'EK-EBOX-UD-003

©)
.
INSTRUCTION EXECUTION UNIT
O UNIT DESCRIPTION
% (L A

digital equipment corporation - marlborough, massachusetts

1st Edition, May 1976
2nd Edition, January 1976
3rd Edition (Rev), December 1976

The drawings and specifications herein are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of equipment described herein without (
written permission. :

Copyright © 1976 by Digital Equipment Corporation

The material in this manual is for informational

purposes and is subject to change without notice. (Y}
Digital Equipment Corporation assumes no respon-

sibility for any errors which may appear in this

manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC DECtape PDP
DECCOMM DECUS RSTS
DECsystem-10 DIGITAL TYPESET-8
DECSYSTEM-20 MASSBUS TYPESET-11
UNIBUS

Q)

-

o

CONTENTS

Page
SECTION 1 OVERVIEW
1.1 INTRODUCTIEIN & v oo s 3 ¢ 5 6oimt @ § 8 8 6@ @ o & 0% EBOX/1-1
12 BASIC FUNCTIONALBLOCKS EBOX/1-5
1:24 Instruction Register-Dispatch-Main Control Store EBOX/1-8
152:2 Fast MEMOTY . . v v v v o et e e e e e e e e e e e e e EBOX/1-11
1:2.3 Addtess Path & o wiom o 75 % & @@ & 5 5 2B &6 86 0 8 E EBOX/1-15
1.2.4 Request and MBox Control EBOX/1-18
1.2.4.1 KLSEVIGREnE v s s s’ s s 8 s 2 5 g Bm & § § 5 & 5 5 EBOX/1-19
1.2.4.2 KL-PAginE - « 408 s &% < w oo o v = & o i omie w @ w0t 5 EBOX/1-22
1.2.4.3 MBox ErforConditions . « = ~ s &5 s 5 & 2.6 & & & 5 2 5 & EBOX/1-37
1.2.4.4 MACONIOL &« viv v v 4w v s 5 wmm w s o o o EBOX/1-37
1228 emmmmy FBus Controland PIControl EBOX/1-39
1.2.6 DataPath @ i i e EBOX/1-42
1.2.6.1 Information Flow To and From Memory EBOX/1-42
1:2.6.2 Information Flow I/O and Priority Interrupt EBOX/1-46
SECTION 2 FUNCTIONAL DESCRIPTION
2l INTRODECGTION - & 5 5 6wl o 6 & i il o s a0 @ e o a8t o w0 imk 00 9 EBOX/2-1
2.2 MICROPROGRAM STATES AND PROCESSOR CYCLES EBOX/2-1
221 BBt Bt o+ ovsoc s s4adsa o [S R e o A7 A B EBOX/2-1
2229 Microprogram Halt Loop EBOX/2-4
2.2.3 Mickoptograts BONAIAE 2 s s 2o m i R 43 S S FEF 45 5 & EBOX/2-7
2.2.4 Microprogram Wait State:« « o 0 0 vt i il w e EBOX/2-8
2.2.5 Microprogram and EBox Frozen «c ¢ ot v v v wn s EBOX/2-8
2.2:6 Microprogram Deferred « . . ¢« ¢ o o h i ot s e EBOX/2-12
227 Micropiogram OIpaiization . . + cv 55 55 2w o5 5 o o o om o EBOX/2-14
23 INBASICMACHINECYCLE & o i v o mw av s 5 %o ws & 5 o s EBOX/2-20
2.3:1 Instruction Cycle — NICOND Dispatch to XCTGO EBOX/2-24
2.3.2 Indirect Word Request . + «+ s ¢ s s v v v 5 s muw o w5 @ 3% EBOX/2-26
2.3.3 MBox Response to Indirect Word Request EBOX/2-29
2.3.4 Address Caloylation Continues . « soo v o 5 & v = % o 4 5 & & 55 EBOX/2-29
2.3:5 e S A READ Dispatch — Set Up Data Fetch and Prefetch EBOX/2-29
2.3.6 \ MBox Response to Data Read — Prefetch Begins EBOX/2-33
S b Executor — Set Up for Store Cycle EBOX/2-33
2.3.8 L Finish Store Cycle — Perform NICOND Dispatch EBOX/2-35
2.4 ' PAGE FAIL CYCLE INFORMATION EBOX/2-35
2.4.1 Page Fail Handling — Functional Flow EBOX/2-38
2.4.2 Process Table References v v v v v v v .. EBOX/2-42
25 TRAPCYCLE — INTRODUCTION . i v cm e s v o wmm &5 & & &5 EBOX/2-42
2.5.1 TrEADHANANEATE & . o 5 w6 o o5 & 0w it o o o0 iosmi m o5 e s e EBOX/2-42
2.5.2 Address Generation: e s oo s s mwn o 5 5 @ mE 84 @ b 6 EBOX/2-44
2543 PT Reference for Trap Instruction EBOX/2-44
2.6 INTERRUPT CYCLE — INTRODUCTION EBOX/2-44
2.6.1 . Duration of Uninterruptable Intervals EBOX/2-47

iii

CONTENTS (Cont)

o Page
2.6.2 Interruptable Instructions EBOX/2-47
2.6.3 General Interrupt Sequencing EBOX/2-47
2.6.4 Interrupt Dialogue EBOX/2-48
2.7 BASIC MACHINE MODES INTRODUCTION EBOX/2-51
2.7.1 Mode Initialization — Private Instruction EBOX/2-56
2.7.2 Loading Flags and ChangingMode EBOX/2-58
2.7.3 User PublicMode o v v v v e e EBOX/2-59
2.7.3.1 Entry from User Public Mode to User Concealed EBOX/2-62
2.7.3.2 Concealed Violation Data Reference EBOX/2-62
2.7.4 Restoration of Programs by the Supervisor EBOX/2-62
2.7.4.1 Restoring a Concealed Program EBOX/2-62
2.7.4.2 Restoring a Kernel Program EBOX/2-64
2.7.4.3 Restoring a User Public Program apwssew, EBOX/2-64
2.7.4.4 Saving Flags and Leaving User EBOX/2-65
2.7.4.5 User Concealed EBOX/2-65
2.8 ADDRESS PATHS o i i i EBOX/2-67
2.9 DATA PATHS o o e e e e e e e e e EBOX/2-70
2.9.1 ———— Virtual Memory Address Register EBOX/2-70
2.9.2 Program Counting « v v v i v i EBOX/2-72
2.9.3 LoadingPC EBOX/2-72
2.94 General Data Path Organization EBOX/2-74
2.9.5 General Data Path Mixer Selection EBOX/2-74
2.9.5.1 ADField EBOX/2-74
2.9.5.2 ADAField EBOX/2-82
2.9.5.3 ADBField EBOX/2-82
2.9.5.4 ARField e EBOX/2-83
2.9.5.5 ARX Field EBOX/2-85
2.9.5.6 BRField EBOX/2-86
2.9.5.7 BRXField EBOX/2-86
2.9.5.8 FMADR Field EBOX/2-86
2.9.5.9 SCAD Field EBOX/2-86
2.9.5.10 SCADA Field EBOX/2-87
2.9.5.11 SCADBField EBOX/2-87
2.9.5.12 SCField EBOX/2-87
2.9.5.13 SHField EBOX/2-88
2.9.5.14 The AR Mixer Mixer (ARMM) EBOX/2-88
2.9.5.15 —— VMAField EBOX/2-88
2.9.5.16\%E MQField EBOX/2-88
2.10 =EBOX INSTRUCTION SET FUNCTIONAL OVERVIEW EBOX/2-88
2.10.1 Effective Address Calculation EBOX/2-91
2.10.1.1 Indexing EBOX/2-92
2.10.1.2 Indirection EBOX/2-92
2.10.1.3 No Indirection or Indexing EBOX/2-96
2.10.2 FetchCycle EBOX/2-96
2.10.2.1 Instructions That Do Not Require (E) EBOX/2-96
2.10.2.2 Instructions That Require (E) EBOX/2-99

iv

2.10.3
2.10.4
2.10.4.1
2.10.4.2
2.10.4.3
2.11
2.11.1
2.13.2
2.11:2.4
21122

9 i e
2.11.2.4
2.1d.2.5
e 12
ald.l
2,122
Suld3
|
Ly it d
2.12.3.3
2.12.34
2.12.4
2.12.4.1
2.12.4.2
2.12.4.3
2.12.5
2.12.5.1
212,32
2.12.5.3
2.12.5.4
2.12.5.5

SECTION 3

3.1
3.1.1
3.1.2
3.1.3
3.1:3:4
3.1.3:2
3.2
3.2.3
3.2.2
3.2.3
3.2.3.1

CONTENTS (Cont)

