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Preface 

This manual describes the TOPS-I0/TOPS-20 Common Math Library. At 
present, the library is included as part of each object-time system of each 
language that uses it. In the future, the library will be a separate entity as 
described in this manual. Chapter 1 introduces the library routines and gives 
information on how they are described. A table of the routines, arranged in 
alphabetical order, is included for easy reference. Chapters 2 through 15 con
tain the descriptions of the routines, grouped logically such that all like 
routines are together (e.g., all the square root routines are in Chapter 2). 
Appendix A gives the results of the ELEFUNT tests and Appendix B de
scribes error handling for MACRO programs. 

Ix 





Chapter 1 
Introduction 





1.1 The Math Library 

The TOPS-I0/TOPS-20 Common Math Library contains a set of routines 
that perform the following mathematical functions for several types of data. 

• square root 

• natural and base-l0 logarithm 

• exponential and exponentiation 

• trigonometric 

• inverse trigonometric 

• hyperbolic 

• random number generation 

• absolute value 

• data type conversion 

• rounding and truncation 

• product 

• remainder 

• positive difference 

• transfer of sign 

• maximum or minimum of a series 

• complex conjugate 

• complex multiplication or division 

Most of the routines are functions; but some, notably the complex double
precision, are subroutines. The difference between the types of routines is the 
way in which they are called from a program. Consult the applicable language 
manual for more information. 

The routines are listed alphabetically in Table 1-1 with a short description of 
each and a page reference. 
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Table 1-1: Math Library Routines 

Routine Name Page Purpose 

ABS 9-4 absolute value 

ACOS 6-4 arc cosine 

AIMAG 15-4 imaginary part of complex number 

AINT 11-9 truncation to integer 

ALOG 3-3 natural logarithm 

ALOGlO 3-5 base-lO logarithm 

AMAXO 14-5 largest of a series 

AMAXI 14-6 largest of a series 

AMINO 14-11 smallest of a series 

AMINI 14-12 smallest of a series 

AMOn 12-6 remainder 

ANINT 11-6 nearest whole number 

ASIN 6-3 arc sine 

ATAN 6-13 arc tangent 

ATAN2 6-15 polar angle of a point in the x-y plane 

CABS 9-7 complex absolute value 

CCOS 5-21 complex cosine 

CDABS 9-8 complex, double-precision, D-floating-point absolute value 

CDCOS 5-25 complex, double-precision, D-floating-point cosine 

CDEXP 4-11 complex, double-precision, D-floating-point exponential 

CDLOG 3-17 complex, double-precision, D-floating-point natural 
logarithm 

CDSIN 5-23 complex, double-precision, D-floating-point sine 

CDSQRT 2-11 complex, double-precision, D-floating-point square root 

CEXP 4-9 complex exponential 

CEXP2. 4-22 exponentiation of a complex number to the power of an 
integer 

CEXP3. 4-34 exponentiation of a comple?, number to the power of 
another complex number 

CFDV 15-7 complex division 

CFM 15-6 complex multiplication 

CGABS 9-9 complex, double-precision, G-floating-point absolute value 

CGCOS 5-29 complex, double-precision, G-floating-point cosine 

(continued on next page) 

1-4 TOPS-10/TOPS-20 Common Math Library Reference Manual 



Table Table 1-1 (Cont.): Math Library Routines 

Routine Name Page Purpose 

CGEXP 4-13 complex, double-precision, G-floating-point exponential 

CGLOG 3-19 complex, double-precision, G-floating-point natural 
logarithm 

CGSIN 5-27 complex, double-precision, G-floating-point sin 

CGSQRT 2-13 complex, double-precision, G-floating-point square root 

CLOG 3-15 complex natural logarithm 

CMPL.C 10-23 conversion of two complex numbers to one complex number 

CMPL.D 10-21 conversion of two double-precision, D-floating-point 
numbers to complex format 

CMPL.G 10-22 conversion of two double-precision, G-floating-point num-
bers to complex format 

CMPL.I 10-19 conversion of two integers to complex format 

CMPLX 10-20 conversion of two single-precision numbers to complex 
format 

CONJ 15-5 complex conjugate 

COS 5-7 cosine (angle in radians) 

COSD 5-9 cosine (angle in degrees) 

COSH 7-4 hyperbolic cosine 

COTAN 5-33 cotangent 

CSIN 5-19 complex sine 

CSQRT 2-9 complex square root 

DABS 9-5 double-precision, D-floating-point absolute value 

DACOS 6-7 double-precision, D-floating-point arc cosine 

DASIN 6-5 double-precision, D-floating-point arc sine 

DATAN 6-17 double-precision, D-floating-point arc tangent 

DATAN2 6-19 double-precision, D-floating-point polar angle of a point in 
the x-y plane 

DBLE 10-12 conversion from single-precision to dou bIe-precision, 
D-floating-point format 

DCOS 5-13 double-precision, D-floating-point cosine 

DCOSH 7-7 double-precision, D-floating-point hyperbolic cosine 

DCOTAN 5-37 double-precision, D-floating-point cotangent 

DDIM 12-11 double-precision, D-floating-point positive difference 

DEXP 4-5 double-precision, D-float.ing-point exponent.ial 

(continued on next page) 
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Table 1-1 (cont.): Math Library Routines 

Routine Name 

DEXP 

DEXP2. 

DEXP3. 

DFLOAT 

DIM 

DINT 

DLOG 

DLOG10 

DMAX1 

DMIN1 

DMOD 

DNINT 

DPROD 

DSIGN 

DSIN 

DSINH 

DSQRT 

DTAN 

DTANH 

DTOG 

DTOGA 

EXP 

EXP1. 

EXP2. 

EXP3. 

FLOAT 

GABS 

GACOS 

GASIN 

GATAN 

Page 

4-5 

4-18 

4-28 

10-11 

12-10 

11-10 

3-7 

3-9 

14-7 

14-13 

12-7 

11-7 

12-3 

13-5 

5-11 

7-5 

2-5 

5-35 

7-12 

10-17 

10-18 

4-3 

4-15 

4-16 

4-25 

10-8 

9-6 

6-11 

6-9 

6-21 

Purpose 

double-precision, D-floating-point exponential 

exponentiation of a double-precision, D-floating-point 
number to the power of an integer 

exponentiation of a double-precision, D-floating-point 
number to the power of another double-precision, 
D-floating-point number 

conversion of an integer to double-precision, 
D-floating-point format 

positive difference 

double-precision, D-floating,point truncation 

double-precision, D-floating-point natural logarithm 

double-precision, D-floating-point base-lO logarithm 

double-precision, D-floating-point largest in a series 

double-precision, D-floating-point smallest in a series 

double-precision, D-floating-point remainder 

double-precision, D-floating-point nearest whole number 

double-precision, D-floating-point product 

double-precision, D-floating-point transfer of sign 

double-precision, D-floating-point sine 

double-precision, D-floating-point hyperbolic sine 

double-precision, D-floating-point square root 

double-precision, D-floating-point tangent 

double-precision, D-floating-point hyperbolic tangent 

conversion of a double-precision, D-floating-point number 
to double-precision, G-floating-point format 

conversion of an array of double-precision, D-floating-point 
numbers to double-precision, G-floating-point format 

exponential 

exponentiation of an integer to the power of another integer 

exponentiation of a single-precision number to the power of 
an integer 

exponentiation of a single-precision number to the power of 
another single-precision number 

conversion of an integer to single-precision format 

double-precision, G-floating-point absolute value 

double-precision, G-·floating-point arc cosine 

double-precision, G-floating-point arc sine 

double-precision, G-floating-point arc tangent 

(continued on next page) 
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Table 1-1 (cont.): Math Library Routines 

Routine Name 

GATAN2 

GCOS 

GCOSH 

GCOTAN 

GDB.n 

GDIM 

GEXP 

GEXP2. 

GEXP3. 

GFL.n 

GFX.n 

GINT. 

GLOG 

GLOGI0 

GMAXI 

GMIN1 

GMOD 

GNINT. 

GPROD. 

GSIGN 

GSIN 

GSINH 

GSN.n 

GSQRT 

GTAN 

GTANH 

GTOD 

GTODA 

Page 

6-23 

5-17 

7-10 

5-41 

10-16 

12-12 

4-7 

4-20 

4-31 

10-15 

10-6 

11-11 

3-11 

3-13 

14-8 

14-14 

12-8 

11-8 

12-4 

13-6 

5-15 

7-8 

10-10 

2-7 

5-39 

7-13 

10-13 

10-14 

Purpose 

double-precision, G-floating-point polar angle of a point in 
the x-y plane 

double-precision, G-floating-point cosine 

double-precision, G-floating-point hyperbolic cosine 

double-precision, G-floating-point cotangent 

conversion of a single-precision number to 
double-precision, G-floating-point format 

double-precision, G-floating-point positive difference 

double-precision, G-floating-point exponential 

exponentiation of a double-precision, G-floating-point 
number to the power of an integer 

exponentiation of a double-precision, G-floating-point 
number to the power of another double-precision, G-float
ing-point number 

conversion of an integer to double-precision, 
G-floating-point format 

conversion of a double-precision, G-floating-point number 
to integer format 

double-precision, G-floating-point truncation 

double-precision, G-floating-point natural logarithm 

double-precision, G-floating-point base-lO logarithm 

double-precision, G-floating-point largest of a series 

double-precision, G-floating-point smallest of a series 

double-precision, G-floating-point remainder 

dquble-precision, G-floating-point nearest whole number 

double-precision, G-floating-point product 

dciuble-precision, G-floating-point transfer of sign 

double-precision, G-floating-point sine 

double-precision, G-floating-point hyperbolic sine 

conversion of a double-precision, G-floating-point number 
to single-precision format 

double-precision, G-floating-point square root 

double-precision, G-floating-point tangent 

double-precision, G-floating-point hyperbolic tangent 

conversion of a double-precision, G-floating-point number 
to double-precision, D-floating-point format 

copversion of an array of double-precision, G--floating-point 
nqmbers to double-precision, D-floating-point format 

(continued on next page) 
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Table 1-1 (cont.): Math Library Routines 

Routine Name Page Purpose 

lABS 9-3 integer absolute value 

IDIM 12--9 integer positive difference 

IDINT 10--5 conversion of a double-precision, D-floating-point number 
to integer format 

IDNINT 11-4 integer nearest whole number for a double-precision, 
D-floating-point number 

IFIX 10-3 conversion of a single-precision number to integer format 

IGNIN. 11-5 integer nearest whole number for a double-precision, 
G-floating-point number 

INT 10-4 conversion of a single-precision number to integer format 

ISIGN 13-3 integer transfer of sign 

MAXO 14-3 largest of a series 

MAXI 14-4 largest of a series 

MINO 14-9 smallest of a series 

MINI 14-10 smallest of a series 

MOD 12-5 integer remainder 

NINT 11-3 integer nearest whole number for a single-precision number 

RAN 8-3 random number generator 

RANS 8-5 random number generator with shuffling 

REAL 10-7 conversion of an integer to single-precision format 

REAL.C 15-3 real part of a complex number 

SAVRAN 8-7 save the seed for the last random number generated 

SETRAN 8-6 set the seed value for the random number generator 

SIGN 13-4 transfer of sign 

SIN 5-3 sine (angle in radians) 

SIND 5-5 sine (angle in degrees) 

SINH 7-3 hyperbolic sine 

SNGL 10-9 conversion of a double-precision, D-floating-point number 
to single-precision format 

SQRT 2-3 square root 

TAN 5-31 tangent 

TANH 7-11 hyperbolic tangent 

The routines in this library are available to most of the languages available 
with TOPS-10 and TOPS-20. Consult the applicable language manual for 
specific information on how to use the Math Library_ Although all of the 
routines listed in Table 1-1 exist in the library, not all of them can be called 
from all languages. That is, some languages or compilers have restrictions 
that disallow calling of a particular routine from a user program. For example, 
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the complex data type does not exist in PASCAL, so the routines that perform 
complex mathematics are never called by a PASCAL program. However, a 
compiler may itself call a routine because a user program has a statement that 
necessitates use of a Math Library routine. For example, a FORTRAN pro
gram cannot call any of the routines whose names contain a period (.). How
ever, the compiler recognizes when a statement within a program requires use 
of one of those routines, and the compiler calls the appropriate routine. Simi
larly, a statement in an APL program may require a mathematical function, 
so the APL interpreter translates that statement into a call to the appropriate 
Math Library routine. 

1.2 Math Symbols and Names Used In Equations 

Throughout this manual, certain mathematical symbols and names are used 
to indicate values, quantities, actions, or states. These symbols and their 
meanings are listed below. 

+ 

x 
/ 
> 
~ 

< 
~ 

7r 

± 
[] 

II 

eX 
sin 
cos 
tan 
cot 
sin-1 

cos-1 

tan-1 

sinh 
cosh 
tanh 
sgn 
conj 

equal to 
plus 
minus 
multiplied by (used in equations) 
multiplied by (used in numbers) 
divided by 
greater than 
greater than or equal to 
less than 
less than or equal to 
not equal to 
square root 
Pi (3.14159265358979323846264950338327) 
plus or minus 
greatest integer in 
absolute value 
equals approximately 
subscript 
superscript or raised to the power 
natural logarithm 
base-10 logarithm 
imaginary number (yCi) 
exponential 
sine of an angle 
cosine of an angle 
tangent of an angle 
cotangent of an angle 
arc sine 
arc cosine 
arc tangent 
hyperbolic sine 
hyperbolic cosine 
hyperbolic tangent 
sign of 
complex conjugate 
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In addition, some equations use the names of routines to indicate a state or 
action. These routines and their meanings are as follows. 

FLOAT convert and round from an integer to a single-precison, floating
point number 

INT convert and truncate from a single-precision, floating-point num-
ber to an integer 

MAX largest of a series 

MIN smallest of a series 

MOD remainder 

Each of these routines is described in detail in this manual. 

Also, machine infinity (or infinity) is a term used to indicate the largest or 
smallest number representable in the machine. 

+ machine infinity = 3777777777778 for single-precision 
377777777777, 3777777777778 for dou ble-precision 

-machine infinity = 4000000000008 for single precision 
400000000000, 0000000000018 for double-precision 

1.3 Data Types and Their Precision 

The Common Math Library routines can handle several data types - integer; 
single-precision, floating-point (also called real); double-precision, D-floating
point; double-precision, G-floating-point; complex; complex, double-preci
sion, D-floating-point; and complex, double-precision, G-floating-point. Each 
data type is described in detail in one of the following sections. 

1.3.1 Integer 

An integer value is a string of one to eleven digits that represents a whole 
decimal number (a number without a fractional part). Integer values must be 
within the range of _23

f:i to +235_1 (-34359738368 to +34359738367). 

1.3.2 Single-Precision, Floating-Point 

Single-precision, floating-point values may be of any size; however, each will 
be rounded to fit the precision of 27 bits (7 to 9 dedmal digits). 

Precision for single-precision, floating-point values is maintained to approxi
mately eight significant digits; the absolute precision depends upon the num
bers involved. 

The range of magnitude permitted a single-precision, floating-point value is 
from approximately 1.47x10-39 to 1.70x10+38 • 
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1.3.3 Double-Precision, D-Floating-Point 

Double-precision, D-floating-point values are similar to single-precision, 
floating-point values; the differences between these two values are: 

• Double-precision, D-floating-point values, depending on their magnitude, 
have precision of 62 bits, rather than the 27-bit precision obtained for sin
gle-precision, floating-point values. 

• Each double-precision, D-floating-point value occupies two storage loca
tions. 

The range of magnitude permitted a double-precision, D-floating-point value 
is from approximately 1.47x10-39 to 1.70x10-f:~8. 

1.3.4 Double-Precision G-Floating-Point 1 

Double-precision, G-floating-point values are similar to double-precision, 
D-floating-point values. They differ in: 

• the number of bits of exponent 

• the number of bits of mantissa 

• the range of numbers they can represent 

• the digits of precision 

Table 1-2 summarizes the differences among single-precision and the two 
forms of double-precision. 

Table 1-2: Comparison of Single-Precision, D-Floatlng-Polnt, and 
G-Floatlng-Polnt 

Digits of 
Bits of Bits of Range Precision 
Exponent Mantissa 

single-precision 8 27 1. 47x10-39 
. 8.1 

to 1. 70xlO+38 

D-floating-point 8 62 1. 47x 10-::19 18.7 
to 1. 70x10+:~8 

G-floating-point 11 fi9 2.78xlO--:m9 17.8 
to 8.99xlO+:l<17 

1 Double-precision, G-floating-point data type is available only with TOPS-20 Version 5 (or 
later) on the DECSYSTEM-20 KLlO model B. 
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1.3.5 Complex 

A complex value contains two numbers; it is assumed that the first (leftmost) 
value of the pair represents the real part of the number and that the second 
value represents the imaginary part of the number. The values that represent 
the real and imaginary parts of a complex value occupy two consecutive 
storage locations. 

1.3.6 Complex, Double-Precision 

You can use two types of complex, double-precision values - D-floating-point 
and G-floating-point. Both are assumed to be double-precision arrays with 
two elements. The first element is the real part, and the second element is the 
imaginary part. 

1.4 Information About the Routines 

Each routine described in this manual has the following information provided. 

• A short description 

• The names of other routines called by the routine 

• The data type and range of the argument(s) 

• The data type and range of the result 

• The accuracy of the result 

• The algorithm used to calculate the result 

• A reference to any text used for information about the algorithm (where 
applicable) 

• Any error conditions and the messages that result 

Some additional information about the routines not included in each write-up 
1S: 

• Calling sequence 

• Entry points 

• Return location(s) 

• Register usage 

This information is described below. It is not included for each routine be
cause it is identical for most routines and is relevant only for MACRO and 
BLISS users. 
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1.4.1 Calling Sequence 

Most routines are called by an identical calling sequence. This calling se
quence is: 

XMOVEI 
PUSHJ 

L,ARG 
P, routine-name 

ARG is the address of the argument block. L is the pointer to the argument 
list for the routine; it is ACI6. P is the stack pointer; it is ACI7. Note that the 
contents of L (ACI6) are not preserved. 

For example, the SQRT routine is called by: 

XMOVEI 
PUSHJ 

16,ARG 
17,SQRT 

Those routines called by a different calling sequence contain the calling se
quence in their descriptions. 

1.4.2 Entry Points 

In most cases each routine has at least two entry points - its name and its 
name followed by a period. For example, SQRT and SQRT. are entry points 
for the SQRT routine. The name with the period is the one used by the 
FORTRAN compiler. Some routines have additional entry points because 
they perform more than one function. Thus, one routine calculates both sine 
and cosine, so SIN, SIN., COS, and COS. are all entry points into that 
routine. If you are calling a routine from a MACRO or BLISS program, you 
can use the name of the routine as the entry point; it will always work. 

1.4.3 Return Location 

The result of the calculation of most routines is returned to one or two regis
ters. For integer and single-precision results, the return location is register O. 
For double-precision and complex (single-precision) results, the return loca
tions are registers 0 and 1. For complex, double-precision results, the return 
location must be specified as the second argument included in the call to the 
routine. The requirements for the arguments included in the call are included 
with each write-up of the complex, double-precision routines. 

1.4.4 Register Usage 

All the routines have similar register usage. Some may use more registers than 
others, however. As stated above, registers 0 and 1 are used for the return 
locations; therefore the original contents of one or both are lost on return from 
a routine. These registers are also occasionally used to store the argument 
initially. Registers 2 through 15 are saved, used, and restored. The number of 
such registers used depends on the routine. 
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1.5 Accuracy Tests 

Each routine contains a section headed "Accuracy of Result." The accuracy 
figures were obtained from the tests described below. These tests were run 
with typical values for arguments. There may be unusual arguments that 
could cause larger errors; for example, if you get too close to a threshold that 
could cause overflow or underflow, larger errors can occur. The format of the 
accuracy section is as follows. Note that the elements are explained with the 
descri ptions of the tests. 

Accuracy of Result 

test interval: 0.00000 through 1.0000 

MRE: 1.55x10-8 (25.9 bits) 

RMS: 3.76x10-9 (28.0 bits) 

LSB error distribution: 
-2 
0% 

-1 
8% 

o 
83% 

+1 
9% 

+2 
0% 

To test a routine, several representative intervals for each routine were cho
sen. Sample values were then chosen randomly from each interval, approxi
mately 200,000 for single-precision and 20,000 for double-precision. Each rou
tine was then called using these values. The relative error of each result was 
then obtained by the following equation. 

For example: 
I, ~ctual exact result - result of rO\ldtinz I 

actual exact result 

I 
sinix) -~, SIN (x) I 

sin(x) 

The test computed the maximum relative error (MRE) and the average rela
tive error, called the root mean square (RMS). To interpret the MRE and 
RMS, consider an "exact" routine, one that always returns an exact result 
rounded to machine precision. Such a routine would show a maximum rela
tive error of 2-27 for single-precision; 2-62 for double-precision, D-floating
point; and 2-59 for double-precision, G-floating-point. To make the MRE and 
RMS more understandable in terms of bits of accuracy, the tests also give the 
number of bits of accuracy by finding the negative base-2 logarithm of the 
MRE and RMS. For the "exact" routine, the negative base-2 logarithm of the 
MRE would be 27 for single-precision; 62 for double-precision, D-floating
point; and 59 for double-precision, G-floating-point. The negative base-210ga
rithm of the RMS error from an "exact" routine would be about 28.3, 63.3, 
and 60.3, respectively. These numbers are slightly larger than those for the 
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MRE because they reflect the RMS average of the "worst case" of exactness 
(only 27 or 62 or 59 bits correct) and the "best case" (infinite bits correct). 
Therefore, the closer the number of bits of accuracy of a routine approaches 
that of an "exact" routine, the more accurate the routine. The accuracy 
figures for "exact" routines for the three levels of precision are as follows. 

Single-Precision 

test interval: 0.00000 through 8192.0 

MRE: 7.44x10-9 (27.0 bits) 

RMS: 3.11xlO-9 (28.3 bits) 

LSB error distribution: 
-2 
0% 

Double-precision, D-floatlng-polnt 

-1 
0% 

o +1 
100% 0% 

test interval: -infinity to +infinity 

MRE: 2.17x10-19 (62.0 bits) 

RMS: 8.81x10-20 (63.3 bits) 

LSB error distribution: 
-2 
0% 

Double-precision, G-floatlng-polnt 

-1 
0% 

o +1 
100% 0% 

test interval: -infinity to +infinity 

MRE: 1.73x10-18 (59.0 bits) 

RMS: 7.05x10-19 (60.3 bits) 

LSB error distribution: 
-2 
0% 

-1 
0% 

o +1 
100% 0% 

+2 
0% 

+2 
0% 

+2 
0% 

A second test compared the result of the routines with the exact result 
rounded to single- or double-precision. It counted the number of times the 
routine's result agreed exactly with the rounded exact result, the number of 
times they differed by ±1 bit, ±2 bits, and so on. The result of these compari
sons is expressed as a percent of error distribution for the least significant bit 
(LSB). 

Appendix A shows accuracy results derived from the ELEFUNT tests of W. J. 
Cody, Argonne National Laboratory. These tests show accuracy derived by 
testing carefully-chosen identities for each function. This appendix is pro
vided for your information, not for comparison with the test results described 
above. Such a comparison would not be meaningful. 
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Chapter 2 
Square Root Routines 





SQRT 

Description 
The SQRT routine calculates the single-precision, floating-point square root 
of its single-precision, floating-point argument. That is: 

.!. SQRT(x) = Vx = X 2 

Routines Called 
SQRT calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value greater than or 
equal to 0.0. 

Type of Result 
The result returned is a single-precision, floating-point value greater than or 
equal to 0.0. 

Accuracy of Result 

test interval: 0.00000 through 8192.0 

MRE: 8.09x10-9 (26.9 bits) 

RMS: 3.21x1O-9 (28.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

SQRT(x) is calculated as follows. 

-1 
0% 

o 
98% 

+1 
2% 

+2 
0% 

First the routine does a linear, single-precision approximation on the argu
ment to provide an initial guess for$. The routine then does two iterations 
of the Newton-Raphson method, which results in an answer that is correct to, 
but not always including, the last bit. 

If x < 0.0 
SQRT(x) = SQRT(lxl) 

If x = 0.0 
SQRT(x) = 0.0 

If x > 0.0 
Let x = 22be f where .25 ~ f < 1.0 

then Vi = 2b e v'f 
and Zo = 2b e (af-b) 

a = .82812500 if .25 ~ f < .5 
= .58593750 if .5 ~ f < 1.0 

b = .29722518 if .25 ~ f < .5 
= .42060167 if .5 ~ f < 1.0 

Square Root Routines 2-3 



The Newton-Raphson method, as applied to the SQRT function, yields the 
following iterative approximation. 

Zk+l = 1/2· (Zk+X/Zk) 

Zk+l = the next iteration 

Zk = the current iteration 

x = the number whose square root is being calculated 

Zo = the initial approximation calculated by the linear approxima
tion 

Error Conditions 
If the argument is negative, the following message is issued and the absolute 
value of the argument is used. 

SORT: Negative arg; result = SORT(ABS(arg)) 
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DSQRT 

Description 
The DSQRT routine calculates the double-precision, D-floating-point square 
root of its double-precision, D-floating-point argument. That is: 

DSQRT(x) = .JX = x t 

Routines Called 
DSQRT calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value greater than 
or equal to 0.0. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 

test interval: 0.00000 through 8192.0 

MRE: 3.25x10-19 (61.4 bits) 

RMS: 1.23x10-19 (62.8 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

DSQRT(x) is calculated as follows. 

-1 
0% 

o 
75% 

+1 
25% 

+2 
0% 

First the routine does a linear, single-precision approximation on the high
order word. Then the routine does two single-precision iterations of the New
ton-Raphson method, followed by two double-precision iterations of the New
ton-Raphson method using a value derived from the linear approximation. 

The linear approximation is as follows. 

If x < 0.0 
DSQRT(x) = DSQRT(lxl) 

If x = 0.0 
DSQRT(x) = 0.0 

If x > 0.0 
Let x = 22be f where .25 ~ f < 1.0 

then Vx = 2b e v'f 
and Zo = 2b • (af-b) 

a = .82812500 if .25 ~ f < .5 
= .58593750 if .5 ~ f < 1.0 

b = .29722518 if .25 ~ f < .5 
= .42060167 if .5 ~ f < 1.0 

Square Root Routines 2-5 



The Newton-Raphson method yields the following iterative approximation. 

Zk+l = 1/2·(Zk+X/ Zk) 

Zk+l = the next iteration 

Zk = the current iteration 

x = the number whose square root is being calculated 

Zo = the initial approximation calculated by the linear approxima
tion 

For the single-precision approximations, x is truncated to single-precision and 
all calculations are done in single-precision. For the double-precision itera
tions, the full double-precision value of x is used, the current value of Z2 is 
zero-extended to double-precision, and all remaining calculations are done in 
dou ble-precision. 

Error Conditions 
If the argument is negative, the following message is issued and the absolute 
value of the argument is used. 

DSQRT: Negative arg; result = DSQRT(ABS(arg)) 
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GSQRT 

Description 
The GSQRT routine calculates the double-precision, G-floating-point square 
root of its double-precision, G-floating-point argument. That is: 

GSQRT(x) = .JX = xt 

Routines Called 
GSQRT calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value greater than 
or equal to 0.0. 

Type of Result 
The result returned is a double-precision, G-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
test interval: 0.00000 through 8192.0 

MRE: 2.60x1O--18 (58.4 bits) 

RMS: 9.87x10-19 (59.8 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GSQRT(x) is calculated as follows. 

-1 
0% 

o 
75% 

+1 
25% 

+2 
0% 

First the routine does a linear, single-precision approximation on the high
order word. Then the routine does two single-precision iterations of the New
ton-Raphson method, followed by two double-precision iterations of the New
ton-Raphson method using a value derived from the linear approximation. 

The linear approximation is as follows. 

If x < 0.0 
GSQRT(x) = GSQRT(lxl) 

If x = 0.0 
GSQRT(x) = 0.0 

If x> 0.0 
Let x = 22bo f where .25 ~ f < 1.0 

then .JX = 2b e.Jf 
and Zo = 2b e (af-b) 

a = .82812500 if .25 ~ f < .5 
a = .58593750 if .5 ~ f < 1.0 
b = .29722518 if .25 ~ f < .5 
b = .42060167 if .5 ~ f < 1.0 
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The Newton-Raphson method yields the following iterative approximation. 

Zk + 1 = 1/2· ( Zk + xl Zk) 

Zk+l = the next iteration 

Zk = the current iteration 

x = the number whose square root is being calculated 

Zo = the initial approximation calculated by the linear approxima
tion 

For the single-precision approximations, x is truncated to single-precision and 
all calculations are done in single-precision. For the double-precision itera
tions, the full double-precision value of x is used, the current value of Z2 is 
zero-extended to double-precision, and all remaining calculations are done in 
dou ble-precision. 

Error Conditions 
If the argument is negative, the following message is issued and the absolute 
value of the argument is used. 

GSQRT: Negative arg; result = GSQRT(ABS(arg)) 
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CSQRT 

Description 
The CSQRT routine calculates the complex, single-precision square root of its 
complex, single-precision argument. That is: 

CSQRT(z) = .JZ = zt 

Routines Called 
CSQRT calls the SQRT and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, floating-point value; it 
can be any such value. 

Type of Result 
The result returned is a complex, single-precision, floating-point value, the 
real part of which is greater than or equal to 0.0. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-1000.0 through 1000.0 real 
-1000.0 through 1000.0 imaginary 

3.07x1o-8 (25.0 bits) real 
3.05x1o-8 (25.0 bits) imaginary 

7.05x10-9 (27.1 bits) real 
7.33x1o-9 (27.0 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 2% 16% 59% 

2% 19% 55% 
20% 2% real 
20% 3 % imaginary 

Algorithm Used 
CSQRT(z) is calculated as follows. 

Let z = x+i·y 
then CSQRT(z) = u+i ·v, which is defined as follows. 

If x~O.O 
u = v"-(-I x-I +-1 z-I)-/2-.0-

v = y/(2.0·u) 

If x < 0.0 and y~O.O 
u = y/(2.0·v) 
v = .J (lxl+lzl)/2.0 

If x and yare both < 0.0 
u = y/(2.0·v) 
v = -.J (lxl+lzl);2.0 

The result is in the right half plane; that is, the polar angle of the result lies in 
the closed interval (-1r/2,+1r/2]. That is, the real part of the result is greater 
than or equal to 0.0. 
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Error Conditions 
If the imaginary part of the input value is too small, underflow can occur on 
y/(2.0·u) or y/(2.0·v). If such underflow occurs, one of the following messages 
is issued and the relevant part of the result is set to 0.0. 

CSQRT: Real part underflow 
CSQRT: Imaginary part underflow 
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CDSQRT 

Description 
The CDSQRT subroutine calculates the complex, double-precision, D-float
ing-point square root of its complex, double-precision, D-floating-point argu
ment. That is: 

1 

CDSQRT(z,r) = viz = z"2 
Z = location of input value 
r = location of result 

Routines Called 
CDSQRT calls the DSQRT and MTHERR routines. 

Type of Arguments 
CDSQRT is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, D-floating-point value; it can be any such value. 

Type of Result 
The result returned is a complex, double-precision, D-floating-point value, 
the real part of which is greater than or equal to 0.0. It is returned in the 
second vector (r) supplied in the call. The real part of the result is returned in 
the first element of r; the imaginary part is returned in the second element 
of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-1000.0 through 1000.0 real 
-1000.0 through 1000.0 imaginary 

1.10x10-1R (59.7 bits) real 
1.04x10-18 (59.7 bits) imaginary 

2.69x10-19 (61.7 bits) real 
2.75x10-19 (61.7 bits) imaginary 

-2 -1 0 +1 +2 
LSB error distribution: 4% 17% 43% 32% 5% real 

5% 24% 41% 25% 5% imaginary 
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Algorithm Used 
CDSQRT is calculated as follows. 

Let z = x+i·y 
then CDSQRT(z) = u+i ·v, which is defined as follows. 

If x ~ 0.0 
u = V--(I-x-I +-1 z-I)/-2-.0-

v = y/(2.0·u) 

If x < 0.0 and y ~ 0.0 
u = y/(2.0·v) 
v = V (lxl+lzl)/2.0 

If x and yare both < 0.0 
u = y/(2.0·v) 
v = -v (lil+lzl)/2.0 

The result is in the right half plane; that is, the polar angle of the result lies in 
the closed interval [-11'/2, +71"/2]. That is, the real part of the result is greater 
than or equal to 0.0. 

Error Conditions 
If the imaginary part of the input value is too small, underflow can occur on 
y/(2.0·u) or y/(2.0·v). If such underflow occurs, one of the following messages 
is issued and the relevant part of the result is set to 0.0. 

CDSQRT: Real part underflow 
CDSQRT: Imaginary part underflow 
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CGSQRT 

Description 
The CGSQRT subroutine calculates the complex, double-precision, G-float
ing-point square root of its complex, double-precision, G-floating-point argu
ment. That is: 

1 

CGSQRT(z,r) = .Ji = ZT 

Z = location of input value 
r = location of result 

Routines Called 
CGSQRT calls the GSQRT and MTHERR routines. 

Type of Argument 
CGSQRT is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, G-floating-point value; it can be any such value. 

Type of Result 
The result returned is a complex, double-precision, G-floating-point value; it 
may be any such value. It is returned in the second vector (r) supplied in the 
call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-1000.0 through 1000.0 real 
-1000.0 through 1000.0 imaginary 

8.61x10-18 (56.7 bits) real 
8.78x10-18 (56.7 bits) imaginary 

2.16x10-18 (58.7 bits) real 
2.21x10- 18 (58.7 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 5% 16% 41% 32% 5% real 

5% 25% 40% 25% 5% imaginary 
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Algorithm Used 
CGSQRT(z) is calculated as follows. 

Let z = x+i·y 
then CGSQRT(z) = u+i·v is defined as follows. 

Ifx~O.O 
u = V'--(I-x-I +-lz-I)/-2-.0 

v = y/(2.0·u) 

If x < 0.0 and y ~ 0.0 
u = y/(2.0·v) 
v = J (lxl+lzl)/2.0 

If x and yare both < 0.0 
u = y/(2.0·v) 
v = -v (lxl+lzl)/2.0 

The result is in the right half plane; that is, the polar angle of the result lies in 
the closed interval (-1r/2, +11"/2]. 

Error Conditions 
If the imaginary part of the argument is too small, underflow can occur on 
y/(2.0·u) or y/(2.0·v). If this occurs, one of the following messages is issued 
and the relevant part of the result is set to 0.0. 

CGSQRT: Real part underflow 
CGSQRT: Imaginary part underflow 
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Chapter 3 
Logarithm Routines 





ALOG 

Description 
The ALOG routine calculates the single-precision, floating-point naturalloga
rithm of its argument. That is: 

ALOG(x) = loge (x) 

Routines Called 
ALOG calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value greater than 
0.0. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
-89.415 to 88.029. 

Accuracy of Result 
test interval: 

MRE: 

1.46937x10-39 through 256.00 

1.84x10-8 (25.7 bits) 

RMS: 5.21x10-9 (27.5 bits) 

LSB error distribution: -2 
0% 

Algorithm Used 
ALOG(x) is calculated as follows. 

If x = 0.0 
ALOG(x) = -machine infinity 

If x < 0.0 
ALOG(x) = ALOG(lxl) 

If x is close to 1.0 

-1 
1% 

ALOG(x) = L3·z7 +L4ez5+L5ez3+L6ez 
Z = (x-l)/(x+l) 

L3 = .301003281 
L4 = .39965794919 
L5 = .666669484507 
L6 = 2.0 

If x is not close to 1.0 
ALOG(x) = (k-.5) eloge(2)+loge(f·v'2) 

x = 2k ·f 

o 
81% 

+1 
18% 

+2 
0% 

loge(fe v2) = L3 ez7 +L4ez5+L5ez3+L6ez 

Z = (f-~ )/(f+..[5 ) 
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Reference 
Hart et. aI., Computer Approximations, (New York, N.Y.: John Wiley and 
Sons, 1968). 
The algorithm used is #2662, the coefficients are listed on page 193, and the 
range of validity is on page 111. 

Error Conditions 

1. If the argument is equal to 0.0, the following message is issued and the 
result is set to -machine infinity. 

ALOG: Arg is zero; result = -infinity. 

2. If the argument is less than 0.0, the following message is issued and the 
absolute value of the argument is used. 

ALOG: Negative arg, result = ALOG(ABS(arg» 
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ALOG10 

Description 
The ALOG 10 routine calculates the single-precision, floating-point base-IO 
logarithm of its single-precision, floating-point argument. That is: 

ALOG 10(x) = loglO(X) 

Routines Called 
ALOGI0 calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value greater than 
0.0. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
-38.832 to 38.230. 

Accuracy of Result 
test interval: 

MRE: 

RMS: 

1.46937xl0-39 through 256.00 

2.52xI0-8 (25.2 bits) 

5.99xI0-9 (27.3 bits) 

2 I 0 +1 +2 LSB error distribution: - -
1 % 19% 64% 15C!(1 0% 

Algorithm Used 
ALOG 10(x) is calculated as follows. 

If x = 0.0 
ALOG 10(x) = -machine infinity 

If x < 0.0 
ALOGIO(x) = ALOG10(lxl) 

If x is close to 1. 0 
ALOGI0(x) = loge(x) eloglO(e) 

loge(x) = L3 ez7 +L4 ez5+L5 e z3+L6 ez 
Z = (x-l)/(x+ 1) 

L3 = .301003281 
L4 = .39965794919 
L5 = .666669484507 
L6 = 2.0 

If x is not close to 1.0 
ALOG10(x) = loge(x)eloglO (e) 

x = 2ke f 
loge(x) = (k-.5) eloge(2)+loge(fe..£) 

loge(fev'2) = L3ez7+L4ez5+L5·z3+L6·z 
z = (f-v.5 )/(f+v.5 ) 
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Reference 
Hart et. aI, Computer Approximations, (New York, N.Y.: John Wiley and 
Sons, 1968). The algorithm used is #2662, the coefficients are listed on page 
193, and the range of validity is on page Ill. 

Error Conditions 

1. If the argument is 0.0, the following message is issued and the result is set 
to -machine infinity. 

ALOG 1 0: Arg is zero; result = -infinity 

2. If the argument is less than 0.0, the following message is issued and the 
absolute value of the argument is used. 

ALOG 10: Negative arg; result = ALOG 1 O(ABS(arg)) 
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OLOO 

Description 
The DLOG routine calculates the double-precision, D-floating-point natural 
logarithm of its double-precision, D-floating-point argument. That is: 

DLOG(x) = loge(x) 

Routines Called 
DLOG calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value greater than 
0.0. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-89.415 to 88.029. 

Accuracy of Result 
test interval: 1.46937x10-39 through 256.00 

MRE: 9.78x10-19 (59.8 bits) 

RMS: 3.03x10-19 (61.5 bits) 

LSB error distribution: 

Algorithm Used 

-2 
1% 

DLOG(x) is calculated as follows. 

If x = 0.0 

-1 
12% 

DLOG(x) = -machine infinity 

If x < 0.0 
DLOG(x) = DLOG(lxl) 

If x> 0.0 
x = 2k ·f where .5 < f < 1.0 
and g and n are defined so that 

f = 2-n • g where 1/v'2 s g < .J2 

o 
51% 

Then DLOG(x) = (k-n) ·loge(2) +loge(g) 
loge(g) is evaluated by defining 

s = (g -l)/(g+ 1) and 
z = 2·s 

and then calculating 

+1 
23% 

+2 
13% 

loge(g) = loge«1+z/2)/(1 --z/2)) using a minimax 
rational approximation. 
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Error Conditions 

1. If the argument is equal to 0.0, the following message is issued and the 
result is set to -machine infinity. 

DLOG: Arg is zero; result = -infinity 

2. If the argument is less than 0.0, the following message is issued and the 
absolute value of the argument is used. 

DLOG: Negative arg; result = DLOG(ABS(arg)) 
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DLOG10 

Description 
The DLOG 10 routine calculates the double-precision, D-floating-point base-
10 logarithm of its double-precision D-floating-point argument. That is: 

DLOG 10(x) = loglO(x) 

Routines Called 
DLOG 10 calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value greater than 
0.0. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-38.832 to 38.320. 

Accuracy of Result 
test interval: 1.46937xl0-:~9 through 256.00 

MRE: 1.20xl0-18 (59.5 bits) 

RMS: 3.65xlo--19 (61.2 bits) 

LSB error distribution: 

Algorithm Used 

-2 
30;() 

DLOG 10(x) is calculated as follows. 

If x = 0.0 

-1 0 +1 
17% 38% 26% 

DLOG 10(x) = -machine infinity 

If x < 0.0 
DLOGIO(x) = DLOGIO(lxl) 

If x > 0.0 
x ~ 2k -f where .5 < f < 1.0 
and g and n are defined so that 

f = 2-n -g where l/Vi :5 g < V2 

+2 +3 
14% 2% 

Then DLOG 10(x) = 10glO(e) -loge(x) = loge(x)/loge(lO) 
loge(g) is evaluated by defining 

s = (g -l)/(g+l) and 
z = 2-s 

and then calculating 
loge(g) = loge«l +z/2)/(l -z/2» using a minimax 
rational approximation. 
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Error Conditions 

1. If the argument is equal to 0.0, the following message is issued and the 
result is set to -machine infinity. 

DLOG 10: Arg is zero; result = -infinity 

2. If the argument is less than 0.0, the following message is issued and the 
absolute value of the argument is used. 

DLOG10: Negative arg; result = DLOG10(ABS(arg» 
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GLOG 

Description 
The GLOG routine calculates the double-precision, G-floating-point natural 
logarithm of its double-precision, G-floating-point argument. That is: 

GLOG(x) = loge(x) 

Routines Called 
GLOG calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value greater than 
0.0. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-710.475 to 709.089. 

Accuracy of Result 
test interval: 0.00000 through 256.00 

MRE: 5.13x10-18 (57.4 bits) 

RMS: 1.26x10-18 (59.5 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GLOG(x) is calculated as follows. 

If x = 0.0 
GLOG(x) = machine infinity 

If x < 0.0 
GLOG(x) = GLOG(lxl) 

If x> 0.0 
x = 2k -f where .5 < f < 1.0 

-1 
10% 

and g and n are defined so that 
f = 2-n - g where 1/v'2::; g < v2 

o 
74% 

Then GLOG(x) = (k-n) -loge(2) +loge(g) 
loge(g) is evaluated by defining 

s = (g-1)/(g+ 1) and 
z = 2-s 

and then calculating 
loge(g) = loge((1+z/2)/(l-z/2)) 

+1 
16% 

using a minimax rational approximation. 

+2 
0% 
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Error Conditions 

1. If the argument is equal to 0.0, the following message is issued and the 
result is set to -machine infinity. 

GLOG: Arg is zero; result = -infinity 

2. If the argument is negative, the following message is issued and the abso
lute value of the argument is used. 

GLOG: Negative arg; result = GLOG(ABS(arg» 
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GLOG10 

Description 
The GLOG 10 routine calculates the double-precision, G-floating-point base-
10 logarithm of its double-precision, G-floating-point argument. That is: 

GLOG 10(x) = 10glO(x) 

Routines Called 
GLOGI0 calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value greater than 
0.0. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-308.555 to 307.953. 

Accuracy of Result 
test interval: 

MRE: 

RMS: 

2.78134xl0--:109 through 256.00 

6.05xlO"IR (57.2 bits) 

1.42xl0- 1R (59.3 bits) 

LSB error distribution: 

Algorithm Used 
GLOG 10(x) is calculated as follows. 

If x = 0.0 
GLOG 10(x) = -machine infinity 

If x < 0.0 
GLOGI0(x) = GLOG10(lxl) 

If x > 0.0 
x =" 2k ·f where .5 < f < 1.0 
and g and n are defined so that 

f = 2- n 
- g where 1/V2 ~ g < .J2 

o 
62% 

+1 
18% 

+2 
0% 

Then GLOG 10(x) = 10glO( e) -loge(x) = loge(x)/loge(10) 
loge(g) is evaluated by defining 

s = (g-l)/g+l) and 
z = 2-s 

and then calculating 
loge(g) = loge( (1 +z/2)/(1-z/2» 
using a minimax rational approximation. 
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Error Conditions 

1. If the argument is equal to 0.0, the following message is issued and the 
result is set to -machine infinity. 

GLOG10: Arg is zero; result = -infinity 

2. If the argument is negative, the following message is issued and the abso
lute value of the argument is used. 

GLOG10: Negative arg; result = GLOG10(ABS(arg)) 
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CLOG 

Description 
The CLOG routine calculates the complex, single-precision, floating-point 
natural logarithm of its complex, single-precision, floating-point argument. 
That is: 

CLOG(z) = loge(z) 

Routines Called 
CLOG calls the ALOG, ATAN, ATAN2, and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, floating-point value, both 
parts of which cannot be equal to 0.0, although either can be equal to 0.0. 

Type of Result 
The result returned is a complex, single-precision, floating-point value. The 
real part of the result is in the range -89.415 to 88.029; the imaginary part is in 
the range -7r to 7r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-1000.0 through 1000.0 real 
-100.00 through 100.00 imaginary 

5.30x10-5 (14.2 bits) real 
1.49x1O-8 (26.0 bits) imaginary 

1.06x10-7 (23.2 bits) real 
3.44x1O-9 (28.1 bits) imaginary 

~4+ -3 -2 -1 0 +1 +2 
LSB error distribution: 1 % 1% 1 C]'o 6% 82% 7% 1 % real 

0% 0% 0% 3% 94% 3% 0% imaginary 

Algorithm Used 
CLOG(z) is calculated as follows. 

Let z = x+i-y 

If x = 0.0 and y = 0.0 
CLOG(z) = (+infinity, 0.0) 

If x = 0.0 and y * 0.0 
CLOG(z) = loge(lyl)+i-sgn(Y)-7r/2 
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If x =1= 0.0 and y = 0.0 

If x > 0.0 
CLOG(z) = loge(x)+i -0.0 

If x < 0.0 
CLOG(z) = loge(lxl) +i-1I" 

If x =1= 0.0 and y =1= 0.0 
CLOG(z) = u+i-v 

u = .5 -loge(x2+y2) 
v = tan-1(y/x) 
Scaled values are calculated on occurences of overflow/underflow 
for (X2,y2) or (X2+y2) and propagated to give a valid in-range result 
for u. 

Error Conditions 

1. If both parts of the argument equal 0.0, the following message is issued 
and the result is set to (+infinity, 0.0). 

CLOG; Arg is zero; result = (+infinity, zero) 

2. If either part of the result underflows, one or both of the following mes
sages are issued and the relevant part of the result is set to 0.0. 

CLOG: Real part underflow 
CLOG: Imaginary part underflow 
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CDLOG 

Description 
The CDLOG subroutine calculates the complex, double-precision, D-floating
point natural logarithm of its complex, double-precision, D-floating-point ar
gument. That is: 

CDLOG(z,r) = loge(z) 
z = location of input value 
r = location of result 

Routines Called 
CDLOG calls the DLOG, DATAN, DATAN2, and MTHERR routines. 

Type of Argument 
CDLOG is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, D-floating-point value, both parts of which cannot be 
equal to 0.0, although either can be equal to 0.0. 

Type of Result 
The result returned is a complex, double-precision, D-floating-point value. 
The real part of the result is in the range -89.415 to 88.376; the imaginary part 
is in the range -7r to 7r. The result is returned in the second vector (r) supplied 
in the call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

LSB error distribution: 

-1000.0 through 1000.0 real 
--100.00 through 100.00 inlaginary 

9.07x10-16 (50.0 bits) real 
5.09x1o--19 (60.8 bits) imaginary 

1.59x10-18 (59.1 bits) real 
1.04xlo-19 (63.1 bits) imaginary 

-4+ -3 -2 -1 0 + 1 +2 
1 % 1% 1 % 5% 84% 6% 10;(-) real 
0% 0% 0% 4% 92% 4% 0% imaginary 
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Algorithm Used 
CDLOG is calculated as follows. 

Let z = x+i·y 

If x = 0.0 and y = 0.0 
CDLOG(z) = (+infinity, 0.0) 

If x = 0.0 and y 7'= 0.0 
CDLOG(z) = loge(lyl)+i ·sgn(y) ·7r/2 

If x 7'= 0.0 and y = 0.0 
If x> 0.0 

CDLOG(z) = loge(x)+i ·0.0 
If x < 0.0 

CDLOG(z) = loge(lxl) +i "7r 

If x 7'= 0.0 and y 7'= 0.0 
CDLOG(z) = u+i·v 

u = .5 ·loge(x2+y2) 
v = tan-1(y,x) 
Scaled values are calculated on occurrences of overflow/ 
underflow for (x2, y2) or (X2+y2) and progagated to give a valid in
range result for u. 

Error Conditions 

1. If both parts of the argument equal 0.0, the following message is issued 
and the result is set to (+infinity, 0.0). 

CDLOG: Arg is zero; result = (+infinity, zero) 

2. If either part of the result underflows, one or both of the following mes
sages are issued and the relevant part of the result is set to 0.0. 

CDLOG: Imaginary part underflow 
CDLOG: Real part underflow 
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CGLOG 

Description 
The CGLOG subroutine calculates the complex, double-precision, G-f1oating
point natural logarithm of its complex, double-precision, G-floating-point ar
gument. That is: 

CGLOG(z,r) = loge(z) 
z = location of input value 
r = location of result 

Routines Called 
CGLOG calls the GLOG, GATAN, GATAN2, and MTHERR routines. 

Type of Argument 
CGLOG is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, G-floating-point value, both parts of which cannot be 
equal to 0.0, although either can be equal to 0.0. 

Type of Result 
The result returned is a complex, double-precision, G-floating-point value. 
The real part of the result is in the range -710.475 to 709.436; the imaginary 
part is in the range -7r to 7r. The result is returned in the second vector (r) 
supplied in the call. The real part of the result is returned in the first element 
of r; the imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-1000.0 through 1000.0 real 
-100.00 through 100.00 imaginary 

7.15x10-- 11i (47.0 bits) real 
3.54x10-18 (58.0 bits) imaginary 

1.77x10--17 (55.7 bits) real 
8.19x10-19 (60.1 bits) imaginary 

-4+ -3 -2 -1 0 +1 +2 
LSB error distribution: 1 % 0% 1% 5% 86~)'i) 6% 1% real 

0% 0% 0% 4% 92% 4(Yc, 0% imaginary 
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Algorithm Used 
CGLOG(z) is calculated as follows. 

Let z = x+i-y 

If x = 0.0 and y = 0.0 
CGLOG(z) = +machine infinity 

If x = 0.0 and y =1= 0.0 
CGLOG(g) = loge(lyl)+i -sgn(y) -11'"/2 

If x =1= 0.0 and y = 0.0 

If x> 0.0 
CGLOG(z) = loge(x) +i -0.0 

If x < 0.0 
CGLOG(z) = loge(lxl)+i-1I'" 

If x =1= 0.0 and y =1= 0.0 
CGLOG(z) = u+i-v 

u = .5 -loge(x2+ y2) 
V = tan-1(y/x) 
Scaled values are calculated on occurrence of overflow/underflow 
for (x2, y2) or (X2+y2) and propagated to give a valid in-range result 
for u. 

Error Conditions 

1. If both parts of the argument equal 0.0, the following message is issued 
and the result is set to (+machine infinity, 0.0). 

CGLOG: Arg is zero; result = (+infinlty, zero) 

2. If either part of the result underflows, one or both of the following mes
sages are issued and the relevant part of the result is set to 0.0. 

CGLOG: Real part underflow 
CGLOG: Imaginary part underflow 
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Chapter 4 
Exponential and Exponentiation Routines 





EXP 

Description 
The EXP routine calculates· the single-precision, floating-point exponential 
function of its single-precision, floating-point argument. That is: 

EXP(x) = eX 

Routines Called 
EXP calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value in the range 
-89.4159863 to 88.0296919. 

Type of Result 
The result returned is a single-precision, floating-point value greater than 
zero. 

Accuracy of Result 
test interval: -89.000 through 88.000 

MRE: 1.74x10-8 (25.8 bits) 

RMS: 3.98x10-9 (27.9 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

EXP(x) is calculated as follows. 

If x < -89.4159863 
EXP(x) = 0.0 

If x > 88.0296919 
EXP(x) = +machine infinity 

-1 
2% 

o 
86% 

Otherwise, the argument is reduced as follows: 
Let n = the nearest integer to x/loge(2) 
The reduced argument is: 

g = x-n -loge(2) 

The calculation is: 
EXP(x) = R(g) _2(n+1) 

R(g) = .5+g·p/(q-g-p) 
P = p1-g2+.25 
q = q1-g2+.5 

pI = .00416028863 
q1 = .0499871789 

+1 
12% 

+2 
0% 
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Error Conditions 

1. If the argument is less than -89.4159863, the following message is issued 
and the result is set to 0.0. 

EXP: Result underflow 

2. If the argument is greater than 88.0296919, the following message is issued 
and the result is set to +machine infinity. 

EXP: Result overflow 
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DEXP 

Description 
The DEXP routine calculates the double-precision, D-floating-point exponen
tial function of its double-precision, D-floating-point argument. That is: 

DEXP(x) = eX 

Routines Called 
DEXP calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value in the range 
-89.415986292232944914 to 88.029691931113054295. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
zero. 

Accuracy of Result 
test interval: -89.000 through 88.000 

MRE: 4.89x10- 19 (60.8 bits) 

RMS: 1.17x10--19 (62.9 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

DEXP(x) is calculated as follows. 

If x < -89.415986292232944914 
DEXP(x) = 0.0 

-1 
2% 

If x > 88.029691931113054295 
DEXP(x) = +rnachine infinity 

o 
86% 

Otherwise, the argument is reduced as follows: 
Let xl = [x], the greatest integer in x 

x2 = x-xl 
n = the nearest integer to x/loge (2) 

The reduced argument is: 
g = x1-n·c1+x2+n·c2 

cl = .543R 

c2 = loge(2)-.543R 

+1 
12% 

+2 
0% 
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The calculation is: 
DEXP(x) = R(g) e 2(n+1) 

R(g) = .5+g ep/(q_gep) 
p = (((p2 eg2+p1) eg2)+pO) e g2 
q = ((((q3 eg2+q2) -g2)+q1) eg2)+qO 

pO = .250 

Error Conditions 

p1 = .757531801594227767x10-2 

p2 = .315551927656846464x10-4 

qO =.5 
q1 = .568173026985512218x10-1 

q2 = .631218943743985036x10-3 

q3 = .751040283998700461x10-6 

1. If the argument is less than -89.415986292232944914, the following mes
sage is issued and the result is set to 0.0. 

OEXP: Result underflow 

2. If the argument is greater than 88.029691931113054295, the following mes
sage is issued and the result is set to +machine infinity. 

OEXP: Result overflow 
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GEXP 

Description 
The GEXP routine calculates the double-precision, G-floating-point exponen
tial function of its double-precision, G-floating-point argument. That is: 

GEXP(x) = eX 

Routines Called 
GEXP calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value in the range 
-710.475860073943942 to 709.08956571282405l. 

Type of Result 
The result returned is a double-precision, G-floating-point value greater than 
or equal to zero. 

Accuracy of Result 
test interval: -89.000 through 88.000 

MRE: 3.99x10-18 (57.8 bits) 

RMS: 9.40x10-19 (59.9 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GEXP(x) is calculated as follows. 

If x :s; -710.475860073943942 
GEXP(x) = 0.0 

-1 
2% 

If x > 709.089565712824051 
GEXP(x) = +machine infinity 

o 
85% 

Otherwise, the argument is reduced as follows: 
Let xl = [x], the greatest integer in x 

x2 = x-xl 
n = the nearest integer to x/loge(2) 

The reduced argument is: 
g = x1-n e c1+x2+n e c2 

c1 = .5438 

c2 = loge(2)-.543s 

+1 
13% 

+2 
0% 
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The calculation is: 
GEXP(x) = R(g) ·2(n+l) 

R(g) = .5+g ep/(q_gep) 
p = «(p2eg2+pl) eg2)+pO) eg2 
q = ««q3 eg2+q2)·g2)+ql)·g2)+qO 

pO = .250 

Error Conditions 

pi = .757531801594227767xl0-2 

p2 = .315551927656846464xlO-4 

qO =.5 
ql = .568173026985512218xl0-1 

q2 = .631218943743985036xlO-3 

q3 = .751040283998700461xl0-6 

1. If the argument is less than or equal to -710.475860073943942, the follow
ing message is issued and the result is set to 0.0. 

GEXP: Result underflow 

2. If the argument is greater than 709.089565712824051, the following Ines
sage is issued and the result is set to +machine infinity. 

GEXP: Result overflow 
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CEXP 

Description 
The CEXP routine calculates the complex, single-precision, floating-point 
exponential function of its complex, single-precision, floating-point argument. 
That is: 

CEXP(z) = eZ 

Routines Called 
CEXP calls the EXP, COS, SIN, and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, floating-point value in the 
range -89.4159863 to 176.0593838 for the real part and less than 823549.66 for 
the imaginary part. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
-40.000 through 12.000 real 

test interval: 
-10.000 through 157.08 imaginary 

MRE: 
2.77x10-8 (25.1 bits) real 
2.88x10-8 (25.0 bits) imaginary 

RMS: 
6.51x10-9 (27.2 bits) real 
6.38x10-9 (27.2 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 1% 19% 58% 21% 1% real 

1 % 17% 59% 23% 1% imaginary 

Algorithm Used 
CEXP(z) is calculated as follows. 

Letz=x+i·y 

If Iyl > 823549.66 
CEXP(z) = (0.0,0.0) 

If x < -89.4159863 
CEXP(z) = (0.0,0.0) 

If x > 88.0296919 and y = 0.0 
CEXP(z) = (+infinity, 0.0) 

If 88.0296919 < x < 176.0593838 
and a component of the result is out of range, 
that component is set to +infinity. 

If x > 176.0593838 and y =1= 0.0 
CEXP(z) = (± infinity, ± infinity) 

Otherwise 
CEXP(z) = eXe(cos(y)+iesin(y» 
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Error Conditions 
The following table gives the possible error conditions and the resulting error 
messages. 

Error Conditions for CEXP 

Real Part 
of Argument 

Any Value 

< -89.4159863 

Between 
-89.41598663 
and 88.0296919 

> 88.0296919 

> 176.0593838 

Between 
88.0296919 and 
176.0593838 

Error Messages: 

Imaginary Part 
of Argument 

> 823549.66 

0.0 

Not 0.0 and 
-s; 823549.66 

Not 0.0 and 
~ 823549.66 

0.0 

Not 0.0 and 
~ 823549.66 

Not 0.0 and 
~ 823549.66 

Result 

(0.0,0.0) 

(0.0,0.0) 

(0.0,0.0) 

Underflow may 
occur on neither, 
either, or both 
parts 

(+infinity, 0.0) 

(± infinity, 
± infinity) 

Overflow may oc-
cur on neither, ei-
ther, or both 
parts 

1. CEXP:ABS(IMAG(arg» too large; result = zero 
2. CEXP: Real part underflow 
3. CEXP: Imaginary part underflow 
4. CEXP: Real part overflow 
5. CEXP: Imaginary part overflow 

Error Message(s) 

#1 

#2 

#2 and #3 

None or #2 
or #3 or 
#2 and #3 

#4 

#4 and #5 

None or #4 
or #5 or 
#4 and #5 
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CDEXP 

Description 
The CDEXP subroutine calculates the complex, double-precision, D-floating
point exponential function of its complex, double-precision, D-floating-point 
argument. That is: 

CDEXP(z,r) = eZ 

Z = location of input value 
r = location of result 

Routines Called 
CDEXP calls the DEXP, DSIN, DCOS, and MTHERR routines. 

Type of Argument 
CDEXP is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a complex 
double-precision, D-floating-point value in the range -89.415986292232944914 
to 176.059383862226109 for the real part and less than 6746518850.429 for the 
imaginary part. 

Type of Result 
The result returned is a complex, double-precision, D-floating-point value. It 
is returned in the second vector (r) supplied in the call. The real part of the 
result is returned in the first element of r; the imaginary part is returned in 
the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-40.000 through 12.000 real 
-10.000 through 157.08 imaginary 

8.78x10-19 (60.0 bits) real 
9.49x10-19 (59.9 bits) imaginary 

1.90x10-19 (62.2 bits) real 
1.87x1o-19 (62.2 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 1% 23% 57% 18% 1 % real 

1 % 20% 59% 19% 1 % imaginary 

Exponential and Exponentiation Routines 4--11 



Algorithm Used 
CDEXP is calculated as follows. 

Letz=x+i·y 

If Iyl > 6746518850.429 
CDEXP(z) = (0.0,0.0) 

If x < -89.415986292232944914 
CDEXP(z) = (0.0,0.0) 

If x > 88.029691931113054295 and y = 0.0 
CDEXP(z) = (+infinity, 0.0) 

If 88.029691931113054295 < x < 176.059383862226109 
and a component of the result is out of range, 
that component is set to +infinity. 

If x > 176.059383862226109 and y :#= 0.0 
CDEXP(z) = (± infinity, ± infinity). 

Otherwise 
CDEXP(z) = eXe(cos(y)+i esin(y)) 

Error Conditions 
The following table gives the possible error conditions and the resulting error 
messages. 

Error Conditions for CDEXP 

Real Part 
of Argument 

Imaginary Part 
of Argument 

Any Value > 6746518850.429 

< -89.415986292232944914 0.0 

Not 0.0 and 
$ 6746518850.429 

Between Not 0.0 and 
-89.415986292232944914 $ 6746518850.429 
and 88.02969193113054295 

> 88.02969193113054295 0.0 

> 176.059383862226109 Not 0.0 and 
$ 6746518850.429 

Between Not 0.0 and 
88.02969193113054295 and $ 6746518850.429 
176.059383862226109 

Error Messages: 

Result 

(0.0,0.0) 

(0.0,0.0) 

(0.0,0.0) 

Underflow may 
occur on neither, 
either, or both 
parts 

(+infinity, 0.0) 

(± infinity, 
± infinity) 

Overflow may oc-
cur on neither, ei-
ther, or both 
parts 

1. CDEXP:ABS(IMAG(arg» too large; result = zero 
2. CDEXP: Real part underflow 
3. CDEXP: Imaginary part underflow 
4. CDEXP: REAL(arg) too large; REAL(result) = +infinity 
5. CDEXP: REAL(arg) too large; IMAG(result) = +infinity 
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Error Message(s) 

#1 

#2 

#2 and #3 

None or #2 
or #3 or 
#2 and #3 

#4 

#4 and #5 

None or #4 
or #5 or 
#4 and #5 



CGEXP 

Description 
The CGEXP subroutine calculates the complex, double-precision, G-floating
point exponential function of its complex, double-precision, G-floating-point 
argument. That is: 

CGEXP(z,r) = eZ 

Z = location of input value 
r = location of result 

Routines Called 
CGEXP calls the GEXP, GSIN, GCOS, and the MTHERR routines. 

Type of Argument 
CGEXP is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, G-floating-point value in the range 
-710.475860073943942 to 1418.179131425648102 for the real part and less than 
1686629713.065 for the imaginary part. 

Type of Result 
The result returned is a complex, double-precision, G-floating-point value. It 
is returned in the second vector (r) supplied in the call. The real part of the 
result is returned in the first element of r; the imaginary part is returned in 

. the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-40.000 through 12.000 real 
-10.000 through 157.08 imaginary 

6.50xl0-18 (57.1 bits) real 
6.67xl0-18 (57.1 bits) imaginary 

·1.53xl0-18 (59.2 bits) real 
1.44xl0-18 (59.3 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 1% 19% 57% 22% 1 % real 

0% 16% 60% 22% 1 % imaginary 
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Algorithm Used 
CGEXP(z) is calculated as follows. 

Let z = x+iey 
If Iyl > 1686629713.065 

CGEXP(z) = (0.0,0.0) 

If x < -710.475860073943942 
CGEXP(z) = (0.0,0.0) 

If x > 709.089565 and y = 0.0 
CGEXP(z) = (+infinity, 0.0) 

If 709.089565 < x < 1418.179131425648102 
and a component of the result is out of range, 
that component is set to +infinity. 

If x > 1418.179131425648102 and y =1= 0.0 
CGEXP(z) = (±infinity, ±infinity) 

Otherwise 
CGEXP(z) = eXe(cos(y)+i esin(y» 

Error Conditions 
The table below shows the possible values of the argument that could cause 
error conditions. 

Error Conditions for CGEXP 

Real Part Imaginary Part 
of Argument of Argument Result Error Messages 

Any value > 1686629713.065 (0.0,0.0) #1 

< -710.475860073943942 0.0 (0.0,0.0) #2 

Not 0.0 and (0.0,0.0) #2 and #3 
=:; 1686629713.065 

Between Not 0.0 and Underflow may None or #2 or #3 
-710.475860073943942 =:; 1686629713.065 occur on neither, or #2 and #3 
and 709.089565 either, or both 

parts 

> 709.089565 0.0 (infinity, 0.0) #4 

> 1418.179131425648102 Not 0.0 and ( ± infinity, #4 and #5 
=:; 1686629713.065 ± infinity) 

Between Not 0.0 and Overflow may oc- None or #4 or #5 
709.089565 and =:; 1686629713.065 cur on neither, ei- or #4 and #5 
1418.179131425648102 ther, or both 

parts 

Error Messages: 

1. CGEXP: ABS(lMAG(arg» too large; result = zero 
2. CGEXP: Real part underflow 
3. CGEXP: Imaginary part underflow 
4. CGEXP: REAL(arg) too large; REAL(result) = +infinity 
5. CGEXP: REAL(arg) too large; IMAG(result) = +infinity 
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EXP1. 

Description 
The EXPl. routine raises one integer to the power of another integer. That is: 

EXPl.(m,n) = mn 

Routines Called 
EXPl. calls the MTHERR routine. 

Type of Arguments 
The two arguments must be integer values; they can be any such values. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
EXPl.(m,n) is calculated as shown in the following table. 

Calculations for EXP1. 

Value of m Value of n Result 

*0 0 1 

0 0 0 

0 >0 0 

0 <0 +infinity 

+1 any value 1 

-1 even 1 

-1 odd -1 

*±1 <0 0 

*±1 >0 mn 

Error Conditions 

1. If the exponent is too large a number, the following message is issued and 
the result is set to ± infinity. 

EXP1.: Result overflow 

2. If both the base and the exponent are 0, the following message is issued 
and the result is set to O. 

EXP1.: Zero**zero is indeterminate, result = zero 

Exponential and Exponentiation Routines 4-15 



EXP2. 

Description 
The EXP2. routine raises a single-precision, floating-point number to the 
power of an integer. That is: 

EXP2.(x,n) = xn 

Routines Called 
EXP2. calls the MTHERR routine. 

Types of Arguments 
There are two arguments. The base must be a single-precision, floating-point 
value, and the exponent must be an integer value. They can be any such 
values. 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. 

Accuracy of Result 

test Interval MRE RMS 
x n 

.50000 through 1.0000 2 7.45xlO-9 (27.0 bits) 3.48xlO-9 (28.1 bits) 

.50000 through 1.0000 -·5 3.07xlO-B (25.0 bits) 8.88xl0-9 (26.7 bits) 

.50000 through 1.0000 9 5.53xlO-B (24.1 bits) 1.61xl0-B (25.9 bits) 

.50000 through 1.0000 -12 7.91xlO-B (23.6 bits) 2.37xl0-8 (25.3 bits) 

.50000 through 1.0000 15 9.08xlO-8 (23.4 bits) 2.70x10-B (25.1 bits) 

.50000 through 1.0000 -20 1.27xlO-7 (22.9 bits) 3.95xlO-B (24.6 bits) 

.50000 through 1.0000 40 2.65xlO-7 (21.8 bits) 7.87x10-B (23.6 bits) 

total 2.65xlO-7 (21.8 bits) 3.67xlO-8 (24.7 bits) 

LSB error distribution according to the value of n 

-41- -3 -2 -1 0 +1 +2 +3 +4+ 

n= 2 0% 0% 0% 0% 100% 0% 0% 0% 0% 

n= -5 0% 0% 5% 24% 41% 25% 5% 0% 0% 

n= 9 1% 4% 13% 21% 23% 21% 13% 4% 1% 

n = -12 7% 8% 13% 15% 15% 15% 12% 8% 7% 

n= 15 9% 9% 12% 13% 13% 13% 12% 9% 9% 

n = -20 20% 8% 9% 9% 9% 9% 9% 8% 20% 

n= 40 34% 4% 5% 5% 5% 5% 5% 5% 34% 

total 10% 5% 8% 12% 29% 12% 8% 5% 10% 
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Algorithm Used 
EXP2.(x,n) is calculated as shown in the following table. 

Calculations for EXP2. 

Value of x Value of n Result 

*0.0 0 1.0 

0.0 0 0.0 

0.0 >0 0.0 

0.0 <0 +infinity 

> 0.0 >0 n 
X 

Error Conditions 

1. If the exponent has sufficiently large magnitude, overflow occurs in one of 
the following ways: 

Base Exponent Result 

> 1.0 positive +infinity 

< -1.0 positive, even +infinity 
positive, odd -infinity 

0.0 to 1.0 negative +infinity 

-1.0 to 0.0 negative, even +infinity 
negative, odd -infinity 

and the following message is issued. 

EXP2.: Result overflow 

2. If the exponent has sufficiently large magnitude, underflow occurs in one 
of the following ways: 

Magnitude of Base Exponent 

> 1.0 negative 

< 1.0 positive 

Result 

0.0 

0.0 

and the following message is issued. 

EXP2.: Result underflow 

3. If both the exponent and the base are zero, the following message is issued 
and a result of zero is returned. 

EXP2.: Zero··zero is indeterminate, result = zero 
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DEXP2. 

Description 
The DEXP2. routine raises a double-precision, D-floating-point number to 
the power of an integer. That is: 

DEXP2.(x,n) = xn 

Routines Called 
DEXP2. calls the MTHERR routine. 

Type of Arguments 
There are two arguments. The base must be a double-precision, D-floating
point value, and the exponent must be an integer value. They can be any such 
values. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 

test Interval MRE RMS 
x n 

.50000 through 1.0000 2 2.16xlO-19 (62.0 bits) 1.01x10-19 (63.1 bits) 

.50000 through 1.0000 -9 1.62xlO-18 (59.1 bits) 4.72x10-19 (60.9 bits) 

.50000 through 1.0000 12 2.27x10-18 (58.6 bits) 6.79x10-19 (60.4 bits) 

.50000 through 1.0000 15 2.73xlO-18 (58:3 bits) 7.89x10-19 (60.1 bits) 

.50000 through 1.0000 -40 7.50x10-18 (56.9 bits) 2.31xlO-18 (58.6 bits) 

total 7.50xlO-18 (56.9 bits) 1.15x10-18 (59.6 bits) 

LSB error distribution according to the value of n 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 
n= 2 0% 0% 0% 0% 100% 0% 0% 0% 0% 

n= -9 1% 4% 12% 20% 23% 20% 12% 5% 2% 

n= 12 6% 8% 12% 15% 16% 15% 13% 9% 6% 

n= 15 9% 9% 12% 13% 13% 13% 12% 9% 9% 

n = -40 34% 4% 5% 4% 5% 5% 4% 4% 34% 

total 10% 5% 8% 11% 31% 11% 8% 5% 10% 
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Algorithm Used 
DEXP2.(x,n) is calculated as shown in the following table. 

Calculations for DEXP2. 

Value of x Value of n Result 

*0.0 0 1.0 

0.0 0 0.0 

0.0 >0 0.0 

0.0 <0 +infinity 

> 0.0 >0 
n 

X 

Error Conditions 

1. If the exponent has sufficiently large magnitude, overflow occurs in one of 
the following ways: 

Base Exponent Result 

> 1.0 positive +infinity 

<-1.0 positive, even +infinity 
positive, odd -infinity 

0.0 to 1.0 negative +infinity 

-1.0 to 0.0 negative, even +infinity 
negative, odd -infinity 

and the following error message is issued. 

DEXP2.: Result overflow 

2. If the exponent has sufficiently large magnitude, underflow occurs in one 
of the following ways: 

Magnitude of Base Exponent 

> 1.0 negative 

< 1.0 positive 

Result 

0.0 

0.0 

and the following message is issued. 

DEXP2.: Result underflow 

3. If both the exponent and the base are zero, the following message is issued 
and the result is set to zero. 

DEXP2.: Zero··zero is indeterminate, result = zero 
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GEXP2. 

Description 
The GEXP2. routine raise a double-precision, G-floating-point number to the 
power of an integer. That is: 

GEXP2.(x,n) = xn 

Routines Called 
GEXP2. calls the MTHERR routine. 

Type of Arguments 
There are two arguments. The base must be a double-precision, G-floating
point value; it can be any such value. The exponent must be an integer value; 
it can be any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 

test Interval MRE RMS 
x n 

.50000 through 1.0000 2 1.72xlO-18 (59.0 bits) 8.11xl(f19 (60.1 bits) 

.50000 through 1.0000 -9 1.26xlO-17 (56.1 bits) 3.79xl0-18 (57.9 bits) 

.50000 through 1.0000 12 1.69xlO-17 (55.7 bits) 5.45xl0-18 (57.3 bits) 

.50000 through 1.0000 15 2.13xlO-17 (55.4 bits) 6.27xl0-18 (57.1 bits) 

.50000 through 1.0000 -40 5.64xlo-17 (54.0 bits) 1.85xHr17 (55.6 bits) 

total 5.64xlo-17 (54.0 bits) 9.25xlo-18 (56.6 bits) 

LSB error distribution according to the value of n 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 
n= 2 0% 0% 0% 0% 100% 0% 0% 0% 0% 

n= -9 2% 5% 12% 21% 23% 20% 12% 4% 1% 

n= 12 6% 8% 13% 16% 15% 15% 13% 8% 6% 

n= 15 9% 9% 12% 13% 14% 13% 12% 9% 9% 

n = -40 34% 4% 4% 5% 4% 5% 5% 4% 34% 

total 10% 5% 8% 11% 31% 10% 8% 5% 10% 
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Algorithm Used 
GEXP2.(x,n) is calculated as shown in the following table. 

Calculations for GEXP2. 

Value of x Value of n Result 

*0.0 0 1.0 

0.0 0 0.0 

0.0 >0 0.0 

0.0 <0 +infinity 

> 0.0 >0 xn 

Error Conditions 

1. If the exponent has sufficiently large magnitude, overflow occurs in one of 
the following ways: 

Base Exponent Result 

> 1.0 positive +infinity 

<-1.0 positive, even +infinity 
positive, odd -infinity 

0.0 to 1.0 negative + infinity 

-1.0 to 0.0 negative, even +infinity 
negative, odd -infinity 

and the following error message is issued: 

G EXP2.: Result overflow 

2. If the exponent has sufficiently large magnitude, underflow occurs in one 
of the following ways: 

Magnitude of Base Exponent 

> 1.0 negative 

< 1.0 positive 

Result 

0.0 

0.0 

and the following message is issued: 

GEXP2.: Result underflow 

3. If both the exponent and the base are zero, the following message is issued 
and the result is set to zero. 

GEXP2.: Zero**zero is indeterminate, result = zero 
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CEXP2. 

Description 
The CEXP2. routine raises a complex, single-precision, floating-point number 
to the power of an integer. That is: 

CEXP2.(z,n) = zn 

Routines Called 
CEXP2. calls the CDLOG, DLOG, DSIN, DCOS, DEXP, and MTHERR 
routines. 

Type of Arguments 
There are two arguments. The base must be a complex, single-precision, 
floating-point value, and the exponent must be an integer. They can be any 
such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

.50000 through 1.0000 for Z (real) 

.50000 through 1.0000 for z (imaginary) 
-10 through 20 for n 

7,45x10-9 (27.0 bits) real 
7,45x1o-9 (27.0 bits) imaginary 

3.17x10-9 (28.2 bits) real 
3.16x1o-9 (28.2 bits) imaginary 

-2 -1 
LSB error distribution: 0% 0% 

0% 0% 

o +1 
100% 0% 
100% 0% 

+2 
0% real 
0% imaginary 

When the ratio of the imaginary part of the base to the real part is less than 
-1010, one part of the result is less accurate. Which part is less accurate 
depends on the exponent. For example: 

-1.00000x10-10 thro\Jgh -1.00000x10-15 for z (real) 
test interval: -2.0000 through -1.0000 for z (imaginary) 

-1 for n 

-2 -1 0 +1 +2 
LSB error distribution: 0% 6% 65% 28% 2% real 

0% 0% 100% 0% 0% imaginary 

-1.00000x1O-lO through -1.00000x1o-15 for z (real) 
test interval: -2.0000 through -1.0000 for z (imaginary) 

2 for n 

-2 -1 0 +1 +2 
LSB error distribution: 0% 0% 100% 0% 0% real 

6% 27% 60% 8% 0% imaginary 
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Algorithm Used 
CEXP2.(z,n) is calculated as follows. 

Let Z = x+i·y 

First the routine checks for the special cases shown in the following table. 

Special Cases for CEXP2. 

Value of x Value of y Value of n Result 

any value any value x+i .y 

0.0 0.0 <0 (+infinity, +infinity) 

0.0 0.0 0 (0.0,0.0) 

0.0 0.0 >0 (O.O,Q.O) 

not both 0.0 0 (1.0,0.0) 

If none of the special cases applies, the routine continues calculations as 
follows. 

The CEXP2. function is evaluated as the complex exponential of 
n • (LNRHO + i -THETA). 

LNRHO is the real part of: 
loge(x+i -y) 

THETA is the imaginary part of: 
loge(x+i -y) 

The real part of n-(LNRHO+i·THETA) is: 
ALPHA = n-LNRHO 

and the imaginary part is: 
PHI = n-THETA 

Since it is ultimately ei·PHI that is needed, it would appear that sin(PHI) 
and cos(PHI) are needed. However, these functions will be multiplied by 
eALPHA, and the handling of exception boundaries on the product will be 
expedited by use of 10ge(sin(PHI)) and 10ge(cos(PHI)), which will be added 
to ALPHA before the call to the DEXP function. The absolute values of 
sin(PHI) and cos(PHI) are used as arguments of the CDLOG function; the 
signs of sin(PHI) and cos(PHI) are stored for use in determining the signs 
for the real and imaginary parts of the complex exponential, CEXP. 

The real part of the final result is: 
sgn(cos(PHI)) _eALPHA+loge(1 cos(PHI)I) 

The imaginary part of the final result is: 
sgn(sin(PHI)) -eALPHA+loge(1 sin(PHI)I) 
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Error Conditions 

The following error messages are returned for error conditions detected during 
the check for the special cases shown above. Other errors detected will result 
in error messages relating to the CEXP3. routine because CEXP2. is part of 
the CEXP3. routine. 

1. If both the real and iraaginary parts of the argument are zero and the 
exponent is also zero, the following message is issued and the result is set 
to (0.0,0.0). 

CEXP2.: Zero··zero is indeterminate, result = zero 

2. If both the real and imaginary parts of the argument are zero and the 
exponent is negative, the following message is issued and the result is set 
to (infinity, infinity). 

CEXP2.: Zero·· negative exponent, result = infinity 

3. If PHI ~ 6746518852, argument reduction for sin/cos is impossible so the 
following message is issued and the result is set to (+infinity, +infinity). 

CEXP2.: Both parts indeterminate 

4. If the base and/or the exponent are such that one or both parts of the 
result overflow, one of the following messages is issued and the corre
sponding result is set to ± infinity. 

CEXP2.: Real part overflow 
CEXP2.: Imaginary part overflow 
CEXP2.: Both parts ove~flow 

5. If the base and/or the exponent are such that one or both parts of the 
result underflows, one of the following messages is issued and the corre
sponding result is set to 0.0. 

CEXP2.: Real part underflow 
CEXP2.: Imaginary part underflow 
CEXP2.: Both parts underflow 
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EXP3. 

Description 
The EXP3. routine raises a single-precision, floating-point number to the 
power of another single-precision, floating-point number. That is: 

EXP3.(x,y) = xY 

Routines Called 
EXP3. calls the MTHERR routine. 

Type of Arguments 
There are two arguments; both must be single-precision, floating-point val
ues. The base must not be less than zero unless the exponent is an integer. 
The base must not be equal to zero unless the exponent is greater than zero. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
2-129 to 2127. 

Accuracy of Result 

test Interval MRE RMS 
x y 

.50000 through 1.0000 5.1 1.52xlO-B (26.0 bits) 4.70x1o-9 (27.7 bits) 

.50000 through 1.0000 -10.1 1.86xHrB (25.7 bits) 4.92x1o-9 (27.6 bits) 

.50000 through 1.0000 15.1 2.27x1O-B (25.4 bits) 5.42x1o-9 (27.5 bits) 

.50000 through 1.0000 -20.1 3.14x1o-B (24.9 bits) 6.05x1o-9 (27.3 bits) 

.50000 through 1.0000 30.1 3.90x1o--8 (24.6 bits) 7.32x1O-9 (27.0 bits) 

.50000 through 1.0000 -50.1 6.18x1o--8 (23.9 bits) 1.07x1o-8 (26.5 bits) 

.50000 through 1.0000 80.1 9.04x1o--8 (23.4 bits) 1.60x1o-8 (25.9 bits) 

total 9.04x1o-B (23.4 bits) 8.74xlo-9 (26.8 bits) 

LSB error distribution according to the value of Y 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 

Y= 5.1 0% 0% 0% 12% 74% 14% 0% 0% 0% 

Y = -10.1 0% 0% 0% 11% 70% 19% 0% 0% 0% 

Y= 15.1 0% 0% 0% 18% 66% 16% 0% 0% 0% 

Y = -20.1 0% 0% 0% 1411() 61% 24% 1% 0% 0% 

Y= 30.1 0% 0% 3% 21% 56% 18% 1% 0% 0% 

Y = -50.1 0% 0% 3% 17% 46% 23% 7% 2% 1% 

Y= 80.1 4% 4% 9% 19% 36% 19% 6% 2% 1% 

total 1% 1% 2% 16% 58% 19% 2% 1% 0% 
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Algorithm Used 
EXP3. (x,y) is calculated as follows. 

First the routine checks for the special cases shown in the following table. 

Special Cases for EXP3. 

Value of x Value of y Result 

0.0 > 0.0 0.0 

0.0 0.0 0.0 

0.0 <0.0 infinity 

*0.0 0.0 1.0 

<0.0 odd integer <0.0 

<0.0 even integer > 0.0 

<0.0 not integer (-x)Y 

Otherwise 
xY = 2W 

w = y ·log2(x) 
log2(x) is calculated as follows: 

x = 2m ·f where .5 $ f < 1.0 
Let p be an odd integer < 16 and 
let a = 2-p/ 16 

Then select p to minimize la-fl 
now x = 2m ·a·(f/a) 

Then log2(x) = m+log2(a)+log2(f/a) or 
log2(x) = m-p/16+log2(f/a) 

Let ul = m-p/16 and 
u2 = log2(f/a) = log2( (1 +s)/(1-s)) 

Then log2(x) = ul+u2 and 
s = (f-a)/(f+a) 

A rational approximation is used to evaluate u2; ul and u2 are then 
used to determine wI and w2. 

w = y·log2(x) = wl+w2 and 

Finally 

wI = FLOAT(INT(w·16.0))/16.0 = ml+pl/16 
ml and pI are integers with 0 $ pI $ 15 

If -129 $ w < 127 
EXP3.(x,y) = xY = 2W is reconstructed as: 

EXP3.(x,y) = 2w1 ·2w2 

2w1 is evaluated by table lookup and 2w2 is evaluated from an
other rational approximation. 
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Error Conditions 

1. If the base is a negative value and the exponent is not an integer, the 
following message is issued and the calculation proceeds using the abso
lute value of the base. 

EXP3.: Negative base**non-integer; ABS(base) used 

2. If the base is 0.0 and the exponent is negative, the following message is 
issued and the result is set to infinity. 

EXP3.: Zero**negative exponent; result = infinity 

3. If both the base and the exponent are 0.0, the following message is issued 
and the result is set to 0.0. 

EXP3.: Zero**zero is indeterminate; result = zero 

4. If y -log2(x) ;;::: 127, the result overflows. Then the following message is is
sued and the result is set to -infinity if x is less than 0.0 and y is an odd 
integer. Otherwise, the result is set to +infinity. 

EXP3.: Result overflow 

5. If y·log2(x) < -129, the result underflows. Then the following message is 
issued and the result is set to 0.0. 

EXP3.: Result underflow 
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DEXP3. 

Description 
The DEXP3. routine raises a double-precision, D-floating-point number to 
the power of another double-precision, D-floating-point number. That is: 

DEXP3.(x,Y) = xY 

Routines Called 
DEXP3. calls the MTHERR routine. 

Type of Argument 
There are two arguments; both must be double-precision, D-floating-point 
values. The base must not be less than zero unless the exponent is an integer. 
The base must not be equal to zero unless the exponent is greater than zero. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 2-129 and less than or equal to 2127. 

Accuracy of Result 

test Interval MRE RMS 
x y 

.50000 through 1.0000 5.1 5.23xlO-19 (60.7 bits) 1.45x1(f19 (62.6 bits) 

.50000 through 1.0000 -10.1 5.50xHr19 (60.7 bits) 1.46xlo-19 (62.6 bits) 

.50000 through 1.0000 20.1 9.07x1o-19 (59.9 bits) 1.B4xHt-19 (62.2 bits) 

.50000 through 1.0000 -50.1 1.97x1o-18 (5B.B bits) 3.27xHt-19 (61.4 bits) 

.50000 through 1.0000 BO.1 3.02x1o-18 (5B.2 bits) 5.10xlo-19 (60.B bits) 

total 3.02x1o-18 (5B.2 bits) 2.9Bxlo-19 (61.5 bits) 

LSB error distribution according to the value of y 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 

Y= 5.1 0% 0% 0% 7% 73% 20% 0% 0% 0% 

y = -10.1 0% 0% 0% 13% 70% 17% 0% 0% 0% 

Y= 20.1 0% 0% 0% 11% 63% 25% 1% 0% 0% 

Y = -50.1 1% 2% 6% 19% 46% 21% 4% 1% 0% 

Y = -BO.1 1% 2% 5% 16% 35% 22% 10% 5% 5% 

total 0% 1% 2% 13% 57% 21% 3% 1% 1% 

Algorithm Used 
DEXP3.(x,y) is calculated as follows. 

First the routine checks for the special cases shown in the following table. 
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Special Cases for DEXP3. 

Value of x Value of y Result 

0.0 > 0.0 0.0 

0.0 0.0 0.0 

0.0 <0.0 infinity 

=1=0.0 0.0 1.0 

< 0.0 odd integer <0.0 

<0.0 even integer > 0.0 

<0.0 not integer (-x)Y 

Otherwise 
xY = 2W 

w = y ·log2(x) 
log2(x) is calculated as follows: 

x = 2m·f where .5 ~ f < 1.0 
Let p be an odd integer < 16 and 
let a = 2-p/16 

Then select p to minimize la-fl 
now x = 2me a·(f/a) 

Then log2(x) = m+log2(a)+log2(f/a) or 
log2(x) = m-p/16+log2(f/a) 

Let u1 = m-p/16 and 
u2 = log2(f/a) = log2( (1 +s)/(1-s» 

Then log2(x) = u1 +u2 and 
s = (f-a)/(f+a) 

A rational approximation is used to evaluate u2; u1 and u2 are then 
used to determine wI and w2. 

w = y·log2(x) = w1+ w2 and 

Finally 

wI = FLOAT(INT(w·16.0»/16.0 = ml+p1/16 
m1 and pI are integers with 0:::; pI ~ 15 

If -129 ~ w < 127 
DEXP3.(x,y) = xY = 2W is reconstructed as: 

DEXP3.(x,y) = 2w1 ·2w2 

2w1 is evaluated by table lookup and 2w2 is evaluated from an
other rational approximation. 
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Error Conditions 

1. If the base is a negative value and the exponent is not an integer, the 
following message is issued and the calculation proceeds using the abso
lute value of the base. 

DEXP3.: Negative base**non-integer; ABS(base) used 

2. If the base is 0.0 and the exponent is negative, the following message is 
issued and the result is set to infinity. 

DEXP3.: Zero**negative exponent; result = infinity 

3. If both the base and the exponent are 0.0, the following message is issued 
and the result is set to 0.0. 

DEXP3.: Zero**zero is indeterminate; result = zero 

4. If y ·log2(x) ~ 127, the result overflows. Then the following message is is
sued and the result is set to -infinity if x is less than 0.0 and y is an odd 
integer. Otherwise, the result is set to +infinity. 

DEXP3.: Result overflow 

5. If y ·log2(x) < -129, the result underflows. Then the following message is 
issued and the result is set to 0.0. 

DEXP3.: Result underflow 
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GEXP3. 

Description 
The GEXP3. routine raises a double-precision, G-floating-point number to 
the power of another double-precision, G-floating-point number. That is: 

GEXP3.(x,y) = xY 

Routines Called 
GEXP3. calls the MTHERR routine. 

Type of Arguments 
There are two arguments; both must be double-precision, G-floating-point 
values. The base must not be less than zero unless the exponent is an integer. 
The base must not be equal to zero unless the exponent is greater than zero. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
2-1025 to 21023 . 

Accuracy of Result 

test Interval MRE RMS 
x y 

.50000 through 1.0000 5.10 3.69xlO-18 (57.9 bits) 1.18xHr18 (59.6 bits) 

.50000 through 1.0000 -10.10 4.91x1o-18 (57.5 bits) 1.22x1Q-18 (59.5 bits) 

.50000 through 1.0000 20.10 7.92x1o-18 (56.8 bits) 1.49x1Q-18 (59.2 bits) 

.50000 through 1.0000 -50.10 1.46x1o-17 (55.9 bits) 2.70x1Q-18 (58.4 bits) 

.50000 through 1.0000 80.10 2.17x1o-17 (55.4 bits) 4.13x1o-18 (57.7 bits) 

total 2.17x1o-17 (55.4 bits) 2.43x1Q-18 (58.5 bits) 

LSB error distribution according to the value of Y 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 

Y= 5.10 0% 0% 0% 14% 70% 16% 0% 0% 0% 

Y = --10.10 0% 0% 0% 12% 68% 20% 0% 0% 0% 

Y= 20.10 0% 0% 1% 19% 60% 19% 1% 0% 0% 

Y = -50.10 0% 1% 4% 17% 43% 24% 7% 2% 1% 

Y= 80.10 4% 5% 8% 18% 34% 19% 7% 3% 2% 

total 1% 1% 3% 16% 55% 20% 3% 1% 1% 

Algorithm Used 
GEXP3.(x,y) is calculated as follows. 

First the routine checks for the special cases shown in the following table. 
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Special Cases for GEXP3. 

Value of x Value of y Result 

0.0 > 0.0 0.0 

0.0 0.0 0.0 

0.0 <0.0 infinity 

*0.0 0.0 1.0 

<0.0 odd integer <0.0 

< 0.0 even integer > 0.0 

<0.0 not integer (-x)Y 

Otherwise 
xY = 2W 

w = y -log2(x) 
log2(x) is calculated as follows: 

x = 2m -f where .5:5; f < 1.0 
Let p be an odd integer < 16 and 
let a = 2-p/16 

Then select p to minimize la-fl 
now x = 2m -a-(f/a) 

Then log2(x) = m+log2(a)+log2(f/a) or 
log2(x) = m-p/16+log2(f/a) 

Let ul = m-p/16 and 
u2 = log2(f/a) = log2«(1+s)/(I-s)) 

Then log2(x) = ul+u2 and 
s = (f-a)/(f+a) 

A rational approximation is used to evaluate u2; ul and u2 are then 
used to determine wI and w2. 

w = y-Iog2(x) = wl+w2 and 

Finally 

wI = FLOAT(INT(w-16.0))/16.0 = ml+pl/16 
ml and pI are integers with 0:5; pI :5; 15 

If -1025 :5; w < 1023 
GEXP3.(x,y) = xY = 2W is reconstructed as: 

GEXP3.(x,y) = 2wl _2w2 

2w1 is evaluated by table lookup and 2w2 is evaluated from an
other rational approximation. 
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Error Conditions 

1. If the base is a negative value and the exponent is not an integer, the 
following message is issued and the calculation proceeds using the abso
lute value of the base. 

GEXP3.: Negative base**non-integer; ABS(base) used 

2. If the base is 0.0 and the exponent is negative, the following message is 
issued and the result is set to infinity. 

GEXP3.: Zero**negative exponent; result = infinity 

3. If both the base and the exponent are 0.0, the following message is issued 
and the result is set to 0.0. 

GEXP3.: Zero**zero is indeterminate, result = zero 

4. If y·log2(x) ~ 1023, the result overflows, the following message is issued, 
and the result is set to -infinity if x less than 0.0 and y is an odd integer. 
Otherwise, the result is set to +infinity. 

GEXP3.: Result overflow 

5. If y·log2(x) < -1025, the result underflows, the following message is issued, 
and the result is set to 0.0. 

GEXP3.: Result underflow 
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CEXP3. 

Description 
The CEXP3. routine raises a complex, single-precision, floating-point number 
to the power of another complex, single-precision, floating-point number. 
That is: 

CEXP3.(z,g) = zg 

Routines Called 
CEXP3. calls the CDLOG, DLOG, DSIN, DCOS, DEXP, and MTHERR 
routines. 

Type of Arguments 
There are two arguments; both must be complex, single-precision, floating
point values. They can be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value. It may 
be any such value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

.50000 through 1.0000 for z (real) 

.50000 through 1.0000 for z (imaginary) 
-100.00 through 207.00 for g (real) 
-163.00 through 7.00 for g (imaginary) 

7.45xlO-9 (27.0 bits) real 
7.45x10-9 (27.0 bits) imaginary 

:3.17xlO-9 (28.2 bits) real 
3.17x10-9 (28.2 bits) imaginary 

-2 -1 
LSB error distribution: 0% 0% 

0% 0% 

o +1 
100% 0% 
100% 0% 

+2 
0% real 
0% imaginary 

When the ratio of the imaginary part of the base to the real part is less than 
-1010, one part of the result is less accurate. Which part is less accurate 
depends on the exponent. For example: 

-1.00000x10-10 through -1.00000x10-15 for z (real) 
test interval: -2.0000 through -1.0000 for z (imaginary) 

(-1,0) for g 

-2 -1 0 +1 +2 
LSB error distribution: 0% 6% 65% 28% 2% real 

0% 0% 100% 0% 0% imaginary 

-1.00000x10-10 through -1.00000x10-15 for z (real) 
test interval: -2.0000 through -1.0000 for z (imaginary) 

(2,0) for g 

-2 -1 0 +1 +2 
LSB error distribution: 0% 0% 100% 0% 0% real 

6% 27% 60% 8% 0% imaginary 
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Algorithm Used 
CEXP3. (z,g) is calculated as follows. 

Let z = x+i·y 
g = a+i·b 

First the routine checks for the special cases shown in the following table. 

Special Cases for CEXP3. 

Value of x Value of y 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

Value of a 

> 0.0 
~O.O 

0.0 

Result 

(0.0,0.0) 
(+infinity, +infinity) 
(0.0,0.0) 

If none of the special cases applies, the routine continues calculation as 
follows. 

If x and y#:O 
x+i·y is rewritten as 

e1oge(X+i'Y) 

The CEXP3. function is evaluated as the complex exponential of 
(a+i· b) ·(LNRHO+i·THETA). 

LNRHO is the real part of: 
loge(x+i .y) 

THETA is the imaginary part of: 
loge(x+i -y) 

The real part of (a+i-b)-(LNRHO+i-THETA) is: 
ALPHA = a-LNRHO-b-THETA 

and the imaginary part is: 
PHI = a-THETA+b-LNRHO 

Since it is ultimately ei ·
PHI that is needed, it would appear that sin(PHI) 

and cos(PHI) are needed. However, these functions will be multiplied by 
eALPHA, and the handling of exception boundaries on the product will be 
expedited by use of loge(sin(PHI) and loge(cos(PHI), which will be added 
to ALPHA before the call to the DEXP function. The absolute values of 
sin (PHI) and cos(PHI) are used as arguments of the CDLOG function; the 
signs of sin(PHI) and cos(PHI) are stored for use in determining the signs 
for the real and imaginary parts of the complex exponential, CEXP. 

The real part of the final result is: 
sgn( cos(PHI) -eALPHA+loge(l cos(PHI)I) 

The imaginary part of the final result is: 
sgn(sin(PHI» -eALPHA+loge(i sin(PHI)I) 
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Error Conditions 

1. If both the real and imaginary parts of both arguments are 0.0, the follow
ing message is issued and the result is set to (0.0,0.0). 

CEXP3.: Zero**zero is indeterminate; result = zero 

2. If both the real and imaginary parts of the base are zero and the real part 
of the exponent is negative, the following message is issued and the result 
is set to (+infinity,+infinity). 

CEXP3.: Zero**(negative,non-zero) is indeterminate, 
result = (infinity,infinity) 

3. If PHI ~ 6746518852, argument reduction for sin/cos is impossible so the 
following message is issued and the result is set to (+infinity,+infinity). 

CEXP3.: Both parts indeterminate 

4. If the base and/or the exponent are such that one or both parts of the 
result overflow, one of the following messages is issued and the corre
sponding result is set to ± infinity. 

CEXP3.: Real part overflow 
CEXP3.: Imaginary part overflow 
CEXP3.: Both parts overflow 

5. If the base and/or the exponent are such that one or both parts of the 
result underflows, one of the following messages is issued and the corre
sponding result is set to (0.0). 

CEXP3.: Real part underflow 
CEXP3.: Imaginary part underflow 
CEXP3.: Real and imaginary parts underflow 
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Chapter 5 
Trigonometric Routines 





SIN 

Description 
The SIN routine calculates the single-precision, floating-point sine of the 
single-precision, floating-point angle given' in radians as the argument. That 
is: 

SIN (x) = sin(x) 

Routines Called 
SIN calls the MTHERR routine. 

Type of Argument 
The argument nlust be a single-precision, floating-point value less than or 
equal to 210828714. 

Type of Result 
The result returned is a single-precision, floating-point value in the range -1.0 
to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 

RMS: 

LSB error distribution: 

Algorithm Used 

1.95x10-8 (25.6 bits) 

3.87x10-9 (27.9 bits) 

-2 -1 0 +1 
0% 12% 78% 10% 

+2 
0% 

SIN(x) is calculated as follows. Note that SIN(x) = -SIN(-x). 

Let Ixl = 7r en+f 
If I < 7r/2 

The argument reduction is as follows. 
n = the nearest integer to Ixl/1r 

Then the reduced argument is: 
f = Ixl-7r en 

If If I < 863167530x10-4 

sin(f) = f 

Otherwise 
sin(f) = f+feR(g) 

g=(2 
R(g) = ((((r5 eg+r4) eg+r3) eg+r2) -g+r1)-g 

r1 = -.166666666 

Finally 

r2 = .833333072x10-2 

r3 = -.198408328x10-3 

r4 = .275239711x10-5 

r5 = -.238683464x10-7 

SIN(x) = sgn(x) -(-l)n esin(f) 
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Error Conditions 
If the absolute value of the argument is greater than 210828714, the following 
message is issued and the result is set to 0.0. 

SIN: ABS(arg) too large; result = zero 
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SIND 

Description 
The SIND routine calculates the single-precision, floating-point sine of the 
single-precision, floating-point angle given in degrees as the argument. That 
IS: 

SIND(x) = sin (x) 

Routines Called 
SIND calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value less than or 
equal to 47185919. 

Type of Result 
The result returned is a single-precision, floating-point value in the range -1.0 
to 1.0. 

Accuracy of Result 
test interval: -1000.0 through 3600.0 

MRE: 1.95x10-8 (25.6 bits) 

RMS: 4.11x10-9 (27.9 bits) 

LSB error distribution: 
-2 
0% 

-1 
13% 

o 
73% 

Algorithm Used 

+1 
14% 

+2 
0% 

SIND(x) is calculated as follows. Note that SIND(x) = -SIND( -x). 

Let Ixl = 180-n+f 
If I ::; 90 

The argument reduction is as follows. 
n = the nearest integer to Ixl/180 

Then the reduced argument, converted to radians is: 
f = (Ix 1-180· n)· (71"/180) 

If If I < 863167530x10--4 

sin(f) = f 

Otherwise 
sin(f) = f+f·R(g) 

g = f2 
R(g) = (( ((r5· g+r4)· g+r3)· g+r2)· g+r1)·g 

r1 = -.166666666 

Finally 

r2 = .833333072x10-2 

r3 = -.198408328x10-3 

r4 = .275239711x1Q-5 
r5 = -.238683464x10-7 

SIND(x) = sgn(x)· (-l)n· sin(f) 
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Error Conditions 
If the absolute value of the argument is greater than 47185919, the following 
message is issued and the result is set to 0.0. 

SIND: ABS(arg) too large; result = zero 
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cos 

Description 
The COS routine calculates the single-precision, floating-point cosine of the 
single-precision, floating-point angle given in radians as the argument. That 
is: 

COS(x) = cos(x) 

Routines Called 
COS calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value less than 
210828714. 

Type of Result 
The result returned is a single-precision, floating-point value in the range -1.0 
to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 1.86x10-8 (25.7 bits) 

RMS: 4.26x10-9 (27.8 bits) 

LSB error distribution: -2 -1 0 +1 +2 
0% 12% 70% 17% 0% 

Algorithm Used 
COS(x) is calculated as follows. Note that COS(x) = COS(-x). 

