storage areas, the
DECsystem-lO monitor, a program (run-unit), and its use of the object-time system and DBCS object-time modules.

1.5.3 User Working Area (UWA)
The User Working Area (UW A) is the storage space allocated to a program-unit and serves as the communication
medium between the DBCS and the program-unit. The UW A can be considered a loading and unloading zone in
which all data provided by the DBCS in response to a call for da!a is delivered, and where all data to be picked up by
the DBCS must be placed. Each program-unit is assigned its own UW A; the data in the UW A is not disturbed except
in response to the execution of a DML command or a host-language command. The DBCS creates the UWA for a
specific program-unit according to the sub-schema invoked by that program-unit. Only those data-items known to
the sub-schema can exist in the UW A, and only those can be referenced by the program-unit. For further discussion
of the UW A, refer to Section 2.2. i .

1.5.4 Protection of Data
The DBMS includes proviSions for protecting data in data bases shared by many programs and applications.
Essentially the system offers two kinds of protection:

1. Privacy, which is protection against unauthorized access to data, and
2. Integrity, which is safeguarding of data from destructive interaction of program run-units.

1-8

SCHEMA
SUB-SCHEMA

MASS STORAGE

Introduction to DBMS

Reentrant Non-reentrant

DATA AREAS

OBJECT
TIME

M SYSTEM

0
USER WORK AREA

N

(-----~ I

T

0 DATA BASE

R PAGE
BUFFERS

DBCS

PROCEDURAL
DML

APPLICATION PROGRAM

Figure 1-4 Data-Base Environment

Note, however, DBMS offers no protection against your deleting a record that is also owner of a set having members
required by other programs. This type of deletion is considered a logical error and must be guarded against by good
administrator-programmer communication in individual facilities.

1.5.4.1 Privacy of Data - Protection against unauthorized access of data in a shared data base is enhanced by the
mechanism of privacy locks specified in the schema and sub-schema and privacy keys that must be provided by a
run-unit seeking to access or alter the data. A privacy lock is a single alphanumeric value up to five characters long;
it may be declared at the sub-schema and area levels. A privacy key is a value supplied by the run-unit seeking access.
The system compares the values. If there is no match, the system forbids the run-unit specifying the key access to
the data. It returns an exception code to the run-unit. 1 (Refer to Section 3.2 for a discussion of exception handling
and a list of statement codes, and to Appendix B for a description of the exception codes.)

To access data, therefore, you must know the value of the key permitting entry into the part of the data base you
need. You should also remain current since the DBA may periodically modify or change values for privacy locks.

1.5.4.2 Integrity of Data - Protection of data against concurrent destructive interaction by two run-units is
ensured by giving a run-unit exclusive update rights over one or more areas. A concurrent run-unit cannot then access
these areas for update.

You must specify the usage mode describing how the data is to be accessed when you open an area. DBMS provides
six usage modes: RETRIEVAL, UPDATE, PROTECTED RETRIEVAL, PROTECTED UPDATE, EXCLUSIVE
RETRIEVAL, and EXCLUSIVE UPDATE. Refer to Section 2.2.3 for more detailed information on opening and
using areas and to Chapter 3 for a specification of the OPEN statement.

IThe term exception refers to error status conditions. The term is used in conformance with CODASYL terminology.

1-9

Introduction to DBMS

1.6 A TYPICAL DBMS APPLICA nON
The following example of a typical DBMS application is given to further familiarize you with the basic elements of
the system. The example analyzes a company's activities and builds a data base using DBMS. Refer to Figure 1-5 as
you read the following explanation. The figure illustrates the application showing the sets in a tree structure.

CUSTOMER·SET

CUSTOMER-RECORD
TYPE

SAlES·SET

OTR·SAlES·RECORD
TYPE

SAlESMAN·RECORD
TYPE

FIElD·SET

SAlESFIElD·RECORD
TYPE

COMMISSION·SET

OTR·COMMISSION·RECORD
TYPE

PE R FO R MANCE·SET

PERFORMANCE-RECORD
TYPE

Figure 1-5 BARH Ltd. Application Showing Sets in a Tree Structure

Suppose the existence of a company, a sales organization named BARH Ltd. The company has customers and
salesmen. A group of customers serviced by a salesman is a sales territory, and a number of sales territories make up
a sales office. One record type named SALESMAN-RECORD describes information relevant to all the salesmen in
the company. The data-items in this record include such information as salesman's name, address, phone number,
Social Security number, number of dependents, base salary, and hiring date. The record type SALESMAN-RECORD
has as many record occurrences as there are salesmen in BARH, Ltd.

1-10

Introduction to DBMS

Similarly, another record type named CUSTOMER·RECORD contains data·items pertaining to all the customers
of the company. Specific record occurrences of this record type include such data as a specific customer's name,
address, phone number, account number, and credit status. A third record type SALESFIELD·RECORD has
occurrences consisting of such data as a specific territory identification and location of the territory.

The records described are then grouped into set types relevant to the BARH Ltd. application. One set type is
FIELD-SET, which consists of the SALESMAN·RECORD as the owner and SALESFIELD-RECORD as an option
al member. Using optional membership ~mows you to conditionally link a salesman with a sales territory and to
conditionally change the linking between the salesmen and sales territories.

A further analysis of the company shows that a relation also exists between the customers and the sales territory;
this is represented by another set type called CUSTOMER·SET, in which the owner record is SALESFIELD
RECORD; the optional member is CUSTOMER-RECORD. Using optional membership here allows you to link the
individual customers with the appropriate sales territory to which they belong.

Uke most companies BARH makes predictions about how much income will be earned in each sales territory each
quarter; it then compares the actual performance at the end of the quarter with the predicted performance. To
define this function, another record type PERFORMANCE· RECORD is necessary. It has an occurrence for each
sales territory. Additionally, another set type is required that relates SALESFIELD-RECORD as the owner to the
new record as a mandatory member. This set is called PERFORMANCE·SET. Each occurrence of PERFORMANCE
SET then has one occurrence of its owner record and one occurrence of the member record. Note that SALESFI ELD
RECORD participates in two other sets - once as owner and once as optional member - but can still participate as
the owner in this set.

For each quarter BARH also measures the amount of sales made to each customer and the amount of commission
earned by each salesman. Two records define this function: QTR-SALES-RECORD and QTR-COMMISSION
RECORD. Each of these records is used in a new set type. One set is SALES-SET; it has CUSTOMER·RECORD
as its owner and QTR·SALES·RECORD as a mandatory member. The other set is COMM ISSION·SET and has
SALESMAN-RECORD as its owner and QTR·COMMISSION-RECORD as a mandatory member.

Figure 4-2 illustrates the schema and sub·schema for the BARH Ltd. application using COBOL as the host language;
figure 5·2 illustrates the schema and sub-schema using FORTRAN.

1·11

CHAPTER 2

USING THE DATA BASE

fo write programs that access a data base, first obtain a copy of the data base schema and the sub-schema of that por
tion of the data base you want to access. By reading the schema and sub-schema, you can find the names of the ar~as,
sets, records and data-items to reference in your program. Section 2.1 contains the detailed information necessary to
understanding the schema and sub-schema listing shown in Figure 2-1.

To access the data base, you must include Data Manipulation Language (DM L) statements in your program. Section
2.2 introduces the DML statements and illustrates their usc. Chapter 3 discusses the DM L formats and rules.

To create a journal for backup and recovery, you should know the types of journaling available and the various subrou
tines associated with journaling. Section 2.3 discusses journaling.

To understand overall system function, you should also know the control DBCS maintains during application-program
execution. Section 2.4 discusses conditions under which a program can be returned to monitor level: it also discusses
conditions under which the data base is considered to be in an undefined state.

Finally, to use the DBMS efficiently, you should also know which functions the Data Base Cont rol System (DBC'S) per
forms for you; that is, automatically. These functions can affect the number of operations performed on the data and
the running time of your program. Section 2.5 discusses these functions in terms of efficient usc.

2.1 READING THE SCHEMA AND SUB-SCHEMA
To see the descriptions of the areas, sets, records, and data-items you will access in your application program, examine
a listing of the schema and the sub-schema. Refer to Figure 2-1 for an example of a schema, named V4S, with three
sub-schemas: SS1, SS2, SS3.

Note that the schema provides a description of each record type and includes the data-items each record type contains;
it also provides the key-fields you can use in accessing these records.

Since your application program will gain access to the data base through a sub-schema - using the DML INVOKE
statement to call the particular sub-schema you want -- you must carefully study the sub-schema section. The sub
schema lists the areas, records, and sets your program can access. It also inel udes t he privacy lock for which your pro
gram must supply a privacy key to gain access to the data base at compile time.

-,
IMAGES NOT BY COMMAND--------------~I-------------IMAGES statement. See 2.2.3 and 2.3.
INTERCEPT SYSTEM UPDATE BIND CALL. IDMCL -------INTERCEPT/NOTE statement. See 3.2.
JOURNAL IS DSKB: V4S [31,2376] I JOURNAL statement. See 2.3. _.J

ASSIGN SYSTEM AREA AREAl TO ARE~~~ii
BACKUP BEFORE IMAGES I BACKUP clause. See 2.3.
CALC AT MOST 2 RECORDS-PER-PAGE I
RECORDS-PER-PAGE IS 72 L--------System information transparent to
FIRST PAGE 1 II application program.
LAST PAGE 1001
PAGE SIZE 384 WORDS I
RANGE OF CALCREC 701 TO 1001. I _J

Figure 2-) Sample Schema and Sub-Schema Listing

2·)

Using the Data Base

SCHEMA NAME IS V4S. --------------------__________ Schema name, See 2.2.1.

AREA NAME IS AREAl PRIVACY LOCK ABC. _____ _
Area name used in OPEN and CLOSE.
See 2.2.3 and 2.2.7. Privacy lock.
See 1.5.4.1 and 2.2.3.

RECORD NAME IS CALCREC Record name.
LOCATION MODE IS CALC USING PROFES, ~ Location mode for CALCREC.
LNAME DUPLICATES NOT ALLOWED WITHIN AREA1~ in storing the record. See
02 VACATION\VACAMI TYPE FLOAT BIN. }-
02 UNAME PICTURE X (12) USAGE DISPLAY-7. D t" t . CALCREC.
02 FAMILY SIZE IS 3 WORDS. a a 1 ems 1n
02 PROFES TYPE FIXED BIN.

RECORD NAME IS SORTREC --------------------------Record name.

Used
2.1.1.

LOCATION MODE IS VIA SYS-SETl Location mode for SORTREC used in
WITHIN AREA10 J storing the record. See 201.1.

02 EXPER TYPE FIXED DEC 3. -, Data items in SORTREC.
02 SKILLMASK\SKMASK TYPE FIXED BIN 70:1

SET NAME IS SYS-SET ------------------------------Set name.
ORDER IS SORTED DUPLICATES ARE ALLOWED Set order. See 2.1.3.
OWNER IS SYSTEM Owner for SYS-SET. See 2.1.5.
MODE IS CHAIN. Set mode for SYS-SET. See 2.1.2.
tmMBER IS SORTREC ~mND AUTO Member records in SYS-SET and their
ASC KEY IS SKILLMASK ASC RANGE KEY IS EXPER. set membership. See 2.1.4.

SET NAME IS CALCSORT Set name.
OWNER IS CALCREC OWner for CALCSORT.
ORDER IS ALWAYS NEXT Set order. See 2.1.3.
MODE IS CHAIN. Set mode for CALCSORT. See 2.1.2.
MEMBER IS SORTREC OPTIONAL AUTO LINKED TO OWNER--Set membership.
SET SELECTION IS LOCATION MODE OF OWNER.

SUB-SCHEMA NAME IS SSl. --------------------------Sub-schema name used in INVOKE.
See 2.2.1.

AREA SECTION.
COpy AREA1.--------------------------------------Area from schema included in this

sub-schema.

RECORD SECTION.------------------------------------- Records from the schema included in
01 SORTREC. this sub-schema.
01 CALCREC.
02 FAMILY.
DATA FAMILY/10,20,30/---------------------------- Exact text that will be included in

host-language program.
COpy OTHERS.--------------------------------------- Also copies all other 02 data (i.e.,

02 VACATION, 02 LNAME, 02 PROFES).
See CALCREC description.

SET SECTION. --- Sets from the schema included in
COpy ALL SETS~ sub-schema SSl.
SUB-SCHEMA NAME IS SS2. Sub-schema name used in INVOKE.

See 2.2.1.

AREA SECTION.--Areas from schema included in sub-
COpy AREAl. schema SS2.

Figure 2-1 (Cont.) Sample Schema and Sub-Schema Listing

2-2

Using the Data Base

RECORD SECTION. --------________________________ __

01 SORTREC.
01 CALCREC.
02 FAMILY.

Records from schema included in sub
schema SS2.

03 A PIC 9(10) COMP VALUE 10J~------------------ Exact text that will be included
03 B PIC 9(20) COMP VALUE 10. in host-language program.
03 C PIC 9(30) COMP VALUE 10.
COpy OTHERS.

SET SECTION.
COpy ALL SETS.

SUB-SCHEMA NAME IS SS3.-------------------------

AREA SECTION.
COpy TEMPORARY AREA1.------------------------

Sub-schema name used in INVOKE.
See 2.2.1.

Area from schema included in sub
schema SS3.

RECORD SECTION. ----------.-------------------------- Records from schema included in sub-
01 SORTREC. schema SS3.
01 CALCREC.
02 FAMILY. l
DATA FAMILY/10,20,30LJ
02 LNAME.
DATA LNAME/'MISTERCALC'/
COpy OTHERS.----------------------------____ ___

SET SECTION.
COpy ALL SET~~--------------------------------

END-SCHEMA.

Exact text that will be included
in the host-language program~

See RECORD SECTION 5Sl.

Sets from schema included in sub
schema SS3.

Figure 2·1 (ConI.) Sample Schema and Suh·SchclIl41 Listing

Figure 2·2 represents the set types for the sample schema and sub·schema shown in Figure 2·1. This kind of set
representation can be very helpful to you particularly as you begin to "walk through structured data" (as de·
scribed in Section 2.2.4). You should, therefore. either draw a set represcntation or request one from the I}dta Base
Administrator .

CALCREC SYSTEM

SYS-SET

SORTREC

Figure 2·2 Set Representation for Sample Schema

2.1.1 Location Mode
As shown in the sample schema. each record has a deSignated location mode. The location mode is defined by the
Data Base Administrator using the Schema DDL and specifies to the DRCS the criteria for storing and accessing the
record. You should know the identifiers and data-names referenced in the LOCATION MODE clause since you may
have to initialize them.

2-3

Using the Data Base

Location mode is particularly pertinent, then, under the following conditions:

1. When you are using the STORE statement.
2. When you are using a form of the FIND statement. (Record selection expression 5 can be

applied only to a record having a location mode of CALC.) Refer to Section 2.2.4 for a
discussion of record-selection expressions to be used with the FIND statement.

3. When the set occurrence selection mechanism is LOCATION MODE OF OWNER. (Before
execution of a statement involving set occurrence selection, you must initialize any data
names and identifiers specified in and implied by LOCATION MODE OF OWNER.) Refer
to Section 2.1.5 for a description of set occurrence selection.

One of three location modes must be specified for each record entry appearing in the schema. These are DIRECT,
CALCulation, and VIA set name.

2.1.1.1 DIRECT - Storage (and retrieval) of an occurrence of the record type is based on the value in the DIRECT
identifier; this value can be a.data-base key (assigned by the DBCS to each record occurrence in the data base) or zero.
If the value is the data-base key, DBCS uses the page number portion of the data-base key to locate the appropriate
page. If the value is zero, DBCS uses the page number of the current record of the area to locate the appropriate page.
If there is no current record of the area, DBCS uses the first page of the area's page range.

2.1.1.2 CALCulation - Storage (and retrieval) is based on the values supplied by the run-unit for the data-names con
tained in the specified record and declared as CALC keys. The DBeS transforms the values so provided into a unique
identifier and stores the record on the basis of that identifier.

2.1.1.3 VIA Set Name - Storage (and retrieval) depends on the relationship established for the specified record by
the DOCS on the basis of a set declaration in the schema. In effect, DBeS stores the record as physically close as pos
sible to the logical insert point in the current set occurrence of the set type named in the VIA phrase. Its primary
purpose therefore is to group related records together to minimize I/O accesses during retrieval.

2.1.2 Set Mode
Set mode - specified by the DBA using the schema DOL - describes the way in which the records in the set are
related. Refer also to Section 1.4.2, which discusses (and illustrates) set and record occurrences. Currently, the only
set mode in DBMS is CHAIN. In this mode, an embedded chain of pointers provides serial access to all records in
that chain. The pointer is used to link one record in the chain to the next record in the chain. Chains can be processed
either forward or backward from the current record. Normally, they are processed only in the forward (NEXT) direc
tion unless the optional LINKED TO PRIOR clause is used. This clause causes the DBMS to facilitate processing in
the backward (PRIOR) direction by maintaining a prior pointer for each record occurrence.

An additional optional clause, LINKED TO OWNER, can be specified for individual member-record types. This
causes the owner record of the set to be accessible directly from each of the member records that have this clause
specified. Set mode is completely transparent to an application program except in terms of execution-time efficiency.
Refer to Section 2.5 for a discussion of efficiency considerations.

2.1.3 Set Order
The set order - specified by the DBA - controls the logical order of the member records within each set. The member
recordsin a set may be ordered in one of the following ways.

1. SORTED in ascending or descending sequence based on the values of specified keys. The keys specified
may be data-items in each of the member records, the names of the member records, or their data-base
keys, or a combination of these.

2. In the order resulting from inserting new member-record occurrences into the set.
- FIRST, that is, as the immediate successor to the owner record occurrence.

2-4

Using the Data Base

- LAST, that is, as the immediate predecessor to the owner record occurrence.
- NEXT, PRIOR, that is, after or before another record occurrence that is selected by the appli-

cation program storing or inserting the record in the set.

2.1.4 Set Membenhip
Each set type must have an owner-record type and one or more member-recor:d types. The DBA describes the owner
of the set and its members in the schema. He also describes the way in which each member record participates in the
set; i.e., its set membership. Set membership is either AUTOMATIC or MANUAL and either MANDATORY or
OPTIONAL.

2.1.4.1 Automatic Set Membenhip - AUTOMATIC means that membership in the set is established by DBMS
when a record occurrence is stored. That is, whenever an occurrence of a record declared to be an automatic mem
ber of a set is added to the data base, it will be logically inserted into (made a member of) the appropriate
occurrences of all the sets in which it has been declared as an automatic member.

2.1.4.2 Manual Set Membership - MANUAL means that membership in the set can be established by a run-unit
only by means of an INSERT command. The addition to the data base of a record occurrence declared to be a
MANUAL member of a set will not cause it to be made a member of any occurrence of the sets in which it has been
declared as a manual member.

2.1.4.3 Mandatory Set Membership - MANDATORY means that, once the membership of a record occurrence in a
set is established, either automatically or by means of an INSERT command, the membership is permanent (as long
as the set occurrence exists or the record is not deleted).

2.1.4.4 Optional ,Set Membenhip - OPTIONAL means that the membership of a record occurrence in a set is not
necessarily permanent. Its membership can be cancelled by a REMOVE command or by a DELETE ONLY of its
owner.

2.1.5 Set Occunence Selection
Each time a particular set type is referenced implicitly during a STORE command, DBCS must resolve which occur
rence of that set type to select to correspond to your statement. The Data Base h.iministrator can use either of two
phrases to speCfify the set occurrence selection mechanism for a set in a schema: CURRENT OF SET or LOCATION
MODE OF OWNER. You should be aware, however, that set occurrence selection is not applicable to sets whose
owner is system. Since these constitute Singular sets, DBCS can always correctly locate the set occurrence.

2.1.5.1 Current Of Set - If CURRENT OF SET is used, the DBCS stores the record in the set occurrence which has
been accessed most recently by this run-unit (current of set). DBCS uses the last record accessed by this run-unit
(current of record) as a reference point.

2.1.5.2 Location Mode Of Owner - If LOCATION MODE OF OWNER is used, DBeS selects the set occurrence by
first locating an owner·record occurrence according to the location mode of the owner record as specified in the
schema. If the location mode of the owner is DIRECT, DBCS uses the data-base key in the DIRECT phrase to locate
the owner of the set. If the location mode of the owner is CALC, DOCS uses the CALC key to locate the owner of
the set. You must, therefore, initialize the DIRECT key or the CALC key of the owner before referencing such a set
type.

If the location mode of the owner is ViA set name, DBCS locates the owner of the (VIA) set in which the specified
owner is a member. If the new owner also has a location mode of VIA, DBCS repeats the process until it finds a set
occurrence selection of CURRENT OF SET, the SYSTEM record, or an owner with a location mode of DIRECT or
CALC. DOCS then calculates the set occurrence back down the hierarchy until it reaches the owner originally specie
fied. DRCS then stores the new record in that set occurrence.

2-5

Using the Data Base

2.2 WRITING DML STATEMENTS IN AN APPLICATION PROGRAM
To access the data base, you must include Data Manipulation Language (DML) statements among the host language
statements in your program. As noted, first carefully examine the schema. Familiarize yourself with-the DML state
ments in Chapter 3 and the conventions for their use. Also be sure to note the conventions for using the DML within
COBOL or FORTRAN. (Refer to Chapters 4 and 5 for the specific usage of the DML within COBOL and
FORTRAN, respectively.) The following sections introduce the DML statements and generally discuss their use.

2.2.1 Invoking a Sub-Schema
The first DML statement to include in a program-unit is INVOKE (or ACCESS, refer to 2.2.2). The INVOKE state
ment specifies the sub-schema that the program-unit will reference.

Each INVOKE statement causes the COBOL compiler or the FORTRAN preprocessor (FORDML) to create a User
Working Area (UWA). (Refer to Section 1.5.3 for a description of the UWA.) Each.data-item included in the sub
schema is assigned a location in the UW A and can be referenced by its name as declared in the schema. You cannot
reference data-items in the schema that are not included in the sub-schema you invoke.

The data descriptions from the schema arc placed in your application program in the form of the record descriptions
used by the host language. The system communications area (that is, the special registers) are also placed in the UWA.
These registers are used to store the error status; the names of the area, set, and record where the error occurred; and
the last record and area affected by the MOVE statement. Refer to Chapters 4 and 5 for the descriptions of these
registers as they are declared for COBOL and FORTRAN.

The Data Base Administrator can assign a privacy lock to any sub-schema. A privacy lock is a single alphanumeric
value at most five characters in length. When a sub-schema has a privacy lock, include a privacy key in the INVOKE
statement. If you specify a privacy key longer than five characters, it will be accepted and truncated. Refer also
to Section 1.5.4 for a discussion of protection of data.

Only one INVOKE statement can be present in a program-unit since you can reference only one sub-schema in a
program-unit. Within a run-unit, however, you can reference up to eight sub-schemas. The name of each sub-schema
must be unique. In general, note that schema names, sub-schema names, and privacy-lock names used with an
INVOKE or ACCESS statement effectively constitute user-reserved words. They must be unique. You cannot use
them in other parts of your application program to name other items.

When using more than one INVOKE statement in a run-unit, you must inform the DBCS which sub-schema is cur
rent so that the DBCS can reference the correct sub-schema. Do this by calling the DBMS SETDB and UNSET
subprograms.

The SETDB subprogram sets the current sub-schema. The sub-schema must have been previously invoked. Note
that an INVOKE statement impliCitly calls SETDB.

For COBOL programs, the form of the call to SETDB is:

ENTER MACRO SETDB USING 'sub-schema name'.

Note that the upper-case characters with underscoring indicate keywords from the DML that must be used when the
formats of which they are a part are used. Refer to Section 3.1 for an explanation of the conventions used" in descrip
tions of DML statements.

For FORTRAN programs, the form of the call to SETDB is:

CALL SETDB ('sub-schema name')

The conventions referred to in the COBOL-DML example also apply to the FORTRAN-DML example.

2-6

Using the Datil Base

The UNSET subprogram causes ORCS to make the sub-schema that was previously current to be current again.
That is, each call to UNSET causes a sub-schema to be removed from a stack of sub-schemas that was loaded
by calls to SETDB.

For COBOL programs, the form of the call to UNSET is:

ENTER MACRO UNSET

For FORTRAN programs, the form of the call to UNSET is:

~UNSET

Note again that an INVOKE statement implies a call to SETDB. Therefore, include a call to UNSET for each impli
cit or explicit call to SETDS"n anyone of the following cases.

1. (fyou use more than one INVOKE statement in a run-unit.
2. If a single INVOKE statement is processed more than once in a run-unit.
3. If one or more calls to SETDB occur in a run-unit.

The only call to SETDB that does not require a corresponding call to UNSET is a single INVOKE statement proc
essed once in a run-unit.

A subprogram that contains a main entry point with an INVOKE statement and one or more secondary entry points
must be calted the first time through the main entry point because it contains the INVOKE statement. The first call
to this entry point accomplishes the runtime binding to the data base and sets the sub-schema current. (Should an
exception occur during binding, it would be associated with the BIND statement code. Refer to Section 3.2.2.) Sub
sequent calls to this entry point will only set the sub-schema current. When another entry point is called, include an
explicit call to SETDB at the entry point so that the sub-schema-setting.function of the INVOKE statement will be
accomplished. Then include a call to UNSET before making the return to the calling program. Also, if there are mul
tiple entry points in the subprogram containing calls to SETDB, do not pass subprogram flow through more than one
of these entry points (including the main point that contains the INVOKE statement). Otherwise, you must make a
corresponding number of calls to UNSET before the return to the calling program.

The placement of the INVOKE statement differs for each of the host languages. Refer to Chapter 4 for COBOL and
Chapter 5 for FORTRAN. The format and rules for the INVOKE statement are given in Chapter 3.

2.2.2 Accessing a Sub-Schema Invoked in another Program-unit
The ACCESS statement enables a subprogram to access the sub-schema invoked in another program-unit (the main
program or another subprogram). When an ACCESS statement is processed, the User Working Area (UWA) of the
calling program-unit is made available to the called subprogram. The way in which this occurs and the placement of
the ACCESS statement depend on the host language used. (Refer to Chapter 4 for COBOL usage of ACCESS and
Chapter 5 for FORTRAN usage of ACCESS.) Once the UW A is made available to the subprogram, the sub-schema can
be accessed by the DML statements in the subprogram as it would be accessed in the calling program.

You can mix ACCESS statements in a run-unit with INVOKE statements as long as you include only one of either
statement in a single program-unit. An ACCESS statement does not imply a call to either of the subprograms SETDB
or UNSET. (These DBMS subprograms are described in Section 2.2.1 with the INVOKE statement.) If a subprogram
is always called by a program-unit that has invoked the sub-schema referenced by the ACCESS statement, do not in
clude calls to SETDB or UNSET in that subprogram. However, if a subprogram containing an ACCESS statement can
be called by any program-units that do not reference the same sub-schema as that referenced by the ACCESS state
ment, include explicit calls in the s~bprogram containing the ACCESS statement to:

1. SETDB to set the sub-schema current, and
2. UNSET before making the return to the calling program.

2-7

Using the Data Base

Refer to Chapter 3 for the format and rules for the ACCESS statement.

2.2.3 Opening Areas
The OPEN statement opens one or more areas in a data base for your use. You can request that one or more specific
areas be opened or that all areas included in the sub-schema be opened. With the OPEN statement you must also in
dicate the usage mode describing how the area is to be accessed. The usage modes are

• UPDATE
• RETRIEVAL
• EXCLUSIVE UPDATE
• EXCLUSIVE RETRIEVAL
• PROTECTED UPDATE
• PROTECTED RETRIEVAL

Concurrent run-units cannot gain access to the area over which an already active run-unit has EXCLUSIVE rights.
Concurrent run-units can retrieve but cannot update an area for which an already active run-unit has PROTECTED
rights. UPDATE (without EXCLUSIVE or PROTECTED) allows concurrent run-units with UPDATE or RETRIEVAL
usage modes to open the same area. RETRIEVAL (without EXCLUSIVE or PROTECTED) allows concurrent run
units with UPDATE, RETRIEVAL, PROTECTED UPDATE, and PROTECTED RETRIEVAL usage modes to open
the same area. Refer to Table 3-2 (in Chapter 3) for more details on usage-mode conflicts.

At the schema and sub-schema levels, areas can be designated to be schema temporary or sub-schema temporary.
When you open an area designated temporary, you are allocated a personal copy of that area. You can modify the
data in your copy as if the data were open in EXCLUSIVE-UPDATE usage-mode. This can be particularly useful when
you are testing programs with 'live' data since you will not interfere with the integrity of the data base. The data
base area, itself, is treated as if you had opened it in PROTECTED RETRIEVAL usage-mode; that is, concurrent
run-units are allowed to retrieve while you are using your personal temporary copy. When you close the area, any
changes you have made are discarded. DBCS then makes the area fully available for use by other run-units. Note
that during this time - that is, while you have a specified area open for temporary use - you can open other areas
of the data base in any of the six usage-modes.

