
TOPS-10
Crash Analysis Guide

AA-H20SD-TB

January 1989

The TOPS-10 Crash Analysis Guide presents methods for
analyzing TOPS-10 system crashes. It describes the tools
that can be useful In the process of diagnosing the cause of
system failure, and suggests methods of solving the problem
that caused the failure. This book is Intended to be used by
experienced TOPS-10 system programmers and assumes that
the reader has adequate system privileges to complete the
procedures presented.

Operating System

Software

TOPS-10 Version 7.04

GALAXY Version 5.1

digital equipment corporation
maynard, massachusetts

First Printing, November 1978
Revised, August 1980
Revised, April 1986
Revised, January 1989

The Information In this document Is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
In this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or Its affiliated companies.

Copyright © 1978, 1980, 1986, 1989 Digital Equipment Corporation

All Rights Reserved.
Printed In U.S.A.

The Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CI
DDCMP
DEC
DECmail
DECnet
DECnet-VAX
DECserver
DECserver '1 00
DECserver 200
DECsystem-1 0
DECSYSTEM-20

DECtape
DECUS
DECwrlter
DELNI
DELUA
HSC
HSC-50
KA10
KI
KL10
KS10

LA50
LN01
LN03
MASSBUS
PDP
PDP-11/24
PrintServer
PrlntServer 40
Q-bus
ReGIS
RSX

SITGO-10
TOPS-10
TOPS-20
TOPS-20AN
UNIBUS
UETP
VAX
VAXNMS
VT50

~BmBDmDTM

PREFACE

CHAPTER 1

1.1
1.2
1.3
1.4

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.5
2.6

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.7
3.8
3.8.1
3.8.2
3.9
3.9.1
3.10
3.11
3.12
3.12.1
3.12.2
3.13

CHAPTER 4

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.3
4.4
4.5

CONTENTS

INTRODUCTION

SYSTEM ERROR RECOVERY
TYPES OF ERRORS
CRASH ANALYSIS TOOLS .
CRASH ANALYSIS PROCEDURE .

EXAMINING A CRASH FILE

CREATING A CRASH FILE
USING FILDDT
ESTABLISHING PROPER MAPPING

FILDDT Mapping Instructions
Mapping the Crash

VERIFYING THE DUMP
FILDDT COMMAND FILES
STOPCODE INFORMATION

LOCATING THE FAILURE

· 1-1
· 1-2
· 1-3
· 1-4

· 2-1
· 2-3

2-4
.. 2-5

. 2-5
· 2-7

. 2-8
2-10

HARDWARE MAPPING 3-2
PAGING POINTERS 3-2
EXTENDED ADDRESSING 3-3
MONITOR-RESIDENT USER DATA 3-3
PROGRAM COUNTER WORD 3-4
PROCESSOR MODES 3-4

User Mode 3-5
Exec Mode 3-5

THE PRIORITY INTERRUPT SYSTEM 3-6
THE DEVICE INTERRUPT SERVICE 3-8

Standard Interrupts 3-8
Vectored Interrupts 3-10

TRAPS 3-10
Page Fail Traps 3-11

CLOCK LEVEL 3-12
ACCUMULATORS AND PUSH-DOWN LISTS . 3-13
MONITOR ORGANIZATION 3-13

Monitor Startup Modules 3-14
Symbol Definition Modules 3-15

EXAMPLES OF LOCATING FAILURES 3-15

EXAMINING THE DATA STRUCTURES

SYMBOLS
Naming Conventions
Symbol Files and Monitor Generation

READING THE CODE
How to Use a CREF Lis·ting
Macros
Conditional Assembly . . .
Finding Symbols

JOB-RELATED DATA STRUCTURES
CPU DATA STRUCTURES
MEMORY DATA STRUCTURES

iii

· 4-1
· 4-2
· 4-4
· 4-5
· 4-5
· 4-5
· 4-6
· 4-6
· 4-7

4-9
4-10

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.18.1
4.18.2
4.18.3
4.18.4

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.3
6.4
6.5

APPENDIX A

APPENDIX B

INDEX

FIGURES

B-1
B-2
B-3
B-4
B-5
B-6

COMMAND PROCESSING TABLES
UUO PROCESSING TABLES
I/O DATA STRUCTURES
THE JOB DEVICE ASSIGNMENT TABLE
THE DEVICE DATA BLOCK
FINDING DDB INFORMATION
LINE DATA BLOCKS (LDBS)
THE SCNSER DATA BASE
TERMINAL CHUNKS
TERMINAL DEVICE DATA BLOCKS
FINDING TERMINAL I/O INFORMATION .

4-11
4-11
4-11
4-11
4-12
4-13
4-15
4-16
4-16
4-17
4-18
4-19
4-21
4-23
4-26
4-28
4-29

TAPE DRIVES
DISKS .

Finding Information on Disk
In-Core File Information
The Software Disk Cache
Finding In-Core File Information .

ERROR HANDLING ROUTINES

HARDWARE ERRORS 5-1
APR Interrupt Routine 5-3
Page Fail Trap Routine 5-4
Saved Hardware Error Information 5-5
Hardware Error Checking 5-6

STOPCODES 5-9
Stopcode Processing 5-10
Continuing from Stopcodes 5-11
Special Stopcodes 5-11

ERRORS DETECTED BY RSX-20F 5-13

DEBUGGING THE MONITOR

PATCHING WITH FILDDT
USING EDDT

Starting the Monitor

· 6-1
· 6-2

· 6-2
Breakpoints · 6-2

DEBUGF FLAGS · 6-3
MULTI-CPU ENVIRONMENT
CAUTIONS

· 6-4
... 6-4

GLOSSARY

ADDRESS SPACE LAYOUT

Monitor Code Section Layout
DECnet Code Section Layout
Monitor Data Section 3 Layout
Monitor Data Sections 4,5 Layout
Monitor Data Sections 6,7 Layout ...
Monitor Data Sections 35,36,37 Layout

iv

· B-2
.... B-3

.. B-4

.. B-5
B-6

· B-7

TABLES

3-1
4-1
5-1
A-I

Interrupt Level Indicators .
Monitor Accumulators .
Hardware Errors
Glossary of Acronyms .

v

· 3-7
· 4-2
· 5-8
· A-I

PREFACE

The TOPS-10 Crash Analysis Guide is a procedural and reference manual
that you can use to diagnose the causes of TOPS-10 system failures and
to correct these problems.

The TOPS-10 Software Notebook Set contains several documents that you
should use while analyzing system crashes. In particular, you will
find the TOPS-10 Monitor Tables Descriptions and the Stopcodes
Specification are most important for symbol definitions, and the
TOPS-10 DDT Manual is a useful reference for the debugging tools used
in the procedures.

Before you can reliably diagnose and repair system problems, you must
be able to use DDT commands to examine and patch the TOPS-10 monitor
modules. You must also be familiar with any local modifications that
have been made to the monitor.

There are a few symbols shown in this manual that indicate special
characters. They are:

Character

"'\

$

<CTRL/Z>

Meaning

<Control-backslash> is the character to type on
the CTY to get the attention of the parser.

The ESCape character, or altmode,
commands to DDT and TECO.

is used in

This control character is used to terminate a
TOPS-10 process, such as DDT. It is displayed as
"'Z.

vii

CHAPTER 1

INTRODUCTION

Crash analysis is used in the process of solving system problems. You
can analyze a crash by examiriing a copy of memory that is stored in a
crash file when the operating system stops running. There are
different methods of analyzing different types of system problems. It
may be helpful, for example, to isolate the cause of a problem as
either the hardware or the software on a preliminary investigation,
but it is important to understand and recognize all symptoms of system
problems, including those involving the interaction of both hardware
and software.

This manual describes methods that you can apply to various system
problems. As you become more familiar with the monitor and the tools
you use to debug the system, you will be able to customize these
methods to your own needs.

1.1 SYSTEM ERROR RECOVERY

To successfully analyze different types of system problems, you should
try to view the system as a whole, investigating hardware status and
software conditions, as well as the interaction of the two. You can
use many informational tools to detect and correct system problems:
hardware diagnostics verify the hardware state of the machine, and
software test packages verify the performance and validity of software
components. The monitor itself is an excellent test program for both
hardware and software. It prints and saves information about the
problems it encounters on the console terminal (CTY). Each CPU in a
multiple-CPU configuration has a CTY, where it prints information
about the stopcodes it encounters, messages for the operator, and a
log of system events.

The TOPS-IO monitor and hardware systems are designed to prevent the
system from crashing when a minor error is encountered. Timesharing
is only interrupted by an unrecoverable, or fatal error. Most system
problems are not fatal, and in most cases system operation continues
normally.

A hardware or software error that prevents normal timesharing
operation causes a crash; that is, the system performs certain error
recovery operations, terminates all user and system jobs, and restarts
operation with a fresh database. If a hardware or software error is
serious enough to warrant this procedure, the system is halted and a
copy of memory is written to disk (or dumped) before the system is
reloaded. This copy of memory, called the crash file, is useful
because the system uses this file to record the contents of many
registers and data structures. This manual describes how to examine
the crash file to find information that might indicate the reason for
the crash.

1-1

INTRODUCTION

Not all hardware and software errors cause the system to crash. The
software is equipped with a number of special error recovery
procedures to continue operation after a system or user error. The
software generates a stopcode, which provide the system manager with
information about the cause of the error, and lists system modules and
data locations useful in analyzing the source of the stopcode. This
information is printed on the system's CTY to inform the operator of
the status of the system. A continuable stopcode does not cause a
system reload or halt, but, in most cases, produces a crash file.

A system error that causes a crash, like a program error that causes a
halt, is called a fatal error, because all the jobs on the system must
be halted and restarted. The system records as much information as
possible before the crash. However, in the act of reloading memory or
processing a hardware error, the operating system may lose or
overwrite applicable data locations, and a certain amount of
information may be lost. In every crash, it is important to be aware
that information recorded during the crash may be invalid or
corrupted.

The way the monitor processes the error depends on the type of failure
that occurred. The method you use to analyze the crash depends on the
type of information that the monitor saved before the crash. This
manual is organized to provide crash analysis information for
different types of crashes. Remember that this manual can only
explain ideal and general situations. As the system analyst, you
should be familiar with the specific aspects of the system you are
analyzing, because you may face unique problems at your site. If
possible, review the system build procedure, especially the
information about hardware and software configuration. This type of
information is described in the TOPS-10 Software Installation Guide.

DIGITAL provides software error reporting and revision services for
problems you cannot solve. If you cannot solve a problem that
prevents system operation, submit a Software Performance Report (SPR)
through your DIGITAL Service Representative. Be sure to include all
the information required to analyze a system crash. This manual
describes that information.

1 .2 TYPES OF ERRORS

The hardware and software handle each type of system problem
differently. Most problems do not result in a crash; many errors are
handled locally for a specific program or device, without affecting
the entire system. For example, TOPS-10 is designed so that
unprivileged user jobs cannot directly crash the system. If a user
program develops a fatal error, the monitor aborts the program without
affecting the other users on the system. If the monitor data base
entries for a particular user job are destroyed, the monitor tries to
eliminate the job without affecting other jobs. However, changes to
system-wide variables such as those affecting memory and CPU usage may
cause the system to crash.

In almost all cases, the software detects and handles errors by
gathering information and taking corrective action. In the case of a
fatal error, the system reloads automatically. Fault continuation
allows the system to correct certain types of errors and continue
operation without affecting the execution of user programs. In most
cases, corrective action affects only the process at fault. Such
action might include repeating an I/O operation or stopping exection
of a user job.

1-2

INTRODUCTION

Fault continuation allows the system and user jobs to continue with
little or no interruption, but continuable stopcodes are recorded on
the CTY for later examination. It i.s important to be aware of all
previous errors in the process of analyzing a crash, even those that
did not directly cause the system to crash. Internal discrepancies
that corrupt an important data structure may in turn affect other
routines, and the error propagates, or the software goes into an
infinite loop.

Crash files and CTY listings are the main sources of information about
the system before the time of the crash. However, error recovery code
can contain errors of its own. The history of a crash, including data
from the time leading up to the crash, is an important source of
information in these situations.

When the system crashes, you must be prepared to verify that the
system actually crashed, and determine the extent to which the
software was affected. You must isolate the problem that caused the
error by defining the point in the code where the error was detected,
then identify the problem that caused the error condition, record that
information, and correct the problem if possible.

This procedure, and the tools you will need to analyze crashes, are
described in the following chapters. Remember that your success in
these areas depends on many factors, and that it may not be possible
to correct the error immediately. It is more important to continue
system operation as soon as possible. Later, you can address the
crash using the tools described in this manual.

1.3 CRASH ANALYSIS TOOLS

To analyze a system crash, you need several sources of information,
and you must use system programs to examine the information. You must
use all your knowledge of the DECsystem-10 and the TOPS-10 monitor, as
well as the GALAXY system, ANF-10 network communications, and all
other software running on the system. The specific sources of
information about a system crash are:

o The CTY output for the time before the crash

o The crash file

o Listings or microfiche of the monitor sources, describing the
algorithms, data structures, symbols, and bit definitions

o The operator log book

o The Monitor Tables descriptions from the TOPS-10 Software
Notebook Set

You will use the following tools in analyzing system crashes.

o FILDDT (File DDT) allows you to examine files or the running
monitor. Sections 2.3 though 2.4 describe FILDDT.

o EDDT (Exec DDT) allows you to examine, breakpoint, and patch
the running monitor. Section 6.2 describes EDDT.

o CRSCPY copies crash files and stores information about them
in a database. The TOPS-10 Operator's Guide describes
CRSCPY.

1-3

INTRODUCTION

o SPEAR creates reports, based on the system error log file
(ERROR.SYS), which are useful for tracing non-fata.l errors
that may have led to the system crash. Refer to the
TOPS-10/20 SPEAR Reference Manual for more information about
SPEAR.

o OPR, the operator interface to the DECsystem-10, provides
commands that allow you to change the system configuration
and to control software processes. Refer to the TOPS-10
Operator's Command Language Reference Manual for more
information about this program.

You will also need to use a text editor such
monitor sources or system startup files
software problem.

1.4 CRASH ANALYSIS PROCEDURE

as TECO to patch the
after you have solved a

To isolate a system problem, you must use FILDDT to examine the crash
file. The crash file records the state of the system at the time of
the crash, including information you can use to determine the cause of
the crash, such as:

o Processor mode (user, user I/O, or exec mode)

o Stack pointer and stack in use

o Contents of accumulators

o Stopcode information

First you must obtain the crash file. In Chapter 2, you will learn
how the monitor creates and maintains crash files. Chapter 2 also
contains procedures for loading the monitor symbols for FILDDT and
using the symbolic FILDDT to examine a crash file and extract the
information listed above.

Chapter 3 explains how to interpret the information you obtain from
the crash file, to determine the state of the system at the time of
the crash.

Chapter 3 contains a discussion of processor modes, job scheduling,
and the priority levels that the monitor uses in timesharing, and how
the information from the crash file can point to the faulty code that
caused the crash.

After you have determined the monitor process that failed, you can
begin to investigate the crash file for the actual routine that
failed. Chapter 4 contains a description of the monitor's data
structures and how to obtain information about them from the crash
file and the source code.

The monitor may crash, or hang without crashing, because an error has
occurred in the error handling and recovery procedures. Chapter 5
contains descriptions of the the system error recovery routines.
Continuable stopcodes are described in more detail. You can use the
information in this chapter to determine whether error handling
routines are functioning properly.

1-4

INTRODUCTION

It is sometimes necessary to analyze and correct a system error while
the monitor is running, either because a system reload does not
correct the error, or the error only becomes apparent while the system
is running. If you encounter a problem that defies analysis using
FILDDT to examine crash files, you can use EDDT to examine and correct
locations in the running monitor. For example, if the system halts or
hangs without dumping or without reloading, or if a problem exists
that' does not interfere with timesharing, you can use EDDT to examine
the running monitor. This procedure is described in Chapter 6.

Appendix A contains a Glossary of the acronyms used in this manual.

Appendix B contains illustrations of the general layout of monitor
code in virtual address space, for TOPS-10 Version 7.04.

1-5

CHAPTER 2

EXAMINING A CRASH FILE

When the system crashes, the monitor attempts to record information
about the state of the system at the time of the crash. Normally, the
system writes a copy of memory to disk before beginning system reload
operations. This copy of memory is called a crash file, or just "a
crash". You can examine this file using a special version of DDT
called FILDDT. This chapter explains in more detail how the crash
file is created and how to locate the crash file for a particular
crash. The procedure for preparing FILDDT so that you can examine the
crash file is also described, as well as some of the information that
yo~ can obtain immediately by examining the CTY output of stopcode
information.

2.1 CREATING A CRASH FILE

When a stopcode occurs, BOOT automatically creates a crash file of the
contents of memory, called CRASH.EXE, and copies it to the system
crash list. If BOOT cannot dump memory automatically, you can force a
dump by typing the following command on the CTY:

BOOT>str:/D

Use /D to force the crash file to be written.
name of a file structure (str:).

You may include the

If this action fails, the CRASH.EXE file on every file structure in
the system crash list may be unprocessed by CRSCPY.

The allocation of CRASH.EXE space is accomplished when you define file
structure information in the ONCE dialog. You can modify the amount
of space reserved for crash files by running the monitor in user mode.
Refer to the TOPS-10 Software Installation Guide for complete
information about ONCE.

To stop the
value into
every clock
into BOOT.
commands.

machine when a malfunction occurs, deposit a non-zero
physical location 30. The monitor checks this location at
tick. If it finds a non-zero value, the monitor jumps
You can initiate this procedure using one of the following

The first example is a command to the PARSER on a KL system. Type
<CTRL/backslash> where you see A\. In the following examples,
semicolons precede comments that should not be included in your input.

A\ ;invoke the PARSER
PAR>SHUTDOWN ;shut down the system
[Dumping on DSKA:CRASH.EXE[1,4]]

2-1

EXAMINING A CRASH FILE

For a KS system, you type the following commands:

A\ ;invoke the console
ENABLED
KS10>SHUTDOWN ;shut down the system
USR MOD
[Dumping on DSKA:CRASH.EXE[1,4]]

If the monitor can reach clock level, this command will start BOOT.
BOOT stops the machine, writes a crash file, and begins automatic
reload procedures. If the monitor has been up less than five minutes,
BOOT starts, but does not initiate the dump and reload action.
Instead, BOOT prints the BOOT> prompt and waits for you to type a
command.

If the SHUTDOWN command is ineffective, you must instruct the monitor
to begin system shutdown procedures. The following commands to the
PARSER accomplish that on a KL system:

A\
PAR>SET CONSOLE
PAR>HALT
PAR>EXAMINE KL
P AR>JUMP 407

;invoke the PARSER
MAINTENANCE

This instructs the monitor to execute the instruction at location 407,
which signals the policy CPU to initiate a system shutdown procedure.
In multiple-processor systems, it may be desirable to initiate system
shutdown procedures on the current CPU instead of the policy CPU. To
accomplish this, jump to location 406 instead, using the following
command:

PAR>JUMP 406

For the KS, you might use the following procedure to force a system
shutdown:

,"\
ENABLED
KS10>HALT
KS10>MR
KS10>SM
KS10>ST 407
USR MOD

;invoke the console

;halts the system
;forces exec mode
;halts at default location
;loads BOOT

You should try to use the SHUTDOWN procedure first, because a forced
reload does not save the PC, and there is danger of losing device and
interrupt status information.

After a fatal stopcode or a manual dump operation, BOOT displays the
following information on the CTY:

[Dumping on DSKA:CRASH.EXE[1,4]]
[Loading from DSKA:SYSTEM.EXE[1,4]]

As the second message indicates, BOOT automatically reloads the
monitor. The automatic reload function can be disabled using the OPR
program. This function is useful when debugging the monitor, as
described in Chapter 6.

The CRSCPY program runs when the system is reloaded, to copy the
CRASH.EXE file to a unique file name that will not be superseded by
subsequent CRSCPY runs. If your system did not run CRSCPY when it
reloaded, you must copy the CRASH.EXE file to a safe area manually.

2-2

EXAMINING A CRASH FILE

As soon as you can log into the system, save the crash in the
XPN: area of the disk structure by typing the following command:

.R CRSCPY
CRSCPY>COPY

The CRSCPY program copies the file using a unique file name and
reports it when the operation is finished. For more information about
CRSCPY, refer to the TOPS-10 Operator's Guide.

You can use SYSTAT to obtain an overview of the status of the system
at the time of the crash. Use the Ix switch to SYSTAT to indicate a
crash file, and include the name of the crash file. For example, to
examine the SYSTAT information for a crash file named SER003.EXE, type
the following command:

.SYSTAT/x XPN:SER003.EXE

The Ix switch specifies that the SYSTAT program should read the file
XPN:SER003.EXE (th~ file name assigned by CRSCPY) instead of the
running monitor.

2.2 USING FILDDT

FILDDT is a system debugging tool designed for debugging files that
are stored on disk. Because FILDDT is a modified version of DDT, you
must be familiar with DDT before you attempt the procedures described
in the following sections. For more information about DDT, refer to
the TOPS-10 DDT Manual.

FILDDT has all the commands of regular DDT, with one major difference:
commands that control program execution do not work. Those commands
are:

$G

$X

$P

$B

Start the program.

Execute a single instruction.

Proceed with execution.

Set breakpoints.

The monitor, because of its large size, runs with local and global
symbols removed. You cannot examine the crash file without these
symbols, so you must load the symbol table of the monitor into memory
with FILDDT and save the modified version of FILDDT. To create this
special monitor-specific FILDDT, follow 'the procedure explained below.

First, run the standard version of the FILDDT program:

.R FILDDT

File:

You must type the name of the file from which the symbols are to be
loaded. This file must be the runnable monitor; that is, the monitor
before loading (often SYS:SYSTEM.EXE). Include the Is switch to
indicate that symbols are to be loaded.

File:SYS:SYSTEM.EXE/s

2-3

EXAMINING A CRASH FILE

The Is switch tells FILDDT to load the symbols for this file. When
FILDDT displays another File: prompt, type <cTRL/z> to exit from
FILDDT, then type the SAVE command to the monitor with the file name
you choose for the the symbolic FILDDT, to save the runnable file. In
the following example, the symbolic FILDDT is called MONDDT.

File:"Z

.SAVE MONDDT
MONDDT saved

After you save the symbolicFILDDT program, you can use the RUN
command to start the new FILDDT at any time. For example, the
following commands start the symbolic FILDDT and give it the name of a
crash file (XPN:SER003.EXE) to examine:

.RUN MONDDT

File:XPN:SER003.EXE

When FILDDT reads the crash file, it reports the mapping of ·the ACs in
the following message:

[Looking at file DSKA:SER003.EXE[lO,l]]
[Paging and ACs set up from exec data vector]

The monitor locations saved in the crash file must now be mapped to
the virtual monitor addresses. FILDDT provides special commands for
mapping the monitor and the user address space. Before you issue a
mapping command, FILDDT assumes all locations are physical references.

2.3 ESTABLISHING PROPER MAPPING

Virt.ual addressing machines require special consideration.
Instructions in programs are loaded into memory by a mapping scheme
based on page maps. The actual physical location of a word in the
monitor will not necessarily be the same as the virtual location.

The symbolic FILDDT contains the virtual address of each location, but
not its physical address. You must map FILDDT memory references
through the Exec Process Table (EPT) to examine monitor locations, or
through the User Process Table (UPT) to examine user locations. To
establish mapping, you must perform the following steps:

1. Find the page numbers of the page maps.

2. Issue the FILDDT mapping instruction (a $nU command) .

3. Verify that the mapping is correct.

The following sections describe two methods for mapping the dump and
obtaining preliminary information concerning the state of the
processor at the time of the crash. The instructions used in the
following procedure may be included in a FILDDT command file (also
called a patch file) .

To map a crash, you must provide FILDDT with pointers to mapping
tables and other locations in the monitor. The mapping tables and
monitor locations are described in more detail in Chapters 3 and 4.

2-4

EXAMINING A CRASH FILE

2.3.1 FILDDT Mapping Instructions

FILDDT allows you to specify the type of address mapping to use in
locating information. You can specify virtual or physical addressing.
The mapping instructions are:

$U enables virtual addressing. This instruction also sets the
FAKEAC flag, indicating that physical locations 0-17 are to
be interpreted as the user accumulators (ACs).

$$U enables physical addressing.
indicating locations 0-17
registers 0-17.

The FAKEAC flag is cleared,
are interpreted as hardware

By default, physical addressing is enabled. FILDDT interprets all
addresses as physical until you issue a virtual mapping instruction.
The mapping is correct only for the data in portions of the monitor's
low segment, because the low segment virtual addresses equal the
physical addresses.

The TOPS-10 monitor uses KL-paging, also called "extended addressing"
(described in Section 3.3). By default, FILDDT is enabled for
KL-paging. If it is necessary to disable KL-paging (for an older
version of the monitor, for example), you can issue the following
command to FILDDT:

O$llU

To enable KL-paging, type the following command:

l$llU

The command n$llU establishes the mapping scheme so that FILDDT will
read the page maps correctly.

Next, you must point FILDDT at the correct page maps that associate
virtual addresses (loaded into the symbolic FILDDT) with the physical
addresses (saved in the crash file), and establish virtual mapping.