Let Ixl = 1I" en+f 
If I < 11"/2 

The argument reduction is as follows. 
n = .5 + the nearest integer to Ixl/1I" 

Then the reduced argument is: 
f = Ixl-1I" en 

If If I < .863167530x10-4 

sin(f) = f 

Otherwise 
sin(f) = f +f e R(g) 

g = f2 
R(g) = ««r5 eg+r4) eg+r3) eg+r2) eg+r1) eg 

r1 = -.166666666 

Finally 

r2 = .833333072x10-2 

r3 = -.198408328x10-3 

r4 = .275239711x10-5 

r5 = -.238683464x10-7 

COS (x) = (-1)n+1e sin(f) 
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Error Conditions 
If the absolute value of the argument is greater than or equal to 210828714, the 
following message is issued and the result is set to 0.0. 

COS: ABS(arg) too large; result = zero 
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coso 

Description 
The COSD routine calculates the single-precision, floating-point cosine of the 
single-precision, floating-point angle given in degrees as the argument. That 
IS: 

COSD(x) = cos(x) 

Routines Called 
COSD calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value less than 
47185919. 

Type of Result 
The result returned is a single-precision, floating-point value in the range -1.0 
to 1.0. 

Accuracy of Result 
test interval: -1000.0 through 3600.0 

MRE: 1. 75x10-8 (25.8 bits) 

RMS: 4.20x10-9 (27.8 bits) 

LSB error distribution: -2 
0% 

Algorithm Used 

-1 
12% 

o 
72% 

+1 
16% 

+2 
0% 

COSD(x) is calculated as follows. Note that COSD(x) = COSD(-x). 

Let Ixl = 180-n+f 
If I ~ 90 

The argument reduction is: 
n = .5+ the nearest integer to Ixl/180 

Then the reduced argument, converted to radians, is: 
f = (lxl-180-n) -(11"/180) 

If If I < .863167530x10-4 

sin(f) = f 

Otherwise 
sin(f) = f + f -R(g) 

g = f2 
R(g) = ««r5-g+r4)-g+r3)-g+r2)-g+r1)-g 

r1 = -.166666666 

Finally 

r2 = . 833333072x 10-2 

r3 = -.198408328x10-3 

r4 = .275239711x10-5 

r5 = -.238683464x10-7 

COSD(x) = (-1)n+1e sin(f) 
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Error Conditions 
If the absolute value of the argument is greater than or equal to 47185919, the 
following message is issued and the result is set to 0.0. 

COSO: ABS(arg) too large; result = zero 
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DSIN 

Description 
The DSIN routine calculates the double-precision, D-floating-point sine of the 
double-precision, D-floating-point angle given in radians as the argument. 
That is: 

DSIN(x) = sin (x) 

Routines Called 
DSIN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value less than or 
equal to 6746518852 (or 231e 1l"). 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 6.06x10-19 (60.5 bits) 

RMS: 1.35x10-19 (62.7 bits) 

LSB error distribution: 
-2 
0% 

-1 
22% 

o 
68% 

Algorithm Used 

+1 
10% 

+2 
0% 

DSIN(x) is calculated as follows. Note that DSIN(x) = -DSIN(-x). 

Let Ixl = 1I" e n+f 
If I < 11"/2 

The argument reduction is as follows. 
f = ((lxl-n ec1)-n e c2)-n ec3 

c1 = high-order 34 bits of 11" 
c2 = next 31 bits of1l" 
c3 = next 62 bits of 11" 

If If I < 2-31 

sin(f) = f 
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Otherwise 
sin(f) = f + f -R(g) 

g=(2 

Finally 

R(g) = (g-XNUM/XDEN+rpl)eg 
XNUM = «rp5 eg+rp4)eg+rp3)eg+rp2 
XDEN = «g·q2)eg+ql)eg+qO 

rpl = -.166666666666666667 
rp2 = .451456904704461990x1Of 
rp3 = -.489487151969463797x1Gr 
rp4 = .428183075897778265x10 
rp5 = -.121560740596710190x101 

qO = .541748285645351853xl07 

q1 = .702492288221842518xlO'> 
q2 = .394924723520450141x1Gr 

DSIN(x) = sgn(x)·(-l)n esin(f) 

Error Conditions 
If the absolute value of the argument is greater than 6746518850, the following 
message is issued and the result is set to 0.0. 

DSIN: ABS(arg) too large; result = zero 
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DCOS 

Description 
The DCOS routine calculates the double-precision, D-floating-point cosine of 
the double-precision, D-floating-point angle given in radians as the argument. 
That is: 

DCOS(x} = cos(x} 

Routines Called 
DCOS calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value less than 
6746518852 (or 231 

e 7r). 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 4.96x10- 19 (60.8 bits) 

RMS: 1.41x10-19 (62.6 bits) 

LSB error distribution: 
-2 
0% 

-1 
16% 

o 
66% 

Algorithm Used 

+1 
18% 

+2 
0% 

DCOS(x} is calculated as follows. Note that DCOS(x} = DCOS(-x}. 

Let I xl = 7r e n+f 
If I < 7r/2 

The argument reduction is as follows. 
f = (lxl-n e c1}-n e c2}-n a c3 

c1 = high-order 34 bits of 7r 
c2 = next 31 bits of 7r 
c3 = next 62 bits of 7r 

If If I < 2-31 

sin(f) = f 
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Otherwise 
sin(f) = f+feU(g) 

f2 g= 
R(g) = (g-XNUM/XDEN+rp1)·g 

Finally 

XNUM = «rp5-g+rp4) -g+rp3) eg+rp2 
XDEN = «g·q2)eg+q1)-g+qO 

rp1 = .166666666666666667 
rp2 = .451456904704461990x1Gr 
rp3 = -.489487151969463797x103 
rp4 = .428183075897778265x10 
rp5 = -.121560740596710190x1~1 
qO = .541748285645351853x107 

q1 = .702492288221842518x101) 
q2 = .394924723520450141x103 

DCOS(x) = (_1)n+l_ sin(f) 

Error Conditions 
If the absolute value of the argument is greater than or equal to 6746518852, 
the following Inessage is issued and the result is set to 0.0. 

DCOS: ABS(arg) too large; result = zero 
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GSIN 

Description 
The GSIN routine calculates the double-precision, G-floating-point sine of the 
double-precision, G-floating-point angle given in radians as the argument. 
That is, 

GSIN (x) = sin (x) 

Routines Called 
GSIN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value less than or 
equal to 1686629713 (or 229 _1r). 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 3.30x10- 18 (58.1 bits) 

RMS: 8.85x10-19 (60.0 bits) 

LSB error distribution: 
-2 
0% 

-1 
13% 

o 
78% 

Algorithm Used 

+1 
9% 

+2 
0% 

GSIN(x) is calculated as follows. Note that GSIN(x) = -GSIN(-x). 

Let Ixl = 1r-n+f 
If I < 1r/2 

The argument reduction is as follows. 
f = ((lxl-n e c1)-n-c2)-n e c3 

c1 = high-order 30 bits of 1r 
c2 = next 28 bits of 1r 
c3 = next 62 bits of 1r 

If Ifl < 2-30 

sin(f) = f 
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Otherwise 
sin(f) = f+fe R(g) 

g = f2 

Finally 

R(g) = (g-XNUM/XDEN+rp1)eg 
XNUM = «rp5 eg+rp4) eg+rp3) eg+rp2 
XDEN = «geq2)eg+q1)eg-qO 

rp 1 = - .166666666666666667 
rp2 = .451456904704461990x1of 
rp3 = -.489487151969463797x103 
rp4 = .428183075897778265x101 

rp5 = -.121560740596710190x10-1 

qO = .541748285645351853x107 

ql = .702492288221842518x105 

q2 = .394924723520450141x1Gr 

GSIN(x) = sgn(x)e(-1)ne sin(f) 

Error Conditions 
If the absolute value of the argument is greater than 1686629713, the following 
message is issued and the result is set to 0.0. 

GSIN: ABS(arg) too large; result = zero 
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Geos 

Description 
The GCOS routine calculates the double-precision, G-floating-point cosine of 
the double-precision, G-floating-point angle given in radians as the argument. 
That is: 

GCOS(x) = cos(x) 

Routine Called 
GCOS calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value less than 
1686629713 (or 22g e7r). 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 3.44x10-18 (58.0 bits) 

RMS: 9.84x10-19 (59.8 bits) 

LSB error distribution: -2 
0% 

-1 
14% 

o 
72% 

Algorithm Used 

+1 
15% 

+2 
0% 

GCOS(x) is calculated as follows. Note that GCOS(x) = GCOS(-x). 

Let Ixl = 7r-n+f 
Ifl < 7r/2 

The argument reduction is as follows. 
f = «lxl-n ec1)-n ec2)-n ec3 

c1 = high-order 30 bits of 7r 
c2 = next 28 bits of 7r 
c3 = next 62 bits of 7r 

If If I < 2-30 

sin(f) = f 
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Otherwise 
sin(f) = f+f- R(g) 

g = f2 

Finally 

R(g) = (g-XNUM/XDEN+rp1)-g 
XNUM = «rp5-g+rp4)-g+rp3)-g+rp2 
XDEN = «g-q2)-g+q1)-g+qO 

rp1 = -.166666666666666667 
rp2 = .451456904704461990x1Gr 
rp3 = -.489487151969463797x1OS 
rp4 = .428183075897778265x101 

rp5 = -.121560740596710190x1~1 
qO = .541748285645351853x107 

q1 = .702492288221842518x1Gr 
q2 = .394924723520450141x1OS 

GCOS(x) = (_1)n+1- sin(f) 

Error Conditions 
If the absolute value of the argument is greater than or equal to 1686629713, 
the following message is issued and the result is set to 0.0. 

GCOS: ABS(arg) too large; result = zero 
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CSIN 

Description 
The CSIN routine calculates the complex, single-precision, floating-point sine 
of the complex, single-precision, floating-point angle given in radians as the 
argument. That is: 

CSIN(z) = sin(z) 

Routines Called 
CSIN calls the SIN, COS, EXP, ALOG, and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, floating-point value, the 
real part of which must be less than 210828714 (or 226e 7r). 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-200.00 through 200.00 real 
-10.000 through 10.000 i.maginary 

3.30x10-8 (24.9 bits) real 
3.44x10-8 (24.8 bits) imaginary 

7.68x10- 9 (27.0 bits) real 
6.75x10-9 (27.1 bits) imaginary 

-2 -1 0 +1 +2 
LSB error distribution: 2% 23% 51% 

1% 19% 57% 
22% 2% real 
22% 1 % imaginary 

Algorithm Used 
CSIN(z) is calculated as follows. 

Let z = x+i·y 

If Ixl > 210828714 
CSIN(z) = (0.0,0.0) 

If Iyl > 88.029692, calculation proceeds as follows. 

For the real part of the result: 
Let t = Isin(x)1 

If t = 0.0 
x = 0.0 

If loge(t)+lyl > 88.722839 
x = ±machine infinity 
(88.722839 = 88.029692+1oge(2)) 
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For the imaginary part of the result: 
Let t = Icos(x)I*O 

If loge(t)+lyl < 88.722839 
y = ± infinity 

Otherwise 
CSIN(z) = sin(x) ·cosh(y)+i ·cos(x) ·sinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
210828714, the following message is issued and the result is set to (0.0,0.0). 

CSIN: ABS(REAL(arg)) too large; result = zero 

2. If I y I +loge{lsin(x) I) > 88.722839, the real part overflows. If 
lyl+loge(lcos(x» > 88.722839, the imaginary part overflows. If either part 
overflows, one of the following Inessages is issued and the relevant part of 
the result is set to ± machine infinity. 

CSIN: Imaginary part overflow 
CSiN: Real part overflow 

3. If the imaginary part of the result is too small a number, the following 
message is Issued and the imaginary part of the result is set to 0.0. 

CSIN: Imaginary part underflow 
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ccos 

Description 
The CCOS routine calculates the complex, single-precision, floating-point 
cosine of the complex, single-precision, floating-point angle given in radians 
as the argument. That is: 

CCOS(z) = cos(z) 

Routines Called 
CCOS calls the SIN, COS, EXP, ALOG, and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, floating-point value, the 
real part of which must be less than 210828714 (or 226e 7r). 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-200.00 through 200.00 real 
-10.000 through 10.000 imaginary 

3.35x10-8 (24.8 bits) real 
3.57x10-8 (24.7 bits) imaginary 

7.76x10-9 (26.9 bits) real 
6.68x10-9 (27.2 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 2% 20% 50% 25Cj() 3% real 

1 % 20CJCl 57(H, 20% 1% imaginary 

Algorithm Used 
CCOS(z) is calculated as follows. 

Let z = x+iey 

If Ixl >210828714 
CCOS(z) = (0.0,0.0) 

If Iyl > 88.029692 calculation proceeds as follows. 

For the real part of the result: 
Let t = Icos(x)I:;i:O 

If loge (t) + Iyl > 88.722839 
x = ± machine infinity 

(88.722839 = 88.029692+loge(2)) 
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For the imaginary part of the result: 
Let t = Isin(x)1 

If t = 0.0 
y = 0.0 

If loge(t)+lyl > 88.722839 
y = ± machine infinity 

Otherwise 
CCOS(z) = cos(x) ·cosh(y)-i ·sin(x) ·sinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
210828714, the following message is issued and the result is set to (0.0,0.0). 

eeos: ABS(REAL(arg)) too large: result = zero 

2. If I y I +loge(lcos(x) I) > 88.722839, the real part overflows. If 
lyl+loge(lsin(x)l) > 88.722839, the imaginary part overflows. If either part 
overflows, one of the following messages is issued and the relevant part of 
the result is set to ± machine infinity. 

eeos: Imaginary part overflow 
eeos: Real part overflow 

3. If the imaginary part of the result is too small a number, the following 
message is issued and the imaginary part of the result is set to 0.0. 

eeos: Imaginary part underflow 
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eOSIN 

Description 
The CDSIN subroutine calculates the complex, double-precision, D-floating
point sine of the complex, double-precision, D-floating-point angle given in 
radians as the argument. That is: 

CDSIN(z,r) = sin(z) 
z = location of input value 
r = location of result 

Routines Called 
CDSIN calls the DSIN, DCOS, DEXP, DLOG, and MTHERR routines. 

Type of Argument 
CDSIN is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, D-floating-point value, the real part of which must be 
less than 231e 7r -7r/2. 

Type of Result 
The result returned is a complex, double-precision, D-floating-point value; it 
may be any such value. It is returned in the second vector (r) supplied in the 
call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 
-200.00 through 200.00 real 
-10.000 through 10.000 imaginary test interval: 

MRE: 
1.09x10-18 (59.7 bits) real 
9.86x10-19 (59.8 bits) imaginary 

2.22x10-19 (62.0 bits) real 
RMS:2.08x10-19 (62.1 bits) imaginary 

-2 -1 
LSB error distribution: 2% 22% 

2% 26% 

o +1 +2 
51 % 23% 2% real 
54% 17% 1% imaginary 
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Algorithm Used 
CDSIN(z) is calculated as follows. 

Let z = x+i-y 

If Ixl > 231e 7r - 7r/2 
CDSIN(z) = (0.0,0.0) 

If Iyl > 88.029692, calculations proceed as follows. 

For the real part of the result: 
Let t = Isin(x)1 

If t = 0.0 
x = 0.0 

If loge(t)+lyl > 88.722839 
x = ± infinity 

(88.722839 = 88.029692 + loge (2) ) 

For the imaginary part of the result: 
Let t = Icos(x)1 *- ° 

If loge(t)+lyl > 88.722839 
y = ± infinity 

Otherwise 
CDSIN(z) = sin(x) ecosh(y)+i ·cos(x) ·sinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
231 .7r - 7r/2, the following message is issued and the result is set to (0.0,0.0). 

COSIN: ABS(REAL(arg)) too large; result = zero 

2. If I y I +loge{lsin(x) I) > 88.722839, the real part overflows. If 
lyl+loge(lcos(x)1) > 88.722839, the imaginary part overflows. If either part 
overflows, one of the following messages is issued and the relevant part of 
the result is set to ± machine infinity. 

COSIN: ABS(lMAG(arg)) too large; REAL(result) = infinity 
COSIN: ABS(IMAG(arg)) too large; IMAG(result) = Infinity 

3. If the imaginary part of the result is too small a number, the following 
message is issued and the imaginary part of the result is set to 0.0. 

COSIN: Imaginary part underflow 

5-24 TOPS-10/TOPS-20 Common Math Library Reference Manual 



cocos 

Description 
The CDCOS subroutine calculates the complex, double-precision, D-floating
point cosine of the complex, double-precision, D-floating-point angle given in 
radians as the argument. That is: 

CDCOS(z) = cos(z) 
z = location of input value 
r = location of result 

Routines Called 
CDCOS calls the DSIN, DCOS, DEXP, DLOG, and MTHERR routines. 

Type of Argument 
CDCOS is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, D-floating-point value, the real part of which must be 
less than 231 .7r - 7r/2. 

Type of Result 
The result returned is a complex, double-precision, D-floating-point value; it 
may be any such value. It is returned in the second vector (r) supplied in the 
call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-200.00 through 200.00 real 
-10.000 through 10.000 imaginary 

9.89x10-19 (59.8 bits) real 
9.98x10-19 (59.8 bits) imaginary 

2.25x10-19 (61.9 bits) real 
2.03x10-19 (62.1 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 3% 24% 50% 21% 2% real 

1 % 21% 55% 21% 1% imaginary 
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Algorithm Used 
CDCOS(z) is calculated as follows. 

Let z = x+iey 

If Ixl > 231e 1r -- 1r/2 
CDCOS(z) = (0.0,0.0) 

If Iyl > 88.029692, calculation proceeds as follows. 

For the real part of the result: 
Let t = Icos(x) I =1= ° 

If loge(t)+lyl > 88.722839 
x = ± infinity 
(88.722839 = 88.029692+loge(2)) 

For the imaginary part of the result: 
Let t = Isin(x)1 

If t = 0.0 
y = 0.0 

If loge(t)+lyl > 88.722839 
y = ± infinity 

Otherwise 
CDCOS(z) = cos(x) ·cosh(y)-i ·sin(x) esinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
231e 1r-1r/2, the following message is issued and the result is set to (0.0,0.0). 

cocos: ABS(REAL(arg)) too large; result = zero 

2. If lyl+loge(lcos(x)l) > 88.722839, the real part overflows. If 
lyl+loge(lsin(x)l) > 88.722839, the imaginary part overflows. If either part 
overflows, one of the following messages is issued and the relevant part of 
the result is set to ± machine infinity. 

cocos: ABS(IMAG(arg)) too large; REAL(result) = infinity 
COCOS: ABS(IMAG(arg)) too large; IMAG(result) = infinity 

3. If the imaginary part of the result is too small a number, the following 
message is issued and the imaginary part of the result is set to 0.0 

cocos: Imaginary part underflow 
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CGSIN 

Description 
The CGSIN subroutine calculates the complex, double-precision, G-floating
point sine of the complex, double-precision, G-floating-point angle given in 
radians as the argument. That is, 

CGSIN(z,r) = sin(z) 
z = location of input value 
r = location of result 

Routines Called 
CGSIN calls the GSIN, GCOS, GEXP, GLOG, and MTHERR routines. 

Type of Argument 
CGSIN is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, G-floating-point value, the real part of which must be 
less than 229

• 7r-7r /2. 

Type of Result 
The result returned is a complex, double-precision, G-floating-point value; it 
may be any such value. It is returned in the second vector (r) supplied in the 
call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-200.00 through 200.00 real 
-10.000 through 10.000 imaginary 

7.35xlO- 18 (56.9 bits) real 
7.01xlO-18 (57.0 bits) imaginary 

1.76x10-18 (59.0 bits) real 
.1.61xlO-18 (59.1 bits) imaginary 

-2 -1 o +1 +2 
LSB error distribution: 2% 22% 51% 23% 2% real 

1 % 20% 55% 22% 2% imaginary 
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Algorithm Used 
CGSIN(z) is calculated as follows. 

Let z = x+iey 

If Ixl > 229 ·7r-7r/2 
CGSIN(z) = (0.0,0.0) 

If Iyl > 709.089565712824, calculation proceeds as follows. 

For the real part of the result: 
Let t = Isin(x)1 

If t = 0.0 
x = 0.0 

If loge(t)+lyl > 709.782712893384 
x = ±machine infinity 

(709.782712893384 = 709.089565712824+1o~(2)) 

For the imaginary part of the result: 
Let t = Icos(x)1 * 0.0 

If loge(t)+lyl > 709.782712893384 
y = ±machine infinity 

Otherwise 
CGSIN(z) = sin(x) ·cosh(x)+i ecos(x) esinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
22ge 7r-7r/2, the following message is issued and the result is set to (0.0,0.0). 

CGSIN: ABS(REAL(arg)) too large; result = zero 

2. If lyl+loge(lsin(x)l) > 709.782712893384, the real part of the result will over
flow. If lyl+loge(lcos(x)l) > 709.782712893384, the imaginary part of the 
result will overflow. Any overflowed result is set to ±machine infinity and 
one of the following messages is issued. 

CGSIN: ABS(IMAG(arg)) too large; REAL(result) = infinity 

CGSIN: AGS(IMAG(arg)) too large; IMAG(result) = infinity 

3. If the imaginary part of the result underflows, the following message is 
issued and the imaginary part of the result is set to 0.0. 

CGSIN: Imaginary part underflow 
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CGCOS 

Description 
The CGCOS subroutine calculates the complex, double-precision, G-floating
point cosine of the complex, double-precision, G-floating-point angle given in 
radians as the argument. That is: 

CGCOS(z,r) = cos(z) 
z = location of input value 
r = location of result 

Routines Called 
CGCOS calls the GSIN, GeOS, GEXP, GLOG, and MTHERR routines. 

Type of Argument 
CGCOS is a subroutine that is called with two arguments. Both arguments 
must be two-element, double-precision vectors. The first vector (z) contains 
the input value; the second vector (r) will contain the result. The real part of 
the input value must be stored in the first element of z; the imaginary part 
must be stored in the second element of z. The input value must be a com
plex, double-precision, G-floating-point value, the real part of which must be 
less than 22ge 1r--7r/2. 

Type of Result 
The result returned is a complex, double-precision, G-floating-point value; it 
may be any such value. It is returned in the second vector (r) supplied in the 
call. The real part of the result is returned in the first element of r; the 
imaginary part is returned in the second element of r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

-200.00 through 200.00 real 
-10.000 through 10.000 imaginary 

8.31x10-18 (56.7 bits) real 
7.00x10-18 (57.0 bits) inlaginary 

1.83x10-18 (58.9 bits) real 
1.53x10-18 (59.2 bits) imaginary 

--2 -1 o +1 +2 
LSB error distribution: 2% 20% 50% 25% 3% real 

2% 20% 58% 20% 1 % imaginary 
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Algorithm Used 
CGCOS(z) is calculated as follows. 

Let z = x+i-y 

If Ixl>229 _1I"-1I"/2 
CGCOS(z) = (0.0,0.0) 

If Iyl > 709.089565712824, calculation proceeds as follows. 

For the real part of the result: 
Let t = Icos(x)1 =I=- 0.0 

If loge(t)+lyl > 709.782712893384 
x = ±machine infinity 

(709.782712893384 = 709.089565712824+loge(2)) 

For the imaginary part of the result: 
Let t = Isin(x)1 

If t = 0.0 
y = 0.0 

If loge(t)+lyl > 709.782712893384 
y = ±machine infinity 

Otherwise 
CGCOS(z) = cos(x) ecosh(y)-i esin(x) esinh(y) 

Error Conditions 

1. If the absolute value of the real part of the argument is greater than 
22ge 1l"-1I"/2, the following message is issued and the result is set to (0.0,0.0). 

CGCOS: ABS(REAL(arg)) too large; result = zero 

2. If lyl+loge(lcos(x)l) > 709.782712893384, the real part of the result will 
overflow. If lyl+loge(lsin(x)l) > 709.782712893384, the imaginary part of the 
result will overflow. Any overflowed result is set to ±machine infinity and 
one of the following messages is issued. 

CGCOS: ABS(IMAG(arg)) too large; REAL(result) = infinity 

CGCOS: ABS(IMAG(arg)) too large; IMAG(result) = Infinity 

3. If the imaginary part of the result underflows, the following message is 
issued and the imaginary part is set to 0.0. 

CGCOS: Imaginary part underflow 
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TAN 

Description 
The TAN routine calculates the single-precision, floating-point tangent of the 
single-precision, floating-point angle given in radians as the argument. That 
is: 

TAN(x) = tan(x) 

Routines Called 
TAN calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value less than or 
equal to 226 ·rr/2. 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 2.35x10-8 (25.3 bits) 

RMS: 5.28x10-9 (27.5 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

TAN(x) is calculated as follows. 

If Ixl > 226
• rr/2 

TAN(x) = 0.0 

Otherwise, the identities: 
tan( rr/2.0-g) = 1.0/tan(g) 

-1 
13% 

o 
70% 

+1 
16% 

tan(n· rr+h) = tan(h) where -rr/2.0 < h ~ rr/2.0 
tan(-x) = -tan(x) 

are used to reduce TAN(x) to a problem with 
-rr/2.0 < x ~ rr/2.0 

Then nand f are defined so that: 
x = n ·rr/4.0+f where 0.0 ~ f s rr/4.0 

If f < 2--14 

tan(f) = f 

+2 
0% 
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Otherwise 
tan(f) = fe R(f2) 

R(f2) = (pO+f2e(p1+f2ep2))/(qO+f2e(q1+f2)) 
pO = 62.604 
p1 = -6.9716 
p2 = 6.7309 
qO = pO 
q1 = -27.839 

Then, TAN(x) can be derived if L is an integer and n has the values shown 
in the following table. 

Deriving TAN(x) 
Low-order two 

Value of n bits of n 

4L 

4L+1 

4L+2 

4L+3 

Reference 

00 

01 

10 

11 

TAN(x) 

sgn(x) etan(f) 

sgn(x) e (l/tan(f» 

sgn(x) e (-l/tan(f» 

sgn(x) e_tan(f) 

Coefficients are derived flom those given in Cody and Waite, Software Man
ual for Elementary Functions (Englewood Cliffs, N.J.: Prentice Hall, 1980) for 
machines with 25-32 bit precision. 

Error Conditions 
If the absolute value of the argument is greater than 226 e1r/2, the following 
message is issued and the result is set to 0.0. 

TAN: ABS(arg) too large; result = zero 
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COTAN 

Description 
The COTAN routine calculates the single-precision, floating-point cotangent 
of the single-precision, floating-point angle given in radians as the argument. 
That is: 

COTAN(x) = cot(x) 

Routines Called 
COTAN calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value less than or 
equal to 226

• rr/2 and greater than 2-126
• (1/2+2-27

). 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. 

Accuracy of Result 
test interval: 

MRE: 

RMS: 

-10.000 through 201.06 

2.42xlO-8 (25.3 bits) 

5.29x10-9 (27.5 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

COT AN (x) is calculated as follows. 

If Ixl > 226
• 7r/2 

COTAN(x) = 0.0 

If Ixl < 2-126
• (1/2+2-27 ) 

-1 
18% 

COTAN(x) = +machine infinity 

Otherwise, the identities: 
tan( 7r/2.0-g) = 1.0/tan(g) 

o 
66% 

+1 
16% 

tan(n ·7r+h) = tan(h) where -7r/2.0 < h ~ 7r/2.0 
tan( -x) = -tan(x) 
cot(x) = 1.0/tan(x) 
cot( -x) = -cot(x) 

are used to reduce COTAN(x) to a problem with 
-rr/2.0 < x ~ 7r/2.0 

+2 
0% 
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Then nand f are defined so that: 
x = n ·1r/4.0+f where 0.0 ~ f ~ 1r/4.0 

If f < 2-14 

tan(f) = f 

Otherwise 
tan(f) = f· R(f2) 

R(f2) = (pO+f2. (pI +f2• p2) )/(qO+f2• (ql +f2» 
pO = 62.604 
pI = -6.9716 
p2 = 6.7309 
qO = pO 
ql = -27.839 

Then COTAN(x) can be derived if L is an integer and n has the value 
shown in the following table. 

Deriving COTAN(x) 
Low-order two 

Value of n bits of n 

4L 

4L+1 

4L+2 

4L+3 

Reference 

00 

01 

10 

11 

COTAN(x) 

sgn(x) • (l/tan(f)) 

sgn(x) ·tan(f) 

sgn(x) • -tan(f) 

sgn(x) • -(l/tan(f)) 

Coefficients are derived from those given in Cody and Waite, Software Man
ual for Elementary Functions (Englewood Cliffs, N.J.: Prentice Hall, 1980) for 
machines with 25-32 bit precision. 

Error Conditions 

1. If the absolute value of the argument is less than 2-126 • (l/2+Z-27), the fol
lowing message is issued and the result is set to +machine infinity. 

COT AN: result overflow 

2. If the absolute value of the argument is greater than 226 ·1r/2, the following 
message is issued and the result is set to 0.0. 

COTAN: ABS(arg) too large; result = zero 
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DTAN 

Description 
The DTAN routine calculates the double-precision, D-floating-point tangent 
of the double-precision, D-floating-point angle given in radians as the argu
ment. That is: 

DTAN(x) = tan(x) 

Routines Called 
DTAN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value less than or 
equal to 231 ·7r/2. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 9.60x1o--19 (59.9 bits) 

RMS: 2.08x10-19 (62.1 bits) 

LSB error distribution: 

Algorithm Used 

-2 
1% 

DTAN(x) is calculated as follows. 

If Ixl > 231 ·7r/2 
DTAN(x) = 0.0 

Otherwise, the identities: 
tan( 7r/2.0-g) = 1.0/tan(g) 

-1 
18% 

o 
55% 

+1 
22% 

tan(n ·7r+h) = tan(h) where -7r/2.0 < h S 7r/2.0 
tan( -x) = -tan(x) 

are used to reduce DTAN(x) to a problem with 
-7r/2.0 < x S 7r/2.0 

Then nand f are defined so that: 
x = n e7r/2.0+f where -7r/4.0 S f S 7r/4.0 

If f < 2-31 

tan(f) = f 

+2 
3% 
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Otherwise 
tan(f) = R(f) 

R(f) = ««(xp4-g+xp3) -g+xp2)-g+xp1) -g) -f+f)/ 
« «q4 -g+q3) -g+q2) -g+q1) -g+l.O) 

g = f-f 
xp1 = -.1372889460941120802 
xp2 = .3925934686364577602 -10-2 

xp3 = -.2882482747560198194 -10-4 

xp4 = .2927308283322907641-10-7 

q1 = -.4706222794274454135 
q2 = .2746669449551304872-10- 1 

q3 = - .4030063705745304384 -10--:3 

q 4 = .1312960309685759549 -10-5 

If n is even 
DTAN(x) = tan(f) 

If n is odd 
DTAN(x) = -1/tan(f) 

Reference 
Coefficients are derived from those given in Cody and Waite, Software Man
ual for Elementary Functions, (Englewood Cliffs, N .~J.: Prentice Hall, 1980) 
for machines with 25-32 bit precision. 

Error Conditions 
If the absolute value of the argument is greater than ~1 - 7r/2, the following 
message is issued and the result is set to 0.0. 

DTAN: ABS(arg) too large; result = zero 
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DCOTAN 

Description 
The DCOTAN routine calculates the double-precision, D-floating-point co
tangent of the double-precision, D-floating-point angle given in radians as the 
argument. That is: 

DCOTAN(x) = cot(x) 

Routines Called 
DCOTAN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value less than or 
equal to 2'f31 -7r/2 and greater than 2-127 -(1+2-61

). 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 9.09x10-19 (59.9 bits) 

RMS: 2.08x10-19 (62.1 bits) 

LSB error distribution: -2 
2% 

Algorithm Used 

-1 
23% 

DCOTAN(x) is calculated as follows. 

If Ixl > 231 _7r/2 
DCOTAN(x) = 0.0 

If Ixl < 2-127 
- (1 +2-61

) 

DCOTAN(x) = +machine infinity 

Otherwise, the identities: 
tan( 7r/2.0-g) = 1.0/tan(g) 

o 
55% 

+1 
19% 

tan(n -7r+h) = tan(h) where -7r/2.0 < h $; 7r/2.0 
tan( -x) = -tan(x) 
cot(x) = 1.0/tan(x) 
cot( -x) = -cot(x) 

are used to reduce DCOTAN(x) to a problem with 
-7r/2.0 < x $; 7r/2.0 

Then nand f are defined so that: 
x = n -7r/2.0+f where -7r/4.0 $; f $; 7r/4.0 

If f < 2-31 

tan(f) = f 

+2 
1% 
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Otherwise 
tan(f) = R(f) 

R(f) = « « (xp4 -g+xp3) -g+xp2) -g+x'p1) -g) -f+f)/ 
««q4-g+q3) -g+q2) -g+q1) -g+1.0) 

g = f-f 
xp1 = -.1372889460941120802 
xp2 = .3925934686364577602 -10--2 

xp3 = -.2882482747560198194 -10--4 

xp4 = .2927308283322907641-10-7 

q1 = -.4706222794274454135 
q2 = .2746669449551304872-10--1 

q3 = -.4030063705745304384-10-3 

q4 = .1312960309685759549-10-5 

If n is even 
DCOTAN(x) = l/tan(f) 

If n is odd 
DCOTAN(x) = -tan(f) 

References 
Coefficients are derived from those given in Cody and Waite, Software Man
ual for Elementary Functions, (Englewood Cliffs, N.J.: Prentice Hall, 1980) 
for machines with 25-32 bit precision. 

Error Conditions 

1. If the absolute value of the argument is greater than 231 _1r/2, the following 
message is issued and the result is set to 0.0. 

DCOT AN: ABS(arg) too large; result = zero 

2. If the absolute value of the argument is less than 2-127 
- (1 + (Z-61 », the 

following message is issued and the result is set to +machine infinity. 

DCOT AN: Result overflow 
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GTAN 

Description 
The GTAN routine calculates the double-precision, G-floating-point tangent 
of the double-precision, G-floating-point angle given in radians as the argu
ment. That is: 

GTAN(x) = tan(x) 

Routines Called 
GT AN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value less than or 
equal to 22ge 7r/2. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 5.95x10-18 (57.2 bits) 

RMS: 1.43x10-18 (59.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
1% 

GTAN(x) is calculated as follows. 

If Ixl > 22ge 7r/2 
GTAN(x) = 0.0 

Otherwise, the identities: 
tan( 7r/2.0-g) = 1.0/tan(g) 

-1 
20% 

o 
60% 

+1 
18% 

tan(n e 7r+h) = tan(h) where -7r/2.0 < h ::; 7r/2.0 
tan( -x) = -tan(x) 

are used to reduce GTAN(x) to a problem with 
-7r/2.0 < x ::; 7r/2.0 

Then nand f are defined so that: 
x = n e7r/2.0+f where -7r/4.0 ~ f ~ 7r/4.0 

If f < 2-30 

tan(f) = f 

+2 
0% 
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Otherwise 
tan(f) = R(f) 

R(f) = ««(xp4-g+xp3) -g+xp2)-g+xp1) -g) -f+f)/ 
««q4-g+q3) -g+q2) -g+q1) -g+1.0) 

g = f-f 
xp1 = -.1372889460941120802 
xp2 = .3925934686364577602 -10-2 

xp3 = -.2882482747560198194-10-4 

xp4 = .2927308283322907641-10-7 

q1 = -.4706222794274454135 
q2 = .2746669449551304872-10-1 

q3 = -.4030063705745304384-10-3 

q4 = .1312960309685759549-10-5 

If n is even 
GTAN(x) = tan(f) 

If n is odd 
GTAN(x) = -l/tan(f) 

Reference 
Coefficients are derived from those given in Cody and Waite, Software Man
ual for the Elementary Functions, (Englewood, N.J.: Prentice Hall, 1980) for 
machines with 25-32 bit precision. 

Error Conditions 
If the absolute value of the argument is greater than 229 _1r/2, the following 
message is issued and the result is set to 0.0. 

GT AN: ABS(arg) too large; result = zero 
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GCOTAN 

Description 
The GCOTAN routine calculates the double-precision, G-floating-point co
tangent of the double-precision, G-floating-point angle given in radians as the 
argument. That is: 

GCOTAN(x) = cot(x) 

Routines Called 
GCOTAN calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value less than or 
equal to 229 _1(/2 and greater than 2-1023_(1+2-58). 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: -10.000 through 201.06 

MRE: 6.46x10-18 (57.1 bits) 

RMS: 1.43x10-18 (59.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
1% 

-1 
18% 

GCOT AN (x) is calculated as follows. 

If Ixl > 229 -1(/2 
GCOTAN(x) = 0.0 

If I x I < 2-1023 -(1 + 2-58) 
GCOT AN (x) = + machine infinity 

Otherwise, the identities 
tan( 1(/2.0-g) = 1.0/tan(g) 

o 
60% 

+1 
20% 

tan(n· 1(+h) = tan(h) where -1(/2.0 < h:s; 1(/2.0 
tan( -x) = -tan(x) 
cot(x) = 1.0/tan(x) 
cot( -x) = -cot(x) 

are used to reduce GCOTAN(x) to a problem with 
-1(/2.0 < x :s; 1(/2.0 

Then nand f are defined so that: 
x = n -1(/2.0+f where -1(/4.0 :s; f:s; 1(/4.0 

If f <2-30 

tan(f) = f 

+2 
1% 

Trigonometric Routines 5-41 



Otherwise 
tan(f) = R(f) 

R(f) = (((((xp4-g+xp3)-g+xp2)-g+xp1)-g)-f+f)/ 
(( ((q4-g+q3)" g+q2) -g+q1) -g+1.0) 

g = f-f 
xp1 = -.1372889460941120802 
xp2 = .3925934686364577602 -10-2 

xp3 = -.2882482747560198194-10-4 

xp4 = .2927308283322907641-10-7 

q1 = -.4706222794274454135 
q2 = .2746669449551304872-10--1 

q3 = -.4030063705745304384-10-3 

q4 = .1312960309685759549-10-5 

If n is even 
GCOT AN (x) = l/tan(f) 

If n is odd 
GCOTAN(x) = -tan(f) 

Reference 
Coefficients are derived from those given in Cody and Waite, Software Man
ual for Elementary Functions, (Englewood Cliffs, N.J.: Prentice Hall, 1980) 
for machines with 25-32 bit precision. 

Error Conditions 

1. If the absolute value of the argument is greater than 229 ·1r/2, the following 
message is issued and the result is set to 0.0. 

Gcor AN:ABS(arg) to large; result = zero 

2. If the absolute value of the argument is less than 2-1023
• (1+2-58

), the follow
ing message is issued and the result is set to + machine infinity. 

Gcor AN: Result overflow 
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Chapter 6 
Inverse Trigonometric Routines 





ASIN 

Description 
The ASIN routine calculates, in radians, the single-precision, floating-point 
arc sine of its single-precision, floating-point argument. That is: 

ASIN(x) = sin-1(x) 

Routines Called 
ASIN calls the SQRT and MTHERR routines. 

Type of Argument 
The argument must be a single-precision, floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
-7r/2 to 7r/2. 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 2.56xlO-8 (25.2 bits) 

RMS: 5.34xlO-9 (27.5 bits) 

LSB error distribution: -2 
0% 

Algorithm Used 
ASIN(x) is calculated as follows. 

-1 
10% 

o 
83% 

Let R(z) = ze(pO+ze(pl+zep2))/(qO+ze(ql+z)) 
pO = .564915737 
pI = -.409490163 
p2 = 1.93496723xl0-2 

qO = 3.38949412 
ql = -3.98220081 

Let s = y+y e R(z) 

+1 
7% 

+2 
0% 

Then, the following table gives the value of ASIN(x) depending on the 
values of x, z, and y. 

range of x z y ASIN(x) 

-1.0 to -.5 (1+x)/2 -2$ -(1r/2+s) 

-.5 to 0.0 2 -x -8 X 

0.0 to .5 2 x 8 x 

.5 to 1.0 (1-x)/2 -2$ 1r/2+s 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to +machine infinity. 

ASIN: ABS(arg) greater than 1.0; result = +infinity 
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ACOS 

Description 
The ACOS routine calculates, in radians, the single-precision, floating-point 
arc cosine of its single-precision, floating-point argument. That is: 

ACOS(x) = cos-1(x) 

Routines Called 
ACOS calls the SQRT and MTHERR routines. 

Type of Argument 
The argument must be a single-precision, floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
0.0 to 7r. 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 1.5fixl0-8 (25.9 bits) 

RMS: 3.76xl0-9 (28.0 hits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

ACOS(x) is calculated as follows. 

-1 
8% 

o 
83% 

Let R(z) = z-(pO+z-(pl+z-p2))/(qO+z-(ql+z)) 
pO = .564915737 
pI = -.409490163 
p2 = .93496723xl0-2 

qO = 3.38949412 
ql = -3.98220081 

Let s = y+y·R(z) 

+1 
9% 

+2 
0% 

Then, the following table gives the values of ACOS(x) depending on the 
values of x, z, and y. 

range of x z y ACOS(x) 

-1.0 to-.5 (1+x)/2 -2vz 1\"+8 

-.5 to 0.0 2 x -x 1\"/2+8 

0.0 to .5 2 x x 1\"/2 -8 

.5 to 1.0 (l-x)/2 -2$' -8 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to +machine infinity. 

ACOS: ABS(arg) greater than 1.0; result = +infinity 
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DASIN 

Description 
The DASIN routine calculates, in radians, the double-precision, D-floating
point arc sine of its double-precision, D-floating-point argument. That is: 

DASIN(x) = sin-1(x) 

Routines Called 
DASIN calls the DSQRT and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, D-floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-7r/2 to 7r/2. 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 8.96x10-19 (60.0 bits) 

RMS: 1.88x10-19 (62.2 bits) 

LSB error distribution: -2 -1 0 +1 +2 
1% 25% 69% 5% 0% 

Algorithm Used 
DASIN(x) is calculated as follows. 

Let R(g) = (g e (rp1+g e (rp2+g e (rp3+g e (rp4+g-rpfi)))))/ 
(qO+g e (q1+ge(q2+ge (q3+g e (q4+g))))) 

rp1 = -.27368494524164255994x102 

rp2 = .57208227877891731407x102 

rp3 = -.39688862997504877339x102 

rp4 = .10152522233806463645x102 

rp5 = -.69674573447350646411 
qO = -.16421096714498560795xl03 

ql = .41714430248260412556xl03 

q2 = -.38186303361750149284xl03 

q3 = .15095270841030604719xl03 

q4 = -.23823859153670238830xl02 

Let s = y+yeR(g) 
Then, the following table gives the values of DASIN(x) depending on the 
values of x, Z, and y. 
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range of x z y DASIN(x) 

-1.0 to -.5 (l+x)/2 -2$ -(1r/2+8) 

-.5 to 0.0 x2 -x -8 

0.0 to .5 x2 x 8 

.5 to 1.0 (l-x)/2 -2VZ 1r/2+8 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to +machine infinity. 

DASIN: ABS(arg) greater than 1.0; result = +infinlty 
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DACOS 

Description 
The DACOS routine calculates, in radians, the double-precision, D-floating
point arc cosine of its double-precision, D-floating-point argument. That is: 

DACOS(x) = cos-1(x) 

Routines Called 
DACOS calls the DSQRT and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, D-floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a double-precision, D-floating-pointvalue in the range 
0.0 to 11". 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 4.48x10-19 (61.0 bits) 

RMS: 1.25x10-19 (62.8 bits) 

LSB error distribution: -2 -1 0 +1 +2 
0% 19% 75% 6% 0% 

Algorithm Used 
DACOS(x) is calculated as follows. 

Let R(g) = (ge(rp1+ge(rp2+ge(rp3+g e(rp4+gerp5)))))/ 
(qO+ge (q1+ge (q2+ge (q3+g e (q4+g))))) 

rp1 = -.27368494524164255994x102 

rp2 = .57208227877891731407x102 

rp3 = -.39688862997504877339x102 

rp4 = .10152f)22233806463645x102 

rp5 = -.69674573447350646411 
qO = -.16421096714498f)6079f)x103 

q1 = .41714430248260412556x103 

q2 = -.381863033617f)0149284x103 

q3 = .1f)09f)270841030604719x103 

q4 = -.238238f)91f)3670238830x102 

Let s = y+y e R(g) 
Then, the following table gives the values of DACOS(x) depending on the 
values of x, Z, and y. 
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range of x z y ACOS(x) 

-1.0 to -.5 (1+x)/2 -2yz 7r+8 

-.5 to 0.0 x2 -x 1r/2+8 

0.0 to .5 x2 x 1r/2-8 

.5 to 1.0 (1-x)/2 -2yz -8 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to +machine infinity. 

DACOS: ABS(arg) greater than 1.0; result = +infinity 
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GASIN 

Description 
The GASIN routine calculates, in radians, the double-precision, G-floating
point arc sine of its double-precision, G-floating-point argument. That is: 

GASIN (x) = sin-1(x) 

Routines Called 
GASIN calls the GSQRT and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, G-floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-7r/2 to 7r/2. 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 6.69x10-18 (57.1 bits) 

RMS: 1.54x10-18 (59.2 bits 

LSB error distribution: -2 -1 0 +1 +2 
1% 26% 72% 2% 0% 

Algorithm Used 
GASIN(x) is calculated as follows. 

Let R(g) = (ge(rp1+ge(rp2+ge(rp3+g e(rp4+gerp5)))))/ 
(qO+ge (q1+ge (q2+g e (q3+g e (q4+g))))) 

rp1 = -.27368494f)2416425f)994x102 

rp2 = .57208227877891731407x102 

rp3 = -.39688862997f)04877339x102 

rp4 = .101f)2f)22233806463645x102 

rp5 = ~.69674573447350646411 
qO = -.16421096714498f)60795x103 

q1 = ,417144302482604125f)6x103 

q2 = -.381863033617fi0149284x103 

q3 = .1f)09f)270841030604719x103 

q4 = -.238238f)91f)3670238830x102 

Let s = y+y e R(g) 
Then, the following table gives the value of GASIN(x) depending on the 
values of x, z, and y. 
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range of x z y GASIN(x) 

~1.0 to -.5 (1+x)/2 -2VZ -( 11"/2+8) 

-.5 to 0.0 X
2 -x -8 

0.0 to .5 x2 x 8 

.5 to 1.0 (1- x)/2 -2VZ 11"/2+8 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to +machine infinity. 

GASIN: ABS(arg) greater than 1.0; result = +infinity 
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GACOS 

Description 
The GACOS routine calculates, in radians, the double-precision, G-floating
point arc cosine of its double-precision, G-floating-point argument. That is: 

GACOS(x) = cos-1(x) 

Routines Called 
GACOS calls the GSQRT and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, G-floating-point value in the range 
-1.0 to 1.0. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
0.0 to 1T'. 

Accuracy of Result 
test interval: 0.00000 through 1.0000 

MRE: 4.18x10- 18 (57.7 bits) 

RMS: 1.03x10-18 (59.8 bits) 

-2 1 0 1 2 LSB error distribution: - + + 
0% 14% 72% 15% 0% 

Algorithm Used 
GACOS(x) is calculated as follows. 

Let R(g) = (ge (rp1 +ge (rp2+ge (rp3+g e (rp4+gerp5»»)/ 
(qO+g· (q1+ge (q2+ge (q3+g e (q4+g»») 

rp1 = -.27368494524164255994x1(f 
rp2 = .57208227877891731407x1(f 
rp3 = -.39688862997504877339x1(f 
rp4 = .10152522233806463645x1(f 
rp5 = -.69674573447350646411 

qO = -.16421096714498560795x1Q3 
q1 = .41714430248260412556x1Q3 
q2 = -.38186303361750149284x1Q3 
q3 = .15095270841030604719x1(i3 
q4 = -.23823859153670238830x1(f 

Let s = y+yeR(g) 
Then the following table gives the value of GACOS(x) depending on the 
values of x, z, and y. 
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range of x z y GACOS(x) 

-1.0 to -.5 (l+x)/2 -2$ 1r+S 

-.5 to 0.0 2 -x 1r/2+s X 

0.0 to .5 x2 x 1r/2-s 

.5 to 1.0 (l-x)/2 -2$ -s 

Error Conditions 
If the absolute value of the argument is greater than 1.0, the following mes
sage is issued and the result is set to machine infinity. 

GACOS: ABS(arg) greater than 1.0; result = +infinity 
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ATAN 

Description 
The ATAN routine calculates, in radians, the single-precision, floating-point 
arc tangent of its single-precision, floating-point argument. That is: 

ATAN(x) = tan-1(x) 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
-7r/2 to 7r/2. 

Accuracy of Result 
test interval: -80.000 through 80.000 

MRE: 8.07x10-9 (26.9 bits) 

RMS: 2.99x10-9 (28.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

ATAN(x) is calculated as follows. 

If x < 0.0 
ATAN(x) = -ATAN(lxl) 

If x > 0.0 

-1 
1% 

ATAN(x) = tan-1(XHI)+tan-1(z) 
z = (x-XHI)/(1+x·XHI) 
XHI is chosen so that 

Izi ~ tan( 7r/32) 

o 
98% 

+1 
1% 

+2 
0% 

tan-1(XHI) is found by table lookup. It is stored as ATANHI and 
ATANLO to provide guard bits for improved accuracy. 
tan-1(z) is evaluated by means of a polynomial approximation (see 
"Reference" below). 

If x < tan( 7r/32) 
z=x 
ATAN(x) = tan-1(z) 

If x > l/tan( 7r/32) 
z = l/x 
ATAN(x) = 7r/2-tan-1(z) 

If tan(7r/32) < x < l/tan( 7r/32) 
an appropriate XHI is obtained from a table. The table contains val
ues for XHI for various ranges of x. 
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Reference 
The polynomial approximation used in the algorithm is formula #4901 from 
Hart et aI., Computer Approximations, (New York, N.Y.: John Wiley and 
Sons, 1968). 

Error Conditions 
None 
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ATAN2 

Description 
The ATAN2 routine calculates, in radians, the single-precision, floating-point 
polar angle for the two single-precision, floating-point coordinates of a point 
in the x-y plane that are included as the arguments. That is: 

ATAN2(y,x) = tan-1(y/x) 

Routines Called 
ATAN2 calls the ATAN and MTHERR routines. 

Type of Arguments 
The arguments must be single-precision, floating-point values; they can be 
any such values provided both arguments are not zero. 

Type of Result 
The result returned is a single-precision, floating-point value in the range 
-1r to 1r. 

Accuracy of Result 
-80.000 through 1.0000 for x 

test interval: -80.000 through 1.0000 for y 

MRE: 1.46x10-8 (26.0 bits) 

RMS: 3.08x10-9 (28.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

-1 
1% 

AT AN2 (y,x) is calculated as follows. 

Let u = Iyl and 
v = Ixl and compute tan-1(u,v) 

o 
98% 

+1 
1% 

+2 
0% 

Then find ATAN2(y,x) based on the signs of y and x as follows. 

x y ATAN2(y,x) 

+ + tan-1(u,v) 

+ -tan-1(u, v) 

+ -(tan -l( u, V)-1I") 

tan-l (U,V)-1I" 
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The reduced argument for AT AN2 is: 
z = (u/v-XHI)/(1+u/v· XHI) 

This is rewritten as: 
z = (u-v·XHI)/(v+u·XHl) 
The numerator is calculated to be: 

u-v·XHI = u-VHI·XHI-VLO·XHI 
v = VHI+VLO 

VHI has, at most, 27 significant bits 
VLO has, at most, 35 significant bits 
XHI is tabulated with, at most, 13 significant bits 
This guarantees that the numerator of z is calculated exactly. 

Error Conditions 

1. If both arguments are 0.0, the following message is issued and the result is 
set to 0.0. 

AT AN2: Both arguments are zero, result = zero 

2. If y/x underflows and x is greater than 0.0, the following message is issued 
and the result is set to 0.0. 

ATAN2: Result underflow 
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DATAN 

Description 
The DATAN routine calculates, in radians, the double-precision D-floating
point arc tangent of its double-precision, D-floating-point argument. That is: 

DATAN(x) = tan-1(x) 

Routines CaUed 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-7r/2 to 7r/2. 

Accuracy of Result 
test interval: -80.000 through 80.000 

MRE: 3.40x10-19 (61.3 bits) 

RMS: 9.37x10-20 (63.2 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

DATAN(x) is calculated as follows. 

If x < 0.0 
DATAN(x) = -DATAN(lxl) 

If x> 0.0 

-1 
1% 

DATAN(x) = tan- 1(XHI)+tan- 1(z) 
z = (x-XHI)/(1+x·XHI) 
XHI is chosen so that 

Izl $; tan( 7r/32) 

o 
94% 

+1 
5% 

+2 
0% 

tan-1(XHI) is found by table lookup. It is stored as ATANHI and 
ATANLO to provide guard bits for improved accuracy. 
tan-1(z) is evaluated by means of a polynomial approximation 
(see"Reference" below). 

If x < tan( 7r/32) 
z = x 
DATAN(x) = tan-1(z) 

If x > 1/tan( 7r/32) 
z = 1/x 
DATAN(x) = 7r/2-tan-1(z) 

If tan( 7r/32) < x < 1/tan( 7r/32) 
an appropriate XHI is obtained from a table. The table contains val
ues for XHI for various ranges of x. 
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Reference 
The polynomial approximation used in the algorithm is formula #4904 from 
Hart et aI., Computer Approximation~, (New York, N.Y.: John Wiley and 
Sons, 1968). 

Error Conditions 
None 
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DATAN2 

Description 
The DATAN2 routine calculates, in radians, the double-precision, D-floating
point polar angle for the two double-precision, D-floating-point coordinates of 
a point in the x-y plane that are included as the arguments. That is: 

DATAN2(y,x) = tan-1(y/x) 

Routines Called 
DATAN2 calls the DATAN and M1'HERR routines. 

Type of Arguments 
The arguments must be double-precision, D-floating-point values; they can 
be any such values provided both arguments are not zero. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-1r to 1r. 

Accuracy of Result 
-80.000 through 1.0000 for x 

test interval: -80.000 through 1.0000 for y 

MRE: 5.27x10-19 (60.7 bits) 

RMS: 9.09x10-9 (63.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

-1 
1% 

DATAN2(y,x) is calculated as follows. 

Let u = Iyl and 
v = Ixl and compute tan-I (u/v) 

o 
97% 

+1 
2% 

+2 
0% 

Then find DATAN2(y,x) based on the signs of y and x as follows. 

x y DATAN2(y,x) 

+ + tan-l (u/v) 

+ -tan-l (u/v) 

+ -(tan-I (u/v)-1I") 

tan -I (u/v )-11" 
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The reduced argument for DATAN2 is: 
z = (u/v-XHI)/(1+u/v· XHI) 

This is rewritten as: 
z = (u-v·XHI)/(v+u·XHI) 
The numerator is calculated to be: 

u-v·XHI = u-VHI·XHI-VLO·XHI 
v = VHI+VLO 

VHI has, at most, 27 significant bits 
VLO has, at rnost, 35 significant bits 
XHI is tabulated with, at most, 13 significant bits 
This guarantees that the numerator of z is calculated exactly. 

Error Conditions 

1. If both arguments are 0.0, the following message is issued and the result is 
set to 0.0. 

DA T AN2: Both arguments are zero, result = zero 

2. If y/x underflows and x is greater than 0.0, the following message is issued 
and the result is set to 0.0. 

OAT AN2: Result underflow 
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GATAN 

Description 
The GATAN routine calculates, in radians, the double-precision, G-floating
point arc tangent of its double-precision, G-floating-point argument. That is: 

GATAN(x) = tan-1(x) 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
- 1r/2 to 1r/2. 

Accuracy of Result 
test interval: -80.000 through 80.000 

MRE: 2.04x10- 18 (58.8 bits) 

RMS: 7.03x10- 19 (60.3 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GATAN(x) is calculated as follows. 

If x < 0.0 
GATAN(x) = -GATAN(lxl) 

If x> 0.0 

-1 
1% 

GATAN(x) = tan- 1(XHI)+tan-1(z) 
z = (x-XHI)/(1+x·XHI) 
XHI is chosen so that 

Izi ~ tan( 1r/32) 

o 
97% 

+1 
2% 

+2 
0% 

tan-1 (XHI) is found by table lookup. It is stored as AT ANHI and 
ATANLO to provide guard bits for improved accuracy. 
tan-1(z) is evaluated by means of a polynomial approximation (see 
"Reference" below). 

If x < tan( 1r/32) 
z=x 
GATAN(x) = tan-1(z) 

If x > tan( 1r/32) 
z = l/x 
GATAN(x) = 1r/2-tan-1(z) 

If tan( 1r/32) < x < l/tan( 1r/32) 
an appropriate XiiI is obtained from a table. The table contains val
ues for XHI for various ranges of x. 

Inverse Trigonometric Routines 6-21 



Reference 
The polynomial approxinlation used in the algorithm is formula 4904 from 
Hart et ai., Computer Approximations, (New York, N.Y.: John Wiley and 
Sons, 1968). 

Error Conditions 
None 
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GATAN2 

Description 
The GATAN2 routine calculates, in radians, the double-precision, G-floating
point polar angle for the two double-precision, G-floating-point coordinates of 
a point in the x-y plane that are included as the arguments. That is: 

GATAN2(y,x) = tan-l(y/x) 

Routines Called 
GATAN2 calls the GATAN and MTHERR routines. 

Type of Arguments 
The arguments must be double-precision, G-floating-point values; they can 
be any such values provided both arguments are not zero. 

Type of Result· 
The result returned is a double-precision, G-floating-point value in the range 
- 7r to 7r. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

LSB error distribution: 

Algorithm Used 

-80.000 through 1.0000 for x 
-80.000 through 1.0000 for y 

3.28x10--18 (58.1 bits) 

7.15xlO- 19 (60.3 bits) 

-2 
0% 

-1 
1% 

a 
98% 

+1 
2% 

+2 
0% 

GATAN2(y,x) is calculated as follows. 

Let u = Iyl and 
v = Ixl and compute tan-leu/v) 

Then find GATAN2(y,x) based on the signs of y and x as follows. 

x y GATAN2(y,x) 

+ + tan-- l ( u/v ) 

+ -tan-l (u/v) 

+ -( tan-I (u/v )-7r) 

tan-l (U/V)-7r 
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The reduced argument for GATAN2 is: 
z = (u/v-XHI)/(I+u/v·XHI) 

This is rewritten as: 
z = (u-v·XHI)/(v+u·XHI) 
The numerator is calculated to be: 

u-v·XHI = u-VHI·XHI-VLO·XHI 
v = VHI+VLO 

VHI has, at most, 27 significant bits 
VLO has, at most, 35 significant bits 
XHI is tabulated with, at most, 13 significant bits 
This guarantees that the numerator of z is calculated exactly. 

Error Conditions 

1. If both arguments are 0.0, the following message is issued and the result is 
set to 0.0. 

GAT AN2: Both arguments are zero, result = zero 

2. If y/x underflows and x is greater than 0.0, the following message is issued 
and the result is set to 0.0. 

GAT AN2: Result underflow 
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Chapter 7 
Hyperbolic Routines 





SINH 

Description 
The SINH routine calculates the single-precision, floating-point hyperbolic 
sine of its single-precision, floating-point argument. That is: 

SINH(x) = sinh(x) 

Routines Called 
SINH calls the EXP and MTHERR routines. 

Type of Argument 
The argument must be a single-precision, floating-point value in the range 
-88.722 to 88.722. 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. 

Accuracy of Result 
test interval: 0.00000 through 88.721 

MRE: 

RMS: 

LSB error distribution: 

Algorithm Used 

2.61x1o--8 (25.2 bits) 

4.24x10-9 (27.8 bits) 

-2 -1 a 
0% 4% 85% 

SINH(x) is calculated as follows. 

+1 
11% 

+2 
0% 

The table below gives the value of SINH(x) depending upon the range of 
values for Ixl. 

range of Ixl 

0.0 to 2-13 

2-13 to 1.0 

1.0 to 9.7 = 14·1oge(2) 

9.7 to 88.03 = 127·1oge(2) 

88.03 to 88.722 = 128 ·loge(2) 

88.722 to infinity 

If z = x2 

SINH(x) 

x 

x ·p4(x2
) 

(ex -e-X)/2· sgn(x) 

eX/2·sgn(x) 

ex-loge(2) • sgn(x) 

infinity ·sgn(x) 

p4(z) = 1+z·(cl+z·(c2+z·(c3+c4·z))) 
cl = 1.666666643xlO-1 

c2 = 8.333352593xlO-3 

c3 = 1.983581245xlO-4 

c4 = 2.818523951xlO-6 

Error Conditions 
If the absolute value of the argument is greater than 88.722, the following 
message is issued and the result is set to ± machine infinity using the sign of 
the argurnent. 

SINH: Result overflOw 
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COSH 

Description 
The COSH routine calculates the single-precision, floating-point hyperbolic 
cosine of its single-precision, floating-point argument. That is: 

COSH(x) = cosh(x) 

Routines Called 
COSH calls the EXP and MTHERR routines. 

Type of Argument 
The argument must be a single-precision, floating-point value in the range 
-88.722 to 88.722. 

Type of Result 
The result returned is a single-precision, floating-point value greater than or 
equal to 1.0. 

Accuracy of Result 
test interval: 0.00000 through 88.721 

MRE: 2.12x10-8 (25.5 bits) 

RMS: 4.49x10-9 (27.7 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

COSH(x) is calculated as follows. 

-1 
4% 

o 
82% 

+1 
14% 

+2 
0% 

The table below gives the value of COSH(x) depending upon the range of 
values for Ixl. . 

range of Ixl 

0.0 to 2-14 

2-14 to 9.7 = 14-1oge(2) 

9.7 to 88.03 = 127 -loge(2) 

88.03 to 88.722 = 128 -loge(2) 

88.722 to infinity 

Error Conditions 

COSH(x) 

1.0 

(ex +e-x)/2 

eX/2 
ex-!oge(2) 

infinity 

If the absolute value of the argument is greater than 88.722, the following 
message is issued and the result is set to ± machine infinity using the sign of 
the argument. 

COSH: Result overflow 
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DSINH 

Description 
The DSINH routine calculates the double-precision, D-floating-point hyper
bolic sine of its double-precision, D-floating-point argument. That is: 

DSINH(x) = sinh(x) 

Routines Called 
DSINH calls the DEXP and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, D-floating-point value in the range 
-88.722 to 88.722. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: 0.00000 through 88.721 

MRE: 6.82x10-8 (60.3 bits) 

RMS: 1.27x10-9 (62.8 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

DSINH(x) is calculated as follows. 

-1 
6% 

o 
83% 

+1 
11% 

+2 
0% 

The table below gives the value of DSINH(x) depending upon the range of 
values for Ixl. 

range of Ixl 

0.0 to 2-a1 

2-31 to 1.0 

1.0 to 22.0 = 32 ·loge(2) 

22.0 to 88.03 = 127 ·loge(2) 

88.03 to 88.722 =;: 128 ·loge(2) 

88.722 to infinity 

DSINH(x) 

x 

x+x·R(x2) 

(ex -e -X)/2· sgn(x) 

eX /2 • sgn(x) 

ex-!oge(2) • sgn(x) 

infinity • sgn(x) 
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If z = x2 

R(z) = (rpO+z· (rp1+z· (rp2+z·rp3) »/(qO+z· (q1+z· (q2+z») 
rpO =.35181283430177117881x106 

rp1 = .11563521196851768270x105 

rp2 = .16375798202630751372x103 

rp3 = .78966127417357099479 
qO = -.21108770058106271242x107 

q1 = .36162723109421836460x105 

q2 = -.27773523119650701667x103 

Error Conditions 
If the absolute value of the argument is greater than 88.722, the following 
message is issued and the result is set to ± machine infinity using the sign of 
the argument. 

DSINH: Result overflow 
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DCOSH 

Description 
The DCOSH routine calculates the double-precision, D-floating-point hyper
bolic cosine of its double-precision, D-floating-point argument. That is: 

DCOSH(x) = cosh(x) 

Routines Called 
DCOSH calls the DEXP and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, D-floating-point value in the range 
-88.722 to 88.722. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 1.0. 

Accuracy of Result 

test interval: 0.00000 through 88.721 

MRE: 5.90x10-19 (60.6 bits) 

RMS: 1.34x10-19 (62.7 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

DCOSH(x) is calculated as follows. 

-1 
5% 

o 
81% 

+1 
14% 

+2 
0% 

The table below gives the value of DCOSH(x) depending upon the range 
of values for Ixl. 

range of Ixl 

0.0 to 2-32 

2-32 to 22.0 =·32 -loge(2) 

22.0 to 88.03 = 127 -loge(2) 

88.03 to 88.722 = 128 -loge(2) 

88.722 to infinity 

Error Conditions 

DCOSH(x) 

1.0 

(ex +e-x)/2 

eX/2 
ex.-}oge(2) 

infinity 

If the absolute value of the argument is greater than 88.722, the following 
message is issued and the result is set to ± machine infinity using the sign of 
the argument. 

DCOSH: Result overflow 
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GSINH 

Description 
The GSINH routine calculates the double-precision, G-floating-point hyper
bolic sine of its double-precision, G-floating-point argument. That is: 

GSINH(x) = sinh(x) 

Routines Called 
GSINH calls the GEXP and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, G-floating-point value in the range 
-709.782713 to 709.782713. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 
test interval: 0.00000 through 88.721 

MRE: 6.40x1o-18 (57.1 bits) 

RMS: 9.44x1o-19 (59.9 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GSINH(x) is calculated as follows. 

-1 
3% 

o 
87% 

+1 
10% 

+2 
0% 

The table below gives the value of GSINH(x) depending upon the range of 
values for Ixl. 

range of Ixl 

0.0 to 2-30 

2-30 to 1.0 

1.0 to 22.0 = 32 -loge(2) 

22.0 to 709.089565 

709.089565 to 709.782713 

709.782713 to infinity 

GSINH(x) 

x 

x+x -R(x2) 

(ex -e -X)/2 -sgn(x) 

eX /2 -sgn(~) 
ex-loge(2) -sgn(x) 

infinity -sgn(x) 
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If z = X2 

R(z) = (rpO+z -(rp1+z -(rp2+z -rp3)) )/(qO+z- (q1+z -(q2+z))) 
rpO = .35181283430177117881.106 

rp1 = .11563521196851768270-1cr 
rp2 = .16375798202630751372-10.1 
rp3 = .78966127417357099479 

qO = -.21108770058106271242-107 

q1 = .36162723109421836460-1cr 
q2 = -.27773523119650701667-1fr1 

Error Conditions 
If the absolute value of the argument is greater than 709.782713, the following 
message is issued and the result is set to ± machine infinity, using the sign of 
the argument. 

GSINH: Result overflow 
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GCOSH 

Description 
The GCOSH routine calculates the double-precision, G-floating-point hyper
bolic cosine of its double-precision, G-floating-point argument. That is: 

GCOSH(x) = cosh(x) 

Routines Called 
GCOSH calls the GEXP and MTHERR routines. 

Type of Argument 
The argument must be a double-precision, G-floating-point value in the range 
-709.782713 to 709.782713. 

Type of Result 
The result returned is a double-precision, G-floating-point value greater than 
or equal to 1.0. 

Accuracy of Result 
test interval: 0.00000 through 88.721 

MRE: 4.84x10-18 (57.5 bits) 

RMS: 1.00x10-18 (59.8 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

GCOSH(x) is calculated as follows. 

-1 
3% 

o 
84% 

+1 
13% 

+2 
0% 

The table below gives the value of GCOSH(x) depending upon the range 
of values for Ixl. 

range of Ixl 

0.0 to 2-30 

2-30 to 22.0 = 32 -loge(2) 

22.0 to 709.089565 

709.089565 to 709.782713 

709.782713 to infinity 

Error Conditions 

GCOSH(x) 

1.0 

(ex +e-X)/2 

eX/2 
ex-loge(2) 

infinity 

If the absolute value of the argument is greater than 709.782713, the following 
message is issued and the result is set to ± machine infinity, using the sign of 
the argument. 

GCOSH: Result overflow 
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TANH 

Description 
The TANH routine calculates the single-precision, floating-point hyperbolic 
tangent of its single-precision, floating-point argument. That is: 

TANH(x) = tanh(x) 

Routines Called 
TANH calls the EXP routine. 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is a single-precision, floating-point value in the range -1.0 
to 1.0. 

Accuracy of Result 

test interval: 0.00000 through 90.000 

MRE: 2.69x10-8 (25.1 bits) 

RMS: 5.53x10-9 (27.4 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

TANH(x) is calculated as follows. 

-1 
0% 

o 
79% 

+1 
21% 

+2 
0% 

The table below gives the value of TANH(x) depending upon the range of 
values for Ixl. 

range of Ixl 

0.0 to 2-15 

2-15 to loge(3)/2 

loge(3)/2 to 9.8479016 

9.8479016 to infinity 

If g = x2 

R(g) = g-(a+b-g)/(c+g) 
a = -.823772813 
b = -.383101067x10-2 

C = 2.47131965 

Error Conditions 
None 

TANH(x) 

x 

x+x - R(x2
) 

(1-2/( e2 -Ixl + 1» - sgn(x) 

1.0-sgn(x) 
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DTANH 

Description 
The DTANH routine calculates the double-precision, D-floating-point hyper
bolic tangent of its double-precision, D-floating-point argument. That is: 

DTANH(x) = tanh(x) 

Routines Called 
DTANH calls the EXP routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 

test interval: 0.00000 through 90.000 

MRE: 7.17x1019 (60.3 bits) 

RMS: 1.75x1019 (62.3 bits) 

LSB error distribution: -2 
0% 

Algorithm Used 
DTANH(x) is calculated as follows. 

-1 
0% 

o 
70% 

+1 
30% 

+2 
0% 

The table below gives the value of DTANH(x) depending upon the range 
of values for Ixl. 

range of Ixl 

0.0 to 2-32 -~. 

2-32 -y3' to loge(3)/2 

loge(3)/2 to 22.1807100 

22.1807100 to infinity 

If g = x2 

DTANH(x) 

x 

x+x-R(x2
) 

(l-2/(e2 -Ixl +1» -sgn(x) 

1.0 - sgn(x) 

R(g) = g- (rpO+g- (rp1+rp2- g) )/(qO+g- (q1+g- (q2+g») 
rpO = -.161341190239962281x1Q4 
rp1 = -.992259296722360833x1()2 
rp2 = -.964374927772254698 

qO = .484023570719886887x1Q4 
q1 = .22337720718962312926x1Q4 
q2 = .112744743805349493x1Q3 

Error Conditions 
None 
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GTANH 

Description 
The GTANH routine calculates the double-precision, G-floating-point hyper
bolic tangent of its double-precision, G-floating-point argument. That is: 

GTANH(x) = tanh(x) 

Routines Called 
GTANH calls the GEXP routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
-1.0 to 1.0. 

Accuracy of Result 
test interval: 0.00000 through 90.000 

MRE: 6.44x10-18 (57.1 bits) 

RMS: 1.33x10-18 (59.4 bits) 

LSB error distribution: -2 
0% 

Algorithm Used 
GTANH(x) is calculated as follows. 

-1 
0% 

o 
80% 

+1 
20% 

+2 
0% 

The table below gives the value of GTANH(x) depending upon the range 
of values for Ixl. 

range of Ixl 

0.0 to 2-32 
- v3 

2-32 _y3" tologe(3)/2 

loge(3)/2 to 22.1807100 

22.1807100 to infinity 

If g = x2 

GTANH(X) 

x 

x+x -R(x2
) 

(l-2/(e2 -Ixl + 1)) -sgn(x) 

1.0-sgn(x) 

R(g) = g-(rpO+g-(rpl+rp2·g»/(qO+g-(q1+g·(q2+g») 
rpO = -.161341190239962281xlcr 
rpl = -.992259296722360833xl02 
rp2 = -.964374927772254698 

qO = .484023570719886887xlcr 
q1 = .22337720718962312926xl04 

q2 = .112744743805349493xl()3 

Error Conditions 
None 
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Chapter 8 
Random Number Generating Routines 





RAN 

Description 
The RAN routine returns pseudo random numbers between 0.0 and 1.0, but 
not including 0.0 or 1.0. The period of the sequence is 2147483647; that is, the 
numbers repeat every 2147483647 calls. 

RAN uses a pure multiplicative congruential random number generator with 
prime modulus. The seed value can be supplied by the system or supplied by 
a call to the SETRAN subroutine. (See SETRAN, p. 8-6). 

Routines Called 
RAN does not call any routines; but you can call the SETRAN subroutine to 
provide a seed value and the SA VRAN subroutine (see SA VRAN, p. 8-7) to 
determine the last seed, used by RAN. 

Type of Argument 
The argument is a dummy value that is not used. 

Type of Result 
The result returned is a single-precision, floating-point value that is greater 
than 0.0 and less than 1.0. 

Accuracy of Result 
The independence of successive random numbers generated by multiplicative 
congruential methods can be measured by the spectral test. For this genera
tor, with seed 630360016 and modulus 2147483647, the spectral test yields the 
following results. 

n 

2 
3 
4 
5 
6 

mu{n) 

2.446 
.4766 

3.715 
4.944 

.8183 

bits 

15 
9 
8 
6 
5 

mu(n) measures how densely n-tuples of random numbers cover an 
n-dimensional square. 

bits is the number of independent bits in successive n-tuples of num
bers returned by RAN. 

For example, successive pairs of random numbers can be considered to be 
independent in their first 15 bits. The remaining 12 bits are not independent. 
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Algorithm Used 
RAN(n) is calculated as follows. 

Using a seed value supplied from a call to the SETRAN subroutine or the 
default seed value 524287(=219_1), the seed value is calculated by: 

RAN(n) = seed/231 , truncated 

On subsequent calls to RAN, a new seed is calculated from the previous 
seed value by: 

seed = seed -630360016 mod (231_1) 
and the random number is then generated. 

References 
A full description of the spectral test is given in R.R. Coveyan and R.D. 
MacPherson, Journal of the ACM 14 (1967), pp. 100-119 and in D.E. Knuth, 
Seminumerical Algorithms (Reading, Mass.: Addison-Wesley, 1981), Section 
3.3.4. 

Error Conditions 
None 
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RANS 

Description 
The RANS routine returns pseudo random numbers between 0.0 and 1.0, but 
not including 0.0 or 1.0. The period of the sequence 2484877906816; that is, the 
numbers repeat every 2484877906816 calls. 

RANS is based on the same multiplicative random number generator as RAN 
(p. 8-3). In addition, it shuffles the numbers using a 128-word table. 

Routines Called 
RAN8 calls the RAN and SA VRAN routines. 

Type of Argument 
The argurnent is a dumm.y value that is not used. 

Type of Result 
The result returned is a single-precision, floating··point value that. is greater 
than 0.0 and less than 1.0. 

Accuracy of Result 
Not applicable 

Algorithm Used 
RANS(n) is calculated as follows. 

On the initial reference to RAN8, RAN is called 128 times to generate 8 1 , 

8 2, ... ,8 12R (uniform random deviates in (0,1») and a new seed Xo. Xo is 
obtained from a call to the 8AVRAN subroutine (see 8AVRAN, p.8-7) 
after 8 128 has been generated. Then: 

Xi; 1= 630360016·X j mod(231 _1) 

j = (xi~l mod(128)+1 
s· = X. 1/231 

J I." 

t = s· 
J 

RANS(n) = t 

Error Conditions 
None 
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SETRAN 

Description 
The SETRAN subroutine provides the internal integer seed value for the RAN 
routine. 

SETRAN is used to reset RAN to return the same sequence of random num
bers again, or to set RAN to an arbitrary value (such as the time of day) so 
that it will return an entirely new sequence. 

Routines Called 
SETRAN does not call any routines; but you can call the SAVRAN subrou
tine to save and return the last seed value used by RAN. 

Type of Argument 
The argument must be an integer value in the range 0 to 231. If the argument 
is 0, the default seed value for RAN is used. 

Type of Result 
Not applicable 

Accuracy of Result 
Not applicable 

Algorithm Used 
SETRAN(n) is calculated as follows. 

Using the value supplied, SETRAN computes: 

seed = Iseedl mod (2147483647) 

Error Conditions 
None 
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SAVRAN 

Description 
The SA VRAN subroutine saves and returns the last seed used by the RAN 
routine. 

Routines Called 
None 

Type of Argument 
The argument must be an integer variable in which the seed value will be 
stored. 

Type of Result 
The result returned is an integer value between 1 and 2147483647. 

Accuracy of Result 
Not applicable . 

Algorithm Used 
Not applicable 

Error Conditions 
None 
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Chapter 9 
Absolute Value Routines 





lABS 

Description 
The lABS routine returns the integer absolute value of its integer argument. 
That is: 

IABS(n) = Inl 

Routines Called 
None 

Type of Argument 
The argument must be an integer value; it can be any such value. 

Type of Result 
The result returned is an integer value greater than or equal to O. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IABS(n) is calculated as follows. 

If n ~ 0 
ABS(n) = n 

If n < 0 
ABS(n) = -n 

Error Conditions 
If the argument is the "most negative integer" (4000000000008), overflow oc
curs and the result is set to machine infinity. 
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ASS 

Description 
The ABS routine returns the single-precision, floating-point absolute value of 
its single-precision, floating-point argument. That is: 

ABS(x) = Ixl 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is a single-precision, floating-point value greater than or 
equal to 0.0. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
ABS(x) is calculated as follows. 

If x ~ 0.0 
ABS(x) = x 

If x < 0.0 
ABS(x) = -x 

Error Conditions 
None 

9-4 TOPS-10/TOPS-20 Common Math Library Reference Manual 



DABS 

Description 
The DABS routine returns the double-precision, D-floating-point absolute 
value of its double-precision, D-floating-point argument. That is: 

DABS(x) = Ixl 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DABS(x) is calculated as follows. 

If x ~ 0.0 
DABS(x) = x 

If x < 0.0 
DABS(x) =-x 

Error Conditions 
None 
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GABS 

Description 
The GABS routine returns the double-precision, G-floating-point absolute 
value of its double-pl'ecision, G-floating-point argument. That is: 

GABS(x) = Ixl 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GABS(x) is calculated as follows. 

If x ~ 0.0 
GABS(x) = x 

If x < 0.0 
GABS(x) = -x 

Error Conditions 
None 
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CABS 

Description 
The CABS routine returns the single-precision, floating-point absolute value 
of its complex, single-precision; floating-point argument. That is: 

CABS(z) = Izl 

Routines Called 
CABS calls the SQRT and MTHERR routines. 

Type of Argument 
The argument must be a complex, single-precision, f10ating-point value; it 
can be any such value. 

Type of Result 
The result returned is a single-precision, floating-point value greater than or 
equal to 0.0. 

Accuracy of Result 
-1.00000xl018 through 1.00000xl018 real 

test interval: -1.00000xl018 through 1.00000xl018 imaginary 

MRE: 1.84xlO-8 (25.7 bits) 

RMS: 5.36xIQ-9 (27.5 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

CABS(z) is calculated as follows. 

Let z = x+i·y 
v = MAX(lxl,lyl) 
w = MIN(lxl,lyl) 

Then CABS(z) = v·v 1.0+ (w/v)2 

Error Conditions 

-1 
14% 

o 
65% 

+1 
21% 

+2 
0% 

If the argument is so large that it causes an overflow, the following message is 
issued and the result is set to +machine infinity. 

CABS: Result overflow 
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CDABS 

Description 
The CDABS routine calculates the double-precision, D-floating-point abso
lute value of its complex, double-precision, D-floating-point argument. That 
IS: 

CDABS(z) = Izl 
z = location of input value 

Routines Called 
CDABS calls the DSQRT and MTHERR routines. 

Type of Argument 
The argument must be a two-element, double-precision vector that contains 
the input value, (z). Z must be a complex, double-precision, D-floating-point 
value; it can be any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
-1.00000x1018 through 1.00000x1()18 real 

test interval: -1.00000x1018 through 1.00000x1()18 imaginary 

MRE: 6.32x1o-19 (60.5 bits) 

RMS: 1.89x1o-19 (62.2 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

CDABS(z) is calculated as follows. 

Let z = x+i·y 
v = MAX(lxl,lyl) 
w = MIN(lxl,lyl) 

Then CDABS(z) = v ·v 1.0+ (w/v)2 

Error Conditions 

-1 
4% 

o 
56% 

+1 
38% 

+2 
2% 

If the argument is so large that overflow occurs, the' following message is 
issued and the result is set to +machine infinity. 

CDABS: Result overflow 
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CGABS 

Description 
The CGABS routine calculates the double-precision, G-floating-point abso
lute value of its complex, double-precision, G-floating argument. That is: 

CGABS(z) = Izl 
z = location of input value 

Routines Called 
CGABS calls the GSQRT and MTHERR routines. 

Type of Argument 
The argument must be a two-element, double-precision vector that contains 
the input value (z). Z must be a complex, double-precision, G-floating-point 
value; it can be any such value. 

Type of Result 
The result returned is a double-precision, G~floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
-1.00000x1018 through 1.00000x1018 real 

test interval: -1.00000x1018 through 1.00000x1018 imaginary 

MRE: 4.88x10-18 (57.5 bits) 

RMS: 1.51x10-18 (59.2 bits) 

LSB error distribution: 

Algorithm Used 

-2 
0% 

CGABS(z) is calculated as follows. 

Let z = x+i·y 
v = MAX(lxl,lyl) 
w = MIN(lxl,lyl) 

Then CGABS(z) = v • .J 1.0+ (w/v)2 

Error Conditions 

-1 
4% 

o 
56% 

+1 
38% 

+2 
2% 

If the argument is so large that overflow occurs, the following message is 
issued and the result is set to +machine infinity. 

CGABS: Result overflow 
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Chapter 10 
Data Type Conversion Routines 





IFIX 

Description 
The IFIX routine converts and truncates its single-precision, floating-point 
argument to an integer value. 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value less than 235. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IFIX(x) is calculated by means of the FIX machine instruction. This instruc
tion converts and truncates the argument to an integer. 

Error Conditions 
If the argument is greater than 235, an overflow occurs and the result is set to 
machine infinity. 
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INT 

Description 
The INT routine converts and truncates its single-precision, floating-point 
argument to an integer value. 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value less than 235 • 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
INT(x) is calculated by means of the FIX machine instruction. This instruc
tion converts and truncates the argument to an integer. 

Error Conditions 
If the argument is greater than 235, an overflow occurs and the result is set to 
machine infinity. 
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IOINT 

Description 
The IDINT routine converts and truncates its double-precision, D-floating
point argument to an integer value. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IDINT(x) is calculated as follows. 

The routine, working on the magnitude of the argument, copies the expo
nent field to a scratch register. It then clears the exponent field of the 
magnitude of the argument, and uses the copy of the exponent to control a 
shift to leave the integer in the location of the r~sult. If necessary, the 
routine negates the result. 

Error Conditions 
If the shift results in a loss of significant bits on the left, an overflow occurs 
and the result is set to machine infinity. 
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GFX.n 

Description 
The GFX.n routine converts and truncates its double-precision, G-floating
point argument to an integer value. n is an even octal number from 0 
through 14 that designates a register (AC). 

Routines Called 
None 

Calling Sequence 
GFX.n is not called like most of the other routines in the library (see Section 
1.4.1). It is called by: 

EXTEND n, GFX.n 

Type of Argument 
The argument must be a double-precision, G-floating-point value less than 
235. It must be stored in the AC specified in the routine name. 

Type of Result 
The result returned is an integer value; it may be any such value. It is re
turned in the AC specified in the routine name. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GFX.n(x) is calculated by means of the GFIX machine instruction. This 
instruction converts and truncates the argument to an integer. 

Error Conditions 
If the argument is greater than 235, an overflow occurs and the result is set to 
machine infinity. 
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REAL 

Description 
The REAL routine converts and rounds its integer argument into a single
precision, floating-point value. 

Routines Called 
None 

Type of Argument 
The argument must be an integer value; it can be any such value. 

Type of Result 
The result returned is a single-precision, floating-point value less than 235 • 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit. 

Algorithm Used 
REAL(n) is calculated by means of the FL TR machine instruction. This 
instruction converts and rounds the argument to a single-precision, floating
point value. 

Error Conditions 
None 
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FLOAT 

Description 
The FLOAT routine converts and rounds its integer argument to a single
precision, floating-point value. 

Routines Called 
None 

Type of Argument 
The argument must be an integer value; it can be any such value. 

Type of Result 
The result returned is a single-precision, floating-point value less than 2::15. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit. 

Algorithm Used 
FLOAT(n) is calculated by means of the FLTR machine instruction. This 
instruction converts and rounds the argument to a single-precision floating
point value. 

Error Conditions 
None 
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SNGL 

Description 
The SNGL routine converts and rounds its double-precision, D-floating-point 
argument to a single-precision, floating-point value. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. 

Accuracy of Result 
The result is accurate to half a least significant bit because of rounding. 

Algorithm Used 
SNGL(x) is calculated as follows. 

The routine tests the most significant bit of the low word of the magnitude of 
the argument. 

If it is 0, the high word is returned. 
If it is 1, the low bit of the high word of the magnitude is tested. 

If it is 0, it is made 1 and negated if necessary. 
If it is 1, the high word of the magnitude is incremented and negated if 
necessary. 

Error Conditions 
If overflow occurs, the result is set to machine infinity. 
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GSN.n 

Description 
The GSN.n routine converts and rounds its double-precision, G-floating-point 
argument to a single-precision, floating-point value. n is an even octal num
ber from ° through 14 that designates a register (AC). 

Routines Called 
None 

Calling Sequence 

GSN.n is not called like most of the other routines in the library (see Section 
1.4.1). It is called by: 

EXTEND n GSN.n 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. It must be etored in the AC specified in the routine name. 

Type of Result 
The result returned is a single-precision, floating-point value; it may be any 
such value. It is returned in the AC specified in the routine name. 

Accuracy of Result 
The result is exact to half a least significant bit because of rounding. 

Algorithm Used 
GSN .n(x) is calculated as follows. 

The routine tests the most significant bit of the low word of the magnitude of 
the argument. 

If it is 0, the high word is returned. 
If it is 1, the low bit of the high word of the magnitude is tested. 

If it is 0, it is made 1 and negated if necessary. 
If it is 1, the high word of the magnitude is incremented and ~egated if 
necessary. 

Error Conditions 

1. If overflow occurs, the result is set to machine inf~nity. 

2. If underflow occurs, the result is set to 0.0. 
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DFLOAT 

Description 
The DFLOAT routine converts its integer argument to a double-precision, 
D-floating-point value. 

Routines Called 
None 

Type of Argument 
The argument must be an integer value; it can be any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value less than 2:35 • 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DFLOAT(n) is calculated by moving the value of the argument to the loca
tions used by a double~precision result. See Chapter 1 for a discussion of the 
location of the result. 

Error Conditions 
None 
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DBlE 

Description 
The DBLE routine converts its single-precision floating-point argument to a 
double-precision, D-floating-point value. 

Routines Called 
None 

Type of Argument l 

The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DBLE(x) is calculated by moving the value of the argument to the locations 
used by a double-precision result. (See Chapter 1 for a discussion of the 
location of the result.) The low order word is set to O. 

Error Conditions 
None 
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GTOD 

Description 
The GTOD routine converts its double-precision, G-floating point argument 
to a double-precision, D-floating-point value. 

Routines Called 
GTOD calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GTOD(x) is calculated by converting the double-precision, G-floating-point 
value to double-precision, D-floating point and setting the low-order three bits 
to O. 

Error Conditions 

1. If the resulting exponent is too small to be represented as a double
precision, D-floating-point number, the following message is issued and 
the result is set to 0.0. 

GTOD: Result underflow 

2. If the resulting exponent is too large to be represented as a double
precision, D-floating-point number, the following message is issued and 
the result is set to + machine infinity. 

GTOD: Result overflow 
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GTODA 

Description 
The GTODA subroutine converts an array of double-precision, G-floating
point values to an array of double-precision, D-floating-point values. It is 
called as: 

GTODA (x,y,i) 
x = input array 
y = array used for result 
i = number of elem.ents to convert 

Routines Called 
GTODA calls the MTHERR routine. 

Type of Arguments 
GTODA is a subroutine that is called with three arguments. The first and 
second arguments must be double-precision arrays. The third argument must 
be an integer value representing the number of elements to be converted. The 
first array (x) contains the input values; the second array (y) will contain the 
results. The input values must be double-precision, G-floating-point values; 
they can be any such values. 

Type of Result 
The result returned is an array of double-precision, D-floating-point values; 
they may be any such values. They are returned in the second array (y) 
supplied in the call. 

Accuracy of Result 
The result is exact for each value converted. 

Algorithm Used 
GTODA(x) is calculated as follows. 

Using the number specified in the third argument, GTODA converts each 
double-precision, G-floating-point value to a double-precision, D-floating
point value and sets the low-order three bits to O. Each converted value is 
stored in the second array. 

Error Conditions 

1. For each resulting exponent that is too small to be represented as a 
double-precision, D-floating-point number, the following message is is
sued and the result is set to 0.0. 

GTODA: Result underflow 

2. For each resultIng exponent that is too large to be represented as a double
precision, D-floating-point number, the following message is issued and 
the result is set to +machine infinity. 

GTODA: Result overflow 
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GFL.n 

Description 
The GFL.n· routine converts its integer argument to a double-precision, 
G-floating-point value. n is an even octal number from 0 through 14 that 
designates a register (AC). 

Routines Called 
None 

Calling Sequence 
GFL.n is not called like most of the routines in the library (see Section 1.4.1). 
It is called by: 

EXTEND n, GFL.n 

Type of Argument 
The argument must be an integer value; it can be any such value. It must be 
stored in the AC specified in the routine name. 

Type of Result 
The result returned is a double-precision, G-floating-point value less than 2:ll). 
It is returned in the AC specified in the routine name. 

Accur:::y of Result 
The result is exact. 

Algorithm Used 
GFL.n(n) is calculated by moving the value of the argument to the locations 
used by a double-precision result (see Chapter 1). 

Error Conditions 
None 
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GOB.n· 

Description 
The GDB.n routine converts its single-precision, floating-point argument to a 
double-precision, G-floating-point value. n is an even octal number from 0 
through 14 that designates a register (AC). 

Routines Called 
None 

Calling Sequence 
GDB.n is not called like most of the routines in the library (see Section 1.4.1). 
It is called by: 

EXTEND n, GDB.n 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. It must be stored in the AC specified in the routine name. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. It is returned in the AC specified in the routine name. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GDB.n(x) is calculated as follows. 

The routine uses the GDBLE machine instruction to convert the argument 
and move it to the locations used for double-precision results. 

Error Conditions 
None 
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DTOG 

Description 
The DTOG routine converts its double-precision, D-floating-point argument 
to a double-precision, G-floating-point value. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit. 

Algorithm Used 
DTOG(x) is calculated by converting the double-precision, D-floating-point 
value to a double-precision, G-floating-point value and rounding the con
verted value. 

Error Conditions 
None 
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DTOGA 

Description 
The DTOGA subroutine converts an array of double-precision, D-floating
point values to an array of double-precision, G-floating-point values. It is 
called as: 

DTOGA(x,y,i) 
x = input array 
y = array used for result 
i = number of elements to convert 

Routines Called 
None 

Type of Arguments 
DTOGA is a subroutine that is called with three arguments. The first and 
second arguments must be double-precision arrays. The third argument must 
be an integer value representing the number of elements to be converted. The 
first array (x) contains the input values; the second array (y) will contain the 
result. The input values must be double-precision, D.floating-point values; 
they can be any such values. 

Type of Result 
The result returned is an array of double-precision, G-floating-point values; 
they may be any such values. They are returned in the second array (y) 
supplied in the call. 

Accuracy of Result 
Each element of the result is rounded with an error bound of half a least 
significant bit. 

Algorithm Used 
DTOGA(x) is calculated as follows. 

Using the number specified in the third argument, DTOGA converts each 
double-precision, D-floating-point value to a double-precision, G-floating
point value and rounds the converted value. Each converted value is 
stored in the second array. 

Error Conditions 
None 
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CMPL.I 

Description 
The CMPL.I routine converts its two integer arguments into a complex, 
single-precision, floating-point value. 

Routines Called 
None 

Type of Arguments 
Both arguments must be integer values; they can be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit for 
each part (real and imaginary). 

Algorithm Used 
CMPL.I(n,m) is calculated as follows. 

The two arguments are converted to single-precision, floating-point values 
using the FLTR machine instructions. These values are then moved to the 
locations where the result is stored as a complex value (see Chapter 1). 
The first argument is used as the real part of the complex number and the 
second argument as the imaginary part. 

Error Conditions 
None 
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CMPLX 

Description 
The CMPLX routine converts two single-precision arguments into one com
plex single-precision, floating-point value. 

Routines Called 
None 

Type of Arguments 
Both arguments must be single-precision, floating-point values; they can be 
any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
CMPLX(x,y) is calculated by moving the arguments to the locations used for 
a complex result (see Chapter 1). The first argument is used as the real part of 
the complex number and the second argument as the imaginary part. 

Error Conditions 
None 
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CMPL.D 

Description 
The CMPL.D routine converts its two double-precision, D-floating-point ar
guments into a complex, single-precision, floating-point value. 

Routines Called 
None 

Type of Arguments 
The arguments must be double-precision, D-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
The result is accurate to half a least significant bit for each part because of 
rounding. 

Algorithm Used 
CMPL.D(x,y) is calculated by converting the arguments to single-precision 
and then moving them to the locations used for the real and imaginary parts 
of the complex result (see Chapter 1). The first argument is used as the real 
part of the complex number and the second argument as the imaginary part. 

Error Conditions 
If overflow occurs on the conversions, the result is set to machine infinity for 
either or both of the parts of the result. 
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CMPL.G 

Description 
The CMPL.G routine converts its two double-precision, G-floating-point ar
guments into a complex, single-precision, floating-point value. 

Routines Called 
None 

Type of Arguments 
The arguments must be double-precision, G-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
The result is accurate to half a least significant bit for each part because of 
rounding. 

Algorithm Used 
CMPL.G(x,y) is calculated by converting the arguments to single-precision 
and then moving them to the locations used for the real and imaginary parts 
of the complex result (see Chapter 1). The first argument is used as the real 
part of the complex number and the second argument as the imaginary part. 

Error Conditions 

1. If overflow occurs on the conversions, the result is set to machine infinity 
for either or both of the parts of the result. 

2. If underflow occurs on the conversions, the result is set to 0.0 for either or 
both parts of the result. 
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CMPL.C 

Description 
The CMPL.C routine creates a complex, single-precision, floating-point value 
from the real parts of two complex, single-precision, floating-point values. 

Routines Called 
None 

Type of Arguments 
The arguments must be complex, single-precision, floating-point values; they 
can be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
CMPL.C(z,g) is calculated by moving the arguments to the locations used for 
a complex result (see Chapter 1). The first argument is used as the real part of 
the complex number and the second argument as the imaginary part. 

Error Conditions 
None 

Data Type Conversion Routi nes 10-23 





Chapter 11 
Rounding and Truncation Routines 





NINT 

Description 
The NINT routine rounds its single-precision, floating-point argument to the 
nearest integer. 

Routines Called 
NINT calls the MTHERR routine. 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
NINT(x) is calculated as follows. 

Let j = INT(lxl+.5) 

If j < 235 and 
If x 2: 0.0 

NINT(x) = j 
If x < 0.0 

NINT(x) = -j 

If j = 235 and 
If x < 0.0 

NINT(x) = -j 

Otherwise, overflow occurs and 
If x > 0.0 

NINT(x) = 235-1 
If x < 0.0 

NINT(x) = _235 

Error Conditions 
If x is greater than or equal to 235 or less than -235 , the result overflows. When 
overflow occurs, the following message is issued and the result is set to +ma
chine infinity if x is greater than 0.0 or to -machine infinity if x is less than 
0.0. 

NINT: Result overflow 
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IDNINT 

Description 
The IDNINT routine rounds its double-predsion, D-floating-point argument 
to the nearest integer. 

Routines Called 
IDNINT calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IDNINT(x) is calculated as follows. 

Let j = INT(lxl+.5) 

If j < 235 and 
If x ;?: 0.0 

IDNINT(x) = j 
If x < 0.0 

IDNINT(x) = -j 

If j = 235 and 
If x < 0.0 

IDNINT(x) = -j 

Otherwise, overflow occurs and 
If x > 0.0 

IDNINT(x) = 235_1 
If x < 0.0 

IDNINT(x) = _235 

Error Conditions 
If x is greater than or equal to 235 or less than _235, the result overflows. When 
overflow occurs, the following message is issued and the result is set to +ma
chine infinity if x is greater than 0.0 or to -machine infinity if x is less than 
0.0. 

IONINT: Result overflow 
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IGNIN. 

Description 
The IGNIN. routine rounds its double-precision, G-floating-point argument 
to the nearest integer. 

Routines Called 
IGNIN. calls the MTHERR routine. 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is an integer value; it may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IGNIN.(x} is calculated as follows. 

Let j = INT(lxl+.5) 

If j < 235 and 
If x ~ 0.0 

IGNIN.(x) = j 
If x < 0.0 

IGNIN.(x) = -j 

If j = 23fi and 
If x < 0.0 

IGNIN.(x) = -j 

Otherwise, overflow occurs and 
If x > 0.0 

IGNIN.(x) = 2:15_1 
If x < 0.0 

IGNIN .(x) = _235 

Error Conditions 
If x is greater than or equal to 23fi or less than _235 , the result overflows. When 
overflow occurs, the following message is issued and the result is set to +ma
chine infinity if x is greater than 0.0 or - machine infinity if x is less than 0.0. 

IGNIN.: Result overflow 
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ANINT 

Description 
The ANINT routine rounds its single-precision, floating-point argument to 
the nearest single-precision, floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Return 
The result returned is a single-precision, floating-point whole value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
ANINT(x) is calculated as follows. 

If Ixl :;::: 226 

ANINT(x) = x because x is an integer 

If Ixl < 226 

If X > 0.0 
ANINT(x) = ((lxl+226)rounded)-226 

If x < 0.0 
ANINT(x) = -(((lxl+226)rounded)-226) 

Error Conditions 
None 

11-6 TOPS-10/TOPS-20 Common Math Library Reference Manual 



DNINT 

Description 
The DNINT routine rounds its double-precision, D-floating-point argument 
to the nearest double-precision, D-floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point whole value; it 
may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DNINT is calculated as follows. 

If Ixl2 261 

DNINT(x) = x because x is an integer 

If Ixl < 261 

If x> 0.0 
DNINT(x) = «lxl+261 )rounded)-261 

If x < 0.0 
DNINT(x) = -«(lxl+261 )rounded)-261 ) 

Error Conditions 
None 
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GNINT. 

Description 
The GNINT. routine rounds its double-precision, G-floating-point argument 
to the nearest double-precision, G-floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point whole value; it 
may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GNINT.(x) is calculated as follows. 

If Ixl ~ 258 

GNINT.(x) = x because x is an integer 

If Ixl < 258 

If X > 0.0 
GNINT.(x) = «lxl+258)rounded)-258 

If x < 0.0 
GNINT.(x) = -«(lxl+258)rounded)-258) 

Error Conditions 
None 
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AINT 

Description 
The AINT routine truncates its single-precision, floating-point argument to a 
single-precision, floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a single-precision, floating-point value; it can be any 
such value. 

Type of Result 
The result returned is a single-precision, floating-point whole value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
AINT(x) is calculated as follows. 

If Ixl ;? 226 

AINT(x) = x because x is an integer 

If Ixl < 226 

If x> 0.0 
AINT(x) = ((Ixl +226)truncated)-226 

If x < 0.0 
AINT(x) = -( ((lxl+226)truncated)-226 ) 

Error Conditions 
None 
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DINT 

Description 
The DINT routine truncates its double-precision, D-floating-point argument 
to a double-precision, D-floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, D-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, D-floating-point whole value; it 
may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DINT(x) is calculated as follows. 

If Ixl ~ 261 

DINT(x) = x because x is an integer 

If Ixl < 1.0 
DINT(x) = 0.0 

Otherwise 
DINT(x) = sgn(x) -(Ixl with fraction bits replaced by zeroes) 

Error Conditions 
None 
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GINT. 

Description 
The GINT. routine truncates its double-precision, G-floating-point argument 
to a double-precision, G-floating-point whole number. 

Routines Called 
None 

Type of Argument 
The argument must be a double-precision, G-floating-point value; it can be 
any such value. 

Type of Result 
The result returned is a double-precision, G-floating-point whole value; it 
may be any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GINT.(x) is calculated as follows. 

If Ixl ;::: 258 

GINT.(x) = x because x is an integer 

If Ixl < 1.0 
GINT.(x) = 0.0 

Otherwise 
GINT.(x) = sgn(x) -(Ixl with fraction bits replaced by zeroes) 

Error Conditions 
None 
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Chapter 12 
Product, Remainder, and Positive Difference 
Routines 





DPROD 

Description 
The DPROD routine multiplies two single-precision, floating-point numbers 
and returns a double-precision, D-floating-point product. That is: 

DPROD(x,y) = x·y 

Routines Called 
OPROD calls the MTHERR routine. 

Type of Arguments 
Both arguments must be single-precision, floating-point values; they can be 
any such values. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DPROD(x,y) is calculated as follows. 

Let x = DBLE(x) 
y = DBLE(y) 

DPROD(x,y) = x·y 

Error Conditions 

1. If overflow occurs, the following message is issued and the result is set to 
±machine infinity. 

DPROD: Result overflow 

2. If underflow occurs, the following message is issued and the result is set to 
0.0. 

DPROD: Result underflow 
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GPROD. 

Description 
The GPROD. routine multiplies two single-precision, floating-point numbers 
and returns a double-precision, G-floating-point product. That is: 

GPROD.(x,y) = x·y 

Routines Called 
GPROD. calls the MTHERR routine. 

Type of Arguments 
Both arguments must be single-precision, floating-point values; they can be 
any such values. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it may be 
any such value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GPROD.(x,y) is calculated as follows. 

Let x = GDB.O(x) 
y = GDB.O(y) 

GPROD.(x,y) = x·y 

Error Conditions 
None 
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MOD 

Description 
The MOD routine returns the integer remainder of the quotient of its integer 
arguments. That is: 

MOD(i,j) = i-[i/j] ej 

Routines Called 
None 

Type of Arguments 
Both arguments must be integer; the second argument cannot equal zero. If 
the first argument is negative, the result is negative. 

Type of Result 
The result returned is an integer value in the range -Ijl to Ijl. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
MOD(i,j) is calculated as follows. 

MOD(i,j) = (Iil-[I il/j] e j). sgn(i) 
[Iil/j] = the greatest integer in lil/j 

Error Conditions 
None 
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AMOD 

Description 
The AMOD routine returns the single-precision, floating-point remainder of 
the quotient of its single-precision, floating-point arguments. That is: 

AMOD(x,y) = x-[x/y]·y 

Routines Called 
AMOD calls the MTHERR routine. 

Type of Arguments 
Both arguments must be single-precision, floating-point values; the second 
argument cannot equal zero. If the first argument is negative, the result will 
be negative. 

Type of Result 
The result returned is a single-precision, floating-point value in the range - Iyl 
to Iyl. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
AMOD(x,y) is calculated as follows. 

AMOD(x,y) = (Ixl-[lxl/y] .y) ·sgn(x) 
[I x I/y] = largest integer in Ixl/y 

Error Conditions 
Underflow may occur if y is too small a number. If underflow occurs, the 
following message is issued and the result is set to 0.0. 

AMOD: Result underflow 
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DMOD 

Description 
The DMOD routIne returns the double-precision, D-floating-point remainder 
of the quotient of its double-precision, D-floating-point arguments. That is: 

DMOD(x,y) = x-[x/y]·y 

Routines Called 
DMOD calls the MTHERR routine. 

Type of Arguments 
Both arguments must be double-precision, D-floating-point val~es; the sec
ond argument cannot equal zero. If the first argument is negative, the result 
will be negative. 

Type of Result 
The result returned is a double-precision, D-floating-point value in the range 
- Iyl to Iyl. 

Accuracy of Result 
The, result is exact. 

Algorithm Used 
DMOD(x,y) is calculated as follows. 

DMOD(x,y) = (Ixl-[Ixl/y] .y) ·sgn(x) 
[Ixl/y] = largest integer in Ixl/y 

Error Conditions 
Underflow may occur if y is too small a number. If underflow occurs, the 
following message is issued and the result is set to 0.0. 

DMOD: Result underflow 
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GMOD 

Description 
The GMOD routine returns the double-precision, G-floating-point remainder 
of the quotient of its double-precision, G-floating-point arguments. That is: 

GMOD(x,y) = x-[x/y]·y 

Routines Called 
GMOD calls the MTHERR routine. 

Type of Arguments 
Both arguments must be double-precision, G-floating-point values; the sec
ond argument cannot equal zero. If the first argument is negative, the result 
will be negative. 

Type of Result 
The result returned is a double-precision, G-floating-point value in the range 
- Iyl to Iyl. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GMOD(x,y) is calculated as follows. 

GMOD(x,y) = (Ixl-[Ixl/y] .y). sgn(x) 
[lxl/y] = largest integer in Ixl/y 

Error Conditions 
Underflow nlay occur if y is too small a number. If underflow occurs, the 
following message is issued and the result is set to 0.0. 

GMOD: Result underflow 
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101M 

Description 
The IDIM routine returns the integer difference between its integer argU>l 
ments, provided that the difference is positive. If the difference is negative, 
IDIM returns zero. That is: 

IDIM(i,j) = i-j 

Routines Called 
IDIM calls the MTHERR routine. 

Type of Arguments 
Both arguments JIlust be integer values; they can be any such values. 

Type of Result 
The result returned is an integer value greater than or equal to O. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
IDIM is calculated as follows. 

If i ~ j 
IDIM(i,j) = 0 

If i > j 
IDIM(i,j) = i-j 

Error Conditions 
If overflow occurs during subtraction, the following message is issued and the 
result is set to machine infinity. 

101M: Result overflow 
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DIM 

Description 
The DIM routine returns the single-precision, floating-point difference be
tween its single-precision, floating-point arguments, provided that the differ
ence is positive. If the difference is negative, DIM returns zero. That is: 

DIM(x,y) = x-y 

Routines Called 
DIM calls the MTHERR routine. 

Type of Arguments 
Both arguments must be single-precision, floating-point values; they can be 
any such values. 

Type of Result 
The result returned is a single-precision, floating-point value greater than or 
equal to 0.0. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant hit. 

Algorithm Used 
DIM(x,y) is calculated as follows. 

IfxsY 
DIM(x,y) = 0.0 

If x > y 
DIM(x,y) = x-y 

Error Conditions 

1. If overflow occurs during subtraction, the following message is issued and 
the result is set to machine infinity. 

01 M: Result overflow 

2. If underflow occurs during subtraction, the following message is issued 
and the result is set to 0.0. 

DIM: Result underflow 
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DDIM 

Description 
The DDIM routine returns the double-precision, D-floating-point difference 
between its double-precision, D-floating-point arguments, provided that the 
difference is positive. If the difference is negative, DDIM returns zero. That is: 

DDIM(x,y) = x-y 

Routines Called 
DDIM calls the MTHERR routine. 

Type of Arguments 
Both arguments must be double-precision, D-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a double-precision, D-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit. 

Algorithm Used 
DDIM(x,y) is calculated as follows. 

Ifx:5Y 
DDIM(x,y) = 0.0 

If x > y 
DDIM(x,y) = x-y 

Error Conditions 

1. If overflow occurs during subtraction, the following message is issued and 
the result is set to machine infinity. 

DDIM: Result overflow 

2. If underflow occurs during subtraction, the following message is issued 
and the result is set to 0.0. 

DDIM: Result underflow 
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GDIM 

Description 
The GDIM routine returns the double-precision, G-floating-point difference 
between its double-precision, G-floating-point arguments, provided that the 
difference is positive. If the difference is negative, GDIM returns zero. That is: 

GDIM(x,y) = x-y 

Routines Called 
GDIM calls the MTHERR routine. 

Type of Arguments 
Both arguments must be double-precision, G-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a double-precision, G-floating-point value greater than 
or equal to 0.0. 

Accuracy of Result 
The result is rounded with an error bound of half a least significant bit. 

Algorithm Used 
GDIM(x,y) is calculated as follows. 

If x::::; y 
GDIM(x,y) = 0.0 

If x > y 
GDIM(x,y) = x-y 

Error Conditions 

1. If overflow occurs during subtraction, the following message is issued and 
the result is set to machine infinity. 

GDIM: Result overflow 

2. If underflow occurs during subtraction, the following message is issued 
and the result is set to 0.0. 

GDIM: Result underflow 
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Chapter 13 
Transfer of Sign Routines 





ISIGN 

Description 
The ISIGN routine transfers the sign of its integer second argument to its 
integer first argument, ignoring the sign of the first argument. That is: 

ISIGN (i,j) = lilesgn(j) 

Routines Called 
ISIGN calls the MTHERR routine. 

Type of Arguments 
Both arguments must be integer values; they can be any such values. 

Type of Result 
The result returned is an integer value; it has the same magnitude as the first 
argument. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
ISIGN(i,j) is calculated as follows. 

ISIGN(i,j) = lilesgn(j) 

If j 2:: 0 
ISIGN(i,j) = Iii 

If j < 0 
ISIGN(i,j) = -Iii 

Error Conditions 
If i = _235 and j > 0, overflow occurs. If overflow occurs, the following message 
is issued and the result is set to machine infinity. 

ISIGN: Result overflow 
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SIGN 

Description 
The SIGN routine transfers the sign of its single-precision, floating-point 
second argument to its single-precision, floating-point first argument, ignor
ing the sign of the first argument. That is: 

SIGN (x,y) = Ixlesgn(y) 

Routines Called 
None 

Type of Arguments 
Both arguments must be single-precision, floating-point values; they can be 
any such values. 

Type of Result 
The result returned is a single-precision, floating-point value; it has the same 
magnitude as the first argument. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
SIGN(x,y) is calculated as follows. 

SIGN(x,y) = Ixlesgn(y) 

If y;? 0.0 
SIGN(x,y) = Ixl 

If y < 0.0 
SIGN(x,y) = -Ixl 

Error Conditions 
None 
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DSIGN 

Description 
The DSIGN routine transfers the sign of its double-precision, D-floating-point 
second argument to its double-precision, D-floating-point first argument, ig
noring the sign of the first argument. That is: 

DSIGN(x,y) = Ixlesgn(y) 

Routines Called 
None 

Type of Arguments 
Both arguments must be double-precision, D-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it has the 
same magnitude as the first argument. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DSIGN(x,y) is calculated as follows. 

DSIGN(x,y) = Ixlesgn(y) 

If y ~ 0.0 
DSIGN(x,y) = Ixl 

If y < 0.0 
DSIGN(x,y) = -Ixl 

Error Conditions 
None 
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GSIGN 

Description 
The GSIGN routine transfers the sign of its double-precision, G-floating-point 
second argument to its double-precision, G-floating-point first argument, ig
noring the sign of the first argument. That is: 

GSIGN(x,y) = Ixl-sgn(y) 

Routines Called 
None 

Type of Arguments 
Both arguments must be double-precision, G-floating-point values; they can 
be any such values. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it has the 
same magnitude as the first argument. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GSIGN(x,y) is calculated as follows. 

GSIGN(x,y) = Ixl-sgn(y) 

If y ~ 0.0 
GSIGN(x,y) = Ixl 

If y < 0.0 
GSIGN(x,y) = -Ixl 

Error Conditions 
None 
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Chapter 14 

Maximum/Minimum Routines 





MAXO 

Description 
The MAXO routine finds the integer maximum of a series of integer argu
ments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be integer values; they can be any such values. There 
can be as many arguments as desired. 

Type of Result 
The result returned is an integer value; it is the largest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
MAXO(i, ... j) is calculated as follows. 

The MAXO routine compares each argument in succession with the current 
largest argument, which is held in a register. Each time an argument exceeds 
the current largest argument, the register is updated. This loop continues 
until the final argument is processed. The contents of the register are then 
returned as the result. 

Error Conditions 
None 
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MAX1 

Description 
The MAXI routine finds the integer maximum of a series of single-precision, 
floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be single-precision, floating-point values; they can be 
any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is the largest value in the series converted to integer 
format. 

Accuracy of Result 
The result is exact except for possible overflow during the conversion to inte
ger. 

Algorithm Used 
MAXI(x, ... y) is calculated as follows. 

The MAXI routine compares each argument in succession with the current 
largest argument, which is held in a register. Each time an argument exceeds 
the current largest argument, the register is updated. This loop continues 
until the final argument is processed. The contents of the register are then 
converted to integer format and returned as the result. 

Error Conditions 
Overflow can occur during conversion to integer. If overflow occurs, the result 
is set to ± machine infinity. 
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AMAXO 

Des~rlptlon 
The AMAXO routine finds the single-precision, floating-point maximum of a 
series of integer arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be integer; they can be any such values. There can be 
as many arguments as desired. 

Type of Result 
The result returned is the largest value in the series converted to single
precision, floating-point format. 

Accuracy of Result 
The result is exact unless a rounding error occurs during conversion, in which 
case the error could be half a least significant bit. 

Algorithm Used 
AMAXO(i, ... j) is calculated as follows. 

The AMAXO routine compares each argument in succession with the current 
largest argument, which is held in a register. Each time an argument exceeds 
the current largest argument, the register is updated. This loop continues 
until the final argument is processed. The contents of the register are then 
converted to single-precision, floating-point format and returned as the result. 

Error Conditions 
None 
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AMAX1 

Description 
The AMAXI routine finds the single-precision, floating-point maximum of a 
series of single-precision, floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be single-precision, floating-point values; they can be 
any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a single-precision, floating-point value; it is the largest 
value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
AMAXl(x, ... y) is calculated as follows. 

The AMAXI routine compares each argument in succession with the current 
largest argument, which is held in a register. Each time an argument exceeds 
the current largest argument, the register is updated. This loop continues 
until the final argument is processed. The contents of the register are then 
returned as the result. 

Error Conditions 
None 
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DMAX1 

Description 
The DMAXI routine finds the double-precision, D-floating-point maximum 
of a series of double-precision, D-floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be double-precision, D-floating-point values; they can 
be any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it is the 
largest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DMAXl(x, ... y) is calculated as follows. 

The DMAXI routine compares each argument in succession with the current 
largest argument, which is held in two registers. Each time an argument 
exceeds the current largest argument, the registers are updated. This loop 
continues until the final argument is processed. The contents of the registers 
are then returned as the result. 

Error Conditions 
None 
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GMAX1 

Description 
The GMAXI routine finds the double-precision, G··floating-point maximurn 
of a series of double-precision, G-floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be double-precision, G-floating-point values; they can 
be any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it is the 
largest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GMAXl(x, ... y) is calculated as follows. 

The GMAXI routine compares each argument in succession with the current 
largest argument, which is held in two registers. Each time an argulnent 
exceeds the current largest argument, the registers are updated. This loop 
continues until the final argument is processed. The contents of the registers 
are then returned as the result. 

Error Conditions 
None 
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MINO 

Description 
The MINO routine finds the integer minimum of a series of integer arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be integer values; they can be any such values. There 
can be as many arguments as desired. 

Type of Result 
The result returned is an integer value; it is the smallest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
MINO(i, ... j) is calculated as follows. 

The MINO routine compares each argument in succession to the current 
smallest argument, which is held in a register. Each time an argument is less 
than the current smallest argument, the register is updated. This loop contin
ues until the final argument is processed. The contents of the register are then 
returned as the result. 

Error Conditions 
None 
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MIN1 

Description 
The MINI routine finds the integer minimum of a series of single-precision, 
floating- point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be single-precision, floating-point values; they can be 
any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is the smallest value in the series converted to integer 
format. 

Accuracy of Result 
The result is exact except for possible overflow during the conversion to inte
ger. 

Algorithm Used 
MINl(x, ... y) is calculated as follows. 

The MINI routine compares each argument in succession with the current 
smallest argument, which is held in a register. Each time an argulnent is 
smaller than the current smallest argument, the register is updated. This loop 
continues until the final argument is processed. The contents of the register 
are then converted to integer and returned as the result. 

Error Conditions 
Overflow can occur during conversion to integer. If overflow occurs, the result 
is set to ± machine infinity. 
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AMINO 

Description 
The AMINO routine finds the single-precision, floating-point minimum of a 
series of integer arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be integer; they can be any such values. There can be 
as many arguments as desired. 

Type of Result . 
The result returned is the smallest value in the series converted to single
precision, floating-point format. 

Accuracy of Result 
The result is exact unless a rounding error occurs during conversion, in which 
case the error could be half a least significant bit. 

Algorithm Used 
AMINO(i, ... j) is calculated as follows. 

The AMINO routine compares each argument in succession with the current 
smallest argument, which is held in a register. Each time an argument is 
smaller than the current smallest argument, the register is updated. This loop 
continues until the final argument is processed. The contents of the register 
are then converted to single-precision, floating-point format and returned as 
the result. 

Error Conditions 
None 
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AMIN1 

Description 
The AMINI routine finds the single-precision, floating-point minimum of a 
series of single-precision, floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be single-precision, floating-point values; they can be 
any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a single-precision, floating-point value; it is the smalJ
est value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
AMINI(x, ... y) is calculated as follows. 

The AMINI routine compares each argument in succession with the current 
smallest argument, which is held in a register. Each time an argument is 
smaller than the current smallest argunlent, the register is updated. This loop 
continues until the final argument is processed. The contents of the register 
are then returned as the result. 

Error Conditions 
None 
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DMIN1 

Description 
The DMINI routine finds the double-precision, D-floating-point minimum of 
a series of double-precision, D-floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be double-precision, D-floating-point values; they can 
be any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a double-precision, D-floating-point value; it is the 
smallest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
DMINl(x, ... y) is calculated as follows. 

The DMINI routine compares each argument in succession with the current 
smallest argument, which is held in two registers. Each time an argument is 
less than the current smallest argument, the registers are updated. This loop 
continues until the final argument is processed. The contents of the registers 
are then returned as the result. 

Error Conditions 
None 

Maximum/Minimum Routines 14-13 



GMIN1 

Description 
The GMINI routine finds the double-precision, G-floating-point minimum of 
a series of double-precision, G-floating-point arguments. 

Routines Called 
None 

Type of Arguments 
All the arguments must be double-precision, G-floating-point values; they can 
be any such values. There can be as many arguments as desired. 

Type of Result 
The result returned is a double-precision, G-floating-point value; it is the 
smallest value in the series. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
GMINl(x, ... y) is calculated as follows. 

The GMINI routine compares each argument in succession with the current 
smallest argument, which is held in two registers. Each time an argument is 
less than the current smallest argument, the registers are updated. This loop 
continues until the final argument is processed. The contents of the registers 
are then returned as the result. 

Error Conditions 
None 
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Chapter 15 
Miscellaneous Complex Routines 





REAL.C 

Descriptio n 
The REAL.C routine returns the real part of a complex number. That is: 

REAL.C(z) = REAL.C(x+i .y) = x 

Routines Called 
None 

Type of Argument 
The argument must be a complex value; it can be any such value. 

Type of Result 
The result returned is a single-precision, floating-point value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
REAL.C(z) is calculated by copying the real part of the argument to the 
return location. 

Error Conditions 
None 
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AIMAG 

Description 
The AIMAG routine returns the imaginary part of a complex number. That is: 

AIMAG(z) = AIMAG(x+i .y) = y 

Routine'S Called 
None 

Type of Argument 
The argument must be a complex value; it can be any such value. 

Type of Result 
The result returned is a single-precision, floating-point value; it is the imagi
nary part of the number. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
AIMAG(z) is calculated by copying the imaginary part of the argument to the 
return location. 

Error Conditions 
None 
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CONJ 

Description 
The CONJ routine finds the conjugate of a complex number. That is: 

CONJ(z) = conj(x+i .y) = x-i·y 

Routines Called 
None 

Type of Argument 
The argument must be a complex value; it can be any such value. 

Type of Result 
The result returned is a complex value; it is the conjugate of the argument 
value. 

Accuracy of Result 
The result is exact. 

Algorithm Used 
CONJ(z) is calculated as follows. 

Let z = x+i·y 
conj(x+i .y) = x+( -i .y) 
CONJ(z) = x-i·y 

Error Conditions 
None 
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CFM 

Descr1ptlon 
The CFM subroutine finds the complex, single-precision, floating-point prod
uct of two complex, single-precision, floating-point values. That is: 

CFM(z,g) = zeg 

Routines Called 
CFM calls the MTHERR routine. 

Type of Arguments 
CFM is a subroutine with two arguments; both must be complex, single
precision, floating-point values. They can be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

LSB error distribution: 

Algorithm Used 

-10000. through 10000. for z (real) 
-10000. through 10000. for z (imaginary) 
-10000. through 10000. for g (real) 
-10000. through 10000. for g (imaginary) 

1.20x10-5 (16.4 bits) real 
1.47x10-6 (19.4 bits) imaginary 

2.64x10-7 (21.9 bits) real 
5.81x10-8 (24.0 bits) imaginary 

-4+ -3 -2 -1 a +1 +2 +3 +4+ 
2% 1% 1% 14% 64% 15% 1% 1% 2% real 
1% 1% 1% 15% 64% 14% 1% 1% 2% imaginary 

CFM(z,g) is calculated as follows. 

Let z = a+i· b 
Let g = c+i·d 

If CFM(z,g) = (a+i· b)· (c+i· d) 
CFM(z,g) = (a·c-b-d)+i-(b-c+a·d) 

Error Conditions 

1. If either part of the result overflows, the following message is issued and 
that part of the result is set to machine infinity. 

CMATH: Complex overflow 

2. If either part of the result underflows, the following message is issued and 
that part of the result is set to 0.0. 

CMATH: Complex underflow 
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CFDV 

Description 
The CFDV subroutine finds the complex, single-precision, floating-point quo
tient of two complex, single-precision, floating-point values. That is: 

CFDV(z,g) = zig 

Routines Called 
CFDV calls the MTHERR routine. 

Type of Arguments 
CFDV is a subroutine with two arguments; both must be complex, single
precision, floating-point values. They can be any such values. 

Type of Result 
The result returned is a complex, single-precision, floating-point value; it may 
be any such value. 

Accuracy of Result 

test interval: 

MRE: 

RMS: 

LSB error distribution: 

Algorithm Used 

-10000. through 10000. for z (real) 
-10000. through 10000. for z (imaginary) 
-10000. through 10000. for g (real) 
-10000. through 10000. for g (imaginary) 

2.87x10-7 (21.7 bits) real 
7.60x10-7 (20.3 bits) imaginary 

1.33x10-8 (26.2 bits) real 
2.30x10-8 (25.4 bits) imaginary 

-4+ -3 -2 -1 0 +1 +2 +3 +4+ 
1% 1% 3% 22% 49% 21% 2% 0% 1% real 
1% 1% 3% 21% 50% 20% 3% 1% 1% imaginary 

CFDV(z,g) is calculated as follows. 

Let z = a+i-b 
Letg=c+i-d 

If CFDV(z,g) = (a+i-b)/(c+i-d) 
CFDV(z,g) = ((a-c+b-d)+i-(b-c-a-d))/(c2+d2) 

Error Conditions 

1. If either part of the result underflows, the following message is issued and 
that part of the result is set to 0.0. 

CMATH: Complex underflow 

2. If either part of the result overflows, that part of the result is set to 
machine infinity. 
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Appendix A 
ELEFUNT Test Results 

This appendix contains the results of the ELEFUNT tests of W. J. Cody, 
Argonne National Laboratory. For each test, the test interval, maximum rela
tive error (MRE), and root mean square (RMS) relative error are given. Note 
that it is not meaningful to compare these test results with the test results 
given for each routine under the heading "Accuracy of Result." 

ACOS(x) vs Taylor Series 
test interval: -1.0000 through -0.7500 

MRE: 0.1231x10-7 (26.3 bits) 
RMS: 0.2868x10-8 (28.4 bits) 

ACOS(x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: 0.1488x10-7 (26.0 bits) 
RMS: 0.1330x10-8 (29.5 bits) 

ACOS(x) vs Taylor Series 
test interval: -0.1250 through 0.1250 

MRE: 0.1030x10-7 (26.5 bits) 
RMS: 0.2647x10-8 (28.5 bits) 

ALOG(x·x) vs 2·logex 
test interval: 0.1600x102 through 0.2400x103 

MRE: 0.1466xlO-7 (26.0 bits) 
RMS: 0.2292x10-8 (28.7 bits) 

ALOG(x) vs Taylor Series expansion of ALOG(1+y) 
test interval: 1-0.1953x10-2 through 1+0.1953x1o-2 

MRE: 0.2466x10-7 (25.3 bits) 
RMS: 0.6614x10-8 (27.2 bits) 

ALOG(x) vs ALOG(17x/16)-ALOG(17/16) 
test interval: 0.7071 through 0.9375 

MRE: 0.2264x10-7 (25.4 bits) 
R1\1S: 0.6426x10-8 (27.2 bits) 
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ALOG10(x) vs ALOG10(11x/10)-ALOG10(11/10) 
test interval: 0.3162 through 0.9000 

MRE: 0.3863x10-7 (24.6 bits) 
RMS: 0.1122x10-7 (26.4 bits) 

ASIN (x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: 0.1478x10-7 (26.0 bits) 
RMS: 0.3245x10-8 (28.2 bits) 

ASIN (x) vs Taylor Series 
test interval: -0.1250 through 0.1250 

MRE: 0.1190x10-7 (26.3 bits) 
RMS: 0.6733x10-9 (30.5 bits) 

AT AN (x) vs truncated Taylor Series 
test interval: -0.6250x10-1 through 0.6250xl0-1 

MRE: 0.8032x10-8 (26.9 bits) 
RMS: 0.1796x10-9 (32.4 bits) 

ATAN(x) vs ATAN(1/16)+ATAN«x-1/16)/(1+x/16» 
test interval: 0.6250.10-1 through 0.2679 

MRE: 0.1488x10-7 (26.0 bits) 
RMS: 0.6219x10-8 (27.3 bits) 

2·ATAN(x) vs ATAN(2x/(1-x·x» 
test interval: 0.2679 through 0.4142 

MRE: 0.1423x10-7 (26.1 bits) 
RMS: 0.6597x10-8 (27.2 bits) 

2·ATAN(x) vs ATAN(2x/(1-x·x» 
test interval: 0.4142 through 1.0000 

MRE: 0.1484xlO-7 (26.0 bits) 
RMS: 0.3894x10-8 (27.9 bits) 

COS (x) vs 4·COS(x/3)3_3·COS(x/3) 
test interval: 0.2199x102 through 0.2356xl02 

MRE: 0.2070x10-7 (25.5 bits) 
RMS: 0.6463x10-8 (27.2 bits) 

COSH(x) vs C·(COSH(x+1)+COSH(x-1» 
test interval: 3.0000 through 0.8803x1p2 

MRE: 0.2219x10-7 (25.4 bits) 
RMS: 0.7007x1o-8 (27.1 bits) 

COSH(x) vs Taylor Series expansion of COSH(x) 
test interval: 0.0000 through 0.5000 

MRE: 0.1490x10-7 (26.0 bits) 
RMS: 0.5491x10-8 (27.4 bits) 

COT(x) vs (COT(x/2)2_1)/(2·COT(x/2» 
test interval: 0.1885x102 through 0.1963xl02 

MRE: 0.2975x10-7 (25.0 bits) 
RMS: 0.8629x10-8 (26.8 bits) 
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DACOS(x) vs Taylor Series 
test interval: -1.0000 through -0.7500 

MRE: 0.3582x10-18 (61.3 bits) 
RMS: 0.1211x10-18 (62.8 bits) 

DACOS(x) vs Taylor Series 
test interval: -0.1250 through -0.1250 

MRE: 0.3000x10-18 (61.5 bits) 
RMS: 0.1224x10-18 (62.8 bits) 

DACOS(x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: 0.4337x10-18 (61.0 bits) 
RMS: 0.1682x10-18 (62.4 bits) 

DASIN (x) vs Taylor Series 
test interval: -0.1250 through 0.1250 

MRE: 0.4334x10-18 (61.0 bits) 
RMS: 0.1715x10-18 (62.3 bits) 

DASIN(x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: 0.4326x10-18 (61.0 bits) 
RMS: 0.1168x1o--18 (62.9 bits) 

DATAN(x) vs truncated Taylor Series 
test interval: -0.6250x10-1 through -0.6250x10-1 

MRE: 0.4326x10-18 (61.0 bits) 
RMS: 0.1370x10-18 (62.7 bits) 

DATAN(x) vs DATAN(1/16)+DATAN«x-1/16)/(1+x/16)) 
test interval: 0.6250x10-1 through 0.2679 

MRE: 0.4333x10-18 (61.0 bits) 
RMS: 0.1755x10-18 (62.3 bits) 

2 -DATAN(x) vs DATAN(2x/(l-x-x)) 
test interval: 0.2679 through 0.4142 

MRE: O.6610x10-18 (60.4 bits) 
RMS: 0.1987x10-18 (62.1 bits) 

2-DATAN(x) vs DATAN(2x/(1-x-x)) 
test interval: 0.4142 through 1.0000 

MRE: 0.4319x10-18 (61.0 bits) 
RMS: 0.1167x10-18 (62.9 bits) 

DCOS(x) vs 4-DCOS(x/3)3_3-DCOS(x/3) 
test interval: 0.2199x102 through 0.2356x102 

MRE: 0.6523x10-18 (60.4 bits) 
RMS: 0.1960x10-18 (62.2 bits) 

DCOSH(x) vs Taylor Series expansion of DCOSH(x) 
test interval: 0.0000 through 0.5000 

MRE: 0.4337x10-18 (61.0 bits) 
RMS: 0.1550x10-18 (62.5 bits) 
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DCOSH(x) vs C·(DCOSH(x+l)+DCOSH(x-·l) 
test interval: 3.0000 through 0.8803xl02 

MRE: 0.8440xlO- 18 (60.0 bits) 
RMS: 0.2805x10-18 (61.6 bits) 

DCOT(x) vs (DCOT(x/2)2-1)/(2·DCOT(x/2» 
test interval: 0.1885xl02 through 0.1963xl02 

MRE: 0.9064xlO- 18 (59.9 bits) 
RMS: 0.2632xlO'-.18 (61. 7 bits) 

DEXP(x-0.0625) vs DEXP(x)/DEXP(0.0625) 
test interval: -0.2841 through 0.3466 

MRE: 0.4336xlO--18 (61.0 bits) 
RMS: 0.1689xlO-18 (62.4 bits) 

DEXP(x-2.8125) vs DEXP(x)/DEXP(2.8125) 
test interval: -3.4660 through -0.4505xl02 

MRE: 0.6394xlO-18 (60.4 bits) 
RMS: 0.1670x10-18 (62.4 bits) 

DEXP(x-2.8125) vs DEXP(x)/DEXP(2.8125) 
test interval: -6.9310 through 0.8792xl02 

MRE: 0.6350x10-18 (6004 bits) 
RMS: 0.1808xlO-18 (62.3 bits) 

DEXP3. (x 1.0 vs x) 
test interval: 0.5000 through 1.0000 

The result is exact. 

DEXP3. (XSQ1.5 vs XSQ ·x) 
test interval: 0.5000 through 1.0000 

MRE: 0.4336xlO-18 (61.0 bits) 
RMS: O.1585xl0 18 (62.4 bits) 

DEXP3. (XSQ1.5 vs XSQ ·x) 
test interval: 1.0000 through 0.5541x1013 

MRE: 0.4330xlO-18 (61.0 bits) 
R1\1S: 0.1678xlO- 18 (62.4 bits) 

DEXP3. (xY vs XSQy/2) 
test interval: 0.1000xlO- 1 through 0.1000xl02 for x 

-O.1942xl02 through 0.1942xl02 for y 
]\tIRE: 0.5499xIO-18 (60.7 bits)' 
RMS: 0.1196xlO--18 (62.9 hits) 

DLOG(x) vs Taylor Series expansion of DLOG(1+y) 
test interval: 1-9537xlO-6 through 1+9537xlO-6 

l\1RE: O.5605xlO- 18 (60of) bits) 
Rl\tlS: 0.1922xl0 18 (62.2 bits) 

DLOG(x) vs DLOG(17x/16)--DLOG(17/16) 
test interval: 0.7071 through 0.9375 

MHE: O.9228xlO-18 (59.9 bits) 
RMS: O.3347xlO-18 (61.4 bits) 
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DLOG(x·x) vs 2·DLOG(x) 
test interval: 0.1600x102 through 0.2400xl03 

MRE: 0.4306xlO-18 (61.0 bits) 
RMS: 0.7895x10-19 (63.5 bits) 

DLOG10(x) vs DLOG10(11x/10)-DLOG10(11/10) 
test interval: 0.3162 through 0.9000 

MRE: 0.1476x10-17 (59.2 bits) 
RMS: 0.3747x10-18 (61.2 bits) 

DSIN(x) vs 3·DSIN(x/3)-4·nSIN(x/3)3 
test interval: 0.0000 through 1.5710 

MRE: 0.5378x10-18 (60.7 bits) 
RMS: 0.1802xlO-18 (62.3 bits) 

DSIN(x) vs 3·DSIN(x/3)-4·DSIN(x/3)3 
test interval: 0.1885x102 through 0.2042x102 

MRE: 0.6115x10-18 (60.5 bits) 
RMS: 0.1960x10-18 (62.2 bits) 

DSINH(x) vs Taylor Series expansion of DSINH(x) 
test interval: 0.0000 through 0.5000 

MRE: 0.4336x10-18 (61.0 bits) 
RMS: 0.8776x10-19 (63.3 bits) 

DSINH(x) vs C·(DSINH(x+1)+DSINH(x-1)) 
test interval: 3.0000 through 0.8803x102 

MRE: 0.8643x10-18 ' (60.0 bits) 
RMS: 0.2736x10-18 (61. 7 bits) 

DSQRT(x -x)-x 
test interval: 0.7071 through 1.0000 

MRE: 0.3064x10-18 (61.5 bits) 
RMS: 0.7383x10-19 (63.6 bits) 

DSQRT(x ·x)-x 
test interval: 1.0000 through 1.4140 

The result is exact. 

DTAN(x) vs 2·TAN(x/2)/(l-DTAN(x/2)2) 
test interval: 0.1885x102 through 0.1963x102 

MRE: 0.1262x10-17 (59.5 bits) 
RMS: 0.3402x10-18 (61.4 bits) 

DTAN(x) vs 2-DTAN(x/2)/(l-DTAN(x/2)2) 
test interval: 2.7490 through 3.5340 

MRE: O.1216xlO-17 (59.5 bits) 
RMS: O.2492xlO-18 (61.8 bits) 

DTAN(x) vs 2-DTAN(x/2)/(l-DTAN(x/2)2) 
test interval: 0.0000 through 0.7854 

MRE: 0.1094xlO-17 (59.7 bits) 
RMS: 0.3331xlO-18 (61.4 bits) 
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DTANH(x) vs (DTANH(x-1/B) +DTANI-I(1/8) )/( 1 +DTANH(x-1/8)DTANH(1/8» 
test interval: 0.1250 through 0.5493 

MRE: 0.8436x10-18 ·(60.0 bits) 
RMS: 0.2150x10·18 (62.0 bits) 

DTANH(x) vs (DTANH(x-1/B) +DTANH(1/8) )/(1 +DTANH(x-1/8)DTANH(1/B» 
test interval: 0.6743 through 0.2253x102 

MRE: 0.4952x10··18 (60.B bits) 
RMS: 0.1966x10- 18 (62.1 bits) 

EXP(x-0.0625) vs EXP(x)/EXP(0.0625) 
test interval: -0.2841 through 0.3466 

MRE: O.1489xlO-7 (26.0 bits) 
RMS: 0.5BOlx10-8 (27.4 bits) 

EXP(x-2.8125) vs EXP(x)/EXP(2.8125) 
test interval: -3.4660 through -0.6931xl02 

MRE: 0.1489xlO- 7 (26.0 bits) 
RMS: 0.5879xl0--8 (27.3 bits) 

EXP(x-2.8125) vs EXP(x)/EXP(2.8125) 
test interval: 6.9310 through 0.8792xl02 

MRE: O.2108xlO-7 (25.5 bits) 
RMS: 0.576BxlO-8 (27.4 bits) 

EXP3. (xLO vs x) 
test interval: 0.5000 through 1.0000 

The result is exact. 

EXP3. (XSQ1.5 vs XSQ ·x) 
test interval: 0.5000 through 1.0000 

MRE: 0.1487xlO-7 (26.0 bits) 
RMS: 0.5433xl0 8 (27.5 bits) 

L~XP3. (XSQ1.5 vs XSQ ·x) 
test interval: 1.0000 through 0.5541xl013 

MHE: O.1461xlO-7 (26.0 bits) 
RMS: 0.5347x10-8 (27.5 bits) 

EXP3. (xY vs XSQy/2) 
test interval: 0.1.000xlO-1 through 0.1000xl02 for x 

-0.1942xl02 through 0.1942xl02 for y 
MRE: 0.2065xl0 7 (25.5 bits) 
RMS: 0.3572xlO-8 (28.0 bits) 

GACOS(x) vs Taylor Series 
test interval: -1.0000 through -0.7500 

MRE: 0.2869xlO-·17 (58.3 hits) 
H1\1S: 0.1515xlO-17 (59.2 bits) 

GACOS(x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: O.3443xlO- 17 (58.0 hits) 
HMS: 0.4924xlO·18 (60.B bits) 
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GACOS(x) vs Taylor Series 
test interval: -0.1250 through 0.1250 

MRE: 0.2399x10-17 (58.5 bits) 
RMS: O.1297x10-17 (59.4 bits) 

GASIN(x) vs Taylor Series 
test interval: 0.7500 through 1.0000 

MRE: 0.3457x10-17 (58.0 bits) 
RMS: 0.1452x10-17 (59.3 bits) 

GASIN(x) vs Taylor Series 
test interval: -0.1250 through 0.1250 

MRE: 0.3462x10-17 (58.0 bits) 
RMS: 0.4997x10-18 (60.8 bits) 

GATAN(x) vs truncated Taylor Series 
test interval: -O.6250x10-1 through 0.6250x10-1 

MRE: 0.3389x10-17 (58.0 bits) 
RMS: 0.3674x10-18 (61.2 bits) 

GATAN(x) vs GATAN(1/16)+GATAN«x-1/16)/(1+x/16)) 
test interval: 0.6250x10-1 through 0.2679 

MRE: 0.3899x10-17 (57.8 bits) 
RMS: 0.1436x10-17 (59.3 bits) 

2 ·GATAN(x) vs GATAN(2x/(1-x·x)) 
test interval: 0.2679 through 0.4142 

MRE: 0.3308x10-17 (58.1 bits) 
RMS: 0.1601x10-17 (59.1 bits) 

2 ·GATAN(x) vs GATAN(2x/(1-x·x)) 
test interval: 0.4142 through 1.0000 

MRE: 0.4360x10-17 (57.7 bits) 
RMS: 0.9839x10-18 (59.8 bits) 

GCOS(x) vs 4·GCOS(x/3)3_3·GCOS(x/3) 
test interval: 0.2199x102 through 0.2356xl02 

MRE: 0.4779x10-17 (57.5 bits) 
RMS: 0.1515x10-17 (59.2 bits) 

GCOSH(x) vs C·(GCOSH(x+1)+GCOSH(x-1)) 
test interval: 3.0000 through 0.7091x103 

MRE: 0.4770x10-17 (57.5 bits) 
RMS: 0.1712x10-17 (59.0 bits) 

GCOSH(x) vs Taylor Series expansion of GCOSH(x) 
test interval: 0.0000 through 0.5000 

MRE: O.3469x10-17 (58.0 bits) 
RMS: 0.1234x10-17 (59.5 bits) 

GCOT(x) vs (GCOT(x/2)2_1)/(2·GCOT(x/2)) 
test interval: 0.1885xl02 through 0.1963x102 

MRE: 0.7609x10-17 (56.9 bits) 
RMS: 0.2096x10-17 (58.7 bits) 
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GEXP(x-2.8125) vs GEXP(x)/GEXP(2.8125) 
test interval: 6.9310 through 0.7090x103 

MRE: 0.4706x10--17 (57.6 bits) 
RMS: 0.1391x10- 17 (59.3 bits) 

GEXP(x-2.8125) vs GEXP(x)/GEXP(2.8125) 
test interval: -3.4660 through -0.6682x103 

MRE: 0.4690x10-17 (57.6 bits) 
RMS: 0.1395x10-17 (59.3 bits) 

GEXP(x-0.0625) vs GEXP(x)/GEXP(0.0625) 
test interval: -0.2841 through 0.3466 

MRE: 0.3469x10--17 (58.0 bits) 
RMS: 0.1384x10-17 (59.3 bits) 

GEXP3. (xl.O vs x) 
test interval: 0.5000 through 1.0000 

The result is exact. 

GEXP3. (XSQ1.5 vs XSQ ·x) 
test interval: 0.5000 through 1.0000 

MRE: 0.3464x10-17 (58.0 bits) 
RMS: 0.1334x10--17 (59.4 bits) 

GEXP3. (XSQ1.5 vs XSQ ·x) 
test interval: 1.0000 through 0.4479x10103 

l\1RE: 0.3464x10-17 (58.0 bits) 
RMS: 0.1347x10-17 (59.4 bits) 

GEXP3. (xY vs XSQy/2) 
test interval: 1.0000 through 0.1000x102 for x 

-O.1543x103 through 0.1543x103 for y 
MRE: 0.3371xlO··16 (54.7 bits) 
RMS: 0.4759x10-17 (57.5 bits) 

GLOG(x) vs Taylor Series expansion of GLOG(1+y) 
test interval: 1-0.1907xlO-5 through 1+0.1907x1o-5 

MRE: 0.5771x10-17 (57.3 bits) 
RMS: 0 . .1557xlO-·17 (59,,2 bits) 

GLOG(x) vs GLOG(17x/16)-GLOG(17/16) 
test interval: 0.7071 through 0.9375 

MRE: O.3501xlO-17 (58.0 bits) 
RMS: 0.1488xlo--17 (59.2 bits) 

GLOG(x·x) vs 2·GLOG(x) 
test interval: 0.1600xl02 through 0.2400x103 

MRE: O.:~393xl017 (58.0 bits) 
RMS: 0.4781xl0- 18 (60.9 bits) 

GLOGIO(x) vs GLOGI0(11x/lO)-GLOG10(11/10) 
test interval: 0.3162 through 0.9000 

MRE: O.9112x10-17 (56.6 bits) 
RMS: 0.2560xlO-17 (58.4 bits) 
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GSIN(x) vs 3·GSIN(x/3)-4-GSIN(x/3P 
test interval: 0.0000 through 1.5710 

MRE: 0.3794xlO-17 (57.9 bits) 
RMS: 0.1394xlO-17 (59.3 bits) 

GSIN(x) vs 3·GSIN(x/3)-4·GSIN(x/3)3 
test interval: 0.1885x102 through 0.2042x102 

MRE: 0.5320x10-17 (57.4 bits) 
RMS: 0.1719x10-17 (59.0 bits) 

GSINH(x) vs C·(GSINH(x+1)+GSINH(x-1» 
test interval: 3.0000 through 0.7091x103 

MRE: 0.5035x10-17 (57.5 bits) 
RMS: 0.1730x10-17 (59.0 bits) 

GSINH(x) vs Taylor Series expansion of GSINH(x) 
test interval: 0.0000 through 0.5000 

MRE: 0.3459x10-17 (58.0 bits) 
RMS: 0.2973x10-18 (61.5 bits) 

GSQRT(x ·x)-x 
test interval: 0.7071 through 1.0000 

MRE: 0.2450x10-17 (58.5 bits) 
RMS: 0.6269x10-18 (60.5 bits) 

GSQRT(x -x)-x 
test interval: 1.0000 through 1.4140 

The result is exact. 

GTAN(x) vs 2·GTAN(x/2)/(1-GTAN(x/2)2) 
test interval: 2.7490 through 3.5340 

MRE: 0.6827x10-17 (57.0 bits) 
RMS: O.2028x10-17 (58.8 bits) 

GTAN(x) vs 2-GTAN(x/2)/(l-GTAN(x/2)2) 
test interval: 0.1885x102 through 0.1963x102 

MRE: 0.9834x10-17 (56.5 bits) 
RMS: 0.2760x10-17 (58.3 bits) 

GTAN(x) vs 2-GTAN(x/2)/(1-GTAN(x/2)2) 
test interval: 0.0000 through 0.7854 

MRE: 0.9663x10-17 (56.5 bits) 
RMS: O.2678x10-17 (58.4 bits) 

GTANH(x) vs (GTANH(x-1/8)+GTANH(1/8»/(1+GTANH(x-l/8)GTANH(1/8» 
test interval: 0.1250 through 0.5493 

MRE: 0.4684xlO-17 (57.6 bits) 
RMS: O.1608xlO-17 (59.1 bits) 

GTANH(x) vs (GTANH(x-1/8) +GTANH(1/8) )/(l+GTANH(x-1/8)GTANH(1/8» 
test interval: 0.6743 through 2149x102 

MRE: O.3750xlO-- t7 (57.9 bits) 
RMS: 0.1621x10- 17 (59.1 bits) 
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SIN(x) vs 3 SIN(x/3)-4-SIN(x/~))3 
test interval: 0.0000 through 1.5710 

MRE: 0.1934x10- 7 (25.6 bits) 
RMS: 0.5980x1o--s (27.3 bits) 

SIN(x) vs 3-SIN(x/3)-4-SIN(x/3)3 
test interval: 0.1885x102 through 0.2042x102 

MRE: 0.2736x10- 7 (25.1 bits) 
RMS: O.6923xlO-8 (27.1 bits) 

SINH(x) vs C -(SINH(x+1)+SINH(x-1» 
test interval: 3.0000 through 0.8803x102 

MRE: O.3020x10-7 (25.0 bits) 
RMS: 0.7083x10-8 (27.1 bits) 

SINH(x) vs Taylor Series expansion of SINH(x) 
test interval: 0.0000 through 0.5000 

MRE: 0.1479x10--7 (26.0 bits) 
RMS: 0.1143xlO-s (29.7 bits) 

SQRT(x -x)-x 
test interval: 0.7071 through 1.0000 

The result is exact. 

SQRT(x ·x)-x 
test interval: 1.0000 through 1.4140 

The result is exact. 

TAN(x) vs 2·TAN(x/2)/(l-TAN(x/2)2) 
test interval: O.1885xl02 through 0.1963xl02 

MRE: O,3059xlO-7 (25.0 bits) 
RMS: 0.1039xlO-7 (26,5 bits) 

TAN (x) vs 2-TAN(x/2)/(1-TAN(x/2)2) 
test interval: 2.7490 through 3.5340 

MRE: O.2940x10-7 (25.0 bits) 
RMS: 0.7439x10--s (27.0 hits) 

TAN(x) vs 2-TAN(x/2)/(l--TAN(x/2)2) 
test interval: 0.0000 through 0.7854 

MRE: O.2994xlo--7 (25.0 bits) 
Rl\IS: 0.1074x10--7 (26.5 bits) 

TANH(x) vs (TANH(x--l/8)+TANH(1/8»/(1+TANH(x-1/8)TANH(1/B» 
test interval: 0.1250 through 0.5493 

MRE: 0.2020x10-7 (25.6 bits) 
RMS: O.6944x10-8 (27.1 bits) 

TANH(x) vs (TANH(x-l/8)+TANH(1/8»/(1+TANH(x-1/B)TANH(1/B» 
test interval: 0.6743 through O.1040xl02 

IV1RE: O.2156xlO- 7 (25.5 bits) 
HMS: O.6360xlo--s (27.2 bits) 



Appendix B 
Using the Common Math Library with MACRO 
Programs 

The Math Library was designed to be used mainly by compiler-level lan
guages. The object-time systems of such languages have facilities to handle 
error conditions that may occur when a routine from the Math Library is 
executed. MACRO programmers must include such facilities in their pro
grams. 

There are two facilities necessary for use of the Math Library: a trap handler 
and an error handler. The trap handler is needed, since under certain circum
stances the Math Library executes floating-point instructions which may 
overflow or underflow. In these cases, the library routines expect that the 
result will be set to the largest possible number for floating overflow, or set to 
zero for underflow. The central processor does not set the results - the over
flows and underflows must be detected by the APR trapping system and 
interpreted by the trap handler. If the overflow/underflow settings are not 
done properly, the math routine in question will very likely return mathemati
cally incorrect results. 

The error handler is a general error printout routine. It is called by the Math 
Library when the arguments passed to a Math Library routine are out of range 
or otherwise incorrect. 

Provided with the Math Library are modules for handling APR traps and 
properly setting the results (MTHTRP) and for providing error handling and 
reporting (MTHDUM). A MACRO program must initialize these modules 
before using any other components of the Math Library, as follows: 

PUSHJ 
PUSHJ 

P,%TRPIN## 
P,%ERINI## 

;INITIALIZE TRAP HANDLER 
;INITIALIZE ERROR HANDLER 
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Index 

ABS routine, 9-4 
Absolute value 

complex, 9-7 

A 

double-precision D-floating-point, 9-8 
. double-precision G-floating-point, 9-9 

double-precision, 
D-floating-point, 9-5 
G-floating-point, 9-6 

integer, 9-3 
single-precision, 9-4 

Accuracy tests, 1-14 
ACOS routine, 6-4 
AIMAG routine, 15-4 
AINT routine, 11-9 
ALOG routine, 3-3 
ALOG10 routine, 3-5 
AMAXO routine, 14-5 
AMAX1 routine, 14-6 
AMINO routine, 14-11 
AMINI routine, 14-12 
AMOD routine, 12-6 
ANINT routine, 11-6 
Arc cosine 

double-precision, 
D-floating-point,6-7 
G-floating-point, 6-11 

single-precision, 6-4 
Arc sine 

double-precision, 
D-floating-point, 6-5 
G-floating-point, 6-9 

single-precision, 6-3 
Arc tangent 

double-precision, 
D-floating-point, 6-17 
G-floating-point, 6-21 

single-precision, 6-13 

ASIN routine, 6-3 
ATAN routine, 6-13 
ATAN2 routine, 6-15 
Average relative error, 1-14 

B 

Base-10 logarithm, 
double-precision, 

D-floating-point, 3-9 
G-floating-point, 3-13 

single-precision, 3-5 

c 

CABS routine, 9-7 
Calling sequence, 1-13 
CCOS routine, 5-21 
CDABS routine, 9-8 
CDCOS routine, 5-25 
CDEXP routine, 4-11 
CDLOG routine, 3-17 
CDSIN routine, 5-23 
CDSQRT routine, 2-11 
CEXP routine, 4-9 
CEXP2. routine, 4-22 
CEXP3. routine, 4-34 
CFDV routine, 15-7 
CFM routine, 15-6 
CGABS routine, 9-9 
CGCOS routine, 5-29 
CGEXP routine, 4-13 
CGLOG routine, 3-19 
CGSIN routine, 5-27 
CGSQRT routine, 2-13 
CLOG routine, 3-15 
CMPL.C routine, 10--23 
CMPL.D routine, 10--21 
CMPL.G routine, 10--22 
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CMPL.I routine, 10-19 
CMPLX routine, 10-20 
Cody, W. J., 1-15, A-I 
Cody and Waite, Software Manual for 

Elementary Functions, 5-32, 5-34, 
5-36,5-38,5-40 

Complex, 
absolute value, 9-7 
conjugate, 15-5 
conversion, 

complex to complex, 10-23 
cosine, 5-21 
data types, 1-12 
division, 15-7 
double-precision D-floating-point, 1-12 

absolute value, 9-8 
cosine, 5-25 
exponential, 4-11 
natural logarithm, 3-17 
sine, 5-23 
square root, 2-11 

double-precision G-floating-point, 1-12 
absolute value, 9-9 
cosine, 5-29 
exponential, 4-13 
natural logarithm, 3-19 
sine, 5-27 
square root, 2-13 

exponential, 4-9 
exponentiation, 

complex to complex, 4-34 
complex to integer, 4-22 

multiplication, 15-6 
natural logarithm, 3-15 
number, 

imaginary part, 15-4 
real part, 15-3 

product, 15-6 
quotient, 15-7 
sine, 5-19 
square root, 2-9 

Computer Approximations, 
Hart et.al., 3-4, 3-6, 6-14, 6-18, 6-22 

CONJ routine, 15-5 
Conjugate 

complex, 15-5 
Conversion 

complex to complex, 10-23 
double-precision, 

D-floating-point to complex, 10-20 
D-floating-point to G-floating-point, 

10-17, 10-18 
D-floating-point to integer, 10-5 

2-lndex 

Conversion (Cont.) 
D-floating-point to single-precision, 10-9 
G~floating-point to complex, 10-22 
G-floating-point to D-floating-point, 

10-13, 10-14 
G-floating-point to integer, 10-6 
G-floating-point to single-precision, 

10-10 
integer, 

to complex, 10-19, 
to double-precision D-floating-point, 

10-11 
to double-precision G-floating-point, 

10-15 
to single-precision, 10-7, 10-8 

single-precision, 
to complex, 10-20 
to double-precision D-floating-point, 

10-12 
to double-precision G-floating-point, 

10-16 
to integer, 10-3, 10-4 

COS routine, 5-7 
COSD routine, 5-9 
COSH routine, 7-4 
Cosine, 

complex, 5-21 
double-precision D-floating-point, 5-25 
double-precision G-floating-point, 5-29 

double-precision, 
D-floating-point, 5-13 
G-floating-point, 5-17 

single-precision, 5-7, 5-9 
COTAN routine, 5-33 
Cotangent, 

double-precision, 
D-floating-point, 5-37 
G-floating-point, 5--41 

single-precision, 5-33 
Coveyan, R. R. and MacPherson, 

R. D., Journal of the ACM, #14, 8-4 
CSIN routine, 5-19 
CSQRT routine, 2-9 

D 

DABS routine, 9-5 
DACOS routine, 6-7 
DASIN routine, 6-5 
DATAN routine, 6-17 
DATAN2 routine, 6-19 



Data types, 1-10 
complex, 1-12 
double-precision, 

D-floating-point, 1-11 
G-floating-point, 1-11 

integer, 1-10 
single-precision, 1-10 

DBLE routine, 10-12 
DCOS routine, 5-13 
DCOSH routine, 7-7 
DCOTAN routine, 5-37 
DDIM routine, 12-11 
DEXP routine, 4-5 
DEXP2. routine, 4-18 
DEXP3. routine, 4-28 
DFLOAT routine, 10-11 
D-floating-point, 

absolute value, 9-5 
arc cosine, 6-7 
arc sine, 6-5 
arc tangent, 6-17 
base-l0 logarithm, 3-9 
conversion, 

to complex, 10-21 
to G-floating-point, 10-17, 10-18 
to integer, 10-5 
to single-precision, 10-9 

cosine, 5-13 
cotangent, 5-37 
data type, 1-11 
exponential, 4-5 
exponentiation, 

to D-floating-point, 4-28 
to integer, 4-18 

hyperbolic cosine, 7-7 
hyperbolic sine, 7-5 
hyperbolic tangent, 7-12 
maximum of a series, 14-7 
minimum of a series, 14-13 
natural logarithm, 3-7 
polar angle of two points, 6-19 
positive difference, 12-11 
product, 12-3 
remainder, 12-7 
rounding, 

to D-floating-point, 11-7 
to integer, 11-4 

sine, 5-11 
square root, 2-5 
tangent, 5-35 
transfer of sign, 13-5 
truncation, 11-10 

DIM routine, 12-10 

DINT routine, 11-10 
Division, complex, 15-7 
DLOG routine, 3-7 
DLOGI0 routine, 3-9 
DMAXI routine, 14-7 
DMINI routine, 14-13 
DMOD routine, 12-7 
DNINT routine, 11-7 
Double precision, 

data types, 1-11 
D-floating-point, 1-11 

absolute value, 9-5 
arc cosine, 6-7 
arc sine, 6-5 
arc tangent, 6-17 
base-l0 logarithm, 3-9 
conversion, 

to complex, 10-21 
to G-floating-point, 10-17, 10-18 
to integer, 10-5 
to single-precision, 10-9 

cosine, 5-13 
cotangent, 5-37 
exponential, 4-5 
exponentiation, 

to D-floating-point, 4-28 
to integer, 4-18 

hyperbolic cosine, 7-7 
hyperbolic sine, 7-5 
hyperbolic tangent, 7-12 
maximum of a series, 14-7 
minimum of a series, 14-13 
natural logarithm, 3-7 
polar angle of two points, 6-19 
positive difference, 12-11 
product, 12-3 
remainder, 12-7 
rounding, 

to D-floating-point, 11-7 
to integer, 11-4 

sine, 5-11 
square root, 2-5 
tangent, 5-35 
transfer of sign, 13-5 
truncation, 11-10 

G-floating-point, 1-11 
absolute value, 9-6 
arc cosine, 6-11 
arc sine, 6-9 
arc tangent, 6-21 
base-l0 logarithm, 3-13 
conversion, 

to complex, 10-22 
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Double Precision (Cont.) 
to D-floating-point, 10-13, 10-14 
to integer, 10-6 
to single-precision, 10-10 

cosine, 5-17 
cotangent, 5-41 
exponential, 4-7 
exponentiation, 

to G-floating-point, 4-31 
to integer, 4-20 

hyperholic cosine, 7-10 
hyperbolic sine, 7-8 
hyperbolic tangent, 7-13 
maximum of a series, 14-8 
minimum of a series, 14-14 
natural logarithm, 3-11 
polar angle of two points, 6-23 
positive difference, 12-12 
product, 12-4 
remainder, 12-8 
rounding, 

to G-floating-point, 11-8 
to integer, 11-5 

sine, 5-15 
square root, 2-7 
tangent, 5-39 
transfer of sign, 13-6 
truncation, 11-11 

DPROD routine, 12-3 
DSIGN routine, 13-5 
DSIN routine, 5-11 
DSINH routine, 7-5 
DSQRT routine, 2-5 
DT AN routine, 5-35 
DTANH routine, 7-12 
DTOG routine, 10-17 
DTOGA routine, 10-18 

E 

ELEFUNT tests, 1-15, A-I 
Entry points, 1-13 
Error, 

maximum relative (MRE), 1-14 
average relative (RMS), 1-14 

EXP routine, 4-3 
EXPI. routine, 4-15 
EXP2. routine, 4-16 
EXP3. routine, 4-25 
Exponential, 

complex, 4-9 
double-precision D-floating-point, 4-11 
double-precision G-floating-point, 4-13 

4--lndex 

Exponential (Cont.) 
double-precision, 

D-floating-point, 4-5 
G-floating-point, 4-7 

single-precision, 4-3 
Exponentiation, 

complex to complex, 4-34 
complex to integer, 4-22 
D-floating-point to D-floating-point, 4-28 
D-floating-point to integer, 4-18 
G-floating-point to G-floating-point, 4-31 
G-floating-point to integer, 4-20 
integer to integer, 4-15 
single-precision to integer, 4-16 
single-precision to single-precision, 4-25 

FLOAT routine, 10-8 
Functions, 

math library, 1-3 

F 

G 

GABS routine, 9-6 
GACOS routine, 6-11 
GASIN routine, 6-9 
GATAN routine, 6-21 
GATAN2 routine, 6-23 
GCOS routine, 5-17 
GCOSH routine, 7-10 
GCOTAN routine, 5-41 
GDB.n routine, 10-16 
GDIM routine, 12-12 
GEXP routine, 4-7 
GEXP2. routine, 4-20 
GEXP3. routine, 4-31 
GFL.n routine, 10-15 
G-floating-point, 

absolute value, 9-6 
arc cosine, 6-11 
arc sine, 6-9 
arc tangent, 6-21 
base-10 logarithm, 3-13 
conversion, 

to complex, 10-22 
to D-floating-point, 10-13, 10-14 
to integer, 10-6 
to single-precision, 10-10 

cosine, 5-17 
cotangent, 5-41 
data type, 1-11 
exponential, 4-7 



G-floating-point (Cont.) 
exponentiation, 

to G-floating-point, 4-31 
to integer, 4-20 

hyperbolic cosine, 7-10 
hyperbolic sine, 7-8 
hyperbolic tangent, 7-13 
maximum of a series, 14-8 
minimum of a series, 14-14 
natural logarithm, 3-11 
polar angle of two points, 6-23 
positive difference, 12-12 
product, 12-4 
remainder, 12-8 
rounding, 11-8 

to G-floating-point, 11-8 
to integer, 11-5 

sine, 5-15 
square root, 2-7 
tangent, 5-39 
transfer of sign, 13-6 
truncation, 11-11 

GFX.n routine, 10-6 
GINT. routine, 11-11 
GLOG routine, 3-11 
GLOG 10 routine, 3-13 
GMAX1 routine, 14-8 
GMIN1 routine, 14-14 
GMOD routine, 12-8 
GNINT. routine, 11-8 
GPROD. routine, 12-4 
GSIGN routine, 13-6 
GSIN routine, 5-15 
GSINH routine, 7-8 
GSN.n routine, 10-10 
GSQRT routine, 2-7 
GT AN routine, 5-39 
GTANH routine, 7-13 
GTOD routine, 10-13 
GTODA routine, 10-14 

H 

Hart et.al., Computer Approximations, 
3-4,3-6,6-14,6-18,6-22 

Hyperbolic cosine, 
double-precision, 

D-floating-point, 7-7 
G-floating-point, 7-10 

single-precision, 7-4 
Hyperbolic sine, 

double-precision, 
D-floating-point, 7-5 
G-floating-point,7-8 

Hyperbolic sine (Cont.) 
single-precision, 7-3 

Hyperbolic tangent, 
double-precision, 

D-floating-point, 7-12 
G-floating-point, 7-13 

single-precision, 7-11 

lABS routine, 9-3 
IDIM routine, 12-9 
IDINT routine, 10-5 
IDNINT routine, 11-4 
IFIX routine, 10-3 
IGNIN. routine, 11-5 

I 

Imaginary part of a complex number, 15-4 
INT routine, 10-4 
Integer, 

absolute value, 9-3 
conversion, 

to complex, 10-19 
to D-floating-point, 10-11 
to G-floating-point, 10-15 
to single-precision, 10-7, 10-8 

data type, 1-10 
exponentiation, 4-15 
maximum, 14-3, 14-4 
minimum, 14-9, 14-10 
positive difference, 12-9 
remainder, 12-5 
transfer of sign, 13-3 

ISIGN routine, 13-3 

J 

Journal of the ACM, #14, 
Coveyan, R. R. and MacPherson, R. D., 8-4 

K 

Knuth, D. E., Seminumerical Algorithms, 8-4 

L 

Logarithm, see natural logarithm, 
base-10 logarithm 

LSB (least significant bit) error distribution, 
1-15 

M 

MACRO programs, using the math 
library with, B-1 
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Math library, 
functions, 1-3 
restrictions, 1-8 
with MACRO programs, B-1 

Mathematical names, 1-9 
Mathematical symbols, 1-9 
MAXO routine, 14-3 
MAXI routine, 14-4 
Maximum of a series, 

double-precision, 
D-floating-point, 14-7 
G-floating-point, 14-8 

integer, 14-3, 14-4 
single-precision, 14-5, 14-6 

Maximum relative error, 1-14 
MINO routine, 14-9 
MINI routine, 14-10 
Minimum of a series, 

double-precision, 
D-floating-point, 14-13 
G-floating-point, 14-14 

integer, 14-9, 14-10 
single-precision, 14-11, 14-12 

MOD routine, 12-5 
MRE (maximum relative error), 1-14 
Multiplication, complex, 15-6 

N 

Names, mathematical, 1-9 
Natural logarithm 

complex, 3-15 
double-precision D-floating-point, 3-17 
double-precision G-floating-point, 3-19 

double-precision, 
D-floating-point, 3-7 
G-floating-point, 3-11 

single-precision, 3-3 
Newton-Raphson method, 2-4, 2-6, 2-8 
NINT routine, 11-3 

p 

Polar angle of two points, 
double-precision, 

D-floating-point, 6-19 
G-floating-point, 6-23 

single-precision, 6-15 
Positi ve difference, 

double-precision, 
D-floating-point, 12--11 
G-floating-point, 12-12 

integer, 12-9 
single-precision, 12-10 

6-lndex 

Precision, 1-10 
Product, 

complex, 15-6 
double-precision, 

D-floating-point, 12-3 
G-floating-point, 12-4 

Q 

Quotient, complex, 15-7 

R 

RAN routine, 8-3 
Random number generator, 8-3 

spectral test with, 8-3 
with shuffiing, 8-5 

Random number seed, 
saving, 8-7 
setting, 8-6 

RANS routine, 8-5 
REAL routine, 10-7 
REAL.C routine, 15-3 
Real part of a complex number, 15-3 
Register usage, 1-13 
Relative error 

average (RMS), 1-1.4 
maximum (MRE), 1-14 

Remainder, 
double-precision, 

D-floating-point, 12-7 
G-floating-point, 12-8 

integer, 12-5 
single-precision, 12-6 

Restrictions, math library, 1-8 
Return location, 1-13 
RMS (root mean square), 1-14 
Root mean square (RMS), 1-14 
Rounding, 

double-precision, 
D-floating-point, 

to D-floating-point, 11-7 
to integer, 11-4 

G-floating-point, 
to G-floating-point, 11-8 
to1nteger, 11-5 

single-precision, 
to integer, 11-3 
to single-precision, 11-6 

s 

Saving random number seed, 8-7 
SAVRAN routine, 8-7 



Seminumerical algorithms, 
Knuth, D. E., 8-4 

SETRAN routine, S--6 
Setting random number seed, S--6 
SIGN routine, 13-4 
Sign, transfer, 

double-precision, 
D-floating-point, 13-5 
G-floating-point, 13-6 

integer, 13-3 
single-precision, 13-4 

SIN routine, 5--3 
SIND routine, 5--5 
Sine, 

complex, 5--19 
double-precision D-floating-point, 5-23 
double-precision G-floating-point, 5-27 

double-precision, 
D-floating-point, 5-11 
G-floating-point, 5-15 

single-precision, 5-3, 5-5 
Single-precision, 

absolute value, 9--4 
arc cosine, 6-4 
arc sine, 6-3 
arc tangent, 6-13 
base-10 logarithm, &-5 
conversion, 

to complex, 10--20 
to D-floating-point, 10--12 
to G-floating-point, 10--16 
to integer, 10--3, 10-4 

cosine, 5-7, 5-9 
cotangent, 5--33 
data type, 1-10 
exponential, 4-3 
exponentiation, 

to integer, 4-16 
to single-precision, 4-25 

hyperbolic cosine, 7-4 
hyperbolic sine, 7-3 
hyperbolic tangent, 7-11 
maximum of a series, 14-5, 14-6 
minimum of a series, 14-11, 14-12 
natural logarithm, 3-3 
polar angle of two points, 6-15 
positive difference, 12-10 
remainder, 12-6 

Single-precision (Cont.) 
rounding, 

to integer, 11-3 
to single-precision, 11-6 

sine, 5-3, 5-5 
square root, 2-3 
tangent, 5-31 
transfer of sign, 13-4 
truncation, 11-9 

SINH routine, 7-3 
SNGL routine, 10--9 
Software Manual for Elementary Functions, 

Cody and Waite, 5--32, 5-34, 5-36, 5-38, 
5-40 

Spectral test with random number generator, 
8-3 

SQRT routine, 2-3 
Square root, 

complex, 2-9 
double-precision D-floating-point, 2-11 
double-precision G-floating-point, 2-13 

double-precision, 
D-floating-point, 2-5 
G-floating-point, 2-7 

single-precision, 2-3 
Symbols, mathematical, 1-9 

TAN routine, 5-31 
Tangent, 

T 

double-precision, 
D-floating-point, 5-35 
G-floating-point, 5-39 

single-precision, 5-31 
TANH routine, 7-11 
Test interval, 1-14 
Tests, accuracy, 1-14 
Transfer of sign, 

double-precision, 
D-floating-point, 13-5 
G-floating:.point, 13-6 

integer, 13-3 
single-precision, 13-4 

Truncation, 
double-precision, 

D-floating-point, 11-10 
G-floating-point, 11-11 

single-precision, 11-9 
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READER'S COMMENTS 

TOPS-10/TOPS-20 
Common Math Library 

Reference Manual 
AA-M400A-TK 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible to 
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form. 

Did you find this manual understal1dable, usable, and well-organized? Please make sugges-
tions for improvement. ' " ' 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer o Other (please specify) ___________________ _ 

Name _______________________________________________________________ Oate __________________ _ 

Organization Telephone ________ _ 
Street ________________________________________________________________________________________________ __ 

City ________________________________________________________ State __________ Zip Code __ _ 

or Country 
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