An area (as well as a sub-schema) can have a privacy lock. With the OPEN statement you must supply the appropri
ate privacy key to be able to access the area.

Note also that when the owner of a set is SYSTEM (constituting a singular set) the area that incudes the system set
must be in each sub-schema in which that set is included. You need open it, however, only if you reference the sys
tem record.

2.2.3.1 Opening Areas Simultaneously with Other Run-Units - As noted in the description of usage-modes, DBMS
allows you to update or retrieve data while another run-unit updates or retrieves data in the same area. This facility
has been termed simultaneous-update. Strictly speaking, however, the name is misleading since the facility includes
a retrieving usage-mode. The simultaneous-update facility operates when a run-unit opens an area in one of three
usage-modes:

UPDATE
PROTECTED UPDATE, and
RETRIEVAL.

Concurrency is maintained through use of the ENQUEUE/DEQUEUE facility of the DECsystem-l0 operating sys
tem. (Refer to Chapter 16 of the DECsystem-lO Monitor Calls Manual for a discussion of ENQUEUE/DEQUEUE.)

2-8

Using the Data Base

When deciding how to open an area (that is, which usage-mode to specify), keep in mind that (I) a significant aspect
of using an area in UPDATE usage-mode is that the journal file must then be shared with other run-units; and (2) the
ENQUEUE and DEQUEUE that occurs within a command or a transaction is comparable to using a simple OM L com
mand (for example, FIND NEXT) in terms of CPU usage.

In general then, if you have opened an area in a simultaneous-update usage mode, and are executing updating commands,
each command will potentially be locking out other run-units from the data base resource. This decreases the through
put that DBCS is capable of (relative to the other usage modes). If you are in an on-line environment, in particular,
it is important to consider this impact on throughput when you are designing your updating algorithms. Because of
this, it is important not to use simultaneous-update unless you really need its functionality. Table 2-1 Hsts all six usage
modes and gives some suggestions for using each advantageously. (See Table 2-2 in the Administrator's Procedu;es
Manual for efficiency and design considerations in using simultaneous update.)

Table 2-1 Usage Modes with OPEN; Suggestions for Efficient Use

RETRIEVAL·

UPDATE·

PROTECTED RETRIEVAL

PROTECTED UPDATE·

EXCLUSIVE RETRIEVAL

EXCLUSIVE UPDATE

You intend other run-units to open simultaneously with UPDATE or
PROTECTED UPDATE.

You intend other run-units to open simultaneously with UPDATE.

You expect concurrent retrievers but no concurrent updaters.

You intend other run-units to open with RETRIEVAL.

You really need this exclusiveness; cost is equivalent to PROTECTED
RETRIEVAL.

You really need this exclusiveness; this is the minimum cost update usage-mode.

• Simultaneous-update usage-mode.

Within the framework of simultaneous update then, use of the data-base resource is either exclusive or shared_Exclu
sive use occurs during execution of updating commands. For the duration of any updating command, no other run
unit can access the data base since lock-out is maintained at the data-base level. I Consider the following example.
Run-unit A opens an area for update. If during execution of a DML updating command issued by Run-Unit A, Run
Units Band/or C attempt to initiate a data-base accessing command, each must wait in a queue until Run-Unit A's
updating command is completed. They have no indication from the operating system, however, that they are waiting.
They are placed in the queue in the order in which their requests are received - and they are serviced in that order.

If updating commands are not being executed, then use of the data base resource is shared. For example, if Run-Unit
A executes a FIND command, then Run-Units Band C can also simultaneously execute FIND, GET, and IF com
mands. If one of these run-units wants to update, however, it must wait until the retrieval commands of the others
have been completed. It then locks-the data base resource exclusively for the duration of its commands.

2.2.3.2 Using Areas Simultaneously with Other Run-Units - DBCS cannot determine which areas a DML command
will access before this access occurs. Because of this, a run-unit is considered to be within the domain of the simultane
ous-update facility if the run-unit has at least one area open in a simultaneous-update usage-mode.

1 The duration for which a run-unit retains the data base exclusively is termed an interleaving unit.

2-9

Using the Data Base

Should you decide to open a data-base area in one of the three usage-modes that allow simultaneous access, be sure
to note the form of the IMAGES statement in the schema you are referencing. (See Figure 2-1 for an illustration of
a schema.) The DMCL portion of the schema contains the IMAGES statement.

If IMAGES are in'order by command, DBCS retains the data base exclusively for the duration of each DML updating
command you issue and retains it shared for FIND. GET, and IF commands. (If you wish. you can also define trans
actions using JSTRAN-JETRAN; you may wish to do this to organize your program or to control your program in a
specific way.)

If IMAGES are not in order by command. you can define the duration for which DBCS retains the data base exclu
sively. You do this by defining transactions using JSTRAN-JETRAN. (Refer to Section 2.3.5.1 for det.ails on using
these subprograms.) The data base is then retained exclusively for the duration of the transaction - from the issue of
your call to JSTRAN to the issue of your call to JETRAN. In addition, when IMAGES arc not in order by command.
any OM L commands issued outside a defined transaction arc treated by the rules applicable to IMAGES by command.
You must not, however

• issue a JSTRAN while you have another transaction active. (You would then be issuing two successive
JSTRANs without issuing a JETRAN in between.)

• perform a COBOL RETAIN during a DBMS transaction.
• usc JBTRAN with other than a 0 argument (sec Section 2.3.2. which describes JBTRAN usc) when you

are within the Simultaneous-update domain. This means you arc allowed to restore the data base to the
beginning of the most recent transaction.

If you do any of the above, you will get an exception. See Appendix B. Table B-2 for a description of exception
conditions.

2.2.4 Walking through Structured Da ..
After opening an area. you can select a particular record for processing by using the FIND statement. With the FIND
statement. you must indicate which method of record selection you want to use. Five are available; in effect, they
are the search arguments used for selecting records from the data base. They are called record-selection-cxpressions
(rse) and can be classified as follows:

I. Selection of a record by means of its data-base key (rse I)
2. Selection of a record by means of currency indicators(rsc 2)
3. Selection of a record by means of its relative position in a set or area (e.g., NEXT, PRIOR) (rse 3) .
4. Selection of the owner record of a set (rse 4)
5. Selection of a record if its LOCATION MODE is CALC (rse 5).

For example:

FIND REC2 USING KEY I.
FIND NEXT REC2 RECORD OF SETA SET.

(rse I)
(rse 3)

In some cases the record occurrence you want to access must be found by means of other records or sets. That is,
first another record or set must be found. Then the logical relationships established for the set in the schema must
be followed until a record that participates in more than one set is found. This, in effect, is a junction. A branch can
then be made to another set and followed until the record occurrence desired is found. or until another junction.

Figure 2-3 illustrates this procedure. To find the tenth record occurrence of record type REC6, for example, when
the current record is an occurrence of REC2, first find the owner of the current set (SETO). which is also the owner
of SET 1. Then fmd the member of SET I (REC3). Continue finding owner and member records until you reach
REC6. Then find the tenth occurrence of REC6. To successfully follow this procedure,check the schema and sub
schema for information about the sets to search. (Section 2.1 describes the schema and sub-schema.)

2-10

Using the Data BtUe

REC1
(OWN E R SET1)
(OWNER SETO)

SETO 1/#'0\ I SET1

/ \
FIND OWNER \

• / ,
/ FIND NEXT

} . / \ (MEMBER SET1)
REC2 I \ REC3 JUNCTION

(MEMBER SETO) \ (OWNER SET2)
41

POINTS

I SET2
I
• •

FIND NEXT I·

}
I(MEMBER SET2)
I REC4
I (OWNER SET3)
I ,
~ , SET3 , , ,

FIND r ,
, NEXT , (MEMBER SET3) ,

REC5 ,
(OWNER SET4) "

}
FIND NEXT I SET4

~

REC6
(MEMBER SET4)

Figure 2·3 Walking through Structured Data

2.2.5 Retrieving Data
To transfer records or data-items within records to the UW A from the data base, use the GET statement. The record
that is to be transferred is always the current record of the run·unit (that is, the last record accessed by that run·unit).
Refer to Chapter 3 for the format and rules for the GET statement.

The MOVE STATUS statement allows you to save the contents of a currency status indicator. This is particularly
useful when you want to access a record in another part of the data base without losing your place in the part of the
data base you are currently using. MOVE STATUS also alters the special registers AREA·NAME and RECORD-NAME
~o describe the currency indicator being moved.

2·11

Using the Data Base

2.2.5.1 Currency Status Indica ton - The currency status indicators are single-word registers that record the data
base key of the:

I. last record accessed by thc run-unit - CURRENT of RUN-UNIT
2. last record accessed of each rccord type of the sub-schema - CURRENT of RECORD
3. last record accessed in each set of the sub-schema -- ClJRRENT of SET
4. last record accessed in each area of the sub-schema - CURRENT of AREA

When CURRENT of SET has been delcted or removed -- and a new CURRENT OF SET has not been estahlished
determination of NEXT OF SET (with FIND) is as follows. The record which was NEXT of the eliminated .. ecord
becomes NEXT OF SET. The record PRIOR to it at any point in time becomes PRIOR of SET. Deleting the CURRENT
of AREA, however. has no effcct on the meaning of NEXT or PRIOR of AREA.

Currency status indicators are, in cffect. place markers kept by the DRCS I'm a run-unit. At the start of execution
of a run-unit. the currency status indicators are null. Yuu can selectively suppress the lIpd~Itillg of the currelll:y status
indicators. CXl.'Cpt for the current of run-unit. hy including the SUPI)RESS phrase (in the FIND st"temcnl) in your
program.

Refer to Chapter .1 flU the format and rules for the MOVE STATUS statement.

2.2.6 Performing Updates
Five statements constitute the update class ofstatclllents. Thcsc ;'Ire STORE. MODIFY. INSERT. REMOVI':, and
DELETE.

To create a new record in the d;'lt;., hase, usc the STORE statement. Uoth the physicallocatioll of the .. ecord alld the
implied set linkages are determined hy DOCS from the infunmltiun supplicd ill the schema. COllscqucnt Iy you do not
specify either. In some cases, however. neither the locations nm the Iillk;'Iges arc comph.:tcly t nspa .. cnl. Refcr to
Section ~.1.5 on set occurrcnce selection for more information.

To change values within a record, use the MODIFY statcment. It always llludil1es the rccmd th"t is the cllrrcnt of
run-unit (that is. the last record accessed).

To add a record to a set or to remove it from a set. usc the INSERT and REMOVE statements, respectively. To lise
these statcments properly. you should know the way in which the record participatcs as a mcmher in Ihe sel. A
record can be an AUTOMATIC or MANUAL and a MANDATORY or OPTIONAL member of a set. (The Data Basc
Administrator determines a record's mcmbership. You can find this information in the schema.) AUTOMATIC I"CI.:000ds
are linked to the sets in which they are mcmbers automatically (that is by OBCS) when you store thcm. You II illS I

link MANUAL records to the sets by using the INSERT statemen t. Further, you can disconnect recmds from sets ill
which they arc OPTIONAL members by using the REMOVE statement. You cannot affect the mel1lhership ill a set
of MANDATORY records with REMOVE. You can, however, change MANDATORY records with the MODIFY
statcment.

To eliminate a rccord from the data base, use the DELETE stc.:icment. Since a DELETE slatement can cause thc de
letion of many records, it is important to fully understand its opcrdtion. Confer closely, therefore, with the Data
Base Administrator to ensure that no records are unintentionally deleted.

Refer to Chapter 3 for thc formats and rules for the STORE, MODI FY, INSERT, REMOVE, and DELETE state
ments.

2.2~7 Closinl Data Areas
When you have finished accessing the data in the area of the data base that you have opened, close the area using the
DML CLOSE statement. When a run-unit closes an area, that run-unit cannot access that area unless the run-unit again
opens that area. Note that the CLOSE statement also has implications for thc journal file. The format of the CLOSE
statement you use, for example, can cause oacs (l) to append to the journal file next time the me is opened, or
(2) to possibly overwrite the contents of the journal file next timc it is opened. Refcr to Chapter 3 for the formats
and rules for the CLOSE statement.

2-12

Using the Data Base

2.3 CREATING A JOURNAL FOR BACKUP AND RECOVERY
When you open areas in the data base in UPDATE, or EXCLUSIVE/PROTECTED UPDATE usage modes, the data
in these areas is vulnerable to erroneous changes or system crashes. The DBA typically specifies a journal file (in the
DMCL of the schema) to protect the data base. If a journal file has not been specified, you can create a journal file
during execution of your application program. The journal me can be used in conjunction with the DBMEND utility
(refer to Chapter 6 of the Data Base Administrator's Manual) to recover the data base if problems occur.

The journal file can contain BEFORE/AFTER images of those parts of the data base that are being changed by up
dating run-units. BEFORE images are copies of pages of the data base as they were before changes were made. AFTER
images are copies of the pages as they are after changes are made. BEFORE images are used to return the data base
to an earlier state because a run-unit had errors or terminated abnormally. AFTER images are used to place into the
data base those changes that are known to be correct, but that have not yet been made to the data base.

If the DBA has specified a journal file, he has also specified the kind ~f images that can be written into the journal
in the BACKUP clause of the DMCL. If necessary, he can specify both BEFORE and AFTER images. If the BACKUP
clause has been omitted, a journal file is not created automatically when your run-unit opens an area for update.
Should you need a journal file, you can call the subprogram(s) described in Section 2.3.3 and specify the kind of
images you require.

Note that the journal file is the means DBMS-tO uses to provide recovery if an exception occurs during an updating
command. To have this run-time recovery, however, you must have BEFORE images. If no journal file has been speci
fied with BEFORE images, either through the DMCL BACKUP clause or through a run-time subprogram call, no run
time recovery is possible. Note also that recovery with DBMS-tO can be incremental. This means that the amount (or
increment) of backup/recovery can be controlled by means of the IMAGES statement of the DMCL. Either commands
or transactions can be specified.

When BEFORE images have been specified and images by command have been specified, DBCS writes a command
header and BEFORE images into the journal file as a DML command updates the data base. When the OM L command
is successfully completed, DDCS writes the command trailer. If an exception occurs during an updating command,
DBCS automatically restores the data base back to the last command header in the journal. When images by command
have not been specified, you can perform recovery only in increments of transactions. You do this by calling JSTRAN
JETRAN to write the transaction headers and trailers. When an exception occurs, you can then call the JBTRAN sub
program to restore the data base back to a specified transaction header. Note again that both types of recovery require
BEFORE images.

The remainder of this section describes different aspects of journaling as follows:

• Section 2.3.1 describes journaling within simultaneous update.
• Section 2.3.2 describes journaling by command and by transaction.
• Section 2.3.3 describes how you can specify a journal file.
• Section 2.3.4 describes how to assign the journal file to a device.
• Section 2.3.5 describes the types of information in the journal file and the subprograms you can call to add

each type.

2.3.1 Journaling within Simultaneous Update
When two run-units update the same area simultaneously. they also update the journal file simultaneously. This simul
taneous use of the journal file forces nBCS to do some extra work to ensure the continuing integrity of the journal
file. It is important, therefore, that you inform DBCS when you do not need to share the journal file. You do this by
including the OPEN JOURNAL USAGE-MODE EXCLUSIVE UPDATE statement in your program before opening
any data base areas. Refer to Section 3.3 for the discussion of formats and rules of the OPEN JOURNAL statement.

2-13

Using the Data Base

Upon opening the journal fIle, you will receive a message from OBCS describing the journal-file characteristics. The
form of this message is:

[JOURNAL CHARACTERISTICS: J

RUN UNIT 10 id value
schema-name RUN schema-run-of-Iast-overwriter
date/time-journal-Iast-overwritten

The message above shows the RUN-UNIT 10; it is the identification ODCS gives your run-unit. This identification is
given so that changes made by your run-unit can be isolated when DDMEND is used to recover the data base.

If the id value is 0, you are the first overwriter of the journal file. This means that DBeS had determined that the in
formation (previously existing) in the journal file was no longer needed - and had marked the journal file's label page
to so indicate. When your run-unit opened the journal. therefore, it went to the beginning and wrote over pre-cxisting
information. If the id value is not 0, you are appending to the journal file. Note that the RUN-UNIT 10 is returned
to 0 each time the journal file is overwritten.

The schema-run-of-Iast-overwriter indicates the state of the schema file at the time the journal file was last started anew
(overwritten).

Refer also to Section 2.2.3.1 for a discussion of simultaneous update.

2.3.2 Joumaling by Command and by Transaction
Using the IMAGES statement, the DBA can specify the degree - or increment - of journal recoverability for each data
base. Two possibilities exist:

1. Images ordered by command
2. Images ordered by transaction.

2.3.2.1 Images Ordered by Command - The default is for images to be ordered by command. When images are
ordered by command, the pages changed by a DML updating verb are always forced out to the journal file and to the
data base at the completion of each command. (The updating verbs are STORE, MODIFY, INSERT, REMOVE. and
DELETE.) This means more writing is done to the data base and to the journal. (See Section 2.5, which discusses
efficiency considerations.) It also means that the data base can be backed up in increments of single updating verbs.
Should an exception occur under these circumstances, the DBCS will automatically restore the data base to the state
it was in before the verb was entered - if BEFORE images have been specified. In a shared environment (simultaneous
update) your run-unit retains the data base for the duration of an updating command.

2.3.2.2 Images Ordered by Transaction - When images are not by command. you can specify that images be ordered
by transaction. Force-out then occurs only after each transaction you specify - using JSTRAN and JETRAN. Less
writing is done to the data base and to the journal file in this case, but the data base can be recovered only in incre
ments of transactions; and in a shared environment (simultaneous update) your run-unit retains the data base for the
duration of a transaction.

If BEFORE images have been specified, you can restore images by transaction by calling the JBTRAN subprogram.
You may want to do this for one of two reasons:

1. to restore the data base to the beginning of a transaction in which an exception has occurred, or
2. to erase one or more transactions (for reasons speCific to your application).

To use JDTRAN to restore the data base to the beginning of the most recent transaction, the form of the calls are as
follows:

2-14

Using the Data Base

For COBOL:

ENTER MACRO JBTRAN USING Q

For FORTRAN:

~JBTRAN(O)

Note that if you are within simultaneous update you can use JBTRAN only with a 0 argument.

To use JBTRAN to erase one or more transactions, give the number of transactions you want erased to JBTRAN as
an argument. The form of the caUs are as follows:

For COBOL:

{
integer }

ENTER MACRO JBTRAN USING variable USAGE comp

For FORTRAN:

CALL JBTRAN (integer)

2.3.3 Specifying a Journal File
A journal file is created automatically if a program opens an area in UPDATE, or EXCLUSIVE or PROTECTED
UPDATE mode when the schema declaration for that area contains a BACKUP clause. This clause specifies that
BEFORE and/or AFTER images will be placed in the journal file. If the BACKUP clause is not present in the schema
declaration for the area, and you want to have a journal file created (Le., have BEFORE or AFTER images for an
area in the journal file), include a call to one of the JMxxx subprograms specifying the name of the area. You can
also use a call to one of these subprograms to override the BACKUP clause in a schema declaration. This will not
change the BACKUP clause in the schema declaration, only the kind of image actually used in the particular run·
unit calling the subprogram.

For COBOL the form of the calls to the JMxxx subprograms is as follows:

ENTER MACRO } JMBEF [USING
{JMAFT I
)JMBOTH
(JMNONE

{
iden ti fier·) }]
literal·)

The value of identifier·) or literal·) is the name of the area that will have AFTER, BEFORE, both, or no images in·
cluded in the journal file. If no USING phrase is specified, all areas in the program are affected.

For FORTRAN the form of the JMxxx calls is as follows:

lJMAFT } JMBEF
JMBOTH
JMNONE

The value of the string is the name of the area that will have AFTER, BEFORE, both, or no images included in the
journal file. Refer to Appendix D for a discussion of string arguments in FORTRAN. If the string is not specified,
all areas in the program are affected.

If you make a call to one of the JMxxx subprograms, do it before opening any areas.

2·)5

Using the Data Base

2.3.4 Assigning the Journal FDe to a Device
Using the DMCL JOURNAL statement, the DBA can describe the journal file specification. If the journal file specifi
cation is not given in the schema, note that the default specification of the journal file is

JRN :schema-name.1RN

That IS, the device-name is JRN; the fllename is the name of the schema being used; and the file extension is
.JRN.

The journal file can reside on magnetic tape or on disk. If the DBA has not made actual device assignments in the
journal me- specification, you must do so. Before running your application program, you can assign the journal
file to a device with the ASSIGN monitor command. You would assign the journal file to a magnetic-tape device
as follows:

.ASSIGN MTAn:JRN../

Refer to the DECsystem-10 Operating System Commands Manual for a complete description of this command.
Refer also to Section 6.3 in the Administrator's Procedures Manual. This section discusses the DAEMDB program,
which can be used to perform magnetic-tape journaling.

Although it is not recommended, you can change the name of the journal file from that specified in the schema. To
do so, use JMNAME. You would use JMNAME to give the journal me a filename other than that of the schema or
to permanently specify an actual device name. You can also use JMNAME to specify a directory for the file. Call
the JMNAME subprogram before opening any areas.

Note again it is not recommended that you change the mename from that specified in the schema. Should you choose
to do so, you are responsible for using a valid file specification. The system does not check the values. You will not
be aware, therefore, that you have an invalid specification until DBeS attempts to open the journal.

For COBOL the form of the call to JMNAME is:

ENTER MACRO JMNAME USING {
identifier-l }
literal-}

The value of identifier-} or literal-l is the file speCification. The file type must be specified as JRN.

For FORTRAN the form of the call to JMNAME is:

CALL JMNAME (string)

The value of the string is the file specification. The file type must be specified as .1RN. Refer to Appendix D for a
discussion of string arguments in FORTRAN.

2.3.S Information in the Journal File
The main contents of journal files are the BEFORE and AFTER images of those pages of the data base that are modi
fied during the execution of the application program. In addition, the first page of each reel of the journal file is a label
block. It contains the schema name, a run-number, a reel number, and the date and time the run began. When images
are ordered by command - or when commands are outside the context of a transaction in a run-unit using simultane
ous update - each set of pages changed by a DML statement is delimited by a command header and trailer. The
header and trailer gives the name of the DML command that caused the pages to be changed and a command index.
The label blocks, command headers/trailers (when applicable) and pages from the data base are all automatically gen
erated by the DBCS while your application program is (unning. But if you want, you can add other forms of data
to the journal me. The following sections describe the type of data you can add.

2.3.S.1 Adding Transaction HeaderssTraDen (JSTRAN-JETRAN) - You can further define the activity of your ap
plication by adding transaction headers and trailers. To do so, call the DBMS subprograms JSTRAN and JETRAN,
respectively.

2-16

Using the Data Base

For COBOL the form of the call for the JSTRAN subproRram is:

ENTER MACRO JSTRAN USING {
identifier"} }
literal·}

The form of the call to the JETRAN subprogram for COBOL is:

ENTER MACRO JETRAN USING {
identifier-} }
literal·}

{
identifier.2}
integer·}

{
identifier-2 }
integer·l

The value of identifier·} or literal·} is the transaction name: this can be up to 30 alphanumeric characters. The value
of identifier-2 or integer·} is the transaction index; it must be specified a~ COMP single.precision.

For FORTRAN the calls for the JSTRAN and JETRAN subprograms are:

CALL JSTRAN (string, integer)
CALL JETRAN (string, integer)

The value of the string is the transaction name; it may contain up to 30 characters. The value of the integer is the
transaction index. Call the JSTRAN subprogram immediately before execution of a group of OML commands that
constitute a logical operation on the data base and modify the data base. The transaction header, containing the
transaction name and index, is then placed in the journal file at the time of the call. Call the JETRAN subprogram
after the group of OML commands has been executed. This will place the transaction trailer, also containing the
transaction name and index, after the changes that occurred during the transaction. Ensure that the index is incre·
mented after each pair of calls to these subprograms. The journal file will then contain the count of the number of
times a transaction type has been processed.

2.3.5.2 Adding Comments (JRTEXT) - You can also add comments to the journal file by including a call to the
JRTEXT subprogram in your application program.

For COBOL the form of the call is:

ENTER MACRO JRTEXT USING {
identifier}
literal

The value of the identifier or the literal is a string of characters that represents the text of the comment.

For FORTRAN the form of the call to JRTEXT is:

CALL JRTEXT (string)

String is a string of characters that represents the text of the comment. Refer to Appendix 0 for a discussion of string
arguments in FORTRAN. .

2.3.5.3 Adding Nonprinting Data (JRDATA) - You can add nonprinting data to the journal file by calling the
JRDATA subprogram. The data can be in any form because OBCS merely copies it into the file exactly as it is
given.

For COBOL the form of the call to JRDAT A is:

ENTER MACRO JRDATA USING
{

identifier} ,integer
literal

The value of the identifier or literal is the data to be put in the journal file. The integer specifies a word count. If it
is nonzero, the specified number of 36-bit computer words are copied into the journal file. If the first ar~ument

2-}7

Using the Data Base

specifies a COBOL string or group item, the word count can be 0 and the amount of data specified by the identifier
or literal is copied into the journal me. Note that the data should start on a word boundary because DDCS copies
starting from a word boundary.

For FORTRAN the form of the call is

CALLJRDATA
({

i~entifier}
literal

,integer 1

The value of the identifier is the data you want to place in the journal me.

The literal is the first location of the data you want to place in the journal file. The integer specifies the number of
36-bit computer words of data that will be copied into the journal file. Note that the data should start on a word
boundary because DBCS copies starting from a word boundary.

2.3.5.4 Adding Checkpoints (JRDAT A) - Another function of the JRDAT A subprogram is that it a))ows you to
add checkpoints to the journal file so that your application program can be restarted after an abnormal termination.
To add checkpoints, first determine the parameters of the job that you want to checkpoint (e.g., files that cannot be
checkpointed with the RERUN program). For each transaction then, call the JRDATA subprogram giving the infor
mation to be checkpointed as the argument (e.g., the current block number in a file). Call JRDAT A before calling
JETRAN in this case. If the system crashes, you can create a checkpoint file from the journal file by means of the
BUILD command of the DDMEND program. (Refer to Chapter 6 of the Data Base Administrator's Procedures Manual
for informati'on about DDMEND). You can then restart your application program by including code in your program
to process this checkpoint file.

2.4 UNDERSTANDING DBCSCONTROL DURING PROGRAM EXEClITlON
During the execution of an application program, DDCS provides two guarantees:

1. that a critical application is not returned to monitor level against its will, and
2. that a run-unit does not access the data base while the data base (or DBCS) is in an undefined state.

The following sections discuss some ways in which these guarantees can impact your interaction with the data base.

2.4.1 Program Return to Monitor Level
The assumption here is that a critical application may want to maintain complete control of the data base. The method
to ensure this is to associate an exception code with an unusual/undesirable conditions. (See Section 3.2 for a discus
sion of exception handling and Table D-2 for a description of the exception-condition codes.) Therefore, DDCS need
not exit the run·unit to monitor level without being specifically requested to do so - except in one case. This case
is if the first call to DDCS is not the SBIND call generated by the INVOKE statement. If this occurs. it means that
DBCS has not been successfully associated with a sub-schema. When this occurs, DDCS types

?DBSSNI SUB-SCHEMA NOT INITIALIZED YET

and exits to monitor level.

Typically, however, the INTERCEPT clause of the Device Media Control Language is used to request exits. The DDA
can specify the class of exceptions that ODeS intercepts during a run-unit. If an exception of the specified class occurs,
ODeS then types an error message and causes the run-unit to exit to monitor level. You can then decide what to do;
among your options is typing the monitor command CONTINUE to continue execution.

2-18

Using the Data Base

2.4.2 DDCS or Data Base in Undefmed State
This aspect of system control ensures that a run-unit does not access the data base while the data base or DBCS is in
an undefined state. Some circumstances under which this can happen are as follows:

I. You are in command mode and journaling BEFORE images. In the process of executing an updating verb.
an exception occurs. The system attempts automatic restoration of the data base to the beginning of the
updating verb that caused the exception. If this attempt fails. you will get exception condition xx62 for
each command you attempt thereafter indicating. in effect. an undefined data-base state. The only way
to correct the situation is to stop program execution and use DBMEND to restore the data base.

2. You arc in transaction mode and journaling BEFORE images. An exception occurs during a transaction.
No automatic restoration is attempted by the system. and further execution results in exception condi
tion xx62. To recover you must then use the JBTRAN subprogram with a 0 argument. (Refer 'to Section
2.3.1.2 for a discussion of JBTRAN.) If recovery is successful. the data base will be restored to the begin
ning of the unsuccessful transaction and you can continue execution. If recovery fails. you will get excep
tion code 1661 indicating failure of the recovery process. You must then stop program execution and use
DBMEND to restore the data base.

3. You are either in command or transaction mode. but are either not journaling at all or not journaling
BEFORE images. An exception occurs during an updating verb and no automatic restoration is attempted
by the system. All subsequent commands will return with ex.ception condition xx62. You must then use an
old copy of the data base for restoration.

Note that in all three cases the common circumstance is an undefined state either in the data base or in DBCS. Allow
ing a run-unit access to the data base during this state would endanger the integrity of the interface to other applica
tion programmers. For this reason, manual recovery is the recommended procedure.

2.S EFFICIENCY CONSIDERA nONS
To run a program efficiently using DBMS. you should know the functions the system performs automatically during
execution of a OML statement and be aware of the implications of this automation to your application. Because the
DML provides a concise syntax for expressing common. but complex. computations. for example. its use can reduce
development effort. This may have the effect, however, of increaSing program execution time.

In general. you should understand the degree of control you can exert over specific aspects of system function to
effect efficient use. Then you can decide which trade-offs are most important to your application and to your facility.
This section therefore discusses three ,functions performed automatically by DBMS - and their implications. It also
discusses joumaling in the context of efficient use; and guidelines for using the OM L efficiently.

2.S.1 Automatic Insertion of Records into Sets
Automatic insertion of records into sets may occur when you issue a STORE command. As described above, a STORE
command is used to place new records in a data base. When using STORE, note that the record will be inserted in all
sets in which it participates as an AUTOMATIC member. If the record is an AUTOMATIC member of many sets or a
member of a large sorted set, hundreds or even thousands of record accesses could be implied by a single STORE com
mand.

2.S.2 Implied Deletion of Records
Implied deletion of records can occur when a record occurrence to be deleted is the owner of a set. If deleted member
records are owners of other sets, the members in those sets may also be deleted and so on through the data base. Be
sure therefore that you are using the appropriate form of the command when you want to delete a record. Note also
that many data base accesses can occur for a complex delete operation.

2.S.3 Mainte .. nce of Sorted SeD
Maintenance of sorted sets means that DBCS must check the order of a sorted set each time you specify a record be
stored in, deleted from, or modified in a sorted set. If the storage, deletion, or modification would cause the order
to become unsorted, DBCS must reorder the set to maintain, it sorted. Since a STORE statement, in particular, can
affect many sets (as described above), maintaining sorted sets can also affect STORE execution time considerably.

2-19

Using the Data Base

2.5.4 JournaHng
Another function that is an intrinsic part of DBMS is journaling. Using the IMAGES statement, the DBA can specify
the increments in which updates are written out to the data base and to the journal. Two possibilities exist:

1. By command - journaling in increments of single updating verbs.
2. By transaction - journaling in increments of user-specified transactions (during a call to JETRAN-JSTRAN).

Each of these methods of journaling has an impact on efficiency. When images are ordered by command, updates are
forced out to the journal and to the data base after execution of each DML updating verb. This means that more
writing is done to the data base and to the journal me. It also means more control over the data base, however, since
the data base can be restored in increments of single updating verbs - in DBMEND and at run-time. Journaling by
command is the default.

When journaling is not by cOJ11mand, updates are forced out to the journal and to the data base only after each user
specified transaction. This means less writing is done to the data base and to the journal file; but, it also means less
control over the data base since the data base can be restored only in increments of user transactions - again in
DBMEND and at run-time. You can call the subprogram JBTRAN to specify run-time database restoration by trans
action. (Refer to Section 2.3 for a discussion of JBTRAN.)

The decision as to which method to use is essentially a cost-benefit trade-off for the facility. In general, this type of
decision is left to the DBA. Refer, however, to Section 2.3 for a detailed discussion of journaling and to Section 3.2
for a description of exception handling involving back-up of the data base.

2.S.S Guidelines for Efficient Use of DML
The following are some guidelines for efficiently using the DML.

1. When the records in a set are frequently updated (particularly when they are being deleted or removed),
define PRIOR pointers in addition to the always-present NEXT pointers. Doing so will improve execution
efficiency.

2. When the member-record occurrences of a set are usually accessed serially (Le., when a FIND rse 3 such as
FIND NEXT is used), declare the LOCATION MODE of each member record as VIA in the schema so as
to physically localize each set occurrence.

3. Unless sorted sets are necessary (e.g., needed for alphabetized reports that are printed relatively fre
quently), do not use them since the overhead they involve cannot be justified for sets with significant
record activity.

4. Use CALC keys only when a record type must be accessed randomly. Otherwise, the overhead involved
in maintaining CALCed record types is probably not justifiable.

5. Use localized logical accessing rather than nonlocalized accessing. For instance, when using two groups of
records, access all of one group then all of the other group rather than going back and forth.

6. When using the MODIFY statement on a member of a sorted set, specify only the data-items to be modi
fied. Otherwise, the DOCS (unnecessarily) re-inserts/sorts the record being modified in the set occurrence
(since it has no other way of determining if the sort-keys have or have not been modified).

7. Avoid set occurrence selection using LOCATION MODE OF OWNER unless it is necessary because it can
cause the DOCS to unnecessarily search the data base for the correct owner. For example, in this mode
when storing two member records, one right after the other, into the same set occurrence, the DBCS
would redundantly reselect the owner record during the second STORE operation.

8. Specify LINKED TO OWNER ifset ORDER is FIRST or if SORTED, set occurrence selection is CURRENT,
and the current of set was not determined relative to the owner.

9. Choose the degree of joumaling appropriate to the application. (See also Section 2.3.)
10. Open the data base only for the access needed to accomplish the function of your application. Note that

the overhead for using simultaneous update is high; do not therefore open the data base in the simultane
ous-update usage-modes unless your application requires it. See also Section 2.2.3 on opening areas and
Section 3.3 on specifying usage-modes with the OPEN statement.

2-20

1I.Ilill): 111(' Dala Ili/.Il"

II, Thc CALC .algorithm tcnds to work hcst whcn .. l'cl'onrS ran~e is ~11l odd 1lIIIIthcr of pa~·.l'S, TllCref"I'l~.
specify the FIRST PA(a~/LAST PA(a~ as hoth cvell 01' hoth odd whcll you usc thcsc phrasl's ill the
DMCL. See ~lIso p"~c onc of Figurc ~·I. thc S4lmplc SdlClllOl ami suh·sdlCllla listill~.

2-21

CHAPTER 3

D.~TA MANIPULATION LANGUAGE

The Data Manipulation Language (DML) provides you with the capability to interact with a database. When your
aquest for data in the database is successfully completed, the requested data is deposited in the User Working
Area (UW A) of the calling program-unit ~ you can then reference and manipulate the data using the facilities of the
host language. Should you want to add new data or return modified data to the data base, use the DML to request
the appropriate action from the Data Base Control System (DBCS).

This chapter defines the specifications for the DML. Section 3.1 discusses the conventions used to write DML
statements; Section 3.2 describes exception handling and the error special registers ~ Section 3.3 lists and describes
the DML statements; and Section 3.4 describes the FORTRAN intrinsic functions provided for DBMS use.

3.1 DML STATEMENT CONVENTIONS
Certain conventions have been used in the descriptions of the DML statements in this chapter and generally through
out this manual. These conventions and their meanings are as follows.

Lower-case characters

Upper-case characters
underscored

Upper-case characters
not underscored

Braces { }

Brackets []

Ellipsis ...

Double Vertical lines II II

Information that you must supply, such as values, names
and other parameters.

Key words in the DML lexicon you must use when using the
formats of which they are a part.

Other words in the DML lexicon that serve only to make the
DML statements more readable. Their use is optional and has
no effect on the meaning of the formats of which they are a
part.

A choice. Choose from the two or more lines enclosed.

An optional feature. The contents of the brackets are used
according to the rules above if you choose the feature.

Repetition. The information contained within the preceding
pair of braces or brackets can be repeated at your option.

A choice. Choose one, several, all, or none of the lines
enclosed.

Note that the semicolon (;) and comma (,) are treated as spaces in all DML statements. The only punctuation re
quired in these statements is a period to end the statement. In the examples in this manual, a semicolon or comma
is used for readability only and does not affect the meaning of the statement.

3.2 EXCEPTION HANDLING
Using the INTERCEPT and NOTE clauses of the Device Media Control Language, the DBA can specify the class of
exceptions that DBCS intercepts or notes during execution of an application program. Refer to Section 3.2.2 for
a discussion of classes of exceptions. If the DBA specifies INTERCEPT, DBCS types an error message and forces

3·1

Data Manipulation Language

the application program to exit to the monitor - if an exception of the specified class occurs. Your program will
continue to execute, however, if you type the CONTINUE monitor command. If the DBA specifies NOTE, DBCS
types a message - again if an exception of the specified class occurs. DBCS does not stop execution of your
application program.

DBCS can also keep you informed as to the exception conditions following the execution of any DML command.
The exception condition code and other pertinent information is placed in special registers. The registers specific to
each host language are described in Chapter 4 (for COBOL) and Chapter 5 (for FORTRAN). This section intro
duces the error special registers and describes the classes of exceptions defined in DBMS-20.1 Refer to Appendix B
for a list of exception codes and a detailed description of each code.

3.2.1 Error Special Registers
Five special registers are used to store exception-condition information. These registers are:

• Error Status
• Error Count
• Error Area
• Error Record
• Error Set

Each time a DML command is executed, the Error Status and Error Count registers are set to defined values. If no
exception occurs during execution of a DML command, Error Status equals the null-string (a zero-word), and Error
Count equals zero. The other three error special registers contain the values they had before execution of the DML
command.

Should an exception occur during execution of a DML command, however, Error Status contains a code in the form

xxyy

where xx is a code identifying the statement or class of exception (see Section 3.2.2), and yy is a code identifying
the exception. (See Appendix B.) Error Count equals 1. Error Area contains the name of the last area referenced.
Except for the OPEN and CLOSE verbs - for which Error Record contains the null string - Error Record contains
the following:

• Blanks if the exception occurs while DBCS is still processing the command argument list;

• Otherwise, the name of the object record type, except for

1. a qualified DELETE
2. a FIND NEXT RECORD of a specified set (an rse 3) in which the record name is not null, and
3. a FIND OWNER.

For these three cases Error Record contains the name of the last record operated upon.

Error Set is blank - unless at least one set operation has begun at the time the exception occurs. If a set operation
has begun, Error Set contains the set name. Each of the following constitutes a set operation.

1. a FIND NEXT/PRIOR/OWNER of SET (rse 3 and rse 4)
2. each automatic insert during a STORE
3. each actual insert during an INSERT
4. each removal during a REMOVE
5. each automatic removal during a DELETE
6. each resorting of a set occurrence during a MODIFY.

1
As noted in Chapter 1, the term exception is used in conformance with CODASYL terminology.

3-2

Data Manipulation Language

3.2.2 Classes of Exceptions
A number of classes of exceptions are defined for DBMS. These classes and their meanings are as follows:

BIND

CALL

HOST

SYSTEM

UPDATE

UNANTICIPA TED

ALL

exceptions that can occur during binding of the sub-schema; that is when DBCS
enters SBIND, BIND, EBIND, and SETUSE. The BIND class of exceptions applies
to the INVOKE DML command and to USE initialization. Refer also to Section
2.2.1 for a discussion of the INVOKE command. (Note that an INVOKE exception
cannot be intercepted before the schema line is processed.)

exceptions that can occur when you explicitly call the journaling and SETDB and
UNSET subprograms. Refer to Section 2.2.1 for a discussion of SETDB and UNSET
and to Section 2.3 "for a discussion of journaling.

exceptions that can occur with use of the I F predicates and the MOVE STATUS
command.

exceptions that can occur when a problem exists with the DBMS interface to the
application program. Refer to exception codes 55 through 67 in Table B-2.

exceptions that can occur during execution of the updating verbs: DELETE,
INSERT, MODIFY, REMOVE, and STORE.

all exceptions except 0307 and 0326.

any exceptions that can occur during execution of an application.

The DBA can use the BIND, CALL, SYSTEM, UPDATE, and ALL classes in his specification for the INTERCEPT
and NOTE clauses.

Table 3-1 lists the DML statement-associated functions and codes.

Table 3-1 DML-Statement-Associated Functions and Codes

Statement Code

HOST 00
CLOSE 01
DELETE 02
FIND 03
GET OS
INSERT 07
MODIFY 08
OPEN 09
REMOVE 11
STORE 12
BIND 15
CALL 16

3·3

Data ManipuIDtlon Languoge

3.3 DML STATEMENTS: DESCRIPTIONS AND FORMATS
This section lists the DML statements in alphabetical order and describes each statement. The descriptions include:

1. a delineation of function
2. an illustration of general format
3. pertinent technical notes
4. exception conditions and associated codes, and
5. an example of coding using the statement.

Each statement begins on a new page.

3-4

Data Manipulation Language

ACCESS

Function

Use the ACCESS statement to make available to one program-unit the data descriptions for a sub-schema invoked
in anot her program-unit.

General Format

ACCESS SUB-SCHEMA sub-schema-name OF SCHEMA schema-name
[PRIVACY ~ FOR COMPILE IS key-It

Technical Notes

Example

I. The ACCESS statement can be used only once within each program-unit. That is, an ACCESS
statement can, but need not, appear in any subprogram in the run-unit. It cannot appear in the
same program-unit as an INVOKE statement.

:2. Schema-name must be the name of a schema known to DBMS.
3. Sub-schema-name must refer to a sub-schema of the named schema.
4. You must specify a PRIV ACY KEY FOR COMPILE if the sub-schema has a privacy lock declared

for it. Refer to Section 1.5.4 for a discussion of privacy locks and keys.
5. Key-l must conform to the data characteristics of privacy locks and keys. DBMS attempts to match

the PRIVACY LOCK specified for the use of the sub-schema named with the PRIVACY KEY suppt'ied
by the program.

6. All records and data-items defined in the sub-schema are available in the UW A for reference in the
FORTRAN program-unit containing the ACCESS statement. A COBOL program-unit must have the
records and data-items that it will process passed to it from the calling program-unit. The call must
explicitly include AREA-IDs, DIRECT keys and ALIASes, SYSCOM, and any other records or data
items you want to reference.

7. Some time earlier in the execution of the run-unit, an INVOKE statement must have been processed
for the sub-schema being accessed. Refer to Sections 2.2.1 and 2.2.2 for a discussion of the use of
INVOKE and ACCESS, respectively.

ACCESS SU8·SC~~~A &D~1 O~ SCHEMA aAP~E~
FP.IVACY kEY CCI"1PILE' SALrX.

3-5

Data Manipulation Language

CLOSE

Function

Use the CLOSE statement to relinquish control over the specified areas and make them available to other re
questing run-units.

General F onnat

Format 1

CLOSE ALL.

Format 2

CLOSE AREA area-name-) [area-name-2] "':'

Format 3

CLOSE RUN-UNIT.

Format 4

CLOSE JOURNAL ~

Technical Notes

I. The areas to be closed must be included in the sub-schema that was invoked by the run-unit.
2. Any area that was opened must be explicitly closed before the run is stopped.
3. All areas that are currently open for the run-unit may be closed at one time (Formats 1 and 3);

individual areas may be closed as soon as processing within these areas is completed (Format 2).
4. Once an area has been closed, it may be reopened by the run-unit.
5. If you specify Format 3, all open areas will be closed and the journal file will be closed. The next

run-unit opening the journal file will then append to it. (Refer to Section 2.3 on journaling.)
6. Specify Format 4 when you want to indicate to OBCS that all run-units have successfully con

cluded and the journal file is no longer necessary. OBCS will then overwrite the journal file the
next time it is opened. If another run-unit has the journal file open at the time you execute
Format 4, however, the effect will be that of Format 3.

7. If the journal file is not open, Formats I, 3, and 4 of the CLOSE statement are equivalent.

Exception Conditions

Example

1. If the CLOSE statement signals an exception, the system will not be backed-up to the state existing
before the exception occurred.

2. After you have closed an area, you cannot reference that area' nor any record occurrences within that
area in a procedure. An attempt to make such reference returns a code indicating that the area is
closed. (Refer to Appendix B for a list of exception codes.)

Data Manipulation Language

DELETE

Function

Use the DELETE statement to make the object record occurrence unavailable for further processing by DML
commands, and to remove the object record from all set occurrences in which it is a member. Note that using
DELETE has additional potential effects: these are given in the technical notes below.

General F onnat

DELETE [record-name]
[
SE~~C~VE] .!.

ALL -- .

Technical Notes

1. Record-name, if present, must refer to a record that has been defined in the sub-schema named in
the program.

2. The object record occurrence of the DELETE statement is the current record of the run-unit.
3. The object record is removed from all set occurrences in which it is a member and it is then deleted;

that is, made unavailable for further processing by a DML statement.
4. The unqualified form of DELETE deletes the object record only if it has no member records. Other

wise an exception condition is returned.
5. DELETE ONLY deletes the object record and all MANDATORY members of any sets for which it

is the owner. It removes (see REMOVE) but does not delete its OPTIONAL members. If any of the
deleted MANDATORY members are themselves the owners of any set occurrences, the DELETE
statement treats such records as if each were the object record of a DELETE ONLY statement. Thus,
all MANDATORY members of such sets are also deleted in turn causing this process to continue
down the chain.

6. DELETE SELECTIVE has the same effect as DELETE ONLY except that:

• OPTIONAL members may be deleted. They will be deleted if they do not participate as members
in any other set occurrences.

• All deleted records that are themselves the owners of any set occurrences are treated as if each
were the object of a DELETE SELECTIVE statement.

7. DELETE ALL deletes the object record together with all of its member records, regardless of whether
they are MANDATORY or OPTIONAL. The process continues down the hierarchy with all deleted
records being treated as if each were the object ora DELETE ALL statement.

8. The current record of the run-unit becomes null. No other currency status information is altered.
Thus, the object record and all other records deleted or removed remain as current of area-name,
or record-name, and current of all set-names in which they were current prior to the execution of the
DELETE statement.

Exception Conditions

1. When an exception occurs, the data base and User Working Area remain in the state existing before
the attempted execution of the DELETE statement. ..

2. If there is no current record of the run-unit, Error Status returns code 0213.

3-7

Example

Data Manipulation Language

3. If record-name is specified and the current record of the run-unit is not an occurrence of the named
record type, Error Status returns code 0220. This is a debugging and documentation feature.

4. If the unqualified form of the DELETE imperative is attempted against the owner record of a non
empty set occurrence, Error Status returns code 0230.

5. If any of the record occurrences which would be deleted, removed, or modified as a result of the
execution of the DELETE imperative are in an unopened area, Error Status returns code 0201.

6. If the object record or any record that would be deleted or removed as a result of the execution of
a DELETE statement is located within an area that is open for RETRIEVAL, Error Status returns
code 0209.

7. The sub-schema invoked must name

a. All of the records that would be deleted or removed as a result of executing the DELETE
statement;

b. All of the sets from which any record is to be removed;
c. All record occurrences referenced implicitly by the DELETE statement.

Otherwise, Error Status returns code 0208.

8. If any record in the scope of a DELETE is current-of-run-unit of another run-unit, Error Status returns
code 0240.

3-8

Data Manipulation Languoge

Function

Use the END statement to end a FORTRAN program-unit containing DML statements.

General F onnat

~ [progname].;

Technical Notes

I. The END statement can be used only in FORTRAN programs.

Example

2. Progname is a 1- to 6-character name for the program-unit.
3. If the progname is omitted, NONAME is assumed.
4. While use of the END statement is not required except to segregate multiple INVOKE and ACCESS

statements, its use is recommended because it enables the FORTRAN preprocessor to print error
summaries based on program units.

3-9

Data Manipulation Language

Function

Use the FIND statement

I. to establish the record occurrence specified by a record-selection-expression (rse) as the current record
of the run-unit, and

2. to control whether or not it becomes

a. current of the area in which it is stored,
b. current of its record-type, and
c. current of set for all set occurrences in which it participates as an owner or member.

General Fonnat

FIND rse ~UPPRESS ALL] RECORD
A.R.fA CURRENCY UPDATES ..:.

{~~~ame-I ... }

Technical Notes

1. The five rse are described individually on the following pages.
2. All data-items, records, sets, and areas specified must be defined in the sub-schema named in the

program.
3. Appropriate use of each FIND rse requires you to know the set relationships and record location

modes defined within the sub-schema associated with a given program.
4. A successfully executed FIND statement results in the record occurrence selected becoming the

current record of the run-unit. The contents of the record, however, are not available in the UWA
until a GET statement is executed for the object record.

S. The SUPPRESS phrase is designed to specify the area, record, and set currency indicators that are to
retain their existing values. The SUPPRESS ALL phrase prevents the update of all currency indicators
except the current of run·unit.

6. If you do not use the optional SUPPRESS phrase, the object record also becomes the current record
of its area, the current record of its record type, and the current record of all sets in which it is defined
as an owner or in which it participates as a member.

7. For as long as a record is current-of-run-unit, it is retained by that run-unit. This retention applies,
however, only if the area in which the record is found has been opened in UPDATE or RETRJ EV AL
usage-modes.

Exception Conditions

I. If exception conditions occur, the FIND statement is not successfully executed; the data base and the
User Working Area remain in the state existing before the attempted execution, and the appropriate
code is placed in the Error Status register.

2. If the object record is in an area that has not been opened, Error Status returns code 0301.
3. If there is no record of the type specified, Error Status returns code 0306.
4. If a database key is supplied or developed which is incompatible with the areas specified, Error Status

returns code 0302.
S. If end-of-set or end-of-area condition is detected. Error Status returns code 0307.
6. If no record in the area satisfies the rse specified, Error Status returns code 0326.
7. If the referenced record, set, or area is not in the sub-schema. Error Status returns code 0308.

3-10

Data Manipulation Langwzge

FIND rse 1

General Format

[record-name-I] ~ identifier-l

Technical Notes

I. Identifier-l must be defined USAGE DATABASE KEY, PICTURE 9(10) COMP (for COBOL), or
INTEGER (for FORTRAN) and must be initialized with a database key value.

2. If record-name-I is specified, the database key supplied must identify a record occurrence of record
name-I.

Exception Conditions

Example

I. If the sought record i~ in an unopened area, Error Status returns code 030 I.
2. If no record is identified by the database key supplied (i.e., the value of identifier-l), or if the data

base key identifies a record that is not an occurrence of record-name-I, Error Status returns code
0326.

3. If identifier-l contains an invalid page number, Error Status returns code 0302.
4. If identifier-l contains a value that DBCS could not have created (for example, it is on an uncreated

page, or its line is equal to 0 or is greater than the maximum line number on the page), Error Status
returns code 0356.

3-11

Data Manipultztion Language

FIND rse 2

General F onnat

[OWNER IN set-name-2 OF] CURRENT OF l
record_name-I RECORD)
set-name-3 SET (
AREA-NAME-I AREA (
~-UNIT J

Technical Notes

I. Record-name-l must be defined as a member of set-name-2. Set-name-2 and set-name-3 may be the
same set-name or different set-names.

2. When the OWNER phrase is omitted, this rse selects the record occurrence that is the current record
of the specified record, set, or area, or it selects the current record of the run-unit.

3. Use of the CURRENT OF RUN-UNIT form of the rse permits revision of currency status indicators
that were previously suppressed.

4. When the OWNER phrase is present, the owner-record occurrence in set-name-2 is selected relative
to current of record, set, area, or run-unit.

Exception Conditions

1. If the OWNER phrase is not used, and the currency indicator has been deleted or removed, Error
Status returns codes 0317 or 0322 respectively.

2. If the OWNER phrase is used and the set occurrence no longer exists, Error Status returns code 0317.
3. If the specified current record does not currently participate as a member of any occurrence of

set-name-2 and is not known by DBCS as the current record of set-name-2, Error Status returns codes
0317 or 0322.

3-12

General F onnat

NEXT
PRIOR
FIRST
LAST
integer-I
iden ti fier-2

Technical Notes

Data Manipulation Language

FIND rse 3

[record-name-3] RECORD OF {set-name-4 SET }
area-name-2 AREA

I. If record-name-3 and area-name-2 are stated, record-name-3 must be included in area-name-2. If both
record-name-3 and set-name-4 are stated, record-name-3 must be defined as a member of set-name-4.
Integer-I must be a signed integer and cannot be zero. Identifier-2 must be an integer and cannot be
zero.

2. If a set-name is specified, the set occurrence from which the object record is to be selected is identified
by the current record of the specified set.

3. If the record-name-3 phrase is used, only occurrences of record-name-3 will be considered in evaluating
the rse.

4. If the areas involved include occurrences of record types not known to the run-unit, only the records
specified in the invoked sub-schema will be considered during evaluation of the rse.

S. When record-name-3 is used and NEXT/PRIOR RECORD OF AREA/SET is specified, the next or
prior record is relative to the current of area/set. If you want to FIND NEXT/PRIOR of AREA/SET,
then perform currency-setting activities on other records in the area/set, suppress area/set currency
updates if you want to maintain your place in the same area/set and continue reading the records in
that area/set. For example, assume that HDR and SUB are owner and member of SETl and that
HDR 0 is the current of area.

"a~e 1.4 HDP 0 fINO ~~xr HPH RECQPO or A~~.' APEIl
GEt HDP

~ c.' R 1 t"IND NEXT su~ p~:c 0 ~[) OF SECt &El
110P 2 GET su~
SUR. (t; 1 1 will caul. HL'~ 1 A~CI SUR (H 1)
SOl; (~2) reeorC'11 to [,e retrl~vet1. /1 repeat

of t.h.lf! 1 nit r 1.1 e t 1 0 n 5 11111 cause
HO~ 1

PIQe 1& HOR 1 0" ~age 1& to be retrievet1 r~ther
SUS (~.1) than HPJ:(2 on tlaQ" lS. To get

2, supprelS area update. 1n
leeond FIND It.atement.

6. NEXT RECORD of area-name AREA means the record with the next higher database key relative to the
current record of the named area.

7. PRIOR RECORD OF area-name AREA means the record with the next lower database key relative to
the current record of the named area.

8. NEXT RECORD OF set·name SET means the subsequent record relative to the current record of the
named set in the logical order of the set without regard to the database key sequence.

3·13

HD~

the

Data Manipulation Language

9. PRIOR RECORD OF set-name SET means the previous record relative to the current record of the
named set in the logical order of the set regardless of the database key sequence.

10. FIRST RECORD OF area-name AREA is the record occurrence with the lowest database key in the
named area.

II. LAST RECORD OF area-name AREA is the record occurrence with the highest database key in the
named area.

12. FIRST RECORD OF set-name SET is the first member occurrence in terms of the logical order of the
set. The record selected is the same as that selected if the current record of the set were the owner
record and the NEXT RECORD of set-name SET rse were used.

13. LAST RECORD OF set-name SET is the last member record occurrence in terms of the logical order
of the set. The record selected is the same as that selected if the current record of the set were the
owner record and the PRIOR RECORD OF set-name SET rse were used.

14. Identifier-2 must be initialized with an integer prior to execution of the FIND statement.
IS. Identifier-2 and integer-} represent the ordinal count of the object record occurrence relative to the

beginning, if positive, or ending, if negative, of a set occurrence or area. In other words, a negative
value selects in the PRIOR direction and a positive value in the NEXT direction for the set occurrence
or area.

Exception Conditions

1. Error Status returns code 0307 if there is 110 record with a highcr database key (for NEXT of AREA rse).
or if there is no record with a lower database key (ror PRIOR of AREA rsc). It also rcturns code 0307 if

a. the current record is the first record in a set (ror PRIOR rse)
b. the current record is the last record in a set (ror NEXT rse)
c. the value of integer-lor the contents of identifier-2 is greater than the number of record

occurrences in the set occurrence or area speci fied.
d. a FIND FIRST or LAST of AREA is specified for an empty area.

2. If a set occurrence is empty, or if integer-} or identifier-2 is zero, Error Status returns code 0326.
3. If the referenced record. set. or area is not in the sub-schema Error Status returns code 030X.

Examples

3-14

Data Manlpuilltion Language

FIND rse 4

General F onnat

OWNER RECORD OF set-name-5 SET

Technical Notes

1. The owner record of the current occurrence of set-name-5 is selected. It is exactly equivalent to using
rse 2 and specifying the same set-name for sct-name-2 and set-name-3.

Exception Conditions

Example

1. If the current set occurrence no longer exists, Error Status returns code 031 7.
2. If there is no current record of the type specified, Error Status returns code 0306.

~'I ~'O Ot'; '.lk'P .-Fe "P(J OF CUb 1 Ol·1EFt -SET sE l'
SUPPPES~ AP~A UPOATlS.