Page
Execution Cycle P EBOX/2-101
EBox Data Store Cycle oo EBOX/2-103
Basic Four Mode Type Instructions EBOX/2-103
SKIP, JUMP Compare Instructions EBOX/2-107
Store Cycle for Other Instructions EBOX/2-108
INTERFACECONTROLo.... EBOX/2-108
Introduction 0 o e e e e EBOX/2-108
MBox Control e e e e e EBOX/2-110
DATA FETCH REQUEST EN — Begin EBox Cycle ... EBOX/2-112

Begin MBox Cycle — End Current EBox Cycle
and Start Next e EBOX/2-112
SETUP PREFETCH — Wait for MBox Response EBOX/2-116
MBOX RESPONSE RECEIVED EBOX/2-116
General Memory Cycle Control EBOX/2-116
N@BUS INTERFACECONTROL EBOX/2-116
: EBus Signal Lines i e e e EBOX/2-120
% EBus Interface Organization v v o v v v v ... EBOX/2-123
Interrupt Handling — Loading the Request EBOX/2-123
Testingthe Request EBOX/2-123
Requestingthe EBus EBOX/2-123
Beginning the Dialogue EBOX/2-124
Interlocks and Dialogue Completion EBOX/2-124
Basic Input Output Control EBOX/2-124
Requestingthe EBus EBOX/2-124
Dialogue Overview v v v v vt EBOX/2-124
Functional Breakdown EBOX/2-126
PI and EBus to Microcode Interface™ . ~. EBOX/2-127
Sensing the Interrupt, EBOX/2-127
Requestingthe EBus EBOX/2-131
Beginning the Dialogue EBOX/2-131
Terminating the Dialogue EBOX/2-133
Entrytothe PIHandler EBOX/2-133

LOGIC DESCRIPTIONS

INSTRUCTION REGISTER LOADING AND CONTROL EBOX/3-3
DRAM and IRACControl EBOX/3-7
DRAM Addressing and Selection EBOX/3-8
IR TEST SATISFIED EBOX/3-10
Introduction e e e e e EBOX/3-10
Implementation EBOX/3-10
PROCESSOR TIMING i it e e EBOX/3-15
Clock OVEIVIEW . v v v v v e e e e e e e e e e e e e EBOX/3-15
Crobar and Clock Initialization EBOX/3-17
EBusReset c&ssadd gom cameii o B, ., EBOX/3-19
Initialization Clock Pulse Generation EBOX/3-19

3.2.4
ke 8
3.2.6
3.3
3.3.1
3.3.2
3.3.24
kA
33
3.3.3.1
kN
3.3.3.3
3.3.3.4
3.3.3.5
3.5:.3.6
3.34
53,5

3.3.6 .

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.5.1
3.4.5.2
3.4.5.3
3.4.6
3.4.7

APPENDIX A

APPENDIX B

Figure No.

el el e e e
1
NN BN

CONTENTS (Cont)

-

EBox Clock Control
Error Detection
Clock Control Logical and Skew Delays
ARITHMETIC PROCESSOR FACILITY
Introduction o o T L i e i T e e e i e e e s
AddressBreak
Address Break INH and Saving Flags
Address Break INH and Loading Flags
Arithmetic Processor Status Register
SBusErrors e
Nonexistent Memory o v v o v oo

Other External Errors
Input/Output Page Failure Error
PowerFail
SWEEP and SWEEPDONE
Processor Identification
Cache Refill RAM Facility
MBox Error Address Register
CONTROL RAM ADDRESSING
~ Pushdown Stack
Current Location Register (CRALOC)
Control RAM Dispatch Field
Miscellaneous CR Address Gates
Special CR Address Modification Considerations

CLKFORCE 1777

CONCONDADR IO
| MULDONEiiuiiiuonio ..
[AREADLOGIC
| CRA Dispatch Parity
—

UNDERSTANDING THE MICROCODE

ABBREVIATIONS AND MNEMONICS

ILLUSTRATIONS
Title

EBox Simplified Block Diagram
Control Pyramid e
DRAMI/O,JRST i i e e e e e e e e e e
DRAM Organization« v v v v v i i e e e e e e e e
EBox RAM Structures, Interfaces, and Controls Block Diagram .

EBox Overall Block Diagram

vi

Page

EBOX/3-19
EBOX/3-22
EBOX/3-25
EBOX/3-27
EBOX/3-27
EBOX/3-27
EBOX/3-31
EBOX/3-31
EBOX/3-31
EBOX/3-33
EBOX/3-34
EBOX/3-34
EBOX/3-34
EBOX/3-34
EBOX/3-38
EBOX/3-40
EBOX/3-41
EBOX/3-43
EBOX/3-44
EBOX/3-44
EBOX/3-47
FBOX/3-47
EBOX/3-47
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-52

Page

EBOX/1-2
EBOX/1-3
EBOX/1-4
EBOX/1-4
EBOX/1-6
EBOX/1-7

Figure No.

1-7

1-8

1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
1-33
1-34
1-35
1-36
1-37
1-38
2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10
2-11
2-12
2-13

ILLUSTRATIONS (Cont)

Title Page

Instruction, Dispatch, and Control Formats EBOX/1-9
Microprogram Main Loop EBOX/1-10
Basic Fast Memory Structure EBOX/1-12
VMA Structure Simplified EBOX/1-16
PC+ 1 Function i i i i ittt i e it EBOX/1-17
MBox-VMA-EBUS Control Simplified EBOX/1-18
Page Table ACCESS + v v v v v v e e e e e e e e e e e e e e EBOX/1-19
KIStyle Paging 0 i i i i i i it it i EBOX/1-20
Physical Memory Address Format EBOX/1-21
Page Fault Overview o v v i v i it e e EBOX/1-21
KL Paging Layout v . v v v v i i i et et e EBOX/1-22
Page Mapping (Virtual to Physical) EBOX/1-23
Typical PagingPath EBOX/1-24
Immediate Section Pointer e e e e EBOX/1-25
Shared Section Pointer e EBOX/1-25
Indirect Section Pointer e EBOX/1-26
Pointer Interpretation (Normal Section Pointer; Shared) EBOX/1-27
Pointer Interpretation (Indirect Section Pointer) EBOX/1-28
Pointer Interpretation (Indirect Page Pointer) EBOX/1-29
Pointer Interpretation Flow Diagram EBOX/1-30
KL Core Status Tables Updating Flow Diagram EBOX/1-35
Basic Address Translation EBOX/1-37
Virtual Address Mapping, KI10 PagingMode EBOX/1-38
Simultaneous Interrupts EBOX/1-39
PI Dialogue Overview o v v v e e EBOX/1-40
API Word Format EBOX/1-41
I/O Instruction Dialogue Overview o v v v v v v v .. EBOX/1-41
KL10 Register Interconnection Diagram EBOX/1-43
Core and Fast Memory Information Flow EBOX/1-44
Loading ARX e e e e EBOX/1-47
EBox Data Paths Simplified Paths Diagram EBOX/1-48
Input/Output Priority Interrupt Information Flow EBOX/1-49
- EBox Functional Block Diagram EBOX/2-2
Primary Hardware Cycles EBOX/2-3
Microprogram Static States EBOX/2-4
Microprogram Halt Loop EBOX/2-5
Run-Halt-Continue Logic EBOX/2-6
Dispatch Path State Diagram EBOX/2-7
Basic Microprogram Address Control EBOX/2-9
CRAM Address Inputs Simplified EBOX/2-10
Wait State e e e EBOX/2-10
MBox Wait and EBox Clock EBOX/2-11
MBox Wait on Prefetch from Fast Memory EBOX/2-11
PI40+2n SKip i i e e e e e e e EBOX/2-13
M Program Modules e EBOX/2-15

vii

Figure No.