2.3.2 Mapping the Crash

To map virtual addresses to physical ones, FILDDT needs the locations
of the Exec Process Table (EPT) and the Special Pages Table (SPT).
The EPT allows FILDDT to map exec virtual memory. The SPT is used to
map the user job that was running at the time of the crash.

On a multiple-processor KL system, the dump contains an EPT for each
CPU in the system. To analyze the dump, you must map FILDDT through
the EPT for the CPU that crashed. A CPU Data Block (CDB) exists for
each CPU in the system. On a single-processor system, there is one
CDB. The CDB contains the address of the EPT. Therefore, you must
first find the CDB for the CPU that crashed. The location DIECDB
contains the pointer to the CDB of the CPU that crashed.

NOTE

The contents of DIECDB are written when
crashes, but not when the system hangs.
analyzing a hung system, the contents of
nonzero) were written by a previous
therefore may be invalid.

2-5

the system
When you are

DIECDB (if
crash, and

EXAMINING A CRASH FILE

You can see the contents of DIECDB by typing the following command to
FILDDT:

DIECDB[12000

In this example, the physical starting address of the CDB is 12000.
The location of the EPT is stored in the CDB at the offset symbolized
by .CPEPT. Use the following command to open .CPEPT and read its
contents:

$Q+.CPEPT-.CPCDB[1000

The first part of the instruction ($Q) refers to the last value
displayed (that is, the contents of the currently open location) .
This value is 12000. Starting from location 12000, the pointer moves
to the offset indicated by the difference between the values of .CPEPT
and .CPCDB. The new location is the offset into the CDB of the EPT
address (.CPEPT). The instruction opens the location .CPEPT and
displays its contents. The EPT address is displayed as physical
location 1000.

FILDDT needs the page number for the EPT, not its physical address.
Therefore, you must divide the contents of .CPEPT by 1000.

Submit the result of this division operation to FILDDT using the $OU
command. For example, to calculate the page number and map the EPT,
type the following FILDDT instruction:

$Q'1000$OU

This command divides the previous value (using the $Q command) by 1000
and submits the result to FILDDT as the EPT page number. In this
example, the page number is 1.

Exec virtual memory is mapped after the $OU command. This is
sufficient for examining monitor memory locations in the crash.
However, to examine user data, you must map the current user job. The
FILDDT command n$6U maps the user job and its associated per-process
storage in exec virtual memory (funny space). The value of n is the
page number of the UPT (User Process Table).

The SPT contains a word for the current job running on each CPU in the
system, plus a word for each user job. The right half of each SPT
slot contains the page number of the UPT for the current cpu. When
extended addressing is enabled, the SPT points to the UPT.

The following FILDDT command sets the SPT base address:

JBTUPM+(job#)-(CPU#)$6U

To map a user job other than the current job on the current CPU, add
the contents of the right half of JBTUPM to the job number, then
submit the result to the $U command.

FILDDT provides temporary registers to contain either hardware
registers or user accumulators. When hardware mapping is established,
FILDDT assumes that locations 0-17 refer to hardware registers 0-17.
However, when you issue a virtual mapping command ($U), the user ACs
can be mapped through the temporary registers. This allows you to
load the user ACs into the temporary registers and then refer to the
user ACs as locations 0-17.

2-6

EXAMINING A CRASH FILE

You can use the following FILDDT instruction to map
block to the temporary registers provided by FILDDT.
to open and map the current AC block is:

.CPACA[Q5U

the current AC
The instruction

This instruction is useful only if the location .CPACA contains the
address of the current AC block. If, however, a UUO at interrupt
level occurs (UIL stopcode), this instruction cannot be used
successfully. Instead, you must determine the location of the current
AC block by defining the interrupt level in progress at the time of
the crash. The AC blocks and interrupt levels are described in more
detail in Chapter 3.

The user job in memory may not match the UPT currently in use at the
time of the crash. You can check the user job that was running by
comparing the contents of offset .CPJOB in the CDB with the contents
of .USJOB in the UPT. If these values do not match, the interrupt
routine was switching UPTs at the time of the crash; use the UPT for
the job number that is in .USJOB.

Look at the code that y?u are familiar with, in the high segment, to
make sure the dump ~s mapped correctly. Also check location 410
(ABSTAB), which should point to NUMTAB, which is one of the first
locations in the low segment.

If you set up mapping through the wrong page map, FILDDT returns a
question mark whenever you try to reference an unmapped location. For
example, this could occur if you use the null job's UPT to set
mapping. To reset mapping, use the "$$U" command to set physical
mapping by FILDDT.

2.4 VERIFYING THE DUMP

Occasionally, your monitor will crash in the process of upgrading to a
new version, or when you are making modifications to the code. In
these cases, it is possible that your crash file will be based on a
different version of the monitor than the monitor-specific FILDDT you
created. You should make sure that the symbols in the
monitor-specific FILDDT match the crash that you are examining. If
values of the symbols do not match, the information in the crash file
may be useless, misleading, or corrupted.

There are several ways to check the symbols. One is to make sure the
version number of the crashed monitor matches that of your current
monitor. Another is to examine addresses in the monitor with known
contents and verify that they contain the right information.

Monitor location CNFDVN contains the monitor version number and edit
number. This version number should match the version number displayed
by the DIRECTORY monitor command .

. DlRECTORY IEZ093.EXE
IEZ093 EXE 8196 <155> dd-mmm-yy 704(33432) DSKB: [10,1]

.RUN MONDDT

File:DSKB:IEZ093.EXE[10,1]
[Looking at file DSKA:SER003.EXE[10,1]]
[Paging and ACs set up from exec data vector]

$$C
CNFDVN/ 70400,,33432

2-7

EXAMINING A CRASH FILE

Note that the DIRECTORY command reports version and edit numbers
704(33432), matching the contents of CNFDVN: 704 in the left half,
and 33432 in the right half.

You can obtain the name of the monitor by reading ASCII text starting
at location CONFIG, as shown in the following example:

CONFIG$OT/ RL371A DEClO Development

In this case, the full system name is "RL371A DEClO Development".

If these values match, you can be relatively sure
monitor-specific FILDDT and crash file match.

2.5 FILDDT COMMAND FILES

that the

FILDDT command files are used to map a dump and obtain preliminary
information that might be relevant to analyzing the crash. A command
file is a set of FILDDT commands that are executed automatically when
you issue the $Y command to FILDDT. Command files are also used to
edit the runnable monitor (as opposed to making edits to source
modules and rebuilding the monitor) .

The FILDDT command $Y invokes a series of FILDDT commands stored in a
file on disk. This allows you to easily execute a set of commands
that you use frequently instead of typing them in. You could use a
command file to map and verify a dump and to extract information you
are likely to need while diagnosing a crash, as described below.

NOTE

The $ (dollar sign) is displayed when you press the
ESCape key in FILDDT. It is used here to show where
you must insert an ESCape character into the file.
Most text editors require a special procedure for
inserting ESCape and other non-printing characters
into a file. You must use the text editor
documentation to find the method for quoting
characters if you do not know how to insert an ESCape
character into a file.

The following command file maps a crash file for a multiple-processor
KL system. The same command file is equally useful on a single-CPU KL
or a KS system. The command file also verifies the correspondence of
the dump with the monitor-specific FILDDT and displays pertinent
system information about the crash.

Comments are included here to describe the functions of the commands,
However, FILDDT will not accept a command file with comments. Your
actual command file should NOT contain the comments in the following
example:

.TYPE VERIFY.DDT
DIECDB[
$Q+.CPEPT-.CPCDB[
$Q'1000$U
SPTTAB$6U
. CPACA [Q5U
.CPCPI[
. CPPGD [
.CPSPT [[
.CPDWD[

;display contents of patch file
;gets addr of CDB for CPU that crashed
;gets addr of the EPT
;divides addr by 1000 to get page number
;sets the SPT base address
;maps AC references
;gets PI status
;gets DATAl PAG results
;gets the address of the SPT
;gets CPU's DIE interlock word

2-8

EXAMINING A CRASH FILE

.CPCPN[

.CPJOB[

.USJOB[

.CPTCX[

;CPU number of crashed CPU
;gets job number of current job
;job number in funny space
;process context word on page fails

You can include these and other FILDDT commands in a command file to
obtain initial information about the crash. The locations referenced
in this file are described in Chapter 3.

The following example shows the types of information that might be
displayed and how to interpret the information. Again, the comments
are included for descriptive reaso,ns, but comments are not allowed in
an actual command file.

.R MONDDT ;run the symbolic FILDDT

File: SYS:CRASH
[Looking at file DSKA:SER003.EXE[10,1]]
[Paging and ACs set up from exec data vector]
$Y ;execute a command file
File: MON.DDT ;command file is MON.DDT

DIECDB[13000 ;the address of the CDB for the
;CPU that crashed is 13000

$Q+.CPEPT-.CPCDB[3000 ;compute the offset into the CDB
;address of the EPT is stored

$Q'1000$U

SPTTAB$6U

.CPACA[

.CPCPI[

. CPPGD [

402077Q5U

377

700100,,2600

.CPSPT[SPTTAB+1[2600

.CPDWD[

.CPCPN[

. CPJOB [

.USJOB[

.CPTCX[

o

1

5

5

701100,,2364

;compute the page number of the EPT
;and point FILDDT to the EPT

;set the SPT base address

;map AC references

;377 indicates PI levels are enabled

;DATAI PAG shows that:
;current AC block is 0 (exec)
;previous AC block is 1 (user)
;previous context section is 0 (exec)
;UPT page number is 2600

;shows UPT page number of currently
;mapped job on this CPU

;Die interlock word

;CPU1 failed

;Job 5 was running

;Job 5 is mapped on this CPU

;Process context information:
;current AC block is 1 (user)
;previous AC block is 1 (user)
;previous context section is 0
;user base page number is 2364

It is important to compare the value of .CPTCX with the contents of
.CPPGD. The process context word stored in .CPTCX and the DATAl PAG
word stored in .CPPGD are different when the state of the processor at
the time of the crash is indeterminate (for example, for lME or EUE
stopcodes) .

2-9

EXAMINING A CRASH FILE

2.6 STOPCODE INFORMATION

The following information is useful when the system crashed with a
stopcode. You can determine the stopcode information by looking at
the CTY for the CPU that crashed. The stopcode name is printed on the
CTY, and is stored in location .CnSNM, where n is the CPU number. Use
the Stopcodes Specification in the TOPS-10 Software Notebook Set to
look up the module tha't generated the stopcode.

The stopcode routines in the monitor also store and print the
following types of information on the CTY:

o Date and time of crash

This information is stored in a series of locations starting
at LOCYER:

LOCYER - Year of the crash
LOCMON - Month of the crash
LOCDAY - Day of the crash
LOCHOR - Hour of the crash
LOCMIN - Minute of the crash
LOCSEC - Second of the crash

Remember to display these locations in decimal, not octal.

o Current job

The word at address .CnJOB holds the job number of the
current job on CPUn.

o PPN of current job

The PPN is stored in the JBTPPN table, indexed by the job
number.

o Program name of current job

The program name is stored in SIXBIT in the JBTNAM table,
indexed by the job number.

o Terminal of current job

The terminal name is stored in SIXBIT in the
the Terminal DDB, pointed to by TTYTAB
number) .

o CPU number

first word of
(indexed by job

The CPU number of the CPU that crashed is determined from the
value of .CnDWD (where n is the CPU number). Test this
symbol for a negative value (-1) for each CPU in a
multiple-CPU system. A negative value indicates that the CPU
did not crash. If the contents of .CnDWD are equal to zero,
the current CPU is the CPU that crashed.

Refer to Section 5.2 for more information about the types of stopcodes
and the information they provide.

2-10

CHAPTER 3

LOCATING THE FAILURE

The monitor is the portion of the software that is responsible for
interfacing user programs to hardware. Specifically, the monitor is
responsible for the following functions:

1. after running a
files, finding the

stopping programs.
in the form of the

Performing tasks for a user before and
program, such as copying or deleting
status of the system, and running or
TOPS-10 provides the user interface
command language.

2. Executing the program. The user must make requests for all
services (including I/O). The user programming interface is
standardized in the form of monitor calls, also called
Unimplemented User Operators (UUOs).

3. Providing access to the data base. This is done by creating
a logical file system for data stored on disk devices.

4. Controlling CPU usage.
determine who should
called scheduling.

A timesharing system must know how to
get control of the computer. This is

5. Controlling memory usage. For the system to run efficiently,
jobs must be moved in and out of memory at the right time.
This operation is known as swapping and paging.

6. Controlling access to sharable devices. The main sharable
devices on timesharing systems are disks. Because many jobs
will be using files on the same disk drive, adequate control
must be maintained to prevent destructive interference.

7. Controlling access to s~ngle-user (non-sharable) devices.
The monitor must implemen~ a way to allocate these devices to
the right users and contrbl the I/O. TOPS-10 does this with
the GALAXY batch and spoo~ing system.

I

8. Providing error analysis khen hardware or software errors
occur (DAEMON and SPEAR) .

9. Providing accounting information so the system can be fairly
allocated and users charged for what they use (ACTDAE).

3-1

LOCATING THE FAILURE

3.1 HARDWARE MAPPING

The hardware uses three types of tables to
mapping of locations in memory for a job:
tables, and page tables:

establish and maintain
process tables, section

o The process table describes characteristics for a specific
job and includes a pointer to each section map required to
map the job. There are two process tables: the Exec Process
Table (EPT) and User Process Table (UPT).

o The section map contains pointers to the page map for each
virtual section for the monitor or user job.

o The page maps contain locations for each physical and virtual
page allocated to the monitor or user job.

The paging system uses two process tables: the UPT to map the user
job and the EPT to map the monitor. The UPT (User Process Table) is
the table used to describe user address space. Each user job has its
own UPT, which must be loaded before the job can be run. The EPT
(Exec Process Table) is used to describe the monitor address space.

The processor runs by switching between user mode and exec mode. To
perform address translation quickly, the hardware must know the
locations of the process tables. Two registers are used to find the
process tables: the User Base Register (UBR) points to the UPT and
will vary for each job that is loaded into memory. The Exec Base
Register (EBR) points to the EPT. On multiple-CPU systems, each CPU
has an EBR and a UBR at all times.

3.2 PAGING POINTERS

The page maps contain pointers to physical pages of data. The page
maps are read by the microcode, which evaluates two kinds of pointers:
section pointers that point to section maps, and page map pointers
that point to physical pages. Section and page pointers have
identical formats. There are four types of pointers, indicated by a
code stored in Bits 0-2 of the word. The access code is applied to
the address by ANDing Bits 3-6 of all pointers used to evaluate the
address.

The pointer to non-accessible pages has code (0) in Bits O· through 2.

The pointers to accessible pages also include accessibility codes in
Bits 3 through 6. Bit 3 (P), if set, indicates that the page is
public. Bit 4 (W) indicates whether the page is writable, and Bit 6
(C) indicates whether the page can be cached.

Bit 5 of the pointer to an accessible page is used by the MCA25
harware option as the "Keep Me" bit. That is, if Bit 5 is set in the
page pointer, the address translation for that page is not cleared in
the hardware pager, providing that the DATAO PAG (context switch) is
issued with Bit 3 set.

3-2

LOCATING THE FAILURE

3.3 EXTENDED ADDRESSING

The KL processor uses KL-paging to allow code and data to be grouped
into virtual sections; each section is a maximum of 512 pages of
virtual memory. The monitor layout for a KL with extended addressing
enabled is illustrated in Appendix B.

The KS processor does not support extended addressing. However,
because KL-paging is required in order to run TOPS-10 Version 7.04,
the KS processor simulates KL-paging by choosing an alternate page map
when necessary.

The primary page map for the KS monitor is the Section 0 page map. To
perform a monitor call to an extended section, the KS monitor changes
the page map pointer. For example, to execute the DNET. monitor
call, a special macro reads the Section 2 page map pointer (from
SECTAB+2 in the EPT) and writes the address into the Section 0 page
map pointer (at SECTAB in the EPT). The KS accesses locations in the
Section 2 page map until the monitor call has been serviced. A
similar macro restores the Section 0 page map pointer to SECTAB.

3.4 MONITOR-RESIDENT USER DATA

Some information that pertains to the specific user is kept in the
monitor's address space, in the exec page maps. Each word in a page
map can point to a physical page in memory, but the Section 0 Page Map
also contains indirect pointers to the UPT. The monitor uses these
virtual addresses to reference job-specific locations, such as funny
space.

The job-specific data in monitor address space is composed of the
following areas, which are described separately below.

Funny Space (Per-Process Area)
UPT
.UPMAP (Section 0 page map)
.UPMP/.UUPMP (UPT origin)
JOBDAT
Vestigial JOBDAT

The information in these pages is specific to the current user, so the
job's page maps in the crash file contain virtual and physical
addresses. In a multiple-CPU system, the SPT (Special Pages Table)
for that CPU contains the current user page map page. When a new job
is selected to run, only the UBR and the SPT words need to be changed.

Certain pages of the executive virtual address space are designated as
the per-process monitor free core, also known as funny space, for the
job that is currently running on that CPU. This is monitor memory
that is swapped with the job, and contains information pertaining to
its disk DDBs, monitor buffers, SWITCH.INI, the extended channel
table, and so forth.

The monitor references the user's funny space with the symbol .UPMP,
which points to the first location in the UPT, and reads the physical
location in memory from the page table for user page O.

User page 0 contains JOBDAT locations, which are used by the monitor
for handling the user job.

Vestigial JOBDAT is the job data area for the job's high segment.

3-3

LOCATING THE FAILURE

3 . 5 PROGRAM COUNTER WORD

The PC (Program Counter) double-word contains the location of the next
instruction that the system will execute, including flags to indicate
whether the processor is in user mode or exec mode. The PC is stored
in the job's UPT (at USRPC) and in the COB (at .CnPC). When you
analyze a crash, you must examine Bit 5 of the PC word to determine
whether the processor was in user mode or exec mode at the time of the
crash. If Bit 5 of the PC is set, the processor was in user mode. If
Bit 5 is clear, the crash occurred in exec mode. The remaining PC
flags indicate arithmetic overflow conditions and so forth.

The PC contains a thirty-bit address, which points to the next
instruction to be executed. When control passes to a section other
than the section where the instruction was issued, that instruction
must refer to a 30-bit address. To store the 30-bit PC with flags,
the flag-PC doubleword is used. The flag word contains the PC bits in
Bits 0-12, in a format identical to the single-word PC. Bits 13-17
are unused. The right half of the first word is used by the hardware.
The second word contains the page number and address. Bits 0 through
5 of the second word are zero. The format of the PC doubleword allows
the flags (including the mode bit) to be read in the same manner as a
single-word PC. You can also read the address in a double-word PC in
the same way as a single-word PC, after you add 1 to the location of
the PC word.

Most instructions that use 30-bit addresses cannot be issued in
Section o. Global section references are illegal in Section 0, except
for the OWGBP instruction, the XJRST and XJRSTF instructions, and the
XBLT function of the EXTEND instruction. Any other instructions with
global section references must be made from a non-zero section.

3.6 PROCESSOR MODES

The processor reads the PC to determine whether the instruction is to
be executed in user or exec mode. User mode allows user jobs to run
programs and request the monitor for system resources. Exec mode
allows the monitor to satisfy user requests for system resources and
perform overhead functions.

You can determine the processor mode at the time of the crash by
reading the PC word from the COB. Bits 5 and 7 of the PC word are
useful in determining the processor mode. If Bit 5 is clear, the
processor was in exec mode. If Bit 5 is set, the processor was in
user mode. In user mode, if Bit 7 is set, the job is in public mode;
if Bit 7 is clear, the job is in concealed mode. In exec mode, if Bit
7 is clear, the process is in kernel mode. If Bit 7 were set: in exec
mode, this would establish supervisor mode, but this mode is not used
by TOPS-10.

Processor modes, PCs, and paging pointers are described in the
DECsystem-10/20 Processor Reference Manual.

3-4

LOCATING THE FAILURE

3.6.1 User Mode

Normally a user program runs in user mode. When the program requests
a monitor service, using a monitor call, the current processor flags
and PC are saved. The program is stopped temporarily while waiting
for the monitor service to be completed; this is called "blocking."
Control of the processor is then passed to the monitor in exec
(kernel) mode by clearing the processor flags and starting at a new

PC.

When an I/O operation is requested or completed, a device interrupt
causes the monitor to service the device. On a regular basis, the
monitor receives a clock interrupt, which initiates job scheduling and
system maintenance (overhead functions) . When the clock service
routine is finished, control passes to the appropriate user program,
and the processor switches back to user mode by setting the flag bits
(Bits 5 and 7) and restoring the user's PC.

A user program runs in either User Public or User Concealed mode.
User mode begins with a monitor command and ends when the program
exits or encounters an error. Normally the program runs in public
mode: Bits 5 and 7 of the PC word are set. The user program runs in
concealed mode if Bit 7 is clear and Bit 5 is set.

3.6.2 Exec Mode

When a user program requests a service by the monitor, using a monitor
call or a command, the processor must switch from user mode to exec
mode. Exec mode allows the monitor to perform privileged services and
provides the user's interface to file management, device control, and
hardware communication in general.

User programs run in user mode, and cannot perform direct I/O
instructions. A range of I/O instructions, with device codes from 740
to 774, are reserved for customer definition, and are therefore
designated as unrestricted codes.

When a UUO is executed, a hardware trap condition occurs, causing the
the microcode to store the following information in the UPT:

o PC doubleword

o 30-bit effective address

o Opcode and AC (from the instruction)

o Process context word

The new PC word is taken from one of the MUUO dispatch locations in
the UPT, depending on the processor mode and whether or not the UUO
occurred during the processing of another trap condition (a PDL
overfolw, for example). Control passes to the MUUO routine in the
monitor, where UUO processing begins. The monitor uses AC Block 0.
The user program uses AC Block 1. To switch to AC Block ° from Block
1, the monitor issues the following instruction:

DATAO PAG, addr

Where: addr contains the value [400100,,0].

3-5

LOCATING THE FAILURE

When the job is not running, the user accumulators are stored in
JOBDAT in the user's address space. The monitor's accumulators are
stored in the next higher locations in the user's address space.

Once in the MUUO routine, the monitor checks the UUO for legality by
checking the instruction stored in .USMUO of the UPT. The return PC
from USRPC in the UPT is placed on the monitor's stack for this job.
Then control passes to the appropriate routine to perform the function
for the user.

The execution of the user function may finish or it may block, waiting
for something to happen (I/O, for example), before it can continue.
If control can be returned to the user job, the user AC set is
restored and control passes to the location pointed to by the PC in
USRPC. If the job blocks, the monitor goes to clock level. After the
blocking condition is serviced, the job can run again. At the time of
the block, the monitor's PC is stored at USRPC in the UPT.

The MUUO routine uses a stack, also located in the UPT, which the
moni,tor can address because it is mapped through a monitor virtual
address (refer to Section 3.3) .

Some values in the UPT can be cached without interfering with the
system, such as the stack. These locations are referenced by the
symbol .UUPMP. Other locations are not cached; they are referenced by
the symbol .UPMP, which also points to the first location of the UPT.
On a single-CPU system, the monitor caches the contents of all
loca'tions in the UPT from .UUPMP to .UPMP. On multiple-CPU systems,
however, the system only caches the contents of .UUPMP.

3.7 THE PRIORITY INTERRUPT SYSTEM

In exec mode, the monitor can service the user program, a device
request, or a clock-level interrupt. Interrupts can be caused by
devices or by the clock. While in exec mode, the monitor services
interrupts according to the Priority Interrupt (PI) level assigned to
the interrupting process. A typical set of priority interrupt levels
(also called PI channels) might be:

Level 0

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

DTE (Byte Xfer,Deposit,Examine only)
CI/NI (limited set of functions only)
none
DTA (DECtape)
Card reader, APR, clock
Line printer, magtape, NI, DTE (doorbell)
Disk, CI
ANF-10 network
Monitor

To distinguish the interrupt level of the system at anyone time, four
pieces of information are used:

o The set of accumulators currently in use, which reveals the
stack in use.

o The processor mode (exec or user) .

o The status of the PI system.

3-6

LOCATING THE FAILURE

o The process context word. When the monitor is called to
perform a service for a user job, as with a command or UUO,
the microcode creates the job's process context word and
writes it into the UPT. This process context word is
displayed by a DATAl PAG instruction where Bit 2 is cleared,
and contains the current AC block number, the previous AC
block number, section bits, and the current UBR (User Base
Register) .

A summary of the interrupt levels and how to distinguish them is shown
in the following table:

Table 3-1: Interrupt Level Indicators

AC
Block PDL Mode PI Status

User Job 1 Variable User No PIs active
Null Job 1 N/A User No PIs active

UUO Level 0 JOBPDO Exec No PIs active

Clock Level 0 NUnPDL Exec PI 7 active

Device Interrupts:
Terminal driver 2 CnxPD1 Exec PI SCNCHN active
Disk service 3 CnxPD1 Exec PI DSKCHN active
Network service 4 CnxPD1 Exec PI NETCHN active
Other (level y) 0 CnyPD1 Exec PI y active

Page Fail 0 NUnPDL Exec Variable
ERnPDL

You can find the stack by finding the current set of ACs. The process
context word, stored in the UPT, contains the current AC block.