3-15

Data Manipulation Language

I FIND rse 5

General F onnat

[NEXT DUPLICATE WITHIN] record-name-4 RECORD

Technical Notes

1. Use of this rse is restricted to record-types that have a CALC LOCATION MODE. Before issuing the
FIND, move the desired key values to the appropriate key fields (object of LOCATION MODE
clause) in the UW A. Verify the validity of this rse for a particular record-type with the DBA.

2. The NEXT DUPLICATE phrase is ignored if there is no current of run-unit, or the key or the record
type of the current of run-unit does not match that of the record specified.

When the NEXT DUPLICATE phrase is included and is meaningful, DBCS only considers records
later in the came CALC list in its search for a record that has the UW A- specified key.

3. You must set the record AREA-ID to an appropriate value if the record may be in more than one
area. This is true even if all of the areas are not open. The area in which you want to find the record
must, however, be open.

Exception Conditions

I. Error Status returns code 0326 when DBCS cannot find a record that satisfies this rse.

2. Error Status returns code 0323 if the AREA-ID is applicable, but the given value is invalid.

Example

3-16

Data Manipulation Langwzge

Function

Use the GET statement to transfer the specified data-items of the object record occurrence into the User Working
Area.

General Format

Format 1

GET [record -name L

Format 2

GET record-name data-name-I [data-name-2]

Technical Notes

I. Record-name must refer to a record that has been defined in the sub-schema named in the INVOKE
statement in the program.

2. Data-name-}, data-name-2, etc., must be the names of data-items defined as part of the named record.
The record-name serves as an implicit major qualifier for the data-names.

3. The object of the GET imperative is the current record of the run-unit, as established by a previously
issued FIND (or STORE) statement. Therefore, the record-name given must be the current record of
run-unit.

4. A GET statement must be executed before any reference can be made to the data of the object record
in the User Working Area.

5. If you specify Format I, all data-items defined in the named sub-schema for the object record are
moved to the User Working Area. If you specify Format 2, only the specified data-items are moved to
the User Working Area.

Exception Conditions

Example

1. If any exceptions are encountered, the GET statement is not successfully executed. The data base
and the UWA remain in the state existing before the attempted execution.

2. If there is no current record of the run-unit, Error Status returns code 0513.
3. If a rec;ord-name is specified and the current record of the run-unit is not an occurrence of the named

record type, Error Status returns code 0520. This is a debugging feature.
4. If a specified data-name is not a field in the object record type, Error Status returns code 0504.

G~t SALES~AN.PECOPDt SALESMA~, aASE.SALAP~.

3-17

Data Manipulation Language

Function

Use the IF statement to cause a condition to be evaluated. The subsequent action of the run-unit depends on
whether the value of the condition is true or false.

General F onnat

Format 1

IF set·name-} SET [NOT] EMPTY { statement-} }
NEXT SENTENCE

IELSE {statement-2 }11
L NEXT SENTENCE U .!

Format 2

IMEMBER] OF
LOWNER

IF RECORD [NOT]
{

set-name-2 }
ANY

SET

{
statement-3 }
NEXT SENTENCE ~LBE {

statement-4 }l ~
NEXT SENTENCE ~

Technical Notes

1. The IF statement is part of the COBOL language, not the DML. Thus, it cannot be used in FORTRAN
programs. Refer to Section 3.4 for the intrinsic functions that can be used in FORTRAN programs
to perform the same operations as the IF statement.

2. Format 1 of the IF statement determines whether or not the object set occurrence has any members.
The object set occurrence is determined by the current record of set-name-I. If you omit the NOT
phrase, and the set occurrence does not have any member records, the condition is evaluated as true.
If you omit the NOT phrase, and the set occurrence contains member records, the condition is
evaluated as false. If you include the NOT phrase, the condition is reversed. Whether or not you use
the NOT phrase, the condition is evaluated as true if there is no current record of set or the set-name
is invalid.

3. Format 2 of the IF statement determines whether or not the current record of the run-unit participates
as an owner or member, depending on whether you specify set-name-2 or ANY set. If you omit the
NOT phrase, and specify the record as an owner or member, the condition is evaluated as true. If you
omit the NOT phrase, and do not specify the record as an owner or member, the condition is eval
uated as false. If you include the NOT phrase, the condition is reversed. Whether or not you use the
NOT phrase, the condition is evaluated as false if there is no current record of the run-unit or if the
set-name is invalid.

4. If you do not specify either the OWNER or MEMBER phrase in Format 2, the test is of the association
as an owner or member of the object record with the specified set.

S. Rules pertaining to the execution of subsequent statements - depending on whether the condition is
evaluated as true or false - are identical to those for other standard COBOL forms of the IF statement.

3-18

/

Data Man;pulllt;on Languoge

Exception Conditions

I. Only system exceptions are possible. Refer to Appendix B.

Example

l~' RE.CORL> u~~·J£f(or A~'t SET, GO TO TAG, EJ.,SE NEXT SEN"E.~Cl.

3·19

Data Manipulation Language

INSERT

Function

Use the INSERT statement to make the object record a member of occurrences of the specified sets if the object
record type is defined as an OPTIONAL AUTOMATIC, OPTIONAL MANUAL, or MANDATORY MANUAL
member of those sets.

General Fonnat

Format 1

INSERT [record-name] INTO set-name-} [set-name-2]

Format 2

INSERT [record-name] INTO ALL SETS;

Technical Notes

1. Record-name and all set-names must be defined in the sub-schema named in the program.
2. In Format 1, the object record must be defined as an OPTIONAL AUTOMATIC, OPTIONAL MANUAL,

or MANDATORY MANUAL member of the specified sets.
3. In Form~t 2, the object record must be defined as an OPTIONAL AUTOMATIC, OPTIONAL MANUAL,

or MANDATORY MANUAL member of at least one set in the invoked sub-schema.
4. The object record occurrence of the INSERT statement is the current record of the run-unit.
5. If you use Format 1, the object record is inserted into the object set occurrence of each set-name

specified in accordance with the set-ordering criteria defined in the schema. For each set named, the
object set occurrence is determined by the current of set.

6. If you use Format 2, the object record is inserted into the appropriate occurrence of each set included
in the invoked sub-schema; the object record must be defined as an OPTIONAL AUTOMATIC,
OPTIONAL MANUAL, or MANDATORY MANUAL member, and must not already be a member of the set.
The specific occurrence of each set is determined by the current record of set for each of the set-names involved.
The object record is inserted into each set occurrence in accordance with the set-ordering criteria specified in
the schema.

Exception Conditions

1. When an exception occurs, the data base and the User Working Area remain in the state existing before
the attempted execution of the INSERT statement, and the appropriate exception-condi tion code is made
available.

2. If there is no current record of the run-unit, Error Status returns code 07}3.
3. For Format 1, if the object record is not defined as an OPTIONAL AUTOMATIC, OPTIONAL MANUAL,

or MANDATORY MANUAL member of each set in the schema, Error Status returns code 0714.
4. If the object record, when inserted, would violate a DUPLICATES NOT ALLOWED clause for any

record or set involved, Error Status returns code 0705.
5. If there is no current record of the specified set type, Error Status returns code 0706.
6. If the object record is already a member of any occurrence of a set explicitly named in Format I, or

if it is already a member of an occurrence of each set implicitly specified by the use of Format 2,
Error Status returns code 0716. (For Format 2, this includes an object record not defined as an
OPTIONAL AUTOMATIC, OPTIONAL MANUAL or MANDATORY MANUAL member of any set
in the sub-schema.)

3-20

Data Manipulation Language

7. If any object set occurrence has been deleted, Error Status returns code 0717.
8~ If the record-name is specified and the current record of the run-unit is not an occurrence of the named

record type, Error Status returns code 0720. This is a debugging feature.
9. If the object record or any record occurrence affected by the INSERT statement is located in an area

that is open for RETRIEVAL, Error Status returns code 0709.
10. If the object record is not an occurrence of the member record type of a specified set. Error Status re-

turns code 0722.
11. If both temporary and permanent areas are referenced. Error Status returns code 0724.

Example

, INSEFT SALEsrltLO·prCO~o INTO ALL SETS.

3-21

Data Manipulation Language

INVOKE

Function

Use the INVOKE statement to specify the sub-schema that provides the description of that portion of the data
base known to the program. Using INVOKE also assigns appropriate UWA locations during compilation and binds
them for each execution of the program.

General Fonnat

INVOKE SUB-SCHEMA sub-schema-name OF
SCHEMA schema-name
[PRIVACY KEY FOR COMPILE IS key-I] ~

Technical Notes

I. The INVOKE statement can be used at most once in each program-unit within a run-unit. That is,
an INVOKE statement can, but need not, appear in the main program and any subprograms in the
run-unit. Refer to Chapter 4 for the description of the placement and use of the INVOKE statement
in COBOL programs; refer to Chapter 5 for FORTRAN programs.

2. Schema-name must be the name of a schema known to DBMS.
3. Sub-schema-name must refer to a sub-schema for the named schema, and must be part of that data

base.
4. Sub-schema names must be unique within any run-unit that invokes more than one sub-schema.
5 . PRIVACY KEY FOR COMPILE is required if the sub-schema has a privacy lock declared for it.

Privacy locks and keys are discussed in Section 1.5.4.
6. Key-} must conform to the data characteristics of privacy locks and keys. DBMS attempts to match

the PRIVACY LOCK specified for the use of the sub-schema named with the PRIVACY KEY supplied
by the program.

7. Once the INVOKE statement is executed, all UW A locations that are necessary for data manipulation
have been communicated to DBCS. This means that all records and data-items defined in the sub
schema are available in the UWA for appropriate reference by both DML and standard host-language
commands.

Exception Conditions

Example

1. If the compile-time and run-time versions of the schema file differ, Error Status returns code 1500.
2. Error Status can return codes 1531 through 1536 only during binding. Refer to Appendix B.

l~VO~~ SU~.SCHE~A SUe1 OF SCH[~A 8A~~EX

P~IVACY ~E~ COMPILE 5ALEX.

3·22

Data ManipullJtion Language

.1 MODIFY

Function

Use the MODIFY statement to replace the value of all or specified data-items of the object-record occurrence in the
data base with values from the User Working Area (UWA). MODIFY also alters intraset position so as to maintain
the data base in accordance with the set-ordering criteria specified in the schema.

General Format

Format 1

MODIFY [record-nameJ.:.

Format 2

MODIFY record-name data-name-l [data-name-2]

Technical Notes

I. The named record and all data-items identified by their data-names must be defined in the sub-schema
that was invoked.

2. In Format 2, record-name serves as the implicit major qualifier for data-name-I, data-name-2, etc.
3. The object record occurrence of the MODIFY statement is the current record of the run-unit. If you

use Format I, all data-items in the object record are modified with values from the UWA.
4. If you use Format 2, only the data-items specified are modified from the UW A. All other data-items

in the object record occurrence in the data base remain unchanged.
5. You must initialize all data-items involved in the UW A with the required values prior to execution

of the MODIFY statement.
6. If any of the modified data-items in the object record are defined as sort-control items for any set

occurrences in which the object record is a member, modification causes the intraset occurrence
position of the object record to be examined; if necessary, the object record is removed and re-
inserted in the set occurrences to maintain the set order specified in the schema. The current occur
rence of the set-name involved remains as the current occurrence. If the current of run-unit is the current
of the set-name involved, it remains as the current of set-name. If not, it becomes the current of that
set-name.

7. If any modified data-items are CALC keys of the object record, the record is relinked to the appro
priate CALC chain.

Exception Conditions

I. When an exception occurs, the data base and the User Working Area remain in the state existing before
the attempted execution of the MODIFY statement, and the appropriate code is made available in the
Error Status register.

2. If there is no current record of the run-unit, the MODIFY statement is not executed and Error Status
returns code 0813.

3. If record-name is specified and the current record of the run-unit is not an occurrence of the named
record-type, Error Status returns code 0820. This is a debugging feature.

4. If the insertion of the object record under any of the conditions described above would violate the
condition that any of the sets or records involved are not allowed duplicate occurrences, the MODIFY
statement is not executed and Error Status returns code 0805.

3·23

Data Manipulation Langullge

5. If the object record, or any record occurrence affected by the execution of the MODIFY statement,
is located in an area that is open for RETRIEVAL, Error Status returns code 0809.

6. If both temporary and permanent areas are referenced, Error Status returns code 0824.
7. If the data-name used is invalid or inconsistent, Error Status returns code 0804.
8. If the referenced record, area, or set is not in the invoked sub-schema, Error Status returns code 0808.

Example

. MODIFY CUSTOMEP.~ECORD, C~lDIT.STATUS.

3-24

Data Manipulation Language

MOVE STATUS

Function

Use the MOVE STATUS statement to save the contents of the specified currency status indicators.

General Format

MOVE CURRENCY STATUS FOR

(RUN-UNIT I
) record-name RECORD
) area-name AREA
~ set-name SET

TO identifier-I. - -

Technical Notes

Example

1. The record-name, area-name, or set-name must be included in the sub-schema named in the program.
2. Identifier-l must refer to a data item defined as PICTURE 9(10) COMP or DATABASE-KEY (for

COBOL) or INTEGER (for FORTRAN).
3. If you use the RUN-UNIT phrase, place the database key for the current record of the run-unit in

identifier-I. The current record of the run-unit is not altered. If you specify record-name, area-name,
or set-name, place the database key for the current record of record-name, area-name, or set-name
in identifier-I. The current record of record-name, area-name, or set-name is not altered.

4. MOVE STATUS alters the special registers Area-Name and Record-Name to describe the currency
indicator being moved.

~OVE CUPPENC~ STATUS FOP ~U~.UNIT TO ST~K~Y.

3·25

Data Manipulation Language

Function

Use the OPEN statement to make one or more areas available for processing and to specify the usage-mode for
these areas.

General Fonnat

Format 1

Format 2

USAGE-MODE is

RETRIEVAL
UPDATE
EXCLUSIVE UPDATE
EXCLUSIVE RETRIEVAL
PROTECTED UPDATE
PROTECTED RETRIEVAL

OPEN AREA area-name-l [area-name-2] ...

[USAGE-MODE is ()]

lPRIV AC'Y KEY is key-It.

Format 3

~ JOURNAL USAGE-MODE [EXCLUSIVE] UPDATE~

Technical Notes

..:.

1. Each area named in an OPEN statement must be defined in the sub-schema that was invoked.
2. OPEN ALL means that every area referenced in the sub-schema will be opened in the USAGE-MODE

specified. It also means that a failure to open anyone area means that no area is opened. This format
implies that there are no privacy locks on the areas.

3. PRIVACY KEY is required if the area has a privacy lock declared for it. Privacy locks and keys are
discussed in Section 1.5.4.

4. Key-} must conform to the data characteristics of privacy locks and keys. DBMS attempts to match
the PRIVACY LOCK specified for the area named with the PRIVACY LOCK supplied by the program.

S. The USAGE-MODE clause in Format 2 is the same as that in Format 1.
6. USAGE-MODE is RETRIEVAL allows concurrent run-units to open the same area with any usage

mode other than EXCLUSIVE UPDATE/RETRIEVAL. This run-unit will not be able to STORE,
MODIFY, DELETE, INSERT, or REMOVE.

7. USAGE-MODE is UPDATE allows concurrent run-units to open the same area with any usage-mode
other than EXCLUSIVE UPDATE/RETRIEVAL or PROTECTED UPDATE/RETRIEVAL. This
run-unit will be able to STORE, DELETE, MODIFY, INSERT, or REMOVE.

8. USAGE-MODE is EXCLUSIVE RETRIEVAL prevents concurrent run-units from interacting with
the same area in any usage-mode. This run-unit will not be able to STORE, DELETE, MODIFY,
INSERT, or REMOVE.

9. USAGE-MODE is EXCLUSIVE UPDATE prevents concurrent run-units from interacting with the
same area in any usage-mode. This run-unit will be able to STORE, DELETE, MODIFY, INSERT,
or REMOVE.

3-26

Data Manipulation Language

10. USAGE-MODE is PROTECTED RETRIEVAL prevents concurrent run-units from update and allows
concurrent retrieval. This run-unit cannot STORE, DELETE, MODIFY, INSERT or REMOVE.

11. USAGE-MODE is PROTECTED UPDATE prevents concurrent run-units from update and allows con
current retrieval. This run-unit can STORE, DELETE, MODIFY, INSERT, or REMOVE.

12. RETRIEVAL is assumed if no usage-mode is specified.
13. Use Format 3 to communicate to DDCS if the journal is to be shared when you are opening an area for

update. Include the word EXCLUSIVE only if you will not be sharing the journal file; that is, you will
not be backing up any areas opened in UPDATE usage-mode.

14. If used, Format 3 must appear before any areas opened for update. If Format 3 has not been used, the
following rules apply when the first OPEN is attempted in an update usage-mode. If the area is opened
in the EXCLUSIVE or PROTECTED UPDATE usage-modes, DDCS simulates an OPEN JOURNAL
USAGE-MODE EXCLUSIVE UPDATE format. If the area is opened in the UPDATE usage-mode,
DDCS simulates the OPEN JOURNAL USAGE-MODE UPDATE format.

15. All usage-modes specified in the OPEN imperative remain in effect until the execution of a CLOSE
statement for the opened areas.

16. An area must be opened to enable processing of data in that area by any of the other DML statements
discussed in this chapter.

Exception Conditions

1. An attempt to open an area in UPDATE usage-mode after opening the journal in EXCLUSIVE UPDATE
causes Error-Status to return code 0938.

2. Any attempt to execute an OPEN statement that would result in a usage-mode conflict for an area
causes Error-Status to return code 0940. Table 3-2 indicates usage-mode conflicts by an 'N' and per
mitted concurrency of run-units by a 'Y'.

3. If a privacy breach occurs, Error Status returns code 0910.
4. If a run-unit attempts to open an area which is already open, Error Status returns code of 0928.

Table 3-2 Usage-Mode Conflicts for OPEN

CURRENT STATE OF AREA

Requested Not PROTECTED PROTECTED
Usage-Mode Opened RETRIEVAL UPDATE RETRIEVAL UPDATE

RETRIEVAL y y y y y

UPDATE y y y N N

PROTECTED y y N Y N
RETRIEVAL

PROTECTED y y N N N
UPDATE

EXCLUSIVE y N N N N
RETRIEVAL

EXCLUSIVE y N N N N
UPDATE

Example

OPEN A~tA MARKE1ING-A~EA, PE~SON~EL-A~EA,
USAGE-MODE IS EXCLUSIVE UPDATE.

3-27

EXCLUSIVE EXCLUSIVE
RETRIEVAL UPDATE

N N

N N

N N

N N

N N

N N

Data Manipulation Language

REMOVE

Function

Use the REMOVE statement to cancel the membership of the object record in the occurrences of the specified
set-name~ in which it currently participates as a member. The object record must be defined (in the schema) as
an OPfIONAL member of the sets named.

General Fonnat

Format 1

REMOVE [record-name] FROM set-name-I [set-name-2] ---- -
Format 2

REMOVE [record-name] FROM ALL SETS.:.

Technical Notes

1. Record-name and all set-names must be defined in the invoked sub-schema.
2. The object record of the REMOVE statement is the current record of the run-unit.
3. If you use Format 1, the object record must be defined (in the schema) as an OPfIONAL

member of the specified sets.
4. If you use Format 2, the object record must be defined (in the schema) as an OPTIONAL member

of at least one set included in the invoked sub-schema.
S. The object record must also participate as a member in an occurrence of at least one of the object

sets.
6. No change occurs to any currency information maintained by the DDCS.

Exception Conditions

Example

I. When an exception occurs, the data base and the User Working Area remain in the state existing
before the attempted execution of the REMOVE statement, and Error Status returns the appropriate
code.

2. If the current record of the run-unit is not known, Error Status returns code 1113.
3. If record-name is specified and the current record of the run-unit is not an occurrence of the named

record type, Error Status returns code 1120. This is a debugging feature.
4. If the object record is not defined as an optional member of all of the specified set-names in Format 1,

Error Status returns code III S.
S. If no sets are actually specified by use of Format 2, Error Status returns code I 122.
6. If the object record does not participate as a member in an occurrence of at least one of the sets

specified in Format 1, or implied by use of Format 2, Error Status returns code 1122.
7. If the object record, or any record occurrence affected by the REMOVE statement is located in an

area that is open for RETRIEVAL, Error Status returns code 1109.

REMOVE SALES'IELD.~ECORD FROM FIELD-SET.

3-28

Data Manipu/lltion Languqe

STORE

Function

Use the STORE statement to

1. acquire space and a database key for a new record occurrence in the data base
2. cause the values of the appropriate data-items in the User Working Area to be included in the

occurrence of the object record in the data base
3. insert the object record into all sets in the sub-schema for which it is defined as an AUTOMATIC

member
4. establish a new set occurrence for each set for which the object record is defined as owner in the

schema.

STORE also establishes the object record as the current record of the run-unit, and controls whether or not it
becomes

1. the current record of the area in which it is stored,
2. the current record of its record-type, and
3. the current record of set for all set-types in which it is specified as an owner or AUTOMATIC

member.

General F onnat

STORE record-name ~UPPRESS
ALL
RECORD
AREA

{~e~~ame-l ... }

CURRENCY UPDATE~ ~
Technical Notes

1. The invoked sub-schema must include the named record, all sets in which the named record is
defined as an AUTOMATIC member, and all data items, records, and sets necessary for correct
placement of the named record in the data base.

2. A database key and space for the object record are allocated on the basis of the description of
the record in the sub-schema invoked by the run-unit and the values you supply.

3. You must ensure that the following data-items in the User Working Area are initialized with the appro-
priate values: '

a. All data-items included in the object record of the STORE statement;
b. Any control data-items and Area IDs in all owner records of the set types in which this record

is defmed as an AUTOMATIC member that have set occurrence selection LOCATION MODE
OF OWNER. Verify with your Data Administrator which are the control data-items.

4. The object record occurrence is inserted into a set occurrence for each set type in which the record
type is defmed as an AUfOMATIC member. The ordering rules for the set govern the insertion point
of the object record in all of the relevant set occurrences.

5. The object record is established as the owner of a set occurrence for each set type in which it has been
defined as an owner. These set occurrences are empty at this time; that is, they have no member
records.

3-29

Data Man;puilltion Language

6. The successfully stored record occurrence becomes the current record of the run-unit.
7. If you do not use the SUPPRESS phrase, the object record also becomes the current record of the

area in which it is placed; the current record of its record-type; and the current record of all set-types
in which it is defmed as an owner or AUTOMATIC member.

8. The SUPPRESS phrase provides the facility to selectively prevent the object record from becoming
the current record of the area, of its record type, and of any or all of the sets in which it is defined as
either an owner or an AUTOMATIC member. SUPPRESS ALL prevents the update of all currency
indicators. However, use of the SUPPRESS phrase does not prevent the object record from becoming
the current record of the run-unit.

Exception Conditions

1. If any of the following conditions are encountered, the STORE statement is not successfully executed,
the data base and UWA remain in the state existing prior to the attempted execution, and Error Status
returns the appropriate exception code.

2. If the object record is to be stored in an area that is not open, Error Status returns code 1201.
3. If a database key is inconsistent with the relevant area, Error Status returns code 1202.
4. If the record to be stored would violate a DUPLICATES NOT ALLOWED clause defined for any of

the records or sets involved, Error Status returns code 1205.
5. If the set type owned by the object record type is not in the invoked sub-schema, Error Status returns

code 1208.
6. If the object record, or any record occurrence affected by the STORE statement, is located in an area

that is open for RETRIEVAL, Error Status returns code 1209.
7. If a database key or data space is not available, Error Status returns code 1211.
8. If an illegal area name is passed in an AREA-ID, Error Status returns code 1223.
9. If both temporary and permanent areas are referenced, Error Status returns code 1224.

10. If a set occurrence that meets the set selection criteria (for any of the set-names involved) cannot be
found, Error Status returns code 1225.

Example

STOFC~ SALES~AN"~EC(1RO SUPP~ESS A~tA UPOA1·lS.

3-30

Data Manipulation Language

USE FOR COBOL

Function

Use the USE statement to specify procedures to be executed when specified exceptions occur.

General F onnat

USE IF ERROR-STATUS [IS integer-I [integer-2] ...]

Technical Notes

I. Integer-I, integer-2 ... may be valid, four-digit exception codes.
2. The codes in each USE statement must be unique; that is, different USE statements cannot specify

the same integers. If no integer is specified, it must be the last USE condition specified and will apply
to all exception codes not specified in preceding USE statements.

3. If the execution of a DML command results in a specified exception, the procedure following the
USE statement is executed.

4. To cause the procedure following the USE statement to be executed for every exception other than
zero, omit specific exception codes from the USE statement.

S. To cause the procedure following the USE statement to be executed for all classes of exceptions
pertaining to a specified DML command, use the statement code followed by 00 (for example, 0300
for all exceptions pertaining to FIND).

6. To cause the procedure following the USE statement to be executed for all DML statements pertaining
to a specified exception code, use the exception code preceded by 00 (for example, 0062).

7. If an EXIT or an END DECLARATIVE statement is encountered in the execution of a USE procedure,
control returns to the statement immediately following the DML command that resulted in the
exception.

8. If the execution of a DML command results in an exception not specified by a USE statement, control
proceeds to the statement following that DML command unless otherwise specified in this document.
You determine occurrence of the exception by testing the special register ERROR-STATUS. Refer also
to Section 3.2 for a discussion of the INTERCEPT and NOTE phrases.

9. USE statements should be in the main program or in a subroutine called only once.

Exception Conditions

Example

1. The BIND statement code applies to USE initialization. Refer to Section 3.2.2 for a discussion of the
classes of exceptions.

ust Ir EFRCP-STATUS IS 0]01

3-31

Data Manipuilltion Language

I USE FOR FORTRAN

Function

Use the USE statement to specify the procedure to be executed when specified exceptions occur.

General F onnat

USE subprogram-name IF {
ERROR-STATUS}
ERSTAT [IS integer-l [integer-2] ... J.:.

Technical Notes

1. Integer-I, integer-2 ... may be valid, four-digit exception codes.
2. Subprogram-name must refer to a FORTRAN subprogram that is part of the run-unit.
3. Different USE statements must specify different integers. If no integer is specified, it must be the last

condition specified; it will apply to all exception codes that have not been in a previously executed
USE statement.

4. If the execution of a DML imperative results in a specified exception, the specified subprogram is
executed.

5. To cause the subprogram to be executed for every exception other than zero, omit specific exception
codes from the USE statement.

6. To cause the procedure following the USE statement to be executed for all classes of exceptions per
taining to a specified DML c:ommand, use the statement code followed by 00 (for example, use 0300
for all exceptions pertaining to FIND).

7. To cause the procedure following the USE statement to be executed for all DML statements pertaining
to a specified exception code, use the exception code preceded by 00 (for example, 0062).

8. When a RETURN statement is executed in the subprogram specified in the USE statement, control
returns to the statement immediately following the DML imperative that resulted in the exception.

9. If the execution of a DML imperative results in an exception not specified by a USE statement, control
proceeds to the statement following that DML imperative unless otherwise indicated in this document.
The occurrence of the exception is determined by testing the special register ERST AT.

10. The USE statement for FORTRAN is part of the DML and not part of the FORTRAN language.
11. Use statements should be in the main program or in a subroutine called only once. They should immedi

ately precede the first procedural statement in the program.
12. A total of 16 USE conditions can be applied to one sub-schema.

Example

us~ E~R l' ERSTAT IS 0319.

Exception Conditions

1. The BIND statement code applies to USE initialization. Refer to Section 3.2.2 for a discussion of the
classes of exceptions.

2. If more than 16 USE conditions are specified, Error Status returns code 1535.

3-32

Data Manipulation Langutlge

3.4 FORTRAN INTRINSIC FUNCTIONS
Four FORTRAN intrinsic functions have been provided for DBMS usage. Use them to determine whether or not
the current record of the run-unit is the owner of a specified set, a member of a specified set, a tenant (Le., either
the owner or a member) ofa specified set, or if the specified set is empty (Le., contains no member records).
Each function is described separately on the following pages.

3-33

Data Mtznipuilltion Langullge

EMPTY Function

Function

Use the. EMPTY function to determine whether or not an occurrence of the specified set has any member-record
occurrences.

General F onnat

EMPTY (set-name-I)

Technical Notes

Example

I. If the current occurrence of the specified set contains no member-record occurrences, a value of
.TRUE. is returned. If the current occurrence of the specified set contains at least one member-record
occurrence, a value of .FALSE. is returned.

2. The function is evaluated as .TRUE. if there is no current record of the set type or if the set-name is
invalid.

tF (EMPrYC·CUST-SET'») GO TO 10

3·34

Data Manipulation Language

MEMBER Function

Function

Use the MEMBER function to determine whether or not the current record of the run-unit is a member of an
occurrence of the specified set or of any set.

General F onnat

MEMBER (set-name-})

Technical Notes

Example

}. Set-name-} must be either a string or O.
2. If you specify 0 as set-name-l, any set will satisfy the check for membership.
3. If the current record of the run-unit is a member of an occurrence of set-name-} (or of any set

if 0 is specified), a value of .TRUE. is returned. If the current record of the run-unit is not a member
of an occurrence of set-name-} (or of any set if 0 is specified), a value of .F ALSE. is returned.

4. Ifset-name-l is invalid or if there is no current record of the run-unit, a value of .FALSE. is returned.

3-35

Data Manipulation Langwzge

OWNER Func.tion

Function

Use the OWNER function to determine whether or not the current record of the run-unit is an owner of an
occurrehce of the specified set or of any set.

General Fonnat

OWNER (set-name-I)

Technical Notes

Example

}. Set-name-l must be either a string or O.
2. If you specify 0 as set-name-l, any set will satisfy the check for ownership.
3. If the current record of the run-unit is the owner of an occurrence of set-name- J (or of any set if 0 is

specified), a value of .TRUE. is returned. If the current record of the run-unit is not the owner of an
occurrence of set-name-l (or of any set if 0 is specified), a value of .FALSE. is returned.

4. If set-name-} is invalid or if there is no current record of the run-unit, a value of .FALSE. is
returned.

IF(OWNE~CO) .O~.

3-36

Data Man;puilltion Language

TENANT Function

Function

Use the TENANT function to determine whether or not the current record of the run-unit is the owner or a
member'of an occurrence of the specified set or of any set.

General Format

TENANT (set-name-I)

Technical Notes

Example

I. Set-name-I must be either a string or O.
2. If you specify 0 as set-name-I, any set will satisfy the check for tenancy.
3. If the current record of the run-unit is the owner or a member of an occurrence of set-name-l

(or of any set if 0 is specified), a value of .TRUE. is returned. If the current record of the run-unit
is not the owner or a member of an occurrence of set-name-l (or of any set if 0 is specified), a value
of .F ALSE. is returned.

4. If set-name-l is invalid or if there is no current record of the run-unit, a value of .FALSE. is returned.

IF(TE~ANT('GVEP'» lOO, 400

3-37

CHAPTER 4-

USING THE DML IN COBOL PROGRAMS

You can embed DBMS Data Manipulation Language statements in a COBOL program (among COBOL statements).
You must be careful, however, to follow the conventions discussed in Section 4.2 for placing the DML state
ments. After writing the program, you can then compile, load, and execute it just as you would any other COBOL
program. The COBOL compiler performs the necessary translation of the DML statements along with the other
COBOL statements.

4.1 BUILDING A COBOL-DML PROGRAM
Creating an executable application program using the DML with COBOL involves a series of steps. These are illus
trated in Figure 4-1 ; they involve

1. Creating a new program (or using an existing program)
2. Compiling the program
3. Loading the relocatable object code
4. Optionally saving the loaded object code
S. Executing the run-unit.

4.2 PLACING DML STATEMENTS WITHIN COBOL
As already noted, you must be sure to place the DML statements in your COBOL program in accordance with
prescribed rules. (Refer also to theDECsystem-10 COBOL Programmer's Reference Manual, Section 5.) Beg;in your
COBOL program with the standard COBOL IDENTIFICATION and ENVIRONMENT DIVISIONs. These remain
unchanged from those used in standard COBOL. Then proceed to the DATA DIVISION discussed in Section 4.2.1
under the INVOKE statement.

4.2.1 The INVOKE Statement
The COBOL DATA DIVISION incorporates the link to the data basco This link is called the SCHEMA SECTION.
Place the INVOKE statement in the SCHEMA SECTION in the DATA DIVISION of a COBOL program-unit. The
SCHEMA SECTION must follow the FILE SECTION, if the latter is present, and must precede all other sections
in the DATA DIVISION.

When the INVOKE statement is compiled, the compiler creates a User Working Area (UW A) and, in effect, places
it in the WORKING·STORAGE SECTION. The UWA contains record descriptions copied from the invoked sub
schema of the data base. In addition to the record descriptions, the UW A also contains a group of special stat us
registers. These registers have the following descriptions.

01 SYSCOM.
02 AREA-NAME,
02 RECORD-NAME,
02 ERROR-STATUS,
02 ERROR-SET,
02 ERROR-RECORD,
02 ERROR-AREA,
02 ERROR-COUNT

PIC X(30) USAGE DISPLAY-7.
PIC X(30) USAGE DISPLAY-7.
PIC 9(5) USAGE DISPLAY-7.
PIC X(30) USAGE DISPLAY-7.
PIC X(30) USAGE DISPLAY-7.
PIC X(30) USAGE DISPLAY-7.
PIC 99, USAGE COMP.

These registers are used to store the names of the last area and record affected by a MOVE statement; the error
status; the names of the set, record, and area where an exception occurs; and a 1 if an exception occurs.
Refer also to Section 3.2 for a discussion of exception handling in DBMS.

When an exception occurs during execution of a DML statement, ERROR·ST ATUS contains a 4-digit code that
describes the exception. These codes and their meanings are discussed in Appendix B. ERROR·AREA,ERROR-SET,
and ERROR-RECORD contain the names of the area, set, and record in which the exception occurred if they are

4-1

LlBOl AND
DBCS ROUTINES

Using the DML in COBOL Programs

COBOL &
DMl PROGRAM

COBOL
COMPilER

LINK

Figure 4-1 Program-Building Process for COBOL with DML

SCHEMA
FilE

known to DBCS. ERROR-COUNT contains 1 if an exception occurs during execution of a DML statement~ other
wise it contains O. AREA-NAME and RECORD-NAME are used to store the names of the area and record last pro
cessed by a MOVE STATUS statement.

For further information about the INVOKE statement, refer to Section 2.2.1 and to Chapter 3.

4.2.2 The ACCESS Statement
Place the ACCESS statement in a subprogram when you want that subprogram to access the data in a sub-schema
previously invoked in another program-unit. When the subprogram is called from a program-unit containing an
INVOKE statement (or another ACCESS statement), the calling program-unit can pass as arguments to the called
subprogram the special registers and the names of the records that the subprogram will be referencing. The ACCESS
statement, in effect, causes an image of the UW A from the calling program-unit to be placed in the LlNKAG E SEC
TION of the called subprogram. Note that use of a sub-schema from another program-unit docs not violate the rule
that subprograms cannot perform I/O on files in another program-unit. This is because areas are not files in the COBOL
sense.

4-2

Using the DML in COBOL Programs

You must place the ACCESS statement, like the INVOKE statement, in the SCHEMA SECTION in the subprogram.
The SCHEMA SECTION must follow the FILE SECTION, if the latter is present, and precede all other sections in the
DATA DIVISION. Only one ACCESS statement can appear in a subprogram, and it cannot appear in a subprogram with
an INVOKE statement. These restrictions are applied because only one sub-schema can be referenced in a given
program-unit .

4.2.3 Other DML Statements
The other DML statements, CLOSE, DELETE, FIND, GET, IF, INSERT, MODIFY, MOVE STATUS, OPEN,
REMOVE, STORE, and USE must appear in the PROCEDURE DIVISION of the COBOL program. You can place
these DML statements anywhere in the PROCEDURE DIVISION. The USE statement is an exception. The USE
statement must appear in the DECLARATIVES SECTION in the PROCEDURE DIVISION. Place the OPEN state
ment such that it is the first DML statement executed in the PROCEDURE DIVISION. The other DML statements
cannot be successfully executed until an area is opened.

4.3 EXAMPLES
The examples shown on the following pages illustrate use of the DML statements in COBOL programs. Each example
is preceded by a description of the example, and followed by numbered explanatory notes. These notes refer to
statements or sections of the program that are denoted by a marker in the form:

All programs are concerned with the same sub-schema of a schema called BARHEX. The name of the sub-schema is
SUB-SCHEMA·}, and its privacy key is SALEX. Included in the sub-schema are two areas, six record types, and five
sets. Figure 4-2 shows the schema BARHEX and the sub-schema SUB-SCHEMA-I. Note again that the Data Base
Administrator, not the application programmer, is expected to establish and maintain the DOL definitions of the
data base records, areas, sets, and sub-schemas. Refer to the schematic notation for the BARHEX schema in
Figure }-5 to assist you in visualizing retrieval of specific record types and movement wi thin sets for the program
examples that follow.

The sample programs in this section show how to walk through the structured data in the data base to find a desired
record occurrence; how to retrieve, modify, and store data; and how to use data from the data base to write a report.

ASSIGN PlPSO~~EL·A~EA TV flLEl
'1~51 P~Gl:,; IS 1
LAST PAGE IS 21
PAGE SlZE IS 25b WORDS.

ASSIGN M~RKErlNG·A~t. TO YILE2
FIPST PAGE IS 101
lJAST PAGE IS 201
PAGE SIZr 15 256 ~O~D5.

SCHEMA NAME IS aAPH~X.

AP~A NA~E IS P[~SONN~L·A~EA.
AREA NAMF IS MARKETJNG·A~E~.

Figure 4-2 The DML with COBOL: Example Schema BARHEX
and Sub-Schema SUB-SCHEMA-}

4-3

Using the DML in COBOL Programs

~ECORD NA~r IS SALgS~AN·~fCO~D

02
02
02
02
02
02
02
02
02

LOCATION ~ODE IS [)t~ECr ll.JENTl
'NITHIN PlPS(lNNEI,.Af<EA.

SAl,ESMA~'