2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52

2-53
2-54
2-55
2-56
2-57

ILLUSTRATIONS (Cont)

. Title Page
Startup and Stop Interface EBOX/2-16
Effective Address Manager« . o oo oo EBOX/2-16
Data Fetch Manager v v i v v v v i it e EBOX/2-17
Dispatch Table Fields EBOX/2-17
Executor e e e e e e e e EBOX/2-18
Data Store Manager« v v v it e e e e e e e e e e e EBOX/2-19
Page Fault Handler EBOX/2-19
Input/Output Handler v EBOX/2-20
Basic Machine Cycle Overview EBOX/2-21
KL10 Processor Sequence of Operation EBOX/2-23
Instruction Cycle: NICOND Dispatch - XCTGO EBOX/2-25
Set Up and Make Indirect Work Request EBOX/2-27
MBox Cycle i i i i e e e e e e EBOX/2-29
MBox Response to Indirect Request EBOX/2-30
Address Calculation Continues EBOX/2-31
AREAD Dispatch Setup DataFetch EBOX/2-32
MBox Response with Data Word Requested EBOX/2-34
Hardware Selectionof ARMData EBOX/2-35
Executor Setup for Store Cycle EBOX/2-36
Finish Store Cycle, Perform NICOND Dispatch EBOX/2-37
Page FailHandling EBOX/2-39
EBox Priorities e e e e e EBOX/2-41
Process Table PF Location EBOX/2-42
Trap Cycle o o o e e e e e EBOX/2-43
Central-Server Model (Round Robin Priorities) EBOX/2-44
Interrupt Level Operations L EBOX/2-45
Typical Interrupt Priority Chain EBOX/2-46
Basic Interrupt Sequencingo EBOX/2-48
Interrupt Dialogue OVErview v v o v v v v v e e EBOX/2-49
Mode Structure and Hierarchy EBOX/2-51
Mode Transfer EBOX/2-54
Typical Virtual Address Space Configuration EBOX/2-56
Mode Initialization EBOX/2-57
Private Instruction Recirculation Path Simplified EBOX/2-58
Setting Private Instruction EBOX/2-58
User Mode Functional Flow EBOX/2-60
User Mode Public Initial Reference EBOX/2-61
User Mode Public Second Reference EBOX/2-61
Typical Concealed Page Table Format
(Half Table Entry) o o v i it e e e e e e e e EBOX/2-62
Supervisor Mode Functional Flow EBOX/2-63
Leaving USEr v v v v v i e e e e e e e e EBOX/2-64
Restoring Kernal Program EBOX/2-64
Mode Hierarchy ¢ v i v i i e e e e e e e e e EBOX/2-66
Concealed Mode Functional Flow EBOX/2-66

viii

Figure No.

258
2459
2-60
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-70
2-73
2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82
2-83

2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-95

2-96
2-97

2-98
2-99

ILLUSTRATIONS (Cont)
- Title

EBox Address Paths Simplified Path Diagram
Typical VMA 13—17 Manipulations
EBox Data and AddressPaths
VBATRIODIE . - - - -« o o « s # s minio s dais o 5. Sln ig’s o o »
Program Count Loop v v v v v v it i i s e e e e e e
PC Loading or Inhibit oL,
ALUOVEIVIEW v v v v v e o e
ADAEXaGMPIE . . . o ¢« o o s v s b e e e s e e S e e e s
ADBExample v oo o5 20 0 0 s h moeen s s e e e w
FUnction A .« . v v o e e e e e e e e e e e e e
Function AB .« v v v v e e e e e e e e e
Function AB o e e e e e e e
FunctionA . . 2" ¢ o i v v s s w v e e el s caatgm s slie 5 e W
AR Selection e e e e e e e e e
ARX SeleCtion . = o 5 & s 5 5 55 & & Sediige {5 i ihemnmdey o 8 8% m 5 s
MQ Selection e e e e e e e e e e e e e e e
Instruction Set Divisions oL
Major Machine Cycle i i i v i i i e e e
Basic Instruction Format
In-Out Instruction Format
Effective Address Calculation
Page Fault During Diverted Indirect Reference
EBoxDataFetch,
FetchMinorCycle i i i v i ...
Address-Fetch-Execute-Store General Memory References
Execute-Register-MBox Control and Miscellaneous

General Memory References
EBox Execution Cycle Overview
Microstack Operation« . v v v,
EBoxDataStore
MBox-EBox-EBus Control
Basic Machine Cycle Summary
Subcycle Summaryo e e e e e
Hardware Cycle Summary « v v v v v v v v v v v v v v
General Memory Request Control Simplified
Begin EBox Cycle Data Fetch Request
EBox Request FastorSlow
Basic EBox Clock Period
Begin MBox Cycle, End Current EBox Cycle,

Begin Next EBoxCycle
Setup Prefetch Waiting for MBox Response
Receive MBox Response, End Current MBox Cycle, End Current

EBox Cycle, Begin Next EBox Cycle, Begin MBox Cycle
General Memory Cycle Control Flow
EBus Interface Functional Block Diagram

ix

Page

EBOX/2-68
EBOX/2-69
EBOX/2-71
EBOX/2-72
EBOX/2-73
EBOX/2-74
EBOX/2-77
EBOX/2-79
EBOX/2-80
EBOX/2-80
EBOX/2-81
EBOX/2-82
EBOX/2-82
EBOX/2-84
EBOX/2-85
EBOX/2-89
EBOX/2-90
EBOX/2-91
EBOX/2-91
EBOX/2-91
EBOX/2-93
EBOX/2-94
EBOX/2-95
EBOX/2-96
EBOX/2-98

EBOX/2-100
EBOX/2-102
EBOX/2-103
EBOX/2-104
EBOX/2-105
EBOX/2-109
EBOX/2-109
EBOX/2-110
EBOX/2-111
EBOX/2-113
EBOX/2-114
EBOX/2-114

EBOX/2-115
EBOX/2-117

EBOX/2-118
EBOX/2-119
EBOX/2-122

Figure No.

2-100
2-101
2-102
2-103
2-104
3-1
32
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41

ILLUSTRATIONS (Cont)

- Title Page
EBus Control Functions« . ¢« v v v vt oo EBOX/2-125
EBox PI Board to Microcode Interface EBOX/2-128
EBus Control Hybrid Flow EBOX/2-129
Time State Generator Control EBOX/2-131
PITiming o o i i i e e e e e e e e e e e e e e e EBOX/2-132
EBox Module Utilization EBOX/3-2
IRDRAM Control (Part 1) EBOX/3-4
IR DRAM Control (Part 2) v i i i e e e i et e e EBOX/3-5
IR Loading Via AR (COND/LOADIR) EBOX/3-6
Loading IR Via FM (COND/LOADIR) EBOX/3-7
DRAM Loading Following COND/LOADIR ~. EBOX/3-8
NICOND Dispatch and Waiting EBOX/3-9
IR Test Satisfied v v it i i i EBOX/3-11
IRTest Equal o o i i it it e e e et e e EBOX/3-12
IR Test Satisfied Logic « . v v v v i v v v v i e e e EBOX/3-12
Clock Basic Block Diagram« .o EBOX/3-16
Clock Source Simplified, EBOX/3-17
Basic Clock Block Diagram o v v v ... EBOX/3-17
Basic Source Selection 0o e EBOX/3-18
Free-Running Clocks . .« v v o v v v v v i e e e e e e EBOX/3-18
Basic Rate Selection v v v v v i i e e e e e e e e e EBOX/3-18
Clock Initialization « ¢ v v v v v e e e e e e e e e e EBOX/3-19
FEBus Reset and Clock Initialization EBOX/3-20
Power Up Timing v v v v v v i e e e e e e e e e e e e EBOX/3-21
Simplified Diagram, MBox Clock, Sync, EBox Clock EBOX/3-21
EBox Cycle . . . v v v i i e e e e e e e e e e e e e EBOX/3-21
EBox Clock Control Block Diagram EBOX/3-23
Basic MBox Cycle Timing« v v v v v v v e i i e e e EBOX/3-23
Clock Error S0P« v v v v e e e e e e e e e e e e e e e e e EBOX/3-24
Logical Delaysand Skew EBOX/3-25
EBox Clock Fanout v v v v it e s i e e e e e EBOX/3-26
MBox Clock Fanout oo, EBOX/3-26
Clock Control, EBox Clock Control Timing EBOX/3-28
Address Break Facility EBOX/3-29
APR Register and Interrupt Enables EBOX/3-32
APR Register Breakdown, EBOX/3-33
NXM Timing OVEIVIEW . « « v o v v v v e i e e e e e et e e e e EBOX/3-35
NXM Error OVEIvVIEW .« v v v v v e v e e e e e e e e e e e e e EBOX/3-36
External Error Conditions (MBox, SBus) EBOX/3-37
ERAWord i i it i e e e e e e e e e e e e e EBOX/3-37
Sweep Logico e e e e e e e e EBOX/3-39
APRID Format o i i i it e e e e e e e e EBOX/3-40
Alignment Step 1 e EBOX/3-41
Alignment Step 2 e e e e e e e e e EBOX/3-41
Refill RAM OVEIVIEW . . . v v v o e e e e e e e e e e e e EBOX/3-42
CR Addressing OVEIVIEW . . .« v v v i v i e e e e e e e EBOX/3-45

Figure No.

3-42
3-43
3-44
3-45
3-46
3-47

Table No.