You can determine the status of the priority interrupt system by
looking at the PI status word, stored at location .CnCPI in the CDB.
This word is read by the monitor with a CONI PI instruction and stored
in the CDB when the monitor starts to process a stopcode. Using this
information you can determine whether the PI system was enabled, what
PI levels were enabled, and what kinds of interrupts were in progress.

The PI status word on a KL system has the following format:

Bits

0-10
11-17

18-20
21-27
28
29-35

Meaning

Not used.
Level on which a program requests an interrupt
(Bit 11 = Levell, Bit 12 = Level 2, and so
forth) .
Write even parity (KL diagnostics only) .
Levels on which an interrupt is in progress.
PI system is on.
Enabled levels.

3-7

LOCATING THE FAILURE

3.8 THE DEVICE INTERRUPT SERVICE

A device interrupt occurs when an I/O transfer is complete, a device
has changed status, or an error has occurred. There are two types of
device interrupts: vectored and nonvectored interrupts. A
nonvectored, or standard interrupt, is handled by the software. The
interrupt handling instruction is read from the EPT and control passes
to the CONSO skip chain to determine the device that generated the
interrupt. Section 3.81 describes standard, nonvectored interrupts.

The DTEs (doorbell function only), the interval timer (on the same
level as APR interrupts), RH10, and RH20 MASSBUS controllers all
perform vectored interrupts. vectored interrupts are not dispatched
by the software but are automatically dispatched by the microcode.
Section 3.8.2 describes nonstandard, vectored interrupts.

3.8.1 Standard Interrupts

An interrupt can occur on Levels 1 through 7 only if the PI system is
turned on, there are no higher-level interrupts in progress, and the
PI system i~ enabled for interrupts on that level on which the
interrupt ~s requested. If these conditions are met, the interrupt
will stop the processor and turn on a bit in the PI status word. The
bit indicates the level on which the interrupt is requested. The
processor then executes the instruction for handling an interrupt on
the requested PI level.

The location of the interrupt handling instruction is stored in the
EPT. The exact location in the EPT is calculated from the following:

EPT+40+2*n ;where n is the PI interrupt level

The next instruction to execute in the handling of the interrupt is
stored in the EPT and depends on the PI level on which the interrupt
was requested. The above calculation results in an offset into the
EPT where the instruction is stored. Thus, if a BA10 (unit record)
I/O bus controller is assigned to PI Level 2, the formula would result
in EPT+40+(2*2). The system then executes the instruction stored at
offset 44 into the EPT.

Interrupt level 0 is reserved for certain types of I/O transfers with
DTE and CI/NI (KLIPA/KLNI) devices. Level 0 bypasses the software and
is handled by the microcode, which handles interrupts on Level 0
automatically without requiring the software to store context
information and so forth.

In general, the interrupt instructions in the EPT are formatted as:

XPCW CHnm

where n is the CPU number (omitted for CPUO), and m is t.he level
number on which the interrupt is in progress. For example, CH7 means
Level 7 on CPUO. CH27 indicates Level 7 on CPU2 (the third CPU in the
configuration) . The new PC flags at CHnm+2 usually include the
previous context user flag. This allows the interrupt service routine
to access the user's address space using the PXCT instruction.

The location following each XPCW in the EPT contains an instruction
that will cause an I/O page fail condition (setting the APR flag),
which will usually result in an lOP stopcode.

3-8

LOCATING THE FAILURE

Using a data structure known as the CONSO skip chain, the interrupt
routine polls the devices on that interrupt level and services the
interrupt. with the XPCW instruction, control passes to the skip
chain. Each channel has its own skip chain, starting at the address
pointed to by CHnm+3, whose function is to find the specific device
that created the interrupt and then service its needs.

The monitor performs CONSO instructions to decide which device
generated the interrupt. If it finds the interrupting device, control
passes to the interrupt handling routine. If the device is not
requesting an interrupt, the monitor performs a JRST instruction to
the next CONSO instruction. If it reaches the end of the CONSO skip
chain, it dismisses the interrupt with the following instruction:

XJEN CHnm

When control passes to the interrupt handling routine, the monitor
reads the status of the device, using a CONI or DATAl instruction. On
that basis, it may stop the device, advance buffer pointers, or
perform cleanup operations. A CONO or DATAO instruction clears the
device interrupt status. Failure to do so would cause continual loops
in the interrupt handling routine, and eventually the keep-alive count
would expire.

The KL processor uses the following instructions to perform I/O:

DATAl
DATAO
BLKI
BLKO

CONI
CONO
CONSZ
CaNSO

KS I/O processing uses the following set of instructions:

TIOxb
RDIOb
WRIOb
BCIOb
BSIOb

When the interrupt routine is completed, control returns to the
routine that was running before the interrupt (which may be another
device interrupt at a lower PI level). Each interrupt routine has its
own push-down list. The push-down lists are named CnxPD1, where n is
the CPU number (omitted for CPUO), and x is the interrupt level (from
1 to 6).

Device service routines preserve the state of the machine as it
existed before it was interrupted. They can use AC Block 0, as UUO
level does. Accumulators used by the interrupt routine are saved on
the stack before processing, and restored when processing is complete.

The SAVnx routines (n = CPU number, omitted if 0, and x interrupt
level) are used to save/switch ACs during device interrupts. For
example, SAV1 is the routine to save the ACs for PI Level 1 on CPU 0;
SAV11 is the routine to save the ACs for PI Levell on CPU 1.

3-9

LOCATING THE FAILURE

Certain device interrupt routines have dedicated AC blocks, listed
below:

AC Block Used for

o Exec-mode
1 User-mode
2 Terminal Scanner Interrupt Service
3 File Interrupt Service
4 Network Interrupt Service
5 Reserved for Realtime Interrupt Service
6 KL-paging Microcode
7 Microcode

Interrupt service routines may also need to use the UPT of a job that
is waiting for the completion of I/O, rather than the current job. In
that case, the UBR and SPT must be modified to point to the correct
UPT, and then switched back when the interrupt is through. The
moni·tor routines that accomplish this are SVEUF, SVEUB, and SVPCS.
When you are examining a dump, be sure to check the correspondence
between the job and the UPT/SPT.

3.8.2 Vectored Interrupts

The KL hardware also uses vectored interrupts, which differ from the
standard, nonvectored interrupts in that the vectored interrupt goes
directly to the interrupt-handling routine, using a different
interrupt location in the EPT. The interval timer, the DTE (doorbell
function only), RHIOs, and RH20s may do vectored interrupts.

The DTE interrupts to a location in the EPT, which is calculated as
follows:

EPT+142+10n ;where n is the DTE number (0-3)

For the RHIO/RH20 devices, the system has an internal register called
IVIR (Interrupt Vector). When an RHIO/RH20 device requests an
interrupt, the EBOX hardware/microcode dispatches to the location in
the EPT calculated as follows:

EPT+contents(IVIR)

This interrupt method allows the disk interrupt to vector for the
standard interrupt location for that channel, providing device
independence in the device interrupt handling routine. Thus, the disk
RHIO or RH20 can load the IVIR with 40+2n and the magtape RH10 or RH20
will dispatch directly into the middle of the skip chain to service a
specific controller.

3.9 TRAPS

Traps differ from interrupts in that they are caused by the execution
of a specific instruction rather than by some asynchronous event.
When a trap occurs, the microcode stores the current PC and flags in
the UPT. A new PC double-word, also in the UPT, specifies where
control will pass and in what mode the processor will operate (exec or
user mode) .

3-10

LOCATING THE FAILURE

3.9.1 Page Fail Traps

When a program attempts to access a 'page of data that is not
available, the hardware generates a page fail trap. A page fail trap
can occur for one of two reasons: the user tries to reference an
address that cannot be accessed (page not in memory, page
write-locked) or a hardware error (AR/ARX parity error, page table
parity error) occurs. When a page fail trap occurs, the processor
stores information about the trap in location 500 (.USPFW) of the
current UPT. This location is known as the page fail word.

~he page fail word is formatted differently for a page reference that
1S not available and for a hardware error. The page reference to an
address that cannot be accessed has the following format:

+---+
lUI 1 I Failure Code I IVI I virtual Address I
+---+ o 1 2----------5 6-7 8 9-------12 13---------------------------------35

In either type of page failure, the virtual address is stored in Bits
13 through 35. Bit 0 is on if the page failure occurred in user
virtual address space. If Bit 0 is off, the failure occurred in
executive virtual address space.

If Bit 1 is on, a hardware-detected error occurred, and the failure
code is stored in Bits 1-5. The failure codes are:

Code

20
21
23
24
25
27
36
37

Meaning

No device response on UNIBUS (KS only)
Proprietary violation (KL only)
Address break (KL only)
Illegal indirect word in EA calc (KL only)
Page table parity error (KL only)
Section number in EA calc greater than 37 (KL only)
AR parity error (KL only)
ARX parity error (KL only)

If Bit 1 is off, Bits 2-7 have the following format:

+-----------+
IAIMISITIPICI
+-----------+

2 345 6 7

Bit Name

2 A

3 M

4 S

5 T

6 P

7 C

Meaning

Indicates whether the mapping is valid (0
means a page refill is required).

Indicates that the page has been modified.

Reserved for use by the monitor.

Indicates the type of page reference (0 for
reading, 1 for writing) .

Indicates the page is public, if set.

Indicates whether the page is cachable.

3-11

LOCATING THE FAILURE

At the same time the page fail word is stored, the flag-PC doubleword
is stored at .USPFP (location 501) in the UPT and control passes to
the address stored at .USPFP+2 (location 503), which usually contains:

EXP SEILM

Certain error handling routines modify .USPFP+2. If this location
does not contain SEILM, the cause of the crash may have been a failure
in an error recovery routine.

SEILM examines the page fail information stored in the UPT and breaks
down the code to find the specific cause of the problem. The
error-handling routines are described in Chapter 5.

Note that traps cannot be disabled and
service of an interrupt. To return
Flag-PC doubleword is used.

they can occur during the
to the correct location, the

The page fault trap routine uses AC Block 0 and a push-down list in
the job's UPT.

3.10 CLOCK LEVEL

All functions that must be performed on a periodic basis are done at
clock level, in exec mode. Clock level may be entered in one of the
following ways:

o The clock ticked when the processor was in user mode.

o A UUO could not continue execution (was blocked) .

o The null job was running and a new job became runnable.

o A UUO completed and a clock tick occurred previously, during
the processing of the UUO.

A full cycle occurs when the processor enters clock level as the
result of a clock tick; a partial cycle occurs when the processor
enters clock level as the result of a job blocking or the null job
detecting a newly runnable job. The full cycle starts at location
CLKINT; a partial cycle starts at WSCHED or SCDCHK.

A clock tick interrupt occurs at APR interrupt level but is
rescheduled to run at Level 7. The clock tick initiates accounting
and scheduling functions, then generates a PI Level 7 interrupt.

Only the software will generate a Level 7 interrupt. Level 7
interrupts and ANF-10 network interrupts are controlled by the
software. If the scheduler is running, a Level 7 interrupt will not
be processed.

During the full cycle, the monitor performs the following tasks:

o User time accounting

o System time accounting

o Processing timing requests

o Checking for hung devices

3-12

LOCATING THE FAILURE

o Command processing (policy CPU only)

o Choosing a job to run

o Choosing a job to swap

On a partial cycle, the system only performs user time accounting and
then selects a job to run. A software interlock prevents a Level 7
interrupt from interrupting the partial cycle.

The scheduler uses the null job's push-down list, NUnPDL and AC Block
O. When a partial or full cycle has been done, the scheduler prepares
and,runs either a user job or the null job.

3.11 ACCUMULATORS AND PUSH-DOWN LISTS

The first step in finding the correct push-down list (or stack) is to
get the right set of accumulators. When a crash occurs, the
accumulators are saved in the following places:

AC Block Location

0 .CnCAO .CnCAC = CRSHAC (for CPUO)
1 .CnCA1
2 .CnCA2
3 .CnCA3
4 .CnCA4
6 Portions of .Cn6
7 Portions of .Cn7

The accumulators are stored when stopcode processing starts. The
error processing routines in the monitor use a special stack, ERnPDL.
If this is the current stack, be aware that an error may have occurred
within the error routine. You must do the mapping, or certain stacks
may be inaccessible. Once you have the correct accumulators, the
stack currently in use will become readily apparent. You should check
the stack to make sure the information in it appears to be current.

This information is fundamental to analyzing any crash, and it may
lead directly to the cause of the crash. Often crashes occur because
the ACs are misused, the stack is corrupted, or there is confusion in
the Priority Interrupt handling system. Software crashes are not
always the result of oversights in a complicated algorithm. However,
if the crash is due to a more obscure problem, you can use the
information you have gathered so far to begin your investigation of
the state of the software at the time of the crash.

You can continue your investigation of the crash by comparing the
state of the crash with the monitor sources. The following section
lists the more prominent monitor modules and their functions.

3.12 MONITOR ORGANIZATION

Like the hardware, the software is composed of modules. Each module
of the monitor is compiled separately, and then linked with the others
to make up the monitor. A module is a monitor source file with
related routines in it. For example, FILUUO deals with monitor calls
for file access.

3-13

LOCATING THE FAILURE

The CLOCK1 module controls the following activities:

0 Perform system time accounting

0 Perform user time accounting

0 Initiate terminal command processing (COMCON)

0 Initiate scheduling (SCHED1)

0 Initiate swapping (SWPSER)

0 Perform job context switching

The modules called from UUO level are organized hierarchically. At
the highest level is the UUOCON module, which is responsible for UUO
preprocessing, dispatching to the correct routine, and cleaning up
after the function has been performed. It also contains the code for
some of the UUOs.

For I/O-related UUOs, UUOCON performs device-independent functions
before dispatching to a lower level for the device drivers. The
drivers are responsible for calling the specific modules that issue
the I/O instructions and start the transfers.

Most hardware interrupts enter the CONSO skip chain, which is in
COMMON. From there, control passes to the appropriate low-level I/O
module, or the skip chain may call a routine in the device driver.
Certain types of hardware generate vectored interrupts, which do not
access the skip chain.

3.12~1 Monitor Startup Modules

The monitor uses the following modules when it loads and starts the
system, discarding some of them when normal timesharing begins:

o SYSINI initializes devices and the monitor's data base in
preparation for timesharing. It performs system startup,
running an operator dialog to obtain date and time, and
performs device initialization. The monitor reclaims the
memory space used by SYSINI and uses it for dynamic storage.

o ONCMOD holds the routines related to
structures. The monitor reclaims
storage.

disk
the

units and file
memory for dynamic

o REFSTR refreshes file structures at startup time. The
monitor reclaims the memory for dynamic storage.

o PATCH contains extra space to patch the monitor during
timesharing. Patch space is reclaimed starting at the
location referenced by PATSIZ, and continues up. SYSINI and
patch space are preserved when the monitor is run with EDDT
loaded.

o AUTCON dynamically configures RH10, RH20, DX10, DX20, CI20,
NIA20, and most I/O bus hardware. The monitor does not
reclaim AUTCON memory space, because reconfiguration might be
required during timesharing.

3-14

LOCATING THE FAILURE

The following are optional modules that can be omitted from the
monitor during monitor generation:

o CPNSER holds the routines that control the processors in a
Symmetrical MultiProcessing (SMP) system.

o CTXSER performs job context service.

o IPCSER handles the InterProcess Communications
(IPCF) .

Facility

o LOKCON locks jobs in core.

o PSISER handles the Programmable Software Interrupt
service.

o QUESER controls the ENQ/DEQ facility.

o RTTRP allows for real-time programming.

3.12.2 Symbol Definition Modules

(PSI)

Some modules contain only symbols that are used by other modules.
They do not appear in the assembled monitor:

o F.MAC contains feature test switches.

o S.MAC contains system symbols.

o DEVPRM contains hardware device related symbols.

o DTEPRM contains DTE20 parameters.

o NETPRM contains network parameters.

o JOBDAT contains user job data area addresses.

o D36PAR contains DECnet parameters.

o SCPAR contains Session Control Parameters (DECnet).

o MACSYM contains DECnet macros.

o KLPPRM contains CI20 parameters.

o SCAPRM contains SCA parameters.

o MSCPAR contains MSCP driver parameters.

o ETHPRM contains Ethernet parameters.

3.13 EXAMPLES OF LOCATING FAILURES

The remainder of this chapter illustrates the crash analysis procedure
for three types of crashes. The examples display the information
gathered with the FILDDT patch file described in Section 2.5.
Comments have been added here to describe the information gained from
each command; in an actual command file, comments are illegal.

3-15

LOCATING THE FAILURE

Example 1: IME stopcode (Illegal Memory Reference in Exec Mode)

.RUN MONDDT ;Run the monitor-specific FILDDT

File: lME004 ;Enter crash file name
[Looking at file DSKT:IME004.EXE[30,5653,CAG]]
[Paging and ACs set up from the Exec Data Vector]

diecdb/

.cpslf/

.cpdwd/

.cppgd[

.cptcx[

CPUO

CPUO
o
700100,,4325

700100,,4325

.uspfw/ DFDV NTLFRE#(P)
=113001,,552104
.USPFP/ CAIA 0 =304000,,0
.USPFP+1/ P"TIC+4
$q/ XCT 0(T4) t4/ COMTIV+4

1"COMTIV+4/
u[1,,552051

MOVEM T1,CRSHWD+3(U)
_P"NTLCKC#+4

p/ .UUPMP+616"NUOPDL+22

1"NUOPDL+22/

1"NUOPDL+21/
1"NUOPDL+20/

ttycm7?
COMCON

P"CTICOM#+5

ADD 0 '"
P"TTYCM7#+4

.cpcml/ P"NTLCKC#+4

.cpisf/ .UUPMP+602"NUOPDL+6

1"NUOPDL+6[4,,15772

$q+ldbclp/ CAlL U,43711

.-ldbclp+ldbtit/

=1400,,43705
ttchks=20

CCI 43705

4,,43705/

4,,43706/
4,,43707/
4,,43710/
4,,43711/
4,,43712/

UNWNDC"PLTS5A#+1

tt
21
lIS
ec

ho"'@

$c

$12t

;Check that FILDDT found the
;right CDB
;DIE agrees with FILDDT
;This CPU was in DIE
;Mapping information saved by
;DIE
;It matches that saved by
;SEILM
;The page fault word
;A write attempt to 1"NTLFRE
;The page fault PC flags
;an address
;at which we find part of
;SCNSER's
;typein processing
; However, U contains an
;apparent PC,
;rather than an LDB address
;We are on the clock-level
; stack
;The call within SCNSER which
;failed
;some saved data
;The return PC from the call
;to SCNSER
;Where is this label defined?
;In COMCON.
;This is part of the TTY
; command.
;COMCON's saved LDB address
;has the same incorrect value
;as AC U.
; However, COMCON's saved PDL
;pointer
;points at a likely LDB
; address
;And this LDB has a command
;line
;pointer established
;So we trace its input chunk
; stream
; (POINT 12, addr, 35)
;These chunks are 16 words
; long
;12-bit ASCII, starting next
;word

;"tt 21 115 echo" was the command being executed.

3-16

LOCATING THE FAILURE

1"ttycmd/

1"TTYCMD+1/

1"TTYCMD+2/
1"TTYCMD+3/
1"TTYCMD+4/
1"TTYCMD+5/
=302200,,137
1"TTYCMD+6/

1"TTYCMD+7/

PUSHJ P,SSEC1

PUSHJ P,SAVE2

PUSH P,U
MOVE P1,U
PUSHJ P,CTEXT1
CAIE T3,JOBVER

JRST TTYCO#

PUSHJ P,NTLCKJ

;We proceed to trace the
; execution
;of the command to see where
;U got
; clobbered.

;" " is character code 137,
;so we skipped this
; instruction,
;and executed this code.

;NTLCKJ is called as a result of the NETDBJ macro

ntlckj/ PUSHJ P,NTCHCK

1"NTLCKJ+l/
1"NTLCKJ+2/
1"NTLCKJ+3/

JRST NTLCKJ+3
POPJ P, °
SKIPE .CPISF

1"NTLCKJ+4/ JRST NTLCKC#
1"NTLCKC#/ PUSHJ P,NTLCKI
1"NTLCKC#+1/ JRST ANFMDL+5
1"NTLCKC#+2/ POP P,O(P)
1"NTLCKC#+3/ PUSHJ P,@P(P)
u/ P"NTLCKC#+4

;This routine checks for
;nesting of
;the NETSER interlock (false)

;It then checks for COMCON
; (true)

;Get the interlock
; (failure branch not taken)
;Proceed as a coroutine

;This is the return address
;in U!

;At TTYCMD+2, we pushed U on the stack. We then called a coroutine.
;We should have called NTLCKJ before we pushed U onto the stack.

Example 2: UIL Stopcode (UUO at Inter~pt Level)

.RUN MONDDT ;Run the monitor-specific FILDDT

File: uil002 ;Enter crash file name
[Looking at file DSKT:UIL002.EXE[30,5653,CAG]]
[Paging and ACs set up from the Exec Data Vector]

diecdb/ CPuo

.cpslf/ CPUO

.cpdwd/ °
=20

.usmuo/ CAIA °

.USMUP/ BOOTPA

.USMUE/ MAPBAX+1

.USUPF/ TLNE T1,4
=702432

=603100,,4
$5u/ .CPCAO
.cpca3$5u

p/ .UUPMP+623"C4PD1+23

C4PD1+23/
FREIN5#+5/
FREIN5#+4/

CALMDA#/
CALMDA#+l/
CALMDA#+2/
CALMDA#+3/
CALMDA#+4/

CAIA FREIN5#+5
JRST FREIN3#
PUSHJ P,CALMDA#

MOVE T1,0(U)
MOVEI T2,0
PUSHJ P,SNDMDC
POPJ P, °
JRST F

A

;Check that FILDDT found the
;right CDB
;DIE agrees with FILDDT
;This CPU was in DIE
;UUO PC flags
;The UUO was in the ACs
;UUO effective address
;AC block 3 was current,
;but FILDDT set up AC block 0,
;so we set up AC block 3 by
;hand.
;We have an interrupt level
;stack
;which points to this return PC

;We had called this routine to
;notify
;the MDA of a new disk unit

;Aha!

;An editing error would seem to be responsible.
;The "JRST F" should be a "JRST CPOPJ1".

3-17

LOCATING THE FAILURE

Example 3: KAF stopcode (Keep-Alive Failure)

.RUN MONDDT ;Run the monitor-specific FILDDT

File: KAF003 ;Enter crash file name
[Looking at file DSKT:KAF003.EXE[30,5653,CAG]]
[Paging and ACs set up from the Exec Data vector]

diecdb/ CPUO

CPUO .cpslf/
.cpdwd/
.cppgd[

o
700100,,4325

.cpcpi[

kafloc/

1,,777

XPCW @.CPKAF

APOKAF#
APOKAF#/ CAIA 0 =304000,,0
APOKAF#+l/ P"LOKNPI $c
APOKAF#+2[4000,,0 $s
APOKAF#+3/ APRKAF
APRKAF / MOVEM P, . CP SVP

/ .. UUPMP+603"NUOPDL+7
NUOPDL+7/ WRSLOC"O A
NUOPDL+6/ P"XMTECH#+17

NUOPDL+5/

NUOPDL+6/

P"TTDSC1#+1

P"XMTECH#+17

$q/ JRST XMTCH1#

1"XMTCH1#/
1"XMTCH1#+1/
$[100,,0
l"XMTCH1#+2/
1"APCSET+11/
1"XMTDSP#/
.+11./ SETZ

PUSHJ P,LOKSCI
SKIPE T1,W(U)

JFFO T1,APCSET+11
JRST @XMTDSP#(T2)

SETZ XMTXFP#
XMTMIC#

1"XMTMIC#/ MOVE T2,ARSLOC(U)
$[430400,,2
1"XMTMIC#+1/ TLNE T2,20
1"XMTMIC#+2/ SKIPE KAFLOC(U)
1"XMTMIC#+3/ JRST MICLG3#
1"MICLG3#/ PUSHJ P,HPOS
1"HPOS/ PUSHJ P,SSEC1
1"HPOS+1/ LDB T2,LDPWID
$lt/ 10 10 JOBBLT+4(U)
$[2000,,50020
$q'400=4,,120

1"HPOS+2/ ADD T2,JOBERR+1(U)
$/ -120
1"HPOS+3/ POPJ P,O $
1"MICLG3#+1/ JUMPN T2,XMTOK#
1"MICLG3#+2/ SKIPE T2,ARSLOC(U)
$[430400,,2

3-18

;Check that FILDDT found the
;right CDB
;DIE agrees with FILDDT
;This CPU was in DIE
;Mapping information saved by
;DIE
;CONI PI, result saved by DIE

;Where a KAF STOPCD gets its
; start
; (RSX20F does an XCT of this
; location.)

;PC flags
;and location
;new PC flags
;and location
;Where the real stack pointer
;was saved
;So we examine it

;We're inside XMTECH in
;SCNSER
;from the call of XMTCHR in
;TTDINT.
;Let's look for a loop in
;XMTECH.
;Welre about to restart
;XMTCHR

;Check for output state bits
;We have one,
;so this jumps.

;Bit 11 was set,
;so we dispatch through this
; location,
;getting here.
;These are our LDBMIC bits
; (true)
; (skipped)

;Get horizontal position

;Get terminal width setting
; (POINT 8,addr,35-8)
;from this value
;Dropping the low-order 8
;bits reveals
;a width of A0120
;Adding this gives zero

; (Branch not taken)
;LDBMIC again

LOCATING THE FAILURE

1"MICLG3#+3/
1"MICLG3#+4/
1"XMTOK1#/
1"XMTOK1#+1/
1"XMTOK1#+2/
$ [0
1"XMTOK1#+3/
1"XMTCH2#/
$ [0
1"XMTCH2#+1/
1"ZAPBUF#/
=205100,,200
l"ZAPBUF#+l/
$[100,,0

TLNN T2,140
JRST XMTOK1#

TLNE T2,40
JRST XMTECH#
SKIPN KAFLOC(U)

JRST XMTCH2#
SOSGE T4,BOOTPA(U)

JRST ZAPBUF#
MOVSI T1,DTEDRW#+31

TDNE T1,W(U)

1"ZAPBUF#+2/ JRST ZAPPl1#
1"ZAPBUF#+3/ SETZM BOOTPA(U)
1"ZAPBUF#+4/ MOVE T1,F(U)
$[1400,,37654
1"ZAPBUF#+5/ CAME T1,R(U)
$[1400,,37654
1"ZAPBUF#+6/ PUSHJ P,RCDSTP#
1"ZAPBUF#+7/ SKIPL SLJOBN#(U)
$ [0
l"ZAPBUF#+10/ JRST XMTECH#
1"XMTECH#/ MOVE T1,JOBBLT+2(U)
$[200,,200115
1"XMTECH#+1/ TLNE T1,100000
1"XMTECH#+2/ JRST ECHCNR#
1"XMTECH#+3/ MOVE T1,JOBBLT+3(U)
$[10,,400
1"XMTECH#+4/
1"XMTECH#+5/
1"XMTECH#+6/
$ [0
1"XMTECH#+7/
1"XMTECH#+10/
1"XMTECH#+11/
1"XMTECH#+12/
1"XMTECH#+13/
1"XMTECH#+14/
$[100,,0
1"XMTECH#+15/
1"XMTECH#+16/
1"XMTECH#+17/

TLNN T1,10
TRZ T1,400
SKIPL WRSINS+1(U)

TRNE T1,400
TRNE T1,3000
TLNE T1,400
CAIA 0
JRST ECHCNR#
HLLZ T1,W(U)

JUMPE T1,XMTIDL#
PUSHJ P,UNLSCI
JRST XMTCH1#

; (false)

; (true)
; (skipped)

; (false)

; (non-skip)

; (true)
; (skipped)

; (true)
; (skipped)

; (false)

; (true)
; (skipped)

; (true)
; (skipped)

; (false)
; (false)
; (true)
; (skipped)

; (skipped)

; (branch not taken)

;We're back where we started.

;We have uncovered a loop in XMTCHR processing.
;Comparison with the source shows that this occurs when
;TTY DEFER is set and the line is under MIC control.
;This can be solved by inserting a "TLZ T1,LOLMIC" just before the
;"JUMPE T1,XMTIDL" at XMTECH+15.

3-19

CHAPTER 4

EXAMINING THE DATA STRUCTURES

After you have isolated the failure in the monitor code, you will need
to interpret the source code to make corrections. You must be able to
read and understand the source code, and compare it to the
instructions in the crash file.

For this purpose, the monitor uses symbols to represent almost all
values: bits, words, offsets, instructions, and more. Symbols make
the code easier to read and modify. This chapter describes the
conventions used in choosing symbolic names, and the tools for finding
the symbols in the source code.

4.1 SYMBOLS

This section describes the types of symbols, how they are named and
where they are stored. There is more information about symbolic
representation and usage in the MACRO Assembler Reference Manual.

The TOPS-10 software is made up of modules, each of which has its own
symbolic definitions. By default, a symbol is defined and used only
in a single module. The same symbolic name can be defined and used
differently by different modules.

A global symbol is available to modules other than the one in which it
is defined. The addresses of shared tables or commonly used
subroutines are examples of symbols defined as global.

4-1

EXAMINING THE DATA STRUCTURES

4.1.1 Naming Conventions

TOPS-I0 uses a consistent scheme for naming and using symbols. This
helps you read and understand the sources. For example, the monitor
accumulator locations have names that are consistent throughout most
of the monitor, and they have the following values:

Table 4-1: Monitor Accumulators

Number Name

o S

1 P

2 Tl

3 T2

4 T3

5 T4

6 w

7 M

10 U

11 PI

12 P2

13 P3

14 P4

15 J

16 F

17 R

Description

Contains the I/O status word from a DDB (DEVIOS)
while the monitor is processing I/O operations.

Contains the push-down list pointer currently in
use.

is an unpreserved, temporary AC.

is an unpreserved, temporary AC.

is an unpreserved, temporary AC.

is an unpreserved, temporary AC.

usually contains the pointer to the process data
block (PDB) or the tape controller data block
(KDB) .

contains the user virtual address for
and putting data during UUO execution.
command processing, M contains the
dispatch bits.

getting
During

command

contains the Unit Data Block (UDB) address (for
FILSER or TAPSER), or the Line Data Block (LDB)
address in SCNSER.

is a preserved AC.

is a preserved AC.

is a preserved AC.

is a preserved AC.

contains the job number, high segment number, or
disk controller data block (KON) address at
interrupt level.

contains the DDB address during I/O. It is used
as a temporary register in non-I/O situations.

is a general-purpose, scratch AC.

The uses for each accumulator may change from one release of the
software to the next. You should always check the source code to see
how the program uses a specific accumulator in a specific situation.

4-2

EXAMINING THE DATA STRUCTURES

To restore accumulators correctly, several standard subroutine return
sequences have been set up. The main subroutine does a JRST to one of
the following locations:

Subroutine
Name Function

CPOPJ Regular POPJ return

CPOPJl Increment return address and then POPJ (skip return)

CPOPJ2 Double skip return

TPOPJ Restore Tl and return

TPOPJl Restore Tl and skip return

T2POPJ Restore T2 and return

T2POJl Restore T2 and skip return

MPOPJ Restore M and return

FPOPJ Restore F and return

FPOPJl Restore F and skip return

WPOPJ Restore W and return

JPOPJ Restore J and return

Symbolic names for locations in the monitor are one to six characters
in length. Usually, all six characters are used. The first three
characters identify the data structure and type of symbol; the last
three describe the unique word or field.

Symbols for data structures usually take one of two forms:

dddxxx

.ddxxx

where ddd or dd represents the data structure and xxx represents the
field or word. Some data structures are:

Symbol

.COxxx

.Clxxx

.Cnxxx

.CPxxx

.PDxxx

.USxxx

.CTxxx

.CXxxx

ACCxxx
BAFxxx
CHNxxx
DEVxxx
HOMxxx
JBTxxx
JOBxxx
KDBxxx

Data Structure

CPU data block for CPUO (in low segment)
CPU data block for CPUl (low segment)
CPU data block (n = CPU number)
CPU data block for current CPU (high segment)
Process data block
User Process Table
Context block offsets
Context saved parameters block offsets

Access table
Bad allocation file block
Channel data block
Device data block
Home blocks
Job tables
Job data area
Common controller data block

4-3

KONxxx
LDBxxx
NMBxxx
PPBxxx
RIBxxx
SABxxx
STRxxx
TKBxxx
TTFxxx
TUBxxx
UDBxxx
UFBxxx
UNIxxx

E:XAMINING THE DATA STRUCTURES

Disk controller data block
Line data block
File name block
Project programmer number data block
Retrieval information block
Storage allocation block
File structure data block
Tape controller data block
Forced command table
Magnetic unit data block
Common unit data block
UFD data block
Disk unit data block

Byte pointers referencing fields within these data structures are
named in the following way:

aacbbb

where:

aa represents the first two letters of the three letter name
c represents one of Y, M, B, P, S, or N
bbb represents the name of the pointer

For example, a pointer in uhe BAF block is named BAYbbb.

Bits within words are usually defined as one of the following:

xx.yyy

xxPyyy

where:

xx is the data structure
yyy is the bit name

Here are some examples:

TO.yyy Bits in CONO TIM,
TI.yyy Bits in CONI TIM,
LI.yyy Bits in CONI/CONO PI,
LP.yyy Bits in CONO/CONI APR,
JS.yyy Bits in JBTSTS (job status word)

4.1.2 Symbol Files and Monitor Generation

Several of the monitor modules contain only symbol definitions. They
are used to define the software features and hardware configuration in
the process of building the monitor.

The first step in generating the monitor is to run the MONGEN program
(MONitor GENerator). It asks a series of questions about the hardware
configuration and the software options to be selected. For more
information about the MONGEN program, refer to the TOPS-10 Software
Installation Guide.

MONGEN creates symbol-definition files that describe the aspects of
the system. After running MONGEN, the system installer can build the
monitor with standard source code libraries, or, if changes have been
made to the sources, the monitor must be built from separate modules.

4-4

EXAMINING THE DATA STRUCTURES

If the systems programmer does not want to make any changes to the
standard release of TOPS-lO, the programmer compiles the common
modules and loads them with a distributed library file of the
remaining monitor modules.

It is common practice, however, to make modifications to the TOPS-lO
source code. If changes have been made to one or more TOPS-lO source
modules, the modules of the monitor must be assembled separately to
build a library file.

Next, the MONGEN files must be assembled with the monitor's common
modules, which are:

o COMMOD defines the disk data base.

o COMDEV defines all other devices.

o COMMON describes the CPU, memory, scheduler, job tables, and
so forth.

4.2 READING THE CODE

There are two important sources of information in analyzing system
crashes: the crash file and the monitor source code. The key to
successful crash analysis is to be able to compare the crash file and
the source code. Refer to the TOPS-lO MACRO Assembler Reference
Manual for information about the source code and assembler language
conventions.

4.2.1 How to Use a CREF Listing

The listings of the monitor source code should be cross-referenced
(CREF) listings. You will find a CREF listing more useful than
unassembled source code because CREF produces a sequence-numbered
assembly listing, followed by tables showing where symbols are defined
and referenced. To find a symbol in a module, you need only look in
one of these tables, which points to a line number in the assembly
listing. The CREF program is described in the TOPS-lO User utilities
Manual. ----

4.2.2 Macros

A macro is a set of frequently used instructions in a sequence that
can be called with a single pseudo-instruction. A macro allows the
system programmer to supply arguments to a single instruction, which
the assembler expands to the desired instruction(s). Macros make it
difficult to read the code, however, unless you understand the purpose
of some commonly-used macros.

Several macros are used to define symbols. These macros are defined
in S.MAC:

o XP (A,B) defines the global symbol A as being equal to B, but
DDT will not display A (A==:B).

o ND (A,B) defines A as a global symbol equal to B using the XP
macro, if A has not already been defined.

4-5

EXAMINING THE DATA STRUCTURES

There are many other commonly-used macros in the monitor, including:

o $XHGH, $HIGH, $LOW, $CSUBS, and $ABS, which place code in the
extended high segment, high segment, low segment, common
subroutines, and an absolute physical location, respectively.
Code usually goes in the monitor's high segment, which is
write-protected; data goes in the low segment, which is
writable. $ABS is usually used to place data in physical
Page 0 of memory (Words 0-777).

o Ordinarily, an instruction in a user program is executed
entirely 1n user address space, and an instruction in the
monitor is executed in the executive address space. But to
facilitate communication between the monitor and users, the
monitor can execute instructions to refer to locations in the
other address space. This feature is implemented by the
previous context execute (PXCT) instruction. The following
macros allow you to execute PXCT:

1. EXCTUX moves information from the user's address space to
the monitor.

2. EXCTXU moves information from the monitor's address space
to the user's.

3. EXCTUU moves information from one location in the user's
address space to another.

o The USERAC and EXECAC macros generate code to switch between
accumulator blocks. USERAC switches to AC Block 1. EXECAC
switches to the monitor's AC block. If no argument is given,
the switch is made to AC Block O. If an argument is given,
the AC block specified by the argument is used.

4.2~3 Conditional Assembly

Parts of the monitor are assembled on an optional basis, depending on
conditions defined by an assembler IF statement.

F.MAC has most of the symbol definitions that are used for conditional
assembly. Most symbols are of the form FTxxxx, where FT stands for
Feature Test and xxxx is the specific option. Some of the feature
test symbols and the functions they enable are:

FTKL10
FTKS10
FTMP
FTDUAL

KL10 processor
KS10 processor
SMP (multiple-processor) system
Dual-ported disks are supported

4.2.4 Finding Symbols

When trying to find a symbol in the monitor, you should follow these
steps:

1. Check the symbol table at the back of the CREF listing you
are currently looking at. If one of the numbers after the
symbol name has a pound sign (i) next to it (as in numberi),
the symbol is defined on that line of the code. If the
symbol appears in the CREF listing with no line numbers that
have pound signs, the symbol is global, or it is de:fined in a
universal file.

4-6

EXAMINING THE DATA STRUCTURES

2. If a symbol is defined in a universal file, check your CREF
listings of S.MAC, DEVPRM.MAC, DTEPRM.MAC, NETPRM.MAC,
MACSYM.MAC, and JOBDAT.MAC. If the symbol is not defined in
any of these modules, the symbol is probably global.

3. If the symbol is not defined in the source module or the
universal files, you must obtain a GLOB listing of the
monitor. The GLOB listing points to the modules where global
symbols are defined and used. Search the symbol tables at
the back of those modules. (GLOB creates listings of global
symbols from binary files. It is described in the TOPS-IO
User utilities Manual.)

4. If you are not successful in searching the listings, run the
monitor-specific FILDDT and use the "symbol?" instruction to
find the module where it is defined. If you type a symbol
name followed by a question mark, FILDDT displays the module
where it is defined.

Monitor parameters used by certain modules are often
associated with global symbols that are defined in those
modules. LINK can detect the parameters that are assigned
different values by different modules. FILDDT lists only one
module where each global symbol is defined, and displays a
"G" next to global symbols. If a symbol is not global,
several modules may be listed as containing the symbol. You
can unlock the local symbols for a certain module by issuing
the following FILDDT command:

module$:

The monitor uses many fixed and dynamic data structures for job
control, for memory management, and for device control. Some of the
data structures that are important for crash analysis are described
briefly in the following sections. For more specific information
about the contents of these data structures, refer to the TOPS-IO
Monitor Tables descriptions.

4.3 JOB-RELATED DATA STRUCTURES

Information about a job is kept in the monitor's low segment or in
per-process address space (such as the UPT and JOBDAT). Most of the
following data structures are job tables, and have JBT as the first
three letters of the symbolic name (an exception is TTYTAB). Most job
tables have one entry in the table per job. Some of these tables also
have entries for high segments, because the monitor sometimes treats
high segments like jobs.

The following job tables hold information about the status and
condition of the job:

o JBTSTS, JBTST2, and JBTST3 contain the current state of the
job, including the processor queue, execution status,
swapping status, event wait condition, and whether the job is
logged in.

o JBTCQ and JBTCSQ hold the processor queue number, subqu'eues,
and scheduler class for each job. These tables are organized
as a series of linked lists.

o JBTSWP holds the disk address of the swapped-out job.

4-7

EXAMINING THE DATA STRUCTURES

The following tables hold the features and options for the job:

o JBTPRV holds the job's privileges.

o JBTSPL holds the spooling bits for the job. These control
how and when requests to spooled devices (LPT, PLT, and so
forth) are handled.

o JBTSCD holds the job's scheduler class.

o JBTWCH controls the WATCH information displayed by the
monitor for the job.

o JBTLIM holds the CPU run-time limit for the job. The monitor
checks this value before processing batch jobs.

The following tables describe the user and the program being run:

o JBTNAM holds the program name.

o JBTPPN holds the project-programmer number.

o JBTLOC holds the ANF-IO node number for remote spooling.

o JBTUPM, a component of the 8PT, points to the physical page
of this job's UPT when the job is swapped in.

The following tables are used to point to the location of another
job-related table:

o JBT8GN contains the address of the job's high segment
descriptor blocks.

o JBTPDB holds the address of the job's Process Data Block (the
PDB) .

The Process Data Block (PDB)
including:

o User name (in 8IXBIT)

stores more job-related information,

o Accumulated run-time, core and disk usage

o virtual memory limits

o IPCF information

o Current program name and directory

o The job's search list

o Context flags, quotas, and chain pointers

The words in the PDB are named .PDxxx, where xxx is the specific word.

The remainder of the job-related information is stored with the job
itself in JOBDAT or the UPT. JOBDAT holds the user accumulators when
the :job is not running, the starting address of the program, the
addresses of DDT and the symbol table, and other locations required to
run the program.

4-8

EXAMINING THE DATA STRUCTURES

4.4 CPU DATA STRUCTURES

The CPU Data Block (CDB) contains most of the CPU-specific
information. On a multi-processing system of two or more KL
processors, the monitor maintains a different CDB for each processor.

The CDB is is divided into two sections:
and the other for variable definitions.
information as the following:

one for constant definitions
The constants area holds such

o CPU number

o Instructions to execute in certain situations, such as device
interrupts

o Bit masks

o Hardware constants

The variables area stores such information as:

o Stopcode information

o Hardware error information

o Performance information

o Frequency of certain events

o Per-CPU patch space

The CDB words are named .CPxxx or .Cnxxx, where n is the CPU number
and xxx is the unique symbol for the word. On a single-CPU system,
the .CPxxx format is always valid. In a multi-CPU system, .CPxxx
refers to the current CPU (or, in FILDDT, the CPU that is currently
mapped). To refer to the data on a CPU other than the one you are
currently accessing, use the .Cnxxx formation, replacing n with the
CPU number (0 through 2) .

The COMMON module contains the CWRD
variables in the CPU Data Block
following way:

CWRD (nam, val, len, lbl)

where:

is the word name

macro to
(CDB) .

define
CWRD is

constants and
called in the

nam
val is the optional value to store in this address

(default=O)
len
lbl

is the optional length of storage area (default=1)
is the optional alternate lable for old-style CPUO
references

For example, the following instruction defines .CnOK as a global
symbol with a value of -1:

CWRD (OK, -1)

For example, the following instruction defines .CnACN as a word in the
CDB variables area, with the alternate name APRSTS:

CWRD (ACN,,1,APRSTS)

4-9

EXAMINING THE DATA STRUCTURES

The scheduler uses a series of tables to control the use of the CPU.
Some of the scheduler tables are:

o QBITS determines how the scheduler should move a job from one
wait state to another.

o SSCAN and SQSCAN tell the scheduler the order and direction
the run queues should be scanned to find a runnable job.

o ~ransfer tables control the destination queue for requeued
jobs.

The AVALTB table contains flags to indicate whether a sharable
resource has become available. A sharable resource is a portion of
the monitor that can only be used by one process at a time.

Some of the sharable resources are:

Name

AU
ex
DA
EV
MM

Resource

Alter UFD (one per UFD, per structure)
PDB/context block interlock word (one per job)
Allocate disk space (one per disk unit)
Use executive virtual memory
Memory management (for modifying the data base)

REQTAB contains the number of jobs waiting for each resource. A value
of -1 in REQTAB indicates that the resource is available; a value of
zero means that a job has the resource and no other job is waiting.

INTTAB describes each hardware interrupt routine. Each two-word entry
contains the PI level, the address of the DDB (or prototype DDB), and
the CPU to which the device is connected.

4.5 MEMORY DATA STRUCTURES

The monitor uses PAGTAB and PT2TAB to allocate user and monitor memory
space (usually referred to as "core"). The tables contain one word
for each page of physical memory. A job's allocation of pages is
maintained as a forward linked list using PAGTAB, and as a backward
linked list with PT2TAB. All the pages for a job are linked using the
right half of a PAGTAB and PT2TAB entry. PAGPTR contains the starting
address for the linked list of free pages. The left half of the
PAGTAB and PT2TAB entries contain bits describing how the page is
used: whether it is locked, locked in executive virtual memory, and
so forth. The monitor uses PT2TAB to obtain information about
swapped-out pages.

MEMTAB also has one entry for each page in memory. The monitor uses
MEMTAB during swapping and paging requests, to keep track of where
pages are stored in the swapping area and which page to transmit next.

The monitor also maintains areas of dynamic storage called free core,
allocated in four-word chunks, using a bit table to determine which
chunks are in use and which are not.

4-10

EXAMINING THE DATA STRUCTURES

4.6 COMMAND PROCESSING TABLES

The command processor uses several tables to verify and control
monitor commands, including COMTAB, DISP, and UNQTAB. COMTB2, DISP2,
and UNQTB2 are used to describe SET commands. COMTBC, DISPC, and
UNQTBC are for customer use.

TTFCOM is the forced commands table.
monitor determines that a job must
regardless of the job's current state.
commands in the TTFCOM table into
processing the command.

4.7 UUO PROCESSING TABLES

This table is used if the
execute a command immediately,
The monitor does not place the
a terminal input buffer before

UUOTAB contains the addresses of the operator-dependent UUO routines.
The addresses are arranged in order of VUO opcode, with one halfword
devoted to each address. The UUO handler verifies whether the UUO is
valid and dispatches to the address stored in UUOTAB. If the UUO is
illegal, control passes to an error routine called UUOERR.

The tables UCLJMP and UCLTAB are used for the CALL and CALLI UUOs.
UCLTAB contains the names for the CALL UUOs; UCLJMP contains the
addresses of the CALL/CALLI routines.

4.8 I/O DATA STRUCTURES

The most dynamic and interrelated data structures in the monitor are
those related to I/O. The data structures that are common to almost
all I/O operations are the Job Device Assignment table (JDA), the
device data block (DDB), and user I/O buffers. Other data structures
exist to control specific types of hardware: disk or tape units,
device controllers, or software I/O channels. For certain devices
(such as disk), an extra level of organization is imposed: the
logical file structure, requiring additional data structures.

4.9 THE JOB DEVICE ASSIGNMENT TABLE

The Job Device Assignment table (starting at USRJDA in the UPT) holds
the addresses of the DDBs currently in use by the job. It is indexed
by the software channel number. When the user issues a UUO to
initiate I/O, a software channel number must be supplied, which is
associated with the device or file to be accessed. More channels are
available in the extended channel table, stored in funny space.
Extended channel table entries are in the same format as the JDA
table. The contents of .USCTA in the UPT point to the extended
channel table.

The left half of the JDA entry for a channel contains status bits that
indicate which UUOs have been successfully completed for this channel.
Following are some of the status bits, which are defined in S.MAC:

Bit Symbol

0 INITB
1 IBUFB
2 OBUFB
3 LOOKB

Meaning

An OPEN or INIT has been done on this channel.
INIT specifying input buffers was done.
INIT specifying output buffers was done.
LOOKUP was done.

4-11

4
5
6
7
8
9

10
11
12
13

ENTRB
INPB
OUTPB
ICLOSB
OCLOSB
INBFB
OUTBFB
SYSDEV
RENMB
RESETB

EXAMINING THE DATA STRUCTURES

ENTER was done.
INPUT was done.
OUTPUT was done.
CLOSE (input side of channel) was done.
CLOSE (output side of channel) was done.
INBUF was done.
OUTBUF was done.
System device, or [1,4] for disk area.
RENAME UUO in progress.
RESET UUO in progress.

4.10 THE DEVICE DATA BLOCK

The monitor uses the Device Data Block (DDB) to control each device.
The information in the DDB comes from a monitor call and is read by
the interrupt handling routine to perform the I/O. The handler
records the status of the operation in the DDB. The monitor and the
user can read the status of the I/O operation from the DDB. For
example, the monitor can detect a hung condition by checking a timer
in the DDB.

User programs can include the same instructions to perform I/O with
disk devices, magnetic tapes, and line printers, because the format of
the DDB is similar for all devices. The monitor handles the devices
differently by handling the DDBs differently and by ignoring any
information in the DDB that is not relevant to the specific device.
For example, the monitor creates DDBs for single-user devices when the
system comes up; these DDBs are never deleted. The monitor simply
updates the information in the data block. For sharable devices, such
as disk devices, the monitor creates DDBs dynamically in the user's
funny space, when a channel is opened. The DDB for the channel is
deleted when the channel is closed. Spooled devices, such as line
printers, are handled in a similar manner.

A device on an ANF-10 network front-end requires a special kind of
DDB, because remote stations can have line printers or card readers.
When a user first accesses the remote device, NETSER creates a DDB for
the device. COMDEV contains the prototype network DDB.

NETDEV contains the I/O routines for specific network devices. For
example, the RDXSER routine, in NETDEV, handles RDA devices, and the
TSKSER routine handles intertask communication.

DTESER contains the DTE device handling routine for DECnet front-ends
(DN20s running MCB software). The DTE DDB is dynamically created for
the purpose of loading and dumping the front-end memory.

All DDBs include the following locations:

o DEVNAM contains the SIXBIT device name.

o DEVBUF contains the addresses of the user buffers.

o DEVMOD describes the type of device.

o DEVIOS is the I/O status word.

o DEVSER contains a pointer to the next DDB and the address of
the dispatch table.

4-12

EXAMINING THE DATA STRUCTURES

Most devices are configured dynamically by the monitor. A prototype
DDB exists for each type of device. When a recognized hardware device
is detected by the monitor, a DDB is created and the contents of the
prototype DDB are copied into the new DDB. Then, specific information
(device names, unit numbers, and so forth) are filled in. Prototype

DDBs are linked into the DEVLST chain. They may also by found by
indexing into DDBTAB using the .TYxxx value for the device in
question. For example, .TYMTA has a value of 2. DDBTAB+2 contains
the address of the prototype magtape DDB.

Device Module DDB Hardware Interface

Card reader CDRSER CR1DDB CR10 I/O BUS
DCRSER DCRDDB CD20/RSX-20F

Card punch CDPSER CDPDDB CP10/CP10D I/O BUS
Line Printer DLPSER DLPDDB LP20/RSX-20F

LP2SER LP2DDB LP20/UNIBUS (KS10 only)
LPTSER LPTDDB BA10/LP100 I/O BUS

Magtape TAPUUO TDVDDB All interfaces
Plotter PLTSER PLTDDB XY10 I/O BUS
Paper tape reader PTRSER PTRDDB CR04 I/O BUS
Paper tape punch PTPSER PTPDDB CR04 I/O BUS

4.11 FINDING DDB INFORMATION

The following example shows how to look at a crash file to find the
DDBs and other information about I/O. In this example, Job 7 was
running LPTSPL. You must first issue the mapping command ($6U), to
map the UPT through Job 7, rather than through the UPT for the job
that was currently running. A typical command sequence might be:

JBTNAM 7$6T/ LPTSPL
JBTUPM 7[42000,,152 .-n$6U

where n is the CPU number of the CPU that is currently mapped.

The commands to look at the user job device assignment table are:

USRJDA[
.UPMP+652 [
.UPMP+653
.UPMP+654
.UPMP+655
.UPMP+656
.UPMP+657
.UPMP+660
.UPMP+661
.UPMP+662
.UPMP+663
.UPMP+664
.UPMP+665
.UPMP+666
.UPMP+667
.UPMP+670

506000,,65334
506000,,65414
o
o
o
o
o
o
o
o
o
o
o
o
o
o

;Channel 0
;Channel 1
;Channel 2

;Channel 17# (octal)

The commands to display the devices associated with the DDBs are:

$6T 65334/
65414/

LPTO
LPT1

Both devices are printers, controlled by LPTSPL.

4-13

EXAMINING THE DATA STRUCTURES

The left half of each JDA entry contains bits indicating the UUOs
executed for that channel. The left half of the JDA entry shown above
contains 506000, which indicates Bits 0, 2, 6, and 7 turned on. These
bits are set for the following UUOs:

OPEN/INIT
OUTBUF
OUTPUT

Bit 0
Bit 2
Bit 6
Bit 7 CLOSE (input side, as input is not allowed in LPTs)

The user buffers are the next source of information. Find the output
buffer for LPT261 by examining the left half of the DEVBUF word in the
DDB, which holds the address of the output ring header:

65414+DEVBUF/ 45150,,0 ; output-header, ,input-header

The user buffers are always in user address space. To examine
locations in user address space, switch mapping to the user job.
JBTUPM shows that the UPT starts at 152; therefore, the command to
switch mapping to user space is:

152$1U

Now you can examine the contents of the output ring header:

45150/
45151/
45152/

44351
10700,,0
-1

;Current buffer addr+1
;Byte pointer
;Byte count

Location 45150 contains the address of the second word of the current
buffer, which contains the address of the next buffer in the buffer
ring, and so forth. You can locate all the buffers in the ring using
the same method:

44351/
44551/
44751/
44151/

176,,44551
176,,44751
176,,44151
176,,44351

;Buffer 1
;Buffer 2
;Buffer 3
;Buffer 4

Therefore, there are four buffers set up. The right half of the
header word points to the next buffer in the ring. The left half
holds the use bit and the buffer size. Bit 0 is the use bit (BF.IOU),
and its setting indicates the following state in the following types
of buffers:

Buffer Empty Buffer Full

Input Buffer
Output Buffer

o
1

1
o

In the left half of the header words listed above, Bit 0 is off,
indicating that the output buffers were full. The remainder of the
left half holds the buffer size, in this case, 176 (octal) words.

To read the contents of the first buffer, use the following commands:

$$7T
44151/ @pHt@
44152/ }
44153$OT/ . GLE
GGGGGGGGGGGG
EEEEEEEEEEEEEEEE

File format:ASCII Print mode:ASCII /DELETE AL
RRRRRRRRRRRR 111111111 PPPPPPPPPPPP EEE

4-14

EXAMINING THE DATA STRUCTURES

The rest of the buffer contains the
immediately before printing a file.
file when the system crashed.

banner page printed by LPTSPL
LPTSPL had just begun printing a

Job 7 is using two DDBs,
extended channel table
DDBs. Note that the left
table does NOT contain
apparent. Only the right
data:

but it is also important to check the
for the job. In this case, it reveals more
half· of the pointer to the extended channel

a section number, as might seem immediately
half of this word is a valid pointer to

. UPMP+USCTA [21,,341200

341200[
341201[
341202 [

651500,,340000
651400,,340063
651400,,340146

;Channel 20
;Channel 21
;Channel 22

These DDBs are in funny space, so they are disk DDBs. They contain
the following file names: SYS:LPFORM.INI[1,4], DSKC:ERROR.FS[6,6] ,
and DSKC:GRIPE.SRJ[1,2]. The DDBs are displayed as follows:

340000/ SYS
340000 DEVNAM/ LPFORM
340000 DEVEXT/ INI (
340000 DEVPPN[1, ,4

340063/ DSKC
340063 DEVNAM/ ERROR
340063 DEVEXT/ FS A
340063 DEVPPN[6, , 6

340146/ DSKC
340146 DEVNAM/ GRIPE
340146 DEVEXT SRJ
340146 DEVPPN[1, ,2

Because the banner page that was being printed has the file name
GRIPE, it is clear that the third disk DDB is associated with the file
that was being printed at the time of the crash.

4.12 LINE DATA BLOCKS (LDBS)

The monitor uses terminals in two different ways: they are the means
to enter commaqds directly to the monitor, and they are also subject
to control by user programs. To serve both functions, there are two
data structures: the terminal DDB and the Line Data Block (LDB).

LDBs contain information about a terminal line. There is one LDB for
each terminal and it is built when the monitor is initialized. LDBs
are not created dynamically; they continue to exist as long as the
system is in operation. This allows users to type commands on
terminals even though they are not logged in, and permanent LDBs speed
response because the monitor does not have to spend the time
allocating an LDB. The code to allocate and initialize the LDBs is in
SCNSER, and it is discarded when system initialization is complete.

4-15

EXAMINING THE DATA STRUCTURES

In general, an LDB contains:

o Pointers to input and output chunks (terminal I/O buffers)

o Counts of how many characters are currently in the chunks

o Pointer to its associated DDB

o Line status bits

o Line characteristic bits

o Position counter

o MIC information

o Break characters

o Count of characters to echo

You can use LINTAB to locate the LDB entry for a terminal line.
LINTAB contains one entry for each terminal in the system (including
CTYs and PTYs). Use the TTY number as the offset into LINTAB. The
LINTAB entry (a fullword global address) points to the LDB, and the
first word of the LDB points to the terminal DDB (if the terminal DDB
exists) .

4.13 THE SCNSER DATA BASE

SCNSER processes user input and calls the appropriate module to handle
the I/O. The SCNSER data base is composed of the following virtual
memory sections:

Data

LINTAB
DSCTAB
DDB pool
:LDBs
Chunk pool

Memory Section

Section 0
Section 0
Section 0
Section 4
Section 4

4.14 TERMINAL CHUNKS

Used for

Translates line no. to LDB addr
Translates modem no. to line no.
TTY device data blocks
Line data blocks
Buffers

Terminal data is usually stored in eight-word buffers called TTY
chunks. In 12-bit ASCII mode, the terminal chunk size varies.
Examine the value of TTCHKS to see the current size of a terminal
chunk. The terminal chunk starts with a pointer to the previous
chunk, and a pointer to the next chunk, followed by the character
data.

Chunks are maintained as doubly linked lists, using halfword links
relative to Section 4. Each terminal line can potentially have four
linked lists of chunks: one for input, one for output, a list for
filler characters, and a list for out-of-band characters. When chunks
are no longer needed by a terminal line, they are returned to a free
list of chunks. The LDB contains pointers to the chunks.

4-16

EXAMINING THE DATA STRUCTURES

Each character in a chunk is stored as a 12-bit byte, permitting a
maximum of 21 characters to be stored in a chunk (3 to a word). In
reading the characters in terminal chunks using FILDDT, use the $12T
command to break up the 36-bit word into 12-bit bytes (4 bits for
flags + 8 bits for data) .

The monitor keeps all the chunks in a pool. The TTYINI routine, in
SCNSER, initializes the chunks, allocating space for them and creating
the links. .

The location TTFTAK points to the first free chunk in the pool. When
a terminal needs a chunk, it gets the chunk pointed to by this
location. TTFPUT points to the last free chunk in the list and
returned chunks are stored after this chunk. TTFREN contains the
number of free chunks in the system. The following macros place
characters in the chunks and remove characters from the chunks:
LDCHK, LDCHKR, and STCHK. The following macros are useful in terminal
handling. However, these macros should not be called when SCNSER
interrupts are enabled.

a LDCHK takes a character out of a chunk, and does not give
back used chunks (useful when echoing input) .

a LDCHKR takes a character out of a chunk and returns used
chunks to the pool, if necessary.

a STCHK puts a character in a chunk, allocating chunks from the
pool, if necessary.

4.15 TERMINAL DEVICE DATA BLOCKS

Terminal device data blocks are allocated from the TTY DDB pool as
jobs are created, or as the terminal is assigned by a job on another
terminal. Some types of information that are stored in the terminal
DDB are:

a Pointers to user buffers

a Device and logical names for the terminal

a I/O status information (DEVSTA)

a Device mode information (DEVMOD)

a CPU number of the CPU that owns this terminal

a Pointer to the LDB

Every job has a terminal DDB for its controlling terminal, whether the
job is attached or not. Terminal DDBs are created when a job number
is assigned (that is, when a program is run) and when a terminal is
assigned or OPENed by another job. If the job is not logged in when
the program finishes, the DDB is deleted. If the job is logged in,
the DDB remains until the job logs out or detaches.

TTYTAB is a table in COMMON that has one entry per job and points to
the DDB of the controlling (attached) terminal of the job. If a
program opens a software channel for a terminal, an entry is made in
the channel table for the terminal.

4-17

EXAMINING THE DATA STRUCTURES

LDBs and DDBs are linked when a job is created or a terminal is
attached to a job. These links are destroyed when:

o You log out or detach your job.

o A node goes down when the terminal is connected.

o You hang up the modern of a terminal that is connected.

o You release a terminal on a software channel.

TTYATI attaches the terminal to the job when the job is created;
TTYATT at'taches the terminal for the ATTACH command.

4.16 FINDING TERMINAL I/O INFORMATION

The following example shows
terminal chunks for a job.
which is running PIP. First,
terminal DDB for the job:

how to extract information from the
In this case, you are examining Job 17,

look at TTYTAB, which points to the

TTYTAB+21[102206

102206$6T/ TTY124

As the first word of the block verifies, it is a terminal DDB.
find the LDB by looking at the DDBLDB word:

102206+DDBLDB[4,,450430

4,,450430[102206

The DDB pointer in the first word of the LDB is correct.
examine the LDB:

4,,450431[
4,,450432[
4,,450433[
4,,450434[
4,,450435[
4,,450436[
4,,450437[
4,,450440[
4,,450441[
4,,450442[
4,,450443[
4,,450444[
4,,450445[

o
100000,,0
10000,,0
o
o
o
1400,,426522
1400,,426522
o
o
301400,,422450
301400,,430276
2137

;Ptr to put output characters
;Ptr to take output characters
;No. of characters in output

Next,

Next,

The pointers are PDP-10 byte pointers. The memory address in the
right half points to the terminal chunk, which can be displayed by:

4,,430276$12T/ <space><space><

The pointer is in the middle of the chunk. Determine the chunk size,
in order to know where tne chunks begin and end:

TTCHKS=10

4-18

EXAMINING THE DATA STRUCTURES

Now, start from a few locations back, and you can see:

4,,430275/
4,,430274/
4,,430273/
4,,430272/
4,,430271/

10

MEM
DT
"@I"Q =417221

The contents of location 4,,430271 are a backward pointer in the left
half, and the location of the next chunk in the right half. The chunk
itself holds the text "DT MEM 10 <***>."

By examining the next chunks, you can deduce the entire message:

DT
BOOT11
BOOT11
BOOT11
BOOT11
BOOT11
BOOTS
BOOTS
BOOTS
BT128K
BT256K
WIBOOT
WLBOOT
WSBOOT
WTBOOT
WTBOOT
DML6A
DMPFIL
DMPFIL
DMPFIL
COPY
CPY007
DTC007
DTCOPY
DTCOPY

MEM
DOC
EXE
HLP
MAC
MEM
DOC
EXB
MAC
EXB
EXB
EXE
EXE
EXE
DOC
MAC
DOC
EXE
MAC
MEM
EXE
DOC
DOC
EXE
MAC

10
10
28

2
108

29
35
10
92
10
10
32
32
24
18
29

3
16
34

5
8
4
3

20
43

<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>
<***>

666405
157023
411354
500576
010501
544353
352703
556224
764007
605464
556224
607553
325717
631454
451662
007472
331675
071372
661675
077054
605250
507510
204110
456574
303311

9-Jul-80
27-Jul-79
26-Jul-82
5-Jan-75

27-Jul-79
27-Jul-79
17-Jul-79
26-Jul-82
31-I.Jul-79
26-Jul-82
26-Jul-82
30-Nov-79
30-Nov-79
30-Nov-79
28-Jun-79
20-Jul-79

7-Mar-79
16-Jul-80

7-Mar-79
8-Mar-79

17-Jul-80
8-Mar-79
8-Mar-79

17-Jul-80

4A (46)
4A (46)

7 (12)
7(12)
7 (12)

6A (7)

7(101)

7(101)

The user was reading a BACKUP tape directory listing when the system
crashed.

4. 1 7 TAPE DRIVES

The data structures for tape drives parallel the actual hardware
components. Depending upon the hardware interface, a magtape
controller may be connected to as many as 15 drives. The software has
up to 15 tape unit data blocks (TUBs) connected to a tape controller
data block (KDB) , which then points to a channel data block (CHN).

There is one TUB for each tape unit in the system. It contains the
unit name, pointers to the DDB and controller, error counts, tape
label information, and a pointer to the lORE (I/O request block, the
request to the controller outlining the I/O transfer). The first word
in each TUB is the SIXBIT name of the tape unit, in the form:

MTxy

where x = the controller name and y the unit number. For example:

MTAO

4-19

EXAMINING THE DATA STRUCTURES

The prototype TUBs are:

Symbol

DX1UDB
T78UDB
TCXUDB
TM2UDB
TMXUDB
TS1UDB
TX2UDB

Units

DX10/TX01/TX02
TM78
TC10C
TM02/TM03
TM10B
SA10/TX01/TX02
DX20/TX02

The KDB identifies a controller and there is one for each tape
controller in the system. It holds the name of the controller, a
pointer to the next KDB, the channel command list, a list of TUBs
owned by the controller, and controller-dependent information. In the
monitor, KDBs are pointed to by KDBTAB+.TYxxx. The name of the
controller is stored in the first word as MTn, where n is the
controller number. The KDB also points to the channel it is connected
to.

The prototype KDBs are:

DX1KDB
T78KDB
TCXKDB
TM2KDB
TMXKDB
TS1KDB
TX2KDB

Channel data blocks exist for channels that are connected to any type
of controller. They hold enough information to start and monitor the
channel transfer, including:

o Error counts

o Retry information

o Channel status

o Channel queue

At system startup, AUTCON creates one magtape DDB for each unit on
each controller. The start of a magtape DDB can be obtained from
DDBTAB+.TYMTA. The magtape DDB is named:

MTxu

where:

x is the alphabetic controller name (A for controller 0, B for
controller 1, and so forth)

u is the unit number

A special magtape DDB (called a Label DDB) is required for the tape
label processor (PULSAR). This is needed so I/O can be performed by
two different jobs (the user job and the job running PULSAR), while
the device remains assigned to the user job. The label information is
stored in the Tape Unit Data Block (TUB), which is common to both the
magtape and the label DDB.

4-20

EXAMINING THE DATA STRUCTURES

The name of a label DDB is in the form:

'Lxu

The values of x and u are the same as shown above for the magtape DDB.
The label DDB has the same format as a magtape DDB.

4.18 DISKS

Disks are the most complex peripheral I/O devices in a timesharing
system. They are shared among jobs, using a logically structured file
system to store data and prevent destructive interference. The basic
unit of disk storage is one block (equal to 128 words) .

TOPS-10 organizes information into logical groups known as files. The
contents of a file are referenced by the file specification, which
uniquely identifies the file. A file specification has four
components:

o A file structure name, which identifies the disk drive or
group of disk drives where the file is stored

o An ordered list of directory names (MFD, UFD, and SFDs, if
any)

o A file name of one to six alphanumeric characters

o A file extension of zero to three alphanumeric characters

A file structure is a logical device name that refers to one or more
physical disk units. Using the file structure name, the user job need
never know the exact physical unit where data is stored.

The directory where a file is stored helps to uniquely identify the
file. TOPS-10 organizes files by using file structures, User File
Directories (UFDs), and Sub-File Directories (SFDs). A UFD or SFD is
itself a file, and contains a list of all files for a user, and a
pointer for accessing those files.

The Master File D~rectory (MFD) points to all the UFDs on a particular
disk file structure. There is one MFD for each file structure,
containing the names and addresses of all the UFDs on that structure.

Each UFD can optionally contain Sub-File Directories (SFDs). An SFD
is a logical group of , files within the UFD. SFDs can contain their
own sub-file directories, which can be nested to a level of five SFDs
in a single UFD.

The UFD is named with the user's PPN, in brackets. For example, the
user with PPN 10,507 has the following UFD:

[10,507]

You specify an SFD by typing the name of the UFD, followed by the name
of the SFD (up to six alphanumeric characters). For example, the UFD
[10,507] could contain a file called FIRST.SFD. To access the files
in this SFD, the user specifies the following directory:

[10,507,FIRST]

4-21

EXAMINING THE DATA STRUCTURES

In th.e SFD, t'he user keeps a file called SECOND. SFD, which points to a
nested SFD. To access files in the nested SFD, the user types the
following directory name:

[10,507,FIRST,SECOND]

The monitor does not write the data on disk in physically consecutive
disk blocks. The monitor must allocate disk space effectively in a
dynamic situation where users are constantly creating, deleting,
modifying, and appending to variable-length files. Therefore, the
monitor segments disk space into blocks and stores files in space that
is available throughout the file structure.

To maintain this complex storage system, the monitor must maintain
some amount of overhead data for retrieving files and allocating disk
space. The RIB (Retrieval Information Block) contains the retrieval
information for the file.

A RIB is a block on the disk that contains retrieval pointers to the
blocks making up the entire file. The UFD points to the first RIB for
each file. Each retrieval pointer in the RIB describes a contiguous
block of data called a "group." The retrieval pointer contains the
first physical disk address of the group and the number of blocks that
are in the group. UFDs and MFDs also have RIBs to describe their
locations on the disk unit.

A retrieval pointer contains the following information:

o The number of clusters in this group

o The cluster number where the group starts

o The checksum for the group

One of the following conditions is possible, if the left half of the
retrieval pointer is zero:

o If Bit 18 = 1, Bits 19 through 35 contain the logical unit
number of the next unit to get data from. This allows one
RIB on one unit to hold pointers to data on another unit in
the same structure.

o If the right half is zero, there is no more data in the file.

If a file
extended
writes an
RIB, for
spare RIB.

needs more than one RIB to retrieve the data, it has
RIBs at the start of subsequent groups. The monitor also
extra copy of each RIB as the last block pointed to by the
disk error recovery purposes. That copy is known as the

The first RIB is known as the prime RIB.

Each disk unit contains a HOME block, which describes the file
structure that contains the disk unit, and points to the MFD. Blocks
1 and 10 (decimal) on the disk contain the HOME block, which records
the following information:

o The file structure to which this unit belongs, and the unit's
position within the structure

o The characteristics of the unit and file structure

o A pointer to the MFD

The monitor uses the HOME block to find the MFD when the file
structure is mounted for a user.

4-22

EXAMINING THE DATA STRUCTURES

The monitor keeps information about used disk blocks in the Storage
Allocation Tables (SAT blocks). The SAT block on each file structure
is stored as SYS:SAT.SYS. Each bit in the SAT block represents a
group of contiguous disk blocks called a cluster.

The smallest unit of data on disk that the monitor can allocate is the
cluster, which is composed of a specific number of disk blocks. A
small disk unit might use a cluster size of 3 blocks (600 words) . If
the monitor must allocate space to a file that is smaller than
200 (octal) data words, an entire cluster is allocated. When the
cluster size increases, fewer $AT blocks are required for storage
allocation information; with fewer reads/writes to the SAT, a smaller
number of operations is required to assign and release disk space.

Large clusters save memory at the expense of disk space. Because disk
space is allocated in clusters, short files result in wasted space if
the cluster size is too large.

The MFD contains pointers to the UFDs on the disk unit. The UFD
contains a two-word entry for each file in the UFD. The UFD entry
specifies the file name in the first word, and file extension 1n the
left half of the second word and a pointer to the file in the right
half of the second word called the compressed file pointer (CFP). The
CFP is the 18-bit address of the RIB of the file, pointing to the
first supercluster of the file. A supercluster is a set of clusters
stored contiguously on disk. A file always starts at the supercluster
boundary, but one file may fill many superclusters of disk space.

The number of blocks per cluster is usually equivalent to the number
of blocks per supercluster. However, if the total number of clusters
on a file structure is greater than 262,143, the clusters are
regrouped into superclusters such that 'the number of superclusters is
less than or equivalent to 262,143 (the largest number that can be
stored in the right half of the second word in the UFD entry). The
number of clusters per supercluster is s'tored in the HOMe block, and
in the STR block when the monitor is running.

4.18.1 Finding Information on Disk

The following example shows how to use FILDDT to retrieve information
stored on a disk, using the /U switch to look at a disk unit. This
example shows how to locate the contents of the file
DSKA:H616.TXT[64,2]; DSKA is mounted on RPB1.

First, run the monitor-specific FILDDT (MONDDT in this manual), and
specify the physical disk unit you want to examine, followed by the /U
switch:

.R MONDDT

File:RPB1:/U

/U requires that you be logged in as [1,2], and instructs FILDDT to
treat the disk as addressable.

The first data structure to use in examining the file is the HOME
block. It holds pointers to other files, and can always be found at
Blocks 1 and 10 (decimal) on a disk. To access the first word of the
HOME block, specify location 200 to FILDDT. Each block is
128 (decimal) words, which equals 200 (octal).

4-23

EXAMINING THE DATA STRUCTURES

Remember to convert disk block numbers to FILDDT addresses by
multiplying by 200. If converting cluster addresses, multiply by
200*n, where n is the cluster size. For example, if the cluster size
is 5, use the following calculation to specify the block number. (The
numeric base of the following calculations are indicated by (8) for
octal and (10) for decimal) .

Block 15(10) = Block 17(8) * 200 3600(8) in FILDDT

Cluster 11(10) = Cluster 13(8) * 5 = Block 67(8) = 67 * 200

To examine the HOME block, type the following:

200/
201/
202/
203/
204/

HOM
DSKA01
o
o
DSKA

;Name of HOME block
;Unit ID

;Structure name

The pointer to the MFD's RIB is at offset HOMMFD:

200+HOMMFD/ 4204

15600

This location contains the block number. All subsequent addresses are
cluster numbers. The size of a cluster is stored in the HOME block at
location HOMBSC:

In

The

200+HOMBSC/ 12
200+HOMBPC/ 12

this case, a cluster

MFD's RIB confirms

is

that

4204*200/ 777653,,41
1,,41001/ 1, , 1
1,,41002/ 1, ,1
1,,41003/ UFD)EC

10

;Blocks per supercluster
;Blocks per cluster

(decimal) blocks.

you have the correct RIB:

; Owner of file
;File name
;File extension in left half

Examine the first retrieval pointer to find the MFD itself. The right
half of the contents of the first word in the RIB contains the offset
within the RIB to the first retrieval pointer. The left half of the
first word is the negative of the maximum number of retrieval pointers
that may be stored in the RIB.

1,,41001+41/
1,,41002+41/

400000
4010,,100332

;Unit change pointer to Unit 0
;1st real retrieval pointer

The first cluster of the MFD is number 332. This corresponds with
Block 332*12=4204 (octal), the address of the RIB (stored in HOMMFD,
sho~n above). The RIB is stored in the first block of the
supercluster when the file is initially allocated. The monitor checks
to see if the RIB address is the same as the first group of data. If
so, the monitor retrieves the second block for data. Look at 1,,41200
(4204*200) for the MFD:

1,,41200/ 1, ,1 ; [1,1] UFD
1,,41201/ UFD. = 654644,,332
1,,41202/ 1, ,4 ; [1,4] UFD
1,,41203/ UFD 654644,,3
1,,41204/ 3, ,3 ; [3,3] UFD
1,,41205/ UFD > = 654644,,336
1,,41206/ 10,,1 ; [10,1] UFD
1,,41207/ UFD ? 654655,,337

4-24

EXAMINING THE DATA S~RUCTURES

1,,41210/ 1, ,2 ; [1,2] UFD
1,,41211/ UFD @ 654644,,340
1,,41212/ 1, ,5 ; [1,5] UFD
1,,41213/ UFD A 654644,,341
1,,41214/ 1, ,3 ; [1,3] UFD
1,,41215/ UFD B = 654644,,342
1,,41216/ 64,,2 ; [64,2] UFD
1,,41217/ UFD E 654644,,345

The first word of each two-word MFD entry contains the UFD name. The
second word contains the UFD extension in the left half and the
supercluster address of the RIB in the right half. The pointer to the
UFD RIB is located at supercluster 345 (assuming the supercluster size
is equivalent to 1).

345*12*200/ 777653,,41
1"RNA2CB+71[1,,1
1"RNA2CB+72[64,,2
1"RNA2CB+73/ UFD)EC

345*12*200 41/
1"RNA2CB+133/

400000
1000,,345

;Owner of file
;File name
;LH = file extension

;Location of UFD

Again, the RIB takes up the first block of the cluster. Add
200 (octal) to the address of the RIB to get the first data block of
the UFD. If the cluster size is 1 block, you have to read the
retrieval pointer for the first data block.

345*12*200+200/ F601
1"RNA3CB+71/ EXE &S
1"RNA3CB+72/ D602
1"RNA3CB+73/ EXE GN

1"D3KDB+1/ H616
1"DSKDB+2/ TXT!T4 =647064,,16424

The location of the RIB for the file is at Supercluster 16424:

16424*12*200/ 777653,,41
44,,262001/ 64,,2
44,262002/ H616
44,262003/ TXT)CT

16424*12*200+41/ 400000
44,,262042/ 1655,,616424

;LH file extension

Finally, you reach the file, which contains:

44,,262200/
DATA

44,,262201/
44,,262202/
44,,262203/
44,,262204/
44,,262205/
44,,262206/

A AT
TIME
OF SE
R062.
CRASH

4-25

EXAMINING THE DATA STRUCTURES

44,,262207/ VMA,
44,,262210/ PC=53
44,,262211/ 7771
44,,262212/

(FRO
44,,262213/ M KLD
44,,262214/ CP AL
44,,262215/ L COM
44,,262216/ MAND)

Reformatting to make reading easier yields the following:

DATA AT TIME OF SER062.CRASH

VMA, PC=537771
(FROM KLDCP ALL COMMAND) ...

4.18.2 In-Core File Infor.mation

To keep accurate information in a readily accessible place, the
monitor maintains information about the following, in memory:

o Structure information

o Device information

o File information

o User information

To access a file structure, the monitor keeps a file structure data
block called STR. It contains the name of the structure, allocation
information, swapping information, and pointers to MFD and HOME
blocks. The STRs are stored in a linked list, each entry pointed to
by the system table TABSTR. A structure is identified by the offset
into TABSTR where its entry is stored. The word SYSSTR points to the
first structure. The STR also points to the physical units in the
file structure.

The Unit Data Block (UDB) contains information about the physical disk
unit, including:

o Physical unit name

o Pointers to related UDBs

o Pointers to HOME blocks and SAT blocks

o Unit parameters (cluster size, and so forth)

The UDBs for each structure are linked and each UDB points back to the
STR. Because of these linkages, the STR points only to the first UDB.
The UDB addresses are dynamically assigned by AUTCON.

4-26

EXAMINING THE DATA STRUCTURES

The STR accesses the following data structures:

o SABs (Storage Allocation Blocks) are in-core copies of the
SAT tables. Copies of the SATs are read into memory at
system startup and updated on disk after every write
operation.

o SPTs (Storage allocation Pointer Tables) contain pointers to
all SAT, blocks for a unit. Do not confuse the SPTs (Storage
allocation Pointers Tables) used in disk I/O, with the SPT
(Special Pages Table) used in mapping user jobs into physical

memory.

o The PWQ (Position wait Queue) is an ordered list of DDBs that
have positioning requests for that unit.

The controller data block (KON) is connected to the UDB and contains
information about the device controller for that unit. The channel
data block (CHN) is linked to the KON and contains information about
the hardwar channel associated with that disk controller. The CHN
holds the transfer wait queue (TWQ) for the disk drives on that
channel.

The PWQ and the TWQ contain information for performing I/O requests,
and the order in which they are to be serviced. Both of these queues
are required to drive a disk device. The format and naming scheme is
the same as the channel data block for tape drives.

Only the static state of the file system can be described here. In a
timesharing environment, jobs can modify files while the same files
are being used by other jobs. The monitor requires special
information for the contention-free management of the files. To keep
track of currently open files, the monitor's data base shows the
versions of all open files for all PPNs at any given time.

The file data base is organized using the following data structures:

o The PPB, the PPN data Block, contains information about all
files for a specific PPN. There is one PPB for each PPN that
has open files. All PPBs for all jobs are linked together;
the first is pointed to by SYSPPB.

o The NMB, the Name
files on all file
each open file of
versions of the
PPB points to the

Block, contains the file names of all open
structures for a PPN. There is one NMB for
each PPN, regardless of the number of
file that are in existence. A word in the

the first NMB in a list.

o The ACC, the access table, contains information needed to
gain--access to a specific version of a specific file. The
location of the first RIB is stored here, with the file
structure number. The ACC entries are linked in a ring
through the NMB.

At any time there are two possible versions of a file: the
current version and the superseding version. Usually there
is only one ACC; but while the file is being superseded, both
the old and new versions of the file have ACCs linked to the
NMB. There may be several ACCs if the file exists on more
than one file structure, or older versions of a file are
still open.

4-27

EXAMINING THE DATA STRUCTURES

o The UFB is a UFD data block. The monitor keeps a UFB for
each--UFD for each file structure for your job. Each UFB
contains the first retrieval pointer to the UFD. The PPB
contains a pointer to the UFB for the first structure.

Every LOOKUP to a file is recorded in the PPB, the NMB, and ·the UFB.
If the monitor cannot find a file, it marks the NMB to indicate that
the file does not exist. Likewise, if the UFD does not exist, the
monitor marks the UFB accordingly. There are two words in each of
these data structures to contain this information. The first word is
the KNO word, short for KNOW. This is set to tell whether the monitor
checked to see if the file or UFD exists. If the bit is zero, a disk
read will be required to find out if the file exists. If the bit is
one, the second word, the YES word, is valid. If the YES word
contains 0, the file does not exist; if the word is one, the file does
exist. and there is probably information about it in the PPB and NMB.

The goal of this information storage is to reduce the number of disk
reads for discovering whether a file exists and where it is stored.
This is especially useful during debugging, when the same group of
files are used over and over again (source program, compiler, and
linker, for example). Of course, not all the file information can fit
into memory. The disk data structures are managed like a cache, where
the oldest entries are discarded in favor of those accessed more
recently.

The disk DDB is extremely important because it is the central source
of information for all disk I/O operations. It contains pointers and
links to many other data structures, including:

o The current retrieval pointers being used by the disk
routines, and the block numbers to which the pointers refer.

o Pointers to the UDB and STR where the file resides.

o Pointers to the buffer ring header and user buffers.

o The PWQ and the TWQ, which make a linked list of DDBs waiting
to use the disk and channel.

o Pointers to the ACC and UFD.

Disk DDBs are created when the device is OPENed and a software channel
is created; they are deleted when the channel is closed. Disk DDBs
are stored in the user's funny space.

4.18.3 The Software Disk Cache

The in-core file information that is being input or output can be
cached in memory, allowing the monitor to access disk information more
efficiently. The following data blocks are used in caching disk I/O
information.

The data structures for the software disk cache are two doubly linked
lists, a list header, and a hash table. Each entry in the list
contains forward and backward pointers for each of the two lists,
(.CBNHB, .CBPHB, .CBNAB, and .CBPAB), a UDB address (.CBUDB), a block
number (.CBBLK), and a pointer to the address in free core where the
block is (.CBDAT). For statistical purposes, the entry also contains
a count of the number of times tbe block has been accessed since it
was included in the list (.CBHIT).

4-28

EXAMINING THE DATA STRUCTURES

The list header points to the two linked lists. The first linked list
is the "access" list. The most recently accessed block is at the top
of the list; the least recently accessed block is at the end. The
access list is linked through the .CBNAB/.CBPAB words.

The second linked list is the "free" list. It contains a list of all
blocks that are not currently in use and do not appear in the hash
table. The free list is linked through the .CBNHB/.CBPHB words.

The hash table consists of pointers to the free list corresponding to
the blocks that hash to the same position. Thus, the hash table
consists of separate list heads for the lists of blocks that hash to
that position in the hash table.

At initialization time (CSHINI), all the blocks are allocated and
linked into the free list. They are also linked into the access list.
The hash table entries are linked to themselves because the table is
empty.

To find an entry, given its UDB and block number, use the block number
as the offset into the hash table. Use the hash table entry as a list
head, following the list until you either find a match, or return to
the header. This is done with the CSHFND routine. In general, these
lists are very small, most commonly only one or two blocks.

The main cache handling routine is CSHIO, which will simulate I/O from
the cache, doing the necessary physical I/O to fill and write the
cache. Note that this is a write-through cache, so no sweeps are
required, and the data in the cache always reflects the blocks on
disk.

4.18.4 Finding In-Core File Information

The following example finds the file information stored in memory for
Job 3. First, you must set up paging for the job:

.COEPT/ .EOEPT
$Q'1000$U
JBTNAM+3$6T/ ACTDAE
JBTUPM 3[42000,,354
.$6U

;Program name
;UPT at page 354
;Mapping command

Then search for the assigned DDBs:

USRJDA[0
FOPBUF#+52[0
FOPBUF#+53[0
FOPBUF#+54[0
FOPBUF#+55[0
FOPBUF#+56[0
FOPBUF#+57[0
FOPBUF#+60[0
FOPBUF#+61[0
FOPBUF#+62 [0
FOPBUF#+63 [0
FOPBUF#+64 [0
FOPBUF#+65 [0
FOPBUF#+66[0
FOPBUF#+67[0
FOPBUF#+70[0

.USCTA[20,,741200

;Channel 0
;Channel 1
;Channel 2

;Channel 15
;Channel 16
;Channel 17

;Check for extended channels

4-29

EXAMINING THE DATA STRUCTURES

741200[
741201[
741202[
741203[
741204[
741205[
741206[
741207[

564200,,740000
560200,,740066
474000,,740154
403000,,740242
441100,,740330
474100,,740416
o
o

iChannel 20
iChannel 21
iChannel 22
iChannel 23
iChannel 24
iChannel 25
iChannel 26
iChannel 27

In this case, there are six open DDBs, all in the extended channel
table. They point to DDBs in funny space, so they must be for disk
files. Looking closer, you can find the names of the files. The
examples below show how this was done for the first three DDBs listed
above.

740000$6T/ ACT
DDB20:
DDB20+DEVFIL$6T/ USAGE
DDB20+DEVEXT$6T/ OUT
DDB20+DEVPPN[1,,7

740066$6T/ ACT
DDB21:
DDB21+DEVFIL$6T/ FAILUR
DDB21+DEVEXT$6T/ LOG
DDB21+DEVPPN[1,,7

740154$6T/ ACT
DDB22+DEVFIL$6T/ USEJOB
DDB22+DEVEXT$6T/ BIN W
DDB22+DEVPPN$6T[1,,7

iLabel this as the DDB
ifor Channel 20.

iACT:USAGE.OUT[1,7]

iLabel this as the DDB
ifor Channel 21.

i ACT:FAILUR.LOG[1,7]

i ACT:USEJOB.BIN[1,7]

Now examine the USEJOB.BIN file. From the DDB, you can find which
unit the file is on:

DDB22+DEVUNI/ 142314,,142314 ioriginal UDB"current UDB

142314$6T/RAJ3
RAJ3:
RAJ3+UDBKDB[136770
RAJ3+UNILOG$6T/ DSKAO
RAJ3+UNIHID$6T/ DSKAO
RAJ3+UNISYS[142444,,46000
RAJ3+UNISTR[145324
RAJ3+UNICHN[142444
RAJ3+UNIKON[142444

iPhysical device name
iLabel the UDB
iKDB
iLogical name within structure
iHOME block ID name
iNext UDB in system"bits
iNext UDB for STR
iNext UDB on channel
iNext UDB on controller

The unit is RAJ3, which is part of the structure DSKA.

4-30

EXAMINING THE DATA STRUCTURES

Included in the UDB is a pointer to the structure data block (STR).

145324$6T/
DSKA:
DSKA+1[
DSKA+2[
DSKA+3[
DSKA+4[
DSKA+5[
DSKA+6[
DSKA+7[
DSKA+10[
DSKA+11[
DSKA+12[
DSKA+13[
DSKA+14[

DSKA

145274,,10
142314,,0
1
3,,41577
3,,41600
o
o
o
266532
777777,,777014
7
410,,512304

;STR name
;Label the CHN
;Next STR"STR number
;First UDB for STR"K for CRASH.EXE
;Number of units in STR
;Quota words

;Mount count
;First retrieval pointer to MFD

There are two other methods for locating a disk structure. The first
is to start with SYSSTR and follow the links to each structure:

SYSSTR/ 247103,,1 ;Pointer in left half
247103$6T/ SIRS ;1st STR in linked list
247104[240137,,15
240137$6T/ BADP ;2nd STR in list
240140[110521,,14
110521$6T/ 7A ;3rd STR in list
110522[145324,,1
145324$6T/ DSKA ;4th STR in list

Or, with the file structure number, you can index into TABSTR:

TABSTR/
TABSTR+1/
TABSTR+2/
145324$6T/

777733,,1
110521
145324

DSKA

Notice that the links started by SYSSTR are not in the same order as
TABSTR.

You can use the UDB to find several other structures:

RAJ3: UNIQUE/
RAJ3: UNIPTR/
RAJ3: UNISAB/

o
o
7,,31271

;Position wait queue
;-Length"addr of swap SAT
;First SAB in ring"addr of SPT

From the UDB, you can find the KDB:

RAJ3: UDBKDB/

136770$6T/
RAJ:

RAJ

76237
7

136770

RAJ+l[
RAJ+2[
RAJ+3[
RAJ+4[

136704
777740,,137063

;Ptr in UDB to KDB

;Controller name
;Label this
;Next controller on system
;CPU accessibility mask
;KDBCHN CHN
;KDBIUN -- Initial pointer to units

4-31

EXAMINING THE DATA STRUCTURES

You can get the channel data block from the KDB:

RAJ KDBCHN/ 136704

136704/
CHN:
CHN+1/
CHN+2/
CHN+3/
CHN+4/

o

142750,,0
o
o
o

iKDB pointer to CHN

i-1 if channel idle
iLabel it
iNext CHN"last UDB with error
iError information

The other file information can be found by starting with SYSPPB and
following pointers to the correct PPB, NMB, and ACC. (DEVACC in the
DDB also points to the ACC.)

SYSPPB/

120140[
120141[
120440[
PPB:
PPB+1[
PPB+2[
PPB+3[
PPB+4[
PPB+5[
PPB+6[
PPB+7[

120140,,0

1, ,4
120440,,0
1, , 7

120560,,0
120450,,0
120460,,0
6
410
410
o

iPointer to first PPB

iProject"programmer number
iNext PPB in system"O
iProject"programmer number
iLabel it
iNext PPB in system"O
iFirst UFB this PPN"O
;First NMB this PPN"bits
iUse count
iKNO bits
iYES bits
iInterlock bits

Now you can look for the file USEJOB.BIN in the NMB:

120460$6T/ USAGE
120461[120510,,0
120510$6T/ FAILUR
120511[120540,,0
120540$6T/ USEJOB
NMB:
NMB+1[
NMB+2[
NMB+3[
NMB+4[
NMB+5[
NMB+6[
NMB+7[

122670,,0
26325
120550,,425156
110000,,0
400
400
2

iFile name - USAGE
iNext NMB"O
iFile name - FAILUR
iNext NMB"O
iFile name - USEJOB
iLabel it
iNext NMB"O
iCompressed file pointer
iACC"file extension in SIXBIT
iFile structure number
iKNO bits
iYES bits
iUse count

And finally, you can get to the ACC from the NMB:

120550[
ACC:
ACC+1[
ACC+2[
ACC+3[
ACC+4[
ACC+5[
ACC+6[
ACC+7[

156

120542,,200000
1100,,26325
o
110020,,120440
222136,,410
145
55744,,332136

iHighest block allocated
iLabel the ACC
i ;NMB, , bits
iFirst retrieval pointer
iDormant ACCs
iBits"PPB

The ACC points back to both the NMB and PPB. Note, however, that the
ACC may point to another ACC, which may point to the NMB. This is
ascertained by examining the last digit of the left half of the NMB.
If the last digit is 2, as in this example, the left half of the NMB
ACC word points to an NMB. If the digit is not 2, the NMB points to
another ACC.

4-32

EXAMINING THE DATA STRUCTURES

The PPB also points to the UFB.

DDB22 DEVUFB/ 120450

PPB PPBUFB/ 120450,,0

120450/
UFB:
UFB+1[
UFB+2[
UFB+3[
UFB+4[
UFB+5[
UFB+6[
UFB+7[

377777,,700521

122420,,775400
100,,52166
5
110000,,0
104,,0

° °

;DDB pointer to UFB

;PPB pointer to UFB

;Total blocks left this UFD
;Label it
;Next UFB"bits
;First retrieval PTR to this UFD
;Bits
;File structure number
;N if job N owns AU for this UFB
;Non-zero if waiting for AU
;=1 if 'UFD has empty data blocks

In all cases, check the Monitor Tables Descriptions and the source
listings to find the interconnections between the data structures and
how to interpret what is stored in them.

4-33

CHAPTER 5

ERROR HANDLING ROUTINES

The monitor reports hardware and software problems by displaying error
messages on the CTY, but these messages include only a small portion
of the information that the monitor stores in its database.

This chapter will show you how to take a message from the CTY and use
it to trace through the dump to obtain more information. This
involves working with the APR interrupt routine, the page fail trap
routine, and the stopcode routine. You can use this information to
deduce the scope and nature of the problem more accurately.

The error routines of the monitor are designed to handle both software
and hardware errors. When software errors are detected, control
usually jumps to an error handling routine for processing. Hardware
errors, however, can interrupt processing and sometimes halt the
system.

5 . 1 HARDWARE ERRORS

You can use the CTY message to trace an error to the actual hardware
that failed. The following types of hardware-related messages may
appear on the CTY.

The most serious hardware error is indicated by one of the following
messages:

?NON-RECOVERABLE MEMORY PARITY ERROR IN MONITOR

[CPU HALT]

or

?NON-EXISTENT MEMORY DETECTED IN MONITOR

[CPU HALT]

In this case, the error is so serious that the processor is halted
immediately and no further error processing can be done.

5-1

ERROR HANDLING ROUTINES

A second 'type of problem is an AR/ARX parity trap, indicated by the
following message:

CPUO AR/ARX PARITY TRAP AT USER PC 401123 ON dd-mmm-yy
JOB 1 [SYSTAT] WAS RUNNING
PAGE FAIL WORD = 000000,,00011
MAPPED PAGE FAIL ADDRESS = 547000,,560271
INCORRECT CONTENTS = 000000,,000000
CONI PI, = 000000,,000377
RETRIES UNSUCCESSFUL, OFFENDING LOCATION ZEROED

Another type of parity trap is a page table parity trap, indicated by
the following:

* * * * * 'k * * * * * *
CPUO PAGE TABLE PARITY TRAP AT EXEC PC 414555 ON dd-mmm-yy hh:mm:ss
PAGE FAIL WORD = 000000,,00011
CONI PI, = 010000,,020377

A CPU interrupt due to a parity or NXM error is reported as:

CPU1 PARITY ERROR INTERRUPT AT USER PC 343413 ON dd-mmm-yy hh:mm:ss
JOB 2 [WBKI] WAS RUNNING
CONI APR, = 003002,,312022
CONI PI, = 010000,,020377
ERROR INVOKED BY A message

This report can have several variations, depending on the CPU and the
specific error. The monitor can include any of these error messages:

CACHE WRITE-BACK FORCED BY A SWEEP INSTRUCTION.

CHANNEL STATUS WORD WRITE.

CHANNEL DATA WORD WRITE.

CHANNEL READ FROM MEMORY.

CHANNEL READ FROM CACHE.

CPU WRITE TO MEMORY (NOT CACHE) .

CACHE WRITE-BACK FORCED BY A CPU WRITE.

CPU READ OR PAGE REFILL FROM MEMORY.

PAGE REFILL FROM CACHE.

5-2

ERROR HANDLING ROUTINES

After this or other errors, the monitor may also attempt to check for
problems by scanning memory for parity errors or nonexistent memory.
A memory scan can produce one of the following reports:

MEMORY PARITY SCAN INITIATED BY CPUO ON dd-mmm-yy hh:mm:ss
NOTHING WAS FOUND

NON-EXISTENT MEMORY SCAN INITIATED BY CHANNEL 1 ON CPU1 ON dd-mmm-yy
hh:mm:ss
NON-EXISTENT MEMORY DETECTED:
AT 314243 (PHYS.)

The channel number (CHANNEL 1) listed in this message refers to the
sofware channel data block (CHN) number, not an RH20 channel.

Memory parity errors or nonexistent memory errors on a channel produce
a special message:

CPUl CHANNEL MEMORY PARITY ERROR ON dd-mmm-yy hh:mm:ss
DEVICE IN USE IS RPA2
CHANNEL TYPE IS type
TERMINATION CHANNEL PROGRAM ADDRESS = 000477
TERMINATION DATA TRANSFER ADDRESS = 251470
LAST THREE CHANNEL COMMANDS EXECUTED ARE:

760000,,252777
760000,,251777
760000,,250777

The CHANNEL TYPE listed in this message may be DF10C, DX10, RH20,
CI20, NIA20, or SA10. Hardware errors signal the software in either
of two ways: by a processor (APR) interrupt or by a page fail trap.
APR interrupts are usually generated on the highest PI level, because
CPU errors are serious and must interrupt other devices. When
notified of such errors, the monitor reads the hardware registers and
takes the appropriate action.

To obtain more information about the error and the state of the
monitor, you must examine the dump. It is important to understand how
the monitor handles hardware errors. The following sections describe
the routines in the monitor that handle errors.

5.1.1 APR Interrupt Routine

The routine to handle APR interrupts is APnINT, where n is the CPU
number. It is defined by a macro in COMMON, and handles all the
possible conditions that could cause a processor interrupt, which are:

o Cache-sweep-done

o Power fail

o Timer timeout (clock tick)

o I/O page fail error

5-3

ERROR HANDLING ROUTINES

o NXM error

o Cache directory parity error

o MB parity error

o Address parity error

o SBUS error

A clock tick or cache-sweep-done interrupt happens frequently and the
monitor deals with them quickly. The other conditions require more
extensive processing.

MB and NXM errors undergo even more analysis and eventually
one or more of these error reports: CPU parity error
interrupt, a memory scan, or the nonrecoverable error message.

5.1.2 Page Fail Trap Routine

Page fail traps are caused by one of the following conditions:

o Page fault

o Proprietary violation

o AR/ARX parity error (KL10 only)

o Page table parity error (KL10 only)

o Page refill failure (KL10 only)

o Address break (KL10 only)

o Illegal section number (KL10 only)

o Illegal indirection (KL10 only)

o Non-existent device or register (KS10 only)

o Hard memory error (KS10 only)

o NXM error (KS10 only)

produce
or NXM

Some of these conditions are the result of normal operations, such as
an address break, proprietary violation, or page fault. Others are
handled as error conditions. The page fail word describes the type of
page fault that occurred. The trap handler is located at SEILM in
APRSER.

The APR interrupt routine and the page fail trap routine use the same
push-down list, ERnPDL, once an error has been detected. The power
fail routine uses another push-down list, PWFPDL.

The channel error report is produced at the interrupt level of the
device that was doing the transfer. This report usually occurs for
disk and tape devices.

If a parity error is detected in fast memory, DRAM, or CRAM, the EBOX
stops immediately by turning off its clocks. The front-end processor
performs any diagnostic action that is necessary.

5-4

ERROR HANDLING ROUTINES

5.1.3 Saved Hardware Error Information

The error handling routines store information about hardware errors in
the CPU Data Block (CDB). Some of those locations in the CDB are:

. CnACN (APRSTS)

.CnAEF

Parity Error Information:

CONI APR,
APR error flag

o .CnTPE contains the total number of parity error words in
memory.

o .CnSPE contains the total number of nonreproducing parity
errors in memory.

o .CnMPA contains the memory parity address for this CPU.

o .CnMPW contains the memory parity word for this CPU.

o .CnMPP contains the memory parity PC for this CPU.

o .CnSBO contains the SBUS Diag 0 instruction.

o .CnSOA contains the answer from the SBUS Diag 0 instruction.

o .CnSBl contains the SBUS Diag Function 1 instruction.

o .CnSlA contains the answer from the SBUS Diag Function 1
instruction.

NXM Information:

o .CnTNE contains the total number of NXMs for this CPU.

o .CnSNE contains the total number of nonreproducible NXMs for
this CPU.

o .CnMNA contains the first address found with NXM.

AR/ARX Parity Information:

o .CnPBA contains the physical address that registered bad
parity on last AR/ARX parity trap.

o .CnTBD contains the contents of the bad word on the last
AR/ARX parity trap.

o .CnNPT contains the total number of AR/ARX parity traps.

o .CnAER contains the results of RDERA on a
interrupt.

parity/NXM

0 .CnPEF contains the results of CONI APR on a parity/NXM
interrupt.

0 .CnPPC contains the PC on the last AR/ARX parity trap.

0 .CnPFW contains the page fail word on the last parity trap.

0 .CnHPT contains the number of hard AR/ARX parity traps.

0 .CnSAR contains the number of soft AR/ARX parity traps.

0 .CnPTP contains the total number of page table parity traps.

5-5

ERROR HANDLING ROUTINES

5.1.4 Hardware Error Checking

The KL10 processor is made up of the following hardware components,
the EBOX, the MBOX, and various interfaces and buses. The EBOX, short
for Execution BOX, is responsible for the execution of the
instructions. The MBOX, short for Memory BOX, controls transfers to
and from memory, cache, channels, and the EBOX.

The EBOX is composed of the following:

o Instruction Register (IR) receives the instruction code from
the Arithmetic Logic unit and passes it to the CRAM/DRAM for
execution.

o Dispatch RAM (DRAM) and Control RAM (CRAM) hold the microcode
that implements the PDP-10 instruction set.

o Arithmetic Logic unit (ALU) is the major working area of the
processor. It has three fullword registers:

AR (Arithmetic Register)
BR (Buffer Register)
MQ (Multiplier/Quotient Register)

The first two registers also have fullword extensions: ARX
and BRX.

o Fast Memory (FM) contains the accumulators (ACs).
has eight AC sets.

The EBOX

o virtual memory address (VMA) keeps the PC and sends the
virtual address to the pager in the MBOX.

o virtual memory address adder (VMA AD) helps the VMA in its
computations.

o Program Counter (PC) holds the virtual address of the next
instruction to be executed.

The MBOX is composed of:

o Pager (also known as the hardware page table), which holds
512 (MCA20) or 1024 (MCA25) mapping entries from the EPT or
UPT.

o Physical Memory Address register (PMA) , which holds the
physical memory address of the next instruction.

o Cache (data and directory): high-speed semiconductor memory
that stores copies of data from regular memory in order to
speed up memory fetches. (MCA20 allows up to 2K of storage;
MCA25 allows up to 4K of storage.)

o Memory Buffer (MB), to control the flow of data to and from
cache, channels, memory, and the EBOX.

o Cache/MB interface, connecting cache to MB.

5-6

ERROR HANDLING ROUTINES

In addition, a number of buses and interfaces may be connected to the
MBOX, EBOX, and other parts of the system, such as:

o E/M interface connects the MBOX and EBOX.

o six BUS/MB interface connnects the
controllers. The DMA20 is on
external memory.

MBOX with the core/MOS
the SBUS and interfaces to

o EBUS connects the EBOX to four DTE20s or eight RH20 slots
(which may contain RH20 or KLIPA/KLNI controllers) and the

DIA20/DIB20 interface to the traditional I/O bus devices.

Combinations of the following modules connect memory and MASSBUS
devices:

o Channel/MB interface connects MB with the channel controller.

o Channel controller controls the flow of data through the
CBUS.

o CBUS and CBUS interface handles data transfers that go
directly to the MBOX, bypassing the EBOX.

o RH20 MASSBUS controller connects the CBUS to the MASSBUS.

o MASSBUS is a standard bus for interfacing tapes and disks to
the KL.

o Device controller (BAlO, TDlO, RHlO, ...).

o I/O bus (PTP, PTR, ...).

o Channel interfaces (DXlO, DX20, ...).

o CI20 port connecting the KLlO with the CI20 bus.

o NIA20 port connecting the KLlO with the Ethernet cable.

The KLlO dynamically generates parity in the following places:

0 On the output side of the channel status RAMs

0 On the output side of the AR

0 Entering the pager from MB or AR

0 Data stored in fast memory

0 Data stored into the channel data buffers (l8-bit parity is
generated)

Parity is checked after the following operations:

o On all requests from the MBOX

o Data leaves MB to go to the DMA20, pager, channel, cache, AR
or the arithmetic extender

o Data is paged out

o Data enters and leaves the RH20 or the MASSBUS

5-7

ERROR HANDLING ROUTINES

o Data enters the AR from the MBOX

o Data enters and leaves AR during DTE PI Level 0 interrupt
handling

o Data enters the ARX from the MBOX

o Data leaves fast memory

o Control leaves CRAM/DRAM

Errors detected through parity checking in the last two conditions
cause the KL (EBOX/MBOX) clock to halt immediately, provided that the
correct conditions have been enabled. The relationships among the
places where errors are detected and the condition they evoke is shown
in the following table. Note that parity is generated by the
transmitting device. This table does not include power-fail
conditions.

Table 5-1: Hardware Errors

Component

MA20

DMA20

MB

Pager

Error

Incomplete cycle
Address parity error

Data parity error
Address parity error
NXM error

Data parity error
Nonexistent memory

Page table parity error

Pager to cache directory

Arithmetic Logic:

(AR, ARX) AR parity error

ARX parity error

Error Indicator

SBUS error bit
Address parity bit

SBUS error bit
Address parity bit
SBUS error bit

MB parity error bit
NXM error bit

Page fail trap
code=25
CD parity error bit

Page fail trap
code=36 (for Exec)
code=76 (for User)

Page fail trap
code=37 (for Exec)
code=77 (for User)

AR/ARX/EBUS parity error* I/O page fail bit

RH20 Data parity error Device interrupt

DXIO Data parity error Device interrupt

* This type of error includes any type of paging failure while PI
CYCLE is set. The PI CYCLE is a microcode condition that is
enabled when the microcode honors a PI request and is disabled
when the first XPCW instruction occurs for Levels 1-7 or a Level
o request is completed.

5-8

ERROR HANDLING ROUTINES

5.2 STOPCODES

Stopcodes are symbolic names representing errors detected by the
monitor. Stopcodes are generated by the STOPCD or BUG. macros. The
DIE routine records error information and initiates a reload, if
required. For a complete list of stopcodes, refer to the Stopcodes
Specification.

The CTY for each CPU in a multi-CPU configuration records the
stopcodes that occur on that CPU. You can use FILDDT to find the
module where a stopcode is defined. You can find a stopcode in the
crash file by looking for a symbol of the form S .. name (for
3-character stopcode names) or just name (for 6-character stopcode
names) . The following example shows how to find the module where a
KSW stopcode is defined:

S .. KSW?

TAPSER G

Stopcodes are defined in many modules of the monitor, but they are
generated by the same macro, the STOPCD macro. The STOPCD macro is
called with:

STOPCD cont,type,name,disp

where:

cont

type

name

disp

is the location to jump to after processing the error.

is the type of failure
course of action. It
values:

o HALT

o STOP

o JOB

o CPU

o DEBUG

o INFO

o EVENT

and determines the specific
can have one of the following

is the unique stopcode name.

is the address of the routine containing additional
information, if appropriate.

5-9

ERROR HANDLING ROUTINES

The severity of the error is indicated by the type of stopcode. The
types of stopcodes are:

o HALT stopcodes occur after the most severe errors. The CPU
cannot continue automatically after a HALT, no additional
information is displayed on the CTY, and no information is
saved (no crash file is automatically created). HALT
stopcodes are also the least likely of the stopcodes to
occur, and are usually caused by recursive calls to the DIE
routine.

HALT stopcodes indicate serious problems that endanger
further system operation. The RSX-20F console front-end
(using the HALT.CMD file) gathers pertinent status and error
information.

o STOP stopcodes are the also serious, and cause the system
(all CPUs) to put their status into memory and wait for the
policy CPU to dump and reload the monitor.

o JOB stopcodes are those that affect only one job but may
indicate problems in the system. If there is an interrupt in
progress, the system will be reloaded. If not, only the
faulty job will be terminated. Then a dump is taken and the
system continues.

o A CPU stopcode is important only for multiple-CPU systems.
This stopcode will stop only the current CPU, leaving the
others running. It acts as a STOP stopcode in any of the
following cases:

Single-CPU systems

Only one processor running in an multiple-CPU system

If DF.CP1 is set in the DEBUGF word.

o A DEBUG stopcode affects the system in different ways,
depending on the contents of the DEBUGF word (short for DEBUG
Flags). By setting certain bits in this word, a system
programmer can control the effect of certain stopcodes, and
manner in which the system is reloaded. The DEBUGF flags are
listed in Section 6.3.

o An INFO stopcode displays a message on the CTY and rings the
terminal bell, informing the operator of an event that may be
of interest. Most INFO stopcodes are harmless and can be
ignored. They do not halt the system or job, do not initiate
a memory dump, and do not cause a system reload.

o An EVENT stopcode displays a message on the CTY, similar to
an INFO stopcode, but does not ring the terminal bell.

5.2.1 Stopcode Processing

The DIE routine in ERRCON processes stopcodes in the following manner:

1. Increments .CnDWD to indicate that this CPU has died and to
protect the code from being entered twice by that CPU.

2. Saves the PI status in .CnCPI and turns off the PI system.

5-10

ERROR HANDLING ROUTINES

3. Saves AC Blocks 0, 1, 2, 3, and 4 in memory.

4. Stores stopcode PC in %SYSPC and .CnSNM.

5. Sets up error stack from ERnPDL.

6. Creates CPU and device status block data using RCDSTB, and
calls DAEMON to output those buffers.

7. Initiates a cache sweep and waits with control in the ACs
until the sweep is finished.

8. Enters the secondary protocol.

9. Attempts to get the DIE interlock.

10. Prints stopcode information on CTY.

11. Dispatches to the routine that will take the dump and handle
the specific type of stopcode.

INFO and EVENT stopcodes perform all the functions listed here, except
that they do not turn off the PI system, do not halt the system, and
do not perform a dump and reload. The EVENT output on the CTY is
formatted differently from the other types of stopcodes.

5.2.2 Continuing from Stopcodes

JOB and DEBUG stopcodes do not ordinarily crash the system. They
allow error collection to be done, and then the system can continue.
Whenever a JOB or DEBUG stopcode occurs, the default action of the
monitor is to dump memory to disk for later analysis. This is known
as a continuable stopcode dump and is handled by BOOT. This allows
the system to continue to do work even though the state of the machine
is being saved.

The majority of stopcodes are caused by a corruption of some portion
of the monitor's database. Often, a corrupted piece of data will
cause several stopcodes, one right after the other. However, the
first dump is the most important. When you are analyzing a series of
crashes, look at the first crash in the series.

If two or more crashes have the same time stamp, you should look at
the dump with Bit 8 clear in the DEBUGF word. You can probably ignore
the other dump(s). Refer to Section 6.3 for more information about
DEBUGF flags.

5.2.3 Special Stopcodes

Certain stopcodes occur more
range of problems. Under
difficult. The stopcodes of
KAF, IME, UIL, and EUE.
following paragraphs are not
such a stopcode could occur.

frequently because they represent a wide
these conditions, debugging becomes more

this type that you should be aware of are
The causes for them mentioned in the

complete, but they illustrate the way

5-11

ERROR HANDLING ROUTINES

Keep-Alive Fail (KAF) stopcodes occur when the system is hung or
looping. In this situation, you cannot get response from the
terminals, there are no jobs runn1ng, and no I/O is being done.
Eventually, the front-end, RSX-20F, realizes the keep-alive count has
expired, and forces the KL to execute the instruction in physical
location 71 of memory, XPCW@.CnKAF, which stores the contents of P in
KFnSVP, and issues the KAF stopcode. The address (a double-'word PC)
of the instruction that was being executed is stored at APnKAF and
APnKAF+1.

A KAF occurs when something prevents the processor from reaching clock
level, thus preventing the keep-alive count from being updated and
scheduling from being done. This can occur if a process at a higher
PI level never exits, which could be caused by one of the following:

o A higher level interrupt goes into an infinite loop.

o A higher level interrupt does not clear an interrupt signal
when the interrupt routine exits. The signal, being
constantly asserted, causes one interrupt after another.

o The clock does not tick because it has malfunctioned.

o The clock does not tick because the PI system has been
disabled.

o A monitor routine does not release an interlock.

o A CPU in a multiple-CPU system does not release a CPU
interlock.

IME stands for Illegal Memory Reference from Executive and
when an unexpected page fault occurs in exec mode.
potential causes for an IME include:

is issued
Some of the

o An attempt to write into the monitor's high segment.

o An attempt to reference data mapped through a UPT that is not
addressable.

o Invalid indexing because accumulators were misused.

To solve IMEs, you can look at the following locations in the UPT:

o .USPFW (location 500) contains the page fail word.

o .USPFP (501) contains the flags in the left half.

o .USPFN (502) contains the PC of the page fail instruction.

The CDB also contains some relevant information,
following symbols:

referenced by the

0 .CnAPC contains the APR error or trap PC on this CPU.

0 .CnPFW contains, the page fail word on traps to SEILM.

0 .CnPPI contains the results of CONI PI, on a ,parity/NXM trap.

0 .CnTCX contains the page fail word context word on traps to
SEILM.

5-12

ERROR HANDLING ROUTINES

EUE stands for Executive UUO Error and occurs when the monitor
attempts to execute an illegal UUO (usually with an opcode of 0).
This stopcode is usually the result of the monitor branching to an
address that contains data instead of an instruction. Its causes are
very similar to that of an IME. The same problem may produce an EUE
one time and an IME another time, depending on specific conditions.

To solve EUE and UIL stopcodes, you should look at the contents of the
following locations in the UPT:

0 . USMUO contains the flags and left half of the UUO .

0 .USMUP contains the address of the UUO routine.

0 .USMUE contains the effective address half of the UUO.

0 .USUPF contains the process context word at the time of the
UUO.

5.3 ERRORS DETECTED BY RSX-20F

RSX-20F console front-end detects certain KL error
it collects data using command files (sometimes called

The error conditions and the command file for each are

When the
conditions,
TAKE files) .
listed below.

The command files are used to gather status and error data for special
cases, and (on single-CPU systems) to assist in system continuation
after a stopcode.

When the RSX-20F reload-enable flag is set, the following command
files are automatically executed for the following conditions:

File

CLOCK.CMD
CRAM.CMD
DRAM.CMD
EBUS.CMD
FMPAR.CMD
DEX.CMD
HALT.CMD
TIMEO.CMD
KPALV.CMD
DUMP.CMD

Error Condition

Field service probe clock error stop
Control RAM (CRAM) clock error stop
Dispatch RAM clock error stop
EBUS parity error
Fast memory parity clock error stop
Deposit/Examine failure
KL executes HALT instruction
Protocol timeout condition
Keep-alive failed condition (*)
Optional system hung file

* When a Keep-Alive Fail occurs, the KPALV.CMD file is not used
immediately. Instead, RSX-20F attempts to reload the monitor at
location 71 (described in Section 5.2.3). If the front-end fails to
reload the monitor, RSX-20F takes a Keep Alive Fail and executes the
KPALV.CMD file. However, if the Retry-Enable Flag (which is set, by
default) is cleared, the KPALV.CMD file is executed immediately
without trying a reload.

The KPALV.CMD is useful when the system hangs without doing any
productive work. You can execute KPALV.CMD to gather status
information and force a dump. To invoke KPALV.CMD, type the
following commands on the CTY:

A/
PAR>TAKE KLPALV

; <CTRL-backslash>
;initiates the .CMD file

5-13

CHAPTER 6

DEBUGGING THE MONITOR

There are two ways to make corrections to the monitor. The first
method is to alter the running monitor using the monitor-specific
FILDDT. You can use this method when the changes are small and it is
unlikely that the system will crash due to patching errors. The
second method involves taking the system standalone and loading the
monitor with EDDT.

6.1 PATCHING WITH FILDDT

The monitor-specific FILDDT contains functions that allow you to
change or patch the running monitor. To run FILDDT and patch the
monitor, you must use the following commands:

.R MONDDT
File: /M/P

The /M switch indicates that all Examine and Deposit functions will
refer to the running monitor. The /p switch allows you to patch the
monitor. To use these switches, your job must have PEEK and POKE
privileges.

Often the changes to be added in the monitor do not fit easily into
the existing code. To add several lines of code, you must access the
pre-allocated patching space that is resident in the running monitor.
The patching space starts at the address pointed to by the symbol
PATCH. The amount of words reserved for patching space is assembled
into the monitor module PATCH.MAC (the symbol is PATSIZ), but the
patch area is usually 50 (octal) words long. It is recommended that
large changes be made directly to monitor sources, not to the running
monitor.

CAUTION

When you install a change to the running monitor,
remember that the monitor code should not dispatch to
the patched location until you have installed the
entire patch. Therefore, the instruction that
dispatches to the changed code should be the last
instruction you install. It is recommended that you
use the $< command to FILDDT specifying PATCH as the
patching area~

6-1

DEBUGGING THE MONITOR

6.2 USING EDDT

EDDT is a version of DDT that runs in both user and exec modes. EDDT
is part of the monitor, in the sense that it resides in the monitor's
.EXE file and is loaded into core with the monitor. The command to
BOOT to enable debugging with EDDT is:

BOOT>monitor-filespec/EDDT

The /EDDT switch instructs BOOT to start at the EDDT start address
rather than the monitor's normal starting address. You can type /EDDT
or /START:401.

When BOOT starts the monitor at location 401, the CPU is
unmapped. In this mode, EDDT could run, but the symbol
inaccessible. Since this situation would provide only
debugging capabilities, the monitor sets up minimal page
When this is done, all monitor code and the symbol table
accessible from EDDT. The monitor than jumps to EDDT.

running
table is
limited

mapping.
will be

When EDDT starts, it displays "EDDT" on the CTY and it is similar to
user-mode DDT. There is no prompt, and the command syntax is nearly
identical to DDT. For more information on the exec-mode debugging
commands, refer to the TOPS-10 DDT Manual.

6.2.1 Starting the Monitor

When the monitor is loaded into core, data storage mapping and devices
have not been configured. However, most of the useful information on
the status of the monitor is contained in the monitor's high segment.

The monitor will be mapped after you start it, but normally the
monitor's symbol table, EDDT, and the SYSINI locations are cleared
after initialization. You can preserve the symbol table, EDDT, and
SYSINI initialization code by starting the monitor at location DEBUG,
using the following command to EDDT:

DEBUG$G

On a normal startup, the monitor discards its symbol table, EDDT, and
SYSINI initialization code. The address space is reclaimed for the
monitor's Section 0 free core pool. However, when you use EDDT to
load the monitor (using the DEBUG$G command), this address space is
preserved, and the symbol table is moved into Section 35 (KL10) or out
of the monitor's address space into unmapped core (KS10). A pointer
to the physical address of the symbol table is stored in the Exec Data
Vector for use by EDDT.

6.2.2 Breakpoints

You can insert breakpoints anytime after the EDDT prompt. Unless you
are debugging system initialization code, it is useful to set an
initial breakpoint at the label "HIGHIN". When this point in the code
has been reached, the monitor is ready to run. That is, all other
CPUs have been started, channels can be autoconfigured, and so forth.

6-2

DEBUGGING THE MONITOR

After the monitor starts running, you can type <CTRL/D> on any CTY to
enter EDDT on the current CPU. SCNSER intercepts the <CTRL/D>
character at interrupt level, saves the contents of the current AC
block, and executes an unsolicited breakpoint entry into EDDT. Then
you can type any valid EDDT command on the CTY. You can resume
monitor execution by typing $P. SCNSER will ignore the <CTRL/D>
character that caused control to pass to EDDT. The <CTRL/D> facility
is controlled under timesharing by the use of the following monitor
command on the CTY:

.SET EDDT BREAKPOINT [OFF/ON]

The default setting for this command is ON when Bit 0 is set in the
DEBUGF word.

6.3 DEBUGF FLAGS

The DEBUGF word contains the following flags, which can be set and
cleared using OPR commands. The most useful flag for the systems
analyst is Bit 0, the sign bit. This flag indicates that EDDT is
loaded for debugging the monitor and enables breakpointing monitor
code.

Bit Name

0 DF.SBD
1 DF .RDC
2 DF.RJE
3 DF.NAR
4 DF.CP1
S DF.DDC
6 DF.DJE
7 DF.DCP
8 DF.RQC

9 DF.RQK
10 DF.RQN
11 DF.WFL
12 DF.DDC
13 DF.RIP
14 DF.RAD
lS DF.RLD
18 DF.BPO
19 DF.BP1
20 DF.BP2
21 DF.BP3
22 DF.BP4
23 DF.BPS

Description

System being debugged (EDDT loaded) .
Reload on DEBUG stopcodes.
Reload on JOB stopcodes.
Do not automatically reload.
Stop entire system on any CPU stopcode.
Do not output a memory dump on a DEBUG stopcode.
Do not output a memory dump on a JOB stopcode.
Do not output a memory dump on a CPU stopcode.
Start CRSCPY program to copy the previous crash
file at the time of the next clock tick on the
policy CPU.
Call KDPLDR on the next clock tick.
Call KNILDR on the next clock tick (obsolete).
Copy output to FRCLIN at system CTY.
Disable next CRSCPY request.
Reload in progress (RECON. function . RCRLD)
Reload after dump (don't dump twice in BOOT) .
Stopcode caused by a reload (used CRSCPY) .
Can enter EDDT on CPUO using XCT .CODDT.
Can enter EDDT on CPU1 using XCT .C1DDT.
Can enter EDDT on CPU2 using XCT .C2DDT.
Can enter EDDT on CPU3 using XCT .C3DDT.
Can enter EDDT on CPU4 using XCT .C4DDT.
Can enter EDDT on CPUS using XCT .CSDDT.

For example, suppose you want to stop the system before reloading to
reconfigure the hardware. To do this, Bit 3 in the DEBUGF word should
be set. To disable automatic reloads, run the OPR program and type
the following commands to CONFIG:

.R OPR<RET>
OPR>ENTER CONFIG<RET>
CONFIG>SET NO AUTO-RELOAD<RET>
CONFIG>EXIT<RET>

6-3

DEBUGGING THE MONITOR

6.4 MULTI-CPU ENVIRONMENT

Debugging a multiple-CPU system requires special considerations. EDDT
performs all terminal I/O for the CTY that encountere~ the breakpoint.
It is not unusual to use all CTYs on the system during a debugging
session.

When a CPU stops at a breakpoint, normally the other CPU(s) will
continue to run. If the breakpoint occurred on a non-policy CPU, the
CTY on the policy CPU will report the following message: .

problem on CPUn ...

However, if the breakpoint occurs on the policy CPU, a role switch
occurs and another CPU assumes the role of the policy CPU. Although
this behavior is desirable during timesharing, the role switch makes
it very difficult to debug a multiple-CPU monitor when more than one
CPU is running. Also, when the CPUs in the system detect the fact
that one of the CPUs is not running, interlocks owned by the halted
CPU are broken. If the CPU was actually paused at a breakpoint, and
then continued, CIB stopcodes can occur.

To prevent role switching, a flag (DEBCPU) is set, and contains the
CPU number on which you typed DEBUG$G. DEBCPU is checked in the
BRKLOK and BECOMO routines, to prevent possible role switches. This
may be circumvented by patching a JFCL at DDTCPU prior to typing
DEBUG$G.

Monitor messages are sent once per hour on the CTY.
patch will circumvent this BIGBEN routine:

BIGBEN/POPJ P,

6.5 CAUTIONS

The following

Remember, EDDT provides little protection against user errors. Keep
the following points in mind when you are debugging a running monitor:

o EDDT cannot execute a UUO when you issue the $X and $$X
commands. This is a restriction. Attempts to do this on a
KL usually result in a PI Level 0 Interrupt Error from
RSX-20F. The monitor performs some UUOs internally, in the
SAVE/GET code, and the CLOSE and FINISH commands.

o You can change the AC block for EDDT when the monitor is at a
breakpoint and you wish to deposit data into an AC block
other than the current one. Use the following co:mmand to
change to the AC block you specify (n):

n$4U

Do not attempt to use AC Blocks 6 or 7 on a KLIO. This will
crash the system because the microcode uses portions of AC
Block 6 and all of AC Block 7.

o On a multiple-CPU system, there are locations in ONCMOD and
SYSINI where tpe CPU must wait for another CPU to finish an
operation. If tpat other CPU is halted at a breakpoint, the
waiting CPU will time out. You must devise specific patches
at CPUXCT to prevent this situation.

6-4

APPENDIX A

GLOSSARY

The table below provides an alphabetized list of the abbreviations and
acronyms used in this manual, with expanded names to define them.

Table A-1:

Acronym

AC
APR
BR
CDB
CFP
CHN
CI
CPU
CRAM
CTY
CX
DDB
DDT
DRAM
EBR
EPT
EVM
FM
I/O
IORB
IPCF
IR
JDA
KDB
KON
LDB
MB
MFD
MQ
MUUO
NI
NZS
PC
PDB
PI
PMA
PPB
PPN

Glossary of Acronyms

Meaning

Accumulator
Arithmatic Processor
Buffer Register
Central Processing Unit Data Block
Compressed File Pointer
Channel Data Block
Computer Interconnect
Central Processing Unit
Control Random-Access Memory
Console Terminal
A job context
Device Data Block
DEC Debugging Tool
Dispatch Random-Access Memory
Exec Base Register
Exec Process Table
Exec Virtual Memory
Fast Memory
Input/Output
Input/Output Request Block
Interprocess Communication Facility
Instruction Register
Job Device Assignment table
Controller Data Block
Disk Controller Data Block
Line Data Block
Memory Buffer
Master File Directory
Multiplier/Quotient Register
Monitor UUO (see UUO)
Network Interconnect
Non-Zero Section
Program Counter
Process Data Block
Priority Interrupt
Physical Memory Address
PPN Data Block
Project-Programmer Number

A-I

PTY
PWQ
RAM
RIB
SAT
SCA
SCS
SFD
SMP
SPR
SPT

STR
TKB
TTY
TUB
TWQ
UBR
UDB
UFD
UNI
UPT
UUO
VMA

GLOSSARY·

Pseudo-Terminal
position wait Queue
Read-Access Memory
Retrieval Information Block
Storage Allocation Table
Systems Communications Architecture
Systems Communications Services
Sub-File Directory
Symmetric Multiprocessing
Software Performance Report
Special Pages Table (for mapping)
Storage Allocation Pointer Table (for disk I/O)
Structure Data Block
Tape Controller Data Block
Terminal ~

Tape unit Data Block
Transfer wait Queue
User Base Register
Unit Data Block
User File Directory
Disk Unit Data Block
User Process Table
Unimplemented User Operation (monitor call)
virtual Memory Address

A-2

APPENDIX B

ADDRESS SPACE LAYOUT

Monitor Code Section Layout

NOTE

The specifications shown in the following figures are
subject to change without notice. Addresses are shown
for comparison purposes only; actual addresses may be
different depending on your specific monitor
configuration.

B-1

00,,000000

00,,073777

00,,074000

00,,245777

00,,246000
00,,327777

00,,330347
00,,334777

00,,335000
00,,337777

00,,340000

00,,726777

00,,727000
00,,733777

00,,734000
00,,735777

00,,736000
00,,737777

00,,740000

00,,777777

01,,000000
01,,777777

ADDRESS SPACE LAYOUT

Monitor Code Section Layout

+---+
1 Traditional "Low Seg"
1 COMxxx data structures, Exec page
1 maps, Interrupt vectors & code,
1 Prototypes DDBs, Job (JBT) Tables
1---
1 PTY DDBs, TTY DDBs, Monitor free
1 core, KDBs, UDBs, PDBs, Context
1 blocks, etc.
1---
1 Void
I
1---
I Common Subroutines
I
1---

Void

Traditional "High Seg", Pure code,
UUO calls, Device drivers, IPCF,
ENQ/DEQ, ANF, etc.

Void

Per-CPU COB mapping

Void

Job Per-process mapping
UPT, Extended-exec-PDL, Disk DDBs,
TMPCOR, pathological names, . TEMP,
.JBPK, ect. map slots

Monitor Section One
(mapped identically to Section Zero)

+---+

Figure B-1: Monitor Code Section Layout

B-2

ADDRESS SPACE LAYOUT

DECnet Code Section Layout

+---+
02,,000000 1 Traditional "Low Seg"

1 COMxxx data structures, Exec page
1 maps, Interrupt vectors & code,

02,,073777 1 Prototypes DDBs, Job (JBT) Tables

02,,074000

02,,245777

02,,246000
02,,327777

02,,330000
02,,334777

02,,335000
02,,627777

02,,630000
02,,717777

02,,720000
02,,733777

02,,734000
02,,735777

02,,736000
02,,737777

02,,740000

02,,777777

1

PTY DDBs, TTY DDBs, Monitor free
core, KDBs, UDBs, PDBs, Context
blocks, etc.

void

Common Subroutines

Void

"Sky Hi Seg"
DECnet code

void

Per-CPU CDB mapping

void

1---
1 Job Per-process mapping
1 UPT, Extended-exec-PDL
I Disk DDBs, TMPCOR
I Pathological names
I . TEMP, .JBPK, ect. map slots
+---+

Figure B-2: DECnet Code Section Layout

B-3

ADDRESS SPACE LAYOUT

Monitor Data Section 3 Layout

+---+
03,,000000 PAGTAB
03,,017777

03,,020000
03,,037777

03,,040000
03,,057777

03,,060000
03,,174777

03,,175000
03,,277777

03,,300000
03,,407777

03,,410000
03,,517777

03,,520000
03,,543777

03,,544000
03,,547777

03,,550000
03,,553777

03,,554000
03,,777777

PT2TAB

MEMTAB

Disk Cache
"NZS" free core

Void

DECnet "MB" pool

DECnet free pool

DECnet name-to-address
translation table

KLNI free pool

LAT free pool

Void

+---+

Figure B-3: Monitor Data Section 3 Layout

B-4

04,,000000
04,,051777

04,,052000
04,,777777

05,,000000
05,,004777

05,,005000
05,,121777

05,,122000
05,,165777

05,,166000
05,,166777

05,,170000
05,,171777

05,,172000
05,,172777

05,,173000
05,,176777

05,,177000
05,,777777

ADDRESS SPACE LAYOUT

Monitor Data Sections 4,5 Layout

+---+ 1 SCNSER TTY LDBs & Chunks 1
1 1
1---1
1 Void 1

1 1

+---+
+---+

SCA Free pool

SCA Datagram buffers

SCA Message buffers

SCA Connect ID table

KLIPA BSDs

KLIPA BHDs

LAT "extra allocation"

void

+---+

Figure B-4: Monitor Data Sections 4,5 Layout

B-5

06,,000000
06,,007500

06,,007500
06,,012250

06,,012250
06,,014650

06,,014650
06,,017250

06,,017250
06,,034530

06,,034530
06,,051777

06,,052000
06,,777777

07,,000000
07,,003777

07,,004000
07,,076777

07,,077000
07,,122777

07,,123000
07,,777777

ADDRESS SPACE LAYOUT

Monitor Data Sections 6,7 Layout

+---+
I BOOT
I
1---
I DX10 (DXMPA) ucode
I
1---
I DX20 (DXMCA) ucode
I
1---

DX20 (DXMCD) ucode

KLIPA (KLPCOD) ucode

KLNI (KNICOD) ucode

Void

+---+

+---+ 1 Swapping SATs 1
1 1
1---1
1 Disk SATs 1

1 1
1---1
1 SAT free core 1

1 1
I-----------------------~-------------------I
1 Void 1

1 1
+---+

Figure B-5: Monitor Data Sections 6,7 Layout

B-6

ADDRESS SPACE LAYOUT

Monitor Data Sections 35,36,37 Layout

35,,000000
35,,252777

35,,253000
35,,777777

36,,000000
36,,777777

37,,000000
37,,677000

37,,700000
37,,737777

37,,740000
37,,777777

+---+ 1 Symbol table for EDDT while 1
1 debugging, otherwise void. 1
1---1
1 Void 1

1 1
+---+

+---+
1 SNOOPY Scratch space 1

1 1
+---+

+---+
1 Void 1

1 1
1---1
1 Exec section maps 1

1 1
1---1
I User section maps 1

1 1
+---+

Figure B-6: Monitor Data Sections 35,36,37 Layout

B-7

INDEX

-A-

AC blocks
finding, 3-13
switching, 3-5, 4-6

Access
codes, 3-2
table (ACC) , 4-27

Accumulators, 2-5
locations, 3-13
monitor, 3-6, 4-2
saving, 3-9
scheduler, 3-13
traps, 3-12
user, 4-8

Addressing non-zero sections, 3-4
Allocating disk space, 4-23
Alternate page maps, 3-3
ANF-10 networks, 4-12
APR interrupts, 5-3
APRSER module, 5-4
AR/ARX parity errors, 5-5
Arithmetic Logic Unit (ALU) , 5-6
Assigning channel numbers, 4-11
Attached terminals, 4-17
AU resource, 4-10
AUTCON module, 3-14, 4-20, 4-26
Automatic reloads, 2-2
AVALTB table, 4-10

-B-

30-bit addressing, 3-4
Blocking

programs, 3-5
user jobs, 3-6

BOOT, 2-1, 2-2
Booting systems, 2-2
Break characters, 4-16
Breakpointing monitors, 6-2
BUG. macro, 5-9
Building monitors, 4-4
Byte pointers, 4-4

-c-

Cacheable pages, 3-2
Caching

disk information, 4-28
UPT locations, 3-6

CALLI UUOs, 4-11
CDB

constants area, 4-9
defining locations, 4-9
variables area, 4-9

Changing AC sets, 6-4
Channels, 4-11

data blocks (CHN) , 4-19, 4-20,
4-27

Channels (Cont.)
error report, 5-4
status bits, 4-11

Checking parity, 5-7
Chunks

counts, 4-16
terminal, 4-16

Clearing virtual addressing, 2-5
Clock, 3-12
CLOCK1 module, 3-14
Clusters, 4-23
CNFDVN location, 2-7
COMDEV module, 4-5
Command

dispatch bits, 4-2
files

FILDDT, 2-8
RSX-20F, 5-13

tables, 4-11
COMMOD module, 4-5
COMMON module, 3-14, 4-5, 4-9,

4-17, 5-3
Common modules, 4-5
Compressed File Pointer (CFP) ,

4-23
COMTAB table, 4-11
Concealed mode, 3-4, 3-5
Conditionals, 4-6
Connecting devices, 5-7
CONSO skip chain, 3-9, 3-14
Console

front-ends, 5-13
terminal, 1-1

Continuable stopcodes, 1-2, 5-11
Control RAM (CRAM), 5-6
Controller data block (KON) , 4-27
Controlling terminal, 4-17
Copying crash files, 2-2
CPNSER module, 3-15
CPU

Data Blocks (CDBs), 2-5, 4-9,
5-5

interlocks, 6-4
stopcodes, 5-10

Crash
analysis, 1-1
files, 1-1, 2-1
space, 2-1

Crash files, 1-1, 1-4, 2-1, 2-2
CRASH.EXE file, 2-1
Creating

crash files, 2-1
FILDDT command files, 2-8
symbolic FILDDT, 2-3

CREF
listings, 4-6
program, 4-5

CRSCPY program, 2-1, 2-2
CTXSER module, 3-15

Index-1

CTY, 1-1
Current .ACs, 2-7
Cursor position counter, 4-16
CX resource, 4-10
CYCLE error, 5-8
Cycles, 3-12

-D-

D36PAR module, 3-15
DA resource, 4-10
DDBs, 4-11
DEBUG stopcodes, 5-10
DEBUGF word, 5-11, 6-3
Debugging the monitor, 6-1
DECnet

front-ends, 4-12
layout, 3-3

Defining
CDB locations, 4-9
symbols, 3-15

Device
codes, 3-5
Data Blocks (DDBs), 4-2, 4-12
information, 4-12
interrupts, 3-8
status word, 4-2

Devices
RDA, 4-12

DEVIOS word, 4-2
DIE routine, 5-9, 5-10
DIECDB location, 2-5
Directories, 4-21
Disabling

extended addressing, 2-5
time messages, 6-4
user addressing, 2-6

Disk
cache, 4-28
controller data block (KON) ,

4-2
device data blocks, 4-28
dual-ported devices, 4-6
file structure, 4-21
I/O, 4-21
on-line information, 4-26
storage allocation, 4-23

Dismissing interrupts, 3-9
DISP table, 4-11
Dispatch RAM (DRAM), 5-6
DN20 front-ends, 4-12
Doubleword PC, 3-4
DTE

DPBs, 4-12
ipterrupts, 3-10

DTE~RM module, 3-15, 4-7
DTESER module, 4-12
Dual-ported disks, 4-6

-E-

Echo count, 4-16
EDD'r, 6-2

Enabling addressing, 2-5
ENQ/DEQ

module, 3-15
ERnPDL stack, 3-13, 5-4
ERRCON module, 5-10
Error

handling, 5-1
hardware codes, 3-11
parity, 5-8
processing routines, 3-13

ETHPRM module, 3-15
EUE stopcodes, 5-13
EV resource, 4-10
EVENT stopcodes, 5-10
Exec

Base Register (EBR) , 3--2
kernel mode, 3-4
mode, 3-2, 3-4, 3-5
Process Table (EPT) , 2-4, 2-5,

3-2
Exec-mode DDT, 6-2
EXECAC macro, 4-6
Execute-only programs, 3-5
Executing command files, 2-8
Execution Box (EBOX), 5-6
Executive UUO Error (EUE) , 5-13
Exiting FILDDT, 2-4
Extended

addressing, 2-5, 3-3
channel table, 4-11
software channels, 3-3

-F-

F module, 3-15, 4-6
FAKEAC flag, 2-5
Fast Memory (FM) , 5-6
Fatal errors, 1-1, 1-2
Fault continuation, 1-2
Feature test options, 4-6
FILDDT

command files, 2-8
mapping commands, 2-5
program, 2-3

Finding
AC blocks, 3-13
DDBs, 4-11
stopcodes, 5-9
symbolic definitions, 4-6

Flag-PC doubleword, 3-4
Flags for DEBUGF, 6-3
Forced commands, 4-11
Forced system dumps, 2-1
Forcing reloads, 2-1
Free core, 4-10
Front-ends, 4-12
Full clock cycle, 3-12
Funny space, 3-3

-G-

Generating p&rity, 5-7
GLOB program, 4-7

Index-2

Global
section references, 3-4
symbols, 4-1, 4-7

Groups of disk data, 4-22

-H-

HALT stopcodes, 5-10
Halting systems, 2-2
Handling

errors, 5-1
interrupts, 3-9

Hardware
addressing, 2-5
error codes, 3-11
errors, 5-1
interrupts, 3-14
mapping, 3-2

HOME blocks, 4-22

-I-

I/O
channels, 4-11
Request Block (IORB) , 4-19
status word, 4-2 '
tables, 4-11

IF statement, 4-6
IME stopcodes, 5-12
INFO stopcodes, 5-10
Inserting breakpoints, 6-2
Instruction Register (IR), 5-6
Interlocks between CPUs, 6-4
Interrupt, 3-6

accumulators, 3-9
error-handling, 3-8
handling routine, 3-8
levels, 3-6
PDLs, 3-9
processor, 5-3
stacks, 3-9
Vector (IVIR), 3-10

Interrupting
on Level 0, 3-8
on Level 7, 3-12

Intertask communication, 4-12
INTTAB table, 4-10
Invalid mapping, 2-7
IPCSER module, 3-15
IVIR register, 3-10

-J-

JBT tables, 4-7
JBTPPB table, 4-27
Job

context module, 3-15
Device Assignment table (JDA) ,

4-11
stopcodes, 5-10
tables, 4-7

Job-specific monitor locations,
3-3

JOBDAT
area, 3-6
locations, 4-8
module, 3-15, 4-7
vestigial, 3-3

-K-

Keep Me bit, 3-2
Keep-Alive Fail (KAF), 5-12, 5-13
Kernel mode, 3-4
KL interrupt handling, 3-9
KL-paging, 2-5, 3-3
KLPPRM module, 3-15
KNO word, 4-28
KS

alternate page maps, 3-3
interrupt handling, 3-9
reloading systems, 2-2

-L-

Label DDBs, 4-20
Line

characteristics bits, 4-16
Data Blocks (LDBs), 4-2, 4-15

LINTAB table, 4-16
Loading FILDDT symbols, 2-3
Local symbols, 4-1

unlocking, 4-7
Locating EPTs, 2-5
Locations

0-17, 2-5
30, 2-1
406, 2-2
407, 2-2
500, 3-11
DIECDB, 2-5

LOKCON module, 3-15
Low segment addresses, 2-5

-M-

Macros, 4-5
MACSYM module, 3-15, 4-7
Magnetic tape devices, 4-19
Mapping

ACs, 2-6
dumps, 2-5
exec virtual memory, 2-6
extended sections, 2-5
user jobs, 2-6
verification, 2-7
virtual addresses, 2-4, 2-5,

3-2
Master File Oirectory (MFD) , 4-21
MCA25 bit, 3-2
MCB software, 4-12
Memory

Box (MBOX), 5-6
dump, 1-1
tables, 4-10

MEMTAB table, 4-10

Index-3

MIC information, 4-16
MM resource, 4-10
Mode flag, 3-4
Modules, 3-13

conunon, 4-5
monitor startup, 3-14
optional, 3-15
symbol definition, 3-15

MONGEN program, 4-4
Monitor

ACs, 4-2
breakpointing, 6-2
building, 4-4
conunand processing, 4-11
functions, 3-1
macros, 4-5
modules, 3-13
name, 2-8
sources, 4-5
startup modules, 3-14
symbols, 4-1
version numbers, 2-7

Monitor-resident user data, 3-3
Monitor-specific FILDDT, 2-3
MSCPAR module, 3-15
Multiple-KL systems, 4-6
MUUO, 3-6

-N-

Name Block (NMB), 4-27
Nested SFDs, 4-21
NETDEV module, 4-12
NETPRM module, 3-15, 4-7
NETSER module, 4-12
Network devices, 4-12
Non-Zero Sections (NZS), 2-5, 3-3,

3-4
Nonvectored interrupts, 3-8
NXM errors, 5-5

-0-

ONCE module, 3-14
Optional modules, 3-15

-p-

Page
faults, 3-11
map pointers, 3-2
maps, 2-4, 3-2, 3-3
tables, 4-10

Page fail
codes, 3-11
traps, 5-3, 5-4
word, 3-11

PAGTAB table, 4-10
Parity

errors, 5-4, 5-8
generating, 5-7

Partial clock cycle, 3-12

Patch
files, 2-8
space, 6-1

PATCH module, 3-14
Patching monitors, 6-1
Per-process monitor free core,

3-3
Performing terminal I/O, 4-17
Physical addresses, 2-5
PI

channels, 3-6
CYCLE error, 5-8
status word, 3-7

Pointers, 3-2
compressed file, 4-23
DDB, 4-2
MFD, 4-22
retrieval, 4-22

Policy CPU, 2-2, 6-4
Position wait Queue (PWQ), 4-27
Power-fail stack, 5-4
PPN Data Block (PPB), 4-27
Prime RIB, 4-22
Priority Interrupts (PI), 3-6
Process

context word, 3-7
Data Block (PDB) , 4-2, 4-8
tables, 3-2

Processing
errors, 3-13
UUOs, 4-11

Processor
interrupts, 5-3
modes, 3-2, 3-4

Program Counter (PC), 3-4, 5-6
Prototype KDBs, 4-20
Pseudo-instructions, 4-5
PSISER module, 3-15
Public

mode, 3-4, 3-5
pages, 3-2

PULSAR module, 4-20
Push-down lists, 3-9

scheduler, 3-13
traps, 3-12

PWFPDL stack, 5-4
PXCT instruction, 4-6

-Q-

QBITS table, 4-10
QUESER module, 3-15

-R-

RDA devices, 4-12
Reading monitor sources, 4-5
Real-time module, 3-15
Recovering from errors, 3-12
REFSTR module, 3-14
Registers, 5-6
Reloading automatically, 2-2
Reloads, 2-1

Index-4

REQTAB table, 4-10
Resetting mapping, 2-7
Resources, 4-10
Restoring accumulators, 4-3
Retrieval Information Block (RIB),

4-22
RH10 interrupts, 3-10
RH20 interrupts, 3-10
RH2PRM module, 4-7
Role switching, 3-5, 6-4
RSX-20F errors, 5-13
RTTRP module, 3-15
Run queues, 4-10
Running

FILDDT, 2-3
symbolic FILDDT, 2-4

-s-

S module, 3-15, 4-7, 4-11
Saving symbolic FILDDT, 2-4
SAVnx routines, 3-9
SCAPRM module, 3-15
Scheduler

ACs, 3-13
tables, 4-10

SCNSER module, 4-15, 4-16
SCPAR module, 3-15
Sections, 3-3

DECnet: 3-3
mapping, 2-5
pointers, 3-2
references, 3-4
tables, 3-2

SEILM routine, 3-12, 5-4
Servicing interrupts, 3-9
SET commands, 4-11
Sharable resources, 4-10
Shutting down systems, 2-2
Skip chain, 3-9
Software

channels, 4-11
disk cache, 4-28

Source code, 4-5
Spare RIB, 4-22
Special Pages Table (SPT) , 2-5,

3-3
SPT slot, 2-6
Stacks

error processing, 3-13
interrupt, 3-9

Starting BOOT, 2-2
Startup modules, 3-14
Status bits

channels, 4-11
I/O, 4-2

STOP stopcodes, 5-10
STOPCD macro, 5-9
Stopcodes, 1-2, 2-10, 5-9
Storage Allocation Blocks (SABs) ,

4-27
Storage allocation Pointer Tables

(SPTs), 4-27

Storage Allocation Tables (SATs),
4-23

Structure
data blocks (STRs), 4-26
disk, 4-21

Sub-File Directories (SFDs), 4-21
Superclusters, 4-23
Swapped-out pages, 4-10
SWITCH.INI files, 3-3
Switching

AC blocks, 3-5, 3-9, 4-6
CPUs, 6-4
modes, 3-5
UPTs, 3-10

Symbol definition, 3-15
Symbolic FILDDT, 2-3
Symbols

monitor, 4-1
verifying, 2-7

Symmetric Multi-Processing (SMP) ,
. 4-6, 6-4
SYSINI module, 3-14, 4-17
SYSPPB table, 4-27
SYSSTR table, 4-26
SYSTAT program, 2-3

-T-

TABSTR table, 4-26
Tape

controller data block (KDB) ,
4-2, 4-19

I/O, 4-19
label processing, 4-20
unit data block (TUB), 4-19

Terminal
chunk pointers, 4-16
chunks, 4-16
controlling, 4-17
DDBs, 4-16, 4-17
Device Data Blocks, 4-15
I/O, 4-17

TMPCOR, 3-3
Transfer

tables, 4-10
Wait Queue (TWQ) , 4-27

Trapping
page faults, 3-11, 5-4
UUOs, 3-5

Trapping page faults, 5-3
TSKSER module, 4-12
TTFCOM table, 4-11
TTYINI routine, 4-17
TTYTAB table, 4-17

-u-

UCLJMP table, 4-11
UCLTAB table, 4-11
UFD Data Block (UFB) , 4-28
Unit

Data Blocks (UDBs), 4-2, 4-26
Universal files, 4-7

Index-5

Unlocking local symbols, 4-7
UNQTAB table, 4-11
Unrestricted device codes, 3-5
UPT locations, 3-6
User

accumulators, 2-5, 2-6
ACs, 4-8
Base Register (UBR) , 3-2
buffers, 4-17
concealed mode, 3-4
DDBs, 3-3
File Directories (UFDS), 4-21
jobs

blocking, 3-6
mapping, 2-6
switching, 3-10
'irerifying, 2-7

mode, 3-2, 3-4, 3-5
Process Table (UPT) , 2-4, 2-5,

3-2
public mode, 3-4

USERAC macro, 4-6
Using

command files, 2-8
CREF listings, 4-5
EDDT, 6-2
FILDDT, 2-3
SYSTAT, 2-3

USRJDA location, 4-11
UUOCON module, 3-14

UUOERR routine, 4-11
UUOs

processing, 4-11
trapping, 3-5
verification, 3-6

UUOTAB table, 4-11

-v-

Vectored interrupts, 3-8, 3-10
Verifying

FILDDT mapping, 2-7
UUOs, 3-6

virtual
address mapping, 3-2
addressing, 2-4, 2-5
Memory Address (VMA), 5-6
sections, 3-3

-w-

Writeable pages, 3-2

-x-

XPN: area, 2-3

-y-

YES word, 4-28

Index-6

READER'S COMMENTS

TOPS-tO
Crash Analysis Guide

AA-H206D-TB

Your comments and suggestions help us to improve the quality of our publications.
For which tasks did you use this manual? (Circle your responses.)
(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programming (f) Other (Please specify.) _________ _
Did the manual meet your needs? Yes 0 No 0 Why? __________ _

Please rate the manual in the following categories. (Circle your responses.)

Accuracy (product works as described)
Clarity (e;;tsy to understand)
Completeness (enough information)
Organization (structure of subject
matter)
Table of Contents, Index (ability to
find topic)

Excellent Good Fair Poor Unacceptable
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1

5 4 3 2 1

Illustrations, examples (useful) 5 4 3
3
3
3

2
2
2
2

1
1
1
1

Overall ease of use 5 4
Page Layout (easy to find information) 5 4
Print Quality (easy to read) 5 4
What things did you like most about this manual? __________ _

What things did you like least about this manual? ____________________ _

Please list and describe any errors you found in the manual.
Page Description/Location of Error

Additional comments or suggestions for improving this manual:

Name ________________________ __ Job Title ___________________ _
Street ____________________ __ Company _______________________ _
City __________ ---____________ _ Deparbnent _______________________ _
State/Country _______________ _ Telephone Number ______________ _
Postal (ZIP) Code ___________ ~ _______ _ Date _____ - ______________________________ _

- - - - - - - - - - - - Fold Here and Tape - - - - - - - - - -

DIGITAL EQUIPMENT CORPORATION

CORPORATE USER PUBLICATIONS

200 FOREST STREET MR01-3/L 12

MARLBOROUGH, MA 01752-9101

- - - - - - - - - - .- - - Fold Here

Affix
Stamp
Here

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB

