102080 (0010 Ennesnaring) NANCoookk 1970

handbook series

e, F . ;)
b in j
hoakes
RARSI Lot e
= ot F; pnasTioty .
e aaset i '
i st »
ne’ !
A £ iy
; 5
" L ”»
kY 1
3 i
L g, ‘
- 4
A% 4 8 A
‘ %
-1 ™ %
II I ‘

'MONITOR COMMANDS

NAME ABBRE- ARGUMENTS
VIATION 1 2 3 4 5
ASSIGN AS dev_ Idev
ASSIGNt AS SYS dev.
ATTACH AT Jjob. [proj, prog]
ATTACH t AT dev.
CCONT CC
COMPILE COM list
CONT CON
CORE COR core
CREATE CREA file .ext
CREF CREF
CSTART Cs adr
CTEST
D(deposit) D 1h 1h adr
DAYTIME DA
DDT DD
DEASSIGN DEA dev
DEBUG DEB list
DELETE DEL list
DETACH DET
DETACH{ DET dev.
DIRECT DI dev
E(examine) E adr
EDIT ED file .ext
EXECUTE EX list
FILE FIL arg
FINISH FIN dev
GET G dev. file .ext [proj, prog] core
HALT +C
KJOB K
LIST LI list
LOAD LOA list
LOGIN LOG
MAKE M file .ext
PJOB PJ
R R file .ext core
REASSIGN REA dev job
REENTER REE _’
RENAME REN arg
RESOURCES RES -
RUN RU dev file .ext [proj, prog] core
SAVE SA dev file .ext core
SCHEDULEt sC n
SSAVE SS dev. file .ext core
START ST adr
SYSTAT SYS
TALK TA dev
TECO TE file .ext
TIME TI job
TYPE TY list
Key:
adr octal address 1h rh octal value of left and right half words

core decimal number of 1K blocks

dev physical device name

Idev logical device name

.ext filename extension

file filename

job job number assigned by Monitor

privileged command

[proj, prog]
list

arg

n

project-programmer numbers

a single file specification or a string of
file specifications

a pair of file specifications or a string
of pairs of file specifications

scheduled use of the system.

underline means always required

) See Bock 2 and Book 7 for further explanation of commands.

These abbreviations are accurate and unique as of now, but their accu-
racy‘ ‘z‘md\ uniqueness may be changed in the future by the addition of
new comiﬂands\.\

PDP-10
TIMESHARING
HANDBOOK

Prepared by
The PDP-10 Software Writing Group *
Programming Department |
Digital Equipment Corporation

Additional copies of this handbook may be ordered from the
Program Library, Digital Equipment Corporation, Maynard, Mass.
01754. Order code AKW. $5.00 each. Discounts are available on
five or more copies.

PDP-10 HANDBOOK SERIES

All rights reserved.
Permission to reproduce this handbook or any parts thereof may be
obtained from the PDP-10 Product Line Manager, Digital Equip-
ment Corporation, Maynard, Mass. :
The material in this handbook is for information purposes and is
subject to change without notice.

Copyright © 1968, 1969, 1970 by
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts: .)
DEC - Digital PDP

INTRODUCTION TO TIMESHARING
(pages 1-1 thru 1-12)

GETTING STARTED WITH THE MONITOR
(pages 2-1 thru 2-20)

BASIC
(pages 3-1 thru 3-78)

AID
(pages 4-1 thru 4-99)

FORTRAN
(pages 5-1 thru 5-133)

DEMONSTRATION PROGRAMS
(pages 6-1 thru 6-49)

ADVANCED MONITOR COMMANDS
(pages 7-1 thru 7-21)

UTILITY PROGRAMS
(pages 8-1 thru 8-89)

APPENDICES
(pages A-1 thru B-4)

. INDEX
(pages Index-1 thru Index-10)

FOREWORD

We have written this handbook for the individual with little or no
programming skill in an attempt to bring timesharing programming
competence. to an ever-expanding circle of new computer users. With
this volume as his guide, we hope he can soon acquire the necessary
programming knowledge to improve his business or professional
activity by the application of computer technology.

I’'m pleased to acknowledge here the work of the many DEC program-
mers, designers, and engineers who continue to advance the state of
the timesharing art in both hardware and software, and the DEC
software writers and technical artists who prepared this volume.

oot W U

President, Digital Equi t Corporation

PREFACE o

In develﬁping its timesharing capability, Digital has built a history
of success very similar to the company’s record in realiime_ applica-
tions. That history started in 1960 when Digital’s customers began
building timesharing systems around PDP computers. Three years
later Digital itself started development of its own timesharing system,
the PDP-6; and in 1964 the PDP-6 became the first timesharing com-
puter to be delivered with manufacturer-supplied hardware and soft-
ware.
The PDP-10, which emerged in 1967, is the successful culmination
of many years of computer research. Its power, versatility, and low
cost make it a leader in the general-purpose timesharing field. For its
timesharing users,. the” PDP-10 performs scientific data analyses,
helps make better management decisions, aids in engineering and
architectural design, makes investment analyses, and provides man-
agement information services.
With this handbook, Digital attempts “to bring its documentation
on timesharing to a par with its hardware and software accomplish-
ments. The handbook is intended primarily for students, scientists,
engineers, and financial analysts who have little or no experience
in programming. From it they can learn timesharing programming
from a remote Teletype using disk input/output.
This is not to say that an experienced programmer is automatically
debarred from using this document. If the reader happens to be a-
programmer, he should skip the preliminary books, go straight to
the computer language in Book 5, and commence programming.
In Book 6 he will find that Demonstration Programs 3 and 4 are
geared to his level of programming knowledge and competence.
A synoptic view of the contents of the handbook is as follows.
" Book 1 describes the evolutionary history of timesharing and gives
the reader an insight into the way it operates. Book 2, in explain-
ing the elementary monitor commands, shows the reader how to
get on the system. In Books. 3 and 4 the reader will find conversa-
tional programming with BASIC and AID, respectively. Book 5,
as already indicated, contains FORTRAN. Four demonstration pro-
grams constitute Book 6; advanced monitor commands are found
in Book 7;and the four utility. programs Batch, CHAIN, LINED, and
TECO appear in Book 8. '
Since the handuook will be revised periodically in order to improve
it and keep it up to date, we solicit the reader’s constructive eval-
uations in the questionnaire at the back of the book. Please fill
out the questionnaire and return it to '
PDP-10 Software Writing Group
Programming Department
Digital Equipment Corporation
Maynard, Massachusetts 01754
A companion volume, the PDP-10 Reference Handbook, is likewise
in print. It is oriented toward experienced programmers who are
interested in writing and operating assembly-language programs.

\

CONTENTS

Forewordccccoovvverieninnes e eeeseebeeietee et s st be bt e bR b e S e e Rt e bR e e s R s s e b e e s e s e s b s s bbbt eres v
PIEface .oooooiiiiiieiiiiiie ettt et s e s b s st s a s bt saeesnesesent Vi1
Book 1 Introduction to Timesharingccccccoeviererverrirecensiennneenennas et 1-1
A general description of the operation of a variety of factors in the evolution
of timesharing.

Book 2 Getting Started with the MODILOTcccceeviiiiriiiiiieeiecieiitince e e siae e 2-1
Logging in, description of files, elementary commands to create, edit, manip-
ulate, translate, load, and execute files, getting information from the system,
and logging off the system. *

Book 3 Conversational Programming with BASICcccccoovvvivinnniiiniinvnninniineecnn, 3-1
A complete book, explaining the procedures for logging in, logging off, and
writing, editing, and running programs in BASIC—a problem-solving conver-
sational language that can be used to solve both simiple and complex mathe-
matical problems. -

Book 4 Conversational Programming with AIDcccccocvmiinienicnenicnneesennneneens 4-1
A complete book explaining how to program in AID, an algebraic conversa-
tional language designed to solve both simple and complex numerical problems.

Book 5 Programming in FORTRAN ... Hpeseeeee ettt N 5-1
A reference book describing the specific statements and features of the FOR-
TRAN 1V language, designed primarily for the experienced FORTRAN
programmer.

Book 6 Demonstration ProOgramscccoccececoveveeenmninennnnestnessesessessenessessesseseseesessessens 6-1

- Four programs designed to utilize concepts and commands discussed in this
manual. Demonstrations three and four also make use of advanced commands
in TECO and DDT.

Book 7 Advanced Monitor Commandscc..cceeveeereereerreerrueenenseniesneenneneeeiesneennsenns 7-1
Explanation of monitor commands not covered in Book 2—commands to
allocate system resources, produce line printer listings, manipulate core images,
start a program, and get information from the system.

BOOK 8 ULIlity PrOZIAMScccveeeiiiiieiiieeiiiiiieeiiiieseeessenesssesessssesinessnseesssssesessessssesssssessisssenns 8-1
Includes BATCH—sequential execution of a series of jobs, CHAIN—allows
users to deal with FORTRAN programs too large to fit or load into the amount
of core available, LINED—a line-oriented editor designed for use on the disk,
and TECO—description and explanation of the most frequently used com-
mands of this powerful text editing program.

Appendicesoocvniiiiiiiiciennen. eeteeereieeeeeerraetea eteesaeeateaeenaeteeeaane e et et et e s s ba e e s aa e s e e arsaeaens A-1

Master Indexccoene BSOSO OO RSPRROt Index-1

Y1

Book 1

Introduction
to
Timesharing

INTRODUCTION TO TIMESHARING

Why Timesharing?

Early computers were the province of the mathematician. Used
mainly to solve differential equations, the systems were narrow in
scope and poorly utilized. Since few persons were knowledgeable
enough to employ the enormous processors, one individual could
monopolize computer time—sit at the console and solve problems
in step-by-step fashion.

As more people discovered computing techniques, it was no
longer practical to let a few persons monopolize computer time.
To increase machine efficiency, batch processing was introduced.
In this mode of operation; no time was wasted between jobs.
Programs were punched on cards and the cards stacked and fed
to the computer in batches. Operation of each program was gov-

erned by control cards that took the place of the human operator.

Since card reading is a relatively slow process, some early sys-
tems employed a small computer to read the cards and transfer
program information to magnetic tape that was then input to the
large computer. As a further refinement, programs were assigned
priorities, with short jobs being executed first to minimize job
turnaround. '

But what about the computer user? As computer utilization
improved, program development took more time. To develop a
new program, a user performed the following procedure. After

~ writing the program on paper, he carried it to a keypunch op-

erator to have the cards punched and verified. A day or so later,
when the program was returned, the user checked for punching
errors, then returned to the keypunch for corrections.

Next, he sent the cards to the computer center for compilation.
The compilation, which might not be returned for a half day or
more, could reveal spelling or syntactical errors. The cards then
had to be changed and resubmitted—another half day’s wait. If
the next compilation was successful and the program was run,
program logic errors might be discovered—new cards, new com-
pilation, etc., etc. In addition, the user often studied reams of
computer listings to find the errors. Using these inefficient meth-
ods, even simple programs might take weeks to develop.

Batch processing maximizes machine efficiency in routine data
processing operations where turnaround is not critical. But.for
program development and modification, the user requires another
mode of operation. The user needs a way to “interact” with the
computer—to feed his program to the system, line by line, and
continuously check the results.

batch proc

interaction

essing

Rt

dedicated system

timesharing

time slice
time quantum
round robin operation

In fact, the user may want to develop interactive programs.
These programs, which are extremely productive tools, ask the
user questions and perform an analysis based on his answers.
Electronic circuit design programs are a prime example. The com-
puter actually designs the circuit by asking the engineer questions
and manipulating his answers. In addition, interaction provides a
new dimension in management information reporting. Via an
interactive terminal, a manager can request summaries, plot trends
in plant operation and sales, and select special data for use in
decision making.

If the user had unlimited funds, he might be tempted to buy or
lease a large computer—a system he could dedicate to his work
that would provide sufficient power, many peripherals, and a large
variety of software. With such a system, the user could develop
programs interactively or utilize batch processing for routine
tasks. However, costs in excess of $20,000 per month normally

. preclude the dedication of a large system to a single user.

By using timesharing, the user has most of the benefits of a
dedicated system at a small fraction of the cost. Timesharing with
today’s technology allows a large powerful computer to handle
20, 50, 100 or more users simultaneously. Through a choice of
terminals, the user can interact with the system or initiate batch
processing which runs concurrently. The user also has access to
a choice of mass storage and peripherals and a_selection of lan-
guages and application programs. Since response is fast, the user

appears to have a dedicated system. Yet costs are shared. He pays

only for the time and facilities that he requires and doesn’t pay
for the time the machine is idle.

The Operation of a Timeshariﬁg System

A timesharing system isn’t just any computer with some. addi-
tional hardware and software. It’s a system designed specifically
for timesharing. Otherwise, facilities are limited, fewer users can
be handled efficiently, and economics are unattractive. At a min-
imum, a timesharing system requires a central processor with
sufficient speed and power, input/output terminals, and an amount
of core memory adequate to hold several users.

In a simple timesharing system, each program is assigned a
fixed time slice or time quantum and operation is switched from
one program to another in round robin fashion until each program
is completed. Essentially, if each user receives 1/60 of a second
and 12 users are “on” the system, each user will receive service
every 1/5 of a second.

1-4

The timesharing system performs multiprogramming; that is,
it allows several programs to reside in core simultaneously and
to operate sequentially. The switching between programs, called
context switching, is initiated by a clock which interrupts the cen-
tral processor to signal that a certain time period has elapsed. The
interrupt function is provided by a priority interrupt system. A
monitor, also called an operating system or executive program,
directs the execution of these tasks and performs other housekeep-
ing duties.

The monitor is also involved in keeping the actions of a user
within his assigned memory space. A hardware device, a memory
protection register, which is set by the monitor, limits the core
area that a particular user can access. Any attempt by the pro-
gram to read or change information outside that limit will auto-
matically stop the program and notify the monitor.

The system discussed so far services a number of users sequen-
tially in round robin fashion. To increase the number of users
serviced, more main memory or core is required. However, since
core is expensive, a secondary memory is employed. This memory
—usually magnetic disk or drum—is slower than core or main
memory but provides greatly increased capacity at reasonable
cost. User programs can be located in secondary memory and
moved into main memory for execution. Programs entering main
memory exchange places with a program (or programs) that has
just been serviced by the central processor. This operation is called
swapping (see diagram).

MONITOR
USER 1
ZZ
,/15222 USER 5
2]
USER 2 SWAPPING
DEVICE
USER 3 '
USER 4

SWAPPING -

multiprogramming

context switching , clock

priority interrupt system
monitor , operating system
executive program

memory protection register

main memory
secondary memory

swapping

Rk Tl CR

"memory blocks

input/ output processor

asynchronous design

compute bound
I/0 bound

scheduling algorithm

queue

- In’ operation, main memory is divided into separate memory
blocks. Secondary memory is connected to these blocks through -
a high speed input/output processor—a hardware device that al-
lows the disk or drum to swap a program into any one of the -
main memory blocks without any aid from the central processor.
This structure allows the central processor to be operating a user
program in one block of memory while programs are being
swapped to and from another block. This independent overlapped
operation, which greatly improves efficiency and processing power,
is characteristic of an asynchronous system design philosophy.
See diagram.

MEMORY STRUCTURE

CENTRAL TO INPUT/OUTPUT

PROCESSOR DEVICE
MEMORY
BLOCK
Mook 1/0 SWAPPING
PROCESSOR DEVICE
Dynamic Scheduling

Round robin scheduling, in which each program operates in
sequence and receives a fixed amount of time, is effective only if
all programs have similar requirements. Such is not the case, how-
ever. At any particular time, a timesharing system will be handling
some programs which require extensive amounts of computing
time (and are said to be compute bound) and other programs that
must stop frequently for input or output (I/0 bound).

To serve programs at and between these two extremes, the
scheduling algorithm must provide frequent service to I/O bound
programs and must give compute bound jobs longer time quantums
to prevent wasteful swapping. A simple dynamic scheme could
provide two queues—one for each type of job. When a user first
logs on to the system, he is placed in an I/O bound queue (wait-
ing line) where he receives frequent service and small time quan-
tums. If the program isn’t completed or does not request input
or output during the time allotted to him, the job needs more

- computing time and is placed in the compute bound queue. Thus

the scheduling algorithm optimizes system efficiency by automat-
ically adjusting to program requirements.

1-6

In the present state of scheduling art, algorithms are constantly
being changed and improved. Current algorithms are extremely
sophisticated, providing excellent service for most timesharing job
mixes. They also allow fine tuning, if such modifications are neces-
sary. The ability of the algorithm to match processing to program
requirements insures the best service possible for all user programs.

In an efficient timesharing system, monitor functions (referred
to as monitor overhead) take 5 to 10 percent of central processor
time, making 90 to 95 percent of the time available to users.

Sharing Software

Since users of large timesharing systems have varying require-
ments, a good system provides a wide variety of software—inter-
active languages such as BASIC and AID for the computations
of the engineer and scientist, FORTRAN for more complex cal-
culations, COBOL for data processing functions. Therefore many
users can have compilers and other common programs in core
at the same time.

MONITOR MONITOR

FORTRAN FORTRAN
COMPILER 1 PURE CODE

FORTRAN USER 1-
FORTRAN USER 2
FORTRAN USER 3

FORTRAN %SPACE/
7=

COMPILER 3 SAVED

FORTRAN
COMPILER 2

P

NON-REENTRANT REENTRANT

To prevent excessive core usage which results when a program
is duplicated for several users, reentrant software is employed.
That is, the program is written in two parts. One part contains
pure code that is not modified during execution and can be used
to simultaneously service any number of users. For example, the
pure code portion of FORTRAN can service multiple FORTRAN
users. A separate second part of the program belongs strictly to
each user and consists of the code and data that is developed dur-
ing the compiling process (impure code). This section is stored in
a separate area of core. A comparison of memory usage in the
non-reentrant and reentranf systems is shown in the diagram
above. -~

monitor overhead

, reentrant software

pure code

impure code

overlay

. dual memory protection
- and relocation

data set
modem

data line multiplexor
data line scanner

v

What are the benefits of reentrant software? First, less core
is required. For example, a reentrant system can service three
FORTRAN users with one 8K compiler and three 2K user areas,
a total of 14K. A non-reentrant system would require 30K for
the three 8K compilers and three 2K user areas. Total savings in
this case is 16K of core. Using less core means that more programs
can fit into a given amount of spacé. The monitor then swaps less
often and spends less time swapping the smaller impure sections.

There are other savings too. Since the pure code never changes,
it doesn’t have to be returned to disk storage (swapped out). As
long as a single copy is maintained on the disk, it can be called
into core at any time. Programs can be swapped in or “overlayed”
on top of the compiler to take its place in core whenever Ihe
compiler is not needed.

To protect the pure code from being modified, a hardware
feature is provided—dual memory protection and relocation. This
feature allows a program to execute as two separate segments,
one of which is protected. User programs can also be written to -
make use of this protection. For example, a user might develop a
reentrant information retrieval system written in COBOL.
Commniunications

Communication between the remote user and the computer
passes over the conventional dial-up telephone network. User ter-
minals can therefore be located anywhere that phone service is
available and connected to any computer system, feasibility lim-
ited only by long distance phone rates.

Each user termhinal is connected to a data set or modem (mod-
ulator-demodulator) which converts user terminal output into a
signal suitable for the telephone network. At the computer end of
the phone lines, there is another data set which reconverts the
signal and feeds it to a device called a data line multiplexor or data
line scanner. This device, in turn, feeds the information from a
number of terminals to the central processor (see diagram).

CENTRAL

] PROCESSOR

DATA
LINE -
SCANNER

TELETYPE

COMMUNICATIONS

1-8 -

The number of data sets employed at the user end of the system
is unlimited. At the computer end of the communications net-
work, however, the number of data sets is limited by the number
of users that can be serviced simultaneously by the system.

In order to gain access to the system, the user dials the system
phone number from his data set. The telephone network handles
the call, scanning the data sets at the computer system. If all of
the sets are busy, the user receives a busy signal, just as he would

with normal phone service. If a set is available, the telephone net- ~

work rings it, causing the data line scanner to interrupt the mon-
itor. The computer answers the call, placing the user in com-
munication with the monitor. The terminal is then on-line and
ready for operation.

Control of Input/ Output

A timesharing system has performed its basic function if it
allows a number of users simultaneous access to a central com-
puter. However, to be fully useful, the system should also allow the
‘users access to other system resources—storage devices for his
programs and data, line printers, card readers, etc. For example,
the user should be able to choose between magnetic tape and disk
for program storage. And if he has a 50-page report to produce,
~ he should be able to employ a line printer instead of his Teletype®.

If users controlled these devices, however, much confusion
might result. For example, two users might select the line printer
at the same time. If one user was processing Abraham Lincoln’s
Gettysburgh Address and another, Mark Anthony’s funeral ora-
tion, the report might look like the following:

I COME TO BURY CAESAR NOT TO PRAISE HIM

FOUR SCORE AND SEVEN YEARS AGO

THE EVIL THAT MEN DO LIVE AFTER THEM

OUR FATHERS BROUGHT FORTH ON THIS CONTINENT

To prevent users from interfering with each other, the monitor
coordinates input and output (I/O). The processor has an operat-
ing mode switch which the monitor sets before a user program is
run. If the program attempts to perform input or output, the user
program is stopped and the monitor takes over. Control thus
diverted to the monitor is called trapping. When input/output is
” prevented or trapped, the computer is said to be in user mode;

when I/0 can be performed, the system is in executive or monitor

&y
, mode. -4

®—registered trademark of Teletype Corporation, Skokie, Illinois

1-9

on-line

input/ output control -

trapping
user mode

executive mode
meonitor mode

*

monitor calls
programmed operators

overlapped I/O

access time

latency optimization

private device
public device

filing system

block of words
record

User’s File Directory (UFD)
Master File Directory (MFD)

When the system is in user mode, the memory protection
feature is in operation. In monitor mode, this feature is disabled -
and the monitor has access to all of core. User mode also prevents
the user from issuing a HALT command, which could stop op-_
eration of the entire system. ’

User-to-monitor-mode switching occurs when the user requests
I/O or other special functions to be performed by the monitor.
The requests are made by using computer instructions referred
to as monitor calls or programmed operators. For more informa-
tion see PDP-10 REFERENCE HANDBOOK.

Since I/0 is handled by the monitor, input or output can be
transferred even if the user program is not in main memory. The
monitor can also optimize throughput, keeping all devices busy
simultaneously (overlapping of 1/O operations) and executing jobs
in the most efficient order. For ‘example, it will start the read
mechanisms on several disk packs in motion, simultaneously, to
reduce the time required to find the desired data on each pack
(access time). In addition, by means of the disk pack controller, .
the monitor can determine which of all needed data on a pack
is closest to the read mechanism and can be obtained in the
shortest amount of time (latency optimization).

File Handling

If-a user does not require-a fast device for his exclusive use
(private device), he can elect to use a public device, in effect
performing timesharing with a disk or drum. Under these condi-
tions, user programs and data coexist on the device. Therefore,
a filing system is necessary if program and data segments are to
be retrieved in proper order.

Data is transferred from memory to a peripheral device as a
block of words or a record. (A word is the number of binary digits
or bits that the central processor can retrieve and “operate on”
at one time.) Record length can be arbitrary or dictated by the
physical device being used, for example, the number of columns
on an 80 column card or on a 132 column line printer. For PDP-
10 disk files, the length is 128 words, so that blocks of 128 words
are written at one time on a disk or other similar device.

For convenience each user’s blocks are organized in groups
called files which are listed in proper order in a special block
on the disk called the User’s File Directory (UFD). A Master
File Directory (MFD) is then required to maintain the locations

1-10

of the User’s File Directories and also keep track of the number
of blocks of free storage that can be assigned to new files. The
resulting hierarchy is shown in the following diagram.

s

FILE

/ DIRECTORY
MASTER ‘ USER 2 [——
FILE FILE
DIRECTORY DIRECTORY | —
‘]
®
[]
L —
-
=

FILE STRUCTURE

Files, like memory, must be protected from access by unau-
thorized users. When a user closes a file, he can restrict it, specify-
ing whether others can have access, and if access is permitted,
whether the files can be modified or only read. With such an
arrangement, programmers in various plant locations can use the
same data to work simultaneously on the same project. But un-
authorized persontiel cannot modify or read the files.

Slow Peripherals

Fast peripherals can be timeshared. But what about the slow
peripherals, such as the line printer and the card reader? Should
other users be required to wait 20 minutes or so while one user
ties up the line printer?

To eliminate conflicts, the user can request a slow device for
his exclusive or private use. For example, he can request the
line printer or card reader. Also available for private use are
‘removable storage devices such as magnetic tape, DECtape,
(DIGITAL’S low cost, high reliability magnetic tape), or disk
packs. If the device is not already assigned to another user, the

1-11

file protection

removable storage device

spooling
symbiont operation

modularity

defensive software

diagnostic software

monitor grants his request and the user has the device at his dis-
posal until he releases it. For example, the user could request
the use of multiple disk pack drives (exclusive use) to sort a pay-
roll transaction file. Or he could assign himself a DECtape drive
and ask the system operator to mount the DECtape that contains
his own personal library of programs.)

Spooling or symbiont qperation is another method for handling
slow peripherals. In this method, the slow device is simulated
by a fast periphéral such as a disk. That is, all output for the

_ line printer or card punch is deposited on the disk. The disk is
later “unspooled”, with a special program transferring information

to the slow device.

A program that has data for a slow device thus waits only milli-
seconds while the data is being deposited on disk, instead of min-
utes or hours for a turn at the line printer. Input from slow de-
vices can also be spooled, a particularly useful method for batch
processing.

~ Reliability

With a large number of users depending on its operation, the
timesharing system must be extremely reliable. A system with

99 percent reliability can be “down” 14 minutes during a 24-hour

working day. If that 14 minutes affects only one user, reliability
may be acceptable. However, if it affects a large number of users,
the consequences are much more serious.

The problem is also complicated by the fact that reliability is
a function of both hardware and software. It may take years, for
example, to experience all the events that could uncover an error
in software as complex as a timesharing monitor.

Today’s hardware and software has reliability built in. Hard-
ware is designed in modular fashion so that failed components
can be removed and new replacements “plugged in”. Some com-
ponents also contain self-testing features that detect potential fail-
ures. Software is designed to be “defensive,” that is, it anticipates
certain types of failures and helps to minimize their effects. For
example, the software might note parity errors and limit their
effect to the program being operated. ‘

Diagnostic software can run routinely as one of the timesharing
users. Software can also maintain a log of failures, so that pat-
terns can be established and problems remedied before serious
damage occurs. Systems that employ these. reliability techniques
keep downtime at a minimum.

1-12

Future of Timesharing

The advanced technology described in these pages is demon-
strated by the PDP-10 systems serving timesharing users through-
out the world. Typically, one of these large scale systems includes
the equipment shown in the accompanying diagram—one or more
swapping drums, disk packs for fast storage, magnetic tapes and
DECtapes for additional secondary storage. Other peripherals in-
clude a line printer, card reader, and plotter. The data line scan-
ner services the desired number of data sets or modems. This
equipment, together with the concepts of multiprogtamming, reen-
trant software, and advanced scheduling algorithms, provide ex-
cellent service for today’s user. But tomorrow’s user can expect

even more.
CENTRAL
1/0 BUS
PROCESSOR
CARD LINE TAPE DECTAPE e
READER | | | PRINTER | | |conTRoL| [coNTROL| |scanner
. TAPE DECTAPE DATA
MEMORY DRIVES UNITS SETS
1/0 DRUM ISWAPPING
MEMORY [T PROCESSOR CONTROL DRUM
MEMORY Dk
1/0 PACK
_PROCESSOR CONTROL
MEMORY (I I A
DISK PACKS

TYPICAL PDP-10 TIMESHARING SYSTEM

T I T

intelligent terminal

-

-

In a new “intelligent” terminal concept, the conventional ter-
minal is-replaced by a small computer and peripherals. The small
computer will provide local computing capability and, in addition,
will have direct access to the central timesharing computer when
more power is required. The local system will offer line printers,
card readers, and other peripherals as options.

Central processors now under development will be larger, faster,
and ‘more powerful, with the ability to serve more users at lower
timesharing rates. Hardware will be more sophisticated, imple-

menting more of the monitor’s functions.

System reliability and load handling capacity will be improved
through greater use of multiprocessor configurations. These con-
figurations allow two or more central processors access to the
same memory, mass storage, and peripherals.

As the user will witness, tomorrow’s systems will provide better
facilities, more power, faster processing, and higher reliability.
And with these advances . . . even greater possibilities for new
timesharing applications.

Book 2

Getting Started
- With
The Monitor

e

GETTING STARTED
WITH THE MONITOR!

2.1 INTRODUCTION

There are basically four phases of programming: (1) writing the program, (2) inputting the
program, (3) translating and loading the program, and (4) testing and debugging the program.
" Since the computer must be instructed in order to know what to do, the first phase is writing
the program and supplying data for that program. The program may be written in a programming
language that the computer is preconditioned to understand, such as BASIC, AID, COBOL,
FORTRAN. A program written in the symbolic notation of one of these languages is called
the source program. In the second phase of programming, the source program is inputted into
the computer and stored on the disk. Although there are several ways of inputting the source
program into the computer (e.g., tapes, cards), the Teletype as the device used for input and
output is the main concern of this section. (See Book 7, Advanced Monitor Commands, for a-
“discussion of other input and output devices) In the third phase, the source program is trans-
lated by the computer into a binary machine language program, and this binary program is
loaded into core memory to form the core image of the translated source program.
Ideally, a program should run correctly the first time, but in reality, this is not the case. A
program may contain errors of many types, ranging from simple errors in typing to complex
errors in the logical design of the program. Therefore, the fourth phase of programming is
program testing and debugging. When errors are found, corrections are made to the source
program still on the disk. The sequence of program testing and debugging is repeated until the

program runs properly.

Programs are typed directly into the computer by means of the Teletype, a typewriter-like

console. By typing in programs, you establish communication with other programs already

resident in the computer. The first resident program you communicate with is the time-sharing
1

-
TWe wish fo express appreciation to Stahford University for the use of their Stanford A-l
Project User's Manual, Chapter |, SAILON No. 54, as a guide in writing the material in
this section.

.

momfor, the mOsi' imporfant program™in the compurer. (The term; monitor and sys'rem are used:~
mrerchangeobly to mean the flme-sharmg monitor.) - The: monitor is-the master program that -
plays an important role in the efficient operation of the computer. Ju‘st as the Teletype is your
link with the computer, the monitor is your link with the programs within the computer. ‘

- The monitor has many functions to perform, like keeping a record of what each user is doing and
deciding what user should be serviced next and for how long. The one function of the monitor
that is of greatest concern at this point is that the monitor retrieves.any resident programs that
you need. This retrieval happens only if the monitor "understands" what is expected of it. The
commands to the monitor which are eiplained in this chapter are sufficient for the Teletype to
be the device by which information is inputted into the system and by which the system Sutputs

its results, -

See section 2. 10 for a discussion on How to Live With
the Teletype.

2.2 GETTING ON THE SYSTEM

In order to gain access to the time-sharing system, you must say hello to the system by "logging
in", The first move is to make contact with the computer facility by whatever means the
facility has established (e.g., acoustic coupler, telephone, or dataphone). Next, notice the
plastic knob (the power switch) on the lower right-hand side of the Teletype. This knob has
three positions: on, off, and local (turning clockwise). When the knob. is in the local position,
the Teletype is like a typewriter; it is not communicating with the system at all. The knob
must be turned to the on position in order to establish communication with the computer. When
the Teletype is turned on, type a $.C (depress the CTRL key and type C). This action
establishes communication with the monitor. The monitor signifies its readiness to accept com~
mands by responding with a period (.). All the commands discussed in this cHapfer can only’be
typed to the monitor. They are ‘operative when the monitor has typed a period, signifying that

it is waiting for a command.

The first program the monitor should call in for you is the log-in program. This is accomplished
by typing LOGIN followed by a carriage-return (depress the RETURN key). All commands to
the monitor are terminated with a carriage-return. When the monitor "sees" a carriage-retumn,

it knows that a command has been typed and it begins to execute the command.
In the text, underscoring is used to designate Teletype output.
A carriage-return is designated by a)

By typing LOGIN, you cause the monitor to read the login program from the disk into core

2-4

~

memory and it is this program that is now in control of your Teletype. Before the login program
is called in, the monitor assigns you a job number for system bookkeeping purposes. The system

responds with an information message similar to the following.

JOB 17 4SP74G
i

In the first line, the system has assigned your job number (17) and has given the name of the-
monitor and its version number, This version number changes whenever a change, or patch, is
incorporated into the monitor. In the second line, the number sign (#), which is typed out by

the login program, signifies that it wants your identification.

The standard identification code is in the form of project numBers and programmer numbers, but
individual installations may have different codes, The numbers, or whatever code each in-

stallation uses, are assigned to each user b‘y the installation. The login program waits for ‘you
fo type in your project number and your programmer number, separated by a comma and termin-

ated with a carriage-return, following the number sign.

JOB 17 4SP74G
#27,400)

The login program needs one more item to complete its-analysis of your identification, This

it requests in the next line by asking for your passworzi.

JOB 17 4SP74G
#27,400)
PASSWORD:)

Type in your password, which is also assigned by the installation, followed by a carriage-return,

To maintain password security, the login program does not print the password.

If the identification typed in matches the identification stored in the accounting file in the
monitor, the login program signifies its acceptance by responding with the time, date, your

Te letype number, the message of the day (if any), and a period.

JOB 17 4SP74G
- #27,400)

PASSWORD:)

1050 4-MAY-70 TTY9

COBOL IS NOW AVAILABLE ON THE SYSTEM

2-5

Thls typeout mdlcai'es fhaf the logm program has exited and retumed control to the monitor,
"You have successfully logged in and may now hove the monitor call in other progrqms for you..
If the identification typed in does not match the identification in the occounfmg file, the
monitor types out the error message

L3

2INVALID ENTRY-TRY AGAIN
#

If this error message occurs, type in the correct project-programmer numbers and password.

2.3 FILES

When you want to run a program, first type in the program and decide on a name for it. The
program is stored on the disk with the specified name. Then translate the program by c‘qlling in

©

a translator and giving it the name of the program you wish to translate.

A program, or data, is stored on the disk in files. |f a program is being typed in to a text
editor (for example, TECO), the editor is busy accepting the characters being typed in and
generating a disk file for them. Then, when the program is to be translated, the translator
reads this file just created and generates a relocatable binary file. Since you may have many
files and the other users on the computer m‘qy have files, there must be a method for keeping all
of these files separate. This is accomplished by giving each user a unique area on the disk.
This area is identified by your project and programmer numbers. For examplé, if your project
and programmer numbers are 27,400, 5/ou have a disk area by that name. Each file you ‘

create goes to your disk area and must be uniquely named.

Files are named with a certain convention, the same as a person is named. The first name, the
filename, is the actual name of the file, and the last name, the filename extension, indicates
what group the file is associated with. The filename and the filename extension are separated

by a period.

Filenames are from one to six letters or digits. 'All letters or digits after the sixth are ignored.
The filename extension is from one to three letters or digits. It is generally used to indicate

file format. The following are examples of standard filename extensions.

L N

2-6

.TMP Temporary file
MAC Source file in MACRO language

.F4 Source file in FORTRAN 1V language
.BAS Source file in BASIC language

.CBL Source file in C-OBOL language

.REL Relocatable binary file

.SAV A saved core image

Since files are identified by the complete name and the project and programmer numbers, two

users may use the same filename as long as they have different project and programmer numbers;

the files would be distinct and separate. The following are examples of filenames with file-
name extensions.

MAIN , F4 A FORTRAN file named MAIN

SAMPLE.BAS A BASIC file named SAMPLE

TEST1.TMP A temporary file named [TEST1

NAME.REL A relocatable binary file named NAME

2.4 CREATING FILES?

The two commands mentioned in this section use two editors to create a new disk file. One of
the editors is LINED, a disk-oriented editor, and the other is TECO, the Text Editor and
Corrector (see Book 8 for discussion of both editors), Each command requires a filename as its
argument and should have a filename extension. A new file may be created with either of
these commands, depending on the editor desired. If line numbers are desired, LINED should
be used, since TECO generates a non-sequence numbered file.

2.4.1. The CREATE Command

The CREATE command is used only to create a new disk file. When this command is executed,
the monitor calls in LINED to initialize a disk file with the specified name and to accept input
from the Teletype. At this point, begin to type in your program, line by line. LINED types a
line number at the beginning of each line so that later a reference to a given line may be made

in order to make corrections. Below is a sample program using the commands discussed so far.

! A BASIC or AID user does not need the following sections. These two compilers have built=in
facilities to create and edit files. See Book 3 for BASIC and Book 4 for AID.

tc

LLOGIN)

JOB 17 4SP74G
#

27,400)

PASSWORD: p)

- 1050 4-MAY-70 TTY9
COBOL IS NOW AVAILABLE
ON THE SYSTEM

.

CREATE MAIN.F4)

*

00010 TYPE 53 J
00020

00030 CEND)

" 00040 $

*

tc

Establish communication with the monitor. ‘/'T“ype

C while depressing the CTRL key.
Begin -the login procedur;' .

Job number assigned, followed by monitor name
and version. Login program requests identifica~
tion (project number and programmer number).

Type in proiect-progrommer number.

Login program requesfs password Type it m,ut
is not printed.

If identification matches identification stored in
the system, the monitorresponds with the time,
date, Teletype number, message of the day, and
a period,

A new file on the disk is to be created and
called MAIN .F4, The extension ,F4 is used be-
cause the program is to be a FORTRAN source
file. LINED is called in to create the file.

Response from LINED signffying it isready to
accept commands.

A command to LINED to insert line numbers
starting with 10 and incrementing by 10
(see Book 8).

Type in your FORTRAN PROGRAM.

53 FORMAT (' THIS IS MY PROGRAM"))

»

The (altmode) is a command to LINED to
end the insert. On the Teletype this key is
labeled ALT, ESC, or PREFIX.

Response from LINED signifying it is ready to
accept another command .

A command to LINED to end the creation of the
file,

Response from LINED indicating readiness to
accept a command.

Return to the Monitor.

The monitor now has control.of the program

2-8

The three LINED commands (I, altmode, E) shown in the example are fully discussed in Book 8,

2.4.2 The MAKE Command

This command can also be used to open a new disk file for creation. It differs from the CREATE
command in that TECO is used instead of LINED. (TECO is discussed in Book 8.) Otherwise,
the CREATE and MAKE commands operate in the same manner, l

.MAKE FILEA.F4)
*1 (Text input)$$

EX$$

EXIT

tc

The altmode ($) and the EX command are commands to TECO and are explained in the TECO

section of Book 8.

2,5 EDITING FILES

After cvreating a text file, you may wish to modify, or edit, it. The following two commands
cause an existing file to be opened for changes. One command (EDIT) calls in LINED, and the
other (TECO) calls in TECO. In general, the editor used to create the file should be used for
editing. Each command requires, as its argument, the same filename and filename extension

used to create the file,

2.5.1 The EDIT Command

The EDIT command causes LINED to be called in and, as the name implies, signifies that you

-

wish to edit the specified file. LINED responds with an asterisk and waits for input. The file
specified must be an already existing sequence=numbered file on the disk. For example, in

section 2.4.1, the file MAIN.F4 was created. |f the command

. EDIT MAIM.F4)

is given fo edit the file, the computer responds with an error message (assuming that there was

no file named MAIM.F4). The command

.EDIT MAIN..F4)

2-9

causes the right file to be opened for edifingi.

.2.5.2 The TECO Command

The TECO command is similar to the EDIT command except that it causes the TECO program to
open an already existing non-sequence-numbered file on the disk for editing purposes. The

I

command sequence

. TECO FILEA.F4)
* (editing)$$
* EXIT$S

causes TECO to open FILEA,F4 for editing and close the file upon completion, creating a
backup file out of the original file., Whenever one of the commands used to create or edit a
file is executed, this command with its arguments (filename and filename extension) is ~
“remembered" as a temporary file on the disk. Because of this, the file last edited may be
recalled for the next edit without having the filename specified again. For example, if the

command
. CREATE PROGI.MAC J
is executed, then you may type the command
. BDIT)
instead of
. EDIT PROGI.MAC J

assuming that no other CREATE, TECO, MAKE, or EDIT command was used in-between. As
mentioned before, if a command tries to edit a file that has not been created, an error message

is given.

2.6 MANIPULATING FILES-

You may have many files saved on your disk area. (For discussion on how to save a file on”

your disk area, see Book 7.) The list of your files, along with lists of other users' files, is

-

2-10

kept on the disk in what are called user directories. Suppose you cannot remember if you have

created and saved a particular file, The next command helps in.just that type of situation.

2,6.1" The DIRECTORY Command

The DIRECTORY command requests from the monitor a listing of the directory of your disk area.
The monitor responds by typing on the Teletype the names of your files,- the date on which each
file was created, and fhe length of each file in PDP-10 disk blocks. A disk block consists of
12810 PDP-10 words. Names of files not explicitly created by you may show up in the
directory. These files were created as intermediate files for storage by programs you may have
used, For example, in translating a file, the translator generates a file with the same filename
but with a filename extension of .REL. This file contains the relocatable binary translation of
the source file. You may also notice filenames with the filename extension of .TMP. This

extension signifies a temporary file created and used by different CUSPs.

2.6.2 The TYPE Command

By listing your directory on the Teletype, you know the names of the files on your disk area.
Bu;r what if you have forgotten the information contained in a particular file? The TYPE com-
mand causes the contents of source files specified in your command siring to be typed on your

Teletype. For example, the command
. TYPE MAIN.F4)

causes the file MAIN . F4 to be typed on the Teletype. Multiple files separated by commas may

be specified in one command string, and only source files, not binary files, may be listed.
This command allows the "asterisk construction® to be used. This means that the filename or
the filename extension may be replaced with an asterisk to mean any filename or filename
extension. For example, the command
. TYPE FILEB.*)
causes all files named FILEB, regardless of filename extensions, to be typed. The command
- TYPE *. MAC P

causes all files with the filename extension of .MAC to be typed. The command

2-11

STYPE* %y

causes all files to be typed.

2.6.3 The DELETE Command

Having finished with a file, you may erase it from your disk area with the DELETE command .
Multiple files may be deleted in one command st ring by separating the files with commas. For

example,

- DELETE LINEAR)
and
- DELETE CHANGE. F4, SINE.REL)

are both legal commands. The asterisk convention discussed in section 2.6.2 may also be used

with the DELETE command.

2.6,4 The RENAME Command

The names of one or more files on your disk area may be changed with the RENAME command.
The old filename on the right and the new filename on the left are separated by an equal (=)
sign. In renaming more than one file, each pair of filenames (new=old) is separated by

commas. For example, the command

- RENAME SALES.CBL=GROSS.CBL, FILE2.FA=FILE1.F4)
changes the name of file GROSS.CBL to SALES.CBL and file FILE1.F4 to FILE2.F4, The old
filename no longer appears in your directory; instead the new filenames appear containing
exactly the same data as in the old files. The asterisk convention may again be used. For
example, the command

- RENAME *. Fd=*)

causes all files with no filename extension to have the extension .F4,

2.7 TRANSLATING, LOADING, EXECUTING, DEBU‘GGING/MPROGRAMS

At this point you know how to get on the system, how to create and edit a source file of a

2-12

“program, and how to list your source file on the Teletype. The program has not been executed.

This only happens after it has been translated into the binary machine language understandable

to the computér and loaded into core memory. More often than not the program must be de-
bugged.

2.7.1 The COMPILE Command

This command has as its argument one or more filenames separated by commas. It causes each
command to be processed (translated) if necessary by the appropriate processor (translator).

It is considered necessary to process a file if no .REL file of the source file exists, or if the
.REL file was created before the last time the source file was edited. If the .REL file is
up-to~date, no translation is done. The appropriate processor is determined by examining the

extension of the file. The following shows which processor is used for various extensions.

. MAC MACRO assembler
. F4 FORTRAN 1V compiler
. CBL COBOL compiler
. REL No processing is done
other than above, "Standard processor"
or null)

The standard processor is used fo translate programs with null or nonstandard extensions. The
standard processor is FORTRAN at the beginning of the command string, but may be changed
by use of various switches (See the PDP~ 10 Reference Handbook, Communication With the
Monitor). Although it is not necessary to indicate the extension of a file in the COMPILE
command string, the standard processor can be disregdrded if all source files are kept with the

appropriate extension.

When the appropriate translator has translated the source file, there is a file on your disk area
with the filename extension .REL and the same filename as the source file. This file is where

the translator stores the results of its translation and is called the relocatable binary of the

program. The program is now translated into binary machine language, but is still on the disk.
Since the disk is used for storage and not for execution, a copy of the bin;:ry program must be
loaded into core memory to form a core image. The core memory of the computer is used for
execution; it is like a scratch pad. The COMPILE command does not generate a core image,

but the following three commands do.

2-13

°2.7.2 The LOAD Command

The LOAD command perfofmé the same operations as the COMPILE command and in addition
causes the Linking Loader to be run. The Linking Loader is a resident program that takes the
specified REL files, links them together, and generates a core image. The LOAD command

does.not cause execution of the program.

2.7.3 The EXECUTE Command

This command performs the functions of the LOAD command and also begins execution of the
loaded programs , if no translation or loading errors are detected. The compiyled program fis
now in core memory and running, and what happens next depends on the program. More I:hqn
likely, the program is not retumning the correct answers, and you now enter the magic world of

program debugging.

- 2,7.4 The DEBUG Command

This command pre;')ares‘ for the debugging of a program in addition to performing the functions
of the COMPILE and LOAD commands. DDT, the Dynamic Debugging Technique‘ prograrr;
(see the DDT section in the PDP- 10 Reference Handbook), is loaded into core memory first, -
followed by the prog;'cm . Upon completion of loading, DDT is started rather than the program.
A command to DDT may then be issued to begin the program execution. This command should
be used by the experienced programmer familiar with DDT. The above four commands have

extended command forms discussed in the PDP~ 10 Reference Handbook.

The following is an example showing the compilation and exzcution of a FORTRAN main pro-

gram and subroutine. The login procedure is not show i,

. CREATE MAIN.F4) CREATE a disk file

1) 7 Command to LINED to begin inserting on
- line 10, incrementing by 10 _
00010 TYPE69) Statements of the FORTRAN main program

00020 69 FORMAT (* THIS IS THE MAIN PROGRAM"))
00030 CALLSUBI) '
00040 END)

00050 $ ~ Altmode ends the'insert
S YED LINED command to end the edit
x tc Return to the Monitor *
. CREATE SUB1.F4) Create a disk file for the subroutine
* I< J Begin inserting at line 10 incrementing by 10

2-14

00010 SUBROUTINE SUBR) Statements of the FORTRAN Subroutine
00020 :I'YPE 105)
00030 105 FORMAT (' THIS IS SUB1'))

00040 RETURN)

00050 $ Altmode ends the insert
*E)] LINED command to end the edit.
* tc Return to Monitor .
- EXECUTE MAIN.F4,SUBI,F4) Request execution of the programs created
FORTRAN: MAIN . F4 FORTRAN reports its progress
FORTRAN: SUBI.F4)
LOADING
000001 UNDEFINED GLOBALS
SUBI 000152 There is no subroutine named SUB1
?
LOADER 3K CORE This includes the space for the loader,
? EXECUTION DELETED No execution was done
EXIT
tc
. EDIT) Ask to edit SUB1.F4, filename need not be
: mentioned since it was the last file edited.
*P10,20 2 Type lines 00010 and 00020 on the Teletype.

00010 SUBROUTINE SUBR
00020 TYPE 105

*110) Insert a new line 10

00010' SUBROUTINE SUBI 2

XE)

*tc

. EXECUTE MAIN.F4,SUB1.F4) Request execution

FORTRAN: SUBI.F4 Only the subroutine is recompiled since only
it has been edited.

LOADING Both MAIN and SUBI are loaded

LOADER 3K CORE

EXECUTION

THIS 1S THE MAIN PROGRAM Execution begins

THIS IS SUBI

Bt

__T__C_ Execution ends

2-15

2.8 GEITING INFORMATION FROM THE SYSTEM , R

There are several monitor commands that are used to obtain information from the sysfem.
Three commands useful af .this point are discussed in this section, and additional commands

are discussed in Book 7, Advanced Monitor Commands.

¢

2.8.1 The PJOB Command

If you have forgotten the job number assigned to you at login time, you may use the PJOB
command to obtain it. The sysfem responds to this command by typing out your assigned job

number. For example,

- . PJOB J
17 ‘

2.8.2 The DAYTIME Command

This command gives the date followed by the time of day. The time is presented in the

following format:

-

nh:mm
where hh represents the hours and mm represents the minutes. For example,

. DAYTIME)
17-JUNE-70 14:37

2.8.3 The TIME Command

The TIME command produces three lines of typeout. The first line is the total running time
since the last TIME command was typed. The second line is the total rum:aing time since you
logged in. The third line is used for accounting purposes.. The time is presented in the

following format:
hh:mm:ss.hh

where hh represents the hours, mm the minutes, and ss.hh the seconds to the nearest hundredth.

For example,

2-16

. TIME)
52.45

02:29.95 ‘
KILO-CORE-SEC=57

v

In the first two lines, you are told that you have been running 52.45 seconds since the last
time you typed the TIME command, and a total ;>f 2 minutes and 29.95 since you logged in.
The third line of typeout is used by your installation for accounting and is the integrated
product of running time and core size. See the PDP-10 Reference Handbook, Communigafing

With the Monitor.

2.9 LEAVING THE SYSTEM

Now that you know how to log into the system and create and run a program, you might be
wondering how you leave the system. You have to tell the system you are leaving, and you do

this by the KJOB command.

2,9.1 The KJOB Command

The KJOB command is your way of saying goodbye to the system. Many things happen when
you type the command. The job number assigned to you is released and your Teletype is now
free for another user. An automatic TIME command is performed. In addition, if you have

any files on your disk area, the monitor responds with
CONFIRM:

and you have several options available to you. By typing a carriage-return after the
CONFIRM: message, the monitor lists the options available. For example, the following

typeout occurs by responding to the confirm message with a carriage return.

TYPE }C TO ABORT LOG-OUT; OR

TYPE ONE OF THE FOLLOWING (AND CAR RET):

K TO KILL JOB AND DELETE ALL UNPROTECTED FILES;

L TO LIST YOUR DISK DIRECTORY; OR

I TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS:

AFTER EACH FILE NAME IS LISTED, TYPE:
- P TO SAVE AND PROTECT,

2-17

$ TO SAVE WITHOUT PROTECTING, OR
CAR RETURN ONLY TO DELETE. '

*CON FIRM:

You may now use the options available. If K was used as the option, the following is a
sample of what is output ted to your Teletype.)
JOB 33, USER[27,560] LOGGED OFF TTY34 1317 20-FEB-70
DELETED ALL 2 FILES (INCLUDING UFD, 3. DISK BLOCKS)
RUNTIME 0 MIN, 00,29 SEC

_ Remember that the CONFIRM message is typed only if there are files on your disk area. If

there are no files on your disk area, the typeout would look like the following:

. KJOB) ,
JOB 17, USER [27,3201'1 LOGGED OFF TTY17 1317 20~FEB-70
RUNTIME 0 MIN, 00.29 SEC

. 2,10 HOW TO LIVE WITH THE TELETYPE

On the Teletype, there is a special key marked CTRL called the Control Key. If this key is

held down and a character key is depressed, the Teletype f))pes what is known as a control

character rather than the character printed on the key. In this way, more characters can be
used than there are keys on the keyboard. Most of the control characters do not print on the

Teletype, but cause special functions to occur, as described in the following sections.

There are several other special keys that are recognized by the system. The system constantly
monitors the typed characters and, most of the time, sends the characters to the program being
executed. The important characters not passed to the program are also explained in the
following sections. (See also the PDP~10 Reference Handbook, Communicating With the

Monitor.)

2.10.1 Control - C

Control = C (}C) interrupts the program that is currently running and takes you back to the

monitor. The monitor responds to a control = C by typing a period on your Teletype, and you

2-18

may then type another monitor command. For example, suppo;e you are running a program in
BASIC, and you now decide you want to leave BASIC and run a program in AID. When BASIC
requests input from your Teletype by typing an asterisk, type control - C to terminate BASIC
and return to the monitor ~ You may now issue a command to the monitor to initialize AID
(.R AID), If the program is not requesting input from your Teletype (i.e., the program is in
the middle of execution) when you type control = C, the program is not stopped immediately.
In this case, type control = C twice in a row to stop the execution of the program and return
control to the monitor. If you wish to continue at the same place that the program was
interrupted, type the monitor command CONTINUE. As an example, suppose you want the
computer to add a million numbers and to print the square root of the sum. Since you are
charged by the amount of processing time your program uses, you want to make sure your
program does not take an unreasonable amount of processing time to run. Therefore, after the
computer has begun execution of your program, type control = C twice to interrupt your
program. You are now communicating with the monitor and may issue the monitor command
TIME to find out how long your program has been running. If you wish to continue your

program, type CONTINUE and the computer begins where it was interrupted.

2.10.2 The RETURN Key

This key causes two operations to be performed: (1) a carriage~return and (2) an automatic
line~feed. This means that the typing element returns to the beginning of the line (carriage~
return) and that the paper is advanced one line (line~feed). Commands to the monitor are

terminated by depressing this key.

2.10.3 The RUBOUT Key

The RUBQUT key permits correction of typing errors. Depressing this key once causes the last
character typed to be deleted, Depressing the key n times causes the last n characters typed
to be deleted. RUBOUT does not delete characters beyond the previous carriage-return,
line~feed, or altmode. Nor does RUBOUT function if the program has already processed the

characters you wish to delete.
The monitor types the deleted characters, delimited by backslashes. For example, if you were
typing CREATE and go as far as CRAT, you can correct the error by f)}ping two RUBOUTS and

then the correct letters. The typeout would be

CRAT\TAN\EATE

2-19

Notice that you fyped only two RUBOUTS, but \TA\ was printed. This shows the deleted

characters, but in reverse order.

2.10.4 Control =U

Control = U (fU) is used if you have completely mistyped the current line and wish to start
over again. Once you type a carriage-return, the command is read by the computer, and
line-editing features can no longer be used on that line. Control - U causes the deletion of
the entire line, back to the iast carriage-return, line-feed, or altmode. The system responds

with a carriage-return, line-feed so you may start again.

2.10.5 The ALTMODE Key

£ The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as a command
terminator for several programs, including TECO and LINED. Since the ALTMODE is a non=
printing character, the Teletype prints an ALTMODE as a dollar sign ($).

2,10.6 Control = O

Control = O (t O) tells the computer to suppress Teletype output. For example, if you
issue @ command to type out a 100 lines of text and then decide that you do not want the type-
‘out, type control = O to stop the output. Another command may then be typed as if the typeout

had terminated normally.

2,10.7 Control =B

Conirol = B (}B) affects the printing of Teletype output in one of two ways depending on

your Teletype; it either restores printing of the chdrucfers or suppresses double printing of the
characters. Suppose that when you begin typing on the Teletype, you notice that the charac~ -
ters you are typing are not printing on the Teletype paper. Type control - B to restore the
printing of the characters. On the other hand, suppose you receive double printing of your
typeins. To suppress this double printing, type control - B.

2.10.8 Control ~ F

This control character is needed only for the KSR37 Teletype. This key changes the way
lower case characters are handled by the system, Normally, the system converts all lower
case letters to upper case. Since the KSR37 Teletype is capable of transmitting both lower and

upper case letters, control - F is used to permit the entry of lower case letters,

v

N S

2-20

Book 3

Conversational

Programming
With |
BASIC

<

GCONTENTS

CHAPTER 1 INTRODUCTION Page
1.1 Example of Basic Program ~ 3-9

1.2 Discussion of the Program 3-10
1.3 Fundamental Concepts of Basic ‘ 3-13
1.3.1 Arithmetic Operations 3-13
1.3.2 Mathematical Functions 3-14
1.3.3 Numbers 3-15
1.3.4 " Variables , 3-15
1.3.5 Relational Symbols 3-15
1.4 Summary (3-16
1.4.1 LET Statement 3-16
1.4.2 READ and DATA Statements 3-16
1.4.3 PRINT Statement . 3-17
1.4.4 GO TO Statement 3-18
1.4.5 IF = THEN Statement 3-18
1.4.6 ON - GO TO Statement 3-19
1.4.7 END Statement 3-19

CHAPTER 2 LOOPS

2.1 FOR and NEXT Statements - 3-22
2.2 " Nested Loops 3-23
2.3 Summary 3-23

2.3.1 FOR and NEXT Statements 3-23

CHAPTER 3 LISTS AND TABLES

3.1 The Dimension Statement (DIM) 3-26
3.2 Example ‘ 3-27
3.3 Summary ‘ 3-28
3.3.1 The DIM Statement 3-28

CHAPTER 4 HOW TO RUN BASIC

4.1 Gaining Access to Basic 3-29
4,2 Entering the Program 3-30

4.3
4.4
4.5
4.6
4.7
4.8
4.8.1

-

CONTENTS (Cont)

Executing the Program

Correcting the Program

|nférrupting the Execution of the Program
Leaving the Comﬁuter

Example of Basic Run

Errors and Debugging

Example of Finding and Correcring Errors

CHAPTER 5 FUNCTIONS AND SUBROUTINES

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2 -
5.2.1
5.2.2

" Functions

The Integer Function (INT)

The Random Number Generating Function (RND)

The RANDOMIZE Statement

The Sign Function (SGN)

The Define User Function (DEF) and Function End Statement (FNEND)

Subroutines

" GOSUB and RETURN Statements’

Example

CHAPTER 6 MORE SOPHISTICATED TECHNIQUES

6.1
6.2
6.3
6.4
6.5

More About the Print Statement
Input éfcxfemenf

Stop Sfafemént)
Remarks Statement (REM)

Restore Statement

CHAPTER 7 VECTORS AND MATRICES

7.1
7.2
7.3
7.4
7.5
7.6

MAT Instruction Conventions

MAT C'= ZER, MAT C = CON, MAT C = IDN
MAT Print A, B, C

MAT tnput V and the NUM Function

MAT B=A

MAT C=A+ Band MATC=A-B

Pugé
3-31
3-31
3-31

- 3-32

3-32
3-34
3-34

3-37
3-37
3-38

3-39

3-40
3-40
3-41
3-41
3-42

3-45
3-48
3-49

3-49

3-49.

3-52
3-52
3-53
3-54

-3-55

3-55

CONTENTS (Cont)

Page
7.7 MATC=A*B 3-55
7.8 MAT C = TRN(A) 3-55
7.9 MAT C=(K) * A 3-55
7.10 - MAT C = INV(A) and the DET Function 3-55
7.11 Examples of Matrix Programs 3-56
7.12 Simulation of N-Dimensional Arrays i 3-57
CHAPTER 8 ALPHANUMERIC INFORMATION (STRINGS)
8.1 Reading and Printing Strings 3-59
8.2 String Conventions 3-60
8.3 Numeric and String Data Blocks 3-61
8.4 Accessing Individual Characters 3-61
CHAPTER 9 EDIT AND CONTROL . 3-65
CHAPTER 10 DATA FILE CAPABILITY
10.1 FILES Command 3-67
10.2 SCRATCH Command 3-68
10.3 WRITE Command 3-68
10.4 RESTORE Command | ' 3-69
10.5 INPUT Command 3-69

10.6 IF END Command 3-70

‘:f.,?w}a,,\,“,

PREFACE

WHY BASIC? BASIC is a problem-solving language that is easy to learn and conversational, and has wide
application in the scientific, business, and educational communities. It can be used to solve both simple and

complex mathematical problems from the user's Teletype® and is particularly suited for time=sharing .

In writing a computer program, it is necessary to use a language or vocabulary that the computer recognizes.

Many computer languages are currently in use, but BASIC is one of the simplest of these because of the small

number of clearly understandable and readily learned commands that are required, its easy application in

solving problems, and its practicality in an evolving educational environment .

BASIC is similar to other programming languages in many respects; and is aimed at facilitating communication
between the user and the computer in a time-sharing system. As with most programming languages, BASIC is

divided into two sections:

a. Elementary statements that the user must know to write simple programs, and

b. Advanced techniques needed to efficiently organize complicated problems.

As a BASIC user, you type in a computational procedure as a series of numbered statements by using common
English syntax and familiar mathematical notation. You can solve almost any problem by spending an hour or
so learning the necessary elementary commands. After becoming more experienced, you can add the advanced
techniques needed to perform more intricate manipulations and to express your problem more efficiently and

~ concisely. Once you have entered your statements via the Teletype, simply type in RUN or RUNNH. These

commands initiate the execution of your program and return your results almost instantaneously .

SPECIAL FEATURES OF BASIC - BASIC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed exclusively for pefforming matrix
computations .

b. Alphanumeric Information Handling - Single alphabetic or alphanumeric strings or vectors can be
read, printed, and defined in LET and IF...THEN statements. Individual characters within these strings
can be easily accessed by the user. Conversion can be performed between characters and their ASCII
equivalents. Tests can be made for alphabetic order.

®Teletype is the registered frademark of Teletype Corporation.

3-7

\

c. Program Control and Storage Facilities - Facilities are included that store programs or data on a
mass storage device (e.g., disk or DECtape) and later retrieve them for execution. You, as the user,

- can also input programs from the standard low-speed Teletype paper tape reader as well as from the high-
speed paper tape reader at the PDP-10 site. :

d. Program Editing Facilities - An existing program can be edited by adding or delefing lines, by re-
" naming the program, or by resequencing the line numbers. The user can combine two programs into a
single program and request-a listing of his program, either in whole or in part, on his Teletype or on a
high-speed line printer.

e. Formatting of Output - Controlled formatting of Teletype output includes tabbing, spacing, and
_printing columnar headings.

f. Documentation and Debugging Aids - Documenting programs by the insertion of remarks within pro-
cedures enables recall of needed information at some later date and is invaluable in situations in which
the program is shared by other users. Debugging of programs is aided by the typeout of meaningful
diagnostic messages which pinpoint syntactical and logical errors detected during execution.

CHAPTER 1
INTRODUCTION

This chapter introduces the user to PDP-10 BASIC and to its restrictions and characteristics. The best

" introduction lies in beginning with a BASIC program and discussing each step completely.

1.1 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program, named LINEAR, that can be used to solve a system of two

simultaneous linear equations in two variables

ax+by=c¢
dx +ey=f

.

and then used to solve two different systems, each differing from the above system only in the constants ¢ and f.

~ If ae - bd is not equal to 0, this system can be solved to find that

X=ce-bf # and _af -cd
ae - bd Y~ ge - bd

If ae - bd = 0, there is either no solution or there are many, but there is no unique solution. Study this example
carefully and then read the commentary and explanation.” (In most cases the purpose of each line in the program

is self-evident.)

10 READ A,BsD>E

15 LET G=A*E-B*D

20 IF G=0 THEN 65

30 READ C»>F

37 LET X=(C*xE-B*F)/G

42 LET Y=(A*F-C*D)/G

55 PRINT X,Y

60 GO TO 30 .
65 PRINT '"'NO UNIQUE SOLUTION"
70 DATA 1,254

80 DATA 2,-755

85 DATA 15354,-7

% END

3-9

. NOTE

All statements are terminated by pressing the RETURN -
key (represented in this text by the symbol)). The
RETURN key echoes as a carriage return, line feed.

1.2 DISCUSSION OF THE PROGRAM

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a statement .
A program is made up of statements, most of which are instructions to the compufer . Line numbers serve to specify
the order in which these statements are to be performed. Before the program is run, BASIC sorts out and edits the
program, putting the statements into the order specified by their line numbers; thus, the program statements

can be typed in any order, as long as each statement is prefixed with a line number indicating its proper

sequence in the order of execution. Each statement starts after its line number with an English word which de-
notes the type of statement. Spaces have no significance in BASIC, except in messages which are printed out,

as in line number 65 above. Thus, spaces may or may not be used to modify a program and make it more readable.
With this preface, the above example can be followed through step-by-step.

10 READ A>BsD>E

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements. When
the computer encounters a READ statement while executing a program, it causes the variables listed after the
READ to be given values according to the next available numbers in the DATA statements. In this example, we
read A in statement 10 and assign the value 1 to it from statement 70 and, similarly, with B and 2, and with

D and 4. At this point, fhé available data in statement 70 has been exhausted, but there is more in statement

80, and we pick up from it the value 2 to be assigned to E.
15 LET G=A*E-B*D

Next, in statement 15, which is a LET statement, a formula is to be evaluated. [The asterisk (*) is used to de-
note multiplication.] In this statement, we compute the value of AE - BD, and call the result G. In general,

a LET statement directs the computer to set a variable equal to the formula on the right side of the equal sign.

20 . IF G=@ THEN 65

If G is equal to zero, the system has no unique solution. Therefore, we next ask, in line 20, if G is equal to

zero.

65 PRINT "NO UNIQUE SOLUTION'

¥(9] DATA 1,254

80 DATA 25-7,5
85 DATA 15354,-7
90 END

If the computer discovers a "yes" answer to the question, it is directed to go to line 65, where it prints NO
UNIQUE SOLUTION. Since DATA statements are not executable statements, the computer then goes to line
90 which tells it to END the program.

30 READ C,F

If the answer is "no" to the question "Is G equal to zero?", the computer goes to line 30. The computer is now
directed to read the next two entries, -7 and 5, from the DATA statements (both are in statement 80) and to

assign them to C and F, respectively. The computer is now ready to solve the system

x +2y =-7

4x +2y =5
37 LET X=(C*E-B*F)/C
42 LET Y=(A*F-C*D)/G

In statements 37 and 42, we instruct the computer to compute the value of X and Y according to the formulas

" provided, using parentheses to indicate that C*E - B*F is calculated before the result is divided by G.

55 PRINT X,Y
60 GO TO 3@

The computer prints the two values X and Y in line 55. Having done this, it moves on to line 60 where it is
reverted to line 30. With additional numbers in the DATA statements, the computer is told in line 30 to take
the next one and assign if to C, and the one after that to F. Thus,

x +2y =1
4x +2y =3

As before, it finds the solutions in 37 and 42, prints them out in 55, and then is directed in 60 to revert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds in line 85. It then proceeds to solve

the system

x+2y =4
4x +2y = =7

3-11

and print out the solutions. Since there are no more pairs of numbers in the DATA statement available for C
and F, the computer prints OUT OF DATA IN 30 and stops.

If line ml-mber 55 (PRINT X, Y) had been omitted, the computer would have solved the three systems and then
told us when it was out of data. If we had omitted line 20, and G were equal to zero, the computer would

print DIVISION BY ZERO IN 37 and DIVISION BY ZERO IN 42. Had we omitted statement 60 (GO TO 30),
the computer would have solved the first system, printed out the values of X and Y, and then gone to line 65,

where it would be directed to print NO UNIQUE SOLUTION.

~ The particular choice of line numbers is arbitrary as long as the statements are numbered in the order the °
machine is to follow. We would normally number the statements 10, 20, 30, ..., 130, so that later we can
insert additional statements. Thus, if we find that we have omitted two statements between those numbered 40
and 50, we can give them any two numbers between 40 and 50 -- say 44 and 46. Regarding DATA si:oterﬁenfs,
we need only put the numbers in‘fhe order that we want them read (the first for A, the second for B, the third
for D, the fourth for E, the fifth for C, the sixth for F, the seventh for the next C, etc.). In place of the three

statements numbered 70, 80, and 85, we could have written the statement:

75 DATA 1,254525-7552153545-7

or, more naturally,

79 . DATA 1,2,5452
75 DATA =755

80 DATA 1,3

85 DATA 4,-7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand constants

appear in the subsequent statements.

The program and the resulting run is shown below as it appears on the Teletype.

10 READ A,BsDsSE

15 LET G=A%E-BxD .
20 IF G=0 THEN 65 :
30 READ CsF

37 LET X=(C*xE-B*F)/G

42 . LET Y=(A*F-C*D)/G

55 PRINT X,Y

60 GO TO 30

65 PRINT "NO UNIQUE SOLUTION"

79 DATA 152,4

80 - DATA 2,-755

85 DATA 153545-7

9P END

RUN

(continued on next page)

3-12

LINEAR 11:03 18719769

4 -5.50000
- De666667 D.166667
=3.66667 3.83333

OUT OF DATA IN 30

NOTE

Remember to terminate all statements by pressing the
RETURN key.

After typing the program, we type the word RUN, followed by a carriage return to direct the com-

puter to execute the program. Note that the computer, before printing out the answers, printed the name
LINEAR which we gave to the problem (refer to paragraph 4.1) and the time and date of the computation. The
message OUT OF DATA IN 30, may be ignored here. However, in some instances, it indicates an error in the
program.

1.3, FUNDAMENTAL CONCEPTS OF BASIC

BASIC can perform many operations such as adding, subtracting, multiplying, dividing, extracting square roots,

raising a number to a power, and finding the sine of an angle measured in radians.

1.3.1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas similar to those used in
standard mathematical calculation, with the exception that all BASIC formulas must be written on a single line.

Five arithmetic operations can be used to write a formula.

Symbol Example Meaning
+ A+B ‘add Bto A
- A-B subtract B from A
* A*B multiply B by A
/ A/B divide A by B
t X 12 find X2

If we type A+ B * C t D, the computer first raises C to the power D, multiplies this result by B, and then adds
the resulting product to A, We must use parentheses to indicate any other order. For example, if it is the
product of B and C that we want raised to the power D, we must write A + (B * C) t D; or if we want to multiply
A + B by C to the power D, we write (A+ B) * C t D. We could add A to B, multiply their sum by C, and raise

the product to the power D by writing ((A + B) * C) t D. The order of precedence is summarized in the following
rules. ’

3-13

a. The formula inside parentheses is evaluated before the parenthesized quantity is used in computations .

‘b. In the absence of parentheses in a formula, BASIC performs exponentiations first, multiplications
‘and divisions second, and additions and subtractions third.

. In the absence of parentheses in a formula involving only multiplications and divisions, BASIC
performs the operations from left to right, in the order that they are read.

d. In the absence of parentheses in a formula involving only additions and subtractions, BASIC per-
forms the operations from left to right, in the order that they are read.

The rules tell us that the computer, faced with A - B - C, (as usual) subtracts B from A, and then C from their
difference; faced with A/B/C, it divides A by B, and that quotient by C. Given A t B t C, the computer raises
the number A to the power B and takes the resulting number and raises it to the power C. If there is any question

about the precedence, put in more parentheses to eliminate possible ambiguities.

1.3.2‘ Mathematical Functions

In addition to these five arithmetic operations, BASIC can evaluate certain mathematical functions. These

functions are given special three-letter English names.

SIN (X) Find the sine of X

COS (X) Find the cosine of X X interpreted as
TAN (X) Find the tangent of X an angle measured
‘COT (X) Find the cotangent of X in radians

ATN (X) Find the arctangent of X

EXP (X) Find e raised to the X power (€X)

LOG (X) Find the natural logarithm of X (In 'X) X interpreted
ABS (X) Find the absolute value of X (| X|) asa

SQR (X) Find the square root of X ('\/?) riumber

w

Five other functions are also available in BASIC: INT, RND, SGN, NUM, and DET; these are reserved for
explanation in Chapters 5 and 7. In place of X, we may substitute any formula or any number in parentheses
following any of these functions. For example, we may ask the computer to find /4 + x3 by writing

SQR (4 + X t 3), or the arctangent of 3X - 2eX + 8 by writing ATN (3 * X -2 * EXP (X) + 8). If the value -
of (2)17 is needed, the two-line program can be written:

10 PRINT(5/€)117
20 END

and the computer finds the decimal form of this number and prints it out.

1.3.3 Numbers

A number may be positive or negative and it may contain up to eight digits, but it must be expressed in decimal
form (i.e., 2, -3.675, 12345678, -.98765432, and 483.4156). The following are not numbers in BASIC: 14/3
and SQR(7). The computer can find the decimal expansion of 14/3 or SQR(7), but we may not include either in
a list of DATA. We gain further flexibility by using the letter E, which stands for: times ten to the power.
Thus, we may write .0012345678 as .12345678E-2 or 12345678E-10 or 1234 .5678E-6. We do not write E7 as a
number, but write 1E7 to indicate that it is 1 that is multiplied by 107.

1.3.4 Variables

A numerical variable in BASIC is denoted by any letter, or by any letter followed by a single digit. (See
Chapter 8 for alphanumeric string variables.) Thus, the computer interprets E7 as a variable, along with A, X,
N5, 10, and O1. A variable in BASIC stands for a number, usually one that is not known to the programmer at
the time the program is written. Variables are given or assigned values by LET and READ statements. The value
so assigned does not change until the next time a LET or READ statement is encountered with a value for that
variable. However, all variables are set equal to 0 before a RUN. Conseqﬁently, it is only necessary to assign

a value to a variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an absolute
value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm of -5, the com~
puter gives the square root of 7 along with an error message stating that you have asked for the square root of a
negative number, or it gives the logarithm of 5 along with the error message that you have asked for the logarithm

of a negative number.

1.3.5 Relational Symbols

Six other mathematical symbols of relation are used in IF~-THEN statements where it is necessary to compare

values. An example of the use of these relation symbols was given in the sample program LINEAR.

Any of the following six standard relations may be used:

Symbol Example Meaning

= A =B = Aisequal toB

< A <B A is less than B

<= A<L=B A is less than or equal to B

> A >B A is greater than B

>= A>=B A is greater than or equal to B
T A<>B A is not equal to B

1.4 SUMMARY

. (
e

Several elementary BASIC commands have been introduced in our discussions. In desc(r:ilr;irnq sach of these
commands, a line number is assumed, and brackets are used to denote a general type. For example, [variable]

_ refers to any variable.

1.4.1 LET Statement

The LET statement is used when computations must be performed. This command is not of algebraic equality,
but a command to the computer to perform the indicated computations and assign the answer to a certain variable. |

Each LET statement is of the form:
LET [variable] = [formulal
Generally, several variables may be assigned the same value by a single LET statement. Examples of assigning

a value to a single variable are given in_the following two statements:

100 LET X=X+l
259 LET W7=(W-X413)*%(Z-A/(A-B)-1T7)

-

Examples of assigning a value to more than one variable are given in the following statements:

50 LET X=Y3=A(3,1)=1 The variables X, Y3, and A(3,1) are assigned
‘ the value 1.

% LET W=Z=3#X-4¥X12 The variables W and Z are assigned the value
©3EX-4X 12

1.4.2 READ and DATA Statements

READ and DATA statements are used to enter information into the computer. We use a READ statement to assign
to the listed variables those values which are obtained from a DATA statement. Neither statement is used with-
out the other. A READ statement causes the variables listed in it to be given in order, the next available num-
bers in the collection of DATA statements. Before the program is run, the computer takes all of the DATA

statements in the order they appear and creates a large data block. Each ﬁnr;e a READ statement is encountered
anywhere in the program, the data block supplies the next available number or numbers. If the data block runs

out of data, the program is assumed to be finished and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near the beginning
of a program. The location of DATA statements is arbitrary, as long as fhey occur in the correct order. A

common practice is to collect all DATA statements and place them just before the END statement.

Each READ statement is of the form:

READ [sequence of variables]

Each DATA statement is of the form:
" DATA [sequence of numbers]

150 READ X>YsZs>X1,Y2,Q9

330 DATA 45251.7 .

340 DATA 6.734E-35-174.321,3.1415927 . .
T 234 READ B(K)

263 DATA 2535557+9511,10,8,654

10 READ R(I,J)

440 DATA -3555-952¢37+2.9876+-437.234E-5

450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and SQRT(3) are formulas, not numbers.

Refer to Chapter 3 for a discussion of the subscripted variables.

1.4.3 PRINT Statement .

Thé common uses of the PRINT statement are:
a. to print out the result of some computations
b. to print out verbatim a message included in the program |
c. a combination of the two

d. toskip aline.

The following are examples of a type a.:

100 PRINT X, SQR(X)
135 PRINT X,Y»Z» B*B-4%xA*C, EXP(A-B)

The first example prints X, and a few spaces to the right, the square root of X. The second prints five
different numbers: ’
X,Y,Z, 8% -4AC, and B

The computer computes the two formulas and prints up to five numbers per line in this format.

The following are examples of type b.:

100 PRINT 'NO UNIQUE SOLUTION .
430 PRINT "X VALUE", "SINE", "RESOLUTION"

500 PRINT X»M»D

4

Line 100 prints the sample statement , and line 430 prints the three labels with spaces berween them. The labels
in 430 automatically line up with the three numbers called for in PRINT statement 500, R

The following is an example of type c.:

150 PRINT *'THE VALUE OF X IS" X ‘
30 " PRINT "THE SQUARE ROOT OF" X, "IS" SQR(X)

.

If the first has computed the value of X to be 3, it prints out: THE VALUE OF X IS 3. If the second has com-
puted the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25.

The following is an example of type d.:

250 PRINT

The computer advances the paper one line when it encounters this command.

1.4.4 GO TO Statement

The GO TO statement is used when we want the computer to unconditionally transfer to some command other
than the next sequential command. In the LINEAR problem, we direct the computer to go i'hl"ough the same
process for different values of C and F with a GO TO statement. This statement is in the form of GO TO

[line number].

- . 150 GO TO 75

1.4.5 IF - THEN Statement

The IF - THEN statement is used to transfer conditionally from the sequential order of commands according to
the truth of some relation. It is sometimes called a conditional GO TO statement. Each IF - THEN statement

is of the form:

IF [formulal [relation] [formulal THEN [line number]

The following are two examples of this statement:

1 IF SIN(X)<=M THEN &0
20, IF G=0 THEN 65 . .

If the first asks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks if G is
equal to 0, and skips to line 65 if so. In each case, if the answer to the question is no, the computer goes to

the next line.

1.4.6 ON - GO TO Statement

The IF - THEN statement allows a two-way fork in a program; the ON ~ GO TO statement allows a many-way

switch. For example:

80 ON X GO TO 100,200,150
This condition causes the following to occur:

If X = 1, the program goes to line 100,
If X = 2, the program goes to line 200,
If X = 3, the program goes to line 150

In other words, any formula may occur in place of X, and the instruction may contain any number of line
numbers, as long as it fits on a single line. The value of the formula is computed and its integer part is taken.

If this is 1, the program transfers to the line whose number is first on the list; if its integer part is 2, the program
transfers to the line whose number is the second one, etc. If the integer part of the formula is below 1, or larger
than the number of line numbers listed, an error message is printed. To increase the similarity between the

ON - GO TO and IF - THEN instructions, the instruction

75 IF X>5 THEN 200
may also be written as:
75 IF X>5 GO TO 200

Conversely, THEN may be used in an ON ~ GO TO statement.

1.4.7 END Statement

Every program must have an END statement, and it must be the statement with the highest line number in the

program .

999 END

3-19

CHAPTER 2
LOOPS

We are frequently interested in writing a program in which one or more portions are executed a number of times,
usually with slight variations each time. To write the simplest program in which the portion of the program to
be repeated is written just once, we use a loop. A loop is a block of instructions that the computer executes

repeatedly until a specified terminal condition is met.

The programs which use loops can be best illusirated and explained by using two versions of a program for the
simple task of printing out a table of the positive integers 1 through 100 together with the square root of each.
Without a loop, the first program is 101 lines long and reads

12 PRINT 1,SQR(1)

20 PRINT 2,SQR(2)

30 PRINT 3,SQR(3)

990 PRINT 99,SQR(99)
1000 PRINT 100,SQR(100)
1210 END

With the following program example, using one type of loop, we can obtain the same table with far fewer lines
of instructions (5 instead of 101):

10 LET X=1

20 PRINT X, SQR(X)

30 LET X=X+1

40 IF X<=100 THEN 20
50 END

Statement 10 gives the value of 1to X and initializes the loop. In line 20, both 1 and its square root are
printed. Then, in line 30, X is increased by 1, to.a value of 2. Line 40 asks whether X is less than or equal
to 100; an affirmative answer directs the computer back to line 20, where it prints 2 andv2 and goes to 30.
Again, X is increased by 1, this time to 3, and at 40 it goes back to 20. This process is repeated -- line 20
(print 3 and w/.:S), line 30 (X = 4), line 40 (since 4 < 100, go back to line 20), etc. -- until the loop has been
traversed 100 times. Then, after it has printed 100 and its square root, X becomes 101. The computer now
receives a negative answer fo the question in line 40 (X is greater than 100, not less than or equal to it), does

not return to 20 but moves on to line 50, and ends the program. All loops contain four characteristics:

3-21

"a. initialization (line 10) o)
b.. the body (line 20)
c. modification (line 30) ‘ .

d. an exit test (line 40)

2.1 FOR AND NEXT STATEMENTS

BASIC provides two statements to specify a loop: the FOR statement and the NEXT statement.

N

10 FCR X=1 TO 100
20 PRINT X,SOR((X)
30 NEXT X

50 END

In line 10, X is'set equgl to 1, and a test is set up, like that of line 40 above. Line 30 carries out two tasks:
X is increased by 1, and the test is carried out to determine whether to go back to 20 or to go on. Thus, lines

10 and 30 take the place of lines 10, 30, and 40-in the previous program.

Note that the value of X is increased by 1 each time BASIC goes through the loop. If we want a different

increase, we could specify it by writing the following:

10 FCR X=1"TO 100 STEP 5
and the computer would assign 1 to X on the first time through the loop, 6 to X on the second time, 11 on the
third , and 96 on the last time. Another step of 5 would take X beyond 100, allowing the program to proceed

to the end after printing 96 and its square root. The STEP may be positive or negative, and we could have ob-

tained the first table, printed in reverse order, by writing line 10 as follows:

10) FCR X=100 TO 1 STEP-1

In the absence of a STEP instruction, a step-size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size may all
be formulas of any complexity. For example, if N and Z have been specified earlier in the program, we could

write the following:

FOR X=N+7%Z TO (Z-N)>/3 STEP(N-4%Z)>/10

For a positive sfép-size, the loop continues as long as the control variable is less than or equal to the final
value. For a negative step-size, the loop continues as long as the control variable is greater than or equal to

the final value.

If the initial value is greeter than the final w:lbe (tess than the final value for negative step-size), the body
of the loop is not performed at all, but the computer immediately passes to the statement following the NEXT.
The following program for adding up the first n integers gives the correct result 0 when n is 0.

RFAD N

LET S=0

FCR K=1 TO N
LET S=S+K
NEXT K

PRINT S

GC TO 10
DATA 3,100
END

E8ITLEL8s

2,2 NESTED LOOPS

Nested loops (loops within loops) can be expressed with FOR and NEXT statements. They must be nested and

not crossed as the following skeleton examples illustrate:

_Allowed Allowed Not Allowed
—— FOR X ——FOR X FOR X
EFOR Y — FORY —EFOR Y
NEXT Y FOR Z NEXT X
— NEXTX [-—-NEXT y4 —— NEXT Y
FORW
[NEXT w
— NEXTY
[FOR p4
NEXT Z
NEXT X

2.3 SUMMARY

By making use of a loop, the programmer can direct the computer to execute portions of a program many times.
This is a concise technique for writing a program, and saves the programmer much type-in time. In describing

the instructions used to specify a loop, a line number is assumed and brackets are used to denote a general type.

2.3.1 FOR and NEXT Statements
Every FOR statement is of the Followin—g form:

FOR [variable] = [formulal TO [formulal STEP [formulal

3-23

Most commonly, the expressions are integers and the STEP is omitted. In the latter case, a step-size of +1 is
assumed. The accompanying NEXT statement is simple in form, but the variable must be precisely the same one
as that following FOR in the FOR statement. Its form is as follows:

NEXT [variable]

30 FOR X=@ TO 3 STEP D

8o NEXT X ' .

120 FOR X4=(17+C0X(Z>)/3 TO 3% SQR(10)> STEP 1/4
. 235 NEXT X4

240 FOR X=8 TO 3 STEP -1

456 FOR. J=-3 TO 12 STEP 2

\

Note that the step-size may be a variable (D), a formula (1/4), a negative number-(-1), or a positive number (2).
In lines 120 and 235, the successive values of X4 are .25 apart, in increasing order. In line 240, the successive
valuves of X willbe 8,7, 6, 5, 4, 3. In line 456, on successive trips through the loop, J will take on values
-3,-1,1,3,5,7,9,and 11, If the initial,, final, or step~size values are given as formulas, these formulas
are evaluated upon entering the FOR statement. The control variable can be changed in the body of the loop;

it should be noted that the exit test always uses the latest value of this varieble. If 50 FORZ =2 TO -2 is
written, without a negative step-size, the body of the loop is not performed and the compufér proceeds to the

statement immediately following the corresponding NEXT statement .

CHAPTER 3
LISTS AND TABLES

In addition to the ordinary variables used by BASIC, variables can be used to designate the elements of a list
or a table. Many occasions arise where a list or a table of numbers is used over and over, and, since it is
inconvenient to use a separate variable for each number, BASIC allows the programmer to designate the name

of a list or table by a single letter.

Lists are used when we might ordinarily use a single subscript, as in writing the coefficients of a polynomial
(ao, a1, Qyp vees on) . Tables are used when a double subscript is to be used, as in writing the elements of a
mairix (bi,j). The variables used in BASIC consist of a single letter, which is the name of the list or table,

followed by the subscript in parentheses. Thus,
A(0), A(1), A(2),..., A(N) -

represents the coefficients of a polynomial, and
B(1,1), B(1,2), ..., B(N,N)

represents the elements of a matrix. .

The single letter denoting a list or a table name may also be used without confusion to denote a simple variable.
However, the same letter may not be used to denote both a list and a table in the same program because BASIC
recognizes a list as a special kind of table having only one column. The form of the subscript is flexible: A list
item B(I + K) may be used, or a table item Q(A(3,7), B-C) may be used.

We can enter the list A(0), A(1), ..., A(10) into a program by the following lines:

12 FOR I=0 TO 10

20 READ A(CI)

30 NEXT I

40 DATA 2535-552¢2,45,-95123,4,-4,3

3.1 THE DIMENSION STATEMENT (DIM)

_BASIC automatically reserves room for any list or table with subscripts of 10 or fewer. However, if we want
larger subscripts, we must use a DIM statement. This statement indicates to the computer that the specified

space is to be allowed for the list or table. For example, the instruction

10 DIM AC15)
reserves 16 spaces for list A (A(0), A(1), AQ2),...,A(15)). The instruction

20 DIM Y(13,15)

reserves 176 spaces for matrix Y (10 + 1 rows * 15 + 1 columns). Space may be reserved for more than one list
and/or table with a single DIM statement by separating the entries with commas, as shown in the following
example: .

30 DIM A(100),B(20,530),C(25)

A DIM statement is not executed; therefore, it may appear on any line before the END statement. However,
the best place to put it is at the beginning so that it is not forgotten. If we enter a table with a subscript
greater than 10, without a DIM statement, BASIC gives an error message, telling us that we have a subscript
error. This condition can be rectified by entering a DIM statement with a line number less than the line number

of the END statement,

A DIM statement is normally used to reserve additional space, but in a long program that requires many small
tables, it may be used to reserve less space for tables in order to have more space for the program. When in
doubt, declare a larger dimension than you expect to use, but not one so large that there is no room for the

program. .For example, if we want a list of 15 numbers entered, we may write the following:

10 DIM A(25)

20 READ N :
30 FOR I=1 TO N

up READ ACI)

50 NEXT I

&0 DATA' 15 :

70 DATA 2535557s11513517519523,29,31,37,41543,47

g

Statements 20 and 60 could have been eliminated by writing 30 as FOR I =1 TO 15 but the program as typed
-allows for the lengthening of the list by changing only statement 60, as long as the list does not exceed 25 and

there is sufficient data.

3-26

We could enter a 3-by-5 table into a program by writing the following:

10 FOR I=1 TO 3

20 FOR J=1 TO 5

30 READ B(I,J)

49 NEXT J

50 NEXT 1

60 DATA 2,3,-5,-9,2
79 DATA 4,-75354,-2
80 DATA 3,-3,5,7,8

Again, we may enter a table with no DIM statement: BASIC then handles all the entries from B(0,0) to B(10,10).

-

3.2 EXAMPLE

Below are the statements and run of a problem which uses both a list and a table. The program computes the
total sales of five salesmen, all of whom sell the same three products. The list, P, gives the price per item of
the three products and the table, S, tells how many items of each product each man sold. Product 1 sells for
$1.25 per item, product 2, for $4.30 per item, and product 3, for $2.50 per item; also, salesman 1 sold 40
items of the first product, 10 of the second, 35 of the third, and so on. The program reads in the price list in
lines 40 through 80, using data in lines 910 through 930. The same program could be used again, modifying
only line 900 if the prices change, and only lines 210 through 930 to enter the sales in another month. This
sample program does not need a DIM statement, because the computer aufomﬁ'cally reserves enough space to

allow all subseripts to run from 0 to 10.

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

19 FOR I=1 TO 3

20 READ P(I)

30 NEXT 1

49 FOR I=1 TO 3

50 FOR J=1 TO 5

60 READ S(I,J) i
(] NEXT J

80 NEXT 1

90 FOR J=1 TO 5

100 LET S=0

110 FOR I=1 TO 3

120 LET S=S+P(I1)*S(I,J)

130 NEXT 1

140 PRINT "TOTAL SALES FOR SALESMAN'"J,'$'S
150 NEXT J
. 900 DATA 1.25,4.30,2.50

910 DATA 40520,37,29,42

920 DATA 10,16,3,21,8

930 DATA 35547,29,16533

999 END

3-27

READY

RUN .

SALESl 11:06 16/720769 -
5180500

TOTAL SALES FOR SALESMAN 1

TOTAL SALES FOR SALESMAN 2 $211.300
"TOTAL SALES FOR SALESMAN 3 $131.650
TOTAL SALES FOR SALESMAN 4 $166.550
TOTAL SALES FOR SALESMAN 5 $169.400

3.3 SUMMARY

Because the number of simple variable names is limited, BASIC allows a programmer to use lists and tables to
increase the number of problems that can be programmed easily and concisely. A single letter is used for the
name of the list or table, and the subscript that follows is enclosed in parentheses. ‘ The subscripts may be

explicitly stated or may be any legal expression.

Lists and tables are called subscripted variables, and simple variables are called unsubscripted variables.
Usually, you can use a subscripted variable anywhere that you use an unsubscripted variable. However, the
variable mentioned immediately after FOR in the FOR statement and after NEXT in the NEXT statement must

be an unsubscripted variable. The initial, terminal, and step values may be any legal expression.

3.3.1 The DIM Statement

To enter a list or a table with a subscript greater than 10, a DIM statement is used to retain sufficient space,

as in the following examples:

20 DIM H(35)
35 DIM Q(5s 25)

The first example enables us to enter list H with 36 items (H(0), H(1), ..., H(35)). The second reserves space
for a table of 156 items (5 + 1 rows * 25 + 1 columns).

3-28

CHAPTER 4
HOW TO RUN BASIC

After learning how to write a BASIC program, we must learn how to gain access to BASIC via the

Teletype so that we can type in a program and have the computer solve it. Steps required to communicate
with the monitor must first be performed. These steps are fully explained in the PDP-10 Reference Handbook
and the PDP-10 System User's Guide.

4.1 GAINING ACCESS TO BASIC

Once the monitor has responded with a period to indicate that it is ready to receive a monitor command, type

in the following command:

«R BASIC

This command establishes contact with the BASIC CUSP (Commonl'y Used System Program). BASIC responds
with the following:

NEW OR OLD--
Type in:
NEW

if you are going to create a new program. BASIC responds with the following:

NEW FILE NAME--

After you type in the name of your program, BASIC checks to make sure that the name does not already exist.
If you want to work with a previously created program that you saved on a storage device (disk or DECfape) ’
type in the following:

OLD

" BASIC then asks for the name of the old vprogram, as Follows:

OLD FILE NAME--

Respond by typing in the name of your old file. If your old file is stored on a dirécfory device other than the

disk, you must type in the device name as in the following example:
OLD FILE NAME--DTA6:SAMPLE

BASIC retrieves the file named SAMPLE from Dfoape 6 and replaces the current contents of user core with the
file SAMPLE. The disk may be specified as the device on which the old program is stored, but this is not
necessary because the disk is the device used when no device is specified. For example, the following state~

ments are equivalent:

OLD FILE NAME--DSK:TESTI

OLD FILE NAME--TESTIL

Program names can be any combination of letters and digits up to and including six characters in length. Char-
acters other than letters and digits can be used, but *, ; / § are to be avoided. In previous chapters we have
used program names such as LINEAR and SALES 1. If you recall an old program from storage, you must use

exactly the same name you assigned to it when it was saved.

4.2 ENTERING THE PROGRAM

After you type in your filename (whether it is old or new), BASIC responds with the following:

READY

You can begin to type in your program. Make sure that each line begins with a line number containing no more
than five digits and containing no spaces or nondigit characters. Also, be sure to start at the beginning of the

Teletype line for each new line. Press the RETURN key upon completion of each line.

If, in the process of typing a statement, you make a typing error and notice it before you terminate the line,
you can correct it by pressing the RUBOUT key once for each character to be erased, going backward until
the character in error is reached. Then continue typing, beginning with the character in error. The

following is an example of this correcting process:
10 -PRNIT\TINNINT 2,3

NOTE -

The RUBOUT key echoes as a backslash (\), followed by v
the deleted characters and a second backslash.

- 3-30

Also, to delete the entire line being typed, you can depress the ALTMODE key (if a Teletype Model 35 is used),
the ESC key (if a Teletype Model 33 is used), or the PREFIX key (if a Teletype Model 37 is used).

4.3 EXECUTING THE PROGRAM

~ After typing the complete program (do not forget to end with an END statement), type RUN or RUNNH, followed
by the RETURN key. BASIC types the name of the program, the time of day, the current date (unless RUNNH is
specified), and then it analyzes the program. If the program can be run, BASIC executes it and, via PRINT
statements, types out any results that were requested. The typeout of results does not guarantee that the program
is correct (the results could be w'rong), but it does indicate that no grammatical errors exist (e.g., missing line
numbers, misspelled words, or illegal syntax). If errors of this type do exist, BASIC types a message (or several

messages) to you. A list of these diagnostic messages, with their meanings, is given in Appendix B.

4.4 CORRECTING THE PROGRAM

If you receive an error message typeout informing you, for example, that line 60 is in error, the line can be
corrected by typing in a new line 60 to replace the erroneous one. If the statement on line 110 is to be elim-

inated from your program, it is accomplished by typing the following:
1107
If you wish to insert a statement between lines 60 and 70, type a line number between 60 and 70 (e.g., 65),

followed by the statement.

4.5 INTERRUPTING THE EXECUTION OF THE PROGRAM

If the results being typed out seem to be incorrect and you want to stop the execution of your program, type 1O
(hold down CTRL key and at the same time type O) to suppress the typeout, or type 1C twice, as indicated in

the following example:

tC { Stops execution of your program, and

tC Returns control to Monitor

If you fyped tC, the monitor responds with a period and waits for you to type a monitor command. If you wish

to reinitialize, type either of the following:

«START or . *REENTER

3-31

“BASIC responds with the following: ~
-READY,

whereupon ’you can modify or add statements and/or type RUN. If you wish to continue at the point where you

interrupted the execution, type the following:

«CONT

_4.6 LEAVING THE COMPUTER

When you wish to leave the computer, type the following
tC

The monitor responds with a period. Then type the following:
«KJCB

The monitor responds with the following:

CONFIRM:

If you simply wanf to get off the machine and delete all files you may have created, type the following:

K

Other options available following the typeout of CONFIRM: are listed for you if you respond to the CONFIRM:
message with a carriage return (RETURN ke))) only. The monitor then lists all options available, along with the

response required to request each option.

© 4.7 EXAMPLE OF BASIC RUN

The following is a simple example of the use of BASIC under a time~sharing monitor::

1C GO TO MONITOR LEVEL
.LCGIN REQUEST LOGIN
JOB 7 DEC PDP-10 #4@ 4561H PR MONITOR TYPES OUT YOUR ASSIGNED

JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR

#27,20 MONITOR REQUESTS YOUR PROJECT-
PROGRAMMER NUMBER; TYPE IT IN

PASSWORD:

9927 29-0CT-69. TTY3

*C

R BASIC

NEW OR OLD--NEW

NEW FILE NAME--SAMPLE

READY

10 FOR N=1 TO 7

20 PRINT Ns SQR(N)
30 NEXT N

40 PRINT *“DONE"

59 END

RUN

SAMPLE 11:14 108/20/69
1 1

2 1.41421

3 1.73205

4 2

) 2.23607

6 2444949

7 2.64575
DONE

1C

+KJOB

CONF IRM:K

JOB 7, USER 27,

FILES DELETED: @, FILES SAVED: 0.,

MONITOR REQUESTS YOUR PASSWORD;
TYPE IT IN; IT WILL NOT ECHO BACK

MONITOR TYPES OUT THE TIME OF DAY, -
THE CURRENT DATE, YOUR TELETYPE
UNIT NUMBER, tC, AND A PERIOD

INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

BASIC ASKS WHETHER NEW OR
OLD PROGRAM IS TO BE RUN

BASIC ASKS FOR NEW FILENAME

BASIC IS NOW READY TO RECEIVE
STATEMENTS

TYPE IN STATEMENTS

RUN PROGRAM

20 OFF TTY3 AT ©930 ON 29-0CT-69

RUNTIME 9 MINs> @1 SEC

4.8 ERRORS AND DEBUGGING

Occasionally, the first run of a new problem is free of errors and gives the correct answers, but, more commonly,
errors are present and have fo be corrected. Errors are of two types: emors of form (grammatical errors) which
prevent the running of the program, and logical errors in the program which cause the computer to produce wrong

answers or no answers at all.

Errors of form cause error messages to be printed, and the various }ypes of error messages are listed and explained
in Appendix B. Logical errors are more difficult to uncover, particularly when the program gives answers which
seem to be nearly correct. In either case, after the errors are discovered, they can be corrected by changing »
lines, by inserting new lines, or by deleting lines from the program. As indicated previously, a line is changed
by typing it correctly with the same Iline number; a line is inserted by typing it with a line number between those
of two exist\ing lines; and a line is deleted by typing its line number and pressing the RETURN key. Note that
you can insert a line only if the original line numbers are not consecutive integers. For this reason, most pro~

grammers begin by using arbitrary line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sorts out lines and arranges them in

order, a line may be retyped out of sequence. Simply retype the offending line with its original line number.

4.8.1 Bxample of Finding and Correcting Errors

We can best illustrate the process of finding the errors (bugs) in a program and correcting (debugging) them by
an example. Consider the problem of finding that value of X between 0 and 3 for which the sine of X is a
maximum, and ask the machine to print out this value of X and the vulu;a of its sine. Although we know that
n/2 is the correct value, we use the computer to test successive values of X from 0 to 3, first using in-

tervals of .1, then of .01, and finally of .001. Thus, we ask the computer to find the sine of 0, of .1, of 2,
of .3..., of 2.8, of 2.9, and of 3, and to determine which of these 31 values is the largest. It does so by
testing SIN (0) and SIN (. 1) to see which i; larger, and calling the larger of these two numbers M. It then picks
the larger of M and SIN(.2) and calls it M. This number is checked against SIN(.3). Each time a larger value
of M is found, the value of X is "remembered” in X0. When it finishes, M will have been assigned to the
largest value. It then repeats the search, this time checking the 301 numbers 0, .01, 02, .03, ..., 2.98,
2.99, and 3, finding the sine of each, and checking to see which has the largest sine. At the end of each of
-these three searches, we want the computer to print three numbers: the value X0 which has the largest sine, the

- sine of that number, and the interval of search.

Before going to the Teletype, we write a program such as the following:

STICLEEERS

— -
-9
[SES]

READ D

LET X0=0

FOR X=0 TO 3 STEP D
IF SIN(X)><=M THEN 100
LET X0=X

LET M=SIN(X2)

PRINT X0,X>D

NEXT X0

GO TO 20

DATA «15.01,.001
END

The following is a list of the entire sequence on the Teletype with explanatory comments on the right side:

~

NEW OR OLD--NEW
NEW FILE NAME--MAXSIN

READY
12
20
30
49
50
(5]
°
80
90
20
100
110
RUN

MAXSIN

READ D
LWR X0=0
FOR X=0 TO 3 STEP D

IF SINENEN(X)<=M THEN 100

LET X0=X

LET M=SIN(X)
PRINT X0,X»D
NEXT T\T\X0

GO TO 2@

LET X0=0

DATA.I o:o@l} .001
END

11:35 18720769

ILLEGAL VARIABLE IN 70
NEXT WITHOUT FOR IN 8@
FOR WITHOUT NEXT IN 30

7
40
80
RUN

MAXSIN

PRINT X@5XsD
IF SIN(X)<=M THEN 80
NEXT X

11:36 10720769

g.1 D1

2.2 2.1

11:37 10720769

UNDEFINED LINE NUMBER 28 IN 90

3-35

Note the use of the RUBOUT key (echoes as a
N to erase a character in line 40 (which should
have started IF SIN (X), etc.) and in line 80.

We discover that LET was mistyped in line 20 ’
and we correct it after 90.

After receiving the first error message, we
inspect line 70 and find that we used XO for
a variable instead of X0. The next two error
messages relate to lines 30 and 80 having
mixed variables. These are corrected by
changing line 80.

Both of these changes are made by retyping
lines 70 and 80. In looking over the program,
we also discover that the IF-THEN statement
in 40 directed the computer to a DATA state-
ment and not to line 80 where it should go.
This is obviously incorrect. We are having
every value of X printed, so we direct the
machine to cease operations by typing tC
twice even while it is running. We notice
that SIN(0) is compared with M on the first
time through the loop, but we had assigned a

. value to X0 but not to M. However, we re-

call that all variables are set equal to zero
before a RUN; therefore, line 20 is unneces-

”WO

RUN

© . MAXSIN

[SESES]
e e o
W -

70
85
5
RUN

MAXSIN
ILLEGAL
5

RUN

MAXSIN

X VALUE
l.60
1.57.
1.57099

6o TO 18 " Line 90,

of codrse, sent us back.té line 20 to

repeat the operation and not back to line 10
‘to pick up a new value for D.. We- rei'ype line

11343 - 18720769 - 90 and then type RUN again. - A
2.1 B.1 We are about to print out the same table as
B.2 B+1)

before. Each time that it goes through the

loop, it is printing out X0, the current value
of X, and the interval 'size.

PRINT X@>M»D

PRINT "X VALUE",'"SIN",RESOLUTION'"
11:44 10720769

VARIABLE IN 5

PRINT "X VALUE",'"SINE",''RESOLUTION"

11:47 18728769

SINE RESOLUTION
0.999574 0.1

1. 0.01

L. 0.001

OUT OF DATA IN 10

LIST

MAXSIN
5
10
30
40
50
60
80
85
90
100
110

READY
SAVE
READY

11:48 10/20769
PRINT "X VALUE",'"SINE",'"RESOLUTION"
READ D

FOR X=@ TO 3 STEP D
IF SIN(X)<=M THEN 80
LET X0=X

LET M=SIN(X)

NEXT X

PRINT X0,M»>D

GO TO 18

DATA «15.015.001

END

We rectify this condition by moving
the PRINT statement outside the .
loop. Typing 70 deletes that line,
and line 85 is outside of the loop.
We also realize that we want M
printed, not X. We also decide

to put in headings for the columns
by a PRINT statement . .

There is an error in our PRINT state-
ment: no left quotation mark for
the third item.

Retype line 5, with all of the re-
quired quotation marks.

These are the desired results. Of
the 31 numbers (0, .1, .2, .3,...,
2.8, 2.9, 3), it is 1.6 which has
the largest sine, namely .999574;
this is true for finer subdivisions.

Having changed so many parts of
the program, we ask for a list of

the corrected program.

3

The program is saved for later use.

A PRINT statement could have been inserted to check on the machine computations. For example, if M were

checked, we could have inserted 65 PRINT M, and seen the values.

CHAPTER 5
" FUNCTIONS AND SUBROUTINES

5.1 FUNCTIONS

Occasionally, you may want to calculate a function, for example, the square of a number. Instead of writing
a small program to calculate this function, BASIC provides 14 functions as part of the language, 9 of which are
described in Chapter 1. Three of the remaining functions are described here, and the last two are described in

Chapter 7.

The desired function is called by a three-letter name. The value to be used is expressed explicitly or implicitl)/
in parentheses and follows the function name. The expression enclosed in parentheses is the argument of the

function, and it is evaluated and used as indicated by the function name. For example:

15 LET B=SQR(4+X13)

indicates that the expression (4 + X 13) is to be evaluated and then the square root taken.

5.1.1 The Integer Function (INT)

The INT function appears in algebraic notation as [X1 and returns the greatest integer of X that is less than or

equal to X. For example:

INT (2.35)= 2
INT (-2.35) = -3
INT (12) = 12

One use of this function is to round numbers to the nearest integer by asking for INT (X + .5). For example:
INT (2.9 + .5)=INT (3.4)=3
rounds 2.9 to 3. Another use is to round to any specific number of decimal places. For example:

INT (X * 10 t 2+.5)/1012

3-37

rounds X correct to two decimal places and
INT(10*X tD+.5) /10t D

rounds X correct to D decimal places.

N

5.1.2 The Random Number Generating Function (RND)

The RND function produces random numbers between 0 and 1. This function is used to simulate events that

happen in a somewhat random way. RND does not need an argument. .

If we want the first 20 random numbers, we can write the program shown below and get 20 six~digit decimals.

-

10 FOR L=1 TO 20
P00} PRINT RND.»
30 NEXT L
- 40 END
RUN

RANDOM 13:24 10720769

B.40€6533 0.88445 0.681969 0.939462 ?.253358

0863799 0.880238 P.638311 0.602898 2.990032

D.863799 0.897931 B.628126 P.613262 0.303217

5.00548 E-2 0.393226 2.680219 0.632246 P.668218
NOTE

This is a sample run of random numbers. The format of the
PRINT statement is discussed in Chapter 6.

RUN
RANDOM 13:25 10/20/69
B.406533 0.88445 3.681969 2.939462 2.253358

2.863799

A second RUN gives exactly the same random numbers as the first RUN; this is done to facilitate the debugging

of programs. If we want 20 random one-digit integers, we could change line 20 to read as follows:

20 PRINT INTC(1@%*RND),
RUN

We would obtain the following:

RANDOM 13:26 186/20/769

QRS
WARRX
o Oy O O
OO
o WO

r

To vary the type of random numbers ’(20 random numbers ranging from 1 to 9, inclusive), change line 20 as

follows:
20 PRINT INTC9%RND +1);
RUN
RANDOM 13:28 10/28/69

4 8 7 9 3 8 8 6 6 9 6 6 3 1 4 7 6 17

To obtain random numbers which are integers from 5 to 24, inclusive, change line 20 to the following:

»

20 PRINT INT(2@0*RND +5);
RUN

RANDOM 13:28 10/20769

13 22 18 23 186 22 22 17 17 24 16 22 17 17 11 6 12
17 18

If random numbers are to be chosen from the A integers of which B is the smallest, call for INT (A*RND+B).

5.1.3 The RANDOMIZE Statement

As noted when we ran the first program of this chapter twice, we got the same numbers in the same order each

time. However, we get a different set with the RAND OMIZE statement, as in the following program:

5 RANDOMIZE

12 FOR L=1 TO 20

29 PRINT INT(1@*RND):;
30 NEXT L

49 END

RUN ’

RNDNOS 13:32 10720769

1 9 4 2 1 1 6 6 3 8 4 9 8 6 5 8 6 2 6 0

RUN

RNDNOS 13:33 10/20/69

18

RAN&@M&ZE MWQM)‘ remls tba mmhan in @ random way . Fﬁr e&‘mhm n:fﬂums ﬁh@ﬁ;ﬂ: m#mctam ina
program using random numbers, then repeated RuNs of the program produce different results. . If the ina#wchoa
is absent, then the ef—f‘ctol list of random numhers is abtemed in the usual erdsr Itis suggeﬂed‘ that a srmuluemi
model shauld be dabuggod without this |m%mcﬂm so ﬂwt one always obm?m the same. rdndom numbers § i test
runs. After the | program is debugged and before sfamng pmebchen runs, you insert the foﬂcwmg

1. RANDOM -

5.1.4 The Sign Function (SGN)

The SGN function is one which oss.igns the value 1 to any positive number, 0 to zero, and -1 to any negafive
number. Thus, SGN (7.23)= 1, SGN (0) =0, and SGN (-.2387) = -1. For example, the following statement:

50 ON SGN(X)+2 GO Td 100,200,300

transfers to 100 if X <0, to 200 if X = 0, and to 300 if X > 0.

5.1.5 The Define User Function (DEF) and Function End Statement (FNEND)

In addition to the 14 functions BASIC provides, you may define up to 26 functions of your own with the DEF
The name of the defined function must be three letters, the first two of which are FN, e.g., FNA , FNB,...,

FNZ. Each DEF statement introduces a single function. For example, if you repeatedly use the function

-X2 -
e «X + 5, introduce the function by the following:

30 DEF FNE(X)=EXP&-X72)+5
and call for various values of. the function by FNE (.1), FNE (3.45), FNE (A+2), etc. This statement saves a
great deal of time when you need values of the function for a number of different values of the variable.

The DEF statement may occur anywhere in the program, and the expression to the right of the equal sign may be
any formula that fits on one line. It may include any combination of other functions, such as those defined by

different DEF statements; it also can involve other variables besides those denoting the argument of the function.

Each defined function may have zero, one, two, or more variables as in the following example:

10 DEF FNB(X,Y)=3*%X*Y-Y*t3
185 DEF FNC(X,YsZsW)=FNB(X,Y)/FNB(Z,W)
530 DEF FNA=3.1416%Rt2

In the definition of FNA, the current value of R is used when FNA occurs. Similarly, if FNR is defined by

__the following:

L]
0 DEF FNR(X)>=SQR(2+L0OG(X)-EXPLY*Z)*(X+SIN(2%Z)))

you ¢&an ask for FNR(2.7), and give new values to Y and Z before the next use of FNR.

The method of having multiple line DEFs is illustrated by the "max" function shown below. Using this method,
the possibility of using IF. .. THEN as part of the definition is a great help as shown in the following example:

10 DEF FNM(X,Y)

20 LET FNM=X

30 IF Y<= X THEN 50
40 LET FNM=Y :
50 FNEND

The absence of the equals sign (=) in line 10 indicates that this is a multiple line DEF. In line 50, FNEND
terminates the definition. The expression FNM, without an argument, serves as a temporary variable for the

computation of the function value. The following example defines N-factorial:

10 DEF FNF(N)

20 LET FNF=1

30 FOR K=1 TO N
40 LET FNF=K*FNF
50 NEXT K

(<] FNEND

Any variable which is not an argument of FN in a DEF loop has its current value in the program. Multiple
line DEFs may not be nested and there must not be a transfer from inside the DEF to outside its range, or vice

versa.

5.2 SUBROUTINES

- When you have a procedure that is to be followed in several places in your program, the procedure may be
written as a subroutine. A subroutine is a self-contained program which is incorporated into the main program
at specified points. A subroutine differs from other control techniques in that the computer remembers where '
it was before it entered the subroutine, and it returns to the appropriate place in the main program after ex-

ecuting the subroutine.
5.2.1 GOSUB and RETURN Statements

Two new statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered from any

point in the main program with a GOSUB statement. This statement is similar fo a GO TO statement; however,

3-41

with a GOSUB statement, the computer remembers where it was priofto the transfer. Following is an ex;:mple
of the GOSUB statement : ® .

92 GOSUB 210

where 210 is the line number of the first statement in the subroutine. The last line in the subroutine is a

RETURN statement which directs the computer to the statement following the GOSUB from which it transferred.
For example: ' 4

350 RETURN

returns to the next higﬁest line number greater than the GOSUB call.

Subroutines may appedr anywhere in the main program, and care should be taken to make certain that the com-

puter enters only through a GOSUB statement and exits via a RETURN statement.

5.2.2 Example

A program for determining the greatest common divisor (GCD) of three integers, using the Euclidean Algorithm,
illustrates the use of a subroutine. The first two numbers are selected in lines 30 and 40, and their GCD is
determined in the subroutine, lines 200 through 310. The GCD just found is called X in line 60; the third num-
ber is called Y, in line 70; and the subroutine is entered from line 80 to ﬁnd the GCD of these two numbers.

This number is, of course , the greatest common divisor of the three given numbers and is printed out with them
in line 90.

A GOSUB inside a subroutine to perform another subroutine is called a nested GOSUB. It is necessary to exit
from a subroutine only with a RETURN statement. You may have several RETURNS in the subroutine, as long as

exactly one of them will be used.

10 PRINT "A", "B", "C", "GCD"
20 READ A, B, C

30 LET X=A

49 LET Y=B

50 GOSUB 200

(5] LET X=G

79 LET Y=C

80 GOSUB 200

90 PRINT A,>B»C,G

100 GO TO 20

110 DATA 60,590,120 .
120 DATA 38456,64872,98765

130 DATA 32,384,172

200 LET Q=INT(X/Y)

210 LET R=X-Q*Y

220 IF R=0 THEN 300

230 LET X=Y

240 B LET ¥=R

250 \ GO TO 200

3-42

300
310
320
RUN

GCD3NO

A

60

39456
32

LET G=Y

RETURN
END

13:38

B C
90 120
64872 98765
384 72

OUT OF DATA IN 20

18720769

GCD

- -
, .

CHAPTER 6
MORE SOPHISTICATED TECHNIQUES

The preceding chapters have covered the essential elements of BASIC. At this point, you are in a position to
write BASIC programs and to input these programs to the computer via your Teletype. The commands and tech-
niques discussed so far are sufficient for most programs. This chapter and remaining ones are for a programmer

who wishes to perform more intricate manipulations and to express programs in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT

The PRINT statement permits a greater flexibility for the more advanced programmer who wishes to havé a
different format for his output. The Teletype line is divided into 5 zones of 14 spaces each. A comma isa
signal to move to the next print zone or, if the fifth print zone has just been filled, to move to the first print
zone of the next line. If a label (expression in quotes) is followed by a semicolon, the label is printed with no

space after it. If a variable is followed by a semicolon, its value is printed in the following format:

snnn. .n
Y L
I one space
numeric value

sign: space if positive; - if negative

When you type in the following program:

10 FOR I=1 TO 15
20 PRINT 1

30 NEXT I

40 END.

the Teletype prints 1 at the beginning of a line, 2 at the beginning of the next line, and, finally, 15 on the
fifteenth line. But, by changing line 20 to read as follows:

20 PRINT I

e

1 2 3 .4 . 5
6 7 8 9 10
11 12 1

3 14 15

If you want the numbers printe{i in this fashion, but compressed, change line 20 by replacing the comma with a

semicolon as in the following example: _ .
20 PRINT 1I;
The following results are printed:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A label inside quotation marks is printed as it appears, and the end of a PRINT statement signals a new line,

unless a comma or semicolon is the last symbol. Thus, the following instruction:
50 PRINT X, Y

prints two numbers and then returns to the next line, while the instruction:
50 PRINT X, Y.

prints these two values and does not return. The next number to be printed appears in the third zone, after the

values of X and Y in the first two zones.
Since the end of a PRINT sfaterﬁenf signals a new line,

250 PRINT

causes the Teletype to advance the paper one line, to put a blank line for vertical spacing of your results, or

to complete a partially filled line.

5} FOR M=1 TO N
110 FOR J=0 TO M
120 PRINT B(M,J);
130 NEXT J

140 PRINT

150 NEXT M

This program prints B(1,0) and next to it B(1,1). Without line 146, the Teletype would go on printing B(2,0),
B(2,1), and B(2,2) on the same line, and then B(3,0), B(3,1), etc. After the Teletype prints the B(1,1) value
corresponding to M = 1, line 140 directs it to start a new line; after printing the value of B(2,2) corresponding
to M =2, line 140 directs it to start another new line, etc. -

3-46

The following instructions:

50 PRINT "'TIME-'"; "SHAR"; ''ING'";
51 PRINT ''ON"; ''THE"; ''PDP-10"

cause the printing of the following:
TIME-SHARING ON THE PDP-10

Formatting of output can be controlled even further by use of the function TAB, in the form TAB(n), where n is
the desired print position (0 through 74).

Insertion of TAB(17) causes the Teletype to move to column 17, as if a tab had been set there. For this purpose,

the positions on a'line are numbered from 0 through 71, and 72 is assumed to be the 0 position on the next line.

More precisely, TAB may contain any formula as its argument. The value of the formula is computed, and its
integer part is taken. This, in tum, is treated modulo 75, to obtain a value from 0 through 74, as indicated
above. The Teletype is then moved forward to this position (unless it has already passed this position, in which

T

case the TAB is ignored). For example, inserting the following line in a loop

55 PRINT X; TAB(12);5; Y; TAB(27)>3 Z
causes the X values to start in célumn 0, the Y values in column 12, and the Z values in column 27.
The following rules are used to interpret the printed results:

a. If a number is an integer, the decimal point is not printed. If the integer contains more than eight
digits, it is printed in the format as follows.

n.@:mnEp
—

T E (Exponent) followed by p (power of 10)
—— next five digits

first digit

For example, 32,437,580,259 is written as 3.24376E+10
b. For any decimal number, no more than six significant digits are printed.

c. Fora number less than 0.1, the E notation is used, unless the entire significant part of the number
can be printed as a 6-digit decimal number. Thus, 0.03456 indicates that the number is exactly
.0345600000, while 3.45600E-2 indicates that the number has been rounded to .0345600.

d. Trailing zeros after the decimal point are not printed.

The following program, in which powers of 2 are printed out, demonstrates how numbers mpﬁnted o

16 FOR N=-5 TO 30

20 - PRINT 21N
30 NEXT N

4 END

RUN

POWERS 11&54 197208769

3.12500E-2 6.25000E-2 0.125 ©0.25 0.5 1 2 4 8 16 32 64 128
256.512 1024 2048 4096 8192 16384 32768 65536 131872 262144
524288 1048576 2097152 4194304 8388608 16777216 33553332
67108864 1.34218 E+8 2.68435 E+8 5.36871 E+8 1.07374 E+9

6.2 INPUT STATEMENT

At times, during the running of a program, it is desirable to have data entered. This is particularly true when
one person writes the program and saves it on the storage device as a library program (refer to SAVE command,
Chapter. 9), and other persons use the program and suppy their own data. Data may be entered by an INPUT
statement, which acts as a READ but accepts numbers of alphanumeric data from the Teletype keyboard. For

\ example, to supply values for X and Y into a program, type the following:

40 INPUT X,Y

prior to the first statement which uses either of these numbers. When BASIC encounters this statement, it types
a queshon mark. The user types two numbers, separated by a comma, and presses the RETURN key, and BASIC

continues the program. No number can be longer than 8 digits. : ~

¢

Frequently, an INPUT statement is combined with a PRINT statement to make sure that the user knows what the
question mark is asking for. You might type in the following statement:

20 PRINT "YOUR VALUES OF X>Y, AND Z ARE";
30 INPUT X»Y>Z

and BASIC types out ‘the following:

YOUR VALUES OF X»Y», AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next line.

Data entered via an INPUT statement is not saved with the program. Therefore, INPUT should be used only

when small amounts of data are to be entered, or when necessary during the running of the program.

3-48

6.3 STOP STATEMENT

STOP is equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement in the program. For

example, the following two program portions are exactly equivalent:

250 GO TO 999 250 STOP
340 GO TO 999. 340 STOP
999 END 999 END

6.4 REMARKS STATEMENT (REM)

REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the remainder
of that line, allowing you to follow the REM with directions for using the program, with identifications of the
parts of a long program, or with any other information. Although what follows REM is ignored, its line number
may be used in a GOTO or IF-THEN statement as in the following:

100 REM INSERT IN LINES 900-998. THE FIRST

110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY
200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
300 RETURN

520 GOSUB 200

A second method for adding comments to a program consists of placing an apostrophe (') at the end of the line,
and following it by a remark. Everything following the ' is ignored except when the line ends in a string (refer
to Chapter 8).

6.5 RESTORE STATEMENT

The RESTORE statement permits READing the data in the DATA statements of a program more than once. When-
ever RESTORE is encountered in a program, BASIC restores the data block pointer to the first number. A subse-
quent READ statement then starts reading the data all over again. However, if the desired data is preceded by
code numbers or parameters, superfluous READ statements should be used to pass over these numbers. As an
example, the following program portion reads the data, restores the data block to its original state, and reads

the data again. Note the use of line 570 (READ X) to pass over the value of N, which is already known.

100 READ N
110 FOR I=1 TO N
120 READ X

s e 00 e

200

560
570
580
590

™0

710

NEXTI
RESTORE
READ X

FOR I=1 TO N
READ X
DATAe e oo
DATA..O..

CHAPTER 7
VECTORS AND MATRICES

'
Operations on lists and tables occur frequently; therefore, a special set of 13 instructions for matrix computations,
all of which are identified by the starting word MAT, is used. These instructions are not necessary and can be
replaced by combinations of other BASIC instructions, but use of the MAT instructions results in shorter programs

that run much faster.

The MAT instructions are as follows:

MAT READ a, b, ¢ Read the three matrices, their dimensions
having been previously specified.
MAT ¢ = ZER Fill out ¢ with zeros.
_MAT ¢ = CON Fill out ¢ with ones.
MAT ¢ = IDN Set up c as an identity matrix.
MAT PRINT a, b, ¢ Print the three matrices. (Semicolons can be

used immediately following any matrix which
you wish to have printed in a closely packed

format.)
MAT INPUT v Call for the input of a vector.
MATb =a - Set the matrix b equal to the matrix a.
MATc=a+b Add the two matrices a and b.
MATc=a-b Subtract the matrix b from the matrix a.
MATc=a*b Multiply the matrix a by the matrix b.
MAT ¢ = TRN(a) Transpose the matrix a.

MAT c = (k) *a Multiply the matrix a by the number k. The
- number, which must be in a parentheses, may
also be given by a formula.

MAT ¢ = INV (q) Invert the matrix a.

3-51

7.1 MAT INSTRUCTION CONVENTIONS

The following convention has been adopted for MAT instructions: while every vector has a component 0, and
every matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus, if we have a matrix of

dimension M-by-N in a MAT instruction, the rows are numbered 1, 2, ..., M, and the columns 1, 2, ..., N.
The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the following:
DIM M(20,35)

M may have up to 20 rows and up to 35 columns. This statement is written to reserve enough space for the
matrix; consequently, the only concern at this point is that the dimensions declared are large enough to accom-
modate the matrix. However, in the absence of DIM starements, all vectors may have up to 10 components and
matrices up Vté 10 rows and 10 columns. This is to say that in the absence of DIM statements, this much space
is automatically reserved for vectors and matrices on their appearance in t!\e program. The actual dimension

" of a matrix may be determined either when it is first set up (by a DIM statement) or when it is computed. Thus

the following

19 DIM M(20,7)

reads a 20-by~7 matrix for M, while the following:
50 MAT READ M(17,30)
reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

12 DIM M(20,35)

7.2 MAT C = ZER, MAT C = CON, MAT C = IDN

The following three instructions:

"~ MATM=ZER (sets up matrix M with all components equal to zero)
MAT M= CON (sets up matrix M with all components equal to one)
MAT M=IDN (sets up matrix M as an identity matrix)

act like MAT READ as far as the dimension of the resulting matrix is concerned. For example,

MAT M = CON(7,3)

’ . 3"52

sets up a 7-by=-3 matrix with 1 in every component, while in the following:
MAT M=CON

sets up a matrix, with ones in every component, and of 10-by~10 dimension (unless previously given other dimen-
sions). It should be noted, however, that these instructions have no effect on row and column zero. Thus, the

following instructions:

10 DIM M(208,7)

20 MAT READ M(7,3)
35 MAT M=CON

(Y MAT M=ZER(15,7)
9 MAT M=ZER(16,10)

first récnd in a 7-by-3 matrix for M. Then they set up a 7-by-3 matrix of all 1s QFor M (the actual dimension having
been set up as 7-by-3 in line 20). Next they set up M as a 15-by-7 all-zero matrix. kNofe that although this

is larger than the previous M, it is within the limits set in 10.) An error message results because of line 90. The
limit set in line 10is (20+ 1) x (7 + 1) = 168 componehfs, and in 90 we are calling for (16 + 1) x (10 + 1) = 187
components. Thus, although the zero rows and columns are ignored in MAT instructions, they play a role in

determining dimension limits. For example,

0 MAT M=ZER(25,5)

would not yield an error message .

Perhaps it should be noted that an instruction such as MAT READ M(2,2) which sets up a matrix and which, as
previously mentioned, ignores the zero row and column, does, however, affect the zero row and column. The
redimensioning which may be implicit in an instruction causes the relocation of some numbers; therefore, fhe): .
may not appear subsequently in the same place. Thus, even if we have first LET M(1,0) = M(2,0) = 1, and then
MAT READ M(2,2), the values of M(1,0) and M(2,0) now are 0. Thus when using MAT instructions, it is best

not to use row and column zero. ,

7.3 MAT RRINT A, B, C

The following instruction:
" MAT RRINT A, B; C

causes the three matrices to be printed with A and C in the normal format (i.e., with five components to a line

and each new row starting on a new line) and B closely packed.

-Vectors myslwuaed in place of matrices, as long as the above rqlgs are observed. S’inceqa vecfor like V(1) is
treated as a column vector by BASIC, a row.vector has to be introduced as a matrix that has only one row,

namely row 1. Thus,
" DIMX(7), Y(0,5)

introduces a 7-component column vector and a 5-component row vector.
If V is a vector, then

MAT PRINT V
prints the vector V as a column vector.

MAT RRINT V,
prints V as a row vector, five numbers to the line, while

MAT PRINT V;

prints V as a row vector, closely packed. -

7.4 MAT INPUT V AND THE NUM FUNCTION

The following instruction:
MAT INPUT V

calls for the input of a vector. The number of components in the vector need not be specified. Norma"y , the
input is limited by its having to be typed on one line. However, by ending the line of input with an ampersand
(&) before the carriage return, the machine asks for more input on the next line. Note that, although the number

“ of components need not be specified, if we wish to input more than 10 numbers, we must save sufficient space
with a DIM statement. After the input, the function NUM equals the number of components, and V(1), V(2), ...,
V(NUM) become the numbers inputted, allowing variable length input. For example, ‘

5 LET S=0

10 MAT INPUT V
LET N=NUM

IF N=@ THEN 99
FOR I=1 TO N
LET S=S+V(I)
NEXT 1

PRINT S/N

GO TO 5

END

SI8LEEEER

allows the user to type in sets of numbers, which are averaged. The program takes advantage of the fact that
zero numbers may be inputted, and it uses this as a signal to stop. Thus, the user can stop by simply pushing

RETURN on an input request.

7.5 MATB=A

This instruction sets up B to be the same as A and, in doing so, dimensions B to be the same as A, provided that

sufficient space has been saved for B.

7.6 MATC=A+BAND MATC=A -8B

For these instructions to be legal, A and B must have the same dimensions, and enough space must be saved for
C. These statements cause C to assume the same dimensions as A and B. Instructions such as MATA =A £B
are legal; the indicated operation is performed and the answer stored in A. Only a single arithmetic operation

is allowed; therefore, MAT D = A+ B - C is illegal but may be achieved with two MAT instructions.

7.7 MATC=A*B

For this instruction to be legal, it is necessary that the number of columns in A be equal to the number of rows.
- in B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N, then C=A * B

has dimension L-by-N. It should be noted that while MAT A = A + B may be legal, MAT A= A * B is self-

destructive because, in multiplying two matrices, we destroy components which would be needed to complete

the computation. MAT B= A * A is, of course, legal provided that A is a "square" matrix.

7.8 MAT C = TRN(A)

This instruction lets C be the transpose of the matrix A, Thus, if matrix A is an M-by-N matrix, C is an N-by-

M matrix.

7.9 MATC=(K)*A

This instruction allows C to be the matrix A multiplied by the number K (i.e., each component of A is multiplied
by K to form the components of C). The number K, which must be in parentheses, may be replaced by a formula.
MAT A = (K) * A is legal. -

7.10 MAT C = INV(A) AND THE DET FUNCTION

This instruction allows C to be the inverse of A. (A must be a "square" matrix.) The function DET is available

after the execution of the inversion, and it will equal the determinant of A. This condition enables the user

3-55

to dec.ide whether the determinant was large enough for the inverse to be meaningful. In particular, attempting
to invert a singular matrix does not cause the program to stop, but DET is set equal to 0. Of course, the user
may actually want the determinant of a matrix, and he may obtain it by inverting the matrix and then noting
what value DET has. V ‘

A

7.11 EXAMPLES OF MATRIX PROGRAMS ‘ :

The first example reads in A and B in line 30 and, in so doing, sets up the correct-dimensions. Then, in line 40,
A + A is computed and the answer is called C. This automatically dimensions C to be the same as A. Note that

the 'data in line 90 results in A being 2-by-3 and in B being 3-by-3. Both MAT PRINT formats are illustrated,

and one method of labeling a matrix print is shown.

10 DIM AC20,20), B(20,20), C(20,20)
20 - READ M,N . .
30 MAT READ A(M,N),B(N,N)

49 MAT C=A+A

50 MAT PRINT C3

60 MAT C=Ax*B

7 PRINT N

75 . PRINT "Ax*B='',

80 MAT PRINT C

90 DATA 2,3

91 DATA 1,2,3

92 DATA 4,556

93 . DATA 1,03,-1

94 DATA @,-15-1

95 . DATA -1,0,0

99 END

RUN

MATRIX 13:48 10720769

4
8 10 12
AxB=
-2 -2 -3
-2 -5 -9

The second example inverts an n-by-n Hilbert matrix:

1 1/2 /3. .. 1/n
1/2 1/3 /4. .. /n+1

1/3 1/4 /5. .. 1/n+2

1/n 1/n+1 1/n+2 1/2n-1

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this occurs after correct
dimensions have been declared. A single instruction then results in the computation of the inverse, and one

more instruction prints it. Because the function DET is available after an inversion, it is taken advantage of in
line 130, and is used to print the value of the determinant of A. In this example, we have supplied 4 for N in

the DATA statement and have made a run for this case:

5 REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIX
10 DIM A(20,20),B(20,20)

20 READ N .
30 MAT A=CON(N,N)

50 FOR I=1 TO N

60 FOR J=1 TO N

70 LET ACI,J)=1/CI+J-1)

80 NEXT J

9% NEXT I

100 MAT B=INV(A)

115 PRINT "INV(A)="

120 MAT PRINT Bj

125 PRINT

130 PRINT "DETERMINANT OF A=" DET

190 DATA 4

199 END

RUN

HILMAT 13:52 10720769

INVCAD =

16.0001 -120.001 240.003 -140.002
-120.001 1200.01 -2700.03 1680.02
240 .003 -2700.03 6480 .08 -4200.05
-140.002 1680.02 -4200.05 2800 .03

DETERMINANT OF A=1.65342 E-7

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond n =7, the

Hilbert matrix cannot be inverted because of severe round-off errors.

7.12 SIMULATION OF N-DIMENSIONAL ARRAYS

Although it is not possible to create n-dimensional arrays in BASIC, the method outlined below does simulate:
them. The example is of a three-dimensional array, but it has been written in such a way that it could be easily
changed to four dimensions or higher. We use the fact that functions can have any number of variables, and we
set up a 1-to-1 correspondence between the components of the array and the components of a vector which equals
the product of the dimensions of the array. For example, if the array has dimensions 2, 3, 5, then the vector
has 30 components. A multiple line DEF could be used in place of the simple DEF in line 30 if the user wished

to include error messages. The printout is in the form of two 3-by-5 matrices.

3-57

DIM V(1000)

- MAT READ D(3) , \ A
DEF FNACI,J>K)=((I-1)%D(2)+(J-1))*D(3)+K

FOR I=t TO D(1?

FOR K=1 TO D(3)

LET V(FNAC(I,»J>K))=I1+2%J+Kt2
PRINT V(FNA(I,J»K)),
NEXT K

NEXT J

PRINT

PRINT

NEXT 1I

DATA 2,3,5

END

08:07 10727769

7 12 19 28
9 14 21 . 30
11 16 23 32
8 13 20 29
ro 15 22 31
12 17 24 33

CHAPTER 8
ALPHANUMERIC INFORMATION (STRINGS)

In brevious chapters, we have dealt only with numerical information. However, BASIC also processes alphabetic
and alphanumeric information. A sf;'ing is a sequence of characters, each of which is a letter, a digit, a space,

or some other printable character.

Variables may be introduced for simple strings.and string vectors, but not for string matrices. Any simple variable;
followed by a dollar sign ($), stands for a string; e.g., A$ and C7$. A vector variable, followed by $, denotes
a list of strings; e.g., V$(n) where n is the nth string in the list. For example, V$(7) is the seventh string in-the
list V.

8.1 READING AND PRINTING STRINGS

Strings may be read and printed. For example:

READ A%, B%, C$
PRINT C$%; B$%; AS$
DATA ING>SHAR,TIME-
END

§88s

causes TIME-SHARING to be printed. The effect of the semicolon in the PRINT statement is consistent with
that discussed in Chapter 6; i.e. ,‘with alphanumeric output, the semicolon causes close packing whether that

output is in quotes or is the value of a variable. Commas and TABs may be used as in any other PRINT statement.

The loop:
70 FOR I=1 TO 12
80 READ M$(I)
0 NEXT I

reads a list of 12 strings.

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For example, MAT
PRINT M$; causes the members of the list to be printed without spaces between them. We may also use INPUT
or MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings inputted.

As usual, lists are assumed to have no more than 10 elements; otherwise, a DIM statement is required. The

following statement:
10 DIM M$(20)
saves space for 20 strings in the M$ list.

In the DATA statements, numbers and strings may be intermixed. Numbers are assigned only to numerical var-
“ iables, and strings only to siring variables. Strings in DATA statements are recoghizedby the fact that they
start with a letter. If they do not, they must be enclosed in quotes. The same requirémenf holds for a string

containing a comma. For example:
90 DATA 108,ABC,5,"4FG",'"SEPT. 22, 1968",2

The only convention on INPUT is that a string containing a comma or starting with a non-alphanumeric character

must be enclosed in quotes.

With a MAT INPUT, a string containing a comma or an arﬁpersond (&) must be enclosed in quotes. The following

example shows the correct format for a response to a MAT INPUT:

"MR. & MRS. SMITH", MR. JONES

8.2 - STRING CONVENTIONS

In employing the three methods of inputting string information info a program (DATA, INPUT or MAT INPUT),
leading blanks are ignored unless the string, including the blanks, is enclosed in quotes. Strings (in quotes) or

string variables may occur in LET and IF-THEN statements. The following two examples are self-explanatory:

10 LET Y$="YES"
20 IF Z7%="YES" THEN 200

The relation "<" is interpreted as "earlier in alphabetic order.” The other relational symbols work in a similar

manner. In any comparison, trailing blanks in a string are ignored, as in the following:
"YES" = "YES

We illustrarte these possibilities By the following program, which reads a list of strings and alphabetizes them:

12

SEITLEELER

100
110
120
W0
999

DIM L$(50)

READ N

MAT READ L$(N)

FOR I=1 TO N

FOR J=1 TO N-I

IF L$(J)<=L$(J+1) THEN 100
LET A$=L$(J)

LET LSCJ)=L$CJ+1)

LET LS(J+1)=A%

NEXT J

NEXT I

MAT PRINT L$

DATA 5,0NE, TWO, THREE,FOUR, FIVE
END

Omitting the $ signs in this program serves to read a list of numbers and to print them in increasing order.

A rather common use is illustrated by the following:

330
340
350
360

PRINT "DO YOU WISH TO CONTINUE";
INPUT AS

IF A$=""YES'" THEN 1@

STOP

8.3 NUMERIC AND STRING DATA BLOCKS

Numeric and string data are kept in two separate blocks, and these act independently of each other. RESTORE

retains both the numerical data and the string data. RESTORE* retains only the numerical data and RESTORE $

only the string data.

-

8.4 ACCESSING INDIVIDUAL CHARACTERS

In BASIC, it is very easy to obtain the individual digits in a number by using the function INT. I is possible

to obtain the individual characters in a string with the instruction CHANGE. The use of CHANGE is best

illustrated with the following examples.

10
15
20
25

45

RUN

CHANGE

26 65
82 83

DIM AC65)

READ A%

CHANGE A% TO A

FOR I=0 TO A(B)

PRINT ACI);

NEXT I

DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
END

13:55 10720769

66 67 68 69 70 71 72 73 74 15 76
84 85 86 87 88 89 90

77 78 79 80 81

In line 15, the instruction CHANGE A$ TO A has caused the vector A to have as its zero component the number
of i;haracfers in the string A$ and, also, to have certain numbers in the other components. These numbers are
the BAS\IC code numbers for the characters appearing in the string (e.g., A(1) is 65 - the BASIC code number
for A).

The BASIC code for the printable characters is as follows:

Character BASIC Code No. Character BASIC Code No.
(Decimal) (Decimal)
Space

A 32 @ 64
" 34 B 66
35 C ‘ 67
$ 36 D 68
% 37 E 69
* 42 J 74

45 M 77
.:. 46 N 78
0 48 P 80
2 50 R 82
4 52 T 84
8 56 X 88
: 58 zZ 90
< 60 \ 92
= 61] 93
> 62 1 94
? 63 - 95

Additional symbols useful on output .are as follows:

LF (line feed) 10
CR (carriage return) 13

The above list is not complete; there are 128 characters numbered 0 through 127.

The other use of CHANGE is illustrated by the following:

10
15
20
25
30
35
40

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E.
Before CHANGE is used in the vector-to-string direction, we must give the number of characters which are to be

in the string as the zero component of the vector. In line 15, A(0) is read as 5. The following is a final example:

Z38EELEB8EY

zZ

EXAMPLE

WHAT DO
(-<-YZ
WHAT DO

FOR I=@ TO 5

READ A(CI)

NEXT 1

DATA 5,65566567568,69
CHANGE A TO AS

PRINT A%

END

DIM v(128)

PRINT "WHAT DO YOU WANT THE VECTOR V TO BE":;
MAT INPUT V

LET V(@)>=NUM

CHANGE V TO A$

PRINT A%

GO TO 10

END

13:59 10720769

YOU WANT THE VECTOR V TC BE? 40,32,45,60,45,89,90

YOU WANT THE VECTOR V TO BE? 32,33,34,35,36,37,38,39,40,41,42,54&

? 43,44,455465,47,48549,50
I"FSZ& (I*x+s5-./012

WHAT DO

Note that in this example we have used the availability of the function NUM after a MAT INPUT to find the

number of characters in the string which is to result from line 40. Giving the input "4" on the last request

YOU WANT THE VECTOR V TO BE? 4

obtains the response EOT (end of transmission), which turns off the Teletype.

. CHAPTER 9
EDIT AND. CONTROL

Several commands for editing BASIC programs and for controlling their execution enable you, for example, to:

o Q

a o

delete lines

list the program

change or resequence line numbers with set increments

save programs on a file-structured storage device (disk or DECtape)

e. replace old programs on the storage device with new programs

-
.

call in programs from the storage device.

These commands are summarized as follows:

Command

DELETE n
DELETEn,m
LENGTH
LIST

LIST n

LIST n,m

LISTNH
LISTNH n
LISTNH n,m

NEW
OLD

RENAME filename
REPLACE

RUN

RUNNH

Action

Delete line number n and the contents of the line from user core.
Delete line numbers n through m from user core.

Print length of source program (expressed as the number of characters).
List program with heading.

List program with heading, beginning at line number n.

List program with heading, from line number n through m.
Same as LIST, but with heading suppressed.

BASIC asks for new program name and checks to make certain that it
does not already exist.

BASIC asks for program name and replaces current contents of user core
with existing program of that name from the storage device.

Change name of program currently in user core.
Replace old file of current name with contents of user core.
Compile and run program currently in core.

Same as RUN, but with heading suppressed.

Command ’ o . Action

SAVE Save the contents of user core as file whose filename is current program .
- name and whose extension is .BAST.

SAVE filename Save user core as filename .BAST,
SCRATCH : Delete all program statements from user core.
RESEQUENCE n ‘ Change line numbers ton,n+10,
RESEQUENCE n, ,k Change line numberston, n+k,

. Commas are necessary as argument delimiters.
RESEQUENCE n, f, k Change line numbers from line f upward ton, n+k,
, f must not be greater than n. ‘
SYSTEM Exit to Monitor.
WEAVE filename Read program statements from the file named filename.BAS

(existing statements in user core are replaced by new statements
having same line numbers).

tC To stop a running program and enter Monitor level, type 1C twice.
to : To suppress output (typeout), type tO.

‘ TSAVE commands do not overwrite an existing file of the same name (use REPLACE instead).

3-66

CHAPTER 10
DATA FILE CAPABILITY

The data file capability allows information to be written onto the disk for immediate or semipermanent storage.
The user can save this information until the disk is refreshed, or he can utilize PIP (Peripheral Interchange

Program) to save it permanently on DECtape or paper tape.

With each BASIC program, a user can save up to nine files, each with a different filename. The filename is
assigned by the user and must follow the filename rules described in Chapter 4. The extension is assigned by
the BASIC compiler and is set to .BAS. (All BASIC files have this extension.) The current date and time are
placed into the file directory along with the project-programmer numbers. The file protection key is set to the
standard protection when the file is created, indicating protection-protection and write-protection against all

users except the owner of the file.

10.1 FILES COMMAND ’ (

The FILES command specifies what files are to be read or written. The command format appears as follows:
FILES namel, name2, ..., name9

where namel, name2, ..., name9 are filenames. The filenames may be separated by commas or semicolons.
This command may come after any executable command, but must precede any command that is associated with

creating a new file or referencing an old file.

1/0O channels c\:‘re assigned consecutively, starting with channel 1, to the files. The names are positional , where
name1 corresponds to software channel 1, name2 to software channel 2, and so forth, up to name? to software
channel 9. Since the filenames are positional, commas must precede filenames that are not sequentially ordered,

for example:

10 FILES 55S55R»T

indicates that input or output is desired on channel 3 (filename S), channel 5 (filename R), and channel 6

(filename T).

3-67

. Files are in either read or write mode and are assumed fo be initially in read mode. ‘An error message is given
if an attempt is made to read a file which does not exist or to read a file which is being written. Examples of

" the FILES command are as follows:

FILES AAA
FILES X,Y,Z
FILES .D,F

10.2 SCRATCH COMMAND

The SCRATCH command opens a file for writing. More than one channel may be referenced. The command

format is as follows:

SCRATCH #M,EN, #Por
SCRATCH #M,N,P

where M, N, and P are channel specifiers. The # must precede the first channel specifier, but need not be
dumplicated for subsequent channel specifiers in the same command. This command must be used prior to the

writing of a file. Examples of the SCRATCH command are-as follows:

SCRATCH #1
SCRATCH #1, #4
SCRATCH #1, 4

10.3 WRITE COMMAND

The WRITE command causes data to be output to the disk on the specified channel. The data may be an area
of storage previously dimensioned, or any information appearing in a PRINT statement. The format of 1/0 to
the disk is the same as the format to the Teletype. The command format is as follows:

WRITE #N, (sequence of variables)

»

where N is a channel specifier. When writing a file, BASIC inserts line numbers, starting with 10 and incre-
menting by 10. After each line number, BASIC inserts the letter D to separate the line number from the data.
When reading a file, BASIC recognizes the nondigit character (D) following the line numbers, and ignores it.

Examples of the WRITE command are as follows:

WRITE #2, A1)
WRITE 6, Z$

3-68

© The following is an example of the storage of the sines of 1-10 radians in file RRR:

10 DIM AC1@)

o0 FILES RRR

30 SCRATCH #1

4y FOR I=1 TO 10
50 ACII=SINCI)
&0 WRITE #1,ACD)
70 NEXT I

80 END

10.4 RESTORE COMMAND

The RESTORE command opens a file for reading. More than one channel may be referenced. The command for-

mat is as follows:

RESTORE tM, N, #P or
RESTORE #M,N,P

where M, N, and P are channel specifiers. The main use of the RESTORE command is to reread a file or read
a file that has just been written. If the first function in the program is to read an already existing file, the
command is not necessary. In other words, if a different program created the files, then a new program does
not need the RESTORE command in order to read the files; this is because files are initially in read mode.

Examples of the RESTORE command are as fol lows:

REST ORE #1, #2
RESTORE #1,2

10.5 INPUT COMMAND

The INPUT command causes data to be input from the disk on the specified channel into the specified area.

Each command can reference only one channel and, therefore, only one file. The command format is as follows:

INPUT #N, (sequence of variables)

where N is a channel specifier. The READ and INPUT commands are equivalent when data files are read from

the disk, and the PRINT and WRITE commands are equivolént when data files are written on the disk. Examples

of the INPUT command are as follows:

INPUT #2, AG)
INPUT *6, Z$
INPUT #3, B(K)

The following example demonstrates access to previously stored values in the file RRR:

DIM AC10)
FILES RRR
FOR I=1 TO 10
INPUT #1,ACD)
PRINT ACI)
NEXT I

END

dQYELESs

RUNN H

0.841471

0.9069297

B.14112

-0.756802
-0 .958924
-0.279416
B.656987
?.969358
P.412119
-0 .544021

10.6 IF END COMMAND

This command provides control in a program when an End-of-File is detected during input from the disk. The

command format is as fol lows:

IF END #N {(;I{OE?O} (line number)

where N is a channel specifier. The line number must follow the rules discussed in Chapter 1. Either THEN or

GO TO is acceptable. Examples of the IF END command are as follows:

IF END #1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>