HOME-~DDRtSS

HClME-CIT1
HO~E-STATE
H(l~~E·7,IP

H 0 fwi E • P I'i nNE
SS·Nl.I~JB~R

~~~t;·SALAPY 

HTIJING-"lTt. 

PIC X(lO). 
PtC X(15). 
PIC X(1!). 
PIC XX. 
PIC 9(!). 
PIC X(t2). 
FIC )((\1). 
PIC 9(I))V99. 
PIC )(~), 

ta F C Cl J.l D ~l A M ~J 1 S (~ T ~ - COM MIS S J (l N - ~ t. C 0 ~ 0 
LnCATIO~ MQD~ 15 VIA COM~ISSION.SEI 
~I1HIN PE~SON~lL-AFEA. 

02 
02 
02 

GlTF 
C 0 ~~ ~ J S 5 1 (I ~J 
~O"(!S 

FIC XC'>,. 
PIC 9(5)V99. 
PIC ?(5)V99. 

PEe a ~ [) ~l A M t J S 5 A L f 5 F' I E L r. • P E C ~l f.i [) 
LOCArJON "'ClO~; IS 1)IPe.;Cl 1f)t'~~JT2 

~tlHI~ ~APK~TtNG-AP[A, 

02 
02 

f I ~, L () • ~ l J 'HH'- R 
FIt: L 0 • L n CAL ~~ 

~TC q~q9. 

~IC X(lO), 

RECO~U NA~E IS CUST0~E~·~~CQ~~ 

1)2 
02 
02 
02 
02 
02 
02 
02 

l.J"tC~1JON ~(Jr')f .. IS CALC IJSING ACC(JUNl 
I: I I 11 I~: U A P " E T 1 ,.~ C; • A R ~: 1\ • 

ACCOU'~l 
C US T U ~~ E: P • r·J ~ \1 E 
Cl)ST·Ai)D~f.:SS 

CUST-CIT¥ 
CtJ~r·STATF 
CUST-ZTP 
ClJSr-ptHlt\E 
C P I:: C t T - S 1 A T 'J S 

pre XCb). 
flC ~CJO). 
~·tC .i.(}~). 

FIC X(15). 
PlC ,(X. 
PIC Q('5), 

r?IC )(12). 
rIC 99. 

RECU~U N~~g IS QTF.SALfS.~ECOPD 
LOCATION ~aDE 15 VIA SALES.5~T 
~ITHIN MlR~[TING •• P[A. 

02 
02 

aT~ 

SALES 
PIC XC"). 
FIC 9(b)V99. 

Figure 4·2 (Cont.) The DML with COBOL: Example Schema BARHEX 
and Sub-Schema SUB·SCHEMA·} 

4-4 



Using the DML in COBOL Programs 

~ECO~O NAME IS PE~FO~MANr£.p!CORO 

02 
02 
02 

LOCATION MODE IS VIA PE~fORMANCE.SET 
wlT~I~ ~AP~r.TING. 

QTP 
PPEDICTION 
PEprOP~ANCt.: 

Ptc )((b). 
PIC 9(1)V99. 
PIC 9(7)V99. 

SET ~AME IS CU~MISSION·SEI 
~ODE IS CH~IN LINKED TO P~10~ 
OPDER IS ALwAYS LAST 
O~NER IS SALE5MA~.~ECO~O 
ME M a~p 1 S OT R.e OMM t S5 I ON -Rt·CO~O MAND A UTa LIN f( t:D TO ()~ N l~ 
SEt SEL~CTIO~ CUPRENT. 

SET NAME IS fIELD-SlT 
MODE IS CHAIN LINKED TO P~IOR 
OPDER IS ~LWAYS LAST 
OWNER IS SALES~A~.prCORD 
~l~~~~ IS SALfSY1ELO.PfCOPD OPIIO~AL AUTO LIN~~D TP O~NEP 
SEl S[LECr]O~ CUP~E~T. 

SET NAM~ IS CUSIO~£~.SET 
",nDE IS CHAIN Llt-.f(EO TO PRIO~ 

O~D~P (5 AL~A~S LAST 
OW~E~ IS SALESFIlLD.~ECO~O 
MEMBE~ 15 CUSTOME~.RECOpn OPtIO~AL ~UTO LIN~ED TO OWNER 
SEl SFt.,F:CTION CllFPENT. 

SET NAME IS SALES-SET 
MOOg IS CHAt~ Ll~~~D TU P~lO~ 

o ~-J N E P (S A L wAY S IJ A S T 
O~~~R IS CUSrOMER.RECO~O 
MEt-' A E PIS Q 'f ~ • S A T04 E S • P E' C 0 ~ 0 MAN D A lJ 'r n II r ~ ~ EDT 0 0 \'J N £ R 
S E: T S ~. L f~ C T 1 0 ~ CUP R E" NT. 

SET NAME IS F~FFORMANCE.S~T 
~nOE IS CHAIN LINKED tu PRIO~ 
oPt)ER 15 Sf1PTED 
O~NE~ 1~ SALESrIELD.PECO~O 
MgMIo3F~P IS PE.RYOPMANCE-REcn~D MANO AllIe' LINKED TO tl~NEFl 
SET SELECTION CUPR~NT. 

SUS.SCHE:MA NAMF IS SUi4-SC!~F:·~A-1 
PRIVACY LOC~ IS SAL~X. 
APE. SECTION, 

COpy ~.LL AREAS, 

Figure 4-2 (ConL) The DML with COBOL: Example Schema BARHEX 
and Sub-Schema SUB-SCHEMA-l 

4-5 



RECOIlD 
01 
01 
01 
01 
01 

Using the DML in COBOL Programs 

SECTION, 
IAL!IMAN.RECO~D. 
QT~·COMMI'SION.~ECORO. 
SALE.rl!LD-~EeO~D. 
CUITOMER·~ECO~D. 
QT~·SALEa·RECORD. 
PERrORMANCE·RECO~D~ 01 

lET Ii:CTION. 
COpy ALL SETS, 

END-SCHEMA. 

Figure 4·2 (Cont.) The DML with COBOL: Example Schema BARHEX 
and Sub·Schema SUB·SCHEMA·} 

4.3.1 Example 1: Calculation of Salesmen Commissions and Bonuses 
At the end of the first quarter, BARH Ltd. calculates the actual sales (i.e., performance) of each of its sales territories. 
lhis calculation is based on the sales made to each customer. Each salesman is to receive a commission equal to ) 2 
percent of the sales made in his territory and a bonus of 5 percent on the amount of sales made over prediction. The 
program presented below performs these calculations. 

Starting with the CUSTOMER·RECORD record, the program requests the quarter sales (stored in QTR·SALES· 
RECORD record), and adds them to the PERFORMANCE·RECORD record occurrence associated with the sales 
territory to which the customer belongs. After this is done for all the customers, the program selects the salesmen, 
one at a time, requests the prediction and performance for the respective sales territories, and calculates the com· 
missions and bonuses to be paid. The commission and bonus earned by a salesman is then placed in a new QTR· 
COMMISSION·RECORD record, and the data base is accordingly modified. When all the salesmen have been pro· 
cessed, the program is finished. 

IDENtIFICAT10N DIVT~IO~. 
PPO~P~M-IC. E.XMPL1. 
~EMAr.K~. 

CALCUIJATE:8 SALFS FIELD P~:Rt'ORMANCE BASED O~ SALES TO CUSTOME~S 
IN THE ~05T PECENr QUAPT~R AND SO MODItIFS DATA BASE. ALSO 
CALCULATES CO~M15SION ANO RONUS (IF ANY) TU BE PAID TO THE 
INDIVIOUAL SALESM~~ ACCO~DING TO TH~I~ SALES PlPFO~MANCE DURING 
THE QUAATI::R. 

D A TAD' V I S J 0 PJ • 
SCHEttL~ SECTION, 

I~VCKE SUB-SCH[MA-t or SCHE~A 8ARHEX 
PRIVACY KEY COMPILE SALEX, 

P~OClD"P~ DIVISION. 
MAIN SF-CTION. 
START. 

.(1) 
.(2) 

OPEN ALL USAGE-MOD~ IS PROTECTED UPDATE, .ell 
Ir ERRO~ COUNT> 0, 

DISPLAY ERROR-STATUS, GO TO fINISH. .(4) 

4-6 



lIIIng the DML In COBOL hogrrl"" 

ZERO·PROCEDUP£' 
MnVE ZE~OS TO PEP'O~kANCL. 
'7ND LAST SALES'IELD-~ECO~O Rteo~D Of MARKETING-APlA APEA, 
IF E~~OP.COU~T ) 0, GO TU SALES-PROCEDURE, 

IIOPP-O, 
r:rNtJ LAS"" PERf'O~MANCE-RECOPO RECOPO or PERfO~MANC-E-5FT SI:. T. 
Ir ERRO~.COU~T ) 0, 

OISPL~Y E~POP-STATUS, GO TO FINISH, 
MODIFY Pt~FO~~ANCE-PFCO~O, PFRrORMANC~, _(5) 
r'NO PRJO~ S~LESfIFLD·~ECORO RECORD Of MAP~lTI~G-A~EA AREA. 
IF ERPOR.COU~T a 0, GO TO LOOP-O, _(6) _(7) 

SALES-PRUCEDURE. 
f'N~ fIP51 CUSTO~lP·RlCORD RFCOPD OFMAR~ETI~G·A~~A ~~~A. 

LOOP-t, 
r1NO LAST OTR-SALES-RECORD RECORD OF SALES-SET S~T, 

SUPPRESS JPEA CUfC~ENCY nPDATES, _(8) 
GF.T, _(9) 
'YhO O~NER CUSTOMEP-SI:;T, _( ).(,) 

S~PPRESS A~EA CURRENCY ~pnATES. 
FTNO LAST P£~rO~MANCE-R~COPD PECO~O or PEPFO~~ANCE·5~T SET, 

SUPPRESS APFA ctJf<~~NCY UPDATES, 
I' i:RROP-COUNT ) 0, 

DJSPLAY EPROP-STATUS, GO TO fINIS~;. 
A~D SALES TO FEFfO~MA~C~, 
~1"OIf'~ , 
l' ERPO~.COU~T ) 0, 

DISPLAY E~RO~-5TATUS, GO TO FINISH, _(11) 
r:rND OWNER or SALES-SET SET. 
F~NO NEXT CUSTOMER-PECORD PECOPD OF MAP~ETJ~G·APEA AREA, 
I' t~POR.COU~T :. 0, GO TO I,OUP-l. 

COt .. lt-4 I SI'IUN -P~OC EottR~: , 
f'ND fIRST SAL~SMAN.~ECORD RECORD OF PERSC~~fL-APEA AP~A. 
If ERROR-COUNT) 0, 

DISPLAY FPPOP-STATUS, GO TO fINISH. _(J2) 
CALL SUBPR USING PE~rORkANCF.RECORD, Qlp·CGr~lSsrO~.R~CU~D, 

SYSCOM. _(13) 

FlhISH, 
C".OS,E ALL. _(14) 
s"op Rur~. 

IDENTIFICATION DIVISION, 
PROG~A~-ID, SUBPP. 
REf4APJ(~, 

St1BPPOGRAM TO PEFFOR:'l THE CALCULATIONS FO~ rH~; 
cnMMISSIUNS FOR T~E SALtSMEN, 

DATA D1VlSION, 
.eHEMA SECTION, 

ArCES$ SU8-SCHE~A-1 or SCHEMA BARHEX 
PPIVACY ~EY COMPILE SALEX. 

4-7 

_( 15) 



Using the DML In COBOL Progranu 

WORKINr,·STORAGE SECTIG~. 
01 TF.MP-SALES PIC 9(7)V99, 
01 TrMp.COMMISSION PIC 9(S)V99, 
01 TF.Mp-eONUS PIC 9(5)V99, 

USAGE COp.1p. 
USAGE CO".p. 
USAG~ CUt.1P. 

PROCEO'IPE DIVISION USING PER~ORMA~C~-~ECORD, QT~·COM~ISSIn~·RECORD, 
SYSCOM. _(t6) 

COMPT-~EcrIO~. 
LOOP-2. 

f'NO N~XT RECQPD O~ YIELD-SET SET. _(J7) 
F'ND LAST P~PfOP~ANCE-R[CORD RECORD Of PE~Fr'RMANC~-SET SlT. 
I' ERROR COUNT> 0, 

DJSPLAY fPROP-STATUS, GO TO fINISH. 
GFT. 
MPVE P~RfORMANCE TO TEMP-SALF.S. 
cnMPUTE T~MP·CO~MISSI0N • TEMP-SALES * 0.12. 
~nv~ ZE~OS TO TE~P-80hUS. 
I ,. PRE 0 J C 'r ION > PEP F' 0 ~ ~ A NeE, GOT 0 P,. n. U N tJ 5 - CAL C Jo. D • 
cnMPUT~ TE~P-BO~US = 0.05 * (PERFORM~NCE - PPfDICTIO~). 

BONus-rALCED. 
MOVE T~MP-CO~MISSION 1Q COMMISSION. 
Mnv~ TgMp·PONUS TO 80NUS. 
F:rND LAST QTP-Cor"i"~ISSI0N"~lCORD PECOPD Of' CO'·'''~JSSltiN-Sf.'f S~·.T, 

SUPPPESS A~lA CURP~NCY UPDATES. _(1A) 
I' ERPOR·COUNT > 0, 

DISPLAY E~POR-STATUS, GO TO FINIS~. 
GF.T. 
l~no IF 'i , 

DONF.-l. 
FT~O OW~ER COM~ISSION·SET SET, 
F:r~O NEXT SALESMAN_HECOPD RECOPD OF PfRSO~~[L·A~~A AREA. 
I" ~RROR·COUNT a 0, GO TO LOUP-2. _(7) 

FIl\ItSH. 
F,11T PPOG~AM. 

(1) The SCHEMA SECTION must be inCluded 1n the DATA UJVlSION when OML 
statements are Included 1n the progr~m. 

(2) An I~VO~E or ACCfSS .tatement must be the cnly st~tement 1n the 
Sri-fEMA SECTION. 

(3) PROTECTED UPDATE (a simultaneous-update usage mode) permits other 
run-un'its to concurrently open the two areas to retrieve data, but 
not to update, until the CLOSE st.atement is executed in this program. 

(4) I' the execution Of the OPEN .tatement fells, continuation ot the 
rnn II not d •• ired. Not. that E~ROP-COUf-IT 11 cheeked rather thdn 
E~RO~·STATUS becau •• It cau ••• an lnteQer co~pare rather than a 
characttr compare, 



U,1ng the DML In COBOL Pro" .. 

(5) The object of MODIFY 1s the current record of the run-unit, A 
G~T .tatement 1. unnecellarY here becau" the MODIFY explicitly 
n~mel the only field it affects, Note that this II prObably more 
e~reful than necelsary because the "prediction prooram" Ihould 
nave s~t all new PEPfORMANCE to O. 

(6) I~ is pOis1bl. to search for the first (lalt) occ~rrlnee of a 
r~cord type in an area, and then continue the .earch In t~e 
f~~ward (rev~rse) direction, e.9., FI~O PRIO~ R€CO~D OF 
area·na~e AFEA. Fl~n PRIOR shOUld not ce used to learen for 
r~cords 11) sets, how.ver, unleSI tne memoIrs are linked 1n the 
PRIOP direction. 

(7) S'~ce ~~RUP·COU~T is set to zero upo~ d Sticcessful rI~O, thll 
~rovides the test for continuation of loopin'J uslnQ fINDS, The 
f'rst nonzero F.~POR·COlJNT ... ·111 occur "ne" no record Js found, A 
m~re def1nitive c~ec~ would Include t~st1n~ tor an f~ROR-~TATU8 
v"lue of "307. 

(9) Area Currency u~datlnQ is surpresled 50 that. tn~ t~CS ~111 
1 t\ S e 1 t 5 P 1 a c ~ 0 n sub seq 1J I n t N to' X T (, ,. J\ R ~~ A 5 ear c h e I 
C " S T 0 ~I FR· wE r. (1 R n • ~ e fer toe h I) pte r 3 for a ·1 esc r 1 p t Ion 0 t 
flle3. 

not 
for 

FI~D 

( 9 ) T ~ e 0 t;, j e c t 0 f r, E T 1st he C' u r r en t r e C' 0 r dot t lu' run • u n 1 t • The GET 
m~ves the data-item fl.lds with1n the current record Into t~e 
arpropriate UWA locat1ons. 

(10) ~ALESfJ~LO.PECOPD record 1s the own~r, 

(11) '!f the fIND ta11s,tel"ll"lnate execution. 

(12) Tt no salesman can be tOU~rl, terminate execution, 

(11) A call 1s made to a subpra~ram to compute t~. tommlssionl. The 
CAll pass@s only thp. data needed and the 3yst@m Co~munle.tlonl 
Area (5YSCO~). , 

(t4) rloa' all open dr •• s betor@ termlnatinq the proQram, Failure to 
11lsue a CLOSE statem~nt ~an caule some update act1vity for th1s 
pro9ra~ to not re refleete~ in tne data b&IP, 

(15) An ACCESS Itat.~ent is lnciuded in the SCHEMA S~CTION of the 
'''bprOqram 10 that the lubproqram can reference data in the 
snb.sC'hema invoked 1n the main program. 

(16) The PROC~DURE DIVtSION header contains tne aroument. that are 
r~lled to the IUb~rOgram. 

(17) ~EXT PECURD nr rI~LD·SET Qive. the lale. territory belong1n; to 
the current lal.lman, 

(18) AT~-COMMISSION·R~CO~D mUlt be made the currert Of run-unit In 
order to MODIFY It, 

4·9 



Using the DML in COBOL Programs 

4.3.2 Example 2: Generation of Fint Quarter Salesman Commission and Bonus Report 
BARH management wants a report on the performance of its salesmen in the most recent quarter, along with the 
amounts of commission and bonus to be paid. This program retrieves the information from the data base (as up
dated in the previous example) and writes the report using the COBOL Report Writer. The logic behind the re
trieval in this case is quite simple: search for a salesman; find his commission and bonus from the most recent QTR
COMMISSION-RECORD; then retrieve the prediction and performance for his sales territory. When all this informa
tion is in the User Working Area, generate a line of the report. 

IDENTyrICATION OIVISlPN, 
PROGRAM-ID. EX~PL2. 
REMARft:~, 

PREPARES A PEPORT ON lHE P~R'ORMANCE OF ALL 8ARH SALESMEN 
J1 Y RET R I E~V I N G THE 0 A T A fRO M THE D A TAB A SEw H 1 CH ~ A SUP D AT E D 8 r 
EXMPL1, 

ENVI~O~MENT OI~ISION. 
INPUT-nUTPUT S~CTION, 
FILE-C(lNTROL, 

S~LECT €XA~PLE-rILE, ASSIGN TO DSK, ~ECORDING MODE IS ASCII. 

DAT~ [\~VlSION. 
FILF SF.eTION, 
ro lXAMPL~·'lLE, 

VALUE or rnENTIFICATION~IS "5AL~MN~PT"1 
REPORT IS F.XA~PLE·RF.PU~T. 

01 EXAMPLF-~EcnpD PIC X(72) 
SC~EMJ SECTION. _(1) 
INVOKf: SUS-SCH .. :t-1A-t O'~. ,SCHEMA BAP",ft;X 

,PPIVACY K~Y CO~PILE SALEX. \ 
WOR~IN~·STOP.~[ SErTIUN. 
01 r~tS-Y~A" PIC 9(4), 

REPORT SECTION .. 
RD FXAHPLg-REPORT, CONTROL f'l~lL. 
01 TVPE PH, NEXT G~OUP PLUS 2. 

0' LI~e: 3. 
03 COLUt.1N 1 

VALUE ~rI~ST QUAPTER 
03 COLUMN, 52 
03 COJ.,UM~ 05 
03 COJ.lUMN b9 

t1' LINE,'>. 
03 COLUMN 
03 COLUMN 
03 COLUMN 
03 COLUMN 
03 COl"U~N 

0'" 'LINI': 6, 
03 COLU~N 
03 COLUMN 

12 
32 
4b 
54 
67 

34 
46 

PIC X(50), 
SAL~SMAN COMMISSION AhO BO~US REPORT-, 
PIQ 9(4) I' SQUReF. THIS-YEAR. 
PT~ X(4)' VALUE "PAGE". 
PIC ZZZ9, SOURCE PAGE-COUNTER, 

PIC 
PIC 
PlC 
PIC 
PIC 

X(8), VALUE "SALF.S~AN". 

X(9), VALUE "P~EOICTED", 
X(6), VALUE "ACTUAL". 
X(10), VALUE "caM~tSSION". 
~('), VALUE ~BONUS". 

PIC xes), VALUE "S'LES", 
PIC xes), VALU' "SALES". 

4-10 



llIinI 1M DML ", COBOL Pro,rrunI 

01 DF.T1IL-~lNE, TYPE DE, NEXT GROUP PLUS t, 
O~ COLUMN 1 PIC X(30)', 80U~CE ~ALESMAN, 
0' COLUMN' lin PIC Z(6)9,99, SoORt! P~EDICTION. 
0' COLUMN 43 PIC Z(6)9,99, SOURCE ~ERrO~MANC!. 
0' COLUM~ 55 PIC Z(419,99, SOURCE COMMISSION-I. 
0'" COLUMN 65 PIC Z(4)9,99, SOURCE BONUS-t, 

01 TYPE cr FjNAL' LIN! p~us t, 
0'" COLUMN 2 PIC X(25), 

VALUE " •• TOTAL rOR ALL 6ALESMAN". 0' COLUMN 30 pte Z(7)9,Q7, SUM PREDICTION, 
0' COLUMN 42 PIC Z(7)9,99, SUM PERFORMANCE, 
0'" COLUMN 54 PIC Z(5)9.99, SUM COMMISSION-t, 
0; COLUMN 64 PIC Z(5)9.99, SUM BONUS-I, 

PROCEDURE DIVISION, 
MAIN SF-CTION. 
START, 

OPEN ALL. _(2) 
l' ~RROR-COUNT ) 0, GO TO FIHlSH, _ell 
O'SPLAY ".", 
ArCtPT THIS-YEAR, 
OPEN OUTPUT EXAMPLE-FILE, 
INITIATE r.XAMPLE-~EPO~T. 

REPORT-PROC€DU~E, 
FJNO FI~ST SALESMAN-R[~ORD R~COND OF PERSONNEL·A~EA ~R£A. 

_(4) 
LOOP-t, 

G"~T , 
F~NO LAST QTR-COMMISSION-RECOPO PECO~D nf 

eOMHISSION-SET SET 5UPPP£SS AREA UPDATE. _(5) 
l' ER~OR-COUNT ) 0, DISPLAy E~RO~-STATUS, GO TO DONE-I. _(6) 
Gr.T, 
f'ND NEXT RECOPD Of FIELO-SET SET, 
IY ~P.ROR-COUNT > 0, DISPLAY F.~ROR-STATUS, GO TO DONg-l. _(6) 
Cr.T " 
"ND LAST PERFOPMANCE-AECOPD RECORD OF PERfO~M~~CE-SET SET 

SUPPHESS A~EA. _(5) 
Gr.T. 
Gr.NERATE DETAIL-LINE, 
F'ND NEXT :SALEsMAN-RECORD RECORD OF PERSOhNEL-AREA AR~A. 
Ir ERRO~-COUNT • 0, GO TO LOOP-1 .(7) 

DONE-I, ' 
Tr.RMINATE EXAMPLE-REPORT, 
C'IOIE EXAMPLE-FILE, 

rINISH, 
CIIOSE ALL. _(8) 
srop "UN. 

(1) An INVOKE ft. ACCESI .tattmtnt mUlt bt tht only Itatement in the 
arHEMA SleTJON. 

4-11 



ChIn, 1M DML In COBOL Pro"."" 

(2) WIth no USAGE-MODE .peclfied, RETRIEVAL I, allumed, 

'J) I' the art •• cannot be opened, t.rmlnate execut1on. 

(4) t~e object of GET 1. the current record of the fun-unit. 

(5) Nnte the u.e of the SUPPRESS phra.e, 

16) I' occurrence, of the •• record types cannot be found, termlnat@ 
eJCeeutlon, 

(7) Cftntlnue looping until there are no more ,oc:eurrencel Of 
SALESMAN-MECORD. 

FIRST ~UARTE~ SALES~AN COMMISSION ANU BONUS ~fPOP~ 1915 

SALESMAN 

AOBEf<T D. AC~El' 
WILLIAM J, AM8~05E 
JOSE~H T. ANDfRSON 
KEVIN R. ANDERSON 
JAMES '1'. 8A~P('N 
R, .CHARLES BLAKER 
JAMES 1'. BLOC'" 
HAROLD T. BRE~NEN 
RICHARI' L~ CAPPEhTE~ 
HEN~Y t;, C.kQP'.K 
JOHN r, COOPEP 
PAT~IC~ ~, ,AFMER 
ANDP[W C, GATES 
CHARLE~ D. ~ARRINGTON· 
LAWRENrE M, J~MESON 

HANS K. ~OPGE~SEN 
.ANUEL a', LEVIN 
-JOHN L. Lr.WIS 
EDWARD I, MATTHEWS 
CHRISTOPHER W. NORTON 
"AMEI ", OLSEN 
.TEVEN G. SMITH 
MARl< L. IMYTHE 
lARRY P. WILLIAMSON 
WILLIAM I, VANCKO 

•• TO'lL rOA ALL SALESMAN 

PREDICTED 
SALES 

4SUOOO,00 
250000,00 
20nooO,Oo 
225000,00 
100000,00 
175000,00 
155000,00 
250000.00 
15CJOOO,OO 
150000.00 
150000,00 
275000,00 
200000,00 
125000,00 
200000,00 
175000,00 
~OOOOO,OO 
lOOOOO,OO 
205000,00 
110000,00 
230000.00 
200000,00 
175000,00 
130000.00 
400000.00 

A("TUAL 
SALFS 

475789.17 
24277t.3~ 
2029.t!;,25 
~)9447.00 
l1b534.~~ 
17S145.0CJ 
166444.S0 
240637,24 
16~242.37 
169405.25 
17~&J2.01 
2'78747.45 
206117.)5 
142934,95 
228374.85 
170724.5tt 
187825.36 
302147.4b 
214052.31 
1,4335,t4 
233924.99 
19271l.2b 
183224,97 
120625.17 
41l957,OO 

('OtH-' ISS I ON 

57094.70 
29132,SE: 
l43!>2,23 
2~7Jl,&4 
13984,14 
21377.40 
19973,37 
28876,46 
19949.08 
20l2@,63 
20955,84 
3J449.69 
24806.08 
11 152.19 
2'/404,98 
20·~86. 94 
22539,04 
3&2~7,70 
25686,27 
13720.21 
28070,99 
23125.59 
21986.99 
14475,02 
49674,84 

5180000,00 5363288,96 643S94,58 

4-12 

PAGE 1 

BONUS 

1289,45 
0,00 

140.7'" 
122, : 
ij~~,7.r. 

1~7,2~ 
512.24 

0,00 
812.11 
970.26 

1231,60 
187.37 
3lS,~ 
890, " 

1419.74 
0,00 
(J,OO 

107.J'1 
452,61 
2\6,75 
196.24 

0.00 
411,24 

0,00 
697,85 

I1b4~,51 



Using the DML in COBOL Programs 

4.3.3 Example 3: Generation of Prediction Accuracy Report 
In addition to the report on the performance of the salesmen, BARH requires a report on the accuracy of the pre
dictions of each salesman. The report gives the percent of acceptable variance between the prediction and the actual 
performance, the number of quarters in the sample, and the number of times the prediction was too high or too low. 
The data for the example is the same as that for the previous example; the data base is updated as in the first example. 

IDE~Tl'ICATION DIV1SION, 
P~O~RA~-IO, EXMPLl. 
REMAf(K~, 

P~EPA~ES A ~EPORT ON THE PPEDICTION ACCURACY Of ALL 8ARH 
SALE·SME~ BY ~ET~lEVING DA'TA FROM THE BAPHEX DATA BASE, 

ENVIPONMtNT DIVISION, 
INPUT-nUl'PUT SECT ION. 
r ILE.cnN'l·~Oll. 

SFLECT E)AMP-FILE, ASSIGN TO OSK, RECOPDING MO~E 15 ASCII, 

DATA ("VISION, 
FILE 5f~CltIOt~. 

FD EXAMP-FILF', 
VALU[ OF JOfNTlfICATION IS "PREDICRPT", 
REPORT 15 EXAMP-~EPORr. 

01 EXAMp.RECO~U PIC X(72). 

SCHE~:A SECTTON, 
I~VO~E SU8-SC~EMA·l or SCHEM~ BARHEX 

PPIVAC\ ~fY COMPILE SALEX. 

WORY.IN~·STORAGE SECTION. 
77 J VAP1ANCE PIC 99. 
77 QUAPTERS PIC 999, 
77 Ton-HIGH PIC 999, 
77 TOO-LOW PIC 999. 
77 QtR-COU~T PIC 999. 
71 DIF PIC 9(7)V9Q, 
77 ALLn~·D PIC 9(7)V99. 
REPORT SI:;CTION, 
RD EXAMP.PEPORT, CONTROL fINAL, 
01 TYP~ PH, NEXT G~OUP PLUS 2. 

0' LINE 3, 
03 COLUM~ 1 P1CX(50), 

VALUt "SALESMAN PREDICTION ACCUPACY REPORT". 
03 COLUMN 65 PTC X(4), VALUE "PAGE". 
03 COLUM~ 69 ZZZg, SOURC~ PAGE-COUNTER, 

0' LINe: 4. 
03 COLUMN 12 PIC X(25), VALUE "' ACCEPTABLE VARIANCE a". 
03 COLUMN 40 PIC 99, SOURCr. VARIANCE. 
03 COLUMN 45 PIC X(20), VALUE MQUARTERS IN SA~PLE -", 
Ol COLUMN 68 PIC 999, SOURCE QUARTERS, 

4·13 



UIin, th. DML In COBOL Prognmu 

0' LINE 6, 
03 COLUMN 12 PIC X(8), VALUE "SALESMAN", 
03 CO"'UM~ 12 PIC it15), VALUE "SIGNIFICANTLY", 
0] COLUMN sO PIC X(t5), VALUE' ""SlG~I'ICANTLY". 
0] COLUMN 67 PIC X (5), VALUE" "TOTAL". 

0' LINE 1, 
03 COLUMN )2 PIC X(8), VALUE "TOO HIGH". 
o 3 CO"'U~1N ~,o PIC X(I), VALUE "TOO LOW". 

01 D~TAIL-LIN€, TYPE DE, ~EXT GROUP PLUS 1. 
0' rntUMN 1 P Ie x (10,),' SOU~CE S'ALESMAN. 

0' COLUMN 12 PIC 999, SOURce TOO-HIG~. 
0' COLUMN 50 PIC 999, SOURCE TOO-LOW. 
0' COLUMN 68 PIC 999, SOU~CE QTR-COUNT. 

PROCEOIfRE DIVISIO~. 
M AI~ ,5 F C T ION. 
START~ 

OPEN ALL, 
IF EPROR-COUNT ~ 0, GO TO FINISH, 
D~SPLAY "' VARIANCE?", 
AC"CEPT VANIANCE, 
OrSPLAy "SAMPLE SIZE?". 
AC"CEPT QUARTEPS. 
OPEN OUTPUT £XAMP-rIL£. 
INITIATE EXAMP-REPORT, 

REPORT-PROC€DUHE. 
FTNO FI~ST SALF.SMAN-RECORD RECORO or PE~SONNEL·APEA ARE~. 

LOOP-I, 

IN-I. 

MnVE ZEPOS TO TOO-LOW, TUO-HIGH, QT~-COUNT. 
GF.T, 
f'ND NEXT RECORD OF fIFLO-S€T SET, SUPP~ESS APEA UPDATES • 
.IF E~ROR-COUNT ) 0, DISPLAY ERRO~-STATUS, GO TO OON~-l. 
GFT, 

rrND PRIOR P~RFO~MANCE-RECORD RECO~D or PE~FO~MANCE~S!T SET. 
SUPPRESS AREA, 

r, ERROR-COUNT NOT. 0, GO TO GEN-1. 
Gr.T. 
A~D 1 TO QTR-COUNT, 
cnMPUT~ OIY • P[~'ORMANCE - PREDIC~IQN, 
cnMPUTF. ALLOw -0 • PRtD leT ION • (VA~ I ANCEll 0'0) • 
If DIY> ALLOw-O ADn 1 TO TOO-LOW, 
IF -OIF > ALLOW-O ADD 1 TO TOO-HIGH, 
I' QTR-COUNT C QU~RTERS GO TO IN~l. 

GEN-l, 
G~NERATE DETAIL-LINE. 
"ND NEXT SALESMAN-RECO~D RECORD or PERSONNEL-AREA AREA, 
IF ERROR-COUNT. 0, GO TO LooP-t, 

4-14 



lhIu 'M DML III COBOL Pm"""" 

DOllE-I. 
T~RMINATE EXAMp.PEPORT, 
cr.aSE EXAMP-rILE. 

FINISH. 
C',.OIa: ALL, 
STOP RUN. 

4·15 





CHAPTER 5 
USING THE DML IN FORTRAN PROGRAMS 

You can embed DBMS Data Manipulation Language statements in a FORTRAN program along with FORTRAN 
statements. Since the DML is not FORTRAN-oriented, you must run the FORTRAN source program through a 
preprocessor before compiling it. Once the program has passed through the preprocessor, you can compile with 
FORTRAN-20, and execute with FOROTS as you would any other FORTRAN program. 

5.1 BUILDING A FORTRAN-DML PROGRAM 
Creating an executable application program using the DML with FORTRAN involves a series of steps. These are 
illustrated schematically in Figure 5-1; they involve 

1. Creating a new program (or using an existing program) 
2. Running the FORDML preprocessor 
3. Compiling the resulting FORTRAN program 
4. Loading the relocatable object code 
5. Optionally saving the loaded object code 
6. Executing the run-unit. 

5.2 PLACING DML STATEMENTS WITHIN FORTRAN 
You must use the DML statements according to the conventions and rules discussed in Chapter 3. FORTRAN 
rules do not apply to them. When using the DML with FORTRAN, observe the following rules: 

1. Statements can start and end in any column. The last non-blank character in a statement must be 
a period (.). FORTRAN labels can appear on statements and can also start in any column. 

2. No line in a DML statement can contain all or part of another DML or FORTRAN statement. 
3. There is no specific limit to the length of a line. The only limitation on statement length is that 

a st~tement cannot contain more than 120 symbols. (For example, an identifier is one symbol; a 
keyword is one symbol; and a period is one symbol.) 

4. Commas (,) and semicolons (;) are completely equivalent to spaces. 
5. Any line in a DML statement can be followed by a comment. A comment is preceded by an 

exclamation point (!) and is terminated by a line termination character (line feed, fonn feed, 
vertical tab). 

6. For the preprocessor to recognize that a line in a source program contains a DML statement, the 
line must be preceded by a line containing: 

* <blanks> DBMS 

The blank characters are null, tab, space, or backspace. 
7. As with FORTRAN. identifiers and keywords are treated as upper case. All other characters are 

output exactly as they are input. Blanks cannot be freely interspersed within symbols because a 
blank is a symbol terminator in DML statements. For example, "A B" is treated as "A" "B" within 
a DML statement whereas it is treated as "AB" in a FORTRAN statement. 

5-1 



FOROTS AND 
DBCS ROUTINES 

Using the DML in FOR TRAN Programs 

FORTRAN & 
DML PROGRAM 

FORDML 
PREPROCESSOR 

FORTRAN 
COMPILER 

LINK 

RUN-UNIT 

1 SCHEMA 
FILE 

Figure 5·1 Program·Building Process for FORTRAN with DML 

5·2 

) 



Using the DML in FORTRAN Programs 

S.2.1 The INVOKE Statement 
Place the INVOKE statement such that it follows the last declarative statement and precedes the first executable 
statement in a program-unit. When the INVOKE statement is processed, the preprocessor puts the data descriptions 
from the sub-schema into the FORTRAN program in the form of type statements (e.g., INTEGER, REAL). The 
schema data descriptions are in a host-language independent format; the preprocessor converts the data descrip
tions according to the defmitions.shown in Appendix C. 

The data-names in a schema description are COBOL-oriented rather than FORTRAN-oriented. They can be up to 
30 characters in length and can contain hyphens, while FORTRAN allows names up to six characters only and does 
not allow hyphens. The Data Base Administrator can define FORTRAN pseUdonyms, however, to make data-names 
consistent with FORTRAN usage. 

Translation of the names from the schema to the FORTRAN program follows the rules described below. Note that 
these rules apply only to data-names, and not to record, set, and area names; the latter names can never appear 
outside of a DML statement. 

1. If a FORTRAN pseudonym is present, it is used as the data-name. 
2. If a pseUdonym is not present but the data-name from the schema contains six characters or less and 

no hyphens, the data-name from the schema is used as the data-name in the program. 
3. If neither of the above is true, storage is allocated for the data-name, but neither a data typing state

ment nor a referenceable name is created. Instead, each name is placed in an array called UNDEF. 
The data-items placed in the UNDEF array cannot be referenced directly either by a DML or a 
FORTRAN statement. 

The preprocessor creates the User Working Area (UW A) for each program when the INVOKE statement is processed. 
The UWA contains the data descriptions and the following special registers: ARNAM, RECNAM, ERSTAT, ERSET, 
ERREC, ERAREA, and ERCNT. They are placed in the program in the form: 

IN1~GE~ SySCOM()l), EPeNT, ~~STAT 
I.NTEGE~ ERARf..A(b), EPPEC(f:), ERSET(6), REC~At'(6), ARNA~(6) 

EUUIVALENCF(S~SCOM(1)APNAM), 

1(S~SCO~(7l,~EC~AM), 

1(S~SCO~(1), EPSrAT), 
t(SYSCOM(t4), fPS~T), 
1(SYSCO~(20), E~~tC), 

tCSYSCO M(26), EPAPEA), 
1(S~SCOM()2), E~CNT) 

ARNAM and RECNAM are used to store the'last area name and record name processed by a MOVE STATUS 
statement. The other registers are used 

1. To keep you informed of the occurrence of an exception during execution of a DML statement 
(ERSTAT, ERCNT) and 

2. To give you information relevant to the occurrence of an exception (ERSET, ERREC, ERAREA). 
(Refer also to Section 3.2.1.) 

For example, ERSTAT contains the statement code and exception code; ERSET, ERREC, and ERAREA contain 
the name of the set, record, and area, respectively, in which the exception occurs (if these are known to DBCS); 
ERCNT contains 1 if an exception occurs and 0 if none occurs. 



Using the DML in FORTRAN Programs 

The data-base descriptions are made global and are declared in a named common block. The name of the common 
block is the name of the sub-schema (the first six characters). The fact that the data descriptions appear in a 
common block allows you to reference the data from multiple program-units in a direct manner. 

S .2.2 The ACCESS Statement 
Use the ACCESS statement in a subprogram when you want that subprogram to access the data in a sub-schema pre
viously invoked in another program-unit. When the subprogram is called from the program-unit containing an INVOKE 
statement or another ACCESS statement, the calling program-unit can call with no data-base arguments (unlike 
COBOL) because the subprogram references the entire UWA via the common block that contains the UWA for the 
accessed sub-schema. 

Place the ACCESS statement (like the INVOKE statement) such that it follows the last declarative statement and 
precedes the first executable statement in a subprogram. Only one ACCESS statement can appear in a subprogram; 
and it cannot appear in a subprogram with an INVOKE statement. These restrictions are applied because only one 
sub-schema can be referenced in a given program-unit. 

S .2.3 Other DML Statements 
Place the DML statements CLOSE, DELETE, FIND, GET, INSERT, MODIFY, MOVE, STATUS, OPEN, REMOVE, 
and STORE anywhere in the executable portion of the program. If you use the END statement, place it at the end of 
the program-unit. Place the OPEN statement such that it is the first DML statement executed; the other DML state
ments will not execute successfully unless the area (or areas) to be used are open. 

S.3 RUNNING THE PREPROCESSOR, FORDML 
Before compiling your FORTRAN program containing DML statements, run it through FORDML, the DML pre
processor. The command string to run FORDML is: 

.RFORDML 
... [output spec=] input spec [/switch] 

The output specification contains the device, filename, extension, and directory for the processed file. The default 
for the filename is that of the input file. The default extension is .FOR. The input specification is the device, 
filename, extension, and directory of the file to be processed. You must specify the input filename. The default 
extension is .FML. The default device for both the input and output files is DSK; the default directory for both is 
the current path. 

The switches you can specify are as follows: / [NO] VIEW and /UNFLAGGEb. The former U[NO] VIEW) has two posi
tions; /VIEW, which causes FORDML to allow generation of an expanded listing of every INCLUDE statement gener
ated by an INVOKE statement and /NOVIEW, which causes FORDML to suppress expanded listings of INCLUDE 
statements. The latter UUNFLAGGED) implies your program conforms to the following: no line other than the last 
line of a DML statement contains a period as its last non-blank character; however, a line can end with a remark. 
In effect, single-line DML statements need not be preceded by a line containing *DBMS. 

The following three examples show the command string. All three examples are equivalent. 

.R FORDML 
*TSTI 

The name of the input file is TSTt; its extension is assumed to be .FML. The output file is named TSTt.FOR . 

. R FORDML 
*TST1=TSTl 

The filenames and extensions are the same as above. 

5-4 



Using the DML in FORTRAN Programs 

.RFORDML 
*TSTI.FOR=TSTl.FML 

The ftlenames and extensions are as described in the first example. 

You can use wild carding in both the input- and output-me specifications. The wildcard characters are asterisk (*) 
and question mark (?). Asterisks replace a ftlename or extension, question marks replace single characters. The 
following rules apply: 

I. If both specifications are wild, one output file will be generated for each input file found. 
2. If the output specification is not wild and the input specification is, the translated input files are 

concatenated to form one output file. FORDML assumes that an input file contains an integral 
number of program-units. Do not therefore divide program-units between files. 

3. When the output specification is omitted and the input specification is wild, both specifications 
are treated as wild. 

S.4 EXAMPLE USING DML IN FORTRAN PROGRAMS 
The example presented on the following pages illustrates use of DML statements in FORTRAN programs. The 
program is preceded by a description of the example and is followed by numbered explanatory notes. These notes 
refer to statements, or segments of the program, which are denoted by a "note marker" in the form: 

OPEN ALL -(} ) 

where -(}) is the marker. 

The example concerns the same sub-schema of the schema BARHEX that was used in the COBOL examples in 
Chapter 4. It performs the same computations as the first COBOL example. Compare the examples to see how 

,. the same problem is solved in COBOL and in FORTRAN, both using the DML. Note that FORTRAN pseudonyms 
have been added to the schema where necessary. 

Figure 5-2 shows the schema BARHEX and the sub-schema SUB-SCHEMA-I. Refer to the schematic notation in 
Figure 1-5 in Chapter I, for assistance in visualizing the relationships among the records in the schema. 

R~CO~OS·PE~·PAG£ lb. 

ASSIGN PEPSONNEL·A~EA TO rlLl1 
"PSI P~GE IS 1 
LAST "lGE IS 21 
PAGf 51Z~ IS 25b ~O~DS. 

ASSIGN MAR~~TING·APEA TO FILE2 
'J~Sl PAGE JS t01 
LAST PAGE IS 201 
PAGE SIZE IS 25b ~O~OS. 

Figure 5-2 The DML with FORTRAN: Example Schema BARHEX and Sub-Schema SUB-SCHEMA-} 

5-5 



Using the DML in FORTRAN Programs 

SCHEMA NAME IS ~ARKEX. 

AREA NA~E IS P~~SONNEL.AREA. 
A~EA NAME IS MAR~ETING.AREA. 

RECOPO NAME IS SALF.SMAN.~ECO~D 

02 
02 
02 
02 
02 
02 
02 
02 
02 

LOCATIO~ MOO~ IS DIPECT IDE~Tt 
~IThIN PEPSON~rL-A~EA. 

5ALES~AN 
HOt-1E-ADORESS 
HOME-CITY 
HOME-STATE 
hOME-ZIP 
I'.p:.'p~ e: - P HO N ~~ 
SS-~UMBE~ 

e~SE-SALAPY 
H J R INC; - 0 A 1~ ~, 

PIC X(lO). 
PIC X(25). 
FIC X(15), 
PIC XX. 
PIC 9(5), 
Ptc X(12). 
PIC XCtt). 
PIC 9(S)V99. 
FIC X(~" 

RECU~O NAME 15 QT~-COMMJSSI0N-PECO~D 
LOCAtION MOO~ IS V1A COMMI5S10~-SET 
~ J rH I f\J PE~SONNllj-APEA, 

02 
02 
02 

aTP 
COM~lSSION'CO~MIS 
80r" tiS 

PIC XCb). 
PIC 9(5)V99, 
PIC 9(S)V99. 

~ECO~D NA~E IS SALESYIELO-RECOPC 
LOCATION MODE IS OIP~CT IDl~T2 
.'J I T H I N MAP !C t. or I N G - ARE A , 

02 
02 

FIELO-NUM8E~ 
fIELO-LOCALF 

PIC 9999, 
PIC X(lO). 

RECO~D ~A~l IS CUSTUMf.P-~lCORD. 

02 
02 
02 
02 
02 
02 
02 
02 

LOCATION MODE IS CALC USING ACCOUNT 
WIIHIN MAP~FTING-A~EA, 

ACCOUNT 
CUSTO~ER-NAME 
CUST-~ODRESS 

CUST-CIT~ 
CUST-STAIE 
CUST-ZIP 
CUST-PHONE 
CPF.OIT-STATUS 

PIC X("). 
PIC X(]O). 
PIC XC]!). 
PIC X(15l, 
PIC XX. 
PIC 9(5), 
PIC XCI2), 
PIC 99. 

RECORD NAME IS QTR.SALE5.~ECO~O 
LOCAtION MODE IS VIA SALES-SET 
WITHIN ~A~~ETING.ARtA. 

Figure 5-2 (Cont.) The DML with FORTRAN: Example Schema BARHEX and Sub-Schema SUB-SCHEMA-l 

5-6 



,. 

02 
02 

·QT~ 
SALES 

Using the DML in FORTRAN Programs 

PIC X(6), 
PIC 9(6)V99. 

RECO~U NAME IS PE~'OPMANCE.~ECORD 

02 
02 
02 

LOCATto~ MODE IS V1A P~~'O~MANCE.SET. 
wItHIN MA~KtTI~G-A~EA. 

QYH 
P~[OICTION'P~[OIC 
~E~rO~MANCE'P!P'OR 

PIC X(6). 
PIC 9(7)V99, 
PIC 9(7)V99, 

SET NAM~ IS CO~MlSS10N-SEt 
~OOE IS CHAIN LINKEO TO PRIO~ 

OPO~~ IS AL~AY5 LAST 
QWNEP 15 SALE5~A~-~~cnpo 
MF~B~~ IS QTP-CO~MtsStON-P[COPD MANO AUTO LINKED TO QWNEF 
S~T SF.LECTIO~ CUPPENT. 

SET NAME IS FIELO-SET 
~OD~ IS CHAIN LINKED TO PRI0~ 
O~OE~ 15 ALWAYS LAST 
OwNF.~ IS SL'F.SMAN-P~COPD 
M[M~E~ IS SALFSrlELO-PECORO OPTIONAL AUTO LIN~E~ TO OWNE~ 
SET S[L£CTIO~ CUPP~NT. 

CUSTfJMEFh'5ET 
MODE IS CHAIN LINKED TO P~IO~ 
OPDEP IS ~L~AYS LAST 
O~NE~ IS SAL~S'IELO.RF.COPD 
~E~~EP IS CUSTO~ER-PECOPD OPTIONAL 
SET SELECTTON CU~MENT. 

SET NAME IS SALES-S~l 
MODE IS CHAIN LIN~ED TO PPIU~ 
OPDE~ IS ALwAYS LAST 
O~~E~ IS CUSTO~EP.~ECO~O 
MEM8e:~ IS QT~-SAJIES.PECO~D MANO AUTO LINKEr> 'IO O~J~F.Jol 
SET SELECTION CUPR~NT, 

SET NAM~ IS PE~FOR~~NCE-SET 
MODl IS CHAI~ LI~K[D TO P~IO~ 
OROFR IS SOPTED 
OWN[~ IS SALESflLLO-RECORD 
M£~a£F IS PERfORMANCE-~F.COPD ~AND AUTO LIN~ED TO OWNEP 
SEt SELECTIO~ CUP~ENT. 

SU8-SCHE~A NAME IS SUe-SCHEMA-1 
P~lVACY LOCK IS 5ALEX, 
ARl!.;A SECTION. 

COpy ALL ARf:AS. 

Figure 5-2 (Cont.) The DML with FORTRAN: Example Schema BARHEX and Sub-Schema SUB-SCHEMA-l 

5-7 



Using the DML in FORTRAN Programs 

~ECORO SECTION, 
01 SALESMA~-RECORD, 
OS QT~-COMMISSION-~ECORU. 
01 SALESFIELD-R[:CORD. 
01 CUSTOMEP-RECORD, 
01 QTR-SALF.S-PECOPD. 
ot PER'ORMANCE-~EcnRD, 
Sr.! SECTIO~i. 

COpy ALL SETS, 

ENI,)-SCHEMA. 

Figure 5·2 (Cont.) The DML with FORTRAN: Example Schema BARHEX and Sub·Schema SUB·SCHEMA·} 

At the end of the first quarter, BARH Ltd. calculates the actual sales (Le., performance) of each of its sales terri· 
tories. This calculation is based on the sales made to each customer. The company also calculates the commissions 
and bonuses for the salesmen. Each salesman is to receive a commission equal to 12 percent of the sales made in his 
territory and a bonus of 5 percent on the amount of sales made over prediction. The program presented below 
performs these calculations. 

Starting with the CUSTOMER·RECORD record, the program requests the quarter sales (stored in QTR·SALES· 
RECORD record), and adds them to the PERFORMANCE· RECORD record occurrence associated with the sales 
territory to which the customer belongs. After this is done for all the customers, the program selects the salesmen, 
one at a time ~ requests the prediction and performance for the respective sales territories ~ and calculates the com· 
missions and bonuses to be paid from these data items. The commission and bonus earned by each salesman is then 
placed in a new QTR·COMMISSION·RECORD record, and the data base is accordingly modified. When all the 
salesmen have been processed, the program is finished. 

The program assumes that a function exists called CONVRT that converts a numeric SIXBIT item to a real number 
and a subprogram exists called NUMER6 that converts a real number to a numeric SIXBIT item. 

C CALCULATES SALES FIELD PERFORMANCE ~ASED O~ SALES TO 
C CnSTOMEP IN THE MOST RECENT QUARTER AND sn MO~JF'IES 
C DATA BASE. ALSO CALCULAT~S COMMISSION A~O &O~US (IF 
C ANY) TO RE PAID TO TH[ '~DIVIDUAL SALESME~ ACCn~DING 
C TnT H E IRS ALE S P~: R' 0 ~ MAN CEO URI N G T H F I) tJ ART E P • 

• D~MS _(1) 
INVOKE SUS-SHCEMA-t OF SCHEMA BARHEX _(2) 
PRIVACY KFY CO~PILF. SALFX. 

• DI'MS 
OPEN ALL USAGE-MODE IS PROTECTED UPDATE. _Cl) 
IF (ERSTAT ,GT. 0) GO TO 88 _(4) 
CALL NUMER6(PERFO~, 0,) 

• DI'MS 
"ND LAST 5ALE8FI~~D-RECORO RECORD OF MARKETING-AREA APEA, 
IF (E~STAT ,GT t· 0) GO TO 12 

• DI'MS I' r1.ND LAST PERFORMANCE-RECORD RECORD OF PERrORMA~CE-S~T SET. 
I' (ERSTA! ,GT. 0) GO TO 88 

• Df'MI MnDJry PERFORMANCE-RECORD, PERFOR. _(5) 
• DAMS 

,7ND PRIOR SALESFIELO-RECORD RECORD OF MARKETING-AREA A~£A. 
IF (ER8TAT .EQ, 0) GO TO 11 .(6) .(7) 

S-8 



Uling the DML In FORTRAN PrognJ"" 

• D~MS 
12 r:r Nt) FIRST CUSTOMER-RECORD RECORD OF MARKETING-AREA AREA, 
• Df\MS 
121 .. :rNO LAST QTR-SALES-RECORD RECORD or SALES.-SET SET 

SUPPRESS AREA CUP~ENCY UPDATES. _(8) 

• Df'MS 
GF.T. _(9) 

• D~~S 
F:ft.!"O OWNER CUSTOMER-SET, _( 10) 

SUPPRESS AREA CU~RENC, UPDATES. 
• DAMS 

F,ND L~ST PFRfOPMANCE-PECOPD ~€CORD or PERFOPMANCE-S~T SET. 
5UPPPE5S AREA CURRENCTY UPDATES. 

IF (ERSTAT ,GT. 0) 'GO TO 88 
CALL NUME~~ (PERFOR, CONVRT (PERYOR) + CONVPT (SALES» 

• DRMS 
~nOIFY. 
IF (E~STAt .GT. 0) GO TO 88 _(11) 

• ORJ'vIS 
F~NO OwNE~ Of SALrS-S~T SET. 

• C'~;'t1S 
r'ND NEXT CU~TOMER-R~CORD PECORD OF MA~~ETING-APEA APEA, 
IF (EPstAT .EQ. 0) GO TO 121 

* Of'MS 
FTNO FIPST SALESMAN.RECO~D ~FCOPO OF PEPSONNEL-A~EA AREA, 
IF l~~STAT .GT. 0) GO TO 88 _(12) 
CALL SURP~ _(13) 

88 TVPE 101 E~STAT 
101 rnRHAT ("?E~ROR·STATUSz',14) 

• O~MS 
("lOSE ALL, _(14) 

• DP.:~S 
ENO EXAMPL, 

SUBROUTINE SUBPR 
C S "B P PO G ~ A ~ TOP E P t- U R ~f T H ~ CALC U L A T ION S f' (l R THE 
C cnMM1SSIO~S FOP THE SALESMEN, 

R~AL T5ALYS, TCOMM, TBONUS 
• O~~AS 

ArCESS SUb-SCHEMA-, OF SCH€MA BARHEX _(1S) 
P~tVACY KEY COMPILE SAL£X. 

• OI\~15 
"NO NEXT RECQRO or FIELO-SET SET, _(16) 

• o~~s 
F~ND LAST "PERfORMANCE-RECQRD RECORD or PERFORMANCE-SET SET. 
IF (ERSTAI ,GT, 0) GO TO 88 

• Of\PlS 
Gr.!, 
T~ALES • CONVRT (PIRFOR) 
Tr.OMM • TSALES • 0.12 
'''ONUS • 0 
TF.MP • CONVRT (PREOIC) • CONVRT (PERrOR) 
IF(TEMP ,GT. 0) GO TO 131 
T~ONU8 • TEMP • • 05 

5-9 



Uling the DML In FORTRAN hogrtIIfII 

III CALL NUMER6 (COMMIS, TCOMM) 
CALL NU~ER6 (BONUS, TBONUS) 

• Df'MS 
FJND LAST QT~.COMMISSION RECORD RECOR~ or CO~MIS510N·SET SET 

SUPPRESS AREA CU~RENCY UPDATES, .(17) 
IF (ERSTAT ,GT.O) GO TO 88 

• Df'MS 
MnDIYY. 

* o",.,s 
f7~D OWNE~ COMMISSION-SET SET, 

• DR~S 
FJNO NEXT SALESMAN-RECORD RECOPD OF PERSONNEL-AREA AREA, 
IF (ERSTAT .EQ. 0) GO TO 13 .(7) 

88 TVPE lot, ERSTAT 
101 C#?ERROR-STATUS,',!4) 

RF.TURN 
• O~MS 

END SU8PR. 

(tl A line containing * O~MS mUlt precede .acn D~L statement 1n tnt 
I"'roqram. 

(2) The I~VO~E state~ent must precede tne first executacle stetement 
'n the (,)roqram. 

(3) PROTECTED UPDATE permits other run-units to concurrently open 
the two areal to retrieve data, but not to update, unt11 tne 
rLOS€ statement 11 e~eeuted In th1. proqr4m. 

(4) ,t the execution of tne O~EN statement fails, continuation Of 
~he run Is not desired, 

(5) The object of MODIFY 1s tne current record of the run-unit. A 
~ET statement 1s unneceS$ary nere because tne MODIFY exp11c1ty 
names the ~nly field 1t affectl, Note that tn11 il probably 
~ore car~ than neeesaarY because the "oredictlon pro9ra~" Ihould 
have set all ne~ PERrOR' to 0. 

(6) Vou Can alwaYI learcn tor the fir.t 
record. type 1n an area, and then 
forward (reverse) direction (e,g., 
~rea-n.me AREA) FINO PRIoR snOUld 
~'.rcn for record. 1n .et. unl'" the 
to P~IOR. 

(laltl occurrence of • 
cont1nue the search In the 

rIND PRIO~ RECORD OF 
not be used, nowever, to 

number record. are linked 

(7) ~lnce ERSTAT l' let to zero upon a luccelsful FIND, thl. 
~rovld" the te.t for continuation of loopln; u.ln; fINDS, The 
*lrlt nonZlro E~STlT will occur whtn no record I. found. A mort 
~tflnltlv. Check would !nelUde ttltin; for an ERSTlT valu. Of 
nJ01. 

5·10 



(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(IS) 

(16) 

UIIIw 1M DML III FORTRAN Prognmu 

Ar •• curr'ncy updatino 1 •• uppr •••• d .0 th.t the cacs will not 
~o.e itl ~pl.ce on .Ub •• ~u.nt NEXT 0' A~EA learche. tor 
rUSTOMER·REOC~D. 

?he object of GET 1. the current record of the run-unit. The 
~ET m~~el the data-item fl.1ds within tht current record into 
t.he appropriate ~WA locations', 

~lLESfIELD.~ECORD reenrd II tne owner. 

,f the FIND falls, execution shnuld be t.r~lnated. 

,f no salelman can be found, ~xecutlon should be terminated. 

A call Is made to a Subproqram to compute tne commissions. The 
rall need not paSSarquments ~eeaule the data from tne data bale 
~nd SYSCOM are 1n COMMON, 

r 1 0 ,e a l.t 0 p en are a I 'b e for e t e r min at 1 n q t he pro Q ram. f' a 11 u r e. to 
~slue a CLOSE statement might cause· lome update activity for 
tnts program not to D@ reflected In th@ data base. 

An ACCESS Itatem@nt 15 included In the subprogram so that the 
~ubproqram can reference data in the sub-scnema 1nvo~ed In tne 
"'a1n program. 

NEXT RECO~O OF fIELO-Sg'r- SET qive. the sales territory b.l0nOlnQ 
to tnt current sal.l~an. 

(17) ~TR-COMMISSIOh·RECO~D must De made the current of run-unit In 
nrder to MODIFY it, 





APPENDIX A 

RESERVED WORDS AND 
USER.REFERENCABLE DBCS NAMES 

This appendix lists DBMS reserved words and routine names. You cannot use these terms to name your own rou
tines or other items in your programs. 

A.I RESERVED WORDS 
The following words are reserved in DBMS, along with their abbreviations, which are enclosed in parentheses. 
You cannot use these words as user-created names in any DML statements. Refer to the DECsystem-lO COBOL Pro
grammer's Reference Manual for COBOL reserved words. Those words preceded with an asterisk refer to COBOL 
only; those preceded by two asterisks refer to FORTRAN only. 

-A-

ACCESS 
AFTER 
ALIAS 
ALL 
ALLOWED 
ALWAYS 
ARE 
AREA 
AREA-ID 

*AREA-NAME 
**ARNAM 

ASCENDING 
AUTOMATIC 

-B-

BACKUP 
BEFORE 
BIN ARY (BIN) 
BIT 
BY 

-C-

CALC 
CALL 
CHAIN 
CLOSE 
COMPILE 
COMPLEX 
CURRENT 

-D-

DATABASE·KEY (DBKEY) 
DECIMAL (DEC) 
DELETE (' 
DESCENplNG (DESC) 
DIRECT;' 
DISPLAY 
DUPLICATE 
DUPLICATES 
DYNAMIC 

-E· 

ELSE 
EMPTY 
ENCODING 

**END 
**ERAREA 
**ERCNT 
**ERREC 

*ERROR-AREA 
*ERROR-COUNT 
*ERROR·RECORD 
*ERROR-SET 
*ERROR-STA TUS 

**ERSER 
**ERSTAT 

EXCLUSIVE 

-F. 

FIND 

A·I 

FIRST 
FIXED 
FLOAT 
FOR 
FROM 

-G-

GET 

-1-

IF 
IMAGES 
IN 
INDEX 
INDEXED 
INSERT 
INTO 
INVOKE 
IS 

-K-

KEY 

-L-

LAST 
LINKED 
LOCATION 
LOCK 



Reserved Wonis and User-Referencable DBCS Names 

·M· REAL USE 
--RECNNAM USING 

MANDATORY RECORD 
MANUAL -RECORD-NAME .V. 
MEMBER REMOVE 
MEMBERS RETRIEVAL VIA 
MODE RUN·UNIT 
MODIFY ·W· 
MOVE -8. 

WITHIN 
·N· SCHEMA 

SEARCH 
NEXT SELECTION 
NOT SELECTIVE 

·SENTENCE 
-0- SET 

SETS 
OCCURRENCE SORTED 
OCCURS STATUS 
OF STORE 
ON SUB-8CHEMA 
ONLY SUPPRESS 
OPEN 
OPTIONAL -T-
ORDER 
OWNER TEMPORARY 

THRU 
.p. TIMES 

TO 
PICTURE (PIC) 
PRIOR -U· 
PRIVACY 
PROTECTED ··UNDEF 

UPDATE 
·R· UPDATES 

USAGE 
RANGE USAGE·MODE 

A.2 USER·REFERENCABLE DBCS NAMES 
This section identifies the DBCS routine-names you can use in explicit calls and informs you which names you can
not use as names in your own programs. Table A·I lists the DBMS keywords and numerical values each has been as
signed. Use these values instead of the keywords themselves in your explicit calls to DBCS entry points. 

Table A·I DBMS Keywords and Assigned Values 

Keyword Value 

ONLY -10 
SELECTIVE -11 
FIRST -12 
LAST -13 
PRIOR -14 
NEXT -15 
DUPLICATES -16 
ALL -17 
AREA -18 
RECORD -19 
SET -20 

A·2 



Reserved Words and User-ReferenCllble DBCS Names 

Table A-I (Cont.) DBMS Keywords and Alliped Values 

Keyword Value 

UPDATE -21 
RETRIEVAL -22 
RUNUNIT -23 
PROTECTED -24 
EXCLUSIVE -25 
RESERVED -26 
RESERVED -27 
JOURNAL -28 

Table A-2 lists the DBCS entry points and shows the arguments you can use when accessing them. The asterisks iden
tify a synonym for the name immediately preceding. You can replace the keywords in the argument list with the nega
tive values shown in Table A-I. Using this facility allows you to replace DML statements that you would otherwise 
redundantly code throughout your program with a single generic call. You can then provide different values for the 
variable (in your argument list) at run-time (for example, using the ACCEPT/DISPLAY commands). 

You may, for example, want to find the next record of each of five sets. The generic call in FORTRAN would look this 
way: 

CALL FIND3 (-15, 0, CURSET, - 20) 

The generic call in COBOL would look this way: 

ENTER MACRO FIND3 USING -15,0, CURSET, -20. 

Table A-2 DDCS Entry Points and Arguments 

CLOSED 
CLOSED 
DELETR 
FIND! 
FIND2 
FIND3 

FINDO 
FIND4 
FINDS 
GETS 
*GET 
INSERT 
*INSRT 
MODIF 
*MODIFY 
MOVEC 
OPEND 

REMOVE 
*REMOV 

(ALL) 
(AREA, area-list) 
(0 or SELECT or ALL or ONLY) 
(record or 0, USING-value) 
(set or 0, currency, currency-keyword) 
(relative, record or 0, area or set, AREA or SET) 

(integer, record or 0, area or set, AREA or SET) 
(set) 
(DUPLICATES or 0, record) 
(record [,data-list]) or (0) 

(record or 0, set-list) 

(same-as-G ET) 

(currency, currency-keyword, result) 
(RETR or UPDATE, ° or PROT or EXCL, privacy
key, ALL or area-list) 
(same-as-INSERT) 

A-3 



Reserved Words and User-ReferenCtlble DBCS Names 

Table A-l (Cont.) DBCS Entry Points and Arguments 

STORE 
·STORED 
SBIND 
BIND 
EBIND 

(record) 

(schema, edit. subschema, ss-mask, SYSCOM-address) 
(record ,data-address-list) 
(O,DBMS-NULL) 

In addition, the FINDs and STOREs can have appended a SUPPRESS list as follows: 

[SUPPRESS 

ALL 
AREA 

RECORP 

{
SET } 
set-name-I ... 

CURRENCY UPDATES] 

The remaining DBCS user-referencable routines are listed below. 

SETDB UNSET SAVESS 
JMAFT JMBEF JMBOTH 
JBTRAN JSTRAN JETRAN 
EMPTY ·SETCON MEMBER 
OWNER ·RECOWN TENANT 
STATS 

A-4 

.:. 

JMNAME 
JMNONE 
JRSYNC 
·RECMEM 
·RECMO 



APPENDIX B 

EXCEPTION CONDITION CODES AND ERROR MESSAGES 

This appendix lists and discusses DBMS exception condition codes. It also lists (1) the DBCS run-time messages (2) 
the COBOL compiler error messages that can occur during compilation of your COBOL-DML program, and (3) the 
FORDML preprocessor error messages that can occur during preprocessing of your FORTRAN-DML program. 

B.l EXCEPTION CONDITION CODES 
Exception handling in DBMS has been discussed in Section 3.2. Table B·I, which is a duplicate of Table 3-1, is re
peated here so that you can easily associate the statement-function codes with the ex.ception condition codes 
listed and described in Table B·2. 

Code 

00 

01 

02 

03 

04 

05 

Table 8-1 
DML-Statement·Associated Functions and Codes 

Code Statement 

00 HOST 
01 CLOSE 
02 DELETE 
03 FIND 
05 GET 
07 INSERT 
08 MODIFY 
09 OPEN 
II REMOVE 
12 STORE 
15 BIND 
16 CALL 

Table 8·2 
Exception Condition Codes 

Condition 

A warning. Compile·time and run·time versions of schema file differ. If a "real" exception occurs during 
binding, however, DBCS always returns the code of that exception. To indicate that exception 00 has 
occurred as well, DBCS types the %DBSCED message. Generally, the "real" exception does not persist 
after the program-unit is recompiled with the up-to-date schema file. 

Area not open. 

Data base key inconsistent with area·name. Can also indicate that a referenced page number is in an area 
that is not in the sub-schema invoked. 

Record affected (deleted or removed) by concurrent application. 

Data·name invalid or inconsistent. This can occur during GET or MODIFY with a data-name list. 

Violation of DUPLICATES NOT ALLOWED clause. 

B·1 



Code 

06 

07 

08 

/ 

09 

10 

11 

13 

14 

15 

16 

17 

20 

22 

23 

24 

25 

Exception Condition Codes and Error Messages 

Table B-2 (Cont.) 
Exception Condition Codes 

Condition 

Current of set, area, or record-name not known. 

End of set, area, or record. 

Referenced area, record, or set-name not in sub-schema. This may occur for a number of reasons: 

1. DOCS encounters a record type not in the sub-schema when traversing a set. 

2. Set type owned by the object record type is not in the sub-schema. This is during a STORE or DELETE. 

3. The VIA set is not in sub-schema - during set selection occurrence. 

4. All subkeys are not in the sub-schema - during CALC processing or searching a sorted set. 

5. The sort key of a set not in the sub-schema is modified - during a MODIFY. 

The solution to this is to place the required name in the sub-schema. 

Update usage mode required. This is an attempt to use an updating verb when the specified area is open 
for RETRIEVAL. 

Privacy breach attempted. 

Physical space not available. No room remains for storing records. This can also occur while DOCS is try-
ing to store an internal record type - namely the index blocks in a sorted set. 

No current record of run-unit. 

Object record is MANDATORY AUTOMATIC member in named set. 

Object record is MANDATORY type or not member type at all in named set. This is an attempt to 
REMOVE a record which is either a MANDATORY member or not a member type of named set. 

Record is already a member of named set. 

Record has been deleted. This can occur during a FIND CURRENT of RECORD, SET, AREA, or RUN-
UNIT, or during a FIND NEXT of SET or AREA. 

Current record of run-unit not of correct record type. 

Record not currently member of named or implied set. 

Illegal area-name passed in area identification. 

Temporary and permanent areas referenced in same DML verb. 

No set occurrence satisfies argument values. This can mean, for example, that CALC value in the UWA 
matched no owner record. 

B-2 



Code 

26 

28 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

Exception Condition Code, and Error Meuagel 

Table B-2 (Cont.) 
Exception Condition Codes 

Condition 

No record satisfies rse specified. This is a catch-all exception for the FIND statement. 

Area already open. 

Unqualified DELETE attempted on non-empty set. 

Non-CODASYL Exception Codes 

Unable to open the schema file. 

Insufficient space allocated for the data-name. The SIZE clause in the data-name entry specifies less space 
than the compiler needs. 

None of the areas a record type can be within are in the sub-schema. 

A set is in the sub-schema, but its owner record type is not. 

Dynamic use-vector is full (FORTRAN only). 

Attempt to invoke too many sub-schemas (currently more than 8)~ or an attempt to use UNSET 
with an empty sub-schema stack or SETDB with a full sub-schema stack. 

Sub-schema passed to SETDB is not already invoked. 

Duplicate operation attempted on a resource. This can occur because (I) you attempt to open 
the journal file twice (you have opened it in EXCLUSIVE UPDATE usage-mode and are now 
opening a data area in UPDATE usage.mode) or (2) you can JSTRAN while a transaction is al-
ready active, or (3) you have multiple INVOKE statements and attempt to open the same area 
twice. 

Data base file not found. 

Requested access conflicts with existing access; that is, resource is not available. This can result 
from an attempt to 

1. open an area in a USAGE·MODE incompatible with that of another run-unit using the 
same area (for example, trying to open an area for EXCLUSIVE RETRIEVAL while it 
is already open for PROTECTED UPDATE). 

2. open the journal in a way that results in a USAGE-MODE conflict. 
3. DELETE a record retained by another run· unit. 
4. attempt to open an area or the journal and the file system signals a file-protection error. 

No JFNs available. An attempt to open too many areas. 

Area in undefmed state (for example, after crash). DBMEND should be used to force open the area and 
return it to a valid state. 

Area in creation state. This can happen to the system area only. This will occur if run-unit execution 
aborts at just the right time during the first OPEN of the system area. Should this occur, either rerun 
SCHEMA or create a O-Iength file with one of the text editors. 

8-3 



Exception Condition Codes and E"or Messages 

Table B-2 (Cont.) 
Exception Condition Codes 

Code Condition 

44 Attempt to call a journal-processing entry point before the journaling system has been initialized 
(by the first OPEN that requires journaling). 

45 Attempt to backup the data base with JBTRAN (l) while DBCS's Cannot-Back up-Updates (CBUU) 
bit is set, or (2) when the journal is shared and commands are the interleaving unit, or (3) when the 
journal is shared, transactions are the interleaving unit, and the argument given to JBTRAN is 
greater than O. 

46 Magnetic tape service is not available. DAEMDB has returned a failure code. 

System Exception Codes 

55 Pseudo·exception. DBCS types message that no sub-schema yet initialized. 

56 Inconsistent data in the database file. DBMEND should be used to restore the data base to a valid 
state. If the problem can be reproduced, it probably indicates the presence of a DBCS software 
error. 

57 Probably a DBCS software error. If this recurs, report it. 

58 Illegal argument passed by programmer or setup by host interface; for example passing a set-name 
with the STORE command. 

59 No more memory available. 

60 Unable to access a database file. The operating system reported an I/O error, either in normal opera
tion or in trying to open a journal for appending. 

61 Unable to append to journal (that is, the journal is in an aborted state but has not been designated 
as being done-with). 

62 Attempt to enter DBCS at other than JBTRAN, SBIND, SETDB, or UNSET while the system-in
undefined-state (SUS) bit is on. 

63 Unable to complete restoration of the proper data base state. This occurs either during JBTRAN or 
during initialization of a run-unit at the start of a command or a transaction. 

64 Internal use only. 

65 Monitor space for ENQUEUE entries exhausted, or ENQUEUE quota exceeded. 

66 ENQUEUE/DEQUEUE failure (for example, you do not have ENQUEUE capabilities, or an unacceptable 
argument block has been created by DBCS). 

67 Unable to initialize magnetic tape service because, for example, the IPCF block is bad; the IPCF 
message is too long; or DAEMDB is not running. 



Exception Condition Codes and Error Messages 

B.l DBCS RUN·TlME MESSAGES 
The following is a list of DBCS run-time messages. Those beginning with a left bracket ([) are for your information. 
If a response is required, it will be apparent to you. Those beginning with a percent sign (%) are warnings. Those be
ginning with a question mark (1) signal DBCS is entering an undefined state. You must then report the condition and 
follow procedures instituted at your facility for such occasions. 

TYPE CONTINUE TO RESUME 

JOURNAL CHARACTERISTICS ARE: 

This is followed by a listing of the journal characteristics. Refer also to Section 2.3 for a more 
detailed example of this message. 

%DBSCED COMPILED/EXECUTED VERSIONS OF SCHEMA DIFFER 

%DBSJDM JOURNAL DEVICE MUST BE DISK OR MTA - TRY AGAIN 

%DBSROA "1M" CALL REFERENCES OPEN AREA 

1DBSSNI SUB-SCHEMA NOT INITIALIZED YET 

1DBSUCR UNABLE TO COMPLETE RESTORATION TO PROPER DATABASE STATE 

1DBSXWX EXCEPTION WHILE PROCESSING AN EXCEPTION 

D.3 COBOL COMPILER ERROR MESSAGES 
The following list contains error messages from the COBOL compiler regarding DBMS syntax errors in your program. 
These messages can occur during compilation. Should any occur, compilation will stop. 

'ALL' OR SET-NAME EXPECTED 

'ALL', 'RECORD', 'AREA', 'SET', OR SET·NAME EXPECTED 

AMBIGUOUS OR INCORRECT RSE SPECIFICATION 

'AREA'OR'SET'EXPECTED 

AREA·NAME EXPECTED 

'COMPILE' EXPECTED 

'CURRENT' EXPECTED 

DEC LARA TIVES MUST IMMEDIATELY FOLLOW PROCEDURE DIVIS) ON 

DUPLICATE SCHEMA SECTION 

'ERROR·STA TUS' EXPECTED 

'EXCLUSIVE', 'PROTECTED', OR 'RETRIEVAL' EXPECTED 

'FOR' EXPECTED 

ILLEGAL COMBINATION OF ERROR-ST AT US USE PROCEDURE 

B·5 



Exception Condition Codes and E"or MesSIlges 

INCORRECT PRIVACY KEY 

'INTO' EXPECTED 

'INVALID' , 'ONLY', 'SELECTIVE', OR 'ALL' EXPECTED 

INVOKE STATEMENT MUST FOLLOW SCHEMA SECTION 

NO MORE THAN 10 AREA·NAMES ALLOWED PER OPEN STATEMENT 

'OF' SCHEMA OR SCHEMA NAME EXPECTED 

'OR' OR 'INTO' EXPECTED 

'RECORD'EXPECTED 

'RECORD' OR RECORD·NAME EXPECTED 

RECORD·NAME, SET·NAME, AREA·NAME, OR 'RUN·UNIT' EXPECTED 

'SELECTIVE' • 'ONLY', 'ALL', OR RECORD·NAME EXPECTED 

'SET' EXPECTED 

SET·NAME EXPECTED 

SET·NAME OR 'ANY' EXPECTED 

SET·NAME OR AREA·NAME EXPECTED 

'STATUS' EXPECTED 

'SUB-SCHEMA' OR SUB·SCHEMA NAME EXPECTED 

THIS SECTION IS OUT OF ORDER 

'UPDA TE' EXPECTED 

VARIABLE IN THIS CONTEXT MUST BE DEFINED IN SUB·SCHEMA 

8.4 FORDML PREPROCESSOR ERROR MESSAGES 
The following is a list of FORDML preprocessor error messages. Those beginning with a percent sign (%) are warnings. 
Those beginning with a question mark are fatal errors; and those beginning with a left bracket are for your information. 
Where appropriate, FORDML will type the line number and the line in error. 

%DMLXIS. EXTRA INPUT SPECS ARE IGNORED. 

%DMLXOS. EXTRA OUTPUT SPECS ARE IGNORED. 

?DMLFSU. SYMBOL AFTER "FIND" IS UNRECOGNIZABLE. 

?DMLELW. ENCOUNTERED ... WHILE ... 

%DMLASI. ALL MEANINGLESS SWITCHES ARE IGNORED. 

8·6 



?DMLWCD. 

?DMLPAU. 

[DMLSUM. 

%DMLNIS. 

?DMLOIA. 

?DMLSTL. 

%DMLLSN. 

%DMLLTL. 

%DMLLSE. 

?DMLOPF. 

?DMLWNI. 

%DMLCFE. 

%DMLESP. 

%DMLICI. 

?DMLSIE. 

?DMLCOS. 

?DMLNSB. 

?DMLBSF. 

?DMLSSI. 

?DMLBDK. 

%DMLINP. 

?DMLDUP. 

Exception Condition Codes and Error MeWlges 

WILD CARDING IN OUTPUT DIRECTORY. 

PHRASE AFTER "FIND IDENTIFIER" UNRECOGNIZABLE. 

string, n, ERRORS AND, n, WARNINGS] . 

NO INVOKE SEEN BEFORE FIRST DML STATEMENT. 

ONLY ONE INVOKE ALLOWED PER PROGRAM-UNIT. 

STATEMENT TOO LONG OR ".n MISSING. 

STATEMENT NUMBER GREATER THAN 99999 - TRUNCATED. 

LINE, n, TOO LONG. 

LINE SEQUENCE NUMBER, n, NOT FOLLOWED BY "TAB". 

OPEN f.AILURE FOR ",file,". 

WILD-SPEC=NON·WILD SPEC IS UNDEFINED. 

DBMS COMMENT FOLLOWED BY IMMEDIATE EOF. 

EXTRA SYMBOLS AFTER "·DBMS". 

ILLEGAL CHARACTER IN INPUT ON LINE, n. 

SOURCE FILE INPUT ERROR - TRY AGAIN. 

CANNOT OPEN/LOOKUP SCHEMA FILE, name~. 

NO SCHEMA BLOCK IN .SCH FILE - REBUILD IT. 

BAD SCHEMA FILE - REFERENCE IS, name, . 

SUB·SCHEMA SPECIFIED NOT IN SCHEMA. 

BAD PRIVACY KEY GIVEN. 

REFERENCED NON·DATA·BASE ITEM, name, HAS NO PSEUDONYM. 

DATA BASE NAME, name, MULTIPLY DEFINED. 

B·7 





APPENDIX C 

SCHEMA DATA DECLARATIONS: 
FORTRAN AND COBOL CONVERSIONS 

The DBA uses the DATA ENTRY within the Schema DDL to name a data-item or data-aggregate. A date entry names 
and describes an alphanumeric or numeric data item, or allocates space for a data aggregate. 

This appendix presents the possible Schema declarations the DBA can use and shows the FORTRAN and COBOL 
mappings (that is, conversions) for each. For further information, refer to Chapter 4 of the Data Base Administrator's 
Procedures ManUllI. 

C.1 ALPHANUMERIC DATA 
The USAGE phrase can be used to describe the usage mode of alphanumeric data (either data-items or data aggre
gates). The modes are: SIXBIT, ASCII, and EBCDIC. The corresponding schema declaration for each is: DISPLAY 
or DISPLAY-6; DISPLAY-7;and DISPLAY-9. Table C-l shows the possible keyword declarations the DBA can use 
and the FORTRAN and COBOL conversions for each usage mode. When, for example, the schema USAGE declara
tion is DISPLAY-6 (pIC X(N), the FORTRAN preprocessor converts to INTEGER (N/S) for FORTRAN use. COBOL 
converts to DISPLAY-6 PIC X(N). 

Table C-I 
Alphanumeric Data: Schema Declarations; 

FORTRAN and COBOL Usage-Mode Conversions 

FORTRAN COBOL 
Schema Declaration Usage-Mode Usage-Mode 

DISPLAY PIC X(N) INTEGER(N/S) DISPLAY PIC 

DISPLAY-6 PIC X(N) INTEGER(N/S) DISPLAY-6 PIC 

DISPLAY-7 PIC X(N) INTEGER(N/S) DISPLAY-7 PIC 

DISPLAY-9 PIC X(N) INTEGER(N/4) DISPLAY-9 PIC 

X(N) 

X(N) 

X(N) 

X(N) 

NOTE: FORTRAN rounds off to the next higher whole number if the result is not a whole number. 

C.2 NUMERIC DATA 
The TYPE clause can be used to describe numeric data and database keys. The types of numeric data allowed are 
shown in Table C-2. Table C-2 also shows the way in which each schema type declaration is treated by the host 
languages, FORTRAN and COBOL. If the DBA has not specified one of the numeric keywords shown in the left
hand column of Table C-2, the default is AXED, BINARY, and REAL. The DBA can also specify the precision of 
each data-item. The precision is then treated as binary or decimal depending on the keyword the DBA specifies. 

C-l 



Schemtl Data Declarations: FORTRAN and COBOL Conversions 

Schema Keyworda 

FIXED BIN REAL 

FIXED BIN REAL 

FLOAT BIN REAL 

FLOAT BIN REAL 

FLOAT BIN COMPLEX 

FIXED DEC REAL 

Table C-l 
Numeric Data: Schema Declarations; 

FORTRAN and COBOL Data-Type Conveniolll 

PreciIion Default FORTRAN 

Ranae Precision Data Type 

<36 35 INTEGER 

36-70 - INTEGER(2) 

<28 27 REAL 

28-62 -- REAL*8 

<28 27 COMPLEX 

<19 10 INTEGER (prec/4) 

C.l.1 Schema Precision Dedantion and COBOL Convenion 

COBOL 
Data Type 

COMP PIC 89 (1-10) 

COMPPIC 89 (11-18) 

COMP-l 

COMP PIC S9 (18) 

COMP PIC 89 (18) 

COMP-3 PIC S9 (prec) 

If you use DBMS with COBOL, you should be aware of the rules applying to legal moves and to precision when 
transferring numeric data within the data base. Refer to the MOVE statement specifications in the COBOL Pro
grammer~ Reference Manual. 

The DBA can use integer-3 of the DATA ENTRY to specify precision for each numeric data·item. (Refer also to 
Table C-2.) Table C-3 shows decimal precision implied by each possible Schema DOL binary precision declaration. 
If full·word precision has not been consistently specified, left·most truncation may occur if the data·item is moved 
or used in computations. 

Refer to Table C-3, therefore, to understand the relation between the binary precision declared in the schema and 
the decimal precision that results in COBOL. 

Schema 

Table C-3 
Schema Binary Precision; 

Correspondinl COBOL Decimal Precision 

COBOL 
Precllion Declaration Precision Conversion 

(Binary) (Decimal) 

1-4 PIC S9 (1) 
5-7 PIC S9 (2) 
8-10 PIC 89 (3) 

11-14 PIC S9 (4) 
15·17 PIC 89 (5) 
18-20 PIC 89 (6) 
21·24 PIC S9 (7) 
25-27 PIC S9 (8) 
28·30 PIC 89 (9) 

C·2 



Schema Data Declllration,: FORTRAN and COBOL Conversions 

Table C-3 (Cont.) 
Schema Binary Precision; 

Corresponding COBOL Decima1 Precision 

Schema COBOL 
Precision Declaration Precision Conversion 

(Binary) (Decimal) 

31·35 Default PIC S9 (10) 
36·38 PIC S9 (11) 
39-41 PIC S9 (12) 
42-44 PIC S9 (13) 
45-48 PIC S9 (14) 
49·51 PIC S9 (15) 
52·54 PIC S9 (16) 
55·58 PIC S9 (17) 
59·70 PIC S9 (18) 

C·3 





" 

APPENDIX D 

PASSING STRING ARGUMENTS TO DOCS 

This appendix is intended mainly for the FORTRAN programmer who wants to pass variable-length string arguments 
to the DOCS subprograms discussed in Section 2.3. Because FORTRAN does not have the facility to handle string data 
that COBOL has, the arguments to these DOCS subprograms are generally treated as literals (constants). To use vari
ables, it is important to understand the relation between standard FORTRAN data types and their treatment by 
DOCS. Table D-l shows this relation. 

Table D-l 
FORTRAN Data Types; DOCS Interpretations 

FORTRAN ORCS 
Data Type Interpretation 

LOGICAL data-varying 

INTEGER 5 cha racte rs 

REAL 5 characters 

REAL*8 10 characters 

COMPLEX string pointer 

The string arguments you use will be treated as data-varying strings, string pointers, or groups of characters - depend
ing on the FORTRAN data type you specify. (Refer also to the STRLIB documentation, which discusses FORTRAN
oriented string manipulation.) 

The following conventions apply for data-typing variable-length string arguments: 

1. A string argument typed LOGICAL is treated as a data-varying string whose length is stored in the 
word preceding the string. You must provide a dimensioning statement and allocate room for the 
character count. 

2. A string argument typed INTEGER or REAL is treated as a 5-character length string - regardless 
of dimensiOning. 

3. A string argument typed REAL·8 is treated as a 10~character length string - regardless of dimen
sioning. 

4. A string argument typed COMPLEX is treated as a string pointer. A string pointer contains two 
elements: a byte pointer as its first word and the number of characters in the string as its second word. 
Derme the byte pointer such that it points to the address of the first character of the actual string. 

0-1 





Area 
A named subdivision of the addressable storage space in the data base. 

/ 

APPENDIX E 

GLOSSARY 

AUTOMATIC set membership 

Chain 

A form of set membership (declared by the DBA using the Schema DDL) in which membership is established 
by DBMS when the record occurrence is stored. 

A method of linking records within sets. It comprises using embedded pointers within the owner and member 
records that make up a set occurrence. 

Currency status indicators 
Single-word registers that record the data-base key of the record that is current-of-run-unit, current-of-record, 
current-of-set, and current of area. 

Data base 
A collection of interrelated records processable by one or more applications without regard to physical stor
age, and defined by one schema. 

Data Base Administrator 
The person or group that organizes, defines, and monitors the data base. 

Data Base Control System (DBCS) 
The run~time system that acts as the interface between the run-unit and the data base. 

Data-base key 
A unique identifier assigned by DBMS to each record occurrence in the data base. It remains the permanent 
identifier of a record occurrence until the record occurrence is deleted. 

Data-item 
The smallest unit of named data in the data base. 

Data Manipulation Language (DML) 
The language used by the programmer to cause data to be transferred between his program and the data base. 
This is not a complete language by itself; it requires a host language. 

Host language 
A language into which the Data Manipulation Language has been integrated to perform actions on the data 
base. 

Integrity of data 
The safeguarding of data from any untoward interaction of programs. 

Interleaving unit 
The duration for which a run-unit retains the data base exclusively. 

E-l 



Glos!lU)' 

Location modo 
The method used for detennining record storage. The location mode can be DIRECT using the unique iden
tifier assigned by DBMS, CALC based on the CALC keys in each record, or VIA SET; i.e., according to the 
relationships established for the records in the set declaration. 

MANDATORY set membership 
The specification of set membership (in the schema) such that once the membership of a record occurrence 
in a set is established, the membership is permanent. It cannot be removed from the set unless it is deleted 
from the data base. 

MANUAL set membership 
A form of set membership in which membership is established by a run-unit by means of the INSERT com
mand. MANUAL membership of the record occurrence in a set is declared by the Data Base Administrator 
when the schema is set up. 

Member record 
A record, other than the owner record, that. is included in a set. There may be zero or more member record 
occurrences in a set. 

Network structure 
A general form of data structure in which any given element may be related to any other element in the 
structure. Networks are used to show interset relationships. 

OPTIONAL set membership 
The specification of set membership such that the membership of a record occurrence in a set is not neces
sarily permanent. 

Owner record 
The head of a group of records that make up a set. There must be one and only one record type as the owner 
for each set. 

Privacy key 
A value that must be provided by a run-unit seeking to access or alter data protected by a privacy lock. The 
key must match the lock. 

Privacy lock 
A value that is specified in the schema to ensure protection of the data. 

Privacy of data 
The protection of data from unauthorized access. 

Protected update 

Record 

A specified usage mode. It gives a run-unit the capability to make changes to an area of the data base while 
other run-units concurrently retrieve data. 

A named collection of zero, one, or more data-items. 

Record occurrence 
The actual representation of a single record. It is not the definition of a record, which is the record type. 

Record-selection~xpression 

The search arguments used for selecting a record from a data base. 

Record type 
A specific named record defined in the DDL. It is the definition of a collection of records that have identical 
characteristics. 

E-2 



GlosllllY 

Resource 
A named entity that processes can use either shared or exclusive. A resource can be the data base, a record, 
a device, or a function. 

Run-unit 
An executable program. A program consists of one or more program-units. 

Schema 
A complete description of a data base. 

Schema Data Description Language (DOL) 
The language used to describe a schema. 

Sequential structure 
A data structure in which each element in the structure is related to the element preceding it and to the ele
ment following it. A form of sequential structure is used to show intraset relationships in DBMS. 

Set mode 
Denotes the method of accessing the data in a set. DBMS supports CHAIN mode. 

Set occurrence 
A collection of one or more logically related record occurrences. This is the actual data in the set and not 
its definition, which is the set type. 

Set order 

Set type 

The declaration of the logical order of the member record occurrences to be maintained within each set 
occurrence . 

A named collection of record types having one owner record type and one or more member record types. 

Simultaneous-update 
The capability to update or retrieve data while another run-unit updates or retrieves data in the same 
area. 

Sub-schema 
A description of those parts of the schema known to one or more specific programs. 

Sub-schema Data Description Language (DOL) 
The language used to describe a sub-schema. 

System communication locations 
Locations in core provided by DBMS for run-unit/DBCS interaction. 

Temporary area 
An area not shared among concurrent run-units. A run-unit that references a temporary area is allocated a 
private, unique occurrence of that area. Any changes made to a temporary area are lost when the area is 
closed. 

Tree structure 
A hierarchical structure in which each element may be related to any number of elements at any level below 
it, but to only one element above it in the hierarchy. Tree structures are used to show interset relation
ships. 

E-3 



GlosSIlry 

User Working Alrea (UW A) 
An area of core where all data provided by the DBCS in response to a call for data is delivered and where aU 
data to be picked up by DBCS must be placed. 

E-4 



ACCESS statement, 2·7,3·5 
COBOL placement of, 4·2 
FORTRAN placement of, 5·4 

Accessing a sub·schema, 2·7,3·5 
AFTER images, 2·13 
Application, typical, 1·10 
Area, 1·2, E·I 

closing, 2-12 
current of, 2·12 
opening, 2-8 
temporary, 1-2, 2-8 

AREA-NAME, 2-11,4·1 
ARNAM, 2-11, 5-3 
AUTOMATIC set membership, 2·4,2·12, E-l 

BACKUP clause, 2-1,2-13 
Backup and recovery, 2-1,2-13,2-18 
BEFORE images, 2-13 
BIND statement, 2-7,3·3,3-31,3-32 
Binding, 1-1,2·7 

CALC location mode, 2-4,2-20 
CHAIN set mode, 1-6,2-4, E-I 
Checkpointing a journal me, 2·15,2-18 
Classes of statements/exceptions, 3-3 
CLOSE statement, 2-12, 3-6 
COBOL, 

calls to DBCS subprograms, 2-5 
compiler error messages, B-1 
examples, 4-3 
placing DML statements, 2-5,4-1 

ACCESS, 4-2 
INVOKE, 4-1 

precision, C-2 
RETAIN, 2-10 
Usage-modes, C-l 
USE statement, 3-1 

CODASYL, vii 
Codes, exception·condition, B-1 
Currency indicators, 2-11,2·12,3-25, E-I 
CURRENT OF AREA, 2-12 
CURRENT OF RECORD, 2-12 
CURRENT OF RUN-UNIT, 2·12 
CURRENT OF SET, 2·12 

OAEMOB utility, 2-16 
Data, 

conversions, C·l 
declarations, schema, C-l 

INDEX 

Data (Cont.), 
integration, I-I 
integrity of, 1-8 
privacy of, 1-8 
retrieving, 2-11, 3-7 
walking through structured, 2-10 

Data aggregate, 1-2 
Data areas, 

closing, 2-12, 3-6 
opening, 2-8, 3·26 

Data base, 1-1, E-I 
administra tor, 1-1 
control system, 1·1, 1-8 
elements, I-I 
protection, 1-8, 2·13 
recovery, 2-1 3 
using, 2-1 

Data Description Language, 1-1, 1-3 
Data Manipulation Language, 1-1, 1-3, 3-1 , E-I 

conventions, 3-1 
statements, 

ACCESS, 2-7, 3-5 
CLOSE, 2-12,3-6 
DELETE, 2-12,3-7 
END, 3-9 
FIND, 2-10, 3-10 
GET, 2-11, 3-17 
IF, 3-18 
INSERT, 2·12, 3-20 
INVOKE, 2-6,3-22 
MODIFY, 2-12,3-23 
MOVE STATUS, 2-12,3-25 
OPEN, 2-8,3-26 
REMOVE, 2-12,3-28 
STORE, 2-12, 3-29 
USE, 3-31, 3-32 

use in COBOL, 4-1 
use in FORTRAN, 4-1 
writing, 2-1 

Data structures, 1-7 
network, 1-7 
sequential, 1-7 
tree, 1·7;1-10 

Data types, FORTRAN, D·l 
Data-item, 1-2, E-l 
DBCS, 1-1,1-8 
DBMENO, 2-13,2-19 
DOLs, 1·1,1-3 
DELETE statement, 2-12,3-7 

Index-I 



INDEX (Cont.) 

Deleting record occurrences, 2·12, 3·7 
DIRECT Location Mode, 2·3, 2·5 
DML, 1·1, 1·3, 3·1 

Efficiency considerations, 2·13, 2·19 
Embedded pointers, 1·6, 24 
EMPTY function, 3·34 
Empty set, 

testing for, 3·18,3·34 
END statement, 3·9 
Error messages, B-1 
Error registers, 3·2 
Examples, 

COBOL, 4·3 
FORTRAN, 5·5 

Exceptions, 
classes of, 3·3 
codes, B·1 
handling, 3·1 

EXCLUSIVE RETRIEVAL usage mode, 1·9,2-8, 
3·26 

EXCLUSIVE UPDATE usage mode, 1·9,2.8,2·15,3-26 

FIND statement, 2·10,3·10 
rse 1, 2·10,3·11 
rse 2, 2·10,3·12 
rse 3, 2·10, 3·13 
rse 4, 2·10,3·15 
rse 5, 2·10,3-16 

FIRST set order, 24 
FORDML, 2·6, 5·4 

error messages, B·l 
FORTRAN, 

data types, 0-1 
example, 5·5 
functions, 3·33 

EMPTY, 3·34 
MEMBER, 3·35 
OWNER, 3·36 
TENANT, 3·37 

placement of statements, 
ACCESS, 5·4 
INVOKE, 5·3 

preprocessor, 2·6, 54 
programs, 

ending, 3·9 
using DML in, 5·1 

pseudonyms, 5·3 
string arguments, 0·1 
USE statement for, 3·32 

GET statement, 2·11,3·17 

Host language, 1·3, 3·1, E·l 

IF statement, 3·18 
Images, 

AFTER, 2·13 
BEFORE, 2·13 

IMAGES BY COMMAND, 2·10,2·13 
IMAGES clause, 2·9,2·13,2·15 
INSERT statement, 2·12,3·20 
Inserting record occurrences, 2·12 
Integrity of data, 1·8, E-l 
INTERCEPT clause, 3·1 
Interleaving unit, 2·9 
Interset relationships, 1·7 
Intraset relationships, 1·7 
INVOKE statement, 2·6,3·22 

COBOL placement, 4·1 
FORTRAN placement, 5·3 

Invoking a sub·schema, 2·6, 3·22 

JBTRAN subprogram, 2·10,2·13,2·20 
JETRAN subprogram, 2·10, 2·13 
JMAFT subprogram, 2·15 
JMBEF SUbprogram, 2·15 
JMBOTH subprogram, 2·15 
JMNAME subprogram, 2·16 
JMNONE subprogram, 2·15 
Journal file, 2·13 

adding checkpoints, 2·18 
adding comments, 2·17 
adding data, 2·17 
adding headers - trailers, 2·16 
assigning to devices, 2·16 
closing, 3·6 
contents, 2·13,2·16 
creating, 2·13 
overwriting, 2·14 

Journaling and simultaneous update, 2·9,2·14 
Journaling by command, 2·9,2·13 
Journaling by transaction, 2·9,2·13 
JRDATA subprogram, 2·17 
JRTEXTsub.program, 2·17 
JSTRAN subprogram, 2·16 

Language, 
Data Description, 1·3 
Data Manipulation, 1·3, 3·1 
host, 1·3 

Index·2 



INDEX (Cont.) 

LAST set order, 2-4 
UNKED TO OWNER clause, 1·6,1·8 
Location Mode, 2·2,2·3, B-2 

CALC, 2-4,2·5 
DIRECT, 2·4,2·5 
VIA, 24,2·5 

MANDATORY set membership" 2-5,2·12, E·2 / 
MANUAL set membership, 2-4,2·12, E·2 
MEMBER function, 3·35 
Member record, 1·2, 1-4, E·l 
Membership set, 

testing for, 3·18, 3-35 
MODIFY statement, 2·12, 3-23 
MOVE STATUS statement, 2·11,3·25 

Network structures, 1·7, E·2 
NEXT pointers, 1·6, 2-4 
NEXT set order, 2·4 
NOTE clause, 3·1 

Occurrences, 
deleting record, 2·12, 3·7 
finding record, 2·9,2·10, 3·10 
inserting record, 2·12, 3·20 
modifying record, 2·12, 3·23 
record, 1·2,1·5 
removing record, 2-12, 3·28 
set, 1·2, 1-5 ' 
storing record, 2·12, 3·29 

OPEN statement, 2·8, 3·26 
Opening data areas, 2·8, 3·26 
Operational environment, 1·8 
OPTIONAL set membership, 2·5, 2·12, E·2 
OWNER function, 3-36 
OWNER IS SYSTEM clause, 1·7,2-8 
OWNER pointers, 1·6,1·8,24 
Owner record, 1·2, 1·4, E·2 
Ownership, 

testing for, 3·18, 3·36 

Placing the ACCESS statement, 
COBOL, 4-2 
FORTRAN, 5·4 

Placing the INVOKE statement, 
COBOL, 4·1 
FORTRAN, 5·3 

Pointers, 1·6, 1-8 
NEXT, 1·6, 2-4 
OWNER, 1·6, 2-4 
PRIOR, 1·6, 2·4 

Preprocessor, FORTRAN, 2·6,5-4 
PRIOR pointers, 1·6, 1·8,2-4 
PRIOR set order, 24 
Privacy, 1·8 

key, 1-8, 2·6, 3·22, E·2 
lock, 1·8,2·6,3·22, E·2 

Program unit, 1·8, 2·6 
ending FORTRAN, 3-8 

PROTECTED RETRIEVAL usage mode, 1·9,2-8, 
3-26 

PROTECTED UPDATE usage mode, 1·9, 2·8, 
3-26, E-2 

Protection of data, 1·8, E-2 

Record, 1-2 
characteristics of, 1-7 
current of, 2-12 
member, 1-3 
owner, 1-3 

Record occurrence, 1-3,1-5, E-2 
deleting, 2-12, 3-7 
finding, 2-10,3-10 
inserting, 2-12, 3·20 
modifying, 2-12, 3·23 
removing, 2·12, 3-28 
storing, 2·12, 3·29 

Record type, 1-4, E·3 
Record selection expressions, 2-10,3-10, E-2 
Recovery of data bases, 2-13 
Relationships, 

interset, 1·7 
intraset, 1·7 

REMOVE statement, 2·12, 3-28 
Reserved words, A·l 
RETRIEVAL usage mode, 1-9,2·8,3-26 
Retrieving data, 2-11 
Rse, 2·10, 3·10 
Run·unit, 1·8, 2-5 

current of, 2·12 
RUN· UNIT ID, 2·14 

Schema, 1·3,2·1, E-3 
Schema DDL, 1-3, B-3 
SCHEMA SECTION, 4·1 
Schema temporary area, 2·8 
Sequential structures, 1· 7, E·3 
Set, 1·2 

Index·3 

characteristics, 1·7 
membership, 2·4 

AUTOMATIC, 2·5,2·12 
MANDATORY, 2·5,2·12 



Set (Cont.), 
membership (Cont.), 

MANUAL, 2·5,2·12 
OPTIONAL, 2·5,2·12 

mode, 2·4, E·3 
occurrence, 1·3, 1·5 
occurrence selection, 2·5, E·3 

CURRENT OF SET, 2·5 

INDEX (Cont.) 

Subprograms, DBCS (Cont.), 
JMNONE, 2·15 
JRDATA, 2·18 
JRTEXT, 2·18 
JSTRAN, 2-10,2·13 

SYSCOM, 5·3 
System communications area, 2·5 

LOCATION MODE OF OWNER, 2-4, 2·5 Temporary area, 1·2, 2-8, E·3 
schema, 2·8 order, E-3 

FIRST, 2·4 
LAST, 2-4 
NEXT, 2·4 
PRIOR, 2·4 
SORTED, 2·4 

relationships, 1·7 
representation, 2-3 
singular, 1-7, 2·8 
structure, 

network, 1-7 
sequential, 1·7 
tree. 1·7, 1-10 

testing for an empty, 3-18, 3-34 
type, 1-4, E-3 

SETDB subprogram, 2-6 
Simultaneous Update, 2-8,2-13 
Singular sets, 1·7, 2-8 
SOR TED set order, 2·4 
Statement codes, 3-3, B-1 
Status registers, 4-1,5·3 
STORE statement, 2-12, 3-29 
Storing record occurrences,' 2-12,3-29 
Structure, 

network, 1-7 
sequential, 1-7 
tree, 1-7, 1-10 

Structured data, 
walking through, 2-10 

Sub-schema, 1·3, E-3 
accessing, 2·7, 3·5 
invoking, 2·6, 3·22 
reading, 2·1 
setting, 2·6 

Sub·schema DDL, 1·3 
Subprograms, DDCS, 

JBTRAN, 2·10,2.14,2-20 
JETRAN, 2-10,2·13 
JMAFf, 2·15 
JMBEF, 2·15 
JMBOTH, 2·15 
JMNAME, 2·16 

sub·schema, 2·8 
Tenancy, 

testing for, 3·18,3·37 
TENANT function, 3-37 
Testing for an empty set, 3·18,3-34 
Testing for membership, 3-18, 3-35 
Testing for ownership, 3·18,3-36 
Testing for tenancy, 3·18, 3-37 
Transaction, 2-14 

defining, 2·14 
journaling by, 2-14 
within simultaneous update, 2-10 

Tree structure, 1-7, 1-10, E-3 
Type, 

record, 1-4 
set, 1-4 

UNSET subprogram, 2·7 
UPDATE class of exceptions, 3-3 
UPDATE usage mode, 1·9,2·7,3-26 
Updates, performing: 2·10 
Updating verbs, 2·10, 3-3, 3·26 
Usage-modes, 1·2, 1·9,2·8,3-26 

EXCLUSIVE RETRIEVAL, 3·26 
EXCLUSIVE UPDATE, 3-26 
PROTECTED RETRIEVAL, 3·26 
PROTECTED UPDATE, 3-26 
RETRIEVAL, 3·26 
UPDATE, 3·26 

USE statement, 
COBOL, 3-31 
FORTRAN, 3-32 

User working area, 1·8,2·6,4-1,5-3, E-3 
Using DML in, COBOL programs, 4-1 
Using DML in FORTRAN programs, 5·1 
Using the data base, 2-1 

VIA location mode, 2·4, 2·5, 2-20 

Walking through structured data, 2·10 
Writing DML statements, 2·6 

Index-4 



READER'S COMMENTS 

nata Base Management System 
Programmer's Procedures Manual 
AA-0901C-TB 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. Problems with software should be reported on a Software Performance Report 
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit 
your comments on an SPR form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs required for use of the software described in this 
manual? If not, what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Non-programmer interested in computer concepts and capabilities 

Name Date __________________________________ __ 

Organization _____________________________________________________ _ 

Street _______________________________________ ~ ______________________________ ____ 

City _________________ State _______ Zip Code ________ _ 

or 
Country 



------------... ---------------Fold Hen ---... ------... -------------------------------------------

.---------------.. ------._-------------------- Do Not Tear - Fold Here .... Staple ----------... -----... ------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

mamODma 
Software Documentation 
200 Forest Ave. 
Marlborough, MA 01752 

FIRST CLASS 

PERMIT NO. 152 

MARLBOROUGH, MA. 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB

