
· ,
..;.~ " .. ~ '.

~BmBDmD ~ handbook series

MONI'foit COMMANDS

ABB:&E- ARGUMENTS
NAME

VIATION 1 2 3 4 5

ASSIGN AS ~ Idey
ASSIGNt AS SYS dey

ATTACH AT .i2£ [proj, progj
ATTACHt AT dey
CCONT CC
COMPILE COM list
CaNT CON
CORE COR core
CREATE CREA .ftk. .ext
CREF CREF
CSTART CS adr
CTEST
D(deposit) D Ih rh adr
DAYTIME DA
DDT DD
DEASSIGN DEA dey
DEBUG DEB list
DELETE DEL list
DETACH DET
DETACHt DET dey
DIRECT DI dey
E(examine) E adr
EDIT ED file .ext
EXECUTE EX .fu1
FILE FIL arg
FINISH FIN dey
GET G dey .&k .ext [proj, progj core
HALT tC
KJOB K
LIST LI list
LOAD LOA list
LOGIN LOG
MAKE M file .ext
PJOB PI
R R file .ext core
REASSIGN REA dey job
REENTER REE
RENAME REN arg
RESOURCES RES
RUN RU dey file .ext [proj, progj core
SAVE SA dey file .ext core
SCHEDULEt SC n
SSAVE SS dey file .ext core
START ST adr
SYSTAT SYS
TALK TA dey
TECO TE file .ext
TIME TI job
TYPE TY list -

Key:

adr octal address Ih rh octal value of left and right half words

core decimal number of lK blocks
dev physical device name

ldev logical device name
.ext filename extension

file filename
job job number assigned by Monitor

privileged command

[proj, progj project·programmer numbers

list

arg

n

a single file specification or a string of

file specifications
a pair of file specifications or a string

of pairs of file specifications
scheduled use of the system.

underline means always required

See Book 2 and Book 7 for further explanation of commands.
~se abbreviations are accurate and unique as of now, but their accu­
racy' 'and uniqueness may be changed in the future by the addition of
new com'inltlld~

PDP-tO
TIMES NG

HANDBOOK
Prepared by

The PDP-tO Software Writing Group ..
Programming Department

Digital Equipment Corporation

Additional copies of this handbook may be ordered from the
Program Library, Digital Equipment Corporation, Maynard, Mass.
01754. Order code AKW. $5.00 each. Discounts are available on
five or more copies.

PDP-tO HANDBOOK SERIES

All rights reserved.
Permission to reproduce this handbook or any parts thereof may be
obtained from the PDP-I0 Product Line Manager, Digital Equip­
ment Corporation, Maynard, Mass.
The material in this handbook is for information purposes and is
subject to change without notice.

Copyright o@ 1968, 1969, 1970 by
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DEC . • Digital PDP

"

INTRODUCTION TO TIMESHARING
(pages 1-1 thru 1-,12)

GETTING STARTED WITH THE MONITOR
(pages 2-1 thru 2-20)

III

BASIC
(pages 3-1 thru 3-78)

AID
(pages 4-1 thru 4-99)

FORTRAN
(pages 5-1 thru 5-133)

DEMONSTRATION PROGRAMS
(pages 6-1 thru 6-49)

ADVANCED MONITOR COMMANDS
(pages 7-1 thru 7-21)

UTILITY PROGRAMS
(pages 8-1 thru 8-89)

APPENDICES
(pages A-I thru B-4)

INDEX
(pages Index-l thru Index·-lO)

IV

FOREWORD

We have written this handbook for the individual with little or no
programming skill in an attempt to bring timesharing programming
competence- to an ever-expanding circle of new computer users. With
this volume as his guide, we hope he can soon acquire the necessary
programming knowledge to improve his business or professional
activity by the application of computer technology.

I'm pleased to acknowledge here the work of the many DEC program­
mers, designers, and engineers who continue to advance the state of
the timesharing art in both hardware and software, and the DEC
software writers and technical artists who prepared this volume.

President, Digital Equipment Corporation

v

PREFACE

In devel~ping its timesharing capability, Digital has built a history
of sm:cess very similar to the company's record in realtime. applica­
tions. That history started in 1960 when Digital's customers began
building timesharing systems around PDP computers. Three years
later Digital itself started dev~lopment of its own timesharing system,
the PDP-6; and 4t 1964 the PDP-6 became the first timesharing com­
puter to be delivered with manufacturer-supplied hardware and soft­
ware.
Th~ PDP-I0, which emerged in 1967,.is the successful culmination
of many years of computer research. Its power, versatility, and low
cost make ~t a leader in the general-purpose timesharing field. For its
timesharing users" the' PDP-lO perfOmis scientific data analyses,
helps make better management decisions, ~ids in engineering and
architectural design, ,makes investment analyses, and provide!! man­
agement information services.
With this handbook, Digital attempts' to bring its doctimentation
on timesharing to a par with its hardware and software accomplish­
ments. The handbook is intended primarily for students, scientists,
engineers, and financial analysts who have little or no experience
in programming. From it they can learn timesharing programming
from a remote Tel,etype using disk input' output.
This is not to say that an experienced programmer is automatically
debarred from using this document. If the reader happens to be a'
program~er, he should skip the preliminary books, go straight to
the computer 'language in Book 5, and commence programming.
In Book 6 he will find that Demonstration Programs..~3 and 4 are
geared to his level of programming knowledge and competence.

A synoptic view of the contents of the handbook is as follows.
Book 1 describes the evolutionary hist9ry of timesharing and gives
the reader an insight into the way it operates. Book 2, in explain­
ing the elementary monitor commands, shows the reader how 'to
get on the system. In Books, 3 and 4 the reader will find conversa­
tional programming with BASIC and AID, respectively. Book 5,
'as already indicated, contains FdRTRAN. Four demonstration ,pro­
grams constitute Book 6; advance~ monitor commands are found
in Book 7; and the four utility' programs Batch,CHAIN, LINED, and
TECO appear in Book 8.
Since the handl"ook will be revised periodically in order to improve
it and keep it up to date, we solicit the reader's constructive eval­
uations in the questionnaire at the back of the book. Please fill
out the questionnaire and return it to

PDP-I0 Software Writing Group
Programming Department

Digital Equipment Corporation
Maynard, Massachusetts 01754

A companion volume, the PDP-! 0 Reference Handbook; is likewise
iIi, print. It is oriented toward experienced programmers who are
interested in writing and -operating assembly;-language programs.

VI

Foreword

Preface

Book 1

CONTENTS

Introduction to Timesharing .. '

A general description of the operation of a variety of factors in the evolution
of timesharing.'

v

VI

1-1

Book 2 Getting Started with the Monitor .. 2-1

Book 3

Book 4

Logging in, description of files, elementary commands to create, edit, manip­
ulate, translate, load, and execute files, getting information from the system,
and logging off the system. ..

Conversational Pr9gramming with BASIC

A complete book, explaining the procedures for logging in, logging off, and
writing, editing, and running programs in BASIC-a problem-solving conver­
sational language that can be used to solve both simple and complex mathe-
matical problems. '-.

Conversational Programming with AID

A complete book explaining how to program in AID, an algebraic conversa­
tional language designed to solve both simple and complex numerical problems.

3-1

4-1

Book 5 Programming in FORTRAN :, .. .-............ 5-1

Book 6

A reference ~ook describing the specific statements and features of the FOR­
TRAN IV language, designed primarily for the experienced FORTRAN
programmer.

Demonstration Programs

Four programs designed to utilize concepts and commands discussed in this
manual. Demonstrations three and four also make use of advanced commands
in TECO and DDT.

6-1

Book 7 Advanced Monitor Commands .. 7-]

Explanation of monitor commands not covered in Book 2-commands to
allocate system resources, produce line printer listings, manipulate core images,
start a program, and get information from the system.

Book 8 Utility Programs .. 8-1

Includes BATCH-sequential execution of a series of jobs, CHAIN-allows
users to deal with FORTRAN programs too large to fit or load into the amount
of core available, LINED-a line-oriented editor designed for use on the disk,
and TECO--description and explanation of the most frequently used com­
mands of this powerful text editing program.

Appendices ... A-]

Master Index ,... Index-l

VII

..

,

•

..

VIn

Bookt

Introduction
to·.·

Timesharing

1
_, .-

,;.t.

j

•

INTRODUCTION TO TIMESHARING

Why Timesharing?

Early computers were the province of the mathematician. Used
mainly to solve differential equations, the systems were narrow in
scope and poorly utilized. Since few persons were knowledgeable
enough to employ the enormous processors, one individual could
monopolize computer time-sit at the console and solve problems
in step-by-step fashion.

As more people discovered computin~ techniques, it was no
longer practical to let a few persons monopolize computer time.
To increase machine efficiency, batch processing was introduced.
In this mode of operation; no time was wasted between jobs.
Programs were punched on cards and the,cards stacked and fed
to the computer jn batches. Operation of each program was gov-

/ erned by control cards that took the place of the human operator.

Since card reading is a relatively slow process, some early sys­
tems employed a small computer to read the cards and transfer
program information to magnetic tape that was then input to the
large computer. As a further refinement, programs were assigned
priorities, with short jobs being executed first to minimize job
turnaround.

But what about the computer user? As computer utilization
improved, program development took more time. To develop a
new program, a user performed the following procedure. After
writing the program on paper, he carried it to a keypunch op­
erator to have the cards punched and verified. A day or so later,
when the program was returned, the user checked for punching
errors, then returned to the keypunch for corrections.

Next, he sent the cards to the computer center for compilation.
The compilation, which might not be returned for a half day' or
more, could ,reveal spelling or syntactical errors. The cards then
had to be changed and resubmitted-another half day's wait. If
the next compilation was successful and the program was run,
program logic errors -might be discovered-new cards, new com­
pilation, etc., etc. In addition, the user often studied reams of
computer listings to find the errors. Using these inefficient meth­
ods, even simple programs might take weeks to develop.

Batch processing maximizes machine efficiency in routine data
processing operations where turnaround is not critical. But .for
program development and modification, the user requires another
mode of operation. The user needs a way to "interact" with the
computer-to feed-his program to the system, line by line, and
continuously check the results.

1-3

batch processing

interaction

dedicated system ,

timesharing

time slice
time quantum

round robin operation

•

In .fact, the user may want to develop interactive programs.
These programs, which are extremely productive toofs, ask the
user questions and perform an analysis based on his answers.
Electronic circuit design programs are a'prime example. The com­
puter actually designs the circuit by asking the engineer questions
and manipulating his answers. In addition, interaction provides a
'new dimension in management information reporting. Via an
interactive terminal, a manager can request summaries, plot trends
in plant operation and sales, and select special data for use in
decision making.

If the user had unlimited funds, he might be teQIpted to buy or
lease a large computer~a system he could dedicate to his work
that would provide sufficient power, many peripherals, and a large
variety of software. With such a syst~m, the user could develop
programs interactively or utilize batch processing for routine
tasks. However, costs in excess of $20,000 per month normally
preclude the dedication of a large system to a single user,.

By using timesharing, the user has most of the benefits of a
dedicated system at a small fraction of the cost. Timesharing with
today's technology allows a large powerful computer to handle
20, 50, 100 or more users simultaneously. Through a choice of
terminals, the user can interact with the system or initiate batch
proc~ssing which runs .c9ncurrently. The user also has access to
a choice of mass storage and pedpherals and a, selection of lan­
guages and application programs. Since response is fast, the user
appears to have a 'dedicated system. Yet costs are shared. He pays
only for the time and facilities that he requires and doesn't pay
for the time the machine is idle.

The Operation of a Timesharing System -

A timesharing system isn't just any computer with some, addi­
tional hardware and software. It's a system designed specifically
for timesharing. Otherwise, facilities are limited, fewer us'ers can
be handled efficiently, and economics are unattractive. At 'a, min­
imum, a timesharing system requires a central processor with
sufficient speed and power, input/output terminals, and an amount
of core memory 'adequate to hold several users. '

In a simple timesharing system, each program is assigned a
fixed time slice or time quantum and operation is switched from
one program to an.other in round robin fashion until each program
is completed. Essentially, if-.each user receives 1/60 of a second
and 12 users are "on" the system, each , user will receive service
every 1/5 of a second. '

1-4

The timesharing system performs multiprogramming; that is,
it allows several programs to reside in core simultaneously and
to operate sequentially. The switching between programs, called
context switching, is initiated by a clock which interrupts the cen­
tral processor to signal that a certain time period has elapsed. The
interrupt function is provided by a priority interrupt system. A
monitor, also called an operating system or executive program,
directs the execution of these tasks and performs other housekeep­
ing duties.

The monitor is also involved in keeping the actions of a user
within his assigned memory space. A hardware device, a memory
protection register, which is set by the monitor, limits the core
area that a particular user can access. Any attempt by the pro­
gram to read or change information outside that limit will auto­
matically stop the program and notify the monitor.

The system discussed so ·far services a number of users sequen­
tially in round robin fashion. To increase the number of users
serviced, more main memory or core is required. However, since
core is expensive, a secondary memory is employed. This memory
-usually magnetic disk or drum-is slower than core or main
memory but provides greatly increased capacity at reasonable
cost. User programs can be located in secondary memory and
moved into main memory for execution. Programs entering main
memory exchange places with a program (or programs) that has
just been serviced by the central processor. This operation is called
swapping (see diagram).

MONITOR

USER 2

USER 3

USER 4

USER 1

USER 5

SWAPPING -

SWAPPING
DEVICE

1-5

multiprogramming

context switching , clock

priority interrupt system
monitor, operating system
executive program

memory protection register

main memory
secondary memory

swapping

. memory blocks

input/ output processor

asynchronous design

compute bound
I/O bound

sc~eduling algorithm

queue

In· operation, main memory is divided into separate memory
blocks. Secondary memory is connected to these blocks thrQugh
a high speed input/output processol'-a hardware device that al­
lows the disk or drum to· swap a program into anyone of th~
main memory blocks without any aid from the central processor.
This structure allows the central processor to be operating a user
program in one block of memory while . programs are being
swapped to ~d from another block. This independent overlapped
operation, which greatly improves efficiency and processing power,
is characteristic of an asynchronous system design philosophy.
See diagram.

MEMORY STRUCTURE

TO INPUT IOUTPUT
DEVICE

Dynamic Scheduling

Round robin scheduling, in which each program operates in
sequence and receives a fixed amount of time, is effective only if·
all programs have similar requirements. Such is not the case, how­
ever. At any particular time, a timesharing system will be handling
some programs which require extensive amounts of computing
time (and are said to be compute bound) arid other programs that
must stop frequently for input or output (I/O bound). .

To serve programs at and between these two extremes, the
scheduling algorithm must provide frequent service to I/O bound
programs and must give compute bound jobs longer time quantums
to prevent wasteful swapping .. A simple dynamic scheme could
provide two queues-one for each type of job. When a user first
logs on to the system, he is placed in ap I/O bound queue (wait­
ing line) where he receives frequent service and small time quan­
tums. If the program isn't completed or does not request input
or output during the time allotted to him, the job needs more
computing time and is placed in the compute bound queue. Thus
the scheduling algorithm optimizes system efficiency by automat­
ically adjusting to program requirements .

. 1-6

In the present state of, scheduling art, algorithms are constantly
being changed and improved. Current algorithms are extremely
sophisticated, providing excellent service for most timesharing job
mixes. They also allow fine tuning, if such modifications are neces­
sary. The ability of the algorithm to match processing to program
requirements .insures the best service possible for all user programs.

In an efficient timesharing system, monitor functions (referred
to as monitor overhead) take 5 to 10 percent of central processor
time, making 90 to 95 percent of the time available to users.

Sharing Software

Since users of large timesharing systems have varying require­
ments, a good system provides a wide variety of software-inter­
active languages such as BASIC and AID for the computations
of the engineer and scientist, FORTRAN for more complex cal­
culations, COBOL for data processing functions. Therefore many
users can have compilers and other common programs in core
at the same time.

MONITOR

FORrRAN
COMPILER 1

FORTRAN
COMPILER 2

FORTRAN
COMPILER 3

NON-REENTRANT

MONITOR

FORTRAN
PURE CODE

REENTRANT

To prevent excessive core usage which results when a program
is duplicated for several users, reentrant software is employed.
That is, the program is written in two parts. One part contains
pure code that is not modified during execution and can be used
to simultaneously service any number of users. For example, the
pure code portion of FORTRAN can service multiple FORTRAN
users. A separate second part of the program belongs strictly to
each user and consists of the code and data that is developed dur­
ing the compiling process (impure code). This section is stored in
a separate area of core. A comparison of memory usage in the
non-reentrant and reentrant systems is shown in the diagram
above.

'1-7

monitor overhead

• reentrant software

pore 'code

impure code

-,-

overlay

dual me!mory protection
and relocation

~set
modem

data line muitiplexOl'
data Hoe scanner

What are. the benefits of reentrant software? First, less core
is required. For. example, a reentrant system can service three
FORTRAN users with 'one 8K compiler and three2K user areas,
a total of 14K. A non .. reentrant system would require 30K for
the three 8K compilers and three 2K user areas. Total saviJlgs in
this case is 16K of core. Using less core means that more programs
c~ fit into a given amount of spaCe. The monitor then swaps less
often and spends less time swapping the smaller impure sections.

There are other savin~ too. Since the pure code never changes,
it doesn't have to be returned to disk storage (swapped out). As
long as a single copy is maintained on the disk, it can be called
into core at any time. Programs can be swapped in or "overlayed"
on top of the compiler to take its place in core whenever the
compiler is not needed.

To protect the pure code from being modified, a. hardware
feature is provided-dual memory protection and relocation. This
feature allows a program to execute as two separate segments,
one of which is protected. User programs, can also be written to·
make use of this protection. For example, a user might develop a
reentrant information retrieval system ~tten in COBOL.

Communications

Co~unication between the remote user and the computer
passes over the conventional dial-up telephone network. User ter­
minals can therefore be located anywhere that phone service is
available and connected to any computer system, feasibility lim­
ited only by long distance phone rates.

Each user tenirinal is connected to a data set or modem (mod­
ulator-demodulator) which converts us,er terminal output into a
signal suitable for the telephone network. At the computer end of
the phone lines, there is another data set which reconverts the
signal and feeds it to a device called a data line multiplexor or data
line scanner. This 'deviCe, in turn, feeds the information from a
number of. terminals to the central processor (see diagram).

COMMUNICATIONS

1-8

The number of data sets employed at the user end of the system
is unlimited. At the computer end of the communications net­
work, however, the number of data sets is limited by the number
of users that can be serviced simultaneously by the system.

In order to gain access to the system, the user dials the system
phone number from his data set. The telephone network handles
the call, scanning the data sets at the computer system. If all of
the sets are busy, the user receives a busy signal, jllSt as he would
with normal phone service. If a set is available, the telephone net- -
work rings it, causing the data line scanner to interrupt the 'mon­
itor. The computer answers the call, placing the user in com-
munication with the monitor. The terminal is then on-line and on-line
ready for operation.

Control of Inpnt/ Output

A timesharing system has performed its basic function if it
allows a number of users simultaneous access to a central com­
puter. However, to be fully useful, the system should also allow the
users access to other system resources-storage devices for his
programs and data, line printers, card readers, etc. For example,
the user should be able to choose between magnetic tape and disk
for program storage. And it" he has a 50-page report to produce,
he should be able to employ a line printer instead of his Teletype@.
'If users controlled these devices, however, much confusion
might result. For example, two users might select the line printer
at the same time. If one user was processing Abraham Lincoln's
Gettysburgh Address and another, Mark Anthony's funeral ora­
tion, the report might look like ,the ~ollowing:

I COME TO BURY CAESAR, NOT TO PRAISE HIM
FOUR SCORE AND SEVEN YEARS AGO
THE EVIL THAT MEN DO LIVE AFTER THEM
OUR FATHERS BROUGHT FORTH ON THIS CONTINENT

To prevent users from interfering with each other, the monitor
coordinates input and output (I/O). The processor has an operat­
ing mode switch which the ,monitor sets, before a user program is
run. If the program attempts to perform input or output, the user
program is stopped and the monitor takes over. Control thus
diverted to the monitor is called' trapping. When input/output is

, prevented or trapped, the computer is said to be in user mode;
when I/O can be performed, the system is in executive or mQllitor
_....I... "~, j ,
....,..,. ·.of

®-registered trademark. of Teletype Corporation, Skokie, Illinois

1-9

input/ _tput control '

trapping
DSel'mode
execudve mode
• ill

monitor calls
programmed operators

overlapped 1/0

access time

latency optimization

private device
public device

filing system

block of words
record

User's File Directory (UFD)
Master File Directory (MFD)

When the system is in user mode, _the memory protection
feature is -in operation. In monitor -mode, this feature isoisabled -
and the monit()r has access to. all of core. User mode also prevents
the usecfrom issuing a HALT command, which could stop op<.
eration of the entire -system. -

User-to-monitor-mode switching occurs when the user .re<iuests
I/O or other speci~ functions to be performed by 'the monitor.
The requests ate made by using computer instructions referred
-to as monitor calls or programmed operators. For more informa­
tion see PDP-lO REFERENCE HANDBOOK.

Since I/O is handled by the monitor, input or output can be
transferred even if the user program is not in main memory. The_
monitor can also' optimize throughput, keeping all devices busy
simultaneously (overlapping of I/O operations) and executing jobs
in the most efficient order. For 'example, it will start the read
mechanisms on several disk packs in motion, simultaneously, to
reduce the time required to find the desired data on each pack
(access time). In addition, by means of the disk pack controller,.
the monitor can determine which of all needed data on a pack
is closest to the read mechanism and can be obtained in the
shortest amount of time (latency optimization).

File Handling

If-a user does not require- a fast device for his exclusive use
(private device), he can elect to use a public device, in effect
performing timesharing with ,a disk or drum. Under these condi­
tions, user programs and data coexist on the device. Therefore;
a filing system is necessary if program and data s,egments are to
be retrieved in proper order.

Data is transferred from memory to a peripheral device as a
block of words or a record. (A word is the number of binary digits
or bits that the central processor can retrieve and "operate on"
at one time.) Record length can be arbitrary or dictated by the
physical device ,being used, for example, the number of columns
on an 80 column card or on a 132 column line printer. For PDP­
to disk files, the length is 128 words, so that blocks of 128 words
are written at one time on a disk or other similar device.

For convenience each user's blocks are organized in groups
called files which .are listed in proper order in a special 'block
on the disk called the User's File Directory (UFD). A Master
File Directory (MFD) is then required to mairitain the locations

1-10

of the User's File Directories and also keep track of the number
of blocks of free storage that can be assigned to new files. The
resulting hierarchy is shown in the following diagram.

MASTER
FILE

DIRECTORY

•

FILE STRUCTURE

Files, like memory, must be protected from access by unau­
thorized users. When a user closes a file, he can restrict it, specify­
ing whether others can have access, and if access is permitted,
whether tIle files can be modified or only read. With such an
arrangement, programmers in various plant locations can use the
same data to work simultaneously on the same project. But un­
authorized personnel cannot modify or read the files.

Slow Peripherals

Fast peripherals can be timeshared. But what about the slow
peripherals, such as the line printer and the card reader? Should
other users be required to wait 20 minutes or so while one user
ties up the line printer?

To eliminate conflicts, the user can request a slow device for
his exclusive or private use. For example, ,he can request the
line printer or card reader. AlsQ available for private use are

. removable storage devices such as magnetic tape, DECtape,
(DIGITAL'S low cost, high reliability magnetic tape), or disk
packs. If the device is not already assigned to another user, the

I

1-11

file protection

removable stOrage device

spooling
symbiont operation

modularity

defensive software

diagnostic software

monitor grants his request and the user has the device at his dis­
posal until he releas~ it. For examp~e, the nser could request
the use of multiple disk pack drives (exclusive use) to' sort. a pay­
roll transaction file. Or he could assign himself a 1,)ECtape drive
and ask the system operator to mount the DECtape that contains
his own personal library of programs. '

Spooling or symbiont Qperation is another method for handling
slow peripherals. In this methOd, the slow device is simulated
by . a fast peripheral such as a disk. That is, all output for the
line printer or card punch is deposited on the disk. The disk is

. later "unspooled", with a special program transferring information
to the slpw device.

A program that has data for a slow device thus waits only milli­
seconds while the data is being deposited on disk, instead of min­
utes or hours for a turn at the line printer. Input from slow' de­
vices can also be spooled, a particularly useful method for batch
processing. ,

Reliability

With a large number of users depending on its operation, the
timesharing system must be extremely reliable. A system with
99 percent reliability can be "down" 14 minutes during a 24-hour
working day. If that 14 'minutes affects only one user, reliability
may be acceptable .. However, if it affects a large number of users,
the consequences are much more serious.

The problem is also complicated by the fact that reliability is
a function of both hardware and software. It may take years, for
example, to experience all the events that could uncover an error
in software as complex as a timesharing monitor.

Today's liaidware and software has reliability built in. HarQ­
ware is designed in modular fashion so that failed components
can be removed and new replacelJlents "plugged in". ,Some com­
ponents also contain self-testing features that detect potential fail­
ures. Software is designed to be "defensive," that is, it anticipates
certain types of failures and helps to minimize their effects. For
example, the software might note parity errors and limit their
effect to the program being operated.

Diagnostic software can run routinely as one of the timesharing
users. Software can also maintain a log of failures, so that pat­
terns can be· established and problems remedied before serious
damage occurs. Systems that employ these .. reliability techniques
keep downtime at a minimum;

1-12

FUture of Timesharing

The advanced technology described in these pages is demon­
strated by the PDP-lO systems serving timesharing users through­
out the world. Typically, one of these large scale systems includes
the equipment shown in the accompanying diagram--one or more
swapping drums, disk packs for fast storage, magnetic tapes and
DECtapes for additional secondary storage. Other peripherals in­
clude a line printer, card reader, and plotter. The data line scan­
ner services the desired number of data sets or modems. This
equipment, together with the concepts of multipro~amming, reen­
trant software, and advanced scheduling algorithms, provide ex­
cellent service for today's user. But tomorrow's user can expect
even more.

CENTRAL
PROCESSOR

I/O BUS

TAPE
DRIVES

TYPICAL PDP-10 TIMESHARING SYSTEM

1-13

DECTAPE
UNITS

DATA
SETS

DISK PACKS

intelligent terminal In a new "intelligent" terminal concept, the cOnventional ter­
minal is- replaeed by a small computer and peripherals. The small
computer will provide local computing capability and, in addition,
will have direct access to, the central timesharing comp~ter when
more power is required. The local system will offer line printers,
card readers, and other peripherals as options. '

Central processors now under development will be larger, faster, '
and'more powerful, with the ability to serve more users at lower
timesharing. rates. Hardware will be more sophisticated, imple­
menting more of the moni~or's functions.

System reliability and load handling capacity will be improved
through greater use of multiprocessor configurations. These con­
figurations allow two or' more central processors access to the
same memory, mass storage, and peripherals.

As t,he user will witness, tomorrow's systems 'will provide better
facilities, more power, faster processing, and higher reliability.
And with these advances . . . even .greater' possibilities for new
timesharing applications.

1-14

•

Book 2

..

Getting Started
. With

The Monitor

,2.1 INTRODUCTION

GmlNG STARTED

WITH THE MONITOR1

There are basically four phases of programming: (1) writing the program, (2) inputting the

program, (3) translating and loading the program, and (4) testing and debugging the program.

Since the computer must be instructed in order to know what to do, the first phase is writing

the program and supplying data for that program. The program may be written in a programming

language that the computer is preconditioned to understand, such as BASIC, AID, COBOL,

FORTRAN. A program written in the s~mbolic notation of one of these languages is called

the source program. In the second phase of programming, the source program is inputted into

the computer and stored on the disk. Although there are several ways of inputting the source

program into the computer (e.g., tapes, cards), the Teletype as the device used for input and

output is the main concern of this section. (See Book 7, Advanced Monitor Commands, for a'

. discussion of other input and output dev ices) In the th ird phase, the source program is trans­

lated by the computer into a binary machine language program, and this binary program is

loaded into core memory to form the core image of the translated source program.

Ideally, a program should run correctly the first time, but in reality, this is not the case, A

program may contain errors of many types, ranging from simple errors in typing to complex

errors in the logical design of the prog~am. Therefore, the fourth phase of programming is

program testing and debugg ing. When errors are fO".Jnd, corrections are made to the source

program sti II on the disk. The sequence of program testing and debugging is repeated until the

program runs properly.

Programs are typed directly into the computer by means of the TeJetype, a typewriter-like

console. By typing in programs,)IOu establish communication with other programs alr~dy

resident in the computer, The first resident program you communicate wit~ is the time-sharing
I ..,

We wish to express appreciation to Stanford University for the use of their Stanford A-I
Project User's Manual, Chapter I, SAtLON No. 54, as a guide in writing the material in
th is sect ion.

2-3

m~itor:, the, m~ i~~rtantprogtGm-inthecontputer: (The ,term, monitor cmd~Stem are tJ5ed"",

interchangeably to mecm the ttm'e..-sharing monitor.) 'The' monitor is-the master program that -
-' '

plays an important role ih the effieiEint operot,ion of.the computer. JU,st as the Teletype is your,

Ii'nk with the computer, the monitor is your link with t~e programs withi~ 'the computer.

- The monitor has many functions to perform, like keeping a record of what each user is doing and

decid ing what user shou Id be serv iced next and for how long. The one function of the mon itor

that is of greatest concern at this point is that the moriitor retrieves.any re$ident programs that

you need. This retrieval happens only if the monitor "unders~ndsll what is expected of it. The

commands to the monitor which are explained in this chapter are s'Jfficient for the Te.letype to

be the device by which information is inputted into the system and by which the system outputs

its results.

See section 2. 10 for a discussion on How to Live With
the Teletype.

2.2 GETTING ON THE SYSTEM

In order to gain access to the time-sharing system, you must'say hello to the system by "logging

j'n". The first move is to make contact with the computer facility by whatever means the

facility has eSlablishec:t (e.g., acoustic coupler, telephone, or dataphone). Next, notice the

plastic knob (the power sw itch) on the lower right-hand side of the Te letype. This knob has

three positions: on, off, and local (turnil'lg clockwise). When the knob. is in the local position,

the Teletype is like a typewriter; it is not communicating with the system atall. The knob

must be turned, to the on position in order to establish communication' with the computer. When

the Teletype is t~rned on, type a t·C (depress the CTRL key and type C). This action

establishes communication with the monitor. The monitor signifies its readiness to accept com­

mands by responding with a period (.). All the commands discussed in this chapter can onlibe

typed to the monitor. They are operative when the monitor has typed a period, signifying that

it is waiting for a command.

The first program the mon,itor should call in for you is the log-in program. This is accomplished

by typing lOGIN followed by a carriage-return (depress the RETURN key). All commands to

the moo itor are tenninated with a carriage-return. When the mon itor "sees" a carriage-return,

it knows that a command has been typed and it begins to exec~te the command.

In the text, underscoring is used to designate Teletype output.
A carriage-return is designated by a)

By typing lOGIN, you cause the monitor to read the login program from, the disk into core

2-4

memory and it is this program t~at is now1n controt'of your Teletype. Before the login program

is called in, the monitor assigns you a job number for system bookkeeping purposes. The system

responds with an infonnation message similar to the following •

..
JOB 17 4SP74G ,

In the first line, the system has assignel;j your job number (17) and has given the name of the­

monitor and its version number. This version number changes whenever a change, or patch, is

incorporated into the monitor. In the second line, the number sign ('), which is typed out by

the login program, sig'lifies that it wants your identification.

The standard identification code is in the form'of project numbers and programmer numbers, but

individual installations may have different codes. The numbers, or whatever code each in­

stallation uses, are assigned to each user by the installation. The login program waits for . you

to type in your project number and your programmer number, separated by a comma and termin­

ated witK a carriage-return, following the number sign.

JOB 17 4SP74G

~27,400)

The login program needs one more item to complete its -analysis of your identification. This

it requests in the next line by asking for your password.
<.

JOB 17 4SP74G

!27,400)

PASSWORD:)

Type in your password, which is also assigned by the installation, followed by a carriage-retum.

To maintain password security, the login program does not print the password.

If the identification typed in matches the identification stored in the accounting file in the

monitor, the login program signifies its acceptance by responding with the time, date, your

Teletype number, the message of the day (if an y), and a period.

JOB 17 4SP74G

!27,400)

PASSWORD:)

1050 4-MAY-70 TTY9

COBOL IS NOW AVAILABLE ON THE SYSTEM

.!.

2-5

, .

Th,is typeout indkates that the login program has exited and retumed control to the monitor. . .
" '

You have successfully logged in a~ may now hav,e the monitor cal'l in other programs for you.,

If the identification typed in does not match the identification in the accounti~9 file, the

monitor types o,ut the error message

?INVALID ENTRY-TRY AGAIN

If this error message occurs, type in the correct project-programmer numbers and password.

2.3 FILES

When you want to run a program, first type in the program and decide on a name, for it. The
. ,

, ,

program is stored on the disk with the specified nam~. Then translate the program by caUing in

a translator and giving it the name of the program you wish to translate.

A program, or data, is stored on the disk in files. If a program is being typed in to a text

editor (for example, TECO), the editor is busy. accepting the characters being typed in and

generating a disk file for them. Then, when the program is to be translated, the translator

reads this file just created and generates a relocatable binary file. Since yo.u I11QY have many

fiI,es and the other users on the comput~r may have files, there must be a method for keeping all

of these files separate. This is accomplished by giving each user a unique area on the disk.
(

This area is identified by your project and programmer numbers. For example, if your project

and 'programmer numbers are 27 {400, you have a disk area by that name. Each file you

create goes to your disk area and must be uniquely named.

Files are named with a certain convention, the same as a person is named. The first name,the

filename, is the actual name of the file, and the last name, the filename extension, indicates

what group the fi Ie is associated with. The fi lename and the filename extension are separated

by a period.

Filenames are from one to six letters or digits. 'All letters or digits after the sixth are ignored.

The filename 'extension is from one to three letters or digits. It is generally used to indicate . .

file format. The following are examples of standard filename extensions • ..

2-6

.TMP

.MAC

.F4

• BAS

.CBL

.REL

.SAV

Temporary file

Source file in MACRO language

Source file in FORTRAN IV language

Source file in BASIC language

Source file in COBOL language

Relocatable binary file

A saved core image

Since files are identified by the complete name and the project and programmer numbers, two

users may use the same filename as long as they have different project and programmer numbers;

the files would be distinct and separate. The following are examples of filenames with file­

name extensions.

MAIN.F4 A FORTRAN file named MAIN

SAMPLE.BAS A BASIC file named SAMPLE

TESTl. TMP A temporary file named~EST1
NAME.REL A relocatable binary file named NAME

2.4 CREATING FILESI

The two commands mentioned in this section use two editors to create a new disk file. One of

the editors is LINED, a disk-oriented editor, and the other is TECO, the Text Editor and

Corrector (see Book 8 for discussion of both editors). Each command requires a filename as its

argument and should have a filename extension. A new file may be created with either of

these commands, depending on the editor desired. If line numbers are desired, LINED should

be used, since T ECO generates a non-sequence numbered file.

2.4.1. The CREATE Command

The CREATE command is used only to create a new disk file. When this command is executed,

the monitor calls in LIN ED to initialize a disk file with the specified name and to accept input

from the Teletype. At this point, begin to type in your program, line by line. LINED types a

line number at the beginning of each line so that later a reference to a given line may be made

in order to make corrections. Be low is a sample program using the commands discussed so far.

1 A BASIC or AID user does not need the following sections. These two compilers have built-in
faci I ities to create and ed it files. See Book 3 for BASI C and Book 4 for AID.

2-7

tc

• LOGIN)

JOB 17 4SP74G

27,400)

PASSWORD:)

1050 4-MA Y-70 TTY9

COBOL IS NOW AVAILABLE

ON TH E SYST EM

CREATE MAIN .F4)

*

)

00010 TYPE 53)

Establish communication with the monitor. Type
C while depressing the CTRL key.

Begin ·the login procedure' •

Job number assigned, followed by monitor name
and version. Login program requestsidentifica­
tion (project number and programmer number).

Type in project-programmer number.

Login program requests password. Type it in;,it
is not printed.

If identification matches identification stored in
the system, the monitonesponds with the time,
date,_Teletype number, message of the day, and
a period.

A new file on the disk is to be created and
called MAIN. F4. The extension. F4 is used be­
cause the program is to be a FORTRAN source
file. LINED is called in to create the file.

Response from LINED signifying it is ready to
accept commands.

A command to LINED to insert line numbers
starting with 10 and incrementing by 10
(see Book 8).

Type in your FORTRAN PROGRAM.

00020 53 FORMAT (' THIS IS MY PROGRAM'))

00030 END)

00040 $

*

E)

* .

t C

The CD (altmode) is a command to LINED to
end the insert. On the Teletype this key is
labeled ALT, ESC, or PREFI X.

Response from LIN ED sign ifying it is ready to
accept another command.

A command to LINED to end the creation of the
file.

Response from LINED indicating r~adiness to
accept a command.

Return to the Monitor.

The monitor now has controLof the program

2-8

The three LINED commands (I, almode, E) shown in the example are fullydisc:ussed in Book 8.

2.4.2 The MAKE Command

This command can also be used to open a new disk file for creation. It differs from the CREATE

command in that TECO is used instead of LINED. (TECO is discussed in Book 8.) Otherwise,

the CREATE and MAKE commands operate in the same manner.

.MAKE RLEA.F4)

~ I (Text input)$$

EX$$

EXIT

tc

.!.

The altmode ($) and the EX command are commands .to TECO and are explained in the TECO

section of Book 8.

2.5 EDITING FILES

After creating a text file, you may wish to modify, or edit, it. The following two commands

cause an existing file to be opened for changes. One command (EDIT) calls in LINED, and the

other (TECO) calls in TECO. In general, the editor used to create the file should be used for

editing. Each command requires, as its argument, the same filename and filename extension

used to create the file.

2.5.1 The EDIT Command

The EDIT command causes LIN ED to be called in and, as the name implies, signifies that you .
wish to edit the specified file. LINED responds with an asterisk and waits for input. The file

specified must be an already existing sequence-numbered file on the disk. For example, in

section 2.4.1,·the file MAIN .F4 was created. If the command

• EDIT MAIM. F4)

is given to edit the file, the computer respon~s with an error message (assuming that there was

no file named MAIM.F4). The command

• EDIT MAIN. F4)

2-9

'causes the rignt file to be opened for editing.

,2.5.2. The TECO Command

The TECO command is similar to the EDIT command except that it causes the TECO program to

open an already existihgnon-sequenee-numbered file on the disk foF editing purposes. The

comm.and sequence

• TECO 'FILEA.F~)

~ (editing)$$

* EXIT$$

causes TeCO to open FILEA.F4 for editing and close the file upon completion, creating a

backup file out ~f the original file. Whenever one of the commands used to create or edit a

file is executed, this command with its arguments (filename and filename extension) is

"remembered" as a temporary file on the disk. Because of this, the file last edited may ~e

recalled for the next edit without having the filename specified again. For example, if the

command

• CREATE PROG1.MAC)

is executed, then you may type the command

.:.. EDIT)

instead of

• EDIT fROG 1 .MAC)

assuming that no other CREATE, TECO, MAKE, or EDIT command was used in-between. As

mentioned before, if a command tries to edit a fi Ie that has not been created, an error message

is given.

2.6 MANIPULATING FILES-

You may have many, files saved on your disk area. (For di-scussion on' haw, to SGtve cr file on'

your disk area, see Book 7.) ThE! list of your files, along with lists of other users' files, is

2-10

kept on the disk in what are called user directories. Suppose you cannot remember if you have

created and saved a porticular file. The next command helps in,just that type of situation.

2.6.1· The DIRECTORY Command

The DIRECTORY command requests from the monitor a listing of the directory of your disk area.

The monitor responds by typing on the Teletype the names of your files r the date on which each

file was created, and the length of each file in PDP-10 disk blocks. A disk blo~k consists of

12810 PDP-lO words. Names of files not explicitly created by you may show up in the

directory. These fi les were created as intermed iate files for storage by programs you may have

used. For example, in translating a file, the translator generates a file with the same filename

but with a filename extension of . REL. This file contains the relocatable binary translation of

the source file. You may also notice filenames with th.e filename extension of . TMP. This

extension signifies a temporary file created and used by different CUSPs.

2.6.2 The TYPE Command

By listing your directory on the Teletype, you know the names of the files on your disk area.

But what if you have forgotten the information contained in a particular file? The TYPE com­

mand causes the contents of source files specified in your command string to be typed on your

Te letype • For example, the co~mand

• TYPE MAIN. F4)

causes the file MAIN.F4 to be typed on the Teletype. Multiple files separated by commas may

be specified in one command string, and only source files, not binary files, may be listed.

This command allows the "asterisk construction" to be used. This means that the filen~me or

the filename extension may be replaced with an asterisk to mean any filename or filename

extension. For example, the command

• TYPE FILEB. *)

causes all files named FILES, regardless of filename extensions, to be typed. The command

• TYPE *. MAC)

causes all files with the filename extension of .MAC to be typed .. The command

2-11

• TYPE * • *.) .

causes all files to be typed.

2.6 •. 3 The DELETE Command

Having finished with a file, you may erase it from your disk area with the DELETE command"

MulHple files may be deleted in one command st ring by separating the files with commas. For

example,

· DELETE LINEAR)

and'

.:.. DELETE CHANGE. F4, SINE~REL)

are both legal commands. The asterisk convention discussed tn section 2.6.2 may also be used

with the DELETE command.

2.6.4 The RENAME Command

The names of one or more files on your disk area may be changed with the RENAME command.

The old filename on the right and the new filename on the left are.separated by an equal (=)

sign. In renaming more than one file, each pair of filenames (new=old) is separated by . ,
commas. For example, the command

.!. RENAME SALES:.CBL=GROSS.CBL,FILE2.F4=FILE1.F4) .

changes the name of file GROSS.CBLto SALES.CBL and file FILE1.F4 to FILE2.F4. The'old

filename no ronger appears in your directory; instead the new fi lenames appear containing

exactly the same data as in the old files. The asterisk convention may again be used. For

example, the command

· RENAME * F4= *)

causes all files with no filename extension to have the extension. F4.

*
2.7 TRANSLATING, LOADING, EXECUTING, DEBUGGING PROGRAMS

At this point you know how to get on the system, how to create and edit a source file of a

2-12

. program, and how to list your source file on the Teletype. The program has not been executed.

This only happens after it has been translated into the binary machine language understandable

to the computer and loaded into core memory. More often than not the program must be de­

bugged.

2.7.1 The COMPI lE Command

This command has as its argument one or more filenames separated by commas., It causes each

command to be processed (translated) if necessary by the appropriate processor (translator).

It is considered necessary to process a file if no .REl file of the source file exists, or if the

• REL file was created before the last time the source file was edited. If the. REL file is

up-to-date, no translation is done. The appropriate processar is determined by examining the

extension of the file. The following shows which processor is used for various extensions.

• MAC

.F4

• CBl

· REl

other than above,
or null

MACRO assembler

FORTRAN IV compiler

COBOL compiler

No processing is done

"Standard processor"

The standard processor is used to translate programs with null or nonstandard extensions. The

standard processor is FORTRAN at the beginning of the command string, but may be changed

by use of various switches (See the PDP- 10 Reference Handbook, Communication With the

Monitor). Although it is not necessary to indicate the extension of a file in the COMPILE

command string, the standard processor can be disregarded if all source files are kept with the

appropriate extension.

When the appropriate translator has translated the source file, there is a file on your disk area

with the fi lename extension • RE l and the same filename as the source fi Ie. Th is file is where ,
the translator stores the results of its translation and is called the relocatable binary of the

program. The program is now translated into binary machine langWlge, but is still on the disk.

Since the disk is used for storage and not for execution, a copy of the binary program must be

looded into ~ore memary to form a core image. The core memory of the ~omputer is used for

execution; it is I ike a scratch pad., The COMPI lE command does not generate a core image,

bl.!t the following three commands do.

2-13

,
(

. 2.7.2 The LOAD Command.

the LOAD command performs the same operations as the COMPI LE command and in addition

causes the Linking Loader to be run. The Linking Loader is ~ residen~ program tha~ takes the
..

specified REL files, I inks them toget\;ler, and generates.a core imaSe. The LOAD command

does· not cause execution ,of the program.

2.7.3 The EXEaJTE Command

This command performs the functions of the LOAD command and also begins execution of the

loaded programs, if no translation or loading errors are detected. The compiled program is

now in core memory and r~nning, and what happens next depends on the program. More than

likely, the program is not retuming the correct answers, and you now enter the magic. world of

program debugging.

2.7.4 The 0 EBUG Command

This command prepares for the debugging of a program in addition to performing the functions

of the COMPILE and LOAD commands. DDT, the Dynamic Debugging Technique program

(see the DDT section in the PDP- 19 Reference Handbook), is loaded into core memory first, ,

fo lIowed by the program. Upon completion of load ing, DDT is started rather than the program.

A command to DDT R1ay then be issued to begin the program execution. This command should

be used by the experienced programmer familiar with DDT. The above four commands have

extended command forms discussed in the PDP- 10 Reference Handbook.

The .following is an example showing the compilation emf e~~'Cvt;on of a FORTRAN main pro-
• • _, I .,":' \ ~ , " •

gram and subroutine. The login procedure is not shovvn.,

• CREATE MAIN. F4)

':1)

00010 TYPE 69)

CREATE a disk file

Command to LINED to begin inserting on
line 10, incrementing by 10
Statements of the FORTRAN main. program

0002069

00030

FORMAT (' THIS IS THE MAIN-PROGRAM'))

CALL SUBl)

00040 END)

00050 $

':E)
* t C

..:. CREATE SUB1. F4)

* I)

Altmode ends the' insert .

LINED command to end the edit

Return to the Monitor

Create a disk file for fhe subroutine

Begin inserting at line 10 incrementing by 10

2-14

00010 SUBROUTINE SUBR) Statements of the FORTRAN Subroutine

00020 !YPE 105)

00030 105 FORM~T (I THIS IS SUBl')) -

00040 RETU RN)

00050 $ Altmode ends the insert

LIN ED command to end the edit.

Return to Monitor

.:. EXECUTE MAIN. F4, SUBI, F4) Request execution of the programs created

FORTRAN: MAIN .F4 FORTRAN reports its progress

FORTRAN: SUB1. F4

LOADING

000001 UNDEFINED GLOBALS

SUB1 000152

?

LOADER 3K CORE

? EXECUTION 0 ELETED

EXIT

t C

.:. EDIT)

.: P10,20)

00010 SUBROUTINE SUBR

00020 TYPE 105

..

There is no subroutine named SUB1

This includes the space for the loader.

No execution was done

Ask to edit SUB1.F4, filename need not be
mentioned since it was the last file edited •

Type lines 00010 and 00020 on the Teletype.

.: 110) Insert a new line 10

000101 SUBROUTINE SUB1) .

':E)

* t C

.:. EXECUTE MAIN. F4, SUB 1. F4) Request execution

FO RT RAN: SU B1. F4

LOADING

LOADER 3K CORE

EXECUTION

Only the subroutine is recompiled since only
it has been edited.

Both MAIN and SU Blare loaded

THIS IS THE MAIN PROGRAM Execution begins

THIS IS SUBI

EXIT

t C Execution ends

2-15

2.8 GETTING INFORMATION FROM T.HE 'SYSTEM)

There aile several monitor commands that ore used to obtain information from the system.

Three commands useful at .this point are discussed in this secfion, and additional commands

are discussed in Book 7, Advanced Monitor Commands.

2.8.1 The PJOB Command

If)IOu have forgott~n the job number assigned to)IOU at login time, you may use the PJOB

command to obtain it. The system responds to this command by typing out .your assigned job

number. For example,

• PJOB)

17

2.8.2 The DAYTIME Command

This command gives the date followed by the time of day. The time is pr~sented in the

following format:

nh:mm

where hh represents the hour~ and mm represents the minutes. For example,

.:..DAY'rIME)

17-JUNE-70 14:37

2.8.3 The TIME Command

The TIME command produces three lines of typeout. The first line is the total ~unning time
-

since the last TIME command was typed. The second line is the total running time since you

logged in. The third line is used for accounting purposes .. The time is presented in the

following format:

hh:mm:ss.hh

where hh represents the hours, mm the minutes, and ss. hh the seconds to the nearest hundredth.

For example,

2-16

'..:.. TIME)

52.45

02:29.95 ...

KI LO-CORE-SEC=57
f

In the first two lines, you aile told that you have been running 52.45 seconds since the last

time you typed the TIME command, and a total of 2 minutes and 29.95 since you logged in.

The third line of typeout is used by your installation for accounting and is the integrated

product of running time and core size. See the PO P-1 0 Reference Handbook, Communicating

With the Monitor.

2.9 LEAVING THE SYSTEM

Now that you know how to log into the system and create and run a program, you might be

wondering how you leave the system. You have to te II the system you are leav ing, and you do

this by the KJOB command.

2.9. 1 The KJO B Command

The KJOB command is your way of saying goodbye to the system. Many things happen when

you type the command. The job number assigned to you is released and your Teletype is now

free for another user. An automatic TIME command is performed. In addition, if you have

any files on your disk area, the monitor responds with

CONFIRM:

and you have several options available to you. By typing a carriage-return after the

CONFIRM: message, the monitor lists the options available. For example, the following

typeout occurs by responding to the confirm message with a carriage return.

TYPE tc TO ABORT LOG-OUT; OR

TYPE ONE OF THE FOLLOWING (AND CAR RET):

K TO KILL JOB AND DELETE ALL UNPROTECTED FILES;

L TO LIST YOUR DISK DIRECTORY; OR

TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS:

AFTER EACH FILE NAME IS LISTED, TYPE:

P TO SAVE AND PROTECT,

2-17

'(' ',.',

"tON ARM:

5 JO SAVE WITHOUT PROTECTING" OR

CAR RETURN ONLY TO DELETE.

You may now use the options available. If K was used as the option, the following is a

sample of what is output ted to your Teletype.

JOB 33, USER [27,560] .LOGGED OFF TTY34 131720-FEB-70

DELETED ALL 2 FilES (INCL,UDING UFO, 3. DISK BLOCKS)

RUNTIME 0 MIN, 00.29 SEC

> Remember that the CONFIRM message is typed only if there are files on your disk area. If

there are no files on your disk area, the typeout would look like the following:

.:. KJOB) . .
JOB 17, USER [27,32011 LOGGED OFFTTY17 131720-FEB-70

RUNTIME 0 MIN, 00.29 SEC

2.10 HOW TO LIVE WITH THE TELETYPE

On the Teletype, there is a special key marked CTRL called the Control Key. If ,this key is

held down and a character key.is depressed, the Teletype types what is known as a controf

character rather than the character printed on the key. In this way, more characters can be

used than there are keys on the keyboard. Most of the control characters do not print on the

Teletype, but cause special functions to occur, os described in the following sections.

There are several other special keys that qre recognized by the system. The system constantly

monitors the typed characters and, most of the time, .sends the C?haracters to the program being

executed. The important characters not passed to the program are also explained in the

following sections. (See also the PDP-10 Reference Handbook, Communicating With the

Monitor .)

2. 10.1 Control - C

Control - C (t'e) interrupts the program that is currently running and takes you back to the

monitor. The monitor responds to a control - C by typing a period on your Teletype, and you

2-18,

may then type another monitor command. For example, suppose you are running a program in

BASIC, and you now decide you wanHo leave BASIC and run a program in AID. When BASIC

requests input from your Teletype by typing an asterisk, type control - C to terminate BASIC

and return to the monitor You may now issue a command to the monitor to initialize AID

(. R AID). If the program is not requesting input from your Teletype (i.e., the program is in

the midd Ie of execution) when you type control - C, the program is not stopped immediately.

In this case, type control - C twice in a row to stop the execution of the program and return

control to the monitor. If you w ish to continue at the same place that the program was

interrupted, type the monitor command CONTINUE. As an example, suppose you want the

computer to add a million numbers and to print the square root of the sum. Since you are

charged by the amount of processing time your program uses, you want to make sure your

program does not take an unreasonable amount of processing time to run. Therefore, after the

computer has begun execution of your program, type control - C twice to interrupt your

program. You are now communicating with the monitor and may issue the monitor command

TIME to find out how long your program has been running. If you wish to continue your

program, type CONTINUE and the computer begins where it was interrupted.

2.10.2 The RETURN Key

This key causes two operations to be perfo~med: (1) a carriage-return and (2) an automatic

line-feed. This means that the typing element returns to the beginning of the line (carriage­

return) and that the paper is advanced one line (line-feed). Commands to the monitor "are

terminated by depressing this key.

2.10.3 The RUBOUT Key

The RUBOUT key permits correction of typing errors. Depressing this key once causes the last

character typed to be deleted. Depressing the key n times causes the last n characters typed

to be deleted. RUBOUT does not delete characters beyond the previous carriage-return,

line-feed, or altmode. Nor does RUBOUT function if the program has already processed the

characters you wish to delete.

The monitor types the deleted characters, delimited by backslashes. For example, if you were

typing CREATE and go as far as CRAT, you can correct the error by typing two RUBOUTS and

then the correct letters. The typeout wou ~d be

CRAT\TA\EATE

2-19

Notice that you typed only two RUBOUTS, but \TA\ was printed. This shows the deleted .

characters, but in reverse order.

2~ 10.4 Control - U

Contr-ol - U (t U) is used if you have completely mistyped the current line and wish to start

over aga in. Once you type a carriage-return, the command is read by the computer, and

line-editing features can no longer be used on that line. Control - U causes the deletion of

the entire Une, back to the last carriage-return, line-feed, or altmode. The system responds

with a carriage-return, line-feed so you may start again •.

2.10.5 The ALTMODE Key

The ALTMODE key, which is labeled ALTMODE, ESC, or PREFIX, is used as a command

terminator for ~veral programs, including TECO and LINED. Since the ALTMODE is a non­

printing character,. the Teletype prints an ALTMODE. as a dollar sign ($).

2.10.6 Control - 0

Control - 0 (t 0) tells the computer to suppress Teletype output. For example, if you

issue a command to type out a 100 lines of text and then decide that you dcr not want the type­

out, type control - 0 to stop the output. Anothe.r command may then be typed as if the typeout

had terminated normally.

2.10.7 Control - 8

Control - 8 (t 8) affects the printing of Teletype output in one of two ways depending on

your Teletype; it either· restores printing of the characters or suppresses double printing of the

characters. Suppose that when you begin typing on the Teletype, you notice that the charac- .~

ters you are typing are not printing on the Teletype paper. Type control - 8 to restore the

printing of the characters. On the other hand, su·ppose you r~ceive double printing of your

typeiilS. To suppress this double printing, type control - ·8.

2.10.8 Control - F

This control character is needed only for the KSR37 Teletype. This key changes the way

lower case characters are handled by the system; Normally, the system converts all lower

case letters to upper case. Since the KSR37 Teletype is capable of transmitting both lower and

upper case letters, control - F is used to permit the entry of lower case letters.

2-20

Book 3

, Conversational
Programming

With
BASIC

•

CONTENTS

CHAPTER INTRODUCTION Page

1.1 Example of Basic Program 3-9

1.2 Discussion of the Program 3-10

1.3 Fundamental Concepts of Basic 3-13

1.3.1 Arithmetic Operations 3-13

1.3.2 Mathematical Functions 3-14

1.3.3 Numbers 3-15

1.3.4 Variables 3-15

1.3.5 Relational Symbols 3-15

1.4 Summary 3-16

1.4.1 LET Statement 3-16

1.4.2. READ and DATA Statements 3-16

1.4.3 PRINT Statement 3-17

1.4.4 GO TO Statement 3-18'

1.4.5 IF - THEN Statement 3-18

1.4.6 ON - GO TO Statement· 3-19

1.4.7 END Statement 3-19

,CHAPTER 2 LOOPS

2.1 FOR and NEXT Statements· 3-22 .
2.2 Nested Loops 3-23

2.3 Summary 3-23

2.3.1 FOR and N EXT Statements 3-23

CHAPTER 3 LISTS AND TABLES

3.1 The Dimension Statement (DIM) 3-26

3.2 Example 3-27

3.3 Summary 3-28

3.3.1 The DIM Statement 3-28

CHAPTER 4 HOW TO RUN BASIC

4.1 Gaining Access to Basic 3-29

4.2 Entering the Program 3-30

3-3 •

- - - - --.-

4.3

4.4

4.5

4.6

4.7

4.8

4.8.1

Executing the Program

Correcting the Program

•
CONTE~TS (Coot)

Interrupting the Execution of the Program

Leaving the Computer

Example of Basic Run

Errors and Debugg ing

Example of Finding atic! Correcting Errors

CHAPTER 5 FUNCTIONS AND SUBROUTINES

5.1 Functions

5.1.1 The Integer Function (lNT)

5.1.2 The Random Number Generating Function (RND)

5.1.3 The RANDOMIZE Statement

5.1.4 The Sign Function (SGN)

5.1.5 The Define User Function (DEF) and Function End Statement (FNEND)

5.2 . Subroutines

5.2.1 GOSUB and RETURN Statements

5.2.2 Example

CHAPTER '6 MORE SOPHISTICATED TECHNIQUES

6.1

6.2

6.3

6.4

6.5

More About the Print Statement

Input Statement

Stop Statement

Remarks Statement (REM)

Restore Statement

CHAPTER 7 VECTORS AND MATRICES

7.1

7.2

7.3

7.4

7.5

7.6

MAT Instruction Conventions

MAT C"= ZER, MAT C = CON, MAT C = ION

MAT Pril)t A, B, C

MAT Input V and the NUM Function

MAT B=A

MAT C = A + Band MAT C = A - B

3-4

Page

3-31

3-31

3-31

3-32

3-32

3-34

3-34

3-31

3-37

3-38

,3-39

3-40

3-40

3-41

3-41

3-42

3-45

3-48

3-49

3-49

3-49·

3-52

3-52

3-53

3-54
·3-55

3-55

7.7

7.8

7.9

7.10

7.11

7.12

MAT C = A * B

MAT C :;: TRN(A)

MAT C :;: (K) * A

CONTENTS (Cont)

MAT C = INY(A) and the DET Function

Examples of Matrix Programs

Simulation of N-Dimensional Arrays

CHAPTER 8 ALPHANUMERIC INFORMATION (STRINGS)

8.1

8.2

8.3

8.4

Reading and Printing Strings

String Conventions

Numeric and String Data Blocks

Accessing Individua I Characters

CHAPTER 9 EDIT AND CONTROL

CHAPTER 10 DATA FILE CAPABILITY

10.1 FI LES Command

10.2 SCRATCH Command

10.3 WRITE Command

10.4 RESTORE Command

10.5 IN PUT Command

10.6 I F END Command

3-5

Page

3-55

3-55

3-55

3-55

3-56

3-57

3-59

3-60

3-61

3-61

3-65

3-67

3-68

3-68

3-69

3-69

3-70 '

PREFACE

WHY BASIC? BASIC is a problem-solving language that is easy to learn and conversational, and has wide

application in the scientific, business, and educational communities. It can be used to solve both simple and

complex mathematical problems from the user's Teletype@ and is particularly suited for time-sharing.

In writing a computer program, it is necessary to use a language ~r vocabulary that the computer recognizes.

Many computer languages are currently in use, but BASIC is one of t~e simplest of these because of the small

number of clearly understandable and readily learned commands that are required, its easy application in

solving problems, and its practicality in an evolving educational environment.

BASIC is similar to other programming languages in many respects; and is aimed at facilitating communication

between the user and the computer in a time-sharing system. As with most programming languages, BASIC is

divided into two sections:

a. Elementary statements that the user must know to write simple programs, and

b. Advanced techniques needed to efficiently organize complicated problems.

As a BASIC user, you type in a computational procedure as a series of numbered statements by u~ing comman

English syntax and familiar mathematical notation. You can solve almost any problem by spending an hour or

so learning the necessary elementary commands. After becoming more experienced, you can add the advanced

techniques needed to perform more intricate manipulations and to express your problem more efficiently and

concisely. Once you have entered your statements via the Teletype, simply type in RUN or RUNNH. These

commands initiate the execution of your program and return your results almost instantaneously.

SPECIAL FEATURES OF BASIC - BASIC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed exclusively for performing matrix
computations.

h. .A~z::: Inlfm'lll'fatiori Handling - Single alphabetic or alphanumeric strings or vect.on ~n be '
read, printe-d, and defined in LET and If ••• THEN statements. Individual characters within these strings
can be easily accessed by the user. Conversion can be performed between characters and their ASCII
equivalents. Tests can be made for alphabetic order.

@Teletype is the registered trademark of Teletype Corporation.

3-7

c. Program Control and Storage Facilities - Facilities are inc1uded that store programs or data on a
mc,ss storage devic.e (e.g., disk or DECtape) and later retrieve them for execution. You,· as the user,

. can also i'1'ut programs from the standard fow-speed Teletype paper tape reader as well as fromthe high­
speed paper tape reader at the PDP-l0 site.

d. Program Editing Facilities - An existing,program can be edited by adding or deleting lines, by re­
naming the program, or by resequencing the line numbers. The user can combine two programs into a
single program and request a listing of his program, either in whole or in part, on his Teletype or on a
high-speed line printer.

e. Formatting of Output - Controlled formatting of Teletype output includes tabbing, spacing, and
. printing columnar headings.

f •. Documentation and Debugging Aids - Documenting programs by the insertion of remarks within pro­
c~ures enables recglJ of.needed information at some later date and is invaluable in situations in which
the program is shared by other users. Debugging of programs is aided by the typeout of meaningful
~iagnostic messages which pinpoint syntactical and logical errors detected during execution.

3-8

CHAPTER 1

INTRODUCTION

This chapter intraduces the user to PDP-l0 BASIC and to its restrictions and characteristics. The best

, introduction lies in beginning with a BASIC program and discussing each step coftl)letely.

1. 1 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program, named LINEAR, that can be used to solve a system of two

simultaneous linear equations in two variables

ax+by=c

dx+ey=f

and then used to solve two different systems, each differing from the above system only in the constants c and f.

Ifae - bd is not equal to'O, this system can be solved to find that

ce - bf
x = ae - bd and af - cd

y=ae-bd

If ae - bd = 0 j there is either no solution or there are many, but there is no unique solution. Study this example

carefully and then read the commentary and explanation.' (In most cases the purpose of each line in the pragram

is ~If-evident.)

1121 READ A,B,D,E
15 LET G=A*E-B*D
2121 IF G=eJ THEN 65
30 READ C,F
37 LET X=(C*E-B*F)/G
42 LET Y=CA*F-C*D)/G
55 PRINT X,Y
60 GO TO 3121
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1,2,4
80 DATA 2,-7,5
85 DATA 1,3,4,-7
90 END

3-9

" NOTE

All statements are terminated 'by pressing t~' RETURN'
key (represented in this text by the symbol,,)) .•. The
RETURN ~ey echoes as' a carriage return, line feed.

1.2 DISCUSSION OF THE PROGRAM
"

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a statement.

A program is made up of statements, most of which are instructions to the computer. line numbers serve to specify

the order in which these statements are to be performed. 'Before the program is run, BASIC sorts out and edits the

program, putting the statements into the order specified by their line numbers; thus, the program statements

can be typed in any order I as long as each statement is prefixed with a line number indicating its proper

sequence in the order of execution. Each statement starts after its line number Mth an English word which de­

notes the type of statement. Spaces have no significance in BASIC, except in messages which are printed out,

as in line number 65 above. Thus, spaces mayor may not be used to modify a program and make it more readable.

With this preface, the above example can be followed through step-by-step.

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements. When

the computer encounters a READ statement wh ile executing a program, it causes the variables I isted after the

READ to be given values according to the next available numbers in the DATA statements. In this example, we

read A in statement 10 and assign the value 1 to it from statement 70 and, similarly, with Band 2, and with

o and 4. At this point, the available data in statement 70 has been exhausted, but there is more in statement

80, and we pick up from it the value 2 to be assigned to E.

15 LET G=A*E-B*D

Next, in statement 15, which is a LET statement, a formula ls to be evaluated. [The asterisk (*) is used to de­

note multip~ication.] In 'this statement, we compute the value of AE - BO, and call the result G. In general,

a LET statement directs the computer to set a variable equal to the formula on the right side of the equal sign.

20 . IF G=0 THEN 65

If G is equal to zero, the system has no unique solution. Therefore, Wf!J next ask, in line 20, If G is equal to
,

zero.

, 3-10

65 PRINT "NO UMIQUE SOLUTION."
70 DATA 1.2.4
80 DATA 2.-1.5
85 DATA 1 • 3, Lj, -7
90 END

If the computer discovers a ''yes'' answer to the question, it is directed to go to line 65, where it prints NO

UNIQUE SOLUTION. Since DATA statements are not executable statements, the computer then goes to line

90 which tells it to END the program.

30 READ C.F

If the answer is "no" to the question "Is G equal to zero?", the computer goes to line 30. The computer is now

directed to read the next two entries, -7 and 5, from the DATA statements (both are in statement 80) and to

assign them to C and F, respectively. The computer is now ready to solve the system

x +2y =-7

4x+2y=5

37 LET X=(C*E-B*F)/G
42 LET Y=(A*F-C*D)/G

In statements 37 and 42, we instruct the computer to compute the value of X and Y according to the formulas

, provided, using parentheses to indicate that C*E - B*F is calculated before the result is divided by G.

55 PRINT X.Y
60 GO TO 30

The computer prints the two values X and Y in line 55. Having done this, it moves on to line 60 where it is

reverted to line 30. With additional numbers in the DATA statements, the computer is told in line 30 to take

the next one and assign it to C, and the one after that to F. Thus,

x + 2y = 1

4x + 2y =3

As before, it finds the solutions in 37 and 42, prints them out in 55, and then is directed in 60 to revert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds'in line 85. It then proceeds to solve

the system

x +2y = 4

4x + 2y =-7

3-11

"

and print out the solutions. Since there are no mOre pairs of numbers in the DATA statement a~ilable for C

and 'F, the computer prints OUT OF DATA IN 30 and stops.

If line number 55 (PRINT X, Y) had been omitted, the computer would have solved the three systems and then

told us when it was out of data. If we had omitted line 20, and G were equal to zero, the computer would

print DIVISION BY ZERO IN 37 and DIVISION BY ZERO IN 42. Had we omitted statement 60 (GO TO 30),

the computer would have solved the first system, printed out the values of X and Y, and then gone to line 65 ,

where it would be directed to print NO UNIQUE SOLUTION.

The particular choice of line numbers is arbitrary as long as the statements are numbered in the order the '

machine is to follow. We would normally number the statements 10, 20, 30, ••• , 130, so that later we can

insert additional statements. Thus, if we find that we have omitted two statements between those numbered 40 . .

and 50, we can give them any two numbers between 40 and 50 -- say 44 and 46. Regarding DATA statements,
. '.

we need only put the numbers in the Order that we want them read (the first for A, the second for B, the third

for D, the fourth for E, the fifth for C, the sixth for F, the seventh for the next C, etc.). In place of the three

statements numbered 70, 80 , and 85 I we could have written the statement:

or, more naturally I

70
75
80
85

.
DATA 1 .. 2 .. 4 .. 2
DATA -7 .. 5
DATA 1 .. 3
DATA 4 .. -7

to indicate that the coefficients appear in the firSt data statement and the various pairs of right-hand constants

appear in the subsequent statements.

The program and the resulting run is shown below as it appears on the Teletype.

10
15
20
30
37
42
55
60
65
70
80
85
90
RUN

READ A .. B .. D .. E
LET G=A*E-B*D
IF G=0 THEN 65
READ C .. F
LET X=(C*E-B*F)/G
LET Y=(A~F-C*D)/G
PRINT X .. Y
.GO TO 30
PRINT "NO UNIQUE SOLUTION"
DATA 1 .. 2 .. 4·
DATt) 2 .. -7 .. 5
.DATA 1-..3 .. 4 .. -7
END

(continued on ,next page)

3-12

LINEAR

4
0.666667
-3.66667
OUT OF DATA IN

11 : 0 3

-5.50000
0.166667
3.83333

30

10/19/69

NOTE

Remember to terminate all statements by pressing the
RETURN key.

After typing the program, we type the word RUN, followed by a carriage return to direct the com-

puter to execute the program. Note that the computer, before printing out the answers, printed the name

LINEAR which we gave to the problem (refer to paragraph 4.1) and the time and date of the computation. fhe

message OUT OF DATA IN 30, may be ignored here. However, in some instances, it indicates an error in the

program.

1.3,\ FUNDAMENTAL CONCEPTS OF BASIC

BASIC can perform many operations such as adding, subtracting, multiplying, dividing, extracting square roots,

raising a number to a power, ,and finding the sine of an angle measured in radians.

1.3.1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas similar to those used in

standard mather:natical calculation, with the exception that all BASIC formulas !Oust be written on a single line.

Five arithmetic operations can be used to write a formula.

Symbol Example Meaning

+ A+B add B to A

A-B subtract B from A

* A*B multiply B by A

/ A/B divide A by B

X t 2 find X2

If we type A + B * C to, the computer first raises C to the power 0, multiplies this result by B, and then adds

the resulting product to A. We must use parentheses to indicate any other order. For example, if it is the

product of Band C that we want raised to the power 0, we must write A + (B * C) t 0; or if we want to multiply

A + B by C to the power 0, we write (A + B) * C t D. We could add A to B, multiply their sum by C, and raise

the product to the power 0 by writing «A + B) * C) to. The order of precedence is summarized in the following

rules.

3-13

•

a. The formula inside parentheses is evaluated before'the parenthesized quantity is used in computations •

: b. In the absence or parentheses in a formula, BASIC performs exponentiations first, multiplications
; and divisions second, and additiOns and subtractions third.

~. In the absence of parentheses in a formula involving only multiplications a'nd divisions, BASIC
performs the operations from left,to right, in the ordertliat 'they_are read.

d. In the ,absence of parentheses in a tormula involving only additions and subtractions, BASIC per­
forms the operations from left to right, in the order that they are read.

The rules te II us that the computer, faced with A - B - C, (as usua I) subtracts B from A, and then C from their

difference; faced with A/B/C, it divides Aby B, and that quotient by C. Given A t B t C, the computer raises

the number A to the power B and takes the resulting number and raises it to the power C. If there is any question

about the precedence, put in more parentheses to eliminate possible ambiguities.

1.3.2 Mathematical Functions

In addition to these five arithmetic operations, BASIC can evaluate certain mathematical functions. These

functions are given special three-letter English names.

Function Interpretat i on

SIN (X) Find the sine of X

COS (X) Find the cosine of X {X ;nte<preted ••
TAN (X) Find the tangent of X an angl,e measured

'COT (X) Find the cotangent of X in radians

ATN (X) Find the arctangent of X

EXP (X) Find e raised to the X power (eX)

LOG (X) Find the natural logarithm of X (In X) {X ;nte'P'eted

ABS (X) Find the absolute value of X (I X I) as a'

SQR (X) Find the square root of X h/X)
number

Five other functions are also available in BASIC: INT, RND I SGN, NUM, and DEl; these are reserved for

explanation in Chapters 5 and 7. In place of X, we may substitute any formula or any number in parentheses

following any of these functions, For example, we may ask the computer to find v4 + X3 by writing

SQR (4 + X t 3), or the arctal'lgent of 3X - 2eX + 8 by writing ATN (3 * X - 2 * EXP (X) + 8). If the value

of (~)17 is needed, the two-line program can be written:

10 PRINT(5/6)t17
20 END

and the computer finds the decimal form of thi~ number and prints it out.

3-14

1.3.3 Numbers

A number may be positive or negative and it may contain up to eight digits, but it must be expressed in decimal

form (i.e., 2, -3.675, 12345678, -.98765432, and 483.4156). The following are not numbers in BASIC: 14/3

and SQR(7). The computer can find the decimal expansion of 14/.3 or SQR(7), but we may not include either in

a list of DATA. We gain further flexibility by using the letter E, which stands for: times ten to the power.

Thus, we may write .0012345678 as . 12345678E-2 or 12345678E-l0 or 1234.5678E-6. We do not write E7 as a

number, but write 1 E7 to indicate that it is 1 that is multiplied by 107 •

1.3A Variables

A numerical variable in BASIC is denoted by any letter, or by an5' letter followed by a single digit. (See

Chapter 8 for alphanumeric string variables.) Thus, the computer interprets E7 as a variable, along with A, X,

N5, 10, and 01. A variable in BASIC stands for a number, usually one that is not known to the programmer at

the time the program is written. Variables are given or assigned values by LET and READ statements. The value -

so assigned does not change until the next time a LET or READ statement is encountered with a value for that

variable. However, all variables are set equal to 0 before a RUN. Consequently, it is only necessary to assign

a value to a variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an absolute

value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm of -5, the com­

puter gives the square root of 7 along with an error message stating that you have asked for the square root of a

negative number, or it gives the logarithm of 5 along with the error message that you have asked for the logarithm

of a negative number.

1.3.5 Relational Symbols

Six other mathematical symbols of relation are used in IF-THEN statements where it is necessary to compare

values. An example of the use of these relation symbols was given in the sample program LINEAR.

Any of the following six standard relations may be used:

Symbol

=
<
<=
>
>=

<>

Example

A = B

A < B

A<= B
A > B

A>= B

A<>B

Meaning

A is equal to B

A is less than B

A is less than or equal to B

A is greater than B

A is greater than or equal to B

A is not equal to B

3-15

1.4 SUMMARY
., ... , -' ~r - ;::~.; .' , - : ,. ,

Several elementary BASIC commands have been introduced in our discussions. In describinr, dClch of these

commands,. a line number is assumed, and brackets are used to denote a general type~ For example, {variablel

; refers to any variable.

1.4. 1 LET Statement

The LET statement is used when computations must be performed. This command is not of algebraic equality,

but a command to the computer to perform the indicated computations and assign the answer to a certain variable.

Each LET statement is of the form:

LET [variab Ie 1 = [formula]

Generally, several variables may be assigned the same value by a single LET statement. Examples of assigning

a value to a single variable are given in. the following two statements:

100 LET X=X+1
259 LET W7=(W-X4t3)*(Z-A/(A-B)-17)

Examples of assigning a value to more than one variable are given in the following statements:
(

LET X=Y3=A(3,1)=1

1.4.2 READ and DATA Statements

The variables X, Y3, and A(3, 1) are assigned
the value 1.

The variables W and Z are assigned the value
3,*X-4X f 2

READ and DATA statements are u"sed to enter information into the computer. We use a READ statement to assign

to the listed variables th~ values which are obtained from a DATA statement. Neither statement is used with­

out the other. A READ statement causes the variables listed in it to be given in order, the next available num-
, -

bers in the collection of DATA statements. Before the program is run, the computer takes all of the DATA

statements in the order they appear and creates a large ~ta block. Each time a READ statement is encountered

anywhere in the program, the data block supplies the next available number or numbers. If the data block runs

out of data, the program is assumed to be finished and we get an OUT OF DATA message.

Since we have to read in data before we can work with it,. READ .statements normafly occur near the beginning
....

of a program. The location of DATA statements is arbitrary, as lorig as they occur in the correct order. A

common practice is to collect all DATA statements and place them just before the END statement.

3-16

Each READ statement is of the form:

READ [sequence of variables]

Each DATA statement is of the form:

DATA [sequence of numbers]

150 READ X,Y,Z,X1 .. Y2,Q9
330 DATA 4,2,1.7
340 DATA 6.734E-3 .. -174.321,3.1415927

234 READ BCK)
263 DATA 2,3,5,7,9,11,10,8,6,4

10 READ RCI, J)
440 DATA -3,5,-9,2.37,2.9876.-437.234E-5
450 DATA 2.765, 5.5576. 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and. SQRT(3) are formulas, not numbers.

Refer to Chapter 3 for a discussion of the subscripted variables.

1 .4.3 PRINT Statement .

The common uses of the PRINT statement are:

a. to print out the result of some computations

b. to print out verbatim a message included in the program

c. a combination of the two

d. to skip a line.

The following are examples of a type a .:

100 PRINT X,SQR(X)
135 PRINT X,Y,Z .. B*B-4*A*C .. EXPCA-B)

The first example prints X, and a few spaces to the right, the square root of X. The second prints five

different numbers:
2 A-8

X, Y, Z, 8 -4AC, and e

The computer computes the two formulas and prints up to five numbers per line in this format.

Thefollowi~ are examples of type b.:

100 PRINT. "NO UNIQUE SOLUTION~'
430 PRINT "X VALUE", nSINE", "RESOLUTION"
500 PRINT X,M, D

3-17

Line tOO prints the sample statement, and line 430 prints the three labels with spaces between them. The labels

in 430,automatically line up with the' thr~e numberS called for in ~RINT stafement 500 ~. "

The following is an example of type c.:

150 PRINT -'THE VALUE OF X IS" X
3!2J PRiNT "THE SQUARE ROOT OF" X .. "IS" SQR(X)

If the first has computed the value of X to be 3, it prints out: THE VALUE OF X IS 3. If the second has com­

puted the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25,.

The following is an example of type d.:

250 PRINT

The computer advances the paper one line when it encounters this command.

t .4.4 GO TO Statement

The GO TO statement is used when we want the computer to unconditionally transfer to some command other

than th~ next sequential command., In the LINEAR pro~lem, we direct the computer to go through the same

process for different values of C and F with a GO TO statement. This statement is in the form of GO TO

[line number] •

150 GO TO 75

1.4.5 IF - THEN Statement

The IF - THEN statement is used to transfer 'conditionally from the seq\Jential order of commands according to

the truth of some relation. It is sometimes called a conditional GO TO statement. Each IF - THEN statement

is of the form:

IF [formula] [relation} [formula] THEN [line number]

The following are two examp!es of this statement:

40
20.

IF SIN(X)<=M THEN 80
IF G=f2l THEN ,65

If the first <;Isks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks if G is

equal to 0, and skips to line 65 if so. In each case, if the answer to the question is no, the computer goes to
the next line.

3-18

1.4.6 ON - GO TO Statement

The IF - THEN statement allows a two-way fork in a program; the ON - GO TO statement allows a many-way

switch. For example:

This condition causes the following to occur:

If X = 1, the program goes to line 100,

If X = 2, the program goes to line 200,

IfX=3, the program goes to line 150

In other words, any formula may occur in plac.e of X, and the instruction may contain any number of line

numbers, as long as it fits on a _single line. The val ue of the formula is computed and its integer part is taken.

If this is 1, the program transfers to the line whose number is first on the list; if its integer part is 2, the program

transfers to the line whose number is the second one, etc. If the integer part of the formula is below 1, a- larger

than the number of line numbers listed, an erra- message is printed. To increase the similarity between the

ON - GO TO and IF - THEN instructions, the instruction

75 IF X>5 THEN 200

may also be written as:

75 IF X>5 GO TO 200

Conversely, THEN may be used in an ON - GO TO statement.

1.4.7 END Statement

Every p~ogram must have an END statement, and it must be the statement with the highest line number in the

program.

999 END

3-19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

I
I
I
I
I
I
I
I
I
I
I
I
I
I

..

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 2

LOOPS

We are frequently interested in writing a program in which one or more portions are executed a number of times,

usually with slight variations each time. To write the simplest prOgram in which the portion of the program to

be repeated is written just once, we use a loop. A loop is a block of instructions that the computer executes

repeatedly until a specified terminal condition is met •.

The programs which use loops can be best illustrated and explained by using two versions of a program for the

simple task of printing out a table of the positive integers 1 through 100 together with the square root of each.

Without a loop, the first program is 101 lines long and reads

113 PRINT 1, SQR (1)
20 PRINT 2,SQP..(2)
313 PRINT 3,SQR(3) '
9913 PRINT 99,SQR(99)
1131313 PRINT 1130;SQR(1013)
113 10 END

With the following program example, using one type of loop, we can obtain the same table with far fewer lines

of instructions (5 instead of 101):

10 LET X=1
20 PRINT X,SQR(X)
313 LET X=X+1
~ IF X<=100 THEN 20
50 END

Statement 10 gives the value of 1 to X and initializes the loop. In line 20, both 1 and its square root are

printed. Then, in line 30, X is increased by 1, to,a value of 2. line 40 asks whether X is less than or equal'

to 100; an affirmative answer directs the computer back to line 20, where it prints 2 and/2 and goes to 30.

Again, X is increased by 1, this time to 3, and at 40 it goes back to 20. This process is repeated -- line 20

(print 3 and ./3), 'Iine 30 (X = 4), line 40 (since 4 < 100, go back to line 20), etc. -- until the loop has been

traversed 100 times. Then, after it has printed 100 and its square root, X becomes 101. The computer now

receives a negative answer to the question in line 40 (X is greater than 100, not less than or equal to it), does

not return to 20 but moves on. to line 50, and ends the program. A" loops contain four characteristics: .

3-21

a. initianzcitiori (line 10)

b., the body (line 20)

c. modification (line 30)

d. an exit test (line 40)

2.1 FOR AND NEXT STATEMENTS

BASIC provides two statements to specify a loop: the FOR statement and the NEXT statement.

113 FOR X=l TO 11313
213 PRINT X,SQR(X)
313 NEXT X
50 END

In line 10, X is'set equal to 1, and a test is set up, like that of line 40 above. Line 30 carries out two tasks:
\

X is increased by 1, and the test is carried out to determine whether to go back to 20 or to go on. Thus, lines
•

10 and 30 take the place of lines 10,30, and 4O·in the previous prograrri.

Note that the value of X is increa~d by 1 each time BASIC goes through the loop. If we want a different

increase, we could specify it by writing the following:

113 FOR X= 1 -TO 11313 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6 to X on the second time, 11 on the

third I and 96 on the last time. Another step of 5 would take X beyond 100, allowing thC!' program to proceed

to the end after printing 96 and its square root. The STEP may be positive or negative, and we could have ob­

tained the first table, printed in reverse order, by writing line 10 as follows:

113 FOR X=100 TO 1 STEP-1

In the absence of a STEP instruction,' a step-size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size may all

be formulas of any complexity. For example, if Nand Z have been specified earlier in the program, we could

write the following:

FOR X=N+7*Z TO (Z-N)/3 STEP<N-4*Z)/10

For a pOsitive s~p-size, the loop ~onti.nues as long as the control variable is less than or equal to the final

'value. For a negative step-size, the 'loop continues as long as the control variable is greater than or equal to

the final value.

3-22

If the initial vatue is greater than the final value (tess than the fino. value for negative step-size), the body

of lf1e loop is not performed at all, but lf1e computer immediately passes to the statement following lf1e NEXT.

The following program for adding up lf1e first n integers gives the correct result 0 when n is O.

10 READ N
20 LET S=0
30 FeR K=l TO N
40 LE;T S=S+K
50 NEXT K
60 PRINT S
70 GC TO 10
90 DATA 3:- 10 .. 0
99 END

2.2 NESTED LOOPS

Nested loops (loops within loops) can be expressed with FOR and NEXT statements. They must be ~sted and

not crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

~FORX FOR X ~FORX
[FORY FORY FORY

NEXTY [FORZ NEXT X

NEXT X NEXT Z NEXTY
"-

[FORW

NEXTW

NEX1Y

[FORZ

NEXT Z

NEXT X

2.3 SUMMARY

By making use of a loop, the programmer can direct the computer to execute portions of a program many times.

This is a concise technique for writing a program, and saves the programmer much type-in time. In describing

the instructions used to specify a loop, a line number is assumed and brackets are used to denote ~ general type.

2.3.1 FOR and NEXT Statements

, -
Every FOR statement is of the following form:

FOR [variable] = [formula] TO [formula] STEP [formula]

3-23

Most commonly, the ~pressions are integers and the STEP is omitted. In the latter.case, a step-sim of +1 is

assumed •. The accompanying NEXT statement is simple in form, but the variable must be precisely the same one

as that following FOR in the FOR statement. Its form is ~s follows:

NEXT [variable]

30 FOR X=0 TO 3 STEP D
80 NEXT X

.
120 FOR X4=C17+COXCZ»/3 TO 3* SQR(10) STEP 1/4

. 235 NEXT X4

240 FOR X=8 TO 3 STEP-1

456 FOR, J=-3 TO 12 STEP 2

. .

Note that the step-si~e may be a variable (0), a formula (1/4), a negative number-{-1), or a positive number(2).

In lines 120 and 2~5, the successive values of X4 are .25 apart, in increasing order. In line 240, the successive

va Itles of X wi II be 8, 7, 6, 5, 4 i 3. In line 456, on successi ve trips through the loop, J will take on val ues

-3, -1, 1, 3, 5, 7, 9, and 11. If the initial, final, or step-size values are given as formulas, these formulas

are eva I uated upon entering the FOR statement. The control variable can be changed in the body of the loop;

it should be noted that the exit test always uses the latest value of this variable. If 50 FOR Z = 2 TO -2 is

written, without a negative step-size, the body of the loop is not performed and the computer proceeds to the

statement immediately following the corresponding NEXT statement.

3-24 .

CHAPTER 3

LISTS AND TABLES

In addition to the ordinalY variables used by BASIC, variables can be used to designate the elements of a list

or a table. Many occasions arise where a list or a table of numbers is used over and over, and, since it is

inconvenient to use a separate variable for each number, BASIC allows the programmer to designate the name

of a list or table by a single letter.

Lists are used when we might ordinarily use a single subscript, as in writing the coefficients of a polynomial

(00 , 01, a2 , .•• , an)' Tables'are used when a double subscript is to be used, as in writing the elements of a

matrix ~i, j). The variables used in BASIC consist of a single letter, which is the name of the list or table,

followed by the subscript in parentheses. Thus,

A (0) , A(1), A(2), ... , A(N) .

represents the coefficients of a polynomial, and

B(1,l), B(1 ,2), ... , B(N, N)

represents the elements of a matri x •

The single letter denoting a list or a table name may also be used without confusion to denote a simple variable.

However, the same letter may not be used to denote both a list and a table in the same program because BASIC

recognizes a list as a special kind of table having only one column. The form of the subscript is flexible: A list

item B(I + K) may be used, or a table item Q(A(3,7), B-C) may be used.

We can enter the list A(O), A(1), ... , A(10) into a program by the following lines:

10 FOR I =0 TO 10 _
20 READ A(I)
30 NEXT I
40 DATA 2,3,-5,2.2,4,-9,123,4,-4,3

3-25

3.1 THE DIMENSION STATEMENT (DIM)

. BASIC automatically reserves room for any list or table with subscripts of 10 or fewer. However, if we want

larger subscripts, we must use a DIM statement. This statement indicates to the computer that the specified

space is to be allowed for the list or table. For example, the instruction

10 DIM A(15)

reserves 16 spaces for list A (A{O), A(1), A(2), ••• ,A(1S». The instruction

2eJ DIM Y(10 . .t5)

reserves 176 spaces for matrix Y (10 + 1 rows * 15 + 1 columns). Space may be reserved for more than one list

and/or table,with a single DIM statement by separating the entries with commas, as shown in the fo.llowing

example:

A DIM statement is not executed; therefore, it may appear on any I ine b~fore the END statement. However,

the best place to put it is at the beginning so that it is not forgotten. If we enter a table with a subscript

greater than 10, wifhout a DIM statement, BASIC gives an error message, telling us that we have a subscript

error. This condition can be rectified by entering a DIM statement with a line number less than the line number

of the END statement.

A DIM statement is normally used to reserve additional space, but in a long program that requires many small

tables, it may be used to reserve less space for tables in order to have more space· for the program. When in

doubt, declare a larger dimension than you expect to use, but not one so large that there is no room for the

program •. For example, if we want a list of 15 numbers ent~red, we may write the following:

10 DJM A(25)
20 READ N
30 FOR 1=1 TO N
40 READ A(I)
50 NEXT I
60 DATA'15
70 DATA 2,3,5,7,11,13,(7,19,23,29,31.,37,41,43,47

Statements 20 and 60 could have been eliminated by writing 30 as FOR I = 1 TO 15 but the program as typed

. allows for the lengthening of the list by changing only statement 60, as long as the list does not exceed 25 and

there is suffic ient data.

3-26

We could enter a 3-by-5 table into a program by writing the following:

10 FOR 1 = 1 TO 3
20 FOR J=1 TO 5
30 READ BCI .. J)
4QJ NEXT J
50 NEXT 1
6eJ DATA 2 .. 3 .. -5 .. -9 .. 2
70 DATA 4 .. -7 .. 3 .. 4 .. -2
80 DATA 3 .. -3 .. 5 .. 7 .. 8

Again, we may enter a table with no DIM statement: BASIC then handles all the entries from B(O,O) to B(10, 10).

3.2 EXAMPLE

Below are the statements and run of a problem which uses both a list and a table. The program computes the

total sales offive salesmen, all of whom sell the same three products. The list, P, gives the price per item of

the three products and the table, S, tells how many items of each product each man sold. Product 1 sells for

$1.25 per item, product 2, for $4.30 per item, and product 3, for $2.50 per item; also, salesman 1 sold 40

items of the first product, 10 of the secood, 35 of the third, and so on. The program reads in the price list in

lines 40 through 80, using data in lines 910 thraugh 930. The same program could be used again, modifying

only line 900 if the prices change, and only lines 910 through 930 to enter the sales in another month. This

sample pragram does not need a DIM statement, because the computer automatically reserves enough space to

allow all subscripts to run from ° to 10.

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

10 FOR 1=1 TO 3
20 READ PC I)
30 NEXT 1
4QJ FOR 1=1 TO 3
~ FOR J=1 TO 5
60 READ SCI .. J)
m NEXT J
8I2l NEXT 1
90 FOR J=1 TO 5
100 LET S=0
110 FOR 1=1 TO 3
120 LET S=S+PCI)*SCI .. J)
130 NEXT I
140 PRINT "TOTAL SALES FOR SALESMAN"J .. "$"S
150 NEXT J

.900 DATA 1.25 .. 4.30 .. 2.50
910 DATA 40 .. 20 .. 37 .. 29 .. 42
920 DATA 10 .. 16 .. 3 .. 21 .. 8
930 DATA 35 .. 47 .. 29 .. 16 .. 33
999 END

3-27

READY
RUN
SALESI 11 :06
TOTAL SALES FOR
TOTAL 'SALES FOR

'TOTAL SALES FOR
TOTAL SALES FOR
TOTAL SALES FOR

3.3 SUMMARY

10/20/69
SALESMAN 1 $1.80.500
SALESMAN 2- $21 1 • 300
SALESMAN 3 $131.650
SALESMAN 4 $166.550
SALESMAN 5 $169.400

Because the number of simple ~riable names is limited, BASIC allows a programmer to use I'ists and tables to

increase the number of problems that can be programmed easily and concisely. A single letter is used for the

name of the list or table, and the subscript that follows is enclosed in parentheses. 'The subscripts may be

explicitly stated or .may be any legal expreSsion.

lists and tables are called subscripted variables, and simple variables are called unsubscripted variables.

Usually, you can use a subscripted variable anywhere that you use an unsubscripted variable. However, the

variable mentioned immediately after FOR in the FOR statement and after NEXT in the NEXT statement must

be a" unsubscripted variable. The initial, terminal, and step values may be any legal expression.

3.3.1 The DIM Statement

To enter a list or a table with a subscript greater than 10, a DIM statement is used to reta~n sufficient space,

as in the following examples:

20 DIM H(35)
35 DIM Q(5, 25)

The first example enables us to enter list H with 36 items (H(O), H(1), ••• , H(35». The second reserves space

for a table of 156 items (5 + 1 \'OWs * 25 + 1 columns).

3-28

CHAPTER 4

HOW TO RUN BASIC

After learning how to write a BASIC program, we must learn how to gain access to 'BASIC via the

Teletype so that we can type in a program and have the computer solve it. Steps required to communicate

with the monitor must first be performed. These steps are fully explained in the PDP-l0 Reference Handbook

and the PDP-l0 System User's Guide.

4.1 GAINING ACCESS TO BASIC

Once the mon itor has responded with a period to indicate that it is ready to receive a monitor command, type

in the following command:

.R BASIC

This command establishes contact with the BASIC CUSP (Commonly Used System Program). BASIC responds

with the fol lowing·:

NEW OR OLD--

Type in:

NEW

if you are going to create a new program. BASIC responds with the following:

NEW 'FILE NAME--

After you type in the name of your program, BASIC checks to make sure that 'the name does not already exist.

If you waRt to work with a previously created program that you saved on a storage device (disk or DECtape),

type in the following:

OLD

3-29

BASIC then asks for the name or the old program, as 'fo11ows:

OLD FILE NAME--

Respond by typing in the nome of your old tile'. If your old file is stored on a directory device other than'the

disk, you must type in the device name as in the foll~ing example:

OLD FILE NAME--DTA6:SAMPLE

BASIC retrieves the file named SAMPLE from DECtape 6 and rep/aces the current contents of user core with the

file SAMPLE. The disk may be specified as the device on which the old program is stored, but this is not

necessary because the disk is the device used when no device is specified. For example, the following state­

ments are equivalent:

OLD FILE NAME--DSK:TESTI

OLD FILE NAME--TESTI

Program nomes can be any combination of letters and digits up to and including six characters in length. Char-

o acters other than letters and digits can ~ used, but * ,; I $ are to be' avoided. In previous chapters we have

used program names such as LINEAR and SALES 1. If you recall an old program from storage, you must use

exactly the same name you assigned to it when it was saved.

4.2 ENTERING TH~ PROGRAM

After you type in your filt;name (whether it is old or new), BASIC responds with the following:

READY

You can begin to type in your program. Make sure that each line begins with a line num~er containing no more

than five digits and containing no spaces or nondigit characters. Also, be sure to start at the beginning of tha

Teletype line for each new line. Press the 'RETURN key upon completion of each line.

If, in the process of typing a statement I you make a typing error and notice it before you terminate the line,

you can correct it by pressing the RUBOUT key once for each character to be erased, going backward until

the character in error is reached. Then continue typing, begi~ning with the character in error. The

following is an example of this correcting process: . /

10 ,PRNIT\TIN\JNT 2~3

NOTE

The RUBOUT key echoes as a backslash (\), followed by
the deleted characters and a second backslash.

3-30

Also, to delete the enth1t .ine Mint typed, you can depress the ALTMODE key Of a Teletype Model 35 is usec:l),

the ESC key (if a Teletype Model 33 is used), or the PREFIX key (if a Teletype Model 37 is usec:I).

4.3 EXECUTING THE PROGRAM

After typing the complete program (do not forget to end with an END statemerit), type RUN or RUNNH, followed

by the RETURN key. BASIC types the name of the program, the time of day, the current date (unless RUNNH is

specified), and then it analyzes the program. If the program can be run, BASIC executes it and, via PRINT

statements, types out any results that were requested. The typeout of results does not guarantee that the program

is correct (the results could be wrong), but it does indicate that no grammatical errors exist (e.g., missing line

numbers, misspelled words, or illegal syntax). If errors of this type do exist, BASIC types a message (or several

messages) to you. A list of these diagncstic messages, with their meanings, is given in Appendix B.

4.4 CORRECTING THE PROGRAM

If you receive an error message typeout informing you, for example, that line 60 is in error, the line can be

corrected by typing in a new line 60 to replace the erroneous one. If the statement on line 110 is to be elim­

inated from your program, it is accomplished by typing the following:

110)

If you wish to insert a statement between lines 60 and 70, type a line number between 60 and 70 (e.g., 6S),

followed by the statement.

4.5 INTERRUPTING THE EXECUTION OF THE PROGRAM

If the results being typed out seem to be incorrect and you want to stop the execution of your program, type to

(hard down CTRL key and at the same time type 0) to suppress the typeout, or type tC twice, as indicated in

the following example:

tC

tC
eStops execution of your program, and

Returns control to Monitor

If you typed tC, the monitor responds with a period and waits for you to type a monitor command. If you wish

to reinitialize, type either of the following:

• START or .REENTER

3-31

BASIC responds with the' foUoWing: t ,

READY.

, whereupon you can modify or odd st<Jtements and/or tYpe RUN. If you wish to continue at the point where you

interrupted the execution, type the following:

.CONT

,
.4.6. LEAVING THE COMPUTER

When you wish to leave the computer, type the following

fC

The monitor responds with a period. Then type the following:

.KJOB

The monitor responds with the following:

CONFIRM:

If you simply wont to get off the machine and delete all files you may hove created, type the following:

K

Other options available following the typeout of CONFIRM: are listed for you if you respond to the CONFIRM:

message with a carriage return (RETURN key) only. The monitor then lists all options av~i1able, along with the

response required to request each option.

4.7 EXAMPLE OF BASIC RUN

The following is a simple example of the use of BASIC under a time-shoring monitor:·

TC
.LeGIN
JOB 7 DEC PDP-10 #40 4561H PR

3-32

GO TO MONITOR LEVEL
REQUEST LOGIN
MONITOR TYPES OUT YOUR ASSIGNED
JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR

MONITOR REQUESTS YOUR PROJECT­
PROGRAMME~ NUMBER; TYPE IT IN

PASSWORD:

0927 29-0CT-69. TTY3

tC

.R BAS IC

NEW OR OLD--NEW

NEW FILE NAME--SAMPLE

READY

10 FOR N=l TO 7

20 PRINT N, SQR(N)

30 NEXT N

40 PR I NT "DONE"

50 END

MONITOR REQUESTS YOUR PASSWORD;
TYPE IT IN; IT WILL NOT ECHO BACK

MONITOR TYPES OUT THE TIME OF DAY,·
THE CURRENT DATE, YOUR TELETYPE
UNIT NUMBER, tC, AND A PERIOD

INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

BASIC ASKS WHETHER NEW OR
OLD PROGRAM IS TO .BE RUN

BASIC ASKS FOR NEW FILENAME

BASIC IS NOW READY TO RECEIVE
STATEMENTS

TYPE IN STATEMENTS

RUN RUN PROGRAM

SAMPLE 11: 14 10/20/69

2 1 .41421

3 1.73205

4 2

5 2.23607

6 2.44949

7 2.64575

DONE

tC

.KJOB

CONF'IRM:K

JOB 7, USER 27, 20 OF'F' TTY3 AT 0930 ON 29-0CT-69

FILES DELETED: 0, F'ILES SAVED: 0, RUNTIME ~ MIN, 01 SEC

3-33

4.8 ERRORS' AND DEBUGGING

• Occasionally, the first run of a new problem is free of errors and gives the correct answers, but f more commonly,

errors are present and have to be corrected. &rors are of two type~: errors of form (grammatical errors) which

prevent the running of the program, and logical errors in the program which cause the c9mputer to produce wrong

answers or no answers at a II •

Errors.of form cause error messages to be printed, and the various types of error messages are listed and explained

in Appendix B. Logical errors are more difficult to uncover, particularly when the program gives answers which

seem to be nearly correct. In either case, after the errors are discovered, they can be corrected by changing

lines, by inserting new lines, or by deleting lines from the program. As indicated previOusly, a line. is changed ,
by typing it correctly with the same line number; a Jine is inserted by typing it with a line number between those

\ .
of two existing lines; and a line is deleted by typing its line number and pressing the RETURN key. Note that

you cQn insert a line only if the original line numbers are not consecutive integers. For this reason, most pro­

grammers begin by using arbitrary line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sOrts out lines and arrQnges them in

order, aline may be retyped out of sequence. Simply retype the offending line with its original line number.

4.8.1 EXample of Finding and Correcting Errors

We can best illustrate the process of finding the errors (bugs) in a program and correcting (debugging) them by

an example. Consider the problem of finding that value of X between 0 and 3 for which the sine of X is a

maximum, and ask the machine to print out this value of X and -the value of its sine. Although we knOw that

'ff/2 is the correct value, we use the computer to test successive values of X from 0 to 3,. first using in-

terva Is of • 1, then of .01, and fina IIy of • eXH. Thus, we ask the computer to find the si ne of 0, of .1, of 2,

of .3 ••• , of 2.8, of 2.9, and of 3, and to determine which of these 31 VQlues is the largest. It does so by

testing SIN (0) and SIN (.1) to see which is larger, and calling the larger of these two numbers M. It then picks

the larger of M and SIN (.2) and calls it M. This number is checked against SIN (.3). ~ch time a larger value

of M is found, the value of X is "remembered" in XO. When it finishes, M will have been assigned to the

largest value. It then repeats the search, this time checking the 301 numbers 0, .01, 02, .03, ••• , 2.98,

2-.99, and 3, finding the sine of each, and checking to see which has the largest sine. At the end of each of

. these three searches, we want the computer to print three numbers: the value XO which has the largest sine, the

. si ne of that number, and the i nterva I of search.

Before going to the Teletype, we write a program such as the following:

3-34

10 READ D
2eJ LET X0=0
30 FOR X=0 TO 3 STEP D
4I2J IF SINCX)<=M THEN 100'
50 LET X0=X
60 LET M=SINCX0)
~ PRINT X0,X,D
80 NEXT X0
90 GO TO 20
100 DATA .1,.01,.001
110 END

The foliowing is a list of the entire sequence on the Teletype with explanatory comments on the right side:

NEW OR OLD--NEW
NEW FILE NAME--MAXSIN
READY

READ D
LWR X0=0

10
20
30
40
50
60
~
80
90
20
100
110
RUN

FOR X=0 TO 3 STEP D
IF SINE\E\(X)<=M THEN 100
LET X0=X
LET M=SINCX)
PRINT XO,X,D
NEXT T\T\X0
GO TO 20
LET X0=0
DATA. 1 • , .01, .001
END

r.1AX SIN 1 1 : 35 10/20/69

ILLEGAL VARIABLE IN 70
NEXT WITHOUT FOR IN 80
FOR WITHOUT NEXT IN 30

m PRINT X0,X,D
40 IF SIN(X)<=M THEN 80
80 NEXT X
RUN

MA.X SIN 1 1 : 36

213
RUN

MA.XSIN 11:37

10/20/69

001
001

113/20/69

UNDEFINED LINE NUMBER 213 IN 90

3-35

----'--- --~ ---

Note the use of the RUBOUT key (echoes as a
\) to erase a character in line 40 (which should
have started IF SIN (X), etc.) and in line 80.

We discover that LET was mistyped in line 20,
and we correct it after 90.

After receiving the first error message, we
insPect line 70 and find that we used XO for
a variable instead of XO. The next two error
messages relate to lines 30 and 80 having
mixed variables. These are corrected by
changing line 80.

Both of these changes are made by retyping
lines 70 and 80. In looking over the program,
we also discover that the IF-THEN statement
in 40 directed the computer to a DATA state­
mentand not to line 80 where it should go.
This is obviously incorrect. We are having
every value of X printed, so we direct the
machine to cease operations by typing tC
twice even while it is running. We notice
that SI N{O) is compared with M on the first
time through the loop I but we had assigned a
value to XO but not to M. However, we re­
call that all variables are set equal to zero
before a RUN; therefore I line 20 is unneces­
sary.

"

Line 90, of c~rse, sent us back,t~ line 20 to
repeat the .operation and not back to line 10

,10/20/69
. ,to pick up a new'value' fOJ D., We'retyPe line

90 and'thentype'RUN again. "

70
85 PRINT X01MID

We are aboUt to print out the same table as
before. Each time that it goes through the
loop, it, is printing out XO, the curreri't value
of X, and the interval 'size.

5 PRINT "X VALUE" I,"SIN" I RESOLUTION"

We rectify this condition ~y moving
the PRJ NT statement outside the ,
loop. Typing 70 deletes that line,
and line 85 Is outside of the loop.
We also realize that we want M
printed, not X. We also decide

RUN

MAXSIN 11: 44 10/20/69

ILLEGAL VARIABLE IN 5

5 PRINT "X VALUE"I"SINE"I"RESOLUTION"
RUN

MAXSIN 11 : 47 10/20/69

X VALUE SINE
1.60 0.999574
1.57, 1.
1.57099 1.
OUT OF DATA IN 10

LIST

11:48 10/80/69

RESOLUTION
0.1
0.01
0.001

MAXSIN
5
10

PRINT "X VALUE"I"SINE"I"RESOLUTION"
READ D

30
40
50
60
80
85
90
100
110

READY
SAVE
READY

FOR X=0 TO 3 STEP D
IF SIN(X)<=M THEN 80
LET X0=X
LET M=SIN(X)
NEXT X
PRINT X0IM .. D
GO TO 10
DATA -1 ... 01 ... 001
END

to put in headings for the columns
by a PRINT statement.

There is an error in our PRINT state­
ment: no left quotation mark for
the third item.

Retype line 5, with 01'1 of the re­
quired quotation marks.

These are the desired results. Of
the 31 numbers (0, • 1, .2, .3, ••• ,
2.8,2.9,3), it is 1.6 which has
the largest sine ,namely .999574;
this is true for finer subdivisions.

Having changed so many parts of
the program, we ask for a I ist of
the corrected program.

The program is SClVed for later use.

A PRINT statement could have been inserted to check on-the machine computations. For example, if M were

checked, ~e could have inserted 65 PRINT M, and seen the values.

3-36

5. I FUNCTIONS

CHAPTER 5

FUNCTIONS AND SUBROUTINES

OccasionaJly, you may want to calculate a function, for example, the square of a number. Instead of writing

a small program to calculate this function, BASIC provides 14 functions as part of the language, 9 of which are

described in Chapter 1. Three of the remaining functions are described here, and the last tw~ are described in

Chapter 7.

The desired function is called by a three-letter name. The value to be used is expressed explicitly or implicitly

in parentheses and follows the function name. The expression enclosed in parentheses is the argument of the

function, and it is evaluated and used as indicated by the function name. For example:

15 LET B=SQR(4+Xf3)

indicates that the expression (4 + X t3) is to be evaluated and then the square root taken.

5.1.1 The Integer Function (INT)

The INT function appears in algebraic notation as [X] and returns the greatest integer of X that is less than or

equal to X. For example:

INT (2.35) = 2

INT (-2.35) = -3

INT (12) = 12

One use of this function is to round numbers to the nearest integer by asking for INT (X + .5). For example:

INT (2.9 + .5) = INT (3.4) = 3

rounds 2.9 to 3. Another use is to round to any specific number of decimal places. For example:

INT (X * 10 t 2 + .5) / 10 t 2

3-37

rOunds X correct to two decimal places and

INT (10 * X t 0 + .5) /10 t 0

rounds X correct to 0 decimal places.

5.1.2 The Random Number Generating Function (RND)

The RND function produces rtlndom numbers between 0 and 1. This function is used to simulate events that

happen in a somewhat random way. RND does not need an argument.

If we want the first 20 random numbers, we can write the program shown below and get 20 six-digit decimals •
..

10 FOR L=1 TO 20
20 PRINT RND,
30 NEXT L
4I2l END
RUN

RANDOM 13: 24 10/20/69

0.406533'
0.863799
0.863799
5.00548 E-2

0.88445
0.880238
0.897931
0.393226

0.681969
0.638311
0.628126
0.680219

NOTE

0.939462
0.602898
0.613262
0.632246

This is a sample run of random numbers. The format of the
PRINT statement is discussed in Chapter 6.

RUN

RANDOM 13:25

0.406533
0.863799

10/20/69

0.88445 0.681969 0.939462

0.253358
0.990032
0.303217
0.668218

0.253358

A second R,UN gives exactly the same random numbers as the first RUN; this is done to facilitate the debugging

of programs. If we want 20 'random one-digit integers., we could change line 20 to read as follows:

20 PRINT INT(10*RND),
RUN

- 3-38

We would obtain the following:

RANDOM 13: 26

4
8
5
o

8
8
8
3

~
, '

113/20/69

6
6
6
6

9
6
6
6

2
9
3
6

To vary the type of random Rumbers (20 random numbers ranging from 1 to 9, inclusive), change line 20 as

follows:

20 PRINT INT(9*RND +1);
RUN

RANDOM 13:28 10/20/69

4 8 7 938 8 669 663 476 7

To obtain random numbers which are integers from 5 to 24, inclusive, change line 20 to the following:

.'
213 PRINT INT(20*RND +5);
RUN

RANDOM 13: 28 10/20/69

13 22 18 23 10 22 22 17 17 24 16 22 17 17 11 6 12 18
17 18

If rondom numbers are to be chosen from the A integers of which B is the smallest, call for INT (A*RND+B) . .

5.1.3 The RANDOMIZE Statement

As noted when we ran the first program of this chapter twice, we got the same numbers in the same order each

time. However, we get a different set with the RANDOMIZE statement, as in the following program:

5 RANDOMIZE
113 FOR L=1 TO 20
20 ' PRINT INT(10*RND);
30 NEXT L
40 END
RUN

RNDNOS 13:32 10/20/69

9 4 2 6 6 3 8 4 9 8 6 5 8 6 2 6 0

-RUN

RNDNOS 13: 33 10/20/69

46660 538 408 8 0

3-39

":,'"

1l'\."_~~'7'1t _.;""AWi\._,d.~ -'._,,_ • ~ E....:. --.o-l' !.LL......,:"" _ • ...: t_
~'f~ ,~~_~',~ ___ HII_ ID.~ ~." ~-.--'P"~If:,~ .,.,~~ ""5I"'W~ I'~.QQ ~,.

program .,.ing random nutnlMrs~ then· reptICIted !tUNI ti the 'pr..-n.prOGt;,ce-clifferent·resttlt$. ,lftt.-i~t.
, .

is absent, theft theeffieioltist of l'O.tom numbers is: .. tned:n.. tMusu.t tt is.~ tf;Iat Q simulated
1 " , >

mode-I shc~dd be ~without tJ'tis instructioa,1& t+tat 'aM,'efWQ)'s. oMoihJ; tt.e _me.....,., nutnbers 'Ft, te ..

ru~. After the Pr.,am r.~, ~-befere. ShHthtt ~iCKt nms, you ~rt ~ 10"0."",:

RANDOM

5.1.4, The Sign ~uACtiCln (SGN)

The SGN function is one which assigns .the value , to a~ positiVe number, 0 toze~, and -1 to any negative

number. Thus, SGN (7.23) = 1, SGN (0) = 0, and SGN (-.2387) = -Y. For exampte, the fotlowing statement:

,
~ O~ SGN(X)+2 GO TO 1@0,200,300

trol1$fen to 100 if X < 0, to 200 if X = 0, and to 300 if X> O.

'c
5.1.5 The Define User Function (DEF) and Function End Statement (FNEND)

In addition to the 14 functions BASIC provides, you may define up to 26 functions of your own with the.DEF

The'name of the defined function must be three letters, the first two of which are FN, e.g., FNA, FNB,' •• _,

FNZ. Each DEF statement introduces a single function. For example I if you repeatedly use the function

e ~X2 + 5, introduce the f~nction by the following:

30 DEF FNECX)=EXPC-Xt2)+5

_ and call for various values of. the function by'FNE (.1), FNE (3.45), FNE ~A+2), etc. This statement saves a

great deal of time when you need values of the function for a nuR,ber of different values of the variable.

The D EF statement may occur anywhere in the program, and the expression to the right of the equal sign may' be

any formula that fits on one lin~. It may include any combination of other functions, such as those defined b)r
different DEF statements; it also can involve other variables besides those denoting the argument of the functi~.

, I

- -
Each defined function may have zero, one, two, or more Variables as in the fo"~ing example:

10 DEF FNB(X,Y)=3*X*Y-Yf3
105 DEF FNC(X,Y,Z,W)=FNB(X,Y)/FNB(Z,WJ
530 DEF FNA=3.1416*Rf2

3-40

. In-the definition of FNA"; the current value of R is ~sed when FNA occurs. Similarly, iffNR is defined by

the following:

•
W DEF FNR(X>=SQRC2+LOGCX)-EXP{Y*~>*CX+SIN(2*Z»)

you ~an ask for FNR(2.7), and give new values to Y and Z before the next" use of FNR.

The methcxf of having multiple line PEFs is illustrated by the "max" function shown below. Using this method,

the possibility of using IF ••• THEN as part of the definition is a great help as shown in the following example:;

10 DEF FNMCX,Y)
20 LET FNM=X
30 IF Y<= X THEN 50
40 LET FNM=Y
50 FNEND

The absence of the equals sign (=) in line 10 indicates that this is a multiple line DEF. In line SO, FNEND

terminates the definition. The expression FNM, without an argument, serves as a temporary variable for the

computation of the function value. The following example defines N-factorial:

10 DEF FNFCN>
20 LET FNF=1
30 FOR K=l TO N
40 LET FNF=K*FNF
50 NEXT K
60 FNEND

Any variable which is not an argument of FN in a DEF loop has its current value in the program. Multiple

line DEFs may not be nested and there must not be a transfer fram inside the DEF to outside its range, or yice

versa.

5.2 SUBROUTINES

" When you have a procedure that is to be followed in several places in your program, the procedure may be

written as a subroutine. A subroutine is a self-contained program which is incorporated into the main program

at specified points. A subroutine differs from other c<?ntrol techniques in that the computer remembers where

it was before it entered the subroutine, and it returns to the appropriate place in the main program after ex­

ecuting the subroutine.

5.2.1 GOSUB and RETURN Statements

Two new statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered from any

point in the main program with a GOSUB statement. This statement is similar to a GO TO statement; however,

3-41

with' a GOSUB statement, the computer remembers where it waspriJ-to the transfer. i=.ollowing is an example

of the GOSUB statement: •
. 90 GOSUB 210

where 210 is the line number of the first statement in the subroutine. The last line in the subroutine is a

RETURN statement which directs the computer to the statement following the GOSUB from which it transferred.

For e)!:ample:

350 RETURN

" .
returns to the next higf:lest line number greater than the GOSUB call.

Subroutines may appecir anywhere in the main program, and care should be taken to make certain that the com­

puter enters only through a GOSUB statement a~ exits via a RETURN statement.

5.2.2 Example

A prog~m for determining the greatest common divisor (GCD) of three integers, using the Euclidean Algorithm,

illustrates the use of a subroutine. The first two numbers are sele~ted in lines 30 and 40, and their GCD is

determined in the subroutine, lines 200 through 310. The GCD just found is called X in line 60; the third num­

ber is called Y, in line 70; and the subroutine is entered from line 80 to find the GCD of these two numbers.

This number is, of course, the greatesf common divisor of the three given numbers and is printed out with them

in line 90.

A GOSUB inside a subroutine to perform another subroutine is called a nested GOSUB. It is necessary to exit

from a subroutine only with a RETURN stotement. You may have several RETURNs in the subroutine, as long as

exactly one of them wi II be used ~

10 PRINT "'A" .. "B" .. "C" .. "GCD"
20 READ A.. B.. C
30 LET X=A
40 'LET Y=B
50 GOSUB 200
60 LET X=G
70 LET Y=C
80 GOSUB 200
90 PRINT A .. B .. C .. G'
100 GO TO 20
110 DA TA 60 .. 90 .. 1 20
H20 DATA 38456 .. 64872 .. 98765.
130 DATA 32 .. 384 .. 72
200 LET Q=INT<X/Y> .
210 LET R=X-Q*Y
220 IF R=0 THEN 300
230 LET X=Y
240 LET Y=R

" 250 GO TO 200

3-42

30f2) LET G=Y
310 RETURN
320 END
RUN

GCD3NO 13:38 10/20/69

A 8 C GCD

6(21 90 120 30
39456 64872 98765 1
32 384 72 8

OUT OF DATA IN 20

3-43

.,

CHAPTER 6

MORE SOPHISTICATED TECHNIQUES

The preceding chapters have covered the essential elements of BASIC. At this point, you are in a position to

write BASIC programs and to input these programs to the computer via your Teletype. The commands and tech­

niques discussed so far are sufficient for most programs. This chapter and remaining ones are for a programmer

who wishes to perform more intricate manipulations and to express programs in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT

The PRINT statement permits a greater flexibil,ity for the more advanced programmer who wishes to have a

different format for his output. The Teletype line is divided into 5 zones of 14 spaces each. A comma is a

signal to move to the next print zone or, if the fifth print zone has just been filled, to move to the first print

zone of the next line. If a label (expression in quotes) is followed by a semicolon, the label is printed with no

space after it. If a variable is followed by a semicolon, its value is printed in the following format:

snnn •• n

numeric value l~ one space

sign: space if positive; - if negative

When you type in the following program:

10 FOR 1=1 TO 15
20 PRINT I
30 NEXT I
40 END.

the TeletyPe prints 1 at 'the beginning of a line, 2 at the beginning of the next line, .and, finaUy, 15 on the

fifteenth line. But, by changing line 20 to read as follows:

20 PRINT I!

3-45

1
6
11

2
1
12

3
8
13

.4
9
14

5
10
15

If you want the numben printed in this fashion, but compressed, change line 20 by replacing the comma 'with a

semicolon as in the following example: ~ . (

20 PRINT I;

The following results are printed:

2 3 4 5 6 1 8 9 10 11 12 13 14 15

A label inside quotation marks is printed as it appears, and the end of a PRINT statement signals a new line,

unless a comma or semicolon is the last symbol. Thus, the follOYiing instruction:

50 PRINT X, Y

prints two numbers and then returns to the next line, while the instruction:

50 PRINT X, Y,

prints these two values and does not return •. The next number to be printed appears in the third zone, after the

values of X and Y in the first two zones.

Since the end of a PRINT statement sigflC!ls a new line,

250 PRINT

causes the Teletype to advance the paper one line, to put a blank line for vertical spacing of your res':llts, or

to complete a partially filled line.

50 FOR M=1 TO N
110 FOR J=0 TO M
120 PRINT BCM,J);
130 NEXT J
140 PRINT
150 NEXT M

This program prints B(1,O) and next to it B(1, 1). Without line 140, the Teietype would go on printing 8(2,0),

8(2',1), and B(2,2) on the same line, and. then J(3,.G},. B(3,.1'),. etc. After~. Tef.etype·pr.tftftt'" 1(1 "l) value

corresponding to M = 1, line 1-40 directs it to start a new line; after printing the value'of B(2,2) corresponding

to M = 2, line 140 directs it to start anOther new line, §tc.

3-46

The following instructions:

50 PRINT "TIME-"; "SHAR"; "ING";
51 PRINT "ON"; "THE"; "PDP-leI"

cause the printing of the following:

TIME-SHARING ON THE PDP-10

Formatting of output can be controlled even further by use of the function TAB, in the form TAB(n), where n is

the desired print position (0 through 74).

Insertion of TAB(l7) causes the Teletype to move to column 17, as if a 'tab had been set there. For this purpose,

the positions on a ,line are numbered from 0 through 71, and 72 is assumed to be the 0 position on the next line.

More precisely, TAB may contain any formula as its argument. The value of the formula is computed, and its

integer part is taken. This, in tum, is treated modulo 75, to obtain a value from 0 through 74, as indicated

above. The Teletype is then moved forward to this position (unless it has already passed this position, in which

case the TAB is ignored). For example, inserting the following line in a loop

55 PRINT X; TAB(12); Y; TAB(27); Z

causes the X values to start in column 0, the Y vCllues in column 12, and the Z values in column 27.

The following rules are used to interpret the printed results:

a. If a number is an integer, the decimal point is not printed. If the integer contains more than eight
digits, it is printed in the format as fotlows.

L E (Exponent) followed by p (power of 10) nl'~i-
next five digits

first digit

For example, 32,437,580,259 is written as 3.24376E+10

b. For any dpcimal number, no more than six significant digits are printed.

c. For a number less than 0.1, the E notation is used, unless the entire significant part of the number
can be' printed as a 6-digit decimal number. Thus, 0.03456 indicates that the number is exactly
.0345600000, while 3.45600E-2 indicates that the number has been rounded to .0345600.

d. Trailing zeros after the decimal point are not printed.

3-47

Ie FOR N=-5 TO,3121
20 PRINT 2fN;
30 NEXT N
4?l END
RUN

PO WERS 11 : 54 1121/2121/69

3. 125121I21E-2 6.25121121121~-2 121.125 121.25 121.5 1 2 4 8 16 32 64 128
256·512 112124 212148 412196 8192 16384 32768 65536 13112172 262144
~4288 112148576 212197152 419431214 838861218 16777216 33553332
6711218864 1.34218 E+8 2.68435 E+8 5.36871 E+8 1.1217374 E+9

6.2 INPUT STATEMENT

At times, during the running of a program, it is desirable to have data entered. This i~ particularly true when

one person writes the program and saves it on the storage device as a I ibrary program (refer to SAVE command,

Chapter. 9), and other persOns use the program and suppy their own data. Data may be entered by an INPUT

- statement, which acts as a READ but accepts numbe~ of alphanumeric data from the Teletype keyboard. For

example, to supply values for X and Y into a program, type the follCNiing:

40 INPUT X, Y

prior to the first statement which.uses either of these numbers. When BASIC encounters this statement, it types

,a question mark. The user types two numbers, separated by a comma, and presses the RETURN key, and BASIC
"

continues the program. No number can be I~nger than 8 digits.

Frequently, an INPUT statement is combined with a PRINT statement to make sure that the user knCNis what the

question mark'is asking for. You might type in the follCNii~ statement:

2121 PRINT "YOUR VALUES OF X,Y, AND Z ARE";
30 INPUT X,Y,Z

and BASIC types out'the following:

YOUR VALUES OF X,Y, AND Z ARE?

Without the semicolon cit the end of line 20, the question mark would have been printed on the !"8xt line.

Data entered via an INPUT statement is not saved with the program. Therefore, INPUT should be used only

~hen small amounts of data are'to be entered, or when necessary during the running of the program.

3-48

6.3 STOP STATEMENT

STOP is equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement in the program. For

example, the following two program portions are exactly equivalent:

250 GO TO 999 250 STOP

340 GO TO 999. 340 STOP

999 END 999 END

6.4 REMARKS STATEMENT (REM)

REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the remainder

of that line, allowing you to follow the REM with directions for using the program, with identifications of !he

parts of a long program, or with any other information. Although what follows REM is ignored, its line number

may be used in a GOTO or IF-THEN statement as in the following:

100 REM INSERT IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY
200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

300 RETURN

520 GOSUB 200

A second method for adding comments to a prpgram consists of placing an apostrophe (I) at the end of the line;

and following it by a remark. Everything following the I is ignored except when the line ends in a string (refer

to Chapter 8).

6.5 RESTORE STATEMENT

The RESTORE statement permits READing the data in the DATA statements of a program more than once. When-
. .

ever RESTORE is encountered in a program, BASIC restores the data block pointer to the first number. A subse-

quent READ statement then starts reading the data all over again. However, if the desired data is preceded by

code numbers or parameters, superfluous READ statements should be used to pass over these numbers. As an

example, the following program p~ion reads the data, restores the data block to its original state, and reads

the data again. Note the use of line 570 (READ X) to pass over the value of N, which is already known.

100 READ N
110 FOR I = 1 TO N
120 READ X

..
3-49

200 NEXT1
560 RESTORE
570 READ X .. 580 FOR 1=1 TO N
590 READ X
700 DATA •••••
710 DATA •••••

3-50

CHAPTER 7

VECTORS AND MATRICES

Operations on lists and tables occur frequently; therefore, a special set of 13 instructions for matrix computations,

all of which are identified by the starting word MAT, is used. These instructions are not necessary and can be

replaced by combinations of other BASIC instructions, but use of the MAT instructions results in shorter programs

that run much faster.

The MAT instructions are as follows:

MAT READ a, b, c

MAT c '" ZER

MATc =CON

MATc=IDN

MAT PRINT a, b, c

MAT INPUT v

MAT b =a

MATc=a+b

MAT c = a - b

MAT c = a * b

MA T c = TRN(a)

MAT c = (k) * a

MAT c = INV (a)

Read the three matrices, their dimensions
having been previously specified.

Fill out c with zeros.

Fill out c with ones.

Set up c as an identity matrix.

Print the three matrices. (Semicolons can be
used immediately following any matrix which
you wish to have printed in a closely packed
format.)

Call for the input of a vector.

Set the matrix b equal to the matrix a.

Add the two matrices a and b.

Subtract the matrix b from the matrix a.

Multiply the matrix a by the matrix b.

Transpose the matrix a.

Multiply the matrix a by the number k. The
number, which must be in a parentheses, may
also be given by a formula.

Invert the matrix a.

3-51

7.1 MAT INSTRUCTION CONVENITONS

The following convention has been odopted for MAT instru~ions: while every vector has ~ cOmponent 0, and

every matrix has a rON 0 and a column 0,- the MAT instNctions ignore these. Thus, if we have a matrix of

dimension M-by-N in a MAT instNction, the rows are numbered 1,2, ' ••• , M, and the columns I, 2, ••• , N.

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the foliONing:

DIM M(20 .. 35)

Mmay have up to 20 rows and up to 35 columns. This statement is written to reserve enough space for the

matrix; consequently, the only concern at this point is that the dimensions declared are large enough to accom­

modate the matrix. HONever, in the absence of DIM sTarements, all vectors may have up to 10 components and

matrices uP.to 10 rows and 10 columns. This is to say that in the absence of DIM "statements, this much space

is automatically reserved for vectors and matrices on their appearance in the program. The actual dimension
I

of a matrix may be determined either when it is first set up (by a DIM statement) or when it is computed. Thus

the following

10 DIM M(20 .. 7)

50 MAT READ M

reads a 20-by-7 matrix for M, while the following:

50 MAT READ M(17 .. 30)

reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

10 DIM M(2eJ .. 35)

7.2 MAT C = ZER, MAT C = CON, MAT C = ION

The following three instNctions:

MAT M= ZER
MAT M= CON
MAT M= ION

(sets up matrix M with all components equal to zero)
(sets up matrix M with all components equal to one)
<sets up matrix M as an identity matrix}

act like MAT READ as for as the dimension of the resulting matrix is concerned. For example,

MAT M = CON (7,3)

3-52

sets up a 7-by-3 matrix with 1 in every component, while in the following:

MAT M=CON

sets up a matrix, with ones in every component, and of 10-by-l0 dimension (unless previously -given other dimen­

sions). It should be noted, however, that these instructions have no effect on row and column zero. Thus, the

following instructions:

10 DIM M(20~7)
20 MAT READ M(7~3)
35 MAT M=CON
70 MAT M=ZER(15~7)
90 MAT M=ZER(16~10)

first read in a 7-by-3 matrix for M. Then they set up a 7-by-3 matrix of all ls for M (the actual dimension having

been set up as 7-by-3 in line 20). Next they set up M as a 15-by-7 all-zero matrix. (Note that although this

is larger than the previous M, it is within the limits set in 10.) An error message results because of line 90. The

limit set in line 10 is (20 + 1) x (7 + 1) = 168 components, and in 90 we are calling for (16 + 1) x (10 + 1) = 187

components. Thus, although the zero rCNIs and columns are ignored in MAT instructions, they playa role in

determining dimension limits. For example,

90 MAT M=ZER(25~5)

would not yield an error message.

Perhaps it should be noted that an instruction such as MAT READ M(2,2) which sets up a matrix and which, as

previously mentioned, ignores the zero row and column, does, hCNIever, affect the zero rCNI and column. T~

redimensioning which may be implicit in an instruction causes the relocation of some 'numbers; therefore, they •

may not appear subsequently in the same place. Thus, even if we have first LET M(1 ,0) = M(2,0) = 1, and then

MAT READ M(2,2), the values of M(1,O) and M(2,0) nCNI are 0. Thus when using MAT instructions, it is best

not to use rON and column Zero.

7.3 MAT PRINT A, B, C

The follCNIing instruction:

MAT PRINT A, B; C

causes the three matrices to be printed with A and C in the normal for~t (i .e. , with five components to a line

and each new rON starting on a new line) and B closely Pack~d.

3-53

treated as a C"olumn vector by BASIC, a rcNI,vector. has. to be introduced as a matrix·that has.only one roW, ,
namely raN 1. Thus,

DIM X(7), Y(0,5)

int.-ocluces a 7-cornponent column vector and a 5-component raN. vector.

If V is a vector, then

MAT PRINT V

prints the vector V as a column vector.

MAT PRINT V,

prints V as a row vector, five numbers to the line, while

MAT PRINT Vi

prints Vasa rrm vector, closely packed. '

7.4 MAT INPUT V AND THE NUMFUNCTION

The follrming instruction:

MAT INPUT V

c~lIs for the input of ~ vector. The number of components in the vector need not be specified. Normally, the

input is limited by its having to be typed on one line. However, by ending the line of input with an ampersand

(&) before the carriage return, the machine asks for more input on the next line. Note that, although the number

. of components need not be specified, if we wish to input more than 10 numbers, we must save sufficient space

with a DIM statement. After the input, the function NUM ~quals the number of components, and V(1), V(2), ••• ,

V(NUM) become the numbers inputted, allofling variable length input. For example,

5 LET S=0
10 MAT INPUT V
20 LET N=NUM
30 IF N=0 THEN 99
40 FOR 1=1 TO N
45 LET S=S+V(I)
50 NEXT I
60 PRINT SIN
7f2J GO TO 5
99 END

3.-54

allows the user to type in sets of numbers, which are averaged. The program takes advantage of the fact that

zero numbers may be inputted, and it uses this as a signal to stop. Thus, the user can stop by simply pushing

RETURN on an input request.

7.5 MATB=A

This instruction sets up B to be the same as A and, in doing so, dimensions B I'<? be the same as A, provided that

sufficient space has been saved for B.

7 .6 MAT C = A + BAND MAT C = A - B

For these instructions to be legal, A and B must have the same dimensions, and enough space must be saved for

C. These statements cause C to assume the same dimensions as A and B. Instructions such as MAT A = A ± B

are legal; the indicated operation is performed and the answer stored in A. Only a single arithmetic operation

is allowed; therefore, MAT D = A + B - C is illegal but may be achieved with two MAT instructions.

7.7 MATC=A*B ..
For this instruction to be legal, it is necessary that the number of columns in A be equal to the number of rows

" in B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N, then C = A * B

has dimension L-by-N. It should be noted that while MAT A = A + B may be legal, MAT A = A * B is self­

destructive because, in multiplying two matrices, we destroy components which would be needed to complete

the computation. MAT B = A * A is, of course, legal provided that A is a "square" matrix.

7.8 MAT C = TRN{A)

This instruction lets C be the transpose of the matrix A. Thus, if matrix A is an M-by-N matrix, C is an N-by­

M matrix.

7.9 MAT C = (K) * A

This instruction allows C to be the matrix A multiplied by the number K (i.e. , each component of A is multiplied

by K to form the components of C). The number K, which must be in parentheses, may be replaced by a formulQ.

MAT A = (K) * A is legal.

7.10 MAT C = INV(A) AND THE DET FUNCTION

This instruction allows C to be the inverse of A. (A must be a "square" matrix.) The function DET is available

after the execution of the inversion, and it will equal the determinant of A. This condition enables the user

3-55

to decide whether the determinant was large enough for the inverse to be meaningful. In particular, attempting

to.inv~rt a singular matrix does not cause the program to stop, but DET is' ~t equa1to o. Of course, the user

may actually want the determinant of a matrix, and he may obtain it by inverting the matrix and then noting

what value DET has.

7.11 EXAMPLES OF MATRIX PROPRAMS

The first example reads in A and B in line 30 and, in so doing, sets up the correct·dimensions. Then, in line 4<?,
A. + A is computed and the answer is called C. This automatically dimensions C to be the same as A. Note that

the'data in line 90 J:esults in A being 2-by-3 and in B being 3-by-3. Both MAT PRINT formats are illustrated,

and one method of labeling a matrix print is shown.

10 DIM AC20,20), BC20,20},
20 READ M, N
30 MAT READ ACM,N),BCN,N}
4QI MAT C=A+A
50 MAT PRINT C;
60 MAT C=A*B
70 PRINT
75, PRINT "A*B=",
80 MAT PRINT C
90 DATA 2,3
91 DATA 1,2,3
92 DATA 4,5,6
93 DATA 1,0,-1
94 DATA 0,-1,-1
95 • DATA -1,0,0
99 END
RUN

MATRIX 13:48 10/20/.69

2 4 6
8 10 12
A*B=

-2 -2 -3
-2 -5 -9

The second example inverts an n-by-n Hilbert matrix:

1
1/2
1/3

.
l/n

1/2
1/3
1/4

.
1/n+l

1/3.
1/4 •••
1/5 •••

. .
l/n + 2

3-56

CC20,20)

1/n
1/n+l
1/n+2

1/2n-l

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this occurs after correct

dimensions have been declared. A single instruction then results in the computation of the inverse, and one

more instruction prints it. .Because the function DET is avai lable after an inversion, it is taken advantage of in

line 130, and is used to print the value of the determinant of A. In this example, we have supplied 4 for N in

the DATA statement and have made a run for this case:

5 REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIX
10 DIM A(20,20),B(20,20)
20 READ N
~ MAT A=CON(N,N)
50 FOR 1=1 TO N
60 FOR J=l TO N
70 LET A<I,J)=l/(!+J-l)
80 NEXT J
90 NEXT I
100 MAT B=INV(A)
115 PRINT "INV(A)="
120 MAT PRINT B;
125 PRINT
130 PRINT "DETERMINANT OF A=" DET
190 DATA 4
199 END
RUN

HILMAT 13:52

INV(A) =

16.0001
-120.001
240.003
-140.002

10/20/69

-120.001
1200.01
-2700.03
1680.02

DETERMI~ANT OF A=1.65342 E-7

240.003
-2700.03
6480.08
-4200.05

-140.002
1680.02
-4200.05
2800.03

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond n = 7, the

Hilbert matrix cannot be inverted because of severe round':off errors.

7.12 SIMULATION OF N-DIMENSIONAL ARRAYS

Although it is not possible to create n-dimensional arrays in BASIC, the method outlined below does simulate

them. The example is of a three-dimensional array, but it has been written in such ~ way that it could be easily

changed to four dimensions or higher. We use the fact that functions can have any number of variables, and we

set up a 1-to-1 correspondence between the components of the array and the components of a vector which equals

the product of the dimensions of the array. For example, if the array has dimensions 2, 3, 5, then the vector

has 30 components. A multiple line DEF could be used in place of the simple DEF in line 30 if the user wished

to include error messages. The pri'ntout is in the form of two 3-by-5 matrices.

10 DIM V(1000)
20 ,MAT READ DC 3)
30 DEF FNA(I,J,K)=C(I-l)*DC2)+(J-l»*D(3)+K
50 FOR I=l TO D(1')
60 FOR K=l to D(3)
80 LET VCFNACI,J,K»=I+2*J+Kr2
90 PRINT V(FNACI,J,K»,

-100 NEXT K
110 NEXT- J
112 PRINT
115 PRINT
120 NEXT I
900 DATA 2,3,5
999 END
RUN

3-ARRAY 08:07 10/27/69
4 7 12 19 28
6 9 14 21 30
8 11 16 23 32

5 8 13 20 29
7 f0 15 22 31
9 12 17 24 33

3-58

CHAPTERS

ALPHANUMERIC INFORMATION (STRINGS)

In p,.evious chapters, we have dealt only with numerical information. However, BASIC also processes alphabetic

and alphanumeric information. A st~ing is a sequence of characters, each of which is a letter, a digit, a space.,

or some other printable character.

Variables may be introduced for simple strings.and string vectors" but not for string matrices. Any simple variable;.

followed by a dollar sign ($), stands for ci string; e.g., A$ and C7$. A vector variable, followed by $, denotes

a list of strings; e.g., V$(n) where n is the nth string in the list. For example, V$(7) is the seventh string in,the

list V.

S.l . READING AND PRINTING STRINGS

Strings may be read and printed. For example:

1(21 READ A$.. B$.. C$
20 PRINT C$; B$; A$
~ DATA ING .. SHAR .. TIME-
II/) END

causes TIME-SHARING to be printed. The effect of the semicolon in the PRINT statement is consistent with

that discussed in Chapter. 6; i. e. , with alphanumeric output, the semicolon causes close packing whether that

output is in quotes or is the value of a variable. Commas and TABs may be used as in any other PRINT statement.

The loop:

70 FOR 1=1 TO 12
Bel READ M$ (I)
90 NEXT I

reads a list of 12 strings.

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For examp,le, MAT

PRINT M$; causes the members of the list to be printed without spaces between them. We may also use INPUT

or MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings inputted.

3-59

As usual # lists a~' assumed to have no more th~n 10 elements; otherwise,' a DIM statement is required. The

foilowing statement:

10 DIM M$(20)

saves space for 20 strings in the M$ list.

In the DATA statements, numbers and strings may be intermixed. Numbers are assigned only to numerical var­

, iables, a~ strings only to string variables. Strings in DATA statements are recoQr, i zed by the fact that they

start with a letter. If they do not I they must be enclosed in quotes. The same requirement holds for a string

containing a comma. For example:

-
The only convention on INPUT is that a string containing a comma or starting with a non-alphanumeric character

must be enclosed in quotes.

With a, MAT INPUT, a string containing a comma or an ampersand (&) must be enclosed in quotes. The following

example shows the c,orrect format for a response to a MAT INPUT:

IIMR. & MRS. SMITH", MR. JONES

8.2 ' STRING CONVENTIONS

In employing the three methods of inputting string information into a program (DATA, INPUT or MAT INPUT)i

leading blanks are ignored unless the string, including the blanks, is enclosed in quotes. Strings (in quotes) or

string variables- may occur in- LET and IF-THEN statements. The following two examples are self-explanatory:

10 LET)"$="YES"
20 IF Z7$="YES" 'THEN 2eJeJ

The relation 11< II is interpreted as ,rearlier in alphabetic order:1I The other relational symbols work in a similar

manner. In any comparison, trailing blanks in a string are ignored, as in the following:

/

IIYES" = "YES II

We illustrerte these possibilities by the following program, which reads a list of strings and ,alphabetizes them:

3-60

10 DIM L$(50)
20 READ N
3eJ MAT READ L$CN)
413 FPR 1=1 TO N
50 FOR J=1 TO N-I
@ IF L$CJ)c=L$CJ+l) THEN 100
~ LET A$=L$CJ)
Bel LET L$CJ)=L$CJ+l)
geI LET L$ C J+ 1) =A$
100 NEXT J
110 NEXT I
120 MAT PRINT L$
gel0 DATA 5,ONE,TWO,THREE,FOUR,FIVE
999 END

Omitting the $ signs in this program serves to read a list of numbers and to print them in increasing order.

A rather common use is illustrated by the following:

330
340
350
360

PRINT "DO YOU WISH TO CONTINUE";
INPUT A$
IF A$="YES" THEN 10
STOP

8.3 NUMERIC AND STRING DATA BLOCKS

Numeric and string data are kept in two separate blocks, dnd these act independently of each other. RESTORE

retains both the numerical data and the string data. RESTORE* retains only the numerical data and RESTORE $

only .the string data.

8.4 ACCESSING INDIVIDUAL CHARACTERS

In BASIC, it is very easy to obtain the individual digits in a number by using the function INT. It is possible

to' obtain the individual characters in a string with the instruction CHANGE. The use of CHANGE is best

illustrated with the following examples.

5 DIM AC6S)
10 READ A$
15 CHANGE A$ TO A
20 FOR 1=0 TO A(0)
25 PRINT ACI);
3eJ NEXT I
413 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
45 END
RUN

CHANGE 13: 55 10/20/69

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90

3-61

In line 15, the instruction CHANGE A$ TO A has caused the vector A to have as its zero component the number
"

of characters in the string A$and, also, to have certain numbers in the other components. These numbers are

the BASIC code numbers for the characters appearing in the string (e.g., A(l) is 65 - the BASIC code number
" '

for A).

The BASIC code for the printable characters is as follows:

Character
BASIC Code No.

(Decimal)
-

Space
A 32

, I 33
" 34
35
$ 36
% 37
& 38 , 39
(40
) 41
* 42
+ 43
, 44

45 - 46 .
/ 47
0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
: 58
; 59
< 60
= 61
> 62
? 63

Additional symbols useful on output..are as follows:

LF (I i ne feed)
CR (carriage return)

10
13

Character
BASIC Code No.

(Decimal)

@ 64
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
L 76
M 77
N 78
0 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W 87

,X 88
Y 89
Z 90
[91'
\ 92
] 93
t 94
... 95

The above list is not complete; there are 128 characters numbered 0 through 127.

3-62

The other use of CHANGE is. illustrated by the following:

1121 FOR 1=121 TO 5
15 READ ACI)
2121 NEXT I
25 DATA 5,65,66,67,68,69
3I2J CHANGE A TO A$
35 PRINT A$
LtlJ END

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E.

Before CHANGE is used in the vector-to-string direction, we must give the number of characters which are to be

in the string as the zero component of the vector. In line 15,A(O) is read as 5. The following is a final example:

5 DIM V(128)
1121 PRINT "WHAT DO YOU WANT THE VECTOR V TO BE".;
2121 MAT INPUT V
3I2J LET V(I2I)=NUM
~ CHANGE V TO A$
5I2J PRINT A$
6I2J GO TO 1121
7I2J END
RUN

EXAMPLE 13: 59 1121/2121/69

WHAT DO YOU WANT THE VECTOR V TO BE? 4121.32,45,6121,45,89,9121
(-<-YZ
WHAT DO YOU WANT THE VECTOR V TO BE? 32,33,34,35,36,37,38,39,4121,41,42,&
? 43,44,45,46,47,48,49,5121
!"#$%&' ()*+, -./12112
~HAT DO YOU WANT THE VECTOR V TO BE? 4

Note that in this example we have used the availability of the function NUM after a MAT INPUT to find the

number of characters in the string which is to result from line 40. Giving the input "4" on the last request

obtains the response EOT (end of transmission), which turns off the Teletype.

3-63

~ CHAPTER 9

EDIT AND, CONTROL

Several commands for editing BASIC programs and for controlling their execution enable you, for example, to:

a. delete lines

b. list the program

c. change or resequence I ine numbers with set increments

d. save programs on a file-structured storage device (disk or DECtape)

e. replace old programs on the storage device wi th new programs

f. call in programs from the storage device.

These commands are summarized as follows:

Command

DELETE n

DELETE n,m

LENGTH

LIST

LIST n

LIST n,m

LISTNH }
LISTNH n
LISTNH n,m

NEW

OLD

RENAME filename

REPLACE

RUN

RUNNH

Action

Delete line number n and the contents of the line from user core.

De lete line numbers n through m from user core.

Print length of source program {expressed as the number of characters}.

List program with heading.

List program with heading, beginning at line number n.

List program with heading, from line number n through m.

Same as LIST, but with heading suppressed.

BASIC asks for new program name and checks to make certain that it
does not already exist.

BASIC asks for program name and replaces current contents of user core
with existing program of that name from the storage device.

Change name of program currently in user core.

Replace old fi Ie of current name with contents of user core. '

Compile and run program currently in core.

Same as RUN, but with heading suppressed.

3-65

Command

SAVE

SAVE filename

SCRATCH

RESEQUENCE n

RESEQUENCE nllk

RESEQUENCE n, f, k

SYSTEM

WEAVE filename

fC

to

Action

Save the contents of user core as file whose filename is current program,
name and whose extension is • BAst.

Save user cor~ as filename • BAst •

Delete all program statements from user core.

Change line numbers to n, n +-10, ••••

Change line l1u",bers to n, n + k, ••••
Commas are necessary as argument delimiters.

Change line numbers from line f upward to n, n + k, ••••
f must not be greater than n. .

Exit to Monitor.

Read program statements from the file named filename. BAS
(existing statements in user core are replaced by new statements
having same Ii.,e numbers).

To stop a running program and enter Monitor level, type tC twice.

To suppress output (typeout), type to.

t SAVE commands do not overwrite an existing file of the same name (use REPLACE instead).

3-66

CHAPTER 10

DATA FILE CAPABILITY

The data file capability allows information to be written onto the disk for immediate or semipermanent storage.

The user can save this information until the disk is refreshed, or he can utilize PIP (Peripheral Interchange

Program) to save it permanently on DECtape or paper tape.

With each BASIC program, a user can save up to nine files, each with a different filename. The filename is

assigned by the user and must follow the filename rules described in Chapter 4. The extension is assigned by

the BASIC compiler and is set to .BAS. (All BASIC files~have this extension.) The current date and time are

placed into the file directory along with the project-p.rogrammer numbers. The file protection key is set to the

standard protection when the file is !=reated, indicating protection-protection and write-protection against all

users except the owner of the file.

10.1 FILES COMMAND

The FILES command specifies what files are to be read or written. The command format appears as follows:

FilES name 1 , name2, .. :, name9

where name 1, name2, •.. , name9 are filenames. The filenames may be separated by commas or semicolons.

This command may come after any executable command, but must precede any command that is associated with

creating a new file or referencing an old file.

I/O channels ~re assign~d consecutively, starting with channell, to the files. The names are positional, where

name 1 corresponds to software channell, name2 to software channe I 2, and so forth, up to name9 to software

channel 9. Since the filenames are positional, commas must precede filenames that are not sequentially ordered,

for example:

indicates that input or output is desired on channel 3 (filename S), channel 5 (fi lename R), and channel 6

(fi lename T).

3-67

Files are in either read or write mode ahd are assumed fo be initially in ~ad1Ylode_ -An error message is given
,

if an attempr is made to read a file which does not exist or to read a file which is being written _ Examples of

. the FILES command are as follows:

FILES AAA
FILES X, V,Z
FILES .D,F

10.2 SCRATCH COMMAND

The SCRATCH command opens a file for writing_ More than one channel may be referenced. The command

format is as follows:

SCRATCH

SCRATCH

1M IN Ipor
I I

1M, N,P

,
(

where M, N, and P are channel specifiers. The I must precede the first channel specifier, but need not be

duplicated for subsequent channel specifiers in the same command. This command must be used prior to. the

writing of a file. Examples of the SCRATCH command are-as follows:

SCRATCH
SCRATCH
SCRATCH

10.3 WRITE COMMAND

The WRITE cOrRmand causes data to be output to the disk on the specified channel. The data may be an area

of storage previously dimensioned, or any information appearing in a PRINT statement _ The format of I/O to

the disk is the same as the format to the Teletype. The command format is as follows:

WRITE IN, (sequence of variables)

where N is a channel specifier. When writing a file, BASIC inserts line numbers, startfng with 10 and incre­

menting by 10. After each line number, BASIC inserts the letter 0 to separate the line nvmber from the data.

When reading a file, BASIC recognizes the-nondigit character (D) following the line numbers, and ignores it~

Examples of the WRITE command are as follows:

WRITE

WRITE

3-68

The following is an example of the storage of the sines of 1-10 radians in file RRR:

10 DIM ACl0)
20 F1j-ES RRR
30 SCRATCH # 1
40 FOR 1=1 TO 10
50 A(!)=SIN(1)
60 WR I T E # 1 , A (1)

70 NEXT I
80 END

10.4 RESTORE COMMAND

The RESTORE command opens a file for reading. More than one channel may be referenced. The command for­

mat is as follows:

RESTORE

RESTORE

#M, #N, #p or

#M,N,P

where M, N, and P are channel specifiers. The main use of the RESTORE command is to reread a file or read

a file that has just been written. If the first function in the program is to read an already existing file, the

command is not necessary. In other words, if a different program created the files, then a new program does

not need the RESTORE command in order to read the files; this is because files are initially in read mode.·

Examples of the RESTORE command are as follows:

RESTORE

RESTORE

10.5 INPUT COMMAND

The INPUT command causes data to be input from the disk on the specified channel into the specified area.

Each command can reference only one channel and, therefore, only one file. The command format is as follows:

INPUT # N, (sequence of variables)

where N is a channel specifier. The READ and INPUT commands are equivalent when data files are read from

the disk, and the PRINT and WRITE commands are equivalent when data files are written on the disk. Examples

of the I NPUT command are as follows:

INPUT
INPUT
INPUT

#2, A(i)
#6, Z$
#3, B(K)

3-69

The foHoWing example demonstrates-access to previously stored~atues in the file RRR:

10 DIM 1:1.(10)
2QJ FILES RRR
30 FOR 1=1 TO 1 Ql
4121 I NPUT If 1 , A C I)
50 PRINT ACI)
6I2l NEXT I
70 END'

RUNN H

121-841411
0.909297
0.14112
-0.756802
-0.958924
-0 .21941 6
0.656981
0.989358
0.412119
-0.544021

10.6' IF END COMMAND

This command provides control in a program when an End-of-File is detected during input from the disk. The

command fonnat is as follows:

, {THEN} • IF END N l GO TO (lme number)

where N is a channel specifier. The line number must follow the rules discussed in Chapter 1. Either THEN or

GO TO is acceptable. Examples of the IF END command are as follows:

IF END '1 GO TO 160
IF END '4 THEN 435

3-70

A.l ELEMENTARY BASIC STATEMENTS

APPENDIX A

SUMMARY OF BASIC STATEMENTS

The following subset of the BASIC command repertoire includes the most commonly used commands and is

sufficient for solving most problems.

DATA [data list]

READ [sequence of variables]

PRINT [arguments]

LET [variable] = [formula]

GO TO [line number]

IF [formula] [relation] [formula]

{ THEN 1 [lirie number]
GOTOj

FOR [variable] = [formula]] TO
[formula2] STEP [formura3]

NEXT [variable]

DATA statements are used to supply one or more
numbers or alphanumeric strings to be accessed by READ
statements. READ statements, in tum, assign the next
available data in the DATA string to the variables
listed. Numeric and alphanumeric data are kept in
separate tables and must be accessed by separate READ
statements; however, they both may be entered in the
same DATA statement.

Types the values of the specified arguments which may
be variables, text, or format control characters.

Assigns the value of the formula to the specified
variable. .

Transfers control to the line number specified and
continues execution from that point.

If the stated relationship is true, then transfers control
to the line number specified; if not, continues in
sequence.

Used for looping repetitively through a series of steps.
The FOR statement initializes the variable to the value
of formulal and then performs the following steps until
the NEXT statement is encountered. The NEXT state­
ment increments the variable ny the va.lua of fo,mul~.
(If omitted, the increment YUlue it.ossumed,to·be + 1 :)
The resultant value is then compared to the value of
formula2. If variable <formula2' control is sent back
to the step following the FOR statement and the sequenc
of steps is repeated; eventually, when variable 2 for­
mula3' control confinues in sequence at the step follow,
ing NEXT.

3-71

. If the integer portion of x ,;. 1, transfers control to line
numbeq, H x = 2, to line number2, etc.fx] maybe

[line number2 ,] •••• [Hne number n] a formula.

DIM [variable] (subscript)

END

A.2 ADVANCED BASIC STATEMENTS

GOSUB [line number]

Subroutine [

[I~ne number]

INPUT [variable(s)]

STOP

REM.

RESTORE

A.3 MATRIX INSTRUCTIONS

RETURN

Enables the user to enter a table or array with a sub-.
script greater than 10 (i .e., more than 10 items).

Last statement to be executed in the program, and must
be present.

Simplifies the execution of a subroutine at several
different points in the program by providing an auto­
matic RETURN from the subroutine to the next sequen­
tial statement following the appropriate GOSUB(the
GOSUB which sent control to the subroutine).

Causes typeout of a ? to the user and waits for user to
respond by typing the vplue(s) of the variable(s).

Equivalent to GO TO [line number of END statement] •

Permits typing of remarks within the program. The in­
sertion of short comments following any BASIC statement
is accomplished by preceding such comments with an
apostrophe (').

Sets pointer back to beginning of string of DATA values.

NOTE

The word "vector" may be substitued for the word
"matrix" in the following explanations.

MAT READ a, b, c

MAT c =ZER

MAT c =CON

MAT c =IDN

MAT PRINT a, b, c

MAT INPUT v

Read the three matrices, their l:Iimensions having been
previously specified.

Fi II out c wi th zeros.

. Fi II out c with ones.

Set up c as an identity matrix.

Print the three matrices.

Input a vector.

3-72

<

MAB b =a:

MAT c =a + b

MAT c =a - b

MATc=a*b

MAT c = TRN(a)

MATc=(k)*a

MAT c = INV(a)

A.4 DATA FILE COMMANDS

FILES [sequence of filenames]

SCRATCH [sequence of channel
specifiers]

RESTORE [sequence of channel
specifiers]

WRITE [channel specifierl
[sequence of variables]

INPUT [channel specifierl
[sequence of variables]

IF END (channel specifier]

{~~~O} [line number]

A.5 FUNCTIONS

Set matrix b = matrix a.

Add the two matrices, a and b.

Subtract matrix b from matrix a.

Multiply matrix a by matrix b.

Transpose matrix a.

Multiply matrix a by the number k. (k, which must be
in parentheses, may also be given by a formula.)

Invert matri x a •

Specifies the files that are to be read or written.

Opens Il fj I e for wri ti ng •

Opens a file for reading.

Causes data to be output to the disk on the specified
channel.

Causes data to be input to the disk on the specified
channel into the specified area.

Provides control when an end-of-file is detected during
input from the disk.

In addition to the common arithmetic operators of addition (+), subtraction (-), multiplication (*), division (/),

Ilnd exponentiation (t), BASIC includes the following elementary functions:

SIN (x)

COS (x)

TAN (x)

Some advanced functions include the following:

INT (x)

RND

COT (x)

ATN· (x)

EXP (x)

LOG (x)

ABS (x)

SQR (x)

Find the greatest integer not greater than x •.

Generate random numbers between 0 and 1. The same
set of random numbers can be generated repeatedly for
purposes of program testing and debugging. The state­
ment

RANDOMIZE

can be used to cause the generation of new sets of
random numbers.

3-73

SGN (x) Assign a value of 1 if x is positive, 0 if x is 0, or -1 if'
x is, negative. '

Two spe.cial functions used with matrix computations are as follows:

(NUM)

DET

Equals number of components following an INPUT.

Equals the determinant of a matrix after inversiol'l.

The user can also define his own functions by use of the DEFine statement. For example,

[line number] DEF FNC(x) = SIN (x) + TAN(x) - 10

(Define the user function FNC as the formula SIN(x) + TAN(x) - 10.)

NOTE

DEFine statements may be extended onto more than
one line; all other statements are restricted to a
single line.

3-74

APPENDIX 8

BASIC DIAG NOSTIC MESSAGES

Most messages typed out by BASIC are self-explanatory. BASIC diagnostic messages are divided into three

categories:

a. Command errors

b. Compilation errors

c. Execution elTOrs

Following is a complete list of these messages and their meanings.

Command Errors

Message

NNN IN LINE MMM

COMMAND ERROR (LINE NUMBERS MAY NOT
EXCEED 99999)

DELETE COMMAND MUST SPECIFY WHICH
COMMANDS TO DELETE

NO ROOM IN DIRECTORY

FILE N9T SAVED

Explanation

During a RESEQUENCE command, line MMM was found
to contain undefined line number NNN.

The given RESEQUENCE command is not executed for
that reason.

A DELETE command had no arguments.

Could not enter a fi Ie to SAVE or REPLACE it.

A file which was requested did not exist.

MISSING LINE NUMBER FOLLOWING LINE NNN . During a WEAVE or OLD command, a line without a
line number was found in the file. The line is thrown
away.

NO SUCH DEVICE

DUPLICATE FILE NAME, REPLACE OR
RENAME

COMMAND ERROR (YOU MAY NOT OVER­
WRITE LINES OR CHANGE THEIR ORDER)

WHAT?

The INIT of a device failed.

User tried to SAVE file that exists.

The given RESEQUENCE command would have changed
the order of lines in the file. The command is ignored.

Catchall command error.

3-75

Compilation Errors

Message

NO END INSTRUCTION

STRING VECTOR IS 2-DIM ARRAY

UNDEFINED FUNCTION -- fn*

'FOR WITHOUT NEXT IN NNN

NO DATA

DATA NOT IN CORR'ECT FORM

NESTED DEF IN ~NN

FUNCTION DEFINED TWICE IN NN

VARIABLE DIMENSIONED TWICE IN NN

END IS NOT LAST IN NN

FNEND BEFORE DEF IN NN

FNEND BEFORE NEXT IN NN

UNDEFINED LINE NUMBER NN IN MM

ILLEGAL LINE REFERENCE IN NN

ILLEGAL LINE REFERENCE MM IN NN

ILLEGAL RELATION IN NN

MIXED STRINGS AND NUMBERS IN NN

NEXT WITHOUT FOR IN NN

ILLEGAL CONSTANT IN NN

INCORRECT NUMBER OF ARGUMENTS IN NN

USE VECTOR, NOT ARRAY IN NN

ILLEGAL INSTRUCTION IN NN

ILLEGAL VARIABLE IN NN

ILLEGAL FORMULA IN NN

Explanation

The user managed to do this error despite many other
checks.

The actual function name, not fn*, is typed

Program contains READ but not DATA.

Incorrect number or string data in: DATA statement,
TTY input, TTY MAT input, or MAT READ following an
input error. User is invited to retype line.

DEF within multiline DEF.

FNEND occurs, but not in a function DEF.

A FOR occurred in a DEF, but its NEXT did not.

In line MM, NN is used as a line number. Line number
- NN does not exist.

BASIC syntax reauired an integer, but user typed some­
. thing else; e.g., GO TO A.

In line NN, line MM was referred to illegally because:
a. Line MM is a REM
b. The first character in line MM is an apostrophe
(I).
c. One of the lines NN or MM is inside a function;
the other is not inside that function.

Incorrect IF re lati on.

Line NN illegally contains a string variable or literal
because:

a. No element of this statement may be a string.
b. All elements must be strings, but some were not.

A function was used with the wrong number of arguments.

A letter previously defined, as a two-dimensional array
is now used in MAT iJ1)ut or CHANGE.

First three letters not recognizable; implicit LET is
impossible.

Syntax error in an arithmetic formula.

3-76

Compilation &rors (Cont)

Message

ILLEGAL CHARACTER IN NN

ILLEGAL FORMAT IN NN

SYSTEM ERROR

DELETED

OUT OF ROOM

TOO MANY FILES

ILLEGAL DSK READ IN LINE N

FILE NEVER ESTABLISHED-REFERENCED
IN LINE N

FILE NOT FOUND BY RESTORE COMMAND
IN LINE N

ILLEGAL DSK WRITE IN LINE N

FAILURE ON ENTRY IN LINE N

EOF IN LINE N

BAD DATA INTO LINE N

Message

SUBROUTINE OR FUNCTION CALLS ITSELF
IN NN

ON EVALUATED OUT OF RANGE IN NN

OVERFLOW IN NN J
UNDERFLOW IN NN
DIVISION BY ZERO IN NN

RETURN BEFORE GOSUB IN NN

NOT ENOUGH INPUT--ADD MORE

INPUT DATA NOT IN CORRECT FORM-­
RETYPE LINE

OUT OF DATA IN NN

TOO MANY ELEMENTS--RETYPE LINE

Explanation

A meaningless character; e.g., DIM '(1).

Catchall for other syntax errors.

An I/O error,.or the UUO mechanism drops a bit, or
something similar to those errors •.

User has ended a line with <ALTMODE> OR
- <CONTROL -X> <RETURN >. The line is ignored.

Can't get more core to make room for:
a. More compilation space.
b. Maximum space for all the vectors and arrays.
c. Space to store another string during execution.

A maximum of nine files may be read or written in a
progrom.

File was never accessed for reading.

File was not referenced in a FILES command.

File was never written.

File was not opened for writing.

Channel is not available for SCRATCH command.

An attempt was made to read data from a file after all
data had been read.

Input data is not in correct form.

Execution mors

bcplanation

FNA is defined in terms of FNB which is defined in
terms of FNA, or a similar situation with FUNCTIONS
or GOSUBS.

The value of the ON index was <lor> the number of
branches.

These all work according to specifications whenever
the APRENB UUO is implemented.

3-77

Execution Errors (Cont)

Message

IMPOSSIBLE VECTOR LENGTH IN NN

NON-ASCII CHAR SEEN IN NN

NO ROOM FOR STRING IN NN

LOG OF NEGATIVE NUMBER IN NN

SQRT OF NEGATIVE NUMBER IN NN

TAN OF Pl/2 OR COTAN OF ZERO IN NN

EXP TOO LARGE IN NN

ZERO TO A NEGATIVE POWER IN NN

ABSOLUTE VALUE RAISED TO POWER IN NN

DIMENSION ERROR IN NN

LOG OF ZERO IN NN

Explanation

In a CHANGE (to string) statement, the zeroth element
of the number vector was negative or exceeded its
maximum dimension.

In a change operation of the same kind, one of the other
elements of the number vector was negative or exceeded
octal 177.

In a CHANGE A$ TO A I the number of characters in A$
exceeds the maximum size of A.

•

3-78

Book 4

Conversational
Programming

With AID .

..

1.1

1.2

1.3

1.3.1

1.3.2

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.2.1

3.2.2

3.2.3

3.3

3.4

4.1

4.2

4.3

4.3.1

4.4

4.4.1

CONTENTS

CHAPTER 1
INTRODUCTION

Gaining Access to the AI D System

Terminating AID

AI D La "guage

Rules of Form

Arithmetic Accuracy and Notations

Teletype Consoles

Correction of Typing Errors

Direct Steps

Indirect Steps

Parts

CHAPTER 2
STEPS AND PARTS

CHAPTER 3
IDENTIFIERS rv ARIABLES}

Defining an Identifier by a Value (SET and DEMAND Commands)

Defining Identifiers by Formulas (LET Command)

Arithmetic Formulas

Boolean Expressions (Propositions) Defined by the LET Command

User Functions Defined by the LET Command

Identifier References

Indexed Identifiers (Arrays)

CHAPTER 4
ARITHMETIC OPERATORS, FUNCTIONS, PROPOSITIONS and ITERATIONS

Arithmetic Operators

AID Functions

User-Defined Functions

Examples of User-Defined Functions

Propositions

Conditional Expressions

4-3

4-9

4-9

4-10

4-11

4-11

4-12

4-13

4-15

4-15

4-15

4-17

4-19

4-19

4-20

4-20

4-20

4-21

4-23

4-25

4-29

4-30

4-31

4-32

4.5

4.5.1

4.5.2

4.5.3

5.1

5.2

5.3

5.4

5.5

5.7

5.8

"

CONTENTS (continued)

Iterative S:;lauses (Ranges)

Series of Values

Incrementation

Combinations

CANCEL

Description

CHAPTER 5
AID VERBS

Parenthetical CANCEL (CANCEL)

Diagnostic Messages

DELETE

Description

DEMAND

Description

DEMAND ••••. AS "Any Text" Option

DISCARD

DO

Description

Diagnostic Messages

Description

TIMES Option

Range Option (FOR Clause)

IF Clause

Parenthetical DO (DO .•.••.)

Diagnostic Messages

DONE

FILE

Description

Diagnostic Messages

Description

Diagnostic Messages

FORM

Description

4-4

4-34

4-34

4-34

4-34

4-37

4-37

4-37 .

4-38

4-39

4-39

4-41

4-41

4-41

4-45

4-45

4-45

4-46

4-46

4-46

4-46

4-48

4-48

4-50

4-51

4-51

4-52

4-53

4-53

4-53

4-54

4-54

CONTENTS (continued)

5.8 (cont) SPfJ!cific Notations 4-54

Multiple Results on a Single Line 4-55
/

Interspersing Text with Results 4-55

Report-Type Headings 4-56

Diagnostic Messages 4-56

5.9 GO 4-57

Description 4-57

Diagnostic Messages 4-58

5.10 IF Clause 4-59

Description 4-59

5.11 LET 4-60

Description 4-60

Arithmetic Formulas 4-60

Boolean Expressions (Propositions) 4-60

User Functions 4-.60

5.12 LINE 4-62

Description 4-62

5.13 PAGE 4-63

Description 4-63

5.14 QUIT 4-64

Description 4-64

5:15 RECALL 4-65

Description 4-65

Diagnostic Messages 4-65

5.16 RESET TIMER 4-66

Description 4-66

5.17 SET 4-67

Description 4-67

5.18 STOP 4-68

Description 4-68

5.19 TO 4-69

Description
, 4-69

Diagnostic Messages 4-70

4-5

CONTENTS (continued)

5.20 TYPE 4-71

Description 4-71

Combined TYPE Commands 4-71

I N FORM Option 4-71

5.21 USE 4-75

Description 4-75

Diagnostic Messages 4-75

APPENDIX A
TABLES

A-1 A Glossary of AID Terms 4-78

A-2A AID Command Summary 4-80

A-2B Fi Ie Command Subset 4-84

A-3 AID Character Set 4-85

A-4 AID Diagnostic Messages 4-87

TABLES

4-1 AID Arithmetic Operators 4-23

4-2 AID Functions 4-26

4-6

PREFACE

AID (for Algebraic Interpretive Dialogue) is a PDP-10 adaptation of language elements of

JOSS 1, the well -known computing service program developed by The RAND Corporation under con­

tract to the Uni ted States Ai r Force.

The system is designed to assist scientists and engineers in solving complex numerical prob­

lems. The language is direct and relatively easy to learn. No previous programming experience is

needed, either to understand this manual or to use AID at a Teletype console. Commands are typed in

the form of imperative English sentences and mathematical expressions are typed, for the most part, in

standard notation.

Digital Equipment Corporation is grateful to The RAND Corporation for permission to adapt

the language processors of JOSS for the PDP-l o. We also wish to express our appreciation to the pro­

grammers and computer scientists who developed the system, and to The RAND Corporation and

E. P. Gimble of the Air Force's Sacramento Air Materiel Area for the use of RAND publications in the

preparation of this AID manual.

1 JOSS is the trademark and service mark of The RAND Corporation for its computer program and
servi ces usi ng that program.

4-7

•

CHAPTER 1

INTRODUCTION

AID is available on all PDP-10 systems and provides each user with a personal computing

service, interacting with the user and responding to commands expressed in a simple language via the

user's Teletype. AID has proven to be easy and convenient to use in solving both simple and complex

numerical problems.

AID is device independent. It provides the user with a facility to create external files for

storage of subroutines and data for subsequent recall and use. For ac~essibi lity and speed, such fi les

are normally stored on directory devices such as disk or DECtape; however, files may be stored on any

retrievable medium such as magnetic tape.

AID runs in approximately 11 K of core memory (with 1 K of user data area) and expands to

14K of core (with 4K of user data area) as required. Note that AID will not run on a 16K machine if

Iv\onitor occupies more than 5K of core.

1.1 GAINING ACCESS TO THE AID SYSTEM

To gain access to AID, the user must first gain access to the Monitor. In the case of all but

the disk monitors, this is accomplished simply by typing l' C (hold down the CTRl key while striking

C). In the case of the PDP-I0/50 Monitor, the user must log in (see either the Time-Sharing Monitors:

10/40, 10/50 manual or the PDP-I0 System Users Guide, found in the PDP-I0 Reference Handbook,

order code AIW.

When access to the Monitor is gained, and the Monitor has responded with a period (.), the

user types

.R AIDJ

When AID is loaded into core, it responds with the message

AID (revision date) AT YOUR SERVICE. ••

*

The asterisk (*) indicates that AID is ready to accept a command from the user.

1 .2 TERMINATING AID

AID is terminated and control is returned to Monitor level by typing

l' C J (hold down the CTRl key and strike C)

4-q

AID can then be re-entered by typing

.CONTJ 1

or killed by either typing

,.KJOBJ

or running another program.

1.3 AID LANGUAGE

Table A-2 contains all AID commands and fUllctions. Each command occupies a single line

and is terminated by a carriage return. A period at the end of a command is optional. A command can

be entered as a direct command (to be executed immediately) or as an indirect command (to be stored for

later execution). Variables in commands are represented by single alpltlabetic letters, A through Z and

a through z, called identifiers. Entire routines can be stored as a series of indirect commands to be

executed in a"specific order. An expression is defined as one number or identifier (or a combination of

numbers and/or identifiers and/or AID functions) which is reducible to a number when AID is called upon

to use it. The standard mathematical Qp-erators can be expressed in AID as follows:

r ! absolute value (equivalent·to.the mathematical symbol II) _
[

(

+

*

1

)

brackets
2

2
parentheses

addition

subtraction

I · I' . 3 mu tiP Icahon

/ division'

t exponentiation4 (x3 =x~3)
The order of precedence for these operations is conventional:

a) !, [] , and () from the innermost pair to the outermost pair

b) t (exp~nentiation)

c) * (multiplication) and / (division) from left to right within each term

d) + (addition) and - (subtraction).

1If AID was performing an iterative process when interrupted by the ~reviously typed tc, execution
proceeds .automatically following the CONT command to Monitor.

If it is desired to have AID halt before continuing, type, RE-ENTER instead of CONT. In this case,
AID wil,l execute the next step of the interrupted process, type the message "I'M AT STEP m.n" and
halt. To continue, type GO.

2~rackets and parentheses can be used interchangeably in pairs.

3The ampersand (&) will perform multiplication also, ho'wever when returning the result, AID will type
an asterisk (*) in place of the ampersand. .

4The tip arrow for exponentiation is typed by striking the t, N key with SHIFT on Teletype Models 33
and 35. On Teletype Model 37 strike the """, 1\ without SHIFT. In either case do not use the CTRL key
for exponentiation. 4-10

Examples:

a/3*c (~)c not
a

(Ieft-to-right rule) 3c

x/y,3
x

(;)3 (order of precedence) - not 3
y

Boolean expressions composed of arithmetic statements using the operators

= (equal to), # (f not equal to), <= (~ less than or equal to),

>= (2:greater than or equal to), < (I~ss than), > (greater than).

and the negation

not

and connected in turn by logical operators

and, or (inclusive)
are handled by AID.

1 .3.1 Rules of Form

a. Only one step (command) can be typed per line and only one line can be used for each

step.
b. Each step begins with a verb and terminates with a carriage return. A period at the end

of a step is optional.

c. Words, variables (identifiers), and numerals can neither abut each other nor contain em­

bedded spaces; spaces cannot appear between an identifier (when it appears in an array, a formula, or

. a function) and its associated grouped operators and arguments. Otherwise, spaces can be used freely.

d. When operating via the Teletype Model 37 in upper and lower case mode (entered by

typing ~F - CTRL F), the initial letter of the first word of each command may be typed in upper case.

All other letters within the command must be in lower case (with the exception of letters in a character

string enclosed by quotation marks, or in the case of identifiers of the range A through Z).

Examples:

Step Number ,
(indirect) Verb Arguments Modifiers

1) *1.23 Type a, a+2, at3 in form 1 if a>O.J

2) *1.4 Do part 2 for c = 5(lO)100.~

1.3.2 Arithmetic Accuracy and Notations

All results are rounded to the nine most significant digits.
6 '

All results with a value of less than 10 and equal to or greater, than .001 are typed by AID

in fixed point notation.

4-11

..

Examples:

a) ~Type 1/3+2 J
1/3+2 = 2.33333333

b) • *Type 100**3 J
1 *10t6 100**3 =

c) *Type 1/4*1 J
1/4*1 = .25

d) '«Type cos (2 .5)J
cos (2 .5) = -.801143616

All other results are typed in scientific notation.

Examples:

a) *Type 365*24*60*60J
• 365*24*60*60 =

b) *Type (.0005)* (17)*(.01)J
(.0005)* (17)*(.01) =

1.4 TELETYPE CONSOLES

3.1536*10t7

8.5*10t(-5)

.

' "

(Read as 3.1536 times 10 raised
to the 7th power)

(Read as 8.5 times 10 raised to
the minus 5th power)

A Teletype console is the link between the user and AID. A PDP-10 system may be equipped

with anyone of three Teletype models, /IAodel 33, Model 35, or /IAodel 37. The essential difference

between /IAodel 37 and Models 33 and 35 is that Model 37 has both upper and lower case letters 1 (with

special characters occupying other keys), while Models 33 and 35 have upper case letters only (typed

without use of the SHIFT key - some of the special characters occupy what are normally the upper case

positions on the letter keys)2 •
1l!'"

Command examples shown in this publication use both upper and lower case letters (rules

governing capitalization are similar to those of the English language, the initial letter of the first word

of a command is capitalized). Thus, commands can be typed on the /IAodel 37 exactty as shown on the ,

following pages, while only upper case characters can be typed on Models 33 and 35.

Table A-3lists the Alp character set, corresponding,standard mathematical symbols, c~rre­

sponding JOSS symbols, and the method used to obtain each character on the various Teletype models.

1 The system accepts only upper case letters (typed without use of the SHIFT key) from Teletype Model 37
unless , F (CTRl F) is first typed, in which case both upper case and lower case letters are recognized.

2The difference between /IAodel 33 and Model 35 is that fv40del 33 does not have TAB, FORM, or VT
~ertical lab) mechanisms.

4-12

1 .5 CORRECTION OF TYPING ERRORS

If the user should make an error while typing a command to AID, he can correct it by one of

two methods; (1) he can strike the RUBOUT key once for each character to be erased and then type the

correct data, or (2) he can type an asterisk followed, by a carriage retur~ to delete the entire line, and

type the line over.

1) *Type VEC\CEV\ VECTOR CALCULATION"J

2) *Type "VECTOR CALCULATION*d
*Type "VECTOR CALCULATION'~

User omitted the quotation mark
before the V; he erases C, E,
and V by striking the RUBOUT
key three times (deleted characters
are pri nted between \), types the
missing quotation mark, and
continues •

User realizes that he has omitted
a space between the e and the
quotation mark; he decides to
delete the line and retype it.

Should the user type an incorrect command, AID, when it attempts to interpre! it, will respond with the

message

EH?

*

NOTE

When indirect commands are entered, AID merely checks
the validity of the step number; the validity of the command
is not checked until it is called upon for execution. ,"

4-13

CHAPTER 2

STEPS AND PARTS

A user requests AID functions by typing single-line commands called steps. The user can enter a step

whenever AID responds with an asterisk (*) typeout. Each step is terminated by a carriage return (~).

Steps can be entered in two ways: (1) as direct steps, or (2) as indirect steps.

2.1 DIRECT STEPS

A direct step is interpreted and executed by AID immediately (following the terminating

carri age return typed by the user).

*Type 2+2 ~

2+2

*
4

User types dJ rec t step.

AID responds immediately
by interpreting and executing the
step.

Direct steps are performed only once each time they are typed, and must be retyped each time th'e user

desires to execute them.

2.2 INDIRECT STEPS

An indirect step is entered by preceding the' step with a nume'ric label containing both an

i'lteger and a decimal portion (1.1, 2.53). By preceding a step with a numeric label, the user signals

to AID that the step is not to be executed immediately, but is to be stored for later execution as part of

a routine. AID files away labeled steps in sequelJce according to the numeric value of the IQbel or

step number. Thus, a step number can be used to indicate that a step is to be inserted into, deleted

from, or substituted in a series of previously entered indirect steps. Step numbers can contain a maxi­

mum of nine significant digits.
...

*1.1 Type "X VALUES" J
*1.2 Type x d
*1.3 Type x*2, x/2, x~ J
* 1 • 15 Set x=3 J

*1.3 Type x*2; x/2, x~, xt3 ~

*Delete step 1.2 J
*

2.3 PARTS

User types i,n a 3-step routine for later execution.

User inserts a step between steps 1.1 and 1.2 by
assigning it a number which falls between these
two step numbers.

'User changes step 1.3 by substituting a new step
having the same step number. .

User del etes step 1 .2.

Steps are organized into parts according to the integer portion of their step numbers. All

steps with step numbers containing the same value in their integer portion belong to the same part. Thus,

4-15

all of the steps in the previous example can be referred to as part 1.

*Type part 1 J User ~equests AID to type a II steps in part 1 .

1.1
. 1.15

1.3

Type fiX VALUES"
Set x=3 .
Type x*2, x/2,x ~2, x ~3

*00 part 1 J

, X VALUES

x*2 = 6
x/2 1.5
xt2 = 9
~3 = 27

I

*

, User requests AIO to interpret and execute (i .e. I
00) all steps in part 1.

Steps and parts are units which may be entered, changed I deleted, typed out, executed, or

filed in (and later recalled from) a file stored on some retrievable I/o medium (e.g., disk or OECtape).

In addition, they are available in core storage as stored routines for repetitive execution.

Examples:

a) *1ype step 1 .1 J
b) *Type part 1 J
c) *00 step 2.3 J
d) *00 part 4 J
e) *File step 3.65 as item 4 J
f) *'File part 3 as item 2 J

All steps or parts can be referred to collectively (except by 0(3).

Examples:

a) *Type all steps J
b) *1 ype a II ,parts J
c) *File all steps as item 8 J
d) *File all parts as item 9 J

4-16

CHAPTER 3

IDE NT I FIE R S (VA R I A B l E S)

An identifier (variable) is used in expressions to represent a variable quantity. In AID,

identifiers are repres~nted ~y single alphabetic characters to which arithmetic or logical values have

been assigned. On Tel~type Models 33 and 35 (and Model 'Jl in the upper case mode), 26 unique

identifiers are available. However, when the Model 37 Teletype is operated in the upper/lower case

mode, 52 unique identifiers (A through Z, and a through z) can be used.

3.1 DEFINING AN IDENTIFIER BY A VALUE (SET AND DEMAND COMMANDS)

A fixed value can be assigned to an identifier by typing

*Set x = value

NOTE

When this command is typed as a direct command, the verb
(SED may be omitted, e.g., --

*x = 95

In a SET command, the single -character identifier on the left of the equals sign (~) is not a number, but

an identifier being defined (or redefined). The value or expression on the right of the equals sign is a

numeric value (or truth value) and must always, if a numeric expression, be immediately reducible to a

number.

Examples:

a)

b)

c)

d)

e)

*x = 10 ~
*Set x =3.5 ~
*y = cos (25)+2 6
*Set a = sqrt(20)+5

*m = false ~
~

cos is a standard function provided by AID (see
Chapter 4).

~ is also a standard AID function.

!!! is set equa I to the value false.

The SET command is a convenient way to shorten a lengthy expression by using identifiers to represent

its parts.

Example: 34 2
(5 + 73) +

4-17

42 - .[50
19

This expression can be simplified and solved as follows.

*0 = 5+34/73.}
*b = [42-sqrt(50)l!19 ~
*Type (at2+b)/a ~
(at2+b)ja = 5.80209589

Common algebraic funi::tions{e.g., sqrt, cos, sin, log)are provided in AI Dforuse inexpressions

(see Chapter 4).

Example:

Define the value of pi ('If)

*p = arg(-l, 0) ~

*Type p 6
p =

*Type p*36t2 .}

arg is the AID function of a rectangular coordi­
nate point (see Table 4-2).

f

3.14159265

Calculate the area of a circle having a radius
of 3p.

4071.50407

An identifier can also be set to a value, to be typed in by the user prior to execution of the

associated routine. This is acco~plished by using the, DEMAND command, which can be used indirectly

only. Execution of a DEMAND command causes a typeout of the specified variable, which is followed

by the val ue to be used, typed by the user.

'Example:

*1.1 Demand x J
*1.2 Demand y ~
*1.3 Type x*y, (x¢2)*(y¢2) ~
*Do part 1 ~

x=

y =

* -
(xt2)* (yt2) :

24
576

AID requests value ,for x. User responds by typing
in 4.

AID requests value for y. User responds by typing
in 6.

An identifier can be set to a ran~e of values by the "DO ••• FORx=lst-value (increment)

last-value" command (see"DO", Chapter 5). When this form of the DO command is used,

the series of staps is executed repetitively for each requested value,' beginning with 1st-value and in­

crementing it by "increment" following each repetition until "last-value" is reached. 1

1 As described in Section 4.5, the range given for a variable can be greatly expanded beyond this
simple format. For example,

Do part 1 for x = 1 ,2,3(2)25(i)2tt(k)200,500 •

. In this example, part 1 is performed for x = 1, 2, 3, tlien in increments of 2 up through 25, then in
increments of i up through the value of 2t, then in increments of k up through 200, and 500.

Example:

*1.1 Type x,x'?2, x~3 ~
*Do part 1 for x == 2(2~1 0 ~

x 2
x~2 == 4
x~3 == 8
x 4
x~2 == 16
x~3 == 64
x 6
x~2 == 36
x~3 == 216
x 8
xt2 == 64
x~3 == 512
x 10
x~2 == 100
xt3 == 1000

*

Directs AID to perform step 1.1 for values of x, be­
ginning with a value of 2 and incrementing this value
by 2 until lOis reached in a series of repetitive
exec uti ons .

AID types out results.

3.2 DEFINING IDENTIFIERS BY FORMULAS (LET COMMAND)

3.2.1 Arithmetic Formulas

AID can be told how to calculate the value of an identifier rather than associating the identi­

fier with a fixed value. This is done with the LET command. The use of LET causes the identifier on

the left of the equals sign to be set to the formula (not necessari Iy a numeric val ue) on the ri ght of the

equals sign (==).

*Let d == sqrt(a) + b + c J
*Type formula d J

d: sqrt(a) + b + c
*

Note that AID associates a formula, not a numeric
value, with the identifier d.

In the above example, the formula for d is an expression reducible to a number, but this value is not

calculated until d is called for. However, before d can be calculated, the user must supply values for

all variables in the formula associated with d.

*Type d ~
Error in formula d: a == ??

*a == 96
*b == 5~
*c == 8~

*Type d ~
d == 16

*

User has assigned no value to a.

4-19

3.2.2 Boolean Expressions (Propositions) Defined by the LET Command

A second use of the LET command is to define an identifier as being equivalent to the value

(true or false) of a proposition/ i.e./a Boolean expression compose~ of arithmetic and logical state­

men!;, using common relational operators (e.g./ =/>/<)/ the logical negation (not)/ and logical operators

(and/ ~).

Example:

3.2.3

*Set a = true J ,
*b = false~
* Let c = a and b J
*Type c ~

c = false

Proposit,ions are discussed in detail in Chapter 4.

User Functions Defined by the LET Command

AID provides many of the common algebraic and geometric functions (sqrt - square root/

cos - cosine/ log - logarithm, etc.). AID functionsare specified in expressions by using the appro­

priate function mnemonic (sqrt = square root).

A third use of the LET command is to equate an identifi~r to a user-defined function. Once

defined/ a user function can be used the same as an AID function.

Example:

Defines the user function, a. l *Let a(b,c) = (b~2)-t{2*b*c)+(c~2) ~
*Type a(4, 10) cJ

a(4,10) = 196

Both AID functions and user-defined functions are discussed further in Chapter 4.

3.3 IDENTIFIER REFERENCES

In addition to an identifier in a formula referring to its associated value or formula, it can

also be used to delete, type, or file that value or formula.

Examples:

a) *Delete a J
b) *Delete formula b J
c) *Type c J
d) *Type formula d J
e) *File e as item 1 ~

Delete a and its associated value.

Delete b and its associated formula.

Type the value of c.

Type the formula associated with d.

Store e and its associated val ue on the currently
open file (see "FILE") as item 1.

All current identifiers and their associated values or formulas can be referred to collectively.

lin the function a(b/c)/ band care dummy 'arguments and do not conflict with variables-of the same
letter outside of the formula (b and c-can be used as identifiers elsewhere).

Examples:

a) *Type all values J
b) *Type all formulas J
c) *Delete all values J
d) *Delete all formulas J
e) *File all values as item 3 J
f) *File all formulas as item 4 J

3.4 INDEXED IDENTIFIERS (ARRAYS)

Values may be organized into vectors and arrays by using indexed letters for identifiers. The

letters may then be used to refer to the arrays. Identifiers defined by formulas may not be indexed.

The index or subscript is, enclosed in parentheses immediately following the identifier.

Example:

*x(1) = 12 ~
*x(2) 4~
*x(3) 6tJ
*Type x(1), x(2), x(3), x(1)*x(2)*x(3)J

x(1) = 12
x(2) 4
x(3) = 6

x(1) *x (2) *x(3)= 288

*Type x ~
x (1) 12
x (2) = 4
x(3) = 6

x refers to all indexed x's; thus, a nonindexed
identifier cannot coexist with the same identifier
indexed.

Multiple subscripts can be specified for an identifier to create a multidimensional array. An

identifier can be indexed by one to ten subscripts, and each subscript may have an integer value in the

range -250 through +250.

Examples:

a) *x(l) = 6 J
b) *a(1,2) = 10 J
c) *c(100,50,67) = 130J

An individual identifier can be used in only one way at anyone time and redefinition de­

letes any previous definitions. "Thus, the definition of an identifier with n dimensions deletes all defi­

nitions of the same identifier having other than n dimensions.

Example:

*x =5J

*Type xJ
x ::: 5

The identifier x (unindexed - 0 dimension) is
defined as equal to 5.

4-21

*x(1) = 10 ~
*x(2) = 20 ~
*Type x ~

x(1) = 10
x(2) = 20

*x(1 , 1) = 33 ~

*Type!< ~
x(1,1) = 33

*x(1,2) = 44 ~
*x(2, 1) = 55 ~

*Type x ~
"- x(1, 1) = 33

, x(l ,2) 44 =
X{2i 1} 55

~ "~', .

~ ! ~

"

The identifier x is now redefined with one dimension
" '(subscript); the unindexed x is deleted.

. ~ "r,

The identifier xis now redefined QS describing a
two-dimensional array; XIS' having other dimensions
are deleted.

Additional x values having the same number of
subscripts as the previously defined x are entered;
no deletions occur.

'-
NOTE

Undefined elements of the x array in thi-s example can-be set to a
,value of '0 by the use of the command

*Typ'e x(2,2) rl
x{2,2) = ?'??
*Let x be sparse ~
*Type x (2,2) ~

x(2,2) = 0
*Type x ~

x(1,1) = 33
x(1,2) 44
x(2,1) 55

x is sparse.
*

Let x be sparse.

/

4-22

•

CHAPTER 4
ARITHMETIC OPERATORS, FUNCTIONS,

PROPOSITIONS, AND ITERATIONS

4.1 ARITHMETIC OPERA TORS

As discussed in Chapter 1, paragraph 1.3" "AI D Language", all standard arithmetic operators

can be expressed in AID. These are presented'in Table 4-1, in their order of precedence.

Table 4-1
AID Arithmetic Operators

Standard Designation AlP Symbology
0

Meaning

l.

Examples:

I x I ! x ! Absol ute val ue of x

[1 [1 1 st I evel grouping 1

() () Second level grouping 1

e
x*e The value "x II raised to the power of. "e". x

a . b, (a)(b), a*b Multiply a times b.
or a X b

alb or a
alb Divide a by b. Ii

a + b a+b Add a to b.

a- b a-b Subtract b from a.

Within nested pairs of brackets (or parentheses), the order of evaluation is from
the innermost pair outward.

a) *x = -5J
*y = +2~
*Type x+y J

x+y =
*Type !x-ty! ~

!x+X! =
*Type x+yi'2-15 J

x+yt2-15 =
*Type (x+y)~2-15 ~

(x-ty)t2-15 =
*T ype (x+y)t(2- 15) J
(x+y)t(2-15) =

-3

3

-16

-6

-6. 27225472*1 Ot(-7)

4-23

b} *x == sqrt (16}-+sqrt (9) J
*y == sqrt [16-+sqrt (9)] J
*z = sqrt [sqrt (16+9)] d
*Type xrJ

x 7
*Type y J

4.35889894, y =
*Type zJ

2.23606798 Z ==

c} Computing simple interest

(p)(r}(t)
== 100

r
t

P

= rate of interest per year (in %)
=, time (in years)
= principal

*Let i = (p*r*t}/lOOJ
*p = 1000£1:' . ,.
*r == 6rl
*t = 3rJ
*Type iJ

180

d} Computing total accumulated principal and compound interest

. .,'

a = accumulated principal and interest, compounded annually.
r I t', and p are the same as above.
a = p(Hr/l00}t

Leta =p(1+r/l00} ~ trl
*p = 1000rl .
*r = 6rl
*t = 3£1
*Type arJ

a =
e} Formula for a catenary curve

1191.016

x x

a(a +ea)
y =2' e

where a is a constant, and
e is Euler's number

*Let m = x/a tJ
*Let n = O-m d (optional)
*Lete =2.71828183rl
*Let y .= (a/2) *[(6 t m) +(e t (O-m}}J £I

or

Let y = (a/2)[(e t m)+(e t n)] £I
*1.1 TypeYJ
*a = -3£1
*Do part 1 for x = 1 (1)5J

y =
y =
y
y ==
y ==

-3.1682156
-3.69172674
-4.62924191
-6.08589753
-8.22504851

4-24

Execute part 1 for y with val ues
of x beginning with 1 and incre­
mented by 1 until 5 is reached.

4.2 AID FUNCTIONS

Many common algebraic and geometric functions are provided by AID for use in expressions.

Two of the most commonly used functions ore

Examples:

sqrt SQUARE ROOT

log NATURAL LOGARITHM

sqrt(10)

log(x*y)

Note that the argument for a function is enclosed in parentheses a-nd immediately follows the

function mnemonic.

Table 4-2 lists AID functions in alphabetic order. The symbols x and y represent any ex­

pression reducible to a number and are the arguments of the function. The variable i is a dummy vari­

able and does not affect any real identifier denoted by the same alphabetic character.

-' ~ ,

4-25

•

Function

arg(x,y)

+Y

Y~----------
I
I
I

Jr6; 9~ , 'i':

X,Y

-'

Table 4-2
AID Functions

"

Description

The ARGUMENT function takes two argu­
ments (x, y) and computes the angle between
the +x axis of the x,y plane and the line
joining point 0,0 and point x,y, The result
is in radians

arg(x,y)

The value of arg (0,0) is 0. The range of arg
is ° through 21f or -1f through 1f.

0,0 ---..t.--~x:-----L-- +x

cos(x)

dp(x)

exp(x)

fi rst(j=range ••• : i proposi tion ~

fp(x)

ip(x)
. '1'}<'.) ,',.',

'The COSINE f~nction requires one argu­
ment, assumed to be in radians.

I'x I must be < 100.

The DIGIT PART function,

dp(13456.5432)= 1.~4565432

The EXPONENTIAL function:

eX , where e is Euler's

number (2.718281828).

The argument (x) must fulfill the require­
ment that

eX<lOl00(j.e., x must be less than
230.25851).

If eX<10-99, the result is 0.

The FIRST function requires PNO arguments:

(a) an iterat!ve clause (see paragraph
4.5) and

(b) a proposition containing i as an index.

The resuh is the first value of index i to
satisfy the proposition.

FRACTION PART function.

fp (13456.5432) = .5432

INTEGER PART function. ". -., ";

'" : '~, 'ip(l3456~5432) ,:e:' 13456

4-26

I Is

Table 4.2 (Cont)
AID Functions

Function Description

log{x) NA TURA L LOGARITHM function.
-=

The argument (x) must be greater than
zero.

max{i=range ••• : ••• i expres~ion •••) The MAXIMUM function requires two
arguments:

(a) an iterative clause (see paragraph
4.S), and

(b) an expression containing a function
of i.

The expression is computed iteratively for
each value of i, and the result (largest
value) is typed out.1

min{i=range ••• : ••• i expression •••) The MINIMUM function require~ two argu-
ments:

(a) an iterative clause (see paragraph
4.S), and

(b) an expression containing a function of i.

The expression is computed iteratively for
eac~ value of i, and the result (smallest
value) is typed out.1

>-

prod(i=range ••• : ••• i expression ••) The PRODUCT function requires the same
two types of arguments as the MAXIMUM,
MINIMUM and SUM functions.

The expression is computed iteratively for
each value of i, and the result (product of
all the iterations) is typed out.1

sgn(x) The SIGNUM function. The val ue of a
signum function of an argument greater than
zero is +1, of an argument equal to zero is
0, of an argument less than zero is -1.

sin(x) The SINE function requires one argument, . assumed to be in radians •

I x I must be < 100.

, sqrt(x) . The SQUARE ROOT function. The argument
(x) must be equal to or greater than zero.

sum(i=range ••• : •• i expression ••) The SUM function requires the same two types
of arguments as the MAXIMUM, MINIMUM,
and PRODUCT functions.

The expression is computed iteratively for each
value of i, and the result (sum of al I iterations)
is typed out.1

, ,

1The iterative clause and i funcHon can, in all of these cases, be replaced by a simple series of value:
for i.

Example: max(S, -4.3, y,x,2)

.see Section 4.S. .
4-27

..

•

Function

Table 4-2 (Cont)
AID Functions

<
" - - ,

Description

tv (proposition) The TRUTH VALUE function requires one

xp(x)

Examples:

argument, a proposition, and converts this
argument into a numeric. value: 1, if the
proposition is true; 0, if the proposition is
false . .
The EXPONENT PART function.

xp(13456.5432) = 4

i.e., 13456.5432 = 1 .34565432*10 ~ 4

*a = lOll
*b = 12ll
*c = -2.5J
*d = 100£1
*e = 1.325ll
*f = 10.435J
*i = 25J

a) *Let z = sum(i=0(10)100:i*2) J NOTE
*Type zrl .

z = 1100
b) *Type sum (a,b,c ,d,e,f, i ,z) rl

sum (a,b,c,d,e,f,i,z) = 1256.26

c) *Let z = prod (i =1 (1)5:i t 2) rl
*Type zll

The i in .,(a) is a dum~y variable and
in no way relates to the i in (b). The
latter is an identifier and refers to the
variable and defined above.

z = . 14400

d) *Let z = max(i=-15(l)15:{i.~ 2)-(-5*i))J
*Type ztJ.

z = 300

e) *Let z = min (i=-15(1)15:(i ~ 2)-(-5*i»tl
"'Type ztJ

z = -6

f) *Type min(a,b,c,d,e,f,i)J
min(a,b,c,d,e,f,i) = -2.5

g) *Type arg{-l,O)J
arg(-l,O) = 3.14159265

h) *Type arg{c ,a) J
arg{c,a) = 1.81577499

. i) *Type sin(10) J
sin(10) = -'.544021111

j) *Type cos (a) J
cos{a) = , ':'.839071529

k) *Type sin«a*eH)J
sin«a*e)-i) = .728664976

4-28

't..

".

I} "Type exp(. 346} ~
exp(.346} =

m} *Type dp(etf) J
dp(e+F) =

n)

0)

p)

q)

*Type fp(e+F) J
fp(e+F) =

*Type ip(e+F) ~
ip(e+f) =

*Type log(650) ~
log(650) =

*Type log(e+f) ~
10g(e+F) =

r) . *Type sgn(d-~bt2}+i) ~
sgn(d-(bt2}+1) =

";m = -5~ s)

1.41340262

1.176

.76

11

6.47697236

2.46470394

-1

*n = 3"
*Tr.pe tv«m>=n) or (m=O) or (m<O) and (m>-4» rJ
tv(m>=n) or (m=O) or (m<0) and (m>-4» = 0

t)

u)

*Type sqrt(a-+b+C'+cHe) /J
sqrt(a-+b+C+d-le) =
*1.1 Let a(x) = xt2-20 P
*00 step 1.1 for x=1(1)30 ~

10.9920426

*Type a (25) ~
a(25) = 605

*Type first(I=1 (1)30:a (I) =0) J
first(I=1(1)30:a(I)=O) = ???
*Type first{I=1 (1)30:a (I) >700) J
first (I=l (1)30:a(I»700) = 27
*Type a (27) J

a(27) = 709

4.3 USER-DEFINED FUNCTIONS

Set up a table (or array) of 30 items
calculated according to the formula
given in step 1 .1.

No such value found in table.

Functions not included in AI D can easi Iy be defined for repetitive use.

As discussed in Chapter 3, the LET command is used to equate an identifier to some user­

defined function. Following this function identifi,er, up to ten dummy arguments (enclosed as a group

in parentheses) can be specified; these are replaced by actual arguments when the function is to be

used. Dummy arguments are also represented by single alphabetic characters, but the use of a letter

as a dummy in no way affects the use of that same letter as an identifier. Following the dummy argu­

ments, an equals sign and the expression representing the user function are typed.

f(a,b,c, ••••) = expression

f = function identifier (any single alphabetic character)

(a,b/c, ••••) = dummy arguments (also single alphabetic characters)

expression = the arithmetic 'e~pression representing the user fl,lnction

Arguments supplied for functions can themselves be functional.

4-29

4.3.1 Examp/es-of User-Defined Functions

*let a(b,c) = sqrt(b*c) + b~2 + c~2 ~

*Type a(120.555,32.076) b
a(120.555,32.076)= 15624.5624

*Type a ~
a(b,c): sqrt(b*c) + b~2 + c~2

*Type formula a ~
a(b,c): sqrt(b*c) + b~2 + c~2

*Type a(b,c} ~
b = ???

*b = (4~6)/9~
*c = 5.23P
*Type a(b,c) ~

a(b,c) = 207202.264

Define the user.function a, with two
dummy -arguments band c, as being
equivalent to the formula

sqrt(b *c)+b~2+c ~2

Use the newly-defined function by
specifying two actual arguments in
place of the dummy arguments, b
and c.

Note that a is equated to the formula,
not'a value, since a alone is not an
expression.

Same typeout.

No values -have been specified for
the identifiers (not dummy arguments),
band c.

Many common functions can be defined as user functions, as shown below.

Tangent

*Let T(a) = sin(a)/cos(a) b
*Type T(10) P

T(10) =

Arc cos

.648360828

*Let F(a) =arg(a, sqrt(1-a~2» 'b
*Type F(.10) t:J

F(.10) = 1.47062891

Arc cot

*Let C(a) = arg(a, 1) tJ.
*Type C(10) ti

C(10) =

Arc csc

.0996686522

*Let 5(0) = arg(sqrt(1-1/a~2), 1/a) tJ.
*Type 5(10) .d

5(10) =; .100167421

Arc sec

*Let K(a) = arg(1/a,sqrt(1-1/a~2» ~
*Type K(10) t3 -

K(10) = 1.47062891

4-30

Arc sin

*Let N (a) = arg (sqrt (1-0 ~ 2),a) rl
*Type ~(.10)rl

N(.10) = .100167421

Arc tan

*Let T(a) = arg(1 ,a) J
*Type T(10) rl

1(10) = 1.47112767

Log to base 10

*Let L(a) = log (a}/Iog (10)J
*Type L(25.38)~

L(25.38) = 1.40449162

Derivative of a function of a variable

*Let D(a) = (F(a+.005)-F(a- .005»/ .01 rl
*let F(a) =3*a ~3-4*a ~2+2*a+5tl
*Type D(4) ~

D(4) = 114

4.4 PROPOSITIONS

As discussed in Chapter 3, propositions are Boolean expressions composed of arithmetic or

logical statements using the relational operators.

= (equal), # (not equal), >(greater than), < (less than),

> = (greater than or equal to), < = (less than or equal to)

the negation

not

and the logical operators

and

or

A proposition has either of two possible values: true or false.

Example:

*x = trueJ
*y = falseJ
*Let z = (x) and (y) or (x) and (100 >Sqrt(959» tl
*Type z rJ

z= true

The order of execution within a proposition is:

a) evaluation of expressions
b) () Within nested pairs of parentheses, the order of evaluation is from the
innermost pair outward.
c) relational operations

4-31

•

d)
" .- ~ ::

!!Q!.
e) and "

f) Q!.

A series of relational operations is assumed to be an ~ chain if no logical operator intervenes.

a=b>c<d is equivalent to a=b and b>c and c<d
....-- -

,#

The truth value (tv) function (see "AI D Functions") converts the valueofapropositionto a

numeric value (true = 1, false = 0) and allows it to be used as an expression, since it is then reducible

to a numeric value.

*Set x = true tJ; .
*let y = (x) and (sqrt(lOO)>Sqrt(30*5-20» tJ.
*T ype tv (y) tJ.
*Type 'J.4+tv(x(J

24+tv(x) =

o
25

4.4.1 Conditional Expressions

A conditional expression allows an expression (e.g., a variable) to have different values de-

. pendin~ upon which of a numbe'r of conditions is true •. It is composed of a series of clauses separated by

semicolons, ~ith each clause ~ade up of a proposition followed by a colon follow'ed by an expression.

The entire conditional expression must be enclosed by parentheses or brackets.

Example:

(proposition:expression; proposition:expression; ••••)

Express the function:

If x> 0, C(x) = x~2;
if x=O, C(x) =0;

. if x<O, C(x) = x.

*let C(x) = (X>0:x~2;x=0:0;x<0:x) tJ
*Type C(5)', C(-10), C(O), C(10) iJ

C(5) = 25
C(-10) = -10

C(O) = 0
C(10) = 100

If the last expression is to be true for all cases which do not satisfy any o(the stated condi - '

tions, the expression can be typed without a preceding proposition. For example, in the case above r

the user could have typed:

*let C(x) = (X>0:x~2;x=0:0;x) tJ
NOTE,

Every possible combination of the variable must be provided for,
either by explicitly stating a conditional expression arid a propo­
sition for it, or by simply specifying 0 terminating expression to
be executed for all cases which do not satisfy any of the explicitly
stated propositions. '1f this provision is not mode, and an unpro­
vided -for condition'occurs, AID responds with the message

ERROR IN FORMULA X .

4-32

A conditional expression can be used to perform a fable lookup for all items whose values

satisfy one or more conditions.

Example:

1.1 SetA(x)=xi2 +x.5-5*x tJ
*00 step 1. 1 for x = 1 (1)35 ~
*Type A(20) tJ

A(20) = 310
*Type A(3) ~

A(3) = -4.5

Generates a 35 - item tabl e.

*Let F(x) = (x<0:xix>700:Xifp(X»0 and x>300:x; +) tJ

*1.1 Type .F(A(i)) ~
*00 step 1 .1 for i = 1 (5)35 tJ

F(A(i)) = -3.5

F(A(i)) = 346.5

F(A(i)) = . 821.5
F(A(i» = 1 067.5

*Let E(x) = (fp(x/2)=0:x; +) " .

*1.1 Type E(A(i» ~
*Do step 1 • 1 for i = 1 (l)35 "

E(A(i» = -2

E(A(i» = 28

E(A(i» = 90

E(A(i» = 184

E(A(i)) = 310

E(A(i» = 468

E(A(i» = 658

E(A(i» = 880

4-33

Find all values which are (1) less
than zero; (2) greater than 700;
or (3) greater than 300 and have
a fractional part which is nonzero.
If x is none of these, perform a
line feed, carriaQe return (indicated
by the + symbol).

Test every fifth item in the table.

Values, in tested items which do not
satisfy any of the three propositions
result in line feed/carriage return
(because of the terminating + sym­
bol in the conditional expression).

Find all even-numbered values in
the table.

Test every item in the tabl e •

4.5' ITERATIVE CLAUSES"(RANGES)

Iterative clauses are 'used with the DO command and with the functions FIRST, NtA.X, MIN,

PROD, and SUM. In bO.th cases, the iterative clause specifies a range of values to be acted upon by

the command or function.

4.5.1 Series of Values

One format of an iterative clause lists the individual values which make up the range:

n, n I' n2.' n3,·······

For exampl,e,

Do part m for x',= range
Do part 1 forA:::; 1, M, 100,50, -25, xt3

Type sum(x=range)
Type sum(A = -4.6, M*N, 240.5,C)

4.5.2 Incrementation

Part 1 wi II be executed for each of
the individual values of A.

The SUM function is performed on
'all values listed and the result (the

, SUM of all values) typed out.,

The range of values for a variable can also be expressed as a first value, an incremental

value, and an ending value. As a result, the variable values range from the'first value ,upward in steps

of the specified increment until the e~ing value is reached. The ending value is always taken as the

last value in the range, even though the incremental steps may not hit it exactly.

The general form of an incremental iterative clause is:

x = first-value{increment)ending-value

,For example:

4.5.3

Do step m. n for x = range
Dostep2.3forA= 1(2)12

Type sum (x =range)'
Type sum(A = -50(B)C)

Combinations

Step 2.3 will be executed for each
individual value of A:

1,3,5,7,9,11,12

The SUM of all values of ,A, as in­
dicated by the range, is calculated.
This range begins with -50 and con­
tin!J~s in increments of B until C
is reached.

A range can be expressed as a combination of value series and increments.

4-34

x = a(b)c,d,e(f)g(h)i,j,k

For example,

Do part 3 for W = 20(Y)50(50)500, 1000(100)Z

Type sum(W = A(30)B, C, 800(0) 1500)

'4-35

The-range pf x values begins with a,'
continues in increments of b through
c, then d, e, then in increments of
f until g is r.eached, then in incre­
ments of h until; is reached, then
j and k. '

Part 3 will be performed for all val­
ue$ of W, beginning with 20, con­
tinuing in increments of Y through
50, then continuing in increments of
50 through 500, and from 1000 in in­
crements of 100 through Z.

The SUM function will be applied to
all valves of W, beginning with A
and continuing in increments of 30
through B, then C, followed by 800
through 1500 in increments of O.

CHAPTER 5
AID VERBS

This chapter contains a summary of AID verbs, their command formats, optional features, and

examples of usage. Some of these verbs (e.g., TYPE, DO) hove appeared frequently in examples in previous

chaptersiothers(e.g., LET, SET) have already been describedextensivelyandare included here only as a

review.

Some verb descriptions include diagnostic messages which are associated with a specific

command or group of commands. A complete list of diagnostic messages can be found in Table A-4.

5.1 II CANCEL

DESCRIPTION

The CANCEL command cancels a currently stopped (interrupted) process, if the user does

not desire to resume execution. 1

CANCEL is the antithesis of the GO command.

CANCEL also releases any immediate memory currently assigned to the interrupted execution.

NOTE

The CANCEL command does not, however, delete any commands,
formulas, variables, etc., associated with the interrupted process.

The CANCEL command can be given directly only.

Parenthetical CANCE L (CANCE L)

Typing

(CANCEL)

cancels any currently stopped process that was initiated by a parenthetical DO.

1 An interrupted process is automatically cancelled whenever the user types a direct DO command to
initiate another part or step.

4-37

EXAMPLE

*1.1 Let x = ~

*2.10 Type ~
'*00 part 1 P
Error 'at step 2.5: i"egal set of values for iteration.

*Cancel. ~ User does not desire to correct step and resume
execution.

*

••

DIAGNOSTIC MESSAGES

DON'T GIVE THIS COMMAND INDIRECTlY

4-38

The CANCEl command can 'be given
directly only (with no step number
precedi ng it).

5.2 DELETE

DEseRI PTION

The DELETE command erases a step, port, form, value, or formula from immedio.te storage

and frees that storage for some other use. This command should be used frequently to delete.routines,

tables, and other items which are no longer needed. By doing this, unnecessary waste of storage and

possible storage overflow can be avoided.

Delete a

Delete identifier a and its associated value{s) from immediate storage. If identifier a is

a subscripted variable, the entire a array is deleted.

Delete a(b, •• J

Delete the particular array item, a{b, ••), and its associate value from immediate

storage.

Delete step m.n

Delete the step numbered m.n.

Delete port m

Delete port m (all steps having numbers whose integer portion is m).

Delete formula a

Delete the formula associated with a.

Delete form m

Delete form m.

Delete all

values

steps

ports

(See "FORM" and "TYPE" for on explanation of forms.)

Delete all entries of the named type.

Delete all

Delete all entries.

Several individual DELETE commands can be combined into one. For example,

Delete x, form 3, formula b, all ports.

4-39

EXAMPLES

*1.1 TyPe '''STEP A" t>
*1.2 Type a+b in fann 1 ~
*1.3 To step 2.1 ~ l
*2.1 Type a~2+b~2 p
*2.2 Type "END" /J
*Leta= 10+b t>
*b = 25A
*Form 1:~
*"""""0"" ~
*00 part 1 ~
STEP A

END

60.00

at2-1bt2 =

*Delete b t\
*00 part 1 p

STEP A

1850

Error at step 1.2 (in fonnula A): b ~ ???

*Delete step 2. 1 ~
*00 step 2.1 ~
I can't find the required step.

*Delete a ~
*Type a ~
0= ???

*Del~;e' 01 I ~
*Type all ~
*

4-40

Type entries into immediqte storage.

Test routine.

Delete identifier b and its associated
value. Attempt to use b.

Delete step 2.1.

Attempt to execute it.

Delete formula a.

Attempt to type it.

Delete remaining entries.

Test that all have been deleted.

•

5.3 I DEMAND

DESCRIPTION

DEMAND causes AID to type out a request for a user-supplied value during execution of a

routine. The DEMAND command can be given indirectly only.

Demanda.

AID types out a request for the value of a.

*1 • 1 Demand a tJ.
*1.2 Type .•••• ~
*Do part 1 t>

a = *(user types value here)~

Demand a(b, ••).

AID types out request for the value of the subscripted variable a(b, ••).

*1.1 Demand M(3,5,7) !>
*1.2 Type ••••• 1>
*Do part 1 P

M(3,5,7) *(user types value here)!>

DEMAND AS "ANY TEXT" OPTION

Demand a as "any text" .

AID types "any text" to request a value for a.

*1.1 Demand p as "NUMBER OF SAMPLES WANTED" r:l
*1.2 Type •••• ~
*Do part 1 tJ

NUMBER OF SAMPLES WANTED = *(user types value here)!>

Demand a(b, ..) as "any text" .

AID types "any text" to request a value for the subscripted variable a(b, ..).

4-41

*1.1 Demand y(3) as "MAXIMUM SPEED"
*1.2 Type ts

.... ~~ " ,J. ~"'! "':.-d
t\ ~;
~

*00 part 1 tl
MAXIMUM SPEED = *(user types ~alue hEm9)~

Depending upon the use of the variable specified, values r~quested b)la 'D~MAND command

can be entered in the form of

a) a numeric expression (e.g., a numberin fixed or floating point notqtion, or an identifier

representing a numeric value),

b) a formula, or

c) a Boolean value (true or false).

EXAMPLES

a)

NOTE

Only one variable can be specified in each DEMAND command.

*x=25 ~
*y=50.25~

__ *z=16.4~
*1.1 Type "CONVERSION OF POUNDS TO KI LOGRAMS"
*1.2 Demand a ~
*1.3 Type a,b in form 1 ~
*1.4 To step 1.2 ~
* Let b =. 45359*a P
*Form 1:1>
*

.................... • POUNDS = • KILOGRAMStl
*Do part 1 t>
CONVERSION OF POUNDS TO KILOGRAMS

a = *25.8"
25.8000 POUNDS = .\ 11.7026 KILOGRAMS

a = *100.543p
100.5430 POUNDS = .1 45.6053 KI L9 GRAMS

a = *5567.98p
5567.9800 POUNDS = 2525.5801 KILOGRAMS

a = *1> ~a'rriage return by user
I'm at step 1.2. terminates iterations.

*1.2 Demand a as "POUNDS"
*Do part 1 ~

CONVERSION OF POUNDS TO KI LOGRAMS

POUNDS ~ *25.8"
25.8000 POUNDS = 11.7026 KI LOGRAMS

POUNDS = *~
I'm at step 1.2.
* -,

, ~, .

4-42

b)

c)

*Let a = m and' n f)
*Let b = m or n ~
*1 • 1 Demand m t>
*1 .2 Demand n t>
*1.3 Type tv(a) in. form 1 ~
*1.4 Type tv(b) in form 2 V
*1 • 5 To step 1. 1 t>
*Form 1: t>
* Logical AND: +
*Form 2: ~
* Logical OR: ...
*00 part 1 t> .\

m = *true V:.
n = *falset>

Logical AND: 0
Logical OR: 1

m = *false ~
n = *false V

Logical AND: 0
Logical OR: 0 .\

m = *not true V
n = *not false t>

Logical AND: 0
Logical ~R~.\ 1

m - V

11m at step 1 • 1 •
*

*1. 1 Do part 2 for B = 1 (1)3 t>
*1.2 Type A I>
*2.1 Do part 3 for C = 1 (1)5 t>
*3.1 Demand A(B,C) t>
*3.2 Set A(B,C) = sqrt(A(B,C» t>
*00 part 1 ~

A(1,1) = *30
A(1,2) = *65
A(1,3) = *4
A(1,4) = *50
A(1,5) = *43.55677
A(2, 1) = *32·
A(2,2) = *1
A(2,3) = *45.99
A(2,4) = *29
A(2,5} = *22.3333
A(3,1) = *56.77
A(3,2) = '*66,.7777
A(3,3) = *99
A(3,4) = *100
A(3,5) = *1234.33
A(1, 1) =
A(f,2) =
A(1,3) .
A(1,4) =

5.47722558
8.06225775
2
7.07106781

4-43

Carriage return terminates iterations.

A(1,5) ='
'A(2,1) =
A(2,2) =
A(2,3) =
A(2,4) =
A(2,5) =
A(3,1) =
A(3,2) =
A(3,3) =
A(3,4) =
A(3,5) =

6.5997553
5.65685425
1
6.78159273
5~ 38516481
4.7258121
7.53458692
8.17176236
9.94987437

10
35.1330329

4'"744

5.4 II DISCARD

DESCRIPTION

EXAMPLE

DISCARDdeletesanitemfromtheexternal storage file currently in use.

Discard item m (code).

Erase item #m (where m can be in the range 1 through 25) from the currently open ex­

ternal storage file and make the item available for some other use.

Immediate storage is not affected in any wdy.

Code is optional for documentation purposes only and is ignored by AID; however, code,

if used, cannot exceed five characters in length.

*Discard item 20 P
Done.

Item 20 of the external storage fi Ie currently in use has been cleared successfully, as

evidenced by the AID message, DONE •• Item 20 can now be used for storing some

other data, via the FI LE command.

DIAGNOSTIC MESSAGES

I CAN'T FIND THE REQUIRED ITEM.

ITEM NUMBER MUST BE POSITIVE
INTEGER <=25.

YOU HAVEN'T TOLD ME WHAT FILE TO USE

4 45

The specified item cannot be found in
the currently open file. Ei ther the
wrong file is open, or the item num­
ber is incorrect.

An invalid item number was given.

A DI SCARD command was attempted
before an external storage file was
opened via a USE command.

c, '
\:1 '

5.5

DE'SCRIPTION

The DO command executes an indirect step or part. DO is completed when either (1) in a

noniterative operation, the last step in the sequen~e has been completed, or (2) in an iterative opera­

tion, the last iteration has been completed. 1 If the DO command is a direct step,' control returns to

the user at the compretion of the DOi if the DO command is indirect, control returns to the step fol­

lowing the DO. 'If the step or part being executed contains imbedded DO or TO commands, they are

executed normally.

Do step m.n

Execute step Hm•n and return control as descri bed above.

TIMES Option

Do step m.n, p times

Execute step Hm•n the nu~ber of times specified by integer p and return control as de­

scribed above. Note that a comma must immediately follow th!Sl step number.

RANGE Option (FOR Clause)

Do step m. n for x = range

Execute step m.n iteratively for each specified value of x as indicated by range (see

Section 4.~~,.

When the range is sat1sfied, control ,is returned as described above.

Do step 1 ~ 2 for x = 1 (1)5

Do step 5.25 for a = -10.25(.25)4.50

Do step 1.3 for m = 1,-2.5,100"':'43.666

Execute step 1:2 iteratively, begin­
ning with an initial x value of 1 and
incrementing x by 1 prior to each
iteration until the maximum value of
5 is reached.

Execute step 5.25 iteratively, be­
ginning with an initial a value of
-10.25 and incrementing a by the
value .25 each time until the maxi­
mum value of 4.50 is reached.

Execute step 1.3 for each of the four
specified m values.

1 Remember that steps are always executed according to the n~merical s~quence of their step numbers,
regardless of the order in which the steps were originally entered.

4 ... 46

Do step 10.6 for p = 200, -30.667, -2.3(.1)1.9, 5.75

Do step 1.3 for m = 1(4)26(5)50{25)155

Do part m

Execute step 10.6 for three val~s of
p (200, -30.667, anclS.7~ and 'for
a range of values of p (4.3 through
1 .9, in increments of .1).

Perform step 1.3 iteratively for m =
1 to 26 in increments of 4
26 to 50 in increments of 5
50 to 150 in inc(ements of 25.

Thus, the values ofm will be 1,5,9,
13,17,21,25,26,31,36,41,46,
50,75, 100, 125, 150, and 155 for
the 18 iterations of step 1.3.

Execute part m {all steps having the value m as the integer portion of their step number}.

All steps are executed in numeric sequence; any jump (via a DO or TO) to a step which

is outside part m is handled correctly. Control is returned as described above.

Do part m, p times

Execute part m the number of times specified by integer p and return control as de­

scribed above.

Do part m for x = range

Execute part m iteratively·for each specified value of x in the same manner as described

under" Do step m.n for x = range".

The FOR clause of a DO command is interpr~ted only once, at the point where the DO com­

mand is encountered; therefore, if a variable specified within the FOR clause is changed during exe­

cution of the DO-initiated routine, the change has no effect on the performance of the FOR clause.

The number of iterations performed and the setting of the variable at the beginning of each iteration is

the same as if no modification of the variable were performed by the routine.

*1.1 Do part 2 for x=1(1)5 },
*2.1 Type x C>
'*2.2 Set x = x+l00 ~
*2.3 Type x tJ
*00 part 1 {)

x =
x =
x =

-x =
x =
x ==
x =
x =
x =
x =

1
101

2
102

.3
103

4
104

5
105

4-47

Note that, when the FOR clause is used, the end-range v~1u~'i~ hif~~~tjy. For example,
given the DO command . :. '~: . ,~. :_:

Do part 1 for x = 1(3)14.5

iterations will be performed for x = 1, 4, 7, 10, 13, and 14.5.

IF Clause

The IF clause (q.v.) when appended to a DO command is also interpreted only once (when

the DO command is encountered) and has no effect once execution of the DO has begun. Thus, even

though the DO-initiated routine might perform some action which would make the IFcondition no

longer satisfied, once execution has begun it continues to its normal termination.

*x = 20 P
*1.1 Do part'2, 3 times if X>O ~
*2.1 Set x = x-50 ~
*2.2 Type x ~
*00 part 1 b

x -30
x = -80
x = -130

Parenthetical DO (DO ••••••)

At the start, x = 20.
x is now <0, but iteration continues.

The parenthetical DO command is used to initiate execution of a step or part, while another

process is waiting to continue after a STOP or "other type of interrupt, without cancelling that other

process.

NOTE

A normal DO command automatically cancels any currently
stopped process.

The parenthetical DO command inc ludes all the options of the normal DO command. Its general format

is:

(Do •••••••••••

a) (Do part 3)

b) (Do step 1.4 for x = 5(5)25)

The parenthetical DO command is commo;nly used to execute a step or part to test its validity; thus, this

commanc/ is primari Iy a debugging aid.

Any stopped process which was originally initiated by a parenthetical DO can be cancelled

by a parenthe.tical CANCEL command.

EXAMPLES

Examples of parenthetical DOs can be found under" GO" in this chapter.

a) * 1 . 1 Type "A" ~
*1.2Type "0" rJ,
*1.3 Type "F" ~
*1.4 Type "J" cl

*1.25 Type "E" ~
*2.1 Type "8" ~
~2~2 Type "e" cs
*3. 1 Type "G" r:J

*3.2 Type "H" r:J

*3 .3 Type "I" ~
*Do part 1 ~
A
D
E
F
J
*1.15 Do part 2
*Do part 1 ~
A
8
e
D
E
F
J
*1.35 To part 3 t:l
*Do part 1
A
8
e
D
E
F
G
H
I

*
b) *let I = sqrt (a ~ 2+b ~ 2) J

* 1 . 1 Do part 2 for b = 1 (3)9 ~
*2.1 Type a I b I lin form 1 t:l
*Form 1: t:l

, ,

* a= b=+-"'''' c=_ · tl
*Do part 1 for a = 1 (2)12 t:l

a= 1 b= 1 c= 1.4142
a = 1 b = 4 c = 4. 1231
a = 1 b = 7 c = 7.0711
a = 1 b = 9 c = 9.0554
a = 3 b = 1 c = 3.1623
a = 3 b = 4 c = 5.0000
a= 3 b= 7 c= 7.6158
a= 3 b= 9 c= 9.4868
a = 5 b = 1 c = 5.0990
a = 5 b = 4 c = 6.4031
a = 5 b = 7 c = 8.6023
a = 5 b = 9 c = 10.2956
a = 7 b = 1 c = 7.0711
a = 7 b = 4 c = 8.0623

4-49

Note that no return is made to step
1.4. (the TO command does not
return control).

I JVlOO
~, 7 b= 7 c= 9.8995

7 b= 9 c= 11.4018
0= 9 b= 1 c= 9.0554
0= 9 b= 4 c= 9.8489

. '0= 9, b= 7 '. c= 1 1..4018
a'" 9 b;'" 9 c= 12.7279

" ' 0= II b= 1 c= 11.0454
0= 11 b= 4 c= 11.7047
0= 11 b= 7 c= 13.0384
0= 11 b= 9 c= 14.2127
a'" 12, b= 1 c= 12.0416
a':" 12 b= 4 c= 12.6491 .
0= 12 b= 7 c= '13.8924
0= 12 b= 9 c= 15.0000

*

c) *Delete all, t> ,
*Let A = (B~2)/4*sqrt(3) t>
*1.1 Type A, 2*A, +- I>
*1.2 Stop if A> 100 t>
*2.1 Type B tJ
*Do part 1 for B=10(25)100 ~

A= 43.3012703
2*A = 86.6025406

.A = 530.440561
2*A = 1060.88112

Stopped b,3 step 1.2.
*Type A .

A= 530.440561
*1.0 Stop if A>100 ~
*Do part 1 for B=10(25)100 "

A= 43.3012703
2*A = 86.6025406

Stopped by step 1.
*

DIAGNOSTIC MESSAGES

I CAN'T FIND THE REQUIRED STEP.

I CAN'T FIND THE REQUIRED PART.
. '.i

.... '~ . -", - ' ..

. 4-50

o. .. \:

.If~'!~"'jt" ~~j<~(

"

An incorrect step number has been
specified; no such step number exists •

An incorrect part number has been
specified; no ,such part number exists.

"
.J /.),

". c'. ", ,-
""' ... ,-

5.6 DONE

DESCRIPTION

The DONE command skips execution of the remaining steps of a part during the current

iteration. This command can-be given indirectly only. It is usually given conditionally.

EXAMPLE

Done (unconditional)

Normally used only as a temporary step (during the testing of a routine) when perform­

ing a partial execution.,

Done if ••..•. (conditional)

Used to skip execution of the remaining steps of a part when certain conditions (speci­

fied in the IF clause) are met.

*LetA = 8~2+2*8+10 t>
*Let C =,At2+2*A*8+8t2 t>
*1.1 Type A / 8/ C in form 1 C.
*1.2 Type A*8 ~
*1. 3 Type A *C, <4- t>
*Form 1: t>
*+++++-++++ + +++.++++ +++++.++++ "

*Do part 1 for 8 = 1 (1)4 ~
13.0000 1.0000 196.0000

A*8 = 13
A*C = 2548

18.0000
A*8 =
A*C=

25.0000
A*8 =
A*C =

34.0000
A*8 =
A*C =

*1.15 Done t>

2.0000
36

7200

3.0000
75

19600

4.0000
136

49096

*Do part 1 for 8=1 (1)4 P
13.0000 1.0000
18.0000 2.0000
25.0000 3.0000
34.0000 4.0000

*1.15 Done if 8>2 t>
*Do part 1 for 8=1 (1)4 t>

13.0000 1.0000
A *8 = 13
A*C = 2548

18.0000 2.0000
A*8 = 36
A*C = 7200

400.0000

784.0000

1444.0000

196.0000
400.0000
784.0000

1444.0000

196.0000

400.0000

4-51

Insert temporary premature termina­
tion step following 1.1.

Change unconditional DONE to
conditional.

*

DIAGNOSTIC MESSAGES

3.0000
4.0000

784.0000
1444.0000

DON'T GIVE THIS COMMAND DIRECTLY

4-52.

The DONE command must only be
given indirectly {preceded by a step
number}.

5.7 I FILE

DESCRIPTION

FILE stores an item in the external storage file currently in use. Immediate storage is not

affected in any wr:;Jy.

EXAMPLE

E.

a(b, ...)

form m

step m

part m

formula f

all steps
File

all parts
as item n (code)

all formulas

all forms

all values

all

*File all parts as item 5 J
Done.

*
'"

Store the specified information as
item n (where n can be in the range
1 .through 25) in the currently open
externa I storage fi Ie. Code is op­
tional for documentation only and
has no meaning to AID; however,
code, if used, must not exceed five
characters in length.

All parts existing in immediate storage are stored on the currently open external storage file

as item 5. Successful execution of the command is evidenced by the AID response, DONE .. Item

contents can be retrieved by the RECALL command.

DIAGNOSTIC MESSAGES

ITEM NUMBER MUST BE POSITIVE INTEGER
<=25.

PLEASE DISCARD THE ITEM OR USE A NEW
ITEM NUMBER.

PLEASE LIMIT ID'S TO 5 LETTERS AND/OR
DIGITS

YOU HAVEN'T TOLD ME WHAT FILE TO USE.

NOTE

An invalid item number was given.

The specified item is already oc­
cupied; no change in either immed­
iate or external storage occurs.

Code exceeds five characters in
length.

A FILE command was attempted be­
fore an external storage file was
opened via a USE command.

Only 22 items are allowed, if DECtape is used for ex­
ternal storage.

4-53

I FORM ..

5.8

DESCRIPTION

FORM is used to edit typeouts of results ,for purposes of readibi lity, e.g., to (l)specify that re­

sults be typed in a specific notathn, (either scientific or fixed point), (2) specify that multiple results

are to be printed on a single line, usually to conserve space, (3) intersperse text .with results, and (5)

produce report-type headi ngs.

The elements which can be typed in a form are:

a) Numeric values, including variables, $ (line counter), TIME, TIMER, and SIZE.

1. Type -23.466 in form 1

2. Type 0, b, c in form 2

3. Type $ in form 3

4. Type TIMER in form 4

b) Propositional values (TRUE and FALSE). Both of these values must be provided with on

integral form field containing at least five character positions.

Type F in form 5 (where F is a proposition).

c) ... {indicating a blank field}.

Type a, b, ... , f in form 6.

Forms are entered as two lines:

*Form n:~

* user types actual format here •.

n identifies the specific form and
must be on integer.

Once a form is defined, it can be used by sp'acifying itin ~ TYPE c~n;Jmand.

Type in fqrm .n

Specific Notations

Fixed-point notation is specified by a series of left arrows, one for each digit position and

one for a si9':l (if any). If less integer places appear in the form than in the result, the error message

I CAN'T EXPRESS THE VALUE IN YOUR FORM is typed; if less decimal places appear in the form than

in the result, rounding occurs. A period is used to indicate the decimal point position.
++++.+++

-- -345.667
++++a ++++++
- 345.666667

\

4-54

At least seven periods must appear in a scientific notation form.
,.,.'

-3.3-01

Reducing the number of periods in a scientific notatipn form reduces the number of fraction

digits appearing in the result; these digits are dropped after rounding.

Multiple Results on a Single Line

More ,than one result can be typed on a single line through the use of the FORM command.

Such a technique might be used to conserve space, increase output speed, and/or couse results to

appear under previously typed col umn headings.

*Form l:~
* + ... + +++++++ • + +++++++ • ++ +ofo:++++. +++ "

* 1.1 Type Il, a~2, a~3, a~4 in form 1 p
*00 step 1.1 for a = 10(.5)15 f)

10.0 100.0 1000.00 10000.000
10.5 110.3 1157.63 12155.063
11.0' 121.0 1331.00 14641.000
11.5 132.3 1520.88 17490.063
12.0 144.0 1728.00 20736.000
12.5 156.3 1953.13 24414.063
13.0 169.0 2197.00 28561.000
13.5 182.3 2460.38 33215.063
14.0 196.0 2744.00 38416.000
14.5 210.3 3048.63 44205.063

*
~5.0 225.0 3375.00 50625.000

Interspersing Text with Results

A form can be used to intersperse explanatory text with typed results.

*Form 2:~
* If a = +++. + then 0~2 = +++++. ++++

*2.1 Type 0, 0~2 in form 2 ~
*00 part 2 for a = 10(.5)12 J)

Ifo=10.0 then oC12=
If a = 10.5 then oC12 =
If a = 11.0 then oC12 =
If a = 11 .5 then oC12 =
lfa=12.0 thenoc.2=

*

'100.0000
110.2500
121.0000
132.2500
144.0000

"4-55

Report-Type Headings

A form containing only text can-be used to- generate columnar- headings~" 'c"

*Form 3:tl
* a
*1 .1 Type form 3
*1.2 Do step 1.3 for a = 10(.5)12~
*1.3 Type a, a ~2, a ~3, a ~4 in form 1 cJ
*Form 1:
* Iof-o

*00 part ltJ
a~2 a~3 a

10.0 100.0000 1000.0000
10.5 110.2500 1157.6250
11.0 121.0000 1331.0000
11.5 132.2500 1520.8750
12.0 144.0000 1728.0000
12.0 144.0000 1728.0000

*

DIAGNOSTIC MESSAGES .
FORM NUMBER MUST BE INTEGER AND
1 <= FORM<1049.

I CAN'T EXPRESS THE VALUE IN YOUR FORM.

I CAN'T FIND THE REQUIRED FORM.

I HAVE TOO MANY VALUES FOR THE FORM.

.... t!

a~4
10oo0.0pOO
12155.0625
14641.0000
17490.0625
20736.0000
20736.0000

Form numbers must be integers in the
range 1 through 109-1 .

A value cannot be expressed in the
format given (the value is to~ large).

The specified form does not exist;
the form number is incorrect.

The TYPE command specifies more
elements to be typed than there are
fields in the form. '

5.9 f 'GO

DESCRIPTION

GO continues execution of a currently-stopped (interrupted) process.

GO is the antithesis of the CANCEL command.

The GO command is normally used to continue execution after control has been returned to

the user via a STOP command.

EXAMPLE

Go

The GO command must be given directly only.

let v=p(rt2)hd
*p=3 .1421l
*1.1 Do part 2 for h=.5(.5)3 d
*1.2 Stopd
*2 • 1 Type r , h, v inform 1 J
*3.1 Type r'2~
*3.2 Delete step 1 .2 ~
*Form 1:
* ... tl
*Do part 1 for r=l (1)3 ~
Error at step 2.1 (in formula v):

*Type formula v rJ
v: p *(r t2)h

let v=p(rt2)*h J
*GocJ

.5
1.0
1.5
2.0
2.5
3.0

Stopped by step 1 .2
*(Do part 3) r:l

rt2 =

eh? .

·1.5710
3.1420
4.7130
6.2840
7.8550
9.4260

Multiplication symbol was omitted.
Correct formula.
Execute GO to continue.

STOP command at step 1 .2 is
encountered.

Done. I'm ready to go from step 1.2, although I can't find it.
*Go~

*Go

2
2
2
2
2
2
3
3
3
3
3
3

.5
1.0
1.5
2.0
2.5
3.0

.5
1.0
1.5
2.0
2.5
3.0

I have noth i ng to do.
*

6.2840
12.5680
18.8520
25.1360
31.4200
37.7040
14.1390
28.2780
42.4170
56.5560
70.6950
84.8340

4-57

Execute part 3 via a parenthetical
DO; then GO to continue.

I HAVE NOTHING TO DO.

4-58

The GO command can be given di­
rect�y only (with no step number' '
preceding it).

When the GO command was given,
no process was in a stopped or in­
terrupted status. Control retl,lrns to
the user and AID waits for a new
command.

5.10 _ IF CLAUSE

DESCRIPTION

The IF clause can be appended to ~ command (except the short SET command) to make that

command conditional; (the command is executed only if the proposition following the word IF is

satisfied).

Verb (arguments) IF proposition

EXAMPLES

a} *1.1 Setb=50ifa>100"

b} *3.3 To part 5 if fp(d)=O ~

c) *2.9 Do part 3 if tv(f)=l "

4-59

Set b equal to 50 if, and only if,
a is greater than 100; otherwise
leave the value of b undisturbed.

Transfer control to part 5 if, and only
if, d is an integer; otherwise, con­
tinue in sequence.

Execute part 3 if the truth value (tv)
of proposition f is equal to 1; other­
wise, continue in sequence.

/

LET ,
5.11

DESCRIPTION

LET defines arithmetic formulas, Boolean expressions (propositions), and user functions. The·

formula, expression, or function with which an identifier is associated is re-evaluated each time that

identifier appears during execution of a routine.

Arithmetic Formulas

The LET command can be used to tell AID how to calculate the value of an identifier (versus"

associating the identifier with a fixed value, as with the SET command). LET causes the identifier on

the left of the equal's sign to be set to the formula on the right of the equals sign.

a) *Let v = p *(r ~ 2) *L J
*Set p =3.1416cl

b) *Let L ::: w *h ~

Boolean Expressions (Propositions)

LET can also be used to equate an identifier to the value (true or false) of a proposition (a

Boolean expression) composed of arit~metic and logical statements using common relational operators

(e.g., =,<, », the logical negation (not), and logical operators (and, or).

a) *Let a ::: true J
b) *Let c ::: a ane! b or c or d J

. c) *Let y ::: X and yor (sqrt(100) <sqrt(z» d,

User Functions

LET has a third us:, that of defining a user function.

a) *let a(b,c) ::: b*c J
b) *Let v(R,H) ::: p(Rt2)*Hcl

User functions, once defined, are used in exactly the same manner as AID. functions.

a) *Type a(12,30) J
b) *Let m ::: v(f ,g) *d J

EXAMPLES

A more complete discussion of these three uses of LET, including examples, can be found in

Chapter 3.

SPECIAL LET COMMAND - LET S BE SPARSE

Let s be sparse where s is a subscripted letter.

Declares undefined array elements to have zero value; such elements require no space in

immediate storage.

Example

*x(l,2)==55 rJ
*x(l,5)=43li
*x(l,lO)==60rJ
*x(2,4)==77 J
*Type x(l,lO)J

x(l, 10) ==
*Type x(l,3) rJ
x(l,3) == ???
*Let x be sparse ~
*Type x(l ,3)J

x(l,3) =
*Type x(2,1)~

x(2,1) ==
*Type x~

x(1,2) =
x(1,5) ==

x (1 ,10) ==
x(2,4) ==

x is sparse.
*

60

o

o

55
43
60
,77

Set all undefined x array items to
zero.

Only those elements which have
been explicitly defined are typed,
followed by a message reminding
the user that he has defi ned x as
sparse.

Although an array may be defined as sparse, at least one element in the array must be given

an explicit value (so that AID will know the dimensions of the array) before any attempt is made to

refer to an item within the array.

*Let d be sparse J
*Type d(1 ,3 ,5)J
d(l ,3,5) == ???
*Type d rJ
d = ???
*d (2,4,6) == 20 rJ
*Type d(l ,3 ,5) ~

d(l ,3,5) ==
Type d rJ

d(2,4,6) ==
d is sparse.
*

o

20

':.. '."'

4-61

5.12

DESCRIPTION

EXAMPLE

The LINE command advances the Teletype page one line.

Line.

The LINE command is often given conditionally:

2.4 Line if fp($/5) = 0

*1.1 Type "VOLUME CALCULATION" c3
*1.2 line c)
*1.3 Type a, b, c, a*b*c t>
* -3 ~
*~5 ~
*c=12 r)
*Do part 1 c)
VOLUME CALCULATION

a =
b =
c ==

a*b*c =

3
5

12
180

NOTE

AID advances paper form one line. '

The steps above perform essentially the same process as the
command:

*1.1 Type "V.oLUME CALCULATION" t>
*1.2 Type + ,a,b,c,a*b*c t>

,"":' " '.

5.13

DEseRI PTION

PAGE advances the Teletype paper form to the top of the next page.

Page.

The PAGE command can be used in conjunction with the $ symbol, which represents the

current line count, (the number of lines printed thus for on the current page). AID allows for a maxi­

mum of 54 I ines per page.

EXAMPLE
*1.0 Page
*1.1 Type"SQUARE ROOT VALUES FOR 1 - 100" P
*1 .2 Do part 2 for a = 1 (1)100 tJ
*2.1 Type a, sqrt(a) ~ .l
*2.2 Do part 3 if $>45 V
*3.1 Page tJ
*3.2 Do steR 1.1 tJ
*Do part 1 ~

(skip to new page)
SQUARE ROOT VALUES FOR 1-100

. i
(44 lines of typeout)

~
(skip to next page)

SQUARE ROOT VALUES FOR 1-100

(44 u1 of typeout)

~
(skip to next page)

SQUARE ROOT VALUES FOR 1-100

i
(remaining 12 lines of typeout)

+

4-63

DESCRIPTION

-QUIT skips execution of the remaining steps of a part and satisfies the DO command for that

part by cancelling any further iterations.

EXAMPLE

The QUIT command is uSl.!OlIy given conditionally.

Quit. (unconditional)

Normally used only as a temporary step (inserted for the purpose of testing a portion of

a routine) when performing a partial execution.

Quit if•. (conditional)

Used to skip execution of the remaining steps of a part (and any further iterations of the

part by the current DO command)' when certain conditions are present.

*let A = B ~ 2+2*B+10 d
*Let C = A ~ 2+2+A+B+B ~ 2 ~
*1.1 Type A,B,C ~
*1.2 Type A*B~
*1.3 Type A*ccl
*Do part 1 for B = 5(5) 15J

, A
B
C

A*B
A*C =

A
B
C =

A*B
-A*C =

A -
B
C =

A*B =
A*C

*1.15 Quit if A >lOocl
*Do part 1 for B = 5(5) 15 J

A =
B
C

A*B =
A*C =

A =
B =
C =

*

45
5

2102
225

94590
130

10
17142
1300

2 .22846*10 ~6
265

15
70732
3975

1 .874398*10~ 7

45
5

2102
225

94590
130

10
17142

4-64

5.15 " RECALL

DESCRIPTION

RECALL reads an item, previously stored by a FI LE command, from the currently open exter­

nal storage file into immediate storage. The contents of the item then exist both on the external file

and in immediate storage. All steps, identifiers, forms, etc., which were in immediate storage before

the RECALL command was given remain unchanged, with the exception of those which are redefined by

the recalled item.

EXAMPLE

*Recall item m (code)

*Recall item 23
Done.
*

Read in item #m (where m can be in
the range 1 th rough 25) from the
currently open external storage file.
Code is optional for documentation
purposes only and is ignored by AID;
however, code, if used, cannot ex­
ceed five characters in length.

The contents of item 23 of the currently open file are read into immediate storage. Success­

ful execution sf the RECALL command is evidenced by the AID response, DONE..

DIAGNOSTIC MESSAGES

I CAN'T FIND THE REQUIRED ITEM.

ITEM NUMBER MUST BE POSITIVE
INTEGER <=25.

PLEASE LIMIT ID'S TO 5 LETTERS
AND/OR DIGITS.

YOU HAVEN'T TOLD ME WHAT FILE TO USE.

4-65

The specified item cannot be found
in the currently open file. Either
the wrong file is open, the item
number is incorrect, or the item was
never filed.

An invalid item number was given.

Code exceeds five characters in
length.

ARECA LL command was attempted
before an external storage file was
opened via a USE command.

5.16

DESCRIPTION

1
Resets TIMER to zero.

Reset timer

TIMER is a counter used by AID to keep track of the amount of central processor time spent

by the user in running AID. This cumulative running time can be obtained ot any point by typing the

request Type timer •• Each time the user wishes to reset the timer and to begin timing a new operation,

he types Reset timer ••

lThe least significant digit of TIMER is freguently used to supplypseudo-random decimal numbers.
/

4-66

5.17 ~ET

DESCRIPTION

SET defines an identifier as equivalent to a fixed value. This value is calculated once and

the result is then used whenever the identifier appears in a calculation.

*Set x = expression or value

NOTE

If an expression, the expression must
be immediately reducible to a
numeric val ue.

When the SET command is typed as a direct command,
the verb (SET) may be omitted. This form is cafled a
short SET command.

a) *Set ci = 20 t>
b) *a = 20~
c) *Set a = sqrt(20)+43.5~2 ,J
d) *Set d = true

e) *f = false

EXAMPLES

A more complete discussion of the use of SET commands, including additional examples, can

be found in Chapter 3.

4-67

5.18

OESCRI PTION

The STOP command temporari Iy halts the current process at the point where the STOP com­

. mand appears and returns control to the user. The stopped process can be resumed by typing GO. If

the user does not desire to continue the process, he types CANCE L.

EXAMPLE

The STOP command can be given indir~ctly only.

Stop (unconditional)

Normally used only as a temporary step (during the testing of a routine) when perform­

ing a partial execution.

Stop if •••• (conditional)

Used to temporarily halt execution and return control to the user when certain condi -

tions (specified in the IF clause) are met.

*Let B=16-C tJ.
*Let A=3. 17568/B tJ.
*1.1 Stop if 8=0 C>
*1.2 Type A, B, C in form 1 t3
*Form I:J
* *00 ~~;t'1'f~~'C~~4(4)24 .jj

1.58784000..01 2.00000000 01
1.98480000..01
2.64640000-01
3.96960000-01
7.93920000-01

Stopped b¥ step 1. 1
*Type C t>

C =
*Type B ~

I. 60000000 01
1.20000000 01
8.00000000 00
4.00000000 00

16

B = 0
*

'.I

STOP command prevents attempt to
divide by 0 in formula A.

............. -6
-4.00000000 00
o
4.00000000 00
8.00000000 00
1.2000000001

5.19 II TO

DESCRIPTION

TO discontinues the sequential execution of the part currently being executed and transfers

control to another step or part. When the new part is finished, the direct command which initiated the

execution is satisfied.

EXAMPLE

The TO command can be given indirectly only.

To {:t:; :.n }

*1.1 Demand G ~
*1.2 Demand T ~
*1.3 To part 2 if T>=560 ~
1.4 Let d = G.046 ~
*1.5 To part 3 if (T+d»560 ~
*1.6 Type "DEDUCTIONS" p
* 1 • 7 Type d, d+ T I'" ,'" t>
*2.1 Type "NO DEDUCTION REQUIRED" tJ
*2 • 2 Let d = 0 t>
*2.3 To step 1.6 ~ .1
*3. 1 Let d = 560 - T p
*3.2 To step 1.6 ~
*Do part I, 4 times. .l

G = *125.00p.
T = *340.00 tl

DEDUCTIONS
d = 5.75

d+T = 345.75

G = *350.00 ~
T == *545.00 ~

DEDUCTIONS
d =

d+T =

G = *103.45 ~
T = *559.04 tl

DEDUCTIONS
d =

d+T =

G = *300.00~
T = *565.00 ~

NO DEDUCTION REQUIRED
DE DUCTI ONSd =

d+T =

*

15
560

.96
560

o
565

4-99

Demand gross pay for week.
Demand total FICA year-to-date.
$560 = maximum deduction/year.
d = current deduction.

-.

~iAGN~Y~' MES"S~ES
.;.,,.,,::'I··:'·;:;·<·'i·tfCfi:l~t-E THIS COMM.AND DIRECTlY.

t : .. ?

The TO command must (Ilnly be given
indirectly (preceded by a step
number),

5.20 .,1

DESCRIPTION

Types out the specified information on the user's console.

n -
s -
s(a,b, ••)

f
"any text" ..
form m

Type
ste~ m.n

part m

formula f

f(n, ...)

&>
all ste~s

all ~arts

all formulas

all forms

all values

all

time

timer

size

item-list
users

Combi ned TYPE Commands

where n is numeric value or expression

where s is a subscripted var"iable

where p is a proposition

.. represents a null item (a blank field when typing
in form x, or a blank line)

function of (n, •••)

function (tv) of a proposition

current time of day in min~tes since midnight

processor ti me used (see RESET TIME R)

amount of immediate storage being used

item list of currently open external storage file

always returns an answer of 0 ..

Several individual TYPE commands (except for TYPE "any text" or TYPE ITEM-LIST) can be

combined into one command.

*Type all parts, 1243, formula 0, form 5

Each entry, however, is still typed on a separate line.

IN FORM Option

Output edi ting can be performed by appendi ng the I N FORM ••• opti on to a TYPE command.

See "FORM". Note that only certain types of entries can be typed in forms.

4-71

EXAMPLE

*b = 20~
*c = 30~
*d = 111. 333 P
Let a(b,c) = (b~2)(c~2) p
,*Let f(b) = b/2 P
*e(l) = 16"
*e(2) = 25~
*e(3) = 35~

*Let 9 = h.}or i and j p
*h = true Po
*i = falseq
*j = false p

*Let k = b*c*d P
.*Let m = k/2*sqrt(k) ~
*Form I:P
* POUNDS IS

*Form 2:P
* POUNDS

*1.1 Type b,c ~
*1.2 Type d,e t:l
*1.3 To part 2 "

OUNCES

*2.1 Type form 2 f)
*2.2 Type d/e(1), d in form 1 ~
*3.1 Type k, m f)
*3.2 Type a(e(l),e(2» "
*Do part 1 tJ

b =
c =
d =

e(l) =
e(2) =
e(3) =

POUNDS' OUNCES

20
30

111. 333
16
25
'35

Variables

User functions

Subscripted variables

Propos i ti ons

Formulas

Forms
OUNCES~

Parts and steps

6.95800 POUNDS IS 1.113 02 OUNCES
*Type e "

e(l) =
e(2) =

" e(3) =
*Type 0(3,6) p

0(3,6) =

16
25
35

324

*Type a t>
o(b,c): (b,2)*(c'2)

*iype 9 "
9 = ~ue

*Type tv(g) "
. tv(g) =

*T ype form 1 J)
......... POUNDS IS OUNCES

*Type step 1.3 t3
1.3 To part 2.
*Type formula k " '

k: b*c*d
*Type all steps "

4-72

A command to type the values of a
subscripted letter results in typeouts
of all values.

1.1 Type b,e.
1.2 Type d,e.
1.3 To port 2.
2.1 Type form 2.
2.2 Type d/e(1), d in form 1.
3.1 Type k,m.
3.2 Type a(e(1),e(2}).
*Type all formulas C>

a(b,e): (b'2)*(e~2)
9: h or i and i
k: b*e*d
m: k/2*sqrt(k)

*T ype all forms 6
Form 1:

POUNDS IS .•••••••• OUNCES
Form 2:

POUNDS OUNCES
*Type all values ~

b =
e =
d =
h =
i =

e(1~ :
e(2) =
e(3) =

*Type all t>
1.1 Type D,e.
1.2 Type d,e.
1.3 To part 2.
2.1 Type form 2.
2.2 Type d/e(1), d in form 1.
3.1 Type k,m.
3.2 Type a(e(1),e(2».
Form 1:

POUNDS IS
Form 2:

POUNDS OUNCES
a(b, e): (b~2)*(e ~2)
- 9: h or i and i

k: b*e*d
m: k/2*sqrt(k)

b =
e =
d =
h =
i =

e(1~ :
e(2) =
e(3) =

*Type time
time: 1453

20
30

111.333
true

false
false

16
25
35

20
30

111.333
true

false
false

16
25
35

4-73

OUNCES

24-hour time

*Type timer ~

timer =

*Type size rJ
size:

mm ss.ss

64

*Use file 110 (DSK) ~ .
Roger. .
*File all formulas as item 1 (FMULA) };
Done.
*File all forms as item 2 (FORM) ~
Done. 1
*File all values as item 3 (VALUE) I>
Done.
*File all steps as item 10 (STEP) ~
Done.
*Type item-list };

ITEM-LIST
ITEM

1
2
3

10
*

•

DATE
mm/dd/yy
mm/dd/yy
mm/dd/yy
mm/dd/yy

4-74

/

The total central processor time uti -
lized by the user thus for. . ,

mm = minutes
55.55 = seconds to the nearest

hundredth

The number of "cells" of immediate
storage currently occupied by the
user's work area. In a 13K environ­
ment, approximately 1900 such "cells"
are avaitable for this purpose.

\

DATE is the creation date.

5.21 USE

DESCRIPTION

USE makes an external storage file 1 available for use. The external file thus addressed re­

mains open for use until another USE command is given or until the AID program is terminated.

USE file filename (device)

where filename is a positive integer-, greater than 0 and less than or equal

to 2750, which identifies the particular file on the device.

device is the device name (logical or physical) of the device con­

taining the file. Device can be one of the following.

DSK disk

OTAn OECtape, where n is the drive number and
can be in the range 0 through 7.

or any logical device name assigned to either of the above

device types. If device is omitted, DSK is assumed. Mag­

netic tape may also be used, provided the user positions the

the tape directly before the desired file before issuing a

RECALL or FILE command; the TYPE ITEM-LIST and DISCARD

commands have no meaning for magnetic tape.

Once a file has been opened by a USE command, all DISCARD, FILE, RECALL, and TYPE

ITEM- LI ST commands are assumed to refer to that file.

EXAMPLE

*Ose file 103 (OSK) ~
Roger.~

*

(or Use file 103)

Makes file 103, on disk, avai lable for use. Successful execution of the command is evi­

denced by the AID response ROGER.

DIAGNOSTIC MESSAGES

FI LE NUMBER MUST BE POSITIVE
INTEGER <= 2750.

Filename is less than 0 or greater than
2750.

1 External storage files created by AID are in a special AID (8-bit) character format, Dot ASCII.

4-75

APPENDIX A

TABLES

This appendix contains five tables:

A-I A Glossary of AID Terms

A-2A AID Command Summary

A-2B File Command Subset

A-3 AID Character Set

A-4 AID Diagnostic Messages

4-77

Table A-I.
A Glossary of AID Terms

+ Indicates a blank field, when typed in conjunction with a FORMi otherwise,
a blank line. \

$ A spe~ial symbol which refers to the line counter kept by ~ID. This symbol
can be used in TYPE commands, or it can be tested within a conditional com­
mand to cause a line feed (LINE) or advance to next head of form (PAGE) at
appropriate points.

Conditional expression

External storage

Expression

File

Form

Formula

Function

Identifier

Immediate storage

Item-list

Part

SIZE

A series of clauses separated by semicolons, with
each clause made up of a proposition followed by
a colon and then by an expression. The entire
conditional expression must be enclosed in paren­
theses or brackets.

See "File".

An arithmetic formula, Boolean proposition, or
function.

A peripheral storage medium (usually disk or
DECtape) used for the preservation of user sub­
routines, values, etc. Files are manipulated by
the DISCARD, FILE, and RECALL commands.

A user-specified format for editing output via the
TYPE command.

An arithmetic expression defined by the user via
the LET command.

An arithmetic or Boolean function providecl by
AID (see Table 4-2) or defined by the user via the
LET command.

A single alphabetic character associated with a
variable (via the LET or SET commands) and then
used to access the current value of the variable.

Core storage work area. In a 13K environment,
approximately 4K of core is available to the user
for his steps, values, tables, etc.

The file directory associated with an external stor­
age file. The user can obtain a listing of the
directory of the currently open file by typing the
command TYPE ITEM-LIST.

A series of indirect steps, the step numbers of
which have the same integral value.

A noun which can be specified in a TYPE com-
mand to obtain a typeout of the amount of core "cells"
used. (1 ce II .= approx. 2 core words)

4-78

Step

TIME

TIMER

Variable

Table A-l (Cont)
A Glossary of AID Terms

Anyone -line command typed by the user. A step
can be direct (executed immediately), in which
cose no step number precedes it, or indirect (to
be executed later), in which case it is preceded
by a step number.

A noun which can be specified in a TYPE com­
mand to obtain a typeout of the time of day (in
24-hour format).

r

A noun which can be specified in a TYPE com­
mand to obtain a typeout of the amount of central
processor time spent thus for by the user during
the current AID run.

An element defined by ei ther the LET or SET com­
mands which is associated with some value. It is
referred to by an associated tag called an
identifier.

4-79

Command Format

CANCEL

(CANCEL)

l
S
S(m,n)
form m
stepm.n
part m
formula f

DE LETE a II steps
all parts
all formulas
all forms
all values
all

SCm, n) jl. l DEMAND l as "any text"
SCm, n) as "any

- text"

DISCARD ITEM m(code).

DO

step m.n
step m .n, p times
step m.n for l=range
part m
partm, p times
port m for L =range

(DO same as above .•)

DONE

Table A-2A
AID Command Summary -

Type

0,0

0,0

°

1,0

F

o

1,0

Description

Cancels a currently stopped process when the user
does not desire to resume execution.

Cancels a currently stopped process which was
initiated by a parerithetical DO. •

Erases the specified item from immediate storage
and frees the space occupied by it for some other
use.

Several DELETE commands can be combined into
one.

Causes AID to type out a message requesting the
user to supply a value for the specified item.
Only one variable can be specified in each
DEMAND command.

Deletes item 1m from the external storage fi I~
currently in use. (Code) is optional.

Executes an indirect step or part. If the DO com­
mand is a direct step, control r~turns to the user at

. the completion of the DO; if an indi rect step,
control returns to the step following the DO.

Initiates a new execution without cancelling the
currently stopped process.

Skips execution of the remaining steps of ~ part
during the current iteration.

4-80

Table A-2A (Cont)
AI D Command Summary

Command Format Type Description

l
S
S(m,n}
form m
step m.n
part m
formula f

Stores the specified item in the external storage
FILE a II steps AS ITEM n F

(code) fi Ie currently open. Immediate storage is not
all parts

affected in any way. (code) is optional.
a II formu las
all forms
all values
all

FORM m: 0 Defines a format to be used in editing typeouts
for purposes of readabi Ii ty .

•••••••• • ++++ Text +++++e++++ fixed point notation
(up to nine digit posi-
tions plus the decimal
point)

........................ scientific notation
(minimum of seven positions . maximum of fourteen)

text any text to be included
in the line; not enc losed

- in quotation marks unless
they are port of the text.

QQ.. D,O Continues execution of a currently stopped process;
opposi te of the CANCE l command.

IF Clause M Can be appended to any command (except the ab-- breviated-5ET command) to make the command con-
Verb IF proposition.

ditional; the command is executed only if the pro-
position is true.

rm 1 l = formula .
LET F(l) = m 0 Defines arithmetic formulas, Boolean expressions - F(l} = proposition (propositions), and user functions and associates

them with identifiers. The formula, expression,
or function with which an identifier is associated
is re-evaluated each time the identifier appears
during an execution.

LET S be sporse S Sets undefined array elements to zero.

4-81

Command Format

LINE

PAGE ---

QUIT

RECALL ITEM m (code)

RESET TIMER

r~ 1 L=proposition
SET s(m, n) =m

S(m, n)=proposition

STOP --

-

TO {"",.m 1
stepm.n

Table A-2A (Cont)
AI D Comman~ Summary

Type Description

0 Advances the Te letype paper form one line.

0 Advances the Teletype paper form to the top of
the next page.

0 Skips execution of the remaining steps of !J part and
satisfies the DO command for that part by cance II-
i ng any further i terati ons. Usua IIy given condi-
tiona��y.

F Reads 'an item, previously stored by a FI LE com-
- mand, from the currently open external storage

file into immediate storag'e. (Code) is optional
and is for documentation on Iy.

S Resets TIMER to zero.

0 Defines an identifier as equivalent to a fixed
value, which is calculated once and thenused
whenever the identifier appears. A short form
of the SET command, where the word SET is
omitted, can be used if the command is direct.

1,0 Temporari Iy halts the current process at the point
where the STOP command appears and returns con-
trol to the user. The stopped process con be re-
sumed by typing GO.

1,0 Discontinues the sequentia I execution of the part
currently being executed and transfers control to
another step or part; when the new part is finished,
the direct command which initiated the execution
is satisfied. '

.~

, ..

4-82

TYPE

Command Format

m

S
S(m,n}
proposition
"any text"
+

form m
step m.n
part m
formula f
F(x}
F(proposition}
a II steps
all ports
all formulas
all forms
all values
all
time
timer
size
item-list

USE FILE filename (device)

Command Format Symbology

L = letter
S = subscripted letter.
m, n, p = numeric values.
f = formula.
F = function.

Table A-2A (Cont)
AI D Command Summary

Type

o

S
I- S

S
F

F

Description

Types out the specified information on the user's
console. Several individual TYPE commands may
be combined into one (except for TYPE "any text"
or TYPE ITEM-LIST).

The command

Type in form n

causes the listed items to be typed out in the for­
mat specified by form n. n can be a numeric value
(for example, form 3) or it can be a numeric form­
ula (for example, form (2*x-y».

Makes an external.storage fi Ie avai lable for use.
The externa I fi Ie thus addressed remains open for
use (by DISCARD, FI LE, RECALL, and TYPE
ITEM-LIST commands) until another USE command
is given or the AI D program is terminated.

range = an i nterati ve sequence or series of va lues.

Type Symbology

D = Can be given directly only
I = Can be given indirectly only.
0= Operational command.
F = Fi Ie command.
S = Special command.

4-83

Table A-2B
Fil e Command Subset

Section ",

Command Format Reference Description

D1SCARD ITEM m ~code) 5.4 Deletes item 1m from the external storage file cur-
rently in use. (Code) is optional.

""L
....

S
S{m,n,}
form m
step m.n AS
part m ITEM

FILE< formula f n {code} 5.7 Stores the specified item in the external storage
all steps file currently open. Immediate storage is not
all parts affected in any way. (Code) is optional.
all formulas ~

all forms ,

all values
..... all

RECALL ITEM m (code) 5.15 Reads item 11m, previously stored by a FI LE com-
mand' from the currently open external storage
file into immediate storage. (Code) is optional
and is for documentation only •

. il!

TYPE ITEM-LIST 5.20 Obtains a typeout of the directory of the cur-
rentlyopen external sJorage file.

USE FILE filename (device) 5.21 Makes an external storage fi Ie available for use.
lhe external storage file thus addressed remains
open for use (by DISCARD, FILE, RECALL, and
TYPE ITEM-LIST commands) until another USE
command is given or the AID program is
terminat.ed •

,

4-84

Standard
Math

Symbol AID Symbol

A through Z

a through z

0,1 through 9

Operators:

I I (absolute) I I

[] (brackets) [J

() (parentheses) () (

)

xe (exponent) x~e

I (divide) I

• (mul tipl ication) *

+ (addition) +

•
- (subtraction) -

Boolean
Expressions:

= (equal) =

/' (not equa I) #

Table A-3
AID Character Set

Typing Method

Model 37 Models 33 and 35

Strike appropri - Strike appropri-
ate key with ate key; no
SHIFT. SHIFT.

Strike appropri- Not avai lable;
ate key wi thout use upper-case
SHIFT. letters.

Strike appropri- Strike appropri -
ate key; no ate key; no
SHIFT. SHIFT.

Strike the I, 1 Strike the I, 1
key with SHIFT. key with SHIFT.

Strike appropri - [Strike K with
ate keys. SHIFT

1 Strike M with
SHIFT

Strike the (,a (Strike the ca
key with SHIFT • key wi th SHI FT.
Strike the), 9) Strike the),9
key with SHIFT . key with SHIFT.

Strike the "', Strike the ~ , N
/\ key; no SHIFT • key with SH 1FT .

Strike the.? ,I Strike the?,/
key; no SHIFT . key; no SHI FT.

Strike the *,: Strike the *,:
key with SHIFT . key with SHIFT.

Strike the +,; Stri ke the +,;
key with SHIFT . key with SHIFT.

Strike the =,- Strike the =,-
key; no SHIFT. key; no SHI FT.

-
Strike the =,- Strike the =,-
key with SHIFT . key with SHIFT.

Strike the # ,3 Strike the #,3
key with SHIFt. key with SHIFT.

4-85

JOSS
Symbol Notes

A through
Z

a through
z

0, 1
through 9

I I

[J

()

*

I

.

+

-

=

/'

Standard
Moth

Symbol AID Symbol

< (equal to or less < => (2 characters)
- than) .

> (equal to or
- greater than)

> = (2 characters)

RUBOUT (types
back as deleted
characters be-
tween \.

null item -+-

$ (current line
number)

* (cancel entire
line)

"

Table A-3 (Cont)
AID Character Set

Typing Method

Model 37 Models 33 and 35

Strike the <, < Strike the<, .key
key; then strike with SHIFT; then
the=, -key strike the =,-key
with SHIFT. with SHIFT.

Strike the >, > Strike the>,.
key with SHIFT; key; then strike then strike the

the =,-key with =,- key with
SHIFT. SHIFT.

Strike DELETE Strike RUBOUT
key to erose key to erase each
each preceding preceding char-
character in acter in error;
error; then type then type
correctly. correctly.

Example:

TPE\EP\ YPE
PART 1.

Strike the ,
Strike 0 key key with or-
with SHIFT.

without SHIFT •

Strike the $,4 Strike the $,4
key with SHIFT. key with SHIFT.

Strike the * ,: Strike the *,:
key with SHIFT. key with SHIFT.

...

4-86

JOSS
Symbol Notes

< '" -

> -

BACK- Used to
SPACE correct

and type typing
over errors.

(under-- score)

$

*

,

Table A-4
AID Diagnostic Messages

Message

x = ???

DONE. /

DONE. "M READY TO GO iJiOM} STEP m.n .

DONE. "M READY TO GO ~iOM}
STEP m.n, ALTHO I CAN'T FIND IT.

{
DIRECTLY}

DON'T GIVE THIS COMMAND
INDIRECTLY

EH?

Meaning

A value has not been supplied by the user for
variable x.

Signals completion of a File command (DISCARD,
FI LE, RECALL).

•• • AT STEP m.n .•• Task was suspended by an
interruption or error during
the interpretation of an
indirect step •

•• • FROM STEP m.n ••• Task was suspended by a
stopping command •

•• • IN STEP m.n ••• Task was suspended during an
indirectly initiated DO
command.

AID resumes execution whenever the user types
Go.

Same as above, except that the step at which
AID is prepared to resume can no longer be found
in i mmed i ate storage. Possibl y, a di rec t com­
mand (or a routine initiated by a parenthetical
DO) has deleted the step in the interim. Upon
receipt of a GO command from the user, AID will
attempt to resume at the step following the miss­
ing step.

This command can be given only indire~tly (TO,
DONE, STOP, DEMAND) or only directly
(CANCEL, GO).

The previously entered line is incorrect.

Indirect commands: The step number was
incorrectly typed.

Direct LET commands:

Other direct commands:

LET x portion is
incorrect.

A space was omitted.
The terminating
period was omitted.

The command is not
legitimate.

An expression is in­
correctly written.

To continue, retype the command correctly.

4-87

Table A-4 (Cont)
AID Diagnostic Messages

Message

ERROR AT STEP m.n: EH?

ERROR AT STEP m.n:

I CAN'T FIND THE REQUIRED {~[5:M }.
PART
FORMULA

ERROR AT STEP m.n: (IN FORMULA x):

z = ???

ERROR IN FORMULA x: EH?

FILE NUMBER MUST BE POSITIVE
INTEGER <=2750.

FORM NUMBER MUST BE INTEGER AND
1 < = FO RM < lOt 9.

I CAN'T EXPRESS THE VALUE IN YOUR FORM.

{
FORM} I CAN'T FIND THE REQUIRED ITEM •
PART
STEP

Meaning

The step number is correct, but the command is
incorrect.

a. Request a typeout of the step in error.

b .• Check for the errors listed under "Eh ?".

c. Retype the command correctly.

d. Type GO. to continue.

The step in error refers to a nonexistent step or
part.

Correct the error and type GO. to cOl')tinue •.

The variable z has not been assigned a value by
the user.

Check for any other errors, define variable z
correctly, and type GO. to continue.

(Fo"owing a direct command in which x was
used) The form of the expression for x is in error.

a. Request a typeout of formula x.

b. Check for the errors listed under "Eh?".

c. Formula x m~y be correctly written, but the
definition of one or more identifiers is not
consistent with their use in formcrla x.

The fi lename of a USE command must not be
greater than the value 2750.

Form numbers must be integers in the range 1
through 109- 1 •

A value cannot be expressed in the format speci­
fied by the FORM (e.g., the value is too large to
specify in fixed point notation). To correct,
follow the steps given under "I HAVE TOO
MANY VALUES FOR THE FORM."

Either the element has never been defined or has
been deleted.

4-88

'.

Table A-4 (Cont)
AID Diagnostic Messages

Message

I CAN'T MAKE OUT YOUR FIELDS IN THE
FORM.

I HAVE AN ARGUMENT <=0 FOR LOG.

I HAVE A NEGATIVE ARGUMENT FOR SQRT.

I HAVE A NEGATIVE BASE TO A FRACTIONAL
POWER.

I HAVE AN OVERFLOW.

I HAVE A ZERO DIVISOR.

I HAVE NOTHING TO DO.

I HAVE TOO FEW VALUES.

I HAVE TOO MANY VALUES FOR THE FORM.

I HAVE ZERO TO A NEGATIVE POWER.

IlLEpAL SET OF VALUES FOR ITERATION.

I'M AT STEP m.n.

Meaning

The fields in the form specified were typed in
such a way that AID cannot distinguish their be­
ginning or ending. Possibly, there are either no
fields in the form or two or more are run together
with no intervening space.

The argument for the LOG function must be
greater than o.

Square root arguments must be positive.

An attempt was made to raise a negative value to
a fractional power. For example,

Type (-y)t(1/2).

Some number has exceeded 9.99999999. 10t99
in magnitude.

An attempt was made to divide by O.

The user has typed GO., but there is no currently
stopped process which can be continued.

An insufficient number of arguments have been
supplied for a function.

There are not enough fields in the form to receive
all the values to be typed.

a. Type the form and the values.

b. Check for errors.

c. Change either the TYPE command or the
FORM to make them compatible and then
type GO. to continue.

An attempt was made to rai se 0 to a negative
power.

An error has been detected in a range clause of
a function or a DO command, such that the end­
ing value can never be reached (e.g., the incre­
ment is 0).

When the user responds to a DEMAND-produced
request (x=*)with a carriage return only, AID
types back this message.

4-89

Table A-4 (Cont)
AI D Diagnostic Messages

Message

INDEX VALUE MUST BE INTEGER AND
! INDEX! <250

I NEED INDIVIDUAL VALUES FOR A FORM.

I RAN OUT OF SPACE.

I RAN OUT OF FILE SPACE.

ITEM NUMBER MUST BE <= 25.

NUMBER-OF- TIMES MUST BE INTEGER AND
>= O.

PART NUMBER MUST BE INTEGER AND
1 <=PART<10~9.

PLEASE DELETE THE ITEM OR USE A NEW
ITEM NUMBER.

..
PtEASEKEEP !X!<100 FOR SIN(X) AND

COS(X).

PLEASE LIMIT ID'S TO 5 LETTERS AND/OR
DIGITS.

Meaning

All index value.s (subscripts) must be integral and
must have an absolute value of <250.

A command was given to type a subscripted vari­
able in a form (e.g., Type B in form 1, where
B is a subscripted variable). Individual values
only can be specified for TYPE IN FORM n.
commands.

User's immediate memory is filled due to one of
the following errors ..

a. Endless loops because of DO commands or
because DO was typed instead of TO.

b. Unlimited recursive definition.

c. Variable x defined in terms of y, and vari­
able y defined in terms of x via LET com­
mand.

d. Program is too large for avai lable memory;
use TYPE SIZE command to determine how
much immediate storage has been used.
File commands can be used to store parts of
the routine and execute them one at a time.

DECtape directory is full (limit = 22 items).

The item number in fi Ie commands (DISCARD,
FI LE, RECALL) must be less than or equal to 25.

The value specified in the TIMES clause of a DO
command must be a positive integer.

Part numbers must be integers and in the range
1 through 109-1.

The user has attempted to FI LE information into an
item which already exists on the currently open
external storage file. The user must either
DISCARD the item prior to filing the new infor­
mation or use a di fferent item number in the FI LE
command •

Arguments for the SINE and COSINE functions
must be less than 100.

Filename in a USE file command or code in a
DISCARD, FILE, or RECALL command exceeds
five characters in length or contains special
characters.

4-90

Table A-4 (Cont)
AID Diagnostic Messages

M.essage

PLEASE LIMIT LINES TO 78 UNITS (CHECK
MARGIN STOPS) SAY AGAIN:

PLEASE LIMIT NUMBERS TO 9 SIGNIFICANT
DIGITS.

PLEASE LIMIT NUMBER OF INDICES TO 10.

PLEASE LIMIT NUMBER OF PARAMETERS TO
TEN.

PLEASE LIMIT STEP LABELS TO 9 SIGNIFICANT
DIGITS.

REVOKED. I RAN OUT OF SPACE.

ROGER.

SOMETHING'S WRONG. I CAN'T ACCESS
THE FILES.

SOMETHING'S WRONG. TRY AGAIN.

SORRY. SAY AGAIN:

STEP NUMBER MUST SATISFY
1 <= STEP< 10t9.

STOPPED BY STEP m.n.

YOU HAVEN'T TOLD ME WHAT FILE TO USE.

Meaning

User typeins are limited to single­
line, 78 -character strings.

Numeric values are limited to nine significant
digits.

The number of subscripts following an identifier
cannot exceed 10.

The number of arguments for a function is limited
to 10.

Step numbers can be up to nine di gits in length.

See "I RAN OUT OF SPACE.II

Signals successful completion of a USE file
command.

A system I/O error (or other type of AID error)
has occurred. Begin again.

AID has found something unusual in its internal
records or has received contradictory signals from
its I/O routine. Begin again.

A transmission error occurred on the previous
typein. This message is preceded by the erroneous
line with # symbols typed where the failure oc-
curred. Retype the line. .

Step numbers must be in the range 1 through 109-1.

Process has been temporarily halted by a STOP
command at step m. n •

The user has issued a DISCARD, FILE, RECALL,
or TYPE ITEM-LIST command before he has given
a USE file command.

4-91

Book 5

Programming
In

FORTRAN .

•

•

CONTENTS

CHAPTER 1 INTRODUCTION TO THE FORTRAN LANGUAGE

1.1 Line Format

1. 1.1 Statement Number Field

1.1.2 Line Continuation Field

1.1.3 Statement Reid

1.1.4 Comment Li ne

1.2 Character Set

CHAPTER 2 CONSTANTS, VARIABLES, AND EXPRESSIONS

2.1 Constants

2.1.1 Integer Constants

2.1.2 Real Constants

2.1.3 Double Precision Constants

2.1.4 Octal Constants

2.1.5 Complex Constants

2.1.6 Logical Constants

2.1.7 Literal Constants

2.2 Variables

2.2.1 Scalar Variables

2.2.2 Array Variables

2.3 Expressions

2.3.1 Numeric Expressions

2.3.2 Logical Expressions

CHAPTER 3 THE. ARITHMETIC STATEMENT

3.1 General Description

. CHAPTER 4 CONTROL STATEMENTS

.c1;.1

4.1.1

4.1.2

4.1.3

4.2

GO TO Statement

Unconditional GO TO Statements

Computer GO TO Statements

Assigned GO TO Statement

IF Statement

5-3

Page

5-15

5-15

5-15

5-16

5-16

5-17

5-19

5-19

5-19

5-20

5-20

5-20

5-21

5-21

5-22

5-22

5-22

5-24

5-24

5-26

5-29

5-31

5-31

5--31

5-32

5·-32

CONTENTS (COnt)

Page

4.2.1 Numerical IF Statements 5-33

4.2.2 logical IF Statements 5-33

4.3 DO Statement 5-34

4.4 ,CONTINUE Statement 5-36'

4.5 PAUSE Statement 5-36

4.6 STOP Statement 5-37

4.7 END Statement 5-37

CHAPTER 5 DATA TRANSMISSION STATEMENTS

5.1 Nonexecutable Statements 5-39

5.1.1 FORMA T Statement 5-39

5.1.2 NAMELIST'Statement 5-49

5.2 Data Transmission Statements 5-51

5.2.1 Input/Output Lists 5-52

5.2.2 Input/Output Records 5-53
.:t'

"., ... ';,"', . 5.2.3 PRINT Statement 5-53

5.2.4 PUNCH Statement 5-54
-.',

5.2.5 TYPE Statement 5-54

5.2.6 WRITE Statement 5-54

5.2.7 READ Statement 5-56

5.2.8 REREAD Statement 5-57

5.2.9 ACCEPT Statement 5-58

5.3 Device Control Statements 5-58

5.4 Encode and Decode Statements 5-59

CHAPTE,R 6 SPECIFICA TIO N STATEMENTS

6.1 Storage Specification Statements 5-62

6.1.1 DIMENSION Statement 5-62

6.1.2 COMMON Statement 5-64

6.1.3 EQUIVALENCE Statement 5-65

6.1.4 EQUIVALENCE and COMMON 5-66

6.2 Data Specification Statements 5-66

6.2.1 DATA Statement 5-66·,

6.2.2 BLOCK DATA Statement 5-68

5-4

6.3

6.3.1

Type Declaration Statements

IMPLICIT Statement

CONTENTS (Cont)

CHAPTER 7 SUBPROGRAM STATEMENTS

7.1

7.2

7.3

7.4

7.4.1

7.5

7.5.1

7.5~2

7.5.3

7.6

7.6.1

7.7

7.8

Dummy Identi fi ers

Li brary Subprograms

Arithmetic Function Definition Statement

FUNCTION Subprograms

FUNCTION Statement

SUBROUTINE Subprograms.

SUBROUTINE Statement

CALL Statement

RETURN Statement

BLOCK DATA Subprograms

BLOCK DATA Statement

EXTERNAL Statement

Summary of PDP-l0 FORTRAN IV Statements

CHAPTER 8 LIB40

8.1

8.1.1

8.1.2

8.1.3

8.2

8.2.1

8.2.2

The FORTRAN Operating System

FORSE.

I/O Conversion Routines

, FORTRAN UUOs

Science Library and FORTRAN Utility Subprograms

FORTRAN IV Library Functions

FORTRAN IV Library Subroutines

CHAPTER 9 SUBPROGRAM CALLING SEQUENCES

9.1

9.1.1

9.1.2

9.1.3

9.1.4

Macro Subprograms Called by FORTRAN Main Programs

Calling Sequences

Returning of Answers

Use of Accumulators

Examples of Subprogram Linkage

5-5

Page
5-68

5-68

5-71

5-71

5-71

5-72

5-72

5-74

5-74

5-75

5-75

5-76

5-76

5-76

5-77

5-83

5-83

5-84

5-85

5-86

5-86

5-90

5-95

5-95

5-96

5-96

5-96

9.2 Macro Main Programs Which Reference FORTRAN SubprOgrams . '

9 .• 2.1 C~lIing Sequences

9.2.2 Returning of Answers

9.2.3 Exampl e of Subprogram li nkage

CHAPTER 10 ACCUMULATOR CONVENTIONS FOR MAIN PROGRAMS AND SUBPROGRAMS

10.1

10.2

10.2.1

10.2.2

10.2.3

10.3

10.4

10.5

10.6

Locations

Accumulators

Accumulators 0 and 1

Accumulators 2 Through 15

Accumulators 16 and 17

UUOS

Subprograms Ca II ed by JSA 16, Address

Subprograms Called by PUSHJ 17, Address

Subprograms Called by UUOS

CHAPTER 11 SWITCHES AND DIAGNOSTICS

11.1 FORTRAN Switches and Diagnostics

CHAPTER 12 RELATED FEATURES OF THE PDP-l0

12.1

12.2

12.3

12.3.1

12.3.2

12.3.3

12.4

ASCII Character Set

PDP-10 Word Formats

FORTRAN Input/Output

Logical and Physical Peripheral Device Assignments

DEC tape and Disk Usage

Magnetic Tape Usage

PDP-l0 Instruction Set

APPENDIX A THE SMALL FORTRAN IV COMPILER

5-6

Page

5-103

5-103,

5-103

5-104

5-111

5-111

5-111

5-112

5-112

5-112

5-112

5-112

5-113

5-115

5-125

5-126

5-127

5-128

5-128

5-130

5-132

'f"

ILLUSTRATIONS

Page

1-1 Typical FORTRAN Coding Form 5-16

2-1 Array Storage 5-23

4-1 Nested DO Loops 5-35

TABLES

2-1 Types of Resultant Subexpressions 5-25

3-1 Allowed Assignment Statements 5-30

5-1 Magnitude of Internal Data 5-41

5-2 Numeric Field Codes 5-42

5-3 Device Control Statements 5-59

8-1 I/o Conversion Routine 5-84

8-2 FORTRAN UUOs 5-85

8-3 FORTRAN IV l-ibrary Functions 5-87

8-4 FORTRAN IV Library Subroutines 5-90 f

10-1 Accumulator Conventions for PDP-10 FORTRAN IV Compiler and Subprograms 5-1~

11-1 FORTRAN Compiler Switch Options 5-115

11-2 FORTRAN Compiler Diagnostics (Command Errors) 5-116

11-3 FORTRAN Compiler Diagnostics (Compilation Errors) 5-117

11-4 FORTRAN Operating System Diagnostics (Execution Errors) 5-120

1~-1 ASCII Character Set 5-125

12-2 PDP-10 FORTRAN IV Standard Peripheral Devices 5-127

12-3 Device Table for FORTRAN IV 5-129

5-7

•

PREFACE

This is a reference manual describing the specific statements and features of the

FORTRAN IV language for the PDP-10. It is written for the experienced

FORTRAN programmer who is interested in writing and running FORTRAN IV pro- -

grams alone or in conjunction with MACRO-10 programs in the single-user or

time-sharing environment. Familiarity with the basic concepts of FORTRAN pro­

gramming on the part of the user is assumed. PDP-10 FORTRAN IV conforms to

the requirements of the USA Standard FORTRAN.

5-9

I
I
I
I
I
I
I

- I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I

INTRODUCTION TO THE FORTRAN IV SYSTEM

The FORTRAN compiler translates source programs written in the FORTRAN IV language into the machine

language of the PDP-10. This translated version of the FORTRAN program exists as a retrievable, relocatable

binary file on some storage device. All relocatable binary filenames have the extension .REL if they reside on

a directory-oriented device (disk or DECtape). Binary files may also be created by the MACRO-10 assembler

(see Chapter 9) 1 •

In order for the FORTRAN program to be processed, the Linking Loader must load the relocatable binary file

into core memory. Also loaded are any relocatable pinary files found in the FORTRAN library (LIB40) which

are necessary for the program's execution. Within the FORTRAN source program, the library files may ~e called

explicitly, such as SIN, in the statement.

x = SIN(Y)

or implicitly, such as FLOUT. '- the floating-point to ASCII conversion routine, which is implied in the follow­

i ng statements.

PRINT 3,X
3 FORMAT(1X,F4.2)

A FORTRAN main program and its FORTRAN and/or MACRO-10 subprograms may be compiled or assembled sep­

aratelyand then linked together by the Linking Loader at load time. The core image may then be saved on a

storage device. When saved on a directory storage device, these files have the extension .SAV in a multipro­

gral'!lming Monitor system and • SVE in a single-user Monitor system.

The Time-Sharing Monitors act as the interface between the user and the computer so that all users are protected

from one another and appear to have system resources available to themselves. Several user programs are loaded

into core at once and the Time-Sharing Monitors schedule each program to run for a certain length of time. All

Monitors direct data flow between I/O devices and user programs, making the programs device independent, and

overlap I/O operations concurrently with computations.

In a multiprogramming system, all jobs reside in core and the scheduler decides which of these jobs should run.

In a swapping system, jobs can exist on an external storage device (usually disk) as well as in core. The scheduler

lFor further information on the MACRO-10assembler, see the MACRO-10ASSEMBLER manual, DEC-10-AMZA-D.

5-11

decides not only which ,job is to run but al~ when a job is to be swapped out onto the disk or brought back into

core.

The number of users that can be handled by a given size time-sharing configuration is further increased by using

the reentrant user-programming capability. This means that a sequence of instructions may be entered by more

than one user job at a time. Therefore, a single copy of a reentrant program may be shared by a number of users

at the same time to increase system economy. The FORTRAN compiler and operating system are both reentrant.

SECTION I

The PDP-10 FORTRAN IV Language

The seven chapters of this section deal with the PDP-10 FORTRAN IV language.

Included in these chapters are the language elements of FORTRAN IV and the

five categories of FORTRAN IV statements {arithmetic, control, input/output,

specification, and subprogram}.

CHAPTER 1

INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN IV (FORmula TRANslation) is used interchangeably to designate both the FORTRAN IV

language and the FORTRAN IV translator or compiler. The FORTRAN IV language is composed of mathematical­

form statements constructed in accordance with precisely formulated rules. FORTRAN IV programs consist of

meaningful sequences of FORTRAN statements intended to direct the computer to perform the specified operations

and computations.

The FORTRAN IV compi ler is itself a computer program that examines FORTRAN IV statements and tells the com­

puter how to translate the statements into machine language. The compiler runs in a minimum of 9K of core.

The program written in FORTRAN IV language is called the source program. The resultant machine language

program is called the object program. Digital's small FORTRAN compiler, which runs in 5.5K of core, is vir­

tually identical to the larger compiler, except for differences explained in Appendix 2. Operating procedures

and diagnostic messages for both compi lers are explained in the PDP-10 System Users Guide (DEC-10-NGCC-D).

1. 1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field, and

statement field. A typical FORTRAN program is shown in Figure 1-1.

1. 1. 1 Statement Number Field

A statement number consists of from one to five digits in columns 1-5. Leading zeros and all blanks in this field

are ignored. Statement numbers may be in any order and must be unique. Any statement referenced by another

statement must have a statement number. For source programs prepared on a teletypewriter, a horizontal tab may

be used to skip to the statement field. This is the only place a tab is not treated as a space.

1. 1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the statement fields

of up to 19 additional lines may be used to specify the complete statement. Any line which is not continued,. or

the first line of a sequence of continued lines, must have a blank or zero in column 6. Continuation lines must

5-15

CODER DATE

COOINGFOItM

PAGE I.
r .. "'O:-c"-:-'M---------'---'-'--~--ir:~. FORTRAN

CCofl" .. e.,t ~

~ S.::~e~~ , FORTRAN STATEMENT IDEN'lfICATION

~~ '. ,.~, =
1 2 J • ,5 6 7 8 9 10 II 12131.1.51617181920" 222314252627282930 31 J231 34353637383UO.'42'3,U"5.6.7.84.9 SO.51,52,5J.s.,55S6,57S159606162bJU6566W6869707112 137.,5761718791

THI S PR OGRAM CA-lC UlA.T~ ,S, ,P,R,I,"'lE, ,!::lY"'lB,E,R,S, ,F,R,9!:!1,I.J..- TO 50

, D,O 10 1:'11 50 2
J = 1

4 J=,J,~

A=,J. .
-.I.l.A

11.,=,1 [,J, , , , , , , , , , , , I I , , I I , , ,
'B=A-l .
1 F ,(B.l. 5 1 0 5

I I I , , , , , I ,
5 1 F (J .. l T • SQRT .(Fl.QA,T ,LI,),),), .GO TO 4

YPE 10.5 1

1.0 . :.ONTI NUE

1 05 FQRM~T ,(.J 4 ,
1 S PR IM,E ~ ',)

'NO

+1 I , , I I , I , , , I , , I , , 1 I , , , 11 , I , , I I -r-+-+-+-+-+- +-+-+-+-+- , I , , , , , , , , , , ,

+++++++++-1 I I , I I I , I II , 1-+-++11 I I I , I I 1 11.1 I I I' 1 1-1 1 I "I 1111+++

1 2 1 4 .5 6 7" JO 11 1213 1.,,16171'''20212223 ~2526212'29JOll32'13 U 113617l11940.14Z .. l ... 4' 7 ••• 95C).51525JSoI55S6"!I5960.162.1 •• 6,56601616fTOTI '1ll7J'1."76n 7I1'9IC.

DIGITAL EQUIPMENT CORPORATION • MAYNARD. MASSACHUSETTS
100 - 12/64

Figure 1-1 Typical FORTRAN Coding Form

have a character other than blank or zero in column 6. If a continuation line is desired when a TAB is used in

the statement number field, a digit from 1 to 9 must immediately follow the TAB .

•
1.1.3, Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72). Ex­

cept for alphanumeric data within a FORMAT statement, DATA statement, or literal constant, blanks (spaces)

and TABS are ignored and may be used freely for appearance purposes.

1 • 1 .4 Comment li ne

Any line which starts with the letter C in column 1 is interpreted as a line of comments. Comment lines are

printed onto any listings requested but are otherwise ignored by the compiler. Columns 2-72 may be used in any

format for comment purposes. A comment line must not immediately precede a continuation line.

5-16

1.2 CHARACTER SET

The following characters are used in the FORTRAN IV language:

Blank 0 @

A
II 2 B

I/> 3 C

$ 4 D

% 5 E

& 6 F

7 G

8 H

9

* J

+ K

< L

M

> N

/ ? 0

NOTE

ASCII characters greater than Z (1328) are replaced by
the error character lit". See Chapter 12 for the internal
representati on -Qf these characters.

5-17

P

Q

R

S

T

U

V

W

X

Y

Z

.. \

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for forming expressions are described in this chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN IV source program: integer or fixed point, .real or single­

precision floating point, double-precision floating point, octal, complex, logical, and literal.

2. 1. 1 Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point. A negative.

constant must be preceded by a minus sign. A positive constant may be preceded by a plus sign ••

Examples: 3
+10
-528

8085

An integer constant must fall within the range _235+1 to 235 -1. When used for the value of a subscript 01" as

an index in a DO statement, the value of the integer is taken as modulo 2 18 .

2. 1:2 Rea I Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant may consist

of any number of digits but only the leftmost 9 digits appear in the compiled program. Real constants may be

given a decimal scale factor by appending an E followed by a signed integer constant. The field following the

letter E must not be blank, but may be zero.

Examples: 15.
0.0

.579
-10.794

5. OE3(i.e., 5000.)
5.0E+3{i .e., 5000)
5.0E-3{i.e., 0.005)

5-19

..

A real constant has precision to eight digits. The magnitude must lie'approXimately within the range
-38 38 O. 14 x 10 to 1.7 x 10 • Rea I constants occupy one word of PDP-lO storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which are

followed by the letter D and a signed decimal scale factor. The,field following th~ letter D must not be blank,

but may be zero.

Examples: 24.67132598213400
3.6D2 (i.e., 360.)
3.60-2 (i .e., .036)
3.000

Double precision constants have precision to 16 digits. The magnitude of a double precision constant must lie
. -38 38

approximately between O. 14x 10 and 1.7 x 10 Double-precision constants occupy two words of PDP-10

storage.

2.1.4 Octal Constants

.-
A number preceded by a double quote represents an octal constant. An octal, constant may appear in an arith-

metic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the last twelve

digits are significant. A minus sign may precede the octal number, in which case the number is negated. A

maximum of 12 octal digits are stored in each 36-bit word~

Examples: "7777
"-31563

2.1.5 Complex Constants .
FORTRAN IV provides for direct operations on complex numbers. Complex constants are written as an ordered

pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8 • 763E3 ,2.297)

The first constant of the pair represents the real part of the complex number I and the second constant represents

the imaginary part. The real and imaginary parts may ~ach be signed. The enclosing parentheses are part of

the constant and always appear, regardless of context. Each part is internally represented by one single­

precision floating point word. They occupy consecutive locations of PDP-10 storage.

5-20

Fo,RTRAN IV arithmetic operations on complex numbers, unlike normal arithmetic operations, must be of the

form:

A±B = a 1ib1+i(a2ib2)

A*B = (albl-a2b2)+i(a2bl+alb2)

(a 1b 1+a2b2) +i (a2b 1-Qlb2)
A/B= 2 2 2 2

b 1 +b2 b 1 +b2

where A = a 1 + ia2 , B = b 1 + ib2 , and i =J-]:

2.1.6 Logical Constants

The two logical constants, .TRUE. and .FALSE., have the internal values -1 and 0, respectively. The en­

closing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to determine the

truth value of a logical variable.

2.1.7 Literal Constants

A literal constant may be in either of two forms:

a. A string of alphanumeric and/or special characters enclosed in single quotes; two adjacent single
quotes within the constant are treated as one single quote.

b. A string of characters in the form

nHx 1x2•• .xn

where x 1x2 .•• xn is the literal constant, and n is the number of characters following the H.

Literal constants may be entered in OAT A statements or input statements as a string of up to 57-bit ASCII char­

acters per variable (10 characters if the variable is double-precision or complex). Literal c~nstants may be

operated on in either arithmetic or logical statements •
•

NOTE

Literal constants used as subprogram arguments will have a
zero word as an end-of-string indicator.

5-21

Exampl~s:

2.2 VARIABLES

CALL SUB·('LITERAL CONSTANT i)

'DONT"T'
5HDON'T
A == 'FIVE' + 42
B == (5HABCDE .AND. "376)/2

A variable is a quantity whose value may change during the execution of a program. Variables are specified

b.y name and type. The name of a variable consists of one or more alphal'lumeric characters, the first one of . .

which must be alphabetic. Only the first six characters are interpreted as defining the variable name. The

type of ,variable (integer, real, logical, double preciSIon, or complex) may be specified explicitly by a type

declaration statement o~ implicitly by the IMPLICIT statement. If the variable is not specified in this manner,

then a first letter of I, J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indi­

cates a floating-point (real) variable. Variables of any type may be either scalar or array variables.

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples: A
G2
POPULATION

2.2.2 Array Variables

An array variable represents a single element of an n dimensional array of quantities. The variable is denoted

by. the array name followed by a subscript list enclosed in parentheses. The subscript list is a sequence of in­

teger expressions, separated by commas. The expre"ssions may be of any form or type providing they are explicitly

changed to type integer when each is completely evaluated. Each expression represents a subscript, and the

values of the expressions determine the array element referred to. For example, the row vector A. would be
" I

represented by the subscripted variable A(J), and the element, in the second colu'mn of the first row of the square

matrix A, would be represented by A(1,2). Arrays may have any number of dimensions.

Examples: Y(l)
STATION (K)
A (3* K+2, I, J-1)

..

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COMMON,

or type. declaration statement prior to their first appearance in an executable statement or in a DATA or

NAMELISI statement. (Array dimensioning is discussed in Chapter 6).

5-22

l-Dimensional Array A(10)

lAC II I A(21 1 A(31 1 A(4) I A(5) I A(61 1 A(71 1 A(8) IA(9) I AClO) I
CONSECUTIVE STORAGE LOCATIONS --------

2-Dimensional Array 8(5,5)

3-Dimensional Array C(5,5,5)

51 CII,I,3)

52 c(2,I,3)

26 C(t,I,2) 31 CO,2,2)
27 C(2J.2) 32 C(22 2)

I CO I I) 6 C(l2 I) II CII 3,1 I
2 C(2,I,I) 7 C(2,2,11 12 C(2,3,11
3 C(3,I,I) 8 C(3,2,11 13 C(3311
4 C(41 II 9 C(4211 14 C(43 II
5 C(5,I,11 10 C(5,2,1) 15 C(5,3,11

I B(I,I) 6 B(I,2) II B(I,3) 16 B(I,4) 21 B(I,5)

2 B(2,1) 7 B(2,21 12 B(2,3) 17 B(2,4) 22 B(2,5)

3 B(3,1) 8 B(3,21 13 B(3,3) 18 B(3,41 23 B(3,5)

4 B(4,11 9 8(4,21 14 8(4,31 19 8(4,4) 24 B(4,5)

5 8(5,1) 10 8(5,21 15 8(5,31 20 B(5,41 21 B(5,51

8(3,1) IS THE THIRD STORAGE WORD IN SEQUENCE

B(3,4) IS THE EIGHTEENTH STORAGE WORD IN SEQUENCE

101 C(I,I,5) 106 C(I .2,5) III C(I,3,5) 116 C(I,4,5) 121 CII,5,5)

102 C(2,I,5) 107 C(2,2,5) 112 C(23,5) 117 C(2,4,5) 122 C(2,5,5)

76 CII 14) 81 CII,2,4) 86 C(I 34) 91 C(144) 96 C(l54) 118 C(3,4,5) 123 C(3,5,5)

77 C(2,I,4) 82 C(2,2,4) 87 C(2,3,4) 92 C(2,4,4) 97 C(2,5,4) 119 C(4,45) 124 C{4,5,5)

56 CO,2,3) 61 C(I,3,3) 66 C(I,4,3) 71 CO,5,31 98 C(3,5,4) 120 C(5,4,5) 125 C(5,5,5)

57 C(2,2,3) 62 C(2,3,3) 67 C(2,431 72 C(2,5,3I 99 C(4,5,4)

36 CO,3,2) 41 C(I,4,2) 46 C(I,5,2) 73 C(3,5,3) 100 c(5.5,4)

37 C(2.3.2) 42 C(242) 47 C(2,5,2) 74 C(4,5,3)
16 C(l4 I) 21 C05 I I 48 C(3,5,21 75 C(5,5,31
17 C(2,4,11 22 C(2,5,1) 49 C(4,5,2)
18 C(3411 23 C(3511 50 C(5,5,21
19 C(44 I) 24 C(~~II
20 C(5,4,1) 25 C(5,5,11

C(1 ,3,2) is the 36th storage word in sequence.

C(l, 1,5) is the 101st storage word in sequence.

Figure 2-1 Array Storage

5-23

Arrays are stored in increasing storage locations with the first subscript varying most r.apidly and the lost subscript

. varying least rapidly. For example,-the 2-dimensional array B(I,J) is stored in the following order: B (1,1),

B (2,1), •.. , B (I, l),B (1,2),B (2,2), ..• ,B (1,2), .•. ,8 (I,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs the

calculations specified by the quantities and operators within the expression.

2.3. 1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by nu~eric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators are +, -, *, I, **, denoting, respectively, addition, subtraction, multiplication,

division, and exponentiation.

In·addition to the basic numeric operators, function references are also provided to facilitate the evaluation

of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more

quantities, called arguments, to produce a single quantity called, the function' value. Function references are

denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argument list

enclosed in parentheses:

identifier(argument, argument, ... , argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subprogram

identifier, or an alphanumeric string.

Function type is given by the type of the ic!e"ntifier which names the function. The type of the function is inde­

pendent of the types of its arguments. (See Chapter 7, Section 7.4.1.1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
Z(N)
TAN(THETA)

Compound numeri~ expressions may be formed by using numeric operations to combine basic elements:

X+3.
TOTAL/A
TAN(PI*M)
(X+3.) -(TOTAL/A) * TAN (PI*M)

5-24

Compound numeric expressions m~st be constructed according to the following rules:

a. With respect to the numeric operators +, -, *, /, any type of quantity (logical, octal, integer,
real, double precision, complex or literal) may be combined with any other, with one exception:
a complex quantity cannot be combined with a double precision quantity.

The resultant type of the combination of any two types may be found in Table 2-1. The conversions
between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer and with a real
or double word as a real or double word quantity. (Double word refers to both double precision
and complex.)

(2) An integer quantity (constant, variable, or function reference) combined with a real or double
word quantity results in an expression of the type real or double word respectively; e.g., an integer
variable plus a complex variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number. The imaginary part is
unchanged.

(3) A real quantity (constant, variable, or function referenee) combined with a double word quan­
tity results in an expression that is of the same type as the double word quantity.

(4) A logical or octal quantity is combined with an integer I real, or double word quantity as if
it were an integer quantity in the integer case, or a real quantity in the real or double word case
(i .e., no conversion takes place).

b. Any numeric expression may be enclosed in parentheses and considered to be a basic element.

(X+y)/2
(ZETA)
(COS(SIN(PI*M)+X»

Table 2-1 ,
Types of Resultant Subexpressions

Type of Quantity

Double +,-,*,/ Real Integer Complex
Precision

Real Real Real Complex Double
Precision

Integer Real Integer Complex Double
Precision

Complex Complex Complex Complex Not

Type of Allowed

Quantity Double Double Double Not Double
Precision Precision Precision Allowed Precision

Logical, Real Integer Complex Double
Octal, ,or' .' ' Precision -:
Literal

5-25

Logical,
Octal, or

Literal

Real

Integer

Complex

Double
Precision

Logical,
Octal, or
Literal

,c. Numeric expressions whicli are preceded by-a + or - sign are alS? numeric expressions~

+X
-(ALPHA *BET A)
-SQRT(-GAMMA)

d. If the precedence of numeric operations is not given explicitly by parentheses, it is understood
to be the following (in order of decreasing precedence):

Operator

**

*and/

+and-

Explanation

numeric exponentiation

numeric multiplication and division

numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.

e. No two numeric operators may appear in sequence. For i.nstance:

x*-y

is improper. Use of parentheses yields the correct form:

x*(-y)

By use of the foregoing rules, all permissible numeric expressions may be formed .. As an example of a typical

numeric expression using num~ric operators and a function reference, the expression for one of the roots of the

general quadratic equati on:

would be coded as:

(-B+SQRT(B**2-4. *A*C»/(2. *A)

2.3.2 Logical Expressions

A logical expression consists of logical constants, logical variables, logical function references, and arithmetic

expressions, separated by logical operators or relational operators. Logical expressions are provi~ed in

FORTRAN IV to permit the implementation of various forms of symbolic logic. Logical constants are defined

by arithmetic statements, which are described in Chapter 3. Logical variables and functions are defined by

the LOGICAL statement, described in Chapter 6. Binary variables may be represe-nted by the logical constants
-. .

• TRUE. and .FALSE. , which must always be written with enclosing periods. Logical masks may be represented

by using octal constants. The result of a logical expression has a logical value (i .e., either true or false) and

therefore, only uses one word.

5-26

2·.3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their definitions,

are as follows,' where P and Q ':Ire logical expressions:

. NOT. P

P.AND.Q

P.OR.Q

P.XOR.Q

P.EQV.Q

Has the value. TRUE. only if P is . FALSE. , and has the

value .FALSE. only if Pis .TRUE.

Has the value. TRUE. only if P and Q are both. TRUE. ,

and has the value .FALSE. if either P or Q is .FALSE.

(Inclusive OR) Has the value. TRUE. if either P or Q is . TRUE. ,

and has the value .FALSE. only if both P and Q are .FALSE.

(Exclusive OR) Has the value. TRUE. if either P or Q but not

both are . TRUE., and has the va lue . FALSE. otherwise.

(Equivalence) Has the value. TRUE. if P and Q are both

• TRUE. or both . FALSE. , and has the value . FALSE. otherwise.

Logical operators may be used to form new variables, for examp Ie,

x = Y.AND.Z
E = E.XOR. "400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator Relation

.GT. greater than

.GE. greater than or equal to

· LT. less than

• LE. less than or equal to

.EQ. equal to

· NE. not equal to

The enclosing periods are port of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.

The value of such an expression will be . TRUE. or .FALSE..

The relational operators .EQ. and. NE. may also be used with COMPLEX expressions. (Double word quantities

are equal if the corresponding parts are equal.)

5-27

A logical expression may consist of a single elemenf (constant, variable, function rererence, or relation):'
- ,

.TRUE.
X.GE.3.141S9

Single elements may be combined through use of logical operators to form compo~nd logical expressions, such as:

TV AL. AND. INDEX
BOOL(M). OR. K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T .XOR.S).AND.(R.EQV.Q)
CALL PARITY ((2.GT.Y .OR.X.GE. Y).AND. NEVER)

Any logical expression may be preceded by the unary operator. NOT. as in:

.NOT.T

. NOT.X+7.GT.Y+Z
BOOL(K).AND •. NOT. (TVAL.OR. R)

No two logical operators may appear in sequence, except in the case where. NOT. appears as the second of

two logical operators, as in the example above. Two decimal points may appear in sequence, as in the -

example above, or when one belongs to an operator and the other to a constant.

When the precedence of operators is not given explicitly by parentheses, it is understood to be as follaws (in

order of decreasing precedence):

**
*,/
+,-
.GT. ,.GE. ,.U. ,. LE. ,.EQ. ,. NE.
• NOT.
.AND •
• OR •
. EQV., .XOR.

For example, the logical expression

.,NOT.ZETA**2+Y*MASS.GT.K-2. OR. PARITY .AND.X.EQ.Y

is interpreted as

(. NOT. (((ZET A**2)+(y*MASS». GT. (K-2))). OR. (PARITY .AND.(X .EQ. V))

5-28

3.1 GENERAL DESCRIPTION

CHAPTER 3

THE ARITHMETIC STATEMENT

One of the key features of FORTRAN IV is the ease with which arithmetic computations can be coded. Compu­

tations to be performed by FORTRAN IV tire indicated by arithmetic statements, which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement causes the

FORTRAN IV object program to evaluate the expression B and assign the resultant value to the variable A.

Note that the = sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and

A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of the expres­

sion to the right of the = sign.

Examples: Y=l*Y
P=. TRUE.
X (N)=N*ZETA(ALPHA*M/PI)+(l.', -1.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an arithmetic statement.

D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates that only

the real part of the variable is set to the value of the expression (the imaginary part is set to zero); C means that

the expression is converted to the type of the variable; and H mea~s that only the high-order portion of evaluated

expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs. For ex­

ample, in the statement:

THET A=W*(ABET A+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer before assign­

ment to THETA.

5-29

Table, 3-1
Allowed Assignment Statements

Variable Real Integer

Real D C

Ioteger C D

Complex D,R,I C, R',I

Double
D,H,L C,H,L

Precision

Logical D D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0,

H - ,High order only

l - Set low order part to 0

•

Expression

Complex

R,D

R,C

D

R~D,H,L

R,D

5-30

Logical,
Double Octal, or

Precision Literal
Constant

H,D D

H,C D

H,D,R,I D,R,I

D D,H,L

H,D D

CHAPTER 4

CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were presented

to the compiler. However, the following control statements are avai lable to alter the normal sequence of state­

ment execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN. CALL and RETURN are used to en­

ter and return from subroutines.

4. 1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4. 1. 1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:

GO TO n

where n is the number of an executable statement. Control is transferred to the statement numbered n. An un­

conditional GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4. 1.2 Computed GO TO Statements

Computed GO TO statements have the form:

GO TO (n 1,n2, ... ,nk),i

where n1 ,n2, ... ,nk are statement numbers, and i is an integer ~xpression.

This statement transfers control to the statement numbered n l' n2, .•. , nk if i has the value 1, 2, .•. , k, respec­

tively. If i exceeds the size of the I ist of statement numbers or is less than one, execution wi II proceed to the

next ~xecutable statement. Any number of statement numbers may appear in the list. There is no restriction on

other uses for the integer variable i in the program.

5-31

In the example

GO TO (20,10,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K= 1, to statement 10 if K=2, or to state­

ment 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4. 1.3 Assigned GO TO Statement

, Assigned GO TO statements have two equivalent forms:

GOTO k

and

where k is a nonsubscripted integer variable a'nd n1, n2, ... nk are statement numbers. Any number of statement

numbers may appear in the list. Both forms of the assigned GO TO have the effect of transferring control to the

statement whose number is currently associated with the vqriable k. This association is established th'rough the

use of the ASSIGN statement, the general form of which is:

ASSIGN i TO k

If more than one ASSIGN statement refers to the same integer variable name, the value assigned by the last ex­

ecuted statement is the current va lue.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.,

4,2 IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

5-32

4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) n1 ,n2, n3

where n l' n2, n3 are statement numbers. This statement transfers control to the statement numbered n l' n2, n3 if

the value of the numeric expression is less than, equal to, or greater than zero, respectively. All three state

ment numbers must be present. The expression may not be complex.

Examples: IF (ETA) 4,7,12.
IF (KAPPA-L (10)) 20,14,14

4.2.2 Logical IF Statements

Logical IF statements have the form:

IF (expression)S

where S is a complete statement. The expression must be logical. S may be any executable statement other than

a DO statement or another logical IF statement (see Chapter 2, Section 2.3.2). If the value of the expression

is .FALSE., control passes to the next sequential statement. If value of the expression is . TRUE., statement S

is executed. After execution of 5, control passes to the next sequential statement unless S is a numerical IF

statement or a GO TO statement; in these cases, control is transferred as indicated. If the expression is . TRUE.

and S is a CALL statement, control is transferred to the next sequential statement upon return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X*SIN(Z)
W=Y**2

If the value of B is • TRUE., the statements Y=X*SIN(Z) and W=Y**2 are executed in that order. If the value of

B is .FALSE." the statement Y=X*5IN(Z) is not executed.

Examples: IF (T .OR.S)X=Y+1
IF (Z.GT.X(K)) CALL SWITCH (S,Y)
IF (K .EQ.INDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected results.

5-33

4.3 DOSTATEMENT

Th~ DO statement simplifies the cocltng of iterative procedures. DO statements are of the-form:
, .

where n is a statement number, i is a nonsubscripted integer variable, and m1,m2,m3 are any integer expressions.

If m3 is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement numbered n, to be ex­

ecuted repeatedly. This group of statements is called the range of the DO statement. The integer variable i of

the DO statement is called the index. The values of m1,m2, and m3 are called, respectively, the initial, limit,

and increment values of the index.

A zero incremen! (m3) is not allowed. The increment m3 may be negative if m1~m2' .. If m1~m2' the increment,

m3 must be positive. The index variable can assume legal values only if (m2-mi)*m~O. (m i is the current valu~

, , of the index variable m1.)

Examples: Form

DO 101=1,5,2

DO 10 1=5, 1,-1

DO 10 I=J,K,5

DO 10 I=J,K,-5

DO 10L=I,J,-K

DO 10 L=I,J,I<

J<K

J>K

Restri cti on

I~J,K<O or I~J,K>O

I~J,X>O or I~J,K>O

Initially, the statements of the range are executed with the initial value assigned to the index. This initial ex­

ecution is always performed, regardless of the values of the limit and increment. After each execution of the

range, the increment value is added to the value of the index and the result is compared with the limit value.

If the value of the index is not greater than the limit value, the range is executed again using the new value

, of the index. When the increment value is ~egative, another execution will be performed if the new value of

the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately fol~owing the range. This

exit from the range is called the normaJ"exit. Exit may also be accomplished by a transfer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each contained DO

statement is entirely within the range of the containing DO statement'. That is, the r:anges of two DO statements

must intersect completely or not at all. A transfer into the range of a DO statement from outside the range is

not allowed.

5-34

Valid DO Loop Nest

B IA __ _

C

Control must not pass from within loop A
or loop B into loop 0, or from loop 0 into
loop A or loop B.

Figure 4-1

Invalid Dq Loop Nest

B

A

c

Loop Cis not fu II y wi th i n the range of
loop B even though it is within the range
of loop A.

Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a transfer

from within the range, the index retains its current value and is available for use as a variable. The value of

the index variable becomes undefined when the DO loop it controls is satisfied. The values of the initial, limit,

and increment variables for the index and the index of the DO loop, may not be altered within the range of the

DO statement.

The range of a DO statement must not end with a GO TO type statement or a numerical IF statement. If an

assigned GO TO statement is in the range of a DO loop, all the statements to which it may transfer must be

either in the range of the DO loop or all must be outside the range. A logical IF statement is allowed as the

last statement of the range. In this case, control is transferred as follows. The range is considered ended when,

and if, control would normally pass to the statement folloWing the entire logical IF statement.

As an example, consider the sequences:

DO 5 K = 1,4
5 IF(X(K).GT. Y(K»Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X(K) is executed or not. Statement 6 is not ex­

ecuted unti I statement 5 has been executed four times.

5-35

Examples: DO 22 L = 1,30
DO 45 K =2, LIMIT, -3
DO ZX ~'T,MAX,L

4.4 CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used 'primarily as a target for transfers, particularly as the last statement in

, the range of a DO statement. For example, in the sequence:

DO 7 K = START, END

IF (X (1<»22, 13,7

7 CONTINUE

a positive value of X (K) begins another execution of the range. The CONTINUE provides a target address for

the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic events.

The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a literal message".

Exec:ution of the PAUSE statement c:auses the message or the oc:tal digits, if any, to be typed on the user's tele­

typewriter. Program exec:ution may be resumed (at the next exec:utable FORTRAN statement) from the console

by typing "G," followed by a carriage return. Program execution may be terminated by typing '~X," followed

by 'c:arriage return.

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

5-36.

4.6 STOP STATEMENT

The STOP statement has the forms:

STOP or
STOP n

where n is an unsigned string of one to six octal digits.

The STOP statement termi.nates the program and returns control to the monitor system. (Termination of a program

may also be accomplished by a CALL to the EXIT or DUMP subroutines.)

4.7 END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement of

the program.

5-37

1-

CHAPTER 5

DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory "and either

peripheral devices or other locations in computer memory. These statements are also used to specify the format

of the output data. Data transmission statements are divided into the following four categories.

a. " Nonexecutable statements that enable conversions between internal form data within core memory
and external form data (FORMAT), or specify lists of arrays and variables for input/output transfer
(NAMELIST).

"b. Statements that specify transmission of data between computer memory and I/o devices: READ,
WRITE, PRINT, PUNCH, TYPE, ACCEPT.

"c. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE, END FILE,
UNLOAD, SKIP RECORD.

d. Statements that specify transmission of data between series of locations in memory: ENCODE",
DECODE.

5.1 NONEXECUTABLE STATEMENTS

The FOR.v\AT statement enables the user to specify the form and arrangement of data on the selected external

medium. The NAME LIST statement provides for conversion and input/output transmission of data without

reference to a FORMAT statement.

5.1.1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or ENCODE/DECODE statement.

FORMAT statements are of the form:

where n is a statement number, and each 5 is a data field specification.

FORMAT statements may be placed a~ywhere in the source program. Unless the FORMAT statement contains

only alphanumeric data for direct input/output transmission, it will be used in conjunction with the list of a

data transmission statement.

5-39

Slashes are used to specify unit records, which must be one of the following:

a. A tape or disk record with a m~imum length correspondirlg t~~a" line- buff~r (ngAscII characters).

b. A punched card with a maximum Qf 80 characters.

c. A printed line with a maximum of 72 characters for a Teletype ®and either 120 or 132 characters
for the line printer.

During transmission of data, the object program scans the designated FORMAT statement. If a speciftcation

for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmission statement contains

items remaining to be transmitted, transmission takes place according to the specifications. This process ceases

and execution of the data transmission statement is terminated as soon asa~1 specified items have been transmitted.

Thus, the FORMAT statement may contain specifications for more items than are specified by the data transmis­

sion statement. Conversely, 'the FORMAT statement may contain specifications for fewer items than are specified

by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with scale

factors, logical, alphanumeric. The FORMAT statement also provides for handling multiple record formats,

formats stored as data, carriage control, skipping characters, blank insertion, and repetition. If an input list

requires more characters than the input device supplies for a given unit record, blanks are supplied.

5.1. 1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to be performed.

These codes and the corresponding internal and external forms of the numbers are listed in Table 5-2.

The conversions are,specified by the forms:

1.
2.
3.
4.
5.
6.

Dw.d
Ew.d
Fw.d
Iw
Ow
Gw.d
Gw
Gw.d,Gw.d

. (for real or double precision)
(for integer or logical)
(for complex)

respectively. The letter 0, E, F, I, 0, or G designates the conversion type; w is an integer specifying the

field width, which may be greater than required to provide for blank columns between numbe~s; d is an integer

specifying the number of decimal places to the right of the decimal point or, for G conversion, the number of

significant digits. (For 0, E, F, and G input I the position of the decimal point in the external field takes

precedence over the value of d in the format.)

® Teletype is a registered trademark of Teletype Corporation.

5-40

For example,

FORMAT (I5,F10.2,D18.10)

could be used to output the line,

bbb32bbbb-17.60bbb.5962547681D+03

on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer, logical, or

complex data. The rules for input depend on the type specification of the corresponding variable in the data

list. The form of the output conversion also depends on the individual variable except in the case of real and

double-precision data. In these cases the form of the output conversion is a function of the magnitude of the

data being converted. The following table shows the magnitude of the external data, M, and the resulting

method of conversion.

Table 5-1
Magnitude of Internal Data

Magn itude of Data Resulting Conversion

0.15. M < 1 F (w-4). d, 4x

1 < M < 10 F(w-4).(d-1),4x -
. .

10d- 2 ~ M < lOd- 1 F(w-4). 1, 4x

10d-1 5. M < lOd F(w-4). 0, 4x

All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and exponent.

In all numeric field conversions if w is not large enough to accommodate the converted number, the excess

digits on the left will be lost; if the number is less than w spaces in length, the number is right-adjusted in the

field.

5-41

Conversion
Code

0

E

F

I

0
,

G

Table 5-2
Numeric Field Codes

Internal Form

Binary floating point
double-precision

Binary floating point

Binary floating point

Binary integer

Binary integer

One of the following:
single precision
binary floating point,
binary integer,
binary logical, or
binary complex

. ' , '- " , .

External Form

Decimal floating point
with 0 exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octal integer

Single -'precision
decimal floating point
integer, logical (T or
F), .or complex (two
decimal floating point
numbers), depending
upon the internal form

5.1.1.2 Numeric Fields with Scale Factors - Scale factors may be specified for O,.E, F, and G conversions.

A scale factor is written nP where P is the identifying character and n is a signed or unsigned integer that

specifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed pointL the scale factor specifies a

power of ten so that

• (scale factor)
externol number = (mternal number)* 10

For 0, E, and G (external field not decimal fixed point) conversions, the ,scale factor multiplies the number by

a power of ten, but the exponent is changed accordingly leaving the' number unchanged except in form. For

example, if the statement:

FORMAT (F8.3,E16.5)

corresponds to the line

bb26.451bbbb-0.41321E-Ol

then the statement

FORMAT (-lPF8.3,2PE 16.5) ,

5-42

might correspond to the line

. ,
bbb2. 645bbb-41 . 32157E -03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only

types affected by sca Ie factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified, it

holds for all subsequent 0, E, F, and G type conversions within the same format unless another scale factor is

encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no

effect on I and 0 type conversions.

5. 1. 1.3 Logical Fields - Logical data can be transmitted in a manner simi lar to numeric data by use of the

specification:

Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the

value of a logical variable in the input/output list.

If or input, the first nonblank character in the data field is T or F, the value of the logical variable will be

stored as true or false, respectively. If the entire data field is blank or empty, a value of false wi" be stored.

On output, w minus 1 blanks followed by Tor F will be output if the value of the logical variable is true or

false, respectively.

5.1.1.4 Variable Field Width - The 0, E, F, G, I, and "0 conversion types may appear in a FORMAT state­

ment without the specification of the field width (w) or the number of places after the decimal point (d). In

the case of input, omitting the w implies that the numeric field is delimited by any character which would

otherwi~ be illegal in the field, in addition to the characters -, +, ., E, 0, and blank provided they follow

the numeric field. For example, input according to the format

10 FORMAT(2I,F,E,0)

might appear on the. input medium as

-10,3/15.621-.0016E-10,777.

5-43

In thi,s case, commas delimit the numeric fields, blanks may also be used as field delimiters. On output,

omitting the w has the following effect:

Format Becomes

D D25.16

E E15.7

F F15.7

G G15.7 or G25. 16

I 115

O' 015

5. 1. 1.5 Alphanumeric Fields - Alphanumeric data can be transmitted in a manner simi lar to numeric data by

use of the form Aw, where A is the control character and w is the number of characters in the field. The alpha­

numeric characters are transmitted as the value of a va!iabJe in an input/output list. The variable may be of any

. type. For the sequence:

READ 5, V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value, the number of characters transmitted is limited by the maximum number of

characters which can be stored in the space allotted for the variable. This maximum depends upon the variable

type. For a double precision variable the maximum is ten characters; for all other variables, the maximum is

five characters. If w exceeds the max imum, the leftmost characters are lost on input and replaced with blanks

on output. If, on input, w is less than the maximum, blanks are fj lied in to the right of the given characters

unti I the maximum is reached. If, on output, w is less than the maximum, the leftmost w characters are trans­

mitted to the extemal medium. Since for complex variables each word requires a separate field specificCJtion,

the m~ imu~ value for w. is 5. For example,

COMPLEX C
ACCEPT 1 i C

1 FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5.1.1.6 Alphanumeric Data Within Format Statements - Alphanumeric data may be transmitted directly into or

from the fOmlat stateme~t by two different methods: H-conversion, or the use of single quotes.

5-44 .

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is the

number of characters in the string counting blanks. For example, the format in the statement below can be used

to print PROGRAM COMPLETE on the output lis,ting.

FORMAT (17H PROGRAM COMPLETE)

The statement

FORMAT (16HPROGRAM COMPLETE)

causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new string

of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same as in

H-conversion; on input, the characters between the quotes are replaced by input characters, and, on output,

the characters between the quotes (including blanks) are written as part of the output data. A quote character

within the data is represented by two successive quote marks. For example, referring to:

FORMAT (' DON"T')

with an output statement would cause DON'T to be printed. Referring to

FORMAT ('DON"T')

causes ON'T to be printed. The first character referenced by the FORMAT statement for output is interpreted

as a carriage control character (see 5. 1 • 1 . 13).

5.1.1:7 Mixed Fields - An alphanumeric format field may be placed among other fields of the format. For

example, the statement:

FORMAT (I5,7H FORCE=FlO.5)

can be used to output the line:

bbb22bF ORCE=bb 17. 68901

The separating comma may be- omitted after an alphanumeric format field, as shown above.

5-45

5.1.1.8 Complex Fields.- Complex q~antities are transmitted as two independent n::al quantities. The format

specification consists of two successive .real specifications or one' repeated real specification. For instance,

the statement:

FORMAT (2E15.4,2(F8.3,F8.5»

could be used in the transmission of three complex quantities.

5.1.1.9 Repetition of Field Specifications - Repetition of a field specification may be specified by preceding

the control character 0, E, F, I, 0, G, L, or A by an unsigned integer giving the number of repetitions de­

sired. For example:

FORMAT (2E12.4,315)

is equivalent to:

FORMAT (E 12.4,E 12.4, IS ,15 ,15)

5.1.1. 10 Repetition of Groups - A group of field specifications may be repeated by enclosing the group in

parentheses and preceding the whole with the repetition number. For example:

FORMAT (218, 2(E 15.5 ,2F8 .3»

is equivalent to:

FORMAT (218,E 15.5 ,2F8.3,E 15.5 ,2F8 .3)

5.1.1.11 Multiple Record Formats - To handle a group of input/output records where different records have

different field specifications, a slash is used to indicate a new record. For example, the statement:

FORMAT (308/I5,2F8.4)

is equivalent to

FORMAT (308)

for the first record and

FORMAT (I5, 2F8 .4)

for the second record.

5-46

The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning of ..
a format, n blank records may be written an output or records skipped on input. When n slashes appear in the

middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the

list of an input/output statement dictates that transmission of elata is to continue after the closing parenthesis

of the format is reached, the format is repeated starting with that group repeat specification terminated by the

last right parenthesis of level one or level zero if no level one group exists.

Thus, the statement
•

FO~MAT (F7. 2,(2(E 15.5,E 15.4),17»

level O~ J jL level 0
level 1 level 1

causes the format

F7 .2,2(E 15.5,E 15.4) ,17

to be used on the first record, and the format

2(E15.5,E15.4),I7

to be used on succeeding records.

As a-further example, consider the statement'

FORMAT (F7. 2/(2(E 15.5,E 15 .4) ,17»

The first record has the format

F7.2

and successive records have the format

2(E15.5,E 15.4),17

5. 1.1.12 Formats Stored as Data - The ASCII character string comprising a format specification may be stored

as the values of an array. Input/output statements may refer to the format by giving the array name, rather than

the statement number of a FORMAT statement. The stored format has the same form as a FORMAT statement ex­

cluding the word "FORMAT." The enclosing parentheses are included.

5-47 '

As an example, consider the sequence:

DIMENSION SKELETON {2}
READ 1, (SKELETON{I), 1=1,2)

1 FORMAT (2M)
READ SKELETON,K,X

, ,

The first READ statement enters the ASCII string into the array SKELETON. In the second READ statement,

SKELETON is referred to as the format governing conversion of K and X • .

5.1. 1. 13 Carriage Control - The first character of each ASCII record controls the spacing of the line printer

or Teletype. 'This character is usually set by beginning a FORMAT statement for an ASCII record with 1Ha,

where a is the desired control character. The line spacing actions, listed be low, occur before printing:

Character

o

+

*

2

3

/

space

zero

one

plus

asterisk

Effect

skip to next line with a FORM FEED
after every 60 lines

skip a line

form feed - go to top of next page

suppress skipping - will overprint line

skip to next I i.ne with no FORM FEE DS

minus skip 2 lines

two

three

slash

period

comma

sk i p to nex t 1/2 of page

skip to next 1/3 of page

skip to next 1/6 of page

skip to next 1/20 of page

skip to next 1/30 page

A $ (dollar sign) as a format field specification code suppresses the carriage retum at the end of the line.

5.1.1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN record by use

of the format code

Tw

where T is the control character and w is an unsigned integer constant specifying the character position in a

FORTRAN record where the transfer of data is to begin. When the o~tput is printed, w corresponds to the {w-l)th

print position. This is because the first character of the output buffer is a carriage control character and is not

printed. It is recommended that the first field specification of the output format be lx', except where a carriage

control character is used.

5-48

For example,

2 FORMAT (T50, 'BLACK'T30, 'WHITE')

would cause the following line to be printed

Print Position 29 Print Position 49

+
WHITE

For input I the statement

] FORMAT(T35, 'MONTH')

READ (3,1)

+
BLACK

cause the first 34 characters of the input data to be skipped, and the next 5 characters would replace the char­

acters M, 0, N, T, and H in storage. If an input record containing

ABCbbbXYZ

is read with the format specification

10 FORMAT (T7 ,A3, T] ,A3)

then the characters XYZ and ABC are read, in that order.

5.].].15 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is Xi n is the number of blanks or characters

skipped and must be greater than zero. For example, the statement

FORMAT (5H.STEPI5, lOX2HY=F7.3) .

may be used to output the line

bSTEPbbb28bbbbbbbbbbY=b-3.872

5.1.2 NAME LIST Statement

The NAME LIST statement, when used in conjunction with special forms or the READ and WRITE statements,

provides a method for transmitting and converting data without using a FORMAT statemen't or an I/o I.ist. The·

NAME LIST statement has the form

5-49

where the X's are NAMELIST names,'\and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAME LIST statement is given the NAMELIS! name immediately preceding

the list. Thereafter, an I/o statement may refer to an entire list by mentioning its' NAMELIST name. For

example:

NAMELIST/FRED/A,B,C/MARTHA/D,E

states that A, B, and C belong to the NAME LIST name FRED, and D and E belong to MARTHA.

The use of NAMELIST ~tatements must .obey the following rules:

a. A NAMELIST name may not be longer than six characters; it must start with an alphabetic char­
acter; it must be enclosed in slashes; it must precede the list of entries to which it refers; and it must
be unique within the program.

b. A NAME LIST name may be defined only once and must be defined by a NAMELIST statement.
After a NAMELIST name has been defined, it may only appear in READ or WRITE stateme~ts. The
NAMELIST name ,must be defined in advance of the READ or WRITE statement.

c. A variable used in a NAME LIST statement cannot be used as a dummy argument in a subroutine
definition.

d. Any dimensioned variable contained in NAME LIST statement must have been defined in a
DIMENSION statement preceding the NAMELIST statement.

5.1.2.1 Input Data For NAMELIST Statements - When a READ statement refers to a NAMELIST name, the

first character of all input records is ignored. Records are searched until one is found with 6 $ or & as the

second character immediately followed by the NAMELIST name specified. Data is then converted and placed

in memory until the ~nd of a data group is signaled by a $ or'& eith~r in the same record as the NAMELIST name,

or in any succeeding record as long as the $ or & is the second character of the record. Data items must be

separated by commas and be of the following form:

where V may be a variable name or an arra~ name, wi th or without subscripts. The K's are constants which may

be integer, real, double precision, complex {written as (A, B) where A and B are rea!), or logical (written as

T for true and'F for false). A series of J identical constants may be represented by J*K where J is an unsigned

integer and K is the repeated constant. Logical and complex constants must be equated to logical and complex

variables, respective ly. The other types of constants (real, double precisi9n, and integers) may be equated to

5-50

any other type of variable (except logical or complex), and will be converted to the variable typel For

example, assume A is a two-dimensional real array, B is a one-dimensional integer array, C is an integer

variable, and that the input data is as follows:

$FRED A(7,2)=4, B=3,6*2.8, C=3.32$
t

Column 2

A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 will be

converted to floating point and placed in A(7,2). The integer 3 will be placed in B(l) and the floating point

number 2.8 will be p'laced in B(2), B(3), •.. , B(7). The floating point number 3.32 will be converted to the

integer 3 and placed in C.

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement ref~rs TO a NAMELIST name, all

variables and arrays and their values belonging to the NAMELIST name will be written out, each according to

its type. The complete array is written out by columns. The output data wi" be written so that:

a. The fields for the data will be large enough to contain all the significant digits.

b. The output can be read by an input statement referencing the NAMELlST nome.

For example, if JOE is a 2x3 array, the statement

NAMELIST/NAM l/JOE, K I,ALPHA
WRITE (u, NAM 1)

generate the following form of output.

Column 2
~

$NAMJ
JOE = -6.75,

-17.8,
Kl=73.1,

. 234E-04,
0.0,

ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

68.0,
-. J97E+07,

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMEL:ST

statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the data

transmission statement niust contain a list of the quantities to be transmitted. The data appears on the external

media in the form of records.

5-51

I

5.2.1 Inpot/Output Lists

The list of' an-input/output statement specifies the order of transmission of the variable values. During input,

the new values of listed variables may be used in subscript or control expressions for variables appearing later

in the list. For example:

READ 13,L,A(L),B(L+1}

reads a new value of L and uses this value in the subscripts of A and B:

The transmission of array-variables may be controlled by indexing similar to that used in the DO statement. The

list of controlled variables, followed by the index control, is enclosed in parentheses. For example,

READ 7, (X(K),K=1,4),A

is equivalent to:

READ 7, X(1) ,X(2) ,X(3) ,X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:

READ 5, N, (GAIN(K), K=l ,M/2, N)

The indexing may be compounded as in the following:

READ 11, «MASS(K, L), K= 1,4), L= 1,5)

The above statement reads in the elements of array MASS in the following order:

MASS(l, 1), MASS(2, 1}, ... ,MASS(4, 1} ,MASS(l ,2), ... ,MASS(4,5)

If on entire array is to be transmitted, the index ing may be omitted and only the array identifier written. The

array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus, the

example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAME LIST name (see description of

NAMELIST statement).

5-52

5.2.2 Input/Output Recorc!s

All information appearing on external media is grouped into records. The maximum amount of information in

one record and the manner of Separation between records depends upon the medium. For punched cards, each

card constitutes one record; on a teletypewriter a record is one line, and so forth. The amount of information

contained in each ASCII record is spec ified by the FORMAT reference and the I/o list. For magnetic tape

binary records, the amount of information is specified by the I/o list.

Each execution of an input or output statement initiates the transmission of a new data record. Thus, the

statement

READ 2, FIRST ,SECOND, THIRD

is not necessarily equivalentto the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement

READ 2, FIRST ,SECOND, THIRD

may require one, tWo, three, or more records depending upon FORMAT statement 2.

If an input/output statement requests less than a full record of information, the unrequested part of the record

is los! and cannot be recovered by another input/output statement without repositioning the record.

If an input/output list requires more than one ASCII record of information, successive records are read.

5.2.3 PRI NT Statement

The PRI NT statement assumes one of two forms

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

5-53

Examples~ PRINT 16, T , (B(I<) ,K=1,M)
PRINT F 106, seEE 0, MISS

In the second example, the format.is stored in array F106.

'5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms

PUNCH f, list
PUNCH f

:\It where f is a format reference.

Conversion from internal to externa I data forms is specified by the formqt reference. If the data to be trans­

m itted is contained in the designated FORMAT statement, the second form of the statement is used.

Examples: PUNCH 12,A,B(A),C(B(A»
PUNCH 7

5 • 2.5 TY PE Statement

The TYPE statement assumes one of two forms

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on the user's

teletypewriter. The data is converted from internal to external form according to the designated format. If

the data to be transmitted is contained in the designated F ORMAT state~ent, the second form of the statement

is used.

Examples: TYPE 14,K,(A(L) ,L=1,K)
TYPE FMT

5.2.6 WRITE· Statement

The WRITE statement assumes one of the following forms

5-54

WRITE (u,f) list
WRITE(u ,f)
WRITE(u,N)
WRITE(u) list
WRITE(u#R,f) list

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record number where

I/o is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory and

written on the unit designated in ASCII form. The data is converted to external form as specified by the desig­

nated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format and

written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging to the

NAMELIST name, N, to be read from memory and written on the unit designated. The data is converted to

external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from memory

and written on the unit designated in binary form.

The fifth form of the WRITE statement -allows the FORTRAN programmer to access fixed-length records in a

disk file directly. This eliminates sequential writing of data in order to access one or more records within a file.

The file must be defined properly and the record from which the writing is desired must be specified. The file

whose records are to be accessed is defined as follows.

CALL DEFINE FILE (D, S, V, F, Pj, Pg)

D = data set (device)
S size of records in the file in characters (ASCII) or words (binary)
V = associate~ variable which initially contains the length of the file

that would be accessed next if the program were to continue I/o
sequentially

*F = file name .ext defined first in DATA statement
*Pj = project number '
*Pg = programmer number

Output begins when the random WRITE is specified in the correct format. The arguments designated by an

asterisk (*) may be zero. This impl ies a defau It filename and/or user's project and programmer numbers;

for example,

CALL DEFI NE FILE (3,80, NX ,0,0,0)

5-55

•

''\IIiiit:,
,,~-.

5.2.7 READ Statement

The READ statement assumes one of the following forms

READ f, list
READ f
READ(u , f) list
READ(u ,f)
READ(u, N)
READ(u)list
READ(u# R, f) list
READ(u,f,END=C, ERR=d) list
READ(u,f,END=C) list
READ(u,f, ERR=d) list

where f is a format reference, u is a unit designation, N is a NAME LIST name, R is a record number where I/o
is to start, C is a statement number to whi ch control is transfe~red upon encountering an end-of-fi Ie, and d is

the statement number to which control is transferred upon encountering an error condition on the input data.

The first form of the READ statement causes information to be ,read from cards and put in memory as values of the

variables in the list. The data is converted from external to internal form as specified by the referenced

FORMAT statement.

Example: READ 28,Zl,Z2,Z3

The second form of the READ statement is used if the data read from-cards is to be transmitted directly into the

s~cified format.

Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit designated and stored

in memory as values of the variables in the list. The data is converted to internal form as specified by the

referenced FORMAT statement.

Example: READ(I, 15)ET A, PI

The fourth form of the READ statement causes ASCII information to be read from the unit desi.gnated ,and trans­

mitted directly into the specified format.

Example: READ(N,105)

The fifth form of the READ statement causes data of the form described in the discussion of input data for

NAMELIST statements to be read from the unit designated and stored in memory as values of the variables or

arrays specified.

Example: READ(2,FRED)

The sixth form of the REAb statement causes binary information to be read from the unit designated and stored

in memory as values of the variables in the list.

Example: READ(M)GAIN,Z ,AI

The seventh form of the READ statement allows random access of fixed-length records in a disk file. The file

whose records are to be read is defined by the DEFINE FILE call where the arguments are the same as described

in Section 5.2.5 of this chapter.

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FIL/'FILE. ONE'I
CALL DEFINE FILE (4,30, NV,FIL,"l1,"23)
READ (4#54,5)A

This example reads the 54th record from FILE. ONE on the disk area belonging to programmer [11,23] into the

list variables A(1) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error condition is

encountered on the input data. The argument$ END=c and ERR=d are optional and mayor may not be included.

If an end-of-file is encountered, control transfers to the statement specified by END=c. If an END parameter

is not specified, I/O on that device terminates and the program halts with an error message to the user's TTY.

If an error on input is encountered, control transfers to the statement specified by' ERR=d. If an ERR=d parameter

is not specified, the program halts with an error message to the user's TTY .

Example: READ (7,7,END=888, ERR=999)A
..

888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input file. The format

used during the reread need not correspond to the original read format, and the informati on may be read as

many times as desired.

5-57

a. To reread from an input device, the following coding would be u~d:

READ (16, l(0)A

REREAD 105,A

The REREAD 105,A statement causes the last input device used to be reread according to format st~te­
ment 105. The original read format and a subsequent reread format need not be the same.

b. The reread feature cannot be used until an input from a file has been accomplished. If the feature
is used prematurely, an error message will be generated.

c. Information may be reread as many times as desired using either the same or a new format statement
each time.

d. The reread feature must be used with some forethought and care since it re~ads from the last input
file used, i.e.:

The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16, l(0)A

READ (10,200)B

REREAD 110,A

5.2.9 ACCE PT Statement

The ACCEPT statement aSSumes one of two forms

ACCEPT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memory as values of the

variables in the list. The data is converted to internal form as specified by the format. If the transmission of

data is directly into the designated format, the second form of the statement is used.

Examples: ACCEPT 12,ALPHA,BETA
ACCEPT 27

5.3 DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

5-58

Table 5-3
Device Control Statements

Statement Effect

BACKSPACE u Backspaces designated tape one ASCII record or one
logical binary record.

END FILE u Writes an end-of-fi Ie .

REWIND u Rewinds tape on designated unit.

SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.

UNLOAD u Rewinds and unloads the designated tape.

'5.4 ENCODE AND DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one section of user's

core to another. No peripheral equipment is involved. DECODE is used to change data in ASCII format to

data in another format. ENCODE changes data of another format into data in ASCII format.

The two statements are of the form

where

ENCODE(c,f,v),l(1), ••. ,L(N)
DECODE (c, f, v), L(1), .•• ,L(N)

c = the number of ASCII characters
f = the format statement number
v = the starting address of the ASCII record referenced
L(1), ••. ,L(N) = the list of variables.

Example: Assume the contents of the variables to be as follows:

A(I) contains the floating-point binary number 300.45

A(2) contains the floating-point binary number 3.0

J contains the binary integer value 1.

B is a four-word array of indeterminate contents

C contains the ASCII string 12345

DO 2 J = 1,2 .
ENCODE (16, 10,B) J, A(J)

10 FORMAT (IX,2HA(,Il,4H) = ,F8.2)
TYPE 11 ,B

11 FORMAT (4A5)
2 CONTINUE

DECODE (4, 12, C) B

5-59

12 FORMAT (3F1.0,IX,F1.0)
TYPE 13,B

13 FORMAT (4F5.2)
END

Array B can contain 20 ASCII·characters. The result of the EN~ODE statement after the first iteration of the

. DO loop is:

B(1) 1--_.;...:.A(,l..;.;1):""'-_-I
B(2) 1-----::=="......,....----1
B(3) t--_3_O-;::-0_.4 __ --i
B(4) L-__ 5 __ ---'

The result after the second iteration is:

B.(1) t--_A......;(....;.2) __ --i
B(2) 1--_,.....-__ ---I
B(3) t--__ 3_.0 __ ~
B(4) '--____ --1

Typed as

A(1) = 300.45

Typed as

A(2) = 3.0

The result of the DECODE statement is to extract the digits 1, 2, and 3 from C and convert them to floating­

point binary values and store them in B(1}, B(2), and 8(3). Then skip the next character (4) and extract the

digit 5 from C, convert it to a floating-point binary value, and store it in 8(4).

5-60

CHAPTER 6

SPECIACATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the compiler.

Specification statements may be divided into three categories, as follows:

a. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.

b. pata specification statements: DATA and BLOCK DATA.

c. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, PDP-lO FORTRAN IV allows the following

statements to be used anywhere in the program, provided that the variables they specify appear in executable

statements only after the particular specification statement. The specification statement must not appear in the

range of a DO loop.

DIMENSION statement
EXTERNAL statement (described in Chapter 7)
COMMON statement
EQUIVALENCE statement
Type declaration statements
DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION 0
DIMENSION Y(10), 0(5)
Y{l) = -1.0
INTEGER XX(5)
Y(2) = ABS(Y(l»
DATA XX/l,2,3,4,5
DO 10 1= 3,7

10 Y(I) = XX(I-2)
COMMON Z
Z=Y(1)*Y{2)/(Y{3) + Y(5»
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter 7) must appear in

the program before any executable statement.

5-61 -

In addition, arrays must be dimensional before being referenced in a NAMEUST, EQUIVALENCE, or DATA

statement. ,DOUBLE PRECISION and COMPLEX arrays must be declared before they are dimensioned.

6.1 STORAGE SPECIACATION STATEMENTS

6. 1. 1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number and

bounds of the array subscripts. The information supplied in a DIMENSION statement is required for the alloca­

tion of memory for arrays. Any number of arrays may be declared in a single DIMENSION statement. The

DIMENSION statement has the form

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a DIMENSION

statement, unless the dimension information is given in a COMMON or TYPE statement. Dimension information

may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its sub­

scripts may assume in the following form:

identifier(min/max, min/max, ••• ,min/max).

The minima and maxima must be integers. The minimum must not exceed the maximum. For example, the state­

ment

DIMENSION EDGE(-1/1,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and the sec­

ond from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,

NET(5, 10)

is interpreted as:

NET(1/5,1/to)

5,..62

Examples: PIMENSION FORCE(-l/1, 0/3, 2,2, -7/3)
DIMENSION PLACE(3,3,3), JI(2,2/4), K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4), Y,Z
INTEGER A(7, 32), B
DOUBLE PRECISION K(-2/6, 10)

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and

TYPE statements may use integer variables in an array specification, provided that the array name and variable

dimensions are dummy arguments of the subprogram. The actual array name and values for the dummy variables

are given by the call ing program when the subprogram is called. The variable dimensions may not be altered

within the subprogram (i.e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned)

and must be less than or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY,M1,M2,M3,M4)
DIMENSION ARRAY (Ml/M2,M3/M4)

DO 27 L=M3, M4
DO 27 K=M1,M2

.
27 ARRAY(K,L)=VALUE

END

The calling program for SBR might be:

DIMENSION Al(10,20),A2(l000,4)

CALL SBR(Al,5, 10, 10,20)

CALL SBR(A2, 100,250,2,4)

END

5-63

6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other programs.

By means of COMMON statements,' the data of a main program and/or the ,data of its subprograms may share a

common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is specified

as follows:

. ,/block identifier/identifier, identifier, ••• ,identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the variables

or arrays assigned ,to the block and are placed in the block in the order in which they appear in the block spec­

ification. A common block may have the same name as a variable in the same program.

The COMMON statement has the general form

COMMONjBLOCK 1/A, B,C/BLOCK2/D, E, F / •••

where BLOCK 1 ,BLOCK2, ••• are the block names, and A,B,C, ••• are the variables to be assigned to each

block. For example, the statement

COMMON/R/X, Y, T/C;\J, V, W,Z

i ndi cates that the elements X, Y, and T are to be placed in block R in that order, and that U, V, W, and Z are

to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement. For

example" the statements

COMMON/D/ALPHA/R/A,B/C/S
COMMON/C/X, Y/R/U, V, W

have the same effect as the statement

COMMON/D/ALPHA/R/A,B,U, V, W/C/S,X, Y

One block of common storage, referred to as blank ~ommon, may be left unlabeled. Blank common is indicated

by two consecutive slashes. For example,

COMMON/R/X, Y//B,C,D

indicates that B, C, and D are placed in blank common. The slashes m~y be omitted when blank common is the

first block of the statement.

5-64

COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed together.

For example, if a program contains

COMMON A, B/R;?<, ViZ

as its first COMMON statement, and a subprogram has

COMMON/R/U, V, W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location. A sim­

ilar correspondence holds for A and D in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block declared

by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if the arrays are not

declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA, T(15, 10,5),GAMMA

specifies the dimensions of the array T while entering Tin bl(Jnk common. Variable dimension array identifiers

may not appear in a COMMON statement, nor may other dummy identifiers. Each array name appearing in a

COMMON statement must be dimensioned somewhere in the program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share the same storage

location. The EQUIVALENCE statement has the form

EQUIVALENCE(V l' V 2' ...), (Vk, Vk+ 1'· ••), ..•

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the list are to share

the same memory location. For example,

EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same location.

5-65
I

The relation of equivalence is transitive; e.g., the two statements,

EQUIVALENCE(A, B), (B,C)
\ EQUIVALENCE(A,B,C)

have the same effect.

Tne subscripts of array variables must be integer" constants.

Example: EQUIVAlENCE(X,A{3), V{2, 1 ,4», (BETA{2(2),ALPHA)

6.1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are ob­

served.

a. No two quantities in common may be set equivalent to one another.

b. Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of
the common block to be extended. For example, the statements

COMMON/Rft, V,Z
DIMENSiON A(4)
EQUIVALENCE{A, V)

causes the common block R to extend from X to A(4), arranged as follows:

X
V A(1)
Z A(2)

A(3)
A(4)

(same location)
(same location)

c. EQUIVALENCE statements which cause extension of the start of a common block are not allowed.
For example, the sequence

COMMON/Rft, V,Z
DIMENSION A(4)
EQUIVALENCE(X ,A(3»

is not permitted, since it would require A(1) and A(2) to extend the starting location of block R.

6.2 DATA SPECIFICATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified values are compiled

into the object program, and become the values assumed by the variables when program execution begins.

6.2.1 DATA Statement

The data to be compiled into ,the object program is specified in a DATA statement. The DATA statement has the

form

5-66

DATA Iist/d1 ,d2,· • • 1, list/dk,dk+ 1" . .I, ...

where each list is in the same form as an input/output list, and the d's are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants. Expres­

sions used as subscripts must have the form

where c 1 and c2 are integer constants and i is the induction variable. If an entire array is to be defined, only

the array identifier need be listed. Variables in COMMON may appear on the lists only if the DATA statement

occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item of the data

specifies the value given to its corresponding variable. Data items may be numeric constants, alphanumeric

strings, octal constants, or logical constants. For example,

DATA ALPHA, BETA/5, 16.E-2/

specifies the value 5 for ALPHA and the value. 16 for BETA.

Alphanumeric data is packed into words according to the data word size in the manner of A conversion; how~ver,

excess characters are not permitted. the specification is written as nH followed by n characters or is imbedded

in single quotes.

Octal data is specified by the letter 0 or the character ", followed by a signed or unsigned octal integer of one

to twelve digits.

Logical constants are written as • TRUE.,. FALSE., T, or F.

Example: DATA NOTE,K/4HFOOT, 0-7712/
DATA QUOTE/,QUOTE'/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the number

of times the item is to be repeated. For example,

DATA(A(K},K=1, 20)/61 E2, 19*32E1/

specifies 20 values for the array A; the value 6100 for A(1); the value 320 for A(2) through A(20).

5-67

6.2.2 BLOCK OAT A Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This statement declc:'res the program which follows to be a data specification subprogram. Data may be entered

into labeled or blank common.

The first statement of the subprogram must be the BLOCK OAT A statement. The subprogram may contain only the

declarative statements associated with the data being defined.

Example: BLOCK DATA
COMMONft/S, Y/C/z', W, V
DIMENSION Y(3)
COMPLEX Z
DATA Y/1E-1 ,2*3E2/,X, Z/ll. 87700,(-1.41421,1.41421)/
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT; and

SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a prograJ!l. An identifier may ap­

pear in only one type statement. Type statements may be used to give dimension specifications for arrays.

The explicit type declaration statements have the general form

type identifier, identifier, identifier •••

where type is one of the following:

IN TEGER, REAL, DOUBLE PRECISION,COMPLEX,LOGICAL,
SUBSCRIPT INTEGER

The listed identifiers are declared by the statement to be of the" stated type. Fixed-point variables in ci SUB­

SCRIPT INTEGER statement must fall between _227 and 227.

6.3. 1 IMPLICIT Statement

The IMPUCIT statement has the form

5-68

where type represents INTEGER, REAL, LOGICAL, COMPLEX, or .DOUBLE PRECISION, and a 1a2, ... represent

single alphabetic characters, each separated by commas, or a range of characters (in alphabetic sequence) de­

noted by the first and last characters of the range separated by a minus sign (e.g., (A-D».

This statement causes any program variable which is not mentioned in a type statement, and whose first character

is one of those listed in the IMPLICIT statement, to be classified according to the type appearing before the list

in which the character appears. As an example, the statement

IMPLICIT REAL(A-D, L, N-P)

causes all variables starting with the letters A through D, L, and N through P to be typed as real, unless they are

explicitly.declared otherwise.

The initial state of the compiler is set as if the statement

IMPLIOT REAL(A-H,O-Z), INTEGER(I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the above

interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows.

a. Identifiers beginning with I, J, K, L, M, or N are assigned interger type.

b. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the program the implicit

state initially set by the compiler. No program may contain more than one IMPLICIT declaration for the same

letter.

5- 69

/

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be used

only within the program containing the definition. The arithmetic function definition statement is used to define

internal functions.

External subprograms are defined separately from (i. e., external to) the programs that call them, and are com­

plete programs which conform to all the rules of FORTRAN programs. They are compiled as closed subroutines;

i.e., they appear only once in the object program regardless of the number of times they are used. External sub­

programs are defined by means of the statements FUNCTION and SUBROUTINE.

7.1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram. They

are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments that may ap­

pear and how the arguments are used. The dummy identifiers are replaced by the actual arguments when the sub­

program is executed.

7.2 LtBRARY SU BPROGRAMS

The standard FORTRAN IV library for the PDP-10 includes built-in functions, FUN~TION subprograms, and

SUBROUTINE subprograms, listed and described in Chapter 8. Builf-in functions are open subroutines; that is,

they are incorporated into the object program each time they are referred to by the source program. FUNCTION

and SUBROUTINE subprograms are closed subroutines; their names derive from the types of subprogram statements

used to define them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier(jdentifier, identifier, ••• }=expression

5-71

This statement defines an internal subprogram,. The entire definition is contained in the single statement. The

first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-v~lued functions with at least one argument. The type of the function

is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;

they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and must

be unique only within the defining statement. Dum'my identifiers must agree in order, number, and type with

the actual arguments given at execution til1le.

Identifiers, appearing in the defintng expression, which do not represent arguments are treated as ordinary var­

iables. The defining expreSsion may include external functions or other previously defined arithmetic statement

functions.

All arithmetic function definition statements must precede the first executable statement of the program.

Examples: SSQR(K)=K*(K+1)*(2*K+l)/6
ACOSH(X)=(EXP(X/A)+EXP(-X/A))/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUN<;:TION subprogram is a single-valued function that may be called by using its name as a function name

in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that evaluates the

corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION statement and

ends with an END statement. It returns control to the calling program by means of one or more RETURN state­

ments.

7.4.1 FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifier(argument ,argument, ••.)

This statement declares the program which follows to be a FUNCTION subprogram. The identifier is the name of

the function being defined. This identifier must appear as a scalar variable and be assigned a value during ex­

ecution of the subprogram which is the function value.

5-72

Arguments appearing in the list enclosed in parentheses are dummy arguments representing the function argument.

The arguments must agree in number, order, and type with the actual arguments used in the calling program.

FUNCTION subprogram arguments may be expressions, alphanumeric strings, array names, or subprogram names.

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, or subprogram identifiers.

A function must have at least one dummy argument. Dummy arguments representing array names must appear

within the subprogram in a DIMENSION statement, or one of the type sta.tements that provide dimension informa­

tion. Dimensions given as constants must equal the dimensions of the corresponding arrays in the calling pro­

gram. In a DIMENSION statement, dummy identifiers may be used to specify adjustable dimensions for array

name arguments. For example, in the statement sequence:

FUNCTION TABLof(A,M, N, B,X, Y}

DIMENSION A(M,N}, B(10),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of a~ray B is given as a

constant. The various yalues given for M and N by the calling program must be those of the actual arrays which

the dummy A represents. The arrays may each be of different size but must have two dimensions. The arrays are

dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given abso­

lute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIVALENCE

statement i~ the FUNCTION subprogram.

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the func­

tion. Modification of implicit arguments from the calling program, such as variables in COMMON and DO loop

indexes, is not allowed. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROU­

TINE, BLOCK DATA, and another FUNCTION statement.

7.4. 1.1 Function Type - The type of the function is the type of identifier used to name the function •. This

identifier may be typed, implicitly or explicitly, in the same way as any other identifier. Alternatively, the

function may be explicitly typed in the FUNCTION statement itself by replacing the word FUNCTION with one

of the following.

INTEGER FUNCTION
REAL FUNCTION
COMPLEX FUNCTIO N
LOGICAL FUNCTION
DOUBLE PRECISION FUNCTION

5-73

For example, the statement

COMPLEX FUNCTION HPRIME{S,N)

is equivalent to the statements

Examples:

FUNCTION HPRIME(S, N)
COMPLEX HPRIME

FUNCTION MAY{RANGE,EP, YP,ZP)
COMPLEX FUNCTION COT{ARG)
DOUBLE PRECISION 'FUNCTION LIMIT{X, Y)

7.5 SUBROUTINE SUBPROGRAMS

"

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL statement. A SUBROU­

TINE subprogram begins with a SUBROUTINE statement and returns control to the calling program by means of

one or more RETURN statements.

7.5. 1 SUBROUTINE Statement

The SUBROUTINE statement has the form:

SUBROUTINE identifier(argument ,argument, •••)

This statement declares the program which follows to be a SUBROUTINE subprogram. The first identifier is the

subroutine name. The arguments in the list enclosed in parentheses are dummy arguments representing the argu­

ments of the subprogram. The dummy arguments must agree in number, order, and type with the actual arguments

used by the calling program.
- -

SUBROUTINE subprograms may ha'\i'e expressions, alphanumeric strings, array names, and subprogram names as

arguments. The dummy arguments may appear as scalar, array, or subprogram identifiers.

Dummy identifier:s which represent array names must be dimensioned within the subprogram by a DIMENSION 'or

type declaration statement. As in the case of a FUNCTION subprogram, either constants or dummy identifiers

may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear in an

EQUIVALENCE or COMMON statement in the SUBROUTINE subprogram.

A SUBROUTINE subprogram may use one or 'more of its dummy identifiers to represent results. The subprogram

name is not used for the J:'etum of results. A SUBROUTINE subprogram need not have any argument at all.

5-74

Examples: SUBROUTINE FACTOR(COEFF,N,ROOTS)
SUBROUTINE RESIDU(NUM,N,DEN,M,RES)
SUBROUTINE SERIES

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA, and

another SU BRO UTI N E statement.

7.5.2 CALL Statement

The CALL statement assumes one of two forms:

CALL identifier
CALL identifier (argument, argument, .•. ,argument)

The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings or subprogram identifiers; arguments

may be of any type, but must agree in number, order, type, and array size (except for adjustable arrays, as

discussed under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE statement of

the called subroutine. Unlike a function, a subroutine may produce more than one value and cannot be referred

to as a baiic element in an expression.

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments at all

are required, the first form is used.

Examples: CALL EXIT
CALL SWITCH(SIN,2.LE. BETA,X**4, Y)
CALL TEST(VALUE, 123,275)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the arguments.

Arguments which are constants or formed as expressions must not be modified by the subroutine.

7.5.3 RETURN Statement

The RETURN statement has the form:

RETURN

This statement returns control from a subprogram to the calling program. Normally, the last statement executed

in a subprogram is a RETURN statement. Any number of RETURN state'ments may appear in a subprogram.

5-75

7.6 ,BLOCK DATA SUBPRO~RAMS

A BLOCK DATA subprogram is a data specific~tion subprogram and is used to enter initial values into variables

in COMMON for use by FORTRAN subprograms and MACRO-lO main programs (see Chapter 9). No executab~e

statements may appear in a BLOCK DATA subprogram.

7.6.1 BLOCK DATA Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be the first

statement of the subprogram (see Chapter 6, Section 6.2.2) .

. 7.7 EXTERNAL STATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms. Such

subprogram names must be distinguished from ordinary variables by their appearance in an EX TERNAL statement.

The EXTERNAL statement has the form:

EXTERNAL identifier, identifier, .•. , identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an argu­

ment to anoJher subprogram mU,st have previously appeared in an external declaration in the calling program

(i .e., as an identifier in an EXTERNAL or CALL statement or as a function name in an expression).

Example: EXTERNAL SIN,COS

CALL TRIGF(SIN, 1. 5, ANSWER)

CALL TRIGF(COS, • 87, ANSWER)

END

SUBROUTINE TRIGF(FUNC,ARG,ANSWER) . '

ANSWER = FUNC(ARG)

RETURN

END

5-76

..

To reference external variables from a MACRO-lO program by name, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A /B/B (13) /C C(6,7)

7.8 SUMMARY OF PDP-10 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

General Form

ASSIGN i to m

CALL name (a 1 ,a2, ...)

CONTINUE

DO i m=m 1,m2,m3
GO TO i

GO TO m

GO TO m, (i l' i2, ...)

GO TO (i 1,i2, ...),m

IF (e1)i 1 ,i2,i3
IF (e2)s

PAUSE

PAUSE i
PAUSE 'h'

RETURN

STOP

END

DATA TRANSMISSION STATEMENTS

General Form

ACCEPT f

ACCEPT f, list

BACKSPACE unit

DECODE (n,f,v)list

END FILE unit

ENCODE (n,f,v)list

FORMAT (g)

PRINT f

PRINT f, list

5-77

Section References

4.1.3

7.5.2

4.4

4.3

4.1.1

4.1.3

4.1.3

4.1.2

4.2.1

4.2.2

4.5

4.5

4.5

7.5.3

4.6

4.7

Section References

5.2.9

5.2.9

5.3

5.4

5.3

5.4

5.1.1

5.2.3

5.2.3

General Form

PUNCH f

READ f

READ f, list

READ (unit, f)

READ (unit,f)list

READ (unit)list

READ (unit,name1)

READ (unit #R,f)list

READ (unit,f,END=c,ERR=d)list

READ (unit,f,END=c)list

READ (unit, f, ERR=d)1 ist

REREAD f,list

REWIND unit

SKIP RECORD unit

TYPE f

TYPE f,list

WRITE (unit,f)

WRITE (unit, f) list

WRITE (unit)list

WRITE (unit ,name1)

WRITE (unit HR, f)list

UNLOAD unit

SPECIACATION STATEMENTS

General Form

COMMON a(n , ,n2,.· .),b(n3,n4, .••), •••

COMPLEX a(n1, n2, .•.),b(n3,n4" ••), •••

DATA t,u, ..• ;1<l'k2,k3, •• ./

v,w, ••. ;1<4,k5,k6, .. '/ •.•

DIMENSION a(n 1 ,n2, ..•),b(n
"

n2, •.•), •••

DOUBLE PRECISION a(n , ,n2, •••),b(n3, n4, ...), .••

EQUIVALENCE (a{n 1" ••), b(n2, .••), ••.), •••

{c{n3,···),d(n4,·· .), •••), .•.

EXTERNAL y,z, ••.

IMPLICIT type 1 (1 ,-' 2),type2(13-14)" ••

5-78

Section References

5.2.4

5.2.7

5.2.7

5~2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.8

5.3

5.3

5.2.5

5.2.5

5.2.6

5.2.6

5.2.6

5.2.6

5.2.6

5.3

Section References

6.1.2

6.3

6.2. 1

6.1.1

6.3

6.1.3

7.7

6.3.1

~

Gene'ral 'Form ·Section Reference

INTEGER a(n1 ,n2, .•.), b(n3, n4 , .••), ..•

LOGICAL a(n 1 ,n2, •..),b(n3, n4 , •..), .••

NAMELIST /namela,b, .. ./nameic,d, .•.

REAL a(n 1,n2,·· .)b(n3,n4 , •..), ...

SUBSCRIPT INTEGER a(n1 ,n2, ..•),b(n3, ..•), .••

ARITHMETIC STATEMENT FUNCTION DEFINITION

6.3

6.3

5.1.2

6.3

6.3

General Form Section Reference

name(a,b, ..•)=e

NOTE:

a 1 ,a2,· •.

a,b,c,d

c

d

e

e 1

e2
f

g

'h'

i, i l' i 2' ...

are expressions

are va.riable names

is the statement number to which
control is transferred upon en­
countering an end-of-file

is the statement number to which
control is transferred upon en­
countering an error condition on
the input data.

is an expression

is a noncomplex expression

is a logical expression

is a format number

is a format specification

is an alphanumeric string

are statement numbers

is an intege~ constant

7.3

k1 ,k2,··· are constants of the general form i*k
where k is any constant

11,1 2, .••

list

m

m1,m2,m3

n1,n2,· ..

n

name

are letters

is an input/output list

is an integer variable name

are integer expressions

are dimension specifications

are the number of ASCII characters

is a subroutine or function name

5-79

s

t,u,v,W

type 1 , type2' •••

unit

v

y,z

are NAMEUST names

is a record number where I/O begins

is a statement (not DO or logical IF)

are variable names Or input/output lists

are type specifications

is an integer variable or constant specifying
a logical device number

is the starting address of the ASCII record
referenced

are external subprogram names

SECTION II

THE RUN TIME SYSTEM

The five chapters of this section contain information on LIMO, SUBPROGRAM

calling sequences, accumulator usage, compiler switches and diagnostic messqges,

and characteristics of the PDP-l0 from a FORTRAN programmer's point of view.

5-81

CHAPTER 8

LIMO

LIMO is a single file which contains all of the programs in the FORTRAN library. It is composed of three groups

of programs:

(1) The FORTRAN Operating System.

(2) Science library.

(3) FORTRAN Utility Subprograms.

8.1 THE FORTRAN OPERATING SYSTEM

,.'

The system programs in the FORTRAN Operating System act as the interface between the user's program and the

PDP-10. All of these programs are invisible to the user's program. The FORTRAN Operating System is loaded

automatically from LIB40 and resides in the user's core area along with the user's main programs and any library

functions and subroutines that his programs reference.

8.1.1 FORSE.

FORSE. is the main program of the FORTRAN Operating System and is loaded whenever a FORTRAN main pro­

gram is in core. The primary functions of FORSE. are

a. FORMAT statement processing,

b. Dispatching of all UUOs, and

c. Control of I/O devices at runtime.

8.1.1.1 FORMAT Processing - FORSE. assumes that all FORMAT statements are syntactically correct since the

syntax of each statement is checked by the compiler. FORSE. scans the FORMAT statements and performs the

indicated I/O operations. FORSE. invokes the required conversion routine to actually do data conversion. The

conversion routine that is used is a function of the conversion indicated in the FORMAT statement and of the

data type of the element in the I/O list.

5-83

8.1.1.2 UUO Dispatching - Some ~UOs are handled mi~im~lIyby FORSE. (NUN, NlOUT, MTOP), but the

others are handled almost entirely within FORSE.

8.1.1.3 I/O Device Control - FORSE. executes the required carriage control of output devices that are phys­

tcal listing devices (LPT, TTY) and stores the carriage control character at the beginning of each line if the out­

put is going to a retrievable medium for deferred listing. When listings are deferred, the appropriate switch in

PIP can be used to I ist the file and execute the required carriage control.

8 .• 1. 1.4 Additional Functions of FORSE. - FORSE. is responsible for the following:

a. Control of REREAD and ENCODE/DECODE features.

b. Interaction with EOFTST and READ (unit,f,END=C)list to handle end-of-file testing.

c. Control of the assignment of devices to soft~are channels.

d. Control of the handling of filenames for I/O associated with directory devices.

e. Control of the opening and closing of data files.

f. Control the handling of the functions associated with the MAGDEN, BUFFER, IBUFF, OBUFF,
DEFINE FILE, TRAPS, and RELEASE subrO\Jtines.

8.1.2 I/O Conversion Routines

The I/O conversion routines convert data from internal PDP-10 format to external format or vice versa. The

calls to these routines are implied by FORMAT and data transfer statements in the FORTRAN source program.

The routines reside as relocatable binary files in LIB40. REl.

Table 8-1
I/O Conversion Routines

Routine Description

ALPHI. Alphanumeric ASCII input conversion

ALPHO. Alphanumeric A~CII output conversion

DIRT. Double precision input conversion

DOUBT. Double precision output conversion

FLIRT. Floating point input conversion

FLOUT. Floating point output conversion

INTI. Integer input conversion

INTO. Integer output conversion

LINT. Logical input conversion

LOUT. Logical output conversion

5-84

Routine

BINWR.

OCTI.

OCTO.

NMLST.

8. 1.3 FORTRAN UUOs

Table 8-1 (Cont)
I/O Conversion Routines

Description

Binary I/O

Octal input conversion

Octal output conversion

Namelist

Operation codes 000 through 077 in the PDP-l0 are programmed operators, sometimes referred to as UUO's (Un­

implemented User Operators) since from a hardware point of view their function is not prespecified. Some of

these op-codes trap to the Monitor and the rest trap to the user program. FORTRAN UUO's trap to the FORTRAN

Operating System UUO Handler and are then processed.

UUO 9p
Code

Table 8-2
FORTRAN UUOs

Meaning

---------~--------_r--_i
RESET.

IN.

OUT.

DATA.

FIN.

RTB.

WTB.
MTOP.

SLIST.

INF.

OUTF.

RERED.

NLI.

015

016

017

020

021

022

023

024

025

026

027

030

031

Resets all devices, clears tables and flags.

Initializes device for formatted input, does a LOOKUP.

Initializes device for formatted output, does an ENTER.

Converts one data element from external to internal for­
mdt or vice versa depending upon whether input or out­
put is being done. Actual data transfer takes place.

Terminates data transfer statements ..

Initializes device for unformatted input, similar to IN ..

Initializes device for unformatted output, similar to OUT.

Performs Magtape operations, rewind, rewind and unload,
bac,kspace, end file, skip, write blank record.

Converts entire arrays from external to internal format or
vice versa depending upon whether input or output is
being done. Actual data transfer takes place.

IFILE. Sets up input filename, similar to IN. but with
specified filename.

OFILE. Sets up output filename, similar to OUT. but
with specified filename.

REREAD. Reread last record.

Namel ist input.

5",,85 '.

UUO
Op

Code

NLO. 032

DEC. 033

ENC. 034

Table 8-2 (Cont)
FORTRAN UUOs

Meaning

Namelist output.

DE,CODE.

ENCODE.

~\8.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library and FORTRAN Utility Subprograms extend the capabilities of the FORTRAN language. ,These

subprograms are called explicitly by the user. The subprograms include the built-in FORTRAN math functions

and the user-called utility subroutines which provide optional I/O capabilities and control of and information

about the program's environment. The optional I/O capabilities and environmental control are achieved by the

subroutines from interactions with the FORTRAN Operating System.

8.2.1 FORTRAN IV Library Functions

This section contains descriptions of all standard function subprograms provided with the FORTRAN IV library for

the PDP-lO. These functions are called by using the function mnemonic as a function name in an arithmetic ex­

pression.

..5-86

\J1
I

00
.....:J

Function

Absolute value:
Real
Integer
Double precision
Complex to real

Conversion:
Integer to r~al
Rea I to integer
Double to real
Real to double
Complex to real
(obtain real part)
Complex to real
(obtain imaginary
part)
Real to complex

Truncation:
Real to real
Rea I to integer
Double to integer

Remaindering:
Real
Integer
Double precision

Maximum Value:

Minimum Value:

Table 8-3
FORTRAN IV library Functions

Mnemonic Definition
Number of Type of Storage External Calls
Arguments Argument Function (Decimal)

ABS I arg I 1 Real Real 11
lABS 'arg I 1 Integer Integer 11
DABS 'arg I 1/2 1 Double Double 8
CABS c=(x2 +y2) , 1 Complex Real 22 SQRT

FLOAT 1 Integer Real 9
IFIX Result is largest integer :5.0 1 Real Integer 12
SNGL 1 Double' Real 16
DBlE 1 Real Double 5

REAL 1 Complex Real 4

AI MAG 1 Complex Real 5

CMPLX c=Arg 1 +i *Arg2 2 Real Complex 5

AINT { S;gn of org. } 1 Real Real 12
INT largest integer 1 Real Integer 13
IDINT :5.larg I " 1 Double Integer 18

AMOD { Too .. mo;nde, } 2 Real Real 28 ERROR. I TRAPS
MOD when Argl is 2 Integer Integer 6
DMOD divided by Arg 2 2 Double Double 79

AMAXO

{ Mox (kg!, A..g2, ..• J Integer Real

{ 3! }

FLOAT
AMAX1

{ ~2}
Real Real

MAX 0 Integer Integer
MAX 1 Real Integer IFIX
o MAX 1 Double, Double 22

,

AMINO

{ M; n (A'9.!' Arg2' .•• J Integer Real

{ 3! }

FLOAT
AMINl { ~2} Real Real
MINO Integer Integer
MINl Real Integer IFIX
DMINl Double Double 22

--- -~I----

01
1
00
00

Function

Transfer of Sign:
Real
,Integer
Double precision

Positive Difference:
Real
Integer

Exponential:
Real' '"

Double
Complex

logarithm: ,,'
Real

Double,

Complex

Square Root:
Real
Double
Complex

Sine:
Real (radians)

, Real (degrees)
Double (radians)

, Complex

Cosine:
Real (radians)
Real (degrees)
Double (radians)
Complex

Mnemonic

SIGN
ISIGN
DSIGN

DIM
101M

EXP
DexP
CEXP

ALOG
AlOG10
DlOG
DlOG10
CLOG

SQRT
DSQRT
CSQRT

SIN
SIND
DSIN
CSIN

COS
COSO
DCOS
CCOS

Table 8-3 (Cont)
FORTRAN IV Library Functions

Definition
Number of Type of
Arguments Argument Function

{ Sgn(Arg2)*fArg1 ~
2 Real Real
2 Integer Integer
2 Double Double

{ Arg ~ -Min(Arg1 ' Arg2) }
2 Real' Real
2 Integer Integer

{eArg } 1 Real Real
1 Double Double"
1 Complex Comp'lex

loge (Arg) 1 Real Real

log10 (Arg) 1 Real Real
loge (Arg) 1 Double Double

10910 (Arg) 1 Double Double
loge (Arg) 1 Complex Complex

1/2
(Arg) 1/2 1 Re~l Real

(Arg) 1/2 1 Double Double

c=(x+ i y) 1 Complex Complex

1 Redl Real

{ sin (Arg) } 1 Real .. Real
1 Double Double
1 Complex Complex

.

1 Real Real

{ cos {Arg} }
1 Real Real
1 Double Double
1 Complex Complex

Storage Extemal Calls
(Decimal)

18
18
11

7
10

59 ERROR.
201

73 EXP ,SIN,COS,
AlOG,ERROR.

54 ERROR.
54 ERROR.

188
188
56 AlOG,ATAN2,

SQRT,ERROR.

44 ERROR. '
89
82 SQRT

71
71 "

218
84 SIN ,SINH,COSH,

AlOG,EXP

71
71

218
84 SIN,SINH,COSH,

AlOG,EXP

U'I

" CX)

~

Function
" ; ,

- Hyperbolic:
Sine
Cosine
Tangent

Arc - sine

Arc - cosine

Arc tangent
Real
Double
quotient of

two arguments

"

Complex Conjugate

Random Number

..

- -

Mnemonic

SINH
COSH
TANH

ASIN

ACOS

ATAN
DATAN

ATAN2

DATAN2

CONJG

RAN

CHANG

Table 8-3 (Cont)
FORTRAN IV Library Functions

Definition
Number of Type of
Arguments Argument Function

sinh (Arg) 1 Real Real
cosh (Arg) 1 Real Real
tanh (Arg) 1 Real Real

asin (Arg) 1 Real Real

acos (Arg) 1 Real Real

atan (Arg) 1 Real Real
atan (Arg) . 1 Double Oouble

atan (ArglArg2) 2 Real Real

atan (Arg l Arg2) 2 Double Double

Arg=X + iY, C=X -iY 1 Complex Complex

result is a random number 1 Integer, Real
Real,
Double,or
Complex

converts sign magnitude
numbers to 2's complement 1 Real Real
and vice versa.

Storage External Calls
(Decimal)

53 EXP,ERROR.
11 EXP,ERROR.
46 EXP

37 ATAN,SQRT,
ERROR.

39 ATAN,SQRT,
ERROR. -

53
192 ~

39 ATAN,ERROR.,
TRAPS

65 DATAN, ERROR.

6

32

8

8.2.2 FORTRAN IV Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within-the FORTRAN IV library

f$)r the PDP-10., These subprograms are closed subrou!ines and-are called with a CAll statement .

Subroutine Name

BUFFER

CHAIN

DATE

*For explanation, see page 5-80

•
Table 8-4

FORTRAN IV library Subroutines

Effect

Allows t~e programmer to specify buffering for a
device at one of fifteen levels.

CAll BUFFER (unit* , in/out, number)

where in/out is 1 for input buffering only, 2 for
output buffe'ring only, or 3 for both, and number is
the level of buffering (1 < number < 15). If number
is not specified, 2 is assumed. In calls to two en­
tries in BUFFER, IBUFF and OBUFF, the programmer
can specify a non-standard buffer size if the records
in his data files exceed standard buffer sizes set by
the Monitor. (See Table 12-1.) The programmer
cannot c~ange buffer sizes for the disk; IBUFF
and OBUFF are designed primarily for Magtape.

CAll IBUFF (d,n,s)

where d is the device number, n is the number of
buffers, and s is the size of buffer.

Reads a segment of coding (Chain file) into core
and links it to a progrom already residing in core.

CAll CHAIN (type,device,file)

where type is 0 (the next Chain file is read into core
immediately above the permanent resident area) or
type is 1 (the next Chain file is read into core im­
mediately above the FORTRAN IV program which
marks the end of the removable resident). Device
is 0,1,2, •.. FORTRAN IV logical device number
(Chain files can be stored on DSK, MTA, or DTA
only) corresponding to the device where the Chain
file can be found. File is 0 for reading the next
file from the selected magnetic tape or 1,2, ... for
the number of the magnetic tape unit where the
Chain file is locoted.

Places today's date as left-justified ASCII characters
into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in the
form

dd-mmm-yy

5-90

Subroutine Name

DATE (cont)

DUMP

EOF1 (unit*)

EOFC(unit*)

ERRSET

EXIT

IFILE

*For explanation, see page 5-80

Table 8-4 (Cont)
FORTRAN IV Library Subroutines

Effect

where dd is a 2-digit day (if the first digit is 0, it
is converted to a blank), mmm is a 3-digit month
(e.g., MAR), and yy is a 2-digit year. The date
is stored in ASCII code, left-justified in the two
words.

Causes particular portions of core to be dumped and
is referred to in the following form:

CALL DUMP (L1,U1,F1,· •• ,Ln,Un,Fn)

where L. and U. are the variable names which give
the limi~s of co:e memory to be dumped. Either
Li or Ui"may be upper or lower limits. Fi is a
number indicating the format in which the dump is
to be performed: O=octa I, l=real, 2=i nteger, and
3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If Fn is
missing, the last section is dumped in octal. If
Un and Fn are missing, an octal dump is made from
L to the end of the job area. If Lnl Unl and F n
are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT •

Skips one end-of-file terminator when found and
returns the value TRUE if an end-of-file was found
and FALSE if it was not found. Subsequent termi­
nators produce an error message.

Skips more than one end-of-file terminators when
found and returns the value TRUE if an end-of-file
was found or FALSE if it was not found.

Allows the user to control the typeout of execution­
time arithmetic error messages, ERRSET is called
with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed
after N occurances of that error message. IF ERRSET
is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, ter­
minates the execution of the program.

Performs LOOKUPs for files to be read from DECtape
and disk .

... CALL IFI LE(unit*, filnam)

where filnam is a filename consisting of five ASCII
characters.

5-91

Subroutine Name

.ILL

LEGAL

MAG DEN

OFILE

PDUMP

RELEAS

SAVRAN

SETRAN

*For explanation, see page 5-80

Table 8-4 (Cont)
FORTRAN IV Library Subroutines

Effect

Sets the ILLEG flag. If the flag is set and an illegal
character is encountered in floating-point/double­
precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-point/
-double-precision input, the corresponding word is
set to zero.

CALL LEGAL

Allows specification of magnetic tape density and
parity.

CALL MAGDEN(unit* ,density ,parity)

where density is the tape density desired (200= 200
bpi,556=556 bpi, or 800=800 bpi) and parity is
the tape parity desired (O=odd, 1 =even). Even
parity is intended for use with BCD-coded tapes
only.

Performs ENTERs for files to be written on DECtape
and disk.

CALL OFILE (unit* ,filnam)

where filnam is a filename consisting of five ASCII
characters.

Is referred to in the following form:

CALL PDUMP(L1,U1,F1/·· .,Ln/Un/En)

where the arguments are the same as those for DUMP.
PDUMP is the same as DUMP except that control
returns to the calling program after the dump has
been executed.

Closes out I/O on a device initialized by the
FORTRAN Operating System and returns it to the
uninitialized state.

CALL RELEAS (unit*)

SAVRAN is called with one argument in integer mode.
SAVRAN sets its argument to the last random number
(interpreted as an integer) that has been generated
by the function RAN.

SETRAN has one argument which must be a non­
negative integer < 231. The starting value of the
function RAN is set to the value of this argument,
unless the argument is zero. In this case, RAN uses
its norma I start i ng va I ue .

5-92

Subroutine Name

SLITE(i)

SLITE(i, n

SSWTCH (i , j)

TIME

Table 8-4 (Cont)
FORTRAN IV library Subroutines

Effect

T urns sense lights on or off. i is an integer ex pres -
sion. For 1 <i<36 sense light i will be turned on.
If i =0, all sense lights will be turned off.

Checks the status of sense light i and sets the var­
iable i accordingly and turns off sense light i. If
i is on, i is set to 1; and if i is off, i is set to 2.

Checks the status of data switch i (0< i < 35) and sets
the variable i accordingly. If i is set down, i is
set to 1; and, if i is up, i is set to 2.

Returns the current time in its argument(s) in left­
justified ASCII characters. If TIME is called with
one argument,

CALL TIME(X)

the time is in the form

hh : mm

where hh is the hours (24-hour time) and mm is the
minutes. If a second argument is requested,

CALL TIME(X, Y)

the first argument is returned as before and the sec­
ond has the form

ss. t

where ss is the seconds and t is the tenths of a sec­
ond.

5-93

CHAPTER 9

SUBPROGRAM CALLING SEQUENCES

This chapter describes the conventions u~d in writing MACRO subprograms which can be called by FORTRAN IV

programs, and FORTRAN subprograms which can be linked to MACRO main programs. The reader is assumed to

be familiar with the following texts:

MACRO-l0 Assembler (DEC-l0-AMZA-D)
Section 2.5.8 "Linking Subroutines"
Figure 7-1, "Sample Prog~am, CLOG"

Time-Shoring Monitors: 10/40, 10/50 (OEC-T9-MTZA-D)
Section 3.2.2 "Loading Relocatable Binary Files"

Science Library and FORTRAN Utility Subprograms
(DEC-lO-SFLE-D)

How to Use This Manual - FORTRAN coli ing sequences

9.1 MACRO SUBPROGRAMS CALLED BY FORTRAN MAIN PROGRAMS

9.1. 1 Calling Sequences

The FORTRAN calling sequence, in the main program, for a subroutine is

where

FORTRAN Code

CALL subprog (adr l' adr 2' ...)

subprog

adr l , adr2,···

code l' code2

,

MACRO Code (Generated by Compiler)

JSA 16, subprog
ARG code 1, adq
ARG code2, adr2 .

is the nome of the subprogram

are the addresses of the arguments

are the accumulator fields of the ARG instructions
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

o Integer argument 4 Octal argument
1 Unused 5 Hollerith argument
2 Real argument 6 Double-precision
3 Logical argument argument

7 Complex argument

5-95

An exa~ple of a FORTRAN calling sequence for a subroutine and the MACRO-10 coding g&\etated by the ',,;]

"' co'mpiler is given below.
\ ','/\ t ',~

FORTItAN ,Code.'

CAll PROG 1 (REAL,INT)

MACRO'tod~

JSA 16, PRpG 1

ARG 02, REAL

ARG 00, INT

,',

The MACRO code generated by the compi ler is the same for subroutines and functions; however, the FORTRAN

code is different.

9.1.2 Returning of Answers

A subroutine returns to its answers in specified locations In the main program. These locations are often given

as argument names or as variable names.

A function returns its answer in accumulotor 0 (if a single word result) or in accumulators 0 and 1 (if a double­

prec.ision or complex result). A function may also return its answer in specified. locations (given by argument

names in the CALL) or variable nameSi in any event, however, it must return on answer in occumulator 0 (or'

occumulators 0 and 1).

A MACRO subprogram access COMMON by declaring as external common block names for labelled

COMMON and by declaring .COMM .. as external for blank common. A common block name always refers

to the same core location as the first element following the block nome in a COMMON statement. MACRO

Subprograms may refer to the remainder of the variables in the common block through additive globals.

9.1.3 Use of Accumulators
., ,

For accumulator usage, see Chapter 10, Accumulator Conventions for POP-tO Main Programs and Subprograms.

9.1.4 Examples of Subprogram Linkage

Three examples of subprogram linkage, one of a subroutine, one of a function subprogram, and one of a

FORTRAN main program and MACRO subprogram both referencing COMMON, are given below.

9. 1.4. 1 Example of a'Subroutine linkage - The coding of the subroutine in this example is followed by the

calling sequence.

5-96

ENTRY SUBA

SUBA: 0
MOVE 1,@0(16)
IMULI 1, 12
MOVEM 1 ,@0(16)
JRA 16, 1(16)

FORTRAN Calling Sequence

CALL SUBA(INT)

iGET FIRST ARGUME NT
iMULTIPLY BY 10
iRETURN RESULT IN ARGUMENT
iRETURN TO MAIN PROGRAM

MACRO Code (Generated by Compiler)

JSA 16, SUBA
ARG 00, INT

9.1.4.2 Example of a Function Subprogram Linkage - The coding of the function subprogram in this example

is followed by the calling sequence.

ENTRY FNC

FNC: 0
MOVE 00,@0(16)
MOVE 01,@1(16)
IMUL 00, 01

JRA 16, 2(16)

FORTRAN Calling Sequence

X =FNC (I, 10)

iPICK UPFIRST ARGUMENT
iPICK UP SECOND ARGUMENT
iMULTIPLY BOTH ARGUMENTS
iRESULT IN ACO
iRETURN WITH ANSWER IN ACO

MACRO Code (Generated by Compiler)

JSA~15, FNC
ARG 00, I
ARG 00, CONST.

9.1.4.3 Example of a FORTRAN Main Program and a MACRO Subprogram Both Referencing COMMON

5-97

T F40 V013 28-NOV-69 12:24

DIMENSION A(5), B(3 ,4) ,C(3)
1M BLOCK 0

COMMON C

COMMON/A/A/B/B/D/D

A(2)=B(2,3)+C(3)+D '"
MOVE 02,D
FADR 02,B+7
FADR 02,C+2
MOVEM 02,A+l

CALL SUB2
.JSA 16,SUB2

END

JSA 16,EXIT
MAIN.% RESET, 00,0

U1
JRST 1M

I
1.0
00 COMMON

C /.COMM./ 0
A /A/ 0
B /B/ 0
D /D/ 0

SUBPROGRAMS

FORSE.
JOBFF
SUB2
EXIT

SCALARS

D 0

ARRAYS

U1
I

\0
\0

A
B
C

MAIN.

o
o
o

ERRORS DETECTED: 0

2K CORE USED

.MAIN MACRO. V36 12:23 28-NOV-69

000000 000000
000001 200000
000002 202000
000003 200000
000004 202000
000005 267716

NO ERRORS DETECTED

PROGRAM BREAK IS 000006

SYMBOL TABLE

A
SUB2

000000 EXT
000000' INT

000000
000002
000003
000000
000000
000000

SUB2:

B
.COMM.

EXTERNAL .COMM. ,A,B,D
ENTRY SUB2
o
MOVE
MOVEM
MOVE
MOVEM
JRA
END

000000 EXT
000003' EXT

0,A+2
0,B+3
O,.COMM.
O,D
16,(16)

D

~

;GET A(3)
;STORE IN B(I ,2)
;GET C
;STORE IN D
;RETURN TO FORTRAN PROGRAM
;END

000004' EXT

003466 IS THE PROGRAM BREAK
IORTR. 000334

STORAGE MAP LOOK. 002034
MTOP. 000000

MAIN. 000140 000035 MTPZ.
..

002030
NLI. 000000

MAIN. 000146 NLO. 000000

.COMM. 000150 FORSE. 000203

A 000153 IIB. 001141

B 000160 IN. 000000

D 000174 INF. 000000
INP . 002007

• MAIN 000175 000006 INPDV. 002203
NXTCR. 001162

SUB2 000175 NXTlN. 001172
ONLY 1. 002204

JOBDAT 000203 000000 OUT. 000000
OUTF. 000000

FORSE. 000203 002374 OUTT. 002013
OVFLS. 002202

U1 BUFCA. 001624 PAKFL. 002176

I BUFHD. 002337 RERDV. ' 002501
I-'
0, CHINN. 001121 RERED. 000000
0

ClOS. 002002 RESET. 000000

ClOS!. 002000 RIN. 000245

ClROU. 001763 RTB. 000000 "

ClRSY. 001770 SESTA. 002020

DADDR. 002276 SETOU. 001755

DATA. 000000 SLIST. .000000

DEPOT. 001004 STAT. 001774

DEVIC. 002477 TCNT1. 002506

DEVNO. 002172 TCNT2. 002507

DYNDV. 002212 TEMP. 002232

OYNND. 002356 TNAM1. 002133

ENDLN. 001047 TANM2. 002132

EOFFl. 002205 TPNTR. 002505

EOFTS. 001214 TYPE. 002504

EOl. 002275 UUOH. 001234

FI. 001112 WAIT. 002024

FIN. 000000 WTB. 000000

FMTBG. 002274 XIO. 000424

FMTEN. 002273
FNCTN. 001751 ERROR. 002577 000431

BPHSE. 002777 ALPHO. 003250
DEVER. 002667
DPRER. 002767 DDIRT 003252 000002
DUMER. 003041
ENDTP. 002772 DIRT. 003252
ERROR. 002577
ILLCH. 002634 DDOUBT 003254 000002
ILLMG. 003007
ILRED. 003025 DOUBT. 003254
ILUUO. 003051
INIER. 002654 DFLIRT 003256 000002
LISTB. 002737
LOGEN. 002627 FLIRT. 003256
MSNG. 002707
NMLER. 003020 DFLOUT 003260 000002
NOROM. 002720
PARER. 003034 FLOUT. 003260
QTYI 003170
REDER. ·002746 DINTI 003262 000002
TBLER. 002700

\JI UUOM 003067 INTI. 003262 "
I WLKER • 002731

0 DOCTI 003264 000002
EXIT 003230 000002 OCTI. 003264

EXIT 003230
EXIT. 003231 DINTO 003266 000002

IOADR. 003232 000014 INTO. 003266

IOADR. 003232 DOCTO 003270 000002

DALPHI 003246 000002 OCTO. 003270

ALPHI. 003246 DLINT 003272 000002

DALPHO 003250 000002
LINT. 003272

DLOUT 003274 000002

LOUT. 003274

DNMLST 003276 000003

DELIM. 003300 lLLEG. 003465
NMLST. 003276 LEGAL 003462

DTFMT 003301 000002 LOADER 3K CORE
3+3K M/J;)(1225 WORDS FREE

TFMT. 003301

DBINWR 003303 000002

BINDT. 003303

BINEN. 003303
BINWR. 003303
INPT. 003303

DTPFCN 003305 000002

TPFCN. 003305

DEVTB. 003307 000123 .'#'
".

U1
I DATTB. 003363 '-

I-'
0 DEVLS. 003344
'" DEVND. 003352

DEVTB. 003307
DVTOT. 000035

(.tj

."

MBFBG. 003352
.. ~ ,
'"

MTABF. 003353
MTACL. 003421 :1~

NEG1. 000005 :
NEG2. 000007
NEG3. 000003 .,'" .'

NEG5. 000002
TASP1. 003363 ,.
TABPT. 003362

., ..
PDLST. 003432 000025

PDLST. 003432 '1 ,
,-"

ILL 003457 000007 ~

ILL 003457 (

9.2 MACRO MAIN PROGRAMS WHICH REFERENCE FORlTRAN SUBPROGRAMS

9.2.1 Calling Sequences

The MACRO code which calls the FORTRAN subprogram should be the same as that produced by the

FORTRAN IV compiler when it calls a subroutine. That is:

MACRO Code

JSA 16, subprog
ARG code 1 , adq
ARG code2' adr2

where
subprog

adr1, adr2 ,·· .

code l' code2

is the name of the subprogram

are the addresses of the arguments

are the accumulator fields of the ARG instruction
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

° Integer argument-
1 Unused
2 Real argument
3 Logical argument
4 Octal argument
5 Hollerith argument
6 Double-precision argument
7 Complex argument

Both subroutines and functions are called in this manner.

9.2.2 Returning of Answers

A FORTRAN subroutine returns its answers in specified locations in the main program. These locations may be

given as-variable names in COMMON or as argument names.

A FORTRAN function returns its answer in accumulator 0, if a single word result, or in accumulators ° and 1,

if a double-precision or complex result. A function may also return its answer in specified locations given by

argument names in the CALLI or variable names in COMMON; in any event I however I it must return an answer

in accumulator a (or accumulators a and 1).

If it is desired to reference a common block of data in both the MACRO main program and the FORTRAN sub­

program, it is necessary to set up the common area first by loading a FORTRAN BLOCK DATA program before

the MACRO main program and the F ORTRA N subprogram.

5-103

9.2.3 Example of Subprogram Linkage

The following is an example of a FORTRAN subrouti~ being called by a MACRO main program. Both programs

reference common data. Read and write statements have been omitted for simplification. Because the FORTRAN

operating system, FORSE., sets up I/O channels at run time, the MACRO programmer must be sure not to ini­

tialize a device on a channel that FORSE. will then try to use, unless he releases the device before FORSE. is

called. FORSE. initializes the first device encountered in the user program on software channell, the second

on channel 2, etc.

It is possible to release a device from its associated channel in a FORTRAN program by a call to the subroutine

RElEAS. Channels one through seventeen are available for I/O. If a FORTRAN user wishes to write MACRO

programs which do I/O, he may use either F9RTRAN UUO's or the channel numbers less than or equal to seven­

teen but greater than ,the largest number used by FORSE.

The FORTRAN RESET. UUO should be the first instruction executed in any program which accesses FORTRAN

subroutine$. For this reason the F.ORTRAN operating system, which contains the FORTRAN UUO handler

routine, must be declared ext~mal in the MACRO main program. This causes FORSE. to be loaded. In gene~al,

any program in the FORTRAN library referenced in,a MACRO program must be declared external. This results

in the searching of LIB40 by the Linking Loader and loading the referenced program •

•

S-104

BLKDTA.F4 F40 V016 22-JAN-70 15:46

1M BLOCK 0 BLOCK DATA

COMMON/ A/ A/8/B/C/C

COMMON D

DIME NSION A(5) ,B(2,3)

END

DAT. BLOCK 0

COMMON
A /A/ 0
B /B/ 0
C /C/ 0
D /.COMM./ 0

U1
I

SUBPROGRAMS
I-'
0

JOBFF U1

SCALARS

C 0
D 0

ARRAYS

A 0
B 0

DAT. ERRORS DETECTE D: 0

2K CORE USED

;MAIN MACRO. V40 16:05 22-JAN-70
START .MAC

000000 015000 000000
000001 200000 000000
000002 202000 000000
000003 200000 000000
000004 202000 000000
000005 200040 000002
000006 202040 000005
000007 266700 000000

000010 266700 000000

NO ERRORS DETECTED
U1
I

I-' PROGRAM BREAK IS 000011 0
0'1

START . MAC SYMBOL TABLE

A 000001' EXT
C 000003' EXT
START 000000' ENT

..

",L

ENTRY
EXTERNAL

START: RESET.
MOVE
MOVEM
MOVE
MOVEM
MOVE
MOVEM
JSA
JSA

END

ARGS
EXIT.
.COMM.

START

00,0
O,A
O,B
O,C
O,.COMM.
1,A+2
1,B+5
16,ARGS
16 ,EXIT.

START

.COMM. ,A, B,C,ARGS,FORSE. ,EXIT.

000007' EXT
000010' EXT
000004' EXT

;00 FORTRAN UUO RESET, FOUND IN FORSE.
;GET A(1)
;STORE IN B(l,1)
;GET C
;STOREIN D
;GET A(3) .
iSTORE IN B(2,3)
;GO TO FORTRAN SUBROUTINE ARGS
iEXIT. FORTRAN EXIT ROUTINE WHICH PRINTS
;our SUMMARIES AND ALSO CALLS MONITOR
;LEVEL EXIT UUO. USER HAS OPTION TO USE
;EITHER

;END

B
FORSE.

000002' EXT
000000 EXT

ARGS.F4 F40 V016 22-JAN-70 15:46

1M BLOCK O. SUBROUTINE ARGS •
COMMON / A/ A/B/B/C/C

COMMON 0

DIMENSION A(5),B(2,3)

A(l)=B(1 ,1)+C+O
MOVE 02,C
FAOR 02,0
FAOR 02,B
MOVEM 02,A

RETURN
JRST 2M

END

JRST 2M
Ol ARGS% ARG 00,0 I
~ MOVEM 15, TEMP. 0
..J MOVEM 16,TEMP.+1·

JRST 1M
2M MOVE 15, TEMP.

MOVE 16,TEMP.+1
JRA 16,0(16)

COMMON
A /A/ 0
B /B/ 0
C /C/ 0
0 /.COMM./ 0

SCALARS

ARGS 17
C 0
0 0

ARRAYS

A 0
B 0

ARGS ERRORS DETECTED: 0
2K CORE USED

003471 IS THE LOW SEGMENT BREAK

.MAIN STORAGE MAP 16:06 22-JAN-70

STARTING ADDRESS 000155 PROG • MAIN FILE START

OAT. 000140 000015

U1 OAT. 000140 A 000140 B 000145 C 000153 ,
I

.COMM. 000154 t-'
0
co .MAIN 000155 000011

START 000155

ARGS 000166 000020

ARGS 000174

JOB OAT 000206 000000

FORSE. 000206 002374

BUFCA. 001627 BUFHD. 002342 CHINN. 001124 CLOS. 002005
CLOSI. 002003 CLROU. 001766 CLRSY. 001773 DADDR. 002301
DATA. 000000 DEPOT. 001007 DEVIC. 002502 DEVNO. 002175
DYNDV. 002215 DYNND. 002361 ENDLN. 001052 EOFFL. 002210
EOFTS. 001217 EOL. 002300 FI. 001115 FIN. 000000
FMTBG. 002277 FMTEN. 002276 FNCTN. 001754 FORSE. 000206
lIB. 001144 IN. 000000 INF. 000000 INP. 002012
INPDV. 002206 IORTR. 000337 LOOK. 002037 MTOP. 000000
MTPZ. 002033 NLI. 000000 NLO. 000000 NXTCR. 001165 •
NXTLN. 001175 ONLYI. 002207 OUT. 000000 OUTF. 000000
OUTT. 002016 OVFLS. 002205 PAKFL. 002201 RERDV. 002504

RERED. 000000 RESET. 000000 RIN. 000250 RTB. 000000
SESTA. 002023 SETOU. 001760 SLIST. 000000 STAT. 001777
TCNTt. 002511 TCNT2. 002512 TEMP. 002235 TNAM1. 002136
TNAM2. 002135 TPNTR. 002510 TYPE. 002507 UUOH. 001237
WAIT. 002027 WTB. 000000 XIO. 000427

ERROR. 002602 000431

BPHSE. 003002 DEVER. 002672 DPRER. 002772 DUMER. 003044
ENDTP. 002775 ERROR. 002602 IllCH. 002637 IllMG. 003012
IlRED. 003030 ILUUO. 003054 INIER. 002657 LISTB. 002742
lOGEN. 002532 MSNG. 002712 NMlER. 003023 NOROM. 002723
PARER. 003037 QTY1 003173 REDER. 002751 TBlER. 002703
UUOM 003072 WlKER. 002734

EXIT 003233 000002

EXIT 003233 EXIT. 003234

IOADR. 003235 000014
U1
I

IOADR. 003235 ~
0
~

DALPHI 003251 000002

ALPHI. 003251

DALPHO 003253 000002

ALPHO. 003253

DDIRT 003255 000002

DIRT. 003255

DDOUBT 003257 000002

DOUBT. 003257

DFLIRT 003261 000002

FLIRT. 003261

OF lOUT 003263 000002

FlOUT. 003263

DINTI 003165 000002

INTI. 003265

DOCTI 003267 000002

bCTI. 003267

DINTO 003271 000002

INTO. 003271

DOCTO 003273 000002

OCTO. 003273

DLINT 003275 000002

LINT. 003275
'-

DLOUT 003277 000002

LOUT. 003277

DNMlST 003301 000003 ..
DELIM. 003303 NMLST. 003301

DTFMT 003304 000002

VI TFMT. 003304
I

I-' DBINWR 003306 OOOOO~ I-'
0

.
BINDT. 003306 BINEN. 003306 BINWR. 003306 INPT. 003306

DTPFCN 003310 000002

TPFCN. 003310

DEVTB. 003312 000123

DATTB. 003366 DEVLS. 003347 DEVND. 003355 DEVTB. 003312
DVTOT. 000035 MBFBG. 003355 MTABF. 003356 MTACL. 003424
NEG1. 000005 NEG2. 000007 NEG3. 000003 NEG5. 000002

/ TABP1. 003366 TABPT • 003365

PDLST. 003435 000025

PDLST. 003435

ILL 003462 000007

ILL 003462 ILLEG. 003470 LEGAL 003465

LOADER 3K CORE
3+3K MAX 1222 WORDS FREE

10.1 LOCATIONS

CHAPTER 10

ACCUMULATOR CONVENTIONS FOR
MAIN PROGRAMS AND SUBPROGRAMS

Locations specified in the calling sequence for a FORTRAN subprogram may be either required locations or

defined locations. A required location is a memory location whose address is speci.fied in the calling sequence

for a subprogram. For example, X is a required location in the call ing sequence

JSA 16, SQRT
ARG X

A defined location is a memory location whose address is specified in the definition of a calling sequence. The

location does not appear in the calling sequence. For example in the calling sequence

MOVEI 16, MEMORY
PUSHJ 17, DFAS.O

MEMORY is required, and ACO, AC1, and AC2 are defined by DFAS.O.

10.2 ACCUMULATORS

10.2.1 Accumulators 0 and 1

When used for subprograms called by JSA, accumulators 0 and 1 may be used at any time without restoring their

original contents. These accumulators cannot be required locations. A FORTRAN function returns its answer in

accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double-precision or complex result). A

function may also return its answer in specified locations (given by argument names in the CALL) or variable

names; in any event, an answer must be returned either in accumulator 0 or in accumulators 0 and 1.

When used for subprograms called by PUSHJ 17, adr, accumulators 0 and 1 may have their contents destroyed.

Some subprograms by their definition return an argument in accumulator 0 or 1.

5-111

10.2.2- Accumulators 2 Through 15

Accumulators 2 through 15 must not be destroyed by FORTRAN functions, but may be destroyed by FORTRAN

subroutines. (Present1y subroutines must preserve the contents of accumulator 15.) The contents of these accu­

mulators must not be destroyed by subprograms called by PUSHJ unless the definition' of the subroutines requires

it.

10.2.3 Accumulators 16 and 17 •

Accumulator 16 should be u~d only for JSA-JRA subprogram calls unless the definition of the subprogram se­

quence requires otherwise. The contents of accumulator 16 may be 'destroyed by subprograms called by PUSHJ

17, adr.

Ac;cumulator 17 must be used only for pushdown list operations.

lQ.3 UUOS

User UUO's are not considered subprograms and may not change any locations except those required for input

and the contents of accumulators 0 or 1.

10.4 SUBPROGRAMS CALLED BY JSA 16, ADDRESS

The calling sequence is

JSA 16, address
ARG adrl
ARG adr2

ARG adrN

where each ARG adrN corresponds to one argument of the subprogram.

There mayor may not be arguments. If there are arguments, they must be in accumulators 2 through 15. Sub­

routines called with the FORTRAN CALL statement may, by definition, ret,urn an argument in accumulator 0 or

1. Subprograms that are FORTRAN functions (such as SIN or SQRT) may destroy the contents of accumulators 0

and 1. Results are returned in accumulator 0 for single word results and accumulators 0 and 1 for double word

results.

10.5 SUBPROGRAMS CALLED BY PUSHJ 17, ADDRESS

. See section 10.2. In addition, three consecutive accumulators are required for double-precision addition, sub­

traction, multiplication, and division operations. T~e contents of the th~rd accumulator may be destroyed. The

5-112

"to memory" modes also leave the answer in the defined accumulators. The two arguments of the double-precision

operation cannot be in the same accumulators. Complex addition, subtraction, multiplication, and division op­

erations do not destroy locations except those required for the answer and accumulator 16. The two arguments of

the complex operation must not be in the same accumulator.

10.6 SUBPROGRAMS CALLED BY UUOS

Subprograms called by UUO's may change the contents of accumulators 0 and 1 only.

Subprogram
Called

By:
Accumulators

0, 1

;

2-15

16
Reserved for
JSA-JRA
Operations
(except as not-
ed fo~ PUSHJ)

17
Reserved for
Pushdown
List Opera-
tions

Table 10-1
Accumulator Conventions for

PDP-10 FORTRAN IV Compiler and Subprograms

JSA PUSHJ

Functions Subroutines

1) May be destroyed. 1) May be destroyed. 1) May be destroyed.
2) May not be used to 2) May not be used 2) May be used to

pass arguments. to pass arguments. pass arguments if
3) A result must be 3) Results must not the subprogram is

retumed in 0 or be retumed. defined with an
o and 1. argument in 0 or

o and 1.
3) Results may be re-

tumed if the sub-
program is so de-
fined.

1) Must be preserved. 1) May be destroyed. 1) Must be preserved
2) Arguments may be 2) Arguments may be unless the defini-

passed. passed. tion of subprogram
3) Results may be re- 3) Results must not forces results to

turned if required be retumed. be returned.
by call ing se- 2) Arguments may be
quence. passed.

3) Results may be re-
tumed if the sub-
program is so de-
fined.

1) Must be preserved. 1) Must be preserved. 1) Is destroyed.
2) May not be used 2) May not be used 2) Used for argument

to pass arguments. to pass arguments. address.
3) Results must not be 3) Results must not 3) Results must not be

retumed. be returned. returned.

1) Must be preserved. 1) Must be preserved. 1) Must be preserved.
2) May not be used 2) May not be used 2) May not be used

to pass arguments. to pass arguments. to pass arguments.
3) Results must not be 3) Results must not 3) Results must not be

returned. be returned. returned.

5-113

UUO

1) May be destroyed.
2) May be used to pass

arguments except as
defined.

3) Results must not be
retumed.

1) Must be preserved.
2) Arguments may be

passed.
3) Results must not be

returned.

1) Must be preserved.
2) May not be used to

pass arguments.
3) Resu I ts must not be

returned.

1) Must be preserved.
2) May not be used to

pass arguments.
3) Results must not be

returned.

CHAPTER 11

SWITCHES AN'D DIAGNOSTICS

11.1 FORTRAN SWITCHES AND DIAGNOSTICS

Switch

D

E

M

N

S

Table 11-1
FORTRAN Compiler Switch Options

Meaning

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Generate a CREF-type cross-reference listing. {DSK:CREF.TMP assumed if no
I ist-dev specified}

Complement: Do not produce cross-reference information {standard procedure}.

List error message codes only.

Complement: List complete error message.

Print an octal listing of the binary program produced by the compiler in addition to
the symbolic li~ting output.

Complement: Do not produce octal listing (standard procedure).

Complement: Include MACRO coding in the output listing.

Eliminate the MACRO coding from the output listing (standard procedure).

Suppress output of error messages on the Teletype.

Complement: Output error messages on TTY (standard procedure).

If the compiler is running on the PDP-I0, produce code for execution on the PDP-6
and vice-versa.

Skip to the logical end of the magnetic tape reel.

Rewind the magnetic tape reel.

Zero the DECtape directory.

t Switches A through C and T, W, and Z must immediately follow the device name or filename.ext to
which the individual switch applies.

5-115

Table 11-2
FORTRAN Compiler Diagnostics

{Command Errors} ,

Message Meaning

?BINARY OUJPUT ERROR dev:filename.ext An output error has occurred on the device specified, for
the binary program output.

?CANNOT FIND dev:filename.ext Filename.ext cannot be found on this device.
'.

Device error occurred whil"e attempting to read Monitor ?DEVICE INPUT ERROR for command string "-

command file.

IMPROPER 10 FOR DEVICE dev: An input device is specified for output (or vice versa) or
an illegal data mode was specified (e.g., binary output
to TTY).

?INPUT DATA ERROR dev:filename.ext A read error has occurred on the source device.

?x IS A BAD SWITCH This specified switch is not recognizable.

?x IS AN ILLEGAL CHARACTER A character in a .command string typein is not recogniz-
able {e.g., FORM-FEED}.

? dev: IS NOT AVAILABLE Either the device does not exist or it has been assigned
to another job.

LINKAGE ERROR Input device error while doing Dump Mode I/O, or not
, enough core was avai lable to execute the newly loaded

program.

? LINKAGE ERROR FOR dev:prog.ext Specified dev:prog.ext appears in a ! Monitor command
string, but cannot be run for some reason.

?LISTING OUTPUT ERROR dev:fi lename. ext An output error has occurred on the device specified for
the binary program output.

?CANNOT USE dev:filename.ext The directory on dev:, DT An is full and cannot accept
filename. ext as a new file, or a protection failure oc-
curred for a DSK output file, or an illegal filename has
been used.

?NOT ENOUGH CORE FOR UNKAGE Not enough core available to load (with dump mode I/O)
the program specified in a I Monitor command string.

?SYNTAX ERROR IN COMMAND STRING A syntax error has been detected in a command string
typein (e.g., the -has been omitted).

?X SWITCH ILLEGAL-AFTER LEFT ARROW Cannot change machine type with a file or clear source
directory. .

?X SWITCH ILLEGAL AFTER FIRST STANDARD Cannot clear directory after start of compilation {Batch
FILE Mode}.

?X SWITCH, NO LISTING FILE A CREF listing requires a Iisti'1g file.

?INSUFFICIENT CORE - COMPILATION The compiler has insufficient table ~pace to compile the
TERMINATED program,'

5-116

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-10

1-11

1-12

1-13

1-14

1-15

Table 11-3
FORTRAN Compiler Diagnostics

(Compi lation Errors)

Message

DUPLICATED DUMMY VARIABLE IN
ARGUMENT STRING

ARRAY NAME ALREADY IN USE

ATTEMPT TO REDEFINE VARIABLE
TYPE

NOT A VARIABLE FORMAT ARRAY

NAME ALREADY USED AS NAMELIST
NAME

DUPLICATED NAMELIST NAME

A NAME APPEARS TWICE IN AN
EXTERNAL STATEMENT

SUBPROGRAM NAME ALREADY IN
USE

DUMMY ARGUMENT"IN DATA
STATEMENT

NOT A SCALAR OR ARRAY

ILLEGAL USE OF DUMMY

ILLEGAL DO LOOP PARAMETER

I/O VARIABLES MUST BE SCALARS OR
ARRAYS

Meaning

A dummy variable (identifier) may appear only once in
anyone argument set representing the arguments of a
subprogram. (See Section 7.3)

Any attempt to re-dimension a variable or redefine a
scalar as an array is illegal. (See Section 6.1.])

Once a variable has been defined as either complex,
double precision, integer, logical or real it may not be
defined again. (See Sections 2.2, 6.3)

The variable which contains the FORMAT specification
read-in at object time must be a diminsioned variable,
i.e., an array. (See Section 5.l.1)

After a NAMELIST name has been defined, it mayap­
pear only in READ or WRITE statements and may not be
defined again. (See Section 5.1.2)

A NAMELIST name has already been used as a scalar
array or global dummy argument. (See Section 5.l.2)

A subprogram name has been declared EXTERNAL more
than once. (See Section 7.7)

A subprogram name has appeared in another statement
as a scalar or array variable, arithmetic function state­
ment name, or COMMON block name. (See Section
7.5)

Dummy arguments may not appear in DATA statements.
(See Section 6.2.l)

The variable defining the starting address for an
ENCODE/DECODE statement must be a scalar or an
array. (See Section 5.4)

The I/O unit name of a READ/V'JRITE statement is not
a scalar or array. (See Sections 5.2.6, 5.2.7)

An attempt to ASSIGN a label number to a variable that
is not a scalar or array. (See Sections 2.2)

An attempt to GO TO through a variable that is not a
scalar or array. (See Section 4. 1)

Dummy arguments may be used with functions or subpro­
grams only. (See Sections 7.4.1, 7.5. 1)

The DO index must be a non-subscripted integer variable
while the initial, limit and increment values of the in­
dex must be an integer expression - the index may not
be zero. (See Section 4.3)

Referencing'data in an I/O statement other than scalars
or arrays is illegal. (See Section 5.2)

5-117

S-l

S-2

S-3

S-4

S-5

S-6

S-7

S-10

S-11

S-12

S-13

S-14 '

S-15

S-16

0-1

0-2

J

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compi lation Errors)

Message

SYNTAx

ILLEGAL USE OF DO-LOOP

ILLEGAL FIELD SPECIFICATION

SCALAR VARIABLE - MAY NOT BE
SUBSCRIPTED

ILLEGAL TYPE SPECIACATION

ARGUMENT IS NOT SINGLE LETTER

'NAMELIST' NOT FOLLOWED BY "/"

ILLEGAL CHARACTER-LINE DELIMITER
EXPECTED

A NUMBER WAS EXPECTED

ILLEGAL USE OF IMPLIED DO LOOP

ATTEMPT TO USE AN ARRAY AS A
SCALAR

ARRAY NOT SUBSCRIPTED

ILLEGAL USE OF AN ARITHMETIC
FUNCTION NAME

ILLEGAL CHARACTER DETECTED -
DELIMITER EXPECTED

BLOCK DATA NOT SEPARATE PRO-
GRAM p

SUBROUTINE IS NOT A SEPARATE
PROGRAM

Meaning

Indicates an error in the format of the statement refer­
enced.

Control may not transfer into the range of a DO from
any statement outside its range. (See Section 4.3)

The field width or decimal specification in a FORMAT
statement must be integer. The number of Hollerith
characters in a.,.'H specification must be equal to the
number specified. (See Sections 5.1.1.1, 5. 1. 1.6)

An undimensioned variable (a scalar variable) is being
illegally subscripted. (See Section 2.2.1)

,
The type of constant specified is illegal or mispelled.
(See Section 2.1)

Arguments in parentheses must be'single letters in
IMPLICIT statement. (See Section 6.3.1)

The first character following NAMELIST must be /.
(See Section 5.1.2)

The requirements for a complete FORTRAN statement
have beeh satisfied; any additional characters other
than a line delimiter are illegal. A carriage return­
line feed is a line delimiter. (See Sedion 1.1)

Only arrays which are subprogram arguments can have
adjustable dimensions. (See Section 6. 1. 1 .1)

Implied DO loops in I/O statements must be nested prop­
erly. An undefined index variable was uged in defining
a DO loop. (See Sections 4.3, 5.2.1)

Variables may be either scalar or array but not both.
Variables appearing in a DIMENSION statement must
be subscripted when used. (See Section 2.2)

See S-13

Arithmetic function definition statement name is being
used without arguments (i .e., as a scalar) in an arithme­
tic expression. (See Section 7.3)

A /, or other delimiter is missing.

Block Data must exist as a separate program. (See Sec­
tions 6:2.2, 7.6),

A subroutine following a main program or another sub­
routine subprogram may have no statement between it
and the preceding programs END statemE!nt and must be­
gin with a SUBROUTINE statement. The previous pro­
gram must have been terminated properly. (See Section
7.5)

5-11S

0-3

A-1

A-2

A-3

A-4

M-1

M-2

M-3

M-4

M-5

M-6

M-7

M-10

M-11

M-12

M-13

M-14

M-15

M-16

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compi lation Errors)

Message

STATEMENT OUT OF PLACE

MINIMUM VALUE EXCEEDS MAXIMUM
VALUE

ATTEMPT TO ENTER A VARIABLE INTO
COMMON TWICE

ATTEMPT TO EQUIVALENCE A
DUMMY ARGUMENT

NOT A CONSTANT OR DUMMY
ARGUMENT

TOO MANY SUBSCRIPTS

NOT ENOUGH SUBSCRIPTS

CONSTANT OVERFLOW

ILLEGAL 'IF' ARGUMENT

ILLEGAL CONVERSION IMPLIED

NUMBER TOO LARGE

UNTERMINATED HOLLERITH
STRING

ILLEGAL DO LOOP CLOSE

VARIABLES AND DATA DO NOT
MATCH

NON-INTEGER PARAMETER IN 'DO'
STATEMENT

NON-INTEGER SUBSCRIPT

ILLEGAL COMPARISON OF COM-
PLEX VARIABLES

TOO ~NY CONTINUATION
CARDS

NON-INTEGER I/O UNIT OR
CHARACTER COUNT

Meaning

The IMPLICIT specification statement and any arithmetic
function definition statement must appear before any ex­
ecutable statement. (See Chapter 6)

Minimum value of an array exceeds the maximum value
specified. (See Section 6.1.1)

A variable name may appear in COMMON statement
only once. (See Section 6. 1.2)

Dummy argument identifiers of subprograms may not ap­
pear in EQUIVALENCE statements in that subprogram.
(See Sections 6.l.3, 7.1)

Only constant and dummy arguments may be used as ar­
guments in dimension statements. (See Section 7.4. 1)

An array variable appears with more subscripts than
specified. (See Sections 2.2.2, 6.1.1)

An array variable appears with too few subscripts. (See
Sections 2.2.2, 6.1.1)

Too many significant digits in the formation of a con-'
stant or the exponent is too large. (See Section 2.1)

Logical IF or DO statement adjacent to a logical IF
statement, or illegal expression within a logical IF state­
ment. (See Sections 4.2.2, 4.3)

Attempt to mix double precision and complex data in the
same expression. (See Section 2.3. 1)

Illegal statement label. (See Section 1.1.1)

A missing single quote or fewer than n characters follow­
ing an "nH" specification. (See Section 5.1.1.6)

Illegal statement terminating a DO loop. (See Section
4.3)

Incorrect number' of constants supplied for a DATA state­
ment. (See Section 6.2.1)

DO statement parameters must be integers. (See Section
4.3)

Array subscripts must be integer constants, variables, or
expressions. (See Section 4.3)

The only comparison allowed of complex variables is
.NE. or .EQ. (See Sections 2.2, 2.3)

More than 19 continuation cards. (See Section 1.1.2)

The I/O unit variable of a READ/WRITE statement, or
the character count variable of an ENCODE/DECODE
statement, is not an integer variable. (See Sections
5.2.6, 5.2.7, 5.4)

5-119

Table 11:"3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message Meaning

EXCESSIVE COUNT The number specified is greater than the maximum pos-
sible number of characters in a statement.

I

OPEN 60 LOOPS The list of statements are specified in DO statements
but not defi ned.

UNDEFINED LABELS The list of labels that do not appear in the label field.

MULTIPLY DEFINED LABELS The list of I~bels that appeared more than once in the
label field.

ALLOCATION ERRORS The list of EQUIVALENCEd COMMON variables which
have attempted to extend the beginning of a COMMON
block.

Table 11-4
FORTRAN Operating System·Diagnostics

(Execution Errors)

Message

?DEVICE dev: NOT AVAILABLE

?DEVICE NUMBER n IS ILLEGAL

?DOUBLE PRECISION OVER OR UNDERFLOW

END OF FILE ON dev:

?END OF TAPE ON dev:

?FILE NAME filename.ext NOT ON
DEVICE dev:

?ILLEGAL CHARACTER, x, IN FORMAT

?ILLEGAL CHARACTER, x, IN INPUT
STRING

?ILLEGAL MAGNETIC TAPE OPERATION,
TAPE dev:

?ILLEGAL PHYSICAL RECORD COUNT,
TAPE dev:

?ILLEGAL USER UUO uuu AT USER loc

?INPUT DEVICE ERROR ON dev:

Meaning

FORSE. tried to initialize a device which either does
not exist or has been assigned to another job.

A nC?nexistent device number was selected.

An overflow or underflow error occurred while adding,
subtracting, multiplying, or dividing two double-preci­
sion numbers.

A premature end of file has occurred on an input device.

The end of tape marker has been sensed during input or
output.

Filename.ext cannot be found in the directory of the
speci fied de vi ce.

The illegal character x is not valid for a FORMAT
statement.

The illegal character x is not valid for this type of in­
put.

An attempt was'made to skip a record after performing
output on a magneti c tape.

FORSE. has encountered an inconsistency in the physical
record count on a magnetic tape.

An illegal user UUO to FORSE. was encountered at lo­
cation loc.

A data transmission error has been detected in the input
from a device.

5-120

.

Tab~ 11-4 (Cont)
FORTRAN Operating System Diagnostics

(Execution Errors)

Message

?MORE THAN 15 DEVICES REQUESTED

?NAME U ST SYNTAX ERRO R

?NO ROOM FOR FILE filename. ext ON
DEVICE dev:

fDrogram name NOT LOADED

?OUTPUT DEVICE ERROR ON dev:

?PARITY ERROR ON dev:

?REREAD EXECUTED BEFORE ARST READ

?TAPE RECORD TOO SHORT ON UNIT n

?dev: WRITE PROTECTED

Meaning

Too many devi ces have been requested.

Improper mode of I/O (octal or Hollerith), incorrect
variable name.

There is no room for the file in the directory of the
named device or no room on the device.

A dummy routine was loaded instead of the real one.
Generally, this error occurs when a loaded program is
patched to include a call to a library program which was
not called by the original program at load time.

A data transmission error has been detected during out­
put to a de vi ce •

A parity error has been detected.

A reread was attempted before initializing the first in­
put device.

The data list is too long on a binary. tape READ opera­
tion.

The device is WRITE locked.

NOTE

With the exception of the messages ILLEGAL USER UUO
uuu AT USER loc and ENCODE/DECODE ERROR, all
messages are followed by a second message

LAST FORTRAN I/O AT USER LOC adr

Several arithmetic error conditions can occur during execution time.

a. Overflow - An attempt was made to create either a positive number greater than the largest repre­
sentable positive number or a negative number greater in magnitude than the most negative representable
number (in the appropriate mode).

Example: For I an integer,

3m77777777 < I < 400000000000 (octal)

b. Underflow - An attempt was made to create either a positive non-zero number smaner than the
smallest representable positive non-zero number or a negative number smaller in magnitude than the neg­
ative number whose magnitude is the smallest representable.

Example: For X a real non-zero number,

777400000000 < X < 000400000000

c. Divide Check - An attempt was made to divide by zero.

d. Improper Arguments for LIB40 math routines - For example, an attempt was made to find the arc
sine of an argument greater them 1. O.

5-121

When overflow , underflow, or divide 'check errors occur in the user's FORTRAN program, the Monitor c~lIs the

LIMO routine OVTRAP. this routine replaces the resulting numbers, if the numbers are floating point, with

either zero'in the case of underflow or ± the largest representable number in the cases of overflow and divide

check. OVTRAP does not affect numbers in integer mode.

Overflow, underflow, and divide check errors occurring in LIMO math routines are handled differently from

when they occur in the user's program: onlY'if the final answer from a routine is in error is an error condition

considered to exist. If the answer is floating pqint, it is set to the appropriate value qs for user program errors.

Integer answers are handled in various ways. (See the Science Library and FORTRAN U,tility Subprograms,

DEC-l O-SFLE-D.)

When an error condition occurs in,a user program or in a final answer from a LIB40 math routine, an error mes­

sage is typed. Presently there are eight distinct error messages.

Error Message No.

2

3

4

5

6

7

8

Error Message

INTEGER OVERFLOW PC=nnnnnn

INTEGER DIVIDE CHECK PC=nnnnnn

FLOATING OVERFLOW PC=nnnnnn

FLOATING UNDERFLOW PC=nnnnnn

FLOATING DIVIDE CHECK PC=nnnnnn

ATIEMPT TO TAKE SQRT OF NEGATIVE ARG

ACOS OF ARG > 1.0 IN MAGNITUDE

ASIN OF ARG > 1.0 IN MAGNITUDE

NOTE

nnnnnn = location at which the error occurred.

After two typeouts of a particular error message, further typeout of that error message is suppressed. At the end

of execution, a summary listing the actual number of times each error message occurred is typed out. If the user

wishes to permit more than two type outs for each error message, he may do so by calling the routine ERRSET at

the beginning of the executable.part of his main program. ERRSET accepts one argument in integer mode. This

argument is the number of typeouts that are permitted for each error message before suppression occurs. This

routine is used to obtain the PC information which would otherwise be lost, Alternatively, because of the slow­

ness of the Teletype output, the user may wish to suppress typeout of the messages entirely. This can be done by'

calling ERRSET wrth an argument of zero. Suppression of typeout can also be accomplished during execution by

typing to on the Teletype.

Error messages and the summary are output to the Teletype (or the output device when running BATCH), regard­

less of the device assignments that have been made.

5-122

The treatment of overflow, underflow, and divide check errors in MACRO programs (those that are loaded with

OVTRAP) can, to a certain extent, be manipulated by the user. (See OVTRAP in the Science Library and

FORTR~O\.N Utility Subprogram manual.)

5-123

12.1 ASCII CHARACTER SET

SIX BIT Character
ASCII
7-Bitt

00 Space 040
01 ! 041
02 " 042
03 II 043
04 $ 044
05 % 045
06 & 046
07 I 047

10 (050
11) . 051
12 * 052 .
13 + 053
14 , 054
15 - 055
16 056
17 / 057

20 0 060
. 21 1 061

22 2 062
23 3 063
24 4 064
25 5 065
26 6 066
27 7 067

30 8 070
31 9 071
32 : 072
33 ; 073
34 < 074
35 = 075
36 > 076
37 ? 077

Table 12-1
ASCII Character Set

SIX BIT Character

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G

50 H
51 I
52 J
53 K
54 L
55 M
56 N
57 0

60 P
61 Q
62 R
63 S
64 T
65 U
66 V
67 W

70 X
71 Y
72 Z
73 [

74 \
75]

76 f
77 -

CHAPTER 12

RELATED FEATURES OF THE PDP-l0

ASCII
Character

ASCII
7-Bitt 7-Bitt

100 \ 140
101 a 141
102 b 142
103 c 143
104 d 144
105 e 145
106 f 146
107 g 147

110 h 150
111 i 151
112 i 152
113 k 153
114 I 154
115 m 155
116 n 156
117 0 157

120 p 160
121 q 161
122 r 162
123 5 163
124 t 164
125 u 165
126 v -166
127 w 167

130 x 170
131 y 171
132 z 172
]33 { 173
134 I 174
135 } 175
136, 176
137 Delete 177

tFORTRAN IV also ac~epts the following control codes in 7-bit ASCII:

Horizontal Tab 011 Carriage Return 015
Line Feed 012 Form Feed 014

5-125

12.2 PDP-lO WORD FORMATS

BASIC INSTRUCTIONS

INSTRUCTION CODE r
(INCLUDING MODEl

IN-OUT INSTRUCTIONS

1111 111 DEVICE CODE I' NS~~~iTlON I I I K r
0

SIGN
O.
1 -
o 1

SIGN
O· , -
o ,

o
o 1

2 3 9 10 12 13 14 17 18

PC WORD

flAGS 10 0 0 0 01 PC
• I I I I

12: 13 17 18

--------- ---------

BLT POINTER [XWD}

SOU RCE ADDRESS DESTINATION ADDRESS

17 18

BLK 1/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD}

- WORD COUNT I ADDRESS-l

POSITION P I
-5 6

EXCESS 128 EXPONENT
10NES COMPLEMENT}

SIZE S

8 9

17 18

BYTE POINTER

r
'1 12 13 14 17 1 e

BYTE STORAGE
I--s BITS P BITS

I BYTE NEXT BYTE

35 P-$-1 35-P 35-P"

FIXED POI NT OPERANDS

BINARY NUMBER (TWOS COMPLEMENT)

FLOATING POINT OPERANDS

FRACTION (TWOS COMPLEMENT)

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS
EXCESS 128 EXPONENT-27

IN POSITIVE FORM
8 9

LOW ORDER HALf Of fRACTION (TWOS COMPLEMENT 1

5-126

35

I
35

I
35

)5

35

35

35

35

35

35

12.3 FORTRAN INPUT/OUTPUT

In addition to the arithmetic functions, the PDP-10 FORTRAN IV library (LIB40) contains several subprograms

which control FORTRAN IV I/O operations at runtiml". The I/O subprograms are compC!tible with the PDP-10

Monitors.

In general FORTRAN IV I/O is done with double buffering unless the user has either specified otherwise through

calls to IBUFF and OBUFF or is doing random access I/O to the disk. In these cases, sin~le buffers are used.

The standard buffer sizes for the devices normally available to the user are given in Table 12-2. Note that the

devices and buffer sizes are determined by the Monitor and may be changed by a particular installation. Also a

user may specify buffer sizes for magtape operations through the use of IBUFF and OBUFF.

The logically first device in a FORTRAN program is initialized on software I/O channel one, the second on

software I/O channel two, and so forth. Software I/O channel 0 is reserved for error message and summary

output. The SIXBIT name of the device that is initialized on channel N can be found in a dynamic device table

at location DYNDV. + N. A device may be initialized for input and output on the same I/O channel. Devices

are initialized only once and are released through either the CALL [SIXBIT/EXIT/J executed at the end of every

FORTRAN program or the LIB40 subroutine RELEAS.

Table 12-2
PDP-10 FORTRAN IV Standard Peripheral Devices

Name Mnemonic Input/Output Buffer Size Operation
Formatted Unformatted In Words

Card Punch CDP Yes Yes 26 WRITE

Card Reader CDR Yes Yes 28 READ

Disk
(includes disk DSK Yes Yes 128 READ,lWRITE
packs and drums)

DECtapes DTA Yes Yes 127 READ,lWRITE

line Printer LPT Yes No 26 WRITE

Magtape MTA Yes Yes 128 READ,lWRITE

Plotter PLT Yes Yes 36 WRITE

Paper Tape Punch PTP Yes Yes 33 WRITE

Paper Tape Reader PTR Yes Yes 33 READ

Pseudo Teletype PTY Yes No 17 READ,lWRITE

Teletype - User TTY Yes No 17 READ,lWRITE

Teletype - Console CTY Yes No 17 READ,lWRITE

5-127

12.3.1 Logical and Physical Peripheral Device Assignments

Logical and physical device assignments are controlled by either the user at runtime or a table called DEVTB.

The first entry in DEVTB. is the length of the table. Each en~ry after the first is a sixbit ASCII device name.

The position in the table of the devi ce name corresponds to the FORTRAN logical number for that device., For

example, in Table 12-3, magnetic tape 0 is the 16th entry in DEVTB. Therefore, the statement

WRITE (16, 13)A

refers to magnetic tapeO. The last five entries in DEVTB. correspond to the special FORTRAN statements READ,

ACCEPT, PRINT, PUNCH, and TYPE. Any device assighments may be changed by reassembling DEVTB.

If the user gives the Monitor comma~d

ASSIGN DSK 16

prior to the running of his program, a file named FOR16. DAT would be written on the disk. Similarly, the

Monitor command

ASSIGN LPT 16

causes output to go to the line printer.

12.3.2 DECtape dnd Disk Usage

12.3.2.1, Binary Mode - In binary mode, each block contains 127 data words, the first of which is a record

control word of the form:

w n

where w is the word count specifying the number of FORTRAN data words in the block (126 for a full block) and

n is 0 in all but the last block of a logical record, in which case n is the number of blocks in the logical record.

(A logical record contains all the data corresponding to one READ or WRITE statement.)

12.3.2.2 ASCII Mode - In ASCII mode, blocks are packed with as many full lines (a line is a unit record as

specified by a format statement) as possible. Lines always begin with a' new word. If a line terminates in the

middle of a word, the word is filled out with null characters and the next line begins with the next word. Lines

are not split across blocks.

5-128

Table 12-3
Device Table for FORTRAN IV

TITLE DEVTB V.Ol?
SUBITL l-APR-69

ENTRY DEVTB. ,DEVND. ,DEVLS. ,DVTOT.
ENTRY MTABF., MBFBG., TABPT., TABP1.
ENTRY MTACL. ,DATTB., NEG1. ,NEG2. ,NEG3., NEG5.
P=1?

DEVTB. : EXP DEVND. -. ;NO. OF ENTRIES
;LOGICAL# /FILENAME/DEVICE

SIX BIT .DSK. ; 1 FOROL DAT DISC
CORPOS: SIXBn .CDR. ; 2 FOR02. DAT CARD READER
LPTPOS: SIX BIT .LPT. ; 3 FOR03. DAT LINE PRINTER

SIX BIT .CTY. ; 4 FOR04. DAT CONSOLE TELETYPE
TTYPOS: SIX BIT .TTY. ; 5 FOR05. DAT USER TELETYPE

SIX BIT .PTR. ; 6 FOR06. DAT PAPER TAPE READER
PTPPOS: SIX BIT .PTP. ; 7 FOR07. DAT PAPER TAPE PUNCH

SIX BIT · DIS. ; 8 FOR08. DAT DISPLAY
SIXBn · DTA l. ; 9 FOR09. DAT DECTAPE
SIX BIT .DTA2. ; 10 FOR10.DAT
SIX BIT .DTA3. ; 11 FORll. DAT
SIX BIT .DTA4. ; 12 FOR12.DAT
SIX BIT .DTA5. ; 13 FOR13.DAT
SIXBn .DTA6. ; 14 FOR14. DAT
SIX BIT .DTA7. ; 15 FOR15.DAT
SIX BIT .MTAO. ; 16 FOR16.DAT MAGNETIC TAPE
SIX BIT .MTAl. i 17 FOR17.DAT
SIX BIT .MTA2. i 18 FOR18.DAT
SIX BIT ."FORTR. ; 19 FORTR.DAT ASSIGNABLE DEVICE, FQRTR

SIX BIT .DSKO. ; 20 FOR20.DAT DISK
SIX BIT · DSK l. ; 21 FOR21 . DAT
SIX BIT .DSK2. ; 22 FOR22.DAT
SIX BIT .DSK3. ; 23 FOR23.DAT
SIX BIT .DSK4. ; 24 FOR24. DAT
SIX BIT .DEV1. ; 25 FOR25. DAT ASSIGNABLE DEVICES
SIX BIT .DEV2. ; 26 FOR26. DAT
SIX BIT .DEV3. ; 27 FOR27.DAT
SIX BIT .DEV4. ; 28 FOR28.DAT

DEVLS. : SIX BIT .DEV5. ; 29 FOR29.DAT V.OO6
SIX BIT .REREAD. -6 REREAD
SIX BIT .CDR. -5 READ
SIX BIT .TTY. -4 ACCEPT
SIX BIT · LPT. -3 PRINT
SIX BIT .PTP. -2 PUNCH

DEVND.: SIX BIT .TTY. -1 TYPE

12.3.2.3 File Names - File names may be declared for DECtapes or the disk through the use of the library sub­

programs IFILE and OALE. In order to make an entry of the file name FILE1 on unit u, t~e following statement

could be used:

5-129

CALL OALE (u,FILE1)

Similarly, 'the following statements might be used to open the file, RALPH, for reading:

RALPH=5HRALPH
CALL IFILE(u,RALPH)

After writing a file, the END FILE u statement must be given in order to close the current file and allow for

reading or writing another file or for reading or rewriting the same file. If no call to IFILE or OFILE has been

given before the execution of a READ or WRITE referencing DECtape or the disk the fi Ie name FORnn. DAT is

assumed where nn is the FORTRAN logical number use.d in the I/O statement that references device nn.

The FORTRAN programmer can make logical assignments such that each device has its own unique file as intend­

ed, but each can be on the DSK. In order to use the-devices available, the programmer can make assignments

at run time and assign the DSK to those not available.

For example, the FORTRAN logical device numbers, e.g., 1 = DSK, 2 = CDR, 3 = LPT, are used in the file

name. The written file names are FOROl.DAT, FOR02.DAT, etc. The same is true for READ. For example, a

WRITE (3, 1) A, S, C, in the FORTRAN program generates the file name FOR03.DAT on the DSK if the DSK has

been assigned LPT or 3 prior to running the program. (Note: REREAD rereads from the file belonging to the de­

vice last referenced in a READ statement, not FOR-6. DAT, as usual.) The programmer must, of course, realize

his own mistake in assigning the DSK as the TTY in the case that FORSE tries to type out error messages or

PAUSE messages.

More than one DSK File may be accessed, without making logical assignments at runtime, by using logical de­

vice numbers 1, and 20 through 24 in the FORTRAN program. Logical device number 19 refers to logical device

FORTR which must be assigned at runtime and accesses file name FORTR.DAT to maintain compatibility with the

past system of default file name FORTR. DAT. In all cases when the operating system fails to find a file specified,

an attempt will be made to read from file FORTR.DAT as before.

The magnetic tape operation REWIND is simulated on DECtape or the disk. Thus, a program which uses READ,

WRITE, END FILE, and'REWIND for magnetic tape need only have the logical device number changed or as­

signed to a MTA at runtime in order to perform the proper input/output sequences on DECtape or the disk.

12.3.3 Magnetic Tape Usage

Magnetic tape and disk/DECtape I/O are different in the following ways. When a READ is issued, a record is

read,in for both magnetic tape and disk. If a WRITE is then issued, the next sequential record is written on mag­

netic tape but not on disk. When one or more READs have been executed on a disk file and a WRITE is issued,

the file is closed prior to the WRITE and then reopened. The WRITE causes the writing over of the first logical

record in that file.

5-l30

12.3.3.1 Binary Mode - The format of binary data on magnetic tape is similar to that for DECtape except that

the physical record size depends on the magnetic tape buffer size assigned in the Time-Sharing Monitor or by

IBUFF/OBUFF (see Section 8.2.2). Normally, the buffer size is set at either 129 or 257 words so that either

128 or 256 word records are written {containing a control word and 127 or 255 FORTRAN data words}.

The first word, control. word, of each qlock in a binary record contains information used by the operating sys­

tem. The left half o~ the first word contains the word count for that block. The right half of the first word con­

tains a nuJI character except for the last block in a logical record. In this case, the right half of the first word

contains the number of blocks in the logical record.

12.3.3.2 ASCII Mode - The format for ASCII data is the same as that used on DECtape.

12.3.3.3 Backspacing and Skipping Records - Both the BACKSPACE u and SKIP RECORD u statements are ex­

ecuted on a logical basis for binary records and on a line basis for ASCII records.

a. Binary Mode - Both BACKSPACE and SKIP RECORD space magnetic tape physically over one (1)
logical record; i.e., the result of one WRITE (u) statement.

b. ASCII Mode - ASCII records are packed, that is WRITE (u, f) statements do not cause physical writ­
ing on the tape until the output buffers are full or a BACKSPACE, END FILE, or REWIND command is
executed by the program. BACKSPACE and SKIP RECORD on ASCII record space over one (1) line.

c. BACKSPACE and SKIP RECORD following WRITE ASCII commands.

(1) BACKSPACE closes the tape, writes 2 EOF's (tapemark) and backspaces over the last line.

(2) SKIP RECORD cannot be use~ during a WRITE operation. This is an input function only.

5-131

12.4 PDP-10 INSTRUCTION SET

MOVl ~ Negat.ive 1--------,
e Magnttude 1 to AC
e Swapped f- Immediate to AC

I
no effect 1 to Memory

{ Right} {Right} Ones to Self
Half word Left to Left Zeros

Extend sign

BLock Transfer'

EXCHange AC and memory

use present pOinter} d I LoaD Byte mto AC .

Increment pointer an i DePosit Byte in memory

Increment Byte Pointer

PUSH down} f -- -
POP up 1 and Jump

Zeros
Ones

SETto Ac
Memory
Complement of Ac
Complement of Memory

AND } I ;ith Complement of Ac 1
inclusive OR with Complement of Memory .-

Complements of Both

lAC

AC Immediate
to

Memory
Both

..
eXclusive OR ------------'
Inclusive OR I
EQuiValence

SKlPifmemoryl _______________ ~
JUMP if AC f
Add One to \ {memory and SkiP} 'f
Subtract One from AC and Jump . 11-

\
Immediate } . '.

Compare Ac . h M and skIp If AC-WIt emory

never
Less
Equal
Less or Eqwil
Always
Greater
Greater or Equal
Not equal

. {POSitive Add One to Both halves of AC and Jump If N .
egatJve

ADD
SUBtract

• MULtiply

Integer MULllply ~I--
DiVide Immediate
Integer DIVIde to Memory

~~~:~:~: ~~ract 1 ["'d Roood I ~>:th 
Floating MultiPly to Memory 
Floating DiVide to Both 

Floating SCale 

Double Floating Negate 

Unnormalized Floatmg Add 

Ant~lmetic .SHift I {--
LogIcal SHIft C b' d 
ROTate om me 

Jump 

to SubRoutine 
and Save Pc 
and Save Ac 
and Restore Ac 
if Find First One 
on Flag and Clear it 
on OVerflow (JFCL 10,) 
on CaRrY 0 (JFCL 4,) 
on CaRrY I (JFCL 2.) 
on CaRrY (JFCL 6,) 
on Floating OVerflow (JFCL I.) 
and ReSTore 
and ReSTore Flags (JRST 2,) 
and ENable PI channel (JRST 12.) 

HALT (JRST 4,) 

eXeCuTe 

DATA} • 

BLocK :{{In Out 
CONditions . 

. d Sk' 'f I all masked bits Zero 
111 an Ip I \ some masked bit One 

I with Direct mask I 
T with Swapped mask 
.lest AC Righ . h tWIt E 

Left with E 

I 
No modification I I never 
set masked bits to Zeros d k' if all masked bits Equal 0 
set masked bits to Ones an s Ip if Not all masked bits equal 0 
Complement masked bits Always , 

5-132 



APPENDIX A 

THE SMALL FORTRAN IV COMPILER 

This compiler runs in S. SK of core, and to the user, is identi cal to the large compi ler, with the exception of the 

following language differences. Operating procedures are given in the Systems User's Guide (DEC-l0-NGCC-D). 

Language Differences 

The IMPLICIT , DATA, and NAMELIST statements are not recognized; constant strings are not collapsed (for ex­

ample, A=S*3 will not be treated as A=lS). 

5-133 





Book 6 

Demonstration 
Programs 



• 

- \ 



rhe following demonstration programs illustrate the flexibility of the PDP-lO software system. 

Each demonstration is aimed at a specific class of user and should be studied with this in mind. 

Demonstration #1 is an elementary FORTRAN main program and subroutine. It is intended for a 

beginning programmer interested in creating and editing files with LINED. The subroutine cal­

culates the sum of the square of twenty numbers and returns the answer to the main program. 

The main program prints this answer on the Teletype. A bug is found in the subroutine and 

cQrrected with elementary LINED commands. 

Demonstration #2 is a FORTRAN program which fits a curve to a set of points by the method of 

least squares. LINED is used to edit and debug the program. 

This demonstration was created for the applications programmer or th~ engine€r with some 

mathematical background. There are four sections within the program; each section can be 

examined separately without detracting from the reader's comprehension. 

Demonstration #3 is an advanced example of the procedure used for creating a FORTRAN main 

program and a MACRO-10 subprogram. It is. intended primarily for the experienced systems 

programmer. 

The two programs are inputted using TECO (Text Editor and- Corrector) and then translated and 

executed together. A listing file is created for each program in case a bug is encountered 

during execution. Since a bug is found, the listings, along with DDT (the Dynamic Debugging 

Techn ique program), are used to debug the program. The erroneous program is then corrected 

with TECO and saved on the disk for later use. For a complete description of DDT, see the 

PDP-10 Reference Hardbook. 

Demonstration #4 is an advanced demonstration of a FORTRAN subroutine that is used to return 

a random number, and a FORTRAN testing program that tests the accuracy of the subroutine. 

This demonstration is intended for the experienced programmer familiar with DDT and TECO. 

The two programs are inputted using TECO and then executed together. Errors are detected by 

the FORTRAN compiler and corrected with advanced TECO commands. Execution is again 

attempted, but now the program returns incorrect results. Cross-reference listings, along with 

advanced DDT commands, are used to debug the program. The program is then permanently 

corrected with TECO and saved on the disk for future use. 

6-3 



Demonstration , 1 
tC 

.LOGIN 
JOB 10 4SP74G 
#27,235 
PASSWORD: 
1525 05-MAR-70 TTY~5 
PLEASE DELETE ANY FILES THAT ARE NOT NEEDED FROM YOUR 
DISK AREA ••• 

• CREATE MAIN.F4 

*1 
00010 
00020 
00030 
00040 
00050 
00060 
0121070 

69 

70 

$ 

TYPE 69 
FORMATe' THIS PROGRAM PRINTS THE SUM OF THE SQUARES') 
CALL SUB1CISUM) 
TYPE 70,ISUM 
FORMATe' THE SUM OF THE SQUARES IS',3X,I5) 
END 

.CREATE SUB1.F4 

*1 
00010 
00020 
0012130 
00040 
12101215121 
0121060 
00070 

.EXECUTE 
FORTRAN: 
FORTRAN: 
LOADING 

11210 

$ 

SUBROUTINE SUBRCJ) 
J=0 
DO 100 1=1,20 
J=J+I**2 
CONTINUE 
RETURN 

MAIN.F4,SUB1.F4 
MAIN.F4 
SUB1.F4 

000001 UNDEFINED ~LOBALS 

6-4 



Establish communication with the monitor by typing t C while depressing the CTRL key. 

Begin the login procedure by typing the monitor command LOGIN followed by a carriage-return. 

The monitor responds with your job number and the mon itor name and version number. The 

login program requests your identification by typing the number sign (#). Type in your 

project programmer numbers, followed by a carriage-return. The login program requests your 

password. Type it in; to maintain password security, it is not printed. If your identification 

matches the identification stored in the system, the monitor responds with the time, date, 

Teletype number, message of the day (if any), and a period. 

CREATE a new disk file with LINED. Call the new file MAIN.F4. 

Command to LINED to insert line numbers starting with 10 and incrementing by 10. 

Statements of the FORTRAN main program. 

The Altmode ends t.he insert. 

Command to LIN ED to end the creation of the file and to write the fi Ie on the disk. 

Return to monitor. 

CREATE a disk file for the subroutine. Call the file SUB1.F4. 

Command to LINED to insert line numbers starting with 10 and incrementing by 10. 

Statemenfs of the FORTRAN subroutine. 

Altmode ends the insert. 

LIN ED command to end the creation of the file and to write the file on the disk. 

Return to monitor. 

Request execution of the two progra·ms created. 

FORTRAN reports its progress. 

6-5 



SUB 1 000156 
? 

LOADER 4K CORE 
?EXECUTION DELETED 

EXIT 
tC 

.EDIT 
*P10 
11'00111' 
*110 
11'011'111' , 
11'11'11'211' 

SUB1.F4 

SUBROUTINE 

SUBROUTINE 
$ 

.EXECUTE MAIN.F4,SUB1.F4 
FORTRAN: SUB1.F4 
LOADING 

LOADER 4K CORE 
EXECUTION 

SUBR(J) 

SUB! (J) 

THIS PROGRAM PRINTS THE SUM OF THE SQUARES 
THE SUM OF THE SQUARES IS 2870 
EXIT 
tC 

.KJOB 
CONFIRM: K 
JOB 111', USER (27,235J LOGGED OFF TTY25 15411' 5-MAR-70 
DELETED ALL 6 FILES (INCLUDING UFD, 7. DISK BLOCKS) 
RUNTIME ,0 MIN, 04.95 SEC 

6-6 



There is no subroutine named SUBl 

This includes the space for the Loader. No execution was done. 

Ask to edit SUB 1. F4 

Type line 10 on the Teletype. 

Insert a new line 10. 

Request execution. Only the subroutine is recompiled since it has been edited. 

Both MAl Nand SU Blare loaded. 

Execution begins. 

Execution ends. 

Issue KJOB command to log off the system. Answer the CONFIRM: message with K and a 

carriage-return if you wish to delete all files you have created. See the following demonstra­

tions for other options available with the KJOB command. 

6-7 



Demonstration 112 

" tC 
.LOGIN 
JOB 7 DEC PDP-10 #40 4561H PR 

#27 .. 20 
PASSWORD: 

0927 29-0CT-69 TTY3 

.CREATE SAMPLE.F4 
*110 

6-8 

.. 



Introduction 

Given a set of n sample points [(xl' Yl),(x2'Y2) ••• (xn'Yn») this demonstration program calcu­

lates the coefficients of the quadratic equation, a 1+ar +a3x2) such that the value of 01 a2,a3 

minimizes the expression 

This method of minimizing a 1,a2,a3 is called least squares. 

The program logically divides into four sections. Section 1 sets up a set of simultaneous 

equations (the normal equations); section 2 solves the equations for a I' a2, a3 • The polynomial 

approximation (a l+ar +a3x2) and the sample points are graphed in section 3. In section 4, 

a subroutine evaluates 3x3 determinates. 

The programmer logs into the system by typing LOGIN (abbreviated LOG); the monitor 

responds by typing the ·job number assigned to the programmer and a version number of the 

monitor. Following the printout of a # symbol, the programmer types his project-programmer 

number. The monitor types PASSWORD: and awaits'an entry. The programmer then-types his 

password (echo typeout suppressed). If the password and project-programmer number match 

correctly with the password and project-programmer number stored in the system, the monitor 

types out the time, the date and the number of the Teletype. The monitor may also type out. 

some other information (the message of the day) before awaiting a command. 

the monitor command: CREATE SAMPLE.F4 

ca lis in LI N ED and opens file SAMPLE for creation. The extension F4 marks the fi Ie as 

FORTRAN. The monitor responds to the CREATE command by typinS an * indicating that a 

LINED instruction is now to be typed. Th~ LINED command 110 will begin line numbering at 

10, incrementing by 10 for each new line. 

An explanation of the mathematical ca Iculafions is given for each section. Note: not all 

variables which appear in the explanation appear in the program. When the same variables 

occur in both the explanation and program, they occur in lower case in the explanation and, 

by necessity, occur in upper case in the program. 

6-9 



00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 

, 00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
0027121 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 

c 
c 
c 
c 
c 
c 

c 
c 
c 
C 
C 

C 
C 
C 

C 
C 
C 
C 

10 

20 
30 
40 
500 
510 
520 
530 

THIS PROGRAM FITS A QUADR4TIC POLYNOMIAL 
('THE APPROXIMATION POLYNOMIAL') TO A SET OF 
SAMPLE POINTS BY THE METHOD.OF LEAST SQUARES. 
***SECTION 1*** 
THE ELEMENTS'OF Z,X,IX,TEMP ARE INITIALIZED 
TO ZERO BY THE DIMENSION STATEMENT. 
DIMENSION Z(3,4),X(9,4),IX(9,4),A(4),TEMP(3) 
COMMON Z 
TYPE 500 
N IS THE NUMBER OF SAMPLE POINTS. N CAN NOT 
BE GREATER THAN 9 CTHIS RESTRICTION IS IMPOSED 
BY FORMAT 510). FORMAT 500 WILL BE TYPED ON 
THE TELETYPE TO INDIC~TE WHEN THE USER IS 
TO ENTER THE DATA FOR N. 
ACCEPT 510,N 
FORMAT 520 WILL BE T-YPED ON THE TELETYPE TO 
INDICATE WHEN THE USER IS TO ENTER THE SAMPLE 
POINTS. 
TYPE 520 
ACCEPT 530,(XCI,2),XCI,4),I=1,N) 
DO 10 1=1, N 
THE TWO STATEMENTS BELOW ROUND THE X AND Y 
COORDINATES OF THE SAMPLE POINTS TO THE 
NEAREST INTEGER. IXCI,1) AND IXeI,2) WILL 
BE USED F.OR GRAPHING. 
IXeI,1)=IFIXCXCI,2)+.5) 
IX(I,2)=IFIX(XCI,4)+.5) 
XCI,1)=l 
XCI,3)=XCI,2)**2 
DO 40 1=1,3 
DO 30 K=1 .. N 
DO 20 L=1,4 
zeI,L)=Z(I,L)+XCK,L)*X(K,l) 
CONTINUE 
CONTINUE 
FORMATelX,'NUM. OF POINTSlFORMATCI1)l2<N<10'/) 
FORMATCI1) 
FORMATCIX"POINTSlFOR~ATe9CF4.1,F4.1,3X»'/) 

FORMAT(9(F4.1,F4.1,lX» 

6-10 



SECTION 1 

The array x is set up as the augmented matrix10f the equations 

= y 
.n 

where (xl' Yl) is the first sample point, (x2'Y2) is the second sample point •••• The unknowns 

are a 1, a2, and a2 , 

Three normal equations are needed to fit a quadratic equation, They are: 

n n n 2 n 
a 1 1: 1 + a 2 1: x. + a 3 1: x. = 1: y. 

i=l i=l ~ i=l l. i=l ~ 

n n 2 n 3 n 
a 1 1: x. + a 2 1: x. + a3~' xi = 1: y.x. 

i=l ~ i=l ~ ~=l i=l ~ ~ 

n 2 n 3 n 4 n 2 a 1 1: x. + a 2 1: x. + a 3 1: x. = 1: y.x. 
i=l ~ i=l ~ i=l ~ i=l ~ ~ 

The normal equations are calculated from the x array and stored in the z array . 

.1 An augmented matrix is a matrix of a set of equations wh ich have been a Itered to set the right 
hand side of the equations equal to zero, 

The matrix is: 

3a - 4b = 9 (Altered) 
5c + 6d = 10 (to ) 

3a-4b-9=0 
5c - 6d - 10 ='0 

The augmented matrix is: 

( 3-4) 
56. 

( 3-4-9 .) 
5 6 - 10 

6- 11 



00400 C 
00410 C 
00420 C 
0043121 C 
00440 
00450 
0121460 
00470 C 
00480 C 
121049121 C 
00500 
0121510 50 
00520 
0121530 
02154121 C 
0055121 60 
~00560 70 
0121570 
021580 700 

***SECTION 2*** 
SUBROUTINE DETR CALCULATES THE DETERMI~ATE OF 
ARRAY X. THE VALUE OF THE DETERMINANT IS 
STORED IN THE ARGUMENT OF DETR. 
CALL DETR(DET) 
DO 70 J=·1, 3 
DO 50 1=1,3 
COLUMN J OF ARRAY Z(I,J) IS TEMPORARILY STORED 
IN ARRAY TEMP. COLUMN J IS REPLACED BY COLUM~ 4. 
THE DETERMINANT OF THE NEW Z MATRIX IS CALCULATED 
TEMP ( I ) =Z ( I .. J) 
Z(I .. J)=Z(I,4) 
CALL DETR (DETl ) 
DO 60 1=1,3 
THE DATA IN TEMP IS RESTORED TO'COLUMN J. 
Z ( I .. J) =TEMP ( I ) 
A (J) =DETl /DET 
TYPE 71210 .. (A(J) .. J=1 .. 3) 
FORMAT(!X,'A(1)=',F8.5,3X, 'A(2)=',F8.5,3X,'A(3)=',F8.5) 

6~12 



SECTION 2 

The normal equations are of the form: 

a1z11 + a 2z12 + a 3z 13 = z14 

a 1 z 21 + a 2z 22 + a 3z 23 = z24 

a 1 z 31 + a 2z 3? + a 3z 33 = z34 

where: Zu = 1 

n 

z12 = z21 = l: x. 
i=l 1 

n 2 
z13 = z22 = z31 = l: x. 

i=l 1 

n 3 -
Z23 = z32 = l: x. 

i=l 1 

n 4 
z33 = l: x. 

i=l 1 

n 

Z14 = l: y. 
i=l 1 

n 

Z24 = l: y.x. 
i=l '1 1 

n 2 
z34 = l: y.x. 

i=l 1. 1 

Cramer's method is used to solve the simultaneous equations. By Cramer's rule 

Z14 z12 z13 zll z14 z13 

z24 z22 z23 z21 z24 z23 

z34 z32 z33 z31 z34 z33 
a 1 = a 2 = 

det det 

6-13 



00590 C 
00600 C 
03610 C 
0062121 C 
121121630 C 
00640 C 
00650 C 
00660 
00670 C 
00680 C 
00690 
00700 C 
00710 C 
00720 80 
00730 
00740 90 
0075121 C 
1210760 C 
00770 C 
00780 100 
00790 
0081210 C 
00810 
00'820 
00830 C 
00840 C 
00850 C 
021860 110 
00870 120 
00880 
00890 C 
0090'0 C 
00910 130 
00920 
00930 140 
00940 
00950 
0096121 150 
0097121 C 
00980 C 
00990 C 
01000 C 
01010 160 
01020 170 
01030 
0104121 180 

01!!!50 540 
01060 550 
0107121 C 
01080 C 
01090 C 
131100 C 
0111121 560 
1211120 C 
01130 C 
01140 570 

***SECTION 3*** 
THE APPROXIMATION POLYNOMIAL AND THE .SAMPLE 
POINTS ARE GRAPHED BETWEEN THE RANGE: 
-20=<X COORDINATE=<+20 
-29=<Y COORDINATE=<+29 
ALL VALUES ARE ROUNDED TO THE NEAREST INTEGER. 
THE Y AXIS IS PRINTED,HORIZONTALLY. 
DO 180 IL=-20,20 
IL INDEXES THE X COORDINATE AND CONTROLS 
SPACING ALONG THE X AXIS. 
IF CIL) 90,80,9121 
IF IL(THE X COORDINATE) EQUALS 121 THEN THE Y 
AXIS IS PRINTED. 
TYPE 540 
GO TO 100 
TYPE 550 
CALCULATE THE Y COORDINATE OF THE APPROXIMATION 
POLYNOMIAL FOR THE'VALUE OF IL. ROUND YCO TO 
THE NEAREST INTEGER. 
YCO=A(1)+A(2)*IL +A(3)*IL**2 
IYCO=IFIX(YCO+.5) 
CHECK IF IYCO IS WITHIN THE RANGE OF THE GRAPH. 
MTEMP~IABSeIYCO) 

IF (MTEMP-30) 110,130,130 
SPACE THE PAPER TO THE CORRECT PRINT POSTION 
AND TYPE THE POINT ON THE APPROXIMATION 
POLYNOMIAL eREPRESENTED BY A +). 
DO 120 'IY=0, 30+(IYCO-1) 
TYPE 560 
TYPE 570 
CHECK IF THERE EXISTS A SAMPLE POINT WHOSE 
X COORDINATE EQUALS IL. 
DO 140 J=1,N 
IFeIX(J,1)-IL) 140,150,14121 
CONTINUE 
GO TO 180 
MTEMP=IX(J,2) 
IF (MTEMP-30) 160.160.180 
CHECK IF THE X COORDINATE OF THE SAMPLE 
POINT IS WITHIN THE RANGE OF THE GRAPH. 
SPACE THE PAPER TO THE CORRECT PRINT POSTION 
AND TYPE THE SAMPLE POINT (REPRESENTED BY A *). 
DO 17121 IY=0,3121+(IXeJ,2)-1) 
TYPE 560 
TYPE 580 
CONTINUE 
FORMAT(16X·-Y ••••••••••••••••••••••••••• +Y·) 
FOR~AT(31X,· •• ) 
'+' AS THE FIRST 3 CHARACTERS IN A FORMAT 
STATEMENT INDICATES THAT THE FORMAT CONTAINING 
THE CHARACTERS IS TYPED ON THE SAME LINE 
'AS THE PREVIOUS FORMAT. 
FORMAT (1H+.1H .$) 
$ AS THE LAST CHARACTER OF A FORMAT SUPPRESSES 
THE CARRIAGE RETURN. 
FORMAT ClH+ . .tH+) 

6-14 



Zll z12 z14 
zll z12 z13 

z21 z22 z24 
z21 z22 z23 ,det = 

z31 z32 z34 
z31 z32 z33 a 3 

det 

The II symbol denotes the determinate. The subroutine D ETR calculates the determinate of 

array z; since the array is stored in the co~mon area (by the COMMON. statement), the sub­

routine D ETR will evaluate the determinate of the current value of z as calculated in the main 

program. 

SECTION 3 

The approximation polynomial and the sample points are graphed. The x axis is printed verti­

cally and the yaxis is printed horizontally. 

To control vertical spacing of the graph, the 0 print position of the line is used l. Any charac­

ter placed in position 0 will not be printed; however, certain characters in position 0 control 

the line feed, i.e., a+ in position o suppresses the line feed. 

To control horizontal spacing a DO-loop is used. A TYPE statement which prints one space is 

placed within a DO-loop. The loop spaces to the correct position for typing a character on the 

graph. The format which types the space is: 

FORMAT (lH+,lH ,$) 

The dollar sign ( $ ) suppresses the carriage return so that the spaces will be printed in con­

secutive print positions on one line. Without the dollar sign, each space would be printed in 

print pasition 1 of the line. (Recall that a + suppresses the line feed.) 

l 
, The Teletype line is 72 characters wide (print position 0 - 71). 

6-15 



01150 
01160 
01170 
0118121 
121119121 
12112121121 
121121121 
121122121 
0123121 
0124121 
01250 
01260 
121127121 
121128121 
121129121 
121131210 
121131121 
121132121 
0133121 
0134121 
121135121 
121136121 

C 
C 

C 
C 
C 

20121 

25121 
C 
C 
3121121 

***SECTION 4*** 
DETR CALCULATES THE DETERMINATE USING MINORS. 
SUBROUTINE DETR(DEE) 
COMMON Z 
DIMENSION ZC3,4),BC4) 
DEE=12I 
DO 3121121 1=1,3 
K=1 
DO 25121 M=I,3 
DELETE THE COLUMN AND ROW OF THE SCALAR MULTIPLI~R 
,ZC1,I). STORE THE ELEMENTS OF THE 2X2 
DETERMINANTS IN BCl'),BC2),B(3),AND B(4) 
IFCM-I) 2121121,25121,2121121 
BCK)=ZC2,M) 
BCK+2)=Z(3,M) 
K=2 
CONTINUE 
THE VALUE OF THE DETERMINANT OF ARRAY Z IS 
STORED IN DEE. ' 
DEE=C-1)**C1+I)*ZC1,I)*CBCl)*BC4)-BC3)*BC2»+DEE 
RETURN 
END 

6-16 



SECTION 4 

Subroutine DETR expands by minors to calculate the determinate of array Z. 

The following equality holds: 

ZllZ12 Z13 z22 z 23 z21 z 23 Z21
Z

22 \ 

z21 z 22 z 23 (_1)1+1 1+2 + (-1) 1+3 z31 z 32 = ~32z33 +(-1) z12 z31 z 33 
zll z13 

z31 z 32 z 33 

Notice that the new 2 x 2 determinates are formed by deleting the column and row containing 

the scalar multiplier, i ,e., if zll is a scalar multiplier, then row 1 and column 1 are deleted 

from the new system to form 

The quantity (- 1) is raised to the sum of the row and column numbers which contain the 

scalar multiplier, i.e., z 11 is contained in row 1 and column 1 so that the term 

is multiplied by (- 1 ) 1 + 1 = 1, 

The program uses array b as temporary storage for elements of the 2 x 2 determinate, i ,e., for 

B(l) = z22 

13(2) = z23 

6-17 

B(3) = z32 

B(4) = Z 33 



ell 370 $ 

*11141 
01141 580 FORMATe IH+, 1H*> 
01151" $ 

*E 
*'C 

.EXECUTE SAMPLE.F4 
FORTRAN: SAMPLE.F4 

01170 

121118121 

01190 

1211280 2121121 

1211290 

SUBROUTINE DETR(DEE> 

121-2 SUBROUTINE IS NOT A SEPARATE PROGRAM 
COMMON Z 

A-2 ATTEMPT TO ENTER A VARIABLE INTO COMMON TWICE 
DIMENSION Ze3,4),B(4) 

1-2 ARRAY NAME ALREADY IN USE 
B(K)=Z(2,M) 

t 

S-1 SYNTAX 
B(K+2)=Z(3,M) 

S-1 SYNTAX 
~IN. ERRORS DETECTED: 5 

? TOTAL ERRORS DETECTED:5 
LOADING 

12100002 UNDEFINED GLOBALS 

B 000556 
DETR 00121276 
? 

LOADER 5K CORE­
?EXECUTION DELETED 

EXIT 
tC 

6-18 



Th is system of determ inants reduces further: 

+ 

To return to LINED command mode, the programmer types an ALTMODE ($) and LINED re­

turns a *. Upon reviewing the listing, the programmer discovers that a line has been 

omitted after 1140. A new line, line 1141, is inserted for the omitted coding. After line 

1141 is typed, LINED responds with line number 1151. The double quote after the line number 

1151 indicates a pre-existing line has been skipped (line 1150). The programmer closes the 

file by typing an E. A control C (t C) returns the program to monitor level. 

The Monitor command: EXECUTE SAMPLE. F4 initiates loading and execution of 

SAMPLE. F4. Five errors are detected in SAMPLE. F4, however, terminating the program before 

execution. The errors are generated by the omission of an END statement. This omission has 

led the FORTRAN compiler to consider the main program and the subroutine as one program; 

hence the messages: "ATTEMPT TO ENTER VARIABLE INTO COMMO~ TWICE", 

"UNDEFINED GLOBALS", and "ARRAY ALREADY IN USE." Since the DIMENSION 

statement is in error, any use of array b generates additional errors. 

6-19 



'.EDI T SAMPLE. F4 
*11145 
01145 END 
01155" $ 

*E 
*tC 

.EXECUTE 
FORTRAN: SAMPLE.F4 
LOADING 

LOADER 5K CORE 
EXECUTION 

NOM. OF POINTS;FORMAT( 11 );2<N<10' 
4 

POINTS;FORMATC9CF4.1,F4.1,1X» 
06.006.0 -6.0-6.0 -6.006.0 06.0-6.0 

ACl)= 0.00000 A(2)= 0.00000 A(3)= 0.00000 
+ 

EXIT 
tC 

.EDIT SAMPLE.F4 
*1445,5 

to 

+ 
+ 
+ 
+ 
+ 

00445 IF CDET) 200,190,200 
00450 ' 
00455 
*11142,1 
01142 
01143 

200 
$ 

190 

DO 70 J=1, 3 

STOP 
TYPE 590 

01144 590 FORMAT{1X,'PROGRAM TERMINATED,DETERMINATE EQUALS 0') 
01145' $ 

*E 
*'C 

.EXECUTE 
FORTR~N: SAMPLE.F4 
LOADING 

LOADER 5K CORE 
EXECUTION 

NOM. OF POINTS;FOR~TCI1);2<N<10 
4 

POINTS;FORMAT{9(F4.1,F4.1,1X» 
06.006.0 -6.0-6.0 -6.006.0 06.0-6.0 

PROGR~M TERMINATED,DETERM1NATE EQUALS 0 
EXIT 
tC 

6-20 

• 



The errors coo be corrected using LINED. The Monitor command EDIT SAMPLE .F4 calls in 

LINED and reopens the pre-existing file, SAMPlE.F4. The END statement is inserted on line 

1145, the file is closed, and the job is returned to Monitor level. The Monitor command 

EXECUTE initiates loading ood execution of the file named in the previous EXECUTE command 

(in th is case SAMPLE. F4). 

The printing of the graph is terminated prematurely by the programmer by typing a 

control 0 ( t 0). 

Examination of the program reveals that division by 0 was attempted. For this data set, 

Del = 0 (line 560). Therefore, array a was not changed by the division; A( 1), A( ~), 

A ( 3 ) rema in equal to O. A retum is made to LIN ED leve I to insert a test for 0 ET = O. The 

LINED command 1445,5 types line 445 and then increments line number 445 by 5. Similarly 

11142,1 types line 1142 and then increments the line number by 1. 

The program is executed with the same data set and this time is terminated because Del = O. 

6-21 



.EX'ECUTE. 
FORTRAN: SAMPLE.F4 
4 
LOADING 

LOADER 5K CORE 
EXECUTION 

NUMBER OF POINTS;FORMAT(I1);2<NUMBER<10 

SAMPLE POINTS;FORMAT(9(F4.1IF4,111X» 
02.107.8 ~6.705.5 -8.909.8 -1.0-1.0 

A.C1)= 2.76598 A(2)= 0.03007 A(3)= 0.08547 

+ 
+ 

+* 
+ .. + 

+ 
+ 

+ 
+ 
+ 
+ 

*. .+ 

+ 
+ 

-y ••••••••••••••••••••••••••• +Y 

EXIT 
tC 

.. 

+ 
+ 

+ 
+ 

+ 
+ 
*+ 

6-22 

* 

+ 
+ 

+ 
+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 



Another execution of the program is made with different data set. Since D ET ~ 0, the graph is 

printed. 

6-23 



.KJdB 
CONFIRM: 

OR 1YPE tC TO ABORT LOG-OUr; 
1YPE ONE OF THE FOLLOWING (AND CAR RET): 

~ 

K TO KILL JOB AND DELETE ALL UNPROTECTEQ FILES; 
L TO LIST YOUR DISK DIRECTORY; OR, 
I TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS: 

AFTER EACH FILE NAME IS LISTED, TYPE: 
P TO SAVE AND PROTECT, 
S TO SAVE WITHOUT PROTECTING, OR 
CAR RET ONLY TO DELETE. 

CONFIRM: I 

SAMPLE.REL <055> 
SAMPLE.BAK <055> 
SAMPLE.F4 <055> 
JOB 7, USER 27, 20 
DELETED 1 FILES 

6. BLKS 
10. BLKS 
10. BLKS 

OFF TTY3 AT 

:P 

:P 
29-0CT-69 

SAVED 2 FILES (INCLUDING 
RUNTIME 0 MIN, 20.29 SEC 

UFD, 28. DISK BLOCKS) 

.. 

6-.24 



The programmer logs off the Teletype with the Monitor command: KJOB. The Monitor asks 

for confirmation, CON FIRM: The programmer types a carriage return causing the Monitor to 

type an explanation and then ask again for a confirmation. Since the programmer typed an I, 

the Monitor responds with SAMPlE.REl <055> 6. BlKS: 

SAMPlE.REl is the relocatabJe binary file of the source program SAMPlE.F4. SAMPlE.REl 

uses six disk blocks (6. BlKS:). The octal number in angular brackets is the protection code. 

Protection code 055 means the fi Ie is sharable (the file can be read from or written on by a 

programmer with any project-programmer number). Typing a P following the colon changes the 

protection to 455 meaning that only a programmer logged in under the present project -

programmer number can write on the file. 

After the programmer types the P and a carriage return, the Monitor prints: 

SAMPlE.BAK < 055 > 10. BlKS: 

SAMPlE.BAK is a backup file. The backup file is the next-to-Iast closed file. In this case, 

the backup file is the FORTRAN file without the addition of lines 445, 1142, 1143, 1144 

and the change of line 450.! The programmer deletes file SAMPLE .BAK. 

The Mon itor types 

SAMPlE.F4 <055> 10. BlKS: 

By typing a P, the programmer saves and protects the current FORTRAN source file. The 

Monitor then types the terminating message which includes the total number of disk blocks saved 

(The User File Directory, UFO, uses two blocks). 

6-25 



Demonstration #3 (Advanced) 

fC 

.LOGIN 
JOB 14 4SP74G 640PROD 
627~ 560 
PASSWORD: 

• 

121859 23-FEB-70 TTY11 

.MAKE MO DULO 

*IC ROUTINE TO TYPE IN TWO INTEGERS NI~N2 
C AND TO TYPE OUT NI MODULO N2. 

1 TYPE 5 
5. FORMA T C' TYPE Nl AND N2' II> 

ACCEPT 10~NI~N2 

1121 FORMATC2I) 
M=MODCNl ~N2) 
TYPE 20~N1 ~N2~M 

2121 FORMATC1X~ I5~' MOD • I5~' IS • 151/) 
GO TO 1 

$$ 
*EX$$ 

EXIT 
fC' 

END 

.MAKE MACSUB.MAC 

*1 ;MOD SUBROUTINE WITH STANDARD FORTRAN CALLING SEQUENCE 
;FORTRAN STATEMT M=MOD(Nl~N2) 
;RESULTS IN CALL TO MOD IN THE FORM 
; JSA I6~MOD 
; ARG eJ~NI 

; ARG 0~N2 
;THUS UPON ENTRY TO MOD~ ACI6 POINTS TO NI 
;THE REMAINDER OR "MOD" FUNCTIO:\T IS RETUrtNED IN AC0 
;AS THE RESULT OF DIVIDING NI tIN ACI7) BY N2. 

ENTRY MOD ;ENTRY POINT FOR LOADER 
MOD: 121 

MOVEM I 7 ~ SAVI 7 
MOVE 17~@(l6) 
IDIV 17~@<l6) 
MOVE 17~SAV17 

JRA.16~2(16) 

SA.V177: 121 
END 

$$ 
*JSSTATEM$IEN$eJLT$$ 

; SAVE ACl7 
;PICK UP Nl 
;DIVIDE BY N2 (REMAINDER IN AC0) 
;RESTORE AC17 
;RETURN TO CALLING PROGRAM 

;FORTRAN STATEMENT M=MOD(Nl~N2) 
*16L T$$ 
SAVI77: 121 
*5CID0LT$$ 
SAV17: 0 
*EX$$ 

EXIT 
fC 



Place the Teletype in monitor command mode ( tC) and log into the system by typing LOGIN, 

followed by the prescribed "login" information for your particular system. The monitor responds 

with time, date, and Teletype number. 

MAKE MODULO calls in TECO to create the file MODULO for the FORTRAN IV source program. 

The text of the program is preceded by the TECO insert command I. The two ALTMODEs ($$) 

signify the termination of the text to be inserted. It is now possible to edit the text if a typing 

error is discovered. Since no typing errors were made, type EX$$ to write the file onto your 
, 

disk area and return control to the monitor. 

MAKE MACSUB.MAC creates the file MACSUB.MAC with TECO for the MACRO-l0 subprogram. 

Two errors were made while typing the program. These are corrected with the TECO command 

strings just before the EX$$ command. The first command string searclles for the characters 

STATEM, then the characters EN are inserted and the corrected I ine is typed out. The next 

command string types out the sixteenth line counting from the line previously typed. The third 

command string de letes the extra 7 and the corrected I ine is typed out. The EX$$ command then 

writes the file on your disk area and returns control to the monitor. 

6-27 



.EXECUTE/L MODULO,MACSUB.MAC 
FORTRAN: MOD:JLO 
MACRO: .MAIN 
LOADING 

LOADER 4K CORE 
EXECUTION 

TYPE Nl AND N2 

10 3 

10 MOD 

TYPE Nl AND N2 

12 8 

12 MOD 

TYPE N1 AND N2 

fC 

3 IS 0 

8 IS 0 

.TYPE MOD:JLO.LST,MACSUB.LST 

MODULO F40 

EGERS N1,N2 

1P 

1M 

) 

5P 

2M 

BLOCK 

MOVEI 
OUT •. 
FIN. 

JRST 

ASCI I 
ACSII 
AS.C I I 
ASCI I 
ASCI I 
BLOCK 

V013 23-FEB-70 

o 

01,5P 
01,777777 
00,0 

2M 

( , TY 
PE N1 

AND 
N2'11 
) 

0 

9: 14 PAGE 1 

C ROUTINE TO TYPE IN TWO INT 

C AND TO TYPE OUT N1 MODULO 

TYPE 5 

5 FORMAT(' TYPE Nl AND N2'11 

6-28 



The EXECUTE/L MODULO,MACSUBMAC command causes the system to create binary machine­

language files for both the FORTRAN IV main program and the MACRO-IO subprogram. These 

binary files are then loaded together and execution is begun. Since no extension was specified 

for the file MODULO, the FORTRAN-compiler is the processor used. However, the file 

MACSUB .MAC has the extension .MAC, thus the MACRO-IO assembler is used for this file. 

The IL causes listing files to be created for both source files. These listing files may be used if 

a bug is encountered during execution. The system acknowledges its progress as each step is 

executed and also types out the total core space needed for loading. 

The program seems always to give an answer of zero. The next step is to find the bug and 

correct it. 

The command TYPE MODULO. LST ,MACSUB. LST causes the listing files for both the main 

program and the subprogram to be typed out on the T e Jetype • 

6-29 



ACCEPT 10 .. N1 .. N2 
MOVEI 01 .. i0P 
IN. 01 .. 777774 
DATA. 00 .. N1 
DATA. 00 .. N2 
FIN. 00 .. 0 

10 FORMAT(2I) 
I 10P JRST 3M 

ASCI I (21) 
3M BLOCK 0 

M=MOD(N1 .. N2) 
JSA 16 .. MOD 
ARG ,;H'J .. N1 
ARG 00 .. N2 
MOVEM 00 .. M 

TYPE 20 .. N1 .. N2 .. M 
MOVEI 0'1 .. 20P 
OUT. 01,777777 
D.~TA. 00 .. N1 
DATA. 00 .. N2 
DATA. 00 .. M 
FIN. 00 .. 0 

221 FORMAT(1X .. I5 .. ' MOD ' 1 5, 1 ' I 
S '151/) . 

6-30 



Demonstration Program #3 continues on next page 

6-31 



SUBPROGR4MS 

FORSE. 
J:lBFF 
INTO. 
INTI. 
MOD 
EXIT 

SCALARS 

Nl 45 
N2 46 
M 47 

.MAIN MACRO.V40 09:14 23-FEB-70 PAGE 
MA.CSUB.MAC 

RTRAN CALLING SEQUENCE 

ORM 

INTS TO Nl 

IS RETURNED IN AC0 

N AC17) BY N2. 

;MOD SUBROUTINE WITH STANDARD FO 

;FORTR4N STATEMENT M=MODCN1,N2) 
;RESULTS IN CALL TO MOD IN THE F 

; JSA 16,MOD 
; ARG 0,Nl 
; ARG 0,N2 
;THUS UPON ENTRY TO MOD, ACl6 PO 

;THE REMAINDER OR "MOD" FUNCTION 

;AS THE RESULT OF DIVIDING Nl (I 

ENTRY MOD ; ENTRY POINT FOR LOADER 
000000 000000 
000001 202740 
000002 200776 
000003 230776 

~~INDER IN AC0) 
000004 '200740 
000005 267716 

NG PROGRA.M 
000006 000000 

NO ERRORS DETECTED 

PROGRAM BRK4K IS 000007 

000000 MOD: 
000006' 
000000 
000000 

000006' 
000002 

000000 SAV17: 

0 
MOVEM l7,SAVl7 
MOVE l7,@(l6> 
IDIV 17,@(l6) 

MOVE l7,SAVl7 
JRA. 16,2(16) 

0 
END 

.MAIN" MA.CRO.V40 09:14 23-FEB-70 PAGE 2 
~CSUB.MAC SYMBOL TABLE 

MOD -000000' ENT SA.V17 

;SAVE ACl7 
;PICK UP N1 
;DIVIDE BY"N2 (R 

;RESTORE AC17 
;RETURN TO CALLI 

000006' 



The error seems to be here. In line 000003 a 1 has been om itted between the @ and the ( 16 ). 

A patch is inserted In the program with DDT to check its va lid ity. 

6-33 



• • DEBUG MODULO,MACSUB.MAC 
LOADING 

LOADER 4K CORE 
EXECUTION 

.MAIN$: MOD+3/ IDIV 17,@0(16) IDIV 17,@1(16) 
$G 

TYPE N1AND N2 

10 3 

10 MOD 3 IS 

TYPE N1 AND N2 

12 8 

12 MOD 8 IS 4 

TYPE N1 AND· N2 

43762 10822 

43762 MOD 10822 IS 474 

TYPE Nl AND N2 

tC 

.TECO MA.CSUB.MAC 

*JSIDIV 17,@$ll$0LT$$ 

. , 

IDIV 17,@1(16) ;DIVIDE BY N2 (REMAINDER IN AC0) 
*EX$$ 

EXIT 
TC 

.KJOB 
CONFIRM: I 
MODULO <055> 1. BLKS :S 
MACSUB.BAK J <055> 1. BLKS 
MODULO.LST <055> 2.·BLKS DELETED 
MODULO.REL <055> 1. BLKS :S 
MACSUB.REL <055> 1. BLKS :S 
MACSUB.LST <055> 2. BLKS DELETED 
MACSUB.MAC ~05'5> 1. BLKS :S 
uUB.,J.~~·.tlSER,. [.27 .. :56~ ] LPQ"OE;D OFF 1;1"Y11, ~924 ,23-FEB-,70 
DELETED 4 FILES (6. DISK BLOCKS)' 
SA.VED 4 FILES (INCLUDING UFD, 6. DISK BLOCKS> 
RUNTIME 0 MIN, 05.54 SEC 

6-34 

o· 



To load DDT with the programs, type DEBUG MODULO,MACSUB.MAC. Note that the two 

source files are not translated again since they have not been modified since the previous trans-
• 

lation occurred • 

Before execution of the program is begun, the system transfers control to DDT. .MAIN$: opens 

the symbol table for the MACRO-tO subprogram. (.MAIN was automatically assigned by 

MACRO since no name was specified.) DDT acknowledges the command with a TAB. Then type 

MOD+3/ to examine the contents of location MOD+3. After DDT responds with the erroneous 

instruction, simply retype the instruction correctly. The $G then starts the program v.i th the 

correction included. 

The program now returns correct resultsl It is now necessary to return to TECO to permanently 

correct the program. 

The command TECO MACSUB.MAC opens the already existing file for editing. A command 

string is then given which inserts the t in the proper place, and the correction is typed out. 

It is now necessary to log off the system. Type KJOB to accomplish this. When the system types 

CONFIRM: , type I to individually save or delete your files. The MACSUB.BAK file is a 

backup file which was created when the TECO MACSUB.MAC command was given. This file 

contains the file as it was before the command was executed. Since this file is no longer needed, 

only a carriage return is typed to delete it. The listing files are automaticatly deleted by the 

system. An S is typed after the colon to save all the oth~r files on the disk for future use. The 

system then completes the logout procedure by typing out the number of files deleted and saved, 

their length in disk blocks, and the total runtime of your job. 

6-35 



Demonstration #4 (Advanced) 
.LOG 
JOB 7 4SP74G 
#27,560 
PASSWORD: 

~: : 

0902 25-FEB-70 
SYS 40 WILL BE DOWN 

.MAKE RANDOl"! 

TTY3 
FROM 1800-2400 TUE FEB 

* SUBROUTINE RANDOM (ARG) 
C RANDOM NUMBER GENERATING SUBROUTINE 

24 •..... 

C RETURNS A SINGLE PRECISION FLOATING POINT (REAL) 
C· PSEUDO-RANDOM NUMBER UNIFORMLY DISTRIBUTED OVER <0,1>. 
C 
C THIS SUBROUTINE ATTEMPTS TO D~LICATE THE ASSEMBLY 

• 

C LANGUAGE PROGRAM RANDOM USED IN THE PDP-10 REFERENCE HANDBOOK 
C DEMONSTRATION #2 

EQUIVALENCE (T,I) 
INTEGER RNUMB,MAGIC,IT(3) 
DATA RNUMB/1/ 
MAGIC = 5**15 

C GET THE TIME IN ASCII HH:MM SS.T 
CALL TIME (I,ARG) 

C USE TIME TO SELECT 1-4 ITERATIONS 
DECODE (5,1,ARG) (IT(K),K=1,3) 
FORMAT (1X,2I1,1X,I1) 
K=«( IT(1) + 15) I IT(2) ) + IT(3) ) .AND. "3 
DO 2 I =K, 0, -1 

C MULTIPLICATIVE R4NDOM NUMBER GENERATOR 
2 R~UMB = RNUMB * MAGIC 
C CONVERT TO FLOATING POINT FORMAT IN THE RANGE <0,1>, 
C BY CL.EARING THE EXPONENT FIELD WITH A "Sl-IIFT" AND SETTING 
C THE EXPONENT TO 0 (EXCESS 200). 

I = ( RNUMB /256 ) .OR. "20000000000 
C NORMALIZE AND STORE RESULT 

ARG = T + 0.0 

$$ 
*HT$$ 

RETURN 
END 

SUBROUTINE RA~DOM (ARG) 
C RANDOM NUMBER GENERATING SUBROUTINE 
C RETURNS A SINGLE PRECISION FLOATING POINT (REAL) 
C PSEUDO-RANDOM.NUMBER UNIFORMLY DISTRIBUTED OVER <0,1>. 
C 
C THIS SUBROUTINE ATTEMPTS TO DUPLICATE THE ASSEMBLY 
C LANGUAGE PROGRAM RANDOM USED IN THE PDP-10 REFERENCE HANDBOOK 
C DEMONSTRATION #2. 

EQUIVALENCE (T,I) 
INTEGER RNUMB,MAGIC,IT(3) 
DATA RNUMB/l/ 
MAGIC = 5**15 

C GET THE TIME IN ASCII HH:MM SS.T 
CALL TIME (I,ARG) 

C USE TIME TO SELECT 1-4 ITERATIONS 
DECODE.(5,l,ARG) (IT(K),K=l,3) 
FORMAT(lX,2Il,lX,Il) 
f{=«( IT(l) + 15) / IT(2) ) + IT(3) ) .A~D. "3 
DO 2 I =K, 0, -1 

C MULTIPLICATIVE RANDOM NUMBER GENERATOR 
2 RNUMB = RNUMB * MAGIC 

6-36 



LOG (abbreviation for LOGIN) starts the process of logging in to the system. Type the appro­

priate "login" information for your particular system, and it w ill respond with the time, date, 

Teletype number, and the message of the day (if there is a message to be given). 

MAKE RANDOM creates the file RANDOM with TECO for the FORTRAN random number gener­

ating subroutine. The TECO insert command ( I ) is not needed since the first character to be 

input is a TAB. The TAB causes it, along with the rest of the text up to the two ALTMODEs 

( $$ ), to be inserted into the buffer. 

HT$$ causes TECO to type the entire buffer on the Teletype. This is used to check the previously 

inserted text for errors. 

6-37 



C CONVERT TO FLOATING POINT FORMAT IN THE RANGE <0,1> 
C BY CLEARING THE EXPONENT FIELD WITH A "SHIFT" AND SETTING 
C THE EXPONENT TO. 0 .( EXCESS 2(0). 

I = ( RNUMB /256 ) .OR. "202100000000 
C NORMALIZE AND STORE RESULT 

~RG = T + 0.0 

*EX$$ 

EXIT 
tC 

RETURN· 
END 

.MAKE TESTIT 

*110 TYPE 1 
1 FORMAT(' COMPUTE THE AVERAGE OF ',5X, '. 

9PSEUDO-RANDOM NUMBERS') 
TYPE 2 

2 FORMAT(lH+,T25,$) 
ACCEPT 3,1 

3 FORMAT(15) 
T=0.0 
DO 4 K=l,1 
CALC RANDOM (R) 

4 T=T+R 
T=T/l 
TYPE 5,T 

5 FORIYJAT <1 X, 'IS: ',F) 
GO TO 10 

$$ 
*HT$$ 
10 

END 

TYPE 1 
1 FORMAT(' COMPUTE THE AVERAGE OF ',5X, '. 

2 

3 

9PSEUDO-RANDOM NUMBERS') 
TYPE 2 
FORMAT(lH+,T25,$) 
ACCEPT 3,1 
FORMAT< 15) 
T=0.0 
DO 4 K=l,I 
CALL RANDOM (R) 

4 T=T+R 
T=T/I 
TYPE 5,T 

5 FO RMA T ( 1 X, , IS: " F) 
GO TO 10 

*EX$$ 

,. EXIT 
tC 

END 

6-38 



The TECO command EX$$ causes the file to be ended and the contents of the buffer to be read 

onto your disk area. It then returns control to the monitor. 

MAKE TESTIT calls in TECO to open a file for the FORTRAN testing program. The program calls 

the subroutine to get random numbers. It then averages a specified number of random numbers 

and, since the random numbers are confined to the range (0,1), the average should be close to 

0.5 if the numbers are truly random. 

The TECO insert command ( I ) causes TECO to insert the text of the program up to the two 

ALTMODEs into the buffer. 

The command HT$$ causes the whole buffer to be typed onto your Te Ie type • This is usefu I to 

check for typing mistakes. 

EX$$ causes the file to be closed and read onto your disk area. It then returns control to the 

monitor. 

6-39 



.EXECUTE TESTIT,RANDOM 

FORTRAN: TESTIT 
******** 1 FORI"'IAT(' COMPuTE THE AVERAGE OF " 5X, , • 
******** "t 
******** M-7 UNTERMIN~TED HOLLERITH STRING 
******** 9PSEUDO-RANDOM NUMBERS') 
******** t 
******** S-l SYNTAX. 
MAIN. ERRORS DETECTED: 2 

? TOT~L ERRORS DETECTED: 2 
FORTAA'\T: RANDOM 
LOADING 

LOADER 5K CORE 
?EXEGUTION DELETED 

EXIT 
tC 

.TECO TESTIT 

*S5X, , • $$ 
*2R8< 1 ~=$C>$$ 
39 
46 
13 
10 
9 
32 
57 
80 

'. 

*f2lLCD0L-TT$$ 
1 FORMAT(' COMPU"tE THE AVERAGE OF ',5X, '. 

9PSEUDO-RANDOM NUMBERS') 

*EG$$ 
FORTRAN: 
LOADING 

LOADER 5K CORE 
EXECUTION 

TEST!T 

COMPU'rE THE AVERAGE OF 00010.PSEUDO-RANDOM NUMBERS 

6-40 



Type EXEOJTE TESTIT ,RANDOM to call in the FORTRAN IV compiler to create binary machine­

language files (these will be given the extension. REL). The EXECUTE command also causes the 

two relocatable binary files to be loaded and then executed, if there are no compiler detected 

errors: 

The FORTRAN compiler has detected errors in the main (testing) program. It types out the lines 

the errors occur in and an arrow at the particular point the error is detected. The total errors 

for the main program are then typed out. The compiler then translates the file RANDOM and does 

not detect any errors. The total core requirement for loading is then typed out. The execution 

is deleted since there were compiler detected errors. Control is then returned to the monitor. 

The error messages returned by the FORTRAN compiler seem to indicate that there may be an 

illegal character in one or both of the two lines which were typed out by the compiler. To check 

this assumption, type TECO TESTIT which opens the already existing file TESTIT for editing. 

This command has the added effect of renaming the file, as it was before editing, TESTIT.BAK .• 

The first command string to TECO searches for the characters 5X, I •• The second string causes 

the decimal equivalents of the ASCII code of eight consecutive characters, starting with the 

character I ,to be typed on the Teletype. In this way, it should be possible to see if there is 

a character among these eight (even a non-printing one) that should not be there. 

The 32 is a space, and for this I ine to be a continuation line it shou Id not be there. Type the 

TECO command string shown to delete the space and type the corrected lines. 

The command EG$$ causes TECO to perform the functions of an EX$$ and then to execute the 

last compile class command given to the monitor. In this case, it was EXECUTE TESTlT,RANDOM. 

Since RANDOM has not been changed, it is not recompiled. 

Execution of the program is begun and it types the line COMPUTE THE AVERAGE OF 

.. PSEUDO-RANDOM NUMBERS. The program will then space over to the blank spaces and wait 

for you to enter the number of random numbers it is to average. In this case 10 random numbers 

are averaged. Strike the return key after the number has been entered, and the program should 

give you the average and type the first I ine again. 

6-41 



INTEGER DIVIDE CHECK PC=000267 

INTEGER DIVIDE CHECK PC=000267 

INTEGER OVERFLOW PC=000276 

INTEGER OVERFI.,.DW PC=000276 

IS: 0.0000000 
COMPUTE THE AVERAGE OF fC .PSEUDO-RANDOM NUMBERS 

.DEBUG ICREF/COMPILE TESTIT(~~M)~RANDOM(~~M) 

FORTRAN: TESTIT 
FORTRAN: RA.:\TDOM 
LOADING 

LOADER 7K CORE 
EXECUTION 

XXX f C 

.SAVE DSK TEST 
J>B SAVED 
fC 

.CREF 

6-42 



The INTEGER DIVIDE CHECK messages occur when the seconds portion of the time used in the 

program is an even multiple of 10. This causes IT(2) to be 0 and the divide check results when 

the program attempts to divide by IT(2). When this happens, the result is as if the divide never 

occurred, thus the results obtained are still accurate. 

The INTEGER OVERFLOW messages occur when RNUMB is multiplied by MAGIC (MAGIC = 
5 15). The fact that these overflows occur does not affect the resu Its, since the purpose is just 

to obtain a random number. Both the INTEGER DIVIDE CHECK and INTEGER OVERFLOW 

messages are suppressed after they are outputted twice. 

The average is returned as 0 when it shou Id be close to 0.5. There must be another bug in the 

program. When the program requests the number of random numbers to average, type 

ConlTol-C (t C) to return to the monitor. 

The DEBUG/CREF/COMPILE TESTIT("M),RANDOM("M) command does several different 

operations. First it loads DDT along with the two programs to make it possible to debug with 

DDT. The /CREF causes a cross-referenced listing to be produced to help in finding the bug. 

/COMPILE must be used for forced compilation of the programs. Ordinarily the source files 

are compiled only if they have a creation time newer than the binary machine-language files. 

The /COMPI LE (called a switch) overrides this feature and ensures the creation of the listing 

files. If it was not used the CREF files would not be ,produced. Tlie (, ,M) causes the listings 

to contain the MACRO expansion code which is sometimes helpful in debugging • 

.. 
After the monitor types EXECUTION, it transfers control to DDT. This happens because DEBUG 

was used instead of EX ECUTE. 

Strike the RU BOUT (or DELETE) key to make certain that DDT was entered. In DDT, the 

RUBOUT key echoes (typ,es back) as XXX. Now type tc to return to the monitor to get the 

listings. 

So that DDT can be reentered with the greatest possible ease, it is necessary to save the core 

area on the disk. If this is not done, another DEBUG command must be given. The command 

SAVE DSK TEST writes a copy of the core area on the disk and gives it the filename TEST. SAV. 

The monitor types JOB SAVED and leaves the Teletype in monitor mode. 

Type CREF to print the cross-reference listings on the line printer. 

6-43 



• GET DSK TEST 
JOB SETUP 
tC 

.DDT 

T .... 4P+4$2B 
$$F 
$G 

-\ . 

COMPUTE THE AVERAGE OF 00010.PSEUDO-RANDOM NUMBERS 
$lB»4? R/ ~17105693E~33 

INTEGER OVERFLOW PC=003552 
$lB»4P R/ .26502884E-34 

INTEGER OVERFLOW PC=0213552 
$1 B»4P R/ .12697389E-33 
$1B»4? R/ .18615497E-33 
$1B»4P R/ .17992393E-33 
$1B»4P R/ • ~ 7408278E-33 
$1 B»4P R/ .15958281E-33 
$1B»4P R/ .37201131E-34 
$1 B»4P R/ .16486226E-33 

INTEGER DIVIDE CHECK PC=f2l03543 
$1B»4P R/ .14481467!J:-33 
$2B»4P+4 T/ .13711563E-32 $P 

IS: f2l.f2l0f2l0f2l0f2l 
COMPUTE ;HE AVERAGE OF tC .PSEUDO-RANDOM NUMBERS 

.DDT 

RANDOM$: 
RNUMB .... 2P+4$$1B 
$$C 
$G 

$B 

6-44 • 



GET DSK TEST loads the core image from the disk into core. The monitor types JOB SETUP and 

returns the Teletype to monitor mode. 

The command DDT is typed to' reenter the program in DDT. After this command is executed 

it is as if the monitor had just typed EXECUTION and transferred control to DDT. It is now 

possible to debug the program wi th the aid of DDT and the listings from the line printer. 

MAIN .$: opens the symbol table for the FORTRAN main program, in this case TESTIT. DDT 

responds to each command with a TAB. By examining the listings carefully, it is possible to find 

a place to stop the program to find out what some of the random numbers are it is getting from 

the subroutine. Location 4P (assigned by the compiler) is the correct point to examine the ran­

dom numbers. The command R,,4P$$lB tells DDT to type the contents of R (address of the ran­

dom number) at location 4P, assign this as the first breakpoint, and continue program execution 

without stopping. If only one ALTMODE ( $) were used, the program would stop after typing"the 

contents of R. 

At location 4P+4, the total of the random numbers can be examined by typing out the contents 

of T. The command T, ,4P+4$2B instructs DDT to type the contents of T at location 4P+4, 

assign this as the se-cond breakpoint, and stop the program after the typeout. $$F tells DDT to 

output the contents of the specified locations as floating point numbers. The $G then starts 

execution of the program. 

The ten random numbers are extremely small and not even close to the range of zero to one. 

This explains why an average of zero was r~turned. The calculated average was too small to 

print using an F format. The bug must be somewhere in the random number generating subroutine. 

After DDT types the total, type $P to proceed with the program. When it asks for the number of 

random numbers, type t C to return to the monitor. 

Reenter DDT by typing the command DDT. Open the symbol table for the random number 

generating routine by typing RANDOM$: . $B is typed to clear the previous breakpoints. To 

examine the random numbers produced by RANDOM, type RNUMB,,2P+4$$lB. This tells DDT 

to type the contents of RNUMB at location 2P+4, assign this as the first breakpoint, and continue 

the program execution without stopping. This should simply produce random digits in address 

RNUMB. Type $$C to cause DDT to type the numbers as octal constants. $G starts execution of 

the program. 

6-45 



COMPUTE THE AVERAGE OF f21f2lf211f21~PSEUDO-RANDOM NUMBERS 

INTEGER OVERFLOW ' 
$1B»2P+4' RNUMBI 

INTEGER OVERFLOW 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$lB»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 
$1B»2P+4 RNUMBI 

IS: 121.121121121121121121121 

PC=f21f213552 
11213231 ~ ~ 730141 

PC=f21f213552 
353364~~63f21365 

2032n 151761 
273526-~~272275 
10 5623n 3341211 5 

'52227n 117021 
136431,,262241 
317344~ ~ 31212511 
366123~~235f2165 
254721~~447775 

I 

COMPUTE THE AVERAGE OF tC .PSEUDO-RANDOM NUMBERS 

.DDT 

T" 2P+10$$1 B 
$G 

COMPUTE THE AVERAGE OF f21f2lf2l1f21.PSEUDO-RANDOM NUMBERS 

INTEGER OVERFLOW PC=f21f213552 

INTEGER OVERFLOW PC=f212!3552 
$1B»2P+1121 TI 204f213~ ~ 354047 
$1B»2P+10 'FI 2eJ402~~262376 
$1B»2P+1121 TI 2eJ142~~231053 

$lB»2P+10 TI 20755n 531405 , 
$1B»2P+lf21 TI 2eJ300~, 643450 ' 
$1B»2P,+10 TI 20126" 233254 
$1B»2P+1121 TI 20254~~522723 

$1B»2P+10 TI 20315~ ~ 115224 

INTEGER DIVIDE CHECK PC=01213543 

$1B»2P+1121 TI 2f21316~~622373 
$1B»2P+10 TI 20240~~644566 

IS: 121.0000000 
COMPUTE THE AVER~GE OF tC .PSEUDO-RANDOM NUMBERS 

.DDT 

CONST.I 2000f21,~0 20012100,,0 
.1 20012100,,0 $B $G 

COMPUTE THE AVERAGE OF f210010.PSEUDO-RANDOM NUMBERS 

INTEGER OVERFLOW PC=003552 

INTEGER OVERFLOW PC=003552 

IS: 0.5106965 
COMPUTE THE AVERAGE OF 0121100.PSEUDO-RANDOM NUMBERS 

IS: 121.5007578 
COMPUTE THE AVERAGE OF tC .PSEUDO-RANDOM NUMBERS 

6-46 



The numbers appear to be random. The bug must be farther on in the program. Type t C to 

return to the monitor. 

Type DDT to return to DDT. It is unn~cessary to open the symbol table of RANDOM since it 

was opened the previous time DDT was used. The command T,,2P+10$$lB causes DDT to type 

the contents of T at location 2P+1O, assign this as breakpoint one, and continue execution with­

out stopping. It is not necessary to clear the breakpoints since breakpoint one has been 

reassigned. T at location 2P+ 10 shou Id contain the unnormalized random number. Each number 

should begin with 200, as that is the exponent used. Type $G to start the program. 

The bug is here! Each number beg ins with 020 instead of 200; therefore, a zero ,must have been 

omitted in the exponent in the program. Type t C to return to the mon itor and reenter' DDT by 

typing DDT. 

Type CONST./ to examine the contents of that location. DDT types 20000,,0. There should 

be another zero in the left half of the word. Type 200000" ° to correct the error. DDT changes 

the contents of CONST. to the numbers just typed. Next type ./ to again examine the contents 

of CONST. DDT responds with the corrected value. $B clears the breakpoints and $G starts 

the program. 

The answer is close to 0.5 for 10 random numbers and closer for 100 random numbers. The 

program is correct. \ 

6-47 



.TECO R~NDOM 

*S"2$-T$$ 
C THE EXPONENT TO 0 (EXCESS 200). 

I = ( RN(JMB 1256 ) • (fR. "2*10 $0L TU 
I = ( RNUMB 1256 ) .OR. "200000000000 

*EX$$ 

EXIT 
tC 

.DIR/F 

J 

DIRECTORY 27,560 

AANDOM.BAK 
TESTIT.B~K 

TESTIT.REL 
AANDOM.REL 
TEST IT 
TESTIT.CRF 
AANDOM. CRF 
TEST • S~V 
AA!'-1DOM 

.K 
CONFIRM: I 
AANDOM.BAK 
TESTIT.B~K 

TESTIT.REL 
AANDOM.REL 
TESTIT 
TESTIT.CRF 
AANDOM.CRF 
TEST .S~V 

RA.!'-1DOM 

<055> 
<055> 
<055> 
<055> 
<055> 
<055> 
<055> 
<055> 
<0'55> 

JOB 7, USER [27,560] 
DELETED 7 FILES (62. 

1020 25-FEB-70 

2. BLKS 
1 • BLKS 
2. BLKS 
2. BLKS 
1 • BLKS :S 
4. BLKS DELEITED 
6. BLKS DELETED 
45. ·BLKS 
2. BLKS :S 

LOGGED OFF TTY3 1023 
DISK BLOCKS) 

~VED 2 FILES (INCLUDING UFD, 5. DISK BLOCKS) 
RUNTIME 121 MIN .. 26.52 SEC 

25-FEB-70 



The command TECO RANDOM opens the already existing file RANDOM for editing. The old 

file is renamed RANDOM.BAK. The command string 5"2$-T$$ causes TECO to search for the 

characters "2 which are unique in the program'and are located at the beginning of the octal 

constant used to insert the exponent. TECO then types the previous line and the current I ine up 

to the posit-ion following the characters searched for. TECO signals its readiness for another 

command string by typing an asterisk. The second command string inserts a zero and types the 

corrected line. The EX$$ causes the file to be closed and read onto your disk area with the 

corrections in eluded. Control is then returned to the monitor. 

Type DIR/F to obtain a directory of your disk area. The IF causes a shortened form of the 

directory to be printed. The length of each fi Ie and the creation date are omitted. 

The two files with extensions .BAK are back-up files'. They contain the files, specified by 

file names, as they were before ed iting was done with TECO. The . REL fi les are the binary 

machine-IQnguage files created by the FORTRAN compiler. The files with the extension .CRF 

are the CREF listing files. 

Type K (abbreviation for KJOB) to log off the system. When the monitor types CONFIRM: , 

respond with an I to individually save or delete your files. The two source files are saved by . ' 

typing an 5, the .CRF fi les are automatically deleted by the system, and the other files are 

deleted by typing only a carriag~ return. The system then responds with the rest of the logout 

information. 

6-49 





Book 7 

Advanced 
Monitor 

Commands 





ADVANCED 

MONITOR COMMANDS 

The !.ystern controls many peripheral devices, such as Teletypes, magnetic tape drives, DECtape 

drives, card readers and punches, line printers, papertape readers and punches, and disks. The 

monitor is responsible both for allocating these peripheral devices, as well as other system 

resources (e.g., core memory), and for maintaining a pool of such available resources from 

which you can draw. 

Each device controlled by the system has a physical name associated with it. The physical 

name is unique. It consists of three letters and zero to three numerals specifying a unit number. 

The following table lists the physical names associated with various peripheral devices. 

Tobie 7-1 

Peripheral Devices 

Device Physical Name 

Teletype TTYO, TTY 1, • • • , TTY77 

Console Teletype CTY 

Paper Tape Reader PTR 

Paper Tape Punch PTP 

Plotter PLT 

Line Printer LPT 

Card Reader CDR 

Card Punch COP 

DECtape DTAO, DTAI, ••• , DTA7 

Magnetic Tape MTAO, MTAI, ••• , MTA7 

Disk DSK . 

-

You may also give each device a logical device name. T.he logical device name is an alias, 

and the device can be referred to either by this alias or by the physical name. The logical 

• 7-3 



name consists of one to six alphanumeric characters of your choice-. Tne reason for logical 

device names is thot in writing a program you may use arbitrarily selected device nomes 

(logical device names) that can be assigned to the most conven ient physical devices at runtime. 

However, care should be exercised in assigning logical device names because these names have 

priority over physical device names. For example, if a DECtape is a~gned the logical name 

DSK, then all of your programs attempting to use the disk via the physical name DSK end up 

using the DECtape instead. It is wise not to give .any device the logical name DSK because 

certain monitor commands (such as the COMPILE com~ands) make extensive use of special 

features that the disk has but other devices do not ha've. The following examples show the use 

of logical and physical device na~es • 

.!. ASSIGN DTA,ABC ) 

.!. ASSIGN MTAl,XYZ ) 

.!.ASSIGN PTR, FOO ) 

Assign a DECtape the logical name ABC. 

Assign !JICgnetic tape drive #1 the logical 
name XYZ • 

Assign the papertape reader the logical 
name FOO. 

In order to use most peripheral devices, you must assign the desired device to your ,job. You 

may assign a device either by a program or from the console. The first kind of assignment 

occurs when you write a program that uses a particular device. When the program begins using 

the device, it is assigned to you on a temporary basis and released from you when your program 

has finished with it. The second kind of assignment occurs when you explicitly assign the 

device by means of the ASSIGN monitor command. This is a permanent assignment that is ~n 

effect until the device is released by a DEASSIGN or FINISH monitor command or by your 

logging off the system. 

When you assign a device to your job, the monitor associates your job number with that device. 

This means that no other user may use the device while you are u,.sing it. The only exception is 

the dis~, which is accessible by all users. When you assign the disk, you are allocated a 

fraction of the disk, not the'entire unit. When you deassign a device or kill your job, the 

device is returned to the monitor's pool of qvailable resources. 

7.1 COMMANDS TO ALLOCATE SYSTEM RESOURCES 

7.1.1 The ASSIGN Command 

The ASSIGN command is used to assign a peripheral device on a permanent basis for the duration 
, , , .' , 

of your job or until you explicitly deassign it. This command must ha~e as an argument the 

legal physical device nome (see Table 7-1) of the device you wish to assign. For example, if 

7-4 • 
\ 



you want to assign a 0 ECtape drive to your job, type 

.!. ASSIGN DTA) 

The monitor responds with the message 

DT An ASSI GN ED 

where n is the unit number of the DECtape drive assigned to your job. If all drives are in use, 

the monitor responds with 

NO SUCH DEVICE 

and you must wait until a drive becomes available. You may assign a specific DECtape drive 

as follows: 

• ASSI GN DTA3 ) 

The mOllitor responds with 

DTA3 ASSIGNED 

if the drive is available, or 

ALREADY ASSIGNED TO JOB n 

if job n is using DECtape drive #3. 

The ASSIGN command may also have, as an optional argument, a logical device name follow­

ing the physical device name. The logical device name may be used in place of the physical 

device name in all references to the device. For example, if you want to use DECtape drive 

#1 and have it named SAMPLE, type the command 

.!. ASSI GN DT A I SAMPLE ) 

If DECtape driye #1 is free, the monitor responds with 

DTAI ASSIGNED 

7-5 



~ .. ', ' 

and stores the logical name you typed. You may then refer to ffifl<DECtapeby the name 

SAMP~E ,JJn~it you.e?<plicitly. release the dev,ic~,or killyour job. " 

Logical names can be :~,ery ,useful. Suppose you write a program that uses DECtape drive #5 

and refers to it by its physica,1 name (DT AS). When you run your program, you find that 

DECtape drive #3 is the only drive available. Instead of rewriting your program to use DEC­

tape drive #3, type 

.!. ASSI GN DT A3 DT AS ) 

, , 

Thereafter, whenever your program refers to DT AS, it is, actually referring to DT A3. Since 

'logical device names are strictly your own, they are different from the logical names of other 

users. The fol/owing is an example using physical and logical device names • 

7.1.2 

• ASSIGN DTA,NAME ) 

DEVICE DTA4 ASSIGNED 

..:. ASSIGN DTA, LINE) 

NO SUCH DEVICE 

.!. ASSIGN PTP,NAME ) 

Assign a DECtape drive the logical name 
NAME. 

DECtape drive #4 has been assigned. 

Fird another DECtape drive; 
assign the logical name LINE. 

All DECtape drives are in use. 

Reserve paper tape punch. 

LOGICAL NAME ALREADY IN USE 

DEVICE PTP ASSIGNED 
Paper tape punch is assigned but NAME 
still refers to DTA4 only. 

.!. ASSIGN DTA3, LINE) Request DECtap~ drive #3 and give it the' 
logical name LINE 

ALREADY ASSIGNED TO JOB7 Another user (job 7) has DTA3. 

The DEASSIGN Command 

The DEASSIGN comman~ is used to release one or more devices currently' associated with your 

job. This command may have as an argument a physical or logical device name. If an 

argument is given, the specified devices are released. If an argument is not specified, all 

devices assigned 'to your job are released. When devices are released, they are returned to 

the monitor's pool of available resources for use by other users. The DEASSIGN command 

does not affect any temporary assignments your job may have for devices. 

~I " 

7-6 



7.1.3 The REASSIGN Command 

The REASSIGN command allows you to give a device assigned to you to another user without 

having the device returned to the monitor's pool of available resources. Two arguments are 

required with this command: the name of the device being reassigned and the job number of 

the user who is receiving the device. For example, suppose you have finished with D ECtape 

drive 116 and the person who is job 10 wants it. Type the command 

.!. REASSIGN DTA6 10 ) 

This deassigns DECtape drive 116 from your job and assigns it to job 10, just as if you had typed 

.!. DEASSIGN DTA6 ) 

end job 10 had typed 

• ASSIGN DTA6 ) 

immediatel~ thereafter. All devices except a Teletype console can be reassigned. 

7.1.4 The FINISH Command 

The FINISH command is used to prematurely terminate a program that is being executed while 

preserving as much output as possible. If this command is not used, part or all of the output 

file may be lost. The ANISH command may be followed by a physical or logical device name, 

in which case any input or output currently in progress in relation to that device is terminated. 

Ifno device is specified, input or output is terminated on all devices assigned to your job. 

The monitor responds to this command by terminating output, closing the file, and releasing the 

device for use by others. 

This command could be used if you were generating an assembly listing of a program on your 

disk area and decided that you wanted only the first part of the listing, not the entire listing. 

Type 

tc 
.:. FINISH DSK) 

and the monitor completes the writing of your listing and releases the disk. 

7-7 



7.l.5 The CORE Command 

The CORE command all~ws you to modify the amount of core assigned to your job-. The command 

is followed by a decimal number representing the total number of 1K blocks (1024 word blocks) 

that you want the program to have from this point on. For example, if you want the program 

to have 8K blocks of core, type 

• CORE 8 ) 

and the monitor gives the program 8K blocks, if available. If you request additional core and 

there is none available, the monitor responds with an error message. If the CORE command is 

followed by the decimal number 0, your program disappears from core because you are request­

ing OK blocks of core. Ifothe decimal number following the command is omitted, the monitor 

types out ( 1 ) the total number of 1 K blocks you have, (2) the maximum you can request, 

and ( 3 ) the amount of core not assigned to any user. 

7.2 COMMANDS TO MANIPULATE TELETYPE ASSIGNMENTS 

7.2.1 The TALK Command 

The TALK command allows you to type directly to another user's console. This means that 

everything you type appears on his Teletype and everything he types appears on yours. If 

his console is not both talking to the monitor and positioned at the left margin, you get a 

BUSY message. This command is especially useful when you are at a remote Teletype and 

wish to direct people at the computer site to mount a DECtape for you., When you finish talk­

ing to the other console, type control - C to get back to the monitor. 

7.2.2 The DETACH Command 

The DETACH command causes your Teletype to be disconnected from your program and released 

to contro I another job. This means that, wh ile your program is disconnected, you may log in 

again, receive a new job number, and do something else. The job that was detached from 

your Teletype is said to be a background job. This means that it is not under control "of any 

user's console. If your background job attempts to type something to the Tele"type, it is 

stopped, for there is no Teletype attached to it. 

7.2.3 The ATTACH Command 

The ATTACH command allows you to attach a console to a background, or detached job. You 

must specify the number of the job to which you wish to attach. If you are the owner of the 

7-8 



detached job, your console is immediately detached from your current job and attached to your 

detached job. After this command is executed, the console is in communication with the 

monitor. If the job you just attached to happens to be running, type CONTINUE without 

affecting the status of the job. 

If you are not the owner of the detached job, you must also specify the project-programmer 

number of the owner. The project-programmer number must be enciosed in square brackets 

(e.g. [27,400) for this command to work. If the job whose job number you typed is 

already attached to a Teletype, you cannot attach and the monitor responds with 

TTYn ALREADY ATTACHED 

where n is the number of the Teletype attached to the job. Observe that only one Teletype 

can be attached to a job at any time. (For a demonstration on attaching and detaching jobs, 

see the PDP-10 Reference Handbook.) 

7.3 COMMANDS TO REQUEST LINE PRINTER OUTPUT 

In Book 2, the TYPE command for listing source files o~ your Teletype was discussed. In addi­

tion, there are three commands that may be used to list files on the line printer: LIST, CREF, 

and DIRECTORY. 

7.3.1 The LI ST Command 
~ 

The LIST command Causel> the contents of the specified source files to be typed on the line 

printer. Headings at the top of each page tell the page number, the name of the file, and the 

date of printing. You may list fi les from disk or 0 ECtape • For example, the command 

.:.. LIST TEST .F4 ) 

causes your disk file TEST .F4 to be listed on the line printer. You may list multiple files by 

separating the fi lenames by commas. For example, if you want to list three fi les, S.t\MPLE.BAS, 

FILEX.F4,MAIN .F4, from DECtape drive #4, type the command 

.:.. LIST DTA4: SAMPLE. BAS, FI LEX. F4~MAIN .F4) 

The asterisk convention discussed in Book 2 may' be used with this command. For example, 

.:.. LIST *.F4 ) 

7-9 



causes all files with the filename extension. F4 to be listed. 
" 

7.3.2 The CREF Command 

The CREF command is used "to list a certain type of file called a cross-reference file. This 

command is an invaluable aid in program debugging. If a COMPilE, lOAD, EXECUTE, or 

DEBUG command string (see Book 2) has a /CREF switch, the command string generates an 

expanded listing that includes ( 1,) the original code as it appears in the file, (2) the octal 

values the code represents, (3) the relative locations into which the octal values go, 

( 4) a list of all the symbols your program uses, and (5) the numbers of the lines on which 

each symbol appeats. This is called a cross-reference "'Sting. To pri"nt this. listing file, you 

must call in a special cross-reference lister with the CREF command. All the cross-reference 

listing files you have generated since the last CREFcommand ar~ printed on the line printer. 

The file containing the names of the cross-reference listing files is then deleted so that subse­

quent CREF commands will not list them again. 

7.3.3 The DIRECTORY Command 

When a DTAn: argument is specified with the DIRECTORY command, the directory of DECtape n 

is typed on the Teletype. (See Book 2 for a discussion of the DIRECTORY command when no 

argument is·specified.) For example, the command 

. .:. DIRECTORY DT A2 ) 

types the directory of DECtape drive 62 on the Teletype. 

Besides having optional device arguments, this command has two switch options. The first 

switch option is /F. Including /F in the command string causes the short form of the directory 

to be listed on the Teletype. The short form of the directory consists of the names of your 

files and the length of each file in PDP-10 disk blocks. (The long form of the directory also 

lists the creation dates of each file.) The second switch option is fl. Including /L in the 

command string causes the output of the directory to go to t~e line printer rather than to the 

Teletype. For example, the command 

• DIRECTORY /l ) 

lists your'directory of your d iskarea on the line printer. The line printer is assigned to you on 

a temporary basis and is released when the output is finished. 

7-10 



7.4 COMMANDS TO MANIPULATE CORE IMAGES 

By using one of the following commands, you can load core image files (see Book 2 for the 

definition of a core image file) from disk, DECtapes, and magnetic tapes into core and then 

later save the core images. These files can be retrieved and controlled from the user's console. 

Files on disk and DECtape are called by filename, and if you have any files on magnetic tape, 

you must position the tape to the beginning of the file. 

7.4.1 The SAVE Command 

The SAVE command causes your current core image to be saved on the specified device with 

the specified filename. This command must be followed by severa I arguments. First, you must 

tell the monitor the device on which you want to save the core image. A colon may follow the 

device name. Second, you must give a name to the core image file. If the filename exten-

sion js not specified, the monitor designates one. You may specify the amount of core in , 
which you want your file saved by specifying a decimal number to represent the number of 1 K 

blocks. For example, if you want to save your core image on DECtape drive #2, give it the 

name SALES, and allow 12K of core for storage, type 

. SAVE DTA2: SALES 12 ) 

A file called SALES is created and your core image is stored in it. If you list your DECtape 

directory, the length of the file is slightly over 12,OOOworcls. ':Afteryou use this command, . 
you cannot continue executing the program. The program can be restarted only from the be­

ginning. 

7.4.2 The RUN Command 

The RUN command allows you to run programs you previously saved on the disk, DECtape, or 

magnetic tape. This command reads the core image file from a storage device and starts its 

execution. You must specify the device containing the core image file and the name of that 

file. The file must have been saved previously with a SAVE command. If the file is no,t a 

saved program, the monitor responds with an error message. If the core image file you want 

to execute is on another user's disk area, you must specify his project-programmer number, 

enclosed in square brackets. Again, you may specify the amount of core to be assigned to the 

program if different from the minimum core needed to load the program or from the core 

argument of the SAVE command. 

7-11 



7.4.3 The R Command 

The R,~l1lmand is a specia1 form of the RUN command. This command runs programs (or CUSPs)' 

that are part of the system, rather than programs that are your own. The R command is the 

usual way to run a OJ SP that does not have a direct mon itor command associated with it; 

For example, the only way to run BASIC and AID is by the commands 

• R BASIC) 

and • RAID) 

A device name or a project programmer number may not be specified for this command. 

7.4.4 The GET Command 

The GET command is the same as the RUN command except that it does not stqrt the program; 

it merely generates a core image and exits. Thl\! monitor types 

JOB SETUP 

and is ready to accept another command. 

7.5 COMMAI'JDS.TO START A PROGRAM 

7.5.1 The START Command 

The START command begins execution of the program at its starting address, the location 

sp'~cified within the file, and is valid only if you have a core image. This command allows 

you to specify another starting address by typing the octal address after the command. 

Normally, to start a program, type 

• START ) 

but to start a program at the specified octal location 347, type 

• START 347 ) 

A GET command followed by a START command is equivalent to a RUN command. 

t ,.:..,j "!: ": 

7-12 



7.5.2 The HALT ( t C) Command 

Typing tc stops your program and takes you back to the monitor. The program "remembers" 

at what pC)int it was interrupted so that it may subsequently be continued. After typing t C, 

you may type any commands that do not affect the status of your program (e.g., PJOB, 

DA YTIME, RESOURCES) and still be able to continue the execution of the program with a 

CONTINUE command. However, contin~ing is impossible if you issue any command that runs 

a new program, such as a RUN or R command. 

7.5.3 The CONTINUE Command 

If you stop your program by a HALT (tC) command, you may resume execution from the point 

at which it was interrupted by typing the CONTINUE command. You may continue the 

program only if you exit by typing control - C. If the program exited on an error condition 

of some sort, the mon itor does not let you continue. It types 

CAN IT CONTINUE 

if you try. However, you may continue your program if it has halted and given the typeout 

HALT AT USER n 

7.6 COMMANDS TO GET INFORMATION FROM THE SYSTEM. 

7.6.1 - The RESOURCES Command 

The RESOURCES command types out a list of all the available devices (except Teletypes) and 

the number of free blocks on the disk. A disk block is 128 PDP-10 words in length. For 

example, 

• RESOURCES ) 

22100. BLKS, PTYI,CDR,PTR,MTA 1 ,COP, PLT, 

At the time of this command, there were 22100 free disk blocks available in addition to six 

devices. 

7.6.2 The SYSTAT Command 

The SYSTAT command produces a summary of the current status of the system and may be typed 

without logging in. I,:,cluded in the summary is a list of the jobs currently logged in, along 

7-13 



with their protect-programmer numbers, program names being 'run, and runtime. The following 

is a partial example of SYSTAT. ~re inform~'ti~~' is contained in this program and can be 

obtained by running SYST AT. 

UPTIME ~1:26:4~, 38% NULL TIME = IDLE+LOST = 26% + 12% 

JOB WHO WHERE WHAT SIZE STATE RUNTIME 

1 ** ** DET PIP lK tc SW ~~:12:~1 , 
2 2,5 TTY4 MACRO 4K tc SW ~~:~1:22 
3 11,554 TTY3 MACRO 12K RN ~JO:J05:J05 
4 4JO,633 TTY6 ~IP lK TT JO~:~~:32 
5 13,575 TTY2~ COBOL 15K TT SW JO~:~JO:19 
6 j~~637 TTY24 DEVCHK lK' TT SW ~JO:~JO:52 
7 1~2 TTYI OPFILE 3K IO ~~:~JO:2~ 
8 ** ** TTY27 LOGOUT lK MQ ~~:~~:24 , 
9 2~,521 TTX'13 SYSTAT lK tc SW ~~:~JO:58 
1~ . 2~,623 TTY23 PIP lK AU ~~:ll:ll 
11 1,2 TTY2 PRINTR 2K IO ~~:~~:39 
12 ** ** TTY33 LOGIN lK SL ~~:JO~:~JO , 
13 ** ** TTY14 LOGOUT lK MQ ~JO:~2:25 , 
14 ** ** DET UFILE 2K tC SW ~~:~~:~9 , 
15 lJ04,334 TTY43 TECO 2K tc SW ~~:JO~:~~ 
16 7~,54 TTY15 STACK 2K TT SW ~~:~1:33 
17 4~,65 TTYl~ TECO 2K RN ~~:~2:42 
18 4JO,64 TTY7 PRINT lK MQ ~JO:~JO:12 
19 ** ** DET SYSTAT lK tc SW ~~:~~:~~ , 
20 11', 7~ TTY21 MONGEN 3K TT ~~:~~:>n 
21 ** ** DET CHKPRT ~K ~C ~~:~~:JOI , 
22 11,131 TTY37 'HMAC 6K TT SW ~~:~~:42 
23 13,12 TTY5 BATCH ·4K SL ~~:~~:58 
24 ** ** DET PLEASE lK tc SW ~~:~~:~1 , 

7;J ADDITIONAL·MONITOR COMMANDS 

In order to present the complete set of monitor commands, the following must be, included. 

These commands are speciahun control and system administration commands and are discussed 
, . , 

in the PDP-10 Reference Handbook, Communicating With the NIonitor, Chapter 2. 

Table 7-2 

Additional Monitor Commands 

Command Explanation 

DDT " This comma~ !.sused in debug9ir:'9 programs and allows DDT 
, '- " ~ -to assume, control o(the execution of your program in ' 

various ways. See the PO P-lO Reference Handbook, 
Communicatina with the Monitor for further information. 



Command 

REENTER 

E 

D 

SSAVE 

CSTART 
CCONT 

Table 7-2 (Cont.) 

Explanation 

Similar to the DDT command. This command causes the 
program to start at an alternate specified entry point. 
The alternate entry point must be set by you or your 
program. 

This command allows you to examine locations in your 
core area. The argument adr is required the first time you 
use this command. By specifying an address, the contents 
of that location are typed. If an argument is not specified, 
the contents of the location following the previously 
spec i fied address are typed out. 

This command allows you to deposit information in your 
core area. You must specify octal values to be deposited 
in the left half and right half of the location. The address 
of the location in which information is to be deposited 
may be specified. If the address is not specified, the 
information is deposited in the last location examined or 
the last location in which information was deposited. 

Th is command is the same as the SAVE command except that 
the program will be sharable when it is loaded with the 

. GET command. To indicate sharabiI ity , the high segment 
is written with the extension .SHR. A subsequent GET 
causes the high segment to be sharable. 

These commands are identical to the START and CONT 
commands except that you are able to continue talking 
to the monitor. The START and CONT allow you to 
communicate only with the CUSP that is in execution. 
Monitor commands may now be executed while the job is 
running. 

SCHEDULE n Thi$ command is legal only from the operator's console. 
It changes the scheduled use of the system depending on n, 
where n is: . 

o = regular time-sharing 
1 = no further logins allowed 
2 = no further logins allowed from remote 

Teletypes 

ASSIGN SYS:dev This command changes the system device to device 
II devil. The user must be logged in under [1, n or [1,2] • 

DETACH dev > This command assigns the device "dey" to job 0, thus 
making it unavailable. The user must be logged in 
under [ 1, 1 ] • 

7-15 



Table 7-2 (Cor-t.) 

Command Explanation 

ATTACH dev This command returns a detached device to the monitor's 
pool of available resources. The user must be logged in 
under [1, 1] • 

CTEST This command is used to test extensions made to the 
COMPIL CUSP. 

7.8 MONITOR ERROR MESSAGES 

The following table contains a summary of the error messages the system can issue. The 

convention used in the summary is that 

dev 

file.ext 

adr 

n 

Message 

The type in is 'typed back 
followed by? ) 

ADDRESS CHECK FOR 
DEVICE dev AT USER 
adr 

ALREADY ASSIGNED 
TO JOB n 

BAD DIRECTORY FOR 
DEVICE DTAn 

represents any legal device name. 

represents any legal filename and filename extension. 

represents a user address. 

represents a job number or device unit number 

Table 7-3 

Monitor Diagnostic Messages 

Meaning 

The mon itor encountered an incorrect character, 
such as a letter in a numeric argument. The 
incorrect character appears immediately before' 
the? For example, • 

.:.. CORE ABC) 

CORE A? ) 

The monitor checked a user address and found it 
to be too large or too small; in other words, the 
address lies outside the bounds of your program. 

1he device is already assigned to another user's 
job (job n). 

The system cannot read or write the DECtape 
directory without getting some kind of error. 
Many times this error occurs when you try to 
write on a write-locked tape or use a virgin tape. 

7-16 



Message 

BUSY 

CAN IT ATTACH 
TO JOB 

CANIT CONTINUE 

COMMAND ERROR 

dey: ASSIGNED 

DEVICE CAN IT BE 
REASSIGNED 

DEVICE dev OK? 

DEVICE dev 
WASNIT ASSIGNED 

DEVICE NOT 
AVAILABLE 

DIRECTORY RJLL 

DISK NOT 
AVAILABLE 

ERROR IN JOB n 

EXECUTION 
DELETED 

Table 7-3 (Cent) 

Meaning 

The console addressed is not communicating with the 
monitor or is not positioned at the I eft margin. 
(The operatorls console is never busy.) 

The project-programmer number specified is not 
that of the owner of the desired job. 

The job was terminated due to a monitor detected 
error and cannot be contlnued. 

General catch-all error response for the COMPILE 
commands. The syntax of the command is in 
error and the command cannot be deciphered • 

... 
The device has been successfully assigned to 
your job. 

A userls Teletype cannot be reassigned or an 
attempt was made to reassign a device that your 
job is sti II using. 

The device is temporarily disobled. The line 
printer may be turned off or out of paper. For 
mag tapes, there may be no tape mounted or 
the switch is in LOCAL. You should correct the 
situation and then proceed (retry the operation) 
by typing CONTINUE. 

The device isnlt currently assigned to your job 
and cannot be deassigned or reassigned by your 
job. 

Specified d~vice could not be initialized because 
someone else is using it. 

The directory of the device is full and no more 
fi les can be added. 

The device DSK: could not be initialized. 
~ 

A fatal error occurred in your job or in the 
monitor while servicing your job. This 
typeout usually precedes a I-line description 
of the error. 

A program is prevented from being executed because 
of errors detected during assembI y,- compilation, 
or loading. Load ing is performed, but the Loader 
exits to the monitor without starting execution . 

. 7-17 



Message 

FILE IN USE OR 
PROTECTED 

HALT AT USER adr 

HUN G 0 EYIC E dev 

ILLEGAL DATA MODE 
FOR 0 EYICE dev 
AT USER adr -

ILLEGAL UUO AT 
USER adr 

ILL INST. AT 
USER adr 

ILL MEMREF AT 
USER adr 

lNCORRECT RETRIEVAL 
IN FORMATION 

INPUT DEVICE dev 
CANNOT DO OUTPUT 

INPUT ERROR 

?INVALID ENTRY­
TRY AGAIN 

I/O TO UNASSIGNED 
CHANNEL AT USER adr 

JOB NEVER WAS 
INITIATED 

JOB SAVED 

LINKAGE ERROR 

Table 7-3 (Cont.) 

Meaning 

A temporary command file could not be entered 
in your UFO (user's file directory). 

Your program executed a HALT instruction at 
adr. Typing CONTINUE resumes execution at 
the effective address of the HALT instruction. 

If a device does not respond within a certain 
period of time when it is referen ced, the system 
decides that the device is not functioning and 
outputs thi s message. 

The data mode specified for a device in your 
program is i"egal, such as dump mode for 
Teletype. 

An i"egal UUO was executed at user location 
adr. 

An illegal operation code was encountered in 
your program. 

An illegal memory reference was made by your 
program at adr or adr + 1. 

The retrieval poil1ters for a file are not in the 
correct format; the fi Ie is unreadable. 

Output was attempted on a device that can only 
do input, such as the card reader. 

I/O error occurred while reading a temporary 
command file from the disk. File should be 
rewritten. 

An ill~gal project-programmer number or password 
was entered and did not match identification in 
system. 

An attempt was made to do an OUTPUT, INPUT, 
OUT, or IN fo a device that your program has not 
initialized. 

An attempt was made to attach to a job that has 
not been in itia lized • 

The output is completed. 

I/O error occurred while reading a CUSP from 
device SYS: 

7-18 



Message 

LOGICAL NAME 
ALREADY IN USE 
DEVICE dev 
ASSIGNED 

LOGIN PLEASE 
? 

LOO KU P AND ENTER 
HAVE DIFFERENT 
NAMES 

MASS STORAGE 
DEVICE FULL 

NESTING TOO DEEP 

nK OF CORE 
NEEDED 

n 1 K BLOCKS OF 
CORE NEEDED 

NON-EX MEM AT 
USER adr 

NON-RECOVERABLE 
DISC READ ERROR; 

N ON -RECOVERABLE 
DISC WRITE ERROR; 

NO CORE ASSIGNED 

NO START ADR 

NO SUCH DEVICE 

Table 7-3 (Cont.) 

Meaning 

You previously assigned this logical name to 
another device. The device is assigned but 
the logical name is not. 

A command that requires you to be logged in 
has been typed to the monitor; it cannot be 
accepted until you log in. 

An attempt was made to read and write a file 
on the disk. However, the LOOKUP and 
ENTER UUO's have specified different names 
on the same user channel. This message does 
not indicate a DECtape error. 

The storage disk is full. Users must delete 
unneeded files before the system can proceed • 

The @ construction exceeds a depth of nine 
and may be due to a loop of @ command 
files. 

There is insuffic.ient free core to load the file. 

The user's current core allocation is less than 
the contents of JOBFF. 

Usually due to an error in the monitor. 

The monitor encountered an error while reading 
or writing a critical block in the disk file 
structure (e.g., the MFD or the SAT table). 
If th is condition persists, the disk must be 
reloaded using FAILSAFE, after the standard 
location for the MFD and SAT table has been 
changed using the monitor once-only dialogue. 

No core was allocated when the GET command 
was given and no core argument was specified 
in the GET. 

Starting· address or reenter address is zero 
because you failed to specify the address. 

The device name does not exist or all devices 
of this type are in use. 

7-19 



Message 

NO SUCH FILE­
file .ext 

NOT A DUMP FI LE 

NOT A JOB 

NOT ENOUGH CORE 

NOT ENOUGH FREE 
CORE IN MONITOR 

NOT FOUND 

OUT OF BOUNDS 

OUTPUT DEVICE dey 
CANNOT DO INPUT 

OUTPUT ERROR 

PC EXCEED S MEMORY 
BOUND AT USER adr 

PROCESSOR CON FLICT 

PLEASE KJOB OR 
DETACH 

SWAP READ ERROR 

Table 7-3 (Cont.) 

Meaning 

Specified file could not be found. May be a source 
file or a file required for operation of the COMPILE 
commands. ' 

The file is not a core image file. 

The job number is not assigned to any currently 
runn ing job. 

System cannot supply enough core to use as 
buffers or to read in 'a OJSP. 

The monitor has run out of free core for assigning 
disk'data blocks and monitor buffers. 

The program file requested could not be found 
on the system device or the specified device. 

The specified adr is not in your core area, or 
the high segment is write-protected and you do 
not have privileges to the file which initialized the 
high segment. 

An attempt was made to input from an output 
device, such as input from the line printer. 

I/O error occurred while writing a temporary 
command file on disk. 

Your program made an illegal transfer outside 
its bounds. 

Use of + construction has resulted in a mixture 
of source languages. 

Attempt was made to attach a job when you 
already have a job initialized at that Teletype. 

A consistent checksum error has been encountered 
when checksumming locations JOBDAC through 
JOBDAC+74 of the Job Data Area during swapping. 

TOO FEW ARGUMENTS . A command has been typed, but necessary 
arguments are missing. ' 

TOO MANY NAMES Command string complexity exceeds table space 
or in the COMPIL CUSP. 
TOO MANY SWITCHES 

7-20 



Table 7-3 (Cont) 

Message Mean mg 

TRANSMISSION 
ERROR 

. TTYn ALREADY 
ATTACHED 

UN RECOGN I ZABLE 
SWITCH 

UUO AT USER adr 

Duril'lg a SAVE, GET, or RUN command, the sys­
tem received parity errors from the device, or 
was unable to read your file in some other way. 
This can be as simple as trying to write on a 
write-locked tape. 

Job number is erroneous and is attached to 
anot her conso Ie, or another user is attached 
to the job. 

An ambiguous or undefined word followed a 
slash (/). 

This message accompanies many error messages and 
indicates the location of the UUO that was the 
last instruction your program executed before the 
error occurred . 

7-21 

• 



.. 



Book 8 

Utility Programs . ' 

BATCH 

CHAIN 

LINED 

TECD 





BATCH 





CONTENTS 

CHAPTER 1 INTRODUCTION 

CHAPTER 2 BATCH PROCESSING UNDER THE PDP-I0 MONITORS 

2.1 

2.2 

2.3 

2.4 

Description 

Batch Equipment Requirements 

Object Job Status 

User-Control Levels 

CHAPTER 3 PROGRAMMER CONTROL OF THE PDP-lO BATCH PROCESSOR 

3.1 Control Cards Acceptable as Batch Input 

3.1.1 Control Card Notation 

3.1.2 Control Card Descriptions 

3.2 Loading User Programs 

CHAPTER 4 DRIVER (A CORE DUMP PROGRAM) 

4.1 

4.2 

4.3 

4.4 

General Description 

Equipment Requirements 

Implementation of Driver 

Using Drivei' 

APPENDIX A BATCH EXAMPLES 

APPENDIX B TABLES 

2-1 

2-2 

A-I 

3-1 

B-1 

ILLUSTRATIONS 

Batch Processing within the PDP-I0 Time-Sharing System 

Lines of Control and Communication Between Batch and the 
Batch-Controlled Object Job 

Sample Control Cards for Three Jobs Processed by Batch 

Batch User Diagnostic Messages 

Batch Control Cards 

TABLES 

8-5 

8-7 

8-9 

8-11 

8-12 

8-13 

8-16 

8-16 

8-16 

8-28 

8-29 

8-29 

8-30 

8-30 

8-33 

8-41 

8-10 

8-11 

8-38 

8-28 

8-41 



.! 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



CHAPTER 1 

INTRODUCTION 

The PDP-10 Batch Processor (Batch), runlling under any of the PDP-10 Monitors, supervises the sequen­

tia I execution of a, seri es of jobs. In a ti me-sharing environment, Batch performs this function as one 

of the users of the system, thus allowing normal access by other users. Batch maintains constant com­

munication with the operator and allows him to interrupt, skip, repeat, or prematurely terminate one or 

more of the jobs in the series at any time. Chapter 2 contains a general description of Batch operation. 

Chapter 3 describes the Batch control cards that must be present in the input to Batch. The 

Appendicescontain supplementary information on Batch, including examples, and control card 

and Teletype command summaries. 

Two programs are used in conjunction with Batch-Stack and Driver. Stack is used to transfer job files 

to the Batch input device and stack them there for subsequent input to Batch, transfer output job files 

created by a Batch run from the Batch output device to some other device (usually the line printer), list 

job file directories, delete job files, and list directories with selective file deletion or transfer. 

As described in Chapter 4, the DRIVER provides a core dump of the user's core area. 

8-7 





2.1 DESCRIPTIO N 

CHAPTER 2 

BATCH PROCESSING UNDER 
THE PDP-10 MONITORS 

The PDP-10 Batch Processor" Batch, is a sl!bsystem which exists as one of many Commonly Used Systems 

Programs (cusps) in the PDP-lO System Library. Batch is called in by the operator from his console 

Teletype by the Monitor command "R BATCH" in the same manner as F40 (the FORTRAN Compiler), 

Macro-lO (the Macro Assembler), or PIP (the Peripheral Interchange Program), or any of the other 

cusps. The Batch Processor is not an integral part of the Monitor and therefore C?ccupies no core storage 

when it is not being run. There is only one version of Batch; this version runs under all Monitors. 

Batch is a command interpreter and job supervisor; it does not contain its own versions of assemblers, 

compilers or looders. Rather, the PDP-10 Batch Processor calls in and controls the execution of the 

same standard cusps that an on-lin~ user would utilize in unbatched execution of jobs from a console 

Teletype. The input/output handler of the Batch Processor uses Programmed Operators (UUOs) which 

trap to the Monitor; thus, the actual I/o is handled by routines that exist within the Monitor, thereby 

enabling Batch to be run as a time-shared job in only 3K of core. 

When Batch is being run from a user's console Teletype (TTY) as a time-shared job, with a job number 

n, it sequentially initializes and executes a series of time-shared jobs (with job numbers m1, m2, etc.) 

in parallel with itself. Batch accomplishes this by utilizing a "simulated Teletype" (caded a pseudo­

Teletype (PlY». A PTY is a mechanism by which one job (a control job) can control another job (an 

object job). Batch uses a PTY to type its commands to the object job. Thus, the Batch control job 

runs concurrently with the time-shared, batch-processed object job. Since the Monitor "sees" the 

control job (which is running Batch) and the object job (which is being run by Batch) as two separate 

and distinct time-shared jobs, memory protection and relocation ensures the complete protection of the 

Batch Processor area of core as well as that of the Time-Sharing Monitor. 1 Consequently, there is no 

lThis holds tn:e only if the hardware configuration includes the memory protection and relocation 
package, i.e., a time-sharing system only. 

8-9 



way in which an error in a user program being run under Batch can inadvertently i~terfere with the 

Batch Processor itself. The fact that the two jobs are being run in perallel by the Time-Sharing Monitor 

makes it possible for the operator to communicate directly with Batch via his console Teletype without 

any interruption of the job being run by the Batch Processor; i.e., that portion of Batch which inter­

prets console commands can operate independently from that portion which controls the execution of 

the object job (unless, of course, the console command specifically requests an interruption or termi­

nation of the current user's job being run). See Figure 2-2. 

~ 
1 CONSOLE 

COMMAND I 
INTERPRETER I 

USE A 
CONSOLES 

,. --.., 
I I 

L ___ ~ 

MONItOR 

I SYSTEM I· I I SUPERVISOR 

f ~ 
I J PROGRAM 1 

~I (USER JOB) I EXECUTOR 

USER JOBS 
(CORE) 

JOB 1 
PIP2 

JOB 2 
BATCH 

JOB 6 
F4 

Ffgure 2-1 Batch Processing within the 
PDP-10 Time-Sharing System 

8-10 

I INPUT/OUTPUT I HANDLER 

SYSTEM DEVICE 

• 
(CUSP'S) 

F4 

MACRO-lO 
LOADER 

BATCH 
DUMP 

PIP 
EDITOR. ETC 



.. 

CONTROL JOB BATCH 

INPUT ( CONSOLE 
I-OPERATORS 

COMMAND .---- STREAM f--I 
CONSOLE 

INTERPRETER INTERPRETER 

1 i 
OBJECT 

f---+ 
INPUTI 

JOB OUTPUT 
EXECUTOR HANOLER 

8 ' SYS) 

THREE SllITES 
OF AN OBJECT 

A'~ 
• JOB 

08JECT JOB WHILE 
BPTEMP r --. UNDER BATCH 

/ CONTROL 

r'- OBJECT JOB WHILE - UNDER CUSP 

r5 CONTROL 

OBJECT JOB WHI LE 
UNOER USER 

PROGRAM CONTROL 

Figure 2-2 Lines of Control and Communication Between Batch 
and the Batch-Controlled Object Job 

2.2 BATCH EQUIPMENT REQUIREMENTS 

BATCH 
INPUT 

DE\I1CE 

l7J OUTPUT 
DEVICE 

The minimum utilities required for batch processing within a PDP-10 system are: one Batch input device 

(contair:ts the input 'stack of jobs to be run), one Batch output device (for any assembler or compiler list­

ings), one scratch device (BPTEMP}l, the shared system device (SYS; contains the systems programs), 

3K of core for the Batch program, and sufficient core available to Ba~ch to run the required cusps or 
i 

1This scratch d~vice can be accessed by programs running under Batch by use of the device name 
BPTEMP:. Assume that it is file-structured. 

8-11 



specified user prog,rams. Th~ input device may be any device'capable of inptJf~itiiin;the insfdll~tlcin's 

sYstem (card reader, magnetic tape, DECtape, paper tape reader, or disk). The Batch output, or list­

ing device, may be any output device within the PDP-lO system configuration (line printer, paper tape 

punch, magnetic tape, DECtape, or disk); in a time-sharing system, a console Teletype other than the 

operator's can be usedas the listing device. The scratch device can be any retrievable device (mag­

netic tape, DECtape, or disk) and is assigned to the control job with the logical name BPTEMP before 

Batch is started. The system device (logical name, SYS) is a directory device specified at system-build 

time, and shared by all system users; it is kept write protected and cannot be uniquely assigned to any 

one job, although any job can initialize and input from it. Because of the disk fi Ie structure in th~ 

PDP-10 systems, a disk may be initialized as "different" devices concurrently; therefore, in a system 

which includes a disk in its configuration, Batch may be run with that disk as its input, output, scratch 

and system device, all initialized at the same time. Other devices, including this disk, that a par­

ticulCl1" job may require must be assigned by control cards in the Batch input stream. 

The traditional approach to Batch processing is that all Batch control cards relating to a job to be run 

appear together with the job on the Batch input device, and the Batch output messages directly concern­

ing the job appear with the job's output on the Batch output device. Other messages may go to the .. 

operator's console. In this mode of operation, the user's job should 'address the Batch input device and 

Batch output device; these devi~es may be assigned as any device and the user's job will still run with­

out modification. 

Ho~ever, there is no restriction which states that the user must operate in this way. The Batch control 

cards and the user's job (e.g., program, data, etc.) may be placed on two or more separate devices. 

In most of the discussions in this manual, the first mode of operation is implied, but in actuality only 

the Batch control cards must appear on the Batch input device, and only the Batch messages concerning 

the user's job must appear on the Batch output device. 

2.3 OBJECT JOB STATUS 

Each object job comprises a file in the input stack. Each such job is separately logged in by Batch, 

and at the endo~ each job, Batc;h performs a KJ6B. The job number assigned by the system to the 

object job is typed out fo,llowing the typeol,lt of that job's $JOB card. 

The object job , il1 which all job execution is done, is a Iway~,'in one of three possible, ~tates determi,ned 

by where control of the object -job resides (see Figure 2-2); uti lization of the above-mentioned devi-ces 

varies between each of'these stotes. The object job is under sole Botch control whenever job execution 

8-12 



is being controlled; i.e., whenever Batch is bringing a cusp into the object job's core area, whenever 

compilations, assemblies, or other proc~sses are initialized or terminated, or whenever a postmortem 

dump is performed. All control-card command execution is done while the object job is under Batch 

control. Batch can always bring the object job back to its own control, regardless of the object job's 

state. 

When a system program, such as the FORTRAN Compi ler, has been started as the time-shared object job 

by Batch, that program is in control of the job. The compiler may ask for input from the Batch input 

device, do output to the Batch output device, or perform I/O to devices specified on the control card 

that initialized its execution. Relocatable binary files produced by the assembler and compiler, or any 

other intermediate files, are placed on the scratch device, BPTEMP, for subsequent input for another 

process -- usually a loading process prior to running the now executable user program. 

When a user program is executed (execution automatically follows compilation or assembly unless the 

~ control card includes a command to suppress execution or there has been an error whi Ie compiling or 

assembling), the object job is running under that program's control. The program can perform input 

and output on the Batch input and output devices or on any device previously assigned by a control card. 

When a user program e~its normally (with a CAll EXID, control reverts to Batch which then processes 

the next control card request; when the exit is,due to a monitor-detected error, Batch will execute a 

postmortem core dump, if requested, by calling most of the dump routine from the system device. If 

the previously specified maximum running time for the user program is exceeded, control also reverts to 

Batch. .. 
Ultimate control of the object job always remains with Batch, since it can interrupt the execution of 

any program which is being run at any time. Batch does the timing of user programs being executed, 

and interprets commands that the operator may type on the console. These commands could interrupt, 

terminate, or atter the execution of a series of user jobs, or they could specify new parameters to Batch 

without interruption of the existing sequence, or even without slowing down object-job execution. 

2.4 USER-CONTROL lEVELS 

There are two levels of control that a user exercises over Batch; these levels are determined by the form 

of the commands input'to Batch. Thl'lse commands are either in the form of "control cards" (see Chapter 

3) which are prepared and arranged before Batch run time, or they are console commands typed to 

Batch at ruh time;' . The remainder of this section is primarily of interest to the programmer and 

discusses the fever of control that is exercised over the processor by various types of control-card 

commands. 

8-13 



-',; 



CHAPTER 3 

PROGRAMMER CONTROL OF THE 
PDP-I0 BATCH PROCESSOR 

The programmer controls the execution of his job by Batch through control cards which he prepares prior 

to run time. A control card is hereby defined as any ASCII string of characters from any legal input 

device, where that string is terminated by the ASCII characters, RETURN and LINE-FEED, and initial­

ized with an ASCII $ (dollar sign) as its first character. We shall refer to control cards as if they were 

cards, and refer to positions on these cards as columns. If the input device happens to be a card reader, 

the end of the card itself determines the termination of the ASCII character string; however, in every 

case (except the KEY card), column 1 must contain the dollar sign. 

The format of control cards requires that the control card type be identified by its first word, which 

must begin in column 2; this card type is usually an instruction or category of commands which mayor 

may not take a series of arguments. The fields of the various arguments are delimited by spaces (except 

for the name field on the $JOB card, which must be delimited by a comma, since it may contain space~) 

and they need not be delimited by.specific columns; leading spaces before arguments are ignored by 

Bat :h, so absolute positioning is flexible - the relative positioning of arguments, however, must be as 

specified below. 

If a directory device is used as the Batch input device, each user's job is assumed to be a separate file 

with a name, IJOBxy .abc, where xy represents the ASCII characters 01 through 99 and .abc represents 

any desired extension (omission of .abc implies a null extension). "xy" must run consecutively, with 

no missing numbers between the first job (IJOB01) and the last job (IJOBnn). Stack "stacks" files on 

a directory device, giving them consecutive names as just described (see Chapter 5). Batch runs jobs 

in the input stack as follows. First, Batch searches for the job IJOBOl and initializes it. At the end 

of IJOBOl ,. Batch searches for IJOB02, etc. B~tch continues operating in this sequential manner unti I 

after running· IJOBn I a LOOKUP on IJOBn+l fai Is; at this point, Batch assumes that it has reached the 

end of the input stack and types "END OF BATCH." 

8-15 



When Batch is executed with a directory device QS its output device, Batch creates filenames in the 
• • ' ." , :. 1,' • ' '. ,,1_, , ~ - "'. . - ., , < ~ ~, • " (_~ 

form OJOBxy.abc, where the xy.abc string in the output files always corresponds to that of the 

IJO Bxy • abc fil es • 

3.1 CONTROL CARDS ACCEPTABLE AS BATCH INPUT 

3.1.1 Control Card Notation 

In the following control-card command descriptions, these notation conventions are used. 

Parameters in uppercase letters indicate the use of that particular ASCII string in the field indicated on 

the control card; e.g., NOGO suppresses program execution. 

Lowercase letters indicate an ASCII string to be substituted; e.g., "name" indicates a variable name. 

Lowercase terms with II as last character indicate a quantitative argument; e.g., "timell " indicates 

maximum execution time. 

Parentheses ( ) indicate that the enclosed argument is optional. 

Braces { } indicate a choice of formats. 

3.1.2 Control Card Descriptions 

3.1.2.1 $JOB Card - The $JOB card must be the first card for a given user's application, or user job. 

The user job may consist of any number of specific tasks, compilations, assemblies or executions which 

are placed prior to the $EOJ (end of job) card, wnich terminates the job, causing Batch to look for the 

next $JOB card in the stack. The format of the $JOB card is as follows. 

1 
$JOB name, corell timell projll ,prog# (NOGO) (DUMP) 

I, 

name User's name or other information; must be delimited by a comma and cannot exceed 25 
, .,' I , • 

characters, inc I udi ng blanks. 

" if' " < . ' - '.~ , 
" 

, ; , If"" , , ;' 
lo 

~ 

" 
!)I' , ,..;.., ,'" 

8-16 

.. 



core II 

timell 

projll 

progll 

This quantity is the user's estimate of the maximum number of blocks (102410, or 20008 

words per block) of core memory required to process his job. This quantity is expressed 

in decimal. This estimate must include the 1 K of locations reserved by the Monitor as 

the job-data area in every runable user program, and also the 1 K locations required 

by the core dump DRIVER which is loaded by Batch starting at user location 140. 

All programs and/or cusps within a user job will be run in the amount of core requested 

on the $JOB card, whether that particular program or cusp requires it or not; this 

is necessary to prevent another time-shared user from acquiring core needed to complete 

a specific Batch user job. 

This quantity is the user's estimate of the maximum amount of time (in seconds) that his 

job should require to run to completion. This figure should reflect use of processor 
I, 

time only, since input/output is handled by the Monitor; furthermore, if the environ-

ment is time-sharing, only the running time of the user is measured by Batch, not the 

real-time processor use of any other time-shared jobs. At program run time, if Batch 

finds that the specified time has been exceeded, a message is typed to the operator on 

the Batch console teletype, MAX TIME EXCEEDED; however, the user job continues 

uninterrupted for 8 seconds before skipping to the next user job. 

During this period, the operator may type TIMEOK to extend the program's execution 

until its normal exit (or until the operator terminates it with a console command, see 

Chapter 4). 

The projll, prog# ar~ applicabl,e only in systems that have a LOGIN feature; this in­

cludes all systems with a mass storage device (disk or drum) in their configuration. The 
1 

project number of a user is the first part of the number that he types when logging in 

for on-line utilization of the PDP-l0 system. The project-programmer number sequence 

identifies the user file directory (UFO) of that particular user on the disk. Once Batch 

has logged in the user under his number, all references to the disk with unspecified 

UFO by any part of the user's program or by $ASSIGN card will be a reference through 

that user's own file directory. The projll can be connected to the progll with a comma 

'(ASCII code =054) or a slash (ASCII code =057). 

This argument is the second part of the project-programmer number; every user of a 

system should have his own unique programmer number; the project number is usually 

common to several programmers. The significance of the project-programmer number in 

a disk system is treated in more detail in the PDP-l0 Time-Sharing Monitors manual. 

8-17 



NOGO 

DUMP 

. If the argument NOGOls included after thev~riable arg(,ments on t~e $JbB card I the 

object program produced by assembly and load or compi lation and load will not be 

executed; this feature might be used in conjunction with a $SAVE or $SSAVEcards in 

case the user wishes to run the program on-line at some later time. 

If the character string DUMP is included on the $JOB card, a postmortem dump is per­

formed on the user core image following any object program termination other than a 

CALL EXIT. If the DUMP argument is not specified, however, the operator may still 

initialize" a core dump by typing the DUMP command on his console Teletype at any 

time (e.g., upon receiving a MAX TIME EXCEEDED message). 

3.1.2.2 KEY Card - The KEY card must be the second card in the user job on systems that have a 

LOGIN feature. The key is a string of six or less ASCII characters and is associated with the pre­

viously mentioned project-progra·mmer number. To be logged in, the key must be correct; otherwise, 

the user's job will not be executed by BATCH. The formot of the KEY card is as follows: 

1 
key 

NOTE 

The ASCII dollar sign ($) is not used as the first 
character on this card. 

Examples of the $JOB card and KEY card combination: 

1 
$JOB EXAMPLE, 206099,99 NOGO 
PASWRD 

$JOB EXAMPLE2, 21 59 100,100 DUMP 
SECRET 

3.1.2.3 $ASSIGN Card - The $ASSIGN card is required if the user wishes to reference any device 

other than the Batch input and outPlJt device. or SYS, the system devi<;e. If the user w~mts to perform 

I/O on the ~at~~ input/output devices, regardless Qf what these devices are assignec!to by the operator 

at run time, he does not use the $ASSIGN card; instead he performs I/o wi.th ACCEPT and TYPE state­

ments in FORTRAN, or with "TTY" initialized as his input and output device if his source program is in 

8-18 



Macro. A user program may also use the Batch scratch device, BPTEMP, without an $ASSIGN card; in 

fact, the symbolic unit (or logical name) specified on an $ASSIGN card can be any logical name ex­

cept BPTEMP and SYS. With the exception of DSK, the physical device specified cannot define a de­

vice already specified as the Batch input or Batch output device (see "NOTES," 4.1.3). 

The function of the $ASSIGN card is to set up a correspondence between a symbolic unit used in the 

user's program and a particular physical device designated at run time; if the device is a tape, it also 

associates the label appearing on the physical tape with the logical name and the tape drive. The 

format of the '$ASSIGN card is as follows. 

label 

1 
$ASSIGN label symu (PROTECT) (NOREW) 

This is the argument by which the user specifies the physical device he wants to reference 

in his program by the logical name, symu; it also specifies the physical device that sub­

sequent control cards wi II reference as symu • 

If label is a nonsharable physical device (e.g., CDR, LPT) and is not avai lable at user 

run time, Batch will type a message, "USER NEEDS DEVICE label." to the operator and 

then wait for a response before proceeding. The operator should attempt to assign the 

required device to Batch, perhaps after waiting for the current user of the device to 

finish with it and release it. When the operator types "CONT", Batch will attempt to 

INIT the device. If this attempt succeeds, Batch will reassign the device to the object 

job and continue execution. If Batch cannot INIT the device, it will print an error 

message on the output device and skip to the next user's job. 

If the user assigns a sharable physical device (e.g., DTA, MTA), the label must begin 

with either D (for DECtape) 1 or M (for magtape) followed by some word or number that 

identifies the reel to be mounted. For example, the serial number might be used to 

indicate to the operator which of the tapes given him by the user should be mounted at 

this time. A label beginning with a D or M will cause Batch to type "MOUNT TAPE 

label WRITE PROTECTED" or "MOUNT TAPE label WRITE ENABLED" (the presence or 

absence of the PROTECT argument determines which of these two messages is typed); 

The operator then mounts the specified tape' on an available drive and types the device 

name and numl:>er on the console. (NOTE: The drive selected must not be that of either 

the Batch input or Batch output device.) 

1 However, note that the label "DSK II assigns disk to the symu. 

8-19 



symu 

PROTECT 

NOREW 

$ASSI~~ TAP~IN D1984 PROTECt This $ASSIGN c~~d cou~es'the f~lIowir1g ; 
typeouts at wn time. 

MOUNT TAPE D1984 WRITE PROTECTED 

(Operator mounts DECtape with serial number of 1984 on an avail(jJble DECtape 

drive, for example, drive 5) 

DTA5: ) 

OK 

Operator types in device name and 
number, followed by'a colon. 

Batch responds with message indicating 
that device was successfully initialized. 

If, for some reason, the drive on which the operator has just mounted the tape is not 

available (i .e., it is assigned to another time-shared job), the message "physdev NOT 

AVAILABLE" (where physdev is the physical device typed in) is typed to the operator 

followed immediately by the "MOUNT TAPE" message previously described. As soon 

as successful assignment is made, Batch types "OK" to the operator and waits for his 

"CONTINUE" command before resuming processing. If no drives are available or if 

the operator wishes to cease processing of the iob, "END" can be typed to abort the 

job. 

This argument can consist of six or fewer alphanumeric characters (no spaces or 

punctuation' can appear in this string). This is the symbolic unit which must be the 

name that the user's program employs to reference the device. 

This argument is described under '~Iabel" above. 

This argument causes magtape to bypass rewind. 

The $ASSIGN control card 

$ASSIGN label symu 

is equivalent to the Monitor command 

.:.ASSIGN label symu 

if symu is equal to DSK or does not begin with an ASCII D or M. In the latter case (D or M), the 

operator must provide Batch with an actual DECtape drive or magtape drive. 

~-20 



3.1.2.4 $TAPE Card - The $TAPE card causes Batch to dynamically perform certain device-dependent 

operations on DECtapes or magnetic tapes that have previously been assigned a symbolic-unit name with 

an $ASSIGN card. The control card format is as follows. 

symu 

opn 

1 
$T APE symu op 1 op2 op3 

This logical symbolic unit must have been specified with an $ASSIGN card; if it was 

not, the message "UNIT symu NOT ASSIGNED, CARD IGNORED" is output on the 

Batch listing device, where symu is the unassigned logical nQme which was specified 

on the $TAPE card. If symu was assigned to a nontape device, the operations specified 

will be no-ops, but no message will be pri nted • 

This argument may be any of the following 2-character tape operation codes; the 

operations are executed in the order in which they appear on the card and their 

number may be variable. Operations that do not pertain to the device specified 

(e.g., zero directory command for magnetic tape) are considered to be no-ops. 

DZ Zero directory of DECtape symu. 

MA Advance one file on 'magnetic tape symu. 

MW Rewind magneti c tape symu to load point, or rewind DECtape 
to end zone at front of tape. 

MB Backspace magnetic tape symu one file. 

MT Advance magnetic tape symu to logical end of tape (double end 
of file). 

3.1.2.5 $MAC, $F4, and $CBl Cards - The $MAC card executes a Macro-lO assembly; the $F4 card 

executes a FORTRAN compilation at the user's source program; similarly, the $CBl card executes a 

COBOL compilation of the user's source program. Then'(if execution is not suspended), the users 

program is loaded and executed with the timing control specified on the $JOB card. The action that 

Batch takes with the relocatable binary program produced by either assembly or compilation is in­

dependent of whether the compiler or assembler produced it. The format of.the cards is identical; 

and the conditions under which the relocatable binary program is to be handled by Batch may be speci­

fied on other control cards 'regardless of whether the source program was FORTRAN, Macro-lO, or 

COBOL. The format of the cards is as follows. 

{~MAC} prgname (B: symu2) 
$F4 
$CBl' 

(l: symu3) 

8-21 

{
(S: 
(S: 

symu1) } 
symu I: prgname 1 ,prgname2, .. '. 
..•• symux:pr~namey) 



prgname 

B: 
L: 
$: 

, • • >' " • , " -" .... '.~' - ~.. ~ ~ (' -1 ' " • - " , ' , 

'This argument is ci program name of six or less charactEmi. If the 'control" card has speci-

'fied any directory output device, this will be the name of the file whi'ch will be ~ro­

duced by the compilation or assembly. If a directory output device has been specified 

and no name is given here, the name TEMP will be assigned. If NOGO was specified 

on the $JOB card, the file produced by assembly or compilation will not be passed to 

the Loader. 

These optional arguments specify that the user wishes to specify his own source, binary 

or listing device, ~espectively. The symu following the B, L, or S'must have been 

a~igned previously with a $ASSIGN card. The first of the "S" format above assumes 

the file prgname if symu1 is a directory device. The second of the two "S" formats 

above describes the case in which a file other ,than prgname or several source files are 

to be compiled or assembled into one bi·nary program. B:* or L:* indicates that binary 

output or I isting is to be suppressed. 

If no source device is specified, the Batch input device is assumed: if no listing device 

is specified, the Batch output device is assumed; and if no binary device has been 

specified, the intermediate relocatable binary file is output ~n the Batch scratch tape, 

BTEMP, from which it is loaded by tlie Loader prior to execution (note that BPTEMP is 

zeroed foltowing each job). Since the Macro-10 Assembler is two-pass, whenever the 

source is unspecified, the following file is copied from the Batch input devi ce onto 

BPTEMP prior to.assembly; in this case, if some binary device, has not been specified 1, 

Batch will request that the operator mount additional scratch device(s). 

, 
Note. that "TTY" specified as source or listing device results in the source or listing be-

ing input or output on the Batch input or output device. 

3.1 .2.6 $CREF Card - The $CREF card performs all the functions of the $MAC card and, in addition, 

produces a cross-reference assembly listing. It is provided for the user who wishes to obtai n a special 

cross-reference listing of hi~ Batch assembly. In the Macro listing produced, there is a decimal se­

quence number printed leftmost on each line of the output, regardless of whether thaf line is an, instruc­

tion, comment, or even blank. At the end of the listing",after the symbol table, every symbol refer­

enced in the progra~ is listed alphabetically; each ~ymbo' heads a horiiontal list ~f sequence numbers 

which identify every line in which th~ given symbol is referenced. 
" ,~, 

1 Specification could be by $BI N card prior to this card. 
I 

8-22 



Note that, according to the following format description of the $CREF card, the I isting produced is 

printed on the Batch output device. 

B: 

S: 

1 
$CREF prgname (B:symu2) ( (S:symul) "\ 

(S:symu1 :prgnam 1, prgnam2, ••• ,symux:prgnam3~ 

Since the cross-reference procedure requires an intermediate "scratch" listing device, 

Batch utilizes BPTEMP for this purpose. Since the $MAC card already requires a binary 

device (in addition to BPTEMP) if no source device is specified, the $CREF card requires 

that if neither a binary nor a source device is specified, the operator will be requested 

to mount two additional scratch devices at assembly time. 

3.1.2.7 $lDR Card - The $LDR card will cause the Loader to load relocatable binary files from a 

device previously assigned with an $ASSIGN card or from the system device SYS or from BPTEMP. The 

format for this card is as follows. Note that every program which has been asse~bled or complied (via 

$MAC,$F4, $CBL and $CREF cards) is automatically loaded. Thus, the $LDR card should be used only for 

programs which already exist in binary format and have not been assembled or compiled during this 

Batch run. 

symu 

prgnam 

LIB 

1 
$LDR symu: prgnam 1, prgname2,. • • (LIB) 

Argument is described above. 

These must be the file names of relocatable binary files; they are specified only if 
symu is a directory device. 

If this string appears, every program on the file is 10Qded in library search mode 
(see description of Loader, PDP-10 System User's Guide). 

3.1.2.8 $EXLDR Card 

Card format: 

1 
$EXLDR (MAP) 

This card is optional, and is to be used only when no more source programs follow. When this card is 

read by Batch, the Loader is brought into core and is used to load alt programs previously compiled 

or assembled, or previously specified by $LDR cards. 

8-23 



MAP 

Any $LDR cards that follow the $EXLDR card do not bring the Loader in again, but continue to toad 

with the Loader that is already in the user's area. 

If the $EXLDR card is missing, the Loader is coiled and loading is triggered by the $EOJ or $EOF card. 

3.1.2.9 $BIN Card 

Card format: 

symu 

1 
$BIN symu 

The logical name, symu (previously specified with an $ASSIGN card), specifies an 

assigned device which becomes the permanent output device for all relocatable binary 

files. Once this card has been read, all files normally written by Botch on BPTEMP 

are written on the specified device. 

NOTE 

Make certain that the device is not write pro­
tected when the $ASSIGN card specifying it is 

I read. 

3.1 .2.10 $SAVE Card and $SSAVE Card 

Card format: 

1 
$SA VE symu:prgname (coreD) 
$SSAVE symu:prgname (coreD) 

These cards cause Batch to save the core image of the user's area on the,symu device specified in the 

argument field; if the device has a directory, the saved file is assigned the name "prgname. II The 

constraints on the symu device are the same as for the $BIN card above; i. e., it must not be write 

protected. The $SAVE card and the $SSAVE card serve the same function except tnat the $SSAVE 

cause the stored program to be sharable. 

-8-:24 



coreN This argument specifies the number of 1 K core-image locations which Batch is to save 

on the specified device; however, if the program in core requires more space than 

specified in the argument, it will be saved in the amount of space required. This argu­

ment takes precedence over the core argument specified on the $JOB card for the 

specific execution of the $SAVE (or $SSAVE card) card only, with all following opera­

ations being executed in the amount of core specified on the $JOB card. If no coren 

argument is specified on the $SAVE(or $SSAVE card} card, the program is saved accord­

ing to Monitor conventions. 

3.1.2.11 $RUN Card 

Card format: 

$RUN symu:prgname 

This card causes Batch to read in and execute the program "prgname" from the previously assigned symu; 

this device may be write protected. The device can also be SYS or BPTEMP. Note that BTEMP is zero­

ed at the end of each job. 

prgname This must be a previously saved .SAV file or a system cusp. If the program "prgname" 

expects input from TTY, these desired prgname inputs must be on the Batch input device, 

following the $RUN card; they should not have dollar signs in column 1. In this case, 

an $EOF card should be used to terminate the prgname input stream. 

NOTE 

Programs which run in DDT submode where communication 
between Batch and the program run by Batch is via Teletype 
(in DDT submode) cannot be specified (e.g., TECO, DDT). 

3 .1 .2 • 12 $G ET Card 

Card format: 

$GET symu:prgname 

8-25 



" 

This card causes Batch to read in the program "prgname" from the previously a~}gn~ sYil'iu. The dr~u­
ments and functions of this car9 are similar to those of the $RUN card in all respects except that the 

program is not executed. 

3.1.2.13 $START Card 

Card format: ' 

1 
$START 

The $START card causes Batch to initiate execution of a program that has been called in with the pre­

vious $GET card, or that has been I inked by the loader. 

3.1.2.14 $EOF Card - This card has no argument field. 

The $EOF card creates an internal end-of-file to a preceding input stream on the Batch input device. 

If NOGO was not specified on the $JOB card, the $EOF card triggers the execution of programs that 

have been loaded in core, or before execution triggers the loading'of programs that have been assem­

bled or compiled previously under control of $MAC, $F4, $CBL or $CREF cards. If the previously 

compiled or loaded programs require data from the Batch input device (ACCEPT statements or INPUT 

UUOs in Macro from TTY), the data must appear on the cards immediately following the $EOF card 

on the Batch input device. ' 

3.1 .2.15 $EOJ Card - This card has no argument field. 

The $EOJ card specifies the end of a user's job. If no $EOF card has been issued previously, the $EOJ 

card triggers the same actions as for as loading and execution of programs by Batch as the $EOF card. 

The $EOJ card, however, specifies the end of the'inpllt stream for the current job." 

NOTE 

This card is mandatory for the end of the job; however, ifan 
end of file (EOF) on the "input device occurs (an EOF appears 
after each input job, exc;ept when the,'Batch input device is, ' 1 

card or paper tape), Batch simulates the $EOJ card. 

8-26 



3.1.2.16 $DUMP Card 

Card format: 

1 
$DUMP 

The $DUMP card insert~ at any point in the user's data specifies that a dump is to be taken when the 

job reaches this point. 

3.1.2.17 $* Card - Write to operator and wait for reply. 

Card format: 

1 
$* comment 

... 

Columns 4 through 80 of this card are typed on the operator's console, and Batch waits for operator 

action, e.g., CONT or END. 

3.1.2.18 $** Card - Write to operator without reply. 

Card format: 

$** comment 

Columns 4 through 80 of this card are typed on the operator's console, and Batch continues without 

operator intervention. 

3.1.2.19 $PAUSECard 

Card format: 

1 
$PAUSE 

The $PAUSE card suspends Batch operation until operator intervention • 

8-27 



/ 

-3.2 LOADING USER PROG~MS 

Batch will run Loader whenever it encounters a $EXLDR, $EOF, $EOJ, $SSAVE or $SAVE control card. 

Batch loads programs in the order they were encountered on the $LDR, $F~, $CBL and $MAC cards, so 

that programs which previously existed in bInary form may be loaded prior to (that is, into numerically 

lower addresses than)"programs which have been translated during this Batch run. 

If loading was initiated by a $EXLDR card, Batch will then load any programs specified by $LDR cards 

and finish loading when it encounters a $EOF, $EOJ, $SAVE or $SSAVE card. 

Table 3-1 
Batch User Diagnosti c Messages 

Message Meaning 

BEGIN EXECUTION $EOJ card has been processed. 
.. CAN ONLY COpy 1 FILE ONTO DISK Cannot copy onto BPTEMP for MACRO 

assembly. 

CAN'T COMPILE OR ASSEMBLE AFTER A The input deck is out of order. 
$EXLDR CARD 

DRIVER NOT LOADED - CAN'T DUMP 

******J08 ABORTED The input job was terminated during 
-runtime by operation intervention. 

JOB CARD BAD A $J08 card field has been omitted or is 
in improper format. 

MAX TIME EXCEEDED - JOB KILLED Job has exceeded time on job cards. 

NO EX~CUTIO N An error or a NOGO has resulted in no 
execution of a previously loaded program. 

NO LOAD - PROGRAM NOT SAVED Trying to load a non-savJ!d program. 

******NOJ AVAILABLE Batch has received a "1" from the monitor 
on a $ASSIGN card indicating the device 
is not available. 

SCRATCH DEVICE DIRECTORY FULL Could not el)ter a file name into the 
directory • 

UNIT UUU NOT ASSIGNED, CARD IGNORED The unit named on the card has not been 
specified on a $ASSIGN card. 

UNRECOGNIZABLE CARD, IGNORED An illegal control card has been introduced 
into the Batch stream. 

UNRECOGNIZABLE FIELD ON CARD, A field on the card is in improper format. 
CARD IGNORED 

8-28 



.. 

CHAPTER 4 

DRIVER (A CORE DUMP PROGRAM) 

4.1 GENERAL DESCRIPTION 

Driver is a PDP-l0 system program used in conjunction with the Batch Processor (BATCH). 

The major function of Driver is to provide a dump of the user's core area, when the Batch Processor en­

counters a $DUMP card in the Batch input deck, a DUMP option on the job card, or a DUMP command 

typed in by the Batch operator. 

Driver performs all of the following functions when it is invoked. These functions are performed se­

quentially as listed. 

(1) A dump of the ACs in both octal and decimal is performed. 

(2) A dump of selected monitor status information, obtained by utilization of the GETTAB 
UUO is performed. The standard Driver outpus the job status word (JBrs TS), job 
relocation and protection (JBTADR), high segment table (JBTSGN), and the user 
program name (JBTPRG). 

(3) A dump of specific job data locations is performed. The standard Driver outputs the 
following job information in this format. 

JOBUUO 
JOBBLT 
JOBUSY 
JOBCNI 
JOBVER 

JOB41 
JOBHCU 
JOBSA 
JOBTPC 

JOB ERR 
JOBDDT 
JOBFF 
JOBOPC 

JOBENB 
JOBHRL 
JOBREN 
JOBCHN 

JOBREL 
JOBSYM 
JOBAPR 
JOBCOR 

(4) A dump from the end of Driver up to JOBFF in octal, SIXBIT, and ASCII is performed • 

NOTE 

Because Driver is written as a series of MACRO 
calls, it is relatively simple for each installation 
to modify or extend the information output on the 
dump. For further information, consult the Driver 
source fiI e • . 

8-29 

... 



4.2 EQUIPMENT REQUIREMENTS 

The Batch Processor operator's console is required for control of Driver. Driver requires one output 

device (usually the line printer) although intermediary output devices, such as MTA, can be used. 

4.~ IMPLEMENTATION OF DRIVER 

The $EXLDR card automatically loods Driver into core before any user programs. 1 When a dump is 

requested (either by the $DUMP card or by operator intervention) the Batch Processor uses the E 

(EXAMINE) command to look at location 140. If location 140 contains "DRIVER" in SIXBIT, an ST 

(STARn 141 is used to invoke the dump. lf location 140 contains a value other than SIXBIT "DRIVER", 

the Batch Processor outputs a diagnostic to the user's output, and continues with the Batch note job 

stream. 

4.4 USING DRIVER 

Once invoked by either the $DUMP card or by operator intervention, Driver performs a core dump of 

the Batch job drea without any operator intervention; no further operator actions are required for this 

Batch job. 

---

1 If the $EXLDR card is omitted, Driver can be loaded with a $LDR card or a $RUN SYS LOADER card. 

8-30 

... 



00 
I 

W 

••••••••• * CORE OIJMP •••••••••• 
ACS OCT'~ 

00-07 ~0000000A00. 777~00004371 e00e11~02166 000000006457 00~000007247 000000000000 777250001247 0~060~0~ 
1~.17 ~00000~0~012 0~0~0~000042 04'0@~~00012 040332471016 0e~000~000~6 0~4555002367 777754004235 77775~000632 

DECMAL 
~0"07 *' -16774919 *2360438 +J375 *3751 .0 "90173785 .100663306 
1~~17 *10 .34 +52344 9 1402 .4352274956 +6 +&32"4743 .524067' ~6291~46 

MON I TOR ST AT,US 1 N~O 

JBTSTS 44000'0~0~06 J8T,OR 007777104~02 ~BTSGN 000000000000 J8TPRG L~AnER ._-----_._----- . 

JOB DATA INF'O 

JOBUUO 000404007255 JOB41 26400e002107 J09ERR 000000000000 JOBENB 0~0000000000 JOBR£L 000000007777 
JORBLT 3100000~0J01 JOA~CU 000~~~~0~~~0 JOBD~T 00000~000~~~ JOq~RL 0~0~0~0~0~0~ J09SVM 77725~0~7250 
JOeU5Y 000~000?7250 J08SA ~04271eZ1?5' JOarr 00000~004371 JOPBEN 0~0~00000e00 JO~APR 0e000~070000 
JOBeNI 0000000~0~00 J08TPC 000~~~00~~~t JOBOPC 31000e0e1e52 JOBC~N 0~1056000000 J08C~R 00427112100000 
JOBVEB 00000~000~17 

-~---~ ~-~- ------ ---------_. 

AOOR OCUL. _____ S! X8j..:.T __ _ ASCII 

9101050 4406000003wa 449170000121000 25400000UJ52 26670011104033 .t"& 10' 5. (J6W -II'~ ~ ___ ~ ___ ~ ___ .1 
~01054 0150000~0~0~ 254e11l0~01052 3?144~0~106' 200000003260 .IH 5. fJI,' (W0 I~.' * 42 X' 
~01060 2~20000~3262 607440000010 254f131110~106' 23314000327~ ~ IRP\. (5' (W~!' IX. •• YAR' JuL __ 
~01064 202147000001 200140003272 202147000002 135140003340 .~1~ 101~ li01G "*1' ". , Fa J pa 4 p, 
9101070 27U40003~40 205000350700 2~200r/10~3034 !>52J543001i!0~.Jt111. __ ll.~Ji .... .!...!_~ 8(~"C I', IS Il. • ......l....... __ ..t __ 
11101074 5r554~0~0700 554~13000090 3~6~0~25400~ 254000~01110 .~~. 'M~* SP 5~ 5. 1( •• Q6 .r x l' X. $, 
1"011£'10 37000i1101!'09113 55'0030000010 336NH'00000:J 2?lU2l0i/!00373 *L- .M'" IP 0( jr •• ) ~ . .1_II __ --1.L __ 
"'011~4 270000000013 202540003033 20254~0"'3334 35'~00"'0000~.' .11'5' A105' 1(-' .', v V NI • 
0'101110 5500200010"'13 542000~03!l134 20125400"3035 63~4400llHl_!.M ill .UII S(2!5. e,su IB_.i! XI! ___ '1 .. L ___ Q..L_ 
0101114 4760e"'0"'3~3~ 5412'000"'0~e 4"'360~0~3017 62144!l110~00~ .r,p ~)L.~ _) A/R.,( * .0. v. ,x 02 
"'01120 54144"'000(11l1lfA 403040000006 5~52400C'100(/H" 2011'100"'00013 *1 ,. ~8'" &f!J. "', .. 'X2 *e Q. .....L __ _ 
0"1124 20210(l'10~3~32 134100000013 311540003034 254000"'01177 .A1 II.' .9 •• 8<5, ,~ •• n M 26. 7' 
V, 0113 0 62010 IU! '" 010" 6 4 '" 1Ol0 '" 0 00 4" 2 0 014 ~ 00 0 0 !lI2 _ 231140",," !lI.aL!tHL_L.I.L __ ~_"_J..a.--'.Jt-...tD.. __ ..H ______ . _ U _ L _ 
~011~4 1351440~147111 25'~23"'01511 663'4i11011'01!'0j 2540"'0001142 *'IM IX5'~ ~IV<' I~' 18 •• A * $LR • 1-
001140200200003332202200003333 2'510?0CH1"'2'" 2211;"""'''0012 .(?I" 1102 1171 02((11 .. , M H t'.L.I~l'_' __ f~ 
001144 27004"'''002102 25'~~0~01123 671?4~000001 621440000001 .7 ~ "~. 13W.' IB,- I. '. • IN. 02 • 
L'l011~0 2V1!IJ4001'llIr1100 25'0"'0001123 26174V'0(IJi!0(U i!61740000013~ ___ -'-l. )36" 16" ... _Ltt_. _:'Ln. 112 _ ....t2. __ .t __ _ 
001154 607440000~02 ~0360000"'0~1 2540000~1166 627440000001 .~\~ "8) 15. IVR\. :_ .AR ~X + ,[R 
"'01160 254l"0A0r.1164 201112\40003333 202(-14<10,,333' 3"4(210f1lA000Z'0 .". IT21" 11~0. 1(8. • .+ __ ~.JL....Ji1 
001164 20254(l'1003~34 202540"'03033 20104~e00001" 34460~"'01123 .~5. 1(05' 8,,,,( •. <r 13., v N V " 9 It 
U1170 2601'111001346 542,U00000"Q! 367600~(1I121' 667440000iH"_.L ... t- I_"_~J..~_~_~ __ ~L~_.sxL __ ~)( ___ f~R ___ L._ 
~01174 3216~Q!1I'I01177 333~17777777 25.0011'100121. 260740001346 ." 1~18/~~~5' .,6'~ *f- '48 ?~.. r. S. 
001211'10 26iJ74(110~1721 550000003ue 301>'1021;""0002 274740003343 *61~ 11M 8(6( "le' Ie. " Jil. __ ~~ I Q. 
0012"4 6614'0100000 20054000333' 621.40000001 ~2l344"0100P0 .v,~( 0~- I(P,. 1'('1 • 'L2 ~D2 ~R t 

U1210 2540000"'1.63 20Ul1!I0003060 25100I1!!lIe'3077 2542lQl0002H'3 .", • 50 L sp" 8.-5, u. ,. __ ~ ___ ._--1.t __ 
r01214 373 91 17777777 25'~00"01220 2'4'43e03343 25400~001117 _'8/~.~5~ .07G' ,C5. II • • )~. HI O. I-
001220 200557000a00 344600001117 6614402"'''''00 6214'0000"~1 .~XQ (f I/V •• 0 ~" 1*' X Q t~2 D2 • 
001224 254e0"0~1123 260140001346 2607400 01721 254000001120 *5. '36 1 •• r6" 115. 10... II S. ~. (. 
V~123~ 2010401~02e4 6214400001r1 66144~0~101~ 62144ee00001 ,re, "SR,. IV •• e B" I •• " A02 L.2 02 • 
~012~4 322e400?1120 55~1~000303~ 275113~00000 2211000000~' .,0' )0MI 8(71. 2) X •• 4~ (l ISX Ii , 
~01240 325440m01252 13400m0m0013 36210~0011ZZ 60744000100~ II~~ .J.p .>1 ).P\, ( • '52 lJ (0 iAB ....JL ___ _ 

NOTE 

SIXBn output is enclosed between asterisks (*) 
ASCII output is enclosed between up-arrows (t). 





APPENDIX A 

BATCH EXAMPLES 

This appendix contains a collection of examples showing the use of Batch control cards and operational 

procedures . 

Example 1 

$JOB BATCH1, 10 20 100,101 
DEMOI 
$1'4 TEMP 
(F"ORTRAN PROGRAM STATEMENTS) 
$EOF" 
CI NPUT DATA) 
$EOJ 

On running the above sequence of cards under control of Batch, the following actions occur. 

a. The contents of the $JOB card, followed by the job number assigned by the system to 
the object job, is printed on the operator IS Teletype. 

b. The FORTRAN compiler produces a file, TEMP.REL, on BPTEMP. 

c. The $EOF card triggers the loading of TEMP. REL and starts the job. 

d. The $EOJ card marks the end of the job and the end of the input data. 

Example 2 

$JOB 
DEMOI 
$ASS IGN 
$1'4 

C 

BATCH2, 10 10 100,101 

DTAI DOUT 
PROGRM 
DIMENSION 11(1000) 
DTA 1 = LOGICAL DEVICE NO.9 
INTEGER G 
DATA G/9/ 
DO 1 J=I, 1000 
II (J) = J 
F"ILE = 4HF"ILE 
CALL OF"ILE (G,F"ILE) 

8-33 



WR IrE (G) I I 
END FILE G 
STOP 
END 

$EOJ 

o.n running the above job, the followi ng actions occur. 

a. The contents of the $Jo.B card, followed by the assigned job number, is printed on the 
operator's' Teletype. 

b . The message 

Mo.UNT TAPE Do.UT WRITE ENABLED 

is printed on the operator's Teletype. The operator can specify the actual DECtape (Do.UT) 
drive on which he'has mounted a DECtape reel by typing .-

Batch replies with 

OJ< 

* 
and, when user types Co.NTINUE, proceeds with the running of the job. 

c. The Fo.RTRAN compiler p~duces a file, PRo.GRM.REL, on BPTEMP, and the $Eo.J 
card performs the functions of the $EQF card (triggers the loading of PRo.GRM. REL and 
starts the job). 

d. The execution of the program wi II create a fj Ie, FILE. DAT , on DECtape Do.UT. 

Example 3 

In the preceding examples, the storage map produced by the Loader was written on the output device. 

This map can be suppressed by using the following sequence of control cards. 

$JOB 
DEMOl 
$ASS IGN 
$F'4 

BATCH3 " 

DREL 
MAIN 

10 

DTA 

(FORTRAN PROGRAM STATEMENTS) 

$LDR DTA:SUBRl"SUBR2 
$EXLDR NOMAP 
$EOI=" 

CINPUT DATA) 

$EOJ 

8-34 



The DECtape DREL containing the .REL files SUBR1 and SUBR2 will be requested by Batch. 

MOU~T TAPE DREL W~ITE ENABLED 

After the compilation, the Loader is brought in and executed by the $EXLDR card. Note that the file 

MAIN.REL is not specified, as doing so would result in multiply defined symbols. The option NOMAP 

on the $EXLDR card suppresses the writing out of the storage map. The $EOF card begins the execution 

of the loaded program. The $EOJ card terminates the input data and the job. 

Example 4 

To save a program on a DECtape, the following sequence of control cards can be used. 

$JOB 
DEMOI 
$ASS I GN 
$1"4. 

BATCH .. 

DSAV 
PROG 

10 

DTA 

(rORTRAN PROGRAM STATEMENTS) 

$SAVE 
$EOJ 

DTA:rORSAV 

Ch!lnging DSAV on the $ASSIGN card to DSK would result in savtng the job on the disk in the user's 

(100,101) disk area. 

Example 5 

To suppress the printing of the Macro code generated by the FORTRAN compiler, the following sequence 

of control cards can be used. 

$JOB BATCH 12 100 .. 101 
DEMOI 
$RUN SYS:r40 
BPTEMP:COMP .. TTY:/M~TTY: 

(FORTRAN PROGRAM STATEMENTS) 

$LDR. BPTEMP:COMP 
$EXLDR NOMAP 
$EOr 

(INPUT DATA) 

$EOJ 

8-35 



The following facts should be noted • 

. a. S.wit~h 1M suppresses the printing of the Macro code. 

b. BPTEMP may·be·used without assignin~ it. 

c. COMP must. be specified on. the $ LOR card, because the compi lation is not done 
under control of a $F4 card. 

d. The $EOF card begins execution of the loaded program. 

Example 6 

The use of the Macro-10 assembler by means of the $MAC or $CREF card is completely-analogous to 

the use of the $F4 card. 

If one wants to run the assembler by means of a"$RUN card, it should be noted that the assembler 

makes two passes and, consequently I the source statements must be entered twice; this introduces 

a problem where card input is involved. However, by means of PIP (Peripheral Interchange Program), 

this problem can be alleviated. The control cards used are given below. 

Example 7, 

$JOB BATCH6.. 10 40 100 .. 101 
DEMOI 
$RUN SYS:PIP 
BPTEMP:SOURCE~TTY: 

(MACRO PROGRAM STATEMENTS) 

$EOF' 
$TAPE BPTEMP MW 
$RUN SYS:MACRO 
BPTEMP:MACBIN .. TTY:~BPTEMP:SOURCE 
$EOJ . 

This example shows the combination of a FORTRAN program and a Macro-l0 program in one job. 

$JOB 
DEMOI 

2 

1 
3 

BATCH7 .. 10 

$1"4 
DIMENSION KK(40) 
ACCEPT I .. KK 
DO 2 1=1 .. 40 
K=KKCI> 
CALL MACROCK .. L> 
TYPE 3 .. K .. L 
STOP 
F'ORMATC4012 ) 
F'ORMAT C 1 X .. 2 17) 
END 

, 8-36 



Example 8 

$EOF 
$MAC 

MACRO: 

SAVE: 

$EXLDR 
$EOF 

SUB 
ENTRY 
Z 
MOVEM 
MOVE 
LSH 
MOVEM 
MOVE 
JRA 
Z 
END 
~p 

MACRO 

l~SAVE 

1~@(16) 

1 ~ 1 
1~@1(16) 

l~SAVE 

16~2Cl6) 

;LOAD K 

;STORE 2*K IN L 

0102 ••••••••••••••••••••••••••••••• ·.···········3940 
$EOJ 

This' example contains a diagram of sample control cards for three jobs to be executed under Batch 

(see Figure A-l) and a sample dialogue produced on the operator's console Teletype while these three 

jobs are being run. 

FolJowing this is the dialogue on the operator's console Teletype produced while the batch in Figure 

A-l is run. Underlined strings indicate computer typeouts. 

.. 

8-37 



MACRO-l0 SOURCE PROGRAM 

$EOJ 

$ SAVE DSK NAMDDT 

$ ELXDR NOMAP 

10-0477 

Figure A-l Sample Control Cards for Three Jobs Processed by Batch 

8-38 



.ASS I GN MTA 1 BPTEMP ~ 
:R BATCH ~ 
*IN CDR:~ 
iOUT LPT: ~ 
!SK 0 ~ 

(Operator assigns scratch device) 
(Monitor command to run Batch) 
(Card reader input) 
(Line printer output) 
(Skip 0 jobs; start with first) 

$JOB JOHN DOE, 11 40 33,44 DUMP 
RUNN I NG JOB 3 

(Compilation and Execution) ($JOB card always printed on TTY) 

RUN TIME - 32 SECS. 
$JOB JOE DOAKES, 8 30 47,11 NOGO 

- RUNNING JOB 3 
MOUNT TAPE 01984 WRITE PROTECTED 
DTA3~ 

DTA3 NOT AVAILABLE 
MOUNT TAPE 01984 WRITE PROTECTED 

DTA5~ 
OK 
!CONT ~ 
CONTINUING 

(Operator mounts tape before typing CO NT command) 
(Execution suppressed) 

RUN TIME - 0 SECS. 
$JOB fOGGY BOTTOM, ~ 

RUNNING JOB 5 
70 50,50 DUMP 

PLEASE MOUNT A SCRATCH 
DTA4~ 

!,CONn 
CONTINUING 

TAPE 

PLEASE MOUNT A SCRATCH TAPE 
MTA0~ 

OK 
!CONT~ 
CONTINUING 
MAX. TIME E~CEEDED 

DUMP ~ 

RUN TIME - 67 SECS. 
END Of BATCH 

* 

(Operator mounts tape, write enabl ed, before typi ng 
CONT) 

(Batch needs 2 extra tapes) 

(Operator mounts magnetic tape number 0 write en­
abled) 

(Program execution exceeded time limit; e.g., in­
finite loop) 

(Operator commands core dump on output device, 
LPT, and termination of user job) 

(At this point operator can run another batch or exit 
with a CTRL C command) 

8-39 





Table B-1 
Batch Control Cards 

Format Function 

APPENDIX B 

TABLES 

$ASSIGN label symu (PROTECn (NOREW) To reference any devices other than the Batch 
input and output device or system (SYS) device 
(see 3.1.2.3). 

$BIN symu To specify the previously assigned device to be 
used to output all relocatable binary files (see 
3.1.2.9). 

$CBL prgname (B:symu2) (L:symu3) (S:symul) Executes a COBOL compilation of user's source 
program and executes the resultant object pro­
gram with timing control specified in the $JOB 
card (3. 1. 2 .9) • 

$CREF prgname (B:symu2) (S:symul) To cause the assembly of a Macro-10 symbolic 
program and the generation of a special cross­
reference listing (see 3.1.2.6). 

$DUMP Inserted at any point in the user's data to produce 
dump at this point (3.1.2. 16t. 

$EOF Creates an internal end of file to a preceding 
input stream on the Batch input device and 
triggers the running of programs loaded into core 
and the running of programs assembled (or com­
plied) but not yet loaded (see 3.1.2. 14). 

$EOJ Signals the end of the user's job. If no $EOF 
card precedes the $EOJ card, the $EOJ card 
triggers the loading and running actions des­
cribed above (see 3.1.2.15). 

$EXLDR (MAP) Used only when no more source programs follow; 
brings the loader into core and loads all programs 
previously assembled or compiled or specified by 
preceding $LDR cards (see 3.1.2.8). 

8-41 



• 

, ~ 

Table, B-1 (Cont) 
Batch Control Cards 

Format 

$F4 prgname (B:symu2) (L:symu3) 
(S:symu1) 

$GET symu: prgname 

$JOB name, corel time# proj# , prog# 
(NOGO) (DUMP) 

Key 

$LDR symu:prgname 1 , prgnam2, ••• (LIB) 

$MAC prgname (B:symu2) (L:symu3) 
(S:symu1) 

$PAUSE 

$RUN symu:prgname 

$SAVE symu:prgname (corJi) 
$SSAVE symu: prgname (core#) 

$START 

Function 

Executes a FORTRAN compilation of the user's 
source program and executes the resultant object 
program with 'the timing control specified in the 
$JOB card (See 3.1.2.4). 

Directs Batch to load the program "prgname" 
from the previously assigned sym~. Similar to 
-$RUN card except that the loaded program is 
not executed (see 3. 1 .2. 12). 

The fitst card of a user job. All compilations, 
executions, and other tasks requested between 
this card and an $EOJ card are considered to be 
part of this job (see 3.1.2.1) • 

Must follow $JOB card (3.1.2.2) and password 
associated with Project Programmer number. 

Calls the loader: to load relocatable binary files 
from a device previously assigned by a $ASSIGN 
card or from the system device or from BPTEMP 
(see 3. 1 .2. 7) • 

Executes a Macro-l0 assembly of the user's 
source program and executes the resultant object 
program with the timing control specified'in the 
$JOB card (see 3.1.2.5). 

Suspends Batch until operator intervention 
(3 • 1. 2. 19). 

Directs Batch to load the program "prgname" 
from the previously assigned symu (or SYS or 
BPTEMP) and then execute it (see 3.1 .2.11) • 

Directs Batch to save the core image of the user's 
area on the symu device specified and, if symu is 
a directory device, assign the name "prgname" 
(see 3.1.2.10). SSAVE card marks the"prgname" 
as shareable. 

Causes Batch to initiate execution of a program 
, which has been called in with previous $GET 

card, or which has been linked by loader, 
(3.1.2.13). 

8-42 



Table B":l (Cont) 
Batch Control Cards 

Format 

$ TAPE symu op f op2 op3 •.• 

DZ - Zero DECtape directory. 
MA - Advance mag tape on file •. 
MW - Rewind mag tape to load point. 
MB - Backspace mag tape one fiI e. 
MT - Advance mag tape to logical end 

of tape. 

$*comment 

$**comment 

Function 

Directs Batch to dynamically perform certain 
device-dependent operations on DECtapes or 
magnetic tapes which have previously been 
assigned a symbolic-unit name with an $ASSIGN 
card (see 3.1.2.3). 

Comment Card. Directs Batch to type out con­
tents of columns 4 through 80 of this card and 
wait for operator to type CONTINUE or END 
(see 3.1.2.17). 

Comment Card. Directs Batch to type out con­
tents of columns 4 through 80 of this card; Batch 
continues without operator intervention (3.1.2.18). 

8-43 





CHAIN 





CHAIN 

I. ABSTRACT 

The CHAIN Program is the prime component of a system that allows users to deal with FORTRAN 

IV programming applications which would produce programs too large to fit or to load into the 

amount of core avai lab Ie. Special switches in the LOAD ER allow the user to create CHAIN 

files, consisting of complete programs and subroutines, which can be read into core and exe­

cuted as they are needed. CHAIN itself, a subroutine called by the user, provides a standard­

ized method of reading the successive segments of coding (CHAIN files) into core and linking 

them to the programs already residing in core. 

2. PDP-10 CHAIN JOB IMPLEMENTATION 

A COMMON area in lower core is set aside for the transmission of data between successive 

CHAIN files. This area in lower core is known as the Permanent Resident Area, and remains 

in core at all times. The Permanent Resident Area contains CHAIN and part of LIMO and may 

contain any number of Macro- 10 programs followed by the FORTRAN IV BLOCK OAT A program 

which defines COMMON. The BLOCK OAT A program defines the end of the Permanent 

Resident Area. There can be only one BLOCK DATA program in any CHAIN job. 

Defined by~ 
FORTRAN IV 
BLOCK DATA 
program 

o 
CHAIN 

Any number 
or MACRO-lO 
programs 

COMMON 

MACRO-lO & 
FORTRAN IV 
programs 

Permanent 
Resident 
Area 

Segment 
Read-In 
Area 

. For any CHAIN job the Permanent Resident Area assumes a fixed length. This are~ is un­

affected by the process of reading in successive CHAIN files. The Macro-l0 programs 

8-47 



residing in the Pemianent Resident Area should be programs used by more than one CHAIN file 

(e.g., DDT or CHAIN). The remainder of core, above the Permanent Resident Area, is known 

as the Segment Read-in Area. It is in this area that various, CHAIN files are read into core and 

executed. The Segment Read-in Area may dontain a mixture of FORTRAN IV and Macro-lO 

programs. Within this area the user may define a Removable Resident Area. This area is 

directJy above the Permanent Resident Area. It may contain any number of Macro-lO programs 

fo "owed by one FORTRAN IV program. When the user makes a ca" to CHAIN, he may 

specify that the next CHAIN file be read'in either directly after the Permanent Resident Area 

or directly after the Removable Resident Area. Thus the user may leave his Removable 

Resident in core while several CHA IN files are being read in and executed, and'then he may 

read over it with another file. 

A CHAIN job beginning in this state: 

o 
Permanent . 

• Resident 
Area 

Removable 
Resident 

FORTRAN IV 
& Macro-10 
programs 

Reads in a new CHAIN file and becomes 

o 
Permanent 
Resident 
Area 

Unchanged 
Removable 
Resident 

CHAIN 1 

Then reads a CHAIN file that overlays the Removable Resident and becomes: 

8-48 



o 

Permanent 
Resident 
Area 

} 
Unchanged, 

~4--4 

CHAIN2 

Then reads in a CHAIN file that restores the Removable Resident: 

o 

Permanent 
Resident 
Area 

Removable 
Resident 
~- - --

CHAIN file just read in (CHAIN3) 

FORTRAN IV 
& Macro-tO 
programs 

L Unchanged 

Arrows point to that location in core which is the lower bound into which the file has just been 

read. 

By reading successive CHAIN files into the area above the Removabl,e Resident, the Removable 

Resident may be kept in core as long as desired. The Removable Resident may be removed at 

any time by reading a CHAIN file into core immediately above the Permanent Resident Area. 

The Removable Resident may be restored at any time by reading a new CHAIN file containing a 

copy of the-Removable Resident into core immediately above the Permanent Resident Area. 

3. LOADING CHAIN 

CHAIN will be loaded from SYS by the Loader. This loading must be followed by a library 

search of lIB40 before the loading of block data so that', essential Macro programs are loaded 

in the PRA. 

8-49 



· 4. CALLING SEQUENCE 

The call to CHAIN is of the form: 

CALL CHAIN (TYPE, DEVICE, FILE) 

where: TYPE = 0 reads the next CHAIN file, into core immediately above the' Permanent 

Resident Area (COMMON). 

TYPE == I reads the next CHAIN file into core immediately above the FORTRAN IV 

program which marks the end of the Removable Resident. 

w~ere: DEVICE = I, 2, ••• is an I/O device numbe~ corresponding 'to the device where'the 

CHAIN file may be found. For example, when reading a CHAIN file from the disk, 

DEVICE = I. NOTE: CHAIN files may be stored in DSK, MTA, or DTA only. 

where: FILE = I, 2, ••• is the number of the magnetic tape file where the CHAIN file is 

located. 

or: FILE =0 tells CHAIN to read the next file from the selected magnetic tape. 

or: FILE = 'ASCII filename ' if the CHAIN file is to be read from DTA or DSK. 

NOTE: File names are limited to five or fewer letters according to the FORTRAN IV 

convention. 

EXAMPLE: If a CHAIN, job wishes to read in a CHAIN file named SEG4 from the disk, and 

it wishes to read that file into the area above the Removable Resident, the,call to CHAIN 

would be: / 

CALL,CHAIN (l,l,'SEG41) 

5. CREATION OF CHAIN FILES 

Using LOAD ER 1, the creation of CHAIN fi les is a two-step operation. 

First, one uses LOADER to create an image of core as it will look y.then the CHAIN file being 

created is r:ead in at run time. For instance, consider th~ CHAIN job illust rated below: 

Version 5 I or later of the LOAD ER is necessary. 

8-50 

I ' 



Permanent 
Resident 
Area 

Segment 
Reed-In 
Area 

o 
MAC 1 

I- - - -
MAC2 

~ - - - -
CHAIN 

I- -- --
LlB40 
ROUTINES 
~-- --

COMMON 

RESID 

MAC6 
~- - --

F41 

Stage I 

1 
Removable Resident 

Temporary Programs 

A call to CHAIN of the form CALL CHAIN(l, 1,'CHN1') would produce: 

o 
MAC1 - - - --
MAC2 

I- --- --
CHAIN 

~------
LlB40 
ROUTINES 1--.-._-
COMMON 

RESID 

F42 -- - --
MAC3 

}cHNloCHN 

Stage II 

A call to CHAIN of the form CALL CHAIN(O,I,'CHN2') wo~ld produce: 

o 
MAC 1 

I-- - - ---
MAC2 

1------
CHAIN 1------
LlB40 
ROUTINES 

I-- -- - --
COMMON 

F45 } CHN2.CHN 

Stage \1-1 

8-51 



The first step in the creation of the file CHN 1 would be to input to LOADER all the REL files . 
corresponding to the programs which will be in core at STAGE III; 'n this case, the command to 

LOADER would be: 

*DSK:MAC1,MAC2,CHAIN/FDSK:COMMON,RESID/FDSK:F42,MAC3 

where F42 and MAC3 constitute the basis of the CHAIN file to be created. The /F switch is 

used to force .the loading of library programs so that they will be placed in lower core where 

they can be properly and permanently linked to the resident programs which call them. Commas 

must not follow a/Fswitch because the LOADER tries to load L1B40 twice. 

Second, a command is given that will cause the remaining library routines to be loaded and the 

completed CHAIN file, consisting of everything above the Removable Resident, to be written 

out onto the specified output device. In the case of the example above, the command might be: 

*DSK:CHN l-/R $ 

where "DSK:CHN 1-" instructs LOADER to write the CHAIN file named CHN 1.CHN 01) the 

disk. /R instructs LOADER that the CHAIN file consists of everything above the Removable 
I 

Resident, and $ (ALTMOD E key) instructs LOADER to first load the necessary Ilbrary 
. I 

routines, and then write out the CHAIN file. 

NOTE: LOADER puts all library ,routines referenced only by the 
programs in a CHAIN file into core above the last user program 
MAC3 in the example), and they Qre written out as part of the 
CHAIN file. 

Similarly, the CHAIN file CHN2 would have been created by giving to LOADER the command: 

*DSK:MACI,MAC2, CHAIN/FDSK:COMMON, F45 

• 
where F45 (and the library routines it references) constitutes the body of the CHAIN file. The 

subsequent command: . 

*DSK:CHN2-/C $ 

. would instruct LOADER to do the necessary library search- and write out the CHAIN file 

CHN2.CHN starting with the program after COMMON. 

8-52 



The original core image in a CHAIN job (see Stage I above) is a LOADER"created SAV mode 

core image. In this case, it would be created by using the LOADER command string: 

*DS,K:MAC1,MAC2,CHAIN/FDSK:COMMON,RESID/FDSK:MAC6,F41 $ 

In summary, when one creates CHAIN files or the original core image used in a CHAIN job, 

the Permanent Resident Area must be constructed in exactly the same way each time LOADER 

is run. The same rule applies to the creation of Removable Residents, when they exist. To 

this end, the IF switch of the LOADER should be used to force the uniform loading of library 

routines referenced by programs in the Permanent Resident Area (PRA) or in the Removable 

Resident (RRj. The IF switch should be given immediately after the last program in the PRA 

and the RR.t When an IF switch is set, LOADER loads the previously specified file, then 

enters library search mode and scans the FORTRAN library loading the required programs only. 

The IF switch terminates a specification; therefore, it must not be followed by a comma as this 

also terminates a specification causing the LOADER to load the last file specified again. 

Also note, that the user must explicitly load CHAIN into his PRA. 

6. PROGRAMMING CONSIDERATIONS 

a. When a call to CHAIN inuccessful, a new CHAIN file will be read in and execution begins 

af the 'starting address of the CHAIN 'file which has just been inputted. ~his starting address 

is governed by the usual LOADER rules and switches. This allows the user to specify different 

starting addresses for each link that he loads. As part of its binary output, the FORTRAN IV 

Compiler produces a starting address for each moin program that it compiles, and this informa­

tion is used by LOADER to tell where to start a loaded program at run time. Similarly, the 

END statement in a Macro-lO program can be used to specify a starting address. When loading 

more than one program, LOADER accepts the starting address of the last program loaded which 

has a starting address as the starting address of the whole group of programs unless the II 
switch to LOADER is used. (See LOADER writeup for details .) 

b. CHAIN releases all I/O devices in use at the time the call to CHAIN is made. Thus I/o 
started by the programs of one CHAIN file cannot Be completed by the programs of another 

CHAIN file. In utilizing file-oriented devices, data must be organized into separate files 

for each CHAIN link. It is recommended that the user release all channels after the return 

from CHAIN. (This is done automatically by the first FORTRAN main program in each CHAIN 

file. ) 

1 The library program loaded after the FORTRAN IV program which defines the end of the RR 
will be written out as part of the created CHAIN file. 

8-53 



• 

c. When using the optiona I Removable Resident, ~the length of the Removable Resident may 

not be changed during a particular CHAIN job. If a Removable Resident is removed and then 

replaced, it must be replaced by a Removable Resident of the same length. f 

d. It is not necessary that all CHAIN files be the same size. However, the user must assign 

to his job enough core to accommodate the largest CHAIN file. 

While CHAIN is loading a new link, three errors may occur: 

I. The device specified in the call to CHAIN is not available. This causes the message: 

DEVICE xxx NOT AVAILABLE - CHAIN 

followed by a call to EXIT. 

2. The filename specified with DECtape or disk input could not be found. This cal,lses the 
messag.e: 

FILE xxx NOT FOUND - CHAIN 

• 
followed bya call to EXIT. 

3. An input error occurred while loading the actual dump file. Since CHAIN performs this 
input from the accumulators, its space is limited. 

If a read error has occurre~, CHAIN will execute a "Halt" instruction in 10catioA 14, and the 

Monitor will print a message on the Teletype . 

7. PROGRAM DESCRIPTION 

When CHAIN is called, it does a RELEASE on all I/O devices. If the specified input device 

is magnetic tape, the tape is positioned as specified in the call to CHAIN, otherwise a 

LOOKUP is done on the appropriate directory device. A CHAIN file contains an image of 

the appropriate portion of upper core. It also contains five preceding words which update 

information in the JOBDATA area (JOB4I, JOBSA, JOBSYM, JOBDDT, and length of 

CHAIN file). Thus five words at the end of the BLOCK DATA area (CO!",MON) or the 

Removable Resident are used while the new CHAIN file is being read into core. The actual 

input of the new CHAIN file is done by a portion of coding placed in the accumulators by 

CHAIN. This coding in the accumulator$ does the input of the CHAIN .file, updates J0B41, 

8-54 



JOBSA, JOBSYM, and JOBDDT and length of CHAIN file, and restores the five words to the 

area just below the CHAIN file that has been read in. Control is then transferred to the 

starting address for the CHAIN file just read in. However, the contents of all accumulators 

except 17 are altered by CHAIN. 

When CHAIN is called, it does not know the length of the incoming CHAIN file. This lack of 

information forces CHAIN to INPUT the file into the whole of available core. This lengthens 

the time required to complete the reading of a CHAIN ftle-which is stored on DECtape or disk 

and which is smaller than the amount of core available. This happens because input from these 

devices is not completed until sufficient data is transmitted to fill the amount of core specified 

with the INPUT commands1• It is to the user's advantage to load all CHAIN files into core 

images of approximately equal length so as to minimize the time required to input CHAIN files 

from DSK or DT A. 

With this version of CHAIN (V 50) and LOADER(V5.1), the removable resident area, when used, 

must remain a constant length. It is not possible to read in a link that destroys the original 

removable resident and then read in another link that replaces the removable resident with one 

of a different length. This will be fixed in further versions of CHAlN and LOADER by preserving 

one more word from the Job Data Area, JOBCHN. 

1 However, after input is complete, CHAIN kn.ows how much data should have been read and 
checks for too little data transferred. 

8-55 



\ 



LINED 





LINED 

A LINE EDITOR FOR PDP-lO DISK FILES 

LINED is a line editor for disk files. It is used to create and edit source program files which are 

written on disk in ASCII code with line sequence numbers appended. LINED has the ability to 

reference any line at any time without the user having to close and reopen the file. LINED 

is a reentrant program and loads in 2K pure and 2K impure segments of core. 

NOTE 

In this document, computer typeouts are indicated by underscoring. 
The symbol) represents the RETURN key. The symbol (!) repre­
sents the ALTMODE key. 

I. MONITOR COMMANDS 

The MONITOR commands CREATE and EDIT may be used to select a file for editing with 

LINED. A temporary disk file, called DDDEDT .TMP, is created for passing the commands to 

, LINED. 

1.1 The CREATE Command 

The CREATE command calls in LINED a'ld opens the specified new disk file for editing. The 

CREATE command is of the form: 

• CREATE filename.ext ) 

1.2 The ED IT Command 

The EDIT command calls in LINED and opens the specified existing disk file for editing. The 

EDIT command is of the form: 

.!. EDIT filename.ext ) 

2. LINED COMMANDS 

LINED indicates its readiness to receive commands by typing an asterisk. At this time LINED 

8-59 



is said to be in command mode. The user may then type in the followi~9 LINED commands. 

2.1 .Inserting or Replacing a Line 

* Innmn •. 

nnnn aaaa ••.••• a 

nnnxx @ 
* 

Insert or replace the following typed Itne at line number 
nnnnn of the currently open file; nnnnn can be specified as 
a line sequence number or a. point (.), or it can be omitted 
entire Iy. A point refers to the last I ine which was typed, 
or the last I ine de leted, or the last I ine inserted. If 
nnnnn is omitted, it is assumed to be 10. 

When LI N ED has typed a I ine sequence number" the program enters text mode. In the text mode, 

characters typed by the user are understood to be text for the insertion. Following the user's 

typein of the line to be inserted, LINED types out the next sequential line number 

(nnnnn+l0) following which the user presses the ALTMODE key (sometimes labeled PREFIX or 

ESC) to terminate the insert process and retum to LINED command level. 

/ 

If there already exists a line at nnnnn, it will be replaced. A single quote following the line . 
number indicates that insertion at this line number will cause the existing line to be replaced. 

2.2 Inserting Multiple Lines 

*Innnnn, iiiii 

nnnnn aaaaa •••••• eI 

nnnxx bbbbb •••••• b 

nnnyy @ 
* 

Insert the following typed lines, beg inn ing at line number 
nnmn (which can be specified as either a line number or a 
point) of the currently open file. Each time a line is 
entered, nnnnn is increased by the specified increment, 
iiiii: If iiiii is omitted, it is assumed to be 10 (if 
iiiii has never been specified previously), or the 
previous increment specified. 

If nnnnn is omitted, it is assumed to be 10, and the result becomes the I ine number of the next 

insertion. Type ALTMODE on the line following the last insertion to return to LINED command 

mode. LIN ED then awaits another command. 

A double quote following a line number indicates that the increment specified for the current 

insert instruction has resulted in an existing line being skipped. 

2.3 Deleting a Line 

* Dnnnnn Delete a line number nnnnn from the currently open filei 
nnnnn can be specified as either a line sequence number or 
a point ) 

8-60 



2.4 Deleting Multiple Lines 

* Dmmmmm, nnnnn 

2.5 Printine a Line 

*Pnnnnn 

2.6 Printing Multiple Lines 

* Pmmmmm, nnnnn 

2.7 Closing the Current Fi Ie 

E ) 

Delete lines mmmmm through nnnnn from the currently open file; 
mmmmm must be less than nnnnn. Either mmmmm or nnnnn may 
be specified as a point as long as mmmmm is less than nnnnn. 

Print line nnnnn on the user's Teletype; nnnnn can be specified 
as either a line sequence number or a point. Typing ALTMODE 
following a typeout wi" cause the next sequential line to be 
printed. 

Print lines mmmmm through nnnnn of the currently open file; 
mmmmm must be less than nnnnn. Either mmmmm or nnnnn may 
be specified as a point as long as mmmmm is less than nnnnn. 

Closes the current file and returns to LINED command mode. 
At this point, the user may either open another file or type 

t C to return to Monitor level to assemble, list, and/or save 
his file on a permanent storage device (e.g., DECtape). 

2.8 Examples of Command Sequence 

Example 1 

. CREATE FILEA 

*I1,fJ 
"J,fJ,fJ1,fJ HE PROGRAM 
,fJJj.fJ2,fJ IS INSERTED 
~3,fJ HERE 

RUN LINED AND OPEN FILE FILEA 

BEGIN INSERTING LINES AT LINE NUMBER 
1,fJ INCREMENTING BY 1,fJ. " 

RETURN CONTROL TO LINED COMMAND 
MODE BY TYPING ($). CLOSE FILE FILEA 
BY TYPING AN E. '1'YPING A t C RE­
TURNS TO THE MONITOR COMMAND LEVEL. 

. 8-61 



Example 2 
, . 

• EDIT FILEA 

*Pl,fJ,3,fJ 
~,fJ,fJl,fJ THE PROGRAM 
,fJ,fJ,fJ2,fJ I SINS E RTE 0 
,fJ~3,fJ HERE 
* 12,fJ 
~~,fJ IS PLACED 
,fJ,fJ,fJ3,fJ CD 
*D3,fJ 
*P 1,fJ, 3,fJ 
J~I,fJ THE PROGRAM 
,fJ,fJ~,fJ IS PLACED 
*E 
~tc 

3. AUXILIARY COMMANDS 

RUN LINED AND OPEN EXISTING FILE 
rlLEA 
PRINT LINES 10 THROUGH 30 
PR,INTOUT 

INSERT LINE 20 

DelETE LINE 30 
PRINT LINES 10 THROUGH 30 
PRINTOUT 

TYPE E TO CLOSE FILE FILEA 
TYPING A t C RETURNS JOB TO MONITOR 
CONTROL LEVEL. 

These Auxiliary Commands provide an alternate method of calling LINED and opening files. 

In most cases, auxiliary commands can be replaced by the monitor instructions CREATE and 

ED IT (Section 1). 

3.1 R LINED 

LINED can be called in from the system device by typing 

.R LINED) 
* 

\ 

LINED responds with an asterisk to indicate its readiness to receive a command. 

3.2 Initializing a File for Processing 

S filename • ext ) 

S filename .ext CD 

Select an existing disk file,filename.ext, 
for ed iting • 

Select (create) a new disk file for editing, 
call ing it filename .ext. 

4. LINED CONVENTIONS AND RESTRICTIONS-
-' 

The following conventions and restrictions should be noted. 

a. Files are written with the installation standard protection. See Book 1 for explanation of 

protected files. 

• 8-62 



b. When in insert mode, typing ALTMODE following the printout of the next insertion line 

sequence number causes a returned to LINED command level. Typing ALTMODE to 

terminate a line of text to be inserted causes the text line to be ignored. 

,a,af/11,.O LINE OF TEXT 

f/1f/1f/12f/1 CD Returns to LINED command level 

* 

¢f/1¢I,a LINE OF TEXT CD Line is ignored 

* 

c. LINED assumes that all blocks in a disk file have an integral number of lines (i.e., each 

block begins with a sequence number and no line is split between blocks). This will always 

be the case with files which'have been created,and edited only with LINED; however, if 

sequence numbers have been removed, say by TECO, they may be restored by using PI P 

switch /A (see PDP-IO Reference Handbook.) 

d. LINED files can be resequenced using PIP switch jA (see PDP-IO Reference Handbook). 

e. Line number 0 is illegal and cannot be used. 

f. Lines can be edited in any order; however, editing lines by ascending line numbers reduces 

file access time. 

S. ERROR HANDLING 

When an error is detected, LIN ED types a message and returns the user to' LIN ED command leve I 

(indicated by the output of an * on the Teletype). Some errors are fatal and cause control to 

retum to the monitor. Error messages .for LIN ED are given in Table 1. 

Message 

?FAU* 

?ILC* 

Table I 
LIN ED' Error Messages 

Meaning 

Filename Already in Use. The filename specified for a 
newly created file already exists on the disk. Retype com­
mand correctl y • 

I L1egal Command. Illegal syntax or other error in command 
string. 

8-63 



Message 

?NCF* 

?NFO* 

?NlN* 

Table 1 (C~nt.) 

Meaning 

Not Current File. The filename in,an "S filename" 
command could not be found on the disk. 

No File Open. No "S filename" command preceded this 
command st ring. 

Nonexistent Line Number. A Print or De lete command 
refers to a nonexistent I ine sequence number. 

NOTE 

The follow ing are internal system errors. 

?CCl* 

?COR* 

?DCPI 

?DDE* 

?UNA* 

6. IMPLEMENTATION 

CCl error. Error while referencing CCl comand file. 

No core available for data segment. , 

Device directory full. 

Device Data Error. Read or write failure On disk. 

Unit Not Avai lab Ie. The disk is not avai lab Ie. 

The following explanation is intended to help the user to understand how LINED works so that he 
may use it more effective Iy. 

Lines of text are stored in a 100O-Word working buffer. Each line has a I-word header contain­

ing two items. The left half contains the sequence nUl)1ber of the line, and the right half con-' 

tains the number of words (including the word contain ing the I ine header) needed to store the 

line of text. Thus, to find the beginning of the next line of text, it is necessary to simply take 

the address of the current line header and add the word count of the current line. 

Several pointer words are used to keep track of the lines in the working buffer. WRTLST contains 

the sequence number of the highest line in the buffer. SN contains the sequence number of the 

line currentl y being hand led in a command. 

When LI NED discovers that SN is greater than WRTLST, it knows that the I ine be ing sought has 

already passed through the working buffer. This line is not directly accessible, because there 

is no way to read a disk file backwards. Consequently, it is necessary for LINED to close the 

file and then reopen it. This process of going from the current position of the file to the end of 

the file, from there to the beginning of'the file, and finally to the line being sought is 

8-64 



accompl ished as fo I lows: 

a. To close the file, all remaining text must be passed through the working buffer to the 

temporary output file (called ###L1N. TMP). This is done by giving the subroutine FNDLIN 

(which finds a line whose sequence number is SN) the highest possible s~uence number -

99999. 

b. Next, the original file is renamed to ###TMP .TMP, the temporary output file is renamed to 

the original filename and the original file (###YMP. TMP) is renamed to name. BAK (same 

name as original with an extension of BAK). 

c. FNDLIN is then given the sequence number being sought, and LINED continues with the 

original command. 

8-65 





TEeo 





CHAPTER 1 

INTRODUCTION TO TECO 

TECO, a very powerful text editor, enables the advanced PDP-l0 user to edit any ASCII text 

with a minimum of effort. All editing can be accomplished by using on Iy a few simple commands; 

or the user may select any of a large set of s~phisticated commands such as character string 

searching, command repetition, conditional commands, programmed editing, and text block 

movement. In this description of TECO only the basic commands are described. If the user re­

quires information about the more advanced uses of TECO, he can refer to the TECO section of 

the PDP-IO Reference Handbook. 

TECO is a character'::'oriented editor. One or more characters in aline' can be modified without 

retyping the rest of the line. Any sort of document can be edited: programs written in FORTRAN, 

COBOL, MACRO-lO, or any other language; memoranda; specifications; and other types of 

arbitrarily formatted text. TE.cO does not require that line numbers or any other extraneous 
; 

information be associated with the text. 

1.1 GENERAL OPERATING PROCEDURE 

TECO operates on ASCII data files. A file is an ordered set of data on some peripheral device. 

In the case of TECO, a data file is some type of document. An input file may be a named file 

on disk or DECtape, a file on magnetic tape, a deck of punched cards, or a punched paper tape. 

An output file can be written onto any of these same devices. The input file for a given editing 

operation is the file to which the user wishes to make changes. If the user is using TECO to 

create a new file, there is no input file. The output file is either the newly created file or 

the edited version of the input file. An output file is not required if the user wishes merely to 

examine a file without making any changes. 

In general, the process of editing proceeds as follows. The user first specifies the file he wishes 

to edit and t hen reads in a "page II of text. A page is normally an amount of text that is in­

tended for a single sheet of paper. Form feeds are used to separate a document into pages. 

Ol input, TECO interprets form feeds as end-of-page indicators. It is not required, however, 

8-69 



that a clocument be so divide~ into pages. If a form feed is not encountered, TEGO simply reads 

as much text as will reasonably fit into its editing buffer. For the purposes of this document, 

the word page is used to mean the segment of text in TECO's editing buffer. --- . 

When a page has been read into the buffer, the user can modify this text by using the various 

editing commands. When he has finished editing the page, he outputs it ~nd reads in the next 

page. This process continues until, after the last page has been output, the user closes the 

output file. If there are several pages where no editing is required, there are commands which 

may be used to skim over them. 

1.2 INITIALIZATION 

. The two main uses of TECO are (I) to create a new disk file, and ( 2) to edit an existing 

disk file. These are the only uses of TECO described in this document. In particular, the use 

of TECO with devices other than disk is not described. The beginner can get around this 

limitation by using PIP to transfer files to and from disk. (Refer to Book 6 in the PDP-IO 

Reference Handbook for information about PI P.) 

The two main uses of TECO are so common that there are direct monitor commands to initialize 

TECO for executing them. The command 

• MAKE filename .ext ) 

is used to initialize TECO for creating a new disk file. Filename.ext is the name that the user 

gives to the new file. The filename can be from one to six alphanumeric c.hciract,ers. This is 

followed (optionally) by a period ( • ) and a filename extension of from one'to three alphanumeric 

cha·racters. The most commonly used filename extensions are: 

.F4 

.CBL 

.MAC 

for FORTRAN source programs 
for COBOL source programs 
for MACRO-IO source programs 

The MAKE command opens a new disk file to receive output from TECO and gives it the name 

specified by the user. Once the file has been opened it is then actually created by' using the 

insert and output commands, which are explained in sections 2.5 and 2.6 of this document. 

The command 

• TECO filename .ext ) 

8-70. 



is used to initialize TECO for editing an existing disk file, named filename ,ext, The filename 

and filename extension must be exact I y th~ same as those- of the file that is to be ed ited, The 

TECO command opens the specified file for input by TECO and opens a new file, with a tempor­

ary name, for output of the edited version. When output of the new version is completed, the 

original version of the file is automatically renamed filename.BAK, a~d the newly edited version 

is given the name of the original file. The filename extension .BAK is used for backup files. 

After TECO has been initialized for a particular job, it responds by typing an asterisk ( *) • 

The asterisk indicates that TECO is ready to accept commands; it is typed at the beginning of 

TECO·s operation and at the completion of exeEution of every command string. 

Examples: 

• MAKE EARNNG.F4) 

* 

• TECO L1B40.MAC) 

* 

NOTE 

This command initializes TECO for creation 
of a new disk file called EARNNG.F4. 
The extension • F4 is used because the 
file is to be a FORTRAN source file. 

This command initializes TECO for editing 
the existing disk file L1B40.MAC. At the 
completion of editing, TECO automatically 
changes the name of the original version of 
LlB40.MAC to L1B40.BAK and gives the 
name L1B40.MAC to the new version, 

The TECO command cannot be used to edit a file which has the 
filename extension .BAK.- To edit a backup file the user must 
first rename the backup file, For example, to edit the file 
L1B40.BAK the user should proceed as follows: 
• RENAME lIB40.0LD=LlB40.BAK) 

.TECO LI B40. OLD ) _ 

* 

1.3 SPECIAL SYMBOLS USED IN THIS DOCUMENT 

Symbol Character Represented Comment 

) Carriage Return Whenever fhe RETURN key is typed, 
TECO automatically appends a line 
feed to the carriage return. 

<D Altmode On most Teletypes, the altmode key 
is labeled II ALTMODEII 1 but on some 

8-71 



Special Symbols (Cont.) " 

Symbo I, Character Represented 

, . 

tc Control C -
. , 

, ' 

(FORM) Form Feed 

. ' 

+ Line Feed 

Tab 

·4 Space, 

Rubout 

1.4 GENERAL COMMAND STRING SYNTAX 

Comment 

it is labeled "ESC' or "PREFIX". 
Since the altmode is a non-printing 
character, TECO indicates that it 
has re,ceived an altmode type-in by 
echoing a dollar sign ( $ ). 

This character is typed by typing 
the letter C while holding down the 
CTRL key. Other control characters 
are represented in similar fashion. 

Form feed is typed by typing t F 
(control f). ' 

This symbol is used only when a line 
feed is explicitly typed. It is not 
used for the line feed which is 
automatically assumed when a 
carriage return is typed. 

Tab is typed by typ ing t I 
(control I).· 

This symbol is used occasionally 
for emphasis r 

This key is used to nullify a 
character erroneously typed in a 
command .st ring. Its use is ex­
plained fully in Section 1.5. 

TECO commands are usually given' by typing the one- or two- letter name of the command. 

However, many of the commands take arguments. Some typical examples are shown below, ,to 

give the reader an idea how TECO commands look. These commands are fully explained 

later in the manual. 

L 
rw 
ISAMPLE <D 
3K 

TECO commands may ~ given one at a time. However, it is usually more conven ient to type, 

8-72 



in a single command string, several commands that form a logical group. An example of a 

command string is shown below. 

~ YIHEADINGG)NTAGQ)2LTGXJ) 

A command string may be typed after TECO indicates its readiness by printing an asterisk. 

Command strings are formed by merely writing one command after another. Command strings 

are terminated by typing two consecutive altmodes. 

Execution of the command string begins only after the double altmode has been typed. At that 

point each command in the string is executed in turn, starting at the left. When all commands 

in the string have been executed, TECO prints another asterisk, indicating its readiness to 

accept another command. 

If some command in the st ring cannot be executed because of a command error, execution of 

the command string stops at that point, and an error message is printed. Commands preceding 

the bad command are executed. The bad command and those following it are not executed. 

J.5 ERASING COMMANDS 

Typographical errors, if discovered while typing a command string, may be "erased" by use of 

the rubout key. This process is best explained by an example. 

* 3LKILEIF ERICXON 

After typing this much of the command string, the user discovers that he has misspelled the 

name "Ericson." To nullify his error, he types three successive rubouts. As he does this, 

TECO responds by retyping the characters which are being rubbed out. 

~ 3LKILEIF ERICXON @-.!::!.@.2.@ X 

Of course, rubout is a non-printing character so the actual line looks like this: 

* 3LKILEIF ERICXONNOX 

Once he has rubbed out the bad character, the user continues the command string from the last 

correct character. 

8-73 



.: 3LKILEIF ERICXONNOXSON CD OLT axD 

The actual function of the rubaut character is to delete the last typed character in the command 

string. Consequently, if the bad character is not the last in the string, all characters back to 

that po int must be de leted. Rubaut characters do not enter the command string. 

An entire c~mmand st~ing may be e~ased, if it has ~t yet been terminated, by typing ~o 
successive tG (control G) characters. 

Example: 

.: 3LKILIEFERICXON tGtG 

1.6 COMMAND ARGUMENTS 

, ' 

t G tG causes the entire command 
string to be rejected. TECO types a 
new asterisk and awaits a new command. 

There are two types of arguments ~r. TECO commands. Some commands require numeric argu­

ments and some require alP.hanumeric (text) arguments. 

, , 

Numeric arglJments, and also all numeric type-outs by TECO, are decimal integers. Numeric 

arguments always precede the command to which they apply. A typical example of a command 

taking a numeric argument is the command to delete three characters: '''3D''. 

Alphanumeric arguments are tex~al arguments meant to be interpreted as ASCII code by TECO. 

Alphanumeric arguments always follow the command to which they apply, and they must always 
, ' 

be terminated by an altmode. Examples of alphanumeric arguments are (1) text to b~ 

inserted, and ( 2) character strings to be searched for. 

Example: 

':ISOMETHING ax:1> The argument is "SOMETHING". " 

As shown in the above example, the altmode used to termi~ate an alphanumeric argument may 

also serve as one of the two altmodes necessary to terminate a command string. Any ASCII 

character except null, altmode, and rubout may be included in an alphanumeric argument. 

8-74 



• 

CHAPTER 2 

TECO COMMAN OS 

2.1 INPUT COMMANDS 

The Y (yank) command first clears the ed iting buffer and then reads the next page of the input 

file into the buffer. 

A single Y command is automatically performed by the command 

• TECO filename.ext) 

so that when editing with this command the first page of the input file is automatically read in 

before TECO prints the first asterisk • 

• 
The Y command may be used to delete entire pages of a file, since the editing buffer is com-

pletely cleared before the input is performed. 

The A (append) command reads in the next page of the input file without clearing the 

current contents of the ed iting buffer. This command is used to combine several pages of a 

document. When the A command is used, the form feed separating the page already in the 

buffer and the page to be read in is removed. Thus after the A command the two pages are 

combin!!d into one. 

If the editing buffer does not have enough room to accommodate an A command which has been 

given, TECO automatically expands its buffer and then executes the A command. The user is 

notified of this action by a message of the following form 
\ 

[3K CORE] 

If sufficient core is not available to allow buffer expansion, the user is notified by an error 

message. 

8-75 



Examples: 

NOTE 

On either an A,or a Y command the form feed terminating the 
_page to be read in is not actually read into the buffer. It is 
removed on input and a single form feed is appended to the­
end of the buffer when the buffer is output. 

• TECO REPORT.CBl) 

* 

* 

* 

~A<OO> 
[4K CORE] 

* 

This command, as part of the process of 
initializing TECO for editing the disk file 
REPORT .CBl, automatically clears the 
buffer and then reads in the first page of the 
file. 

This command deletes the entire contents of 
the buffer and then reads in the next page of 
the input file. 

Read the next two pages of the input file into 
the buffer, combining them with the page 
already in the buffer. 

The buffer is expanded as required by the A 
co mmand • In most case s th is message need be 
of no concern to the user. It is important only 
if the system is low on core and does not have 
swapping capabil ity • 

2.2 BUFFER POINTER POSITIONING 

Since TECO is a character-oriented editor, it is very important that the user understand the 

concept of the buffer pointer. The position of the buffer po inter determines the effect of 

many of the editing commands. For example, insertion and deletion always take place at the 

current position of the buffer pointer. 

The buffer pointer is simply a movable position indicator. It is always 'positioned between 

two characters in the editing buffer, or before the first character in the buffer, or after the , 
last character in the buffer. It is never positioned" on .. a particular character, but rather 

before or after the character. The pointer may be moved forward or backward over any 

number of characters. 

The J command moves the buffer pointer to the beginning of the buffer, i. e ., to the position 

immed iate Iy before the first character in the buffer. 

The ZJ command moves the pointer to the end of the buffer, i.e., to the position following 

. ' .. 8-76 



the last character in the buffer. 

The C command advances the pointer over one character in the buffer. The C command may be 

preceded by a (decimal) numeric argument. The command nC moves the pointer forward over n 

characters. (The pointer cannot be advanced beyond the end of the buffer.) 

The R command moves the pointer backward over one character in the buffer. This command may 

also be preceded by a numeric argument. The command nR moves the pointer backward over n 

characters. (The pointer cannot be moved backward beyond the beginn ing of the buffer.) 

The L command is used to advance the buffer pointer or move it backward, on a line-by-Iine 

basis. The L command takes a numeric argument, wh ich may be positive, negative, or zero, 

and is understood to be one (1) if omitted. 

The action of the L command with various arguments is best explained in a more concrete way. 

Suppose the buffer pointer is positioned at the beginning of line b, or at some position within 

line b. 

The command L, or 1 L, advances the pointer to the beginn ing of line b+ 1, i.e., to the position 

following the line feed which terminates line b. 

The command nL, where n > 0, advances the pointer to th~ beginning of line b+n. 

The command OL moves the pointer to the beginning of line b. If the pointer is already at the 

beginning of line b, nothing happens. 

The command -L moves the pointer back to the beginning of line b-1. 

The command -nL moves the pointer back to the beginning of line b-n. 

NOTE 

After execution of a Y command, the buffer pointer is always 
positioned before the first character in the buffer. (The Y 
command automatically executes an implicit J command.) 
The A command does not change the position of the buffer 
pointer. 

In examples, the position of the buffer pointer is often 
represented in this manual by the symbol t just below 
the I ine of text. 

&-77 



Examples: 

.: J3L (J)(J) 

* 

':ZJ-2L Q)(J) . 

* 

* 

* 

2.3 TEXT TYPE-OUT 

,The J commend moves the pointer to the beginning 
of the first line in the buffer • The 3L command 
then moves it to the beg inn ing 0 fthe fourth line. 

This moves the pointer to the beginning of the 
next to last line in the buffer. -

Advance the pointer to the position following 
the fourth character in the next line. 

OL moves the pointer back to the beginning of 
the line it is currently on. Then 2R maves it back 
over the carriage return-line feed pair which 
terminates the preceding line. 

In th is example of text stored in the buffer, the 
position of the buffer pointer is shown to be 
between B end C. 

Various parts of the text in the buffer can be typed out for examination. This is done by use of . ." . 

the T command. Just what is typed out depends on the position of the buffer pointer and the 

argument given. The ~T command never' moves the buffer pointer. 

The command T types out everything from the buffer pointer through the next line feed. Thus, if 

the pointer is at the beginning of a line, the command T causes that line to be typed out. If the 

pointer is in the middle of a line, T causes the portion of the line fOllowing the pointer to be 

typed. 

The command nT ( n > 0) is used to type out n lines, i.e., everytliing from the buffer pointer 

through the nth line feed following it. 

The command OT types out everything from the beginning of the current line u'p to the buffer 

pointer. This is useful for determining the position of the pointer. 

The command HT types out the entire contents of the: buffer. 

The user, especially one new to TECO, should use the T command often, to make sure the 

buffer pointer is where he thinks it is. 

8-78 



During execution of any T command, the user may stop the Teletype output by typing the to 
(control 0) character. This command causes TECO to finish execution of the command string, 

omitting all further type-out. The to command does not carryover to the next command string. 

Examples: 

.: OlT ClXD 
ENTI RE LIN E TYPED 

* 

.: OTT (00) 
ENTIRE LINE TYPED 

* 

.: 2T <D<D 
EF 

GHIJKl 

* 

2.4 DELETION COMMANDS 

This command string is used to move the pointer 
bock to the beginning of a line and then type out 
the entire line. It is frequently used after 
insertion and search commands. 

This command string causes the entire line to 
be typed without moving the pointer. It is 
useful after insertion and search commands when 
it is not convenient to move the pointer bock to 
the beginning of the line • 

If the buffer contains the text below with the 
pointer between D and E, 

ABCD+~F) ~ 
GHIJKL) ~ 
MNOPQR)~ 

th is command causes the typeout shown. 

"ABCD" is not typed because these characters 
precede the pointer. MNOPQR is not typed 
because these characters follow the second 
line feed. 

Characters. are deleted individually by using the D command. The command D deletes the 

character immediately following the buffer pointer. The command nD, where n> 0, deletes 

the n characters immediately following the pointer. The commands -D and -nD delete 

the character or the n characters, respectively, which immediate Iy precede the buffer pointer. 

Lines are deleted using the K command. The K command may be preceded by a numeric 

argument I which is understood to be 1, if omitted. The command n K (n> 0) de letes every­

thing from the current Position of the pointer through the nth line-feed character following the 

pointer. The command H K deletes the entire contents of the buffer. 

At the conclusion of a D or K command the buffer pointer is positioned between the characters 

which precede and follow the deletion. 

8-79 



Exa!"ples: 

The editing buffer contains the following three lines of text, 
and the pointer is positioned between the G and H. 

ABCDEF~t·iIJKLM:) ~ 

NOPQRSTUVWXYZ ) ~ 

1234567890) ~ 

~ 4D (00) 

* -
~ -D (00) 
* 
~ -3D (00) 

* 

* 

* 

~ 2KlOD axJ) 

* -
:: OlK G)G) 

* 
:: l2K axJ) 

* 

* 

Delete HIJ K • 

Delete G. 

Delete EFG. 

Delete HIJ KLM) but do not delete the line 
feed at the end of the first line. 

Delete HIJKLM) ~ • 

Since the carriage return and line feed at the 
end of the first line are deleted, the text in the 
buffer after this command would be: 
ABCDEFGNOPQRSTUVWXYZ) ~ , 
1234567890) ~ 

This would leave the buffer containing only 
ABCDEFG) ~ • . 

This is the command string that is required to 
kill (delete) the entire first line. 

This kills the last two lines. 

Kill the entire buffer. 

2.5 INSERTION COMMAND 

The only insertion command is the I command.' The ASCII text that is to be inserted into the 

buffer is typed immediately after the letter I. ,The text to be i!,serted is terminated by an 

altmode. 

Any ASCII character except null, altmode, and rubout may be included 'in the text to be 

inserted. Specifically, spaces, tabs, carriage returns, form feeds, I ine feeds, and control 

~80 



characters are all allowed. If a carriage return is typed in an insertion, it is automatically 

followed by a I ine feed. 

The text to be inserted is placed in the buffer at the position of the buffer pointer, i.e., between 

the characters. At the conclusion of the insertion command the buffer pointer is positioned 

at the end of the insertion. 

Any number of lines may be inserted with a single I command. For the user's protection, how­

ever, no more than 10 to 20 I ines should be inserted with each I command. 

Examples: 

If the buffer contains ABCDlF) ~ with the pointer between D and E, the command 

.: IXYZ G)G) 

* 

* 

* I ~ 
G)(j) 

* 

* 

.: I( FORM) 

(00) 
* 

* JILINE ONE) 

LINE TWO) 
LINE THREE) 
(00) 
* 

produces' ABCD XYZj- F ) ~ 

produces ABCD) ~ 
!F)~ 

produces ABCD + 
EF) + 

t 

produces AABCD~f) ~ 

This command is used to separate the page in 
the buffer into two pages. Both pages, however, 
remain in the buffer. They are not actually 
separated until output. 

This example shows insertion of several lines of 
text at the beg inn ing of the Duffer. 

8-81 



* 

2.6 OUTPUT COMMANDS 

'1 . 

This is the command string used to.delete the 
tail of a line without removing the carriage 
return-I ine feed at the end of the line. If the 
buffer contains 

This command will produce 

The command P causes ( 1) the entire contents of the editing buffer to be output to the output 

file and ( 2 ) an impl icit Y command to be performed which reads in the ne~t page of the input 

file. This command is used after editing of a given page is complete and the user is ready to 

move on to the next page. 

The P command may be used with a posit~ve numeric argument to skim over several pages. 

Specifically, the nP command causes the n consecutive pages of the input file, starting with 

the page in the ed iting buffer;, to be output, and then the n+lst page to be yanked in. 

The PW command merely outputs the page currently in the editing buffer. It does not clear the 

buffer, it does not read in any more text, and it does not move the buffer pointer. This 

command is used when creating a new file. It is also used to output the last page of a file. 

I f the buffer is empty, the PW and P commands have no effect. 

The EF command must be used to close the output file after all output to it is complete. EF is 

normally used after the PW command which outputs the last page of the file. 

Examples: 

.: PWE F <JXl) 
* 

*PT~ 

FIRST LINE 

* 

Th is is the command st ring usually used to 
close out a file when the last page of the file 
is in the buffer. 

This com~and string outputs the current page, 
reads in the next page, and then types the 
first I ine of the new page. 

8-82 



.: 8P <00> 
* 

2.7 SPECIAL EXIT COMMANDS 

If, for example, page 6 of a document is in the 
ed iting buffer, this command causes pages 6 
through 13 of the document to be output, 
one after the other, and then reads in page 14. 

The EX command is used to conclude an editing job with a minimum of effort. Its use is best 

shown by an example. 

Suppose the user is editing a 30-page file and suppose that the last actual change to the file 

is made on page 10. At this point the user gives the command 

.: EX (J)(J) 

.!. 

In this case the action performed by TECO is equivalent to the command string 20PPWEF, with 

an automatic return to the mon itor at the end. Thus, the action of TECO is ( 1) to rapid Iy 

move a" the rest of the input file on to the output file, (2) close thE! output file, and 

( 3) to return control to the monitor. 

The EG command is even more efficient. This command performs exactly the same functions 

as the EX command, but after that it causes re-execution of the last COMPILE, LOAD, 

EXEOJTE, or DEBUG command attempted before TECO was called. 

For example, suppose the user gives the command 

.!. COMPILE PLOT. F4) 

to request compilation of a FORTRAN source program, but the compiler discovers error,S in the 

code. The user would then call TECO to correct these errors: 

• TECO PLOT. F4) 

* 

When" all the errors are edited, the user exits from TECO with the command 

.: EG GXi) 

8-83 



This causes'the COMPILE commarld to be executed again on the me PLOT. F4, after TECO has 

finished output of the file, 

Any TECO job may be aborted by using the standard return-to-monitor command: t C t C 

(contro'l C typed twice). However, ·if this command is typed before the output file is 

closed, the output file is lost. 

If no input or output operations are in progress a single tc is sufficient to exit from TECO to 

the mOnitor. In such a case, the user may reenter TECO without destroying the job he was 

previously executing. This is illustrated in the following example • 

.!. TECO SOURCE,MAC) A TECO job is started • 

.: ICOMMENTS (jX1) 

.: tc 
.• DEASSIGN LPT) 

• DAYTIME) 

24-FEB-70 10:34 

• REf) 

* 

2.8 SEARCH COMMAND S 

The user exits to perform a few simple monitor 
commands. . 

The user reenters TECO. The previous buffer 
is still intact, 

In many cases the simplest wc,y to position the buffer pointer is by using a character string 

search. A search command causes TECO to sc"an through the text ~ntil a specified 'string of 

characters is fou~, and then to position the po inter at the end ~f th is string. There are two 

main search commands., 

The S command is used to search for a character string within the editing buffer. The string to 

b~ searched for is specified as an alphanumerical argument following the S command. This 

argument must be terminated by an altmode. The character string to be searched for may con­

tain any ASCII character except null, altmode, or rubout. 

The S command may be preceded by a numerical argument n > 1. This argument is used to 

search for the nth occurrence of a character string. Thus a 2S comma~d searches for the 

second occurrence 'of the part,icular character string, skipping the first occurrence. If n)s 

omitted, n = 1 is assumed. 

8-84 



Execution of the S command begins at the position of the buffer pointer and continues t,o the end 

of the buffer. If the specified character string is not found in this range, an error message is 

printed and the buffer po inter is set to the beginn ing of rhe buffer. 

Examples: 

* 

~ J 2SN AME ax1) 

* 

* S20) 
/ 

TAG: <D OLT (j)G) 
TAG: REST OF LINE 

* 

This causes the pointer to be positioned after the 
B in the first occurrence of the string 
A - tab - B past the current position of the 
pointer. 

This causes the pointer to be positioned after 
the second occurrence of the string" NAME" in 
the buffer. 

This moves the pointer to the position just 
following the colon in the string "20) ~ TAG:", 
then repositions the pointer to the beginning of 
the line (just before the "TAG:") and types out 
the entire line starting with "TAG:". 

Warning: When attempting a search it is very easy to overlook an occurrence of the search 

string preceding the one which the user desires. for example, he may want to move the 

pointer after the word" AND" but erroneously position it after a preceding occurrence of a 

word like "THOUSAND". For this reason the user, especially the novice, is strongly urged 

to execute a T command to ascertain the position of the pointer after each search command. 

Example: 

~ 5WORD a> OTT (j)G) 
FORMA T( 1 X, WORD ') 

~1~WORD2~ 

* 

Here the user wishes to insert "~ WO RD 2" 
after "WORD". He wisely types out the line 
to make sure he is at the right place, before 
inserting "WORD2" • 

The other principle search command is the N command. The difference is that an S search 

ends at the end of the current buffer, whereas an N search does not. An N search begins like 

an S search, but if the character string is not found in the current buffer, an automatic P 

command is executed. The current page is outputted, the next page read in, and the search 

continued on the new page. This process continues until either the string is found or the 

input file is exhausted. 

8-85 



'If the .N.'search does find the specified character string, the pointer is positioned at its end • 

Inlle string is not found, an error message is generated. In this case the user caused himself 

a fair' amount of delay. If an N search fails, the user must close the file with an. EX command, 

then reopen it and try the N search ,again with a character string that can be found. The user 

is strongly urged to be careful when typing search character'strings. Remember also that a 

search string must be terminated with an altmode. 

Example: 

~ NSTRIN G - 3D (J)(J) 
?35 

* EX (J)(D 
• TECO fi lena me .ext ) 

~ NSTRING (1)- 3D axJ) 

* 

Her.e the user meant to search for the character 
string" STRING", and to delete the last th'ree 
characters of tile st ring. However, he forgot 
to terminate the search string with an altmode 
and this caused the unsotisfied search request 
errormessoge (?35 ). 

8-86 



CHAPTER 3 

ERROR MESSAGES 

When TEce encounters an illegal command or a command that for any other reason cannot be 

executed, a numeric error message is printed on the user's Teletype. Such messages are of the 

form 1nn where nn is a two-d igit decimal integer that refers to the following table of error 

messages. 

When an error message is generated, the command to which it refers is not executed, the 

'remainder of the command string is ignored, and TECe returns to the id Ie state by typing an 

asterisk and awaiting a new command string. 

The novice user is especially warned that there are a great many TECe commands that have not 

been described in this introductory material. Almost every letter of the alphabet and many of 

the special characters have meanings as TECe commands. Hence, the user should be careful 

when typing command strings. The beginner should probably stick to relatively short command 

strings. 

In the following table, all TECO error messages ore listed, even though som@! of them refer to 

the more advanced commands not described in this manual. Error messages referring to the 

advanced commands will probably be encountered by the user of this introductory material only 

if he has typed an unintended command letter. 

The complete set of TECO commands is fully described in the TECO section of the PDP-lO 

Reference Handbook. Since most editing can be done using only the basic commands covered 

in this introductory material, most users should be able to get along without the more ad­

vanced description for some time. The novice should gain complete mastery of the basic com­

mands before attempting to use any of the advanced commands. 

8-87 



nn 

· Table 3)" 1 

TECO Error Messages 

Meaning 

1 TECO attempted to read commands beyond the terminating <iXID • 
This error is probably due to an unterminated @I or @S, or to an 
unsatisfied 0 command. 

2 Error on output device~ fi Ie closed. 

3 An attempt was made to supply more than two arguments to a command, 
either by the use of two commas or by " H ," • 

4 Too many right parentheses. 

5 = command with no argument. 

6 U command with no argument. 

7 Q, U, X, or G command specifies an illegal Q-register (i.e., other 
than A through Z or 0 through 9). 

8 In an X command, the second argument is not greater than the first. 

9 In a G command, the Q -register does not contain text. 

10 In a G command, the data in the Q -register is not in correct form 
(this is an interna I error). 

11 In an Ec command (e.g., ER, W, EF, etc.), c is illegal. 

12 Fi Ie not found on LOO KU P • 

13 Blank file name specified for directory device. 

14 Proj-Prog number specified does not have a U FD. 

15 Protection failure on DSK. 

16 File cannot be accessed because it is currently being written. 

17 LOOKU P or ENTER returned error type 6 (not defined). 

18 LOOKUP or ENTER returned error type 7 (no device). 

19 . Directory full on ENtER. 

20 Requested I/o device not available • 

21 Not assigned. 

22 EW com~and between an EB command and its EF. 

23 EM command given when no input file is open. 

24 nEM command, where n is not in the range from 1 to 16. 

25 -Internal error: EF and EB, but no input file open. 

26 Illegal character in filename. 

27 Illegal character in project-programmer number. 

28 Attempt to read an input page when no file has been opened for input. 

8-88 

" 



TECO Error Messages (Cont .. ) 

nn Meaning 

29 I/o error on input device. 

30 Attempt to output a page when no file has been opened for output. 

31 Two arguments supplied for an L command. 

32 Attempt to move the pointer beyond the page. 

33 A 2 -argument command has its second argument less than the 
first argument. 

34 Attempt to search for too long a character string. 

35 Search com~and did not find the requested string. 

36 In an M command, the Q-register does not contain text. 

37 In an M command, the data in tre Q-register is not in correct form 
(this is an internal error). 

38 Unmatched right angle brocket. 

39 i encountered when not in an iteration. 

40 II command with no numeric argument, or "x where x is not a 
G, L, E, N, or C. 

, 41 Th is is the number typed out at the end of the ? command's dump 
of the command st ring in error. Refer to the number of the 
original error. 

42 A character has been encountered as a command which is not 
defined. 

43 Control D command when DDT is not loaded with TE CO. 

44 Not enough core available from the monitor. 

45 Rename command with a nome which is blank or one which is 
already in use. Presuma~ly due to a fault in the EB command. 

46 Numeric argument should not be used with EX or EG commands. 

47 Using EB command or TECO command with a file having the 
extension • BA K is illega I. 

48 ER, BN, EZ, and EB commands may not be used with device TTYn, 
where TTYn is the user's console or any other attached user's 
console. 

49 n < ••• > where n=O is illegal. 

8-89 





Appendices 

Index 





A Bibliography of PDP·tO Programming Documents APRIL, 1970 

To solve several customer problems, the POp-to Product Line has initiated a new documentation system. POP-tO software 
information is now being printed in two handbooks and a series of notebooks. The handbooks and the notetiooks will contain 
essentially the same material; the notebooks, however, will be updated more frequently with insertable pages. 
Two handbooks "PDP-IO Timesharing Handbook" and PDP-lO Reference Handbook" now duplicate software manuals. These 
handbooks are easy to handle and store, and to assure availability, they are printed in large quantities. Revision and reprint­
ing of the handbooks is done every six months. Customers will receive twenty copies of each handbook with the signing of 
the pur9hase order for the POP-tO and twenty more copies with the delivery of the machine. 
Each customer will also receive, free of charge, two copies of the PDP-IO software note~ooks--a multiple volume set of 
manuals in the BY.! by II" format. The notebooks are printed on high quality paper allowing the customer to effectively 
reproduce the material. Tec;:hnical accuracy is maintained with quarterly update pages to the notebooks. 
Since most PDP-IO software information is presently included in the handbook, it is no longer necessary to print separate 
manuals. Therefore, except when information is not contained in the handbooks, individual manuals can no longer be ordered. 
This Bookshelf serves to indicate in which handbook manuals are now located. If the manuals are not located in either hand-
book, the order number and price are given. . 
Available manuals and additional copies of the handbooks may be obtained from Digital Sales Offices or by sending a written 
request (with check or money order) to Program Library, Digital Equipment Corporation, Maynard. 

PDP·tO Reference Handbook 
This handbook is a comprehensive volume of information 
for experienced programmers, systems analysts, and engi­
neers who are interested in writing and operating assembly­
language programs in the PDP-lO tillie-sharing environment. 
Included in the handbook are four manuals (System Refer­
ence Manual, MACRO-lO Assembler, Time-Sharing Mon­
itors, and DDT-IO), editor programs (Editor, LINED and 
TECO), and utility programs (LOADER, PIP and 
TENDMP). A sample LOGIN procedure, a convenient 
summary of monitor commands, and a comprehensive in­
dex/ glossary make this handbook a valuable reference for 
the person interested in assembly-language programming. 
Order No. AIW $5.00 

PDP·tO Timesharing Handbook 
This is a tutorial document intended primarily for students, 
scientists, engineers, and financial analysts who have no ex­
perience in programming. It contains an introduction to 
timesharing and an explanation of the elementary and ad­
vanced monitor commands. Included are the three refer­
ence manuals BASIC, AID, and FORTRAN, as well as 
procedural descriptions of Batch, CHAIN, LINED, and 
TECO. The four demonstration programs in Book 6 en­
hance the tutorial aspect of the handbook. 
Order No. AKW $5.00 

PDP· to System Reference Manual 
An indexed programmer's handbook that describes the PDP-
10 processor and the basic instruction repertoire. Following 
an introduction to the PDP-I0's central processor structure, 
general word format, memory characteristics, and assembler 
source-programming conventions, this manual presents the 
specific instruction format, mnemonic and octal op codes, 
functions, timing formulas, and examples of each of the 
basic instructions. Several helpful appendices, including 
mnemonic op code tables, al~orithms and timing charts, 
complete the manual. Contamed in PDP-IO Reference 
Handbook. 

Time-Sharing Monitors: 
A complete guide to the use of the PDP-lO's two powerful, 
real-time, mUltiprogramming, time-sharing Monitors. All 
Monitors schedule multiple-user time sharing of the system, 
allocate facilities to programs, accept input from and direct 
output to all system 1/ 0 devices, and relocate and protect 
user programs in storage. This manual details user ip.terac­
tion with the Monitors, from botIi a programming and oper­
ating viewpoint, and contains several quick-reference tables 
of commonly used Monitor commands and parameters, as 
well as examples of user coding. Contained in PDP-lO 
Reference Handbook. 

A-l 

AID (Algebraic Interpretive Dialogue) 
A 'hands-on' guide to the use of AID at the Teletype. AID, 
a PDP-IO version of JOS81, is an on-line system which pro­
vides each user with a personal computing service utilizing 
a conversational algebraic language. This manual describes 
the use of the Teletype, the syntax and general rules govern­
ing the AID language, and each of the AID commands, with 
appropriate examples. Contained in PDP-lO Time-sharing 
Handbook. 

Single·User Monitor System Revision September, t969 
A complete guide to the use of the Single-User Monitor, 
which performs fast job-to-job sequencing, provides II 0 
service for all standard devices, and is upward compatible 
with the Time-Sharing systems. 
Order No. DEC-IO-MKZA-D $2.00 

Batch Processor (Batch) and Job Stacker (Stack) 
An indexed manual containing all information required to 
prepare and run user jobs under control of the Batch Proces­
sor in either a single-user or time-sharing environment. 
(Batch supervises the sequential execution of a series of jobs 
with a minimum of operator attention, yet allows the oper­
ator to interrupt, skip, repeat, or prematurely terminate one 
or more of the jobs in the series at any time.) Job Stacker 
is used in conjunction with Batch to (I) transfer job files to 
the Batch input device and stack them there for subsequent 
input to Batch, (2) transfer Batch output job files from the 
Batch output device to some other device, (3) list job file 
directories, (4) delete job files, and (5) list directories with 
selective file deletion or transfer. Contained in PDP-IO 
Time-Sharing Handbook. 

System User's Guide Revision August, 1969 
A fact-filled operations guide designed for handy reference 
at the user's Teletype. Contains the basics of Teletype usage 
and complete operating procedures for all Commonly Used 
Systems Programs (CUSPs). Includes complete write-ups on 
DECtape Editor, BASIC, LINED, and Linking Loader. A 
typical chapter includes a brief descriptioo of the program, 
its operating environment, initialization procedures, com­
mand string formats, special switches, diagnostic messages, 
and indepth examples. The' manual is tab-indexed for the 
user's convenience. 
Order No. DEC-lO-NGCC-D $10.00 

1JOSS is a trademark and service mark of the RAND Cor­
poration for its computer program and services using that 
program. 



COBOL LANGUAGE August, 1969 
A reference ~ manual designed to aid the user in writing 
COBOL programs for the PDP-IO. Each COBOL language 
element is accorded a detailed treatment that explains and 
demonstrates its use in a variety of programming contexts. 
The four major divisions of a COBOL program and their 
conventional formats are clearly described and. effectively 
illustrated. Other subjects given extended coverage in this 
manual are the COBOL library, COBOL reserved words, 
and the CALL procedure. Each chapter contains numerous 
examples of the efficient use of the components of a COBOL 
program. Indexed. 
Order No. DEC-lO-KCIA-D $6.00 

FORTRAN IV 
This manual describes statements and features of FOR­
TRAN IV on the PDP-IO. Includes descriptions of library· 
functions, calling library subroutines from the Science 
Library, and the FORTRAN IV operating System. An ap­
pendix contains language differences for those using the 
small (5.5K) PDP-lO FORTRAN Compiler. Contained in 
PDP-IO Time-Sharing Handbook. 

Science Library and Fortran Utility Subprograms 
Revision March, 1969 

A general reference manual covering Science Library arith­
metic function and utility subprograms and FORTRAN IV 
nonmathematical utility subprograms. A functional descrip­
tion followed by the calling sequence, list of external sub'­
programs called, entry points, and subprogram length, is 
given for each subprogram. In addition, the type of argu­
ment(s) and result, a description of the algorithm used, and 
a discussion of the accuracy of the algorithm are given for 
each function. Appendices contain information on error 
analyses, double-precision format and input conversion, a 
bibliography, and average run times. l 

Order No. DEC-IO-SFLE-D $4.00 

TECO (Text Editor and Corrector) , 
I . Minor Revision, August, 1969 

This programmer's reference manual describes the powerful 
context editor for the PDP-IO. Editing is done on a character, 
line or variable character string basis. Describes more than 
30 commands for inserting, deleting, appending, searching 
for, and displaying text. Contained in PDP-IO Reference 
Handbook. 

BASIC 
A valuable guide to the BASIC® commands needed for a 
efficient expression of scientific, business, and educational 
problems. The manual contains complete tutorial explana­
tions of these additional features: (1) matrix computations; 
(2) alphanumeric information handling; (3) program con­
trol and storage facilities; (4) program editing capabilities; 
(5) formatting of Teletype output; and (6) documentation 
and debugging aids. Contained in PDP-IO Time-Sharing 
Handbook. 

® Registered: Trustees of Dartmouth College 

A-2 

PIP (Peripheral Interchange Program) 

Explains how PIP is used 'to transfer data files between 
standard peripheral devices. Shows .llow command strings 
are written, describes switches available for optional func­
tions, techniques for handling file directories, error messages 
and other features. Contained in PDP-IO Reference Hand­
book. 

MACRO-I0 Assembler 
The programmer's reference manual for the PDP-IO as­
sembly system. Explains format of statements, use of 
pseUdo-operations, and coding of macro instructions which 
make MACRO-IO one of the most powerful assemblers 
available. Contained in PDP-IO Reference Handbook. 

PDp·tO Reference Card Revision November, 1969 

. A handy pocket-sized guide to instruction mnemonics, hard­
ware and software (Monitor system) word formats, and in­
struction codes. 

Order No. DEC-IO-JOOB-D $0.25 

DDT·I0 (Dynamic Debugging Technique) 

This reference manual describes the dynamic debugging pro­
gram used for on-line checkout and testing of MACRO-IO 
and FORTRAN programs. The commands .of DDT are 
grouped so that they can be used easily and effectively by 
both the uninitiated user and the experienced programmer. 
Included in the appendices is an informative summary of all 
DDT functions. Contained in PDP-lO Reference Handbook. 

The following supplementary documents are also available 
from the Program Library. 

PDP-lO DECtape Copy 
Program (COPy) DEC-IO-RPTA-D 1.00 

FORTRAN IV Software 
Maintenance Memos 'DEC-IO-KFIA-D 1.00 

Linking Loader V.27 DEC-IO-LLZA-D 1.00 

FORTRAN IV Utility Sub-
programs (RELEAS, 
MAGDEN, BUFFER, 
IFILE, and OFILE) DEC-lO-FIYB-D 1.00 

S680I-DC68A Data Line 
Scanner for PDP-IO DEC-IO-FWVA-D 1.00 

Program Logic Manual 
for the PDP-IO 
Time-Sharing 
Monitors DEC-IO-MRZA-D-(L) 4.00 



APPENDIX B 

PDP-l0 SOFTWARE 

Table B-1 lists PDP-l0 system programs and the documentation pertaining to them. For a 

description of each of the documents, refer to the Bookshelf in Appendix A of this handbook. 

Table B-1 

PO P-l 0 Software 

Software Documentation Document Order No. 

AID PDP-l0 Timesharing Handbook (Book 4) AKW 

PDP-l0 Software Notebook DEC-l0-SYZA-D 

System User's Guide DEC-l0-NGCC-D 

BASIC PDP-l0 Timesharing Handbook (Book 3) AKW 

PDP-l0 Software Notebook o EC-lO-SVZA-D 

Batch PDP-l0 Timesharing Hardbook (Book 8) AKW 

PDP-l0 Software Notebook DEC-lo-SYZA-D 

BINCOM PDP-l0 Referenc.e Handbook (Book 6) AIW 

PDP-l0 Software Notebook DEC-l0-SYZA-D 

System User's Guide DEC-l0-NGCC-D 

CHAIN PDP-l0 Timesharing Handbook (Book 8) AKW 

PDP-l0 Software Notebook DEC-IO-SYZA-D 

CHKPNT Pf)~-10 Software No.tebook DEC-lO-SYZA-O 
(System Manager's Guide) 

COBOL COBOL language DEC-l0-KC lA-D 

PDP-l0 Software Notebook DEC-IO-SYZA-D 

B-1 



. 

, , -, 

SoftwQr~:' '. 

COMPIL 

COpy 

CREF 

DDT 

DRIVER 

DSKLST 

EDITOR 

Table 8-1 (Cont.) 

,PDP-I0 Reference Handbook (Book 2) 

PO'P-lO Software Notebook 

PDP-lO DECtape Copy Program '(COPY) 

PDP-lO Software Notebook 

PDP-I0 Reference Handbook (Book 5) 

PDP-lO Software Notebook 

PDP-I0 Reference Handbook. (Book 5) 

PDP-I0 Software Notebook 

System User·s Guide 

PDP-I0 Timesharing Handbook (Book 8) 

PDP-lO Software Notebook 

PDP-I0 Software Notebook 
(S'ystem Manager·s Guide) 

PDP-I0 Reference Handbook (Book 4) 

PDP-I0 Software Notebook 

.. 

AIW 

DEC-I0-SYZA-D 

DEC-I O-RPT A-D 

DEC-I0-SYZA-D 

AIW 

DEC-I0-SYZA-D 

AIW 

D EC-I O-SYZA-D 

DEC-I0-NGCC-D 

AKW 

DEC-I0-SYZA-D 

DEC-I0-SYZA-D 

.' AIW 

DEC-I0-SYZA-D 

~----------T-----------------------~------T-----------~----~ 

FAILSAFE 

FILDDT 

FORTRAN 

" 

FUDGE2 

PDP-lO Software Notebook 
(System Manager·s Guide) 

PDP-I0 Software Notebook 
(System Manager·s Guide) 

PDP-lO Timesharing Handbook (Book 5) 

PDP-I0 Software Notebook ,. 

System Userrs Guide' 

",;,'}t " .•• i 1",- ,,', ,'" '.' 

PDP-lO Reference Handbook (,Bbok :6) 

PDP-I0 Software Notebook 

B-2 

DEC-I0-SYZA-D 

DEC-I0-SYZA-D 

AKW 
. DEC-I0-SYZA-D 

DEC-I0-NGCC-f) 

. AIW': 

DEC-I0-SYZA-D 



Table 8-1 (Cont.) 

Software Documentation Document Order No. 

GL08 PDP-l0 Reference Handbook (Book 6) AIW 

PDP-lO Software Notebook DEC-l0-SYZA-D 

LINED PDP-l0 Reference Handbook (Book 4) AIW 

PDP-l0 Timesharing Handbook (Book 8) A~ 

PDP-l0 Software Notebook DEC-l0-SYZA-D 

LOADER PDP-lO Reference Handbook (Book 3 ) AIW 

PDP-l0 Software Notebook o EC-l0-SYZA-D 

LOGIN PDP-lO Reference Handbook (Book 3) AIW 

PDP-l0 Software Notebook DEC-l0-SYZA-D 
(System Manager's Guide) 

LOGOUT PDP-lO Reference Handbook (Book 3) AIW 

PDP-l0 Software Notebook DEC-lO-SYZA-D 
{System Manager's Guide) 

. 
MACRO PDP- to Reference Handbook (Book 2) AIW 

PDP-lO Software Notebook DEC-lO-SYZA-D 

System User's Guide DEC- JO-NGCC-D 

. 
MONEY PO P-lO Software Notebook DEC-lO-SYZA-D 

(System Manager's Guide) 

-
MONGEN PDP- JO Software Notebook DEC- JO-SYZA-D 

(System Manager!s Guide) 

MONITOR PDP-lO Reference Handbook (Book 3) AIW 

PDP-lO Software Notebook DEC-lO-SYZA-D 

PIP PO P-l 0 Reference Handbook (Book 3) AIW 

PDP-lO Software Notebook DEC-lO-SYZA-D 

8-3 



Table 8-1 (Cont.) 

Software Documentation Document Order No. 

PIP1 PDP-10 Reference Handbook (Book 3) AIW 

PDP-10 Software Notebook DEC-10-SYZA-D 
I 

PRINT PD P-1 0 Software Notebook DEC-10-SYZA-D 
< (System Manager's Guide) . 

PRINTR PDP-10 Software Notebook DEC-10-SYZA-D 
($ystem Manager's Guide) , 

REACT PDP-IO Software Notebook D EC-10-SYZA-D 
(System Manager's Guide) 

SRCCOM PDP- 10 Reference Handbook (Book 6) AIW 

PDP-10 Software Notebook DEC-lO-SYZA-D 

System User's Gu ide DEC-10-NGCC-D 

STACk PDP-10 Software Notebook 
i' 

DEC-l0-SYZA-D 

SYSTAT PDP-10 Reference Handbook (Book 3) AIW 

PDP-10 Software Notebook D EC-1 O-SYZA-D 

TECO PDP-10 Reference Handbook (Book 4) AIW 

PD,P-10 Timesharing Handbook (Book 8) A~ 

System User's Guide D EC-10-NGCC-D 

PDP-10 Software Notebook DEC-l0-SYZA-D 

- TENDMP PDP-10 Reference Handbook (Book 6) AIW , 
. PDP-lO Software Notebook DEC-10-SYZA-D 

'''' , 

8-4 



INDEX 
Page numbers refer to the book and the page number 
~ithin the book; i.e., 3-42 is the 42nd page of Book 3. 

A command, TECO, 8-75 
A format, 5-44 
ABS function, 3-14, 3-73 
Absolute value, 3-14, 3-73, 4-10, 4-23 
ACCEPT stat~ment, 5-58, 5-77 
Access time, 1-10 
Access to BASI C, 3-29, 3-32 
Accumulator conventions, 5-111 
Accuracy of AID, 4-11 
Addition, 4-10, 4-23 
Adjustable dimensions, 5-63 
Allocating system resources 

ASSIGN monitor command, 7-4 
CORE monitor command, 7-8 
DEASSIGN monitor command, 7-6 
FINISH monitor command, 7-7 
REASSIGN monitor command, 7-7 

Alphanumeric fields, 5-44 
AlPHI. routine, 5-84 
AlPHO. routine, 5-84 
AlTMODE key, 2-20 
Argument, FORTRAN, definition, 5-24 
Arithmetic error conditions, 

FORTRAN, 5-121 
Arithmetic Formulas, AID, -4-19, 4-78 
Arithmetic function definition 

statEm ent 5-71, 5-79 
Arithmetic operations, BASIC, 3-13 
Arithmetic operations on complex 

numbers, FORTRAN, 5-21 
Arithmetic statement, ,FORTRAN, 5-29 
Array dimensioning, 5-22, 5-62 
Arrays, 4-21, 5-22 
ASCII character set, 5-125 
ASCII mode 

D ECtape , 5- 128 
disk, 5-128 
magnetic tape, 5-131 

$Assign Card, Batch control card, 8-20 
PROTECT, 8-20, 8-21 

Index-l 

ASSIGN monitor command, 7-4 
ASSIGN statement, 5-32, 5-77 
ASSIGN SYS monitor command, 7-15 
Assigned GO TO statement, 5-32, 5-77 
Asterisk convention, 2-11 
Asynchronous design, 1-6 
ATN function, 3-14, 3-73 
ATIACH monitor command, 7-8, 7-16 
Augmented matrix, 6-11 

Background job, 7-8 
BACKSPACE statement, 5-39, 5-59, 

5-77 
Batch 

diagnostic messages, 8-28 
equipment requirements, 8-11 
examples, 8-33, 8-39 
introduction, 8-7 
processing under PDP-I0 monitors, 8-7 
processor, 8-7 

Batch control cards 
'Tape, 8-21 
$*Cald, 8-27 
$**Card, 8-28 
$ ASSIGN Card, 8-20 
$ BIN, e-24 
$ CBl, 8-il 
$ CREF, 8-23 
$DUMP, 8-27 
$ EOF, 8-26 
$ EOJ, 8-26 
$EXCDR, 8-23 
$ F4, 8-21 
$ GET, 8-25 
$JOB, 8-16 
KEY, 8-18 
$LDR, 8-23 
$MAC, 8-21 



$ PAUSE, 8-2i'-' 
$ RUN, 8-2S 
$ SAVE, 8-24 
$ SSAVE, 8-24 
$ START, 8-26 

Batch processing, 1-3 
$ BIN Card, Batch control card, 8-24 
Binary ,mode 

DECtape, 5- 128 
disk, 5-128 
magnetic tape, 5-131 

BINWR. routine, 5-85 
Blank common, 5-64 
Blank fields, 5-49 
Blank records, 5-47 
BLOCK DATA statement, 5-68, 5-76 
BLOCK DATA subprogram, 5-76 
Block identifier, 5-64 
Block name, 5-64 
Block of words, 1-10 
Boolean expressions, 4-11,4-20,4-31 
Brackets, AID, 4-10, 4-23 
BTEMP, 8-11, 8-12, 8-19 
Buffer pointer positioning, TECO, ,8-76 
'Buffer sizes of peripheral devices, 5-127 
BU FFE R subroutine, 5-90 

C TECO command" 8-77 
CALL statement, 5-75, 5-77 
CANCEL command, 4-37; 4-80 
$*Card, Batch control card, 8-27 
$**Card, Batch control card, 8-28 
Card notation, Batch, 

# , 8-16 
braces, 8-16 
lower case letters, 8- 16 
parameters, 8-1 6 
parentheses, 8- 16 

Cards acceptable as Batch input 
card description, 8-16 
card notation, 8-16 

Carriage control, FORTRAN, 5-45, 5-48 
$ CBL Card, Batch control card, 8-21. 
CCONT monitor command, 7-15 
CHAIN calling sequence, 8-50 
Chain files, 5-90, 8-47 
CHAIN job implementation, 8-47 
CHAIN program description, 8-54 
CHAIN programming considerations, 8-53 
CHAIN subroutine, 5-90, 8-47 
CHAN G,E instruct jon , 3-61, 3-63 
Character set, AID, 4-85 
Character set, ASOI, 5-125 
Character set, FORTRAN, 5-17 

Index-2 

Clock, 1-5 (".: h A-" ',' '; ''1'; 

Closed subroutines, 5-71. 
COBOL compilation,' 8-21. . 
Coding form, FORTRAN, 5-16, ':' 
Command " " , 

direct, definition,' 4-10 
indirect, definition, 4-10 

Command summary, AID, 4-80 
Comment line, FORTRAN; 5-16 
COMMON area, CHAIN, 8-47 
Common block, FORTRAN, 5-64 
COMMON statement, 5-64, 5-66, 5-78 
Common storage, FORTRAN, 5-64 
COMPILE monitor c~mmand, 2-13 
Complex constants, FORTRAN, 5-20 
Complex fields, 5-46 
Complex subexpression, 5-25 
COMPLEX, type declaration 

statement, 5-68, 5-78 
Compound expressions, FORTRAN 

logical, 5-28 
numeric, 5-24 

Compute bound, 1-6 
Computed GO TO statement, 5-31, 5-77 
Conditional expressions, 4-32, 4-78 
Conditional GO TO statement 

see IF-THEN 
Constants, FORTRAN 

complex, 5-20 
double precision, 5-20 
integer, 5-19 
literal, 5-21 
logical, 5-21 
octal, 5-20 
real, 5-19 

Context switching, 1-5 
CONTINUE monitor command, 3;'32, 

4-10, 7-13 
CONTINUE statement, 5-36, 5-77 
Control commands, BASIC, 3 -65 
Control statements, FORTRAN, 5-31, 5-77 

CALL, 5-75 
CONTfNUE, 5-36 
DO, 5-34 
END, 5-37 
GO TO, 5-31 
IF, 5-32 
PAUSE, 5-36 
RETU RN , 5-75 
STOP, 5-37 

CONTROL-C, 2-18, 3-31, 3-:66., .4-9 
CONTROL-F, 2-20, 4-11, 4-12 . 
Core image ~ 2-3, 2-13' , 
CORE monitor command, 7-8 



Correcting typing errors 
AID, 4-13 
BASI C, 3-30,,3-31, 3-34 
Monitor, 2-19 

'TECO, 8-73 
Cremer's method, 6-13 
CREATE monitor command, 2-7, 8-59 
Creating files 

CREATE monitor command, 2-7 
MAKE monitor command, 2':'9 

Creation of CHAIN files, 8-50 
$CREF card, Batch control card, 8-23 

cross reference assembly listing, 8-23 
CREF monitor command, 7-10 
Cross-reference listing, 7-10, 8-23 
COS function, 3-14,3-73 
C?sine, 3-14, 3-73 
COT function, 3-14, 3-73 
Cotangent, 3-14, 3-73 
CSTART monitor command, 7-15 
CTEST mon itor command, 7-16 

o format, 5-40, 5-44 
o LINED command, 8-61 
o monitor command, 7-15 
o TECO command, 8-79 
Data block, 3-16, 3-61 
Data file capability, BASIC, 3-67, 3-73 
Data line multiplexor, 1-8 
Data line scanner, 1-8 
Data record, 5-53-
Data set, 1-8 
DATA statement, BASIC, 3-11,3-12,3-13, 

3-16, 3-71 
DATA statement, FORTRAN, 5-66, 5-78 
Data specification statements, 5-61 

DATA, 5-66, 5-78 
BLOCK DATA, 5-68, 5-76 

Data specification subprogram, 5-68 
Data transm iss ion statements, 5-39, 5-77 

ACCEPT, 5-58 
o ECOD E, 5-59 
EN COD E, 5 -59 
PRINT, 5-53 
PUNCH, 5-54 
READ, 5-56 
REREAD, 5-57 
TYPE, 5-54 
WRITE, 5-54 

DATA; UUO, 5-85 
DATE subroutine, 5-90 
DAYTIME monitor command, 2-16 
DDT monitor command, 7-14 

Index-3 

DDT submode, 8 .. 25 
DEASSIGN monitor command, 7-6 
DEBUG monitor command, 2-14 
Debugging programs 

DEBUG monitor command, 2-14 
in Basic, 3-34 

DECODE statement, 5-59, 5-77 
D ECtape usage, 5-128 
DEC. UUO, 5-86 
Oedicated system, 1-4 
DEF function, 3-40, 3-74 
Defensive software, 1-12 
DEFINE ALE statement, 5-55 
Defined function, 3-41, 3-74 
Defined locations, 5-111 
DELETE, AID command, 4-39, 4-80 
DELETE, BASIC command, 3-65 
D ELET E, monitor command, 2-12 
Deletion commands, TECO, 8-79 
DEMAN 0 command, 4-18, 4-41, 4-80 
Demonstration programs 

curve-fitting, 6-8 
random-number generator, 6-36 
remaindering, 6-26 
sum of squares, 6-4 

DET function, 3-55, 3-74 
DETACH,monitor command, 7-8, 7-15 
Device assignments, 5-128 
Device control statements, 5-58, 5-77 

BACK SPACE, 5-59 
END FILE, 5-59 
REWIND, 5-59 
SKIP RECORD, 5-59 
UNLOAD, 5-59 

Device table, FORTRAN, 5-129 
DEVTB., , 5-129 
Diagnostic messages 

AID, 4-87 
BASIC, 3-75 
BATCH, 8-28 
FORTRAN, 5-116 
monitor, 7-16 
LINED, 8-63 
TECO, 8-87 

Diagnostic software, 1 -1 2 
DIM statement, BASIC, 3-26, 3-28, 

3-52, 3-74 
DIMENSION statement, FORTRAN, 

5-62, 5-78 -
adjustable dimension, 5-63 

Dimensioning, BASIC, 3-26, 3-28, 
3-52, 3-54 

Direct command, definition, 4-10 
Direct steps, 4-15 



Directory format' 
, long format, 2-11 

short format, 7-10 
DIRECtORY, monitorcommond,2-11,7-1O 
DIRT. rOutine, 5-84 ., J 

DISCARD command, 4-45, 4-80, 4-84 
Disk usage, 5-128 
Division, 4-10, 4-23 
DO command, 4-18, 4-34, 4-46, 4-80 
DO statement, 5-34, 5-77 
DON E command, 4-51, 4-80 
DOUBLE PRECISION, type declaration 

statement, 5-68, 5-78 
Double precision constants, 

FORTRAN, 5-20 
Double word, FORTRAN, 5-25, 5-27 
DOUBT. routine, 5-84 
Driver 

equipment requirements, 8-30 
general description, 8-29 
implementation, 8-30 
use of, 8-30 

Dual memory protection and 
relocation, 1-8 

Dummy arguments, AID, 4-20 
Dummy arguments, FORTRAN, 5-72, 5-73 
Dummy identifiers, 5-71, 5-72 
DUMP, 8-27, 8-29, 8-31 
DUMP subroutine, 5-91 
$ DUMP card, Batch control card, 8-27 

E format, 5-40, 5-44 
E, LIN ED command, 8-61 
E( monitor command, 7-15 
Edit commands, BASIC, 3-65 
EDIT, monitor comman<;l, 4-9, 8-59 
Ed iting files 

EDIT monitor command, 2-9 
TECO monitor command, 2-10 

EF, TECO command, 8-82 
EG, TECO command, 8-83 
ENC. UUO~ 5-86 
ENCODEstatement, 5-59 
END OF FILE statement, 5-59 
END statement, BASIC, 3-11, 3-19, 3-72 
END I statement, FORTRAN, '5-37 
Entering a BASIC program, 3-30, 3-32 
$EOF card, Batch c.ontrol card, 8-26 
EOF1 subroutine, 5-91 
EOFC subroutine, 5-91 
$ EOJ card, Batch control card, 8-26 
Equipment requirement$ fpr BATCH, 8-11 
EQUIVALENCE statement, 5-65, 5-66 

Index-4 

Errors, BASIC . 
grammaticq,l, 3-34. 
logical, 3:"34 c 

fRRSET subroutine, 5",:,91 
EX, IECO commqnd, 8-83 
Examples, BATCH, . 8-33, 8-'39 
Examples, LIN ED., 8-61 
EXECUTE, monitor command, 2-14 
Executing a BASIC program, 3-31, 3-33, 

3-35 
Executing programs 

EXECUTE monitor commqnd, 2-14 
Executive mode, 1-9 
Executive program, 1-5 
Exit commands, TECO, 8-83, 
EXIT subroutine, 5-91 ' 
$EXLDR card, Batch control card, 8-23 

map', 8-23 
EXP function, 3-14, 3-73 
Exponentiotion, 4-10,4-23 
Expression, definition, 4-10, 4-78 
Expressions, FORTRAN 

logical, 5-26 
numeric, 5-24 

EXTERNAL statement, 5-76 
External storage, defi,nition, 4-78 
External subprograms, 5-71 

F format, 5-40-5-44 
$F4 card, Batch control card, 8-21 
Field delimiters, 5-43 
Field specifications, 5-40 
Field width~ 5-40,-5-44 
FILE command, AID, 4-53, 4-81, 4-84 
File, definition, 4-78 
File protection, 1-11-
Filename extension, 2-6 
Filenames, 2-6 
Files, 2-6 
FI LES command, Basic, 3-67, 3-73 
Filing system, 1-10 
FIN. UUO, 5-85 
FINISH, monitor command, 7-7 
FLIRT. routine, 5-84 
flOUT. routine, 5-84 
FN EN 0 statement, 3-40 
FOR statement, Basic, 3-22, 3-23, 3-71 
FORM command, 4-54, 4-81 
Form, definition, 4-78 
FORMAT statement, 5-39 

alphanumeric fields, 5-44 
blank fields,' 5-49 . 
complex fields, 5-46' 
logical fields, 5-43 

~--. i 



mixed fields, 5-45 
multiple records, 5-46 
numeric fields, 5-40 
variable field width, 5-43 

Formats stored as data, 5-47 
Formula, 4-19, 4-78 
FORSE. , 5-83 

FORMA T processing, 5-83 
I/O device control, 5-84 
UUO dispatching, 5-84 

FORTRAN compilation, 8-21 
FORTRAN compiler diagnostics 

command errors, 5-116 
compilation errors, 5-117 

FORTRAN compiler switches, 5-115 
FORTRAN library functions, 5-86 
FORTRAN library subprograms, 5-71, 

5-86, 5-90 
FORTRAN library subroutines, 5-90 
FORTRAN operating system, 5-83 

FORSE. , 5-83 
I/O conversion routines, 5-84 
FORTRAN UU01s, 5-85 

FORTRAN program and MACRO subprogram 
linkage, example of, 5-97 

FORTRAN UU01s, 5-85 
Function, definition, 5-24 
Function identifier, 5-24, 5-72 
FUNCTION statement, 5-72 
FUNCTION subprogr(lms, 5-72 

FUNCTION statement, 5-72 
Function subprogram linkage, 

example of, 5-96 
Function type, 5-24, 5-73 
Function value, 5-24 
Functions, AID 

argument, 4-26 
cosine, 4-26 
digit part, 4-26 
exponent part 4-28. 
exponential, 4-26 
first, 4-26, 4-34 
fraction part, 4-26 
integer part, 4-26 
logarithm, natural, 4-27 
maximum, 4-27, 4-34 
minimum, 4-27, 4-34 
product, 4-27, 4-34 
signum, 4-27 
sine, 4-27 
square root, 4-27 
sum, 4-27, 4-34 
truth value, 4-28, 4-32 

Functions, Bcisic, 3-14, 3-27, 3-54, 
3-55, 3-73 

Index-5 

G format, 5-40-5-44 
$ GET card, Batch control card, 8-25 
GET monitor command, 7-12 
Getting information from the mOnitor 

DAYTIME monitor command, 2-16 
PJOB monitor command, 2-16 
RESOURCES monitor command, 7-13 
SYSTAT monitor command, 7-13 
TIME monrtor command, 2-16 

Getting on the system, 2-4 
Glossary of AID terms, 4-78 
GO command, 4-57, 4-81 
GO TO statement, Basic, 3-11, 3-18, 

3-71 
GO TO statement, FORTRAN 

assigned, 5-32, 5-77 
computed, 5-31, 5-77 
uncond itional, 5-31, 5-77 

GOSUB statement, 3-41, 3-72 

H-conversion, 5-45 
HALT monitor command, 1-10 
Hierarchy 

of logical operators, 5-28 
of numeric operators, 5-26, 5-28 
of relational operators, 5-28 

Hilbert matrix, 3-56 

I format, 5-40-5-44 
I LIN ED command, 8-60 
I TECO command , 8-80 
IBUFF call, 5-90 
Identifiers, 4-10, 4-17, 4-78 

indexed, 4-21 
Identity matrix, 3-52, 3-72 
IF clause, 4-59, 4-81 
IF END statement, Basic', 3-70, 3-73 
I F statement, FO RTRAN 

logical, 5-33, 5-77 
numerical, 5-33, 5-77 

IF - THEN statement, Basic, 3-10,' 
3-18, 3-71 ' 

I FI LE subroutine, 5-91 
III subrout i ne, 5-02 
Immediate storage, definition, 4-78 
IMPLICIT statement, 5-68, 5-78 
Impure code,rr=7 
IN. UUO, 5-85 
Indexed identifiers, 4-21 
Indirect command, definition, 4,-10 
Ind irect steps, 4-15 



'~~NF.~lJUOi,-5"'!85\!. m ';',. ~(.I '''l' ,1/, 

Input commands, TECO ,-_ 8-75 - -
Input file, TEeO ,_ ::·8-69", -
IN PUT stat~nt ,~.8I!rsi'C-r 3.,.48" 3 ... 72 --~ 

data file, 3-69, 3""73 
Input/output control, 1-9 
Input/oufput processor, 1-6 
Insertion command, TECO, 8-80 
Instruction set, PDP-lO, 5-132 
INT function, 3-37, 3-73 
Integer constants, 5-19 
Integer function, 3-37, 3-73 
INTEGER, type declaration state-

ment, 5-68, 5-79 
Intelligent terminal, 1-14 
Interaction, 1-3 
Internal subprograms, 5-71 
Interrupting execution of a 

Basic program, 3-31, 3-35 
INTI. routine, 5-84 
INTO. routine, 5-84 
I/O bound, 1-6 
I/O conversion routines, 5-84 
I/O list, 5-52 
I/O records, 5-53 
Item-list, definition, 4-78 
Iterative clauses, 4-34 

J TECO command, 8-76 
$ JOB card ,Batch control card, 8-16 

DUMP, 8-18 
NOGO, 8-18 

K TE CO command, 8-79 
KEY card, Batch contro I card, 8-18 
KJ 0 B mon i tor command, 4-17, 4- 10 

L format, 5-43 
L TECO command, 8-77 
Latency optimization, 1-10 
$ LOR cQl'C\, Batch control card, 8-23 

LIB, 8-23 
Loader, 8-23 

Least squares, 6-9 
Leaving the monitor 

KJOB monito~ command, 2-17, 
3-32, 3-33 

LEGAL subrQutine" 5-92, 
LENGTH command, 3-65 

Index-6 

LET command, AID, 4-19, 4.;,.6()i-'I~:;~Hr 
LET command; ,-Basic:,"'3.-10,- 3 .. -16, '3-71 
L1B40, 5...i.S3' ," i--":'~'-~ ')';":: 

LINE ~ommand,' ;4-~}·-'4-<'82 ~;.,',:: 
Line continuation fie Id, 5-15"'~ ·,i·' , 
Line format, 5- 15 ' '. ' 
Line numbers, Basic, 3-10, 3-12~ 3~31 
Line spacing, 5-48 
LINED 

a uxi I iary commands, 8-62 
command level, 8-60 
commands, 8-59 
conventions and restrictions, 8-62 
error, 8-63 
examples, 8-61, 6-62 
implementation, 8-64 
monitor commands, 8-59 
text mode, 8-60 

LINT. routine, 5-84 
LI ST, Basic command, 3-65 
LIST, monitor command, 7-9 
Lists, Basic, 3-25 
Literal constants, FORTRAN, 5-21 
LOAD, monitor command, 2-14 
Loading CHAIN, 8-49 
Load ing programs 

DEBUG, monitor command, 2-14 
EXECUTE, monitor command, 2-14 
LOAD, monitor command, 2-14 

Locations 
defined, 5-111 
required, 5-111 

LOG, Basic function, 3-14, 3-73 
LOGICAL, type declaration state-

ment, 5-68, 5-79 
Logical constants, 5-21 . 
Logical device names, 7~3 
Logical expressions; 5-26 
Logical fields, 5-43 
Logical I F statement, 5-33, 5-77 
Logical operators, 5-27, 5-28 
LOGIN, monitor command, 2-4 
Login procedure, 2-4 
Loops, 3-21 

nested, 3-23 
LOUT. routine, 5-84 

$ MAC card, 8-21 
MACRO main programs, 5-103 
MACRO subprograms, 5-95 

example, 6-26 . 
MAGDEN subroutine,- 5-92 
Magneti c tape usage, 5-130 



Magnitude 
of double precision constants, 5-20 
of integer constants, 5-19 
of real constants, 5-19 

Main memory, 1-5 
MAKE,monitor command, 2-7, 8-70 
Manipulating core images 

GET , monitor command, 7-12 
R, monitor command, 7-12 
RUN, monitor command, 7-11 
SAVE, monitor command, 7-11' 

Manipulating files 
DELETE, monitor command, 2-12 
DIRECTORY, monitor command, 2-11 
RENAME, mon itor corrimand, 2-12 
TYPE, monitor command,· 2-11 

Manipulating Teletype assignment 
ATIACH, monitor command, 7-8 
DETACH, monitor command, 7-8 
TALK, monitor command, 7-8 

Master File Directory, 1-10 
Mathematical operators, 

absolute value, 4-10, 4-23 
addition, 4-10, 4-23 
brackets, 4-10, 4-23 
division, 4-10, 4-23 
exponentiation, 4-10, 4-23 
multiplication, 4-10, 4-23 
parentheses, 4-10, 4-23 
subtraction, 4-10, 4-23 

Matrices, 3-51 
Memory blocks, 1-6 
Memory protection and relocation, 

Batch, 8-9 
Memory protection register, 1-5 
MFD,I-10 
Mixed fields, 5-45 
Modem, 1-8 
Modularity, 1-12 
Monitor, 1-5 
Monitor calls, 1-) 0 
Monitor mode, 1-9 
Monitor overhead, 1-7 
MTOP. UUO, 5-85 
Multiple record formats, 5-46 

termination of, 5-47 
Multiplication, 4-10, 4-23 
Multiprocessor configurations, 1-14 
"Multiprogramming, 1-5 

N, TECO command, 8-85 
NAMELI ST statement, 5-39, 5-49, 5-79 

input data, 5-50 
output data, 5-51 

Index-7 

Natural logarithm functions, 3-14, 3-73 
. n-dimensional arrays, simulation of, 3-57 

NEW Basic command, 3-29, 3-65 . 
NEXT Basic command, 3-22, 3-23, 3-71 
NLI. UUO, 5-85 
NLO. UUO, 5-86 
NMLST. routine, 5-85 
Nonexecutable statements 
" FORMA T statement, 5-39 

NAME LI ST statement, 5-49 
Normal exit of a DO stat~ment, 5-34 
NUM Basic function, 3-54, 3-74 
Numbers, Basic, 3-15 
Numeric expressions, 5-24 
Numeric fields, 5-40 

repetition of, 5-46 
repetition of groups, 5-46 

Numeric IF statement, 5-33, 5-77 
Numeric operations, 5-26 
Nu"meric operators, 5-24 

o format, 5-40-5-44 
OBUFF call, 5-90 
Octal constants, 5-20 
OCTI. routine, 5-85 
OCTO. routine, 5-85 
OFILE subroutine, 5-92 
OLD Basic command, 3-29, 3-65 
ON-GO TO, Basic, 3-19, 3-72 
On-I ine, 1-9 
Open subroutines, 5-71 
Operating system, 1-5 
Operating system diagnostics, 

FORTRAN, 5-120 
Operators 

logical, 5-27 
numeric, 5-24 
priorities of, .5-28 
re laHonal, 5-27 

Order of precedence, 4-10, 4-23 
our . UUO, 5-85· 
OUTF. UUO, 5-85 
Output commands, TECO, 8-82 
Output file, TECO, 8-69 
Overlapped 1/0,1-10 
Overlay, 1-8 

P LINED command, 8-61 
P n:::o command, 8-82 
PAGE command, 4-63, 4-82 
Page, TECO, 8-69 
Parentheses, 4-10, 4-23 



" ~ ,.:" . . •. J, 
APb'&7("J4.ii'l5;j,~7&~ ,'>t:P ~ j '~f' '(,,>1'1<, ,,2 

$ PAUSE 'card~ Batch ,cantroJ card, ,,8-27 
PAUSE statement, ,F0RT-AAN.; _5 .. 36, :5 .. 77 
PDUMP subroutine, 5:-92,« ',' , < 

Peripheral deviees, ;,,7 .. 3 ' 
Perman'ent device assignment 

ASSIGN monitor command, 7-4 
Permanent resident area (CHAIN), 8-47 
Physical device names, 7-3 
P JOB mon itor command, 2-16 , 
Precision 

of double-precision constants, 5-20 
of real constants, 5-19 

PRIN T statement, Basic, 3-11, 3-17, 
3-45, 3-71 

PRINT statement, FORTRAN, 5-53, 5-77 
Printable characters, 3-62 
Priorities of operators, 5-28 
Priority interrupt system, 1-5 
Private device, 1-10 
Program names, 3-30 
Programmed operators, 1-10 
Programming phases, 2-3 
Propositions, 4-20, 4-31 
PseudQ-Teletype (PTY), 8-9 
Public device, 1-10 
PUNCH statement, 5-54, 5-78 
Pure code, 1-7 
PW, nco command, 8-~2 

Queue, 1-6 
QUIT command, 4-64, 4-82 

R command, TECO, 8-77 
R monitor command, 7-12 

RAID, 4-9 
R LIN ED, 8-62 

Random access of records 
READ, 5-57, 5-78 
WRITE, 5-55, 5-78 

Random number generator, example, 6-36 
Randon numbers, 3-38, 3-73 
RANDOMIZE statement, 3':'39, 3-73 
Range of a DO statement', 5-34 
READ statement, Basic, 3-10, 3-11, 

3-16, 3-71 
READ statement, FORTRAN, 5-56, 5-78 
Real constants, 5-19 
REAL, type declaration statement, 

5-68, 5-79 
REASSIGN, monitor command, 7-7 

Index-8 

RECALL ;Gbmmaitd, 4-65; 4-82,,'4 .. ~. 
Record, it -.\'0 ' 
REENTER;' ,monitor comman.d, 4,..10"',7-15 
Re-entrarit software,! l":(,,,., "> ; <; , 

, Relational opefators,7-27 ", 
Relational symbols, 3-15' 
RHEAS subroutine, 5-92 
Reliability, 1-3.1.. ' 
Relocatable b'inary program, 2-3, 2-13 
REM statement, 3-49, 3-72 
Remembered arguments, 2-10 
Removable resident area (CHAIN), 8-48 
Removable storage device, 1::-11 
RENAME, Basic command; 3-65 
RENAME, monitor command, 2-12 
Repetition 

of field specifications, 5-46 
of groups, 5-46 

REPLACE command, 3-65 
Replacement operator, 5-29 
Requesting line printer output 

CREF, monitor command, 7-10 
DIRECTORY, monitor command, 7-10 
LIST, monitor command, 7-? 

Required locations, 5-111 
REREAD statement, 5-57, 5-78 
RERED. UUO, 5-85 
RESEOUENCE command, 3-66 
RESET TIMER command, 4-66, 4-82 
RESET. UUO, 5-85 
RESOURCES, monitor command, 7-13 
RESTORE command, 3-49, 3-61, 3-72 

data file, 3-69, 3-73 
RETURN key, 2-19 
RETURN statement, Basic, 3-41, 3-72 
RETURN statement, FORTRAN, 5-75,5-77 
REWIND statement, 5-59, 5-78 
RND function, 3-38, 3-72 
Round robin operation, H 
RTB. UUO, 5-85 
RUBOUT key, 2-19, 3-30, 3-35 
Rules of form, AID, 4-11 
RUN, Basic command, 3-13, 3-31, 3-65 
$ RUN card, Batch control card, 8-25 
RUN, mon itor command; 7-11 
RUNNH command, 3-31, 3-65 

S, LINED command, 8-62,,' 
S, TECO command, 8 .. $4 ',', 
$SAVE card, Batch control card, 8,..24, 
SAVE, monitor command, 3-3&'i3~,7-11 
SAVRAN subroutine, 5.,.92 
Scalar variables, 5-22 



Scale factor, 5-19, 5-20, 5-42 
SCHEDULE, monitor command, 7-15' 
Scheduling algorithm, 1-6 
SCRATCH command, 3-66 

data fi Ie; 3 -68, 3:"73 
Search commands, TECO, 8-84 
Secondary memory, t-S 
Segment read-in area (CHAIN), 8-48 
SET command, 4-17, 4-67, 4-82 
SETRAN subroutine, 5-92 
SON function, 3-40, 3-74 
Shared system dev ice, 8-11 
Sign function, 3-~, 3-74 
SIN function, 3-14, 3-73 
Sine, 3-14, 3-73 
SIZE argument, 4-78 
~KIP RECORD statement, 5-59,5-78 
SLIST. UUO, 5-85 
SLITE subroutine, 5-93 
Slow peripherals, 1-11 
Source progr'am definition, 2-3 
Spacing, 5-48 
Specification statements, 5-61, 5-78 

data specification, 5-66 
storage specification, 5-62 
type declaration, 5-68 

Spooling, 1-12 
SOR function, 3-14, 3-73 
$ SSAVE card, Batch control card, 8-24 
SSAV E, monitor command, 7-15 
SSWTCH subroutine, 5-93 
Standard processor, 2-13 
$ START card, Batch contro I card, 8-26 
START, monitor command) 7-12 
Starting a core image program 

CONTINUE, monitor command, 7-13 
HALT, monitor command, 7-13 
START, monitor command, 7-12 

Statement field, 5-16 
Statement number field, 5-15 
Statement numbers, S-15 
Statements, 3-10 
ST EP instruction, 3-22, 3-24 
Steps, 4-15, 4-79 
STOP command, AID, 4-68, 4-82 
STOP command, Basic, 3-49, 3-72 
STOP statement, FORTRAN, 5-37, 5-77 
Storage specification statements, 5-62 

COMMON, 5-64 
DIMENSION, 5-62 
EQUIVALENCE, 5-65 

Stored formats,· 5-47 
Strings, Basic, 3"'59 
SubproQram calling seqlJenceS, 5-95 

Index-9 

Subprogram linkage, exampie ,'5 .... 96, 5-104 
SUBROU·TlNE statement, 5-74 
Subroutine subprograms, 5-74 

CALL statement,· 5-75 
RETURN statement, 5-75 
SUBROUTINE Statement, 5-(4 

Subroutines, 3-41 
nested, 3-42 

SU BSCRI PT INTEGER, type 
declaration statement, 5-68, 5-79 

Subscripts, 3-25, 3-28 
Subtraction, 4-10, 4-23 
Swapping, 1-5 
Symbiont operation, 1-12 
Symbolic logic, 5-26 
SYS, 8-11, 8-12 
SYSTAT, monitor command, 7-13 

example, 7-14 
SYSTEM command, 3-66 
System device, 8-11, 8-12 

T format, 5-48 
T, TEeO command, 8-Z8 
Tab, horizontal, 3-47, 5-15 
Tables, Basic, 3-25 
TALK, monitor command, '7-8 
#TAPE, Batch control card, 8-21 
TAN function, 3-14, 3-73 ' 
TECO command arguments, 8-74 
TECO command string syntax, 8-72 
T ECO error me.ssage s, 8-87, 8-88 
TECO general operating procedure, 8-69 
TECO initialization, 8-70 
TECO, mon itor command, 2- 10, 8-70 
TECO special symbols, 8-71 
TECO text type-out, 8-78 
Te letype conso les, 4-12 
Teletype control characters, 2-18 
Teletype special keys 

ALTMODE key, 2-20 
RETURN key, 2-19 
RUBOUT key, 2-19 

Temporary device assignment, 7-4 
Termination of a program, 5-37 
TIME, AID command, 4-79 
TIME, monitor command, 2-16 
Time quantum, 1-4 
Time slice, 1-4 
TIME subroutine, 5-93 
TIMER argument, 4-79 
Timesharing, 1-4 
TO command, 4-69, 4-82 



Translating programs _ 
COMPILE, mon itor command, '2-13 

Trappir)g" ,1 ... 9 ~ .:,.:. 
TYPE, AID command, 4-71, 4-83· 
Type de~laration statements, 5-68 
TYPE,!TIonitor command, 2-11 
TYPE statement, FORTRAN, 5-54, 5-78 

UFO, 1-10 
Unconditional GO TO statement, 5-31, 

5-77 
Un it records, 5-40 
UN LOAD statement, 5-59, 5-78 
USE command, 4-75, 4-83, 4-84 
User control levels, Batch 

console commands, 8-13 
control cards, 8-13 

User-defined functions, 4-~0, 4-29 
User directories, 2-11 
User mode, 1-9 
User's Fi Ie Directory, 1-10 

Variable field width, 5-43 
Variables, AID, 4-10, 4-17, 4-79 
Variables, Basic 

alphanumeric string, 3-59 
numeric, 3-15 
subscripted, 3-25 

Variables, FORTRAN 
array, 5-22 
scalar, 5-22 

Vectors, 3-51 
Verbs, AID 

cance I, 4-37, 4-80 
de lete, 4-39, 4-80 
demand, 4-18, 4-41, 4-80 
discard, 4-45, 4-8Q, 4-84 
do, 4-18, 4-34, 4-46, 4-80 
done, 4-51, 4-80 
file, 4-53, 4-81, 4-84 
form, 4-54, 4-81 
go, 4-57, 4-81 
if clause, 4-59, 4-81 
let, 4-19, 4:"60, 4-81 
line; 4-62,4-82 
page, 4063, 4-82 
qu it, 4-64, 4-82 
recall, 4-65, 4-82, 4-84 
reset timer, 4-66, 4-82 
set, 4-17,4-67, 4-82 

Index-10 

stop, 4-68, 4-82 
to, 4-69, 4-82 
type', .1~,1}!jA-8fl" ,', 
use, 4-75, 4-83, 4-84 

WEAVE, 3-66 
Wor:d format, PD P-1 0., 5-126 
WRITE statement, Basic, 3-:-68, 3-73 
WRITE statement , FORTRAN, 5-54" 5-78 
WTB. UUO, 5-85 . 

X format, 5 -49 

Y, TECO command I 8-75 



DIGITAL EQUIPMENT CORPORATION WORLD-WIDE SALES AND SERVICE 
MAIN OFFICE AND PLANT 

146 MaIO Street, Maynard, Massachusetts, USA. 01754 • Telephone From Metropolitan Boston 646-8600' Elsewhere' (617)-897-51J1 • TWX. 710-347-{)212 Cable' DIGITAL MAYN Telex 94-8457 

NORTHEAST 
REG/OhiAL OFFICE' 
15 Lunda Street, W.lth.m, M.ss.chusetta 02154 
Telephone' (617)-891-1006 TWX.710-324-0919 

WALTHAM 
15 Lund. Street, Walth.m, M •••• chu.etts 02154 
Telephone (617)-891-6310/6315 TWX. 710-324-0919 

CAMBRIDGE/BOSTON 
899 Ma," Street, Cambridge, Massachu.ett.02139 
Telephone: (617)-491-6130 TWX: 710-320-1167 

ROCHESTER 
130 Aliens Creek Road, Roche.ter, New York 14618 
Telephone (716)-461-1700 TWX 710-599-3211 

CONNECTICUT 
1 Prestige Drive, Meriden, Connecticut 06450 
Telephone: (203)-237-8441 TWX: 710-461-{)Q54 

MID·ATLANTIC-SOUTHEAST 
REGIONAL OFFICE: 
U.S. Route I, Princeton, New Jer.ey 08540 
Telephone (609)-452-9150 TWX. 510-685-2338 
NEW YORK 
95 Cedar Lane, Englewood, New Jersey 07631 
Telephone. (201)-871-4984, (212)-584-5955, (212)-736-0447 
TWX· 710-991-9721 

NEW JERSEY 
1259 Route 48, Parsippany, New Jersey 07054 
Telephone: (201)-33S.3300 TWX: 71D-987-8319 

PRINCETON 
Route One and Emmons Drive, 
Prmceton. Np,w Jersey 08540 
Telephone: (609)-452-2940 TWX: 510-685-2337 

LONG ISLAND 
1919 Middle Country Road 
Centere.ch, L I., New York 11720 
Telephone: (516)-585-5410 TWX: 510-228-6505 

PHILADELPHIA 
1100 We.t Valley Roed, W.yne, Pennsylvanl. 19087 
Telephone (215)-687-1405 TWX: 510-668-4461 

WASHINGTON 
Executive Bulldlng-
7100 B.ltlmore Ave., College Park, Meryland 20740 
Telephone: (301)-779-1100 TWX: 710-826-9662 

CANADA 
D,glt.1 Equipment of Cenada, Ltd. 
CANADIAN HEADQUARTERS 
150 Ros.mond Street, C.rleton Place, Ont.rlo 
Telephone: (613)-257-2615 TWX: 610-581-1651 

OTTAWA . 
120 Holland Street, Ott.w.3, Ontario 
Telephone: (613)-725-2193 TWX 610-582-8907 

TORONTO 
230 Lakeshore Road East, Port Credit, OntariO 
Telephone: (416)-278-6111 TWX: 610-492-4306 

MONTREAL 
9675 Cote de Llesse Ro.d 
Dorv.I, Quebec, Canada 760 
Telephone 514-636-9393 TWX· 610-422-4124 

EDMONTON 
5531-103 Street 
Edmonton. Alberta. Canada 
Telephone: (403)-434-9333 TWX. 610-831-2248 

EUROPEAN HEADQUARTERS 
Digital EqUipment Corporation International-Europe 
81 Route De L' Alre 
1227 Carouge / Geneva. Switzerland 
Telephone: 42 79 50 Telex. 22 683 

GERMANY 
Dlglt.' Equipment GmbH 
COLOGNE 
5 Koeln, Blsmarckstrasse 7, West Germany 
Telephone 52 21 81.. Telex 668-2289 
Telegram: Flip Chip Koeln 

MUNICH 
8000 Muenchen 19. Leonrodstrasse 58 
Telephone 516 30 54 Telex 524226 

UNITED STATES 
MID·ATLANTIC-SOUTHEAST (cont,) 
DURHAM/CHAPEL HILL 
2704 Chapel Hill Boulev.rd 
Durham, North Carol me 27707 
Telephone (919)-489-3347 TWX 510-927-0912 
HUNTSVILLE 
Suite 41 - Holiday Office Center 
3322 Memorial Parkway S W , Huntsville, Ala, 35801 
Telephone (205)-881-7730 TWX: 810-726-2122 
ORLANDO 
SUite 232, 8990 Lake Ellenor Drive, Orlando, Flo 32809 
Telephone (305)-651-4450 TWX 810-856-{)180 
ATLANTA 
Suite 116, 1700 Commerce Drive, N.W .. 
Atlanta, Georgia 30318 
Telephone: (404)-351-2822 TWX: 810-751-3251 
KNOXVILLE 
5731 Lyons View Pike, S W , Knoxville, Tenn. 37919 
Telephone. (615)-588-6571 TWX· 810-583-{)\23 

CENTRAL 
REGIONAL OFFICE. 
1850 Frontage Road, Northbrook, illinOIS 60062 
Telephone (312)-498-2580 TWX 9\0-666-0655 
PITTSBURGH 
400 Penn Center Boulevard, 
Pittsburgh, Pennsylvania 15235 
Telephone' (412)-243-6500 TWX· 710-797-3657 
CHICAGO 
1850 Frontage Road, Northbrook, illinois 60062 
Telephone (312)-498-2500 TWX 910-686-0655 
ANN ARBOR 
230 Huron View Boulevard. Ann Arbor. Michigan 48103 
Telephone (313)-761-1150 TWX 8\0-223-8053 
INDIANAPOLIS 
21 Beachway Drive - SUite G 
IndianapoliS, Indiana 48224 
Telephone (317)-243-8341 TWX 810-341-3436 
MINNEAPOLIS 
15016 Mlnnetonk. Industrial Ro.d 
Minnetonka, Minnesota 55343 
Telephone: (612)-935-1744 TWX: 910-576-2818 
CLEVELAND 
Park HIli Bldg, 35104 Euclid Ave. 
Willoughby, Ohio 44094 
Telephone: (216)-946-6484 TWX: 810-427-2808 

INTERNATIONAL 
ENGLAND 
Digital Equipment Co_ Ltd, 
READING 
ArkWright Road, Reading, Berkshire, England 
Telephone: Reading 65131 Telex. 84327 
MANCHESTER 
6 Upper Precinct. Worsley 
Manchester, England m285az 
Te,lephone.06I-790-4591/2 Telex: 666666 

LONDON 
Bilton House. Uxbridge Road. Ealing. London W 5 
Telephone. 01-579-2781 Telex 22371 

FRANCE 
EqUipement Digital SA R.L. 
PARIS 
233 Rue de Charenton, P.rls 12, Fr.nce 
Telephone 344-76-07 Telex 21339 

BENELUX 
Digital EqUipment N.V_ 
(serv,"g Belgium, Luxembourg, and The Netherlands) 
THE HAGUE 
Konlng,"negracht 65, The Hague, Netherlands 
Telephone: 835960 Telex: 32533 

SWEDEN 
Digital Equipment Aktlebolag 
STOCKHOLM 
Vretenvagen 2. 8-171 54 Solna. Sweden 
Telephone 08 98 13 90 Telex 17050 
Cable' Digital Stockholm 

SWITZERLAND 
Digital EqUipment Corporation S A. 
GENEVA 
81 Route De L'Aire 
1227 Carouge / Geneva, Switzerland 
Telephone. 42 79 50 Telex: 22 663 

-,," 

CENTRAL (cont,) 
ST. LOUIS 
Suite 110,115 Progress Pky .. Maryland Heights, 
MISSOUri 63043 
Telephone: (314)-872-7520 TWX: 910-764-0831 

DAYTON 
3101 Ketter,"g Blvd., Dayton, Ohio 45439 
Telephone: (513)-299-7377 TWX: 810-459-1676 

DALLAS 
8855 North Stemmons Freeway. SUite 204 
Dallas. Texas 75247 
Telephone (214)-636-4860 TWX· 910-661-4000 

HOUSTON 
3417 Milam Street, Suite A, Houston, Texas 77002 
Telephone: (713)-524-2961 TWX: 910-881-1651 

WEST 
REGIONAL OFFICE· 
580 San Antonio Road, Palo Alto, California 84308 
Telephone: (415)-328-0400 TWX: 910-373-1286 
ANAHEIM 
801 E. Ball Road, Anaheim, California 92805 
Telephone: (714)-776-6932 or (213)-625-7669 
TWX: 910-591-1188 
WEST LOS ANGELES 
2002 Cotner Avenue. Los Angeles. California 90025 
Telephone. (213)-479-3791 TWX 910-342-6999 
SAN FRANCISCO 
sao San AntoniO Road. Palo Alto. California 94306 
Telephone: (415)-328-5840 TWX: .910-373-1266 
ALBUQUERQUE 
8303 Indian School Road, N.E, 
Albuquerque, N M. 87110 
Telephone: (505)-296-5411 TWX· 910-989-0614 
DENVER 
2305 South Colorado Blvd., Suite #5 
Denver, Colorado 60222 
Telephone· 303-757-3332 TWX, 910-931-2650 
SEATTLE 
1521 l30th N.E , Bellevue, W.shlngton 96004 
Telephone (208)-454-4058 TWX 910-443-2306 
SALT LAKE CITY . 
431 South 3rd East, Salt Lake City, Utah 84111 
Telephone. (801)-328-9838 TWX 910-925-5834 

ITALY 
Digital EqUipment SpA 
MILAN 
Corso Garibaldi, 49, 20121 Milano, Italy 
Telephone 872 746, 672694,872 394 Telex 33615 

AUSTRALIA 
Digital Equipment Austr.lia Ply. Ltd_ 
SYDNEY 
75 Alexander Slreet, Crows Nest, N.S.W. 2065. Austrelia 
Telephone 439-2566 Telex 20740 
Cable: Digital, Sydney 

MELBOURNE 
.J!! Park Street, South Melbourna, Victoria, 3205 
-'1 elephone 69-6142 Telex 30700 

WESTERN AUSTRALIA 
643 Murray Street 
West Perth. Western Australia 6005 
Telephone 21-4993 Telex 92140 

BRISBANI! 
139 Merlvale Street, South Brisbane 
Queensland. Australia 4101 
Telephone 44047 Telex 40616 

JAPAN 
TOKYO 
Rlkel Tredlng Co., Ltd (s.le8 only) 
Kozato-Kalkan Bldg, 
No, 18-14, Nlshlshlmbashl l-chome 
Mlnato-Ku,Tokyo, Japan 
Telephone: 5915248 Telex: 7814206 

Digital Equipment Corporation International 
(engineering and services) 
Fukuyoshlcho Bulld,"g, No 2-6, Roppongl 2-Chome, 
Mmato-Ku, Tokyo 
Telephone 565-3624 Telex No. 0242-2850 



• 



FOLD 

FOLD 

TO THE READER OF THE PDP-lO TIMESHARING HANDBOOK 

We at Digital want to improve the quality and 
usefulness of our publications. However, we can­
not achieve this goal by ourselves. We need your 
collaboration: your corrections, your observations, 

your critical evaluations. Will you please provide 
us with such constructive information by filling out 
this questionnaire and mailing it hack to us? 

1. (a) Is the handbook a useful document? ................................... DYES D NO 
(b) If you answer is YES, tell us what features make it useful. 

(c) If your answer is NO, tell us what features prevent it from being a useful document. 

2. (a) Is the text clear and readily understandable? ............................. DYES D NO 
(b) If your answer is NO, cite the paragraphs, chapters, or sections that are unclear or difficult to 

understand. 

3. (a) Are you pleased with the organization of the handbook? ................ DYES D NO 
(b) Should the organization be changed? ................................... DYES D NO 
( c ) What changes do you suggest? 

4. (a) Should the organization of individual chapters or books be changed? ...... DYES D NO 
(b) If your answer is YES, give us your suggestions. 

5. (a) Should more demonstration programs be added when the handbook is revised? DYES D NO 



- FOLD 

• FOLD 

(b) What kind of programs would you like to see added? 

6. (a) Should more utility programs be added when the handbook is revised? ..... 0 YES 0 NO 
(b) Give us your suggestions. 

7. (a) Should anything be deleted from the handbook when it is revised? ......... 0 YES 0 NO 
(b) If your answer is YES, give us your suggestions. 

8. List any further suggestions you have for the improvement of this handbook. 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY 
IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

PDP·10 Software WrltiRg Groap 
ProgrammiRg Depaflmellt 

Digital EflUipment CorpentioR 
Maynard, Massachasetts 01754 

STAPLE 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 



SAMPLE 
LOGIN PROCEDURE 

Make contact with your computer facility by what-
ever means the facility has estabilshed (e.g., acous-
tic coupler, telephone, or data phone). 

+ 
Tum the little plastic knob on the right-hand side 
of the Teletype to ON. 

+ 
Type C on the Teletype (i.e., hold down the 
CTRL key while striking C). This establishes com-
munication with the Time-Sharing Monitor. The 
Monitor signifies its readiness to accept commands 
by responding with a period (.). 

+ 
Type LOGIN, or LOG, followed by a carriage re-
turn. The system will respond with an informative 
message like the following: 

JOBn NAME OF SYSTEM 

# 
JOB n is the job number the system has just as-
signed to you. NAME OF SYSTEM is usually the 
Monitor name and version number. 

~ 
Type your project-programmer numbers after the 
number sign, followed by a carriage return. 

+ 
The time-sharing system will then type 

PASSWORD: 

+ 
Type your secret password followed by a carriage 
return. The system will keep the password secret 
by not printing it on the paper. 

+ 
If the project-programmer numbers and the pass-
word match the project-programmer numbers and 
password stored in the system accounting file, the 
system responds with the time, date, TTY number, 

C, and a period. 
Example: 

1301 8-May 70 TTY23 

+ 
Now the time-shraing system is ready to accept any 
commands you wish to type in. You may direct it 
to load and start a program from the System Li-
brary (.R prog), start a program already loaded in 
core (.START), or perform any of a variety of 
other operations. (See inside of back cover for a 
summary of Time-Sharing Monitor commands.) 



102X • ~470 • AKW 
0·09·50 

1, COllSole Teletype 
2, Central Processor 
3, ·16K, 1.0 ~sec Memory 
4, 16K, 1.0 ~sec Memory 
-5. 16K, 1,0 ~sec Memory 
6. Data Channel 
7, Swapping Disk Control 
8, Swapping Disk 
9, Disk Pack Unit* 

10, Disk Pack Unit·" 
11, Line Printer 
12, Card Reader 
13, Magnetic Tape Transport 
14. Magnetic Tape Transport 
15, Magnetic Tape Control 
16. Communications System 
17, Line Printer/ Card Reader Control 
18. DECtape Control and 3 DECtape Units 

PRINTED IN U,S.A. 


