
•

•

Digital Equipment Corporation
Maynard, Massachusetts

PDP-10
Programmer's Reference Manual

mnmnomo

DEC-T9-MTZD-D

PDP-10
TIMESHARING MONITORS
PROGRAMMER'S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Original Printing April 1967
Reprinted July 19 67
Revised November 1967
Reprinted March 1968
Revised May 19 68
Revised October 1968
Revised September 1969
Revised March 1970
Revised September 1970
Revised October 1970

Copyright© 1967, 1968, 1969, 1970 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1. 1 General 1-1

1.2 Monitor Functions 1-1

1.2. 1 Reentrant User Programming 1-2

1.3 User Facilities 1-3

1.4 Segments 1-5

1.5 File Structures 1-6

1.5. 1 File Directories 1-6

1.5.2 Quotas 1-7

1.5.3 Files 1-7

1.5.3.1 Comparison of Files and Segments 1-8

CHAPTER 2 MONITOR COMMANDS

2.1 Console and Job Control 2-1

2. 1. 1 Monitor and User Mode 2-1

2.2 Command Interpreter and Command Format 2-2

2.2. 1 Command Names 2-3

2.2.2 Arguments 2-3

2.2.3 Log-In Check {Disk Monitor Systems) 2-3

2.2.4 Job Number Check {Nondisk Monitor Systems) 2-3

2.2.5 Core Storage Check 2-4

2.2.6 Delayed Command Execution 2-4

2.2.7 Completion-of-Command Signe I 2-4

2.3 Job Initialization Commands 2-4

LOGIN (LOG) 2-5

INITIAL (I NI) 2-7

2.4 Facility Allocation Commands 2-7

ASSIGN (AS) 2-8

DEASSIGN (DEA) 2-11

REASSIGN (REA) 2-12

MOUNT (MOU) 2-13

DISMOUNT (DIS) 2-16

FINISH (FIN) 2-17

Revision 2 Monitors iii March 1971

CONTENTS (Cont)

Page

CLOSE (CLO) 2-18 .

SET CDR 2-18a

SET SPOOL 2-18b

SEND (SEN) 2-18c

PLEASE (PL) 2-19

CORE (COR) 2-21

R GRIPE 2-22

RESOURCES (RES) 2-23

2.5 Source File Preparation Commands 2-24

CREATE (CREA) 2-25

EDIT (ED) ·2-26

MAKE (MA) 2-27

TECO (TE) 2-28

2.6 File Manipulation Commands 2-29

TYPE (TY) 2-30

LIST (LI) 2-31

R PRINT 2-32

DIRECT (DIR) 2-33

R LOOKFL 2-34

R DMPFIL 2-35

FILE (FIL) 2-37

R FILEX 2-39

R SETSRC 2-41

R ALCFIL 2-42

DELETE (DEL) 2-44

RENAME (REN) 2-45

CREF (CREF) 2-46

2.7 Compilation Commands 2-47

COMPILE (COM) 2-47

LOAD (LOA) 2-48

EXECUTE (EX) 2-49

DEBUG (DEB) 2..;50

2.7. 1 Extended Command Forms 2-51

2.7.1.1 Indirect Commands (@ Construction) 2-51

Revision 2 Monitors iv March 1971

co·~TENTS (Cont)

Page

2.7. 1.2 The + Construction 2~52

2.7. 1.3 The = Construction 2-53

2.7.1.4 The < > Construction 2...;53

2.7.2 Compile Switches 2-54

2.7.2. 1 Compi lotion Listings 2-54

2.7.2.2 Standard Processor 2-55

2.7.2.3 Forced Compi lotion 2-56

2.7.2.4 Library Searches 2-57

2.7.2.5 Loader Maps 2-57

2.7.3 Processor Switches 2-57

2.7.4 Loader Switches 2-58

2.7.5 Temporary Files 2-59

2.7.5.1 001SVC. TMP 2-59

2.7.5.2 001EDS.TMP 2-59

2.7.5.3 001MAC. TMP 2-59

2.7.5.4 001FOR.TMP 2-59

2.7.5.5 001COB. TMP · 2-60

2.7.5.6 001PIP. TMP 2-60

2.7.5e7 001CRE. TMP 2-60

2.7.5.8 001EDT. TMP 2-60

2.7.5.9 001LOA. TMP 2-60

2.8 Run Control Commands 2-60

RUN (RU) 2-61

R (R) 2-63

GET (G) 2-64

START (ST) 2-66

HALT (tC) 2-67

CONT (CON) 2-68

I JC ONT 2-68a

DDT (DD) 2-69

REENTER (REE) 2-70

E (E) 2-71

D (D) 2-72

. SAVE (SA) 2-73

Revision 2 Monitors v March 1971

CONTENTS (Cont)

Page

SSAVE (SSA) 2-74

2.8. l Additional Information on SAVE and SSAVE 2-76

2.9 Detached Job Control Commands 2-78

PJOB (PJ) 2-78

CSTART {CS) 2-79
CCONT (CC)

DETACH (DET) 2-80

ATTACH (AT) 2-81

2. 10 Job Termination Commands 2-82

KJOB (K) 2-83

2. 11 System Timing and Usage Commands 2-86

DAYTIME (DA) 2-86

I SCH ED 2-87

TIME (TI) 2-88

R QUOLST 2-89

I SET WATCH 2-90

SYSTAT (SYS) 2-92

DSK (DS) 2-96

2. 12 Teletype Characteristics Command 2-96

I SET TTY 2-97

2. 13 System Administration Commands 2-98

I SET DAYTIME 2-99

SET SCHEDULE 2-99

ASSIGN SYS: 2-100

DETACH (DET) 2-101

ATTACH (AT) 2-102

CT EST 2-103

I
SET DATE 2-103

SET CORMAX 2-104

SET CORMIN 2-105

SET TIME 2-105

Revision 2 Monitors vi March 1971

CONTENTS (Cont)

CHAPTER 3 LOADING USER PROGRAMS

3. l Memory Protection and Relocation

3. 1. 1 Memory Parity Error Recovery

3.2 User's Core Storage

3. 2. 1 Job Dato Area

3.2.2 Loading Relocatable Binary Files

3.2.2.1 H Switch

3.2.2.2 HIS EG Pseudo-Op

3.2.2.3 Vestigial Job Data Area

3.2.2.4 Completion of Loading

CHAPTER 4 USER PROGRAMMING

4. 1

4. 1. 1

4. 1 .2

4. 1.3

4.2

4.2.1

4.2.2

4.2.2.1

4.2.2.2

4.2.2.3

4.2.3

4.2.4

4.3

4.3.1

4.3. 1. 1

4.3.2

4.3.2.1

4.3.2.2

4.3.2.3

4.3.2.4

4.3.3

Revision 2 Monitors

Processor Modes

User Mode

User I/O Mode

Executive Mode

Programmed Operators (UUOs)

Operation Codes 001-037 (User UUOs)

Operation Codes 040-077 and 000 (Monitor UUOs)

CALL ard CALLI

Suppression of Logical Device Names

Restriction on Monitor UUOs in Reentrant User Programs

Operation Codes 100-127 (Unimplemented Op Codes)

Illega I Operation Codes

Execution Control

Starting

SETDDT AC, or CALLI AC, 2

Stopping

Illegal Instructions (700-777, JRST 10, JRST 14)
and Unimplemented OP Codes (101-127)

HALT or JRST 4

EXIT AC, or CALLI AC, 12

CALL [SIXBIT/LOGOUT/J or CALLI 17

Trapping

vii

Page

3-1

3-2

3-3

3-4

3-7

3-8

3-10

3-10

3-11

4-1

4-1

4-1

4-2

4-2

4-2

4-3

4-5

4-12b

4-12b

4-13

4-13

4-13

4-13

4-13

4-14

4-14

4-14

4-14

4-15

4-15

March 1971

CONTENTS (Cont)

Page

4.3.3.1 APRENB AC, or CALLI AC, 16 4-15

4.3.3.2 Error Intercepting 4-16

4.3.3.3 Console-Initiated Traps 4-16a

4.3.4 Suspending 4-16a

4.3.4.1 CALL AC, [SIXBIT/SLEEP/J or CALLI AC, 31 4-16a

4.3.4.2 HIBER AC, or CALLI AC, 72 4-16b

4.3.4.3 WAKE AC, or CALLI AC, 73 4-16c

4.4 Core Control 4-17

4.4.1 CALL AC, [SIXBIT/CORE/J or CALLI, 11 4-17

4.4.2 SETUWP AC, or CALLI AC, 36 4-18

4.4.3 LOCK AC, or CALLI AC, 60 4-19

. 4.5 Segment Control 4-19

4.5. 1 RUN AC, or CALLI AC, 35 4-19

4.5.2 GETSEG AC, or CALLI AC, 40 4-22

4.5.3 REMAP AC, or CALLI AC, 37 4-23

4.5.4 Testing for Sharable High Segments 4-23

4.5.5 Modifying Shared Segments and Meddling 4-24

4.6 File Structure Control 4-25

4.6.1 STRUUO AC, or CALLI AC, 50 4-25

4.6. 1. 1 Function 0 .FSSRC 4-26

I 4.7 Program and Profile Identification 4-27

4.7. 1 CALL AC, [SIXBIT/LOGIN/J or CALLI AC, 15 4-27

4.7.2 CALL AC, [SIXBIT /SETNAM/J or CALLI AC, 43 4-27

4.7.3 SETUUO AC, or CALLI AC, 75 4-28

4.7.4 CHGPPN AC, or CALLI AC, 74 4-28

4.8 Inter-Program Communication 4-28a

4.8. 1 CALL AC, [SIXBIT/TMPCOR/J or CALLI AC, 44 4-28a

4.8. 1. 1 CODE = 0, Obtain Free Space 4-28a

4.8. 1.2 CODE= 1, Read Fi le 4-28a

4. 8. 1.3 CODE= 2, Read and Delete File 4-29

4.8.1.4 CODE= 3, Write File 4-29

4. 8. 1.5 CODE= 4, Read Directory 4-29

4. 8. 1.6 CODE = 5, Read and Clear Directory 4-29

4.9 Environmental Information 4-29

Revision 2 Monitors viii March 1971

CONTENTS (Cont)

Page

4. 9. 1 Timing Information 4-29

4.9.1.1 CALL AC, [SIXBIT/DATE/J or CALLI AC, 14 4-30

4.9.1.2 CALL AC, [SIXBIT/TIMER/J or CALLI AC, 22 4-30

4.9.1.3 CALL AC, [SIXBIT/MSTIME/J or CALLI AC, 23 4-30

4.9.2 Job Status Information 4-30

4.9.2.1 CALL AC, [SIXBIT/RUNTIM/J or CALLI AC, 27 4-30

4.9.2.2 CALL AC, [SIXBIT/PJOB/J or CALLI AC, 30 4-30

4.9.2.3 CALL AC, [SIXBIT/GETPPN/J or CALLI AC, 24 4-30

4.9.2.4 CALL AC, [SIXBIT/GETLIN/J or CALLI AC, 34 4-30

4.9.2.5 CALL AC, [SIXBIT/JOBSTR/J or CALLI AC, 47 4-31

4.9.2.6 GOBSTR AC, or CALLI AC, 66 4-31

I 4.9.2.7 OTHUSR AC, or CALLI AC, 77 4-32

4.9.3 Monitor Examination 4-32

4.9.3.1 PEEK AC, or CALLI AC, 33 4-32

I 4.9.3.2 SPY AC, or CALLI AC, 42 4-32a

4.9.3.3 GETTAB AC, or CALLI AC, 41 4-33

4.9.3.4 DEVSTS AC, or CALLI AC, 54 4-39

4.9.4 Configuration Information 4-39

4. 9 .4. 1 CALL AC, [SIXBIT/SWITCH/J or CALLI AC, 20 4-39

4.9.4.2 CALL AC, [SIXBIT/DEVCHR/J or CALLI AC, 4 4-39

4.9.4.3 CALL AC, [SIXBIT/DEVPPN/J or CALLI AC, 55 4-41

4.9.4.4 CALL AC, [SIXBIT/DSKCHR/J or CALLI AC, 45 4-42

4.9.4.5 DEVTYP AC, or CALLI AC, 53 4-44

4.9.4.6 DEVSIZ AC, or CALLI AC, 101 4-44a

4.9.4.7 SYSSTR AC, or CALLI AC, 44 4-44b

4.9.4.8 SYSPHY AC, or CALLI AC, 51 4-45

4. 10 I/O Programming 4-45

4. 10. 1 1/0 Organization 4-45

4. 10. 1. 1 Files 4-45

4. 10. 1.2 Job 1/0 Initialization 4-46

4. 10.2 Device Selection 4-46

4. 10.2. 1 Nondirectory Devices 4-46

4. 10.2.2 Directory Device 4-47

4. 10.2.3 Device Initia lizotion 4-47

Revision 2 Monitors ix March 1971

CONTENTS (Cont)

Page

4. 10.3 Ring Buffers 4-49

4. 10.3. 1 Buffer Structure 4-49

4. 10.3.2 Buffer Initialization 4-51

4. 10.4 File Selection (LOOKUP and ENTER) 4-52

4. 10.4. 1 The LOOKUP Operator 4-52

4. 10.4.2 The ENTER Operator 4-53

4. 10.4.3 RENAME Operator 4-54

4. 10 .5 Data Transmission 4-56

4. 10.5. 1 Unbuffered Data Modes 4-56

4. 10.5.2 Buffered Data Modes 4-57

4. 10.5.3 Synchronization of Buffered 1/0 (CALL D,

[SIXBIT/vV AIT]) 4-59

4.10.6 Status Checking and Setting 4-60

4.10.6.1 File Status Checking 4-60

4. 10.6.2 File Status Setting 4-60

4. 10.7 File Termination 4-61

4. 10.7. 1 CLOSED ,0 4-62

4. 10.7.2 CLOSE DI 1 (Bit 35 = 1) 4-62

4. 10.7.3 CLOSE D ,2 (Bit 34 = 1) 4-62

4. 10.7.4 CLOSE D ,4 (Bit 33 = 1) 4-63

4.10.7.5 CLOSE D; 10 (Bit 32 = l) 4-63

I
4. 10.7.6 CLOSE D ,20 (Bit 31 = l) 4-63

4. 10.7.7 CLOSE D ,40 (Bit 30 = 1) 4-63

4. 10. 8 Device Termination 4-63

4. 10.8. 1 RELEASE 4-63

4. 10.8.2 REASSIGN 4-64

4. 10. 9 Examples 4-64

4.10.9.1 File Reading 4-64

4.10.9.2 File Writing 4-64

4.10.10 Real-Time Programming 4-65

CHAPTER 5 NONDIRECTORY DEVICES

5. 1 Card Punch 5-2

5. 1. 1 Concepts 5-2

Revision 2 Monitors x Morch 1971

CONTENTS (Cont)

Page

5. 1.2 Data Modes 5-2

5.1.2.1 A (ASCII) 5-2

5. 1.2.2 AL (ASCII Line) 5-4

5. 1.2.3 I (Image) 5-4

5.1.2.4 18 (Image Bi nary) 5-4

5. 1.2.5 B (Binary) 5-4

5. 1.3 Special Programmed Operator Service 5-5

5. 1.4 File Status 5-5

5.2 Card Reader 5-5

5.2. 1 Concepts 5-6

5.2.2 Data Modes 5-6

5.2.2.1 A (ASCII) 5-6

5.2.2.2 AL (ASCII Line) '5-6

5.2.2.3 I (Image) 5-6

5.2.2.4 IB (Image Binary) 5-6

5.2.2.5 B (Binary) 5-6

I 5.2.2.6 SI {Super-Image) 5-7

5.2.3 Special Programmed Operator Service 5-7

5.2.4 File Status 5-7

I 5.3 Display with Light Pen 5-8

5.3.1 Data Modes 5-8

5.3.2 Background 5-8

5.3.3 Display UUOs 5-8

5.3.3.1 INPUT D, ADR 5-80

5.3.3.2 OUTPUT D, ADR 5-8a

5.3.4 File Status 5-10

5.4 Line Printer 5-11

5.4.1 Data Modes 5-11

5.4.1.1 A (ASCII) 5-11

5.4.1.2 AL (ASCII Line) 5-11

5 .4. 1.3 I {Image) 5-11

5.4.2 Special Programmed Operator Service 5-11

5.4.3 File Status 5-11

5.5 Magnetic Tape 5-12

5.5. 1 Data Modes 5-12

Revision 2 Monitor xi March 1971

CONTENTS (Cont)

Page

S.S. 1. 1 A (ASCII) 5-12

s .5. 1.2 AL (ASCII Line) 5-12

5 .5. 1.3 I (Image) 5-12

5 .5. 1.4 IB {Image Bi nary) 5-12

5 .5. 1.S DR (Dump Records) 5-12

s .5. 1.6 D (Dump) 5-12

5.5.2 Magnetic Tape Format S-13

5.5.3 Special Programmed Operator Service 5-13

5.5.3.1 Use of the MTAPE Operator 5-lS

5.5.4 9-Channel Magtape 5-16

5.5.4.1 Digital-Compatible Mode 5-16

5.5.4.2 Industry-Compatible Mode 5-17

5.5.4.3 Changing Modes 5-17

5.5.5 File Status 5-17

5.6 Paper-Tape Punch 5-19

5.6.1 Data Modes S-19

5.6.1.1 A (ASCII) 5-19

5.6.1.2 AL (ASCII Line) 5-19

5.6. 1.3 I (Image) 5-19

5.6.1.4 IB {Image Binary) 5-19

5.6.1.5 B (Binary) 5-19

5.6.2 Special Programmed Operator Service 5-19

5.6.3 File Status 5-19

5.7 Paper-Tape Reader S-20

5.7.1 Data Modes (Input Only) 5-20

5.7.1.1 A (ASCII) 5-20

5.7.1.2 AL (ASCII Line) 5-20

5.7. 1.3 I (Image) 5-20

5.7. 1.4 IB (Image Binary) 5-21

5. 7. 1.S B (Binary) 5-21

5.7.2 Specia I Programmed Operator Service 5-2l

5.7.3 File Status 5-21

5.8 Plotter S-22

5.8. 1 Data Modes 5-22

Revision 2 Monitors xii March 1971

CONTENTS {Cont)

Page

5.8.1.1 A (ASCII) 5-22

5.8.1.2 AL {ASCII Line) 5-22

5.8. 1.3 I (IMAGE) 5-22

5.8. 1.4 B (BINARY) 5-22

5 .8. 1.5 IB (IMAGE BINARY) 5-22

5.8.1.6 DR (DUMP RECORDS) 5-22

5.8. 1.7 D (DUMP) 5-23

5.8.2 Special Programmed Operator Service 5-23

5.8.3 File Status 5-23

5.9 Teletype 5-23

5.9.1 Data Modes 5-24

5.9.1.1 Full-Duplex Software A (ASCII) and AL (ASCII Line) 5-24

5.9.1.2 Half-Duplex Software A {ASCII) 5-26

5.9.1.3 Half-Duplex Software AL (ASCII Line) 5-27

5.9.1.4 I {Image) 5-27

5.9.2 DDT Submode 5-28

5.9.3 Special Programmed Operator Service 5-28

5.9.3.1 INCHRW ADR or TTCALL 0, ADR 5-29

5.9.3.2 OUTCHR ADR or TTCALL 1, ADR 5-30

5.9.3.3 INCHRS ADR or TTCALL 2, ADR 5-30

5.9.3.4 OUTSTR ADR or TTCALL 3, ADR 5-30

5.9.3.5 INCHWL ADR or TTCALL 4, ADR 5-30

5.9.3.6 INCHSL or TTCALL 5, ADR 5-30

5.9.3.7. GETLCH ADR or TTCALL 6, ADR 5-30

5.9.3.8 SETLCH ADR or TTCALL 7, ADR 5-31

5.9.3.9 RESCAN ADR or TTCALL 10 ,0 5-31

5.9.3.10 CLRBFI ADR or TTCALL 11,0 5-32

5.9.3.11 CLRBFO ADR or TTCALL 12,0 5-32

5.9.3.12 SKPINC ADR or TTCALL 13 ,0 5-32

5.9a3.J3 SKPINL ADR or TTCALL 14,0 5-32

5.9.3.14 IONEOU ADR or TTCALL 15,E 5-32

5.9.4 File Status 5-32

5.9.5 Paper-Tape Input from the Teletype {Full-Duplex Software) 5-33

5.9.6 Paper-Tape Output at the Teletype {Full-Duplex Software) 5-34

Revision 2 Monitors xiii March 1971

CONTENTS (Cont)

Page

5. 10 Pseudo-Teletype 5-34

5. 10. 1 Concepts 5-34

5. 10.2 The SLEEP UUO 5-35

5.10.3 File Status 5-36

5.10.4 Special Programmed Operator Service 5-36

5. 10.4. 1 OUT, OUTPUT UU Os 5-36

5. 10.4.2 IN, INPUT UUOs 5-37

5. 10.4.3 RELEASE UUO 5-37

5. 10.4.4 JOBSTS UUO 5-37

5. 10.4.5 CTLJOB UUO 5-38

CHAPTER 6 DIRECTORY DEVICES

6. 1 DECtape 6-2

6. 1. 1 Data Modes 6-2

6. 1. 1. 1 Buffered Data Modes 6-2

6. 1. 1.2 Unbuffered Data Modes 6-2

6.1.2 DECtape Format 6-3

6. 1.3 DECtape Directory Format 6-3

6.1.4 DECtape File Format 6-5

6. 1.4. 1 Block Allocation 6-5

6. 1.5 1/0 Programming 6-6

6.1.5.1 LOOKUP D, E 6-6

6. 1.5.2 ENTER D, E 6-7

6. 1.5.3 RENAMED, E 6-8

6. 1.5.4 INPUT I OUTPUT I CLOSE, RELEASE 6-8

6. 1.6 Specie I Programmed Operator Service 6-10

6.1.6.1 USETI D, E 6-10

6.1.6.2 USETO D, E 6-10

6.1.6.3 UGETF D, E 6-10

6. 1.6.4 CALL AC, [SIXBIT/UTPCLRIJ or CALLI AC, 13 6-10

6.1.6.5 MTAPE D, 1 and MTAPE D, 11 6-10

6. 1.6.6. DEVSTS UUO 6-11

6. 1.7 File Status 6-11

6. 1.8 Important Considerations 6-12

Revision 2 Monitors xiv Morch 1971

CONTENTS (Cont)

Page

6.2 Disk 6-13

6.2.1 Data Modes 6-13

6.2. 1.1 Buffered Data Modes 6-13

6.2.1.2 Unbuffered Data Modes 6-13

6.2.2 Structure of Disk Files 6-13

6.2.2.1 Addressing by Monitor 6-14

6.2.2.2 Storage Allocation Table (SAT) Blocks 6-14

6.2.2.3 File Directories 6-14

6.2.2.4 File Format 6-16

6.2.3 Access Protection 6-16

6.2.3.1 UFO Privileges 6-19

6.2.4 Disk Quotas 6-19

6.2.5 Simultaneous Access 6-20

6.2.6 File Structure Names 6-20

6.2.6.1 Logical Unit Names 6-21

6.2.6.2 Physical Controller Class Names 6-21

6.2.6.3 Physical Controller Names 6-21

6.2.6.4 Physical Unit Names 6-21

6.2.6.5 Unit Selection on Output 6-22

6.2.6.6 Abbreviations 6-22

6.2.7 Job Search List 6-23

6.2.8 User Programming 6-24

6.2.8.1 Four-Word Arguments for LOOKUP, ENTER,
RENAME UUOs 6-25

6.2.8.2 Extended Argument for LOOKUP, ENTER,
RENAME UUOs 6-28

6.2.8.3 Special Programmed Operator Service 6-33

I 6.2.8.4 Simultaneous Supersede and Update 6-34a

6.2.9 File Status 6-36

6.2.10 Disk Packs 6-37

6.2. 10.1 Removable File Structures 6-37

6.2.10.2 Identification 6-37

6.2 .. 10.3 IBM Disk Pack Compatibility 6-38

I 6.3 Spooling of Unit Record I/O on Disk 6-38

Revision 2 Monitors xv March 1971

CONTENTS (Cont)

Page

CHAPTER 7 MONITOR ALGORITHMS

7.1 Job Scheduling 7-1

7.2 Program Swapping 7-3

7.3 Device Optimization 7-5

7.3. 1 Concepts 7-5

7.3.2 Queuing Strategy 7-6

7.3.2.1 Position-Done Interrupt Optimization 7-7

7.3.2.2 Transfer-Done Interrupt Optimization 7-7

7.3.3 Fairness Considerations 7-7

7.3.4 Channel Command Chaining 7-7

7 .3.4.1 Buffered Mode 7-7

7.3.4.2 Unbuffered Mode 7-7

7.4 Monitor Error Hand Ii ng 7-8

7.4.1 Hardware Detected Errors 7-8

7.4.2 Software Detected Errors 7-8

7.5 Directories 7-9

7.5.1 Order of Filenames 7-9

7.5.2 Directory Searches 7-9

7.6 Priority Interrupt Routines 7-9

7.6.1 Channel Interrupt Routines 7-9

7.6.2 Interrupt Chains 7-10

CHAPTER 8 REAL-TIME PROGRAMMING

8.1 Definitions 8-1

8.2 LOCK AC, OR CALLI AC, 60 8-2

8.2.1 Non-Swapping Systems 8-3

8.2.2 Swapping Systems 8-3

8.2.3 Core Allocation Resource 8-4

8.2.4 Unlocking Jobs 8-4

8.3 RTTRP AC, OR CALLI AC, 57 8-8

8.3.1 Data Block Mnemonics 8-9

8.3. 1.1 PICHL 8-10

8.3.1.2 TRPADR 8-10

Revision 2 Monitors xvi March 1971

CONTENTS {Cont)

Page

8 .. 3. 1.3 APRTRP 8-10

8.3. 1.4 DEV 8-10

8.3.1.5 BITS 8-10

8.3. 1.6 BLKADR 8•10

8.3.2 Interrupt Level Use of RTTRP 8-11

8.3.3 RTTRP Returns 8-11

8.3.4 Restrictions 8-12

8.3.5 Removing Devices from a PI ~hannel 8-13

8.3.6 Dismissing the Interrupt 8-13

8.3.7 Examples 8-13

8.3.8 FORTRAN Usage of Real-Time Trapping 8-17

8.3.8.1 LOCK 8-17

8.3.8.2 RTINIT 8-17

8.3.8.3 CONECT 8-18

8.3.8.4 DIS~ON 8-18

8.3.8.5 RTSTRT 8-18

8.3.8.6 BtKRW 8-19

8.3.8.7 RT READ 8-19

8.3.8.8 RTWRIT 8-19

8.3.8.9 STATO 8-19

8.3.8.10 STATI 8-20

8.3.8.11 RTSLP 8-20

8.3.8.12 RTWAKE 8-20

8.3.8.13 Example 8-20

8.4 Direct User 1/0 8-21

8.4.1 TRPSET AC, or CALLI AC, 25 8-21

8.4.2 UJEN (Op Code 100) 8-23

I 8.5 HPQ UUO, or CALLI AC, 71 8-24

8.5.1 HPQ UUO Format 8-24

APPENDICES

Page

APPENDIX A DECTAPE COMPATIBILITY BETWEEN DEC COMPUTERS A-1

Revision 2 Monitors xvii March 1971

APPENDICES {Cont)

APPENDIX B MO NIT OR SIZES

B. l

B. 1. l

B. 1.2

B. 1.3

B.2

B.2.1

B.2.2

B.2.3

Multiprogramming Non-Disk Monitor

Required Code

Optional Device Code

Tables and Buffers

Swapping Monitor

Required Code

Optional Device Code

Tables and Buffers

APPENDIX C WRITING REENTRANT USER PROGRAMS

c. 1

C.2

C.3

C.4

Defining Variables and Arrays

Example of Two-Segment Reentrant Program

Constant Data

Single Source Fi le

APPENDIX D DEVICE STATUS BITS

APPENDIX E ERROR CODES

APPENDIX F MONITOR DIAGNOSTIC MESSAGES

APPEND.IX G FILENAME EXTENSIONS

APPENDIX H COMPARISON OF DISK-LIKE DEVICES

APPENDIX I RETRIEVAL POINTERS

I. l A group Pointer

1. 1. 1 Folded Checksum Algorithm

I.2 End-of-File Pointer

1.3 Change of Unit Pointer

Revision 2 Monitors xviii

Page

B-1

B-1

B-1

B-2

B-2

B-2

B-2

B-3

C-1

C-1

C-2

C-2

D-1

E-1

F-1

G-1

H-1

I-1

I-2

I..;2

1-2

Morch 1971

'~·

APPENDICES (Cont)

APPENDIX J ONCE-ONLY PARAMETERS

J. 1

J.2

J.3

File Structure Parameters

Physical Unit Parameters

System Parameters

ILLUSTRATIONS

Figure No. Title

1-1 Core Management

1-2 File Structure Directories

3-1 User's Core Area

3-2 Loading User Core Area

4-1 User's Ring of Buffers

4-2 Detailed Diagram of Individual Buffer

5-1 Pseudo-Teletype

6-1 DECtape Directory Format

6-2 Format of a File on Tape

6-3 Format of a DECtape Block

6-4 Basic Disk File Organization for Each File Structure

6-5 Disk File Organization

8-1 Locking Jobs in Core

TABLES

Table No.. Title

2-1 Monitor Command Diagnostic Messages

3-1 Job Data Area Locations

3-2 Vestigial Job Data Area Locations

4-1 Monitor Programmed Operators

4-2 CALL and CALLI Monitor Operations

4-3 • FSSRC Error Codes

4-4 GETTAB Tables

4-5 Buffered Data Modes

4-6 Unbuffered Data Mod-es

4-7 File Status Bits

Revision 2 Monitors xix

Page

J-1

J-1

J-2

Page

1-3

1-7

3-4

3-9

4-50

4-51

5-35

6-4

6-5

6-5

6-15

6-17

8-5

Page

2-29

3-5

3-10

4 ... 3

4-6

4-27

4-34

4-48

4-48

4-61

March 1971

TABLES (Cont)

Table No. Title Page

5-1 Nondirectory Devices 5-1

5-2 PDP-10 Card Codes 5-3

5-3 MTAPE Functions 5-14

6-1 Directory Devices 6-1

6-2 LOOKUP Parameters 6-7

6-3 ENTER Parameters 6-8

6-4 RENAME Parameters 6-9

6-5 File Structure Names 6-23

6-6 Extended LOOKUP, ENTER, and RENAME
Arguments 6-28

7-1 Software States 7-6

D-1 Device Status Bits D-1

E-1 Error Codes E-1

F-1 Monitor Diagnostic Messages F-1

G-1 Filename Extensions G-1

H-1 Disk Devices H-1

Revision 2 Monitors xx March 1971

Revision 2 Monitors

NEW AND CHANGED INFORMATION

Revision of March 1971

This manual has been extensively revised to increase technical

accuracy, incorporate new material resulting from the develop­

ment of the 5.03 release of the monitor, and improve overall

presentation of technical information. The location of new or

changed technical information is indicated by a black vertical

line to the left of the text in which it appears. An example

of a flagged passage (taken from page 2-2) is given below.

Each command is a line of ASCII characters in upper/lower

case. Spaces and nonprinting characters preceding the com­

mand name are ignored. Comments may be typed on the same

line as the command by preceding the comment with a semi­

colon. The Monitor Command Interpreter will not interpret or

execute a Ii ne of comments .

xxi March 1971

Foreword

The Timesharing Monitors are described and the commands, program loading procedures, and user pro­

gramming available under executive control are discussed in this manual. The Timesharing Monitors

include the Multiprogramming Monitor (formerly known as 10/40) and the Swapping Monitor (formerly

known as 10/50).

SYNOPSIS OF THE TIMESHARING MONITORS MANUAL

Chapter 1, an introduction, contains concepts important to the understanding of the system. Commands

to the monitor that may be initiated by a user at a terminal are described in Chapter 2. Several

Monitor Support CUSPs (Commonly Used Systems Programs) are also discussed in this chapter. Loading.

of user programs is explained in Chapter 3. The job data area and the loader are described briefly.
\

The services the monitor performs for the user and how the user's program obtains such services are

discussed in Chapter 4. Non-directory 1/0 devices (e.g., concepts, data modes, special programmed

operator services, file status) are discussed in Chapter 5. The two directory devices, DECtape and

DISK, are explained in Chapter 6 in the same manner as the devices in Chapter 5 are explained.

Algorithms of the monitor, described in Chapter 7, give the user an insight into system operation.

Appendices A to J contain supplementary reference material.

USE OF THE TIMESHARING MONITORS MANUAL

The Timesharing Monitors Manual is intended primarily as a reference manual for experienced program­

mers. The system manager and his programming and operations staffs may find additional information

for operating and maintaining the PDP-10 timesharing system in the following publications:

PDP-10 System Manager's Guide (DEC-10-NWZA-D(L))
Five Series Monitor Instal lotion Guide (DEC-10-MRZA-D)

The user interested in timesharing programming from a remote Teletype® should read the PDP-10 Time­

sharing Handbook, Books 2 and 7, for a detailed explanation of the monitor commands available.

®Teletype is a registered trademark of Teletype Corporation.

xxiii

CONVENTIONS USED IN THE TIMESHARING MONITORS MANUAL

The following conventions have been used throughout this manual:

dev:

I ist

arg

job

file. ext

core

adr

C(adr)

[pro j, prog]

fs

tx

*

)

n

Any logical or physical device name. The colon must be in­
cluded when a device is used as part of a file specification.

A single file specification or a string of file specifications.
A file specification consists of a filename (with or without a
filename extension), a device name if the file is not on disk,
and a project-programmer number, if the file is not in the
user's disk area.

A pair of file specifications or a string of pairs of file speci­
fications.

A job number assigned by the monitor.

Any legal filename and filename extension.

Decimal number of 1 K blocks of core.

An octal address.

The contents of an octa I address.

Project-programmer numbers; the square brackets must be in­
c I uded in the command string.

Any legal file structure name or abbreviation.

The symbol used to indicate an altmode.

A control character obtained by depressing the CTRL key and
then the character key x.

A back arrow used in command strings to separate the input
and output fi I e specifications .•

The CUSP response to a command string.

The monitor response to a command string.

The symbol used to indicate that the user should depress the
RETURN key. This key must be used to terminate every com­
mand to the Monitor Command Interpreter.

Underscoring used to indicate computer typeout.

A decimal number.

xx iv

Chapter 1

Introduction

1. l GENERAL

The PDP-10 Timesharing System allows many independent user programs to share the facilities of a single

PDP-10 computer. Many users can access the computer at the same time from consoles at the computer

site, at nearby offices or laboratories, or at remote points connected by telephone lines. Operating

concurrently under monitor control, users may access available 1/0 devices and system software to

compile, assemble, and execute their programs, or may have this sequence performed· automatically

for many programs by using the batch control processor (Batch). Real-time programs can operate either

as independent user programs or as fully integrated monitor subroutines.

System facilities start with a minimum configuration of 32K of core and can accommodate DECtapes,

magnetic tapes, disks, drums, disk packs, communication line controllers, card readers and punches,

paper-tape readers and punches, line printers, displays, incremental plotters, and user consoles.

Other special devices, including real-time digitizers and analog converters, easily interface with

the system. Various peripheral devices and methods of programming are described in Chapters 5 and 6.

1.2 MONITOR FUNCTIONS

The timesharing operating system interfaces between the user and the computer so that all users are pro­

tected from one another and appear to have most system resources to themselves. The operating system

schedules multiple-user timesharing of the system, relocates and protects user programs in core memory,

directs data flow between 1/0 devices and user programs, and overlaps 1/0 operations concurrently

with computation for high system efficiency.

The timesharing system is a multiprogramming system; that is, it allows several user programs to reside

in core simultaneously and to operate sequentially. The timesharing operating system (TOPS) schedules

each user program to run for a certain length of time (quantum time), using a scheduling algorithm that

makes efficient use of system capabilities (refer to Paragraph 7. l). The switching between programs

is initiated by a clock, which interrupts the central processor to signal that the quantum time for the

program has elapsed. The interrupt function is provided by the priority interrupt system (refer to the

PDP-10 Reference Manual).

1-1

To increase the number of users serviced, a secondary memory is employed. This memory, usually

magnetic disk or drum, is slower than main memory but provides greatly increased capability. User

programs can be located in secondary memory and moved into main memory or core for execution.

Programs moved into main memory exchange places with programs that have just been serviced by the

central processor. This process is called swapping (refer to Paragraph 7.2).

The asynchronous swapping algorithm is called in at every clock tick and has the task of bringing a

user program from secondary memory into core, or vice versa. The central processor may be operating

on one user program in one part of memory while another user program is being swapped to or from core.

This independent overlapped operation greatly improves efficiency and increases the number of users

that can be accommodated simultaneously.

The timesharing operating system is involved in keeping the actions of a user within his assigned memory

space. A hardware device, a memory protection register (refer to Chapter 3) set by the monitor, limits

the core area that a particular user can access. Any attempt to read or change information outside this

area automatically stops the program and notifies the operating system.

1.2. l Reentrant User Programming

Users of large timesharing systems have varying requirements; therefore, a good system provides a

variety of software. Thus, many users may have compilers and other common system programs in core

at the same time. To prevent excessive core usage, which results when a program is duplicated for

several users, a reentrant user programming capability is employed. This means that a sequence of in­

structions may be entered by more than one user program at a time.

A reentrant program is written in two parts or segments. One segment contains pure code that is not

modified during execution and can be used to simultaneously service any number of users (e.g., the

FORTRAN compiler). The second segment belongs to each user and consists of code and data (impure

code) that is developed during the compiling process. All versions of the timesharing operating system

normally include this reentrant capability, but it may be deleted on systems lacking the dual relocation

KT l OA hardware option.

In a non-reentrant system, the one-relocation register hardware requires that a user area be a single

continuous segment of logical and physical core. Each user has a separate copy of a program although

a large part of it is the same as for other users. In a reentrant system, the two-relocation register

hardware allows a user area to be divided into two logical segments, which may occupy non-contiguous

areas in physical core. The operating system allows one of the segments of each user area to be the

same as one or more other users; therefore, only one physical copy of a shared segment need exist no

1-2

matter how many users are using it. The operating system normally invokes hardware write-protection

for shared segments to guarantee that they are not accidentally modified. User programs may also be

written to make use of this protection (refer to Appendix C).

In the PDP-10 system, the reentrant capability causes the fol lowing system resources to be used more

efficiently:

a. Core memory. Only one copy of a shared segment exists for the entire system.
More programs can fit into a given amount of core. (Figure 1-1 i I lustrates this
efficient use of core memory.)

b. Swapping storage. Many users share the single copy of the shared segment kept
in swapping storage.

c. Swapping 1/0 channel. A shared segment is read into core only once and is not
written back onto swapping storage unless modified.

d. File storage 1/0 channel. A shared segment exists on the faster swapping storage
after it has been read into core the first time from the storage device, instead of
being retrieved from file storage on each usage as necessary in a non-reentrant
system.

NON-REENTRANT SYSTEM
0

REENTRANT SYSTEM
0

MONITOR MONITOR

FORTRAN USER 1

FORTRAN USER 1
FORTRAN COMPILER

COBOL USER 1 COBOL USER

FREE CORE

FORTRAN USER 2 FORTRAN USER 2

FORTRAN USER 3
COBOL COMPILER

FORTRAN USER 3

COBOL USER 2 FORTRAN USER 4

COBOL USER 2

FORTRAN USER 4
FREE CORE

10-0591

Figure 1-1 Core Management

1.3 USER FACILITIES

The basic function of the timesharing system is to allow a number of users simultaneous access to the

central computer. To be fully useful, however, the system should also allow the users access to other

system resources, such as storage devices for the user's programs and data; therefore, the operating

system includes 1/0 control of all devices attached to the system, run-time selection of 1/0 devices,

job-to-job transition, and job save and restore features.

1-3

Users gain access to the PDP-10 timesharing system from a terminal located either at the computer

facility or at a remote site connected by telephone. Three levels of communication available at the

console are:

a. monitor command level

b. CUSP command level

c. CUSP 1/0 level.

At monitor command level, the console communicates with the Monitor Command Interpreter. The

Monitor Command Interpreter

a. provides the system with access protection

b. allocates and protects memory and peripherals requested by the user

c. provides communication with the operator for the mounting of special tapes
and disk packs

d. provides run control for the user over programs stored in the system

e. allows the user to initiate background jobs

f. provides the user with job monitoring and debugging foci lities

g. returns facilities to the system when the job is finished using them.

Various monitor commands providing each of these capabilities are described in Chapter 2.

Using monitor commands, the user at his console can call in programs from the file system. The file

system contains programs for creating and editing program source files (TECO, LINED), for assembling

or compiling program source files (MACRO, AID, FORTRAN, BASIC, COBOL), and for loading re­

locatable binary files (LOADER). The use of these and many other CUSPs are described in the PDP-10

Reference Handbook and the PDP-10 Timesharing Handbook.

The user's console provides both a control and data path to any CUSP or other user program that the

user initiates via monitor commands. When a particular CUSP is called in, the user's console is at

CUSP command level and the user can issue a command to the CUSP. In processing that command, the

CUSP may access the user's console directly as an input or output device. This is illustrated by the

following example.

..:.R PIP

_!DSK:TEXT<-TTY:

THIS IS FILE TEXT tZ

Monitor command level. User calls CUSP
named Peripheral Interchange Program (PIP).

CUSP command level. User instructs PIP to
create a file on the disk named TEST using
Teletype console as input medium.

CUSP 1/0 level. User types input to PIP.
tZ causes Teletype end of file. Return to
CUSP command level.

(continued on next page)

1-4

tC is a special character that causes return to
monitor command level.

The period (.)signifies return to monitor com­
mand level.

The console is switched back to the Monitor Command Interpreter by either the program or the user.

The user can exercise another dimension of control over his program by loading it with the powerful

Dynamic Debugging Technique (DDT) available in the system file. Entry to DDT is through the Monitor

Command Interpreter or by breakpoints in the program. While DDT is in control of the program, the

user can examine intermediate results on his console and then modify his program accordingly.

The user's program communicates with the monitor by the PDP-10 operation codes 040 through 077.

These op-codes, called UUOs, are described in detail in Chapter 4. With these operation codes, the

monitor provides the program with complete device-independent 1/0 services. The programmer is re­

lieved of 1/0 programming and is freed from the dependence on the availability of particular devices

at run time. In addition, the user's program may exercise control over central processor trapping, mod­

ify its memory allocation, and monitor its own running time. Provisions exist for inter-job communica­

tion and control, reentrant user programs, and, in selected cases, direct user 1/0 control.

1 .4 SEGMENTS

A segment is a continuous region of the user's core area that the monitor maintains as a continuous unit

in physical core/possibly fragmented unit on the swapping device. A program or user job is composed

of one or two segments. A segment may contain instructions/data. The monitor determines the alloca­

tion and movement of segments in core and on the swapping device.

A sharable segment is the same segment for many users. The monitor keeps only one copy in core/on

the swapping device, no matter how many users are using it. A non-sharable segment is different for

each user in core/on the swapping device.

The two PDP-10 relocation and protection registers, which divide a user's core area into two parts,

permit a user program to be composed of one or two segments at any time. The required low segment

starts at user location 0. The optional high segment starts at user location 400000 or at the end of the

low segment, whichever address is greater. The low segment contains the user's accumulators, job data

area, instructions/data, 1/0 buffers, and DDT symbols. A user's core image is composed of a low seg­

ment, which may have from lK to 256K words, in multiples of lK (1K=l024
10

words), and a high seg­

ment, which may have from OK to 128K words, also in multiples of lK. A high segment may be

sharable or nonsharable, whereas a low segment is always nonsharable. The high segment is usually

write-protected, although the program can turn off write-protection and modify itself (refer to

Paragraph 4.5.4).

1-5

A reentrant program is always composed of two segments: a low segment, which usually contains data,

and a high (sharable) segment, which usually contains instructions and constants. The low segment is

sometimes referred to as the impure segment. The sharable high segment, if write-protected, is re­

ferred to as the pure segment.

A one-segment non-reentrant program is composed of a single low-segment containing instructions and

data. User programs written for machines with only a single relocation and protection register are

always one-segment non-reentrant programs.

A two-segment non-reentrant program is composed of a low segment and a nonsharable high segment.

This program is useful when there is a requirement for two fixed-origin data areas to increase and de­

crease independently during execution.

1.5 FILE STRUCTURES

A file structure is the logical arrangement of 128-word blocks on one or more units of the same type to

form a two-level hierarchy of named files. File structures allow a user to specify which unit he wishes

to use for his files. System reliability is increased because a file structure may be removed from the

system without affecting other units.

A complete disk system is composed of one or more units of the same/different types of disks and,

therefore, consists of one or more file structures. Al I information in the system (programs and data) is

stored as named files in a uni form and consistent fashion. A file structure can exist on exactly one

unit but is usually distributed over a number of physical units of the same type; however, two file

structures cannot 'exist on the same unit. Each file structure is logically comp I ete and is the smallest

removable unit of file memory. Al I pointers to blocks within a file structure are by way of logical

block numbers rather than physical disk addresses. There are no pointers to blocks in other file struc­

tures. This property al lows a file structure to be removed from a disk system without disturbing any

of the uni ts in other fi I e structures.

1.5. l File Directories

Each file structure has two levels of directories: a Master File Directory (MFD) and User File Directo­

ries (UFD). The entries in the MFD are the names of the User File Directories. The entries within the

UFDs are the names of files existing in a given project-programmer number area within the file struc­

ture (refer to Paragraph 6.2.2.3). Figure 1-2 shows the relationship of the directories.

1-6

MASTER FILE USER FILE DATA FILES
DIRECTORY DIRECTORS

FILE 1

UFO EXT

10 10 FILE 2

UFO EXT

20 20 FILE 3

UFO EXT

FILE X

EXT

FILE Y

EXT

FILEZ

EXT

10-0543

Figure 1-2 Fi le Structure Directories

l • 5. 2 Quotas

Each project-programmer number in each file structure is associated with two quotas that I imit the

number of blocks that can be stored in the UFD in the particular file structure. The two quotas are:

logged-in quota and logged-out quota. The logged-in quota is not a guaranteed amount of space, and

the user competes with other users for space. The logged-out quota is the amount of space that the user

must be within in order to log off the system. Quotas are used by system administrators to ration re­

sources in a predetermined manner.

1.5.3 Files

A file is a collection of 36-bit words comprising computer instructions/data. A file can be of arbitrary

length, limited only by the available space on the device and the user's maximum space allotment on

that device. A disk file is limited by the smallest available space on a file structure and by the user's

quota on that file structure.

A named file is uniquely identified in the system by its filename {up to six characters in length) and

extension {up to three characters in length) and by its directory name {owner's project-programmer

number) and file structure name for disk or physical device name for DECtape, in which the filename

1-7

and extension appear. The filename, being arbitrary, is specified by the owner, whereas the exten­

sion, usually one of a small number of standard names that identify the type of information in the file,

is usually specified by the program (refer to Appendix G). A named file may be written by a user

program in buffered or unbuffered mode, or in both. It may be read/modified sequentially or randomly

with buffered or unbuffered mode 1/0 independently of how it was written. Named files are uniformly

stored. Each named file has a certain access protection associated with it. These protections desig­

nate which users can read or write the file or change its access protections. For a given file, users

are divided into three groups: the owner of the file, the users in his project, and the rest of the users

(refer to Paragraph 6. 2. 3).

A file is created if no file by the same name existed in the file structure when the file was opened

for writing. A file is superseded if another file by the same name exists. A file is updated when one

or more blocks of the file are rewritten in place. Other users may read a disk file while a certain user

is superseding it. The older version of the file is deleted only when all the readers have finished with

it. Only one user may open a file for updating at a time; all other users attempting to open that file

receive an error message.

1.5.3. l Comparison of Files and Segments - Files and segments have certain similarities and differ­

ences. Both are named, one-dimensional arrays of 36-bit words. A named file can be as long as the

size of DECtape or the sum of the available space on a file structure. A segment can be only as big

as physical core. Both may be shared for reading, but only one user may supersede or update a file at

a time, whereas many users may share a segment for writing. When many users share the same file,

each user is given his own copy of the portion of the file that he is reading. It is read into his low seg­

ment by the INPUT UUO. When many users share the same segment, each user does not have his own

copy of the segment. A file exists on the file structure and portions of it may exist in different parts

of the low segment of one or more users. A segment never exists on the storage device; a segment exists

as a continuous unit only in core or on the swapping device.

1-8

)

)

Chapter 2

Monitor Commands

2.1 CONSOLE AND JOB CONTROL

The PDP-10 timesharing system is a multiprogramming system. This means that control is transferred

rapidly among a number of programs or processes in such a way that all the processes appear to be run ...

ning simultaneously. Each process is called a job, The term job refers to the entire sequence of opera­

tions the user initiates from his console. In configuring and loading a timesharing monitor, the system

administrator sets the maximum number of jobs that his system can handle simultaneously. This number

may be up to 127 jobs if the system has enough core, disk storage, processor capacity, and timesharing

consoles to handle this load.

Jobs are initiated by users typing on a timesharing console. A console is typically any of several

models of Teletype machines but may also be a cathode ray tube (CRT) with a keyboard or any _of the

other interactive terminals available. The console may be directly connected to the computer, or

may be remotely connected via a private wire or the public telephone system.

There is not necessarily a one-to-one relationship between jobs and consoles. A console must initiate

a job, but the DETACH and ATTACH commands (refer to Paragraph 2 .8) permit a job to float in a state

where it is not associated with a particular console; therefore, a user may control several jobs from the

same console. Each job is either in the ATTACHed or DETACHed mode depending on whether a con­

sole is currently associated with that job. At any time, each console is attached to at most one job.

The console is often referred to as being in a detached mode, but this resvlts from a semantic confusion.

It is really meant that the job initiated from that console is in a detached mode. By typing an appro­

priate command, the job may be attached by ~he same console or by any other console in the system.

2 .1. 1 lv\onitor and User Mode

From the user's point of view, his console is either in monitor or user mode. In monitor mode, each

) line the user types in is sent to the JVonitor Command Interpreter. The execution of certain commands

(as noted in the examples below) places the console in user mode. When the program is in user mode,

2-1

the console becomes simply an I/O device for that user. In addition, user programs use the console (

for two purposes. The user program will accept command strings from the console or will use the con-

sole as a direct I/O device.

Example:

monitor mode

user mode

user mode

•

monitor mode

user mode

user mode

.:.R PIP)

iosi-<:-PI LEt---TTY: J

THIS IS FILE 1 tZ

.!. t c

..:.R tvlACRO)

.!!TTY:~osK:PROGl)

assembly listing

monitor command

user program command
string

user program using console
as an input device

monitor command

user program command
string

user program using console
as an output device

The special character tC (produced by typing C with the CONTROL key depressed) is used to stop a

user program and return the console to monitor mode. If the user program is in a Teletype input wait

state, one tC must be issued from the user's console; otheiwise, two tC's must be issued. Because of

this procedure, the user knows if his, program is waiting for input if there is no response from the moni­

tor after one tC. Certain commands cause the user program to start or continue running (as noted in

the tables below} but leave the console in monitor mode.

When the system is started, each console is in monitor mode ready for users to begin typing in com­

mands. However, if the system becomes fully loaded (i.e., the maximum number of jobs that the sys­

tem has been set to handle has been initiated), then any unused consoles enter a special state where

any command typed in will receive either the message JOB CAPACITY EXCEEDED or X.

2.2 COMMAND INTERPRETER AND COMMAND FORMAT

Each command is a line of ASCII characters in upper/lower case. Spaces and nonprinting characters

I
preceding the command name are ignored. Comments may be typed on the same line as the command

by preceding the comment with a semicolon. The Monitor Command Interpreter will not interpret or

execute a line of comments. Every command to the Monitor Command Interpreter must be terminated (

by pressing the RETURN key on the console. If the command is not understood, the command up to the

error is typed out by the monitor preceded and followed by a ? , and the mode is unchanged.

Revision 1 Monitors 2-2 January 1971

2.2. l Command Names

Command names are strings from one to six letters. Characters after the sixth are ignored. Only enough

I characters to uniquely identify the command need be typed. In the commands which fol low, the com­

monly used abbreviation of the command name is shown in parentheses. Installations choosing to imple­

ment additional commands should take care to preserve the uniqueness of the first three letters of

existing commands.

2. 2. 2 Arguments

Arguments fol low the command name, separated from it by a space or any printing character that is not

a letter or a numeral. Argument formats are described under the associated commands.

If the Monitor Command Interpreter recognizes the command name, but a necessary argument is missing,

the monitor responds with

TOO FEW ARGUMENTS

Extra arguments are ignored.

2. 2. 3 Log-In Check (Disk Monitor Systems)

I If a user who has not logged in (refer to Paragraph 2.3) types a command requiring him to be logged in,

the disk monitor systems will respond with

I

?LOGIN PLEASE

and the user's command wil I not be executed. Log-in is not required by a nondisk monitor system.

2.2.4 Job Number Check (Nondisk Monitor Systems)

If the nondisk monitor system recognizes a command name, which requires a job number, and no job

number has been assigned, the monitor assigns a job number, n, and responds with

JOB n

and a line identifying the monitor version. The monitor then proceeds to execute the command.

2-3

2. 2. 5 Core Storage Check

If the Monitor Interpreter recognizes a command name, which requires core storage to be allocated to

the job, and the job has no core, the monitor responds with

?NO CORE ASSIGNED

The user's command is not executed.

2.2.6 Delayed Command Execution

If the Monitor Command Interpreter recognizes a command that requires all devices to be inactive, and

the job has devices actively transmitting data to or from its core area, the execution of the command

is delayed unti I the devices are inactive. A command is also delayed if a job is swapped out to the

disk and the command requires core residence. It will be executed when the job is swapped into core.

2.2.7 Completion-of-Command Signal

Most commands are processed without delay. The completion of each command is signaled by the out­

put of a carriage return, line feed. If the console is left in monitor mode, a period follows the car­

riage return, line feed. If the console is left in user mode, any response other than the carriage return,

line feed comes from the user's program. For example, all standard DEC CUSPs (except DDT) immedi­

ately send an asterisk (*)to the user's console to indicate their readiness to accept user-mode command

strings. (DDT sends another carriage return, I ine feed.)

2.3 JOB INITIALIZATION COMMANDS

Access to the system is limited to authorized personnel. The system administrator provides each

authorized user with a project number, a programmer number, and a password. The project numbers

range from l to 377777 octal and the programmer numbers range from l to 377777 octal.

The project-programmer numbers identify the user and his file storage area on a file structure. The

password is from one to six SIX BIT characters. To log-in successfully, the project-programmer numbers

and the password typed in by the user must match the project-programmer numbers and password stored

in the system accounting file (SYS:ACCT .SYS).

2-4

)

I
)

I

)

LOGIN (LOG)

Function

The LOGIN command is used to gain access to the system. This command loads a
Monitor Support CUSP which accepts the user's LOGIN data. The user types in his
project and programmer numbers followed by his password.

Command Format

LOGIN ppn

Characteristics

ppn =the user's project-programmer number. This argument may be typed
on the same line as the LOGIN command, or on the fol lowing line after
LOGIN types out the number sign.

The LOGIN command:

leaves the console in monitor mode or
starts a program running if specified in ACCT. SYS. entry for ppn.
runs the LOGIN CUSP,
is used with disk monitors only.

Associated Messages

?INVALID ENTRY - TRY AGAIN

An illegal project-programmer number was entered, or the password did
not match.

?l+l/nk CORE
VIR. CORE LEFT =O

The swapping space or core allocated to timesharing is all in use {i.e., there
is no available virtual core}.

? JOB CAPACITY EXCEEDED

This message is received by the first user who attempts to LOGIN after the
maximum number of jobs that the system has been set to handle have been
initiated.

{continued on next page}

Revision l Monitors 2-5 January 1971

x

If the system is fully loaded, any user (after the first) who attempts to
LOGIN receives this character in response to any character typed.

? SYSTEM NOT AVAILABLE

The operator has used the SET SCHEDULE common~ to prevent LOGINS from
all consoles. Themessageoftheday is still typed.

?NO REMOTE USERS. TRY AGAIN LATER

The operator has used the SET SCHEDULE command to prevent LOGINs
from remote consoles. The message of the day is still printed.

?PROJECT l MAY NOT BE REMOTE OR PTY

Project l is never allowed to LOGIN at a remote teletype or over a
pseudo-teletype, if using old scanner service.

? SOME OTHER TIME

User is not scheduled to LOGIN at this time. He should try again when
he is allowed to log in.

WAIT PLS

FACT.SYS was busy for ten seconds. LOGIN retries for ten more seconds
before trying FACT .XOl. This message can appear if many people are
logging in simultaneously.

?UFO OUTPUT FAILURE n

The output failed when trying to create UFO {level C); n is the software
channel status.

?UFO ENTER FAILURE n

Failure in trying to create UFO; n is the ENTER error code.

?NO ENTRY IN AUXACC. SYS
NO SEARCH LIST OR UFOS CREATED

If user has no entry in AUXACC. SYS, LOGIN does not create UFOs or
a search list. User is logged in and has UFOs if they existed previously.
He may write on file structures which have UFOs or read file structures.
He may also create a file structure search list with SETSRC (level D).

(continued on next page)

Revision 1 Monitors 2-6 January 1971

(

(

(

)

)

)

ACCOUNTING SYSTEM FAILURE •
CALL THE OPERATOR

LOGIN could not append an entry to the accounting file.

UFD LOOKUP FAILURE n

A failure occurred in setting up UFOs (level D); n is the LOOKUP
error code.

UFD RENAME FAILURE n

A failure occurred in setting up UFOs (level D); n is the RENAME
error code.

?UFD INTERLOCK BUSY

Could not get UFD interlock when trying to set up UFD. UFD is
not currently set up (level D).

?CANT OPEN <file structure name>

The file structure is mounted but cannot be opened. No UFD is created,
though one may already exist.

?CANT ADD TO YOUR FILE STRUCTURE SEARCH LIST n

n is the error code from STRUUO when trying to add a file structure
to search I ist.

?MAY NOT LOGIN IN AS MFD PPN

If MFD PPN is not the same as SYS PPN, no one may log in as the
MFD PPN, even though there may be an entry in ACCT. SYS.

?PPN HAS EXPIRED

The current date is greater than the expiration date of the PPN.
User may not log in until expiration date is changed.

?ONLY BATCH USERS MAY LOGIN. TRY AGAIN LATER.

The operator has used the SET SCHEDULE command to prevent
LOGINs, except for BATCH jobs. The message of the day is still
printed.

(continued on next page)

Revision l Monitors 2-6a January 1971

I

{

LOCAL }
? REMOTE
.MAY NOT LOGIN DATA SET

BATCH JOB SUBJOB

·ACCT. SYS entry does not pennit the project-programmer number to
login at the teletype that is being used.

?CANT ACCESS SYSTEM FILES

ACCT.SYS could not be read. No one may LOGIN until ACCT.SYS
is ready. Consult the operator.

?WRONG FORMAT VERSION NUMBER IN SYSTEM FILES

Wrong version of ACCT. SYS or AUXACC. SYS is on SYS. Consult
the operator.

<file structure name> FILE ERRORS EXIST

Example

One of the files in a file structure has an error status, as flagged
in the UFO of that file structure.

The following is the procedure used to gain access to the system •

.!.LOG IN)
JOB 7 PDP-10 ss.01 TTY23

PASSWORD:

1135 8-AUG-70
TYPE SYS:SCHED FOR NEXT
WEEKS SCHEDULE

LOGIN types the job number assigned to user
(job number 7), followed by monitor name,
version number, and console line number.

LOGIN types out number sign to indicate user
should type ·his project-programmer number.
This happens only if the user did not type his
project-programmer number on the same line
as the LOGIN command.

User types in his project-programmer number.
The user may separate the project-programmer
numbers with a slash causing LOGIN not to
type the message of the d<Jy. Nonnally, this
should not be done since the message frequently
contains important operational information.

System requests user to type his password. User
types password fol lowed by carriage return. To
maintain password security, the monitor does
dot echo the password. On half-duplex circuits
(refer to Paragraph 5. 9), a mask is typed to
make the password unreadable.

If user entries are correct, responds with ti me,
date, a message of the day {if any), and a period,
indicating readiness to accept a command.

Revision 1 Monitors 2-6b January 1971

(

(

(

INITIAL (INI)

Function

The INITIAL command performs standard system initialization for the terminal issuing
the command. This command is issued automatically at system startup and 143 re­
start at certain designated terminals, but may be re-issued at any time by the user.
This command is used to initiate specific CUSPs, such as the line printer spooler
CUSP, PRINTR, on a particular console.

The INITIAL command runs SYS:INITIA. SAV which, depending upon the system
configuration and the TTY number from which it is typed, may cause any of a
number of events to occur.

Command Format

INITIA

Characteristics

The INITIAL command:

Examples

leaves the console in monitor mode,
runs a CUSP.

·INITIAL)
SS0111A SYS #2 22:12:17 TTY24

EXIT

2.4 FACILITY ALLOCATION COMMANDS

The monitor allocates peripheral devices, file structure storage, and core memory to users on request

and protects these allocated facilities from interference by other users. The monitor maintains a pool

of available foci Ii ties from which a user can draw.

2-7

A user should never abandon a timesharing console without returning his allocated facilities to the

monitor pool. Until a user returns his allocated facilities to the pool no other users may utilize them

except through operator intervention.

Al I devices control !able by the system are listed in Tables 5-1 and 6-1. Associated with each device

is a physical device name, consisting of three letters and zero to three numerals to specify unit number.

A logical device name may also be assigned to a physical device by the user. The logical name of one

to six alphanumeric characters of the user's choice is used synonymously with a physical device name

in all references to the device. In writing a program, the user may use arbitrarily selected device

names which he assigns to the most convenient physical devices at runtime. All references to devices

in the monitor pool are made either by physical names or by assigned logical names. However, the

preferred method for user programs to obtain device names is through a command string.

When a nonsharable device is assigned to a job, it is removed from the pool of available facilities of

the monitor. Any attempt by another job to reference the device fails. The device is returned to the

pool when the user reassigns it or kills his job.

ASSIGN (AS)

Function

The ASSIGN command assigns an 1/0 device to the user's job for the duration of
the job or until a DEASSIGN command is given. This command, applied to
DECtapes, clears the copy of the directory currently in core, forcing any
directory references to read a new copy from the tape. (Refer to Paragraph
6.1.7 for further details.)

Although DECtape is the only device that must be ASSIGNed before use,
to ensure that the monitor has a copy of the proper DECtape directory in core,
it is wise to ASSIGN all devices, such as magnetic tape, before use.

Command Format

ASSIGN phys-dev log-dev

phys-dev =any device listed in Tables 5-1 and 6-1, or any file structure.
This argument is required.

(continued on next page)

2-8

I

Characteristics

log-dev = a logical name assigned by the user. This argument is optional.
Except for disk devices, only one logical name can be assigned to a physical
device. Subsequent ASSIGN commands to all devices except disk devices
replace the old logical name with the new one. Logical names are dis­
associated from disk devices by the DEASSIGN command.

NOTE

If DTA, MTA, or LPT is used with no numeric argument, the
monitor seraches for an available unit and then types DTAn,
MTAn, or LPTn ASSIGNED.

The ASSIGN command:

leaves the console in monitor mode.

Restrictions

A comma may not be used to separate the logical and physical device names. If a
comma is used, the monitor terminates its scan at the comma; therefore, the logical
name is not assigned.

Associated Messages

dev: ASSIGNED

The device has been successfully assigned to the job.

?NO SUCH DEVICE

The device name does not exist, or all devices with this name are in use.

?ALREADY ASSIGNED TO JOB n

The device has already been assigned to another user's job.

?LOGICAL NAME ALREADY IN USE, dev: ASSIGNED

The user attempted to assign a previously-used logical name to this device.

Examples of logical and physical device names

,.:.ASSIGN OTA ABC)

DEVICE DTA6 ASSIGNED

.:..biSSIGN PTP ABC)

LOGICAL NAME ALREADY IN USE,
PTP ASSIGNED

..:_R PIP)

2-9

User requests a DECtape drive.

Monitor has given the user drive DTA6.
The user mounts a DECtape on drive DTA6.

User requests the paper tape punch •

Paper tape punch is reserved, but ABC sti 11
refers to DT A6 only.

User requests the system program PIP.

(continued on next page)

.:_PTP:~ARC:FILEX)

_!_t c

...:..:ASSIGN OTA DF.:F)

NO SUCH UNIT

.ASSIGN DTA6 DEF)

DFVICE OTA~ ASSIGNED

.:R PIP)

~PTP:~ARC:FILEY ~

User issues a command string to PIP asking
that the FILEX be transferred from device
ABC (DTA6) to device PTP (assigned to the
user).

User returns to monitor mode.

User requests another DECtape drive •

All drives are in use. No DECtape drive is
assigned, and no logical assignment is made.

User requests drive DTA6 (which he already
has). The logical device name ABC is no
longer associated with DTA6. The copy of
the directory currently in core is cleared.

User mounts a new DECtape on the previous­
ly assigned drive. The new DECtape direc­
tory is read into core •

User requests PIP.

User requests that FILEY be transferred from
device ABC to device PIP.

?DEVICE ABC DOES NOT EXIST The logical device name ABC is no longer
assigned.

*PTP:~DEF:FILEY.)

·ASSIGN DTA6 DEF)

DFVICE DTA6 ASSIGNED

Examples of ASSIGN command

.ASSIGN OTA ~

• ASSIGN MTA2 ~

.ASSIGN DTA3 INP.)

• ASSIGN MTA F'A ILSA)

.ASSIGN DSK PTR)

User reissues the command string to PIP
asking that FILEY be transferred from device
DEF to device PIP.

User returns to monitor mode.

User requests drive DTA6 again. The old
directory is cleared from core.

User mounts a new DECtape. The new
directory is read into core. The same logi­
cal name is acceptable because the ASSIGN
applies to the same unit (DTA6).

The user assigns any available DECtape drive.

The user assigns a specific magnetic drive (drive 2) •

The user assigns DECtape drive 3 and gives it logical
name INP •

The user assigns any available magnetic tape drive
and gives it logical name FAILSA.

The user assigns generic name DSK and gives it
logical name PTR.

2-10

)

I
)

I

)

DEASSIGN (DEA)

Function

The DEASSIGN command returns one or more devices currently assigned to the user's
job back to the monitor pool of available devices. The command, applied to DECtapes,
clears the copy of the directory currently in core, forcing any directory references to
read a new copy from the tape. (Refer to Paragraph 6.1.7 for further details.)

Command Format

DEASSIGN dev

dev ==either the logical or physical device name. This argument is optional.
If it is not specified, all devices assigned to the user's job, except the control­
ling Teletype, are deassigned. The logical name of the controlling Teletype
is c I eared whether or not an argument is specified •

Characteristics

The DEASSIGN command:

leaves the console in monitor mode,
requires LOG IN and a job number.

Associated Messages

?NO SUCH DEVICE

The device name does not exist in this monitor configuration.

?dev WASN'T ASSIGNED

The device is not currently assigned to this job.

Examples

.DEASSIGN LPT) The line printer is returned to the monitor's
pool of available resources •

.:..DEASSIGN) All devices assigned to the job are returned.

Revision l lv\onitors 2-11 January 1971

I

I REASSIGN (REA) I

Function

The REASSIGN command allows one job to pass a device to a second job without
having the device go through the monitor device pool. This command clears the
copy of the directory currently in core, but does not clear the logical name
assignment.

Command Format

REASSIGN dev job

Characteristics

dev ;:; the physical or logical name of the device to be reassigned.
This argument is required.

job = the number of the job to which the device is to be reassigned.
This argument is required.

The REASSIGN command:

Restrictions

leaves the console in monitor mode,
requires core,
does not allow an active device.

I Console (controlling) Teletype cannot be reassigned.

Associated Messages

?dev WASN'T ASSIGNED

The device is not currently assigned to the user's job.

?NOT A JOB

The job number specified has not been initialized.

?NO SUCH DEVICE

The device does not exist in this monitor configuration.
(continued on next page)

Revision 1 Monitors 2 ... 12 January 1971

(

(

(

)

I

?dev CAN'T BE REASSIGNED

(1) The console (controlling) Teletype cannot be reassigned, or (2) the logical
name is duplicated, or (3) the logical name is a physical device name in the
system.

Examples

,:.REASSIGN L.PT 1 7)

.REASSIGN CDP 4)

I MOUNT (MOU)

Function

Reassign the line printer to job 17.

Reassign the card punch to job 4.

The MOUNT command allows the user to gain access to a file structure. This command
notifies the operator to mount packs (if necessary), allows the user to specify specific
drives, places the file structure name at the end of the jobs search list, and waits for
completion of operator action (if desired).

The MOUNT command runs the UMOUNT CUSP in the user's core area. UMOUNT
scans the command string and does as much as it can without operator intervention.
UMOUNT can always complete the action requested by the MOUNT command if the
file structure is already mounted and ready. If operator intervention is required,
UMOUNT queues a request to the OMOUNT CUSP by writing a command file on
3, 3 disk area. OMOUNT reads these command files and interacts with the operator.
When the command file is deleted, the operator action has been completed.

Command Format

MOUNT dev: switches <drives>

dev: =the file structure name as recorded in STRLST. SYS. This argument
is required.

switches = /HELP
/WENABL

/WLOCK
/RONLY
/MULTI

/SINGLE
/CHECK
/LIST

/SYSTEM

(type this list)
(write enable, default condition,
complement of /WLOCK)
(write locked)
(read only, same as WLOCK)
{multi-access, default condition,
complement of /SINGLE)
(single access)
(check and list pending requests)
(list physical drive names
and file structure status)
(add file structure to SYS search lis!)_

The switches are optional and only enough characters to make the switch
unique are required.

(continued on next page)
Revision l Monitors 2-13 January 1971

Characteristics

<drives>= the physical drives on which the units are to be mo~nted. The
drives must be in the logical unit order within the file structure. Drive
names are separated by commas. Leading and embedded drives that,are
not specified must be represented by null names (,,DPA3). Unspecifi~
trailing drives may be omitted. Drive names are as follows:

Blank, null - unspecified. UMOUNT finds one of proper
type.

Two letters - control I er class. This may not be useful since
file structure units are bound to one controller class.

Three letters - specific controller. UMOUNT finds a drive.

Three letters and one or two digits.,.. specific drive.

The user, by specifying a drive list, may force the packs to be mounted on
specific drives or controllers. If no drive (or incomplete) specification is
given, an available drive of the proper type is found, even if a dormant
fl le structure must be removed.

The MOUNT commond:

places the console in user mode,
runs the UMOUNT CUSP,
is used with disk monitors only.

Associated Messages

If a speci(ll condition is encountered, a descriptive comment is typed to the user, ~nd
the command is continued. If the condition cqnnot allow the command to be continved,
an error message preceded by a question mc;srk is typed, and the command is aborted.
(See Appendix F for these messages.)

WAITING •••

A request has been queued to the operator, and the command is waiting
for completion of the request. If the user does not want to wait for the
completion of the operator's action, he may type c:ontrol ... C withovt
aborting the command,

STRUCTURE ALREADY MOUNTED

The specified file structure is already mounted. However, it mciy not be
in a readied condition.

OTHER USERS - CANNOT SINGLE ACCESS

The /S switch has been typed, and there are currently other users of the
file structure. The switch is ignored.

UNIT id ALREADY MOUNTED ON DRIVE DPAn

The file structure is already mounted on a different drive than specified
by the user.

(continued Ol'l next p09e)

2 ... 14

(

(

DPAn NOT READY

The specified drive is off-line or write-locked when write-enable is requested.
The operator is notified.

NEW UFD CREATED ON STRUCTURE
RESERVED (n) F.C.F.S (n) LOGGED-OUT (n)

An initial UFD has been created for the user. The numbers n are the block quotas
on this file structure as established by QUOTA.SYS.

UFD QUOTAS CHANGED
RESERVED (n) F.C.F.S (n) LOGGED-OUT (n)

The block quotas established by QUOTA.SYS on this file structure have
changed since the user last used this file structure. The user's UFD are
changed to specify the indicated quotas.

OPERATOR REQUESTED TO READY DRIVES

A request is queued to the operator to mount and ready the packs on the proper
drives.

DPAn NOT AVAILABLE

The drive specified by the user is not currently available.

NOT ENOUGH DRIVES

There are not enough drives of the right type to mount the file structure.

MOUNT COMPLETE

Examples

The file structure is mounted and ready for use. The MOUNT command
has completed.

• MOUNT MON ITR:)

• iv:OUNT PAYROL: <DPA,DPB>/S)

2-15

Asks the operator to mount the file
sttructure named MO NITR •

Requests that the first unit of fi I e
structure PAYROL be mounted in
Control !er A, the second unit on
Controller B, and any remaining
units on any drives. All units are
single access, (i.e., available only
to this job}.

DISMOUNT (DIS) I

Function

The DISMOUNT command al lows a user to withdraw his access to a file structure.
This command enforces logged-out quotas (if necessary), allows physical removal
of disk packs (if there are no other users of the pack), and removes the file structure
name from the job's search Ii st.

The UMOUNT CUSP runs privileged in the user's core area when the DISMOUNT
command is typed. This CUSP scans the user's command string, checks its validity,
and performs as much of the requested action as possible. The UMOUNT CUSP
can complete all actions requested by the DISMOUNT command except for the
action of physically removing a pack. When operator action is required, the
UMOUNT CUSP writes a command file on 3, 3 disk area for the OMOUNT CUSP.
(By scanning the command files, the OMOUNT CUSP can request operator action.)
When the command file is deleted, the UMOUNT CUSP knows that an operator
action has been completed.

Command Format

DISMOUNT dev: switches

Characteristics

dev: = the file structure name as recorded in STRLST. SYS. Th is argument
is required.

switches= /HELP
/CHECK
/REMOVE

(type this Ii st)
(check and list pending requests)
(notify operator to physically remove pack)

The switches are optional, and only enough characters to make the switch
unique are required.

When /R is requested, the file structure is deleted from the system if no other
users are using it, a request to remove the pack is queued to the operator,
and the message WAITING. • • is typed to the user. If the user does not
want to wait for confirmation of the operator action, he may type control-C.

The DISMOUNT command:

places the console in user mode,
runs the UMOUNT CUSP,
is used with disk monitors only.

2-16

)

)

I
)

Associated Messages

If the condition cannot allow the command to be continued, an error message preceded
by a question mark is typed, and the command is aborted. (See Appendix F for these
messages.)

WAITING •••

A request for operator action has been queued and the command is waiting for
completion of the action.

OTHER USERS - CAN'T REMOVE

A /R switch has been issued while there are other users of the file structure.
The switch is ignored.

OPERA TOR REQUESTED TO REMOVE PACKS

A request to physically remove the pack has been queued to the operator.

DISMOUNT COMPLETE

The DISMOUNT command has been completed.

FI NI SH (FIN)

Function

The FINISH command terminates any input or output currently in progress on the device
specified and automatically performs the RELEASE UUO and DEASSIGN command, thus
making the device available to another user.

Command Format

FINISH dev

dev =the logical or physical name of the device on which 1/0 is to be
terminated. This argument is optional.

If dev is omitted, 1/0 is terminated on all devices, except-the controlling
Teletype, assigned to the job. The logical name of the controlling Teletype
is cleared. -

Characteristics

The FINISH command:
leaves the console in monitor mode,
requires core •

Revision 1 Monitors 2-17 January 1971

Associated Messages

?NO SUCH DEVICE

Either the device does not exist or it was not assigned to this job.

Examples

.FINISH CDR) .

.FINISH OTA7) .
:fi-TNISH LPT)

CLOSE (CLO)

Function

The CLOSE command terminates any input or output currently in progress on the device
specified, and automatically performs the CLOSE UUO. Files are CLOSEd, but not
reset, and logical names and device assignments are preserved.

Command Format

CLOSE dev

Characteristics

dev =the logical or physical name of the device on which I/O is to be
terminated. This argument is optional.

If dev is omitted, I/O is terminated on all devices, except for the
control I ing Teletype, assigned to the job, and al I files are CLOSEd.

The CLOSE command:

leav·es the console in monitor mode,
requires core.

Associated Messages

?NO SUCH DEVICE
Either the device does not exist or it was not assigned to this job. ·

(continued on next page)

Revision 1 Monitors 2-18 January 1971

(

(

)

)

)

Examples

.CLOSE PTR)

.CLOSE DEVA)
~CLOSE)

SET CDR

Function

The SET CDR command sets the filename for the next card-reader spooling
intercept.

Command Format

SET CDR filename

filename =one-to three-character filename to be used on next card­
reader INIT.

Characteristics

The SET CDR command:

leaves the console in monitor mode,
is used with disk monitors only,
requires LOGIN.

Associated Messages

None

Examples

.SET CDR A)
7SET COR MAS)

Revision l Monitors 2-18a January 1971

SET SPOOL

Function

The SET SPOOL command adds devices to or deletes devices from the current
spool list.

Command Formats

1) SET SPOOL devl, dev2, ••• devn

adds the specified devices to the job's spool list.

2) SET SPOOL ALL

places all spooling devices into the spool list.

3) SET SPOOL NONE

clears the entire spool list.

4) SET SPOOL NO devl, dev2, ••• devn

Characteristics

removes the specified devices from the job's spool list.

devl, dev2, ••• devn =names of one or more devices to be added to
or deleted from the current spool list.

The SET SPOOL command:

Restrictions

leaves the console in monitor mode,
is used with disk monitors only,
requires LOGIN.

To unspool devices, the job must have either the privilege bit set in
JBTPRV, or the bit .UNSPL set in the STATES word.

Revision 1 Monitors 2-18b

(

c

(

January 1971

)

)

)

Associated Messages

?NO PRIVS TO UN SPOOL

The job does not have privileges to unspool devices.

Examples

.SET SPOOL CDP)
~SET SPOOL NO LPT)
:SET SPOOL NONE).

SEND (SEN)

Function

The SEND command provides a mechanism for one-way interconsole communication.
(This command replaces the TALK command.) A line of information is transmitted
from one terminal to another, with the identification of the terminal sending the
information.

When the SEND command is sent from the operator's console (OPR) it allows a broadcast
of a line of information to all terminals in the system. This allows important information
to be dispersed, such as system shutdown or hardware problems.

A busy test is made before the message is sent unless the sender of the message or the
receiver of the message is QPR. The receiver of the message is considered busy if his
terminal is not at monitor command level. If the receiver is busy, the sender receives
the message BUSY and the information is not sent. If the receiving console is turned
off, the information appears to have been sent, since the hardware cannot detect this
condition on hard-wired terminals.

Command Format

SEND dev: text

or

SEND JOB n text

dev =any physical Teletype name (CTY included) or OPR. If the Teletype sending
the message is OPR, the argument may be ALL to provide the broadcast operation.

n :::: the job number to which the message is to be sent.

(continued on next page)

Revision l Monitors 2-18c January 1971

(

(

(

)
)Y

)

Characteristics

The message printed on the receiving terminal appears as follows:

;;TTY n: - text

where

n is the TTY sending the message, and text is the message.

The SEND command:

leaves the console in monitor mode.

Associated Messages

?BUSY

The receiving terminal is not at monitor command level.

?ILLEGAL JOB NUMBER

The job number is too large.

?NO SUCH TTY

The console number specified is not part of the system configuration.

?NOT A JOB

The job number specified does not exist.

Examples

.SEND OPR: PLEASE WR !TE-ENABLE DTA3)

.!.

I PLEASE (PL) I

Function

The PLEASE command allows the user non-conflicting two-way communication with
the machine operator.

2-19

Command Format

PLEASE dev: text)

dev: ==device (TTY) with which to communicate. If absent, TTYO:
is assumed.
text == the user's message. The argument is required. Characters are not,
transmitted until the RETURN, vertical tab, or form feed key is depressed,
at which point the entire line is transmitted.

When the user depresses the RETURN, vertical tab, or form feed key, a
message informing the operator of the TTY number, proi·prog number of
the user, and the time of day is printed on dev: An ALTMODE or control-C
on either the user's console or dev: causes communication to terminate and
the user's TTY to be left in monitor mode. Note that when the line terminates
with an AL TMODE, the line is typed but the operator response is not waited for.

Characteristics

The PLEASE command:

places the console in user mode,
runs a CUSP.

Associated Messages

OPERA TOR BUSY, HANG ON PLEASE

The user must wait for the operator to become available. The user does
not need to issue another PLEASE command.

OPERA TOR HAS BEEN NOTIFIED

Example

The operator is available, and the user may continue with his message
or wait for a response from the operator.

.PLEAS~ TELL ME WHEN DTA3 WIL BE FREE)
OPERATOR HAS BEEN NOTIFIED
IN HALF AN HOUR
THANKS
tC

Revision 1 Monitors 2-20 January 1971

(

(

(

CORE (COR)

Function

The CORE command types out or modifies the amount of core assigned to the user's job.

Command Format

CORE n

Characteristics

n =a decimal number. This argument is optional.

If n is omitted, monitor types out the amount of core used and does not
change the core assignment.

If n = 0, the low and high segments disappear from the virtual addressing
space of the job.

If n > 0, n represents the total number of lK blocks of core to be assigned
to the job from this point on.

If n is less than high plus minimum low segment size, n plus high segment
size is assumed.

The CORE command:

leaves the console in monitor mode,
does not allow an active device.

Associated Messages

In Multiprogramming Systems:

m/p

Key: m = number of 1 K blocks in low segment.
p =maximum K per job. Free plus dormant core.

(continued on next page)

2-21

In Swapping Reentrant Systems:

m+n/p CORE

Example

VIR. CORE LEFT=v

Key: m = number of lK blocks in low segment.
n = number of lK blocks in high segment.
p = maximum K per job.

Maximum physical user core unless limited by operator or there
are jobs locked in core (refer to Chapter 8).

v =number of K unassigned in core and on the swapping device.

?TRY LARGER ARG

n is too small for this program. This message is followed by the standard
output.

_:_CORE 5)

.CORE)
S+0/46K CORE
VIR. CORE LEFT = 274

R GRIPE

Function

This command runs the GRIPE CUSP which reads text from a user and records it in a disk
file. The GRIPE CUSP enables users to record comments and complaints.

Command Format

R GRIPE

When the CUSP responds with a YES?, type the text, using as many lines
as necessary, terminated with an altmode. The text is written as a file and
includes a header with the date, time, and project programmer number of
the user writing the comment. Therefore, the user does not need to identify
himself.

2-22

I

Characteristics

The R GRIPE command:

places the console in used mode,
runs the GRIPE CUSP,
requires a job number and LOGIN.

Associated Messages

None

Example

.;_R GRIPE)

YES? <TYPE ALT~ODE WHEN THROUGH> THIS CONSOLE IS
ALMOST OUT OF PAPER$
THANK YOU
EXIT

RESOURCES (RES)

Function

The RESOURCES command prints the names of all available devices (except TTY 1s
and PTY 1s), all file structures, and all physical units not in file structures {unless
they are down or nonexistent).

Command Format

RESOURCES

Characteristics

The RESOURCES command:

leaves the console in monitor mode,
does not require LOGIN.

2-23

I

Associated Messages

N_one

Example

.RES)
oSKA,DSKB,DPA2,coR,PTR,LPT,oTA0,1,3,7,MTA0,1,prp

.!..

2.5 SOURCE FILE PREPARATION COMMANDS

The fol lowing commands cal I in the editing programs and cause these programs to open a specified text

file for editing. Two of these commands call the TECO CUSP and two call the LINED CUSP (a disk­

oriented version of EDITOR). For each editor, one command causes an existing file to be opened for

changes and the other command causes a new file to be created. Each command requires a filename

as its argument and may have an optional extension.

Filenames are one to six letters or digits. All letters or digits after the sixth are ignored. A filename

is terminated by any character other than a letter or digit. If a filename is terminated by a period, a

filename extension is assumed to follow. A filename extension is from zero to three letters or digits.

It is generally used to indicate file format. The filename extension is terminated by any character

other than a letter or digit. (See Appendix G).

Each time one of the commands listed below is executed, the command with its argument is remembered

as a file on the disk; therefore, the filename edited last may be recalled for the next edit without

specifying the arguments again. For example, if the command

.CHEATE' PROGl ·MAC

is executed, then the user may later type the command

.ED IT

instead of

·E:DIT PROGl ·MAC

assuming no other source file preparation command was used in the interim.

2-24

I

CREATE (CREA) l

Function

The CREATE command runs LINED (Line Editor for disk) and opens a new file on disk
for creation.

Command Format

CREATE file .ext

file.ext= any legal filename and filename extension. The filename is
required; the filename extension is optional.

Characteristics

The CREATE command:

places the console in user mode,
runs the LI NED CUSP,
is used with disk monitors only,
requires a job number and LOGIN.

Associated Messages

Refer to Table 2-1

Example

.CREATE TESTl ·F4)

*

l
This command runs the COMPIL CUSP, which interprets the commands before running LINED.

2-25

I

I EDIT (ED)
1 I

Function

The EDIT command runs LINED (Line Editor for disk) and opens an already existing
sequence-numbered file on disk for editing.

Command Format

EDIT file .ext

file.ext= a filename and filename extenstion of an existing file.

Characteristics

The EDIT command:

places the console in user mode,
runs the LI NED CUSP,
is used with disk monitors only,
requires a job number and LOGIN.

Associated Messages

Refer to Table 2-1

Example

~D IT TEST. Fil)

*

1
This command runs the COMPIL CUSP, which interprets the commands before running LINED.

2-26

I

I MAKE (MA)
1 I

Function

The MAKE command runs TECO (Text Editor and Corrector) and opens a new file on the
disk for creation.

Command Format

MAKE file.ext

file.ext= any legal filename and filename extension. The filename is
required; the filename extension is optional.

Characteristics

The MAKE command:

places the console in user mode,
runs the TECO CUSP,
is used with disk monitors only,
requires a job number and LOGIN.

Associated Messages

Refer to Tab le 2- l

Example

.MAkE TEST3 .MAC)

l
This command runs the COMPIL CUSP, which interprets the commands before running TECO.

2-27

I
I

TECO (TE) l

Function

The TECO command runs TECO and opens an already existing nonsequence-numbered
file on disk for editing.

Command Format

TECO file.ext

file.ext= a filename and filename extension of an existing file.

Characteristics

The TECO command:

places the console in user mode,
runs the TECO CUSP,
is used with disk monitors only,
requires a job number and LOGIN.

Associated Messages

Refer to Tab le 2- 1

[CREATING NEW FILE]

Example

The specified file does not exist; therefore, a MAKE command is assumed
by the COMPIL CUSP.

·TECO TESTl .MAC)

*

1
This command runs the COMPIL CUSP, which interprets the commands before running TECO.

2-28

I

I

Table 2-1
Monitor Command Diagnostic Messages

(For Fi le Manipulation)

Message Meaning

COMMAND ERROR The COMPIL CUSP cannot decipher the command.

DEVICE NOT AVAILABLE Specified device could not be initialized.

EXECUTION DELETED Errors detected during assembly, compilation,
(typed by LOADER) or loading prevent a program from being executed.

Loading will be performed, but LOADER will
EXIT to the monitor without starting execution.

FILE IN USE OR PROTECTED A temporary command file cannot be entered
in the user's UFD.

?FILENAME ALREADY IN USE The specified file already exists.

INPUT ERROR 1/0 error occurred while reading a temporary
command file from the disk.

?INPUT FILE NOT FOUND The specified file does not exist.

LINKAGE ERROR 1/0 error occurred while reading a CUSP from
device SYS:.

NESTING TOO DEEP The @ construction exceeds a depth of nine
(may be due to a loop of@ command files).

NO SUCH FILE - file.ext Specified fi I e cannot be found (may be a
source file or a file required for operation of
COMPIL CUSP).

NOT ENOUGH CORE System cannot supply enough core for use as
buffers or to read in a CUSP.

OUTPUT ERROR 1/0 error occurred while writing a temporary
command file on disk.

PROCESSOR CONFLICT Use of+ construction resulted in a mixture of
source languages.

TOO MANY NAMES or Command string complexity exceeds table space
TOO MANY SWITCHES in COM PI L CUSP.

UNRECOGNIZABLE SWITCH An ambiguous or undefined word followed a
slash (/).

2.6 FILE MANIPULATION COMMANDS

Some of the fol lowing commands perform complex functions requiring a number of commands on a less

I sophisticated system. The commands below I ist the user's files and file directories, rename and delete

files, provide remote control of DECtapes, allocate disk space, and manipulate job search lists.

2-29

TYPE (TY)

Function

The TYPE command directs PIP (Peripheral Interchange Program) to type the contents
of the named source file(s) on the user's Teletype.

To stop the typing, type tC twice.

Command Format

TYPE list

Characteristics

list= a single file specification or a string of file specifications separated
by commas. This argument is required.

A file specification may consist of a filename (with or without an extension),
a device name if the source file is not on disk, a project-programmer number,
if the source file is not in the user's disk area, and a protection.

Examples of file specifications:
PROG, PROG 1.MAC,
DTA3:PROG2, PROG4[10, 16]

In addition, the* construction may be used as follows:
filename.* All files with this filename and any extension.
*.ext All files with this extension and any filename.
* * All files

The TYPE command:

leaves the console in monitor mode,
runs the COMPI L CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Table 2-1

Examples

.:_TYPF FILi;:A,DTA0 :FILE8·MAC)
~TYPF *·TMP,DTA4:C[15,107J)

2-30

LIST (LI)

Function

The LIST command directs PIP to list contents of named source file(s) on the line
printer (LPT).

Command Format

LIST list

list= a single file specification or a string of file specifications separated
by commas. This argument is required.

Characteristics

The LIST command:

leaves the console in monitor mode,
runs the COMPI L CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Tab le 2-1

Examples

. ...=..LIST TFST·*)
• LI ST *·MAC)
·LIST DTALi:A,R,c)

2-31

I

R PRINT

Function

The R PRINT command queues files upon the disk to be printed when the line printer is
available.

Command Format

R PRINT

Characteristics

The user types in the names of the files to be printed, separated by commas.
Only disk devices may be specified. If no device is specified, DSK is
assumed. A particular file structure may be specified when there is more
than one file with the same name in different file structures. Filenames
may be continued on the next line by typing a hyphen followed by a carriage
return. To delete a file after it is printed, insert the /D switch after the
filename. To preserve a file that PRINTR would normally delete, insert the
/P switch after the filename. To make more than one copy of the file, type
a number from 2 to 9 as a switch.

The R PRINT command:

places the console in user mode,
runs the PRI NTR CUSP,
requires a job number and LOGIN.

Associated Messages

Example

?CAN'T FIND FILE file.ext

The specified file could not be found.

.R PR INT)
;TEST 1 • LST)
*TEST2.LST, TEST3·LST, TESTl .MAC/2)
*tc

2-32

)

)

I

)

DIRECT (DIR)

Function

The DIRECT command lists the directory entries (filenqme, filename extension, size in
blocks written, protection if file is on disk, and date created) specified by list.

Command Format

DIRECT list

list= a single file specification or a string of file specifications separated
by commas. This argument is optional.

Characteristics

If list is omitted, OSK:*.* is assumed, and the directories in c;ill file
structures as defined by the job search list are listed, starting with the
fi I e structure name as a header.

Two switches may be usec;f with the DIRECT commc;md:

/F Lists short form of directory (Le~, filename
and filename extension only)~

/L Lists on the line printer (LPT) instead of
Teletype.

The DIRECT command:

leaves the job in monitor mode,
runs the DIRECT CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Tab le 2-1

Revision 1 Monitors 2-33 January 1971

I

Examples

Lists all files on DT A3 ·DIR DTA3:)

..:..DIR *·MAC) Lists al I files with MAC filename extension in
all file structures in the job search list.

Lists the directory entry for file TEST .F4 in
user area 27, 60.

·DIRECT)

DSKB: [10,63J

TEST f 4 01 <155> 11 -SEP-70
TES Tl MAC 01 <055> l l -SEP-70

TOTAL BLOCKS 02

I R LOOKFL I

Function

The R LOOKFL command types all the characteristics of a single disk file on the
user's console. ·

Command Format

R LOOKFL

Characteristics

The CUSP responds with the word FILE, and the user types the filename
and filename extension of the file in which he is interested.

FILE: dev:file, ext [proj,prog]

The output is written on file TTY:LOOKFL. TXT.

The R LOOKFL command:

returns console to monitor mode via EXIT,
runs the LOOK FL CUSP,
is used with disk monitors only,
requires LOGIN.

Revision 1 Monitors 2-34 January 1971

(

(

) Example

)

)

!.R LOOKF'L)

F'ILE: PIP.HGH)

DPA0:PIP.HGHC10,63J

ACCESS DATE: 12-SEP-70
CREATION TIME, DATE: 1800 12-SEP-70
ACCESS PRIVILEGS: 055
MODE: 1 6
WORDS WRITTEN: 3057.
VERSION NU~BER: 0,0
ESTIMATED LENGTH: 0.
BLOCKS ALLOCATED: 30·
POSITION OF LAST ALLOCATION: 0
NONPRIVILEGED CUSTOMER ARG: 000000000000
TAPE LABEL:
STATUS BITS: 400000000000
ERROR LOGICAL BLOCK: 0
ERROR LOGICAL UNIT: 0
NUMBER OF' BAD BLOCKS: 0·
AUTHOR: 10, 63
NEXT STR:
PREVIOUS STR:
PRIVILEGED CUSTOMER ARG: 000000000000
DATA BLOCK IN UFO: 567

EXIT

R DMPFIL

•.

Function

The R DMPFIL command prepares an octal dump of part or al I of a user file.

Command Format

.R DMPFIL
*dev:ofile.ext -dev: ifile.ext/switch

(continued on next page)

2-35

I

I

dev:ofile .ext = the output file.

If dev: is omitted, LPT is assumed.
If .ext is omitted, .LST is assumed.
If ofile is omitted, ifile is assumed.
If entire output specification (including) is omitted,
LPT: ifile .LST is assumed.

dev:ifile.ext/switch =the input file.

If dev: is omitted, OSK is assumed.

/switch=
/nnnnnnD

/nnnnnnK

/nnnnnnH

/nnnnnnF

/nnnnnnS

/nnnnnnT

Dump DECtape beginning at block nnnnnn
octal, includes listing of directory.

Assume file is save file, dump as core dump
beginning at location nnnnnn.

Assume file is high segment file, dump as
core dump.

Dump disk as a standard file, beginning
at logical block nnnnnn. If nnnnnn is 0,
the RIB is printed.

Dump disk, beginning at logical block nnnnnn
with respect to file structure or unit depending
on input device name. If nnnnnn is 0, block 0
is printed. User must be privileged since this
operation uses a super USETI UUO, or the user
must have mounted the fi I e structure or pack
as single access.

Stop dump at nnnnnn octal. This switch may
be combined with any of the above.

I The range of nnnnnn is from 0 to m777. To terminate the dump in the middle of the
operation, type tC and REENTER. This action closes the files properly.

Characteristics

The R DMPFIL command:

places the console in user mode,
runs the DMPFIL CUSP.

Associated Messages

?SYNTAX ERROR

There is a syntax error in the command string.

Revision 1 Monitors 2-36 January 1971

(

(

')i'i
JI Example

~SS I GN TTY LPT)
TTY24 ASSIGNED

)

_:_R DMPF' IL)

*PIP.HGH/400010H/400020T)
DUMP OF FILE PIP.HGH/400010H TO 09-12-70 18:32

400010 001073400010 474300000000 402000000157 205000637163 047000
000055 200000404540 202000000257 200000405527

400020 047000000041

2-36a

(

FILE (FIL)

Function

The FILE command provides remote control of DECtape-to-disk and disk-to-DECtape
transfers on operator-hand led DEC tapes.

Command Format

FILE option

option= F

option= Z

option= R

option= L

option= C

option= D

Files information onto a DECtape. Requires Tape ID and
list of filenames as arguments. The tape ID is a decimal
number (user's tape), P (project tape), or A (general tape).
Upon completion, an automatic FI LE L is performed.

Zeroes the directory of the DECtape before the files are
copied and then performs the same operations as the F
option. After the files are copied, an automatic FILE L
is performed.

Recal Is (transfers) information from the user's DECtape to
the disk. After the files are transferred, an automatic
FILE L is performed.

Reads the directory of a DECtape and places it in the user's
disk area as an ASCII file with filename tapen. DIR. Tapen
is the number of the user's DECtape and is the only argument.
The user may then read the directory with a monitor command
string. (See Examples).

Checks the queue of FI LE commands to be read to determine
if any of the user's requests are sti II pending. No argument
is required. Pending request will be listed.

Deletes the specified files from DECtape. Requires Tape ID
and list of filenames as arguments.

The C option is the only request that is performed immediately. The other
requests are placed in a queue to be performed when possible. The user's
console and job are free to proceed before the request is completed. The
option argument is optional. If an argument is not specified, a brief
dialogue is performed.

2-37

Characteristics

The FILE command:

leaves the console in monitor mode,
runs the UMOUNT CUSP,
is used with disk monitors only,
requires a job number and LOGIN.

Associated Messages

NONE PENDING

None of the user's requests is pending.

Examples

option= F

·FILE f,2, MAIN.FLi,NAME.MAC)

option= Z

.FILE z,1, TEST.MAC,JOBS.CBL)

option= R

.FILE R,2, *·MAC)

option= L

·FILE L,1)

The user may then read this directory with the monitor command string

.TYPE 1 ·DIR)

option= C

·FILE C)

option= D

·FILE 0,2, FILE1,FILE2·*)

2-38

I

I

R FILEX

Function

The R FIL EX command runs the FIL EX program. This program is a general fit e transfer
program intended to convert between various core image formats, and to read and write
various directory formats. Fil es are transferred as 36-bit data. The only processing on
the data is that necessary to convert between various core image representations.

Command Format

• R FIL EX)
*dev:ofile.ext [proj ,prog] <nnn>/switches +-dev:ifile .ext [proj ,prog] <nnn>/switches

If the project-programmer and/or the switches appear after the device
name, they apply to all the following files. If they appear after the
filename, the specifiers apply only to the preceding file. The input
filename or extension may be * in which case the usual processing of
the * construction occurs (refer to the TYPE command). The output
filename and extension may be *in which case the filename and ex­
tension of the input file is copied. If the output filename or extension
is missing, the same procedure occurs as with the *construction, ex­
cept that all core image files are written with the default extension
and format appropriate to the output device (unless overridden by
switches).

If a protection <nnn> is not specified, files are written with the system
standard protection unless the files are being written on SYS. On SYS.,
files are written with protection <155>, except for files with extension
• SYS. These files have the default protection of <157>.

Meaning of Switches:

DECtape Format Specifiers

/M MIT project MAC PDP-6/10 DECtape format
/0 Old DEC PDP-6 DECtape format
/T normal PDP-10 directory format

File Format Specifiers

/B
/C

binary processing; overrides default extension.
compressed; save file format. This format is assumed
for files with extensions • SAY, .LOW, • SVE. The
default output extension is .SAY unless the input
extension is .LOW or • SVE, in which case the ex­
tension remains unchanged.

(continued on next page)

Revision 1 Monitors 2-39 January 1971

I

Characteristics

File Format Specifiers (Cont)

/D dump format. This format is assumed for files with
extension • DMP.

/E expanded <;:ore image files (used by FIL DDT). This format
is assumed for files with extension .XPN. The default
output extension is .XPN.

/S simple block (SBLK) format, project MAC's equivalent
of • SAV format. The default output extension is • BIN.

DECtape Processing Specifiers

/G (go on), ignores read errors on input device. FIL EX
checks the always-bad-checksum bit in the 5-series
monitor, so this switch is not needed for files with

/L

• RPABC on (e.g. CRASH. SA V).

(list), causes a directory on an input DECtape file to be
typed on the Teletype, or causes a directory listing of
the output DEC tape at the end.

/P (preserved), causes quick processing (/Q) and preserves
the scratch file after processing for use by another command.

/Q (quick), causes an input DECtape to be processed quickly via
a scratch file.

/R (reuse), reuses a scratch file preserved by a /P in a previous
command.

/Z (zero), causes the appropriate format of a zerped directory
to be written on a DECtape output file. If TAPEID appears
in the output specifier, then TAPEID is written as the tape
identifier in the directory. TAPEID may be 6 characters
on a PDP-10 tape, 3 characters on a project MAC tape,
and is not present on a PDP-6 tape.

The R FIL EX command:

runs the FIL EX CUSP.

Examples

.R F !LEX)
*osK: .. DTAt:TEST·D~P/C

• R F'ILEX

The dump format file is com­
pressed and written as
TEST. SAV •

(

*nsK:SER105.SAV£ 10, 10 J/E .. DSKC :CRASH.SAVC 1 , 41 Copy CRASH.SAVto an ex-
- ponded format file for FIL DDT (

to examine.

Revision l Monitors 2-40 January 1971

)

)

)'

R SETSRC

Function

The R SETSRC command runs the SETSRC CUSP to manipulate the job's file structure
search Ii st (refer to Paragraph 6. 2. 7). The fi I e structure search Ii st defines the order
of search whenever device OSK is explicitly or implicitly specified by the user.

Command Format

R SETSRC

The CUSP responds with

TYPE H FOR HELP

The user may respond with

C) to create a new search I ist.
T) to type the current search list.
H) to get information about commands to be typed.

The current search list is typed in the form

fs l/s/s, fs2/s/s, ••• , FENCE, ••• , fs9 /s/s

fsl is the name of the first file structure.

/s is one or more of the following switches:

/C for create
/N for no create
/R for read on I y
IN for writeable

If no switches are specified, /C and IN are assl)med.

/N indicates that the monitor is not to create files on this file structure when
device OSK is specified. The user must specify the file structure name ex­
plicitly. This switch is useful when users have a small space on o fost file
structure and a large space on a slow file structure. If /N is associated with
the smaller file structure, all files are created on the largerflle structure
unless the smaller file structure is specified.

To create a new search list, type in the new search list (up to the FENCE) in
the same form as it is typed out. The monitor moves the file structures that
were in the old search list but that were not specified in the new search list
to after the FENCE, thereby never decreasing the number of file structures
that the user intends to use.

Revision l Monitors

NOTE
Since the MOUNT command creates a UFO,
it should be used to attach a new file structure
to the search list.

2-41 January 1971

Characteristics

The R SETS RC command:

places the console in the user mode,
runs the SETSRC CUSP,
requires LOGIN and a job number.

Associated Messages

None

Example

.R SETSRC)

,!T)

DSKB, FENCE

*C DSKA,DSKB)

~T)

DSKA, DSKB, FENCE

~ DSKB)

!_T)

OSKB, FENCE, DSKA

*

I R ALCFIL I

Function

The R ALCFIL command runs the ALCFIL CUSP to allocate space for a new file or re­
allocate space for an existing file on the disk in one contiguous region. The size of
the region is restricted by the size of the clust&r count field (usually 512) times the
cluster size of the file structure.

2-42

(

(

I

I

Command Format

R ALCFIL

Characteristics

The CUSP responds with

/H FOR HELP
FILE?

The user may respond with

dev:fi le. ext[proj. prog.]
or /H (for help)
or /X {to exit)

where dev: is a file structure or physical unit name. If dev: is omitted DSK
is assumed. If one of the other arguments is omitted, 0 is assumed. If a
filename is specified, the number of blocks presently allocated, if non-zero,
is typed. ALCFIL responds

ALLOCATE?

User may type N or N,M {decimal numbers)

N =total number of blocks to be allocated for the file.
M = logical block within the file structure or unit {depending

on dev:) where the al location is to begin.

If the new blocks cannot be allocated, an error message is given and ALCFIL
begins again. If the new blocks can be allocated, the message

ALLOCATED

is typed.

Since an extended ENTER {refer to Paragraph 6.2.8.2) is executed to allocate
the new blocks, the file need not exist before allocating the blocks.

The R ALCFIL command:

places the console in user mode,
runs the ALCFIL CUSP,
requires LOGIN and a job number.

Associated Messages

BLOCK NOT FREE

M specifies a unit or file structure logical block that is not free.

n BLOCKS ALREADY ALLOCATED

The file already exists. The new specification replaces the old specification,
rather than updating the old.

2-43

Example

..:J< ALC FIL)

/H FOR HELP
FILE? TEST4.TST)
ALLOCATE? 2'-'.100)

ALLOCATED
FILE? TESTS.TST)
ACiJ5CATE? 1000)

ALLOCATED
FILE? TESTS.TST)
10'00 8LC•CKS ALRFADY ALLOCATED
ALLOCATE? 500)

ALLOCATED
FILE'? tC

DELETE (DEL)

Function

The DELETE command deletes one or more files from disk or DECtape.

Command Format

DELETE list

Characteristics

list= a single file specification or a string of file specifications separated
by commas.

If a device name is specified, it remains in effect until changed or until
the end of command string is reached.

The DELETE command:

leaves the console in monitor mode,
runs the COMPI L CUSP,
is used with disk monitors only,
requires LOGIN.

2-44

Associated Messages

Refer to Table 2-1

Examples

.!..DEL * • ~11f\C)
FILES DELETED:
T 1 • rt:AC
T2. f'.1AC
T3. f'-1AC

·DEL TEST 1 • MAC)
FILES DELETED:
TEST 1 • !V~AC

RENAME (REN)

Function

The RENAME command changes the name of one or more files on disk or DECtape.

Command Format

RENAME arg

Characteristics

arg =a pair of file specifications separated by an= sign, or a string of such
pairs separated by commas:

RENAME newl = oldl ,new2 = old2, •.•

Device names can be specified only with the new filename and remain in
effect until changed or end of command string is reached.

The RENAME command:

leaves the console in monitor mode,
runs the COMPIL CUSP,
is used with disk monitors only,
requires LOGIN.

2-45

Associated Messages

Refer to Tab le 2- l

Example

...!...RENAVF Tl 1 .tv1AC=Tl .f'/.AC)
FILES RENAMED:
Tl~ MAC

..!.f<ENAME *·BAK=*·i'fAC)
FILES RENAMED:
Tll.MAC
T2 • tv1AC
T3 • {'flAC

CREF (CREF)

Function

The CREF command runs CREF and lists on the line printer any CREF listing files
generated by previous COMPILE, LOAD, EXECUTE, and DEBUG commands using
the /CREF switch since the last LOGIN. The file containing the names of these
CREF-listing files is then deleted so that subsequent CREF commands will not list
them again. If the logical device name LPT is assigned to DSK, the CREF files
are converted to LST files with the same filenames.

Command Format

CREF

Characteristics

The CREF command:

leaves the console in monitor mode,
runs the COM PI L CUSP,
is used with disk monitors only,
requires LOGIN.

2-46

I

Associated Messages

Refer to Tab le 2-1

Example

.!.CREF')

2.7 COMPILATION COMMANDS

Each time a COMPILE, LOAD, EXECUTE, or DEBUG command is executed, the command with its

arguments is remembered as a file on the disk or in core if the monitor has the TMPCOR feature imple­

mented; therefore, the filename used last may be recalled for the next command without specifying the

arguments again. (Refer to last paragraph in Section 2.5.)

I COMPILE (COM) I

Function

The COMPILE command produces relocatable binary file(s) for the specified program(s).
The use of the MACRO assembler, COBOL compiler, and/or the FORTRAN IV compiler
is determined as follows.

Condition

If no • REL (binary) file

If source-file [date, time]
is later than or equal to
binary-file [date, time]

If other than above

Source Fi le Extension

.MAC

.F4

.CBL
Other than above, or null

Action

Translate source file

Trans I ate source fi I e

Do not translate source file;
use current .REL (binary) file.

Translator Used

MACRO assembler
FORTRAN IV compiler (F40)
COBOL compiler
11 Standard processor" is used (see 2. 7. 2)

2-47

Command Format

COMPILE list

list= a single file specification, or a string of file specifications separated
by commas.

Characteristics

The COMPILE command:

leaves the console in monitor mode,
runs the COMPIL CUSP,

Restrictions

is used with disk monitors only,
requires LOGIN.

The * construction may not be used.

Associated Messages

Refer to Table 2-1

Example

.COMP ILE PROGf'.,\)

LOAD (LOA)

Function

The LOAD command performs the COMPILE function for the specified program(s), then
runs LOADER and loads the .REL files.

Command Format

LOAD list

list= a single file specification, or a string of file specifications separated
by commas.

2-48

Characteristics

The LOAD command:

leaves the console in monitor mode,
runs the COMPIL CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Tab le 2- l

Example

·LOAD FILEA,FILE5,%60000FILEC)

..!.LOAD TEST)
t>"ACF:O: TEST
LCAD I NG

LOADER 1 K CORE

EXECUTE (EX)

Function

Pass origin switch to Loader; refer to
Paragraph 2. 7 .4 •

The EXECUTE command performs the COMPILE and LOAD functions for the specified
program(s) and begins execution of the loaded program.

Command Format

EXECUTE list

list= a single file specification or a string of file specifications separated
by commas.

2-49

Characteristics

The EXECUTE command:

places the console in user mode,
runs the COMPIL CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Table 2-1

Example

~X TEST)
!V!ACRO: TEST
LOAD I NG

LOADER 1 K CORE
F:XECUT I ON

I DEBUG (DEB) I

Function

The DEBUG command performs the COMPILE and LOAD functions and, in addition,
prepares for debugging. DDT (the Dynamic Debugging Technique program) is loaded
first, fol lowed by the user's programs with local symbols. DDT is entered on com­
pletion of loading.

Command Format

DEBUG list

list= a single file specification or a string of file specifications separated
by commas.

2-50

Characteristics

The DEBUG command:

places the console in user mode,
runs the COMPIL CUSP,
is used with disk monitors only,
requires LOGIN.

Associated Messages

Refer to Table 2-1

Examples

.DEEL!G/L F ILEf\,F ILEh,F ILE.C/N,F I LEI:.;

~DEBUG TEST)
MACRO: TEST
LOAD ING

LOADER 2K CORE
FXECUT I Of\'

.1 BLT 15,0C16)

2. 7. l Extended Command Forms

Generate listings for FILEA,
FILEB, and FILED; refer to
Paragraph 2. 7. 2.

The commands previously explained are adequate for the compilation and execution of a single pro­

gram or a small group of programs at one time. However, the assembly of large groups of programs,

such as the FORTRAN library or the Timesharing Monitor, is more easily accomplished by one or more

of the extended command forms.

2. 7. l. l Indirect Commands (@ Construction) - When there are many program names and switches,

they can be put into a file; therefore, they do not have to be typed in for each compilation. This is

accomplished by the use of the@ file construction, which may be combined with any COMPIL-class

commands.

The@ file may appear at any point after the first word in the command. In this construction, the word

file must be a filename, which may have an extension and project-programmer numbers. If the exten­

sion is omitted, a search is made for the command file with a nul I extension and then for a command

file with the extension .CMD. The information in the command file specified is then put into the com­

mand string to replace the characters@ file.

2-51

I

For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED

then the command

could be replaced by

·COMPILE FILEA,@FLIST,FILEZ

Command files may contain the@ file construction to a depth of nine levels. If this indirecting process

results in files pointing in a loop, the maximum depth is rapidly exceeded and an error message is pro­

duced.

The following rules apply in the handling of format characters in a command file.

a. Spaces are used to delimit words but are otherwise ignored. Similarly, the
characters TAB, VTAB, and FORM are treated like spaces.

b. To allow long command strings, command terminators (CARRIAGE RETURN,
LINE FEED, ALT MODE) are ignored if the first nonblank character after a
sequence of command terminators is a comma. Otherwise, they are treated
either as commas by the COMPILE, LOAD, EXECUTE, and DEBUG commands
or as command terminators by all other COMPIL-class commands.

c. Blank lines are completely ignored because strings of returns and line-feeds
are considered together.

d. Comments may be inc I uded in command files by preceding the comment with
a semicolon. All text from the semicolon to the line-feed is ignored.

e. If command files are sequenced, the sequence numbers are ignored •

2.7 .1.2 The+ Construction t - A single relocatable binary file may be produced from a collection of

input source files by the 11+ 11 construction. For example: a user may wish to compile the parameter

file, S.MAC, the switch file, FT SOS.MAC, and the file that is the body of the program,

COMCON.MAC. This is specified by the following command:

.corv.P ILE S+FT50S+COfv:CCN

t Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-52

The name of the last input file in the string is given to any output (.REL, • CRF, and/or . LST) files

(e.g., COMCON. in the preceding example). The source files in the 11+ 11 construction may each con­

tain device and extension information and project-programmer numbers.

2.7.1.3 The= Constructiont - Usually the filename of the relocatable binary file is the same as that

of the source file, with the extension specifying the difference. This can be changed by the 11= 11 con­

struction, which allows a filename other than the source filename to be given to the associated output

files. For example: if a binary file is desired with the name BINARY .REL from a source program with

the name SOURCE.MAC, the following command is used •

• cotv:PILF BINARY=SOURCE

This technique may be used to specify an output name to a file produced by use of the 11 + 11 construc­

tion. To give the name WHOLE. REL to the binary file produced by PARTl. MAC and PART2. MAC,

the fol lowing is typed •

• COMPILE WHOLE=PARTl+PART 2

Although the most common use of the 11= 11 construction is to change the filename of the output files,

this technique may be used to change any of the other default conditions. The default condition for

processor output is DSK:source.REUselfJ. For example: if the output is desired on DTA3 with the

filename FILEX, the following command may be used:

EXECUTE DTA3:FILEX=FILEl·F4

2.7.1.4 The< >Constructiont -The< >construction causes the programs within the angle brackets

to be assembled with the same parameter file. If a+ is used, it must appear before the<> construc­

tion. For example: to assemble the files LPTSER.MAC, PTPSER.MAC, and PTRSER.MAC, each with

the parameter file S .MAC, the user may type

.co~PILE S+LPTSER, S+PTPSER, S+PTRSER

With the angle brackets, however, the command becomes

.co~PILE S+<LPTSER,PTPSER,PTkSER>

t Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-53

The user cannot type

·COMPILF <LPTSEH,PTPSER,PTRSER>+S

2.7 .2 Compile Switchest

The COMPILE, LOAD, EXECUTE, and DEBUG commands may be modified by a variety of switches.

Each switch is preceded by a slash and is terminated by any non-alphanumeric character, usually a

space or a comma. An abbreviation may be used if it uniquely identifies a particular switch.

These switches may be either temporary or permanent. A temporary switch is appended to the end of the

filename, without an intervening space, and applies only to that file.

Example:

(The MACRO assembler applies only to file B.)

A permanent switch is set off from filenames by spaces, commas or any combination of the two. It

applies to al I the fol lowing files unless modified by a subsequent switch.

Example:

.cc~PILF /MACRO A,B,c

.cc~PILE A /MACRO g,c

.cc~PILE A,/~ACRQ,B,c

.co~PILE A,/MACkO B,c

2. 7. 2. l Compilation Listings t - Listing files may be generated by switches. The listings may be of

the ordinary or the cross-reference type. The operation of the switch produces a disk file with the ex­

tension . LST.

The compile-switches LIST and NOLIST cause listing and nonlisting of programs and may be used as

temporary or permanent switches.

Listings of al I three programs are generated by

.co~PILE /LIST A,s,c

A listing only of program A is generated by

.co~PILE A/LIST,B,C

t Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-54

listings of programs A and C are generated by

.co~PILE /LIST A,B/NOLIST,c

The compile-switch CREF is like LIST, except that a cross-reference listing is generated, to be

processed later by the CREF CUSP.

Unless the /LIST or /CREF is specified, no listing file is generated. When listing files are generated,

the LIST and CREF commands can then be used to obtain printer output of the listing files.

Since the LIST, NOLIST, and CREF switches are commonly used, the switches L, N, and C are de­

fined with the corresponding meanings, although there are (for instance) other switches beginning with

the letter L. Thus, the command

.corvPILE /L A

produces a listing file A.LST (and A.REL).

2.7.2.2 Standard Processor - The standard processor is used to compile or assemble programs that do

not have the extensions .MAC, .CBL, .F4, or .REL. A variety of switches set the standard processor.

If all source files are kept with the appropriate extensions, this subject can be disregarded.

If the command

.cor..:PILE A

is executed and there is a file named A. (that is, with a blank extension), then A. will be translated

to A.REL by the standard processor. Similarly, if the command

.co~PILE FILE.NEW

is executed, the extension • NEW, although meaningful to the user, does not specify a language;

therefore, the standard processor is used. The user must be able to control the setting of the standard

processor which is FORTRAN IV at the beginning of each command string.

The standard processor may be changed by the following compile-switches:

2-55

COBOL

c
MACRO

M

FORTRAN

F

REL

change standard to COBOL

same as COBOL

change standard to MACRO

same as MACRO

change standard to FORTRAN IV

same as FORTRAN

change standard to use relocatable binary; i.e., use existing
.REL files, although a newer source file may be present
(useful primarily in LOAD, EXECUTE, DEBUG commands).

These switches may be temporary or permanent. For example: assume that programs A, B, and C exist

on the disk, with blank extensions. Then

.COMPILE A,,8/M,,C

will cause A and C to be translated by FORTRAN, B by MACRO. Also,

.COMPILE A,,/M B .. C

will cause A to be translated by FORTRAN, Band C by MACRO.

NOTE

Programs with .MAC, .CBL, and .F4 extensions are
always translated by the extension implied, regardless
of the standard processor unless forced by a temporary
switch.

2.7.2.3 Forced Compilation - Compilation (or assembly) occurs if the source file is at least as recent

as the relocatable binary file. The creation time for files is kept to the nearest minute. Therefore, it

is possible for an unnecessary compilation to occur. If the binary is newer than the source, the trans­

lation does not usually have to be performed.

There are cases, however, where such extra translation may be desirable (e.g., when a listing of the

assembly is desired). To force such an assembly, the switch COMPILE is provided, in temporary and

permanent form. For example:

.co~PILE /CREF/COMPILE A,,B,,c

will create cross-reference listing files A.CRF, B.CRF, and C.CRF, although current .REL files may

exist. The binary files will also be recreated.

2-56

) The corresponding switch NOCOMPILE is also provided, to turn off the forced-compile mode. Note

that this differs from the /REL switch, which turns off even the normal compilation caused by a source

file that is newer than the • REL file.

)

)

2.7 .2.4 Library Searchest - The LOADER normally performs a library search of the FORTRAN library.

If it is necessary to search other files as libraries, the compile-switches LIBRARY and NOSEARCH

(its complement) are provided. The switch /LIBRARY (equivalent to /LIB) signifies that all files to

which it applies are searched in library search mode. The switch /NOSEARCH (equivalent to /N)

signifies that al I routines of the file to which it applies are loaded regardless of whether the routines

are referenced or not. This is the normal loading mode, and the /NOSEARCH is used only to turn off

the library search mode. Note that /NOSEARCH is not equivalent to /P of the Loader.

For example: if a special library file named SPCLIB. REL were kept on device SYS at a particular in­

stallation, to compile and load a user program, library search the special library, and search the nor­

mal FORTRAN library, the following command could be used:

·LOAD ~AJN,SYS:SPCLIB/LIB

At this point, it should be noted that the program SPCLIB is not assembled simply because its source

file is presumably not on device SYS. The COMPILE process will compile any program named in the

command string, if its source is present and not older than the • REL file, unless prevented by the /REL

switch.

2.7 .2.5 Loader Maps - Loader maps are produced during the loading process by the compile-switch

I MAP. When the MAP switch is encountered, a loader map is requested from the loader. After a

library search of LIB40, the map will be written with default filename MAP .MAP, in the user's disk

area. An,optional filename, preceded by a colon, may be specified after the MAP switch.

The MAP compile-switch is the one exception to the permanent compile-switch rule, in that it causes

only one map to be output / although it may appear as a permanent switcho

I .LOAD ~AJN,SUB /~AP:~AIN

2.7 .3 Processor Switchestt

Occasionally it is necessary to pass switches to the assembler or compiler. For each translation

(assembly or compi lotion), a command string is sent to the translator containing three parts: the source

files, a binary output file, and a listing file. To add switches to those files, the user must:

tFor more LOADER information, refer to the LOADER documentation in the PDP-10 Reference
Handbooko

ttUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

Revision 1 Monitors 2-57 January 1971

a. If the+ construction is used, group the switches according to each related source
filename.

b. Group the switches according to the three types of files (source, binary, and listing)
for each source filename.

c. For each source filename, separate the groups of switches by commas.

d. Enclose all the switches for each source filename within one set of parentheses.

{SSSS)

(SSSS, BBBB)

Only source switches are present

Source and binary switches are present

(SSSS, BBBB, LLLL) Source, binary, and listing switches are present.

e. Place each parenthesized string immediately after the source filename to which it refers.

Examples:

·DEBUG TESTCN>

.co~PILE OUTPUT=MTA0:cw,s,M>IL

·COMPILE/MACRO A=MTA0:cw,,Q)/L

.co~PILE /MACRO A=MTA0:(,,Q)/L

2.7 .4 Loader Switches

Suppress typeout of errors during
assembly.

Rewind the magtape 0N), compile
the first file, produce binary output
for the PDP-6(S), and eliminate the
MACRO coding from the output list­
ing {M). Output files are given the
names OUTPUT. REL and
OUTPUT. LST.

Rewind the magtape (W), compile the
first file, and suppress Q (question­
able) error indications on the listing.
Note that when a binary switch is not
present, the delimiting comma must
appear.

Compile file at current position of
the tape and suppress Q error i ndi ca­
tions on the listing. Note that when
the source cind binary switches are not
present, the delimiting comma must
appear.

In usually complex loading processes, it may be necessciry to pass lo~der-switches to the LOADER to

direct its operation. This is accomplished by the % character. The % has the same meaning as that

of the/ in the Loader's command string. Also, like the/, the% takes one letter (or a sequence of

digits and one letter) following it. Therefore, to set a program origin of 6000 for program C, the user

types

I COMPIL allows more than one loader switch to be specified. For example,

·LOAD PROG %F/MAP
-~--

Revision 1 Monitors 2-..58 Janvary 1971

(

' l

(

The most commonly used switches are:

a. o/oS Load with symbols

b. o/onO Set program origin ton

c. o/oF Cause early search of FORTRAN I ibrary

d. o/oP Prevent FORTRAN library search.

2.7.5 Temporary Files

The COMPIL CUSP deciphers the commands found in Tables 2-3 and 2-5 and constructs new commands

for the referenced CUSPs. These new commands are written as temporary files in core or, if the

TMPCOR area is full, on the disk, as are all of the monitor-level commands. COMPIL and the other

CUSPs transfer control directly to one another without requiring additional typed-in commands from

the user.

Temporary filenames have the following form:

nnnxxx. TMP

where nnn is the user's job number in decimal, with leading zeros to make three digits and xxx speci­

fies the use of the file. In the filenames listed below, job number l will be assumed.

2.7.5. l OOlSVC.TMP - This file contains the most recent COMPILE, LOAD, EXECUTE, or DEBUG

command that included arguments. It is used to remember those arguments. (Refer to Paragraph 2. 7.)

2.7.5.2 OOlEDS. TMP - This file contains the most recent EDIT, CREATE, TECO, or MAKE command

that included an argument. It is used to remember that argument. (Refer to Paragraph 2.5.)

2.7.5.3 OOlMAC.TMP - This file contains commands to MACRO. It is written by COMPIL, and

read by MACRO. It contains one line for each program to be assembled, and (if required) the command

NAME!

to cause MACRO to transfer control to the named CUSP (11 name 11 may be F40, LOADER).

2.7 .5.4 OOlFOR. TMP - This file corresponds to the one described in the preceding section, except

that it is read by the FORTRAN IV compiler, F40.

2-59

2.7.5.5 OOlCOB.TMP - This file corresponds to the one described in Paragraph 2.7.5.3, except

that it is read by the COBOL compiler.

2.7.5.6 OOlPIP. TMP - This file is written by COMPIL and read by PIP. It contains ordinary PIP com­

mands to implement the DIRECTORY, LIST, TYPE, RENAME, and DELETE commands.

2.7.5.7 OOlCRE.TMP -This file is written by COMPIL and read by CREF. It contains commands to

CREF corresponding to each file which has produced a CREF listing on the disk.

COMPIL also reads this file, if it exists, each time a new CREF listing is generated, to prevent

multiple requests for the same file, and to prevent discarding other requests that may not yet have been

listed.

2.7.5.8 OOlEDT .TMP - This file is written by COMPIL for each EDIT, CREATE, TECO, or MAKE com­

mand, and is read by either the LINED or TECO CUSP.

For the commands MAKE or CREATE, it contains the command

EW file.ext CD CD or Sfile.ext CD

For the commands TECO or EDIT, it contains the command

EB file .ext CD CD or Sfi le. ext) i

2.7.5.9 OOlLOA.TMP -This file is written by COMPIL and contains commands to LOADER that are

necessary for loading programs.

2.8 RUN CONTROL COMMANDS

By using a run control command, the user can load core image files from retrievable storage devices

(i.e., disk, DECtape, magnetic tape). These files can be retrieved and controlled from the user's

console. Files stored on disk and DECtape are addressable by name. Files on magnetic tape require

the user to preposition the tape to the beginning of the file. (Refer to Table 3-1 for the description of

job data area locations referenced by commands below.)

2-60

) '

I

) I

I

)

RUN (RU)

Function

The RUN command loads a core image from a retrievable storage device and starts it at
the location specified within the file (JOBSA).

If the program has two segments, both the low and high segments are set up. If the
high file has extension • SHR (as opposed to • HG H), the high segment will be shared.
A two-segment program may have a low file extension (.LOW).

The RUN command clears all of core. H~wever, programs should not count on this
action and must still initialize core to the desired value to allow iJrograms to be re­
started by a tC, START sequence without having to do I/O.

Command Format

RUN dev:file.ext [proj,prog] core

dev: =the logical or physical name of the device containing the core
image. The default device name is DSK: The colon following the
device name is required.

file .ext =the name of the file containing the core image; .ext applies
to the low file, not the high file. An extension of • SHR, then • HGH,
is assumed for the high file. If the user types an extension of • SHR or
.HGH, the extension is treated as a null extension since .SHR and
.HGH are confusing as low file extensions. The default filename is
the job's current name as set by the last R,RUN, GET, SAVE, or
SSAVE command, the last SETNAM UUO, or the last command which
ran a CUSP.

[proj ,prog] =the project-programmer number; required only if core
image file is located in a disk area other than the user's.

core =the amount of core to be assigned to the sum of the low and
high segments if different from minimum core needed to load the pro­
gram or from the core argument of the SA VE command which saved
the file.

If core <the minimum low segment size, then an error message occurs.

If core ~the minimum low segment size and <the sum of the high seg­
ment and the minimum low segment size, then the core assignment is
the low segment size.

If core ~the sum of the minimum low segment and the high segment
size, then the core assignment is the size of both the low and high
segments to be used.

Since previous core is returned, MTA must have the core argument
because there is no directory telling how much core is for the low
segment. Refer to Paragraph 2. 8. 1 •

Revision 1 Monitors 2-61 January 1971

I

Characteristics

The RUN command:

Restrictions

places the console in user mode,
requires a job number and LOGIN.

On systems with a large amount of core memory, the user should not specify a core
argument that forces the high segment to start higher than 400000 unless the programs
high segment is self-relocating. If this is done, the ILLEGAL UUO error message is
likely to occur.

Associated Messages

?dev: NOT AVAILABLE

The device has been assigned to another job.

?NO SUCH DEVICE

The device does not exist in this monitor configuration.

?nK OF CORE NEEDED

There is insufficient free core to I oad the fi I e.

?NOT A SAVE FILE

The file is not a core image file.

?TRANSMISSION ERROR

A parity or device error occu1Ted during loading.

?file.ext NOT FOUND

The program file requested cannot be found on the specified device.

?NO ST ART ADR

Starting address was 0 because the user failed to specify a starting address
in the END statement of the source program.

?ADDRESS CHECK FOR DEVICE dev

The save file is too large for the core assigned.

?LOOK UP FAILURE n

Examples

The LOOKUP to read the file failed, n is the disk error code (refer to
Appendix E).

.!.RUN DSK:TEST)

·RUN DSK:HISTST (10.t63 J)

Revision l Monitors 2-62 January 1971

(

(

(

)

I

) I

)

R (R)

Function

The R command is the same as RUN SYS:file.ext core. This command is the usual way
to run a CUSP that does not have a direct monitor command to run it.

This command clears all of core. However, programs should not count on this action
and must still initialize core to the desired value to allow programs to be restarted
by a tC, START sequence without having to do I/O.

Command Format

R file. ext core

Arguments are the same as in the RUN command except that SYS: is used as
the default device.

Characteristics

The extension applies to the low file, not the high file. An extension of
.SHR, then .HGH, is assumed for the high file. If the user types an ex­
tension of • SHR or • HGH, the extension is treated as a null extension
since • SHR and • HGH are confusing as low file extensions.

The R command:

places the console in user mode,
runs a CUSP,
requires a job number and LOGIN.

·Associated Messages

?dev: NOT AVAILABLE

The device has been assigned to another job.

?NO SUCH DEVICE

The· device does not exist in this monitor configuration.

?nK OF CORE NEEDED

There is insufficient free core to loc;sd the file.

?NOT A SAVE FILE

The file is not a core image file. (continued on next page)

Revision l Monitors 2-63 January 1971

I

I

Associated Messages (Cont)

?LOOKUP FAILURE n

The LOOKUP to read the file failed, n is the disk error code (refer to
Appendix E).

?TRANSMISSION ERROR

A parity or device error occurred during loading.

?file.ext NOT FOUND

The program file requested cannot be found on the specified device.

?NO START ADR

Starting address was 0 because the user failed to specify a starting address
in the end statement of the source program •

?ADDRESS CHECK FOR DEVICE dev

~amples

Function

The save file is too large for the core assigned,

.R PIP)

* :-R PIP 5)

*

GET (G) I

The GET command is the same as the RUN command except that the monitor types out

JOB SETUP

and does not start execution.

This command clears all of core. However, programs should not count on this action
and must still initialize core to the desired value to allow programs to be restarted
by a tC, START sequence without having to do I/O.

Revision 1 Monitors 2-64 January 1971

(

(

(

) Command Format

I

I

)

I

GET dev:file.ext [proj .prog] core

Characteristics

The arguments and the defaults are the same as in the RUN command.

The extension applies to the low file, not the high file. An extension
of • SHR, then • HGH, is assumed for the high file. If the user types an
extension of • SHR or • HG H, the extension is treated as a null extension
since • SHR and • HGH are confusing as low file extensions.

The GET command:

leaves the console in monitor mode,
does not al low an active device,
requires a job number and LOGIN.

Associated Messages

?dev: NOT AVAILABLE

The device has been assigned to another job.

?NO SUCH DEVICE

The device does not exist in this monitor configuration.

?nK OF CORE NEEDED

There is insufficient free core to load the file.

?NOT A SAVE FILE

The file is not a core image file.

?TRANSMISSION ERROR

A parity or device error occurred during loading.

?file.ext NOT FOUND

The program file requested cannot be found on the specified device.

?ADDRESS CHECK FOR DEVICE dev

The save file is too large for the core assigned.

?LOOKUP FAILURE n

The LOOKUP to read the file failed, n is the disk error code
(refer to Appendix E).

·GET SYS :PIP)
JOB SETUP

~GET TEST)
JOB SETUP

Revision 1 Monitors 2 ... 65 January 1971

START (ST)

Function

The START command begins execution of a program previously loaded with the GET
command. The old program counter is copied from JOBPC to JO BO PC.

Command Format

START adr

adr = the address at which execution is to begin if other than the location
specified within the file (JO BSA). This argument is optional. If adr is
not specified, the starting address comes from JOBSA.

Characteristics

The ST ART command:

places the console in user mode,
does not allow an active device,
requires core,
requires a job number and LOGIN.

Associated Messages

Example

?NO CORE ASSIGNED

No core was allocated to the user when the GET command was given, and
no core argument was specified in the GET.

?NO ST ART ADR

Starting address was 0 because the user failed to specify a starting address
in the END statement of the source program •.

....:_START)

2-66

(

(

(

HALT (tC)

Function

The HALT (tC) command transmits a HALT command to the monitor command inter­
preter. It stops the job and stores the program counter in the job data area (JO BPC).
Refer to Paragraph 2. l • l).

Command Format

HALT (tC)

Characteristics

The HALT (tC) command:

places the console in monitor mode.

Associated Messages

None

Example

tC

2-67

I

I CONT (CON) I

Function

The CO NT command starts the program at the saved program counter address stored
in JOBPC by a HALT command (tC) or a HALT instruction.

Command Format

CONT

Characteristics

The CO NT command:

places the console in user mode,
requires core,
requires a job number and LOGIN.

Associated Messages

?CAN'T CONTINUE

The job was halted due to a monitor-detected error and cannot be continued.

Example

..:_CGNT)

2-68

)

)

JCONT

Function

The JOB CONTINUE command forces a continue of the specified job if the job was
in a tC state because of a call to the device error message routine (HNGSTP).

Command Format

JCONTy

y = the number of the job to be continued. This argument is required.

Characteristics

The JCONT command:

places the console in monitor mode

Associated Messages

?NOT A JOB

The job specified does not exist.

? JOB NOT WAITING

The job specified is not waiting to be continued.

CONT BY OPR

The job has been continued by the operator.

Example

_:JC ONT)

Revision 1 Monitors 2-68a January 1971

(

(

(

DDT (DD)

Function

The DDT command copies the saved program counter value from JOBPC into JOBOPC
and starts the program at an alternate entry point specified in JOBDDT (beginning
address of DDT as set by Linking Loader). DDT contains commands to allow the user
to start or resume at any desired address.

Command Format

DDT

Characteristics

The DDT command:

places the console in user mode,
requires core,
requires a job number and LOGIN.

Associated Messages

?NO ST ART ADR

DDT starting address was 0 (JOBDDT).

Example

~DDT)

2-69

REENTER (REE)

Function

The REENTER command is similar to the DDT command. It copies the saved program
counter value from JOBPC into JOBOPC and starts the program at an alternate entry
point specified in JO BREN (must be set by the user or his program).

Command Format

REENTER

Characteristics

The REENTER command:

places the console in user mode,
requires core,
requires a job number and LOGIN.

Associated Messages

?NO ST ART ADR

REENTER starting address was 0 (JOBREN).

Example

§EE)

2-70

Function

The E command examines a core location in the user's area (high or low segment).

Command Format

E adr

Characteristics

Adr is required the first time the E or D command is used. If adr is
specified, the contents of the location are typed out in half-word
octal mode.

If adr is not specified, the contents of the location following the
previously specified E adr or the location of the previous D adr
(whichever was last) are typed out.

The E command:

leaves the console in monitor mode,
requires core,
requires a job number and LOGIN.

Associated Messages

Example

?OUT OF BOUNDS

The specified adr is not in the user's core area.

.!.E 140)
000140/ 264000 002616 ·E
000141/ 000000 000000 ·E
000142/ 000000 000000

2-71

Function

The D command deposits information in the user's core area (high or low segment).

Command Format

D lh rh adr

Characteristics

lh =the octal value to be deposited in the left half of the location.
This argument is required.

rh = the octal value to be deposited in the right half of the location.
This argument is required.

adr =the address of the location into which the information is to be
deposited. This argument is optional.

If adr is omitted, the data is deposited in the location following the
last D adr or in the location of the last E adr (whichever was last).

The D command:

leaves the console in monitor mode,
requires core,
requires a job number and LOGIN.

Associated Messages

Example

?OUT OF BOUNDS

The specified adr is not in the user's core area, or the high segment is
write protected and the user does not have write privileges to the file
that initialized the high segment.

.o 266000 2616 140

.!.E 140
000140/ 047000 000000 .o 47000 1

·E
000140/ 047000 000001

2-72

) I

I

)

SAVE (SA)

Function

The SAVE command writes out a core image of the user's core area on the specified
device. It saves any user program (reentrant, one segment nonreentrant, or two
segment nonreentrant) as one or two files. Later, when the program is loaded by
a GET, R, or RUN command, it will be nonreentrant. If DDT was loaded with the
program, the entire core area is written; if not, the area starting from zero up
through the program break (as specified by JOBFF) is written.

Command Format

SAVE dev:file.ext core

Characteristics

dev: =the device on which the core image file is to be written. The default
device name is OSK: The colon following the device name is required.

file.ext= the name to be assigned to the core image file. The default
filename is the job's current name as set by the last R, RUN, GET, SAVE,
or SSAVE command, or the last SETNAM UUO. Ext applies to the low file,
not the high file. An extension of .SHR, then .HGH, is assumed for the
high file. If the user types an extension of .SHRor .HGH, the extension
is treated as a null extension since • SHR and • HGH are confusing as low
file extensions. If ext is omitted and the program has only one segment,
the ext is assumed to be • SAV. If ext is omitted and the program has two
segments, the high segment will have extension • HG H, and the low segment
will have extension .LOW.

core =the amount of core in which the program is to be run. This value is
stored in JOBDAT as the job's core area (JOBCOR) and is used by the RUN
and GET commands. Specified as number of 1 K blocks. This argument is
optional.

If core is omitted, only the number of blocks required by the core image
area (as explained previously) is assumed.

The SAVE command:

leaves the console in monitor mode,
requires core ,
does not al low an active device,
requires a job number and LOGIN.

Revision 1 Monitors 2-73 January 1971

I

Associated Messages

?nK CORE NEEDED

The user's current core al location is less than the contents of JOBFF.

?DEVICE dev NOT AVAILABLE

Device dev: is assigned to another user.

?TRANSMISSION ERROR

An error was detected while reading or writing the core image file.

?ENTER FAILURE n

The ENTER to write the file failed; n is the disk error code
(see Appendix E).

JOB SAVED

The output is completed.

?NO SUCH DEVICE

Example

The device does not exist in this configuration.

.SAVE DSK :TEST)
JOB SAVED

I SSA VE (SSA) I

Function

The SSAVE command is the same as the SAVE command except that the high segment,
if present, will be sharable when it is loaded with the GET command. To indicate
this sharabi lity, the high segment is written with extension • SHR instead of . HGH.
A subsequent GET will cause the high segment to be sharable. Because an error
message is not given if the program does not have a high segment, a user can use
this command to save CUSPs without having to know which are sharable.

Revision 1 Monitors 2-74 January 1971

(

(

(

) Command Format

)

I

)

SSAVE dev:file.ext core

Arguments are the same as in the SA VE command.

Characteristics

The SSA VE command:

leaves the console in monitor mode,
requires core,
does not allow an active device,
requires a job number and LOGIN.

Associated Messages

?nK CORE NEEDED

The user's current core al location is less than the contents of JOBFF.

?DEVICE dev NOT AVAILABLE

Device dev: is assigned to another user.

?TRANSMISSION ERROR

An error was detected while reading or writing the core image file.

?ENTER FAILURE n

The ENTER to write the file failed; n is the disk error code
(see Appendix E).

JOB SAVED

The output is completed.

?NO SUCH DEVICE

The device does not exist in this configuration.

Example

.ssAVE DSK:TEST)
Joe SAVED

.LOAD FI LE 1)
!VA CR 0 : F I LE 1
LOAD ING

LOADER 1 K CORE
FXIT

:_SSAVE)
JOB SAVFD

·GET)
JOB SETUP

Revision l Monitors 2-75 January 1971

2 .8. 1 Additional Information on SA VE and SSA VE

Before writing SAVed or LOW files in response to SAVE and SSAVE commands, the monitor compresses

the user's core image by eliminating consecutive blocks of zeroes. This technique is known as !!!2:.

com_pression and is used to save space on file media. Low segment files are zero-compressed on devices

OTA, MTA, and OSK, but high segment files are not because the high segment may be shared at the

time of the command.

Saved files are ordinary binary files and can be copied using the /B switch in PIP. Files with the LOW

or SAV extension may be read in dump mode, but must be reexpanded before being run. The monitor

expands the file after input on a RUN, R, or GET command.

The data format of a zero-compressed saved file consists of a series of IOWDs and data block pairs and

is terminated by a JRST A where A is the contents of JO BSA. The format is as follows:

XWD -n1, adr 1-1 I

XWD -nN, adr N-1

~----------1 } nN WORDS
JRST A

10-0544

Each IOWO describes the length of the following data block and the original location of the data in

core.

Saved files are read into the user's core area starting at location JOBSAV and then are expanded to

occupy the original relative locations. If the first word read is not an IOWD c;md is positive, an old-.

format, non-compressed saved file is assumed and no expansion is performed.

A SAVE command issued to a magnetic tape writes

a. a high segment (possibly null)

b. an EOF

c • a I ow segment

d. an EOF.

Revision 1 Monitors 2-76

(continued on next page)

January 1971

(

(

)

HIGH SEGMENT LOW SEGMENT

OR CJ~000EJ
'-v--J

NULL HIGH SEGMENT LOW SEGMENT

10-0540 .

)

Revision 1 Monitors 2-76a January 1971

(

(

The monitor does not determine the file size of a low segment on a GET from magnetic tape; therefore,

a user must a I ways specify a core argument or have enough core assigned to his job for the fi I e.

To save file space, only the high segment up through the highest location (relative to high segment

origin) loaded, as specified in the LH of JOBHRL, will be written by the SAVE command. If LH is

zero (high segment created by CORE or REMAP UUO) or DDT is present, the entire high segment wi II

be written.

Most programs are written so that only the high segment contains non-zero data. This also saves file

space and 1/0 time with the GET command. SAVE writes the high segment (. HGH) only. The LOADER

indicates to the SAVE command that no data was loaded above the job data area in the low segment by

setting the LH of JOBCOR to the highest location loaded in the low segment with non-zero data.

A number of locations in the job data area need to be initialized on a GET, although there is no other

data in the low segment. The SAVE command copies these locations into the first l 0
8

locations of the

high segment, provided it is not sharable. The 10 locations are referred to as the vestigial job data

~(refer to Paragraph 3.2.2.3). Therefore, the LOADER will load high segment programs starting at

location 400010.

To prevent user confusion, SAVE and SSA VE delete a previous file with the extension • SHR or . HGH;

therefore, SAVE deletes a file with the extension .SHR and SSAVE deletes a file with the extension

• HGH. SAVE and SSA VE commands also delete files with the extension • LOW, if the high segment

was the only segment written.

The regular access rights of the saved file indicate whether a user can perform a GET, R, or RUN com­

mand. These commands assume that the user wants to execute (but not modify) the high segment, inde­

pendent of the access rights of the file used to initialize the segment. The monitor always enables the

hardware user-mode write protect to prevent the user program from storing into the segment inadvertent-

ly.

To debug a reentrant CUSP in the system directory, the user should make a private, nonsharable copy,

rather than modify the shared version and possibly cause harm to other users. To make a private, non­

sharable copy, the fol lowing commands are used:

a. GET SYS :cusp

b. SA VE dev:cusp

c. GET dev:cusp

Writes a file in the user directory as nonsharable. The high
segment in the user's addressing space remains sharable.

Overlays the sharable program with the nonsharable one from
the user's directory. Now the user can make patches while
other users share the version in the system directory.

2-77

A SA VE of a one-segment program and a SSA VE of a two-segment program of the same name can

coexist in the same directory, and the monitor keeps the two versions separate. This al lows for a

common I ibrary of reentrant and non-reentrant versions of the same CUSPs to service both the PDP-6

and PDP-10. A sharable program may be superseded into the directory by the SSAVE command. The

monitor clears the high segment in its table of storable segments in use but does not remove the seg­

ment from the addressing space of users currently using it. Only the users doing a GET, R, or RUN

command or a RUN or GETSEG UUO have the new sharable version.

When the SAVE or SSA VE command is used to save a sharable program with only a high file, the

monitor does not modify the vestigial job data area unless the user has write privileges to the file that

initialized the shared segment. This prohibits unauthorized users from modifying the first 10 locations

of a shared segment. This restriction does not exist if a low file is also written, because the GET

command reads the low file after the high file. The real job data area locations are set from the low

file.

2.9 DETACHED JOB CONTROL COMMANDS

A job is detached if it is not under control of a user console. Any console can initiate any number of

detached jobs. Output to the console from a job running in a detached mode causes the job to stop.

When the console is attached to the job, the job is continued and the output is done.

PJOB (PJ)

Function

The PJOB command causes the monitor to respond with the job number to which the
user's console is attached.

Command Format

PJOB

2-78

I

Characteristics

The P JOB command:

leaves the console in monitor mode,
requires a job number and LOGIN.

Associated Messages

None

Example

.!PJOB)
1

.!.

CSTART (CS)

CCONT (CC)

Function

The CSTART and CCONT commands are identical to the START and CONT commands,
respectively, except that the console is left in the monitor mode.

Command Format

CST ART
CCONT

To use:

1. Begin the program with the console in user mode.

2. Type control information to the program, then type tC to
halt the job with console in monitor mode.

3. Type CCONT to allow job to continue running and leave
console in monitor mode.

4. Additional monitor commands can now be entered from the
console.

2-79

Characteristics

The CSTART and CCONT commands:

Restrict ions

leave the console in monitor mode,
require core,
require a job number and LOGIN.

These commands should not be used when the user program (which is continuing to run)
is also requesting input from the console.

Associated Messages

?NO CORE ASSIGNED

Example

No core was allocated to the user when the GET command was given,
and no core argument was specified in the GET.

?NO ST ART ADR

Starting address was 0 because user failed to specify a starting address in
the END statement of the source program.

?CAN'T CONTINUE

The job was halted due to a monitor-detected error and cannot be
continued.

?PLEASE TYPE tC FIRST

A command which would start a job is issued after a CST ART or CCO NT.

.!.CSTART)

DETACH (DET)

Function

The DETACH command disconnects the console from the user's job without affecting
the status of the job. The user console is now free to control another job, either
by initiating a new job or attaching to a currently running detached job.

2-80

Command format

DETACH

C haracteri st i cs

The DETACH command:

detaches the console,
requires LOGIN.

Associated Messages

FROM JOB n

Example

This is an informative message telling the user the job number to which the
console was attached.

.!.DE:TACH)
FfWM .JOB 1

.!.

I ATTACH (AT) I

Function

The ATTACH command detaches the current job, if any, and connects the console
to a detached job.

Command Format

ATTACH job [proj,prog]

job = the job number of the j~b to which the console is to be attached.
This argument is required.

[proj,prog] =the project-programmer number of the originator of the
desired job. This argument may be omitted if it is the same as the job
to which the console is currently attached. The operator (device OPR)
may always attach to a job although another console is attached, pro­
vided he specifies the proper [proj,prog].

2-81

Characteristics

The ATTACH command:

leaves the console in monitor mode.

Associated Messages

If an error message occurs, the console remains attached to its current job.

?TTYn ALREADY ATTACHED

The job number typed is erroneous and is attached to another console,
or another user is attached to the job.

?ILLEGAL JOB NUMBER

The specified job number is impossible.

?NOT A JOB

The job number is not assigned to any currently running job.

?CAN'T ATT TO JOB

The project-programmer number entered is not that of the originator
of the desired job.

FROM JOB n

Example

An informative message telling the user the job number, if any, from
which the console is detaching.

.ATT 1 C 10, 63 J)
FRN'1 JOB 5

.!.

2. 10 JOB TERMINATION COMMANDS

When a user leaves the system, all facilities allocated to his jobs must be returned to the monitor

foci lity pool so that they are available to others.

2-82

)

)

I
)

KJOB (K)

Function

In multiprogramming systems, the KJOB command:

Stops all assigned 1/0 devices and returns them to the monitor pool.

Returns all al located core to the monitor pool.

Returns the job number to the pool.

Leaves the console in the monitor mode.

Performs an automatic TIME command.

In swapping systems, the KJOB command performs all the above procedures. In
addition, if the user has accessed any files, the command responds with

CONFIRM:

The user may type tC to abort logout, or type an optional file structure name {or list
of file structure names) preceded by one of the following:

F) to logout immediately saving all files (including temporary files)
as they are.

D) to delete all files on the specified file structures. Responds with
ARE YOU SURE? TYPE Y OR CR.

K) to delete al I unpreserved (unprotected) files on the specified file
structures.

P) to save and preserve all but temporary files {TMP, CRF, LST) on
the specified file structures.

S) to save without preserving all but temporary files on the specified
file structures.

L) to list the directories of the specified file structures.

I) to individually determine what to do with all files on the specified
file structure as fol lows:

Revision l Monitors

After each filename is listed, type

P) to preserve the fi I e.

S) to save the file.

K) to delete the file.

Q) to learn if over logged-out quota on this file structure.
If not over quota, nothing is typed, and the same filename
is repeated •

2-83

{continued on next page)

January 1971

I
I

I

I

I

E) to skip to next file structure and save this file if below
logged-out quota for this file structure. If not below
logged-out quota, a message is typed and the same file-
name is repeated •

11;1) to list responses and meanings.

U.) to individually determine what to do with all but preserved
files. Preserved files are always preserved.

B) to delete no files except when user is over quota, then
delete enough files to be below quota.

Q) to learn if over logged-out quota on the specified file
structures •

H) to list the KJOB options and their meanings.

If no file structure names are specified, the responses are for all file structure
names in the job search I ist. If file structure names are specified, the responses
apply to those file structures, and CONARM is retyped. The KJOB command
ignores all logical assignments.

Command Formats

1) KJOB

CONFIRM:

When the CONFIRM: response is given, the user may type any of the above­
described letters followed by an optional file structure name or list of file
structure names separated by commas.

2) KJOB <file descriptor>- or ;;;;: /<letter> <I ist of file strvcture names>/ <letter>
<I ist names >etc.

Characteristics

<file descriptor>= <dev:file.ext r ppn] >

/<I etter > = any I etter of the above-described I etters. In addition, the /Z..
option is available to Batch jobs. /Z does not perform queuing operations
which the Batch user asked to be deferred until LOGOUT time. The letters
must appear after the -or=. If no file descriptor is specified, the defoult
is TTY.

The K JOB command:

detaches the conso I e,
does not al low an active device,
runs the KJOB and LOGOUT CUSPs.

Revision 1 Monitors 2-84 January 1971

(

(

)

)

Associated Messages

NO SUCH STR

A nonexistent file structure was specified.

fs LOGGED OUT QUOTA n EXCEEDED BY m BLOCKS

The user's allocation on the file structure named is greater than his logged­
out quota.

WAIT PLS

The accounting file FACT.SYS was busy for ten seconds. LOGOUT retries
for ten more seconds before going on to FACT .XOl.

?<file structure name >UFO READ ERROR, STATUS= n

A read error occurred while reading the user's UFO on the file structure.
Status n tel Is which error occurred.

? SY SSTR FAIL URE

SYSSTR UUO gave an error return. Notify the operator.

? STRUUO FAILURE

STRUUO UUO gave an error return. Notify the operator.

ACCOUNTING SYSTEM FAILURE •••

Notify the operator.

?DSKCHR FAILURE ON UNIT u

DSKCHR UUO gave an unexpected error return. Notify the operator.

JOB n USER [p,p) LOGGED OFF TTY n AT hhmm dd-mm-yy
DELETED <ALL> n FILES
SAVED <ALL >n FILES m TOTAL BLOCKS USED
ANOTHER JOB STILL LOGGED IN UNDER [p,p]
RUNTIME n MIN m SEC

This information is typed as user logs off successfully.
Note that m is total blocks allocated as opposed to blocks written.
Therefore, it is always greater than or equal to the number of blocks
written.

TYPE H FOR HRP

An unintelligible response or command has been typed. Either the
filename or the CONFIRM: message is repeated, depending on what
was typed.

Revision 1 Monitors 2-85 January 1971

I

Example

.!..K)
CONFIRM: I)
DSKB:
TFST4 .rsT <055> 2000. BLKS : K)
TEST 5 •TS T < 121 5 5 > 5 0 5 • BL KS : P)
Tl 1 .BAK <055> 5. BLkS K-)
T2 .BAK <055> 5. BLKS KJ
T3 .BAK <055> 5 • BLKS KJ
TEST .RAK <~155> S. BLKS KJ
TEST .REL <055> 5 • BLKS S)
TEST .• MAC <055> 5. 8LKS P)
TEST • SH R < (15 5 > 3 0 • BL KS : S)
JOB 5, USER c10,63J LOGGED OFF TTY24
DELETED 5 f' ILES
SAVED 4 FILES 2565 TOTAL BLOCKS USED
RUNTIME 0 MIN, 00.60 SEC

2.11 SYSTEM TIMING AND USAGE COMMANDS

AT 2309 ll-SEP-70

All system times are kept in increments of one-sixtieth or one-fiftieth of a second, depending on the

line frequency of the power connected to the PDP-10.

DAYTIME (DA)

Function

The DAYTIME command types the date followed by the time of day. The date and
time are typed in the following format:

where

dd-mmm-yy hh:mm:ss.hh

dd =day
mmm =month
yy =year
hh = hours.
mm= minutes
ss. hh = seconds to nearest hundredth.

Command Format

DAYTIME

Characteristics

The DAYTIME command:

leaves the console in monitor mode.

Revision l Monitors 2-86 January 1971

(

(

......

J Associated Messages

)

None

Example

.DAY)
ll-SEP-70 22:36:34

SCH ED

Function

The SCH ED command types out the schedule bits as set by the last
SET SCH ED command •

Command Format

SCHED

Characteristics

The SCHED command:

leaves the console in monitor mode.

Associated Messages

None

Example

.SC HFD
000000

Revision 1 Monitors 2-87
January 1971

I TIME (TI)· 1

Function

The TIME command causes typeout of the total running time since the. last TIME
command, fol lowed by the total running time used by the job since it was initialized
(logged in), followed by the integrated product of running time and core size
(KILO-CORE-SEC=). Time is typed in the following format~

where

hh:mm:ss. hh

hh =hours
mm= minutes
ss. hh = seconds to nearest hundredth.

Interrupt level and job scheduling times are charged to the user who was running when
the interrupt or rescheduling occu1Ted. ·

Command Format

TIME job

NOTE

If automatic runtime is enabled t,1sing the WATCH com ...
mand, the incremental runtime is usvally O.

job = the job number of the job whose timing is desired. If job is omitted,
the job to which the console is att<J~hed is assurned. In this ease, monitor
types out the incremental running time (running time since last TIME com ...
mand) as well as the total running time since the job was initialized.

Characteristics

The TIME commond:

leoves the console in monitor mode.

Associated Messages

?ILLEGAL JOB NUMBER

The job number specified is impossible .•

Revision 1 Monitors 2·88 January 1971

(

c:

) '

)

)

Example

.TIME)
6.32
6.32
Kf'i:'O-CORE-SEC=26

R QUOLST

Function

The R QUOLST command runs the QUOLST CUSP and typ~s the reserved, logged-in
and logged-out quotas followed by the number of fre.e blocks left for each file
structure in the job search list (refer to Paragraph 6.2.7). In addition, the names
of all the file structures in the system are typed follow~d by the number of free blocks
in each file structure that are available to al I users.

Command Format

R QUOLST

Characteristics

The R QUOLST command:

leaves the console in monitor mode,
runs the QUOLST CUSP,
requires a job number and LOGIN.

Associated Messages

None

Revision 1 Monitors 2-89 January 1971

Example

:_R QUOLST)

YOUR STRUCTURES:

DSKB: RSRVD = 0 FCFS = 20000 QUOTA OUT = 5000 FREE = 17580

SYSTF.M STRUCTURES:

DSKA: FREE = 831

DSKB: FREE = 16525

F.X IT

'
SET WATCH

Function

I The SET WATCH command sets the system to print incremental job statistics automatically.

Command Formats

l) SET WATCH arg
1

, arg
2

, ••• ,arg
5

prints the specified WATCH statistics.

2) SET WATCH ALL

prints all the WATCH statistics.

3) SET WATCH NONE

eliminates the printing of all WATCH statistics.

4) SET WATCH NO arg
1

, arg
2

, ••• ,arg
5

eliminates the printing of the specified WATCH
stati.sti cs o

(continued on next page)

Revision 1 Mo11itors 2-90 Janauary 1971

(

(

' J

)

)

I

Characteristics

The following argument enables printing whenever a monitor command
switches the console from monitor mode to user mode.

arg = DAY prints the time of day, as [HH:MM.SS]

The fol lowing arguments enable printing whenever the console is returned
to monitor mode via tC, EXIT, HALT, ERROR IN JOB n, DEVICE xxx OK?

arg =RUN prints the incremental run time.

arg = WAIT prints the wait time (time since the user started or continued
the program).

arg = READ prints the incremental number of disk blocks read modulo
4096.

arg = WRITE prints the incremental number of disk blocks written
modulo 4096.

Any combination of the arguments may be specified in any order.
Statistics are not printed for commands that do not run programs, such
as ASSIGN or PJOB. When a user logs in, his job is set to WATCH
the statistics that he has no ti fi ed the system manager of. These statistics
are kept in ACCT. SYS.

The order of the error message is the same as the order of output. There­
fore, a user who forgets either the arguments or the significance of the
statistics can find these out. A single space is always typed between
each statistic, whether the statistic appears or not; therefore, it is
possible to tell which statistics are being typed.

NOTE

Enabling WATCH output interacts with the incremental
data typed by the TIME and DSK commands.

I The SET WATCH command:

I

leaves the console in monitor mode.

Associated Messages

?ARGSARE: DAY, RUN, WAIT, READ, WRITE

The user typed an illegal argument.

Example

.:.SET t·J.~TCH DAY RUN l.JA IT READ WRITE

.tc

.!.R PIP)
(22: 3 8: l 9 J
_!tC
rn.10 2.95 457 243J

Revision l Monitors 2-91 January 1971

I

I

.!.R PIP)
(22 :38:37 J
~LPT:~SYS:PARIO.SCP

*tC
ro.11 22.43 6 0J

.:,SET. WATCH H)
?ARGS ARE: DAY,RLJN,WAIT,READ,WRITE

SYSTAT (SYS)

Function

The SYSTAT command runs a CUSP which prints status information about the system.
This information al lows a user to determine the load on the system before logging-in.

To write the output on the disk as a file with name SYSTAT. TXT, assign device OSK
with logical name SYSTAT.

The SYSTAT command types the status of the system: system name, time of day, date,
uptime, percent null time (idle plus lost time).

It types status of each job logged-in: job number (@ after job number indicates the
high segment has been superseded; # after the job number indicates the high segment
is from a directory or device other than the CUSP directory on device SYS; I after
the job number indicates the job is locked in core but is shufflable; & after the
job number indicates the job is locked in core and not shufflable); project-programmer
number(**,** if detached); Teletype number (CTY =console Teletype, DET =de ...
tached); program name being run; program size; job and swapped state (refer to
Paragraph 4.9.3.3); and run time since logged in.

It types the status of high segments being used: name (PRIV = nonsharable, OBS=
superseded); device or file structure name from which the segment came; directory
name (**,**if detached); size (~ =swapped out, ~F =swapped out and frag­
mented, F =in core and fragmented on disk, SPY= user is executing the SPY UUO);
number of users in core or on the disk.

It types the status of dormant segments: name, device name, directory name, size
(~ = swapped out, 9-N F = swapped out and fragmented , F = in core and fragmented
on disk).

The command types swapping space used, virtual core used, swQpping rotio, virtual
core saved by sharing.

It types status of busy devices: device name, job number, how device is assigned
(AS= ASSIGN command, INIT = INIT or OPEN UUO, AS+INIT =both ways).

It types system file structures: free blocks, mount count, single-access job. It types
disk performance, swapping, and error statistics: free blocks for each file stru<;:ture
followed by the following items, in columns, for each unit: number of free blocks
(FREE), number of buffered-mode blocks read (BR) and written (BW), number of
dump-mode blocks read (DR) and written (DW.), number of blocks read (MR) and
written (MW) for monitor 1/0 (UFO, RIB, MFD), and number of seeks for any 1/0.

It types the status bits for each unit as fol lows: RHB, monitor must reread HOME
block; OFL, unit is off-line; HWP, unit is hardware write•protected; ~p, unit is
software write-protected for this job; SAF, unit is member of singl&-access file

Revision 1 Monitors 2-92 January 1971

(

(

)

I

structure; ZMT, unit is member of a file structure with zero mount count; PRF, unused
by monitor; PNM, pack not mounted on this unit; OWN, unit is down; MSB, unit
has more than 1 SAT block; NNA, no new accesses have been specified by operator.

It types the following error information: HDEV (number of hard device, channel
and control I er, errors on this unit); HDAT (number of hard data, parity, errors on
this unit); SDEV (number of soft and hard device, channel and controller, errors on
this unit); SDAT (number of soft and hard data errors, parity, on this unit); HPOS
(number of hard positioning failures, recalibrating did not correct, for this unit);
SPOS (number of soft positioning failures, recalibrating once corrected, for this
unit); SER (number of SAT failures); RER (number of rib redundance failures); CER
(number of software folded checksum failures); HERR STATUS (last device status
on hard device or data errors, in octal); SERR STATUS (last device status on a soft
device or data error, in octal); LBN (last logical block number in octal of region
which had the latest hard data error).

It types the following data for each unit in the active swapping I ist: physical unit
name, number of blocks (128 word) swapped in (R) and out (W), rt:Jtio and percent
of number of K used and allocated for swapping.

Command Format

SY STAT arg

arg =one or more single letters (in any order) used to type any subset of
the SY STAT output. This argument is optional • The I etters are as follows:

Characteristics

B =busy devices
D = dormant segments
F = file structures
H =options available
J = job information
N =al I but job information
S = job information without state and run time
L =output on device LPT. If LPT is unavailable, the

message LPT BUSY - WAITING is typed, and every
5 seconds the LPT is tried again.

P =disk performance

The SY STAT command:

leaves the console in monitor mode,
runs the SY STAT CUSP,
does not require LOGIN.

Associated Messages

None

Revision 1 Monitors 2-93 January 1971

Example

.SYS TAT)

STATUS OF 512i6A SYS#2 AT 16:15:44 ON 17-DEC-71

UPTIME 4i:35, 64% NULL TIME : 23~ IDLE + 41~ LOST
SHUFFLE TIME= 3i.42, CORE ZEROING TIME: 2.15
22 JOBS IN USE OUT OF 37. 21 LOGGED IN, 22 DETACHED

J03 WHO WHERE wHAT

PRINT
OPS ER
PIP
BATCON
TECO
OM OU NT
SY STAT
OM OU NT
LOGIN
SYSDPY
PHINTR
DBASIC
DIRECT
LPTSPL
CDRSTK
PIP
KJOB
PIP
DIRECT
KJOB
F"AI31 G
MACRO

SIZE

lK
1+2K
1+4K

STATE

TI SW
SL SW
tC SW

RUN TIME

1
2
3
4
5
5
7
8
9
u
11
12
13
14
15
16
18
19
2~
21
22
23

•
'
•
•
•
•
•
•
•
•
,
,
,
,
•
•
,
,
,
•
•
•

HIGH SEG;-tiENTS:

DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET
DET

PROGRAM DEVICE OWNER

OPS ER
LOGIN
PIP
DIRECT
CPHIV>
TECO
M~CRO
KJOB

DSKB
DSKB
DSKB
DSK3

DSKB
DSKB
DSKB

SYS
SYS
SYS
SYS
JOB 12
SYS
SYS
SYS

DORMANT SEGMENTS:
PHOGR~~ DEVICE OWNER

~:1ANGR
TECO
COM? IL
LPTSPL
LP TS PL
CDRSTK
LOA 'JER
9INCOM
F'E!J
F'4J
SH CC OM
RUN :JF'F'
LOGOUT

DSKS
9SK3
DSKB
JSK3
DSK3
:JSKB
DSKB
DSKB
DSKB
DSKB
DSKB
DSKB
DSK3

SYS
12,141
SYS
SYS
1,2
SYS
SYS
11,131
SYS
SYS
SYS
SYS
SYS

() K
3+3K
9K
3K
9K
1+2K
3+SPY
2K
21+7K
1+21<
2K
4K
1+4K
4+2K
1+4K
1+2K
4+2K
9K
4+6K

HIGH K USERS

2K SW
2K
4K SW
2K SW
7K SW
3K SW
6 K SW
2K SW

HIGH K

1 K Sw
3K SW
2K SW
2K SW
2K SW
2K SW
3K SW
1 K SW
4K SW
llK SW
1 K SW
2K S'J/
2 K SW

1
1
3
2
1
1
1
2

SL SW
TI SW
SL SW
RN
TI SW
RN
TI
IO
RN SW
tC SW
SL SW
tC SW
tC SW
TI SW
TI SW
tC SW
TI SW
tC SW
RN SW

1: 29
3

43
15
53

4
I

• I
4:41

7
1: 21

I
4
9
2
8

1: 12
1
4

1: 18
38

(continued on next page}

Revision 1 Monitors 2-94 January 1971

(

/~--

1

~-

(

)

)

)

S~APPING SPACE USED = 144/375 : 387.
VIRT. CORE USED= 118/375: 317.

. SWAPPING RATIO: 118/27 : 4.4
VIRT. CORE SAVEJ BY SH~RING: 12/(12+118) : 97.

BUSY DEVICES:
DEVI CE .J03 WHY

PTYI 2 INIT
PTYl 2 INIT
PTY3 2 INIT
PTY4 ,., INIT .:...

PTY ~.; £ !:'HT
PTY6 2 INI T
PTYU 2 INIT
DTAl 19 AS
DTA2 22 AS
DT . .'.\5 2 ,3 AS
DIAS 1 AS
DTA7 6 AS
;HMI 9 As+ I NIT

SYSTEM F'ILE STRUCTURES:
NA,1E FREE :-rlOUNT
DSKA 4631 9
DSKB 12269 19

DISK PSRFOR~ANCE STATISTICS:
UNIT OR F'/ s

F'REE BR aw DR DW MR
DSKA 4628
FHA.I< GLZX>:

1!.i47 518 I 317 ' 331
f'H,~ l< GLZ X2) :

3181 121· 328 16 543
DSK3 12269
DP4il (2RPU1):

6114 2545 929 G31 219 5155
1SB ERRORS: CER: 13 HERR STATUS:l5 SERR STATUS:4ill5

DPAl (2 RPU5):
6125 .2443 1474 1861 212 1116.

:11sa ERRORS: SDAT: 2 HERR STATUS:15 SERR STATUS:58J4115

ACTIVE SWAPPING STATISTICS:
UNIT R W USED<K>
F'HAI 274656 194616 141/3111 : 477.
DP Ai ii I 'I/ 75 : 17.

Revision 1 Monitors 2-95

MW SEEKS

69 I

lU

1255 3634

547 2345

January 1971

OSK (OS)

Function

The OSK command types disk usage for the combined structures of the job, sJnce the
last OSK command, followed by the total disk usage since the job was initialized
(logged in). Disk usage is typed in the followi11g format:

RD, WT=I,J
RD,WT=M,N

where I and J are the incremental number of 128 .. word blocks read and written sinQe
the last OSK command, and M and N are the total number of 128·word blocks read
and written since LOGIN.

NOTE

I and J are kept modulo 4096. If automatic READ or
WRITE print outs have been enabled using the WATCH
command, I and J are US1.Jally zero, since the WATCH
output also resets these values.

Command Format

OSK job

Characteristics

job= the job number of the job fQr which the disk uSQge is desired. This
argument is optional.

If job is omitted, the job to which the console is attached is assumed.

If job is supplied (whether the fob of this yser or another user) the
incremental quantities are not reset to zero.

The OSK command:

leaves the console in monitor mode,
requires a job number and LOGIN.

Associated Messages

?NOT A JOB NUMBER

The job number specified is not ossigned to any e1.1rrently running job.

Example

!OSK)
RD,, WT;: l 2 ,, 0
R0.1WT=475 .. 243

2.12 TELETYPE CHARACTERISTICS COMMAND

(

(

I The SET TTY command accepts text arguments and modifies the monitor table of choract(itristics for a

Teletype line. This command alSC> allows a Teletype to be assigned by a fob which is not controlling (

it.

Revision 1 Monitors 2-96 Janu~ry 1971

)
.J

)

)

I SET TTY

Function

I The SET TTY. command declares special properties of the Teletype line to the scanner service.

Command Format

I SET TTY dev: NO word

dev: =the device argument that is used to control a line other than the one
where the command is typed. This argument is optional and is legal only
from the operator's console. It may be used to modify the characteristics
of any Teletype lines in the system.

NO =the argument that determines whether a bit is to be set or cleared.
This argument is optional •

word =the various words representing bits that may be modified by this
command. The words are as follows:

SET TTY TAB

SET TTY NO TAB

SET TTY FORM

SET TTY NO FORM

SET TTY LC

SET TTY NO LC

SET TTY WIDTH n

SET TTY NO CRLF

SET TTY CRLF

Revision l Monitors

This terminal has hardware TAB stops set
every eight columns.

The monitor simulates TAB output from
programs by sending the necessary number
of SPACE characters.

This terminal has hardware FORM (PAGE)
and VT (vertical tab} characters.

The monitor sends eight I inefeeds for a FORM
and four linefeeds for a VT.

The translation of lower-case characters input
to upper case is suppressed.

The monitor translates lower-case characters
to upper case as they are received. In either
case, the echo sent back matches the case of
the characters being sent.

The carriage width (the point at which a free
carriage return is inserted} is set to n. The
range of n is 17 (two TAB stops} to 200 decimal.

The carriage return normally outputted at the
end of a I ine exceeding the carriage width is
suppressed.

Restores the carriage return.

(continued on next page}

2-97 January 1971

SET TTY SLAVE

SET TTY NO ECHO

SET TTY ECHO

SET TTY FILL n

SET TTY NO FILL

Character
Name

BS
HT
LF
vr
FF
XON
TAPE
XOFF
NTAP

Characteristics

I The SET TTY command:

The Teletype becomes slaved, i.e., no commands
may be typed on the console, and the console may
be ASSI G Ned by another user.

The Teletype line has local copy and the computer
should not echo characters typed in.

Restores the normal echoing of each character typed
in.

The filler class n is assigned to this terminal. The
filler character is always DEL (RUBOUT, 377 octal).
No fi I lers are supplied for image mode output.

Equivalent to TTY FILL 0. Fillers for output and
echoing are determined from the following:

Octal
Number of Fillers for Filler Class
0 l 2 3

010 0 2 6 6
011 0 l or 2 l or 2 l or 2t
012 0 1 6 6
013 0 2 6 6
014 0 12 21 21
021 0 l l 1
022 0 l l l
023 0 l l l
024 0 l l l

leaves the console in monitor mode.

Associated Messages

None

2.13 SYSTEM ADMINISTRATION COMMANDS

The commands in this section are restricted to system administrators only.

t l if 0-3 spaces to TAB stop, 2 if 4-7 spaces to TAB stop.

Revision l Monitors
2-98

January 1971

(

(

(

)

)

)

I SET DAYTIME

Function

I The SET DAYTIME command when used with an argument changes the time of day.

I
I

Command Format

SET DAYTIME n

Characteristics

n =decimal number 0 through 2359, representing 24-hour time
(i.e., hours * 100 +minutes}. This argument is required.

The SET DAYTIME command:

leaves the console in monitor mode.

Restrictions

I The user must be on device OPR or be logged in under [l ,2] •

Associated Messages

None

I I SET SCHEDULE I

Function

I The SET SCHEDULE command changes the scheduled use of the system, depending on n.

Revision 1 Monitors 2-99 January 1971

I
Command Format

SET SCHEDULE n

n is octal and is stored in RH of STATES word in COMMON.

Characteristics

n = 0 regular timesharing
n = 1 no further LOGINS allowed except from CTY,
n = 2 no further LOGINS from remote Teletype's,

and do not answer c;fata sets.

I The SET SCHEDULE command:

leaves the console in monitor mode.

Restrictions

I The user must be on device QPR or be logged in under [1,2 l.

Associated Messages

None

ASSIGN SYS:

Function

The ASSIGN SYS command chQnges the systems device tp device dev.

Command Format

ASSIGN SYS:dev

dev ::;: the device to which the system device is changed,

Charac;:teristi cs

The ASSIGN SYS command:

I eaves the conso I e in monitor mode,
requires a job number and LOGIN.

Revision 1 Monitors 2.,.100

(

(

Januory 1971

")
)1 Restrictions

I The user must be on device OPR or logged in under [1,2] •

Associated Messages

None

DETACH (DET)

Function

The DETACH command assigns the device dev to JOB 0, thus making it unavailable.

)· Command Format

)

DETACH dev

dev = the name of the device to be detached.

Characteristics

The DETACH command:

Restrictions

leaves the console in monitor mode,
requires a job number and LOGIN.

I The user must be on device OPR or be logged in under [l ,2]. DSK cannot be detached.

Associated Messages

?ALREADY ASSIGNED TO JOB n

The device specified is already in use.

I ?CAN'T DET DEV

The user is not logged-in under [1,2] •

?NO SUCH DEVICE

The specified device does not exist in this monitor configuration.

Revision l tvbnitors 2-101 January 1971

ATTACH (AT)

Function

The ATTACH command returns a detached device to the user issuing the command, and
then the user must DEASSIGN the device to return it to the monitor's pool of available
resources.

Command Format

ATTACH dev

dev = the device to which the user is attaching.

Characteristics

The ATTACH comm.and:

Restrictions

leaves the console in monitor mode,
requires a job number and LOGIN.

I The user must be on device OPR or be logged in under [1 ,2].

Associated Messages

?CAN'T A TT DEV

I The user is not logged-in under [1,2] .

?NO SUCH DEVICE

The specified device does not exist in this monitor configuration.

?WASN'T DET

The specified device is not detached.

Revision 1 Monitors 2-102 January 1971

(

(

.)

)

)

Function

The CTEST command is used by system programmers to pass arguments to test extensions
made to the COM PI L CUSP.

Command Format

CT EST

Characteristics

The CTEST command:

runs the COMPIL CUSP,
requires LOGIN.

Associated Messages

None

SET DATE

Function

The SET DATE command is used to change the date.

Command Format

SET DA TE mm dd yy

mm :;::: two-character number of month.
dd =two-digit day of month.
yy =two-digit year.

This command does not check the validity of the argument as does ONCE-only.

Revision l Monitors 2-103 January 1971

I

Characteristics

The SET DA TE command:

leaves the console in monitor mode.

Restrict ions

The user must be on device OPR or be logged in under [1 ,2] •

Associated Messages

None

SETCORMAX

Function

The SET CORMAX command is used to change the system parameter CORMAX. CORMAX
is the largest size that any job can be.

Command Format

SET CORMAX n

n =decimal number representing nK. This argument is required.

Characteristics

The SET CO RMAX command:

leaves the console in monitor mode.

Restrictions

The user must be on device OPR or be logged in under [1,2].

Associated Messages

None

Revision 1 Monitors 2-104 January 1971

(

(

)

)

SET CORMIN

Function

The SET CORMIN command is used to change the system parameter CORMIN. CORMIN
is the guaranteed amount of contiguous core that a single unlocked job can have. This
command is used only with the real-time monitor.

Command Format

SET CORMIN n

n =decimal number representing nK. This argument is required.

Characteristics

The SET CORMIN command:

leaves the console in monitor mode.

Restrictions

The user must be on device OPR or be logged in under [1,2] •

Associated Messages

None

SET TIME

Function

The SET TIME command sets a central processor time I imit for a job. When the time
limit is reached, the job is stopped and a message is typed. A timesharing job may be
continued by typing CONT, but no time limit is in effect unless it is reset. A
Batch job cannot be continued.

Revision 1 Monitors 2-105 January 1971

Command Format

SET TIME n

n =number of seconds of central processor time to which the job
is limited.

Characteristics

The SET TIME command:

leaves the console in monitor mode,
requires LOGIN.

Associated Messages

?TIME LIMIT EXCEEDED

The time al lowed for the job hqs been reached.

Examples

.s ET T I ME 1 0)

.SET TI ME 6)

Revision l Monitors 2-106

(

(

(

January 1971

Chapter 3
Loading User Programs

3.1 MEMORY PROTECTION AND RELOCATION

Each user program is run with the processor in a special mode known as the user mode, in which the

program must operate within an assigned area in core. In user mode, certain operations are illegal.

Every user has an assigned area in core; therefore the rest of core is unavailable to him. He cannot

gain access to the protected area for either storage or retrieve I of information.

The assigned area of each user may be divided into two segments. If this is the case, the low segment

is unique for a given user and can be used for any purpose. The high segment may be used by a single

user or it may be shared by many users. If the high segment is shared by other users, the program is a

reentrant program. The monitor can write-protect the high segment so that the user cannot alter its

contents. This is done, for example, when the high segment is a pure procedure to be used reentrantly

by many users. One high pure segment may be used with any number of low impure segments. (Refer

to Chapter 1 for the distinctions between pure and impure segments.) Any user program which attempts

to write in a write-protected high segment is aborted and receives an error message. If the monitor

defines two segments but does not write-protect the high segment, the user has a two-segment non­

reentrant program (refer to Paragraph 4.4.2).

The Timesharing monitor defines the size and position of a user's area by specifying protection and

relocation addresses for the low and high segment. The protection address is the maximum relative

address the user can reference. The relocation address is the absolute core address of the first location

in the segment, as seen by the monitor in the hardware. The monitor defines these addresses by loading

four 8-bit registers (two 8-bit registers in a PDP-10 with the KT10 option instead of the KTlOA option),

each of which correspond to the left eight bits of an 18-bit PDP-10 address. Thus, segments a I ways con­

tain a multiple of 1024 words.

In user mode, the PDP-10 hardware automatically relocates user addresses by adding the contents of

the memory relocation register in the central processor to the high-order eight bits of the user address

before the address is sent to memory. The address before the addition is the relative address and after

the addition is the absolute address. To determine whether a relative address is lega I, its eight

3-1

high-order bits are compared with the contents of the memory protection register. If the eight

high-order bits of the relative address are greater than the contents of the memory protection register,

the memory protection flag is set in the centra I processor, and control traps to the monitor, which

aborts the user program and prints an error message on the user's console, unless the user program has

instructed the monitor to pass such interrupts to itself for error-handling. (Refer to APRENB UUO,

Paragraph 4.3.3.1.)

Systems with the KTlO option have only the low pair of protection and relocation registers. The user

program is a I ways non-reentrant and the. assigned area comprises only the low segment.

When the monitor schedules a user's program to run, the memory protection and relocation registers

are set to the bounds of the user's a llocate.d core area and the centra I processor is switched to user

mode.

To take advantage of the fast accumulators, memory addresses 0-17
8

are not relocated and all users

have access to the accumulators. Therefore, relative locations 0-17
8

cannot be referenced by a

user's program. The monitor saves the user's accumulators in this area when the user's program is not

running and while the monitor is servicing a UU 0 from the user. Refer to the PDP-10 System Reference

Manual for a more complete description of the relocation and protection hardware.

3.1.1 Memory Parity Error Recovery

The memory parity error recovery code allows the machine to run with PARITY STOP up, thereby

gaining 10% more CPU speed than with PARITY STOP enabled. This procedure differentiates between

user mode and executive mode when a parity error occurs. If the machine v.A'.lS in user mode, the cur­

rent job is stopped, and the word causing bad parity is rewritten with good parity. The fol lowing

message is typed on the user's console:

? ERROR IN JOB n
? MEM PAR AT USER pppppp; BAD WORD dddddddddddd

AT USER adr = ABS. xxxxxx

and the following message is typed simultaneously on device OPR, interrupting any current typeout:

where

? USER MODE PAR ERROR AT ABS LOC xxxxxx FOR JOB n

n is the job number of the current job
pppppp is the user PC when the parity error occurred

dddddddddddd is the bad data word read (expressed in octa I)
adr is the user address of the bad word

xxxxxx is the absolute address of the bad word

3-2

If the machine was in executive mode when the parity error occurred, recovery is not attempted since

a monitor routine has read bad data. The fol lowing message {with no carriage return, I ine feed fol­

lowing) is typed on CTY and the machine HALTS:

EXEC PARITY ERROR STOP

At this point, the operator must depress the PARITY STOP key and hit CONTINUE. The machine

should stop a I most immediately with a memory failure. If the parity error is not reproducible on a

memory scan, the following message is typed on the CTY on the same line as the previous message and

the machine HALTS with the PC at 777777:

----SPURIOUS

System reload is required after an executive mode memory parity failure.

The algorithm for determining the bad memory location in both executive and user mode is to scan core

from location 20
8

through location C (MEMSIZ). In both modes, the parity error is detected at APR

interrupt level. For executive mode the memory scan when CONTINUE is hit runs at APR level. For

user mode a clock level interrupt is requested, and the memory scan and subsequent typeouts are pro­

cessed at this level. The following two counters are kept for user mode parity analysis:

PARTOT - the total number of user mode parity errors since system
was loaded.

PARSPR - the number of errors for which recovery failed (no parity
error on memory scan) and the job was not stopped.

Also the counters PARPC, PARA DR, and PARWRD contain the user PC, the absolute location, and the

bad data word, respectively, of the most recent user mode memory parity error.

3 .2 USER'S CORE STORAGE

A user's core storage consists of blocks of memory, the sizes of which are an integral multiple of 1024
10

{2000
8

) words. In a non-reentrant monitor, the user's core storage is a single contiguous block of

memory. After relocation, the first address in a block is a multiple of 2000
8

• The relative user and

relocated address configurations are shown in Figure 3-1, where PL, RL, PH' and RH are the protection

and relocation addresses, respectively, for the low and high segments as derived from the 8-bit registers

loaded by the monitor. If the low segment is more than ha If the maximum memory capacity (PL 2:. 400000),

the high segment starts at the first location after the low segment (at PL+ 2000). The high segment is

limited to 128K.

3-3

Two methods are available to the user for loading his core area. The simplest way is to load a core

image stored on a retrievable device (refer to RUN and GET, Chapter 2). The other method is to use

the relocatable binary loader to link-load binary files. The user may then write the core image on a

retrievable device for future use (refer to SAVE, Chapter 2).

3 .2. 1 Job Data Area

The first 140 octal locations of the user's core area are always allocated to the job data area (refer to

Table 3-1). Location in this area are given mnemonic assignments where the first three characters are

JOB. The job data area provides storage for specific information of interest to both the monitor and

the user. Some locations, such as JO BSA and JOBDDT, are set by the user's program for use by the

monitor. Other locations, such as JOBREL, are set by the monitor and are used by the user's program.

In particular, the right ha If of JOBREL contains the highest legal address set by the monitor when the

user's core a !location changes.

0

17

PL+ 1777

400000

777777

1---------- ~ f\ LOW
SEGMENT

f\

ILLEGAL

v
HIGH

SEGMENT v

ILLEGAL

USER ADDRESSES
BEFORE RELOCATION

/
HIGH

SEGMENT

/

0

17

HARDWARE
ACCUMULATORS

RH+ 400000

~---------'\ RL

t- -L_O~ ~A!A_A3~A-
LOW

\ SEGMENT

RL+20
RL+140

RL+PL+1777

I
NON-

I EXISTENT
I MEMORY

I RH MUST BE NEGATIVE

I

I UNLESS SYSTEM HAS A
MEMORY LARGER THAN

I 128K.

L ____ J
TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER
RELOCATION

10-0594

Figure 3-1 User's Core Area

3-4

)

Name

JOBUUO

JOB41

JOB ERR

JOBREL

JOBBLT

)

I JOBDDT

JOBCN6

JOBPFI

JOBHRL

)

Revision 1 lv\oni tors

Octal
Location

40

41

42

44

45

74

106

114
(value)

115

Table 3-1
Job Data Area Locations

(for user-program reference)

Description

User's location 40g. Used for processing user UUOs (001
through 037) and storing op code and effective address.

User's location 41 8 • Contains the beginning address of
the user's programmed operator service routine (usually a
JSR or PUS HJ).

Left half: Unused.
Right half: Accumulated error count from one CU SP to the
next. CUSPs should be written to look at the right half
only.

Left half: 0
Right half: The highest relative core location available
to the user (i.e., the contents of the memory protection
register when this user is running).

Three consecutive locations when the LOADER puts a BLT
instruction and a CALLI UUO to move the program down on
top of itself. These locations are destroyed on every execu­
tive UUO by the executive pushdown I ist.

Left half: the last address of DDT.
Right half: the starting address of DDT. If contents are 0,
DDT has not been loaded.

Six temporary locations used by CHAIN CUSP (refer to
Timesharing Handbook) after it rel eases all I/ 0 channels.
JOBC N6 is defined to be in JOBJDA.

All user I/O must be to locations greater than JOBPFI.

Left half: First relative free location in the high segment
(relative to the high segment origin so it is the same as
the high segment I ength). Set by the LOADER and sub­
sequent GETs, even if there is no file to initialize the low
segment. The left half is a relative quantity because the
high segment can appear at different user origins at the
same time. The SA VE command uses th is quantity to know
how much to write from the high segment.
Right half: Highest legal user address in the high segment.
Set by the monitor every time the user starts to run or does
a CORE or REMAP UUO. The word is >401777 unless there
is no high segment, in which case it wiTi be zero. The
proper way to test if a high segment exists is to test this
word for a non-zero value.

3-5 January 1971

Name

JOBSYM

JO BUSY

JO BSA

JOBFF

JOBREN

JOBAPR

JO BC NI

JOBTPC

JOBOPC

Octal
Location

116

117

120

121

124

125

126

127

130

Table 3-1 (Cont)
Job Data Area Locations

(for user-program reference)

Description

Contains a pointer to the symbol table created by linking
loader.
Left ha If: Negative of the length of the symbol table.
Right half: Lowest address used by the symbol table.

Contains a pointer to the undefined symbol table created
by linking loader. Not used by DDT.

Left half: First free location in low segment (set by loader).
Right half: Starting address of the user's program.

Left ha If: 0.
Right half: Address of the first free location following the
low segment. Set to C(JOBSA)LH by RESET UUO.

Left ha If: Unused.
Right half: REENTER starting address. Set by user or by
loader and used by REENTER command as an alternate
entry point.

Left ha If: 0.
Right half: Set by user program to trap address when user
is enabled to handle APR traps such as ii lega I memory,
pushdown overflow, arithmetic overflow, and clock. See
CALL APRENB UUO.

Contains state of APR as stored by CONI APR when a
user-enable APR trap occurs.

Monitor stores PC of next instruction to be executed when
a user-enabled APR trap occurs.

The previous contents of the job's last user mode program
counter a re stored here by monitor on execution of a DDT,
REENTER, START, or CSTART command. After a user pro­
gram HALT instruction fol lowed by a START, DDT,
CSTART, or REENTER command, JOBOPC contains the ad­
dress of the HALT. To proceed at the address specifhd by
the effective address, it is necessary for the user or his
program to recompute the effective address of the HALT
instruction and to use this address to start. '.Jimilarly, after
an error during execution of a UUO followed by a START,
DDT, CSTART, or REENTER command, JOBOPC points to
the address of the UUO. For example, in DDT to continue
after a HALT, type

JOBOPC/10000, ,3010 JRST@ QX

3-6

(

(

)

I

)

Name

JOBCHN

JOBCOR

JOBI NT

JOBVER

JOB DA

Octal
Location

131

133

134

137

140

Table 3-1 (Cont)
Job Data Area Locations

(for user-program reference)

Description

left half: 0 or the address of first location after first
FORTRAN IV loaded program.
Right half: Address of first location after first FORTRAN IV
Block Data.

Left half: Highest location in low segment loaded with
non-zero data. No low file written on SAVE or SSAVE
if less than 140. Set by the LOADER.
Right half: User argument on last SA VE or GET command.
Set by the monitor.

Left half: Reserved for the future.
Right half: 0 or the address of the error-intercepting
block (refer to Paragraph 4.3.3.2).

Left half: 0 or the patch number of the installation that
made the last modification to the program.
Right half: Program version number in octal. The number
is never converted to decimal • After a GET, R, or RUN
command, an E command can be used to find the version
number. (DEC always distributes CUSPs with the left half= 0,
so customers making modifications to CUSPs should change
only the left half. The right half will remain as a record
of the DEC version.)

The value of this symbol is the first location available to
the user.

NOTE: Only those JOBDAT locations of significant importance to the user are given in this
table. JOBDAT locations not listed include those which are used by the monitor and those
which are unused at present. User programs should not refer to any locations not listed above
since such locati9ns are subject to change.

JOBDAT is loaded automatically, if needed, during the loader's I ibrary search for undefined global

references and the values are assigned to the mnemonics. JOBDAT exists as a .REL file on device

SYS for loading with user programs that symbolically refer to the locations. User programs should

reference locations by the assigned mnemonics, which must be declared as EXTERN references to the

assembler. All mnemonics in this manual with a JOB prefix refer to locations in the job data area.

3.2 .2 Loading Relocatable Binary Files

) The relocatable binary loader (LOADER), which resides in the system file, is started by the command

R LOADER core

Revision l Monitors 3-7 January 1971

where core is an optional argument {see Figure 3-2). {Refer to the LOADER documentation in the

PDP.-10 Reference Handbook for a description of the loader command string.)

In writing reentrant user software, an effort is made to minimize the support required to run such soft­

ware on a machine having only a single relocation register. Both the source and relocatable binary

files are the same for a reentrant program that must run on a non-reentrant system.

The loader is reentrant; therefore, "its instructions exist in the high segment. In loading two segments,

both segments are data with respect to the loader and must exist in the low segment during load time.

Therefore, the following loader variables must exist for each segment:

a. Offset (the number of locations a program must be moved toward zero before it can be
executed}

b. Program origin {the location assigned by the loader to relocatable zero of a program)

c. Location counter (the register that indicates the location of the next instruction to be
interpreted}.

3.2.2. 1 H Switch - A program written to be reentrant can be loaded into one segment instead of two

by use of the H switch VH). The H switch is used only when a two-segment program is to be loaded

into one segment. It causes all following files to be loaded into the low segment. This switch is not

required when a one-segment program is to be loaded into one segment.

To minimize the use of the H switch on single-register machines, the loader checks if the system {i.e.,

hardware plus software) has a two-segment capability. If the monitor has this capability but the

machine does not, then the system does not have the two-segment capability. If the system does not

have the two-segment capability, the loader automatica I ly loads a two-segment program into one

segment, just as if the user had typed the H switch.

To find out if the system has a two-segment capability, the loader uses the SETUWP UUO and attempts

to set the user mode write-protect bit to 1. An error return indicates a single-register capability. The

loader cannot produce a two-segment program, and the monitor cannot save a program as two.segments.

If a user wants to load a program in which the low segment is longer than 400000 octal words, he uses

the switch NNNNNNH, which changes the origin of the high segment from its initial setting of

400,000 to NNNNNN where NNNNNN is larger. If NNNNNN is missing, the loader loads every­

thing into the low segment.

I~ is not known before load time whether a reentrant program is not going into the high segment; there­

fore, the core executed {including the monitor UUOs} is the same for either case.

3-8

(

(

~

0
LOADER
JOB DAT ---
LOADER

LOW SEGMENT

I
I
I
I
J
I
I
I
I
I

w I
I t
'° I

I
I
I

400000 I
VESTIGIAL

JOBDAT --------
LOADER

HIGH SEGMENT
I

LOADER STARTING

0

~

0
LOADER
JOB DAT

LOADER
LOW SEGMENT

USER JOBDAT

USER

LOW SEGMENT

+
t

USER
SYMBOLS ----------

USER
HIGH

SEGMENT }
~~JESSARILY
PRESENT

I 1 I

·LOADER
JOBDAT

LOADER
LOW SEGMENT

USER JOB DAT

USER

LOW SEGMENT

+

t
USER

SYMBOLS

o-------
USER

JOB DAT

USER
LOW SEGMENT

I - USER I
SYMBOLS

I I
I I

I :
I I

400000
1

I 400000 r-I -------..

VESTIGIAL
JOB DAT

VESTIGIAL
JOB DAT

: I
400000 1 VESTIGIAL

LOADER
HIGH SEGMENT

LOADING USER PROGRAM

(LOADER EXPANDS CORE
JN LOW SEGMENT AS
NECESSARY)

I

USER
HIGH SEGMENT

DURING LOADING
(LOADER DOES A REMAP UUO,
REPLACING ITS OWN HIGH
SEGMENT WITH THE USER'S
HIGH SEGMENT IF THERE IS
ONE.)

Figure 3-2 Loading User Core Area

JOB DAT

USER
HIGH SEGMENT

AFTER LOADING

(LOADER WIPES OUT ITS OWN
LOW SEGMENT BY MOVING
DOWN THE USER'S LOW
SEGMENT.
THE USER'S SYMBOLS MAY
OR MAY NOT MOVE DOWN
IN CORE.)

10-0590

~

I

I

I

Modifications to the H switch

a. Cause all following files to be loaded into the high-segment (/lH) and

b. Reset the loader to load high segment code in the high segment and low segment code
into the low segment (/-H).

3 .2 .2 .2 HISEG Pseudo-Op - After loading, a re locatable subprogram assembled by MACRO is put

entirely in either the user low segment or the user high segment. To indicate that a subprogram is to

be loaded into the high segment, the HISEG pseudo-op is used. Although the ·HISEG pseudo-op con

appear anywhere in the program, the best position is at the beginning, becal,Jse a reader WQnts to know

that the program is destined for the high segment. Near the beginning of the binary output, MACRO

generates code that tells the loader to load subprograms into the high segment. Loader Version 50 loads

programs in any order. In earlier versions of the loader, all programs for the low segment must be

loaded before any programs for the high segment.

3.2.2.3 Vestigial Job Data Area - A few constant data in the job data area may be loaded by a two­

segment, one-file program without using instructions on a GET command (JOB41, JOBREN, JOBVER)

and some locations are loaded by the monitor on a GET (JOBSA, JOBCOR JOBHRL). The vestigial

(

job data area (the first 10 locations of the high segment) is reserved for these low segment constants; (

therefore, a high segment program is loaded into 400010 instead of 400000 (refer to Table 3-2). With

the vestigial job data area in the high segment, the loader automatically loads the constant data into

the job data area without requiring a low file on a GET, R, or RUN command, or o RUN UUO.

SAVE will write a low file for a two•segment program only if the LH of JOBCOR is 1408 or greater.

The vestigia I job data area locations are referenced by the monitor only, not by user progrqms.

Table 3-2
Vestigial Job Data Area Locations

Symbol
Octal

Description Locationt

JOBHSA 0 A copy of JOBSA

JOBH41 1 A copy of JOB41

JOBHCR 2 A copy of JOBCOR

JOBHRN 3 LH: restores the LH of JOBHRL
RH: restores the RH of JOBREN

t Relative to origin of high segment, usually JOBHGH = 4000008•
(

Revision 1 Monitors 3-10 January 1971

I

Symbol

JOBHVR

JOBHDA

Table 3-2 (Cont)
Vestigial Job Data Area Locations

Octal
Description

Locationt

4 A copy of JOBVER

5

6 Reserved for future use

7

10 First location not used by vestigia I job data
area.

tRelative to origin of high segment, usually JOBHGH = 4000008 •

3.2.2.4 Completion of Loading - The new program code is loaded upward from an offset above the

resident loader. The program origin (i.e., the first location loaded) is 140
8

, unless the user changes

the origin by the assembler LOC pseudo-instruction. After completion of the loading but before

) exiting, the loader does the fol lowing:

)

a. Sets the LH of JOBSA and the RH of JOBFF to the address of the first location above the
new code area (i.e., the program break). The RH of JO BSA is set to the program starting
address. This value is the last non-zero address of the assembler END pseudo-instruction
to be loaded, or zero. It is used by the RUN and START commands. The LH of JOBFF
is zero.

b. Sets the LH of JOBHRL to the new highest relative user address (relative to the high seg­
ment origin) in high segment, or zero if no high segment.

c. Sets the LH of JOBCOR to the highest location in the low segment that is loaded with
non-zero data.

d. Uses REMAP UUO to take the top part of the low segment that contains the user's high
segment, and replaces the loader high segment.

e. May move symbols and reduce core, if DDT was loaded.

f. Ca II s EX IT or starts up program •

If DDT was loaded by the D switch in the loader command string, the RH of JOBDDT is set by the

I loader to the starting address of DDT and the LH is the I ast address of DDT. A new switch, /K,

implemented for use with DDT, moves core back to the absolute minimum needed. A /nK moves core

back to nK, unless n is less than the minimum core, in which case the minimum core is assigned. The

/D switch is used to imply /B/K.

Revision 1 Monitors 3-11 January 1971

(

(

Chapter 4

User Programming

4. l PROCESSOR MODES

In a single-user, non-timesharing system, the user's program is subject only to those conditions inherent

in the hardware. The program must

a. Stay within the memory capacity

b. Observe the hardware restrictions placed on the use of certain memory .. locations

c. Observe the restriction on interrupt instructions. With timesharing, the hardware limits
the centra I processor operations to one of three modes: user mode, user 1/0 mode, and
executive mode.

4. l. l User Mode

User programs run with the processor in user mode must operate within an assigned area of core. In

user mode, certain instructions are ii lega I. User mode is used to guarantee the integrity of the monitor

and each user program. The user mode of the processor is characterized by the following:

a. Automatic memory protection and relocation (refer to Chapter 3)

b. Trap to absolute location 40 in the monitor on any of the fol lowing:

(1) Operation codes 040 through 077 and operation code 00

(2) Input/output instructions (DATAI, DATAO, BLKI, BLKO, CONI, CONO, CONSZ,
and CONSO)

(3) HALT (i.e., JRST 4,)

(4) Any JRST instruction that attempts to enter executive mode or user 1/0 mode

c. Trap to relative location 40 in the user area on execution of operation codes 001
through 037.

4.1.2 User 1/0 Mode

The user 1/0 mode (bits 5 and 6 of PC word = 11) of the centra I processor a I lows running privileged

user programs with automatic protection and relocation in effect, as well as the normal execution of

all defined operation codes. The user 1/0 mode provides some protection against partially debugged

4-1

monitor routines, and permits running infrequently used device service routines as a user job. Direct

control by the user program of special devices is particularly important in real-time applications.

To utilize this mode, the job number must be 1. CALL [SIX BIT /RESET/] or CALLI 0 terminates user

1/0 mode. User I/O mode is not used by the monitor and is normally not available to the timesharing

user {refer to Paragraph 4. 10. 10. l).

4. 1.3 Executive Mode

The monitor operates with the processor in executive mode, which is characterized by the lack of

memory protection and relocation {refer to Chapter 3) and by the norma I execution of a 11 defined

operation codes.

User programs run in user mode; therefore, the monitor must schedule user programs, service interrupts,

perform all input and output operations, take action when control returns from a user program, and

perform any other lega I, user-requested operations that are not available in user mode. Th is chapter

describes the services the monitor makes available to user-mode programs and how a user program ob­

tains these services.

4.2 PROGRAMMED OPERA TORS (UUOs)

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as

UU Os {Unimplemented User Operators) because from a hardware point of view, their function is not

pre-specified. Some of these op-codes trap to the monitor and the rest trap to the user program.

After the effective address calculation is complete, the contents of the instruction register, a long with

the effective address, are stored in user or monitor location 40 and the instruction in user or monitor

location 41 is executed out of norma I sequence. Location 41 must contain a JSR instruction to a rou­

tine to interpret th~, con
1
tents of location 40.

4.2. l Operation Codes 001-037 {User UUOs)

Operation codes 00 l through 037 do not affect the mode of the centra I processor; thus, when executed

in user mode, they trap to user location 40, which allows the user program complete freedom in the

use of these programmed operators.

4-2

)

)

)

If a user's undebugged program accidentally executes one of these op-codes when the user did not

int~nd to use it, the following error message is normally issued:

ERROR IN JOB n

ILLEGAL UUO AT USER 41

This message is given because the user's relative location 41 contains zero {unless his program has

overtly changed it) and 000 is an illegal monitor UUO.

4.2.2 Operation Codes 040-077 and 000 (Monitor UUOs)

Operation codes 040 through 077 and 000 trap to absolute location 40, with the centra I processor in

executive mode. These programmed operators are interpreted by the monitor to perform 1/0 operations

and other control functions for the user's program.

Operation code 000 a l'Mlys returns the user to monitor mode with the error message:

ERROR IN JOB n

ILLEGAL UUO AT USER addr

Table 4-1 lists the operation codes 040 through 077 and their mnemonics. Most of Chapter 4 is a de­

tailed description of their operation.

Table 4-1
Monitor Programmed Opera tors

Op Code Call Function

040 CALL AC I [SIX BIT /NAME/] Programmed operator extension (refer to
Paragraph 4.2. 2. 1)

041 INIT D, MODE Select 1/0 device {refer to Paragraph
SIX BIT /DEV/ 4. 10. 2. 3)
XWD OBUF I IBUF
error return
norma I return

042
"'I

No operation

043 No operation

044 No operation
Reserved for insta I lat ion-

} dependent definition
045 No operation

046 No operation
~

4-3

I

Op Code

047

050

051

052

053

054

055

056

057

060

061

062

063

064

065

066

Table 4-1 {Cont)
Monitor Programmed Operators

Call

CALLI AC, N

OPEN, D, E
error return
norma I return
E: EXP STATUS

SIX BIT /DEV I
XWD OBUF I IBUF

TTCALL AC, ADR

RENAMED, E
error return
norma I return
E: SIXBIT /FILE/

SIXBIT /EXT/
EXP< PROT> B8+DA TE
XWD PROJ I PROG

IND,
norma I return
error or EOF return

OUT D,
normal return
error return

SETSTS DI STATUS

STATO D, BITS
RO: NO SELECTED BITS= 1
R 1 : SOME SELECTED BITS = 1

GETSTS DI E

STATZ DI BITS
RO: SOME SELECTED BITS= 1
Rl: ALL SELECTED BITS= 0

INBUF D, N

OUTBUF D, N

INPUT D,

Function

Programmed operator extension {refer to
Paragraph 4.2. 2. 1)

Select 1/0 device {refer to Paragraph
4. 10.2.3)

Extended operations on job-control I ing
Teletype (refer to Paragraph 5 • 9. 3)

Reserved for future expansion by DEC.

Reserved for future expansion by DEC.

Reserved for future expo nsion by DEC.

Rename or delete a file {See Section 4. 10.4.3)

INPUT and skip on error or EOF. {See
Section 4. 10.5)

OUTPUT and skip on error or EOT. (See
Section 4. 10.5)

Set file status. {See Section 4. 10.6.2)

Skip if file status bits= l, (See
Section 4. 10. 6. 1)

Copy file status to E, (See Section 4. 10.6. 1)

Skip if file status bits= O. (See
Section 4. 10,6. 1)

Set up input buffer ring with N buffers {refer
to Paragraph 4. 10 .3. 2)

Set up ovtput buffer ring with N buffers (refer
to Paragraph 4. 10.3.2)

Request input or request ~xt buffer (refer to
Poragraph 4. 10.5)

Revision 1 Monitors 4-4 January 1971

(

(

)

I
I

Op Code

067

070

071

072

073

074

075

076

077

100

Call

OUTPUT D,

CLOSED,

RE LEAS DI

MTAPE D, N

UGETF D,

USETI DI E

USETO D, E

LOOKUP D, E
error return
norma I return
E: SIXBIT /FILE/

SIXBIT /EXT/
0

Table 4-1 (Cont)
Monitor Programmed Operators

Function

Request output or request next buffer (refer to
Paragraph 4. 10 .5)

Terminate file operation (refer to Paragraph
4. 10.7)

Release device (refer to Paragraph 4. 10.8. 1)

Perform tape positioning operation (refer to
Paragraphs 5.5.3 and 6. 1.6.5)

Get next free block number on DECtape
(refer to Paragraph 6. 1.6.3)

Set next input block number (refer to
Paragraphs 6.1.6.1 and 6.2.8.3)

Set next output block number (refer to
Paragraphs 6.1 .6.2 and 6.2.8.3)

Select a file for input (refer to Paragraph
4. 10 .4. 1)

XWD PROJ I PROG

ENTER D, E Select a fi I e for output (refer to a
error return Paragraph 4. 10 .4.2)
no rma I return
E: SIXBIT /FILE/

SIXBIT /EXT/
0
XWD PROJ I PROG

UJEN Dismiss rea I time interrupt (refer to
Paragraph 4.10.10.2)

4.2.2. 1 CALL and CALLI - Operation codes 040 through 077 limit the monitor to 40
8

operations. The

CALL operation extends this set by specifying the name of the operation by the contents of the location

specified by the effective address (e.g., CALL [SIXBIT /EXIT/]). This capability provides for in­

definite extendability of the monitor operations, at the overhead cost to the monitor of a table lookup.

The CALLI operation eliminates the table lookup of the CALL operation by having the programmer or

the assembler perform the lookup and specify the index to the operation in the effective address of the

) CALLI. Table 4-2 lists the monitor operations specified by the CALL and CALLI operations.

Revision 1 Monitors 4-5 January 1971

Table 4-2
CALL and CALLI Monitor Operations (

CALLI
CALLI CALL Function

Mnemonic

CALLI AC, -2 Customer defined Reserved for definition by each
• • • -n customer insta Ila ti on.

CALLI AC, -1 LIGHTS CALL AC, [SIXBIT /LIGHTS/] Display AC in console lights

CALLI AC, 0 RESET CALL [SIXBIT /RESET/] return Reset 1/0 device (refer to
Paragraph 4. 10. 1.2)

CALLI AC, 1 DDTIN MOVEI AC, BUFFER DDT mode console input (refer
CALL AC, [SIXBIT /DDTIN/J to Paragraph 5. 9 .2)
only return

CALLI AC, 2 SETDDT MOVEI AC, DDT -start-adr Set protected DDT starting
CALL AC, [SIX BIT /SETDDT/J address (refer to Paragraph
only return 4.3.1.1)

CALLI AC, 3 DDT OUT MOVEI AC I BUFFER DDT mode console output (refer
CALL AC, [SIXBIT /DDTOUT/J to Paragraph 5. 9 .2)
only return

I CALLI AC, 4 DEVCHR MOVE AC, [SIXBIT /dev/J or Get device characteristics.
MOVEI AC, channel no. (refer to Paragraph 4. 9 .4.2)
CALL AC, [SIXBIT /DEVCHR/J
only return

C(AC) = 0 if no such device
C(AC) = DEVMOD word of

device data block if
device is found.

CALLI AC, 5 DDT GT CALL AC, [SIXBIT /DDTGT/J No operation, historical UUO
only return

CALLI AC, 6 GETCHR AC:= SIXBIT /DEV/ Same as CALLI AC, 4
CALL AC, [SIXBIT /GETCHR/J
only return

CALLI AC, 7 DDTRL CALL AC I [SIXBIT /DDTRL/J No operation; historica I UUO
only return

CALLI AC, 10 WAIT AC field is softmre channel number. Wait unti I device is inactive
CALL AC, [SIXBIT /WAIT/J {refer to Paragraph 4. 10.5.3)
only return

CALLI AC, 11 CORE MOVE AC, [XWD HIGH ADR or Al locate core (refer to
0, LOW ADR or 0] Parograph 4.4. 1)
CALL AC, [SIXBIT /CORE/J
error return, assignment unchanged
norma I return, new assignment

AC:= max. core available
(in 1 K blocks} on error
or norma I return-.

(

Revision l Monitors 4-6 January 1971

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

CALLI
CALLI

CALL Function
Mnemonic

CALLI AC, 12 EXIT CALL AC, [SIXBIT /EXIT/] Stop job, may release devices
return depending on contents of AC
If AC f. 0, devices are not re- (refer to Paragraph 4.3.2.3)
leased and CONT and CCONT
commands are effective.

CALLI AC, 13 UTPCLR AC field is soft'Mlre channel number Clear DECtape directory (refer
CALL AC, [SIXBIT /UTPCLR/] to Paragraph 6. 1.6.4)
only return

CALLI AC, 14 DATE CALL AC, [SIXBIT /DATE/] Return date (refer to
only return Paragraph 4. 9. 1. 1)

AC:= date in compressed
format

CALLI AC, 15 LOGIN MOVE AC, [XWD -N, LOCJ Privi.leged UUO available only to
CALL AC, [SIXBIT /LOGIN/] privileged programs (refer to
RO: return Paragraph 4. 7. 1)

Does not return if C(RO) is
a HALT instruction.

CALLI AC, 16 APRENB MOVEI AC I BITS Enable centre I processor traps
CALL AC I [SIX BIT I APRE NB/] (refer to Paragraph 4.3.3.1)
return

CALLI AC, 17 LOGOUT CALL AC, [SIXBIT /LOGOUT/J Privileged UUO for use only by
no return LOGOUT CUSP (refer to Para-

graph 4.3.2.4)

CALLI AC, 20 SWITCH CALL AC, [SIXBIT /SWITCH/] Read console data switches (refer
return to Paragraph 4. 9 .4. 1)
AC:= contents of console data

switches

CALLI AC, 21 REAS SI MOVE AC, job number Reassign device (refer to Para-
MOVE AC + 1, [SIX BIT /DEV /J graph 4. 10. 8 .2)
CALL AC, [SIXBIT /REASSI/]
return

If C(AC) = 0 on return, the job
specified has not been initial-
ized.
If C(AC+l) = 0 on return, the
device is not assigned to ca II-
ing job, or device is TTY.

CALLI AC, 22 TIMER CALL AC, [SIXBIT /TIMER/J Read time of day in clock ticks
return (refer to Paragraph 4. 9. 1. 2)
AC: = time in jiffies, right-

justified.

4-7

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

CALLI
CALLI

CALL Function
Mnemonic

CALLI AC, 23 MSTIME CALL AC, [SIX BIT /MSTIME/] Read ti me of day in mi II i seconds
return (refer to Paragraph 4. 9. 1.3)
AC: = time in milliseconds, right-

justified

CALLI AC, 24 GETPPN CALL AC I [SIX BIT /GETPPN/J Return project-programmer num-
norma I return ber of job (refer to Paragraph
error return 4. 9 .2.3)
AC:= XWD proj. no., prog. no.

of this job. Error return is
taken only if job is
privileged and the same proj-
prog number occurs twice in
the table of jobs logged in.

CALLI AC, 25 TRPSET MOVE AC, [XWD NI LOC] Set trap for user I/O mode (refer
CALL AC I [SIX BIT /TRPSET/J to Paragraph 4. 10. 10. 1)
error return
norma I return
LOC: JSR TRAP

CALLI AC, 26 TRPJEN CALL [SIXBIT /TRPJEN/J Illegal UUO; replaced by UJEN
(op code 100)

-
CALLI AC, 27 RUNTIM MOVE AC, job number of 0 Return the jobs running time in

CALL AC, [SIXBIT /RUNTIM/J milliseconds (refer to Paragraph
only return 4.9.2.1)
AC:= running time of job
AC:= 0 if non-existent job

CALLI AC, 30 PJOB CALL AC, [SIXBIT /PJOB/J Return job number (refer to Para-
return graph 4.9.2.2)
AC:= job number, right-justified

CALLI AC, 31 SLEEP MOVE AC, time to sleep in seconds Stop job for specified time in
CALL AC I [SIX BIT /SLEEP /J seconds (refer to Paragraph
return 4.3.4. 1)

CALLI AC, 32 SETPOV CALL AC I [SIX BIT /SETPOV /J Superseded by APRENB UUO
return

CALLI AC, 33 PEEK MOVE! AC, exec adr Return contents of executive
CALL AC, [SIXBIT /PEEK/] address (refer to Paragraph
return 4.9.3.1)
AC:= C(exec-adr)

CALLI AC, 34 GET LIN CALL AC, [SIXBIT /GETLIN/J Return SIXBIT name of attached
return Teletype console (refer to Para-
AC:= SIXBIT TTY name, left graph 4.9.2.4)

justified (e.g., CTY, TTY27)

4-8

Table 4-2 {Cont)
CALL and CALLI Monitor Operations

CALLI
CALLI

CALL Function
Mnemonic

CALLI AC, 35 RUN MOVSI AC, start adr increment Transfer control to selected pro-
HRRIAC, E gram {refer to Paragraph 4.5. 1)
RUN AC,
error return
normal return
E: SIX BIT /DEVICE/

SIXBIT /FILE/
SIX BIT /EXT I
0
XWD pro j no, prog no
XWD O; optiona I core assignment

CALLI AC, 36 SE TU WP MOVE! AC I BIT set or clear user mode write pro-
SETUWP AC, tect for high segment {refer to
error return Paragraph 4.4.2)
norma I return

CALLI AC, 37 REMAP MOVE! AC, highest adr. in low seg Remap top of low segment into
REMAP AC, high segment {refer to Paragraph
error return 4.5 .3)
norma I return

) CALLI AC, 40 GETSEG MOVE! AC, E Replace high segment in user's
GETSEG AC, addressing space {refer to Para-
error return graph 4.5 .2)
normal return
E: SIXBIT /DEVICE/

SIXBIT /FILE/
SIXBIT /EXT/
0
XWD proj no, prog no
0

CALLI AC, 41 GETT AB MOVSI AC, job no. or index no. Return contents of monitor table
HRRI AC, table no. or location {refer to Paragraph
GETTAB AC, 4. 9 .3.3)
error return
norma I return
C(AC) unchanged on error return
AC:= table entry if table is defined

and index is in range.

CALLI AC, 42 SPY MOVEI AC, highest physical adr. Make physical core be high seg-
desired ment for examination of monitor
SPY AC, (refer to Paragraph 4.9.3.2)
error return
norma I return

)

4-9

Table 4-2 (Cont)
CALL and CALLI Monitor Operations (

CALLI
CALLI CALL Function

Mnemonic

CALLI AC, 43 SET NAM MOVE AC I [SIX BIT /NAME/J Set program name in monitor job
SETNAM AC, table (refer to Paragraph 4. 7 .2)
return

CALLI AC, 44 TMPCOR MOVE AC, [XWD CODE, BLOCK] Allow temporary in-core file stor-
TMPCOR, age for job (refer to Paragraph
error return 4.8.1)
no rma I return
BLOCK: XWD NAME, 0

IOWD BUFLEN I BUFFER
AC:= value depending on CODE and

whether error or norma I return
is taken.

CALLI AC, 45 DSKCHR MOVE AC I [XWD + NI LOCJ Return disk characteristics (refer
DSKCHR AC, to Paragraph 4. 9 .4.4)
error return
normal return
AC: =XWD status, configuration
LOC: = SIXBIT /NAME/

D values returned (

I
CALLI AC, 46 SY SS TR MOVEI AC, 0 or Return next file structure name

MOVE AC, [SIXBIT /FSNAME/] (refer to Paragraph 4. 9 .4.5)
SYSSTRAC,
error return - not a file structure
norma I return
AC:= next file structure name in

SIXBIT, left-justified

CALLI AC, 47 JOBS TR MOVE AC I [XWD NI LOC] Return next file structure name in
JOBSTR AC, the jobs search list (refer to Para-
error return graph 4. 9 .2 .5)
norma I return
AC:= argument

Contents Use
LOC/SIXBIT/NAME/or - 1 arg
LOC+ 1/XWD proj no,

prog. no. value
LOC+2/status bits value

CALLI AC, 50 STRUUO MOVE AC I [XWD NI LOC] Manipulate file structures.
STRUUO AC, Function 0 is the only unprivileged
error return function (refer to Paragraph 4. 6. 1)
norma I return
AC: = status or error code

(

Revision 1 Monitors 4-10 January 1971

) Table 4-2 (Cont)
CALL and CALLI Monitor Operations

CALLI
CALLI Mnemonic CALL Function

CALLI AC, 50 STRUUO Contents Use
(continued)

LOC/function
numbers arg

LOC+l/ arg depending
. on function .

number .
CALLI AC, 51 SYSPHY MOVEI AC, 0 or last unit name Return all physical disk units

SYSPHY AC, (refer to Paragraph 4. 9 .4. 8)
error return
normal return

CALLI AC,52 FRECHN ~eserved for future use.

CALLI AC,53 DEVTYP MOVE AC, [SIXBIT /dev/J or Return properties
MOVEI AC, channel no. of device (refer to Paragraph
DEVTYP AC, 4. 9 .4.5).'
error return
normal return

CALLI AC,54 DEVSTS MOVEI AC, channel no. of device Return hardware device status
DEVSTS AC, word (refer to Paragraph

) error return 4.9.3.4)
normal return

CALLI AC,55 DEVPPN MOVE AC I [SIXBIT /DEV/] Return the project programmer
DEVPPN AC, number associated with a device
error return (refer to Paragraph 4.9 .4.3)
normal return
AC: = XWD proj-prog. number

on a normal return

CALLI AC,56 SEEKtt AC is software channel number Perform a SEEK to current selected
SEEK AC, block for software channel AC
return (refer to Paragraph 6 .2 .6 .3)

CALLI AC,57 RTTRP MOVEI AC I RTBLK Connect real-time
RTTRP AC, devices to PI system
error return (refer to Paragraph 8 .3)
normal return

CALLI AC,60 LOCK LOCK AC, Lock job in core (refer to
error return Paragraph 8 .2)
normal return

CALLI AC,61 JOBSTS MOVEI AC, channel no. or Return status information about
MOVNI AC, job device TTY and/or controlled
JOBSTS AC, job (refer to Paragraph 5.10.4.4)
error return
normal return

)

Revision l Monitors 4-11 January 1971

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

(
-

CALLI
CALLI Mnemonic CALL Function

CALLI AC,62 LOCATE MOVEI AC, location Change the job's logical location
LOCATE AC, (refer to the Remote Batch Manual)
error return
norm a I return

CALLI AC,63 WHERE MOVEI AC, channel no. or Return the physical location of a
MOVE AC, [SIXBIT/dev/] device (refer to the Remote Batch
WHERE AC, Manual).
error return
norma I return

CALLI AC,64 DEV NAM MOVEI AC, channel no. or Return physical name of device
MOVE AC, [SIXBIT/dev/l obtained through generic INIT/
DEVNAM AC, OPEN or logical device assign-
error return ment (refer to the Remote Batch
normal return Manual).

CALLI AC,65 CTLJOB MOVE AC, job number Return job number of controlling
CTLJOB AC, job (refer to Paragraph 5. 10.4.5)
error return
normal return

CALLI AC,66 GOBSTR MOVE AC, [XWD N,LOC] Return next file structure name
(-

' GOBSTR AC, in an arbitrary job's search list -

error return (refer to Paragraph 4. 9. 2. 6)
normal return

LOC: SIXBIT /NAME/ or -1
LOC + 1: job number
LOC + 2: XWD proj no, prog no
LOC + 3: 0
LOC + 4: Status bits

CALLI AC,67 ACTIVATE
} Reserved for the future

CALLI AC,70 DEACTIVATE

CALLI AC,71 HPQ MOVE AC, high-priority queue no. Place job in high priority scheduler's
HPQUUO AC, run queue (refer to Paragraph 8. 5).

I

error return
norm a I return

CALLI AC,72 HIBER MOVSI AC, enable bits Al low job to become dormant unti I
HRRI AC, sleep time the specified event occurs (refer to
HIBER AC, Paragraph 4.3.4.2)
error return
normal return

CALLI AC,73 WAKE MOVE AC, job no. Al low job to activate the specified
WAKE AC, dormant job (refer to Paragraph
error return 4.3.4.3)

~
norm a I return

Revision 1 Monitors 4-12 January 1971

)

)

)

Table 4-2 (Cont)
CALL and CALLI Monitor Operations

~

CALLI
CALLI Mnemonic CALL Function

CALLI AC,74 CHGPPN MOVE AC, new proj. prog. no. Change project-programmer number
CHGPPN AC, (refer to Paragraph 4.7 .4)
error return
norm a I return

CALLI AC,75 SETUUO MOVE AC, [XWD function, argument] Set system and job parameters
SETUUO AC, (refer to Paragraph 4.7 .3)
error return
norma I return

CALLI AC,76 DEV GEN MOVE AC, SIXBIT /dev / Return range and station of generic
DEVGEN AC, device (refer to the Remote Batch
error return Manual)
normal return

CALLI AC,77 OTHUSR OTHUSR AC, Determine if another job is logged
non-skip return in with same project-programmer
skip return number (refer to Paragraph 4. 9 .2 .7)
AC:= proj .prog.no.

CALLI AC, 100 CHKACC MOVE AC, [EXP LOC] Check user's access to the file
CHKACC AC, specified (refer to Paragraph .
error return 602.8.3)
norm a I return

LOC: XWD action, protection
lOC + 1: directory proj-prog no.
LOC + 2: user proj-prog no.

CALLI AC I 101 DEVSIZ MOVE AC, [EXP LOC] Determine buffer size for the
DEVSIZ AC, specified device (refer to
error return Paragraph 4. 9 .4.6)
norma I return

LOC: EXP STATUS
LOC+ 1: SIXBIT/dev/

tThe CALLI mnemonics are defined in a separate MACRO Assembler Table, which is scanned if an
undefined OP CODE is found. If the symbol is found in the CALLI Table, it is defined as though it
had appeared in an appropriate OPDEF statement, that is

RETURN : EXIT

If EXIT is undefined, it will be assembled as though the program contained the statement

OPDEF EXIT [CALLI 12]

This facility is available in MACRO V .43 and later.

ttAll CALLI's above CALLI 55 do not have a corresponding CALL with a SIXBIT argument. This is to
save monitor table spaceo

Revision l Monitors 4-12a January 1971

The customer is allowed to add his own CALL and CALLI calls to the monitor .. A negqtive CALLI effective {

address (·2 or less) should be used to specify such customer-added operations.
-- ---·1

4.2.2.2 Suppression of Logical Device Names Some C:USPs,e.g. LOGO.UT, require VO to ~pecific

physical devices regardless of the logical name assignments. Therefore, for any CALLI, if bit 19

(UPHNL Y) is 1, only physical names wil I be used; logical device assignments will be ignored. This

suppression of logical device names is helpful, for exqmple, when using the results of the DEVNAM

UUO where the physical name corresponding to a logicol name is returned.

14.2 .2 .3 Restriction on Monitor UUOs in Reentrant User Programs,.. A number of restrictions on UUOs

that involve a high segment prevent naive or malicious users from interferring with other users while

sharing segments and minimize monitor overhead in hc;indling two-segment programs. The basic rules

are as follows:

a. All UUOs can be executed from the low or high segment although some of their arguments
cannot be in, or refer to, the high segment.

b. No buffers, buffer headers, or dump-mode co~mc,md lists may exist in the high segment
for reading from or writing to any 1/0 device.

c. No VO is processed into or out of the high segment except via the SAVE arid SSA VE
commands.

d. No STATUS, CALL or CALLI UUO allows a store in t~e high segment.

Revision 1 Monitors 4-12b J~muary 1971

I

(

(

e. The effective address of the LOOKUP, ENTER, INPUT, OUTPUT, and RE NAME UUOs
cannot be in the high segment. If any rule is violated, an address check error message is
given (refer to Table 2-11).

f. As a convenience in writing user programs, the monitor makes a spec ia I check so that the
INIT UUO can be executed from the high segment, although the calling sequence is in the
high segment. The monitor also allows the effective address of the CALL UUO {contains
the SIX BIT monitor function name) and the effective address of the OPEN UUO (contains
the status bits, device name, and buffer header addresses) in the high segment. The ad­
dress of TTCALL l, and TTCALL 3, may be in the high segment for convenience in typing
messages.

4.2 .3 Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100-UJEN

Op codes 101-127

4.2 .4 II lega I Operation Codes

Dismiss rea I-time interrupt from user mode
(refer to Paragraph 8.4.2)

Monitor prints ILL INST AT USER n and stops
the job.

The eight I/O instructions (e.g., DATAI) and JRST instructions attempting to enter executive or user

I/O mode from the user mode are interpreted by the monitor as ii legal instructions. The job is stopped

and the following error message is printed on the user's console:

ERROR IN JOB n

ILL INST AT USER addr

4.3 EXECUTION CONTROL

4.3. 1 Starting

A user program may start another program only by using the RUN or GETSEG UUOs (refer to Para­

graph 4.5. 1 and 4.5.2). A console user may start a program with the monitor commands RUN, START,

CST ART, CO NT, CCONT, DDT, and REENTER (refer to Chapter 2). The starting address is either an

argument of the command or stored in the user's job data area (refer to Chapter 3).

I 4.3.1. 1 SETDDT AC, or CAL~I AC, 2 - This UUO causes the contents of the AC to replace the DDT

starting address, which is stor~d in the protected job data area location, JOBDDT. The starting ad­

dress is used by the monitor co~mand, DDT (refer to Paragraph 3.2.2.4).

4-13

4.3 .2 Stopping

Any of the following procedures can stop a running program:

a. One t C from user console if user program is in a Teletype input wait; otherwise, two t C's
from user console (refer to Chapter 2);

b. A monitor detected error

c. Program execution of HALT, CALL [SIXBIT /EXIT/], or CALL [SIXBIT /LOGOUT/J .

4.3.2.1 Illegal Instructions (700-777, JRST 10, JRST 14) and Unimplemented OP Codes (101-127) -

Illega I instructions trap to the Monitor, stop the job, and print:

ERROR IN JOB

ILL INST AT USER adr

Note that the program cannot be continued by typing the CONT or CCONT commands.

4.3.2.2 HALT or JRST 4 - The HALT instruction is an exception to the illegal instructions; it traps to

the monitor, stops the job, and prints:

ERROR IN JOB

HALT AT USER n

where n is the location of the HALT instruction.

However, the CONT and CC ONT commands are stil I valid and, if typed, wi 11 continue the program

at the effective address of the HALT instruction. After a user program HALT instruction fol lowed by a

START, DDT, CSTART, or REENTER command, JOBOPC contains the address of the HALT. To proceed

at the address specified by the effective address, it is necessary for the user or his program to recompute

the effective address of the HALT instruction and to use this address to start (refer to JOBOPC descrip­

tion, Table 3-1). HALT is not the instruction used to terminate a program (refer to Paragraph 4.3.2.3).

HALT is useful for indicating impossible error conditions.

4.3.2.3 EXIT AC, or CALLI AC, 12 - When the value of AC is zero, all 1/0 devices (including real­

time devices) are RELEASed (refer to Paragraph 4. 10.8. 1), the job is unlocked from core, the user mode

write protect bit (UWP) for the high segment is set, the APR traps are reset to 0, the PC flags are cleared,

and the job is stopped. If timesharing was stopped (refer to Paragraph 8 .4), it is resumed. In other

4-14

) words, after releasing all 1/0 devices which close out all files, a RESET is done (refer to Paragraph

4.10. 1.2). The carriage-return and line-feed is performed and

EXIT

is printed on the user's console, which is left in monitor mode. The CO NT and CCONT commands

cannot continue the program.

When AC is 1, the job is stopped, but devices are not released and a RESET is not done. Instead of

printing EXIT, only a carriage-return and line-feed is performed and a period is printed on the user's

console. The CONT and CCONT commands may be used to continue the program. In other words,

this form of EXIT does not affect the state of the job except to stop it and r~turn the console to monitor

mode. Programs using EXIT 1, as a substitute for EXIT (to eliminate the typing of EXIT) should

RELEASE a II devices first.

4.3.2.4 CALL [SIXBIT /LOGOUT/I or CALLI 17 - All 1/0 devices are RELEASed (refer to Para­

graph 4.10.8.1), and returned with the allocated core and the job number to the monitor pool. The

) accumulated running time of the job is printed on the user's console, which is left in monitor mode.

This UUO is not available to user programmers, but is only for use by the LOGOUT CUSP. If a user

program executes a LOGOUT UUO, the monitor will treat it like EXIT (refer to Paragraph 4.3.2.3).

)

4.3 .3 Trapping

4.3.3. 1 APRENB AC, or CALLI AC, 16 -APR trapping allows a user to handle any and all traps that

occur while his job is running on the central processor, including illegal memory references, non­

existent memory references, pushdown list overflow, arithmetic overflow, floating point overflow,

and clock flag. To enable for trapping, a CALL AC, [SIXBIT /APRENB/I or CALLI AC, 16 is

executed, where the AC contains the centre I processor flags to be tested on interrupts, as defined

below:

18
19
22
23
26
29
32

AC Bit

400000
200000

20000
10000

1000
100

10

Trap On

Repetitive enable
Pushdown overflow
Memory protection violation
Nonexistent memory flag
Clock flag
Floating-point overflow
Arithmetic overflow

4-15

When one of the specified conditions occurs while the central processor is in user mode, the state of (

the.central processor is conditioned into (CONI) location JOBCNI, and the PC is stored in location

JOBTPC in the job data area (refer to Table 3-1). Then control is transferred to the user trap-answering

routine specified by the contents of the right half of JOBAPR, after the arithmetic overflow and floating

point overflow flags are cleared. The user progmm must set up location OBJAPR before executing the

CALL AC, [SIX BIT /APRENB/J or CALLI AC, 16. To return control to his interrupted program, the

user's trap-answering routine must execute a JRSTF@ JOBTPC to restore the state of the processor.

The APRE NB UUO normally enables traps for only one occurrence of any selected condition and must

be reissued after each condition of a trap. To disable this feature, set bit 18 to a 1 when executing

the UUO. However, even with bit 18 = 1, clock interrupts must be re-enabled after each trap.

If the user program does not enable traps, the monitor sets the PDP-10 processor to ignore arithmetic

and floating-point overflow, but enables interrupts for the other error conditions in the list above. If

the user program produces such an error condition, the monitor stops the user job and prints

ERROR IN JOB n

fol lowed by one of the fol lowing appropriate messages:

PC OUT OF BOUNDS AT USER addr
ILL MEM REF AT USER addr
NON-EX MEM AT USER addr
POL OV AT USER addr

The CONT and CCONT commands will not succeed after such an error.

4.3 .3 .2 &ror Intercepting - Device errors that can be corrected by human intervention are intercepted

by the monitor, and control may be ·returned to the user program when the error is rectified. When

these errors are detected, the monitor examines location JOBI NT in the job data area. If this location

is zero, the job is stopped and both the user and the operator are notified. The user receives the

message

OPR zz ACTION REQUESTED FOR DEVICE xxx

where zz is the number of the station at which the operator is located in the case of Remote Batch,

and xxx is the device name. The operator receives the message

OPERATE ON DEVICE xxx FOR JOB n

where xxx is the device name, and n is the number of job that is stopped. When the operator has

corrected the error, he starts the job with the JCO NT command and the message

Revision 1 Monitors 4-16 January 1971

(

)

)

CONT BY OPER

appears on the user's console signifying that the error has been corrected.

If location JOBI NT is non-zero, the contents is interpreted as the address of a block with the following

format:

LOC : XWD N,INTLOC
LOC + 1: XWD BITS,CLASS
LOC + 2: 0
LOC + 3: 0

where N is the number of words in the block (N >3).

INTLOC is the location at which the program is to be restarted

BITS is a set of bits interpreted as the following:

if bit 0 = 1, an error message is not to be typed on the user's Teletype.
if bit 0 = 0, an error message is to be typed on the user's Teletype.

CLASS is a set of bits interpreted as the following:

if bit 35 = 0, the job is to be stopped and a message is to be typed
on the user's Teletype.

if bit 35 = 1 I bit 0 (BITS) is examined to see if a message is to be typed.
Bits 18-34 are reserved for future types of errors.

The monitor examines the CLASS bits first. If Bit 35 is zero, the user and the operator are given

messages (see above), and the job is stopped. If Bit 35 is 1, the monitor examines LOC+2 in the

block. If this location i.s non-zero, the messages are typed to the user and the operator, and the job

is stopped. If the location LOC+2 is zero, the monitor examines bit 0 (BITS) to determine if a message

should be typed. The following information is then stored in LOC+2 whether or not a message was

typed:

LOC+2
LOC+3

the last user PC word
RH =the channel number
LH =the error bit as defined in CLASS

The job is then started at location INTLOC.

4.3 .3 .3 Console-Initiated Traps - Program control can be regained from the user's console by use of

the tC command (refer to Chapter 2).

4.3 .4 Suspending

4.3 .4. 1 CALL AC, [SIX BIT /SLEEP/] or CALLI AC, 31 - This UUO stops the job, and continues

) automatically after an elapsed real time of [C(AC) x clock frequency] modulo 212 jiffies. The contents

Revision 1 Monitors 4-16a January 1971

of the AC are thus interpreted as the number of seconds the job wishes to SLEEP; however, there is an (

implied maximum of approximately 68s (82s in 50-Hz countries) or 1 min.

4.3.4.2 HIBER AC, or CALLI AC,72

The HIBERNATE UUO allows a job to become dormant until a specified event occurs. The possible

events that can wake a hibernating job are: 1) user's Teletype input activity (both line mode and

character mode), 2) PTY activity for any PTY currently INITed by this job, 3) I/O activity for any

I/O device INITed by this job, 4) the time-out of a specified amount of sleep time, or 5) the issuance

of a WAKE UUO directed at this job either by some other job with wake-up rights or by this job at

interrupt I eve I .

The HIBERNATE UUO must contain in the left half of AC the wake-conditon enable bits, and in the

right half the number of ms for which the job is to sleep before it is awakened.

The call is as follows:

MOVSI AC, enable bits
HRRI AC, sleep time
HIBER AC,
error return.
norma I return

;get HIBERNATE conditions
;number of ms to sleep
;or CALLI AC, 72

The HIBERNATE UUO enable condition codes are as follows:

Bits Meaning

18-35 Number of ms sleep time. 0 means no clock request
(i.e., infinite sleep).

15-17

13-14

12

Wake protection code.
Bit 17 = 1, project codes must match.
Bit 16 = 1, programmer codes must match.
Bit 15 = l, only this job can wake itself.

TTY input activity.
Bit 14 = 1, wake on character ready.
Bit 13 = 1, wake on line of input ready.

PTY activity since last HIBERNATE.

An error return is given if the UUO is not implemented. Return is given on a normal return after an

enabled condition occurs.

Jobs either logged-in as [1,2] or running with the JACCT bit on can wake any hibernating job regard­

less of the protection code. This al lows privileged programs, which are the only jobs that can wake

certain system jobs, to be written.

Revision 1 Monitors 4-16b January 1971

(

(

)

)

)

A RESET UUO always clears the protection code and wake-enable bits for the job. Therefore, until

the first HIBERNATE UUO is called, there is no protection against wake-up commands from other

jobs. To guarantee that no other job wakes the job, a WAKE UUO fol lowed by a HIBERNATE UUO

with the desired protection code should be executed. The WAKE UUO ensures that the first HIBER­

NATE UUO always returns immediately, leaving the job with the correct protection code.

4.3.4.3 WAKE AC, or CALLI AC,73 - The WAKE UUO allows one job to activate a dormant job

when some event occurs. This feature may be used with Batch so that when a job wants a core dump

taken, it can wake up a dump program. Also, real-time process control jobs can cause other process

control jobs to run in response to a specific alarm condition. The WAKE UUO can be called for a

RTTRP job running qt interrupt level (refer to Paragraph 8.3), thereby allowing a real-time job to

wake its background portion quickly in order to respond to some real-time condition.

The cal I is as follows:

MOVE AC, JOBNUM
WAKE AC,
error return
normal return

;number of job to be awakened
;or CALLI AC ,73

An error return is given if the proper wake privileges are not specified. There is a wake bit associated

with each job. If any of the enabled conditions specified in the last HIBERNATE UUO occurs, then

this bit is set. The next time a HIBERNATE UUO is executed, this bit is cleared and the HIBERNATE

UUO returns immediately. This bit eliminates the problem of a job going to sleep and missing any

wake conditions.

On a normal return, the job has been awakened.

Revision f Monitors 4-16c January f 971

(

(

(

4.4 CORE CONTROL

4.4. 1 CALL AC, [SIXBIT /CORE/J or CALLI, 11

This UUO provides a user program with the ability to expand and contract its core size as its memory

requirements change. To allocate core in either or both segments, the left half of AC is used to specify

the highest user address to be assigned to the high segment. If the left half of AC contains 0, the high

segment core assignment is not changed. If the left half of AC is non-zero and is either less than

400000 or the length of the low segment, whichever is greater, the high segment is eliminated. If this

is executed from the high segment, an i llega I memory error message is printed when the monitor at­

tempts to return control to the i I lega I address.

The error return is given if LH is greater than or equal to 400000 and if either the system does not have

a two-segment capabi I ity or the user has been meddling without write access privileges (refer to Para­

graph 6.2 .3). An RH of 0 leaves the low segment core assignment unaffected. The monitor clears new

core before assigning it to the user; so therefore privacy of information is ensured.

In swapping systems, these programmed operators return the maximum number of 1 K core blocks (a II of

core minus the monitor, unless an insta Ila ti on chooses to restrict the amount of core) available to the

user. By restricting the amount of core available to users, the number of jobs in core simultaneously

is increased. In nonswapping systems, the number of free and dormant 1 K blocks are returned; therefore,

the CORE UUO and the CORE command return the same information.

The ca II is:

MOVE AC [XWD HIGH ADR or 0, LOW ADDR or 0]
CALL AC, [SIX BIT /CORE/J or CALLI AC, 11
error return
norma I return

The CORE UUO reassigns the low segment (if RH is non-zero) and then reassigns the high segment (if

LH is non-zero). If the sum of the new low segment and the old high segment exceeds the maximum

amount of core a II owed to a user, the error return is given, the core assignment is unchanged, and the

maximum core available to the user for high and low segments (in lK blocks) is returned in the AC. In

a nonswapping system, the number of free and dormant lK blocks is returned.

If the sum of the new low segment and the new high segment exceeds the maximum amount of core a!­

lowed to a user, the error return is given, the new low segment is assigned, the old high segment re­

mains, and the maximum core available to the user in lK blocks is returned in the AC. Therefore, to

increase the low segment and decrease the high segment at the same time, two separate CORE UUOs

should be used to reduce the chances of exceeding the maximum size allowed to a user job.

4-17

If the new low segment extends beyond 377777, the high segment shifts up into the virtual addressing

space instead of being overlaid. If a long low segment is shortened to 377777 or less, the high seg­

ment shifts from the virtua I addressing space to 400000 instead of growing longer or remaining where

it was. If the high segment is a program, it does not execute properly after a shift unless it is a self­

relocating program in which all transfer instructions are indexed.

If the high segment is eliminated by a CORE UUO, a subsequent CORE UUO, in which the LH is

greater than 400000, wi II create a new, nonsharable segment rather than reestablishing the old high

segment. Th is segment becomes sharable after it has been:

a. Given an extension • SHR

b. Written onto the storage device

c. Closed so that a directory entry is made

d. Initialized from the storage device by GET,R, or RUN commands or RUN or GETSEG UUOs.

The loader and the SAVE and GET commands use the above sequence to create and initialize new

sharable segments.

I 4.4.2 SETUWP AC, or CALLI AC, 36

I

This UUO allows a user program to set or clear the hardware user-mode write protect bit and to obtain

the previous setting. It must be used if a user program is to modify the high segment.

The ca II is:

SETUWP AC, ; OR CALLI AC, 36
error return
norma I return

If the system has a two-register capability, the normal return will be given unless the user has been

meddling without write privileges, in which case an error return will be given. An error return is

given whether or not the program has a high segment, because the reentrant software is designed to

allow users to write programs for two-register machines, which will run under one-register machines.

Compatibility of source and relocatable binary files is, therefore, maintained between one-register

and two-register machines.

If the system has a one-register ca pa bi lity, the error return (bit 35 of AC=O) is given. This error return

a !lows the user program to find out whether or not the system has a two-segment capability. The user

program specifies the setting of the user-mode write protect bit in bit 35 of AC (write protect = 1,

write privileges= 0). The previous setting of the user-mode write protect bit is returned in bit 35 of AC,

4-18

") so that any user subroutine can preserve the previous setting before changing it. Therefore, nested

./ user subroutines, which either set or clear the bit, can be written, provided the subroutines save the

previous value of the bit and restore it on returning to its caller.

)

4.4.3 LOCK AC, or CALLI AC, 60

This UUO locks jobs in core; refer to Paragraph 8.2.

4.5 SEGMENT CONTROL

4.5. l RUN AC, or CALLI AC, 35

This UUO has been implemented so that programs can transfer control to one another. Both the low

and high segments of the user's addressing space are replaced with the program being called.

The ca II is:

MOVSI AC, starting address increment
HRRI AC, Adr of six-word argument block
RUN AC, or CALLI AC, 35
error return (unless HALT in LH)
[norma I return is not here, but to starting
address plus increment of new program]

The arguments contain1;,.;d in the six-word block are:

E: SIXBIT/logica I device name/
SIXBIT/fi lename/

SIX BIT/ext. for low file/

0
X WD pro j. no. , prog. no.

XWD 0, optiona I core
assignment.

;for either or both high and low files

;if LH = 0, . LOW is assumed if high
segment exists, • SAV is assumed if
high segment does not exist.

;if= 0, use current user's proj,prog

;RH = new highest user address to be
assigned to low segment.
LH is ignored rather than setting high
segment

A user program usually will specify only the first two words and set the others to 0. The RUN UUO

destroys the contents of all of the user's ACs and releases all the user's 1/0 channels; therefore, argu­

ments or devices cannot be passed to the next program.

_I The RUN UUO to certain system programs (e.g., LOGIN, LOGoun automatically sets the appropriate

) privileged bits (JACCT and JLOG). Assigning a device as SYS does not cause these bits to be set.

Revision 1 Ntonitors 4-19 January 1971

I
The RUN UUO clears all of core. However, programs should not count on this action, and must still (

initialize core to the desired value to allow programs to be restarted by a tC, START sequence without .··

having to do Vo.
Programs on the system library (CUSPs) should be called by using device SYS with a zero project­

programmer number instead of device DSK with the project-programmer number 1, 4. The extension

should also be 0 so that the calling user program does not need to know if the called CUSP is reentrant

or not.

The LH of AC is added to and stored in the starting address (JOBSA) of the new program before control

is transferred to it. The command t C followed by the START command restarts the program at the lo­

cation specified by the RUN UUO, so that the user can start the current CUSP over again. The user is

considered to be meddling with the program if the LH of AC is not 0 or l. (Refer to Paragraph 4.5 .4.)

Programs accept commands from a Teletype or a file, depending on how they were started, due to con­

trol by the program calling the RUN UUO. The following convention is used with all of DEC's standard

CUSPs: 0 in LH of AC means type an asterisk and accept commands from the Teletype. A 1 means ac­

cept commands from a command file, if it exists; if not, type an asterisk and accept commands from the

Teletype. The convention for naming CUSP command files is that the filename be of the form

###m. TMP.

where III are the first three (or fewer if three do not exist) characters of the name of the CUSP doing

the LOOKUP and### is the decimal character expansion (with leading zeroes) of the binary job number •.

The job number is included to a I low a user to run two or more jobs under the same project-programmer

number. For example,

009PIP. TMP
039MAC. TMP

Decimal numbers are used so that a user listing his directory can see the same number as the PJOB

command types. These command files are temporary and are, therefore, deleted by the LOGOUT

CUSP. (Refer to KJOB command in Chapter 2.)

The RUN UUO can give an error return with one of 20 error codes in AC if any errors are detected;

thus, the user program may attempt to recover from the error/give the user a more informative message

on how to proceed. Some user programs do not go to the bother of including error recovery code. The

monitor detects this and does not give an error return if the LH of the error return location is a HALT

instruction. If this is the case, the monitor simply prints its standard error message for that type of

error and returns the user's console to monitor mode. This optional error recovery procedure also allows

a user program to analyze the error code received and then execute a second RUN UUO with a HALT

if the error code indicates an error for which the monitor message is sufficiently informative or one from

which the user program cannot recover.

Revision l Monitors 4-20 January 1971

(

)
J

)

)

The error codes are an extension of the LOOKUP, ENTER, and RENAME UUO error codes and are

defined in the S .MAC monitor file. Refer to Appendix E for an explanation of the error codes.

The monitor does not attempt an error return to a user program after the high or low segment containing

the RUN UUO has been overlaid.

To successfully program the RUN UUO for a II size systems and for all CUSPs with a size that is not

known at the time the RUN UUO is coded, it is necessary to understand the sequence of operations

the RUN UUO initiates. Assume that the iob executing the RUN UUO has both a low and a high

segment. (It can be executed from either segment; however, fewer errors can be returned to the user

if it is executed from the high segment.)

The sequence of operations for the RUN UUO is as follows.

1. Does a high segment already exist with desired name?
If yes, go to 30.
INIT and LOOKUP filename .SHR. If not found, go
to 10.
Read high file into top of low segment by extending
it. (Here the old low segment and new high segment
and old high segment together may not exceed the
capacity of core.)
REMAP the top of low segment replacing old high
segment in logica I addressing space.
If high segment is sharable (.SHR) store its name
so others can share it.
Always go to 40 or return to user if GETSEG UUO.

10. LOOKUP file name .HGH. If not found, go to 41 or
error return to user if GETSEG UUO.
Read high file into top of low segment by extending
it. (The old low segment and new high segment and
old high segment together may not exceed the
capacity of core.)
Check for 1/0 errors. If any, error return to user
unless HALT in LH of return.
Go to 41.

30. Remove old high segment, if any, from logica I
addressing space •
Place the sharable segment in user's logica I
addressing space. Go to 40 or return to user if
GETSEG UUO.

35. Remove old high segment, if any, from logical
addressing space.
(Go to 41)

40. Copy vestigial job data area into job data area.
Does the new high segment have a low file

4-21

(LH JOBCOR > 137)?
If not, go to 45.

41. LOOKUP filename .SAV or .LOW or user specified
extension. Error if not found. Return to user if
there is no HALT in LH of error return, provided
that if the CALL is from the high segment it is
sti II the original high segment. Otherwise, the
monitor prints the error message

J ?filename. SAV NOT FOUND

and stops the job.
Reassign low segment core according to size of file
or user specified core argument, whichever is
larger. Previous low segment is overlaid. Read
low file into beginning of low segment. Check for
I/0 errors. If there is an error print error message
and do not return to user. If there are no errors,
perform ST ART •

45. Reassign low segment core according to larger ol
user's core argument or argument when file saved
(RH JOBCOR).

NOTE

To be guaranteed of handling the largest number of errors,
the cautious user should remove his high segment from high
logica I addressing space (use core UUO with a one in LH
of AC). The error handling code should be put in the low
segment along with the RUN UUO and the size of the low
segment reduced to 1 K. A better idea wou Id be to have
the error handling code written once and put in a seldom
used (probably nonsharable) high segment, which could be
gotten in high segment using GETSEG UUO (see below)
when an error return occurs to low segment on a RUN UUO.

4.5 .2 GETSEG AC, or CALLI AC, 40

This UUO has been implemented so that a high segment can be initialized from a file or shared segment

without affecting the low segment. It is used for shared data segments, shared program overlays, and

run-time routines such as FORTRAN or COBOL operating systems. This programmed operator works

exactly like the RUN UUO with the following exceptions:

a. No attempt is made to read a low file.

b. The accumulators are not preserved. JOBDAT is not changed except for the setting of
JOBHRL. .

c. If an error occurs, control is returned to the location of the error return, unless the left
half of the location contains a HALT instruction.

Revision 1 Monitors 4-22 January 1971

(

(

~ y

I

)

d.

e.

f.

On a normal return, control is returned to two locations following the UUO, whether it is
called from low or high segment. It should be called from low segment unless the normal
return coincides with the starting address of the new high segment.

User channels 1 through 17 are not released so the GETSEG UUO can be used for program
overlays, such as the COBOL compiler. Channel 0 is released because it is used by the UUO.

JOB SA and JO BREN are zeroed if they point to a high segment that is being removed. This
produces the message

?NO START ADDRESS

Refer to steps 1 through 31 of the RUN UUO description (Paragraph 4.4.2) for details of GETSEG UUO

operation.

4.5 .3 REMAP AC, or CALLI AC, 37

This UUO takes the top part of a low segment and remaps it into the high segment. The previous high

segment (if any} will be removed from the user's addressing space. The new low segment will be the

previous low segment minus the amount remapped.

The cal I is:

MOVEI AC, Desired highest adr in low segment
REMAP AC, ; or CALLI AC, 37
error return
normal return

To ensure that the amount remapped is a multiple of 1 K decimal words, the monitor performs the in­

clusive OR function of 1777 and the user's request. If the argument exceeds the length of the low

segment, remapping will not take place, the high segment will remain unchanged in the user's addressing

space, and the error return will be taken. The error return will also be taken if the system does not have

a two-register capability'. The contents of AC are unchanged. The contents of JOBREL (refer to Para­

graph 3.2.1) are set to the new highest lega I user address in the low segment. The RH of JOBHRL will

be set to the highest legal user address in the high segment (401777 or greater or O). The hardware re­

location will be changed and the user-mode write protect bit will be set.

This UUO is used by the LOADER to load reentrant programs, which make use of all of physical core.

Otherwise, the LOADER might exceed core in assigning additiona I core and moving the data from the

low to the high segment with a BLT instruction. The GET command also uses this UUO to perform 1/0
into the low segment instead of the high segment.

4.5 .4 Testing for Sharable High Segments

Occasionally, it is desirable for a program to determine whether its high segment is sharable. If the

) high segment is sharable, the program may decide not to modify itself. The following code tests the

Revision 1 Monitors 4-23 January 1971

high segment whether or not 1) the system has a high segment capability or 2) the job has a high

segment.

HRROI
GETTAB
JRST
TLNN
JRST

TI 14
T,
.+2
T,200000
NOTSHR

4.5.5 Modifying Shared Segments and Meddling

;See if high segment is sharable
;look at monitor JBTSGN table
;table or UUO not present
;is sharable bit on?
;no, go ahead and modify here
; if high segment is sharable.

A high segment is usually write-protected, but it is possible for a user program to turn off the user

write-protect bit or to increase or decrease a shared segment's core assignment by using the SETUWP

or CORE UUOs. These UUOs are legal from the high or low segment, if the sharable segment has not

been "meddled 11 with unless the user has write privileges for the file that initia Ii zed the high segment.

Even the malicious user can hove the privilege of running such a program, although he does not have

the access rights to modify the file used to initialize the sharable segment.

Meddling is defined as any of the following, even if the user has privileges to write the file which

initialized the sharable segnient.

a. START or CSTART commands with an argument

b. DEPOSIT command in the low or high segment

c. RUN UUO with anything other than a 0 or 1 in LH of AC as a starting address increment.

d. GETSEG UUO.

It is not considered meddling to perform any of the above commands or UUOs with a nonsharable pro-.

gram. It is never considered meddling to type t C followed by START (without an argument), CONT,

CC ONT, CSTART (without an argument), REENTER, DDT, SAVE, or E command.

When a sharable program is meddled with, the monitor sets the meddle bit for the user. An error return

is given when the clearing of the user write-protect bit is attempted with the SETUWP UUO or when the

reassignment of core for the high segment (except to remove it completely) is attempted with the CORE

UUO. An attempt to modify the high segment with the DEPOSIT command causes the message

OUT OF BOUNDS

to be printed. If the user write-protect bit was not set when the user meddled, it will be set to protect

the high segment in case it is being shared. The command and the two UUOs are allowed in spite of

(

/
(

~-

meddling, if the user has the access privileges to write the file which initialized the high segment. (

4-24

A privileged programmer is able to supersede a sharable program, which is in the process of being

shared by a number of users. When a successful CLOSE, OUTPUT, or RENAME UUO is executed for

a file with the same directory name and file name (previous name if the RENAME UUO is used) as the

segment being shared, the name of the segment is set to 0. New users do not share the older version,

but they do share the newer version. This requires the monitor to read the newly created file only

once to initialize it. The monitor deletes the older version when all users are finished sharing it.

Use rs with access privileges are able to write programs that access sharable data segments via the

GETSEG UUO (which is meddling) and then turn off the user write-protect bit using SETUWP UUO.

With DECtape, write privileges exist if it is assigned to the job (cannot be a system tape) or is not

assigned to any job and is not a system tape.

When control can be transferred only to a small number of entry points (two), which the shared program

is prepared to handle, then the shared program can do anything it has the privileges to do, although the

person running the program does not have these privileges.

The ASSIGN (and DEASSIGN, FINISH, KJOB if device was previously assigned by console) command

clears all shared segment names currently in use, which were initialized for the device, if the device

is removable (DTA,MTA). Otherwise, new users could continue to share the old segment indefinitely,

even if a new version were mounted on the device. Therefore, it is possible to update the library dur­

ing regular timesharing, if the programmer has access privileges. In a DECtape system, a new CUSP

tape can be mounted followed by an ASSIGN SYS command, which clears segment names for the

physica I device, but does not assign the device because everyone needs to share it.

4.6 FILE STRUCTURE CONTROL

4.6. 1 STRUUO AC, or CALLI AC, 50

This UUO manipulates file structures and is intended primarily for monitor support CUSPs.

The first word of the argument I ist specifies the function to be performed. Function 0 (. FSSRC) is the

only unprivileged function; the other functions are used with the OMOUNT and UMOUNT CUSPs and

are not discussed in this manua I since they are not meant for general use.

The ca II is:

MOVE AC, [XWD N, LOCJ

STRUUO AC,
error return
norma I return
(Continued on next page)

;N is the number of words in the
;argument list starting at location
;LOC.
;or CALLI AC, 50
;AC contains an error code
;AC contains status information

4-25

LOC/ .FSSRC
LOC+ 1/ First SIX BIT fi lestructure name, left justified
LOC+2/0
LOC+3/ Status bits
LOC+4/ Second SIXBIT file structure name, left justified
LOC+5/0
LOC+6/ Status bits

4.6. 1. l Function 0 .FSSRC - This function allows a new file structure search list to be specified for

I
the job issuing the UUO. The argument list consists of word triplets, which specify the new search

list order to replace the current search list. The current search list may be determined with the

JOBSTR UUO. The first word contains a left-justified file structure name in SIX BIT. The second

I

word is not used at present. The third word contains the following status bits:

Bit 0 = l if software write-protection is requested for this file structure.

Bit l = l if files are not to be created on this file structure unless the specific
file structure is specified in an ASSIGN command or in a INIT or
OPEN UUO.

The user may use the MOUNT command to add a new file structure name to his search list. The

MOUNT CUSP

a. Requests the file structure to be mounted (if it is not a I ready mounted)

b. Creates a UFD for the user if he has a logged-in quota in file SYS: QUOTA.SYS on that
file structure.

A user cannot create files on a file structure unless he or the project-programmer number specified has

a UF D on that file structure. However, by using the .FSSRC function, the user may add a file structure

name to his search list if the file structure is mounted and either the user has a UFD for that file struc­

ture or he does not 'M:l nt to write on that file structure. If the user attempts to delete a file structure

name from his search list by the .FFSRC function, the monitor moves the file structure name from the

active search list to the passive search list. However, because the mount count is not decremented,

the user may still do 1/0 explicitly to the file structure. The DISMOUNT command must be used to

remove the file structure from the active or passive search list. The DISMOUNT command causes the

mount count to be decremented, signifying that the user is finished with the file structure, and checks

that the user has not exceeded his logged-out quota on that file structure.

4-26

)

)

)

Symbol Code

• ERILF 0

• ERSNF 1

.ERSSA 2

.ERTME 4

• ERRSL 17

Table 4-3
.FSSRC Error Codes

Explanation

II lega I function code

One or more file structures not found •

One or more file structures single
access Qnly.

Too many entries in search list.

File structure is repeated in a search
list definition.

I 4.7 PROGRAM AND PROFILE IDENTIFICATION

4.7. 1 CALL AC, [SIXBIT /LOGIN/] or CALLI AC, 15

This UUO is not available to user programmers. It is for the exclusive use of the LOGIN CUSP, which

uses this operator to exit to the monitor and to pass it certain crucial parameters (including project and

programmer numbers) about the user who just successfully logged in. When the LOGIN CUSP ca Ifs this

UUO, any devices the CUSP was using are released, and a period is printed on the user's console.

The console is left in monitor mode ready to accept the user's first command.

Any other user program that ca Ifs this UUO receives the error message

ILLEGAL UUO AT USER addr

The user's console is then put in monitor mode, and the CONT and CCONT commands are not permitted.

4.7 .2 CALL AC, [SIX BIT /SETNAM/J or CALLI AC, 43

This UUO is used by the LOADER. The contents of AC contain a left-justified SIXBIT program name,

which is stored in a monitor job table. The information in the table is used by the SYSTAT CUSP

{refer to Table 4-4).

Revision 1 Monitors 4-27 January 1971

4.7 .3 SETUUO AC, or CALLI AC, 75

The SETUUO is used to set various system or job parameters. Certain functions of this UUO are

privileged. Privileges are granted if the job is either logged in under [1,2] or running with the JACCT

bit on. The contents of AC contain a function code in the left half and an argument in the right half.

The functions and arguments are as follows:

Function

0

2

3

4

5

6

7

Argument

CORMAX (actual number}. Privileged function.

CORMIN (actual number). Privileged function.

DAYTIME (decimal number of minutes since midnight,
hours* 100 +minutes}. Privileged function.

SCHED (argument stored in RH of STATES word in
COMMON). Privileged function.

CDR (input name counter for this job}. If AC is non­
zero, the contents is the same as the next input name.
If 0, the current counter is returned in AC. Not a
privileged function.

SPOOL for this job (bits are as stored in JBTSPL).
Not a privileged function.

WATCH for this job (bits are as stored in JBTWCH).
Not a privileged function.

DATE (decimal number of days since January 1, 1964,
refer to Paragraph 4. 9. 1 .1). Privileged function.

4.7 .4 CHGPPN AC, or CALLI AC, 74 - This UUO is used by the LOGIN CUSP to change a user's

project-programmer number. The call is:

MOVE AC, new project-programmer number
CHGPPN AC, ;or CALLI AC, 74
error return
normal return

The error return is given if the UUO is not implemented or if the job associated with the project­

programmer is already logged in. The normal return is given if the job is not logged in, and the

project-programmer number is changed.

Revision 1 f'.Aonitors 4-28 January 1971

(

(

(

) 4.8 INTER-PROGRAM COMMUNICATION

./
4.8. 1 CALL AC, [SIXBIT /TMPCOR/J or CALLI AC, 44

)

This allows a job to leave several short files in core from the running of one user program or CUSP to

the next. These files are referenced by a three-character filename and are unique to each job. All

files are deleted when the job is killed. This system of temporary storage improves response times and

reduces the number of disk operations.

Each temporary file appears to the user as one dump mode buffer. The actual size of the file, the

number of temporary files a user can have, and the tota I core a user can use for temporary storage are

parameters determined at MONGEN time. All temporary files reside in a fixed area, but the space

is dynamically allocated among different jobs and severe I different files for any given job.

The ca II is:

MOVE AC, [XWD CODE, BLOCK]
CALL AC, [SIX BIT /TEMPCOR/)
error return
norma I return

BLOCK: XWD NAME, 0
IOWD BUFLE N, BUFFER

;or CALLI AC , 44

;NAME is filename
;user buffer area
;(zero for no buffer)

The AC must be set by the user program prior to execution of the UUO and is changed by the UUO on

return to a value that depends on the particular function performed. Functions of the TMPCOR UUO

are presented in the following paragraphs.

4. 8. 1. 1 CODE = 0, Obtain Free Space - This is the only form of the UUO that does not use o two­

word parameter block and, therefore, the contents of AC are ordinarily set to O. A norma I return is

given (unless the UUO is not implemented) and the number of free words avai lob le to the user is re­

turned in AC.

4.8.1.2 CODE= 1, Read File - If the specified file is not found, the number of free words available

for temporary files is returned in AC and the error return is taken. If the specified file is found, the

length of the file in words is returned in AC, and as much of the file as possible is copied into the

user's buffer. The user may check for truncation of the file by comparing the contents of AC with

BUFLEN.

Revision 1 Monitors 4-28o January 1971

(

(

4.8 .1.3 CODE= 2, Read and Delete File - This function is similar to code= 1, except that if the

specified file is found, it is deleted and its space is reclaimed.

4.8.1.4 CODE= 3, Write File - If a file exists with the specified name, it is deleted and its space

rec I aimed. The requested size of the file is specified by BUF LEN. If there is enough space

a. The file is written

b. The number of remaining blocks is returned in AC

c. The norma I return is taken

If there is not enough space to completely write the file

a. The file is not written

b. The number of free words available to the user is returned in AC

c. The error return is taken.

4.8. 1.5 CODE = 4, Read Directory - The number of different files in the temporary file area of the

job is returned in AC. An entry is made for each file in the user's buffer area until either there is no

more space or all files have been listed. The error return is never taken. The user may check for

truncation of the entries by comparing the contents of AC with BUFLEN. The format of a directory

entry is as fol lows:

XWD NAME I SIZE

where NAME is the filename and SIZE is the file length in words.

4.8.1.6 CODE= 5, Read and Clear Directory - This function is similar to CODE= 4, except that any

files in the temporary storage area of the job are deleted and their space is reclaimed.

This UUO is used by the LOGOUT CUSP.

4.9 ENVIRONMENTAL INFORMATION

4. 9. l Timing Information

The centra I processor clock, which generates interrupts at the power-source frequency (60 Hz in North

America, 50 Hz in most other countries), keeps time in the monitor. Each clock interrupt (tick) cor­

responds to l/60th (or l/50th) of a second of elapsed rea I time. The clock is set initially to the current

time by console input when the system is started, as is the current date. When the clock reaches mid­

night, it is reset to zero, and the date is advanced.

4-29

4.9.1.1 CALL AC, [SIXBIT /DATE/) or CALLI AC, 14 - A 12-bit binary integer computed by the

formula

date=((year-1964)x 12+(month-1))x3 l+day-1

represents the date.

This integer representation is returned right justified in accumulator AC.

4.9.1.2 CALL AC, [SIXBIT /TIMER/) or CALLI AC, 22 - This UUO returns the time of day, in clock

ticks (jiffies), right justified in accumulator AC.

4.9.1.3 CALL AC, [SIXBIT /MSTIME/) or CALLI AC, 23 -This UUO returns the time of day, in

milliseconds, right justified in accumulator AC.

4. 9 .2 Job Status Information

4.9.2.1 CALL AC, [SIXBIT /RUNTIM/) or CALLI AC, 27 -The accumulated running time (in milli­

seconds) of the job number in accumulator AC is returned right justified in accumulator AC. If the

job number in AC is zero, the running time of the currently running job is returned. If the job number

in AC does not exist, zero is returned.

4.9.2.2 CALL AC, [SIXBIT /PJOB/) or CALLI AC, 30 - This UUO returns the job number right justi­

fied in accumulator AC.

4.9.2.3 CALL AC, [SIXBIT /GETPPN/) or CALLI AC, 24 - This UUO returns in AC the project­

programmer pair of the job. The project number is a binary number in the left ha If of AC, and the

programmer number is a binary number in the right half of AC. If the program is LOGIN or LOGOUT

from the system device, a skip return is given if the old project-programmer number is also logged in on

another job.

4.9.2.4 CALL AC, [SIXBIT /GETLIN/) or CALLI AC, 34 -This UUO returns the SIXBIT physical

name of the Teletype console that the program is attached to.

The call is:

CALL AC I [SIXBIT I GETLI N /J ;OR CALLI AC I 34

The name is returned left justified in the AC.

4-30

)1 j Example:

)

)

CTY or TTY3 or TTY30

This UUO is used by the LOGIN program to print the TTY name.

4.9.2.5 CALL AC, [SIXBIT /JOBSTR,/I or CALLI AC, 47 -This UUO returns the next file structure

name in the job's search list along with other information about the file structure. Programs like PIP

use this UUO to list a user's directory correctly and specify in which file structures the files occur, as

well as the order in which they are scanned.

The ca II is:

MOVE AC I [XWD NI LOC]
CALL AC I [SIX BIT /JOBSTR/J
error return
norma I return

;or CALLI AC, 47

LOC is the address of an N-word block. The first word of this block should contain either -1 or the

last value returned by the previous JOBSTR. On return, the first word is either the next file structure

name or -1 if all file structure names have been returned. The second word contains the project­

programmer number requested in the file structure, and the third word contains status bits. Current

status bits include the following:

Bit 0 = 1

Bit 1 = 1

if software write protection is in effect for this job.

if files are not to be created on this file structure, when a multiple
file structure name is specified in an INIT or OPEN UUO. Files
can be created if a specific file structure or physica I unit is specified.

4.9.2.6 GOBSTR AC, or CALLI AC, 66 - This privileged UUO returns successive file structure names

I in the search list of either an arbitrary job or the system. The GOBS TR UUO is a generalization of the

JOBS TR UUO (see Paragraph 4. 9 .2 .5).

The call is:

MOVE AC, [XWD N,LOCJ
GOBSTR AC,
error return
norma I return

Revision 1 Monitors

;or CALLI AC, 66
;AC contains an error code

4-31 January 1971

When the UUO is called, AC specifies the length (N) and address (LOC) of an argument list. N may

be 0, 3, 4, or 5 where N = 0 has the same effect as N = 3. Only the arguments included by N(LOC,

LOC+ 1, ... , LOC+N-1) are used or returned. The argument list is as follows:

LOC: SIXBIT /file structure name/
job number

XWD proj, prog

0
Status

;or -1
; job whose search
; list is desired.
;project-programmer
;number of above job.
;currently unused.
;status bits are the same
;as in JOBSTR UUO.

I
If the job number and project-programmer number are both zero, the system search list is searched.

On an error return, AC contains one of the following error codes:

Code

0

2

Meaning

If LOC is not -1 or a file structure name in jobs
search I ist.

If job issuing the UUO is not privileged.

If job number (LOC + 1) and project-programmer
number (LOC + 2) do not correspond.

4. 9 .2 .7 OT HU SR AC, or CALLI AC, 77 - This UUO is used to determine if another job is logged in

with the same project-programmer number as the job executing the UUO • The non-skip return is given

if

l) the UUO is not implemented, in which case the AC remains unchanged, or

2) the UUO is implemented and no other jobs are logged in with the same project­
programmer number, in which case the AC contains the project-programmer
number of the job execu.ting the UUO.

The SKIP return is given if the UUO is implemented and other jobs are logged-in with the same project­

programmer number. The AC contains the project-programmer number of the job executing the UUO.

This UUO is used by KJOB.

4. 9 .3 Monitor Examination

4.9.3. 1 PEEK AC, or CALLI AC, 33 - This UUO allows a user program to examine any location in

the monitor. It is used by SYSTAT, FILDDT, and DATDMP and could be used for on-line monitor

debugging. Some customers may want to restrict the use of this UUO to project 1.

Revision l Monitors 4-32 January 1971

(

c

(

" The ca II is :
J

)

MOVE I AC, exec address
PEEK AC,

;TAKEN MODULO SIZE OF MONITOR
;OR CALLI AC, 33

This call returns with the contents of the monitor location in AC.

4..9.3.2 SPY AC, or CALLI AC, 42 - This UUO is used for efficient examination of the monitor during

timesharing. Any number of K of physical core {not limited to the size of the monitor) is placed into

tlie user's logica I high segment. This amount cannot be saved with the monitor SAVE command {only

tlie low segment is saved), cannot be increased or decreased by the CORE UUO {error return taken),

or cannot have the user-mode write protect bit cleared {error retu m taken).

Revision 1 Monitors 4-3'2a January 1971

(

(

)

)

The ca II is:

MOVEI AC, highest physical core location desired
SPY AC, ;or CALLI AC, 42
error return
norma I return

Any program that is written to use the SPY UUO should try the PEEK UUO if it receives an error return.

Some installations may restrict use of the SPY UUO to certain privileged users (e.g., project 1 only).

4. 9 .3 .3 GETT AB AC, or CALLI AC, 41 - This UUO provides a mechanism which will not vary from

monitor to monitor for user programs to examine the contents of certain monitor locations.

The ca II is:

MOVE AC, [XWD index, table number]
GETTAB AC, ;OR CALLI AC, 41
error return
norma I return

The left half of AC contains a job number or some other index to a table. Some job numbers may refer

to high segments of programs by using arguments greater th~n the highest job number for the current

I monitor. A LH of -1 inidcates the current iob number. A LH of -2 references the job's high segment.

An error return is given if there is no high segment or if the hardware and software is non-reentrant.

The right half of AC contains a table number from the list of monitor data tables and parameters in

Table 4-4. The entries in these tables are globals in the monitor subroutine COMMON. The actual

values of the core addresses of these locations are subject to change and can be found in the LOADER

storage map for the monitor. The complete description of these globals is found in the listing of

COMMON.

I The customer is allowed to add his own GETTAB tables to the monitor. A negative right half should

be used to specify such customer-added operations.

An error return leaves the AC unchanged and is given if the job number or index number in the left

half of AC is too high, the table number in the right half of AC is too high, or the user does not have

the privilege of accessing that tableo

A normal return supplies the contents of the requested table in AC, or a zero if the table is not defined

in the current monitor.

The SYSTAT CUSP makes frequent use of this UUO.

Revision 1 Monitors

NOTE

Many GETTAB tables have information in the undescribed
bits. This information is I ikely to change and should be
ignored. Because the field is currently zero, there is no
reason to believe that it will always be zero.

4-33: January 1971

Table Numbers
Table Names

(RH of AC)

00 JBTSTS

01 JBTADR

02 PRJPRG

03 JBTPRG

04 TTIME

05 JBTKCT

06 JBTPRV

07 JBTSWP

10 TTYTAB

11 CNFTBL

12 NSWTBL

13 SWPTBL

I
14 JBTSGN

15 ODPTBL

16 LVDTBL

17 JBTRCT

20 JBlWCT

21 JBTDBS

22 JBTTDB

Revision l Monitors

Table 4-4
GETTAB Tables

Explanation

Job status word; index by job or segment number.

Job relocation and protection; index by job or
segment number.

Project and programmer numbers; index by job or
segment number.

User program name; index by job or segment number.

Total time used; index by job number.

Kilo-Core ticks of job; index by job number.

Privilege bits of job; index by job number.

Swapping Parameters of job; index by job or seg-
ment number.

Teletype-to-job translation; index by console
I ine number.

Configuration table; index by item number, see
below.

Nonswapping data; index by item number, see below.

Swapping data; index by item number, see below.

High segment table; index by job number.
Bit 0 = 0, then bits 18-35 is index of high segment
(if bits 18-35 = 0, then there is no high segment).
Bit 0 = l, then bits 18-35 is number of K to spy on.
Bit l = l if job has a high segment that is sharable.

Once-only disk parameters; index by item number,
see below.

Level D disk parameters; index by item number,
see below.

Disk blocks read by job; used by OSK command:
a. Bits 0-11 =incremental blocks.
b. Bits 12-35 = total blocks since LOGIN.
Index by job number.

Disk blocks written by job:
a. Bits 0-11 = incremental blocks.
b. Bits 12-35 =total blocks since LOGIN.
Index by job number.

Reserved for future •

a. Bits 0-16 =time of day in seconds of last disk
al location.

b. Bits 17-35 =number of disk blocks allocated on
all file structures of this job; index by job num-
ber.

4-34 Jonuary.1971

(

(

) Table 4-4 (Cont)
,,.,

GETTAB Tables /

Table Numbers
Table Names Explanation

(RH of AC)

23 NUMTAB Table of GETTAB addresses (GETTAB immediate);
index by GETTAB table number, see below.

24 JBTDEV Device or file structure name of sharable high seg-
ment. Index by high segment number.

25 STSTBL Two-character SIXBIT names for job queues; index
by item numbers, see below.

26 JBTLOC Reserved for future.

27 CORT AB Physical core allocation. One bit per one K of
core if system does not include LOCK UUO. Two
bits per entry if system includes LOCK UUO. A
non-zero entry indicates core in use.

30 COM TAB Tab I e of SIX BIT names of monitor commands.

31 JBTNMl First half of name of user in SIXBIT; index by
job number.

32 JBTNM2 Last half of name of user in SIXBIT; index by

) job number.

33 JBTCNO Job's charge number; index by job number.

34 JBTTMP Job's TMPCOR pointers; index by job number.

35 JBTWCH Job's WATCH bits; index by job number.

36 JBTSPL Job's spooling control bits; index by job number.

37 JBTRTD Job's real-time status word; index by job number.

40 JBTLIM Job's time I imit in jiffies; index by job number.

41 QQQTAB Timesharing scheduler's queue headers.

42 JBTQ Timesharing scheduler's queue that job is in;
index by job number.

Entries in Table 11 - CNFTBL (Configuration Table)

Item Location Use

0 CONFIG Name of system in ASCIZ

4 CONFIG+4
5 SYSDAT Date of system in ASCIZ
6 SYSDAT+l

) 7 SYSTAP Name of system device (SIXBIT)
10 TIME Time of day in jiffies

Revision l Monitors 4-35 January 1971

Entries in Table 11 - CNFTBL (Configuration Table) (Cont) (
Item Location

11 THSDAT
12 SYSSIZ
13 DEVOPR
14 DEVLST
15 SEGPTR
16 TWO REG
17 STATES

20 SERIAL

21 MEMNSP

22 PTYCNF

23 FREPTR

24 LOCO RE

25 STBSTR

Revision 1 Monitors

Use

Today's date (12-bit format)
Highest location in monitor+ 1
Name of OPR TTY console (SIXBIT)
LH is start of DOB (device-data-block) chain
LH=-# of high segments, RH=+# of JOBS (counting NULL job)
Non-zero if system has two-register hardware and software
Location describing feature switches of this system in LH,
and current state in RH

Assembled according to MONGEN dialog and S.MAC:

Bit O= 1 if disk system (FTDISK)
Bit 1=1 if swap system (FTSWAP)
Bit 2=1 if LOGIN system (FTLOGIN)
Bit 3=1 if full duplex software (FTTYSER)
Bit 4=1 if privilege feature (FTPRV)
Bit 5=1 if assembled for choice of reentrant or non-reentrant

software at monitor load time (FT2REL)
Bit 6=1 if clock is 50 cycle instead of 60 cycle.
Bits 7-9 type of disk system

if 0, 4-series disk system
if 1, 5-series disk system

Bit 10=1 if independent programmer numbers between project
(INDPPN is non-zero) ~·

Bit 11=1 if image mode on Teletype (8-bit SCNSER) ~
Set by the privileged operator command, SCHEDULE:

Bit 34=1 means no remote LOG I Ns
Bit 35=1 means no more LOGINs except from CTY

Serial number of PDP-10 processor
Set by MONG EN dialog

Number of nanoseconds per memory cycle for memory
system. Used by SYS TAT to compute shuffling time.

PTY parameters for Batch.
LH =the number of the first invisible Teletype (PTYOFS).
RH =the number of PTY's in the system configuration (PTYN).

AOBJN word to use bit map in monitor for al locating
4-word core blocks.

LH=O, RH=address in monitor for free 4-word core block
areas. (This is never changed while monitor runs.)

Link to STB chain for remote Batch.

4-36 January 1971

(

)

Entries in Table. l2 - NSWTBL (Nons\.VCJpping Data)

Item Location

0 CORT AB

7 CORTAB+7
10 CORMAX
11 CORLST
12 CORT AL
13 SHFWAT
14 HOLEF
15 UPTIME
16 SHFWRD
17 STUSER
20 HIGHJB
21 CLRWRD
22 LSTWRD

23 MEMSIZ
24 PARTOT

25 PARS PR

26 PARCON
27 PARA DR
30 PARWRD
31 PARPC
32 EPOCNT
33 EPOREC

34 MAX MAX
35 SYSKTM
36 CORMIN

Obsolete,
unspecified data

Use

Size in words of largest legal user job (low seg+high seg)
Byte pointer to last free block in CORTAB
Total free+dormant+idle K physical core left
Job number shuffler has stopped
Absolute address of job above lowest hole, 0 if no job

· Time system has been up in jiffies
Total number of words shuffled by system
Number of job using SYS if not a disk
Highest job number currently assigned
Total number of words cleared by CLRCOR
Total number of clock ticks when null job ran· and other
jobs wanted to but could not because:
a. Swapped out or on way in or out
b. Monitor waiting for 1/0 to stop so it can shuffle or swap
c. Job being swapped out because of expanding core
Size of physical memory in words
Total number of user parity errors (memory) since system

was loaded.
Total number of spurious (refer to Paragraph 3. 1. 1) parity

errors (memory).
Total number of multiple parity errors (memory).
The absolute location of the last user mode memory parity error.
The contents of the I ast user mode memory parity error.
The user PC of the last user mode memory parity error.
Total number of POL OVR's at UUO level in exec mode.
Number of POL OVR's at UUO level which were recovered

by assigning extended I ist.
Highest legal value of CORMAX.
Count-down timer for SET KSYS command
Amount of core guaranteed to be available after locking
jobs in core.

Entries in Table 13 - SWPTBL (Swapping Data)

Item

0
1

2
3
4

Revision 1 Monitors

Location

BIGHOL
FINISH

FORCE
FIT
VI RT AL

Use

Number of K in biggest hole in core
+Job number of job being s'Mlpped out
-Job number of job being S'Mlpped in
Job being forced to S'Mlp out
Job waiting to be fit into core
Amount of virtue I core left in system in K (initially
set to number of K of swapping space)

4-36a January 1971

(

. (

)

)

I

I

Entries in Table 13 - SWPTBL (Swapping Data) (Cont)

Item Location

5 SWPERC

Use

LH=number of swap read or write errors
RH=error bits (bits 18-21 same as status bits)+ number
of K discarded

Entries in Table 15 - ODPTBL (Once-Only Disk Parameters)

Item

0
1

2
3

Location

SWPHGH
K4SWAP

PROT
PROTO

Use

Unused, contains zero in 5-series monitors.
K of disk words set aside for swapping on a 11 units
in active swapping list.
In-core protect time multiplies size of job in K-1
In-core protect time added to above result after
multiply.

Entries in Table 16 - LVDTBL (Level D Disk Parameters)

Item Location Use

0 MFDPPN Project-programmer number for UFOs only (1, 1)
1 SYSPPN Project-programmer number for device SYS (1,4)
2 FSFPPN Project-programmer number for FAILSAFE (1,2)
3 HELPPP Project-programmer number for SYSTAT and HELP (2,5)
4 PNTPPN Project-programmer number for PRINTER spooling

program (3, 3)
5 SYSPPB a. LH=address of first PPB block

b. RH=address of next PPB block to be scanned
6 SY SS TR a. LH=address of first file structure data block

b. RH=unused
7 SYSUNI a. LH=address of data block of first unit in system

b. RH='=unused
10 SWPUNI a. LH=address of first unit for swapping in system

b. RH=unused
11 CORNUM Number of 4-word access blocks for disk systems

allocated at ONCE - only time.
12 STNPRT Standard file privilege code (057), can be changed by

installation
13 UFDPRT Standard UFO privilege code (775), can be changed by

installation
14 MBFNUM Number of monitor buffers allocated at once-only time (2)
15 QUESTR SIXBIT name of file structure containing 3,3.UFD for

PRINTR and OPFlLE queues.
16 CRUPPN UFO used for storing system crashes.

Entries in Table 23 - NUMTAB (GETTAB Immediate)

This table is useful for a program that uses the SPY UUO for efficiency and needs the core address of

) the monitor tables.

Revision 1 Monitors 4-37
January 1971

The format of each entry is as follows:

Examples:

LH = Bits 0-8 =maximum item number in table
Bits 14-17 = a monitor AC.

RH = executive-mode address of table (item O)

XWD ITEM + JBTMXL I JOBS TS
XWD ITEM+ TTPMXL, TTYTAB

Entries in Table 25 - STSTBL (Two-character SIXBIT nQmes for job queues)

Word 0.

Word 1

Bits 0-11 :;: contain the two SIXBIT character mnemonic of job state. code 0
Bits 12-23 = contain the two SIXBIT character mnemonic of job state code 1
Bits 24-35 = contain the two SIXBIT character mnemonic of job stCJte code 2

Bits 0-11 = contain the mnemonics of job state code 3
Bits 12-23 = contain the mnemonics of job state code 4
Bits 24-35 = contain the mnemonics of job state code 5
etc.

The job state code for a disk system are as follows:

RN one of the run queues

ws 1/0 wait satisfied

TS Teletype 1/0 wait satisfied

OS disk 1/0 wait satisfied

ST system tape wait

AU disk alter UFO wait

MQ disk monitor buffer wait

DA disk storage o !location 'Mlit

CB disk core block seem 'Mlit

DT DECtape control 'Ml it

DC data control wait

MT magnetic control wait

CA core allocation WQit (to be locked)

1/0 1/0 wait

TI Teletype 1/0 wait

DI disk 1/0 wait

4-38

(

(

(

) '

)

SL

NU

ST

sleep wait

null state

stop (t C) state

These state codes are printed by SYSTAT and MOVEI.

4. 9 .3.4 DEVSTS AC, or CALLI AC, 54 - This UUO is a diagnostic UUO used to retrieve the DEVSTS

word of the device data block for an INITed device. The DEVSTS word is used by a device servic~ rou­

tine to save the results of a CONI after each interrupt from the device. Devices that use the DEVSTS

UUO are the following: CDR, CDP, MTA, DTA, PTR, PTP, DSK, LPT, and PLT.

The ca II is:

MOVE! AC, channel number of device
DEVSTS AC,
error return

norma I return

;or CALLI AC, 54
;UUO not implemented fur any
;devices
;AC contains the DEVSTS
;word of the DDB.

Upon return, the contents of the DEVSTS word is returned in AC. Therefore, if the device service

routine does not store a CONI, useless information may be returned to user. Note that an error return

is not indicated if the device service routine does not use the DEVSTS word for its intended purpose.

Devices with both a control and data interrupt store the controller CONI (MTS, DTS, DSK, DSK2,

DPC, DPC2).

The DEVSTS UUO is not meaningful when used in asynchronous buffered 1/0 mode unless a WAIT UUO

(see Paragraph 4. 10 .5 .3) is issued first to ensure synchronization of the actua I data transferred with

the device status returned.

4. 9 .4 Configuration Information

4. 9 .4. 1 CALL AC, [SIX BIT /SWITCH/] or CALLI AC, 20 - This UUO returns the contents of the ·

central processor data switches in AC. Caution must be exercised in using the data switches because

they are not an allocated resource and are always available to all users.

4.9 .4.2 CALL AC, CSIXBIT /DEVCHR/l or CALLI AC, 4 - This UUO allows the user to determine

I
the physical characteristics associated with a device name. When the UUO is called, AC must

)
contain either 1) the. logical or physical device name as a left-justified SIXBIT quantity, or 2) the

channel number of the device as a right-justified quantity.

Revision 1 Monitors 4-39 January 1971

I
The call is:

MOVE AC, [SIXBIT/DEV/J
CALL AC, [SIXBIT/DEVCHR/J

;or MOVEI AC, channel number of device
;or CALLI AC,4

return

If the device is not found, the contents of AC is zero on return. If the device is found, the following

information is returned in AC.

Bit

Bit 0 = l

Bit l = l

Bit 2 = l

Bit 3 = l

Bit 4 = l

Bit 5 = l

Bit 6 = l

Bit 7 = l

Bit 8 = 1

Bit 9 = 1

Bit 10 = 1

Bit 11 = 1

Bitl2=1

Bit 13 = 1

Bit 14 = 1

Bit 15 = 1

Bitl6=1

Bit 17 = 1

Bit 18 = 1

Bit 19 = 1

Remaining
bits

Revision 1 Monitors

Explanation

DECtape directory is in core. This bit is cleared by an ASSIGN
or DEASSIGN to that unit.

Device is a file structure.

Device is a card reader or card punch.

Device is a line printer.

TTY is attached to a job.

TTY is in use as a user console (even if detached).

TTY is in use as an 1/0 device.

Device is a display.

Device has a long dispatch table (that is, UUOs other than INPUT,
OUTPUT, CLOSE, and RELEASE perform real actions).

Device is a paper-tape punch.

Device is a paper-tape reader.

Device is a DECtape.

Device is available to this job or is already assigned to this job.

Device .is a magnetic tape.

Device is a TTY.

Device has a directory (DTA or OSK).

Device can perform input.

Device can perform output.

Device is assigned by a console command.

Device is assigned by program (INIT).

If bit 35-n contains a 1, then mode n is legal for that device.
The mode number (O through 17) must be converted to decimal
(e.g., mode 179 is represented by bit 35-1510 or bit 20).

4-40 January 1971

(

)

)

I
I

4.9 .4.3 CALL AC, [SIXBIT/DEVPPN/J or CALLI AC, 55 - This UUO allows a user program to

obtain the project-programmer number associated with a device name.

The call is:

MOVE AC, [SIXBIT /DEV/J
CALL AC, [SIX BIT/ DEVPPN/J
error return
norma I return

;or CA LU AC ~ 55

DEV may be a logical or physical device name or SYS. The error return is taken if:

a. The UU 0 is not implemented; therefore, the contents of AC remain the same on return

b. The device does not exist, therefore, zero is returned in AC.

If a legal device is specified, the normal return is given and the project-programmer number of either

the user's directory or device SYS is returned in AC.

The following is an example to read a UFO even if device SYS is specified.

MODE:

PPN:

,MfDPPN:

MOVE I A, 16
CALL A,CSIXBIT /GETTAB/J

MOVE A, C 1 , , 1 J
MOVEM A,MrDPPN
MOVE A, DEVICE NAME TYPED BY USER
MOVEM A,MQDE+l
CALL A,[S!XBIT /OEVPPN/J

.MOVE! A.10
MOVEM A,PPN

OPEN A, t-'lODE
JRST ERROR

LOOKUP A.1PPN
JRST ERROR

INPUT A,

14
0
XWD 0,INBUF

0
SIXBIT /UFO/
0
XWD 1,1

Revision 1 Monitors

;get MFD project-programmer number
;no change if no GETTAB
;in case of level C
;store MFD directory number
;store device name for OPEN
;get project-programmer number
;implied by the device name
;not implemented or no such device
;store project-programmer number
;associated with this device
;try to assign device
;not available
;try to lookup UFO
;not there
;read first block UFO

;mode is binary
;device name
;buffer headers
;directory names
;extension

;lookup UFO in MFD

---~- 4-41 January 1971

4.9 .4.4 CALL AC, [SIX BIT /DSKCHR/J or CALLI AC, 45 - The disk characteristics UUO provides (

necessary information for allocating storage efficiently on different types of disks. Most programs are

able to use the generic device name OSK rather than specia I disk names; however 1 this UUO is needed

by specia I monitor support CUSPs.

This UUO accepts, as arguments, names of file structures (e.g., DSKA), types of controllers (e.g.,

DP) controllers (e.g., DPA), logical units (e.g., DSKA3), physical disk units {e.g., DPA3), or

logical device names {e.g., ALPHA). If the argument in. LOC specifies more than one unit, the values

returned in AC are for the first unit of the specified set. If the argument specifies more them one file

structure (i.e., OSK or logical device name for disk), the first unit of the first file structure is returned.

The ca II is:

MOVE AC I [XWD +NI LOCl

CALL AC I [SIX BIT /DSKCHR/J
error return
norma I return

;N is the number of locations
;of arguments and values starting
;at location LOC

;or CALLI AC, 45
;not a disk

On a normal return, AC contains status information in the left half and configuration information in

the right half. The left half bits have been chosen so that the normal state is 0.

Symbol

. UPRHB

.UPOFL

.UPHWP

.UPSWP

• UPSAF

.UPZMT

• UPP RF

Bit

Bit 0 = 1

Bit 1 = 1

Bit 2 = 1

Bit 3 = 1

Bit 4 = 1

Bit 5 = 1

Bit 6 = 1

Bits 7 and 8
= 11
= 10
= 01

= 00

Explanation

The monitor must reread the home block before the next
operation to ensure that the p<:1ck ID is correct. The
monitor sets this bit when a disk pack goes off-line.

The unit is off-line.

The unit is write-protected.

The unit belongs to a file structure that is write-protected
by software for th is job.

The unit belongs to a single-access file structure •

The unit belongs to a file structl,Jre with a mount count
that has gone to zero (i.e., no one is using the file
structure). Available in 5 .02 monitors and later models,

The unit belongs to a private file structure.

The unit is down
No pack is mounted
A pack is being mounted {desired file structure and pack
ID is already known by the monitor).
A pack is mounted.

4-42

(

)

I

)

)

Symbol Bit Explanation

.UPMSB Bit 9 = l The unit has more than one SAT block.

.UPNNA Bit 10 = l The unit belongs to a file structure for which the operator
has requested no new INITs, LOOKUPs, or ENTERs; set
by privileged STRUUO function.

.UNIAWL Bit 11 = l The file structure is write-protected for all jobs.

Bits 12 - 14 Reserved for future expansion.

Bits 15 - 17 The code identifies which type of argument was passed :·o
the monitor in location LOC.

Bits 18 - 20 Data channel number that software believes hardware is
connected to; first data channel is 0.

Bits 21 - 26 Controller type:
=o DR (future drum) controller RXlO
= l FH (Burroughs disk, Bryant drum) controller RClO
=2 DP (Memorex disk packs) controller RPlO
=3 MD (Bryant mass disk) controller RAlO

Bits 27 - 29 Controller number; first controller of each type starts at 0
(e.g., DPA = 0, DPB = 1)

Bits 30 - 32 Unit type; a controller-dependent field used to distinguish
various options of a unit on its control! er.

If bits 21-26 and bits 30-32 then type is

l 0 RDlO Burroughs disk on RClO

l l RMlOB Bryant drum on RClO

2 0 RPOl disk pack on RPlO

2 l RP02 disk pack on RPlO

3 0 RB l OB dual posi ti oner on RA l 0

3 l RBlOA single positioner on RAlO

Bits 33 - 35 Physical unit number within controller; first unit is 0

The user program supplies in location LOC a left-justified, SIXBIT disk name which may be one of the

following:

0 generic disk name

subset of file structures because of file structure abbreviation

2 file structure name

3 unit within a file structure

4 controller class name

5 controller class

6 physical disk unit name

or a logical name for one of the above assigned by the ASSIGN command.

Revision l Monitors 4-43 January 1971

On a normal return, the monitor returns values in the fol lowing locations:

LOC+l (.UFTAL)

LOC+2 (.STTAL)

LOC+3 (.UNTAL)

LOC+4 (.STNAM)

LOC+5 (.UNCHR)

LOC+6 (.UNBPU)

LOC+7 (.STMNT)

LOC+lO (.UNWPS)

LOC+ll (.UNSPU)

LOC+12 (.UNK4S)

LOC+13 (.STJOB)

LOC+14 (. UNLOG)

LOC+l5 (.UNNAM)

LOC+l6 (.UNHIO)

The number of blocks left of the logged-in job quota before
the UFO of the job is exhausted on the unit specified in LOC.
If negative i the UFO is overdrawn. If the negative number is
400000 000000, the UFO has not been accessed since LOGIN;
the'refore, the monitor does not know the quota.

The number of blocks on a first-come first-served basis left for
al I users on the fi I e structure.

The number of blocks left for al I users on the specified unit.

The file structure name to which this unit belongs.

a. Bits 0-8 are the number of blocks/cluster.
b. Bits 9-17 are the number of blocks/track.
c. Bits 18-35 are the number of blocks/cylinder (see

Appendix H).

The number of 128-word blocks on the specified unit.

The mount count is the number of jobs that have done a
MOUNT command for this file structure without executing
a REMOVE command; it is a use count (available in 5.02
monitors and I ater monitors) •

The number of words containing data bits per SAT block on
this unit.

Number of SAT blocks per unit.

Number of K allocated for swapping.

Zero if none or more than one job has this file structure
mounted. XWO -1, ,n if only job n has file structure mounted
but it is not single access. -xWO O,,n if job n has file
structure mounted and it is single access.

The unit's logical name (e.g., OSK BO).

The unit's physical name (e.g., OPAO).

Th~ unit's ID (e.g., 2PR003).

4.9.4.5 OEVTYP AC, or CALLI AC,53- The device-type UUO is used to determine properties of

devices. This UUO accepts, as an argument, a device name in SIXBIT or a right-justified cha~nel

number. The cal I is:

MOVE AC, [SIXBIT/dev/]
OEVTYP AC,
error return
norma I return

;or MOVEI AC, channel no.
;or CALLI AC,53

The error return is given if the UUO is not implemented. On a normal return, if AC=O, the specified

device does not exist. If the device exists, the following information is returned in AC.

Revision l Monitors 4-44 January 1971

(

(

)

)

Symbol Bit Explanation

- • TYMAN Bit 0 = l LOOKUP/ENTER mandatory.

Bits 1-11 Reserved for the future.

• TYA VL Bit 12 =.l Device is available to this job •

• TYSPL Bit 13 = 1 Spooled on disk • (Other_ bits reflect
properties of real device, except variable
buffer size.)

• TYINT Bit 14 = l Interactive device (output after each break
character) •

• TYVAR Bit 15 = l Capable of variable buffer size (user can
set his own buffer lengths).

.TYIN Bit 16 = l Capable of input.

• TYOUT Bit 17 = l Capable of output.

Bits 18-26 Job number that currently has device
INITed or ASSIGNed • . _,

Bits 27-29 Reserved for the future.

Bits 30-35 Device-type code.

Code 0 (. TYDSK) Disk of some sort
Code l (. TYDTA) DECtape
Code 2 (. TYMTA) Magnetic tape
Code 3 (. TYTTY) TTY or equivalent
Code 4 (;rvPTR) Paper-tcipe reader
Code 5 (. TYPTP) Paper-tape punch
Code 6 (.TY DIS). Display
Code 7 (.TYL PT) Line printer
Code 10 (. TYCDR) Card reader
Code 11 (.TYCDP) Card punch
Code 12 (. TYPTY) Pseudo-Te I etype
Code 13 (. TYPL T) Plotter
Code 14-57 Reserved for Digital
Code 60-77 Reserved for customer

4.9 .4.6 DEVSIZ AC, or CALLI AC, 101 - This UUO is used to determine the buffer size for a device

if the user wants to al locate core himself. The call is:

MOVE AC, [EXP LOCJ
DEVSIZ AC,
error return
normal return

LOC: EXP STATUS
LOC+l: SIXBIT /dev/

;or CALLI AC, 101

;first word of the OPEN block
;second word of the OPEN block

The error return is given if the UUO is not implemented. On a normal return, AC contains one of the

following values:

Revision 1 Monitors 4-44o >
January 1971

If the mode is illegal, AC cont<1ins ... 2

If the device does not exist, AC c:ontoins ,.,. 1

If the device exists, but its dQta mode is dump mode,
AC contains 0.

If the device exh~ts and the data mocfe is legql, AC contqins
in bits 0-17 the default number of buff~r,, and in bits 1~~5
the default buffer size.

4.9.4.7 SYSSTR AC, or CALLI AC, 44"" This UUO pro.vi~~ q simple mechanism to obtain <ill the file

structure names in the system. The proper teehnique to acQess all files in all UFOs is to <;1ocess the

MFD on each file structure seporately. Monitor sµpport CUSPs U$e this UUO to access all the files in

the system.

The call is:

MOVEI AC, 0 or the lost value r~turned by previo1.,1s SYSSTR
SYSSTR AC, ;or CAL~l AC, 46
error return
normal return

An error return is given if either

a. The UUO is not implementecJ

b. The argument is not Q file structure name

On a normal return, the next publiq or privgte file structure n(Jme in the system is r~h~rned in AC. A

return of 0 in AC on a normc:tl return mec:ms thCJt the list <:>f file strvqture names has been exhausted. If

0 is specified as an argvment, the first file shvc:ture n(fme is returned in AC, The argument carmot be

a physical disk unit name or a logicQI nome.

Revision 1 Monitors Jonuciry 1971

(

(

)
14.~.4.8 SYSPHY ~C~ ~r CALLI AC, 51 -This UUO returns all physical disk units in the system.

· This SYSPHY UUO 1s similar to the SYSSTR UUO (see Paragraph 4.9.4.5).

)

)

The call is:

MOVEI AC, 0 or the last unit name returned by previous SYSPHY
SYSPHY AC, ; or CALLI AC, 5·1
error return ;not implemented or not a physica I disk
normal return ;unit name

On the first call AC should be 0 to request the return of the first physical unit name. On subsequent

cal Is, AC should contain the previously returned unit name.

An error return is given if AC does not contain a physical disk unit name or zero. On a normal return,

the next physica I unit name in the system is returned in AC. A return of 0 in AC indicates that the

I ist of physica I units has been exhausted.

4.10 1/0 PROGRAMMING

All user mode I/O programming is controlled by monitor programmed operators. I/O is directed by

a. Associating a device and a ring of buffers with one of the user's I/O channels (INIT,
OPEN)

b. .Optionally selecting o file (LOOKUP, ENTER)

c. Passing buffers of data to or from the user program (IN, INPUT, OUT, OUTPUT).

Device specification may be delayed from program-generation time until program-run time since the

monitor

a. Allows a logical device name to be associated with a physical device (ASSIGN
command)

b. Treats operations that are not pertinent to a given device as no-operation code.

For example: a rewind directed to a line printer does nothing, and file selection operations for devices

without a filename directory are always successful.

4. 10. 1 1/0 Organization

4. 10. 1. 1 ~Files - A file is an ordered set of data on a periphera I device. The extent of a file on input

is determined by an end-of-file condition dependent on the device. For example: a file is terminated

by reading an end-of-file gap from mganetic tape, by an end-of-file card from a card reader, or by

Revision 1 Monitors 4-45 January 1971

depressing the end-of-file switch on a card reader (refer to Chapter 5). The extent of a file on output

is ~etermined by the amount of information written by the OUT or OUTPUT programmed operators up

through and including the next CLOSE or RELEAS operator.

4.10. 1.2 Job 1/0 Initialization - The monitor programmed operator

CALL [SIXBIT /RESET/] or CALLI 0

should normally be the first instruction in each user program. It immediately stops a II I/O transmissions

on all devices without waiting for the devices to become inactive. All device allocations made by the

INIT and OPEN operators are cleared, and, unless the devices have been ossi9ned by the ASSIGN

command (refer to Chapter 2), the devices are returned to the monitor facilities pool. The content of

the left half of JO BSA (program break) is stored in the right half of JOBFF so that the user buffer area

is reclaimed if the program is restarting. The left half of JOBFF is cleared. Any files that hove not

been closed are deleted on disk. Any older version with the same filename remains. The user ... mode

write-protect bit is automatically set if a high segment exists, whether it is sharable or not; therefore,

a program cannot inadvertently store into the high segment.

4.10.2 Device Selection

For al I VO operations, a specific device must be associated with a software 1/0 channel. This speci'!"I

fication is made by an argument of the INIT or the OPEN programmed operators. The lNIT or the

OPEN programmed operators may specify a device with a logical name that is ossociated with a partic­

ular physical device by the ASSIGN monitor command. Some CUSPs, e.g., LOGOUT, require I/O

to specific physical devices regardless of what logical names have been assigned. Therefore, on an

OPEN UUO, if the sign bit of wor~ 0 of the OPEN block is 1, the device name is taken as a physical

name only, and logical names are not searched. A given device remains associoted with CJ software

1/0 channel until released (refer to Paragraph 4.10.801) or until another INIT or OPfN is performed

for that channel. Devices are separated into two categories: those with no filename directory (refer

to Chapter 5) and those with at least one filename directory (refer to Chapter 6).

4.10 .2 .1 Nondirectory Devices - For nondirectory devices, (e.g., card reader and punch, line

printer, paper-tape r~ader and punch, and user console) selectiOn of the device is sufficient to allow

1/0 operations over the associated software channel. All other file specifiers, if given, are ignored.

Magnetic tape, a nondirectory device, requires, in addition to the name, that the tape be properly

positioned. It is advisable to use the programmed operators that select a file, so that a directory

device may be substituted for a nondirectory device at run time.

Revision l Monitors 4-46 Jc:muary 1971

(

(

4. 10.2.2 Directory Device - For directory devices, (e.g., DECtape and disk) files are addressable

by name. If the device has a single file directory (e.g., DECtape) the device name and filename

are sufficient information to determine a file. If the device has multiple file directories (e.g., disk)

the name of the file directory must also be specified. These names are specified as arguments to the

LOOKUP, ENTER, and RENAME programmed operators.

4. 10.2.3 Device Initialization - The OPEN (operation code 050) and INIT (operation code 041)

programmed operators initialize a file by specifying a device, ldev, and initial file status, STATUS,

and the location of the input and output buffer headers.

OPEN D,SPEC
error return
norma I return

SPEC :EXP ST A TUS
SIXBIT/dev/
XWD OBUF I IBUF

INIT D ,STATUS
SIXBIT/l dev/
XWD OBUF ,IBUF
error return
norma I return

a. Data Channe I - OPEN and INIT establish a correspondence between the device, ldev,
and a 4-bit data channel number, D. Most of the other input/output operators require
this channel number as an argument. If a device is a I ready assigned to channel D, it is
release (refer to Paragraph 4. 10 .8. 1). The device name, dev, is either a logica I or
physica I name, with logi ca I names taking precedence over physical names (refer to
ASSIGN command, Chapter 2). If the device, dev, is not the system device SYS and is
allocated to another job or does not exist, the error return is taken. In nondisk systems,
if the device is the system device SYS, the job is put into a system device wait queue,
and continues running when SYS becomes available. In disk systems where the system de­
vice SYS is one or more file structures, control returns immediately.

b. Initial File Status - The file status, including the data mode, is set to the value of the
symbol STATUS. Thereafter, bits are set by the monitor and may be tested and reset by
the user via monitor programmed operators. Bits 30-35 of the file status are normally set
by an OPEN or INIT UUO. Refer to Table 4-7 for the file status bits. If the data mode
is not lega I (refer to Chapter 5 and 6) for the specified device, the job is stopped and the
monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

where dev is the physical name of the device and addr is the location of the OPEN or INIT
operator, on the user's console. The console is left in monitor mode.

c. Data Modes - Data transmissions are either unbuffered or buffered. (Unbuffered mode is
sometimes referred to as dump mode.) The mode of transmission is specified by a 4-bit
argument to the INIT, OPEN, or SETSTS programmed operators. Tables 4-5 and 4-6 sum­
marize the data modes.

4-47

Table 4..;5
Buffered Data Modes

Octal Code Mnemonic Meaning

0

2-7

10

11-12

13

14

A

AL

IB

B

ASCII. 7-bit characters packed left justified, five characters
per word.

ASCII I ine. Same as 0, except that the buffer is terminated by
a FORM, VT, LINE-FEED, or ALTMODE character. Differs
from ASCII on TTY and PRT only

Unused

Image. A device dependent mode. The buffer is fi I led with
data exactly as supplied by the device.

Unused.

Image binary. 36-bit bytes. This mode is similar to binary
mode, except that no automatic formatting or checksumming is
done by the monitor.

Binary. 36-bit byte. This is blocked format consisting of a
word count, n (the right half of the first data word of the buf­
fer), followed by n 36-bit data words. Checksum for cards
and paper tape.

Table 4-6
Unbuffered Data Modes

Octal Code Mnemonic Meaning

15 ID Image dump. A device dependent dump mode.

16 DR Dump as records without core buffering. Data is transmitted
between any contiguous blocks of core and one or more stand-
ard length records on the device for each command word in the
command list.

17 D Dump one record without core buffering. Data is transmitted
between any contiguous block of core and exactly one record
of arbitrary length on the device for each command word in
the command list.

d. Buffer Header - Symbols OBUF and IBUF, if non-zero specify the location of the first word
of the 3-word buffer ring header block for output and input, respectively. Buffered data
modes utilize a ring of buffers in the user area and the priority interrupt system to permit
the user to overlap computation with his data transmission. Core memory in the user's
area serves as an intermediate buffer between the user's program and the device. The buf­
fer storage mechanism consists of a 3-word buffer ring header block for bookkeeping and a
data storage area subdivided into one or more individual buffers linked together to form a
ring. During input operations, the monitor fills a buffer, makes the buffer available to

4-48

the user's program, advances to the next buffer in the ring, and fills the buffer if it is
free. The user's program follows the monitor, emptying the next buffer if it is fu II, or
waiting for the next buffer to fill.

During output operations, the user's program and the monitor exchange roles; the user fills the buffers

and the monitor empties them. Only the headers that wi II be used need to be specified. For instance,

the output header need not be specified, if only input is to be done. Also, data modes 15, 16, and 17

require no header. If either of the buffer headers or the 3-word block starting at location SPEC lies out­

side the user's a !located core area, t the job is stopped and the monitor prints

ILLEGAL UUO AT USER addr

(addr is the address of the OPEN or INIT operator) on the user's console, leaving the console in monitor

mode.

The first and third words of the buffer header are set to zero. The left half of the second word is set up

with the byte pointer size field in bits 6 through 11 for the selected device-data mode combination.

If the same device (other than disk) is INITed on two or more channels, the monitor retains only the

buffer headers mentioned in the last INIT (a 0 specification does not override a previous buffer header

specification). Other I/O operations to any of the channels involved act on the buffers mentioned in

the last INIT previous to the I/O operations.

4. 10.3 Ring Buffers

4.10.3.1 Buffer Structure - The ring buffer (see Figure 4-1) is comprised of a buffer ring header block

and bufferings.

a. Buffer Ring Header Block - The location of the 3-word buffer ring header block is specified
by an argument of the INIT and OPEN operators. Information is stored in the header by
the monitor in response to user execution of monitor programmed operators. The user's pro­
gram finds all the information required to fill and empty buffers in the header. Bit posi­
tion 0 of the first word of the header is a flag, which, if 1, means that no input or output
has occurred for th is ring of buffers. The right ha If of the first word is the address of the
second word of the buffer currently used by the user's program. The second word of the
header contains a byte pointer to the current byte in the current buffer. The byte size is
determined by the data mode. The third word of the header contains the number of bytes
remaining in the buffer. A program may not use a single buffer header for both input and
output, nor may a single buffer ring header be used for more than one I/O function at a
time. User's cannot use the same buffer ring for simultaneous input and output; only one
buffer ring is associated with each buffer ring header.

t Buffer headers may not be in the user's ACs; however, the buffer headers may be in location above
JOBPFI (refer to Table 3-1).

4-49

BUFFER RING

FILE STATUS

USE FLAG I SIZE I BUF 2
r--i

BUF 1:
BOOKKEEPING I WORD COUNT

WORD

DATA

BUFFER RING
HEADER BLOCK

FILE STATUS

USEl lCURRENT
__.

USE FLAG 1 SIZE I BUF 3
14" .
to--.

BIT BUFFER BUF 2:
BOOKKEEPING 1 WORD COUNT

BUFFER POINTER WORD

BYTE COUNTER

DATA

FILE STATUS

USE FLAG l SIZE l BUF 1
r-

BUF 3: I---

BOOKKEEPINGI WORD COUNT
WORD

DATA

I0-0539

Figure 4-1 User's Ring of Buffers

b. Buffer Ring - The buffer ring is established by the INBUF and OUTBUF operators, or, if
none exists when the first IN, INPUT, OUT, or OUTPUT operator is executed, a 2-buffer
ring is set up. The effective address of the INBUF and OUTBUF operators specifies the
number of buffers in the ring. The location of the buffer ring is specified by the contents
of the right half of JOBFF in the user's job data area. The monitor updates JOBFF to point
to the first location past the storage area.

All buffers in the ring are identica I in structure. The right ha If of the first word contains
the file status when the monitor advances to the next buffer in the ring (see Figure 4-2).
Bit 0 of the second word of a buffer, the use bit, is a flag that indicates whether the buf­
fer contains active data. This bit is set to l by the monitor when the buffer is full on in­
put or being emptied on output, and set to 0 when the buffer is empty on output or is being
filled on input. In other words, if the use bit = 0, the buffer is available to the fi lier; if
the use bit= l, the buffer is available to the emptier. The use bit prevents the monitor
and the user's program from interfering with each other by attempting to use the same buf­
fer simultaneously. Buffers are advanced by the UUOs and not by the user's program. The
use bit in each buffer should never be changed by the user's program except by means of
the UUOs. Bits l through 17 of the second word of the buffer contain the size of the data
area of the buffer plus l. The size of this data area depends on the device. The right ha If
of the third word of the buffer is reserved for a count of the number of words that actua I ly
contain data. The left ha If of this word is reserved for other bookkeeping purposes, de­
pending on the particular device and the data mode.

4-50

r USE
BIT__..

FILE STATUS

SIZE OF
ADDRESS OF SECOND
WORD OF NEXT BUFF-

DATA AREA ER IN RING

BOOKKEEPING WORDS COUNT, N

N DATA WORDS

1-------------
UNUSED

FIRST WORD

SECOND WORD

THIRD WORD

DATA AREA

10-0592

Figure 4-2 Detailed Diagram of Individual Buffer

4.10.3.2 Buffer Initialization - Buffer data storage areas may be established by the INBUF and

OUTBUF programmed operators, or by the first IN, INPUT, OUT, or OUTPUT operator, if none exists

at that time, or the user may set up his own buffer data storage area.

a. Monitor Generated Buffers - Each device has an associated standard buffer size (refer to
Chapters 5 and 6). The monitor programmed operators INBUF D, n (operation code 064)
and OUTBUF D ,n (operation code 065) set up a ring of n standard size buffers associated
with the input and output buffer headers, respectively, specified by the last OPEN or
INIT operator on data channel D. If no OPEN or INIT operator has been performed on
channel D, the monitor stops the job and prints

1/0 TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the INBUF or OUTBUF operator) on the user's console leaving the
console in the monitor mode.

The storage space for the ring is taken from successive locations, beginning with the loca­
tion specified in the right half of JOBFF. This location is set to the program break, which
is the first free location above the program area, by RESET. If there is insufficient space
to set up the ring, the monitor automatica I ly attempts to expand the user's core a I location
by 1 K. If th is fai Is, the monitor stops the job and prints

ADDRESS CHECK FOR DEVICE dev AT USER addr

(dev is the physical name of the device associated with channel D and addr is the location
of the INBUF or OUTBUF operator) on the user's console, leaving the console in monitor
mode.

This message is also printed when an INBUF (OUTBUF) is attempted if the last INIT or
OPEN UUO on channel D did not specify an input (output) buffer header.

The ring is set up by setting the second word of each buffer with a zero use bit, the ap­
propriate data area size, and the link to the next buffer. The first word of the buffer
header is set with a 1 in the ring use bit, and the right half contains the address of the
second word of the first buffer

b. User Generated Buffers - The following code illustrates an alternative to the use of the
INBUF programmed operator. Analogous code may replace OUTBUF. This user code op­
erates similarly to INBUF. SIZE must be set equai to the greatest number of data words
expected in one physical record.

4-51

GO: l'N IT 1 ,(7)

SIXFd T/f\HA!?l/
XWD VJ, Mi;CBUF
JRST NOTAVL

MOVE (7), CXWD A0VJ000,BUF1+1J

MO\/E1"'1 0, MAGBUF
~OVE (7), [POINT BYTSIZ,0,JSJ

MOVEM (7), M~GRUF+l

JRST CONTIN
Mi;GBUF: RLOCK 3

BUFl: VJ

XIA'D SIZE+l ,RlJF2+1

RLOCK SIZF+J

BUF2: VJ

BUF3:

XWD SIZE+l ,BLJF3+1
RLOCk SIZE+l
(i)

XWD SIZE+l,RUFl+l
BLOCK SIZE+l

4. 10.4 File Selection (LOOKUP and ENTER)

;INITIALIZE ASCII MODE
;MAGNETIC TAPE UNIT 0
;INPUT ONLY

;THE 400000 IN THE LEFT HALF
;MEANS THE BUFFER WAS NEVER
;REFERENCED.

;SET UP NON-STANDARD BYTE
;SIZE

;GO BACK TO MAIN SEQUENCE
;SPACE FOR BUFFER RING HEADER
;BUFFER 1, lST WORD UNUSED
;LEFT HALF CONTAINS DATA AREA
;SIZE+ 1, RIGHT HALF HAS
;ADDRESS OF NEXT BUFFER
;SPACE FOR DATA, lST WORD
;RECEIVES WORD-COUNT. THUS
;ONE MORE WORD IS RESERVED
; THAN IS REQUIRED FOR DA TA
;ALONE
;SECOND BUFFER

;THIRD BUFFER
;RIGHT HALF CLOSES THE RING

The LOOKUP (operation code 076) and ENTER (operation code 077) programmed operators select a file

for input and output, respectively. These operators are not necessary for nondirectory devices; however,

it is good programming practice to always use them so that directory devices may be substituted at run

time (refer to the ASSIGN command, Chapter 2). The monitor gives the normal return for a LOOKUP

or ENTER to a non-directory device; therefore, user programs can be coded in a device-independent

fashion.

4.10.4.1 The LOOKUP Operator - LOOKUP selects a file for input on channel D.

LOOKUP D,E
error return
norma I return

E: SIXBIT/fi le/
SIX BIT/ext/

0
XWD project number, programmer number

4-52

;filename, 1 to 6 characters, left-justified
;file name extension, 0 to 3
;characters, left-justified

) lfno device has been associated with channel D by on INIT or OPEN UUO, the monitor stops the job,

pri r:its

)

1/0 TO UNASSIGNED CHANNEL AT USER LOC oddr

and returns the user's console to monitor mode. The input side of channel_ Dis closed if not already

closed. The output side is not affected.

On DECtape, LOOKUP searches the device directory as specified by an INIT. On disk, the user's file

directory as specified by the contents. of location E+3 is searched.

If the device is a directory device and the file is found, the normal return is token and information

concerning the file is returned in location E+ 1 through E+3. The norma I return is a I ways taken if the

device associated with the channel D does not hove a directory. The error return is taken if either the

file is not found or, the file is found but the user does not have access to it.

4.10.4.2 The ENTER Operator - ENTER selects a file for output on channel D.

ENTER D,E
error return
norma I return

E: SIXBIT/fi le/

SIX BIT/ext/

;file name, 1 through 6
;characters, left-justified
;file name, extension, 0
;through 3 characters, left-justified

EXP< PROT> B8+EXP< TIME> B3+DATE
XWD project number, programmer number.

If no device hos been associated with channel D by an lNIT or OPEN UUO, the monitor stops the job,

prints

1/0 TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user's console to monitor mode. The output side of channel D is now closed (if it 'MlS

not closed); the input side is not affected. On DECtape, ENTER searches the device directory as

specified by an INIT. On disk, the user's file directory, as specified by the contents of location E+3,

is searched.

If the device does not have a directory, the normal return is al'Mlys taken. On directory devices, if

the file is found and is not being written or renamed, the file is deleted (the user must have access

) privileges to the file) and the storage space on the device is reclaimed. On DECtape, this deletion

4-53

must occur immediately upon ENTER to ensure that space i.s available for writing the new version of the (

I
file. On disk, the deletion of the previous version does not oc.cur until output CLOSE time, provided

bit 30 of aosE is 0 1(refer to Parograph 4.10 .7 .7). Consequently I if the new file is aborted when

partially written, the old version remains. The normal return is taken, and the monitor mokes the file

entry, qnd records file information.

The error return is taken if:

a. The file is not found (LOOKUP only)

b •. The filename in location E is 0

c. The file is found but is being written or renamed (ENTER only)

d. The user does not have access to the file, as supplied by the file if it exists or by the UFO
if the file does not exist.

4, 10.4.3 RENAME Operator - The RENAME (operation code Q55) programmed operator is used

a. To alter the filename, filename extension, and file access privileges

b. To delete a file associated with channel Don a directory device

RENAME D,_E
error return
norma I return

;fi !enc.me, 1 to 6 chal'Qcters E: SIX BIT/file/
SIXBIT /ext/ ;filename extension, 0 to 3 chc:sracters
EXP<PROT> B8+<TIME> B23+DATE
XWD project number, programmer number

If no device has been associated with channel D, the mQnitor stops the job, prints

1/0 TO UNASSIGNED CHANNEL AT USER LOC addr

and returns the user's console to monitor mode.

The normal return is given if:

a. The c;levice specified is a nondirectory device.

b. If the filename specified in location E is 0, the file is deleted after a II read references
a re comp I eted.

c. If the filename specified in location E and the filename extension specified in the le.ft half
of location E+ 1 are the same as the current filename and filename extension, the access
protection bits are set to the contents of bits 0 to 8 of location E+2.

d. If the filename/filename extension specified differ from the current filename/filename {
extension, a search is made for the specified filename and filE~name extension. If a match

Revision l Monitors 4 ... 54 January 1971

)
/

)

)

is not found (1) the filename is changed to the filename in location E, (2) the filename
extension is changed to the filename extension in the left half of location E+ 1, (3) the
access protection bits are changed to the contents of bits 0-8 of location E+2, and (4)
the access date is unchanged.

The error return is given if:

a. No file is selected on channel D.

b. The specified file is not found.

c. The file is found, but is being written or renamed.

d. The file is found but the user does not have the privileges to RE NAME the file.

e. If the filename/filename extension specified differ from the current filename/filename
extension, a search is made for the specified filename and filename extension. If a match
if found, the error return is taken.

Refer to Appendix E for the error codes returned in bits 33-35 of location E+ 1.

Examples

General Device Initialization

INIDEV: 0
!NIT 3, 14
SIXBIT/DTAS/
Xltm OBUF, I BUF
JRST NOTAVL

;JSR HERE
;BINARY MODE, CHANNEL 3
;DEVICE DECTAPE UNIT 5
;BOTH INPUT AND OUTPUT
;WHERE TO GO IF DTA5 IS BUSY

;FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
;REQUIREMENTS

MOVE 0, JOBFF
MOVEM 0, SVJBFF

INBUF 3,4
OUTBUF 3,1
LOOKUP 3, INNAM
JRST NOTFND

ENTER 3, OUTNAME
JRST NOROOM

JRST @IN !DEV
ORUF: BLOCK 3
IBUF: BLOCK 3

INNAM: SIXRIT/NAME/
SIXBIT/EXT/

0
0

OUTNAM: SIXBIT/NAME/
SIXBIT/EXT/
0
0

4-55

;SAVE THE FIRST ADDRESS OF THE BUFFER
;RING IN CASE THE SPACE MUST BE
;RECLAIMED
;SET UP 4 INPUT BUFFERS
;SET UP 1 OUTPUT BUFFER
;INITIALIZE AN INPUT FILE
;WHERE TO GO IF THE INPUT FILENAME IS
;NOT IN THE DIRECTORY
;INITIALIZE AN OUTPUT FILE
;WHERE TO GO IF THERE IS NO ROOM IN
;THE DIRECTORY FOR A NEW FILENAME
;RETURN TO MAIN SEQUENCE
;SPACE FOR OUTPUT BUFFER HEADER
;SPACE FOR INPUT BUFFER HEADER
;FILE NAME
;FILE NAME EXTENSION (OPTIONALLY O),
;RIGHT HALF WORD RECEIVES THE
;FIRST BLOCK NUMBER
;RECEIVES THE DATE

. ;UNUSED Fm NONDUMP 1/0
;SAME INFORMATION AS IN INNAM

4. 10.5 Data Transmission

The-programmed operators

INPUT D,E and IN D,E
norma I return
error return

transmit data from the file selected on channel D to the user's core area. The programmed operc.Jtors

OUTPUT D ,E and OUT D ,E
norma I return
error return

transmit data from the user's core area to the file selected on channel D.

If no OPEN or INIT operator has been performed on channel D, the monitor stops the job and prints

1/0 TO UNASSIGNED CHANNEL AT USER addr

{addr is the location of the IN, INPUT, OUT, or OUTPUT programmed operator) on the user's console

and the console is left in monitor mode. If the device is a multiple-directory device and no file is

selected on channel D, bit 18 of the file status is set to 1, and control returns to the user's program,

Control al'M.lys returns to the location immediately following an INPUT (operation code 066) and an

OUTPUT (operation code 067). A check of the file status for end-of-file and error conditions must then

be made by another programmed operator. Control returns to the location immediately following. an IN

I
(operation code 056) if no end-of-file or error condition exists (i.e., if bits 18 through 22 of the file

status are all O). Control returns to the location immediately following an OUT (operation code 057)

if no error condition or end-of-tape ex.ists (i.e., if bits 18 through 21 and bit 25 are all zero). Other-

wise, cohtrol returns to the second location following the IN or OUT. Note that IN and OUT UUOs

are the only ones in which the error return is a skip and the normal return is not a skip.

4. 10.5. 1 Unbuffered Data Modes - Data modes 15, 16, and 17 utilize a command list to specify areas

in the user's allocated core to be read or written. The effective address E of the IN, INPUT, OUT,

and OUTPUT programmed operators point to the first word of the command list. Three types of entries

may occur in the command list.

a. IOWD n, loc - Causes n words from loc through loc+n-1 to be transmitted. The next
command ·is obtained from the next location following the IOWD. The assembler pseudo­
op IOWD generates XWD -n, loc-1.

b. XWD 0, y - Causes the next command to be taken from location y. Referred to as a GOTO
word. Up to three consecutive GOTO words are allowed in the command list. After three
consecutive GOTO words, an 1/0 instruction must be written.

c. 0 - Terminates the command list.

Revision 1 h\onitors 4-56 January 1971

(

(

)

)

)

The monitor does not return program control to the user until the command list has been completely

pro_cessed. If an illegal address is encountered while processing the list, the job is stopped and the

monitor prints

ADDRESS CHECK AT USER addr

on the user's console and the console is left in monitor mode.

Example: Dump Output

Dump input is similar to dump output. This routine outputs fixed-length records.

DMP INI,: 0
INIT (?), 16
SIX8ITIMTA2/
,0
JRST NOTAVL
JRST @DMP IN I

DMPOUT: 0
OUTPUT 0,ouTLST

STATZ 0, 7 40000
CALL[SIXRIT /EXIT/J
JRST @DMPOUT

DMPDON: 0
CLOSE 0,
STATZ 0 , 7 40 0 0 0

CALL[SIXBIT /EXIT/J
RELEAS 0,
JRST @DMPDON

OUTLST: IOWD BUFSIZ,BUFFER

BUFFER: BLOCK BUFSIZ

;JSR HERE TO INITIALIZE A FILE
;CHANNEL 0, DUMP MODE
;MAGNETIC TAPE UNIT 2
;NO RING BUFFERS
;WHERE TO GO IF UNIT 2 IS BUSY
;RETURN
;JSR HERE TO OUTPUT THE OUTPUT AREA
;SPECIFIES DUMP OUTPUT ACCORDING
;TO THE LIST AT OUTLIST
;CHECK ERROR BITS
;QUIT IF AN ERROR OCCURS
;RETURN
;JSR HERE TO WRITE AN END OF FILE
;WRITE THE END OF FILE
;CHECK FOR ERROR DURING WRITE
;END OF FILE OPERATION
;QUIT IF ERROR OCCURS
;RELINQUISH THE DEVICE
;RETURN
;SPECIFIES DUMPING A NUMBER OF
;WORDS EQUAL TO BUFSIZ, STARTING
;AT LOCATION BUFFER
;SPECIFIES THE END OF THE COMMAND
;LIST
;OUTPUT BUFFER, MUST BE CLEARED
;AND FILLED BY THE MAIN PROGRAM

4., 10.5 .2 Buffered Data Modes - In data modes 0, 1, 10, 13, and 14 the effective address E of the

INPUT, IN, OUTPUT and OUT programmed operators may be used to alter the normal sequence of

buffer reference. If E is 0, the address of the next buffer is obtained from the right half of the second

word of the current bl:)ffer. If E is non-zero, it is the address of the second word of the next buffer to

be referenced. The buffer pointed to by E can be in an entirely separate ring from the present buffer.

Once a new buffer location is established, the following buffers are taken from the ring started at E.

4-57

I

a. Input - If no input buffer ring is established when the first INPUT or IN is executed, a (
2-buffer ring is set up (refer to Paragraph 4. 10.3.2).

Buffered input may be performed synchronously or asynchronously at the option of the vser.
If bit 30 of the file status is 1, each INPUT and IN programmed operator performs the
following:

(1) Clears the use bit in the second word of the buffer with an address in the right half of
the first word of the buffer header, thereby making the buffer available for refilling
by the monitor •

. (2) Advances to the next buffer by moving the contents of the second word of the current
buffer to the right ha If of the first word of the 3-word buffer header.

(3) Returns control to the user's program if an end-of-file or en-or condition exists.
Otherwise, the monitor starts the device, which fills the buffer and stops transmission.

(4) Computes the number of bytes in the buffer from the number of words in the buffer
(right ha If of the first data word of the buffer) and the byte size, and stores the result
in the third word of the buffer header.

(5) Sets the position and address fields of the byte pointer in the second word of the buffer
header, so that the first ·data byte is obtained by an ILDB instruction.

(6) Returns control to the user's program.

Thus, in synchronous mode, the position of a device (e.g., magnetic tape), relative to the
current data, is easily determined. The asynchronous input mode differs in that once a
device is started, successive buffers in the ring are filled at the interrupt level without
stopping trans~ission until a buffer whose bit is 1 is encotmtered. Control returns to the
user's program after the first buffer is filled. The position of the device, relative to the (.
data currently being processed by the user's program, depends on the number of buffers in '--
the ring and when the device was last stopped.

Example: General Subroutine to Input One Character

GETCHR: 0
GETNXT: SOSG IBUF+2

IN 1,
JRST GETOK

STATZ J,740000
JRST INERR
JRST INEOF

GFTOK: ILDB AC,JBUF+l
JUMPN AC,@GETCHR
JRST GETNXT

;CALL IS JSR GETCHR
;DECREMENT THE BYTE COUNT
;GET NEXT BUFFER FROM MONITOR
;RETURN WHEN BUFFER IS FULL
;TEST ERROR BITS
;GO PROCESS ERROR
;ASSUME END-OF--FILE
;GET CHARACTER FROM BUFFER
;RETURN IF NOT NULL CHARACTER t
;IGNORE NULL AND GET NEXT CHARACTER

b. Output - If no output buffer ring has been established (i.e., if the first word of the buffer
header is 0), when the first OUT or OUTPUT is executed, a 2-buffer ring is set up (refer
to Paragraph 4. 10.3.2). If the ring use bit (bit 0 of the first word of the buffer header) is
1, it is set to 0, the current buffer is cleared to all Os, and the position and address fields
of the buffer byte pointer {the second word of the buffer header)·are set so that the first

tFor some devices in ASCII mode, the item count provided is always a multiple of five characters. The (
last word of a buffer may be partially full; therefore, user programs that rely on the item count should
always ignore null charocters.

Revision 1 Monitors 4-58 January 1971

I

)

)

byte is properly stored by an IDPB instruction. The byte count (the third word of the
buffer header) is set to the maximum of bytes that may be stored in the buffer, and control
is returned to the user's program. Thus, the first OUT or OUTPUT initializes the buffer
header and the first buffer, but does not result in data transmission.

If the ring use bit is 0 and the bit 31 of the file status is 0, the number of words in the
buffer is computed from the address field of the buffer byte pointer (the second word of
the buffer header) and the buffer pointer (the first word of the buffer header), and the
result is stored in the right half of the third word of the buffer. If bit 31 of the file
status is 1, it is assumed that the user has a I ready set the word count in the right ha If of
the first data word. The buffer use bit (bit 0 of the second word of the buffer) is set to 1,
indicating that the buffer contains data to be transmitted to the device. If the devic" is
not currently active (i.e., not receiving data), it is started. The buffer header is ad­
vanced to the next buffer by setting the buffer pointer in the first word of the buffer head­
er. If the buffer use bit of the new buffer is 1, the job is put into a wait state until the
buffer is emptied at the interrupt level. The buffer is then cleared to Os, the buffer byte
pointer and byte count are initialized in the buffer header, and control is returned to the
user's program.

Example: General Subroutine to Output One Character

PUTCHR: 0
SOSG OBUF+2
OUT 2,
,JRST PUTOK

JRST PUTOK
·JRST OUTERR

PUTOK: IDPB AC,QBUF+l
JRST@PUTCHR

OUTERR: GETSTS 2,AC

;CALL IS JSR PUTCHR
; DECREMENT BYTE COUNT
;CALL MONITOR TO EMPTY THIS BUFFER
;RETURN WHEN BUFFER AVAILABLE
;PROCESS OUTPUT ERROR
;STORE THIS CHARACTER
;RETURN TO CALLER
;GET THE ERROR STATUS

4. 10.5 .3 Synchronization of Buffered 1/0 (CALL D, [SIXBIT /WAIT/]) - In some instances, such as

recovery from transmission errors, it is desirable to delay until a device completes its 1/0 activities.

The programmed operators

CALL D, [SIXBIT /WAIT/J and CALLI D, 10

return control to the user's program when all data transfers on channel D have finished. This UUO does

not 'Mlit for a magnetic tape spacing operation, since no data transfer is in progress. An MTAPE D, 0

(refer to Paragraph 5.5.3) should be used to 'Mlit for spacing and 1/0 activity to finish on magnetic

tape. If no device is associated with data channel D, control returns immediately. After the device

is stopped, the position of the device relative to the data currently being processed by the user's pro­

gram can be determined by the buffer use bits.

Revision 1 lv\onitors 4-59 January 1971

4. 10.6 Status Checking and Setting

The- file status is a set of 18 bits (right-half word), which reflects the current state of a file transmission.

The initial status is a parameter of the INIT and OPEN operators. Thereafter, bits are set by the mon­

itor, and may be tested and reset by the user via monitor programmed operators. Table 4-7 defines the

file status bits. All bits, except the end-of:-file bit, are set immediately, by the monitor as the con­

ditions occur, rather than being associated with the buffer currently used by the user. However, the

file status is stored with each buffer so that the user can determine which bufferful produced an error.

A more thorough description of bits 18 through 29 for each device is given in Chapters 5 and 6.

f 4.10.6.1 File Status Checking - The file status (refer to Table 4-7) is retrieved by the GETSTS (oper­

ation code 062) and tested by the STATZ (operation code 063) and STA TO (operation code 061) pro­

grammed operators. In each case, the accumulator field of the instruction selects a data channel. If

no device is associated with the specified data channel, the monitor stops the job and prints

1/0 TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the GETSTS, STATZ, STA TO, or SETSTS programmed operator) on the user's

console and the console is left in monitor mode.

GETSTS D ,E stores the file status of data channel D in the right half and 0 in the left half of location E.

STATZ D, E skips, if a II file status bits selected by the effective address E are 0.

STA TO D ,E skips, if any file status bit selected by the effective address E is 1.

4. 10.6.2 Fi le Status Setting - The _initial file status is a parameter of the INIT and OPEN programmed

operators; however, the file status may be changed by the SETSTS (operation code 060) programmed

operator.

SETSTS D ,E 'Ntlits until the device on channel D stops transmitting data and replaces the current file

stcitus, except bit 23, with the effective address E. If the new data mode, indicated in the right four

bits of E, is not legal for the device, the job is stopped and the monitor prints

ILL D~VICE DATA MODE FOR DEVICE dev AT USER addr

(dev is the physica I name of the device and addr is the location of the SETSTS operator} on the user's

console and the console is left in monitor mode. If the user program changes the data mode, it must

(

(

also change the byte size for the byte pointer in the input buffer header (if any) and the byte size and (

Revision 1 NK>nitors 4-60 January 1971

item count in the output buffer header (if any). The output item count should be changed by using

the count already placed there by the monitor and dividing or multiplying by the appropriate conver­

sion factor, rather than assuming the length of a buffer.

Bit

18

19

20

21

22

23

24-29

30

31

32-35

Table 4-7
File Status Bits

Meaning

Improper mode (IOIMPM). Attempt to write on a hardware or software
write-locked tape or file structure, or a software detected redundancy
failure occurred. Usually set by monitor.

Hard device detected error (IODERR), other than hardware checksum,
parity, or search error. The device is in error rather than the data on
the medium. However, the data read into core or written on the device
is probably incorrect. Usually set by monitor.

Hard data error (IODTER). The data read or written has incorrect parity
or checksum as detected by hard'Mlre (or by software on CDR,PTR).
Usually set by monitor.

Block too large (IOBKTL). A block of data from a device is too large to
fit in a buffer; a block number is too large for the unit the file structure
(OSK) or unit (OTA) has filled; or the user's quota on the file structure has
been exceeded. Usually set by monitor.

End of file (IOEOF). The user program has requested data beyond the last
record or block, or USETl has specified a block beyond the last data block
of the file. Usually set by monitor.

1/0 active (IOACT). The device is actively transmitting or receiving
data. Always set by monitor.

Device dependent parameters. Refer to Chapters 5 and 6 and Appendix D
for detailed information about each device. Usually set by user.

Synchronous input. Stops the device after each buffer is filled. Usually
set by user.

User word count. Forces the monitor to use the word count in the third
word of the buffer (output only). The monitor normally computes the
word count from the byte pointer in the buffer header. Usually set by user.

Data mode. Refer to Tables 4-5 and 4-6. Usua I ly set by user.

4. 10.7 File Termination

File transmission is terminated by the CLOSE D, N (operation code 070) programmed operator. N is

usually zero, but individual options may be selected independently to control the effect of the CLOSE.

4-61

Usually a given channel is OPEN for file transmission in only one direction, and CLOSE has the effect

of either closing input if INPUTs have been done or closing output if OUTPUTs have been done. How­

ever, disk and DECtape may have a single channel OPEN for both INPUT and OUTPUT, in which case

the first two options below are useful.

4. 10.7. 1 CLOSE D ,0 - The output side of channel D is closed (bit 35=0). In unbuffered data modes,

the effect is to execute a device dependent function. In buffered data modes, if a buffer ring exists,

the following operations are performed:

a. All data in the buffers that has not been transmitted to the device is written.

b. Device dependent functions are performed.

c. The ring use bit (bit 0 of the first word of the buffer header) is set to 1 indicating that the
buffer ring is available.

d. The buffer byte count (the third word of the buffer header) is set to 0.

e. Control returns to the user program when transmission is complete.

The input side of channel D is also closed (bit 34=0). The end-of-file flag is a I ways cleared. Further

a ct ion depends on the data mode in unbuffered data modes, the effect is to execute a device dependent

function. In buffered data modes, if a ring buffer exists, the following operations are performed:

a. Wait unti I device is inactive.

b. The use bit of each buffer (bit 0 of the second word) is cleared indicating that the buffer
is empty.

c. The ring use bit of the buffer header (bit 0 of the first word of the buffer header) is set to 1
indicating that the buffer ring is available.

d. The buffer byte count (the third word of the buffer header) is set to 0.

e. Control returns to the user program.

On output CLOSE, the unwritten blocks at the end of a disk file are automatically deallocated (bit 33=0).

On input CLOSE, the access date of a disk file is updated (bit 32=0).

4. 10.7 .2 CLOSE D, l (Bit 35=1) - The closing of the output side of channel D is suppressed. Other

actions of CLOSE are unaffected.

4.10.7.3 CLOSE D,2 (Bit 34=1) - The closing of the input side of channel Dis inhibited; other

actions of CLOSE are unaffected.

4-62

)

)

4.10.7.4 CLOSE D,4 (Bit 33=l)t - The unwritten blocks at the end of a disk file are not deallocated.

This capability is provided for users who specifically allocate disk space and wish to retain it.

4. T0.7.5 CLOSED, 10 (Bit 32=1)t - The updating of the access date on CLOSE input is inhibited.

This capability is intended for use with FAILSAFE, so that files can be saved on magnetic tape without

causing the disk copy to appear as if it has been accessed •

. 4.10.7 .6 CLOSED, 20 (Bit 3l=l)t - The deleting of the NAME block 'in monitor core on CLOSE input

is inhibited if a LOOKUP was done without subsequent INPUT. This bit is used by the COMPIL CUSP

to retain the core block in order to speed up the subsequent access by the CUSP called by COMPIL.

1
4.10.7 .7 CLOSE D ,40 (Bit 30=1) t - The deleting of the original file, if any, is inhibited if an

ENTER which creates or supersedes was done. Th.e new copy of the file is discarded. Th. is bit is used

by the Queue Manager to create a file or a unique name and not supersede the original file.

Any combinations of the above bit settings are legal.

Example: Terminating a File

DROPDV: 0
CLOSE 3,

STATZ 3, 7421000
JRST OUTERR
RELEAS 3,

t'liOVE (?), SVJRFF
MOVEM (7), JOF:lFF
JRST @ DROPDV

4. 10.8 Device Termination

;JSR HERE
;WRITE END OF FILE AND TERMINATE
;INPUT
;RECHECK FINAL ERROR BITS
;ERROR DURING CLOSE
;RELINQUISH THE USE OF THE
;DEVICE, WRITE OUT THE DIRECTORY

;RECLAIM THE BUFFER SPACE
;RETURN TO MAIN SEQUENCE

4.10.8. 1 RELEASE - 'Mien all transmission between the user's program and a device is finished, the

program must relinquish the device by performing a

RELEASED,

RELEASE (operation code 071) returns control immediately, if no device is associated with data chan­

nel D. Otherwise, both input and output sides of data channel Dare CLOSEd and the correspondence

between channel D and the device, which was established by the INIT or OPEN programmed operators,

is terminated. If the. device is neither associated with another data channel nor assigned by the

ASSIGN command (refer to Chapter 2), it is returned to the monitor's pool of available facilities.

Control is returned to the user's program.

) t Meaningful with disk files only, ignored with non-disk files,

Revision l Monitors 4-63
January 1971

. 4.10.8.2 REASSIGN - This UUO reassigns a device under program control from the current job to a

I specified job and clears the directory currently in core, but does not clear the logical name assignment.

The call is:

MOVE AC, job number
MOVE AC+ l [SIXBIT /DEVICE/)
CALL AC I [SIXBIT /REASSI/J
return

;or CALLI AC, 21
;error and normal

If on return the contents of AC = 0, the specified job has· not been i ni ti a Ii zed. If the contents of

I AC+l=O, the device has not been assigned to the new job, the device is a console {controlling) Teletype,.

or the logical name is duplicated or is a physical name in the system. A REASSIGN UUO that specifies

job 0 deassigns the device.

4. 10. 9 Examples

4.10.9. l File Reading - The following UUO sequence is required to read a file:

INIT

LOOKUP

INRUF

INPUT

INPUT

CLOSE

RELF.:ASE

Establishes a file structure channel correspondence {or set
of fi I e structures-cha nne I correspondence).

Establishes a file-channel correspondence. Invokes a search
of the UFO. Returns information from the file system.

(Optiona I) Sets up l to N ring buffers in the top of core,
expand core if necessary.

Sets up 2-buffer ring if no INBUF was done.

Requests buffers of data from the monitor.

Breaks file-channel correspondence.

Breaks device-channel correspondence.

4. 10. 9 .2 File Writing - The following UUO sequence is required to write a file:

INIT

ENTER

OUTPUT

OUTPUT

CLOSE

RELEASE

Revision 1 Monitors

Forms file structure-channel correspondence {or set of
file structures-channel correspondence).

Forms file-channel correspondence. The monitor creates
some temporary storage for interlockiFlJ and shared access
purpose for the filename. No directory entry is .made.

Passes buffers of data to monitor for transmission to storage
device.

Completes the action of ENTER. Adds filename to file
system. Normally returns allocated, but unused, blocks
to the file system.

Breaks device-channel correspondence.

4-64 January 1971

(

(

(

1
4. 10. 10 Rea I-Time Programming

Refer to Chapter 8 for real-time programming and the RTTRP and TRPSET UUOs.

4-65

)
/

)

I

Chapter 5

Nondirectory Devices

This chapter explains the unique features of each standard nondirectory 1/0 device. Each device accepts the

programmed operators explained in Chapter 4, unless otherwise indicated. Table 5-l is a summary of the char­

acteristics of all nondirectory devices. Buffer sizes are given in octal and include three bookkeeping words.

The user may determine the physical characteristics associated with a logical device name by calling the

DEVCHR UUO (refer to Paragraph 4. 9 .4.2).

Physical · Controller
Device Name Number

Card Punch CDP -
Card Reader CDR -

Console CTY -
Teletype

Display DIS -
Line Printer LPT

Magnetic MTAO, MTAT, TM TOA
Tape ••• , MTA7 TMTOB

516(PDP-6)
..

Paper-Tape PTP -
Punch I

--·--·-

Paper-Tape PTR -
Reader

Plotter PU XYTO

Table 5-l
Nondirectory Devices

Unit Programmed
Number Operators

CPTOA OUTPUT, OUT

CRTOA INPUT, IN
461 (PDP-6)

LT33A, LT33B INPUT, IN
L T35A, L T37 AC OUTPUT, OUT
626{PDP-6)

Data
Modes

I A, AL, IB, B

A, AL, I, B

I
A, AL

VR30, VPTO INPUT, OUTPUT ID
340B, 30
LPlOC OUTPUT A, AL, I

TU20A, TU20B INPUT, IN A, AL, I
TU30A, TU30B OUTPUT, OUT IB, B

MT APE DR, D

PC09 OUTPUT, OUT A, AL, I
761 (PDP-6) IB, B

PC09 INPUT, IN A, AL, I
760(PDP-6) IB, B

XYTOA OUTPUT, OUT A, AL, I
XYTOB IB, B

Buffer
Size

(Octal/

35

36

23

Dump only

34

203

43

43

46

)ff Buffer sizes are subject to change and should be cal cu lated rat her than assumed by user programs. A dummy
INBUF or OUTBUF may be employed. .

Revision 1 Monitors 5-1 January 1971

I

Physical Controller
Device Number Number

Pseudo- PTY -
Teletype

Teletype TTYO, TTYl I DC10
••• I TTYl 77 DC68A

630{PDP-6)

Table 5-1 {cont)
Nondirectory Devices

Unit Programmed
Number Operators

- INPUT I IN
OUTPUT, OUT

LT33A, LT33B INPUT I IN
L T35A, L T37 AC OUTPUT, OUT
VT06 TTCALL

Data
Modes

A, AL

A, AL

t Buffer sizes are subject to change and should be calculated rather than assumed by user programso
INBUF or OUTBUF may be employed.

5. 1 CARD PUNCH

The device mnemonic is CDP; the buffer size is dependent on the data mode.

Data Mode

A, AL

I, IB

B

5. 1 • 1 Concepts

Buffer Size

238 (20
8

data) words - 80 7-bit ASCII characters

36
8

{33
8

data) words - 80 12-bit bytes

35
8

{32
8

data, 33
8

punched) words - 26 data words,

word count and checksum punched.

Buffer
Size

{Octal)t

23

23

A dummy

The header card is the first card of an ASCII file and identifies the card code used {refer to Table 5 ... 2).

I This card is not punched for data modes other than ASCII. The header card has the same punch in all

columns.

The end•of-file (EOF) card is the last card of each output file. This card is punched for all data modes.

I The end-of-file card has the same punch in all columns (e.g., 12-11-0-1-6-7-8-9 in columns 1 through

80).

5. 1.2 Data Modes

5. l • 2. l A (ASCII) - ASCII characters are converted to card codes and punched {up to 80 characters per card) •

Tabs are simulated by punching from l to 8 blank columns; form-feeds and carriage returns are ignored.

Revision 1 Monitors 5-2 January 1971

(

(

(

Line-feeds cause a card to be punched. All other nontranslatable ASCII characters cause a question

mark to be punched. Cards can be split between buffers. Attempting to punch more than 80 columns

per card causes the error bit IOBKTL (bit 21 of status word) to be set. The CLOSE will punch the last

partia I card and then punch an EOF card.

CHAR PDP-10 DEC
ASCII 029

SPACE 040

! 041 11-8-2
II 042 8-7

043 8-3

$ 044 11-8-3

% 045 0-8-4

& 046 12
I 047 8-5

(050 12-8-5

) 051 11-8-5

* 052 11-8-4

+ 053 12-8-6

I 054 0-8-3

- 055 11

. 056 12-8-3

I 057 0-1

0 060 0

1 061 1

2 062 2

3 063 3

4 064 4

5 065 5

6 066 6

7 067 7

8 070 8

9 071 9

Table 5-2
PDP-10 Card Codes

DEC
CHAR 026

@

12-8-7 A

0-8-5 B

0-8-6 c
11-8-3 D

0-8-7 E

11-8-7 F

8-6 G

0-8-4 H

12-8-4 I

11-8-4 J

12 K

0-8-3 L

11 M

12-8-3 N

0-1 0

0 p

1 Q

2 R

3 s
4 T

5 u
6 v
7 w
8 x
9 y

5-3

PDP-10 DEC DEC
ASCII 029 026

100 8-4 8-4

101 12-1 12-1

102 12-2 12-2

103 12-3 12-3

104 12-4 12-4

105 12-5 12-5

106 12-6 12-6

107 12-7 12-7

110 12-8 12-8

111 12-9 12-9

112 11-1 11-1

113 11-2 11-2

114 11-3 11-3

115 11-4 11-4

116 11-5 11-5

117 11-6 11-6

120 11-7 11-7

121 11-8 11-8

122 11-9 11-9

123 0-2 0-2

124 0-3 0-3

125 0-4 0-4

126 0-5 0-5

127 0-6 0-6

130 0-7 0-7

131 0-8 0-8

I

I

I

CHAR
PDP-10 DEC
ASCII 029

: 072 8-2 or
11-0t

; 073 11-8-6

< 074 12-8-4

= 075 8-6

> 076 0-8-6

? 077 0-8-7 or
12-0 t

Table 5-2 (Cont)
PDP-10 Card Codes

DEC
CHAR

026

11-8-2 z
or 11-0t

0-8-2 [

12-8-6 \
8-3]

11-8-6 t

12-8-2 ..
or 12-ott

t Either is accepted on input, but 11-8-2 or 8-2 is punched.

PDP-10
ASCII

132

133

134

135

136

137

ttEither is accepted on input, but 12-8-2 or 0-8-7 is punched.

DEC DEC
029 026

0-9 0-9

12-8-2 11-8-5

11-8-7 8-7

0-8-2 12-8-5

12-8-7 8-5

0-8-5 8-2

Cards are normally punched with DEC026 card codes. If bit 29 (octa I 100) of the status word is on

(from INIT, OPEN, or SETSTS), cards are punched with DEC029 codes (see Table 5-2, PDP-10 Card

Codes). The first card of any file (the header card) indicates the card code used (12-0-2-4-6-8 punch

in column 1 for DEC029 card codes; 12-2-4-8 punch in column 1 for DEC026 card codes).

5.1.2.2 AL (ASCII Line) - The same as A mode.

5. 1.2.3 I {Image) - Up to 26 2/3 data words are punched in columns 1 through 80. The buffer set up

by the monitor depends on the mode used. Image binary causes exactly one ca rd to be punched for

each output. The CLOSE punches the last partial card, and then punches an EOF card.

5.1.2.4 IB (Image Binary) - Same as I.

5.1.2.5 B (Binary) - Column l contains the word count in rows 12-3. A 7-9 punch is in column 1.

Column 2 contains a checksum as described for the paper-tape reader (refer to Paragraph 5 .7. 1.5);

columns 3 through 80 contain up to 26 data words, 3 columns per word. Binary causes exactly one

card to be punched for each output. The CLOSE punches the last partial card, and then punches an

EOF card.

5-4

) 5. 1.3 Special Programmed Operator Service
;

)

FoHowing a CLOSE, an EOF card is punched. Both the header card of the file (identifies the card

code used) and the EOF card are laced (i.e., a II holes are punched) in columns 2 through 80 for easy

file identification. These lace'd punches are ignored by the card reader service routine.

After each interrupt, the card punch stores the results of a CONI in the DEVSTS word of the device

data block. The DEVSTS UU 0 is used to return the contents of the DEVSTS word to the user (refer to

Paragraph 4.9.3.4).

5. 1.4 Fi le Status (Refer to Appendix D)

The file status of the card punch is shown below.

Standard Bits

SET BY USER

SET

BY MONITOR

Bit 19 - IODERR

Bit 21 - IOBKTL

Bit 23 - IDACT

UNUSED

Device Dependent Bits

SET BY USER

Bit 29

5 .2 CARD READER ,

18 21 24 27 30 33 35

1111111111111111111111111111111111~
19 21 23

11111111111111 llllll

10-0546

Punch error

Reached end-of'.""card with data remaining in buffer.

Device is active.

18 20 22 24 27

111111 ~\\Ill 1111111 111111111111111111111111111111 I

29

1111111

10-0547

If 1, punch DEC029 card codes in ASCII mode.
If 0, punch DEC026 codes.

) The card reader deyice mnemonic is CDR; the.buffer si,ze is 36
8

(33
8

data) words.

5-5

5 .2. 1 Concepts

A header card is the first card of the file and identifies the card code used. The header card is used

only when changing from Qr back to installation standard on ASCII input. The heoder card must not

be present with any other data modes; if present, the header cord is treated as incorrect format. The

header card has a 12-2-4-8 in column 1.

I An EOF card may have one of three forms: a 12-11-0-1 punched in column 1, o 6-7-S..9 punched in

column 1, or a logical OR of the two punched in col um~ 1. Column$ 2 through 80 are ignored. The

EOF card has the same effec::t as the EOF key on the card reader. This key must be depressed or the

end-of-file card must be present at the end of each input file for all data modes.

5 .2.2 Data Modes

5.2.2. 1 A (ASCII) - All 80 columns of each card are read and trqnslated to 7...f:>it ASCII code. Blcmk

columns are translated to spaces. At the end of each card a carriage return/line-feed is appended. As

many complete cards as can fit are placed in the input buffer, but c<:1rds are not split between two buf­

fers. Using the standard-sized buffer, only one card is placed in each buffer.

Cards are normally translated as DEC026 card codes (refer to PDP ... 10 System Reference Manua I). If a

(

card containing a 12-0-2-4-6-8 punch in column 1 is encountered, cmy following cards are translated (

as DEC029 codes {refer to Tobie 5-2) until the 029 conversion mode is turned off. The 029 mode is ~,
turned off either by a RELEASE command or by a card containing a 12-2-4-8 punch in column 1,

Columns 2 through 80 of both of these cards ore ignored.

5.2.2.2 AL (ASCII Line) - This mode is the same as the A mode.

5.2.2.3 I (Image) -All 12 punches in all 80 columns are packed into the buffer as 12-bit bytes. The

first 12-bit byte is column 1. The last word of the buffer contoins columns 79 and 80 os the left and

middle bytes, respectively. The EOF cc.trd and the ~OF button are processed as in the A mode. Cards

are not split between two buffers.

5.2.2.4 IB (Image Binary) - This mode is the same (JS I.

5.2.2.5 B (Binary) - Card column 1 must contain a 7-9 punch to verify that the card is in binary format.

Column 1 also contains the word count in rows 12 through 3. The absence of the 7-9 punch results in

setting the IOIMPM (bit 18 of status word) flag in the card reader status word. Card column 2 must con­

tain a 12-bit checksum as described for the paper-tape binary format. Columns 3 through 80 contain

Revision 1 Ntonitors 5-6 January 1971

(

)

)

binary data, 3 columns per word for up to 26 words. Cards are not split between two buffers. The

EOF card and the EOF button are processed the same as in the A mode.

1
5 .2 .2 06 SI (Super-Image) - Super-image mode (data mode 110) may be initialized by setting bit 29

of the card reader's IOS word o This mode causes the 36 bits read from the I/O bus to be BLKI'd directly

to the user's buffer. For this mode, the default size of the input buffer is 81
10

words (8010 data words).

I

5 .2 .3 Special Programmed Operator Service

The card reader, after each interrupt, stores the results of a CONI in the DEVSTS word in the device

data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to

Paragraph 4. 9 .3 .4).

5.2.4 File Status (Refer to Appendix D)

The file status of the card reader is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER -' __._I __.__~_llllWIWWlllllllllll.wawwllllllllll.llllWlllllllllllllll
18 21 24

~~TMONITOR lllllllllllllllllll llllllllllll
t0-0548

Bit 18 - IOIMPM 7-9 punch absent in column l of a presumed binary card.
The card reader is stopped.

Bit 19 - IODERR Photocell error, card motion error, data missed. The card
reader is stopped.

Bit 20 - IODTER Computed checksum is not equal to checksum read on binary
card. The card reader is stopped.

Bit 22 - IOEOF EOF card read or EOF button pressed.

Bit 23 - IOACT Device is active.

18 21 24 27 30 33 35

UNUSED _I ___.l 11111 ____...lll_llllllllll,jjjl,llWlllllllllllllWLlllllll _.__I ---L.;....---1

t0-0549

Revision l Monitors 5-7 January 1971

I
Device-Dependent Bits

18 21 24 27 29 30 33 35

UNUSED I 111111
10-0549

Bit 29 Super-Image mode.

5.3 DISPLAY WITH LIGHT PEN

The device mnemonic is DIS; there is no buffer because the display uses device-dependent dump mode

only.

5 .3. 1 Data Modes

For ID (IMAGE DUMP - 25), an arbitrary length in the user area may be displayed on the scope. The

command I ist format is as described in Chapter 4 with the addition for the Type 30, VR30 and VP 10

display, that, if RH = 0, and LH I 0, then_ LH specifies the intensity for the following data (4 to 13).

5 .3 .2 Background

The monitor service routine for the Type 30, VR30 and VP10 maintains a flicker-free picture on the

display during time-sharing; therefore, the picture data must be available for display at least every

two jiffies. This time requirement necessitates that the display data remain in core; also, the user

program must remain in core. To minimize swapping of other programs and to make available a larger

block of free core for other users, the user program is shuffled toward the top of core between pictures.

5.3.3 Display UUOs

The 1/0 UUOs for both displays operate as fol lows:

INIT D, 15
SIXBIT /DIS/
0
ERROR RETURN
NORMAL RETURN
CLOSE DI

or
RELEAS D,

Revision 1 Monitors

;MODE 15 0 NL Y
;DEVICE NAME
;NO BUFFERS USED
;DISPLAY NOT AVAILABLE

;STOPS DISPLAY AND
;RELEASES DEVICE AS
;DESCRIBED IN CHAPTER 4

5-8 January 1971

(

(

)

)

5 .3 .3. 1 INPUT D, ADR - If a light pen hit has been detected since the last INPUT command, then

C(ADR) is set to the location of last light pen hit. If no light pen hit has been detected since last

INPUT command, then C(ADR) is set to -1.

5.3.3.2 OUTPUT D, ADR - ADR specifies the first address of a table of pointers. This table is

composed of pointers with the following format:

0 17 f8 35

LH RH

10-0550

Revision 1 Monitors 5-8a January 1971

(

(

For the Type 30, VR30 and VPlO Display:

If LH = Oand RH= 0, then this is the end of the command list.

If LH-=/ 0 and RH= 0, then LH is the desired intensity for the following data or commands.
The intensity ranges from 4 to 13, where 4 is the dimmest and 13 is
the brightest.

If LH = 0 and RH-=/ 0, then RH is the address of the next pointer. Successive pointers are
interpreted beginning at RH.

If LH -=/ 0 and RH-=/ 0, then -LH words beginning at address RH+ 1 are output as data to
the display. The format of the data word is the fol lowing:

0 7 8 17 18 25 26 35

I y-coord x-coord I
10-0551

For the Type 340B Display:

If RH= 0, then this is the end of the command list.

If LH = 0 and RH-=/ 0, then RH is the address of the next pointer. Successive pointers are
interpreted beginning at RH.

If LH -=/ 0 and RH -=/ 0, then -LH words beginning at address RH+ 1 a re output as data to the
display. The format of the data word is described in the Precision
lncrementa I CRT Display Type 340 Maintenance Manual.

An example of a valid pointer list for the VR-30 display is:

0 U TP UT D , L I ST

LISTi

LISTl:

A:
B:
c:
D:

xwc
IOWD
IOWD
XWD
IOWD
IOWD
XWD

XWD
IOWD
IOWD
XWD
OUTPUT

5, 0
1, A
5,suBPl
13,0
1 , c
2,SUBP2
0,LISTl

10,0
1 , B
1,D
0,0
D, LIST

XWD 6,6
XWD 70, 10 5
XWD 10 5, 70
XWD 1000,200

SUBP 1 : BLOCK
SUB2: BLOCK

5
2

; OUTPUT DATA
;POINTED TO BY LIST
;INTENSITY 5 CDIM)
;PLOT A
;PLOT SUBPICTURE 1
;INTENSITY 13 CBRIGHT)
;PLOT C
;PLOT SUBPICTURE 2
;TRANSFER TO LIST 1

;INTENSITY 10 CNORMAL)
;PLOT B
;PLOT D
;END OF COMMAND LIST
; OUTPUT DATA
;POINTED TO BY LIST
;Y= 6, X=6
;Y= 70, X=105
;Y= 105, X=70
;Y=1000, X=200

;SUBPICTURE
;SUBPICTURE 2

5-9

An example of a valid pointer list for the Type 340B Display is:

OUTPUT D, LIST ;OUTPUT DATA POINTED
;TO BY POINTER IN LIST

LIST: IOWD 1 , A ; SET STARTING POINT TO (6, 6)
IOWD 5,suBPl ; DRAW A CIRCLE
IOWD 1 , c ;SET STARTING POINT TO (70, 10 5)
IOWD 5,suBPl ; DRAW A CIR CLE
IOWD 1,B ;SET STARTING P 0 I NT TO (10 5, 70)
IOWD 2,SUBP2 ; DRAW A TRIANGLE
IOWD 0,LISTl ;TRANSFER TO LISTl

LI STl : IOWD 1,D ; SET STARTING POINT TO
; (100, -200)

IOWD 5,suBPl ; DRAW A CIR CLE
IOWD 1,A ;SET STARTING POINT TO (6, 6)
IOWD 2,SUBP2 ;DRAW A TRIANGLE
XWD 0,0 ; STOP

A: X=6 Y=6
B: X=l 05 Y=70
c: X=70 Y=105
D: X=1000 Y=-200

SUBP 1 : BLOCK 5 ;DRAW A CIRCLE
SUBP2: BLOCK 2 ; DRAW A TRIANGLE

The example shows the flexibility of this format. The user can display a subpicture by setting up a

pointer. He can also display the same subpicture in many different places by setting up pointers to the

subpicture, each preceded by a pointer to commands for the display to reset its coordinates.

5 .3 .4 Fi le Status {See Appendix D)

The file status of the display is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER
11111111111111111111111111111111111

23

SET BY MONITOR 11111~
10-0552

Bit 23 - IOACT Device is active.

18 21 24 27 30 33 35

UNUSED 1111111111111111111111111111111 111111111111111111111111111111111111

10-0553

Device Dependent Bits - None.

5-10

5 .4 LINE PRINTER

The device mnemonic is LPT; the buffer size is 34
8

(33
8

data) words.

5 .4. l Data Modes

5 .4. 1. l A (ASCII) - ASCII characters are transmitted to the I ine printer exactly as they appear in

the buffer. Refer to the PDP-10 System Reference Manual for a list of the vertical spacing characters.

5 .4. 1. 2 AL (ASCII Line) - This mode is exactly the same as A and is included for programming con­

venience. All format control must be performed by the user's program; this includes placing a RETURN,

LINE-FEED sequence at the end of each I ine.

5 .4. 1. 3 I (Image) - This mode is the same as A (ASCII) mode.

5 .4.2 Specie I Programmed Operator Service

The first output programmed operator of a file and the CLOSE at the end of a file cause an extra form­

feed to be printed to keep files separated.

I

After each interrupt, the line printer stores the results of a CONI in the DEVSTS word of the device

data block. The DEVSTS UU 0 is used to return the contents of the DEVSTS word to the user (refer to

Paragraph 4.9.3.4).

5.4.3 File Status (See Appendix D)

The file status of the line printer is shown below.

Standard Bits
18 21 24 27 30 33 35

SET BY USER
11:111111111111111111111111111111111

23

SET BY MONITOR
111111

10-0554

Bit 23 - IOACT Device is active.

UNUSED 11111111111111111111111111111 111111111111111111111111111111111111

Device dependent bits - None.
10-0555

5-11

5 .5 MAGNETIC TAPE

Magnetic tape format is industry compatible, 7- or 9-channel 200, 556, and 800 bits/in. (see

description below). The device mnemonic is MTAO, MTA 1, ••• , MTA7; the buffer size is 203
8

(200
8

data} words.

5 .5. 1 Data Modes

5 .5. 1. 1 A (ASCII) - Data appears to be written on magnetic tape exactly as it appears in the buffer.

No processing or checksumming of any kind is performed by the service routine. The parity checking

of the magnetic tape system is sufficient assurance that the data is correct. Normally, a II data, both

binary and ASCII, is written with odd parity and at 800 bits per inch unless changed by the installation.

A maximum of 200
8

words per record is a I lowed if the monitor has set up the buffer ring. If the user

builds his own buffers, he may specify any number of words per record. The word count is not written

I on the tape. If an 1/0 error occurs or an end-of-tape is reached, reading ahead ceasing on input and

implied output ceases on output.

5.5.1.2 AL (ASCII Line} -The mode is the same as A.

5 .5. 1. 3 I {Image} - The mode is the same as A, but data consists of 36-bit words.

5 .5. 1. 4 IB {Image Binary} - The mode is the same as I.

5.5.1.5 DR (Dump Records} - Standard fixed length records (128 words is the standard unless installa­

tion standard is changed at MONGEN time} are read into or written from anywhere in the user's core

area without regard to the standard buffering scheme. Control for read or write operations must be via

a command list in core memory. The command list format is described in Chapter 4. For input opera­

tions a new record is read for each word in the command list {except GOTO words}; if the record ter­

minates before the command word is satisfied, the service routine reads the next records. If the com­

mand word runs out before the record terminates, the remainder of the record is ignored. For each

output command word, enough standard length records are followed by one short record to exactly

I write all of the words on the tape. If an 1/0 error occurs or the end-of-tape is reached, no additional

commands are retrieved from a dump mode command list, and 1/0 is terminated.

5 .5. 1. 6 D (Dump) - Variable length records are read into or written from anywhere in the user's core

area without regard to the standard buffering scheme. Control for read or write operations must be via

5-12

a command list in core memory. The command list format is described in Chapter 4. For input

operations a new record is read for each word in the command list (except GOTO words); if the record

terminates before the command word is satisfied, the service routine skips to the next command word.

If the command word runs out before the record terminates, the remainder of the record is ignored. For

each output command word, exactly one record is written (refer to Paragraph 4.4. 1.2 for command

I ist format).

5 .5 .2 Magnetic Tape Format

Magnetic tape format can be generally described as unlabelled, industry-compatible format. That is,

as far as the user is concerned, the tape contains only data records and EOF marks, which signal the

end of the data set or the end of the file.

An EOF mark consists of a record containing a 17
8

(for 7-channel tapes) or a 23
8

(for 9-channel tapes).

EOF marks are used in the following manner:

a. No EOF mark precedes the first file on a magnetic tape.

b. An EOF mark follows every file.

c. Two EOF marks follow a file if that file is the last or only file on the tape.

Files are sequentially written on and read from a magnetic tape. A file consists of an integral number

of physica I records, separated from each other by interrecord gaps {area on tape in which no data is

written). There may or may not be more than one logical record in each physical record.

5 .5 .3 Specia I Programmed Operator Service

CLOSE performs a specia I function for magnetic tape. When an output file is closed (both dump and

nondump), the 1/0 service routine automatica I ly writes two EOF marks and backspaces over one of

them. If another file is opened, the second EOF mark is wiped out leaving one EOF mark between

files. At the end of the in-use portion of the tape, however, a double EOF character, which is de­

fined as the logical end of tape, appears. When an input dump file is closed, the 1/0 service routine

automatically skips to the next EOF mark.

After each interrupt, the magnetic tape service routine stores the results of a CONJ in the DEVSTS

word. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to

Paragraph 4. 9 • 3 .4) •

5-13

A special programmed operator called MTAPE provides for tape manipulation functions such as rewind,

backspace record, backspace file, and 9-channel tape initialization. The format is

MTAPE DI FUNCTION

where Dis the device channel on which the magnetic tape unit is initialized. FUNCTION is selected

according to Table 5-3.

Function

0

1

11

7

17

3

6

13

16

10

100

101

Table 5-3
MTAPE Functions

Action

No operation; wait for spacing and 1/0 to finish.

Rewind to load point

Rewind and unload t

Backspace record

Backspace files; implemented by a series of backspace
record operations.

Write EOF

Skip one record

Write 3 in. of blank tape

Skip one file; implemented by a series of skip record
operations.

Space to logical end of tape; terminates at either two
consecutive EOF marks or at the end of first record
beyond end of tape marker.

Initialize for Digital-compatible 9-channeltt

lnitia lize for industry-compatible 9-channel tape ttt

ton the 516 Magnetic Tape Control, this function is implemented as such, but
earlier types of transports consider it only as a REWIND function.

ttDigital-compatible mode writes (or reads) 36 data bits in five frames of a 9-track
magnetic tape. It can be any density, any parity, and is not industry compatible.
This mode is in effect until a RELEAS D, or an MTAPE D, 101 is executed.

ttt Industry-compatible 9-channel mode writes (or reads) 32 data bits per word in four
frames of a 9-track magtape and ignores the last four bits of a word. It must be
800 bits/in. density, odd parity.

5-14

MTAPE waits for the magnetic tape unit to complete the action in progress before performing the

indicated function, including no operation (O). Bits 18 through 25 of the status word are then cleared,

the indicated function is initiated, and control is immediately returned to the user's program. It is

important to remember that when performing buffered input/output, the 1/0 service routine can be

reading several blocks ahead of the user's program. MTAPE affects only the physical position of the

tape and does not change the data that has already been read into the buffers.

5.5.3. 1 Use of the MTAPE Operator - MTAPE functions must be followed by MTAPE 0 if subsequent

operations depend on the completion of the MTAPE function. If this is not done, subsequent input and

output UUOs are ignored until the magnetic tape control is freed. This problem occurs frequently in

programs that issue a REWIND at the beginning of the program. The tape may actually be positioned

at the beginning of the tape; however, the processing of the MTAPE function may cause the first input

to be ignored.

Issuing a backspace file command to a magnetic tape unit moves the tape in the reverse direction until

the tape has:

a. passed the end of file mark

b. reached the beginning of the tape.

The end of the backspace file operation positions the tape heads either immediately in front of a file

mark or at the beginning of the tape.

In most cases it is desirable to skip formrd over this file mark. This is decidedly not the case if the

beginning of the tape is reached; in this case giving a skip file command would, indeed, skip the entire

first file on the tape stopping at the beginning of the second file, ·rather than leaving the tape posi­

tioned at the beginning of the first file. Therefore, a typical (incorrect) sequence for backspace file

would be:

MTAPE MT,17
CALLI MT,WAIT

STATO MT,4000
MTAPE MT,16

;Backspace file
;Wait for completion
;Beginning of tape?
; No, skip over file mark

It is necessary to wait after the backspace file instruction to ensure that the tape is moved to the EOF

mark or the beginning of the tape before testing to see whether or not it is the beginning of the tape.

The instruction CALLI MT, WAIT cannot be used for this purpose; it waits only for the completion of

1/0 transfer operation. (Backspace file is a spacing operation, not an 1/0 transfer operation.) Instead,

use the following sequence for backspace file:

5-15

MTAPE MT,17
MTAPE MT ,0
STATO MT,4000
MTAPE MT,16

;Backspace file
;Wait for completion
;Beginning of tape?
;No, skip over file mark

The device service routine must wait until the magnetic tape control is free before processing the

MTAPE MT, 0 command, which tells the tape control to do nothing. Thus, the service routine achieves

the 'M'l iting period necessary for the completion of the previous operation and the proper positioning of

the tape.

5 .5 .4 9-Channel Magtape

Nine-channel magtape may be written and read in two ways: normal Digital-compatible format, and

industry-compatible format.

5.5.4. 1 Digital-Compatible Mode - Digital-compatible mode, the usual mode, allows old 7-channel

user mode programs to read and write 9-channel tapes with no modification. Digital-compatible mode

writes 36 data bits in five bytes of a nine track magtape. It can be any density, and parity, and is not

industry compatible. The software mode is specified in the usua I manner during initialization or with

a SETS TS. User .r:node 1/0 is handled precisely as 7-track magtape. It is assumed that most DEC

magtapes wi II be written and read in Digita I-compatible mode.

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 1

BO Bl B2 B3 B4 B5 B6 B7 p
B8 B9 BlO Bll B12 B13 B14 B15 p
B16 B17 B18 B19 B20 B21 B22 B23 p
B24 B25 B26 B27 B28 B29 (B30) (B31) p
0 0 (B30) (B31) B32 B33 B34 B35 p

P =Parity.
BN = Bit N in core.

For the data word in core there are 5 magnetic tape bytes per 36-bit word. Parity bits are unavailable

to the user. Bits are written on tape as shown above; bits 30 and 31 are written twice and tracks 8 and

9 of byte 5 contain 0. On reading, parity bits and tracks 8 and 9 of byte 5 are ignored, the OR of

bits (B30) is read into bit 30 of the data word, the OR of bits (B31) is read into bit 31.

5-16

5.5.4.2 Industry-Compatible Mode - For reading and writing industry-compatible 9-channel magtapes,

an MTAPE D, 101 UUO must be executed to set the status. MTAPE D, 101 is meaningful for 9-channel

magtape only and is ignored for all other devices. In the left half of the status word, bit 2 {which

cannot be read by the user program) may be cleared, thus, the device is returned to 9-channel Digital­

compatible status bya RELEAS, a call to EXIT, or an MTAPE D, 100 UUO. These MTAPE UUOs act

only as a switch to and from industry-compatible mode and affect 1/0 status only by setting the density

to 800 bits/in. and odd parity.

On INPUT, four 8-bit bytes are read into each word in the buffer, left justified with the remaining

four bits of the word containing error checking information.

On OUTPUT, the leftmost four 8-bit bytes of each word in the buffer are written out in four frames,

with the remaining four rightmost bits of the word being ignored.

Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 1

BO Bl B2 B3 B4 BS B6 B7 B32
BS B9 BlO Bll B12 B13 B14 B15 B33
B16 B17 B18 B19 B20 B21 B22 B23 B34
B24 B25 B26 B27 B28 B29 B30 B31 B35

For data word in core, four magnetic tape bytes carry four 8-bit bytes from the data word. Parity bits

are obtained as shown above when reading. The rightmost four bits (32-35) are ignored on writing.

5.5.4.3 Changing Modes - MT APE CH, 101 automatically sets density at 800 bits (i.e., 800 eight­

bit bytes) per inch and sets odd parity. Note that buffer headers are set up, when necessary by the

monitor in the usual manner according to the 1/0 mode in which the device is initialized. Byte

pointers and byte counts in buffer header have to be changed by the user to operate on eight-bit bytes.

5 .5 .5 Fi le Status {refer to Appendix D)

The file status of the magnetic tape is shown be low.

5-17

Standard Bits

18 21 24 27 30 33 35

SET BY USER L--1 _....____,___L----LWllll=lllllllllllWlll.W.U.llllllllllll.U.WJ.IWllllllllllll

18 21 24

SET BY MONITOR! ~llllllllllw.wl.W.l.~lllllllll=lllllllllllu.u.a-1111 __._______.___~

Bit 18 - IOIMPM

Bit 19 - IODERR

Bit 20 - IODTER

Bit 21 - IOBKTL

Bit 22 - IOEOF

Bit 23 - IOACT

10-0556

Unit was write-locked when output was attempted,
or i I lega I operation was specified to the magnetic­
tape control.

Data was missed, tape is bad, or transport is hung.

Parity error.

Record read from tape exceeds buffer size.

EOF mark encountered. No specia I character appears
in buffer.

Device is active.

Device Dependent Bits

18 21 24 26 27 30 33 35

SET BY USER l._____.____.__IAW.J,jjfllll,WJ,IJ,W.Ll.llllllllllw.w.11...llllllll __.....______,

Bit 26 - IOPAR

Bits 27-28

Bit 29 - IONRCK

10-0557

1/0 parity. 0 for odd parity, 1 for even parity. Odd
parity is preferred. Even parity should be used only
when creating a tape to be read in binary coded decimal
(BCD) on another computer.

1/0 density. 00 =System standard. Defined at MONGEN

01 = 200 bits/in •
10 = 556 bits/in.
11 = 800 bits/in.

time.

1/0 no read check. Suppress automatic error correction if
bit 29 is 1. Normal error correction repeats the desired
operation l 0 times before setting an error status bit.

18 21 24 25 27 30 33 35

SET BY MONITOR ..__I ~~l\\\\\IWWl.WJ.\\\\\\\\\\IL._.1-___._____,

Bit 24 - IOBOT

Bit 25 - IOTE ND

10-0558

1/0 beginning of tape. Unit is at beginning of tape mark.

I/O tape end. Physical end of tape mark encountered.

5-18

5 .6 PAPER-TAPE PUNCH

The device mnemonic is PTP; the buffer size is 43
8

{40
8

data) words.

5.6. 1 Data Modes

5.6. 1. 1 A (ASCII) - The eighth hole is punched for all characters. Tape-feed without the eighth

hole (000) is inserted after form-feed. A rubout is inserted after each vertica I or horizonta I tab. Nu II

characters (000) appearing in the buffer are not punched.

5.6.1.2 AL (ASCII) Line - The mode is the same as A mode. Format control must be performed by

the user's program.

5.6. 1.3 I {Image) - Eight-bit characters are punched exactly as they appear in the buffer with no

additiona I processing.

5.6. 1.4 IB (Image Binary) - Binary words taken from the output buffer are split into six 6-bit bytes

and punched with the eighth hole punched in each line. There is no format control or checksumming

performed by the 1/0 routine. Data punched in this mode is read back by the paper-tape reader in

the IB mode.

5.6. 1.5 B {Binary) - Each bufferful of data is punched as one checksummed binary block as described

for the paper-tape reader. Severa I blank I ines are punched after each bufferful for visua I clarity.

5.6.2 Special Programmed Operator Service

The first output programmed operator of a file causes approximately two fanfolds of blank tape to be

punched as leader. Following a CLOSE, an additional fanfold of blank tape is punched as trailer. No

EOF character is punched automatica I ly.

After each interrupt, the paper-tape punch stores the results of a CONJ in the DEVSTS word of the

device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user

{refer to Paragraph 4. 9 .3 .4).

5.6.3 File Status {Refer to Appendix D)

The file status for the paper-tape punch is shown below.

5-19

Standard Bits

18 21 24 27 30 33 35

SET BY USER I
111111111111111111111111111111111111

23

SET BY MONITOR I llllll
10-0559

Bit 23 - IOACT Device is active.

UNUSED 11111111111111111111111111111 111111111111111111111111111111111111

10-0560

Device Dependent Bits - None

5.7 E~-TAPE READER

The de,-- .;e mnemonic is PTR; the buffer size is 43
8

(40
8

data) words.

5 .7. 1 Data Modes (Input Only)

NOTE

To initialize the paper-tape reader, the input tape must
be threaded through the reading mechanism and the FEED
button must be depressed.

5 .7. 1. 1 A (ASCII) - Blank tape (000), RUBOUT (377), and nu II characters (200) are ignored. All

other characters are truncated to seven bits and appear in the buffer. The physical end of the paper

tape serves as an EOF, but does not cause a character to appear in the buffer.

5.7. 1.2 AL (ASCII Line) - Character processing is the same as for the A mode. The buffer is termi­

nated by LINE FEED, FORM, or VT.

5 .7. 1.3 I (Image) - There is no character processing. The buffer is packed with 8-bit characters

exactly as read from the input tape. Physica I end of tape is the EOF indication but does not cause a

character to appear in the buffer.

5-20

5 .7. 1.4 IB {Image Binary) - Characters not having the eighth hole punched are ignored. Characters

are truncated to six bits and packed six to the word without further processing. This mode is useful for

reading binary tapes having arbitrary blocking format.

5 .7. 1.5 B {Binary) - Checksummed binary data is read in the fol lowing format. The right ha If of the

first word of each physica I block contains the number of data words that follow and the left contains

half a folded checksum. The checksum is formed by adding the data words using 2's complement arith­

metic, then splitting the sum into three 12-bit bytes and adding these using 1 's complement arithmetic

to form a 12-bit checksum. The data error status flag {refer to Table 4-7) is raised if the checksum

miscompares. Because the checksum and word count appear in the input buffer, the maximum block

length is 40. The byte pointer, however, is initialized so as not to pick up the word count and check­

sum word.

Again, physical end of tape is the EOF indication, but does not result in putting a character in the buffer.

5 .7 .2 Special Programmed Operator Service

After each interrupt, the paper-tape reader stores the results of a CONI in the DEVSTS word of the

device data block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user

{refer to Paragraph 4.9.3.4).

5.7.3 File Status {Refer to Appendix D)

The file status of the paper-tape reader is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER _I --~~lllllw.w.w.u.111111111111.1.111.1.!11.ullllllllll~lllllllllll
18 20 22 23

SET BY MONITOR 1 111111_lllllll _lllll~lllOl.l..-111 _...____..__......______.

Bit 18

Bit 20

Bit 22 - IOEOF

Bit 23 - IOACT

Binary block is incomplete.

Bad checksum in binary mode.

10-0561

Physica I end of tape is encountered. No character
is stored in the buffer.

Device is active.

5-21

1819 21

UNUSED I 11111111111111 1111111111111111111111111111111111111

10-0562

Device dependent bits - None

5.8 PLOTTER

The device mnemonic is PLT; the buffer size is 43
8

(40
8

data) words. The plotter takes 6-bit characters

with the bits of each character decoded as follows:

-x +X +Y -Y
PEN PEN DRUM DRUM CARRIAGE CARRIAGE

RAISE LOWER UP DOWN LEFT RIGHT

10-0563

Do not combine PEN RAISE or LOWER with any of the position functions. (For more details on the

incremental plotter, refer to the PDP-10 System Reference Manual.)

5 .8. l Data Modes

5.8. 1. l A (ASCII) - Five 7-bit characters per word are transmitted to the plotter exactly as they

appear in the buffer. The plotter is a 6-bit device; therefore, the leftmost bit of each character is

ignored.

5.8. 1.2 AL (ASCII Line) - This mode is identical to the A mode.

5.8. 1.3 I (IMAGE) - Six 6-bit characters per word are transmitted to the plotter exactly as they

appear in the buffer.

5.8. l.4 B (BINARY) - This mode is identical to the I mode.

5.8. l .5 IB (IMAGE BINARY) - This mode is identical to the I mode.

5 .8. 1. 6 DR (DUMP RECORDS) - This mode is not available.

5-22

5.8.1.7 D (DUMP) - This mode is not available.

5 .8 .2 Specia·I Programmed Operator Service

The first OUTPUT operator causes the plotter pen to be lifted from the paper before any user data is

sent to the plotter. The CLOSE operator causes the plotter pen to be lifted after all user data is sent

to the plotter. These two pen-up commands are the only modifications the monitor makes to the user

output file.

After each interrupt, the plotter stores the results of a CONI in the DEVSTS word of the device data

block. The DEVSTS UUO is used to return the contents of the DEVSTS word to the user (refer to

Paragraph 4.9.3.4).

5 .8 .3 Fi le Status (Refer to Appendix D)

The file status of the plotter is shown below.

Standard bits

18 21 24 27 30 33 35

1111111111111111111111111111111111111 SETBYUSER~'~---'...__~-'-~-'-~~~~.._.~.......,
23

1111111

10-0564

Bit 23 - IOACT Device is active.

UNUSED 1111111111111111111111111111111 1111111111111111111111111111111111111

10-0565

Device dependent bits - None

5. 9 _TELETYPE

The device mnemonic is TTYO, TTYl, ••• , TTY176, TTY177, CTY; the buffer size is 23
8

(20
8

data)

words.

Line number n of the Type 630 Data Communications System, Data Line Scanner DC10, PDP-8 680 Sys­

tem, or PDP-8/1 DC68A System is referred to as TTYn. The console Teletype is CTY. The Timesharing

monitor automatically gives the logical name TTY to the user's console when a job is initialized.

5-23

Teletype device names are assigned dynamically. For interconsole communication by program, one

of the two users must type DEASSIGN TTY to make the Teletype ova i lab le to the other user's program

as an 1/0 device. Typing ASSIGN TTYn is the only way to reassign a Teletype that has been de­

assigned (refer to TALK command, Table 2-2).

Two Teletype routines are provided: a newer, full-duplex soft~re routine and an older, half-duplex

soft~re routine. The full-duplex soft~re is recommended.

With a full-duplex Teletype service, the two functions of a console, typein and typeout, are handled

independently, and do not need to be handled in the strict sense of output first and the input. For

example: if two operations are desired from PIP, the request for the second operation can be typed

before receiving the asterisk after completion of the first. The echo-checking of typed-in characters

disappears because the keyboard and the printing operations are independent. To stop unwanted out­

put, a Control 0 is typed. Also, the command Control C does not stop a program instantly; the Con­

trol C will be delayed until the program requests input from the keyboard, and then the program will

be stopped. When a program must be stopped instantly, as when it gets into a loop, Control C typed

twice stops the program.

Programs ~ iting for Teletype output a re awakened eight characters before the output buffer is empty,

causing them to be swapped in sooner and preventing pauses in typing. Programs waiting for Teletype

input wi 11 be awakened ten characters before the input buffer is fi I led, thus reducing the possibi I ity of

lost typein.

5 • 9 • 1 Data Modes

5.9.1. 1 Full-Duplex Software A (ASCII) and AL (ASCII Line)

The input handling of all control characters is as follows. (All are passed to program except as noted

below.)

000

001

002

003

004

005

NULL

tA
t B

t c

t D (EOT)

f E (WRU)

Ignored on input, suppressed on output.

Echoes as t A; passed to program.

Complements switch control ling echoing, not passed to
program. Used on loca I-copy dataphones and TWX's.
(No specia I action with 5. 02 monitors and later monitors.)

The user's console is switched to monitor mode the next time
input is requested by the program. Two successive t C's
cause the console to be immediately switched to monitor mode.

004 passed to program. Not echoed, therefore, typing in a
Control D (EOT) does not cause a fu 11 duplex data phone to
hang up.

No special action.

5-24

006

007

010

OTT

012

013

014

015

016

017

020

021

022

023

024

025

t F

t G (Bell)

t H (Backspace)

t I (TAB)

t J (Linefeed)

t K (Vertical tab)

t L (Form)

t M (Carriage
return)

f N

to

t Q (XON)

t R (TAPE)

t S (XOFF)

tT
tu

(NO TAPE)

Complements switch controlling translation of lower case
letters to upper case. Used when lower case input is
des ired to programs. Not sent to program, but program
can sense the state of this switch by the TTCALL UUO.
(No special action with 5.02 monitors and later monitors.

007 passed to program, and is a break character.

Acts as a RUBOUT, unless either DDT mode or ful I char­
acter set mode is true, or the t F switch (or lower case mode
in 5.02 monitors and later monitors) is on. In these cases,
010 is sent to the program.

OTT passed to program. Echoed as spaces if t P switch is on.
(In 5.02 monitors and later, this character is determined by
the TTY command.) These spaces are not passed to program.

Break character; no other special action.

OT3 passed to program. Echoes as four linefeeds if f P switch
is on. (In 5.02 monitors and later monitors this character
is determined by the TTY command.) Is a break character.
These linefeeds are not passed to program.

OT4 passed to program. Echoes as 8 linefeeds if the f P
switch is on. (In 5. 02 monitors and later models, this char­
acter is determined by the TTY command. Is a break char­
acter. These Ii nefeeds are not passed to program.

If Teletype is in paper-tape input mode, 015 is simply passed
to program; otherwise, 015 supplies a linefeed echo, and is
passed to program as a CR and LF, and is a break character
(due to LF).

No special action.

Complements output suppression bit allowing user to turn out­
put on and off. INPUT, fN IT, and OPEN clear the output
suppression biL Not passed to program. Echoed as t 0
followed by carriage return-linefeed.

Does not appear in the input buffer. When switch is off,
TAB, VT, and FF are echoed normally. When switch is on,
TAB is converted to spaces, and VT and FF to I inefeeds to
simulate the action indicated. The t P switch should be
turned on if the user's terminal does not act on TAB, VT,
and FF. (No special action with 5.02 monitors and later.)

Starts paper-tape mode, as described above. Passed to
program.

No special action.

Ends paper-tape mode, as described above; is passed to
program.

No special action.

Deletes input line back to last break character. Typed
back as f U followed by carriage return-linefeed.

5-25

026

027

030

031

032

033

034

035

036

037

040-137

140-174

175 and T 76

177

tv
tw
tx
tv
tz

t [(ESC)

t\
t]
t t
t+-

No special action.

No special action.

No special action.

No special action.

Acts as EOF on Teletype input. Echoes as t Z followed by
carriage return-linefeed. Is a break character. Appears
in buffer as 032.

The current ASCII altmode, but is translated to 175 before
being passed to the program, unless in full character set
mode (bit 20 in I NIT). 175 is the 1963 altmode; echoes
as a dollar sign; is always a break character.

No special action.

No special action.

No special action.

No special action.

Printing characters, no special action.

Lower case ASCII; translated to upper case, un I ess
t F switch (or lower case mode in 5.02 monitors

and later monitors) is set o Echoes as upper case if
translated to upper case o

Old versions of altmode; refer to description of ESC (033).

RUBOUT or DELETE:

a. Completely ignored if in paper-tape mode (X ON).

bo Break character, passed to program if either DDTmode
or fu 11 character-set mode is true.

co Otherwise {ordinary case) causes a character to be
deleted for each rubout typed. All the characters
deleted are echoed between a single pair of back­
slasheso If no characters remain to be deleted, echoes
as a carriage return-I inefeed.

On output, a II characters are typed just as they appear in the output buffer with the exception of TAB,

VT, and FORM, which are processed the same as on type-in. Programs should avoid sending t D be­

cause it may have catastrophic effects (e.g., it may hang up certain data sets).

5.9.1.2 Half-Duplex Software A(ASCII) - If, during output operations, an echo-check failure occurs

(the received character was not the same as the transmitted character), the 1/0 routine suspends out­

put until the user types the next character. If that character is t C, the console is immediately placed

in monitor mode. If it is to, all Teletype output buffers that are currently full are ignored, thus cut­

ting the output short. All other characters cause the service routines to continue output. The user may

5-26

cause a de liberate echo check by typing in wh !le typeout is in progress. For example, to return to

monitor control mode while typeout is in progress, the user must type any character {11X 11
, for example)

unti I an echo check occurs and output is suspended; then he types t C.

The buffer is terminated when it is full or when the user types t Z.

5.9.1.3 Half-Duplex Software AL(ASCII Line) - The mode is the same as ASCII mode {usually preferred)

with the addition that the input is terminated by a CR/LF pair, FF, VT, or AL TMODE.

5.9.1.4 I (Image) - Image mode is legal for Teletype input and output, except for Teletypes controlled

by pseudo-Teletypes (refer to Paragraph 5.10).

Since, on input, any sequence of input characters must be allowed, t C and t Z may .. not cause their

usua I escape functions. This means that if the user program accepts a II characters and does not release

the Teletype from image mode, no typein will release the user from this state; consequently, the Tele­

type would effectively become dead to the system. The break character cannot be used to escape from

this situation, because DClO and the 630 do not detect the break character. To solve this design

problem, an image input state is defined. If durin.g the image input state, no characters are received

for 15 seconds, the image input state is terminated by SC NSER (scanner service) and a t C is simulated.

Therefore, if the user discovers that his program has failed because of this condition, he simply stops

typing until a t C appears.

The image input state begins when the program goes into 1/0 wait because of an INPUT UUO in image

mode. It ends when the pn:>gram executes any Teletype output operation. If no output is desired, the

TTCALL Ul.JO can be executed to output a null string.

When using image mode input to read binary tapes, echoing should be suppressed by setting bit 28 in

the Teletype status word.

NOTE

Since there are no break characters in image mode, characters
are transferred a character at a time instead of a line at a
time. Therefore, an input buffer may only have one character
in it when control is returned to the user program.

On output, the low-order eight bits of each word in the user's buffer are outputted. These characters

are transmitted exactly as supplied by the user. Parity is neither checked nor added, and filler char­

acters are not generated. Image mode affects buffered output (INIT, OUTPUT UUOs) only, except

5-27

when allowing output fo plotting devices by FORTRAN subroutines. For this case, an additional

TTCALL function has been added (refer to Paragraph 5. 9 .3).

5.9.2 DDT Submode

To allow a user's program and the DDT debugging program to use the same Teletype without interferring

with one another, the Teletype service routine provides the DDT submode. This mode does not affect

the Teletype status if it is initialized with the INIT operator. It is not necessary to use INIT to perform

1/0 in the DDT submode. 1/0 in DDT mode is always to the user's Teletype and not to any other

device.

In the DDT submode, the user's program is responsible for its own buffering. Input is usually one char­

acter at a time, but if the typist types characters faster than they are processed, the Teletype service

routine supplies buffers full of characters at the same time.

To input characters in DDT mode, user the sequence

MOVEI AC,BUF
CALL AC, CSIXBIT/DDTIN/J

BUF is the first address of a 21-word block in the user's area. The DDTIN operator delays, if necessary,

unti I one character is typed in. Then a II characters (in 7-bit packed format} typed in since the pre­

vious occurrence of DDTIN are moved to the user's area in locations BUF, BUF+l. The character string

is a I ways terminated by a nu II character (000). RUBOUTs are not processed by the service routine but

are passed on to the user. The specia I control characters t 0 and t U have no effect. Other charac­

ters are processed as in ASCII mode.

To perform output in DDT mode, use the sequence

MOVEI AC,BUF
CALL AC,CSIXBIT /DDTOUT/J

BUF is the first address of a string of packed 7-bit characters terminated by a null (000} character. The

Teletype service routine delays until the previous DDTOUT operation is complete, then moves the en­

tire character string into the monitor, begins outputting the string, and restarts the user's program.

Character processing is the same as for ASCII mode output.

5. 9 .3 Special Programmed Operator Service

The genera I form of the TTCALL (operation code 051) programmed operator is as follows:

5-28

TTCALL AC, ADR

The AC field describes the particular function desired, and the argument (if any) is contained in ADR.

ADR may be an AC or any address in the low segment above the JOB DATA AREA (137). It may be in

high segment for AC fields 1 and 3. The functions are:

AC Field Mnemonic t Action

0 INCHRW Input character and Vv'Clit

1 OU TC HR Output a character

2 INC HRS Input character and skip

3 OUTS TR Output a string

4 INCHWL Input character, Vv'CI it, I ine mode

5 INCHSL Input character, skip, line mode

6 GETLCH Get line characteristics

7 SETLCH Set line characteristics

10 RESCAN Reset input stream to command

11 CLRBFI Clear typein buffer

12 CLRBFO CI ear typeout buff er

13 SKPINC Skip if a character can be input

14 SKPINL Skip if a line can be input

15 IONE OU Output as an image character

16-17 (Reserved for expansion)

t The TTCALL mnemonics are defined in a separate MACRO assembler table,
which is scanned if an undefined OP CODE is found. If the symbol is found
in the TTCALL table, it is defined as though it had appeared in an appro­
priate OPDEF statement, for example,

TYPE: OUTCHR CHA RAC

If OUTCHR is undefined, it will be assembled as though the program con­
tained the statement

OPDEF OUTCHR TTCALL 1,

This facility is available in MACRO V.44 and later.

5. 9 .3. 1 INCHRW ADR or TTCALL 0 ,ADR - This command inputs a character into the low-order seven

bits of location ADR. If there is no character yet typed, the program waits.

5-29

I 5.9.3.2 OUTCHR ADRorTTCALL 1, ADR -This command outputs a character to the Teletype from

location ADR. Only the low order 7 bits of the contents of ADR ore used. The remaining bits do not

need to be zeroes.

If there is no room in the output buffer, the program waits until room is available. ADR may be in

high segment.

I 5.9.3.3 INCHRS ADR or TTCALL 2, ADR - This command is similar to INCHRW, except that it skips

on a successful return, and does not skip if there is no character in the input buffer; it never puts the

job into a wait.

TTCALL 2,ADR
JRST NONE
JRST DONE

I 5.9.3.4 OUTSTR ADR or TTCALL 3, ADR - This command outputs a string of characters in ASCIZ

format:

TTCALL 3,MESSAGE
MESSAGE:ASCIZ /TYPE THIS OUT/

ADR may be in high segment

5. 9 .3.5 INCHWL ADR or TTCALL 4, ADR - This command is the same as INCHRW, except that it

decides whether or not to wait on the basis of I ines rather than characters; as such, it is the preferred

way of inputting characters, because INCHRW causes a swap to occur for each character rather than

each line (compare DDT and PIP input).

I

Note that a control-C character in the input buffer is sufficient to satisfy the condition of a pending

line. Therefore, when the input is done, the control-C is interpreted and the job is stopped. This

definition of a line also applies to TTCALL 5, and TTCALL 14, •

5.9.3.6 INCHSL or TTCALL 5,ADR -This command is the same as INCHRS, except that its deci­

sion whether to skip is made on the basis of lines rather than characters.

I 5.9.3.7 GETLCH ADR or TTCALL 6,ADR - This command takes one argument, from location ADR, and

returns one word, also in ADR. The argument is a number, representing a Teletype line. If the argu­

ment is negative, the line number controlling the program is assumed. If the line number is greater than

those defined in the system, a zero answer is returned.

5-30

)

)

)

I

The normal answer format is as follows:

Right half of ADR:

Left ha If of ADR:

Bit

0

l

2

3

4

5

11

12

13

14

15

16

17

The line number.

Bits, as fol lows:

Meaning

Line is a pseudo-Teletype

Line is the CTY.

Line is the display console.

Line is the dataset data line.

Line is a dataset control line.

Line is half-duplex.

A line has been typed in by the 11ser.

A rubout has been typed •

Lower case input mode is on.

Teletype has tabs.

Teletype input is not echoed.

Control Q (paper-tape) switch is on.

Line is in a talk ring.

5. 9 .3. 8 SETLCH ADR or TT CALL 7 ,ADR -

I the bits described for GETLCH. They may be changed only for the controlling Teletype. Bits 14, 15,

and 16 can be modified.

Example:

SETO AC,0
TTCALL 6,AC
TLZ AC, BIT 1 3
TLO AC,BIT 1 4
TTCALL 7,AC

I 5.9 .3. 9 RESCAN ADR or TTCALL 10 ,0 - This command is intended for use only by the COMPIL CUSP.

It causes the input buffer to be rescanned from the point where the last command began. Obviously,

if it is executed other than before the first input, that command may no longer be in the buffer. ADR is

not used, but it is address checked.

Revision 1 Monitors 5-31 January 1971

5 .9 .3. 10 CLRBFI ADR or TTCALL 11,0 - This command causes the input buffer to be cleared {as if the

user had typed a number of CONTROL Us. It is intended to be used when an error has been detected

(e.g., if a user did not want any commands, which he might have typed ahead, to be executed).

5. 9 .3. 11 CLRBFO ADR or TTCALL 12,0 - This command causes the outpµt buffer to be cleared as if

the user had typed CONTROL 0. It should be used rarely, because usually one wants to see all out­

put, up to the point of an error. This command is included primarily for completeness.

5. 9 .3. 12 SKPINC ADR or TTCALL 13 ,0 - This command skips if the user has typed at least one char­

acter. It does not skip if no characters have been typed; however, it never inputs a character. It is

useful for a computer-based program, which wants to occasionally check for input and, .if any, go off

to another routine {such as FORTRAN Operating System) to actually do the input.

5.9.3.13 SKPINL ADR or TTCALL 14,0 - This command is the same as SKPINC, except that a skip

occurs if the user has typed at least one line.

5.9.3.14 IONEOU ADR or TTCALL 15,E - This command outputs the low-order eight bits of the con­

tents of E as an image character to the terminal. This function is available in 5.02 monitors and later

monitors.

5. 9 .4 File Status {Refer to Appendix D)

The file status of the Teletype is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER I 11111111111111111~11111111111111111
23

SET BY MONITOR I
1111111

10-0566

Bit 23· - IOACT Device is active.

18 22 24 28

UNUSED'-~''" ~1111111..-llllllll~lllllllllllllMlllllollllllllllll-......ll I__.____,
10-0567

5-32

(

(

Device Dependent Bits

18 21 24 27 28 30 33 35

SET BY USER _I ----~11111111111,l,lj,j,j.LIL..llllllll ~__,

Bit 27

Bit 28

Bit 29

10-0568

Suppresses echoing of@ on the Teletype.

Suppresses echoing on the Teletype.

Full character set. Pass all characters except
t C with no specia I character processing.

18 19 21 24 28 30 33 35

SET BY MONITOR 1 11111 1111111111~111_____,___.______,
10-0569

Bit 19

Bit 20

Bit 21

Ignore interrupts for three-fourths of a second.

Echo failure has occurred on output.

Character was lost on typein.

5.9.5 Paper-Tape Input from the Teletype (Full-Duplex Software)

Paper-tape input is possible from a Teletype equipped with a paper-tape reader which is controlled by

the XON (t Q) and XOFF (t S) characters. When commanded by the XON character, the Teletype

service reads paper tapes, starting and stopping the paper tape as needed and continuing unti I the

XOFF character is read or typed in. While in this mode of operation, any RUBOUTS will be discarded

and no free line feeds will be inserted after carriage returns. Also, TABS and FORMFEEDS will not be

simulated on a Teletype Model 33, to ensure output of the reader control characters. To use paper

tape processing, the Teletype with a paper-tape reader must be connected by a full-duplex connection

and only ASCII paper tapes shou Id be used.

The correct operating sequence for reading a paper tape in this way is as follows:

·R PIP)
*DSK:FILE~TTY:rQ)
THIS IS WHAT IS ON TAPE
MORE OF THE SAME
LAST LI NE t Z
*tS

5-33

5.9.6 Paper-Tape Output at the Teletype (Full-Duplex Software)

Paper-tape output is possible on any Teletype-mounted paper-tape punch, which is controlled by the

TAPE (AUX ON) and TAPE (AUX OFF) characters. The punch is connected in parallel with the key­

board printer, and therefore, when the punch is on, all characters typed on the keyboard are punched

on tape.

LT33B or LT33H Teletypes can have the reader and punch turned off and on under program control.

When commanded by the AUX ON character, the Teletype service punches paper tapes until the AUX

OFF character is read or typed in. The AUX OFF character is the last character punched on tape.

When writing programs to output to the Teletype paper-tape punch, the user should punch severa I inches

of blank tape before the AUX OFF character is transmitted. This last character may then be torn off

and discarded.

5. 10 PSEUDO-TELETYPE

The device mnemonic is PTYO, PTYl, .•• , PTYn. (The number of pseudo-Teletypes is specified at

MONGEN time.) The buffer size is 23
8

(20
8

data)words.

5.10.1 Concepts

Each job in the PDP-10 timesharing system is usually initiated by a user at a physical terminal. Except

in the case of a DETACH operation, the job remains under the control of the user's termina I unti I it is

terminated by either the KJOB command or the LOGOUT UUO. For each physical Teletype there is a

block of core in the monitor, containing information.about the physical Teletype and including two

buffers as the link between the physical Teletype and the job. It is through these buffers that the

Teletype sends input to the job, and the job returns output to the Teletype.

Sometimes it is desirable to allow a job in the PDP-10 timesharing system to be initiated by a program

instead of by a user. Since a program cannot use a physical terminal in the way a user can, some

means must be provided in the monitor for the program to send input to and accept output from the job

it is controlling. The monitor provides this capability via the pseudo-Teletype (PTY). The PTY is a

simulated Teletype and is not defined by hardware. Like hord'M:lre-defined Teletypes, each PTY has a

block of core associated with it. This block of core is used by the PTY in the same manner as a hard­

ware-defined Teletype uses its block of core. Figure 5-1 shows the parallel between a hardware­

defined Teletype and a software-defined PTY.

5-34

r-----,
DEVICE TTY,

US ER +------+ PHYSICAL l --- .
TELETYPE

_.. OR -p

I _..
I

CONTROLLED
JOB

CONTROLLING
PROGRAM

I DEVICE TTYn

r - - - _J MONITOR

I DEVI CE TTY,
DEVICE PTY OR --- CONTROLLED I DEVICE TTYm I JOB

L ________ _J
10-0545

Figure 5-1 Pseudo-Teletype

The controlling program, most commonly the batch processor, uses the PTY in the same way as a user

uses a physical device. It initiates the PTY, inputs characters to and waits for output from the PTY,

and closes the PTY using the appropriate programmed operators. The job controlled by the program

performs 1/0 to the PTY as though the PTY were a physical terminal.

A controlled job may go into a loop and not accept any input from its associated buffer; therefore, it

is not possible for the controlling program to simply rely on waiting for activity in the controlled job.

A control! ing program may also wish to drive more than one controlled job, and be able to respond to

any of these jobs; therefore, the controlling program cannot wait for any particular PTY. For these

two reasons, the PTY differs from other devices in that it is never in a 1/0 wait state. Timing is ac­

complished by the SLEEP UUO and the status bits of the PTY.

5.10.2 The SLEEP UUO

If the controlling program waits for activity in the controlled job, it delays the SLEEP UUO (refer to

Paragraph 4.3.4. 1). VVhen the controlling program continues after a SLEEP UUO, it checks for activity

on the PTY via the status bits. If there is no activity, it checks the job run time or other criteria to

determine whether or not the job should be interrupted. If the job should be interrupted, the control­

ling program may output to the PTY two control-C characters to stop the job. (A user stops a running

job in the same way.) If the job should not be interrupted, the controlling program should repeat the

SLEEP UUO.

Unnecessary delays might result if activity occurred on a PTY while the controlling job was sleeping.

These delays are avoided because a check is made when a PTY status bit changes to determine if the

controlling program is in a sleep. If it is, the sleep time is cleared so the controlling program can

service the PTY.

5-35

5. 10.3 Fi le Status (Refer to Appendix D)

The file status of the pseudo-Teletype is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USERI L----L..-~.L....--..W.1111~1111111111~11111111111~11111111111
21 23

SET BY MON ITORI '-----ILl.1111~111 11~11111 -1-----4-------

Bit 21 - IOBKTL

Bit 23 - IOACT Device is active.

10-0570

Device Dependent Bits

18 21 24 27 30 33 35

SET BY MONITOR ''-----'-~1111111~11111111111_1 --

Bit 24 - IOPTW

Bit 25 - IOPTRE

Bit 26 - MONMOD

10-0571

Job is in an input wait. The controller performs
an OUTPUT to the PTY.

The TTY buffer has output to be read by an
INPUT from the PTY.

Any characters typed into the TTY buffer (by
OUTPUT to the PTY) are read by the monitor
command decoder instead of by the control led job.

5.10.4 Special Programmed Operator Service

5. 10.4. l OUT, OUTPUT UUOs - The first OUTPUT operation after an INIT or OPEN causes the

specie I actions of the RELEASE UUO (refer to Paragraph 5. 10. 4. 3) and then the following norma I

output operations:

a. Characters from the controlling program's buffer ring are placed in the input buffer of the
TTY linked to the PTY.

b. The IOPTW bit is cleared.

c. The MONMOD bit is set or cleared as determined by the state of the TTY.

The following are exceptions to the normal output action:

a. NULLS (ASCII 000) are discarded.

5-36

' }

)

)

b. If more OUTPUTS are performed than are accepted by the controlled job and if the limit
on this excess is exceeded, the IOBKTL bit is set and the remainder of the controlling
program's buffer is discarded.

c. Lower case characters sent to the controlled job are translated to upper case if the ap­
propriate bit in the TTY is set.

5. 10.4.2 IN, INPUT UUOs - Characters are read from the output buffer of the TTY and are placed

in the buffer ring of the controlling program. If there are no characters to read, an empty buffer is

returned. The INPUT UUO does not cause a WAIT.

All the available characters are passed to the controlling program. If there are more characters to

read than can fit in the buffer of the controlling program, the IOPTRE bit remains set and another

INPUT should be done. If the output buffer of the TTY is exhausted by the INPUT UUO, the IOPTRE

bit is cleared.

5.10.4.3 RELEASE UUO - The RELEASE UUO causes the following special actions:

a. Any characters in the output buffer of TTY are discarded.

b. If the controlled job is sti II attached to TTY, it is detached.

c. The PTY is disassociated from the software channel.

CAUTION

Haphazard use of the PTY and subsequent RELEASE opera­
tions may leave detached jobs tying up core and other sys­
tem resources.

5.10.4.4 JOBSTS UUO - This UUO provides status information about device TTY and/or the controlled

job in order to allow complete and accurate checking of a controlled job.

The cal I is:

MOVE! AC, user channel number
JOBSTS AC,
error return
norma I return

;or MOVNI AC, job number
;or CALLI AC, 61

When the UUO is calfed, AC contains a number n specifying the job and/or the TTY to be checked.

If n is from 0 to 17, the specified TTY and job are those currently INITed on the user's channel n.

If n is negative, the job to be checked is job number (-n).

5-37

I

The error return is given if one of the fol lowing is true:

a. the UUO is not implemented.

b. nisoutofrange.

c. there is no PTY INITed on channel n.

Otherwise the normal return is given and AC contains the following status information:

Bit

Bit 0 = 1

Bit 1 = 1

Bit 2 = 1

Bit 3 = 1

Bit 4 = 1

Bit 5 = 1

Bits 18-3~

Explanation

Job number is assigned.

Job is logged in.

TTY is at monitor level.

TTY output is available.

TTY is at user level and in input wait, or TTY is at
monitor I evel and can accept a command. In other
w~rds, there is no command awaiting decoding or
being delayed, the job is not running, and the job
is not stopped waiting for operator device action.

JACCT is set. In particular, tC tC will not work.

Job number being checked or 0 if no job number is
assigned.

5. 10.4.5 CTLJOB UUO - This UUO is used to determine the job number of the program (job) that

is controlling the specified job, if any.

The ca II is:

MOVE AC, job number
CTLJOB AC,
error return
norma I return

;-1 means user's job
;or CALLI AC, 65

On a normal return, AC contains the job number of the program (job) that is c·ontrolling the controlled

job. If AC = -1, the specified job is not being controlled via a PTY.

An error return is given if the UUO is not implemented or the job number is too large.

Revision 1 Monitors 5-38 January 1971

(

(

Chapter 6

Directory Devices

This chapter explains the unique features of the standard directory devices. Each device accepts the

programmed operators explained in Chapter 4, unless otherwise indicated. Table 6-1 is a summary of

the characteristics of the directory devices. Buffer sizes are given in octal and include three book­

keeping words. The user may determine the physical characteristics associated with a logical device

name by cal I ing the DEVCH R UUO (refer to Paragraph 4. 9 .4 .2).

Physical
Device Name

DECtape DTAO, DTAl I

... ,DTA7

Fixed- DSK I FHA,
Head FHAO, • • • I

Disk FHA3

Disk Pack DSK I DPA,
DPAO, • • •I

DPA7

Controller
Number

TDlO
551 (PDP-6)

RClO

RPlO

Table 6-1
Directory Devices

Unit
Number

TU55
555(PDP-6)

RDlO
RMlOB

RPOl
RP02

Programmed Data Buffer
Operators Modes Sizes

(Octal t)

INPUT I IN A,AL,I 202
OUTPUT, OUT B ,IB
LOOKUP I ENTER DR, D
M TAPE I USETF I

USETO I USETI
UTPCLR

INPUT I IN A,AL, I 203
OUTPUT I OUT BI IB
LOOKUP I ENTER DR, D
RENAME, SEEK
USETO I USETI

INPUT I IN A,AL,I 203
OUTPUT I OUT BI IB
LOOKUP I ENTER DR, D
RENAME I SEEK
USETO I USE TI

t Buffer sizes are subject to change and should be calculated rather than assumed by user programs.
A dummy INBUF or OUTBUF may be employed.

6-1

Physical
Device Name

Mass-Disk MDA
File

Table 6-1 (Cont)
Directory Devices

Control I er Unit
Number Number

RAlO RBlOB

Buffer
Programmed Data Sizes
Operators Modes (Octal t)

INPUT ,IN A, AL, I 203
OUTPUT I OUT BI IB
LOOKUP I ENTER DR, D
RENAME I SEEK
USETO I USETI

t Buffer sizes are subject to change and should be calculated rather than assumed by user programs.
A dummy INBUF or OUTBUF may be employed.

6 .1 DECTAPE

The device mnemonic is DTAO, DTAl, .•. , DTA7; the buffer size is 2028 words (1778 user data, 2008
transferred) .

6 . 1 . 1 Data Modes

Two hundred words are written. The first word is the link plus word count. The following 177 words

are data supplied to and from user programs.

6 .1 .1 . 1 Buffered Data Modes - Data is written on DECtape exactly as it appears in the buffer and

consists of 36-bit words. No processing or checksumming of any kind is performed by the service rou­

tine. The self-checking of the DECtape system is sufficient assurance that the data is correct. Refer

to Paragraph 6. 1 .2 for further information concerning blocking of information.

6 .1 .1 .2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area

without regard to the standard buffering scheme. Control for read or write operations must be via a

command list in core memory. The command list format is described in Chapter 4. File-structured

dump mode data is automatically blocked into standard-length DECtape blocks by the DECtape service

routine. Each block read or written contains 1 link word plus 1to1778 data words. Unless the number

of data words is an exact multiple of the data portion of a DECtape block (177 8), the remainder of the

last block written after each OUTPUT programmed operator is wasted. The input programmed operator

must specify the same number of words that the corresponding output programmed operator specified to

skip over the wasted fractions of blocks.

6-2

6 .1 .2 DECtape Format

A standard reel of DECtape consists of 578 (1102
8

) prerecorded blocks each capable of storing 128 (200
8

)

36-bit words of data. Block numbers that label the blocks for addressing purposes are recorded between

blocks. These block numbers run from 0 to 1101
8

. Blocks 0, l, and 2 are normally not used during

timesharing and are reserved for a bootstrap loader. Block 100
10

(144
8

) is the directory block, which

contains the names of al I fi I es on the tape and information relating to each file. Blocks 3
10

through

99
10

(1-143
8

) and 101
10

through 577
10

(145-1101
8
) are usable for data.

If, in the process of DECtape 1/0, the 1/0 service routine is requested to use a block number larger

than 1101
8

or smal I er than 0, the monitor sets the IOBK TL flag (bit 21) in the fi I e status and returns.

6 .1 .3 DECtape Directory Format

The directory block (block 100
10

) of a DECtape contains directory information for all files on that

tape; a maximum of 22 files can be stored on any one DECtape (see Figure 6-1).

The first 83 words (1 through 82
10

) of the directory block contain slots for each of the 577 blocks on a

DECtape. Each slot occupies five bits (seven slots are stored per word) and represents a given block on

the DECtape. Each slot contains the number of the file (1-26
8
) occupying the given block. This

allows for 581 slots (83 words x 7 slots per word). The four extra slots represent nonexistent blocks

1102 through 1105
8

. The next 22 words of the directory block (words 83 through 104
10

) contain the

filenames of the 22 files that reside on the DECtape. Word 83 contains the filename for file 1, word

84 contains the filename for file 2. Filenames are stored in SIXBIT code.

The next 22 words of the directory block (words 105 through 126
10

) primarily contain the filename

extensions and dates of the 22 files that reside on the DECtape, in the same relative order as their

filenames. The bits for each word are as follows:

Bits 0 - 17
10

Bi ts 18 - 23
10

Bits 24 - 35
10

The filename extension is SIXBIT code.

The number of 1 K blocks minus 1 needed to load the
file (maximum value is 63). This information is stored
for zero-compressed files only.

The date the file was last updated, according to the
formula: ((year-1964) * 12 + (month-1)) * 31 +day -1

Word 127
10

of the directory block is unused.

The message

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n

6-3

occurs when any of the following conditions are detected:

a. A parity error occurred whi I e reading the directory block.

b. No slots are assigned to the file number of the file.

c. The tape block, which may be the first block of the file (i.e., the first block for the
fi I e encountered wh ii e searching backwards from the directory block), cannot be read.

BLOCK 1 2 3 4 5 6 7

BIT 35
UNUSED

{ 0 * l * l l l l l I I+-

83 WORDS

82

22 WORDS {

83

84

I I I+I+J+J+J ~
FILENAME 1

FILENAME 2

105 EXTENSION 1 ** DATE 1

106 EXTENSION 2 DATE 2

22 WORDS

126

12710 ONE WORD LEFT OVER HERE

NOTES=

* Reserved for system, contains 36 as does block 1449 for the
directory.

** For zero-compressed files, this area holds the number of 1K
blocks -1 needed to load the file (up to 64K).

+ Represents blocks 110 2 through 1105, which are not available,
contains 378 .

10-0572

Figure 6-1 DECtape Directory Format

6-4

6 .1 .4 DECtape File Format

A file consists of any number of DECtape blocks.

...............
END DIRECTORY

B
L
K

1

B
L
K

2

B
L
K

3
.

BEGIN

10-0573

Figure 6-2 Format of a File on Tape

Each block contains the following:

Word 0 Left half

Right half

Words 1 through 177
8

LINK

The link. The I ink is the block number of the next
block in the file. If the link is zero, this block is
the last in the fi I e.

Bits 18 through 27: the block number of the first
block of the file. Bits 28 through 35: a count of
the number of words in this block that are used
(maxi mum 177

8
) .

Data packed exactly as the user placed in his buffer
or in dump mode fi I es, the next 127 words of memory.

I FIRST BLOCK l WORD
NUMBER COUNT

DATA

10-0574

Figure 6-3 Format of a DECtape Block

6 .1.4.1 - Block Al location - Normally, blocks are al located by starting with the first free block

nearest the directory and going backwards to the front of the tape (block 0). When the end of the

tape is reached, the direction of the scan is reversed. Blocks are not written contiguously; rather

they are separated by a spacing factor. This allows the drive to stop and restart to read the next

block of the file without having to back up the tape. The spacing factor is normally four, but for

dump mode and UGETF followed by an ENTER, the spacing factor is two (refer to Paragraph 6.1 .6.3).

6-5

6. l .5 1/0 Programming

DECtape is a directory device; therefore, file selection must be performed by the user before data is

transferred. File selection is accomplished with LOOKUP and ENTER UUOs. The UUO format is as

follows:

uuo DIE

where D specifies the user channel associated with this device, and E points to a four-word parameter

block. The parameter block has the fol lowing format:

where

E FILE

E+l EXT BLOCK#

E+2 0 #of 1K BLOCKSI DATE

E+3 -N ADR-1

10-0575

FILE is the fi I ename in SIXBIT ASCII.

EXT is the fi I ename extension in SIXBIT ASCII.

BLOCK # is the number of the first block of the file.

of l K blocks is the number of blocks needed to load the file
if the file is a zero-compressed file (bits 18-23).

DA TE is the date the file was originally created in the format
of the DAYTIME programmed operator (bits 24-35).

-N is the negative word length of the zero-compressed file.

ADR-1 is the core address of the first word of the file minus 1.

Location E + 3 is used only for zero-compressed files.

6.1.5. l LOOKUP D, E - The LOOKUP programmed operator sets up an input file on channel D.

The contents of location E and E + l (left half) are matched against the filenames and filename exten­

sions in the DECtape directory. If no match is found, the error return is taken. If a match is found,

locations E + l through E + 3 are filled by the monitor, and the normal return is taken (refer to Table

6-2).

6-6

On Call

Parameter Use t

E A

E + 1 A

E +2 I

E +3 I

Table 6-2
LOOKUP Parameters

Contents Parameter

SIXBIT /FILE/ E

SIXBIT /EXT I E + 1

- E + 2

- E + 3

On Return

Use t

v
v

v

v

t A=argument from user program, V=value from monitor, I=' ignored.

tt For zero-compressed files only.

The first block of the fi I e is then found as follows:

Contents

SIXBIT /FILE I
LH ~SIX BIT /EXT/
RH= first block #

LH =O
RH=# of 1 K blocks

(Bits 18-23)tt

creation date
(Bits 24-35) tt

IOWD LENGTH,
ADR tt

a. The first 83 words of the DECtape directory are searched backwards, beginning with
the slot immediately prior to the directory block, until the slot containing the desired
file number is found.

b. The block associated with this slot is read in and bits 18 through 27 of the first word of
the block (these bits contain the block number of the first block of the file) are checked.
If the bits are equal to the block number of this block, then this block is the first block;
if not, then the block with that block number is read as the first block of the file.

6 .1 .5 .2 ENTER D, E - The ENTER programmed operator sets up an output file on channel D. The

DECtape directory is searched for a fi I ename and filename extension, which match the contents of

location E and the left half of location E + 1 . If no match is found and there is room in the directory,

the monitor records the information in locations E through E + 2 in the DECtape directory (refer to

Table 6-3). An error return is given if there is no room in the directory for the file. If a match is

found, the new entry replaces the old entry, the old file space is reclaimed immediately, and the

monitor records the file !nformation. This process is called superseding and differs from disk in that,

because of the smal I size of DECtape, the space is reclaimed before the fi I e is written rather than after.

6-7

Parameter

E

E + 1

E +2

E + 3

On Call

Use t Contents

A SIXBIT /FILE/

A SIXBIT /EXT I
A RH =desired

Table 6-3
ENTER Parameters

Parameter

E

E + 1

E + 2
creation date or
0. (0 implies
current date)

I - E + 3

On Return

Use t Contents

v SIXBIT /FILE/

v LH = SIXBIT /EXT

v RH =creation date

I -

tA=argument from user program, V=value from monitor, !=ignored.

6.1.5.3 RENAMED, E - The RENAME programmed operator alters the filename or filename extension

of an existing file, or deletes the file directory from the DECtape associated with channel D. If lo­

cation E contains a 0, RENAME deletes the directory of the specified file; otherwise, RENAME

searches for the file and enters the information specified in location E and E + 1 into the DECtape

directory (refer to Table 6-4). RENAME must be preceded by a LOOKUP to select the file that is to

be RENAMED and a CLOSE. The error return is given if a LOOKUP has not been done.

Unlike on disk, a DECtape RENAME works on the last file LOOKUPed and ENTERed for the device,

not the last file for this channel. The UUO sequence required to successfully RENAME a file on

DECtape is as follows:

LOOKUP D ,E

RENAME D ,El

or

ENTER D ,E

RENAME D ,El

6.1.5.4 INPUT, OUTPUT, CLOSE, RELEASE -When performing nondump input operations, the

DECtape service routine reads the links in each block to determine what block to read next and when

to raise the EOF flag.

6-8

On Call

Parameter Use t

E A

E + l A

E +2 I

E + 3 I

Table 6-4
RENAME Parameters

Contents Parameter

SIXBIT /FILE/ E
or 0

LH =SIXBIT /EXT I E + l

- E + 2

- E +3

On Return

Use t Contents

v SIXBIT /FILE/

v LH =SIXBIT /EXT I
RH= error code on

error return
0 =old name not found
4 =rename to existing

name

I -
I -

t A =argument from user program, V =value from monitor, I =ignored

When an OUTPUT is given, the DECtape service routine examines the I eft half of the third word in the

output buffer (the word containing the word count in the right half). If this half contains -1, it is

replaced with a 0 before being written out, and the fi I e is thus terminated. If this half word is greater

than 0, it is not changed and the service routine uses it as the block number for the next OUTPUT. If

this half word is 0, the DECtape service routine assigns the block number of the next block for the

next OUTPUT.

For both INPUT and OUTPUT, block 100 (the directory) is treated as an exception case. If the user's

program gives

USETI DI 1448

to read block 100, it is treated as a 1-block file.

The CLOSE operator places a -1 in the I eft half of the first word in the last output buffer, thus termi­

nating, the file.

The RELEASE operator writes the copy of the directory, which is normally kept in core onto block 100,

I but only if any changes have been made. Certain console commands, such as KJOB or CORE 0,

6-9

perform an implicit RELEASE of all devices and, thus, write out a changed directory even though the

user's program failed to give a RELEASE (refer to Chapter 2).

6 .1 .6 Special Programmed Operator Service

Several programmed operators are provided for manipulating DECtape. These UUOs allow the user to

manipulate block numbers and to handle directories.

6. 1 .6. 1 USE TI D, E - The USETI programmed operator sets the DECtape on channel D to input block

E next. Input operations on the DECtape must not be active; otherwise, the user has no way of determi­

ning which buffer contains block E.

6 .1 .6 .2 USETO D, E - The USE TO programmed operator sets the DECtape on channel D to output

block E next. USE TO waits until the device is inactive before setting up the new output block number.

6 .1 .6 .3 UGETF D, E - The UGETF programmed operator places the number of the next free block of

the file in the user's location E.

If UGETF is followed by an ENTER, the monitor modifies its algorithm in the following manner:

1) the first block is written nearest the front of the tape instead of nearest
the directory.

2) the spacing foe tor is changed to 2 instead of 4 so that very large programs
can fit almost entirely in a forward direction.

This feature allows user programs, such as PIP, to write SAV format files which can be read by the

executive mode utility program TENDMP (see the PDP-10 Software Notebook).

6 .1 .6 .4 CALL AC, [SIXBIT /UTPCLRI] or CALLI AC, 13 - The UTPCLR programmed operator clears

the directory of the DECtape on the device channel specified in the AC field. A cleared directory has

zeroes in the first 83 words except in the slots related to blocks 0, 1, 2, and 10010 and nonexistent

blocks 1102 through l 105g. Only the directory block is affected by UTPCLR. This programmed oper­

ator is a no-operation if the device on the channel is not a DECtape.

6.1.6.5 MTAPE D, 1 and MTAPE D, 11 - MTAPE D,l rewinds the DECtape and moves it into the end

zone at the front of the tape. MTAPE D, 11 rewinds and unloads the tape, pulling the tape competely

onto the left-hand reel. These commands affect only the physical position of the tape, not the logical

position. When either is used, the user's job can be swapped out while the DECtape is rewinding;

however, the job cannot be swapped out if an INPUT or OUTPUT is done whi I e the tape is rewinding.

6-10

)

)

I

I
)

· 6 .1 .6 .6 DEVSTS UUO - After each interrupt, the DECtape service routine stores the results of a

CONI in the DEVSTS word of the device data block. The DEVSTS UUO is used to return the contents

of the DEVSTS word to the user (refer to Paragraph 4. 9 .3 .4).

6 .1 .7 File Status {Refer to Appendix D)

The file status of the DECtape is shown below.

Standard Bits

18 21 24 27 30 33 35

SET BY USER lllllllllllllllllllllllllllllllllllll

SET BY MON I TOR llll,llj,j,W,jllllllllll~lllllllllll=lllllllllll-..1111 -.Lo-----"---'--"----'

Bit 18 - IOIMPM

Bit 19 - IODERR

Bit 20 - 10.DTER

Bit 21 - IOBKTL

Bit 22 - IOEOF

Bit 23 - IOACT

UNUSED

Device Dependent Bits

SET BY USER

Bit 29

Revision 1 Monitors

18

18

10-0576

An attempt was made to read block 0 in nonstandard
dump mode.

Data was missed.

Parity error •

Block number is too large or tape is ful I on OUTPUT.

EOF mark encountered on input. No special character
appears in buffer.

Device is active.

21 24 27 30 33 35

11111111111111111111111111111111

10-0577

21 24 27 29 30 33 35

1111111

10-0578

DECtape is in a nonstandard-VO mode format as opposed
to standard-1/0 mode. No file-structured operations are
performed on the tape. Blocks are read or written sequen­
tially; no links are generated {output) or recognized {input).
The first block to be read or written must be set by a USETI
or USETO. In nonstandard-1/0 mode, up to 2009 words per
block are read or written as user data {as opposed to the
standard mode of 1 link plus word count followed by 177

8
words). No dead reckoning is used on a search for a block

6-11 January 1971

Bit 29 (Cont) number as the tape may be composed of blocks shorter
than 200 words. The ENTER, LOOKUP, and UTPCLR
UUOs are treated as no-ops. Block 0 of the tape may
not be read or written in dump mode if bit 29 is on,
because the data must be read in a forward direction
and block 0 normally cannot be read forward.

6. 1 .8 Important Considerations

If an attempt is made to write on a write-locked tape or to access a drive that has no tape mounted,

the message

DEVICE DTAn OK?

is given. When the situation has been rectified, CONT may be typed to proceed.

The DECtape service routine reads the directory from a tape the first time it is required to perform a

LOOKUP, ENTER, or UGETF; the directory image remains in core until a new ASSIGN command is

executed from the console. To inform the DECtape service routine that a new tape has been mounted

on an assigned unit, the user uses an ASSIGN command. The directory from the old tape can be trans­

ferred to the new tape, thus destroying the information on that tape unless the user reassigns the DEC­

tape transport every time he mounts a new reel.

Although DECtape is a file-structured blocked device, there is a limit to the number of files that may

be opened simultaneously on a single DECtape. A given DECtape may be OPENed or INITed on two

software channels (maximum) at the same time, once for INPUT and once for OUTPUT. An attempt to

INIT on two channels for INPUT or two channels for OUTPUT generates no error indication, and only

the most recent INIT is effective. This restriction explains why the following examples do not work.

Example l:

·R SRCCOM
*TTY:4-DTA1 :Pl ,DTAl :P2

SRCCOM accepts the command string but the comparison does not work because the DECtape cannot

be associated with the input side of two software channels at the same time.

Example 2:

·R MACRO
*DTAl :BJN,DTAl :LST4-DTA2:PROG

6-12

(

(

MACRO accepts the command string but does not produce the desired results because a sing I e DECtape

cannot be associated with the output side of fwo software channels at the same time. However, the

following example works, because only one file is opened for reading and one file for writing.

·R MACRO
*DTAl :BIN~DTAl :SOURCE

6 .2 DISK

The device mnemonic is DSK, FHA, DPA; the buffer size is 203
8

(200
8

data) words.

6 .2. l Data Modes

6 .2 .1 . l Buffered Data Modes - Data is written on the disk exactly as it appears in the buffer. Data

consists of 36-bit words.

CAUTION

All buffered mode operations utilize a 200 octal word
data buffer. Attempts to set up non-standard buffer
sizes are ignored. In particular, attempting to use
buffer sizes smaller than 200 words for input result in
data being read in past the end of the buffer destroy­
ing what information was there (e.g., the buffer
header of the next buffer).

6 .2 .1 .2 Unbuffered Data Modes - Data is read into or written from anywhere in the user's core area

without regard to the normal buffering scheme. Control for read or write operations must be via a

command I ist in core memory. The command list format is described in Paragraph 4. 10 .5. l. The disk

control automatically measures dump data into standard-length disk blocks of 200 octal words. Unless

the number of data words is an exact mul tip I e of the standard I ength of a disk block (200 words) after

each command word in the command list, the remainder of that block is wasted.

6 .2 .2 Structure of Disk Fil es

The file structures of a disk system minimize the number of disk seeks for sequential or random access­

ing during either buffered or unbuffered 1/0. The assignment of physical space for data is performed

automatically by the monitor when logical files are written or deleted by user programs. Files may

be any length, and each user may have as many files as he wishes, as long as disk space is available

and the user has not exceeded his logged-in quota. Users or thetr programs do not need to give initial

6-13

estimates of file length or number of files. Files may be simultaneously read by more than one user at

a time, thus allowing data sharing. A new version of a file may be recreated by one user while other

users continue to read the old version, thus al lowing for smooth replacement of shared programs and

data files. Finally, one user may selectively update portions ofa file, rather than creating a new one.

6 .2 .2 .1 Addressing by Monitor - The file structure described in this section is generally transparent

to the user, and a detailed knowledge of this material is not essential for effective user-mode use of

the disk. One set of disk-independent file handling routines in the timesharing monitor services all

disks and drums. This set of routines, FILSER, interprets and operates upon file structures, processes

disk UUOs, queues disk requests and makes optimization decisions. The monitor deals primarily with

logical units within file structures and converts to physical units in the small device-dependent rou­

tines just before issuing 1/0 commands. All queues, statuses, and flags are organized by logical unit

rather than by physical unit. The device-dependent routines perform the 1/0 for specific storage

devices and translate logical block numbers to physical disk addresses.

Al I references made to disk addresses refer to the logical or relative addresses used by the system and

not to any physical addressing scheme involving records; sectors, or tracks that may pertain to a par­

ticular physical device. The basic unit that may be addressed is a logical disk block, which consists

of 200
8

36-bit words.

6 .2 .2 .2 Storage Al location Table (SAT) Blocks - Unique to each file structure is a file named

SAT .SYS. This fi I e reflects the current status of every addressable block on the disk. Only the

monitor can modify the contents of SAT .SYS as a result of file creation, deletion, or space allocation,

although this file may be read by any user. The SAT file consists of bits indicating the portion of file

storage in use and the portion that is available. To reduce the size of SAT .SYS, each bit can be

used to represent a contiguous set of blocks called a cluster. Monitor overhead is decreased by as­

signing and rel easing file storage in clusters of blocks rather than sing I e blocks.

If a particular bit is on, it indicates that the corresponding cluster is filled with data (all blocks on the

disk are filled when any information is written on them) or is bad or nonexistent; if the bit is off, it

indicates that the corresponding cluster is empty, or available to be written on.

6 .2 .2 .3 Fi I e Di rec tori es - There are two I eve ls of directories in each fi I e structure:

a. The master file directory (MFD)

b. The user file directory (UFD).

6-14

The master fi I e directory consists of two-word entries; the entries are the names of the user fi I e direc­

tories. The first word of each entry contains ~he project-programmer number of the user. The I eft

half of the second word of each entry contains the mnemonic UFD in SIXBIT and the right half contains

a pointer to the first cluster of the user file directory (see Figure 6-4). The main function of the master

file directory is to serve as a directory for individual user file directories.

The entries within a user file directory are the names of files existing in a given project-programmer

number area within the file structure. The first word of each entry contains the filename in SIXBIT.

The left half of the second word contains the filename extension in SIXBIT, and the right half contains

a pointer to the first cluster of the file (see Figure 6-4). This pointer specifies both the unit and the

super-cluster of the fi I e structure in which the fi I e appears. The right half of the directory entry is

referred to as a compressed file pointer (CFP).

When the user is logged-in, each file structure for which he has a quota contains a UFD for his project­

programmer number. Each UFD contains the names of all the user's files for that file structure only.

The term disk directory refers to all the UFDs for a particular project-programmer number. A user is

not prevented from attempting to read a file in another user's UFD on a file structure for which he

does not have a UFD. Whether or not the user is successful depends on the protection specified for the

file being referenced.

MASTER .FILE
DIRECTORY

UFO

10 10

UFO

20 20

UFO

USER FILE
DIRECTORS

FILE 1

EXT

FILE 2

EXT

FILE 3

EXT

FILE X

EXT

FILE Y

EXT

FILEZ

EXT

DATA FILES

Figure 6-4 Basic Disk File Organization
for Each File Structure

6-15

10-0543

To improve disk access and core searching times, only UFD names are kept in the MFD (project­

programmer number 1, 1). All CUSPs and monitor file structure files are contained in another project­

programmer number directory called the system library. For convenience to users typing commands

and to user programs, device name SYS is interpreted as the system library; therefore, no special

programming is required to read as a specific file from device SYS.

6.2.2.4 File Format -All disk files (including MFD and UFDs) are composed of two parts:

a. pure data

b. information needed by the system to retrieve this data.

Each data block contains exactly 200 (octal) words. If a partially fi II ed buffer is output to the disk by

a user, a full block is written with trailing zeros fi II ing in to make 200
8

words. A partial block input

later appears to have a full 200
8

data words. Word counts associated with individual blocks are not

retained by the system except in the case of the last block of the fi I e.

There are three links in the chain by which the system references data on the disk. This chain is

transparent to the user, who might look on the directory as having four-word entries analogous to DEC­

tapes. The first link is the two-word directory entry, which points to the second link, the retrieval

information block (RIB). The RIB, in turn, points to the third I ink, the individual data blocks of the

file (see Figure 6-5).

The retrieval block contains all the pointers to the entire file. Retrieval information associated with

each file is stored and accessed separately from the data; therefore, system reliability is increased and

the number of positionings necessary for random access is reduced.

For recovery purposes, a copy of the retieval information block is written immediately after the last

data block of the file when a CLOSE is completed. If the first RIB is lost or bad, the monitor can

recover by allowing a recovery program to use the second RIB; therefore, a data file of n blocks has

two additional overhead blocks: relative block 0, containing the primary RIB; and relative block

n + 1, containing the redundant RIB (refer to Appendix I).

6 .2 .3 Access Protection

Nine bits of the retrieval information of a file are used to specify the protection of the file. This

procedure is necessary because a disk is shared by many users, each of whom may desire to keep certain

files from being written on, read, or deleted by other users.

6-16

Users are divided into three categories: the owner of the file, the members with the owner's project

number, and all others. Each UFD in a file structure is associated with a distinct project-programmer

number pair.

~ ~
~ RIB DATA RIB DATA RIB DATA

N 1 I , ,_ N r-- SAT f_r N

UFD I I I 4 SYS l SAT I 1 --1 r------'

UFO l 1 4

l
UFD I HOME

l
SYS l

UFD l SYS l
I I 3 3 SWAP

l UFO l
I

SYS l
I MAINT u-10 10 SYS l

UFO l l --+-- BADBLK I -
1---

I SYS l

I I
block10 10

~ N

1101 HOME
block

I I SYS I r-1

1---

l I L.: N r-- FILE 1

10 10 EXT l
UFO I

I I -t-

l
l ,..., I I L., N ~ - r--

I I
FILE 1

EXT l 1---

I I l
l

I
-u I ~

- I---

MASTER FILE DIRECTORY USER FILE DIRECTORY USER FILES

10-0542

Figure 6-5 Disk File Organization

6-17

Any user who is logged in with the same programmer number is considered to be the owner of the files

in that UFO; therefore, the same programmer numbers can be assigned to different users in different

projects. However, a user who is working on more than one project cannot have the same access to

all files he has written. Some installations may decide that a user is not an owner unless both the

project and programmer number the user is logged in under match the pair associated with the UFO.

This decision is made at monitor generation time with the MONG EN program.

A user is allowed project access if the programmer number he is logged in under is different from the

one associated with the UFO, but his project number is the same as the one associated with the UFO.

The three bits associated with each category of users are encoded as follows:

Code

7

6

5

4

3

2

l

0

Access Protection

No access privileges. File may be looked up if the UFO
permits.

Execute only.

Read, execute.

Append, read, execute.

Update, append, read, execute.

Write, update, append, read, execute.

Rename, write, update, append, read, execute.

Change protec.tion, rename, write, update, append,
read, execute.

The greatest protection a fi I e can have is 7, and the I east protection is 0. It is always possible for the

owner of a file to change the access protection associated with that file even if the owner-protection

field is set to O; thus, 0 and l are equivalent in the owner field. Access protection can be changed by

executing a RENAME UUO or by using the RENAME switch in PIP as follows:

·R PIP
*FILE,EXT<NEW PROT>IR~FILE·EXT

When a file is created with a protection code of 000, the monitor substitutes the standard protection

code as defined by the installation. The normal system standard is 057. This protection prevents users

in different projects from accessing another user's fit es; however, a standard protection of 055 is re­

commended for in-house systems where privacy is not as important as the capability of sharing files

among projects. No program should be coded to assume knowledge of the standard protection. If it

necessary to use this standard, it should be obtained through the GETTAB UUO.

6-18

To preserve files with LOGOUT, a protection code of l in the owner's field should be associated with

the files. LOGOUT preserves all files in a UFD for which the protection code for the owner is greater

than zero.

6 .2 .3. l UFD Privileges - The protection code associated with each file completely describes the

access rights to that file independently of the protection code of the UFD. UFOs may be read in the

same manner as files but cannot be written explicitly, because they contain RIB pointers to particular

disk blocks. For UFD privileges, users are divided into the same three categories as for files. Each

category has three independent bits:

Code Access Privileges

4 Allow LOOKUPs in UFD.

2 Allow CREATEs in UFD.

Allow the UFD to be read as a fi I e.

The owner is permitted to control access to his own UFD. It is always legal for the owner to issue a

RENAME to change the protection of his UFD. Only privileged programs are allowed to create, super­

sede, or delete a UFD. The monitor checks for the following types of privileged programs:

a. Jobs logged in under project-programmer number l, 2. (FAILSAFE)

b. Jobs running with the JACCT bit set in JBTSTS (LOGIN, LOGOUT).

Privileged programs are allowed to:

a. Create UFOs

b. Delete UFOs

c. Set privileged LOOKUP, ENTER, and RENAME arguments

d. Ignore file protection codes.

6 .2 .4 Disk Quotas

Each project-programmer number in each file structure is associated with two quotas that limit the

number of blocks that can be stored under the UFD in the particular file structure. The quotas are:

a. Logged-in quota

b. Logged-out quota.

When the user logs in, he automatically starts using his logged-in quota. This is not a guaranteed

amount of space, and the user competes with other users for it. The logged-out quota is the amount of

6-19

space that the user must be within in order to log off the system. Normally, the logged-out quota is

I ess than or equal to the logged-in quota, so that the user must delete temporary files.

If a user exceeds his logged-in quota, the monitor types the following message:

[EXCEEDING QUOTA ON fs]

where fs is the name of the file structure. The message appears in square brackets (I ike the TECO core

expansion message) to suggest a warning rather than an error. Unlike most monitor messages, this

message indicates that the user program may continue to run, and the console remains in user mode.

The user program can no longer create or supersede files (ENTER gives an error return). Files already

ENTERed are al lowed to continue for a specified amount of blocks. This amount is cal I ed the ~

drawn amount and is a parameter of the file structure. The overdrawn amount specifies the number of

blocks by which the logged-in UFD may exceed its logged-in quota. When the user exceeds the over­

drawn amount, the IO BK TL bit is set, and further OUTPUTs are not allowed. A CL.OSE operates

successfully, including the writing of the last buffers and the RIBs.

When the user logs in, the LOGIN CUSP reads the logged-in quota from the file AUXACC .SYS for

all public file structures in which the user is allowed to have a UFD. This information is passed to the

monitor where it is kept in core. If the quota has changed since the user logged in last, LOG IN up­

dates (or creates) the RIB of each UFD with the new quotas.

6 .2 .5 Simultaneous Access

In its core area, the monitor maintains two four-word blocks called access blocks. These blocks control

simultaneous access to a single file by a number of user channels. All active files have access blocks

that contain file status information. The access blocks ensure that a maximum of one user channel

supersedes or updates a given file at a given time.

6 .2 .6 Fi le Structure Names

Each file structure has a SIXBIT name specified by the operator at system initialization time. The

recommended names for the file structures in the public pool are DSKA, DSKB, .•• , DSKN (in order

of decreasing speed). Names for private file structures may be any name starting with a letter. The

system manager should ensure that private file structure names do not conflict with any device or file

structure name or its abbreviation.

6-20

)

)

When a specific file structure is INITed (e.g., DSKA), LOOKUP and ENTER searches are restricted

to that file structure. Usually a channel is INITed with the generic name DSK, in which case all file

structures in the active search list of the job are searched (refer to Paragraph 6 .2 .7).

6 .2 .6. l Logical Unit Names - When a single file structure name is specified, the set of all the units

in that file structure is implied; however, it is possible to specify a particular logical unit within a

file structure (e.g. I DSKAO I DSKAl I DSKA2 are three logical units in the file structure DSKA). The

monitor deals with file structures rather than with individual units; therefore, when reading fi I es,

specifying a logical unit within a file structure is equivalent to specifying the file structure itself. The

monitor locates the file regardless of which unit it is on within a file structure. However, in writing a

file, the monitor uses the logical unit name as a guide in allocating space and will, if possible, write

the file on the unit specified. In this way, a user can separate files on to different units for increased

throughput.

6.2.6.2 Physical Controller Class Names - In addition to DSK, single file structure names (DSKA),

and logical unit names (DSKAO), it is possible to specify a class of ·controllers. If the system has one

controller of the type specified, the result is the same as if the user had specified the physical controller

name. The controller classes supported by DEC are:

DR (future drum), FH, DP, MD

6 .2 .6 .3 Physical Control! er Names - It is possible to specify any of the units on a particular controller.

The monitor relates that name to the file structures, which contain at least one unit on the specified

controller. More than one file structure may be specified when a physical controller name is used. The

controllers that DEC supports are:

DRA, DRB {future drum), FHA, FHB, DPA, DPB, MDA

6 .2 .6 .4 Physical Unit Names - When a physical controller name is specified, all units on that con­

trol I er are implied. It is possible to specify a physical unit name on a particular controller. The

physical unit names that DEC supports are:

DRAO, DRBO

FHAO I ••• I FHA3

FHBO I ••• ,FHB3

Reserved for future drum (RXlO).

Mixture of Burroughs fixed-head disks (RD l O)
and Bryant drums (RMlOB) on RClO control.

Mixture of Burroughs fixed-head disks (RDlO)
and Bryant drums (RM lOB) on second RClO control.

6-21

DPAO I ••• I DPA7

DPBO, •.• ,_DPB7

MDAO

MDBO

Mixture of RPOl and RP02 Memorex disk packs
on RP10 control.

Mixture of RPOl and RP02 Memorex disk packs
on second RPl 0 control •

Single-positioner Bryant mass disk (RBlOB) on
RA 10 control •

Single-positioner Bryant mass disk (RB10B) on
second RA 10 control •

6 .2 .6 .5 Unit Selection on Output-. If the user specifies a file structure name on an ENTER, the

monitor chooses the emptiest unit on the file structure which does not currently have an open file

I (UFD's are not considered opened} for the job. This selection improves disk throughput by distributing

files for a particular job on different units. For example, in a MACRO assembly with two output files

and one input file, it is probable that the monitor would allocate the output files on separate units

from each other and from the input file. If this were the only job running, there would be almost no

seeks. Therefore, to take advantage.of this, programs should LOOKUP input files before ENTERing

output fi I es.

6 .2 .6 .6 Abbreviations - Abbreviations mgy be used as arguments to the ASSIGN command and the

INIT and OPEN U,UOs. The abbreviation is checked for a first .. match when the ASSIGN, INIT, or

OPEN is executed. The file structure or device eventually represented by the particular abbreviation

depends ~n whether a LOOKUP or ENTER follows. A LOOKUP applies to as wide a class of units as

possible; however, an ENTER applies to a restricted set to allow files to be written on particular units

at the user's option. For example, consider the following configuration:

File Structure Physical Unit

DSKA = FHAO, FHAl

DSKB = FHA2, FHBO, FHBl

DSKC = DPAO I DPA 1 I DPA2 I DPA3

DSKD = DPBO, DPBl I DPB2

PRVA :;: DPB3

Table 6-5 shows the file structures and units implied by the various names and abbreviations.

Revision 1 Monitors 6-22 January 1971

(

(

Table 6-5
File Structure Names

File Structures or Units Implied

Argument Supplied
to ASSIGN, INIT, OPEN LOOKUP ENTER

DI DS, DSK Generic DSK according to job search
list (refer to Paragraph 6.2.7)

p I PR, PRY I PRVA DPB3 DPB3

FI FH, FHA DSKA, DSKB FHAO

FHB DSKB FHBO

FHAO DSKA FHAO

FHBO DSKB FHBO

DP DSKC I DSKD I PRVA t DSKC

DPA DSKC DSKC

DPB DSKD I PRYA t DSKD

DPAO DSKC DPAO

DPB2 DSKD DPB2

DPB3 PRVA PRVA

t Only if user has done a MOUNT (available in 5.02 monitors and later monitors).

6 .2 .7 Job Search List

To a user, a file structure is like a device; that is, a file structure or a set of file structures may be

specified by an INIT or 0 PEN UUO or by the first argument of the ASSIGN command. A console user

specifies a file structure by naming the file structure and following it with a colon.

There is a flexible naming scheme that applies to file structures; however, most user programs INIT

device DSK, which selects the appropriate file structure, unless directed to do otherwise by the user.

The appropriate file structure is determined by a job search list. A job search list is divided into two

parts:

a. an active search I ist (usually referred to as the job search I ist), and

b. a passive search list.

6-23

The active search is an ordered list of the file structures that are to be searched on a LOOKUP or

ENTER when device DSK is used. The passive search list is an unordered list of file structures main­

tained by the monitor for LOGOUT time. At this time, LOGOUT requires that the total allocated

blocks on each UFD in both the active and passive search I ists be below the logged-out quota. Each

job has its own active search list (established by LOGIN) with file structures in the order that they

appear in the administrative control file AUXACC .SYS. Thus, a user has a UFD for his project­

programmer number in each file structure in which LOGIN allows him to have files. With the MOUNT

command, mounted file structures may be added to the active search list. The following is an example

of a search I ist:

DSKB I DSKA, FENCE I DSKC

DSKB and DSKA comprise the active search list. These file structures are represented by generic name

DSK for this job. DSKC is the name of a file structure that was previously in the active search list.

FENCE represents the boundary between the active and passive search list.

Each file structure in a job search list may be modified by setting one of two flags:

a. Do not create in this structure if just generic DSK is specified.

b. Do not write in this structure.

Setting the do not create flag indicates that no new files are to be created on this file structure unless

explicitly state. For example: if the 11 don 1 t create" flag is set

DSKA: FOO~

allows FOO to be created on DSKA, but

DSK: FOO~

does not. For LOO KU Ps on device DSK, the monitor searches the structures in the order specified by

the job search list. For ENTERs the file is placed on the first structure in the search list that has space

and does not have the do not create flag set.

6 .2 .8 User Programming

Three types of writing on the disk may be distinguished. If a user does an ENTER with a filename

which did not previously exist in his UFD, he is said to be creating that file. If the filename previously

existed in his UFD, he is said to be superseding that file; the old version of the file stays on the disk

(and is available to anyone who wants to read it) until the user does the output CLOSE. At the time of

the CLOSE, the user's UFD is changed to point to the new version of the file and the old version is

either deleted immediately or marked for deletion later if someone is currently reading it; the space

6-24

occupied by deleted files is always reclaimed in the SAT tables (refer to Paragraph 6.2.2.2). Finally,

if a user does a LOOKUP followed by an ENTER (the order is important) on the same filename on the

same user channel, he will be able to modify selected blocks of that file, using USE TO and USETI UUOs

(refer to Paragraph 6 .2 .8 .3) without creating an entirely new version; th is third type of writing, called

updating, eliminates the need to copy a file when making a small number of changes.

As a standard practice, user programs should read, create, and supersede (new file with same filename)

files on different user channels. However, for compatibility with DECtapes, it is possible to read and

create, or read and supersede, two files on the same user channel as long as all OUTPUTs and the

CLOSE output are done before the LOOKUP and the first input, or vice versa. In other words, a

CLOSE UUO is required between successive LOOKUPs and ENTERs unless updating is intended.

The actual file structure of the disk is generally transparent to the user. In programming for 1/0 on

the disk, a format analogous to that of DEC tapes is used; that is, the user assumes a four-word directory

entry similar in form to the first four words of retrieval information. The UUO format is approximately

the same as for DECtapes:

UUO D ,E

where UUO is an I/O programmed operator, and D specifies the user channel associated with this

device. E points either to a four-word directory entry or an extended argument block in the user's

program.

6 .2 .8. l Four-Word Arguments for LOOKUP, ENTER, RENAME UUOs - The four-word argument

block has the fol lowing format:

where

E NAME

E+1

E+2

E+3

EXT

PROT

PROJECT
NUMBER

M

DATE 1

DATE2 OR

PROGRAMMER
NUMBER E+3 -WORD COUNT 0

10-0593

NAME is the filename in SIXBIT ASCII, if a UFD, or the project­
programmer number in binary, if a MFD.

EXT is the filename extension in SIXBIT ASCII, if a UFD, or the word
UFD, if a MFD.

DATE l is the date the file was last referenced (RENAME, ENTER, or
INPUn in the format of the DATE UUO (bits 24-35).

6-25

PRO T is the protection code for the fi I e (bits 0-8).

Mis the data mode (ASCII, binary, dump) (bits 9-12).

TIME is the time that the file was originally created (bits 13-23).

DATE 2 is the date (in the same format as DATE 1) that the file was
originally created (bits 24-35).

The programmed operators (UUOs) operate as follows:

a. ENTER UUO - ENTER D, E causes the monitor to store the four-word directory
entry for later entry into the proper UFD when user channel D is closed or
released.

NAME

EXT

DATE l

PROT

M

TIME, DATE 2

PROJECT NUMBER
PROGRAMMER NUMBER

The fi I ename must be nonzero; otherwise, an
error return resu I ts •

The fi I ename extension may be zero; if so, the
monitor leaves it as zero.

The date may be zero, in which case the monitor
substitutes the current date. The date must not be
in the future; if this is so, the current date is used.

If the protection code is 0, the monitor substitutes
the installation standard as specified at MONGEN
time. If the protection code is 0 and this ENTER
is superseding a file, the protection of the new file
is copied from the old file. RENAME may be used
to change the protection after a file has been
completely written and when it is being closed.

The data mode is supplied by the monitor. It was
set by the user in the last INIT or SETSTS UUO on
channel D.

If both of these are 0, the monitor supplies the
current date and time as the creation date and time
for the file. If either is nonzero, the monitor uses'
the TIME and DATE 2 supplied by the user E + 2;
thus, files may be copied without changing the
original creation time and date.

If both of these are 0, the project-number and
programmer-number (binary) under which the user is
logged in is supplied by the monitor. Otherwise,
the monitor uses the project-number and programmer­
number supplied by the user in E + 3. However, it is
generally not possible to create (ENTER) files in an­
other user's area of the disk, because UFDs are usually
protected against creation with al I but the owner.

With certain types of error returns peculiar to the disk, the right half of E + 1 is set
to a specific number to indicate the error that caused the return. Refer to Appendix
E for the error codes returned on the ENTER UUO.

6-26

)
I

)

)

When an ENTER is executed by the monitor on a file that exists, a new file by
that name is written, and those bits in the SAT blocks that correspond to the
blocks of the old file are zeroed when the CLOSE (or RELEAS) UUO is executed
provided that bit 30 of the CLOSE is 0 (refer to Paragraph 4.10.7 .7). Space is
thereby retrieved and available to other users after the new file has been success­
fully written. If a file structure is INITed on channel D, the monitor maximizes
the job's throughput by selecting the emptiest unit for which the job has no opened
files (refer to Paragraphs 6 .2 .6 .5 and 6 .2 .6 .6).

b. LOOKUP UUO - LOOKUP D, E causes the monitor to read the appropriate UFD. If
a later version of the file is being written, the old version pointed to by the UFO read.

NAME The same as on an ENTER.

EXT

DA TE 1 I p ROT I MI
TIME, DATE 2

PROJECT NUMBER,
PROGRAMMER NUMBER

The same as on an ENTER.

These arguments are ignored. The monitor
returns these quantities to the user in E + 1 and
E+2.

If both of these are 0, the project-number and
programmer-number (binary) unde: which the user
is logged in is supplied by the monitor. Other-
wise, the monitor uses the project-number,
programmer-number supplied by the user in E +3.
Thus, it is possible to read files in other user's
directories, provided the file's protection mask
permits reading and the UFO permits LOOKUPs.

The monitor returns the negative word count (or positive block count for files larger
than 2 17 words) in the LH of E+3, 0 in RH of E+3. As a result, the monitor treats
a negative project-programmer number as if it were 0, however, this will not always
be true; therefore, programs must be written to either clear E +3 before doing a
LOOKUP, ENTER, or RENAME or set E +3 to the desired project-programmer
number. In the future, a negative project-programmer number may be used to
indicate SIXBIT alphabetic characters for project and programmer initials.

The numbers placed in the RH of E + 1 on an error return have a significance
analogous to that described for the ENTER UUO (refer to Appendix E).

If the file is currently being superseded, the old file is used.

c. RENAME UUO - RENAMED, Eis used to alter the filename, the filename
extension/protection ofa file, or to delete a file from the disk. Locations E
through E +3 are as described for ENTER. To RENAME a file, a LOOKUP or
ENTER must first be done to identify the file for the RENAME UUO. CLOSE
is optional because RENAME performs a CLOSE. In fact, to minimize disk
accesses, a RENAME should not be preceded by a CLOSE.

RENAME enters the information specified in E through E +2 into the retrieval
information and proper directory. If the contents of E is zero, RENAME has the
effect of deleting the file.

The error codes in the right half of E + 1 are the same as for ENTER (refer to
Appendix E) •

When issuing a RENAME UUO, the user must ensure that the status at locations
E through E +3 are as he desires. An ENTER or LOOKUP must have preceded the
RENAME; therefore, the contents of E through E +3 will have been altered, or
filled if the Eis the same for all UUOs. If E +3 has a different project-programmer
number than the one in which the file is LOOKUPed or ENTERed, the monitor

Revision 1 Monitors 6-27 January 1971

deletes the directory entry from the old UFO and inserts the directory entry in the new
UFO, provided the user has the privileges to delete files from the old UFO, and to
create files in the new UFO. This is an efficient way to move a file from one
directory to another, since no 1/0 needs to be done on the data blocks of the fllf;l.

6 .2 .8 .2 Extended Argument for LOOKUP, ENTER, RENAME UUOs - A number of quantities have

been added to the existing four-word block. The user program may specify exactly the number of

words in the argument block. If the left half of E is 0 and the right half of E is three or greater, the

right half of E is interpreted as the count of the number of words which follow. If the right half Qf

Eis less than three, a file-not-found return is given because the user program is not supplying enough

arguments. Allowed arguments supplied by the user program are returned by the monitor as values.

If the user program supp Ii es arguments that are not al lowed, the monitor ignores these arguments and

supplies values on return. Table 6-6 indicates the arguments that may be supplied by a user program.

Rel. Loe Symbol Lookup

0 - A

l .RBPPN AO

2 .RBNAM A

3 .RBEXT A
v

4 .RBPRV v
v
v
v

5 . RBSIZ v

6 .RBVER v
7 .RBFUT v

10 .RBEST v
11 . RBALC v

12 .RBPOS v

13 • RBFTl v

Table 6-6
Extended LOOKUP, ENTER, and

RENAME Arguments

Create Update
Supers Reriame Arguments and Value

A A Count of arguments following

AO AO Directory name (project-programmer no.)

A A Filename in SIXBIT

A A File extension (LH)
AO A Access date (bits 24-35)

.AO A Privilege (bits 1-8)
v v Mode (bits 9-12)
AO A Creation time (bits 13-23)
AO A Creation date (bits 24-35)

v v Length of file in data words written
(+no. words)

A A Octal version number (36 bits)

A A Reserved for future

A A Estimated length of file (+no. blocks)

A A Highest relative block number within F .S •
allocated by user or monitor to file (not
counting 2nd RIB)

A A Logical block no. of flrst block to allocate
within F .S.

A A Future nonprivileged argument - reserved
for DEC

6-28

(

/
(

\"-

(

)

I

)

)

Rel. Loe Symbol Lookup

14 .RBNCA v

15 .RBMTA v
16 .RBDEV v
17 .RBSTS v

20 .RBELB v
21 .RBEUN v

y

22 .RBQTF y

23 .RBQTO y

24 .RBQTR v
25 .RBUSD v
26 .RBAUT v

27 .RBNXT v
30 .RBPRD v

31 .RBPCA y

32 .RBUFD y

T ~bl e 6-6 (Cont)
Extended LOOKUP, ENTER, and

RENAME Arguments

Create Update
Supers Rename Arguments and Value

A A Nonprivileged argument reserved for customer
to define

~Al Al Tape label if on backup tape

v v Logical unit name on which the file is located

Al Al 1) LH =Combined status of all files in UFD
2) RH =Status of th is file

v v Bad logical block within error unit

v v 1) LH =Logical unit no. within F .S. of bad
unit (0, , , N) •

v v 2) RH= No. of consecutive blocks in bad
region

Al Al (UFD-only) FCFS logged-in quota in blocks

Al Al (UFD-only) logged-out quota in blocks

Al Al (UFO-only) reserved logged-in quota

Al Al (UFD-only) no. of blocks used at last logout

Al Al Author porj ect-programmer number {creator
or superseder)

Al Al Next file structure name if file continued

Al Al Predecessor file structure name if file
continued

Al Al Privileged argument word reserved for each
customer to define as. he wishes

Al y Logical block number within F .S. (not
cluster no.) of UFD data block in which the
name of this file appears

A =Argument (supplied by privileged or nonpriviledged user program) and returned by monitor as
a value.

AO=Argument like A with the addition that a 0 argument causes the monitor to substitute a
default value.

V =Value (returned by monitor) cannot be set even by privileged program, monitor ignores
argument.

A 1 =Argument if-privileged program (ignored if nonprivil eged).

Revision 1 Monitors 6-29 January 1971

The following explanation is a more complete description of the terms used in Table 6--6.

• RBPPN

.RBNAM

.RBEXT

. RBPRV

.RBSIZ

• RBVER

. RBFUT

. RBEST

.RBALC

LH =octal project number (right-justi}Ued) •
RH =octal programmer number.
The project-programmer number is of the UFO in which the file is to be
LOOKedUP, EN TE Red, or RENAMEd. To LOOKUP the MFD, • RBPPN
must contain a l in the I eft half and a l in the right half indicating that
the fl I ename (.RB NAM) is to be LOOKedUP in project l , programmer 1 's
UFO (the MFD).

SIXBIT filename, left justified with trailing nulls. If the MFD or UFO is
being LOOKedUP, EN TE Red, or R~NAMEd, this location contains the
project-progr.ammer number. The argument c;:an be 0 only on a RENAME,
in which case the file is deleted. If the filename is not left justified on
ENTER, most programs are unsuccessful on a subsequent LOOKUP, The
monitor cannot left-justify the argument because it may be an octal project­
programmer number.

LH =SIXBIT filename extension, I eft justified with trailing nulls. Null
extensions are discouraged because they convey no information, If the
extension is not left justified on ENTER, most programs are unsuccessful
on Q subsequent LOOKUP. RH, bits 24-35 =access date in standard
format. If an error return is given, bits 18-35 are set to.an error code
by the monitor before the error (no skip) return is tak~n.

Bits 0-8 =protection codes •
Bits 9-12 =data mode in which file is created.
Bits 13-23 =creation time in minutes since midnight.
Bits 24-35 =creation date in standard format.

Written length of file. The word is the positive number of words written
in the file. For extended arguments, this word is never used for project ...
programmer numbers. (The four-word block remains compatible so that
LH=-numberofwords in file, RH:;:O.) This argument is ignored, and a
value is always returned.

Octal version number like the contents of location 137 in the job data area .

LH =patch level (A= 1, B =2, etc.)
Set by monitor except in the case of privileged programs.

RH =octal version number, never converted to decimal. This argument
is accepted, except on a LOOKUP. If a user program wishes to increase
the version number by l on each UPDATE, it should add l to location
E +6 between the LOOKUP and the ENTER.

Reserved for the future •

Reserved for the future •

Number of 128-word blocks, N, to be allocated to the file, inclvding
both RIB blocks, after comp I etion of ENTER or RENAME.

A 0 means do not change al location rather than deal locate al I the blocks
of the file. All of the data blocks can be deallocated by superseding the
file and doing no outputs before the CLOSE. This argument can be used
to allocate additional space onto the end of the file, deallocate previously
allocated but unwritten space, or truncate written data blocks.

(

(

)

I

)

)

• RBALC (Cont}

.RBPOS

• RBFTl

• RBNCA

.RBMTA

.RBDEV

.RBSTS

Revision 1 Monitors

The smallest unit of disk space that the monitor can allocate is a cluster
of 128-word blocks. Typically small devices use a cluster size of 1 block.
If N is not the last block of a cluster, the monitor rounds up, thereby
adding a few more blocks than the user requested.

Logical block number, L, of the first block to be allocated for a new
group of clusters appended to the file. A logical block number is specified
with respect to the entire file structure. Logical block numbers begin
with logical block number 0. This feature combined with DSKCHR UUO
allows a user program to allocate a file with respect to tracks and cylinders
for maximum efficiency when the program runs alone. Because SAT blocks,
swapping space, and bad blocks.are scattered throughout a file structure,
programs using this feature must be prepared to handle such contingencies.
It is discourc;1ged for any programs to depend on blocks actually used for
allocation to operate without errors.

Future nonprivileged argument reserved for DEC •

Nonprivileged argument reserved for customer definition •

A 36-bit tape label if file has been put on magnetic tape. If allocated
space is 0, then file was deleted from disk when it was c::opied on magnetic
tape. Argument is accepted only from privileged programs; otherwise,
it is ignored.

The logical name of the unit on which the file is located. Ignored as an
argument, returned as a value.

File status word

LH =status of UFO. Bit 0=1 if the user is logged in and is set by LOGIN.
LOGOUT clears this bit.

RH =status of file.

Bit 18 =1 (.RPDIR) if file is a directory file; needed to protect the system
from a user who might try to modify a directory file.

Bit 19=1 (.RPNDL) if file cannot be deleted, even by a privileged program.

Bit 20=1 (.RPNCN) if file cannot be renamed, even by a privileged program.

Bit 21 =1 (.RPNFS) if file should not be dumped by FAILSAFE because certain
files are needed before FAILSAFE can run.

The following bits appear in both the LH and RH of this location:

Bit 11 and bit 29=1 if any file in this UFO (or this file) has had a hard data
error while reading. (The IODTER bit has been set.) An entry is made in
the BAT block so that the bad region is not reused.

Bit 10 and bit 28=1 if any file in this UFO (or this file) has had a hard data
error while writing. (The IODTER bit has been set.) An entry is made in
the BAT block so that the bad region is not reused.

Bit 9 and bit 27=1 if any file in this UFO (or this file) has had a software
checksum error or redundancy check error. (The IOTMPM bit has been set.)

NOTE

Device errors (IODERR) are not flagged in the file
status word because they refer to a device and dis­
appear when a device is fixed.

6-31 January 1971

.RBELB

.RBEUN

.RBQTF

.RBQTO

.RBQTR

.RBUSD

.RBAUT

• RBNXT

. RBPRD

. RBPCA

.RBUFD

Logical block number within the unit on which last data error (IODTER)
occurred, as opposed to block within file structure. Set by the monitor
in the RIB on a CLOSE when the hardware detects either a hard bad parity
error or two search errors while reading or writing the file. Device errors,
checksum, and redundancy errors are not stored here. This argument is
ignored, and a value is returned.

LH =logical unit number within file structure on which last bad region
was detected .

RH =number of bad blocks in the last-detected bad region. The bad
region may extend beyond the file. This argument is ignored, and a
value is returned.

Meaningful for UFO only. Contains first-come-first-served logged-in
quota. This quota is the maximum number of data and RIB blocks that
can be in this directory in this structure while the user is logged in. The
UFO and its RIB are not counted. Argument is ignored unless it is from a
privileged CUSP.

Meaningful for UFO only. Contains logged-out quota. This quota is the
maximum number of data and RIB blocks that can be left in this directory
in this file structure after the user logs off. LOGOUT requires the user
to be below this quota to log off. LOGIN stores these quotas in the RIB
of the UFO, so that LOGOUT does not have to scan ACCT .SYS at
LOGOUT time to find the quota. Argument is ignored unless it is from
a privileged CUSP·.

Meaningful for UFO only. (In 5 .02 monitors and later monitors.) Contains
reserved logged-in quota. This quota is the guaranteed number of blocks
the user has when he logs in. Argument is ignored unless it is from a
privileged CUSP.

Meaningful for UFO only. Contains number of data and RIB blocks used
in this directory in this fi I e structure by the user when he last logged off.
LOGIN reads this word so that it does not have to LOOKUP all files
in order to set up the number of blocks the user has written. LOG IN
sets bit 0 of the file status word (.RBSTS) and LOGOUT clears it in order
to indicate whether LOGOUT has stored the quantity. Argument is
ignored unless it is from a privileged CUSP.

Contains project-programmer number of the creator or superseder of the
file, as opposed to owner of file. Usually the author and the owner
are the same. Only when a file is created in a different directory are
these different. This argument is used by Batch for validating queue
entries in other directories. Argument is ignored unless it is from c;i

privileged program.

Reserved for future .

Reserved for future •

Privileged argument reserved for customer definition •

The logical block number (not cluster number) in the file structure of the
UFD's data block in which the name of this file appears.

6-32

(

(

I
I

)

)

6 .2 .8 .3 Special Programmed Operator Service - The following are special programmed operator

service UUOs.
a. USETI and USETO UUOs - USETI D ,A and USETO D ,A are treated similarly by the

disk service routines. Their function is to notify the service routine that a particular
relative block is to be used on the next INPUT or OUTPUT on channel D {whichever
occurs first). A designates a particular block relative to the beginning of the file.
The only difference between USETI and USETO occurs when A is greater than the
current size of the file {in blocks). On USETI, the monitor simply sets the IODEOF
flog and returns, whereas on USETO, the monitor zeroes the intervening blocks and
does not set the IODEOF flog. The next INPUT or IN causes the EOF flog to be set.
The next OUTPUT or OUT writes the block at the appropriate place. On input, the
RIB block is designated by A = 0. On output, A= 0 returns the error bit IOBKTL.
The first data block of the file {i.e., the one following the RIB) is designated by

b.

A= 1. If no previous LOOKUP or ENTER has been done, this UUO will set the
improper mode error bit {IOIMPM).

Super USETI and USETO UUOs - With disk packs, there is a need to read and write
data without using a directory hierarchy {e.g., for testing a pack in a timesharing
environment or for a privileged recovery on any file structure). There must be a way
to specify individual blocks of a file structure and/or unit without reference to any
file. These blocks are called logical blocks because they must be transformed for
the particular hardware before doing I/O. Under certain conditions, USETI and
USETO are used to specify these logical blocks. When the following conditions
are true, USETI and USETO reference logical block numbers with respect to a file
structure instead of relative blocks within a file:

(1) The channel is INITed with a file structure name.

(2) No file is opened on the channel specified in the AC field.

(3) The structure is a single-access structure assigned to the user, or the program is
privi I eged.

When. the following conditions are true, USETI and USETO reference logical block
numbers with respect to a unit instead of logical block numbers with respect to a
file structure or relative blocks within a file:

{l) The channel is INITed with a physical unit name.

(2) No file is opened on the channel specified in the AC field.

(3) The unit is a member of a single-access file structure mounted for the user,
or the pr0gram is privileged.

The terms super-USETI and super-USETO distinguish these UUOs from regular USE TI
and USETO. Super-USE TI and super-USE TO provide their arguments in the contents
of the effective address, rather than the effective address itself.

USETI and USETO and their counterparts do not perform I/O; they change either the
current position of the file {regular) or the current position in the file structure {super).
Both super-USETI and super-USETO set the IOBKTL flag if a specified logical block
is too large for the file structure or unit.

If a program is nonprivil eged, super-USE TI and super-USE TO is a no-operation.

Revision 1 Monitors 6-33 January 1971

c. SEEK UUO - This UUO, when used in conjunction with USETI and USETO, allows (' .
user programs control over the time at which positioning operations occur. Follow-
ing a regular USETI or USETO, positioning is to the cylinder containing the requested
relative block within a file. Following a super-USETI or super-USETO, positioning
is to the cylinder containing the specified disk block.

The call is:

CALL D, [SIXBIT /SEEK /J ; or CALLI D, 56
return

D specifies a soffware channel number. The SEEK UUOs are honored by the monitor
only if the unit for which they are issued is i·dle. If the unit is in any other state,
the SEEK UUO is a no-operation.

SEEK UUOs issued for public file structures are treated in the same way as private
file structures. This allows users to debug programs using a public disk pack and
later run the same programs using a private disk pack.

The fol lowing is proper UUO sequence for issuing a SEEK.

For output

(1) USE TO to select a block (relative or actual)
(2) SEEK to request positioning
(3) computations
(4) OUTPUT to request actual output

For input

(1) USETI to select a block (relative or actual)
(2) SEEK to request positioning
(3) computations
(4) INPUT to request actual input.

d. CALL [SIXBIT /RESET/] - This UUO causes files that are in the process of being
written, but have not been CLOSEd or RELEASed, to be deleted; the space is re­
claimed. If a previous version of the file with the same name and extendsion
existed, it remains unchanged on the disk (and in the UFD). If the programmer
wishes to retain the newly created file and to delete the older version, he must
CLOSE or RELEASe the file before doing a RESET UUO.

e. DEVSTS UUO - After each interrupt, FILSER stores the results of a CONJ in the
DEVSTS word of the device data block. The DEVSTS UUO is used to return the
contents of the DEVSTS word to the user {refer to Paragraph 4. 9 .3 .4).

f. CHKACC UUO - This UUO allows privileged programs to check the user's access to
a particular file. The call is:

MOVE AC, [EXP LOC]
ACCESS AC,
error return
normal return

;or CALLI AC, 100

The LH of LOC contains the code for the type of access to be checked and the RH
of LOC contains a 9-bit protection field. If bits 27 through 35 are zero, then bits
18 through 26 are interpreted as UFO privilege bits. LOC+l contains the project­
programmer number of the directory, and LOC+2 contains the project-programmer
number of the user.

Revision 1 N\onitors 6-34 January 1971

(

' .\ /

)

)

The type of access to be checked is represented by one of the following codes:

0

2

3

4

5

6

7

10

Change protection, rename, write, update, append, read,
execute.

Rename, write, update, append , read , execute.

Write, update, append, read, execute.

Update, append, read , execute.

Append, read, execute.

Read, execute.

Execute only.

Create in UFO.

Read UFO as a file.

The error return is given if the UUO is not implemented. On a normal return, AC
contains 0 if access is allowed or -1 if access is not allowed.

6 .2 .8 .4 Simultaneous Supersede and Update - Fil es that may be simultaneously ·superseded or updated

by several different users should be treated with care. The problem arises when one user has a copy of

information to be superseded by another user. For example; file F contains a count of the number of

occurrences of a certain ev·ent. The count is 10 at a given time. When two users observe separate

instances of the event, each tries to increment the count.

Revision l Monitors 6-34o . January 1971

(

(

Supersede - Incorrectly

Job l

LOOKUP A, F

READ COUNT(= 10)
ADD l (= 11)

ENTER BI F
WRITE OUT (= 11)
CLOSE B, F

In this example, job 2 ignored job l 1s increment.

Supersede - Correctly

Job l

ENTER B, F

LOOKUP A, F

INPUT A, (= 10)
ADDl (= 11)
OUTPUT B, (=11)
CLOSE BI F

Job 2

LOOKUP C, F
READ COUNT (= 10)
ADD l (= 11)

ENTER DI F

ENTER DI F
WRITE OUT (= 11)
CLOSED I F

Job 2

ENTER DI F
LOOKUP C, F

ENTER DI F
IN PUT c I (= 11)
ADD l (= 12)
OUTPUT D, (= 12)
CLOSED I F

(Fail)

(Succeed)

(Fail)

(Succeed)

In this example, both jobs performed the ENTER FIRST; therefore, incorrect copies were not made and

the increment ·of each job was recorded properly.

The similar problem with a update can be avoided by never using the information returned by the

LOOKUP:

Job l

LOOKUP A, F
INPUT A,

. ENTER A, F
OUTPUT
CLOSE

Job 2

LOOKUP B, F
INPUT B,

E N TE R B , F (Fa i I)
Here any information
from the LOOKUP and
INPUT must be discarded.

6-35

6.2 .9 File Status (refer to Appendix D)

The file status of the disk is shown below.

18 21 24 27 30 33 35

SET BY USER
1111111111111111111111111111111111111

18

SET BY MONITOR llW.W.l.WllllllllllW.w.1&11111111111111.w.ww.ulllllllllll~llll _...___~__._____.

Bit 18 - IOIMPM

Bit 19 - IODERR

Bit 20 - IODTER

Bit 21 - IO BK TL

Bit 22 - IODEOF

Bit 23 - IOACT

10-0580

a. INPUT UUO attempted on a read-protected file

b. INPUT UUO when no LOOKUP was done (or
super-USETI/USETO previously attempted by
nonprivileged user)

c. OUTPUT UUO when no ENTER was done (or
super-USETI/USETO previously attempted by
nonprivileged user)

d. Software-detected checksum error

e. Software-detected redundancy error in SAT block
or RIB, or (6)buffered mode 1/0 attempted after
super-USETI/USETO.

Search error, power supply failure.

Disk or data channel parity error.
Checksum failure on INPUT.

a. Quota is exhausted (past overdrawn)

b. Fi I e structure is exhausted

c. RIB is full

d. Super-USETI/USETO block is too large for the file
structure

e. More than 777777 blocks were read with one super­
USETl/USETO.

EOF encountered on INPUT. No special character appears in
the buffer.

Device is active

18 21 24 27 30 33 35

UNUSED
1111111111111111111111111111111111111

10-0579

There are no device dependent bits.

6-36

""'~ 6 .2 .10 Disk Packs

/

)

)

A disk pack system combines disk and the DECtape features. Some packs (similar to individual DEC­

tapes) are designed to be private, assignable, and removable. The other packs make up part or all of

the public disk storage area where CUSPs and user files are stored. These disk packs belong to file

sfTuctures in the storage pool and cannot be assigned to any single user. The system library and shared

on-line storage is maintained and swapping storage is assigned within the public disk pack area.

The most important distinction between public and private packs is that private packs are intended to

be removed from the system during regular operation. Public packs stay on-line all the time. How­

ever, the file structure format for public and private disk packs is identical.

User programs can exercise much greater confTol over private packs. For example; a program may

attempt to position the arms of disk packs in anticipation of future I/O (refer to Paragraph 6 .2 .8 .3c).

This capability is useful to a program that is aware of the contents of a disk and is able to use this

information to optimize positioning. The program may also specify the position of files on the disk by

using the allocate arguments of the extended LOOKUP, ENTER, and RENAME UUOs.

Private packs may be accessed by more than one job (multi-access) or resfTicted to only one job (single

access). To access a private file structure, the user must type the MOUNT command (available in

5.02 monitors and later monitors). If the private file structure is already mounted, on-line, and multi­

access, the user receives an immediate response and may start using the private pack. When the user

is finished using the private file structure, he should type the REMOVE command. If no other job is

using the file structure, a message is typed to the operator informing him that the drives belonging to

the fi I e s true ture are free •

6.2.10.l Removable File Structures - All file sfTuctures are designed as if they could be removed from

the system; therefore, disk packs are handled the same as other types of disks.

6 .2 .10 .2 Identification - Disk packs have identifying information written on the home block, a

block on every unit identifying the file structure to which the unit belongs and its position within the

file sfTucture. Part of this information is the pack ID, a one- to six-character SIXBIT name uniquely

identifying the disk pack. The MOUNT and OMOUNT CUSPs check that the operator has mounted

the proper packs by comparing the pack ID in the home block with the information stored in the system

administration file STRLST .SYS.

6-37

6.2 .10.3 IBM Disk Pack Compatibility - The data format of IBM disk packs has variable-length

sectors and no sector headers. DEC format has fixed-length sectors (128 words) and specially written

sector headers. Latency optimization is employed to improve system throughput (refer to Paragraph 7 .3).

DEC's significantly simpler hardware controller is used without reduC:ing user capabilities.

To transfer data from a IBM pack system to a DEC pack system, a simple program in a higher-level

language should be written for both machines., The program then reads the IB~ disk pqck on the IBM

computer and writes the files onto magnetic tape. The magnetic tape is then transferred to a DEC

computer and read by another program, which writes the files onto the DEC RPOl or RP02 packs.

6.3 SPOOLING OF UNIT RECORD I/O ON DISK

Devices capable of spooling (card reader, line printer, card punch, paper-tape punch, and plotter)

have an associated bit in the job's JBTSPL word. If this bit is on when the device is ASSIGNed or

INITed, the device is said to be in spool mode. While in this mode, all 1/0 for this device is inter­

cepted and written on the disk rather than to the device. System spooling programs later do the actual

I/O transfer to the device.

Spooling allows more efficient use of the device because users cannot tie it up indefinitely. In addition,

since th.e spooling devices are generally slow and the jobs that ore to be spooled are usually large, the

jobs do not spend unnecessary time in core.

6.3.1 Input Spooling

If a LOOKUP is given after the INIT of the card reader, it is ignored and an automatic LOOKUP is

done, using the filename given in the last SET CDR command and the filename extension of .CDR.

After every automatic LOOKUP, the name in the input-name counter JBTSPL is incremented by 1 so

that the next automatic LOOKUP will use the correct filename.

6.3.2 Output Spooling

If an ENT ER is done, the fi I ename specified is stored in the RIB so that the output spoo I er can I abel

the output. Therefore, programs should give a filename if they can.

If an ENTER is not done, an automatic ENTER is given, using a filename in the general form

where

xxxyyy.zzz

xxx is a three-character name manufactured by the monitor to make the
9-character nome unique.

yyy is (1) an appropriate station number Snn if a generic device name is
INITed or (2) a unit number if a specific unit is INITed.

zzz is the generic nome of the device-type (LPT, CDP, PTP, or PL T).

(

Output spooling should not concern the user because all requests are queued when the user logs off the (

system. The files are moved to the output queues before th_~ logged-out quota is computed.

Revision 1 Monitors 6-38 January 1971

Chapter 7

Monitor Algorithms

7. l JOB SCHEDULING

The number of jobs that may be run simultaneously must be specified in creating a PDP-10 Timesharing

Monitor. Up to 127 jobs may be specified. Each user accessing the system is assigned a job number.

In a multiprogramming system all jobs reside in core, and the scheduler decides what jobs should run.

In a swapping system, jobs exist on an external storage device (usually disk or drum) as well as in core.

The scheduler decides not only what job is to run but also when a job is to be swapped out onto the

disk (drum) or brought back into core.

In a swapping system, jobs are retained in queues of varying priorities that reflect the status of the

jobs at any given moment. Each job number possible in the system resides in only one queue at any

time. A job may be in one of the fol lowing queues:

a. Run queues - for runnable jobs waiting to execute. (There are three run queues of
different levels of priorities.)

b. I/O wait queue - for jobs waiting while doing 1/0.
c. I/O wait satisfied queue - for jobs waiting to run after finishing I/O.

d. Sharable device wait queue - for jobs waiting to use sharable devices.

e. Teletype wait queue - for jobs waiting for input or output on the user's console.

f. Teletype wait satisfied queue - for jobs that completed a Teletype operation and
are awaiting action.

g. Stop queue - for processes that have been completed or aborted by an error and
are awaiting a new command for further action.

h. Null queue - for all job numbers that are inactive (unassigned).

Each queue is addressed through a table. The position of a queue address in a table represents the

priority of the queue with respect to the other queues. Within each queue, the position of a job

determines its priority with respect to the other jobs in the same queue. The status of a job is changed

when it is placed in a different queue.

7-1

Each job, when it is assigned to run, is given a quantum time. When the quantum time expires, the

job ceases to run and moves to a lower priority run queue. The activities of the job currently running

may cause it to move out of the run queue and enter one of the wait queues. For example: when a

currently running job begins input from a DECtape, it is placed in the 1/0 wait queue, and the input

is begun. A second job is set to run while the input of the first job proceeds. If the second job then

decides to access a DECtape for an 1/0 operation, it is stopped because the DECtape control is busy,

and it is put in the queue for jobs waiting to access the DECtape control. A third job is set to run.

The input operation of the first job finishes, making the DECtape control available to the second job.

The 1/0 operation of the second job is initiated, and the job is transferred from the device wait queue

to the 1/0 wait queue. The first job is transferred from the I/O wait queue to the highest priority run

queue. This permits the first job to preempt the running of the third job. When the quantum time of

the first job becomes zero, it is moved into the second run queue, and the third job runs again until

the second job completes its 1/0 operations.

Data transfers also use the scheduler to permit the user to overlap computation with data transmission.

In unbuffered modes, the user supplies an address of a command list containing pointers to relative

locations in the user area to and from which data is to be transferred. When the transfer is initiated,

the job is scheduled into an 1/0 wait queue where it remains until the device signals the scheduler

that the entire transfer has been completed.

In buffered modes, each buffer contains a use bit to prevent the user and the device from using the same

buffer at the same time (refer to Paragraph 4. 10.3). If the user overtakes the device and requires the

buffer currently being used by the device as his next buffer, the user's job is scheduled into an 1/0
wait queue. When the device finishes using the buffer, the device cal Is the scheduler to reactivate

the job. If the device overtakes the user, the device is stopped at the end of the buffer and is re­

started when the user finishes with the buffer.

Scheduling occurs at each clock tick (l/60th or l/50th or a second) or may be forced at monitor level

between clock ticks if the current job becomes blocked (unrunnable). The asynchronous swapping

algorithm is also called at each clock tick and has the task of bringing a job from disk into core. This

function depends on

a. The core shuffling routine, which consolidates unused areas in core to make sufficient
room for the incoming job

b. The swapper, which creates additional room in core by transferring jobs from
core to disk.

Therefore, when the scheduler is selecting the next job to be run, the swapper is bringing the next job

to be run into core. The transfer from disk to core takes place while the central processor continues

computation for the previous job.

7-2

7.2 PROGRAM SWAPPING

Program swapping is performed by the monitor on one or more units of the system independent of the

file structures that may also use the units. Swapping space is allocated and deallocated in clusters of

1 K words (exactly); this size is the increment size of the memory relocation and protection mechanism.

Directories are not maintained, and retrieval information is retained in core. Most user segments are

written onto the swapping units as contiguous units. Swapping time and retrieval information is, there­

fore, minimized. Segments are always read completely from the swapping unit into core with one 1/0

operation. The swapping space on all units appears as a single system file, SNAP.SYS, in directory

SYS in each file structure. This file is protected from al I but privileged programs by the standard file

protection mechanism {refer to Paragraph 6.2.3).

The reentrant capability reduces the demands on core memory, swapping space, swapping channel, and

storage channel; however, to reduce the use of the storage channel, copies of sharable segments are

kept on the swapping device. This increases the demand for swapping space. To prevent the swapping

space from being filled by user's files and to keep swapped segments from being fragmented, swapping

space is preallocated when the file structure is refreshed. The monitor dynamically achieves the space­

time balance by assuming that there is no shortage of swapping space. Swapping space is never used

for anything except swapped segments, and the monitor keeps a single copy of as many segments as

possible in this space. (The maximum number of segments that may be kept may be increased by

individual installations but is always at least as great as the number of jobs plus one.) If a sharable

segment on the swapping space is currently unused, it is called a dormant segment. An idle segment

is a sharable segment that is not used by users in core; however, at least one swapped-out user must

be using the segment or it would be a dormant segment.

Swapping disregards the grouping of similar units into file structures; therefore, swapping is done on a

unit basis rather than a file structure basis. The units for swapping are grouped in a sorted order, re­

ferred to as the active swapping list. The total virtual core, which the system can allocate to users,

is equal to the total swapping space preallocated on all units in the active swapping list. In computing

virtual core, sharable segments count only once, and dormant segments do not count at all. The

monitor does not allow more virtual core to be granted than the system has capacity to handle.

When the system is started, the monitor reads the home blocks on all the units that it was generated to

handle. The monitor determines from the home blocks which units are members of the active swapping

I ist. This list may be changed at once-only time. The change does not require refreshing of the file

structures, as long as swapping space was preallocated on the units when they were refreshed. All of

the units with swapping space al located need not appear in the active swapping list. For example: a

drum and disk pack system should have swapping space allocated on both drum and disk packs. Then,

if the drum becomes inoperable, the disk packs may be used for swapping without refreshing.

7-3

Users cannot proceed when virtual core is exhausted; therefore, FILSER is designed to handle a variety

of disks as swapping media. The system administrator allocates additional swapping space on slower

disks and virtually eliminates the possibility of exhausting virtual core; therefore, in periods of heavy

demand, swapping is slower for segments that must be swapped on the slower devices. It is also un­

desirable to allow dormant segments to take up space on high-speed units. This forces either fragmen­

tation on fast units or swapping on slow units; therefore, the allocation of swapping space is important

to overall system efficiency.

The swapping allocator is responsible for assigning space for the segment the swapper wants to swap

out. It must decide

a. Onto which unit to swap the segment

b. Whether to fragment the unit if not enough contiguous space is available

c. Whether to make room by de I eti ng a dormant segment

d. Whether to use a slower unit.

The units in the active swapping list are divided into swapping classes, usually according to device

speed. For simplicity, the monitor assumes that all the units of class 0 are first followed by al I the

units of class 1. Swapping classes are defined when the file structures are refreshed, and may be

changed at once-only ti me.

When attempting to allocate space to swap out a low or high segment, the monitor performs the

following:

2

3

Procedure

The monitor looks for contiguous space on one of the units of
the first swapping class.

The monitor looks for noncontiguous space on one of the units
in the same class.

The monitor checks whether deleting one or more dormant
segments would yield enough contiguous or noncontiguous
space.

If all of these measures fail, the monitor repeats the process on the next swapping class in the active

swapping I ist. If none of the classes yield enough space, the swapper begins again and deletes

enough dormant segments to fragment the segment across units and classes. When a deleted segment is

needed again, it is retrieved from the storage device.

7-4

7 .3 DEVICE OPTIMIZATION

7. 3. l Concepts

Each 1/0 operation on a unit consists of two steps: positioning and data transferring. To perform 1/0,

the unit must be positioned, unless it is already on a cylinder or is a non-positioning device. To posi­

tion a unit, the controller cannot be performing a data transfer. If the controller is engaged in a data

transfer, the positioning operation of moving the arm to the desired cylinder cannot begin until the

data transfer is complete.

The controller ensures that the arms have actually moved to the correct cylinder. This check is called

verification, and the time required is fixed by hardware. If verification fai Is, the controller interrupts

the processor, and the software recalibrates the positioner by moving it to a fixed place and beginning

again. When verification is complete, the controller reads the sector headers to find the proper sector

on which to perform the operation. This operation is called searching. Finally, the data is transferred

to or from the desired sectors. To understand the optimization, the transfer operation includes verifi­

cation, searching, and actual transfer. The time from the initiation of the transfer operation to the

actual beginning of the transfer is called the latency time. The channel is busy with the controller for

the entire transfer time; therefore, it is important for the software to minimize the latency time.

The FILSER code, a routine that queues disk requests and makes optimization decisions, handles any

number of channels and controllers and up to eight units for each controller. Optimization is designed

to keep:

a. As many channels as possible performing data transfers at the same time.

b. As many units positioning on al I controllers, which are not already in position for
a data transfer.

Several constraints are imposed by the hardware. A channel can handle only one data transfer on one

control at a time. Furthermore, the control can handle a data transfer on only one of its units at a

time. However, the other units on the control can be positioning while a data transfer is taking place

provided the positioning commands were issued prior to the data transfer. Positioning requests for a

unit on a controller, which is busy doing a data transfer for another of its units, must be queued until

the data transfer is finished. When a positioning command is given to a unit through a controller, the

controller is busy for only a few microseconds; therefore, the software can issue a number of positioning

commands to different units as soon as a data transfer is complete. All units have only positioning

mechanism that reaches each point; therefore, only one positioning opt_ v:·ion can be performed on a

unit at the same time. All other positioning requests for a unit must be queued.

The software keeps a state code in memory for each active file, unit, controller, and channel, to

remember the status of the hardware. Reliability is increased because the software does not depend on

the status information of the hardware. The state of a unit is as follows:

7-5

Idle; No positions or transfers waiting or being performed.

'Y0I Seek Wait; Unit is waiting for control to become idle so that
it can initiate positioning (refer to Paragraph 6 .2).

S Seek; Unit is positioning in response to a SEEK UUO; no transfer
of data fol lows.

PW Position Wait; Unit is waiting for control to become idle so that
it can initiate positioning.

P Position; Unit is positioning; transfer of data follows although not
necessarily on this control I er.

TW Transfer Wait; Unit is in position and is waiting for the control I er/
channel to become idle so that it can transfer data.

T Transfer; Unit is transferring; the controller and channel are busy
performing the ope rat ion •

Table 7-1 lists the possible states for files, units, controllers, and channels.

7 .3 .2 Queuing Strategy

File
t

Unit

I I
'Y0I
s

PW PW
p p

TW TW
T T

Table 7-1
Software States

Control I er

I

T

Channel

I

T

tCannot be in Sor 'Y0I state because SEEKs
are ignored if the unit is not idle.

When an 1/0 request for a unit is made by a user program because of an INPUT or OUTPUT UUO, one

of several things can happen at UUO level before control is returned to the buffer-strategy module in

UUOCON, which may, in turn, pass control back to the user without rescheduling. If an I/O request

requires positioning of the unit, either the request is added to the end of the position-wait queue for

the unit if the control or unit is busy, or the positioning is initiated immediately. If the request does

not require positioning, the data is transferred immediately. If the channel is busy, the request is

added to the end of the transfer-wait queue for the channel. The control gives the processor an inter­

rupt after each phase is completed. Optimization occurs at interrupt level when a position-done or

transfer-done interrupt occurs.

7-6

)

)

)

7 .3 .2. l Position-Done Interrupt Optimization - The fol lowing action occurs only if a transfer-done

interrupt does not occur first. Data transfer is started on the unit unless the channel is busy transfer­

ring data for some other unit or control. If the channel is busy, the request goes to the end of the

transfer-wait queue for that channel.

7 .3 .2 .2 Transfer-Done Interrupt Optimization - When a transfer-done interrupt occurs, all the

position-done interrupts inhibited during the data transfer are processed for the control I er, and the

requests are placed at the end of the transfer-wait queue for the channel. All units on the contrnller

are then scanned. The requests in the position-wait queues on each unit are scanned to see the re­

quest nearest the current cylinder. Positioning is begun on the unit of the selected request. Al I re­

quests in the transfer-wait queue for all units on the channel that caused the interrupt are then scanned

and the latency time is measured. The request with the shortest latency time is selected, and the new

transfer begins.

7 .3 .3 Fairness Considerations

When the system selects the best task to run, users making requests to distant parts of the disk may not

be serviced for a long time. The disk software is designed to make a fair decision for a fixed percent­

age of time. Every n decisions the disk software selects the request at the front of the position-wait

or transfer-wait queue and processes it, because that request has been waiting the longest. The value

of n is set to 10 (decimal) and may be changed by redefining symbols with MONG EN (see

MONITR.OPR).

7 .3 .4 Channel Command Chaining

7 .3 .4.1 Buffered Mode - Disk accesses are reduced by using the chaining feature of the data chan­

nel. Prior to reading a block in buffered mode, the device independent routine checks to see if there

is· another empty buffer, and if the next relative block within the file is a consecutive logical block

within the unit. If both checks are true, FILSER creates a command I ist to read two or more consecu­

tive blocks into scattered core buffers. Corresponding decisions are made when writing data in buffer­

ed mode, and, if possible, two or more separate buffers are written in one operation. The command

chaining decision is not made when a .request is put info a position-wait or transfer-wait queue;

instead, it is postponed unti I the operation is performed, thus increasing the chances that the user

program will have more buffers available for input or output.

7 .3.4.2 Unbuffered Mode - Unbuffered modes do not use channel chaining, and therefore, read or

write one command word at a time. Each command word begins at the beginning of a 128-word block.

7-7

If a command word does not contain an even multiple of 128 words, the remaining words of the last

block are not read, if reading, and are written with zeroes, if writing.

7.4 MONITOR ERROR HANDLING

The monitor detects a number of errors. If a hardware error is detected, the monitor repeats the

I operation ten times. If the failure occurs eleven times in a row, it is classified as a hard error. If the

operation succeeds after failing one to ten times, it is a soft error.

7 .4. l Hardware Detected Errors

Hardware detected errors are classified either as device errors or as data errors. A device error indi­

cates a malfunction of the control I er or channel • A data error indicates that the hardware parity did

not check or a search for a sector header either did not succeed or had bad parity (the user's data is

probab I y bad) •

A device error sets the IO DERR bit in the channel status word, and a data error sets the IODTER bit.

Disk units may have imperfect surfaces; therefore, a special non-timesharing diagnostic program, MAP,

is provided to initially find al I the bad blocks on a specified unit. The logical disk addresses of any

bad regions of one or more bod blocks are recorded in the bad al location table (BAT) block on the unit.

The timesharing monitor al locates al I storage for files; therefore, it uses the BAT block to avoid allo­

cating blocks that have previously proven bad. The MAP program writes two copies of the BAT block

because the BAT block might be destroyed. If the MAP program is not used, the monitor discovers the

bad regions when it tries to use them and adds this information to the BAT block. However, the first

user of the bad region loses that part of his data.

A hard data error usually indicates a bad surface; therefore, the monitor never returns the bad region

to free storage. This results in the bad region causing an error only once. The bad unit and the logi­

cal disk address are stored in the retrieval information block (RIB) of the file when the file is CLOSEd

or RESET and the extent of the bad region is determined. The origin and length of the bad region is

stored in the bad allocation table (BAT) block.

7 .4 .2 Software Detected Errors

The monitor makes a number of software checks on itself. It checks the folded checksum (refer to

Appendix I) computed for the first word of every group and stored in the retrieval pointer. The monitor

also checks for inconsistencies when comparing locations in the retrieval information block with ex­

pected values (filename, filename extension, project-programmer number, special code, logical block

Revision 1 Monitors
7-8 January 1971

(

(

(

number). The monitor checks for inconsistencies in the storage al location tab I e block when comparing

the number of free clusters expected with the number of zeroes. A checksum error or an inconsistency

error in the SAT block or RIB normally indicates that the monitor is reading the wrong block. When

these errors occur, the monitor sets the improper mode error bit (IOIMPM) in the user channel status

word and returns control to the user program.

7 .5 DIRECTORIES

7 .5. 1 Order of Filenames

The names of newly created files are appended to the directory if the directory does not contain more

than 64 filenames. If the directory contains more than 64 filenames, a second block is used for the

new filenames. When filenames are deleted from the first block, entries from the second block are not

moved into the first. When additional new files are created, their names are added to the end of the

first block of the directory instead of the end of the directory. Thus, the order of the filenames in

the directory may not be according to the date of creation.

7 .5 .2 Directory Searches

Tab I e space in core memory is used to reduce directory searching times. The JBTPPB table contains

pointers to a I ist of four-word blocks for the user's project-programmer number, one block for each

file structure on which the user has a UFD.

Four-word name and access blocks contain copies of LOOKUP information for recently-accessed files

and may reduce disk accesses to one directory read for a LOOKUP on a recently-active file. Recent

LOOKUP failures are also kept in core, but are deleted when space is needed.

7 .6 PRIORITY INTERRUPT ROUTINES

7 .6. 1 Channel Interrupt Routines

Each of the seven Pl channels has two absolute locations associated with it in memory: 40+2n and

41+2n, where n is a channel number (1-7). When an interrupt occurs on a channel, control is immedi­

ately transferred to the first of the two associated locations (unless an interrupt on a higher priority

channel is being processed). For fast service of a single device, the first location contains either a

BLKI or BLKO instruction. For service of more than one device on the same channel, the first location

contains a JSR to location CHn in the appropriate channel interrupt routine. The JSR ensures that the

current state of the program counter is saved.

7-9

Each channel interrupt routine (mnemonic name, CHANn, where n is the channel number) consists of

three separate routines:

CHn:

SAVCHn:

XITCHn:

7 .6 .2 Interrupt Chains

The contents of the program counter is saved in location
C Hn. C Hn+l contains a JRST to the first device service
routine in the interrupt chain.

The routine to save the contents of a specified number of
accumulators. It is cal I ed from the device service routines
with a JSR.

The routine to restore saved accumulators. Device service
routines exit to XITCHn with a POP J PDP, if SAVCHn was
previously called.

Each device routine contains a device interrupt routine DEVI NT where DEV is the three-letter

mnemonic for the device concerned. This routine checks to determine whether an interrupt was

caused by device DEV. The interrupt chain of a given channel is a designation for the logical posi­

tioning of each device interrupt routine associated with that channel.

The monitor flow of control on the interrupt level through a chain is illustrated below. Channel 5 is

used in the example.

Monitor Routine

Absolute
Locations

CHAN5

PTPSER

LPTSER

Relevant Code

52/JSR CH5
53/

CH5: 0
JRST PTPINT

PTPI NT: CON SO PTP, PTPDO N
JRST LPTINT

Exp I anation

;control transferred here
;on interrupt

;contents of PC saved here
;control transfers to first
;I ink in interrupt chain

; if PTP done bit is
;on, PTP was cause
; of interrupt -
;otherwise, go to
;next device.

LPTINT: CON SO LPT, LPTLOV+LPTERR+LPTDO N
JEN @ CH5 ;three possible bits

;may indicate that
;LPT caused interrupt

When a real-time device is added to the interrupt chain (CONSO skip chain} by a RTTRP UUO (~efer

to Paragraph 8 .3), the device is added to the front of the chain. After putting a real-time device on

Channel 5 in sing I e mode (refer to Paragraph 8 .3), the chain is as fol lows:

7-10

Monitor Routine

Absolute
Locations

CHANS

RTDEV

PTPSER

LPTSER

Relevant Code

S2/JSR CHS
S3/

CHS: 0
JRST RDTINT

RTDINT: CO NSO RTD ,BITS
JRST PTPINT
JRST <context switcher and

dispatch for real-time
interrupts>

PTPINT: CONSO PTP ,PTPDON
JRST LPTINT

Exp I anation

;control transferred here
on interrupt

; contents of PC saved here
;control transfers to first
; I ink in interrupt chain

; if PTP done bit is
;on, PTP was cause
;of interrupt -
;otherwise, go to
;next device.

LPTINT:CONSO LPT I LPTLOV+LPTERR+LPTDON
JEN@ CHS ;three possible bits

;may indicate that
;LPT caused interrupt

After putting a real-time device on channel S in normal block mode (refer to Paragraph 8.3), the

chain is as follows:

Monitor Routine

Absolute
Locations

CHANS

RTDEV

PTPSER

LPTSER

Relevant Code

S2/JSR CHS
53/

CHS: 0
JRST RTDINT

RTDINT:CONSO RTD ,BITS
JRST PTPINT
BLKI RTD I POINTR
JRST <context switcher>
JEN @CHS

PTPINT: CON SO PTP ,PTPDON
JRST LPTINT

Exp I anation

;control transferred here
on interrupt

;contents of PC saved here
;control transfers to first
;link in interrupt chain

; if PTP done bit is
;on, PTP was cause
;of interrupt -
;otherwise, go to
;next device.

LPTINT:CONSO LPT I LPTLOV+LPTERR+lPTDON
JEN @CHS ;three possible bits

;may indicate that
;LPT caused interrupt.

7-11

)

Chapter 8

Real-Time Programming

Privileged jobs may for various reasons desire to be locked in core, that is, to never be considered

for s'Mlpping or shuffling. Some examples of these jobs are as follows:

Real-time jobs

Display jobs

Batch

Performa nee a no lysi s

8. l DEFINITIONS

These jobs require immediate access to the processor in response
to an interrupt from an 1/0 device.

The display must be refreshed from a display buffer in the user's
core area in order to keep the display picture flicker-free.

Batch throughput may be enhanced by locking the Batch control
CUSP in core.

Jobs monitoring the activities of the system need to be locked in
core so that when they are entered to gather data, they are aware
of their state and therefore, can record activities of the monitor
independent of the monitor.

In s'Mlpping and non-s'Mlpping systems, unlocked jobs can occupy only the physical core not occupied

by locked jobs. Therefore, locked jobs and timesharing jobs contend with one another for physical

core memory. In order to control this contention, the system manager is provided with a number of

system parameters as described below.

Total User Core is the physical core which can be used for locked and unlocked jobs. This value is

equal to total physical core minus the monitor size.

CORMIN is the guaranteed amount of contiguous core which a single unlocked job can have. This

value is a constant system parameter and is defined by the system manager at monitor generation time

using MONGEN. It can be changed at monitor startup time using the ONCE ONLY dialogue. This

value can range from 0 to Total User Core.

CORMAX is the largest contiguous size that an unlocked job can be. It is a time-varying system

parameter and is reduced from its initial setting as jobs are locked in core. In order to satisfy the

guaranteed size of CORMIN, the monitor never allows a job to be locked in core if this action would

8-1

result in CORMAX becoming less than CORMIN. The initial setting of CORMAX is defined at

monitor generation time using MONGEN and can be changed at monitor startup time using the

ONCE ONLY dialogue. CORMAX can range from CORMIN to Total User Core. A guaranteed

amount of core available for locked jobs can be made by setting the initial value of CORMAX to

less than Total User Core.

8.2 LOCK AC, OR CALLI AC,60

I This UUO provides a mechanism for locking jobs in user memory. The user may specify if the high

segment, low segment, or both segments are to be locked. When this UUO is executed by a privileged

user program (privileges are granted by the system manager), it results in the job being locked in the

optimal position in memory (at an extremity of user core).

A job may be locked in core if all of the following are true:

a. The job is privileged (privileges set from the accounting file ACCT. SYS by LOGIN).

b. The job, when locked, would not prevent another job from expanding to the guaranteed
limit, CORMIN.

c. The job, when locked, 'NOuld not prevent an existing job from running. Note that un­
locked jobs can exceed CORMIN.

The cal I is:

MOVSI AC, 1
MOVSI AC,O

HRRI AC, 1
HRRI AC, 0
LOCK AC,
error return
norma I return

;if high segment is to be locked
;if no high segment or if high
;segment is not to be locked
;if low segment is to be locked
;if low segment is not to be locked
;or CALLI AC,60
;AC con ta ins an error code

On a normal return, the job is locked in core. If there is a high segment, the LH of AC contains its

absolute address, shifted right nine bits. If there is no high segment, the LH of AC contains zero. The

RH of AC contains the absolute address of the low segment, shifted right nine bits.

On an error return, the job is not locked in core and AC contains an error code indicating the condi­

tion that prevented the job from being locked. The error codes are as follows:

Error Code

2

3

Revision 1 Monitors

Explanation

The job does not have locking privileges.

If the job were locked in core, it would
not be possible to run the largest existing
non-locked job. (Applies only to swap­
ping systems.)

If the job were locked in core, it would not
be possible to meet the guaranteed largest c·
size for an unlocked job, that is, CORMAX ···
would be less than CORMIN.

8-2 January 1971

I

)

NOTE

The COR UUO may be given for the high or low segment
of a locked job if the segment is not locked in core. When
the segment is locked in core, the COR UUO and the CORE
command with a non-zero argument cannot be satisfied and,
therefore, always give an erroneous response. The program
should determine the amount of core needed for the exe­
cution and request this amount before executing the LOCK
uuo.

Although memory fragmentation is minimized by both the LOCK UUO and the shuffler, the locking

algorithm always allows job locking, even though severe fragmentation may take place, as long as

1) all existing jobs can continue to run, and

2) at least CORMIN is awilable as a contiguous space (see Figure 8-lE).

Therefore, it is important that system managers use caution when grantin{' locking privileges. The

following are guidelines for minimizing fragmentation when using the LOCK UUO.

8.2. 1 Non-Swapping Systems

a. Any number of jobs can be locked in core without fragmentation occurring if the jobs are
initiated immediately after the monitor is loaded.

b. During norma I timesharing, a job is locked at the top of user core if the hole at the top
of core is large enough to contain the job. Otherwise, the job is locked as low in core
as possible.

c. Locking a job in core never makes the system fail, but it is possible that a II of available
core will not be utilized in some mixes of jobs.

8.2.2 Swapping Systems

a. There is no memory fragmentation if no more than two jobs are locked in core.

b. There is no fragmentation if the locked jobs do not relinquish their locked status (i.e., no
job terminates that has issued a LOCK UUO). In genera I, jobs with locking privileges
should be production jobs.

c. If a job issuing a LOCK UUO is to be debugged and production jobs with locking privileges
are to be run, the job to be debugged should be initiated and locked in core first, since
it will be locked at the top of core. Then, the production jobs should be initiated since
they will a II be locked at the bottom of core. This procedure reserves the space at the
top of core for the job being debugged and guarantees that there is no fragmentation as it
locks and unlocks.

d. With a suitable setting of CORMIN and the initial setting of CORMAX in relation to Total
User Core, the system manager can establish a policy Wiich guarantees

1) a maximum size for any unlocked job (CORMIN),

2) a minimum amount of total lockable core for a II jobs (Tota I User Core - CORMAX),
and

Revision 1 Monitors 8-3 January 1971

3) the amount of core which locked and unlocked jobs can content for on a first-come- (
first-serve basis (Total User Core - initial CORMAX + CORMIN).

8 .2 .3 Core Allocation Resource

Since the routines that lock jobs in core use the swapping and core allocation routines, they are

considered a sharable resource. This resource is the semipermanent core allocation resource

(mnemonic=CA). When a job issues a LOCK UUO and the system is currently engaged in executing

a LOCK UUO for another job, the job enters the queue associated with the core allocation resource.

Since a job may share a queue with other jobs and since swapping and shuffling may be required to

position the job to where it is to be locked, the actua I execution time needed to complete the process

of locking a job might be on the order of seconds.

When it has been established that a job can be locked, the low segment number and the high segment

number (if any) are stored as flags to activate the locking routines when the swapper and shuffler are

idle. The idea I position for the locked job is also stored as a goa I for the locking routines. In swap­

ping systems, the ideal position is always achieved guaranteeing minimum fragmentation. In non­

S'Mlpping systems, minimum fragmentation is achieved only if the ideal position does not contain an

active segment {see Figure 8-1).

In s'Mlpping systems, after the job is locked in core, the locking routine determines the size of the

new largest contiguous region available to ,unlocked jobs. This value will be greater or equal to

CORMIN. If this region is less than the old value of CORMAX, then CORMAX is set equal to the

size of the new reduced region. Otherwise, CORMAX remains set to its old value.

8.2.4 Unlocking Jobs

A job relinquishes its locked status when either the user program executes a EXIT or RESET UUO, or

the monitor performs an imp I icit RESET for the user. Implicit RESETs occur when

a. The user program issues a RUN UU 0, or

b. The user types any of the following monitor commands: R, RUN, GET, SAVE, SSAVE,
CORE 0, and any CUSP-invoking command.

When the job is unlocked, it becomes a candidate for swapping and shuffling. CORMAX is increased

to reflect the new size of the largest contiguous region available to unlocked jobs. However, CORMAX

is never set to a greater value than its initial setting.

8-4

(

(

A) 8EF'ORE

J·--·-~-----------------1
MONITOR

I••···-············--·•·!
l/ll//////1/1/l///llllllt
l/llllll////l////ll/11/I?
:11111111111111111111111!
1-----------------------1
f TIME~SHARING JOB
1 ISSUING LOCK UUO
1-----------------~---·-?
tll/ll///l///llllll/1111%
J/l/1/1/lllllll/lllllll/!
111111111111111111111111!
?/1/l/////l//l///ll//lll!
!ll/l///////11/l/////lllt
lllllll//llllll//1///11/!
Jlll/l///l//lll/1/////1/!
t///////////////////////!
:11111111111111111111111?
1/l/lll/////lll/1/l/11//%
lllll////ll/lll/1/l/1111!
;t 1111I///1111 I I I I I I 1111 / t
!lll/1///////1/l/l//I///!
!/ll/l////l//l/l/////11/%

?-~---------------·-----?

B) 9EFOPE

?----------------------~!
MONITOR

!---~---~~~-------·--·--? !ll//l///////lll/l///l/lt
?ll/l////////11/lll/////t
tl//J///Jl/1/1///////ll!?

?·------·-"·~-----------! t TI iM!E'> .. SHAR I hG" .JOS
1 ISSUING LO.GK UUO

:11111111111111111111111:
:11111111111111111111111:
?lll/////////l/l/11/////!
?ll/11////1/l/l/l/l/////t
?///////////////////////:
?111/l////l/1/l///l/////l
:11111111111111111111111!
:11111111111111111111111!
!/l/l/////l/llll////1111!
!/l/l/l/lll/)ll/!/1/!ll/:
!/l/l////l///lll//1/1///?
:11111111111111111111111!

...
•
t
t

' t
' t
t
t

t

CORM AX

1'

t

' 1'

' ,.
1'

1'

t

..
t
,.
t

...

f

CORMAX

' t ,.
1'

t

f

...

4F'TER

f'10NITOR

i-------·-···---~-~---·~1
:111111111111111111111111
llll/l/ll//l////////111/~
tlll/ll////llll/lll///I/!
f l/lll//l///lll/l/l/1111!
?11/lllllllllllllllllll/1
i11111111111111111111111i
r11111111111111111111111:
!ll//l/ll/l/1/llll////l/t
?ll/lll/1/ll//1/l/l///111
:111111111111111111111111
tllllllll/l//l/lllll/1111
?/llllll//l/l///////l/lll
!llllll//////////11///lll
lll/lll///////1/l/ll/1111
i111111111111111111111111
:11111111111111111111111:
llllllll////l//llll/111/t
i11111111111111111111111i

? ~OCKED JOB

AF'TER

?-------·---~-----~---~~
MONITOR

!--·-·--·~----------~--~ ! LOCKED JOB

:-----------------~---~~ :11111111111111111111111
?ll/lllll/l//////l//l/11
:11111111111111111111111
:11111111111111111111111
~/l/ll/lllll/////////111
!llllll//ll/111/l///l/ll
!ll//l/lllll/////ll/1111
?ll//l/ll/ll////l/l/1/1/
tll//lllllli/11/lll///I/
!///////////////////////
~11111111111111111111111
!/l//ll/1///l/l/////1111
tl////l/llll/11/l/l/l/ll
:11111111111111111111111
!ll//lll/11/////////1/I/
?ll/ll!llll/1///1/lll///

1---··--·---~-----------? LOCKED J08 ? LOCKED JOB

i-------------~---------! !·-····-~-------·---·-~~

Figure 8-1 Locking Jobs In Core

8-5

..
' • • • • • • •
' • CORM AX
• •
t

• • • • ..

• • •
t

•
t

CORM AX
• • • • • •
t

• • ...

C) BEFORE

I•·---~---··~···--~·-·••!
?

MONITOR

1-~-----·····-----·---·-i
I L.OCl<EO JOB
f
1-----------------~---~-:
111111111111111111111111:
fl/11/l/llllll/llll/1/ll?
I•·····-···-~---·-~--··-!
I TI~E~SHARING JOB
I ISSUING LOCK UVO
1-~---------------~---·-?
1///1///ll///ll/1/l///l/t
llll/l////l/ll//////111/?
llll////////11////1//lll!
i11111111111111111111111t
:11111111111111111111111!
111111111111111111111111:
lll/////1/l/l/ll////////!
t///////////////////////!
lll/11//lll/1/lllll/////!
l/l//////l/l/ll/1/1//lll!

! LOCKED JOB
t
I•···········-·····--·~-!

D)

1-~-----------~---·--···?
!

MONlTOR

i--------~------------~-t
f l//ll///ll/lllll/l/I///!
l/l/l////ll//l////////1/1
1---~-------------~---··?
t LOCKED JOB
t !

l··---------------------1 t/1/1////////l/l/////l/1?
l/1/////////1/ll/////lllt
I••·····-····--·····-··-:
l TfME•SHARJNG JOB
I ISSUING LOCK UUO
l
1-~---------------·-----!
l/l/11////l/lll//llll///t
tlllll////l/11//1/////l/l
111111111111111111111111!
111111111111111111111111:
t/l//////ll/lll///////11!
I•••·········-~---~---··?

..
' t
'
' ' ' CORM AX
t

' ' t

' '
' ' t ..

...

' ' t
' t

CORMAX

' '
' ' t
'

AFTER

!-------~-----------~-~~!
MONITOR

~

?~------·---·-----~-~-~-1
? LOCKED JOB
' t . .
t~----~-·-------~-----~-1
! L.,OCKED JOB
!

i-------------------~---i !/l///l/1/l/l/1/lll/111/l
!/11//l/l/lllllll////ll/l
?/Ill/II/II/Ill/////////?
!/lll/l/1/1/////l////ll/f
!/l/ll/1/ll/1/////1//1111
!/l//ll/lll/l/1///1/lllll
!11/lllllllll/l/l/ll////I
:11111111111111111111111:
Jllllllllllllll/1111/ll/I
!11//llll/l/lllllllll/l/I
111/lll/!//llll///l//ll/I
!/llllll/11//11/llllll//!
:11111111111111111111111:

:-----·---~---·-·-----~~: ! l.OCKEO JOB

AFTER

!·~-----------~-·---~---:
MONITOR

1~--------------~-~-----1 !ll//ll/1///1/////lllll/l
?11/lll/lll/ll!ll/l///l/t
!---------~-----------~~t
? L.OCKED JOB
' .
:-------·-------·---·-~-1 l ~OCKEO JOB f

I
t
1-·-··--·--··-~----~·--~1
!/lllll/llll/llll///llllt
~ll///l/1///l/1/l///l/111
!//l/lllllllll//lll/111/t
~/l//l/l//l///l/lll/111/t
Jl//lll/1/ll//l///l/11111
:111111111111111111111111
i111111111111111111111111
:111111111111111111111111

:-~-----··"··-·-------~-1 I LOCKED JOB ! ~OCKED JOB
I !

!-------~----~--~--~~---? !---------~-------~-~-~-:

Figure 8-1 Locking Jobs In Core {Cont)

8-6

"' • •
t

CORMAX
t

•
t

•
t

• • • • ..

-' CORM AX

' • • • • • ..

E) Unlikely Fragmentation Case

t•••••••••••••••w•••••••!
' t

!

?-·-----·--·-~--------·-! ' TIME-SHARING JOB
I ISSUING LOCK UUO
!••••••••w••••••••••••••!
tll/ll///////ll//l////11?
111111111111111111111111:
:11111111111111111111111?
J/1/1///llllllll//l/1/ll?
lll//ll//1/1/l///ll/1///!
l/l/l/ll//l//////////111%
tll//ll//lll!l//////11/li

I ~O:KEC JOB I

1-------------------~---! !/l/l/////l/11//////l///f
tll///l//ll/1/ll////1111?
!///l//l/ll/ll/1//l/!llli
?ll/lll/1/l/lll//////111?
i11111111111111111i11111:
t/ll/l////l/lll/1/////1/?

1---~-------------·-----: t LOCKED JOB
l
!···-···········--···•••I

..
t

t

t

' CORMAX
t

t
t
t
t

~

t········-·········~~-··I
' ~

!········-·······-~·~·••I
?ll/lllllll/l/////l//11/1
:111111111111111111111111
!llllll/l/l/l////l//l/111
111/ll!l/l///ll/l/1/////l
:111111111111111111111111
:11111111111111111111111:
:111111111111111111111111
:111111111111111111111111
'll/lll/lllllll///lll/lll
!//l/lll/lll//////lllll/l

?-··------~-~---·---~-~-: t ~OCKEO JOB

:--·------~---·-------~-1 ? LOCKED JOS

t~--·---------~---~-·-~~1 J///l/1/l/l///////l/1/1/t
tlllll/1//////1/////////l

!---~-----------------~~1 ? kOCKEO JOB
!
l••••••••··~••••••••••W•l

Figure 8-1 Locking Jobs In Core {Cont)

8-7

..,
• • • •

CORMAX
t

' •
' • ..

8.3 RTTRP AC, OR CALLI AC, 57

The rea I-time trapping UUO is used by timesharing users to dynamically connect rea I-time devices

to the priority interrupt system, to respond to these devices at interrupt level, to remove the devices

from the interrupt system, and to change the PI level to which the devices are associated. The

RTTRP UUO can be called from UUO level or from interrupt level. This is a privileged UUO that

requires the job to have real-time privileges (granted by LOGIN) and to be locked in core (accom­

plished by LOCK UUO). These real-time privileges are assigned by the system manager and obtained

by the monitor from ACCT .SYS. The privilege bits required are:

1) PVLOCK - allows the job to be locked in core.

2) PVRTT - allows the RTTRP UUO to be executed.

WARNING

Improper use of features of the RTTRP UUO can cause the
system to hang. Since design goals of this UUO were to
give the user as much flexibi I ity as possible, some system
integrity had to be sacrificed. The most common errors
are protected against since user programs run in user mode
with a 11 A Cs saved.

Real-time jobs control devices in one of two ways: block mode or single mode. In block mode, an

entire block of data is read before the user's interrupt program is run. In single mode, the user's

interrupt program is run every time the device interrupts. Furthermore, there are two types of block

mode: fast block mode and normal block mode. These differ in response times. The response time

to read a block of data in fast block mode is 6.5 JJS per word and in normal block mode, 14.6 µs per

word. (This is the CPU time to complete each data transfer.) In all modes, the response time measured

from the receipt of the real-time device interrupt to the start of the user control program is 100 µs.

The RTTRP UUO allows a real-time job to either put a BLKI or BLKO instruction directly on a PI level

(block mode) or add a device to the front of the monitor PI channel CONSO skip chain (single mode).

When an interrupt occurs from the real-time device in single mode or at the end of a block of data in

block mode, the monitor saves the current state of the machine (the A Cs, APR flags, protection­

relocation register, UUO trap addresses 40 and 41, and the reserved instruction trap addressed 60 and

61), sets the new protection-relocation register and APR flags, and traps to the user's interrupt routine.

The user services his device and then returns control to the monitor to restore the previous state of the

machine and to dismiss the interrupt.

In fast block mode the monitor places the BLKI/BLKO instruction directly in the PI trap location fol­

lowed by a JSR to the context switcher. This action requires that the PI channel be dedicated to the

real-time job during any transfers. In normal block mode the monitor places the BLKI/BLKO instruction

directly after the real-time device's CONSO instruction in the CONSO skip chain as follows:

8-8

DEV I BITS
NXT DEV

CONSO
JRST
BLKI
JRST
JEN

DEV I POINTR
<CONTEXT SWITCHER>
@CH, PI

Any number of real-time devices using either single mode or normal block mode can be placed on any

available PI channel. The average extra overhead for each real-time device on the same channel is

5 .5 µs per interrupt.

The ca II is:

MOVEI AC, RTBLK
RTTRP AC,

error return
norma I return

;AC contains address of data block.
;or CALLI AC, 57; put device
;on PI I eve I.
;AC contains an error code.
;Pl is set up properly.

The data block depends on the mode used. In single mode the data block is:

RTBLK: XWD PICHL, TRPADR

EXP APRTRP

co NSO DEV I BITS
0

The data block in fast block mode is:

RTBLK: XWD PICHL, TRPADR

EXP APRTRP
BLKO DEV I BLKADR
0

The data block in normal block mode is:

RTBLK: XWD PICHL, TRPADR
EXP APRTRP
CON SO DEV I @BITMSK

BLKI DEV I BLKADR

8.3.1 Data Block Mnemonics

;PI channel (1-6) and trap
;address.
;APR enable bits and APR
;trap address.
;CONSO chain instruction.
;no BLKI/BLKO instruction.

;Pl and trap address when
;BLKO done.
;APR trap conditions
;BLKI or BLKO instruction
;BLKADR points to the IOWD of
;block to be sent.

;channel and trap address.
;APR trap address.
;control bit mask from
;user area,
;BLKI instruction.

The following mnemonics are used in describing the data block associated with the RTTRP UUO.

8-9

8.3.1. 1 PICHL - PICHL is the PI level on which the device is to be placed. Levels 1-6 are legal

depending on the system configuration. If PICHL = 0, the device is removed from all levels. When

a device is placed on a PI level, norma I ly a II other occurrences of the device on any PI level are

removed. If the user desires the same device on more than one PI level simultaneously (i.e., a data

level and an error level), he can issue the RTTRP UUO with PICHL negative. This indicates to the

system that any other occurrence of this device (on any PI level) is not to be removed. Note that this

addition to a PI level counts as a real-time device occupying one of the possible real-time device

slots.

8.3.1.2 TRPADR - TRPADR is the location trapped to by the real-time interrupt (JRST TRPADR).

Before the trap occurs, a 11 A Cs are saved by the monitor and can be overwritten without concern for

their contents.

8 .3. 1. 3 APRTRP - APRTRP is the trap location for a II APR traps. When an APR trap occurs, the

monitor simulates a JSR APRTRP. The user gains control from an APR trap on the same PI level that

his real-time device is on. The monitor always traps to the user program on illegal memory references,

non=existent memory references, and push-down overflows. This al lows the user to properly turn off

his rea I-time device if needed. The monitor also traps on the conditions specified by the APRENB UUO

(see Paragraph 4.3. 3. 1). No APR errors are detected if the interrupt routine is on a PI level higher

than or equal to the APR interrupt level.

8.3.1.4 DEV - DEV is the real-time device code.

8.3.1.5 BITS - BITS is the bit mask of all interrupt bits of the real-time device and must not contain

any other bits. If the user desires control of this bit mask from his user area, he may specify one level

of indirection in the CONSO instruction (no indexing), i.e., CONSO DEV, @MASK where MASK

is the location in the user area of the bit mask. MASK must not have any bits set in the indirect or

index fields.

8.3. 1.6 BLKADR - BLKADR is the address in the user's area of the BLKI/BLKO pointer word. Before

returning to the user, the monitor adds the proper relocation factor to the right ha If of the pointer word.

Data can only be read into the low segment above the protected job data area, i.e., above location

114. Since the pointer word is in the user's area, the user can set up a new pointer word when the

word count goes to 0 at interrupt level. This allows fast switching between buffers. When the user

desires to set up his own pointer word, the right ha If of the word must be set up as an absolute address

8-10

instead of a relative address. The job's relocation value is returned from both the LOCK UUO and the

first RTTRP UUO executed for setting the BLKI/BLKO instruction. If this pointer word does not contain

a lega I address, a portion of the system might be overwritten. A check should be made to determine if

the negative word count in the left ha If of the pointer word is too large. If the word count extends

beyond the user's own" area, the device may cause a non-existent memory interrupt, or may overwrite

a timesharing job. If all of the above precautions are taken, this method of setting up the pointer

word is much faster and more flexible than issuing the RTTRP UUO at interrupt level.

8. 3. 2 Interrupt Leve I Use of RTTRP

The format of the RTTRP UUO at interrupt level is similar to the format at user level except for two

restrictions:

1) AC 16 and AC 17 cannot be used in the UUO call (i.e., CALLI 16,57 is
illegal at interrupt level).

2) Al I ACs are overwritten when the UUO is executed at interrupt level. There­
fore, the user must save any desired ACs before issuing the RTTRP UUO. This
restriction is used to save time at interrupt level.

CAUTION

If an interrupt level routine executes a RTTRP UUO which
affects the device currently being serviced, no additiona I
UUOs of any kind (including RTTRP) can be executed dur­
ing the remainder of the interrupt. At this point, any sub­
sequent UUO dismisses the interrupt.

8 .3 .3 RTTRP Returns

On a norma I return, the job is given user IOT privileges. These privileges allow the user to execute

a II restricted instructions including the necessary 1/0 instructions to control his device.

The IOT privilege must be used with caution since improper use of the 1/0 instructions could ha It the

system (i.e., CONO APR,O, CONO PI,O, or HALT). Note that a user can obtain just the user IOT

privilege by issuing the RTTRP UUO with PICHL = 0 (see Paragraph 8.3. 1. 1).

An error return is not given to the user unti I RTTRP scans the entire data block to find as many errors

as possible. On return, AC may contain the following error codes.

Code

Bit 26=1

Bit 27=1

Value

1000

400

Meaning

Device a I ready in use by another job.

Illegal AC used during RTTRP UUO at interrupt level.

8-11

Code Value Meaning

Bit 28=1 200 Job not locked in core, or not privileged.

System limit for real-time devices exceeded. Bit 29=1 100

Bit 30=1 40 II lega I format of CO NSO, BLKO, or BLKI instruction.

BLKADR or pointer word illegal. Bit 31=1 20

Bit 32=1 10 Error address out of bounds.

Bit 33=1 4 Trap address out of bounds.

Bit 34=1 2 PI channel not currently available for BLKI/BLKO's.

PI channel not available (restricted use by system). Bit 35=1 1

8.3.4 Restrictions

1) Devices may be chained onto any PI channel that is not used for BLKI/BLKO instructions
by the system or by other real time users using fast block mode. This includes the APR
channel. Normally PI levels 1 and 2 are reserved by the system for magnetic tapes and
DECtapes. PI level 7 is always reserved for the system.

2) Each device must be chained onto a PI level before the user program issues the CONO
DEV, PIA to set the device onto the interrupt level. Failure to observe this rule or
failure to set the device on the same PI level that was specified in the RTTRP UUO could
hang the system.

3) If the CONSO bit mask is set up and one of the corresponding flags in a device is on,
but the device has not been physically put on its proper PI level, a trap may occur to
the user's interrupt service routine. This occurs because there is a CONSO skip chain
for each PI level, and if another device interrupts whose CONSO instruction is further
down the chain than that of the real-time device, the CONSO associated with the real­
time device is executed. If one of the hardware device flags is set and the corresponding
bit in the CO NSO bit mask is set, the CON SO skips and a trap occurs to the user program
even though the rea I-time device was not causing the interrupt on that channel. To avoid
this situation the user can keep the CONSO bit mask in his user area (see Paragraph
8.3.1.5.). This procedure allows the user to chain a device onto the interrupt level,
keeping the CO NSO bit mask zero unti I the device is actually put on the proper PI level
with a CONO instruction. This situation never arises if the device flogs are turned off
until the CONO DEV, PIA con be executed.

4) The user should guard against putting programs on high priority interrupt levels which
execute for long periods of time. These programs cou Id cause rea I-time programs at
lower levels to lose data.

5) The user program must not change any locations in the protected job data area (locations
20-114) since the user is running at interrupt level and full context switching is not
performed.

6) If the user is using the BLKI/BLKO feature, he must restore the BLKI/BLKO pointer word
before dismissing any end-of-block interrupts. This is accomplished with another RTTRP
UUO or by directly modifying the absolute pointer word supplied by the first RTTRP UUO.
Failure to reset the pointer word could cause the device to overwrite all of memory.

8-12

8 .3 .5 Removing Devices from a PI Channel

When PICHL=O in the data block (see Paragraph 8.3. 1. 1), the device specified in the CONSO

instruction is removed from the interrupt system. If the user removes a device from a PI chain, he

must also remove the device from the PI level (CONO DEV ,0).

A RESET, EXIT, or RUN UUO from the timesharing levels removes all devices from the interrupt levels

(see Paragraph 8.2). This UUO causes a CONO DEV ,0 to be executed before the device is removed.

Monitor commands which issue implicit RESETS also remove real-time devices (e.g., R, RUN, GET,

CORE 0, SAVE, SSAVE).

8 .3 .6 Dismissing the Interrupt

The user program must always dismiss the interrupt in order to allow monitor to properly restore the state

of the machine. The interrupt may be dismissed with any UUO other than the RTTRP UUO or any in­

struction which traps to absolute location 60. The standard method of dismissing the interrupt is with

a UJEN instruction (op code 100). This instruction gives the fastest possible dismissal by trapping to

location 60.

8.3.7 Examples

PDATA:

PTRTST:

********** EXAMPLE 1 **********
SINGLE MODE

TITLE RTSNGL - PAPER TAPE READ TEST USING CONSO CHAIN

PIOFF=40C?J
PION=200
TAPF.:=400
BUSY=20
DONE=10

z

RESET
LOCK
.JHST FA I LED
SETZM PTRCSO
SETZM DONFLG
MOVE! RTBLK
RTTRP
JRST FAILED
MOVE I 1 ,DONE
HLRZ 2,RTBLK
TRO 2,BLJSY
CONO PJ,PIOF'F
MOVEl'I 1 ,PTf'<CSO
CONO PTR,(2)
CONO PI,PION

;TURN PI SYSTEM OFF
JTUkN PI SYSTEM ON
JNO MO~E TAPE IN HEADER IF TAPE=0
JDEVICE IS BUSY READING
JA CHARACTER HAS BEEN READ

JLOCATION WHERE DATA IS READ INTO

JRESET THE PROGRAM
JLOCK THE JOB IN CORE
JLOCK UUO FAILED
JMAKE SURE CONSO BITS ARE ZERO
JINITIALIZE DONE FLAG
JGET ADDRESS OF kEAL TIME DATA BLOCK
JPUT REAL TIME DEVICE ON THE PI LEVEL
JRTTkP UUO FAILED
JSET UP CONSO 8IT MASK
JGET PI NUMBER FROM RTBLK
JSET UP CONO BITS TO START TAP[GOING
JGUAHD AGAINST ANY INTEkRUPTS
JSTORE CONSO BIT MASK
;TURN PTR ON
JALLOW INTERRUPTS AGAIN

8-13

RTBLK:

PTRCSO:
DONFLG:
fffBLK 1 :

TRPADR:

APRTRP:
TOONE:

FAILED:

BLKTST:

MOVE! 5
CALLI 31
SKIPN DONFLG
JRST .-3
EXIT

XvJD 5 1TRPADR
F.:XP APRTRP
CONSO PTR,@PTRCSO
z

z
z
z
z
CONSO PTR,0
z

CONSO PTR,TAPE
l:fRST TDONE
DATA! PTR,PDATA
UJEN

z
MOVE! RTBLK1
CONO PTR,0
RTTRP
JFCL
SETOM DONFLG
SETZM PTRCSO
UJEN

;SET UP TO SLEEP FOR 5 SECONDS
;SLEEP
JHAVE WE FINISHED READING THE TAPE
JNO GO BACK TO SLEEP

JPI CHANNEL AND TRAP ADDkESS
JAPk ERROR TRAP ADDRESS
;INDIRECT CONSO BIT MASK= PTRCSO
JNO BLKI/O INSTRUCTION

;CONSO BIT MASK
JP! LEVEL TO USER LEVEL COMM·
;DATA BLOCK TO kEMOVE PTR
JF'ROM PI CHANNEL

JENO OF TAPE?
;YES, GO STOP JOB
JREAD IN DATA WORD
;DISMISS THE INTERRUPT

JAPR ERROR TRAP ADDRESS
;SET UP TO REMOVE PTR
;TAKE DEVICE OFF HARDWARE PI LEVEL
;REMOVE FROM SOFTWARE PI LEVEL
;IGNORE ERRORS
JMARK THAT READ IS OVER
JCLEAR CONSO BIT MASK
;DISMISS THE INTERRUPT

TTCALL 3,(ASCIZ/RTTRP UUO FAILED!/]
EXIT

END PTRTST

********** EXAMPLE 2 **********
FAST BLOCK MODE

TITLE RTFBLK - PAPER TAPE READ TEST IN BLKI MODE

TAPE=400
BUSY=20
DONE=10

RESET
LOCK
JRST FAILED
SETZM OONFLG
MOVE! RTBLK
RTTRP
JRST FAILED
HLR Z 2, RTBLK
TRO' 2 1BUSY
CONO PTR, C2 >
MOVEI 5
CALLI 31
SKIPN OONFLG
JRST .-3
EXIT

;NO MORE TAPE IN READER IF TAPE=0
;DEVICE IS BUSY READING
;A CHARACTER HAS BEEN READ

JRESET THE PROGRAM
;LOCK THE JOB IN CORE
JLOCK UUO FAILED
JINITIALIZE DONE FLAG
JGET ADDRESS OF REAL TIME DATA BLOCK
JPUT REAL TIME DEVICE ON THE PI LEVEL
JRTTRP UUO FAILED
JGET PI NUMBER FROM RTBLK
JSET UP CONO BITS TO START TAPE GOING
JTURN PTR ON
;SET UP TO SLEEP FOR 5 SECONDS
;SLEEP
;HAVE WE FINISHED READING THE TAPE
JNO GO BACK TO SLEEP

8-14

RTBLK:

POINTR:
OPO INT:
TABLE:
DONFLG:
RTBU< 1 :

TRPP.Df~:

AP!HRP:
TD ONE:

FA IL.ED:

BU<TST:

XWD 6,TRPADR
EXP APRTRP
BLKI PTR,POINTR
z

IOWO S,TABLE
IOWD S,TABLE
BLOCK 5
z
z
z
CONSO PTR,0
z

CONSO PTR,TAPE
JRST TOONE
MOVE OPCINT
MOVEM POINTR
UJEN

z
MOVEI RTBLKl
CONO PTR10
RTTRP
.. JFCL
SETOM DONFLG
U.JFN

;PI CHANNEL ANO TRAP ADDRESS
;APR ERROR TRAP ADDRESS
;READ A BLOCK AT A TIME

;POINTER FOR BLKI INSTRUCTION
;ORIGINAL POINTER WORD FOR SLKI
;TABLE AREA FOR DATA BEING READ
JP! LEVEL TO USER LEVEL COMM.
JDATA BLOCK TO REMOVE PTR
; FROM PI CHANNEL

JEND OF TAPE?
JYES, GO STOP JOB
JGET ORIGINAL POINTER WORD
;RESTORE BLKI POINTER WORD
;DISMISS THE INTERRUPT

JAPk ERROR TRAP ADDRESS
JSET UP TO REMOVE PTR
;TAKE DEVICE OFF HARD~ARE PI LEVEL
;RE~OVE FROM SOFTWARE PI LEVEL
;IGNORE ERRORS
JMARK THAT READ IS OVER
;DISMISS THE INTERRUPT

TTCALL 3,[ASCIZ/RTTRP UUO FAILED!/)
EXIT

END BU<.TST

********** EXA~PLE 3 **********
NOR~AL BLOCK MODE

TITLE RTNBLK - PAPER TAPE READ TEST IN BLKI MODE

TAPE=4~J0

BUSY=20
DONE=10

RESET
LOCK
JRST FAILED
MOVEI RTBLKl
RTTf<P
JRST FAILED
CONO PTR10
SETZM DOi'lFLG
lV10VE I RTB U<
RTTRP
JRST FAILED
MOVE POINTR
MOVEM OPOINT
HLRZ 2,RTBLK
TRO 2,BUSY
CONO PTR,C2>
ViOVEI 5
SLEEP
SKIPN DOi\lFLG
.JRST • -3
EXIT

;NO MORE TAPE IN READER IF TAPE=0
;DEVICE IS BUSY READING
;A CHARACTER HAS BEEN READ

; IO RESET
;LOCK THE JOB IN CORE
;LOCK UUO FAILED
JGET ADDRESS OF REAL TIME BLOCK
JGET USER IOT PRIVILEGE
;UUO FAILED!
;CLEAR ALL PTR FLAGS
JINITIALIZE DONE FLAG
JGET ADDRESS OF REAL TIME DATA BLOCK
JPUT REAL TIME DEVICE ON THE PI LEVEL
JRTTRP UUO FAILED
JGET RELOCATED POINTER WORD FOR LATER
;STORE FOR INTERRUPT LEVEL USE
JGET Pl NUMBER FRO~ RTBLK
;SET UP CONO BITS TO START TAPE GOING
JTUHN PTR ON
JSET UP TO SLEEP FOR 5 SECONDS

;HAVE WE FINISHED READING THE TAPE
JNO GO BACK TO SLEEP

8-15

RTBLK:

POINTR:
OPO INT:
TABLE:
DONFLG:
RTBLKl :

TRPADR:

APRTRP:
TOONE:

FAILED:

XWD 6,TRPADR
EXP APRTRP
CONSO PTR,DONE
BLKI PTR,POINTH

IOWD s,TABL.E
z
BLOCK 5
z
z
z
CONSO PTR,0
z

CONSO PTR,TAPE
JRST TOONE
MOVE OPOINT
MOVEM POINTR
UJEN

z
MOVFI RTBLKl
CONO PTR,0
RTTRP
JFCL
SETOM DONFLG
UJEN

JPI CHANNEL AND TRAP ADDRESS
JAPR ERROR TRAP ADDRESS
JWAIT ONLY FOR DONE FLAG
JREAD A BLOCK AT A TIME

JPO!NTER FOR BLKI INSTRUCTION

;TABLE AREA FOR DATA BEING READ
JPI LEVEL TO USER LEVEL COMM·
JDATA BLOCK TO REMOVE PTR
JFROM PI CHANNEL

JENO OF TAPE?
JYES, GO STOP JOB
JGET ORIGINAL POINTER WORD
JSTORE IN POINTER LOCATION
JDISMISS THE INTERRUPT

;APR ERROR TRAP ADDRESS
JSET UP TO REMOVE PTR
JTAKE DEVICE OFF HARDWARE PI LEVEL
;REMOVE FROM SOFTWARE PI LEVEL
JIGNORE ERRORS
;MARK THAT READ IS OVER
;DISMISS THE INTERRUPT

TTCALL 3,[ASCIZ/RTTRP UUO FAILED!/]
EXIT

END BKJTST

8-16

8.3.8 FORTRAN Usage of Real-Time Trapping

Real-time library subroutines allow FORTRAN programs to connect real-time devices to the priority

interrupt system. These subroutines provide the FORTRAN-oriented user the flexibility needed to

write rea I-time code without the requirement of learning assembly language coding and hardware

peculiarities. At present these subroutines are not reentrant and cannot be called from two PI levels

simultaneously. If this is a requirement, then a different routine must be called at each level.

To enter the same subroutine from two or more PI levels simultaneously, the following MACRO pro-

gram can be used:

TITLE SU Bl
ENTRY SUBl I SUB2
EXTERN SUB

SU Bl: z
JRST SUB+l

SUB2: z
JRST SUB+l
END

For each PI level which needs the subroutine SUB, a new ENTRY point must be made. In the example

above, three different PI levels could be active simultaneously using the three different CALLS to the

same routine (CALL SUB, CALL SU Bl, and CALL SUB2). This technique can be used for any routine

which is reentrant except for the FORTRAN CALL sequence. All of the real-time subroutines except

for CO NECT and DISCON meet this requirement.

The rea I-time subroutines and their functions are as follows.

8.3.8. 1 LOCK - The LOCK subroutine locks the job in core. This routine must be called before any

other routines can be executed. The ca II is

CALL LOCK

8.3.8.2 RTINIT - The RTINIT subroutine initializes all the internal tables controlling the real-time

device specified. The call is

where

CALL RTINIT (unit, dev, PI, TRPADR, MASK)

unit is the real time device unit number (starting at 1).
dev is the device code for the rea I-time device.
PI is the PI level on which the device is to be placed.

8-17

TRPADR is the address in the FORTRAN program where real time interrupts are to trap.
This address is loaded by ASSIGN 100 to TRPADR.

MASK is the mask of all interrupting flags for the real time device. This mask is set
by RTSTRT (see Paragraph 8.3.8.5) and should be zero when the real-time
device is inactive.

8.3.8.3 CONECT - The CONECT subroutine indicates to the system that the real-time device speci­

fied is to be connected to the indicated PI level and the trap address for trapping is to be set up. The

ca II is

where

CALL CONECT (unit, mode)

unit is the real-time device unit number.

Mode is -1 for writing blocks of data.
0 for a trap on each device interrupt.

+ l for reading blocks of data.

8.3.8.4 DISCON - The DISCON subroutine disconnects the real-time device from the PI level.

The ca II is

CALL DISCON (unit)

where

unit is the rea I-time device unit number.

8.3.8.5 RTSTRT - The RTSTRT subroutine starts the real-time device with a CONO DEV, START and

can also be used to stop the device and zero the CONSO mask (i.e., CALL RTSTRT (unit, 0,0)). This

is the preferred method for stopping the device. The ca 11 is

where

CALL RTSTRT (unit, start, i ntmsk)

unit is the rea I-time device unit number.
start is the flags necessary to start the device (CONO DEV, START).
intmsk is the mask of all interrupting bits. These bits are loaded into MASK
(refer to Paragraph 8. 3 .8 .2).

8-18

8 .3 .8. 6 BLKRW - The BLKRW subroutine sets up the size and the starting address of the block of

data. The ca II is

CALL BLKRW (unit, count, adr)

where

unit is the rea I-time device unit number.
count is the number of words to be read or written.
adr is the array from which the data is transferred depending on the MODE setting.

After the specified number of words are read or written, a trap occurs to the interrupt trap routine.

A new count and starting address must be set up each time the present one is exhausted.

8.3.8.7 RTREAD - The RTREAD subroutine reads a single word of data from the real-time device

(DATAI DEV, ADR). The call is

where

CALL RTREAD (unit, adr)

unit is the real-time device unit number.
adr is the address of the data to be read.

8.3.8.8 RTWRIT - The RTWRIT subroutine sends a single word of data to the real-time device (DATAO

DEV, ADR). The call is

CALL RTWRIT (unit, adr)

where

unit is the rea I-time device unit number.
adr is the address of the data word to be sent to the real-time device.

8.3.8.9 STA TO - The STATO subroutine sends an argument to the status register of the device. The

call is

where

CALL STA TO (unit, adr)

unit is the rea I-time device unit number.
adr is the location of the status bits to be sent to the rea I-time device
(CONO DEV I@ ADR).

8-19

8.3.8. 10 STATI - The STATI subroutine reads the current status bits into a specified location. The

call is

CALL STA TI (unit, adr}

where

unit is the real-time device unit number.
adr is the location in which the device status bits are to be read (CONO DEV, ADR).

8 .3 .8. 11 RTSLP - The RTSLP subroutine causes the background portion of the FORTRAN program to

sleep for a specified number of seconds (maximum of 60). The ca II is

CALL RTSLP (time)

where

time is the sleep interval in seconds.

RTSLP is called from the timesharing level causing the program to sleep for the specified amount of

time. When the sleep interval reaches zero, the program checks to see if RTWAKE has been called

at interrupt level. If RTWAKE has been called, RESLP returns to the calling program. If RTWAKE has

not been called, the background portion of the job goes back to sleep again.

8.3.8. 12 RTWAKE - The RTWAKE subroutine activates the background portion of the FORTRAN

program. This subroutine is called at interrupt level. The call is

CALL RTWAKE

8 .3 .8. 13 Example - The following is an example of a FORTRAN rea I-time program.

IMPLICIT INTEGER CA-Z>
DIMENSION A <100>

C LOCK THE JOB IN CORE
CALL LOCK

C 20 IS THE BEGINNING OF THE REAL-TIME SECTION
C THE PI LEVEL OF THE REAL-TIME JOB IS 5
C THE DEVICE CODE IS OCTAL 104

ASSIGN 20 TO TRPAOR
UNIT = 1
PI = 5
DEV = "104
MASK = 0

C INITIALIZE REAL TIME DEVICE
CALL RTINIT CUNJT, DEV, PI, TRPADR, MASK>

8-20

c

MODE = 0

CONNECT DEVICE TO PI LEVEL
CALL CONECT CUNIT1 MODE>

CONO = 0 25
CONSO = .. 10

C START REAL TIME DEVICE
CALL RTSTRT CUNIT1 CONQ, CONSO>

C SLEEP fOR FIVE SECONDS1 THEN CHECK FOR A RTWAKE CALL
C AT INTERRUPT LEVEL
10 CALL RTSLP <S>

CALL EXIT

C INTERRUPT LEVEL SECTION
C HAS THE READER RUN OUT OF' PAPER TAPE?
20 CALL STATI CUNIT1 J)

IF' CJ-"400.GE.0> GO TO 21

C YES1 THERE IS NO MORE TAPE1 SO WAKE UP
C BACKGROUND PORTION OF JOB

CALL RTSTRT CUNIT,010>
CALL DISCON <UNIT>
CALL RTWAKE
CALL DISMISS

C THERE IS STILL PAPER TAPE IN THE
C READER· READ ANOTHER CHARACTER·
21 CALL RTREAD CUNIT,X>

CALL DISMIS
END

8 .4 DIRECT USER 1/0

In specia I cases, the RTTRP UUO does not offer a fast enough response to real-time interrupts. These

specie I cases can a l\\<lys be solved by putting a device service routine into the monitor. However,

some of the fast response requirements con be met with the TRPSET feature. In order to achieve fast

response to interrupts, the TRPSET feature turns off timesharing during its use. This limits the class

of problems to be solved to cases where the user wants to transfer data in short bursts at predefined

times. Therefore, since the data transfers are short, the time during which timesharing is stopped is

also short, and the pause probably will not be noticed by the timesharing users.

8.4.1 TRPSET AC, or CALLI AC,25

This privileged UUO allows the user program to gain control of the interrupt locations. If the user does

) I not have the TRPSET privileges (either PVTRPS = 1 (bit 15), or user is job 1), an error return to the next

Revision 1 Monitors 8-21 January 1971 ·

location after the CALL is always given, and the user remains in user mode. , Timesharing is turned back

on. If the user has the TRPSET privileges, the central processor is placed in user I/O mode. If AC

contains zero, timesharing is turned on if it was turned off. If the lH of AC is within the range 40

through 57, all other iobs are stopped from being scheduled and the specified executive PI location

(40-57) is patched to trap directly to the user. In this case, the monitor moves the contents of the

relative location specified in the right half of AC, adds the job relocation address' to the address field,

and stores it in the specified executive PI location.

Thus, the user can set up a priority interrupt trap into his relocated core area. Upon a normal return,

AC contains the previous contents of the address specified by LH of AC, so that the user program may

· restore the original contents of the PI location when the user is through using this UUO. If the LH of

AC is not within the range 40 through 57, an error return i,s given iust as if the user did not have the

privileges. The call is:

ADR:

TRAP:

MOVE AC,CXWD N, .ADRl
TRPSET AC,
ERROR RETURN
NORMAL RETURN

JSR TRAP·

0

Jlnstruction to be stored
Jin exec PI location
;after relocation added to it.
,;Here on interrupt from exec.

The monitor assumes that user location ADR contains either a JSR U or BLKI U, where U is a user ad­

dress; consequently, the monitor adds the iob relocation to the contents of location U to make it an

absolute IOWD. Therefore, a user should reset the contents of U before every TRPSET call.

A RESET UUO returns the user to normal user mode. The following instruction sequence is used to

place the real-time device RTD on channel 3.

INT 46:

INT 47:

START:

XITINT:

BLKI RTD1INBLOK

JSR XITINT

MOVE! AC,INT46
HRLI AC~46
TRPSET AC1
J.RST EXIT·R
AOBJN AC, .+t
XCT .-3
JRST EXITR -.------

0 . ·-·

;relocation constant
,;for user is added
;to RH when instructions
;are placed into 46 and 47.

;error return
; norma I return

;error return
; norma I retu m

;PC saved
;interrupt dismiss routine

8-22

(

(

"\
)

)

If the interrupt occurs while some other part of the user's program is running, the user may dismiss from

the interrupt routine with a JEN @ XITINT. However, if the machine is in executive mode, a JEN

instruction issued in user mode does not work because of memory relocation. This is solved by a ca ff

to UJEN (opcode 100). This UUO causes the monitor to dismiss the interrupt from executive mode.

In this case, the address fie Id of the UJE N instruction is the user location when the return PC is stored

(i.e., UJEN XITINT). The following sequence enables the user program to decide whether it can issue

a JEN to save time or dismiss the interrupt with a UUO call.

XIT INT: 0

JRST 1,.+1

MOVEM AC, SAVEAC

MOVE AC, XITINT
SETZM EFLAG

TLNN AC, 10000

SETOM EFLAG
MOVE AC·, SAVEAC
SKIPE EFLAG
UJEN XITINT
JEN @ XITINT

SAVEAC: 0

EFLAG: 0

;PC with bits in LH

;essential instruction.
;returns machine to
;user mode.
;save accumulator AC
;service interrupt here

;get PC with bits

;was machine in user
; mode at entry?
;no
; RESTORE saved AC

; not in user mode at entry

Upon entering the routine from absolute 47 with a JSR to XITINT + REL (where REL. is the relocation

constant), the executive mode flip-flop is set. The first executed instruction in the user's routine

must, therefore, reset the user mode flag, thereby enabling relocation and protection. The user must

proceed with caution when changing channel interrupt chains under timesharing, making certain that

the real-time job can coexist with other timesharing jobs.

8.4.2 UJEN (Op Code 100)

This op code dismisses a user 1/0 mode interrupt if one is in progress. If the interrupt is from user

mode, a JRST 12, instruction dismisses the interrupt. If the interrupt came from executive mode,

however, this operator is used to dismiss the interrupt. The monitor restores a If accumulators, and

executes JEN@ U where user location U contains the program counter as stored by a JSR instruction

when the interrupt occurred.

8-23

8.5 HPQ AC, OR CALLI AC,71

The HPQ UUO is used by privileged users to place their jobs in a high-priority scheduler run queue.

These queues are always scanned by the scheduler before the normal run queues, and any runnable

job in one of these queues is executed before all other jobs in the system. Thus,·real-time associated

jobs can receive fast response times from the timesharing scheduler.

In addition to being scanned according to their priority before al I other queues for job execution and

swap-in, the high priority queues are scanned in reverse order (lowest priority first, highest priority

last) for swap-out after all other queues have been scanned. If the highest priority job has been

swapped onto the disk, then that job is the first job to be swapped in for execution.

8 .5. l HPQ UUO Format

The HPQ UUO requires as an argument the high-priority queue number of the queue to be entered.

The lowest high-priority queue is l, and the highest priority queue is equivalent to the number of

queues that the system is built for. The call is as follows:

MOVE AC, HPQNUM
HPQ AC,
error return
normal return

;get high-priority queue number
;or CALLI AC, 71

On an error return, AC contains -1 if the user did not have the correct privileges. The privilege bits

are bits 6 through 9 in the privilege word. These four bits specify a number from 0-17 octal, which

is the highest priority queue attainable by the user.

On a normal return, the job is in the desired high-priority queue. A RESET or an EXIT UUO places

the job back to the timesharing level.;

Revision l lv\onitors 8-24. January 1971

(

(

(

Appendix A

DECtape Compatibility
Between DEC Computers

{
PDP PDP

Read
4 5

By
550 and 552 and

555 555
TU55 TU55

PDP-4 A D

PDP-5 D A

PDP-6 D A

PDP-7 A c
Written PDP-8 D A
By 552

PDP-8 D A
TCOl
PDP-8/I D A

PDP-9 D A

PDP-10 D A

A = Can be done

PDP PDP PDP PDP
6 7 8 8

551 and 550 and 552 and TCOl
555 555 555 and

TU55 TU55 TU55 TU55

D A D D

B c A A

A c A A

c A c c
B c A A

B c A A

B c A A

A c A A

A c A A

B =Cannot be done because of difference in writing checksum

C =Can be done with programmed checksum

PDP PDP
8/1 9

TCOl TCOl
and and
TU55 TU55

D D

A A

A A

c c
A A

A A

A A

A A

A A

D =Can probably be done as in (C) except that PDP-4 is too slow for calculating
the exclusive or checksum in line; calculations must be done before writing.

NOTE

The PDP-10 does not allow search to find first or last
blocks when searching from the end-zone.

A-1

PDP
10

TCOl
and

TU55

D

A

A

c
A

A

A

A

A

Appendix B

Monitor Sizes

B.l MULTIPROGRAMMING NON-DISK MONITOR (JUNE 1970, REENTRANT4 SERIES,
VERSION 72)

Three resident componentS of the monitor are:

a. Required code (6 .2K)

b. Optional device code (0-4 .4K)

c. Tables and buffers per job (73 words per job)

B. l. l Required Code

The required code, assuming al I features, is:

Lower core
Common
CL SC SS
CLOCKl
COMCON
COREl

B.1.2 Optional Device Code

DLSINT
ERRCON
SCNSRF
SEGCON
SY SI NT
UUOCON

The optional devices are I isted below with the number of devices used in figuring the optional device

code.

Device Number Device Number

DTA 8 DIS l
MTA 2 LPT l
PTY 2 PLT l
CDR 1 PTP l
CDP 1 PTR l

B-1

B. 1 .3 Tables and Buffers

Tables and buffers allowed for each job are:

18 words of tables
55 words of TTY device data block space
73 words per job

B.2 SWAPPING MONITOR (JUNE 1970, REENTRANT 5 SERIES, VERSION 01)

Three resident components of the monitor are:

a. Required code (14K)

b. Optional device code (5 .2K)

c. Tables and buffers per job (1 K for every 4 jobs)

B .2 .1 Required Code

The required code, assuming all features, is:

Lower core
COMMON
CCI NT
CLOCKl
COMCON
COREl
ERRCON
FIL SER

B .2 .2 Optional Device Code

JOBDAT
SCHEDl
SCNSRF
SEGCON
SWPSER
SY SI NI
TMPUUO
UUOCON

The optional devices are I isted below with the number of devices used in figuring the optional device

code.

Device Number Device Number

DTA 8 DIS 1
MTA 3 LPT 1
PTY 2 PLT 1
CDR 1 PTP 1
CDP 1 PTR 1
FHA 2 DPA 4

B-2

B .2 .3 Tables and Buffers

·Tables and buffers allowed for each job are:

21 words of tables
90 words of DSK device data blocks (approximately 3 files)
40 words of DSK access information
20 words of TMPCO R storage
55 words of TTY device data block space

226 words per job

Fo~ a complete swapping system, the resident monitor is (assuming all devices):

8
16
24
32
40
48
56
64

JOBS
JOBS
JOBS
JOBS
JOBS
JOBS
JOBS
JOBS

B-3

21K
23K
25K
27K
29K
31K
33K
35K

Appendix C
Writing Reentrant User Programs

C.1 DEFINING VARIABLES AND ARRAYS

The LOADER simplification makes it somewhat more difficult to define variables and arrays. The

easiest way to define variables and arrays, so the resulting relocatable binary can be loaded on a one­

or two-segment machine, is to put them all in a separate sub-program as internal global symbols using

Block 1 and Block N pseudo-ops. All other subprograms refer to this data as external global locations.

Most reentrant programs have at least two subprograms, one for the definition of low segment locations

and one for instructions and constants for the high segment. (This last subprogram must have a HISEG

pseudo-op.) Programs are self-initializing; therefore, they clear the low segment when they are started

although the monitor clears core when it assigns it to a user.

Block 1 and Block N pseudo-ops cause the LOADER to leave indications in the job data area (LH of

JOBCOR) so a monitor SAVE command will not write the low segment. This is advantageous in shar­

able programs for two reasons. It reduces the number of files in small DECtape directories (22 files in

the maximum). Also, 1/0 is accomplished only on the first user's GET that initializes the high seg­

ment, but not on any subsequent user's G ETs for either the high or low segment.

C.2 EXAMPLE OF lWO-SEGMENT REENTRANT PROGRAM

LOW SEGMENT SUBPROGRAM:

TITLE LOW - EXAMPLE OF LOW SEGMENT SUB-PROGRAM

JORVER=137
LOC JOBVER
3
RELOC 0

LOWBEG:
DATA: BLOCK
DATA 1 : BLOCK
DATA2: BLOCK

TABLE: FjLOCK
TAF3LE1: BLOCK
LOWEND=.-1

END

10
10

;VERSION3

;LAST LOCATION TO BE CLEARED

C-1

HIGH SEGMENT SUBPROGRAM:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM

HISEG
EXTERN LO WBE·G, LO WEND
T=l

REG IN: SETZM LOWBEG ;CLEAR DATA AREA
MOVE I T,LOWBEG+l
HRLI T ,LQWBEG
BLT T,LOWEND
MOVE T, DATA 1 ; COMPUTE
ADDI 1 , 1
MOVEM T, DATA2

END BEGIN ;STARTING ADDRESS

C.3 CONSTANT DATA

Some reentrant programs require certain locations in the low segment to contain constant data, which

does not change during execution. The initialization of this data happens only once after each GET,

instead of after each START; therefore, programmers are tempted to place these constants in the sub­

program that contains the definition of the variable data locations. This action requires the SAVE

command to write the constants out and the GET command to load the constants in again; therefore,

the constant data should be moved by the programs from the high segment to the low segment when the

rest of the low segment is being initialized. The exception is when the amount of code and constants

in the high segment needed to initialize the low segment constants take up too much room in the high

segment. In this case, it is best to have 1/0 in the low segment on each GET. A rule to follow in

deciding between this high segment core space and the low segment GET 1/0 time is to put the code in

the high segment if it does not put the high segment over the next lK boundary.

C .4 SINGLE SOURCE FILE

A second way of writing single save file reentrant programs is to have a single source file instead of

two separate ones. This is more convenient, although it involves conditional assembly and, therefore,

produces two different relocatable binaries. A number of CUSPs have been written this way.

The idea is to have a conditional switch which is 1 if a reentrant assembly and 0 if a non-reentrant

assembly. The data is placed last in the source file following a LIT pseudo-op and consists only of

Block l and Block N statements, along with data location tags. If a reentrant program is desired, a

LOC 140 is assembled, which places the data at absolute 140 in the low segment. Because of the LOC,

no other relocatable program can be loaded into the low segment. The program should be debugged

C-2

as a non-reentrant program with DDT because DDT is a low segment relocatable file. The LOADER

switch /B is used to protect the symbols. The usual way of assembly is reentrant, therefore, uni ess

already defined, the conditional switch is 1.

The program must have one location in the job data area when it is assembled to be reentrant so that

the monitor starts assigning buffers at the end of the data area in the low segment instead of at loca­

tion 140. This is accomplished by changing the LH of JOBSA before the CALLI 0 (RESET) or changing

the contents of JOB FF after the CALLI 0, depending on how the program reinitializes itself on errors

and on completion. The program should not change these locations if it is assembled as non-reentrant;

thus, the symbol table can be protected using the LOADER /B switch, which places the symbols next

to the last program loaded and sets the LH of JOBSA appropriately higher. Therefore, this code is

under control of conditional assembly.

TITLE DEMO - DEMO ONE SOURCE REENTRANT PROGRAM -V001

JORVER=l37
LOC 1 37
EXP 0Vll

INTERN JOBVER,PURE
EXTERN JOBSA,JOBFF

IF~DFF PURE,<PURE=l>
IFN PURE,<HISEG>

PFG:
IFN PURF :• <

>

tv10VSI
HLLM

T,OATAE
T:.JOBSA

0
T,JQBFF
T, 1 1
ERROR

; VERSION NUfYJBER

;ASSUME REENTRANT IF PURE UNDEFINED
;TELL LOADER TO LOAD IN HIGH SEGMENT
;IF REENTRANT

;ONLY NEED lF REENTRANT
;CNOT NEEDED IF TWO FILES)
;SET FIRST FREE LOCATION IN LOW SEG,
;RESET SETS JOBFF FROM LH OF JOBSA

;oo CALL RESET
;ASSIGN AT LEAST ENOUGH CORE FOR DATA
;CORE UUO

CALLI
MOVE
CALLI
JRST
MOVE
SETZfvl
RLT

T, [XlvD DA TAB, DATAB+l J
DA TAB

;NOW CLEAR DATA REGION

LIT

IFN PURE,<LOC 1~0>

DATA P:
Dt~ TA: RLOCK
TARL~: RLOCK 128

8ATAF: END REG

;~AST LOCATION CLEARED

;PUT LITERALS I~ hIGH SEG
;DATA AREA:
;START DATA AREA AT 1~0 IN LOW SEG
;IF REENTRANT
;FIRST LOCATION CLEARED EVERY STARTUP

;DEFINE FREE LOCATION

C-3

0
I

Device Function I

CDP SETSTS

GETS TS

CDR SETSTS

GETS TS

DIS SETSTS
GETS TS

i:fsK SETSTS

GETS TS

18 19

Punch
Error

No Data
7-9 Missed
Punch

Write Search
Lock Error

20 21

Data
when
EOC
reached

Binary
Check
sum
Error

Parity Block
Check No.
sum Too

Large

22 23

1/0
Active

EOF 1/0
card Active
EOF
button

1/0
Active

End 1/0
of Active
File

Table D-1
Device Status Bits

24 25 26 27 28 29

DEC
029
Card
Codes

30

Sync
Input

Sync
Input

Appendix D
Device Status Bits

31 32 33 34 35

User Data Mode
Word
Count

Data Mode

Data Mode

User Data Mode
Word
Count

Device Function I 18 19. 20 21 22 23

DTA SETSTS

GETS TS Write Data Parity Block End 1/0
Lock Missed Error No. of Active

Too File
Large

LPT SETSTS

GETS TS 1/0
Active

MTA SETSTS

0
~ GETS TS Write Data Parity Record End 1/0

Lock Missed Error Too of Active
II legal Long File
Opera-
ti on

PL T SETS TS

GETS TS 1/0
Active

PTP SETSTS

GETS TS 1/0
Active

PTR SETSTS

GETS TS Block Check End 1/0
lncom- sum of Active
plete Error Tape

Table D-1 (cont)
Device Status Bits

24 25 26

Write
Even
Parity

Load End
Point Point
Rewind-
ing

27 28 29

Non-
struc-
tu red
Dump
Mode

Tape Density No
Retry

30 31 32 33 34 35

Sync User Data Mode
Input Word

Count

User Data Mode
Word
Count

Sync User Data Mode
Input Word

Count

User Data Mode
Word
Count

User Data Mode
Word
Count

Sync Data Mode
Input

-

0
I
w

Device Function 18 19 20 21 22 23 24

PTY SETSTS
GETS TS Block 1/0 PTY

No. Active Wait
Too
Large

TTY SETSTS

GETS TS Ignore Echo Char-
Inter- Fail- acter
rupt ure Lost

Table D-1 (Cont)
Device Status Bits

25 26 27

TTY Monitor
Re- Mode
sponse

Echo
of$
Sup-
press

28

Echo
Sup-
press

29 30 31 32 l 331 34 135
Data Mode

Full Sync User Data Mode
Char- Input Word
acter Count
Set

Note l: SETSTS UUO may set all bits except Bit 23 and GETSTS UUO may return all bits (18-35); however, the two are separated to show those bits nor­
mally set by the user program on INIT, OPEN, or SETSTS as distinct from those normally set by the monitor (GETSTS).

Note 2: Unused bits should always have the value O.

I

Appendix E
Error· Codes

The following error codes (refer to Table E-1) are returned in AC on RUN and GETSEG UUOs, in

location E + 1 on 4-word argument blocks of LOOKUP, ENTER, and RENAME UUOs, and in the right

half of location E + 3 on extended LOOKUP, ENTER, and RENAME UUOs. The codes are defined in

the S.MAC monitor file.

Symbol Code

.ERFNF 0

• ERIPP 1

.ERPRT 2

.ERFBM 3

.ERAEF 4

• ERISU 5

• ERTRN 6

• ERNSF 7

• ERNEC 10

~ERDNA 11

• ERNSD 12

Revision 1 Monitors

Table E-1
Error Codes

Explanation

Fi I e not found, i II egal filename (O, *), or filenames do not
match (UPDATE).

Incorrect project-programmer number. (UFO does not exist.)

Protection failure or directory full on OTA.
~

File being modified (ENTER).

Already existing filename (RENAME) or different filename
(ENTER after LOOKUP).

Illegal sequence of UUOs (RENAME with neither LOOKUP
nor ENTER, LOOKUP after ENTER).

a. Transmission, device, or data error (RUN,
GETSEG only).

b. Hardware-detected device or data error
detected while reading the UFO RIB or UFO
data block.

c. Software-detected data inconsistency error
detected while reading the UFO RIB or file RIB.

Not a saved file (RUN, GETSEG only) •

Not enough core (RUN, GETSEG only).

Device not available (RUN, GETSEG only).

No such device (RUN, GETSEG only).

E-1
January 1971

Symbol Code

• ERILU 13

.ERNRM 14

.ERWLK 15

• ERNET 16

• ERPOA 17

• ERB NF 20

Table E-1 (Cont)
Error Codes

Explanation

Illegal UUO (GETSEG only). No two-register relocation
capability.

No room on this file structure or quota exceeded (over-
drawn quota not consi.dered).

Write-lock error. Cannot write on file structure.

Not enough table space in free core of monitor.

Partial allocation only •

Block not free on al located position.

E-2

(

I

Appendix F

Monitor Diagnostic Messages

The following table contains a summary of the diagnostic messages that the system can issue. The

conventions used in the summary are:

dev

file.ext

adr

n

unit

represents any I egal device name.

represents any legal filename and filename extension.

represents a user address.

represents a number, usually a job number or device unit number.

represents any legal disk unit.

I Programs and commands causing the error message are given in parentheses.

Table F-1
Monitor Diagnostic Messages

The typein is typed back preceded and fol lowed
by ?

ACTIVE SWAPPING LIST FULL

?ADDRESS CHECK FOR DEVICE dev

?ALREADY ASSIGNED TO JOB n

The monitor encountered an incorrect character
(e.g., a letter in a numeric argument). The in­
correct character appears immediately before the
second?.

For example:
• CORE ABC
? CORE A?

An attempt was made to specify more units to
the active swapping list than the monitor tables
can handle. The current limit is 8. If the oper­
ator needs more swapping space, he should in­
crease the amounts on the eight units already
specified. (ONCE 0 NL Y).

The monitor checket! ,-; user address on a UUO and
found it to be too large (>C (JOBREL)) or too small
(<JOBPFI); in other words, the address lies out­
side the bounds of the user program.

The device is already assigned to another user's
job (job n).

F-1

Tobie F-1 (Cont)
Monitor Diagnostic Messages

?ARGSARE: DAY, RUN, WAIT, READ,
WRITE

?BAD DIRECTORY FOR DEVICE DTAn

BLOCK NOT FREE

?BUSY

CANNOT EXCEED# BLOCKS IN FILE
STRUCTURE = m

CANNOT EXCEED# SAT BLOCKS
ON UNIT=n

?CAN'T A TT TO JOB

?CAN'T CONTINUE

CAN'T CREATE NEW FILE STRUCTURE SEARCH
LIST

?CAN'T DECIPHER THAT

?CAN'T FIND FILE file.ext

?CAN'T DET DEV

COMMAND ERROR

[CREATING NEW FILE]

dev: ASSIGNED

?DEVICE CAN'T BE REASSIGNED

The user typed an illegal argument in the WATCH
command string.

The system cannot read or write the DECtape
directory without getting some kind of error.
This error often occurs when the user tries to write
on a write-locked tape or use a DECtape that has
never been written on.

M specifies a unit or file structure logical block
that is not free .

The console addressed is not communicating with
the monitor. The operator's console is never busy.
(SEND).

The number of disk blocks specified for reserved
quotas or the number of disk blocks specified for
the overdraw amount was too I arge. The operator
should type in a number less than or equal to m.
(ONCE ONLY).

The number of SAT blocks in core cannot exceed
the number of SAT blocks (n) on the unit. The
operator should type a number I ess than or equal to
n. (ONCE ONLY).

The project-programmer number specified is not
that of the owner of the desired job or is not [1,4] .

The job was terminated due to a monitor-detected
error and cannot be continued.

The monitor cannot create a new file structure
search Ii st.

There is a syntax error in the command string.
(MOUNT I DISMOUNT I FILE).

The specified file could not be found.

The user is not logged-in under [1.4].

General catch-al I error response for the COMPIL
commands. The syntax of the command is in error,
and the command cannot be deciphered. (COMPIL)

The specified file does not exist; therefore a MAKE
command is assumed.

The device has been successfully assigned to the
user's job.

A user's Teletype cannot be reassigned, or an
attempt was made to reassign a device that a job is
sti II using.

F-2

Table F-1 (Cont)
Monitor Diagnostic Messages

?DEVICE dev OK?

?dev WASN'T ASSIGNED

?DEVICE dev NOT AVAILABLE

DISMOUNT COMPLETE

DPAn NOT AVAILABLE

DPAn NOT READY

DPA IS OFF-LINE
DO YOU WANT IT TO BE l) ON-LINE OR
2) DOWN? (TYPE #)

DPAO IS OFF-LINE
DO YOU WANT IT TO BE 1) ON-LINE,
2) OFF-LINE, OR 3) DOWN? (TYPE#)

DPAO IS WRITE PROTECTED. DO YOU WANT
IT TO BE 1) WRITE-ENABLED I OR 2) WRITE­
PROTECTED?

?ENTER FAILURE

The device is temporarily disabled. The line
printer may be turned off or out of paper. For
magnetic tapes, no tape is mounted or the switch
is in LOCAL. The user should correct the situa­
tion and then proceed (retry the operation) by
typing CONTINUE.

The device is not currently assigned to the user's
job and cannot be deassigned or reassigned by the
job.

Specified device cannot be initialized because
another user is using it. (COMPIL)

The DISMOUNT command has comp I eted.

The drive indicated by the user is not currently
available. (MOUNT).

The indicated drive is either off-I ine or physically
write-locked when write-enabled was requested.
The operator wil I be notified. (MOU NT).

Control! er DPA (RPl 0) is off-I ine. The operator
should check settings of all switches in RPlO bay.
Al I switches should be down. After changing
switches, the operator should type l. If the
operator does not want the monitor to use the con­
troller, he should type 2. Also applies to DPB.
(ONCE ONLY).

The operator should check the START/STOP rocker
switch and the ENABLE/DISABLE switch on the in­
dividual disk pack unit. They should be in the
normal position with the top of the switch in.
After changing switches, the operator should
type l • If the operator does not want the monitor
to use the unit, he should type 2. This message
also applies with DPA l, DPA2 •.. , DPA7, DPBO,
DPBl, •.. ,DPB7. (ONCE ONLY).

Disk pack unit DPAO is on-line, but is write­
protected. If the operator wishes it to remain this
way, he should type 2. Otherwise he should set
the READWRITE/READ ONLY rocker switch to
normal (top of switch in) and then type l. This
message also applies with DPA l, ••. , DPA7, DPBO,
DPB1, .•• ,DPB7. (ONCE ONLY).

The ENTER to write the file failed. The error code
may be seen by examining location l.

F-3

Table F-1 (Cont)
Monitor Diagnostic Messages

?ERROR IN JOB n A fatal error occurred in the job or in the monitor
while servicing the job. This typeout usually pre­
cedes a one-I ine description of the error.

?EXCEED LOG-OUT m QUOTA BY n BLOCKS The total number of blocks for all the user's files
exceeds the maximum permitted value (m) by the
indicated amount n. The user may use PIP or the
DELETE command to remove files. Until the user
is under the I imit, he cannot dismount the file
structure. (DISMOUNT).

EXECUTION DELETED

FHA IS 0 FF-LINE
DO YOU WANT IT TO BE 1) ON-LINE OR 2)
DOWN? (TYPE #)

FHAO is OFF-LINE
DO YOU WANT IT TO BE 1) ON-LINE, 2)
OFF-LINE, OR 3) DOWN? (TYPE#)

file.ext FOUND BAD BY FAILSAFE READING
MTA

file.ext HARDWARE DATA READ ERROR
DETECTED

file .ext HARDWARE DATA WRITE ERROR
DETECTED

?file.ext NOT FOUND

file.ext SOFTWARE CHECKSUM OR
REDUNDANCY ERROR

A program is prevented from being executed be­
cause of errors detected during assembly, com pi la­
tion, or loading. Loading is performed, but the
loader exits to the monitor without starting exe­
cution. (LOADER).

Contro 11 er FHA (RC-1 O) is off-Ii ne. The operator
should check settings of al I switches in RC-10 bay.
All switches should be down. After changing
switches, the operator should type l. If the oper­
ator does not want the monitor to use the control-
! er, he should type 2. Also applies to FHB.
(ONCE ONLY).

The operator should check the unit dial selectors.
One of them (DISK A, DISK B, DISK C, or DISK
D) should be set to 0. The operator should set the
switches for al I the units he has to 0, 1, 2, 3.
The other units should be 0 FF. The operator
should not touch any dials which are dialed to
numbers numerically less than the one just typed
out, since the monitor has already read these units.
After changing the switches and dials, the operator
should type 1. If the unit is temporarily down and
wil I be fixed while the system runs, he should type
2. In al I other cases, he should type 3. Could
apply to FHA1, •.• ,FHA3, FHBO, ••• ,FHB3.
(ONCE 0 NLY).

The file in the file structure has an error status as
flagged in the UFD of the file structure. (LOGIN).

The file has a hardware data read error flagged in
the UFD of the file structure. (LOGIN).

The file has a hardware data write error flagged in
the UFD of the file structure. (LOGIN).

The program fi I e requested cannot be found on the
system device or the specified device.

The file has an error as flagged in the U FD of the
file structure. (LOGIN).

F-4

Table F-1 (Cont)
Monitor Diagnostic Messages

FILE IN USE OR PROTECTED

?FILENAME ALREADY IN USE

FIRST BAT BLOCK CONSISTENCY ERROR

FIRST BAT BLOCK HARDWARE ERROR

FIRST HOM BLOCK CONSISTENCY ERROR

FIRST HOM BLOCK HARDWARE ERROR

FROM JOB n

fs MOUNT COMPLETE

?HALT AT USER adr

?HUNG DEVICE dev

?ILLEGAL DATA MODE FOR DEVICE dev
AT USER adr

A temporary command file could not be entered in
the U FD (user's file directory). (COMPIL).

The specified file already exists. (COMPIL).

The ONCE ONLY dialog has discovered that the
first of two redundant BAT blocks does not contain
some of the data n.ormal ly expected in a BAT
block. This is not a fatal error since the other BAT
block is probably al I right. If both BAT blocks
have this error, the operator should initialize the
BAT blocks. This error may occur if some of the
diagnostics are run. (ONCE ONLY).

The ONCE 0 NL Y dialog has had a hardware error
while reading the first of two redundant BAT blocks.
Si nee there is another BAT block, this error is
usually not fatal. The controller status is put in
the console lights. (ONCE ONLY).

The ONCE ONLY dialog has discovered that the
first of two redundant HOM blocks does not con­
tain some of the data normally expected in a HOM
block. Therefore, none of the data sho.uld be con­
sidered val id. This is not a serious error since the
other HOM block is usually al I right. If both
HOM blocks have consistency errors, the operator
has to dissolve the file structures, redefine, and
refresh. (ONCE ONLY).

The ONCE ONLY dialog has had a hardware error
while reading or writing the first of two redundant
HOM blocks. This is not fatal since there is
another HOM block. The control I er status is put
in the console lights, and the controller is left in
its error condition. (ONCE ONLY).

An informative message tel I ing the user the job
number to which the console was attached or from
which the console is detaching. (ATTACH, DE­
TACH).

The fi I e structure (fs) is mounted and ready for use;
the MOU NT command is comp! ete. (MOU NT).

The user's program executed a HALT instruction at
adr. Typing CONTINUE resumes execution at the
effective address of the HALT instruction.

If a device does not respond within a certain period
after it is referenced, the system dee ides that the
device is not functioning and outputs this message.

The data mode specified for a device in the user's
program is illegal, such as dump mode for
Teletype.

F-5

Table F-1 (Cont)
Monitor Diagnostic Messages

?ILLEGAL DRIVE DPAn

?ILLEGAL JOB NUMBER

?ILLEGAL UUO AT USER adr

?ILL INST. AT USER adr

?ILL MEM REF AT USER adr

?INPUT DEVICE dev CANNOT DO OUTPUT
AT USER adr

INPUT ERROR

?INPUT FILE NOT FOUND

?INVALID ENTRY - TRY AGAIN

?I/OTO UNASSIGNED CHANNEL AT USER
adr

? JOB CAPACITY EXCEEDED

JOB SAVED

LAST UNIT WASN'T FOUND IN STR DSKn

LINKAGE ERROR

?LOCK ED-OUT BY OPERA TOR

?LOGICAL NAME ALREADY IN USE,
DEVICE dev ASSIGNED

The drive specified by the user is in conflict with
the unit or controller type required by the units of
the file structure. (MOUNT).

The job number is too large.

An i 11 egal UUO was executed at user location adr.

An illegal operation code was encountered in the
user's program.

An illegal memory reference was made by the user's
program at adr or adr + l.

Output was attempted on a device that can only
do input (e.g., the card reader).

I/O error occurred while reading a temporary com­
mand file from 'the disk. File should be rewritten.
(COMPIL).

The specified file does not exist. (COMPIL).

An illegal project-programmer number or password
was entered and did not match identification in
system. (LOGIN).

An attempt was made to do an OUTPUT, INPUT,
OUT, or IN to a device that the user's program
has not initialized.

This message is received by the first user who
attempts to LOGIN after the maximum number of
jobs that the system has been set to hand! e has
been initiated. (LOGIN).

The output is comp I eted.

The last unit in the file structure is missing. The
operator should check to see that al I the proper
packs are mounted and on-Ii ne. If not, he should
remount them and restart the monitor at 140.
Otherwise, the operator has to dissolve the file
structure, redefine it, and then refresh it, thereby
destroying any data already on the unit.
(ONCE ONLY).

An 1/0 error occurred while reading a CU SP from
device SYS:. (COMPIL).

The operator is preventing any new accesses to the
file structure in order that it may be removed.
(MOUNT).

The user previously assigned this logical name to
another device. The device is assigned but the
logical name is not.

F-6

Table F-1 (Cont)
Monitor Diagnostic Messages

LOGICAL STR #n MISSING FROM 11 SYS 11

SEARCH LIST

LOGICAL UNIT n MISSING FROM ACTIVE
SWAPPING LIST

LOGICAL UNIT n MISSING FROM STR DSKn

?LOGIN PLEASE

MORE THAN 0 NE LAST UNIT IN ACTIVE
SWAPPING LIST

MORE THAN 0 NE LAST UNIT IN STR DSKn

MOUNT COMPLETE

?MOUNT UNSUCCESSFUL

?MUST BE IN OWNER'S PROJECT FOR
SINGLE ACCESS

n BLOCKS ALREADY ALLOCATED

A file structure is missing from the SYS search list.
This condition need not be corrected, since the
monitor will skip the missing file structure. To
avoid the message in the future, the operator
should change the SYS search I ist when asked.
(ONCE ONLY).

A unit is missing from the active swapping list.
This can happen if a unit is off-I ine or down. This
error need not be corrected since the monitor wi 11
order the swapping list accordingly. (ONCE
ONLY).

A unit is missing from a file structure and must be
remedied. The operator should check that all
proper packs are mounted and on-I ine. If this is
not so, the operator should add the proper packs
and restart the monitor at 140. Otherwise he has
to dissolve the file structure, redefine it, and re­
fresh it, thereby destroying any data already on the
unit. (ONCE ONLY).

A command that requires the user to be logged in
has been typed to the monitor; it cannot be accept­
ed until the user performs a LOGIN.

The active swapping list specified in the disk unit
HOM blocks has more than one unit as the last one.
The operator should redefine the units in the active
swapping list to correct this situation. (ONCE
ONLY).

The file structure has more than one unit specified
as the I ast unit as recorded in the disk home blocks.
The operator should dissolve the file structure and
redefine it. (ONCE 0 NL Y).

The fi I e structure is mounted and ready for use.
(MOUNT).

The MOUNT command has not completed success­
fully. In most cases, the reasons for failure have
already been listed by non-error messages.

The user may not request single-access (/SINGLE
switch) unless he has the same project number as
the owner of the file structure. This requirement
is enforced since a user with single access may exe­
cute super-USETI/USETO UUOs. (MOUNT).

The file already exists. The new specification
replaces the old specification rather than updating
the old one.

F-7

Table F-1 (Cont)
Monitor Diagnostic Messages

NESTING TOO DEEP

NEW UFD CREATED ON STRUCTURE RE­
SERVED (n) F .C. F. S. (n) LOGGED-OUT (n)

?nK OF CORE NEEDED

?nlK BLOCKS OF CORE NEEDED

?NO CORE ASSIGNED

NONE PENDING

?NON-EXISTENT DRIVE DPAn

?NON-EX MEM AT USER adr

?NO START ADR

?NO SUCH DEVICE

NO SUCH FILE file .ext

?NO SUCH JOB

NO SUCH UNIT

?NO SUCH TTY

?NOT A SAVE FILE

NOT A FILE STRUCTURE

?NOT A JOB

NOT ENOUGH CORE

NOT ENOUGH DRIVES

The @construction exceeds a depth of nine and
may be due to a loop of@ command files.
(COMPIL).

An initial U FD has been created on the file struc­
ture for the user. The numbers are block quotas
as established by QUOTA. SYS for this file struc­
ture. (MOUNT).

There is insufficient free core to load the file.

The user's current core allocation is less than the
contents of JOB FF.

No core was al located when the GET command
was given and no core argument was specified in
the GET.

None of the user 1s requests to the operator are
pending.

The user has specified a drive that does not exist
in the system. (MOUNT).

Usually due to an error in the monitor.

Starting address or reenter address is zero, because
the user failed to specify the starting address.

The device name does not exist or al I devices of
this type are in use.

Specified file could not be found. Could be a
source file or a file required for operation of the
COMPIL commands. (COMPIL).

An attempt was made to attach to a job that has not
been initialized.

The unit does not exist or all units of this type are
in use.

The console number is not part of the system con­
figuration.

The file is not a core image file.

The file structure specified is not recognized by
the monitor.

The job number is not assigned to any currently
running job.

System cannot supply enough core to use as buffers
or to read in a CUSP. (COMPIL).

There are c.urrently not enough drives of the right
type to mount the fit e structure. (MOUNT).

F-8

Table F-1 (Cont)
Monitor Diagnostic Messages

NO UNITS IN ACTIVE SWAPPING LIST

OPERATOR BUSY, HANG ON PLEASE.

OPERA TOR HAS BEEN NOTIFIED.

OPERA TOR REQUESTED TO MOUNT UNITS

OPERA TOR REQUESTED TO READY DRIVES

OPERA TOR REQUESTED TO REMOVE PACKS

OTHER USERS - CANNOT SINGLE ACCESS

OTHER USERS - CAN'T REMOVE

?OUT OF BOUNDS

?OUTPUT DEVICE dev CANNOT DO INPUT
AT USER adr

OUTPUT ERROR

PAUSE. •• (tC TO QUIT I CR TO CONT)

?PC OUT OF BOUNDS AT USER adr

None of the on-I ine units are in the active swap­
ping I ist. Since there must be swapping space, the
operator must change the active swapping I ist to
include a unit which has some swapping space. If
there are no units with swapping space, the opera­
tor must define swapping space on a unit not in a
file structure. If all units are in file structure, the
operator must refresh a file structure, define the
necessary swapping space, and redefine the active
swapping list. (ONCE ONLY).

The user must wait for the operator to become
available.

The operator is available and the user may continue
typing his message.

A request is queued to the operator to mount and
ready the packs on the proper drives. (MOUNT).

One or more drives (as specified by previous mes­
sages) are not ready. A request is queued to the
operator. (MOUNT).

A request to physically remove the packs has been
queued to the operator. (DISMOUNT).

Other users are currently using the file structure
that has been specified with the single-access
switch VSINGLE). The switch is ignored.
(MOUNT).

A DISMOUNT command requesting physical removal
VREMOV switch) of a pack has been issued and
there are other users of the pack. The switch is
ignored. (DISMOUNT).

The specified adr is not in the user's core area, or
the high segment is write-protected and the user
does not have privileges to the file that initialized
the high segment.

An attempt was made to input from an output device
(e.g., the I ine printer).

An 1/0 error occurred while writing a temporary
command file on disk. (COMPIL).

The PAUSE switch has been specified, and an
operator action is about to be requested. tC
aborts the command before the request is queued to
the operator. Carriage return-I ine feed allows the
command to continue, and the request is queued to
the operator.

An illegal transfer has been made by the user pro­
gram to user location adr.

F-9

Table F-1 (Cont)
Monitor Diagnostic Messages

?PLEASE TYPE tC FIRST A command which would start a job has been issued
after a CSTART or CCONT.

PROCESSOR CONFLICT Use of+ construction has resulted in a mixture o(
source I anguages. (COMPIL).

?PLEASE KJOB OR DETACH Attempt was made to LOGIN a job when the user
already has a job initialized at that Teletype.

SAT BLOCK HARDWARE ERROR The ONCE ONLY dialog has had a hardware error
while reading one of the SAT blocks. (ONCE
ONLY).

SECOND BAT BLOCK CONSISTENCY ERROR The 0 NCE ONLY dialog has discovered that the
second of two redundant BAT blocks does not con­
tain some of the data normally expected in a BAT
block. This is not a fatal error since the other
BAT block is probably al I right. If both BAT blocks
have this error, the operator should initialize the
BAT blocks. This error may occur if some of the
diagnostics are run. (ONCE ONLY).

SECOND HOM BLOCK CONSISTENCY ERROR The 0 NCE ONLY dialog has discovered that the
second of two redundant HOM blocks does not con­
tain some of the data normally expected in a HOM
block. Therefore, none of the data should be con­
sidered valid. This is not a serious error since the
other HOM block is usually al I right. If both HOM
blocks have consistency errors, the operator has to
dissolve the file structures, redefine and refresh.
(ONCE ONLY).

SECOND HOM BLOCK HARDWARE ERROR The 0 NCE 0 NLY dialog has had a hardware error
while reading or writing the second of two redun­
dant HOM blocks. This is not fatal since there is
another HOM block. The control I er status is put
in the console lights, and the controller is left in
its error condition. (ONCE ONLY).

?SINGLE-ACCESS BY JOB n

STRUCTURE ALREADY MOUNTED

?STRUCTURE NOT IN STRLST. SYS

?SNAP READ ERROR

The file structure is already sing I e access by the
indicated user. (MOUNT).

The requested file structure is al ready mounted, but
may not be in a readied state. (MOUNT).

The file structure name does not exist in the system
administrator's file SYS: STRLST. SYS, and therefore
is not defined for the system. The operator or ad­
ministrator may be requested to define the file
structure by adding it to STRLST. SYS with the
REACT CUSP. (MOUNT).

A consistent checksum error has been encountered
when checksumming locations JOBDAC through
JOBDAC+74 of the job data area during swapping.

F-10

Table F-1 (Cont)
Monitor Diagnostic Messages

?SYNTAX ERROR

?SYSTEM ERROR - xxxxxx

?TOO FEW ARGUMENTS

TOO MANY FILE STRUCTURES

TOO MANY NAMES or TOO MANY
SWITCHES

TOO SMALL - MIN. # = X

?TRANSMISSION ERROR

?TRY LARGER ARG

?TTYn ALREADY ATTACHED

TWO LOGICAL UNIT n's FOUND IN ACTIVE
SWAPPING LIST

TWO LOGICAL UNIT n's FOUND IN STR DSKn

TWO LOGICAL STR n's FOUND IN 11 SYS"
SEARCH LIST

UFO QUOTAS CHANGED, RESERVED (n)
F.C.F.S (n) LOGGED-OUT (n)

?UNDEFINED SWITCH switch

There is a syntax error in the command string.

System errors designate operator or system errors
and are not a direct fault of the user. They are
typed for possible diagnostic use.

A command has been typed, but necessary argu­
ments are missing.

The number of file structures exceeds the capacity
of the monitor data base. The current I imit is
14

10
• (ONCE ONLY).

Command string complexity exceeds table space in
the COMPIL CUSP. (COMPIL).

An answer to the ONCE ONLY dialog or a default
value is too small. Type in an answer greater than
or equal to X.

During a SA VE, GET, or RUN command, the system
received parity errors from the device, or was un­
able to read the user's file in some other way.
This can be as simple as trying to write on a write­
locked tape.

The specified argument is too small for the program.

Job number is erroneous and is attached to another
console, or another user is attached to the job.

The active swapping list has more than one unit in
the same position. The operator must redefine the
active swapping list. (ONCE ONLY).

Two units are marked to be in the same logical
position in the file structure. This happens only if
two different file structures have been given the
same name. The operator should try to remove the
pack that does not belong and then restart the moni­
tor at 140. Otherwise, he has to dissolve DSKn,
redefine it and refresh it. (0 NC E ONLY).

Two file structures are marked to be in the same
position in the SYS search list. The operator should
change the SYS search list when asked. Refreshing
is not required. (ONCE ONLY).

The block quotas on this file structure as es tab I ish­
ed by QUOTA. SYS have changed since the user's
last use of the file structure. The user's U FD wil I
be changed to specify the indicated quotas.
(MOUNT).

The specified switch is either undefined or not
unique. (MOUNT, 'DISMOUNT).

F-11

Table F-1 (Cont)
Monitor Diagnostic Messages

unit
#BAD REGIONS= m
#BAD BLOCKS= n
DO YOU WANT TO INITIALIZE THE BAD
BLOCKS 0 N THIS UNIT?

UNIT ALREADY IN ACTIVE SWAPPING LIST

UNIT ALREADY IN FILE STRUCTURE

UNIT id ALREADY MOUNTED ON DRIVE DPAn

UNIT HAS NO SPACE ALLOCATED FOR
SWAPPING

UNRECOGNIZABLE SWITCH

?UUO AT USER adr

WAITING •••

The operator should answer with N or a carriage
return to leave the BAT blocks alone on this unit.
The only time the operator should initialize is the
first time the disk is written, since the blocks con­
tain the accumulated information about bad sectors.
If the operator answers Y, the 0 NC E 0 NL Y dialog
responds with NOT NORMALLY DONE, ARE YOU
SURE?. Answer Y only if this important data is to
be erased. (ONCE ONLY).

An attempt was made to specify a unit to be in the
active swapping I ist more than once. The operator
should type a different unit name to be in the ac­
tive swapping list. If the operator has included the
unit name earlier by mistake, he will have another
chance to change the active swapping list.
(ONCE ONLY).

An attempt was made to specify a unit to be in more
than one fi I e structure. The operator should type a
different unit name to be in this file structure. If
the operator has included the unit in an earlier file
structure by mistake, he wil I have to dissolve it.
(ONCE ONLY).

The file structure is already mounted but is on
different drives than the user specified. (MOUNT).

An attempt has been made to specify a unit which
has no swapping space al located to be part of the
active swapping list. The unit is not added to the
I ist. The operator should do one of the fol lowing:

1) specify another unit,
2) type an extra carriage return signifying com­

pletion,
3) define swapping space for a unit not in a

fi I e structure,
4) change the swapping space for a unit in a

file structure and refresh it. (ONCE ONLY).

An ambiguous or undefined word has been preceded
by a slash. (COMPIL).

This message accompanies many error messages and
indicates the location of the UUO that was the last
instruction the user program executed before the
error occurred.

A request has been queued to the operator and the
command is waiting for completion of the necessary
action. If the user does not want to wait for con­
firmation, he may type control-C. (MOUNT,
DISMOUNT).

F-12

?WASN'T DET

x

?l+lnK CORE
VIR. CORE LEFT= 0

Table F-1 (Cont)
Monitor Diagnostic Messages

The specified device is not detached.

If the system is fully loaded any user (after the
first user) who attempts to LOGIN receives this
character in response to any character typed.
(LOGIN).

The swapping space or the cor.e al located to time­
sharing is all in use (i.e., there is no available
virtual core).

F-13

,/
.,./

I

I

I

Appendix G

Filename Extensions

Filename Extension

AID

ALG

ALP

BAK

BAS

BIN

BLI

CAL

CBL

Table G-1
Filename Extensions

Meaning

Source file in AID language

Source file in ALGOL language

Printer forms alignment

Backup file from TECO or LIN ED

Source file in BASIC language

Binary file

Source file in BLISS language

CAL data and program files

Source file in COBOL language

CCL Alternate convention for command file (@ construction
for CUSPs other than COMPIL)

CKP Checkpoint core image file created by COBOL
operating system

CMD Command file for indirect commands (@construction
for COMPIL)

COR Correction file for SOUP

CRF CRE (cross-reference} input file

CTL MP batch control file

DAE Default output for DAEMON-taken core dumps

DAT Data (FORTRAN) file

OCR Core image save (DCORE)

DDT Input file to FILDDT

DIR Latest directory from FILE command for this DECtape

DMP PDP-6 format for a file created by a SAVE command

Revision 1 Monitors G-1 January 1971

I

I
I

I
I

I

Filename Extension

DOC

F4

FRM

FUD

HGH

HLP

LOG

LOW

LSD

LSQ

LST

MAC

MAN

MAP

MEM

MSB

MUS

OPR

OVR

PAL

PBT

PLG

QUE

REL

RIM

RMT

RNO

RSP

RTB

SAV

SCP

SFD

Revision l Monitors

Table G-1 (Cont)
Filename Extensions

Meaning

Listing of modifications to software

Source file in FORTRAN language

Form

FUDG E2 I isting output

Nonsharabl e high segment

Help files containing switch explanations

MP batch log file

Low segment of a two-segment program

Default output for DUMP CUSP

Queue listing

Listing data

Source file in MACRO language

Manual {documentation) fi I e

Loader map file

Memorandum file

Music compiler binary output

Music compiler input

Installation instructions

COBOL overlay file

Source file in PAL 10 (PDP-8 assembler)

P-batch control file

P-batch log file

Queue (MPB) control or data file

Relocatable binary file

RIM I oader fi I e

Read-in mode (RIM) format file (PIP)

RUNOFF input file

Script response time log file

Read-in mode (RIMlOB) format file (PIP)

Low segment from a one-segment program

SCRIPT control file

Sub-file directory

G-2

(

(

January 1971

Filename Extension

SHR

SYS

I rec
TMP

TXT

UFO

I UPD

WCH

XPN

)

Revision 1 Monitors

Table G-1 (Cont)
Filename Extensions

Meaning

Sharable high segment file

Special system files

TECO macro

Temporary files

Text file

User file directory

Updates flagged in margin (SRCCOM)

SCRIPT monitor (WATCH) file

Expanded save file (FILEX)

G-3 January 1971

(

(

Appendix H

Comparison of
Disk-Like Devices

Device Name Fixed-Head
disk

Manufacturer Burroughs

Device Type RDlO

Controller RClO

Maximum 4
Disks per
Control I er

Maximum 2
Control I er
per System

Hardware DSK
Mnemonic

Software FHA,FHB
Mnemonic

Capacity .5
Minimum
(X l 0**6 words)

Maximum 2
(l control)
(X l **06 words)

Blocks/Track 20

Blocks/Cylinder 4000

Blocks/Unit 4000

Rotational 1800
Speed (rpm)

Revolution 33
Time (msec)

128-Word Blocks/ 20
Revolution

Transfer Rate 13
usec word

Drum

Bryant

RMlOB

RClO

4

DSK

FHA,FHB

.345

l.38

30

2700

2700

3600

17

30

4.3

Table H-l
Disk Devices

Removable disk pack(s)

Memorex

RPOl RP02

RPlO RPlO

8 8

2

DPC DPC

DPA,DPB DPA,DPB

l .3 5.2

10. l 41.4

5 lO

50 200

10150 40600

2400 2400

25 25

5 10

30 15

H-1

I

Mass disk Movable head
file disk

Bryant Data-Products

RBlOB 270

RAlO -
l 4

2 0

MDF DF

MDA,MDB

21 5.7

104.8 23

64

300, 1600

163840,819200

1200 1200

50 50

16,11,5 7.4

23,32,72 51.8 ,88

Device Name

Manufacturer

Device Type

Controller

Seek Time
Average (msec)

Minimum (msec)

Maximum (msec)

Swapping Times
(msec)
IK

4K

lOK

25K

Table H-1 (Cont)
Disk Devices

Fixed-Head Drum Removable disk pack(s)
disk

Burroughs

RDlO

RClO

0

0

0

25

73

154

358

Bryant Memorex

RMlOB RPOl RP02

RClO RPlO RPlO

0 50 50

0 20 20

0 80 80

(Includes 30 ms verify)

13 95 84

27 225 144

54 490 264

120 1165 589

NOTE

The dual-positioning Bryant disk is not supported by
DEC software, only the single-positioning disk is
supported. Although the Bryant drum is a drum in
every sense, its software mnemonic is stil I FHA be­
cause it is connected to the system through the fixed
head disk control.

H-2

Mass disk Movable head
file disk

Bryant Data-Products

RBlOB 270

RAlO -

110 175

50 80

180 225

175 262

284 454

502 1062

1048 2462

I-

Appendix I
Retrieval. Pointers

Sequential and random file access is handled more efficiently by compacting the amount of information

necessary to describe the location of a file. Retrieval information associated with each file is stored

and accessed separately from the data. Retrieval pointers describe contiguous blocks of file storage

space cal I ed groups. Each pointer has one of three forms:

a. A group pointer

b. An EO F pointer

c. A change of unit pointer.

I. l A GROUP POINTER

A group pointer has three fields:

a. A cluster count

b. A folded checksum

c. A cluster address within a unit. The width of each field may be specified at refresh
time; therefore, the same code can hand I e a wider variety of sizes of devices.

The cluster count determines the number of consecutive clusters, which can be described by one point­

er. The folded checksum is computed for the first word of the first block of the group. Its main purpose

is to catch hardware or software errors when the wrong block is read. The folded checksum is not a

check on the hardware parity circuitry. The size of the cluster address field depends on the largest

unit size in the file structure and the cluster size. A cluster address is converted to a logical block

address by multiplying by the number of blocks per cluster.

I-1

I. l . l Folded Checksum Algorithm

This algorithm takes the low order n-bit byte, repeatedly adds it to the upper part of the word, and

then shifts. The code is:

LOOP: ADD
LOB
LSH
JUMPN
DONE

Tl, T
T,LOW ORDER N BITS Of Tl
Tl,-N ;RIGHT SHIFT BY N BITS
Tl ,LOOP

;ANSWER IN T

This scheme eliminates the usual overflow problem associated with folded checksums and terminates as

soon as there are no more bits to add.

I.2 END-OF-FILE POINTER

The EO F is indicated by a zero word.

1.3 CHANGE OF UNIT POINTER

A file structure may comprise more than one unit; therefore, the retrieval information block must indi­

cate which unit the logical block is on. A method of indicating a change from one unit to another

in the middle of the file is necessary, because a file can start on one device and move to another.

To show this movement, a zero count field indicates that the right half of the word specifies a change

in unit. A zero count field contains a unit number with respect to the file structure. The first retrieval

pointer, with respect to the RIB, always specifies a unit number. Bit 18 is l to guarantee that the

word is non-zero; otherwise it might be confused with an EOF pointer.

1-2

Appendix J

Once-Only Parameters

The operator must invoke the optional once-only dialog when the monitor is first loaded when file

structure or disk unit parameters must be changed or file structures must be refreshed. When the oper­

ator changes one or more parameters, the new values are written back onto the home blocks of the

affected disk units. Some parameter changes require refreshing the file structures.

J. l FILE STRUCTURE PARAMETERS

The fol lowing fi I e structure parameters may be changed without refreshing:

a. Number of consecutive blocks tried for on output.

b. Sum of the blocks guaranteed to users.

c. Number of blocks per user allowed for overdrawing.

d. Inc I us ion and position in SYS search I ist.

The fol lowing parameters may not be changed without refreshing:

a. Number of K for CRASH. SAV file.

b. Number of blocks per cluster.

c. Number of bits per cluster count.

J .2 PHYSICAL UNIT PARAMETERS

The fol lowing physical unit parameters may be changed without refreshing:

a. Number of SAT blocks in core.

b. Active swapping I ist.

c. Swapping classes.

The fol lowing parameters may not be changed without refreshing:

a. Physical unit ID

b. Logical blocks for both home blocks

J-1

c. K allowed for swapping on the unit

d. First logical block for swapping

e. Computed first logical block for swapping

f. Number of SAT blocks per unit.

J .3 SYSTEM PARAMETERS

These parameters are not rewritten on the disk:

a. Number of monitor buffers.

J-2

Glossary

Absolute Address

Access List

ACCT. SYS

Active Search List

Actua I Trans fer

AUXACC. SYS

Bad Al location Table
(BAT) block

BADBLK.SYS

Block

Cluster

Compressed File Pointer

Control

CORMAX

CORMIN

The address that is permanently assigned by the machine designer
to a storage location.

The table in core that reflects the status of all files open for read­
ing or writing in addition to the status of those files recently
closed.

The file that contains all project-programmer numbers, passwords,
and time of day users are allowed on system. It does not contain
file structure quotas.

An ordered list of file structures for each job, which specifies the
order in which the directory is searched. Device DSK is defined by
this list for each job.

The third step of the transfer operation. The operation passes data
between the memory system and the contro I .

The file that contains the standard list of public file structures for
each user and information, such as quotas, for those file structures.

A block written by the MAP program or the monitor on every unit.
This block enumerates the bad regions of consecutive bad blocks on
that unit. The BAT blocks appear in the HOME. SYS file.

The file that contains all bad blocks. It may be read but not de-
1 eted and is useful for testing error recovery.

A 128-word unit of storage determined by hardware and software.
At least 128 words are written, adding zeros as necessary, although
I ess than 128 words may be read.

A possibly multiblock unit of storage assignment.

An 18-bit po inter to the unit within the file structure and to the
first super-cluster of the file.

The device that controls the operation of up to eight connected
units. It initiates simultaneous positioning commands to some of
its units and then performs a data transfer for one of its units.

The largest contiguous size that an unlocked job can be. This value
can range from CORMIN to total user core.

The guaranteed amount of contiguous core which a single unlocked
job can have. This value can range from 0 to total user core.

Glossary-1

CRASH.SAY

Create

Customer

Cylinder

Data Channel

Device Routines

Directory Device

Distributed UFD

Dormant File Structure

Dormant Segment

DSK

Dump

Fi I e Structure

File Structure Search List

File-Structured Device

Filename

Fi I ename Extension

FILSER

A file written on disk as a contiguous set of blocks by a short
routine at the crash restart location in the monitor. Used for
analysis by file salvage program and by FILDDT for system debug­
ging.

To open a file for writing, write the file, and close the file for the
first time. Only one user at a time may create a file with a given
name and extension in the same directory of a file structure.

A DEC customer who has a PDP-10 system as distinguished from a
user at a console who may be purchasing time from a customer.

The hardware-defined region of consecutive logical disk blocks,
which can be written with one DA TAO instruction. This region
does not require positioning.

The device that passes data between the memory system and the
control.

Routines that perform 1/0 for specific storage devices and translate
logical block numbers to physical disk addresses.

A storage retrieval device, such as disk or DECtape, which con­
tains a file describing the layout of stored data (programs and other
fit es).

A UFD that is distributed over the file structures on which the user
can read or write.

A file structure that is physically mounted but has no current users,
i.e. , the mount count is zero.

Description of a sharable high segment kept on swapping space, and
possibly core, which is in no user's addressing space.

The generic device name for disk-I ike devices (e.g., drums, disk,
disk packs). Actual file structure names are defined for each job
by the fi I e structure search I ist.

A listing of all variables and their values or a listing of the values
of all locations in core.

The logical arrangement of 128-word blocks on one or more units
of the same type to form a collection of named files. Public file
structures are given a name for use by all users and are always on
the system. Private file structures are intended to be mounted and
dismounted from the system.

A table, organized by jobs, that specifies the search order for the
fit e structures the user can access.

A device on which data is given names and arranged into files; the
device also contains directories of these names.

A one- to six-alphanumeric character name chosen by the user to
identify a file.

One to three alphanumeric characters usually chosen to describe the
class of information in a file.

The routine that interprets and operates on the file structure, pro­
cesses disk UUOs, queues disk requests, and makes optimization
decisions.

Glossary-2

Fragmentation

Group

High Segment

Home Block

HOME. SYS

Idle Segment

I Idle Time

Impure Code

ISVV Block

Job

Job Data Area

Job Search Li st

Latency

Locked Job

Lost Time

Low Segment

The term applied to swapped segments, which cannot be allocated
in one contiguous set of blocks on the swapping space.

A contiguous set of clusters allocated as a single unit of storage,
and described by a single retrieval pointer.

The segment of the user's core that generally contains pure code,
and that can be shared by other jobs; it is usually write-protected.

The block written on every unit, which identifies the file structure
the unit belongs to and its position on the file structure. This block
specifies all the parameters of the file structure and the location of
the MFD. The home block appears in the HOME.SYS file.

The file that contains a number of special blocks for system use.
These blocks are the home blocks, the BAT blocks, the ISW blocks,
and block zero.

A sharable high segment that no users in core are using; however,
at least one swapped-out user is using it; otherwise, it would be a
dormant segment.

The percent of uptime in which no job wanted to run, i.e. , all
jobs were HAL Ted or were in a wait for some device.

The code that is modified during the course of a run (e.g., data
tables).

A block written by the refresher, which contains the bit map for
the initial storage allocation table for swapping. Any bad regions
are marked as already in use. The ISW block appears in the
HOME.SYS file.

The succession of user programs run from log in to log out for a
single user; a process.

The first 140 octal locations of a user's core area. This area pro­
vides storage for items used by both the monitor and the user
program.

See Fi I e Structure Search Li st.

a. The time for initiation of a transfer operation to the beginning
of actual transfer (i.e., verification plus search time).

b. The time delay while waiting for a rotating memory to reach
a given location as desired by the user. The average latency
is one half the revolution time.

A job in core that is never a candidate for swapping or shuffling.

The percent of uptime that the null job was running but at least
one other job wanted to run (i.e., was not waiting for a device)
but could not because one of the fol lowing was true:

1) the job was being swapped out.
2) the job was being swapped in.
3) the job was on disk waiting to be swapped in.
4) the job was momentarily stopped so devices could become

inactive in order to shuffle job in core.

The segment of core containing the job data area and 1/0 buffers.
This area is unique and accessible to the user and is often used to
contain the users' program. If the user is working with a shared
program, this area contains data tables.

Glossary-3

MAINT. SYS

Memory Protection

MONGEN Time

tvbnitor

Multiprocessing

Multiprogramming

Named File

Nondirectory Device

Nonsharable Segment

ONCE ONLY Time

Pack ID

Passive Search List

Peripheral Equipment

Physical Unit Name

Pointer

Pool

Position Operation

The area of the disk reserved for maintenance use.

A scheme for preventing access to certain areas of storage for
reading or writing.

The time at which the monitor is loaded because of new equipment
being added. Therefore the hardware configuration must be
changed.

The specific program that schedules and contro Is the opera ti on of
several routines, performs overlapped 1/0, provides context
switching, and allocates resources so that the computer is efficient­
ly used.

The simultaneous execution of two or more computer programs by a
computer.

A technique that allows scheduling so more than one job is in an
executable state at any one time.

A named collection of 36-bit words (instructions/data). Length is
not restricted by size of core.

A device (e.g., magnetic tape or paper tape) that does not contain
a file describing the layout of stored data.

A segment for which each user has his own copy. Nonsharable
segments never have names even if initialized from a file; they
may be created by a core or REMAP UUO.

The time at which the operator may change fit e structure and disk
unit parameters.

A 6-character SIXBIT name or number used to uniquely identify
a disk pack. This name is appended to the physical device I ist
of the monitor.

An unordered list of the file structures the job can access explicit­
ly. Device DSK is not defined by this I ist.

In a data processing system, any unit of equipment distinct from the
central processing unit, which may provide the system with outside
communication.

The SIXBIT name, consisting of three characters and a digit, which
is associated with each unit.
Examples: FHAO, FHAl, MDAO, MDAl, DPAO, DPA7.

The location containing an address rather than data, which is used
in indirect addressing.

One or more logically comp I ete file structures that provide file
storage for the users and that require no special action on the part
of the user.

The operation of moving the read-write heads of a disk to the
proper cylinder prior to a data transfer. This operation requires
the control for several microseconds to initiate activity, but does
not require the channel or memory system.

Glossary-4

Private Disk Pack

Privileged Program

Priority Interrupt

Program Break

Programmed Operators

Public Disk Pack

Pure Code

QUOTA. SYS

Random Access

Read

RECOV. SYS

Reentrant Program

Refresh

Relocate

Restore

Retrieval Information Block
(RIB)

SAT. SYS

Search

a. A self-contained DEC file structure either single- or multi-job
access.

b. A disk pack (always single-job access) from another company,
not certified, or certified but never refreshed.

a. Any program running under project number 1, programmer
number 2.

b. A monitor support CUSP executed by a monitor command and,
therefore, has the JACCT (job status bit) set (e.g., LOGOUT).

The interrupt that usurps control of the computer program or system
and jumps the sequencing to another device or program.

The length of a program; the first location not used by a program
(before relocation); the relocation constant for the program (after
relocation).

Instructions, which, instead of doing computation, cause a jump
into the monitor system at a predetermined point. The monitor in­
terprets these entries as commands from the user to perform specified
operations.

A disk pack belonging to the storage pool with storage available to
al I users.

Code that is never modified in the process of execution; therefore,
it is possible to let many users share the same copy of a program.

The file that contains a list of users and their quotas for the private
file structure on which the file resides.

A device in which the access time is effectively independent of the
location of the data.

To open a file for input.

The file used only for disk crash recovery; temporary information is
stored in this file when the disk is salvaged in place.

A two-segment program composed of a sharable and nonsharable
segment.

To remove files from a unit and write just a MFD, a few UFDs, a
SAT.SYS, a HOME.SYS, and a few system files on the disk.

To move a routine from one portion of storage to another and to ad­
just the necessary address references so that the routine can be exe­
cuted in its new location.

To copy a file previously dumped on magnetic tape back onto disk.

The block that contains pointers to all the groups in the file. Each
file has two copies of the RIB, the first block of the first group and
the block following the last data block in the last group of the file.

This file is the Storage Allocation Table file and contains a bit for
each cluster in the file structure. Clusters which are free are in­
dicated by zero and clusters which are bad, allocated, and non­
existent are indicated by one.

The second step in the transfer operation, the contro 11 er reads
sector headers to find the correct sector.

Glossary-5

Search List

Sharable Segment

Shared Code

STRLST .SYS

Supersede

Super-Cluster

Swapping

Swapping Class

SWAP.SYS I Total User Core

Transfer Operation

Trap

Unit

Update

User

User Mode

User Program

Verification

Vestigial Job Data Area

See File Structure Search List.

A segment which can be used by several users at a time.

Pure code residing in the high segment of user's core.

The file that describes each file structure in the system. This file
is used by the MOUNT command only.

To open a file for writing, write the file, and close the file two or
more times. Only one user at a time may supersede a given file
at any one time. The older copy of the file is deleted when all
users are finished reading it.

A contiguous set of one or more clusters introduced to compress the
file pointer for large units into 18 bits (see Compressed File
Pointer).

The movement of program sections between core and secondary
storage.

The classes of swapping units divided according to speed. Class 0
contains the fastest swapping units.

The file containing the swapping area on a file structure.

The amount of physical core which can be used for locked and un­
locked jobs.

The operation of connecting a channel to a control I er and a con­
trol I er to a unit from passing data between the memory and the unit.
The transfer operation involves verification, search, and actual
transfer.

An unprogrammed conditional jump to a known location, auto­
matically activated by hardware. The location from which the
jump occurred is recorded.

The smallest portion of a device that can be positioned independent­
ly from all other units (e.g., a Burroughs disk, a side of the Bryant
disk, a disk pack, and a drum) •

To open a file for reading and writing simultaneously on the same
software channel, rewrite one or more blocks in place, and close
the file. Only one user at a time may update a given file.

A person at a terminal.

A hardware-defined state during which instructions are executed
normally except for both 1/0 and HALT instructions, which cause
immediate jumps to the monitor. This makes it possible to prevent
the user from interferring with other users or with the operation of
the monitor; memory protection and relocation are in effect so that
the user can modify only his area of core.

All of the code running under control of the monitor in an address­
ing space of its own.

The first step in the transfer operation. The controller reads sector
headers to see if the mechanical parts of the system have correctly
positioned the arm.

The first ten octal locations of the high segment used to contain
data for initializing certain locations in the job data area.

Glossary-6

Vi rtua I Co re

1-4. UFD

1-1. UFD

The amount of core space that the user appears to be able to use.
This area is usually handled by a program that allows the currently
referenced parts of the program to be in core at one time, with
additional information being retrieved from storage as needed.

The UFD of device SYS. The UFD number should be obtained via
the DEVPPN UUO.

The master file directory, which contains all UFD files (including
itself) as directory entries. The filename is in octal and, therefore,
is right justified in each half word. This file is created at refresh
time.

Glossary-7

Absolute address, 3-1

Access blocks, 6-20

Access protection, 6-16

Accumulators, 3-2

A

I ACTIVATEUU0,4-12

Active search list, 6-23

Activate swapping list, 7-3

ALCFIL CUSP I 2-42

Algorithms, 7-1

APPRENB uuo I 4-7 I 4-15

APRTRP mnemonic, 8-10

ASSIGN command, 2-8

I ASSIGN SYS command, 2-100

Asterisk construction, 2-30

ATTACH job command, 2-81

I ATTACH dev command, 2-102

B

Bad Allocation Table (BAT) block, 7-8

BITS mnemonic, 8-10

BLKADR mnemonic, 8-10

BLKRW subroutine, 8-19

Block mode, 8-8

Buffered data modes, 4-48, 4-57

Buffer header, 4-48

Buffer initialization, 4-51

Buffer structure, 4-49

Buffer ring, 4-50

Buffer ring header block, 4-49

c

CALL and CALLI programmed operators, 4-5

Card codes, 5-3

Revision 2 Monitors

INDEX

Card punch, 5-2
concepts, 5-2
data modes, 5-2
file status, 5-5

Card reader, 5-5
concepts 5-6
data modes, 5-6
file status, 5-7

CC ONT command, 2-79

Central processor flags, 4-15

Change of unit pointer, I-2

Changing job search list, 4-26

Changing magnetic tape modes, 5-17

Changing protections of a file, 6-18

Channel command chaining, 7-7

Channel interrupt routines, 7-9

I CHGPPN UUO, 4-120, 4-28

CHKACC UUO, 4-12a, 6-34

CLOSE command, 2-18

CLOSE uuo I 4-5 I 4-61

Cluster address, I-1

Cluster count, 1-1

CI usters, 6-14

C NFTBL table, 4-34, 4-35

Command arguments, 2-3

Command files, 2-51

Command format, 2-2

Command names, 2-3

Commands,

INDEX-1

ASSIGN I 2-8 I 2-100
ATTACH, 2-81, 2-102
CCONT I 2-79
CLOSE, 2-18
COMPILE, 2-47
CONT I 2-68
CORE, 2-21
CREATE, 2-25
CREF I 2-46
CSTART I 2-79
CTEST ,_ 2-103

March 1971

Commands (Cont)
D, 272
DAYTIME, 2-86
DDT I 2-69
DEASSIGN I 2-11
DEBUG I 2-50
DELETE, 2-44
DETACH, 2-80, 2-101
DIRECT, 2-33
DISMOUNT I 2-16
OSK, 2-96
E, 2-71
EDIT I 2-26
EXECUTE I 2-49
FILE, 2-37
FINISH I 2-17
GET I 2-64
HALT I 2-67
INITIAL, 2-7
JCONT, 2-68a
KJOB, 2-83
LIST I 2-31
LOAD, 2-48
LOGIN, 2-5
MAKE, 2-27
MOUNT, 2-13
PLEASE, 2-19
PJOB, 2-78
R, 2-63
R ALCFIL, 2-42
R DMPFIL, 2-35
REASSIGN I 2-12
REENTER, 2-70
RENAME, 2-45
RESOURCES, 2-23
R FILEX, 2-39
R GRIPE, 2-22
R LOOK FL, 2-34
R QUOLST I 2-89
R PRINT I 2-32
R SETSRC, 2-41
RUN, 2-61
SAVE, 2-73
SCHEDULE, 2-87
SEND, 2-18c
SET CDR, 2-18a
SET CORMAX, 2-104
SET CORMIN I 2-105
SET DATE, 2-103
SET DAYTIME, 2-99
SET SCHEDULE, 2-99
SET SPOOL, 2-18b

Revision 2 Monitors

IN DEX (Cont)

Commands (Cont)
SET TIME, 2-105
SET TTY I 2-97
SET WATCH, 2-90
SSAVE, 2-74
START, 2-66
SYSTAT I 2-92
TECO, 2-28
TIME, 2-88
TYPE, 2-30

Comments, 2-2

Compilation commands, 2-47

Compilation listings, 2-54

COMPIL CUSP I 2-24 I 2-51

COMPILE command, 2-47

Compile switches, 2-54

Completion of commands, 2-4

Compressed file pointer, 6-15

I COMTAB table, 4-35

CONECT subroutine, 8-18

Configuration information, 4-39
DSKCHR, 4-42

CONSO skip chain, 7-10

I Console - initiated traps, 4-16a

Consoles, 2-1

CONT command, 2-68

Control-C, 2-2

Core allocation resource, 8-4

Core area, 3-4

CORE command, 2-21

Core control, 4-17

Core storage, 3-3

Core storage check, 2-4

CORE UUO, 4-6, 4-17

CORMAX, 8-1

CORMIN, 8-1

CORT AB table, 4-35

CREATE command, 2-25

INDEX-2 March 1971

Creating new job search list, 4-26

CREF command, 2-46

CST ART command, 2-79

I CTEST command, 2-103

CTLJOB UUO, 4-12, 5-38

CUSP command level, 1-4

CUSP 1/0 level, 1-4

Data channel, 4-47

·Data errors, 7-8

Data modes, 4-47

Data transmission, 4-56

DATE UUO, 4-7, 4-30

D

I DAYTIME command, 2-86

D command, 2-72

DDT command, 2-69

DDT submode, 5-28

I DEACTIVATE UUO, 4-12

DEASSIGN command, 2-11

DEBUG command, 2-50

Debugging reentrant CUSPs, 2-77

DECtape, 6-2
data modes, 6-2
format, 6-3
I/O programming, 6-6
UUOs, 6-6, 6-10
file status, 6-11
important considerations, 6-12

DECtape block allocations, 6-5

DECtape compatibility, A-1

DECtape directory format, 6-3

DECtape file format, 6-5

DECtape format, 6-3

DECtape 1/0 programming, 6-6

DECtape parameter block, 6-6

Delayed command execution, 2-4

Revision 2 Monitors

INDEX (Cont)

DELETE command, 2-44

DETACH command, 2-80

I DETACH dev command, 2-101

Detached job, 2-78

Determining physical characteristics of
devices, 4-39

I
DEVCHR UUO, 4-6, 4-39

DEVGEN UUO, 4-12a

Device errors, 7-8

Device initialization, 4-47, 4-55

Device optimization, 7-5

Device selection, 4-46

Device status bits, D-1

I
Device termination, 4-63

DEVNAM UUO, 4-12

I
DEVPPN UUO, 4-11, 4-41

DEVSIZ UUO, 4-12a, 4-44o

I
DEVSTS UU 0, 4-11, 4-39, 6-11, 6-34

D EVTYP UU 0, 4- 11 , 4-44

Diagnostic messages, 2-29, F-1

Digital compatible mode, 5-16

DIRECT command, 2-33

Directory algorithms, 7-9

Directory devices, 6-1

Directory searches, 7-9

Direct user I/O, 8-21

DISCON subroutine, 8-18

DISK

INDEX -3

data modes, 6-13
directories, 6-14
fi I e status, 6-36
file structure names, 6-20
job search list, 6-23
protection, 6-16
quotas, 6-19
RIB, 6-16
structure of files, 6-13
UFD privileges, 6-19
User programming, 6-24

March 1971

Disk monitor, 1-1

Disk packs, 6-37
identification, 6-37
compatibi I ity, 6-38

Dismissing an interrupt 8-13

DISMOUNT command, 2-16

Display with light pen, 5-7
data modes, 5-8
file status, 5-10
UUOs, 5-8

DMPFIL CUSP I 2-35

Dormant segments, 7-3

DSKCHR uuo I 4-10, 4-42

I DS K command, 2-96

Dump output, 4-57

E command, 2-71

EDIT command, 2-26

End of fi I e card
card punch, 5-2
card reader, 5-6

ENTER UUO, 4-5, 4-52
error codes, E-1
DECtape, 6-7
disk I 6-26 I 6-28

E

Environmental information, 4-29

EOF pointer, 1-2

Error codes, E-1

Error handling, 3-2, 7-8

Error intercepting, 4-16

Error messages, 2-29, F-1

EXECUTE command, 2-49

Execution control, 4-13

Executive mode, 4-2

EXIT uuo I 4-7 I 4-14

Extended command forms, 2-51
indirect commands, 2-51
+ construction, 2-52

Revision 2 Monitors

INDEX {Cont)

Extended command forms {Cont)
= construction, 2-53
<>construction, 2-53

Extended LOOKUP, ENTER, RENAME, 6-28

·Extensions, 2-24, G-1

F

Facility allocation command, 2-7

Fairness considerations, 7-7

FILE command, 2-37

FILE directories, 1-6, 6-14

FILE manipulation, 2-29

Filename extension, 2-24, G-1

Filenames, 2-24

Fi I e reading, 4-64

Files, 1-7, 4-45

Fi le selection, 4-52

File specification, 2-30

File status bits, 4-61

Fi le structure control, 4-25

Fi le structure directories, 6-14

File structure names, 6-20

File structures, 1-6

Fi le termination, 4-61

Fi le writing, 4-64

FILEX CUSP I 2-39

Filler characters, 2-95

FILSER, 6-14, 7-5

FINISH command, 2-17

Folded checksum, 7-8, I-1

Forced compilation, 2-56

.FSSRC (STRUUO) I 4-26

FORTRAN real-time subroutines, 8-17

FORTRAN usage of real-time trapping, 8-17

I FRECHN UUO, 4-11

Full duplex Teletype service, 5-24

INDEX-4 March 1971

G

GET command, 2-64

GETLIN uuo I 4-8, 4-30

GETPPN UUO, 4-8, 4-30

GETSEG UUO, 4-9, 4-22
error codes, E-1
sequence of operations, 4-21

GETSTS uuo I 4-4, 4-60

GETTAB UUO, 4-9, 4-33

GOBSTR uuo I 4-12, 4-31

GRIPE CUSP I 2-22

Group pointer, I-1

H

Ha If-duplex Teletype service, 5-26

HALT command, 2-67

HALT (JRST 4 ,) I 4-14

Ha rd error, 7 -8

Hardware detected errors, 7-8

Header card
card punch, 5-2
card reader, 5-6

I HIBER uuo I 4-12 I 4-16b

High segment, 3-1

HISEG pseudo-op, 3-10

I HPQ uuo I 4-12, 8-24

H switch, 3-8

Idle segment, 7-3

Illega I instructions, 4-14

Illegal operation codes, 4-13

Implicit RESET, 8-4

Impure code, 1-2

Impure segment, 1-6

INBUF UUO, 4-4, 4-51

Revision 2 Monitors

INDEX (Cont)

Indirect commands, 2-51

Industry compatible mode, 5-17

INITIAL command, 2-7

Initial file status, 4-47

INIT uu 0 I 4-3, 4-47

Input handling of Teletype control characters
5-24 I

INPUT UUO, 4-4, 4-56

I Inter-program communication, 4-28a

Interrupt chains, 7-10

I

I

I
I

I

IOACT, 4-61

IOBKTL, 4-61

IODERR, 4-61

IODTER, 4-61

IOEOF I 4-61

IOIMPM, 4-61

I/O organization, 4-45

I/O programming, 4-45

J

JBTADR table, 4-34

JBTC NO table, 4-35

JBTDBS table, 4-34

JBTDEV table, 4-35

JBTKCT table, 4-34

JBTLIM table, 4-35

JBTLOC table, 4-35

JBTNM 1 table, 4-35

JBTNM2 table, 4-35

JBTPRG table, 4-34

JBTPRV table, 4-34

JBTQ table, 4-35

JBTRCT table, 4-34

JBTRTD table, 4-35

JBTSGN table, 4-34

INDEX-5 March 1971

I JBTSPL table, 4-35

JBTSTS table, 4-34

JBTSWP table, 4-34

JBTTDB table, 4-34

I JBTTMP table, 4-35

JBTWCH table, 4-35

JBTWCT table, 4-34

J JCO NT command, 2-68a

Job, 7-1

JOBAPR, 3-6

JOBBLT I 3-5

JOBCHN, 3-7

JOBCNI, 3-6

JOBCN6, 3-5

JOBCOR, 3-7

JOBDA, 3-7

Job Data Area, 3-4

JOBDDT I 3-5

JOBERR, 3-5

JOBFF I 3-6

JOBHCR, 3-10

JOBHDA, 3-11

I JOBHGH I 3-10

JOBHRL, 3-5

JOBHRN, 3-10

JOBHSA, 3-10

JOBHVR, 3-11

JOBH41, 3-10

Job initialization commands, 2-4

Job I/O initialization, 4-46

I JOBINT I 3-7 I 4-16

Job number check, 2-3

JOBOPC, 3-6

JOBPFI, 3-5

JOBREL, 3-5

Revision 2 Monitors

INDEX (Cont)

JOBREN, 3-6

Jobs, 2-1

JOBSA, 3-6

Job scheduling, 1-1, 7-1

Job search list, 6-23

Job state codes, 4-38

Job status information, 4-30

JOBSTR uuo I 4-10 I 4-31

JOBSTS uuo I 4-11, 5-37

JOBSYM, 3-6

Job termination, 2-82

JOBTPC, 3-6

JOBUSY I 3-6

JOBUUO, 3-5

JOBVER, 3-7

JOB41, 3-5

KJOB command, 2-83

Latency time, 7-5

Library searches, 2-57

Line printer, 5-11
data modes, 5-11
file status, 5-11

LIST command, 2-31

Listing files, 2-54

LOAD command, 2-48

Loader, 3-7

Loader maps, 2-57

Loader switches, 2-58

K

L

Loading user core area, 3-4, 3-9

I LOCATE uuo I 4-12

Location counter, 3-8

LOCK subroutine, 8-17

INDEX-6 March 1971

LOCK UUO, 4-11, 8-2

Logged-in quota, 1-7, 6-19

Logged-out quota, 1-7, 6-19

I Logical device names, 2-8
suppression of, 4-12b

Logical unit names, 6-21

Login check, 2-3

LOGIN command, 2-5

LOGIN uuo I 4-7 I 4-27

LOGOUT UUO, 4-7, 4-15

LOOKFL CUSP I 2-34

LOOKUP UUO, 4-5, 4-52
error codes, E-1
DECtape, 6-6
disk I 6-27 I 6-28

Low segment, 3-1

LVDTBL table, 4-34, 4-37

Magnetic tape, 5-12
data modes, 5-12
file status, 5-18
format, 5-13
.UUOs, 5-13

MAKE command, 2-27

MAP program, 7-8

M

Master fi I e di rectory, 1-6, 6-14

Meddling, 4-24

Memory fragmentation, 8-3

Memory parity error recovery, 3-2

Memory protection and relocation, 1-2, 3-1

Memory relocation register, 1-2, 3-1

MF DI 1-6 I 6-14

Modifying shared segments, 4-24

Monitor capabilities, 1-1

Monitor command interpreter, 1-4, 2-1

Monitor command level, 1-4

Monitor examination, 4-32

Revision 2 Monitors

INDEX (Cont)

Monitor functions, 1-1

Monitor generated buffers, 4-51

Monitor mode, 2-1

Monitor sizes, B-1

Monitor UU Os, 4-3
table, 4-3
CALL and CALLI table, 4-6 I restrictions in reentrant programs, 4-12b

MOUNT command, 2-13

MSTIME uu 0 I 4-8 I 4-30

MTAPE functions, 5-14

MTAPE UUO, 4-5, 5-14, 6-10

Multiprogramming, 1-1

N

Named file, 1-7

Nine-channel magtape, 5-16

Nondirectory devices, 5-1

Non-reentrant program, 1-6

Non-sharable segments, 1-5

I NSWTBL table, 4-34, 4-36a

NUMTAB table, 4-35, 4-37

0

Obtaining project-programmers associated
with device, 4-41

ODPTBL table, 4-34, 4-37

Offset, 3-8

Once-only parameters, J-1

OPEN uuo I 4-4 I 4-47

Optimization 7-5

Order of directory filenames, 7-9

I OTHUSR UUO, 4-12a, 4-32

OUTBUF uu 0 I 4-4 I 4-50

OUTPUT uuo I 4-5 I 4-56

Overdrawn (quotas), 6-20

Owner of files, 6-18

INDEX-7 March 1971

Paper tape punch, 5-19
data modes, 5-19
file status, 5-20

Paper tape reader, 5-20
data modes, 5-20
file status, 5-21

PARADR, 3-3

Parity error, 3-2

PARPC, 3-3

PARSPR, 3-3

PARTOT I 3-3

Passive search I ist, 6-23

Password, 2-4

PEEK uuo' 4-8 I 4-32

Permanent switch, 2-54

p

Physical controller class names, 6-21

Physical controller names, 6-21

Physical device names, 2...;8

Physical unit names, 6-21

PICHL mnemonic, 8-10

P JOB command, 2-78

p JOB uuo I 4-8 I 4-30

PLEASE command, 2-19

Plotter, 5-22
data modes, 5-22
file status, 5-23

Position-done interrupt, 7-7

Positioning, 7-5

PRINT CUSP I 2-32

Priority Interrupt routines, 7 -9

Privileged programs, 6-19

PRJPRG table, 4-34

Processor modes, 4-1

Processor switches, 2-57

Program identification, 4-27

Program operators, 4-2

Revision 2 Monitors

IN DEX (Cont)

Program origin, 3-8

Project-programmer numbers, 2-4

Protection address, 3-1

Protection codes, 6-18

Pseudo-Teletype, 5-34
concepts, 5-34
file status, 5-36
SLEEP uuo I 5-35
UUOs, 5-36

Pure code, 1-2

Pure segment, 1-6

Q

I QQQT AB table, 4-35

Quantum time, 1-1, 7-2

Queues, 7-1

Queuing strategy, 7-6

QUOLST CUSP I 2-89

Quotas, 1-7, 6-19

R command, 2-63

R

Reading a UFO, 4-41

Real-time programming, 8-1

Real-time trapping, 8-8
FORTRAN usage, 8-17

REASSIGN command, 2-12

REASSIGN UUO, 4-7, 4-64

REENTER command, 2-70

Reentrant capability, 1-2, 1-5

Reentrant program, 1-6, 3-1, C-1

Relative address, 3-1

RELEASE uuo I 4-5 I 4-63 I 5-37

Relocation address, 3-1

REMAP uu 0 I 4-9 I 4-23

Remembered commands, 2-24, 2-47

Removable file structures, 6-37

INDEX-8 March 1971

LOCK UUO, 4-11, 8-2

Logged-in quota, 1-7, 6-19

Logged-out quota, 1-7, 6-19

I Logical device names, 2-8
suppression of, 4-12b

Logica I unit names, 6-21

Login check, 2-3

LOGIN command, 2-5

LOGIN uuo I 4-7 I 4-27

LOGOUT UUO, 4-7, 4-15

LOOKFL CUSP I 2-34

LOOKUP UUO, 4-5, 4-52
error codes, E-1
DECtape, 6-6
disk I 6-27 I 6-28

Low segment, 3-1

LVDTBL table, 4-34, 4-37

Magnetic tape, 5-12
data modes, 5-12
file status, 5-18
format, 5-13
UUOs, 5-13

MAKE command, 2-27

MAP program , 7-8

M

Master file directory, 1-6, 6-14

Meddling, 4-24

Memory fragmentation, 8-3

Memory parity error recovery, 3-2

Memory protection and relocation, 1-2, 3-1

Memory relocation register, 1-2, 3-1

MF DI 1-6 I 6-14

Modifying shared segments, 4-24

Monitor capabilities, 1-1

Monitor command interpreter, 1-4, 2-1

Monitor command level, 1-4

Monitor examination, 4-32

Revision 2 Monitors

INDEX (Cont)

Monitor functions, 1-1

Monitor generated buffers, 4-51

Monitor mode, 2-1

Monitor sizes I s .. 1

Monitor UUOs, 4-3
table, 4-3
CALL and CALLI table, 4-6 I restrictions in reentrant programs, 4-12b

MOUNT command, 2-13

MSTIME uu 0 I 4-8 I 4-30

MT APE functions, 5-14

MTAPE UUO, 4-5, 5-14, 6-10

Multiprogramming, 1-1

N

Named file, 1-7

Nine-channel magtape, 5-16

Nondirectory devices, 5-1

Non-reentrant program, 1-6

Non-sharable segments, 1-5

I NSWTBL table, 4-34, 4-36a

NUMTAB table, 4-35, 4-37

0

Obtaining project-programmers associated
with device, 4-41

ODPTBL table, 4-34, 4-37

Offset, 3-8

Once-only parameters, J-1

OPEN UUO, 4-4, 4-47

Optimization 7-5

Order of directory filenames, 7-9

I OTHUSR UUO, 4- l 2a, 4-32

OUTBUF uuo I 4-4 I 4-50

OUTPUT uuo I 4-5 I 4-56

Overdrawn (quotas), 6-20

Owner of files, 6-18

INDEX-7 March 1971

Paper tape punch, 5-19
data modes, 5-19
file status, 5-20

Paper tape reader, 5-20
data modes, 5-20
file status, 5-21

PARADR, 3-3

Parity error, 3-2

PARPC, 3-3

PARSPR, 3-3

PARTOT, 3-3

Passive search I ist, 6-23

Password, 2-4

PEEK uuo I 4-8, 4-32

Permanent switch, 2-54

p

Physica I control I er class names, 6-21

Physical controller names, 6-21

Physical device names, 2-8

Physical unit names, 6-21

PICHL mnemonic, 8-10

P JOB command, 2-78

PJOB UUO, 4-8, 4-30

PLEASE command, 2-19

Plotter, 5-22
data modes, 5-22
file status, 5-23

Position-done interrupt, 7-7

Positioning, 7-5

PRINT CUSP I 2-32

Priority Interrupt routines, 7-9

Privileged programs, 6-19

PRJPRG table, 4-34

Processor modes, 4-1

Processor switches, 2-57

Program identification, 4-27

Program operators, 4-2

Revision 2 Monitors

IN DEX {Cont)

Program origin, 3-8

Project-programmer numbers, 2-4

Protection address, 3-1

Protection codes, 6- 18

Pseudo-Teletype, 5-34
concepts/ 5-34
fi I e status, 5-36
SLEEP uuo I 5-35
UUOs, 5-36

Pure code, 1-2

Pu re segment, 1-6

Q

I QQQT AB table, 4-35

Quantum time, 1-1, 7-2

Queues, 7-1

Queuing strategy, 7-6

QUOLST CUSP I 2-89

Quotas, 1-7, 6-19

R command, 2-63

R

Reading a UFO, 4-41

Real-time programming, 8-1

Real-time trapping, 8-8
FORTRAN usage, 8-17

REASSIGN command, 2-12

REASSIGN uu 0 I 4-7 I 4-64

REENTER command, 2-70

Reentrant capability, 1-2, 1-5

Reentrant program, 1-6, 3-1, C-1

Relative address, 3-1

RELEASE uuo I 4-5 I 4-63 I 5-37

Relocation address, 3-1

REMAP uu 0 I 4-9 I 4-23

Remembered commands, 2-24, 2-47

Removable file structures, 6-37

INDEX-8 March 1971

~.... Removing devices from PI channel, 8-13

RENAME command, 2-45

RENAME uuo I 4-4, 4-54
error codes, E-1
DECtape, 6-8
disk f 6-27 f 6-28

RESET uuo I 4-6, 4-46, 6-34

RESOURCES command, 2-23

Retrieval Information Block, 6-16

Retrieval pointers, 1-1

RIB I 6-16

Ring buffers, 4-49

RTINIT subroutines, 8-17

RTREAD subroutine, 8-19

RTSLP subroutine, 8-20

RTSTRT subroutine, 8-18

RTTRP uuo I 4-11, 8-8
error codes, 8-11
examples, 8-13
returns, 8-11

RTWAKE subroutines, 8-20

RTWRIT subroutine, 8-19

RUN command, 2-61

Run contro I, 2-60

RUNTIM UUO, 4-8, 4-30

RUN uuo I 4-9 I 4-19
error codes, E-1
sequence of operations, 4-21

s

SAT blocks, 6-14

SAVE command, 2-73

Saved file format, 2-76

I SCH EDU LE command, 2-87

Scheduling, 1-1, 7-1

Searching, 7-5

SEEK uuo I 4-11, 6-34

Segment control, 4-19

Revision 2 Monitors

INDEX (Cont)

Segments, 1-2, 1-5

Sequence of RUN UUO operations, 4-21

SEND command, 2-18c

SET CDR command, 2-18a

SET CORMAX command, 2-104

SET CORMIN command, 2-105

SET DATE command, 2-103

SET DAYTIME command, 2-99

SET DDT uuo I 4-6 I 4-13

SET NAM uuo I 4-10 I 4-27

I
SET SCHEDULE command, 2-99

SET SPOOL command, 2-18b

SETSRC CUSP I 2-41

SETSTS UUO, 4-4, 4-60

I
SET TIME command, 2-105

SET TTY command, 2-97

SETUUO, 4-12a, 4-28

SETUWP uuo I 4-9, 4-18

I SET WATCH command, 2-90

SHARABLE segments, 1-5, 4-23

Simultaneous access, 6-20

Simultaneous supersede, 6-34a

Single mode, 8-8

SLEEP UUO, 4-8, 4-16a
PTY I 5-35

Soft error, 7-8

Software detected errors, 7 -8

Software states, 7-6

Source file preparation, 2-24

I Spooling of I/O on disk, 6-38

SPY UU 0, 4-9, 4-320

SSAVE command, 2-74

Standard processor, 2-55

ST ART command, 2-66

Starting a program, 4-13

State Codes, 4-38, 7-5

INDEX-9 March 1971

ST A TI subroutine, 8-20

STATO subroutine, 8-19

STATO uuo I 4-4, 4-60

Status checking, 4-60

Status information (DSKCHR), 4-42

Status setting, 4-60

STATZ UUO, 4-4, 4-60

Stopping a program, 2-2, 4-14

Storage Allocation Table, 6-14

Structure of disk files, 6-13

STRUUO UUO, 4-10, 4-25

STSTBL table, 4-35, 4-38

Subroutine to input one character, 4-58

Subroutine to output one character, 4-59

Super cluster, 6-15

Super - USETI, 6-33

Super - USETO, 6-33

I Suppression of logical device names, 4-12b

Suspending, 4-16a

Swapping, 1-2, 7-3

Swapping allocator, 7-4

Swapping classes, 7-4

Swapping space, 7-3

SWAP .SYS, 7-3

Switches (COMPIL), 2-54, 2-57

SWITCH uuo I 4-7 I 4-39

SWPTBL table, 4-34, 4-36a

Synchronization of buffered 1/0, 4-59

SYSPHY uuo I 4-11, 4-45

SYSSTR uuo I 4-10 I 4-44b

I SYSTAT command, 2-92

System administration, 2-95

System library, 6-16

T

TECO command, 2-28

Revision 2 Monitors

INDEX (Cont)

Teletype, 5-23
data modes, 5-24
control characters, 5-24
DDT submode, 5-28
fi I e status, 5-32
TTCALL, 5-29
paper tape input, 5-33
paper tape output, 5-34

Teletype characteristics command, 2-93

Temporary files, 2-59

Temporary switch, 2-54

I
Testing sharable segments, 4-23

TIME command, 2-88

TIMER uuo I 4-7 I 4-30

Timing and usage, 2-84

Timing information, 4-29

TMPCOR uuo I 4-10, 4-28a

Total user core, 8-1

Transfer-done interrupt, 7-7

Trapping, 4-15
console-initiated traps, 4-16

TRPADR mnemonic, 8-10

TRPJEN UUO, 4-8

TRPSET UUO, 4-8, 4-65, 8-21

TT CALL uu 0 I 4-4 I 5-29

TTIME table, 4-34

TTYTAB table, 4-34

TYPE command, 2-30

u

UF D' 1-6 I 6-14

UFD privileges, 6-19

UGETF UUO, 4-5, 6-10

UJEN, 8-23

Unit selection on output, 6-22

Unit states, 7-4

Unbuffered data modes, 4-48, 4-56

Unimplemented op codes, 4-13

INDEX-10 March 1971

Unlocking jobs, 8-4

Use bit, 7-2

User foci lities, 1-3

User file directory, 1-6, 6-14

User generated buffers, 4-51

User I/O mode, 4-1

User mode, 2-1, 3-1, 4-1

User programming, 4-1

User programming for the disk, 6-24
4-word arguments, 6-25
extended arguments, 6-28

User UUOs, 4-2

USETI UUO, 4-5, 6-10, 6-33

USETO uuo I 4-5 I 6-10 I 6-33

UTPCLR uuo I 4-7 I 6-10

UUOs, 4-2
user, 4-2
monitor, 4-3

Verification, 7-5

v

Vestigial job data area, 2-77, 3-10

Vi rtua I core, 7-3

w

WAIT uuo I 4-6 I 4-59

WAKE UUO, 4-12, 4-16c

WHERE uuo I 4-12

Writing reentrant user programs, C-1

z

Zero - Compressed files, 2-75

Revision 2 Monitors

INDEX (Cont)

INDEX...,1J March 1971

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and documentation
corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family
PDP-6/PDP-10 Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC regional
or district sales office. In cases where no Software Specialist is available, please send a Software Trouble Report form with
details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms, which are available without charge from the Program Library, should be fully filled out and accompanied by
teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An answer will be sent
to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and mam.ials, Software Trouble Report forms, and cumulative Software Manual Updates are avail­
able from the Program Library. When ordering, include the document number and a brief description of the program or
manual requested. Revisions of programs and documents will be announced in the newsletters and a price list will be included
twice yearly. Direct all inquiries and requests to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs as well as
the DECUSCOPE magazine for its members and non-members who request it. For further information please write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Send Digital's software newsletters to:

My computer is a

Na,me ----------------------
Company Name __________________ _

Address _____________________ ~

PDP-8/I 0
LINC-8 0
PDP-9 0
PDP-10 0

PDP-8/L 0
PDP-12 0
PDP-15 0

(zip code) ____ _

Other 0 _______ Please specify

My system serial number is ___________ (if known)

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamanma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Ma~chusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

READER'S COMMENTS

PDP-10
TIME-SHARING MONITORS
DEC-T9-MTZD-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the fol­
lowing periodically distributed publications are available upon request. Please check the appropriate boxes
for a current issue of the publication(s) desired.

O Software Manual Update, a quarterly collection of revisions to current software manuals.

0 User's Bookshelf, a bibliography of current software manuals.

0 Program Library Price List, a list of currently available software programs and manuals.

Name Organization -------------------

Street -------------- Department

City State Zip or Country

- - - - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaama
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Mas.sachusetts 01754

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