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

ILLUSTRATIONS (Cont)

Title Page
Stack Operation Example oo EBOX/3-46
CRADR Gates v i i e e e e e e e e e e e e e e e e e e EBOX/3-48
Example CRADRO8—-10 ¢ v v v v v v EBOX/3-49
COND and Dispatch Layout and Control EBOX/3-51
MUL DONE . . v i e EBOX/3-52
Control RAM Addressing . . . « . ¢ v o v v v v e v e e e e EBOX/3-53

TABLES

Title Page
AREAD . . . o e e e e e e e e e e e e e e EBOX/1-11
FM Selection o v v i e e e e e e e e e e e e e e e e e EBOX/1-13
Memory Information Flow EBOX/1-45
EBox Main Loop/Traditional Machine Cycle Comparison EBOX/2-7
Error Stop Enables, . . EBOX/2-12
NICOND Priorities o o v i i e e e e e e e e e e e e e EBOX/2-13
Address Calculation i v i i e e e e e EBOX/2-26
MBox Cycle Requests i i i it e it e e EBOX/2-28
Flags EffectingMode e, EBOX/2-59
Virtual Address Classification EBOX/2-67
Data and Address Path Breakdown EBOX/2-75
ALUFUNCtIONS . v v v v v v e e e e e e e e e e e e e e e EBOX/2-76
ALU Functions With Carry v o v v i e e e e e e e e e e EBOX/2-78
ADA, ADXA Selection i i e e e e e e EBOX/2-83
ADB, ADXB Selection e e e e e EBOX/2-83
SCAD Field i e e e e e e e e e e e e EBOX/2-86
SCADA Mixer Selection v v v v v v v i e e e e EBOX/2-87
SCADB Mixer Selection o v v v v v i e e e e e EBOX/2-87
AREAD Dispatch 0 i i e e e e e e e EBOX/2-97
Skip, Jump, Compare Instructions EBOX/2-107
Request Summary o v i v it e e e e EBOX/2-110
Data Transfer Signals EBOX/2-120
Table Data Transfer Commands e e e e e e e e e EBOX/2-120
Priority Transfer Signals EBOX/2-121
Priority Transfer Commands « . . v v v v v v o .. EBOX/2-121
Skip, Jump, Compare Controls EBOX/3-12
Test Controls v v v i e e e e e e e e e e e e e e e e EBOX/3-13
CONSX and BLKX Controls ¢ v v v v ... EBOX/3-13
Fetch Control Modifiers v o v v i i v v i i e e oo e EBOX/3-14
CRYO Generation (MACRO) EBOX/3-14
Marker Generator Functiono v i v i EBOX/3-22
CCA Summary . . .« v v i e e e e e e e e e e e e e e e e e EBOX/3-38
Sample Algorithm e EBOX/3-43

Xi

PREFACE

This manual contains three levels of EBox theory descriptions. The three levels are:

L.

Overview - The overview identifies and introduces, in a simplified fashion, the basic hard-
ware and firmware organization of the EBox. The major elements are presented without
many details to provide a capsule view of the EBox structure.

Functional Description - This section describes the primary EBox function, which is to exe-
cute the KL10 instruction set and thus provide the specified functions, which generally
include the following:

Memory Reads and Writes
Internal Operations
EBus Operations

The functional description is the most comprehensive part of the EBox Theory. Here the
basic elements of the EBox are described in the context of how they implement the primary
EBox function.

Logic Description — This section provides a detailed logic description of each of the board
types that comprise the EBox. These descriptions are written to support the functional
description. The logic description section is the most detailed part of the EBox. This mate-
rial is presented to expand the functional description so that the information provided in the
functional description can be directly related to the engineering logic diagrams.

xiii

SECTION 1
OVERVIEW

1.1 INTRODUCTION

The EBox is the instruction execution unit in the KL10 system. A central processor is formed when a
memory interface unit (MBox), 10-11 interface unit (DTE), and PDP-11/40 processor are interfaced
with the EBox. The MBox is the memory interface unit in the KL10 system to which the EBox directs
its core memory requests. The PDP-11/40 is the front end processor that provides console functions
and bootstrapping facilities and drives the standard PDP-11 peripherals. The DTE is the interface
between the EBox and the PDP-11/40 console processor. The EBox communicates with the DTE, and
hence the console processor, over a 36-bit data bus called the EBus, and uses three function lines
(FO00-F02), seven controller select lines (CS00-06), and two additional signal lines (Demand and
Transfer) for arbitration and control of data transfers between the EBox and its internal and external
devices. A pseudo-interface, which consists of a 23-bit address, 36-bit data, a number of request type
qualifiers, and additional signals (including request and response), provides for arbitration and control
of data transfers between the EBox and MBox. '

The EBox contains the following (Figure 1-1):

1. A data path that consists of an Arithmetic Register (AR), Arithmetic Register Extension
(ARX), Adder (AD), Adder Extension (ADX), various other registers, and a shift matrix.

2. An address path that consists of a 23-bit Program Counter (PC) and 23-bit Virtual Memory
Address register (VMA).

3. Eight fast register blocks, each containing 16 X 36-bit words; each block of 16 registers is
program-assignable.

"\ 4. A 13-bit Instruction Register (IR), which accepts the 9-bit operation code and 4-bit accu-
mulator address.

5. Two somewhat autonomous control elements to provide control between the MBox and
EBox, as well as the EBus and EBox. These are the MBox control and EBus control, respec-
tively (Figure 1-1). — e T

6. A control section storing and aiding the implementation of KL 10 instructions.

EBOX/1-1

DATA DISABLE T
DIAG CONTROL ¢
FUNCTIONS DATA
DIAG DIAOGNTORSTIC
ECT LINES | CONTROL
A SEL ___CONTROL
SYNC
MASTER EBUS CLOCK
CLOCK CLOCK e
TO CONTROL
LOGIC
CORE CYCLES,MBOX CYCLES TNTERNAL
DEV" | CONTROL
DRV L
- |
INSTR 00-12 Pp—— TlM:MTR
AC 10-12 (SWEEP) IR| STORE
IR - o
TO BUS (ERROR STATUS PAGE FAIL STATUS) =
g
-
* »
=4
=
EBUS | PI =
MAIN AND <
MBOX CONTROL P @
w |« CONTROL | cONTROL | MEM STORE EBUS CTL | conTROL | DATA o B
< ITTAPR w
& MCL ZEECTL| CONTROL
w CON CRM @33 CON <
= CLK CRA E£°01 PI
- 3
s CONTROL JUMP ADR 1 PI
“1 wBox “INTERNAL DEV"
ARITHMETIC
ERROR CONDS | AROCHEETIC |CONTROL
| STATUS AND <
CONTROL
APR
DATA ADDRESS
AND
DATA PATHS DATA
VMA '
Vai INTERNAL
SH STATUS OR
ERROR CONDS
INTERNAL E AC INDEX
DEV " PAG
CON FAST MEMORY
APR
8 BLOCKS apr|0ATA
\/7 ' oP v
CONTROL
NOTE:
CACHE clearer device CCA
isin the MBOX
10-1537

Figure 1-1 EBox Simplified Block Diagram

EBOX/1-2

The control portion of the EBox comprises two Random Access Memories (RAMs). The first is called
the Dispatch RAM (DRAM); it consists of storage for 512 decimal words, one word for each KL10
instruction. During instruction execution, the content of the DRAM word provides information about
the type of memory references required by the executing instruction. It also provides an index into the
main control programs contained in a second control memory called the Control RAM (CRAM). The
CRAM consists of storage for 1280 microinstruction words that are structured into a sophisticated
control program. The main program consists of a main loop and a number of subroutines or handlers.
The structure provides for the implementation of a wide variety of internal register transfers, arithmet-
ic and logical control, memory interface, and EBus control functions. The control program is generally
referred to as the “microcode.” Associated with the microcode and CRAM is a hardware pushdown
stack, which enables the control program to make subroutine calls up to four levels deep, while per-
forming various KL10 instructions. The basic machine control flow may be viewed as a pyramid, as
shown in Figure 1-2. The instruction initially enters the IR consisting of two sections. One section, bits
0-8, holds the op code of the instruction, and the other, bits 9-12, holds the Accumulator (AC)
address. During the instruction fetch cycle, the IR is unlatched via Load IR. During this time, it sets up
with the op code. When the fetch cycle terminates, Load IR is removed and the IR latches.

“"INSTRUCTION" LOAD IR——‘

ADDRESS

DRAM

«_L0AD NlCOND

// DRA“:DSEE‘SSSTER DRA DISPATCH
/ CRAM

/ CRAM REGISTER

10-1563

Figure 1-2 Control Pyramid

Because of the provision for prefetching, instructions may enter IR during the execution of the current
instruction. This implies that, for these cases, the information provided by IR for the currently execu-
ting instruction must be somehow saved, while allowing IR to set up with the op code of the next
instruction. This is accomplished by selecting an appropriate word from the DRAM.

The op code contained in the IR is used to address a corresponding DRAM word, and a Next Instruc-
tion Condition (NICOND) unlatches the DRAM register during this time. Encoded in the DRAM
register fields (A, B, and J) is all information necessary for operand fetching, storing, and the micro-
program executor jump address. Therefore, those instructions that prefetch an instruction do not
require the IR to be reliable beyond the point of loading the DRAM register.

Input/output (I/O) instructions never prefetch. The device select code and operation for these instruc-
tions are specified directly in the IR. This must be made available to the microcode I/O handler during
the instruction’s execution cycle.

A special case in DRAM addressing is concerned with the JRST instruction. Because the JRST

instruction encodes its JRST type in IR 9-12, these bits can be used directly as part of the DRAM
word for this instruction. Normally, the DRAM address is as shown in Figure 1-3.

EBOX/1-3

777 P7EXTERNAL 10 BEVICE
770 HANDLER REFER TO
767 |/INTERNAL IO DEVICE)/]|FIGURE 1-4
700 HANDLER”
OTHER MICRO
INSTRUCTIONS
256 REFER TO
JRST ‘HANDLER }FlGURE)
254
OTHER MICRO
INSTRUCT IONS
o
10-1565

Figure 1-3 DRAM I/0, JRST

Figure 1-4 illustrates the organization of the DRAM. By sharing portions of the DRAM between
even/odd instruction, the shared pieces become half the nonshared. Therefore, the A, B, and J7-10
portions consist of 10 X 512 words and the P, J4, J1-3 portions consist of 5 X 256 words. This saves
essentially 5 X 256 words of DRAM storage. In addition, for JRST DRAM COMMON, bit 4 is made
zero and DRAM J7-10 is replaced by IR 9-12, again yielding a savings. Here the savings is 5 X 16
words of DRAM storage. The areas allocated by the DRAM are indicated in Figure 1-3.

00 08 09 12
IR OP CODE IR AC FIELD
IR=JRST

"™ —-10 —>DRAM ADR = OPCODE 00-08

10 —=DRAM ADR = SEE NOTE 1
o| 777 S
R o 0DD 00D DD oDD
N 10 HALFO HALFY HALFY ALF§
NIESNSHENEEN N
D P COMMON [~ COMMON [—| COMMON
p| co-o7
R
E EVEN EVEN EVEN EVEN
s HALF HALF HALF HALF
s

08
U ~oq
0 =0
L |

) 2 0 2 1 3 P 7 8 10 iR

DRAM REG A B P J J J J AC

NOTE: 1 For IO instructions the
DRAM ADDRESS is formed as follows:

DRAM ADR 03-05 =— x
DRAM ADR 06-08 =— IR 10-12

x=For internal devices IR 03-06 =0, this makes x =7

For external device, IR 03-06 #0, this makes x =IR 07-09
10-1564

Figure 1-4 DRAM Organization
I>

EBOX/1-4 -

gj‘]i S

Included in the EBox is the master clock, which provides a time base for system operation. It dis-
tributes clock and sync pulses to the MBox, DTE, internal devices, system buses, and to the EBox
itself. All operations in the KL-based system are synchronized to the master clock, which runs at 50
MHz. The master clock can be started, stopped, single stepped, and otherwise controlled by the con-
sole processor via the diagnostic control logic. This logic is distributed between the EBox and the
DTE. Besides controlling the master clock, the diagnostic control logic provides a means for mon-
itoring processor status and diagnostic registers in both the EBox and the MBox. The master clock is
divided to supply a 25 MHz clock to the MBox and a 6.25 MHz clock to the EBus and SBus.
P N

The EBox clock is variable and controlled by the microcode. The EBox and MBox are composed of
emitter-coupled logic (ECL), while the DTE and external devices are composed of transistor-transistor
logic (TTL). These two forms of logic are not directly compatible so the EBus is interfaced to the DTE,
as well as external devices, via a special controllable logic-level shifter called the Translator. This is
steered by the EBox and provides for both ECL to TTL transfer and TTL to ECL transfer.

The normal program flow may be interrupted through the use of one of eight interrupt control lines
(PI0-7). This allows the servicing of peripheral devices and controllers, as well as internal devices,
while executing the main program. The central processor contains six internal devices that are program
selectable via KL10 I/O instructions. These devices are:

Priority Interrupt (PI)

Arithmetic Processor Status (APR)
Paging (PAG)

Cache Clearer (CCA)

Meter (MTR)

Timer (TIM)

Instructions, comprising a program, are maintained in core and/or fast memory. These instructions
are fetched and executed by the EBox. The control program within the EBox evaluates fields of infor-
mation that are part of the instruction currently being performed, Using various registers, fast memo-
ry, and adders, together with the VMA register and associated logic, the control program calculates an
effective address; fetches any required operands; performs the instruction-dependent functions (e.g.,
those functions specified in the op code); stores the generated results; and fetches the next instruction.
The logical data path between the instruction itself and the MBox is formed by the AR and ARX,
together with various auxiliary registers, and the several adders contained on the Data Path Board
(EDP). The IR receives the op code and accumulator address (IRAC) effectively for each instruction,
while the ARX receives the entire instruction word consisting of the op code, accumulator address,
Indirect bit, and Index register address, as well as the initial address supplied with the instruction
referred to as the Y address. The control program contained within the DRAM passes through a well-
defined “loop” consisting of microcode handlers, each of which performs a portion of the overall
instruction execution. These correspond closely with the traditional processor cycles of Instruction,
Address Calculation, Data Fetch, Execution, and Data Store with auxiliary cycles being Interrupt,
Page Fault, and Trap.

1.2 BASIC FUNCTIONAL BLOCKS
The seven basic EBox functional blocks (Figures 1-5 and 1-6) are:

Instruction Register-Dispatch-Main Control Store
Fast Memory

Address Path

Data Path

Request and MBox Control

EBus and PI Control

EBox Control Logic

Nk W=

EBOX/1-5

AN

EBUS CLOCKS

MBOX

CLOCK
E
/ DATA
M

CONTROL

vV

DATA

I IR ’ g
SBUS CLOCKS e
DRAM ADDRES IRAC
r_ S DT e e e === e IR
A B P J
| s
MASTER £
CLOCK C DISPATCH
- RAM
CLK C
e
A B P J IR
DISPATCH REGISTER |
]
J AD_| ADA JADB] AR | ARX | BR [BRX| MQ [FMADR] SCAD | SCADA [SCADBI SC [FE [3H TVMATTIME [MEM [SKIP | COND DISP #
s [ARMM |
E
E
& CONTROL
T RAM
I
0
i CRM
CRA 5 CONTROL
CONTROL REGISTER I
CONTROL
CONTROL 0 350 35 0 9
AR ARX FE el 3
DATA AD ADX SCAD DATA AND paTA |8
PT emm—
BR BRX 5¢ CONTROL
REQUEST SH MQ &
AND EDP
MBOX SCD
CONTROL 7
DATA PATH - |
CONTROL BATS
CONTROL | CONTROL
CONTRO f
CONTROL THITL aee ||
CTL
l PIO-7
MTR
F— FM Mg
PI
APR
' cTL
| EDP
ADDRESS l
PATH P
(- VIRTUAL .r_| VMA " |
ADDRES F I CONTROL
YMA AD CONTROL/STATUS STATUS
l VMA FLAGS AND PC - DIAG
| OTHER] PC EFFECTIVE ADDRESS CONTROL
| scb SCD INTERMEDIATE ADDRESS
| | 4 4 4 ADDRESS OF CURRENT INSTRUCTION
HER
APR L——-J_—J———————————.———.—JOT
MCL L
CON

Figure 1-5 EBox RAM Structures,
Interfaces, and Controls Block Diagram

EBOX/1-6

N

10-2179

4

mopmom—z— N

CTLE TOT EN

wcm m

VMA 13-35 E BUS D@@-35
CACHE CLEARER J IRACIg-12 AD@5-@7 ADDRESS AND CTL T TO E EN
|
CACHE DATA @@-35 DAIA, PATHS CTL AD TO E BUS
EDP
MBOX CLOCKS <— TIME
CON CLOCK <— > SCD CLOCK APR
CRM cLock =—| CENTRAL L w pT cLock BLK Bk B
CRA CLOCK = CLOCK > MTR CLOCK - . D@@-35
VMA CLOCK <— L APR CLOCK FM . ARR CONT PHYS #'S
EBOX SYNC <— cLk [cTL cLock ADR . FM @g-35 PARITY MIXER | OR DATAI —
CONTROL|APR . SO, FORTROL cspa-ge
ﬁ§§ : A e E _BUS REQ
4, E BUS DEMAND DEMAND
EBOX REQ IN APRJ2,1 | FM BLK 7 CoN LI APR DISABLE CS”] CONTROL
t IR AC g9-12 E BUS FB@-g2
CSH_EBOX_T9@ COND# CONTROL E BUS FQ1
CSH EBOX RETRY *| | AD@@-35 Aéi CONI OR DATgI CS@P-g3
REQUEST SEND F@2
MBOX RESP IN = MB XFER DISP XFER
_EBOX SYNC NﬁﬁgEEY PF_HOLD ac ACh
1 MBOX CLK CONTROL | PT PUBLIC BLOCK i
I« APR PHYS #
SELECT AD@B-12
PF_HOLD . CONTEXT
PF_EBOX HANDLE %Ek CLK FORCE X EXT_XFER _RCVD c?f MTR PHYS #
PT PUBLIC 1777 APR
CON
* X%
i ke l Jret Jonwe LT
o controL [wicRo
MBOX GATE VMA 27-35_, CON, VMA VM H L]
CACHE DATA @@-35 CACHE DATA 80-35 [1n - .
R IR gg-12 cRAT PIg
PAGE TEST PRIV IR IO LEGAL DISPATCH PI GATE TTLTO ECL| INTERRUPT PI{-7
PAGE ILL ENTRY RAM
CONTROL
EBOX USER DRAM ADR oL «
DISPATCH ADR @@-@8|CONTROL E BUS D@@-35 P [IL_\
RAM " "
EBOX MAY BE PAGED IR IR| CONDS INT :
EBOX_CACHE ' REQ R
EBOX LOOK EN le— CLK FORCE 1777
X110 PAGING MODE DISPATCH RAM REGISTER ;;]
PAGE_ADR_COND T A B.d CO:Z:PL
ADDRESS
| _EBOX MAP CONTROL. MTR REQ
} L .3 g7 NICOND
EBOX READ pCP MEM CRAM ADR) TRAP PI CYCLE
EBOX PSE izl CogXSPL £ RA
EBOX WRITE 10T COND T AND SET PI HOLD [PI CYCLE
MODE DISP CRAM J le™ —| g7-89 S CONTROL
USER CONTROL SPEC CRA CON ISMISS con
URT MBOX am— | MAGIC # f
EPT CONTROL I PI CYCLE
USER REF SCD
CONTROL RAM REGISTER ADR INT REQ
e FLAG CTL CRAM 817-10 MTR_INT REQ
: SAVE FLAGS COND ENABLES E BUS CP GRANT
EBOX UBR CON
EFO% ERe LOAD . FLAGS
SAVE FLAGS E BUS CTL #
EBOX _EN REFILL RAM WR e -
EBOX S BUS DIAG MTR REQ
SP MEM CYC START]
EBOX LOAD REG SPEC EXEC
EBOX READ REG MEM DIAG SET RUN, DIAG CLR RUN, DIAG CONT. I
PT DIR WRITE KERNEL MODEf oy " D@P-35
ALT DIAG LOAD FUNC'S <—|p|AGNOSTIC TRAP MTR
EL_WR USER TROL DIAG CONTROL FUNC'S «—{ CONTROL CONTROL
MBOX CTL 03 7 DIAG CONTROL FUNC O1X
MBOX_CTL 06 el CON cTL SCD
WR PT SEL0 ML PROCESSOR
WR PT 1 APR _
SEL s L DS@4 - @6 — PR o
CSH ADR PAR ERR APR Eg
MB PAR ERR 2
S BUS ERR EBUS DS STROBE
NXM ERR TRN
MBOX C DIR PAR ERR

ANY EBOX ERROR

v NOTE :

Lines without arrow heads indicate CONTROL RAM CONTROL SIGNALS
% Current block, Previous block,VMA block,XR block,FM block 4,2,1
%% FM ADR Sel 10,4,2,1

EBUS D@@-@4

SRV

10-1709

Figure 1-6 EBox Overall Block Diagram

EBOX/1-7

1.2.1 Instruction Register-Dispatch-Main Control Store

The Instruction register is the center of all“processor control. Instructions are fetched from Main
Memory or Fast Memory. The instruction enters ARX while the op code and AC address enter the
Instruction register. The op code (bits 00-08) is used to address a word in the DRAM that is unique for
each instruction in the KL10 instruction set. This word contains three fields of information and a
parity bit. The Instruction, Dispatch, and Control formats are illustrated in Figure 1-7.

Because all instructions do not require the same types of data fetches, execution states, or data storage,
they are handled uniquely for each instruction or, in some cases, for each class of instruction.

The A field (0-2) of the DRAM generally specifies the data fetch requirements, if any, as well as
whether the next instruction in the sequence may be fetched early (prefetched). The B field (3-5)
generally specifies where to store the results produced during execution; but in the case of Test, Skip,
Jump, and Compare instructions, it is used to determine whether to skip the next sequential instruction
or jump. The J field (14-23) is used to enter at the appropriate point in the Executor Microprogram

\and is generally instruction-dependent.

Specific microroutines are used for each class of instruction. Associated with the DRAM is a register
that buffers the word selected for the instruction currently being performed. This register is loaded
soon after the instruction is placed in the Instruction register.

The microprogram is contained inﬁﬁﬁ-bit RAM called the CRAM. Both the DRAM and
CRAM are loaded when the KL10 system is powered up. This is accomplished by the PDP-11/40
processor via the DTE and makes use of diagnostic control logic within the EBox. Associated with the
CRAM is a register that buffers each word or microinstruction read from the CRAM. This register is
called the Control register and its contents are decoded to provide overall control of the seven major
functional blocks described in Subsection 1.2. In addition, the Microprogram is structured into what
might be called a main loop. This loop, which is passed through regularly, is illustrated in Figure 1-8.

When an instruction is fetched, the op code and accumulator address are placed in the IR and the
entire instruction word is placed in one of the Data Path registers called the ARX. Movement from
one routine (or handler) in the microprogram to another is made via a microcode Dispatch function.
The Control register contains many fields that are used for different types of control. Two such fields
that are used to control this movement are Jump Address and Dispatch Field. The Dispatch function
enables various hardware conditions to be considered when an instruction has been fetched and
enables the most important condition to prevail. Two such conditions that are illustrated in Figure 1-8
are Priority Interrupt Request Pending and Trap Request Pending. The hardware is arranged in such a
fashion that priority interrupts have highest priority, followed by traps; the current instruction has
“Jowest priority. The dispatch that takes the microprogram to the Process Instruction Block is called the
NICOND and is given after a Fetch request for the next instruction. If no priority interrupts or traps
© are pending, the microprogram enters the next block to calculate the effective address. Here the dis-
atch is called Effective Address Modification (EAMOD) and enables the hardware to sample indirect
hela bit 13 of ARX together with indexing field bits 14-17. The KL 10 instruction specification allows
multilevel indirect addressing with indexing at each level where indexing, if specified, is performed
first. The microprogram evaluates bits 14-17; if nonzero, the contents of bits 14-17 are used to access
the specified 36-bit Index registergThe right-most half of the Index register (bits 18-35) is added to the
Y field of the instruction word (bits 18-35); the right-most 18 bits of this result are used in the next step
\of the effective address calculation. Simultaneously, the state of ARX bit 13 is tested and, if equal to a
1, a memory request is generated to the MBox control portion of the EBox. Each time a word is
fetched in this fashion and has bit 13 equal to 1, the same sequence occurs until finally a word is
fetched with bit 13 equal to 0. Then, one more level of indexing may be specified and the result is the
effective address. At this time, the A READ dispatch is given and the A field of the DRAM is eval-
uated to enable a required operand to be fetched; if specified, a prefetch is also set up at this time.

Table 1-1 lists the A field codes and the specific function required.

~—

EBOX/1-8

INSTRUCTION

00 08 09 12 13 14 1718 - 35
OP CODE (IR) AC (IR) @ XR EFFECTIVE ADDRESS (Y)
0-7774
¥ DISPATCH RAM
00 02 03 05 06 10 11 12 1314 23
(FETCH (A) | STORE (B) PAR/ DISPATCH ADR (J)
\3 \ /N s ’ S //
- \ / \\// \\ -
\ / WHERE TO STORE OPERANDS FOR ~ //
\ / CERTAIN INSTRUCTIONS ALSO N 0-17T7g
\ / PROVIDES SKIP, JUMP, TEST
\/ AND COMPARE CONTROLS ~ -
N
CONTROL OF DATA FETCH, WHERE TO DISPATCH
WRITE PAGE TESTING AND TO IN THE EXECUTOR
, PRE-FETCH ENABLE.
’
”’) - @ CONTROL RAM
. 00 401 1112 17 18 20 21 22 2324 26 27 29 30 31 32 33 35
DISPATCH ADR (J) AD ADA ADB AR ARX BR [BRX|MQ | FM ADR
~ - - i - —
\\ —
b - -
S~
0-3777 DATA PATH
36-BIT REGISTER
MIXER CONTROL
10-BIT
SHIFT COUNTER '
AND FLOATING VIRTUAL GENERALLY CONTROLS
EXPONENT REGISTER MEMORY ADDRESS MODIFICATION OF LSB AT
. MIXER CONTROL SELECTION CONTROL JUMP FIELD BITS 01 - i1 SYNC POINT
CONTROL RAM (Cont'd) A A PN A
na // \\ // \\ e - / \\
RS 36 38 39 41 42 43 44 45 46 47\ 48 49 &o 51 82 5354 5556 59 60~ 65 66 67 7172 73/74\ 75 83
> M
. SH
3 SCAD SCAD A SCAD B sc | FE Wop-———-= VMA TIME MEM SKIP /COND DISP/SPEC 8 #
ARMM K
S~ - S~ -
t—— - N/ NN e ~d 7 i o
T _— - \ 7/ \ / N Va ~N // ~ g
~ \V4 V N ~ ~——
10-BIT SHIFT COUNTER 36- BIT SHIFTER CLOCK MBOX PROVIDES SPECIAL MICRO CODE USED IN CONJUNCTION
ADDER AND INPUT AND AR MIXER CONTROL INTERFACE FUNCTIONS AND MAJOR WITH THE SPECIAL
MIXER CONTROL —MIXER CONTROL CONTROL BRANCHING WITHIN THE FUNCTIONS OF THE
MICRO PROGRAM DISPATCH FIELD
10-2088

Figure 1-7 Instruction, Dispatch,
and Control Formats

EBOX/1-9

1 fom
/7

LOAD INSTRUCTION WORD

Rl

v

ARITHMETIC REGISTER
+—EXTENSION CONTAINED —-1

IN DATA PA

I-— INSTRUCTION —-i
REGISTER

cBbe [Acfr[x| v]

f

4# OP-CODE | AC |
— DRAM —
“Load word selected into
AlB] U DRAM Register"

DRAM
Lals | REGISTER
—_—_———] b ——— ——]
MIGRO TRAP REQUEST \ =l
| PROGRAM a—
N EXECUTION
' \
| PROCESS
TRAP S
')
| PROCESS |— '
| INSTRUCTION |
| A [eamon |
I PROCESS T-1 i ' l
INTERRUPT :
| L S
| CALCULATE [crRAM |
EFFECTIVE | f— —
: INTERRUPT REQUEST ADDRESS |
T
| EAMOD] l
| | |
| _AREAD__
r) |
' A L
Lt FETCH I
| R il [{q H
| . JUMP TO EXECUTOR I
| _NICOND __ _MIsC___ -,
& ! H - o I
| HAY
FETCH NEXT INSTR | |
' i e,
| INTERRUPT REQUEST I
| FETCH BWRITE__——|—~ I
T NicoND] {} r St
I I/L\ 1 1
' FETCH NEXT INSTRUCTION | UL | e S
Lo e oy e o i o e s o s s)
Al RO [aume] oispatc [otHeR e
10- 2180
Figure 1-8 Microprogram Main Loo
g prog

EBOX/1-10

Table 1-1 AREAD

DRAMA 3-Bit Code MEM/AREAD DISP/AREAD
0 Immediate class instruction; prefetch disabled. DRAM J DISP
1 Immediate class instruction; prefetch enabled. DRAM J DISP
2 Not used 42
3 Write-check the paging; prefetch disabled. 43
4 Data read required; prefetch disabled.* 44
5 Data read required; prefetch enabled.* 45
6 Data read required as separate cycle; also write-check the 46
paging; prefetch disabled.
7 Data read modify write required; prefetch disabled. 47

*These two cases are distinguished only by dispatching to different microcode locations. The microcode entered at location
45 prefetches, that at 44 does not.

The next block is entered to perform the specific execution function or functions for the particular
instruction by the microprogram giving a DRAM J dispatch. Remember that each instruction has its
own DRAM word with a unique Jump field specifying where to go for that instruction’s execution.
The execution is very complex and is described in detail elsewhere in this manual. Basically, it performs
all required arithmetic, logical, or other types of functions required, and may also, in some cases, fetch
additional operands as required.f Upon completion of this portion of the microprogram, the next
instruction may be started, provided that no data storage is required. If storage is required, two basic
cases must be considered. Those instructions that do not know where to store their data utilize the B
field of the DRAM as an index into the final block to store results. After storing results, the next
instruction is fetched and a NICOND dispatch is issued. Instructions that know where to go specifical-
ly in order to store their data do so by jumping to a specific location in the microprogram, but may use
the B field of the DRAM to decode additional types of memory requests as required. This completes
the basic loop.

1.2.2 Fast Memory
“~ An instruction word has only one 18-bit address field for addressing any location throughout all of
memory. Most instructions, however, Fave two 4.bit fields for addressing the first 16 locations of
memory. These 16 locations consist of a set of 16 general-purpose, high-speed integrated circuit regis-
ters grouped locally into eight physical blocks,_which are software-assignable by block. Non-I/O
instructions have an accumulator address field that can address one of these 16 locations as an accu-
mulator. Every instruction has a 4-bit Index register address field that can address 15 of these locations
for use as Index registers in modifying the 18-bit memory address. (A zero Index register address
specifies no indexing.) The factor that determines whether one of the first 16 locations in memory is an
accumulator or an Index register is not the information it contains, nor how its contents are used, but
rather how the location is addressed. The eight blocks of fast memory are contained physically on the
data path board within the EBox, This allows much quicker access to these locations whether they are
addressed as accumulators, Tndex registers, or ordinary memory locations. They can even be addressed
from the program counter, gaining faster execution for a short but often repeated subroutine. Of the
eight blocks contained within the EBox, blo is permanently assigned to the microcode. Referring
~— to Figure 1-9, the monitor uses an assigne lock in the same way that a user program described in
the following paragraphs would. The microcode uses the assigned AC block when executing complex
instruction algorithms. From the remaining blocks (0-6), two can be assigned under program control
ATAOQO PAG) as the current and previous context AC blocks. The current context AC block is used

by the user program for indexing in effective address calculation and for general storage as specified by
the AC field of the instruction and/or by the effective virtual address (location 0-17).

EBOX/1-11

L o

\ N\
PARITY CLOCK
- CKTS ERROR

—HA—
I RAC ADDER [~ PARITY BIT FM 36 FROM
NET | AR
TO ADB
INPUT 7-(ASSIGNED TO MICRO CODE)

777 7777, 777777,

00,

FAST MEMORY 36 BITS f

WORD SELECT

——t
SOURCE
OF ADR'S FM ADR 10,4,2,1
(4 LINES)

FAST MEMORY
FM BLOCK 4,2,1 }B[_OCK SELECT

TTTTTITTTTTT

16 WORDS
st dat FM BLOCK
- 1 SOURCES
.'- V- 8BLOCKS (3 LINES)
ARX XR -
AR,

VMA 32-35

@WORD ‘ K
VMA DATA E
OTHER

CRAM #02-04

XR VMA
BLK BLK

CONTROL
RAM

e TR
~W////4 f 1T

MAGIC # FIELD "
T CURRENT DATAO PAG \SIIEAT gjoMONiTO
BLK REG BLK REG
INSTRUCTION

10-2181

CONTROL
REG

Figure 1-9 Basic Fast Memory Structure

The previous context AC block is used by the monitor to allow the monitor to reference the previous
user’s address space to pass arguments, data, or status information between the user program and the
monitor. This is normally done when the user program executes a monitor call for some type of
service.

= The microprogram running within the CRAM may select eight possible sources to be the word address
for fast memory; these sources are indicated on the figure as follows:

AC
ACL1

AC+2

AC+3

AC+4

ARX14-17(}Q) AT

VMA 32 -35 +n<R%

CRAM 05 - 08 & —

The selection of the appropriate source is a function of the 3-bit microinstruction
The block to be used is selected by the same FM ADR FIELD and corresponds to‘three block 56
as indicated in Table 1-2.

EBOX/1-12

Table 1-2 FM Selection

FM ADR Field FM ADR 10, 4, 2, 1 Source FM ADR BLK 4, 2, 1 Source
0 AC Current Block
1 AC+1 Current Block
2 ARX 14-17 XR Block*
3 VMA 32-35 VMA Block*
4 AC+2 Current Block
5 AC+3 Current Block
6 AC+4 Current Block
7 CRAM #05-08 CRAM #0204

*These may select either the current or previous AC block address.

The selection of AC, AC+1, AC+2, and AC+3 is a function of the class of KL10 instruction being
performed. All non I/0O instructions specify an accumulator address in the instruction word, bits 9-12.

The logical instructions - Logical Shift Combined (LSHC) and Rotate Combined (ROTC) - specify
the use of both AC and AC+1. Similarly, the fixed-point arithmetic instructions Multiply (MUL),
Divide (DIV), and Arithmetic Shift Combined (ASHC) specify use of AC and AC+1. The double
integer arithmetic instructions Double Add (DADD), Double Subtract (DSUB), Double Multiply
(DMUL), and Double Divide (DDIV) specify use of AC, AC+1, AC+2, and AC+3. As pointed out
previously, the microprogram is permanently assigned AC block 7 for its own use. During extended
instruction processing, the microprogram addresses words in AC block 7 by using magic number field
bits 05-08, while selecting AC block 7 with magic number field bits 02-04. These ACs provide tempo-
rary working storage for the microprogram. Similarly, the microprogram addresses AC+4 by com-
bining the AC address taken from IR AC9-2 with bits of the magic number field in an adder network
to produce AC+4

For selection of AC, AC+1, AC+2, AC+3, or AC+4, the current block is always used. Whenever a
main memory reference is made, the microcode references the fast memory location given by VMA
32-35, enabling the hardware to switch the reference to fast memory, if necessary. When the instruc-
tion’s effective address is calculated, the microprogram allows the specified Index register to be
addressed in fast memory by enabling ARX 14-17 to address the word. For both cases, i.e., VMA
32-35 or ARX 14-17 addressing fast memory, the AC block may be either the current block or the
previous block, but is a function of the context of the instruction.
.__/

If an executive XCT is performed in response to a user’s call (MUUO), then the previous physical
block and current physical block will be made to be different unless the operating system saves the
user’s current AC block and then wishes to use the same block once again, which is unlikely. As an
example, assume the user is assigned AC block 1; his previous AC block would initially be 1 also. If the
user then performs an MUUO, the executive subroutine entered may safely load the current AC block
with some other block number and the previous user block will remain unchanged. The operating
system may perform an executive XCT utilizing the user’s previous block and an AC within that block.
The hardware enables the selection at the time of the previous block for indexing. In addition, the
operating system may also reference the user’s AC block (previous context block 1 in the example)
from the VMA. In this case (referring to Figure 1-9), mixer selection 3 is enabled and the microword
FM ADR field specifies VMA.

During normal instruction processing, if VMA bits 13-31 are equal to 0, the address in bits 32-35 is an
FM address.

EBOX/1-13

Some examples using the current AC block in various selections are given below. Assume the following
is performed by the operating system:

~

EXAC=1 :This will default to Exec block
#0, AC#1

HRLEI EXAC, 102200 :Load bit, current Blk#2
Previous Blk#2.

DATAO PAG, EXAC :Load the current Blk# = 2, and the

:Previous Blk# = 2.

JRST 2, @ USRPCWD Pick up user mode, flags, and
;turn on user.

The following codes are for the user:

AC1 =1 ;This will be in Blk#2

AC2 =2 ;This will be in Blk#2

MOVEI AC1, 777777 ;The word 0,777777 to AC1

HRLEM AC1, AC2 ;The word 777777,777777 to AC2

SETCMM, AC1 :The one’s comp of the word in AC1 to AC2
;which is equal to 777777,0

PUSH AC1, 3(AC2) ;This instruction attempts to

;push the contents of AC2 into
Jocation AC1. It will cause PDOVL
;and this generates TRAP#2.

In the example, the symbol EXAC is defined as the number 1. Assume, for this example, that EXAC is
referenced as an AC accumulator in executive block 0. The first use of EXAC is in the instruction
HRLEI EXAC, 102200. This instruction takes the number in the Y field of the instruction, which, in
this example, is the effective address, and places it in the left half of EXAC (which is executive AC1),
with the sign of the right half of the word 0,102200 extended in the right half of EXAC. In this
instruction, the current AC is referenced in bits 9-12 of the instruction, and the mixer selection is 0. To
load the user AC blocks, both current and previous, it is necessary now for the executive to perform
the indicated DATAO PAG instruction.

The left half-word in EXAC contains the necessary bits to enable the loading of the current and
previous blocks (EBus bits 6,.7, and 8 for the current block and bits 9, 10, and 11 for the previous
block). Next, we assume location USRPCWD contains the appropriate bit configuration to start the
user for whom we loaded the AC block numbers. The instruction JRST 2, @ USRPCWD makes an
indirect reference to location USRPCWD. The resulting word will then contain the user mode bit (bit
5), possibly the public mode bit (bit 7), any other relevant flags in the remaining left half-word, and the
user virtual address in the right half-word. The user has defined the symbols AC1 and AC2 as having
the values 1 and 2, respectively. As indicated in this example, these correspond to AC1 and AC2 in
block number 2. The first instruction performed by the user is MOVEI AC1, 777777, which places the
number 0,777777 in accumulator 1. On the next instruction, the word in AC1 as addressed by instruc-
tion field bits 9-12 is read out. Remember that during the effective address calculation, the AC number
is loaded from ARX 9-12 into register AC in the EBox.

EBOX/1-14

The FM ADR field of the microword that is performing the fast memory reference will specify a field
function of 0, which will select the current block as well as register AC which, as pointed out, contains
the value of AC 1 (1). The operation, specified by the instruction, is to take the right half of AC1 and
store it into the left half of AC2 with its sign extended into the other half-word. Because the sign of the
right half-word in AC1 is negative, the result is the word 777777,777777. Notice that we must now
reference AC block 2, location 2, by using VMA bits 32-35. This operation is specified with a different
microcontrol word and at a different time than the fetch of the word from ACI. Actually, the content
of ACl is obtained by performing a READ; the word 777777,7777717 is stored into AC2 on B WRITE.
The next instruction, SETCMM, reads the word from AC1 as addressed by VMA, takes the 1’s com-
plement of it, and stores the result (777777,0) back into AC1 again as addressed using VMA. Thus, the
same address is used for read as well as write. Finally, the PUSH instruction performs an indexing
function using the current AC block. The number 3, which is the Y field in the instruction, is added to
the number contained in AC2, as addressed in the example, using the mixer selection of 2 (XR).

Thus, the address is taken from ARX 14-17 during the effective address calculation. The number 3 is
added to the number 777777,777777 and the right half of the result (2) is used as the effective address.
Then the instruction attempts to push the number 777777,777777 onto the stack as addressed by the
updated right half of the word in AC1. The updating takes place first. The word is fetched from AC1
using the current block and the address in the EBox register AC. Then, this word has +1 added to both
halves and, if the left word is such that the addition causes a carry from bit 0, a pushdown list overflow
trap occurs.

1.2.3 Address Path

The EBox performs a program by executing instructions retrieved from locations addressed by the PC,
a 23-bit register contained in the EBox data path. At the beginning of each instruction, PC is
incremented by one so that it normally contains an address one greater than the current instruction.
Sequential program flow is altered by changing the contents of PC, either by incrementing it an extra
time as in a Skip instruction, or by replacing its contents with the value specified by a Jump instruc-
tion. Instructions may be fetched either from core memory, which is external to the EBox, or from fast
memory, which is internal to the EBox.

Generally, instructions provide at least two operand addresses to the EBox. One address is that of an
internal accumulator, and is addressed by bits 9-12 of the instruction. The other address, also supplied

~— by the instruction, may be used to address either core or fast memory and is contained in bits 13=35 of
the instruction word. This is a composite address, such that bit 13 specifies the type of addressing, i.e.,
direct or indirect; bits 14-17 specify an index register for use in address modification; and bits 18-35
address a virtual m/emoryimtfion.

Because the PC is used to keep track of where in the program the EBox is executing instructions, an
additional register is provided to handle addresses that can be generated during effective address
calculations, during ogerang reads and/or writes, and at other times. This 23-bit register, also contain-
ed in the EBox data path, is called the VMA register.

Figure 1-10 illustrates the basic path connections from the PC and AD. A control field consisting of
two bits in the microinstruction is provided to select the source of input to VMA. This field is called
the “VMA field.” In addition, two other fields are used to provide alternate ifiput to the VMA as well
as provide the ability to increment or decrement the VMA directly. These fields, also a part of the
microinstruction word, are called the ‘“condition field”” and ‘“magic number field.”

Referring to Figure 1-10, to load the VMA from AD, the microinstruction VMA field is coded sym-
bolically as “VMA/AD.” The field format is indicated at the lower right of the figure. The AD is
enabled into the input of the VMA register by the function VMA « AD, and the input to VMA is
enabled for any of the following functions: VMA « PC, VMA « PC+1, or VMA « AD.

EBOX/1-15

V

VMA 13-35

=~m

VMA 27-33 (‘
LT ‘

MBOX GATE 27-35

MOPTMIIM—AZ—

X

COND/VMA DECREMENT

COND/ VMA INCREMENT VMA

/ LOAD

VMA «— #:THIS
ENABLE GIVES PC+1
OR A COMBINATION OF
AND MISCELLANEOUS
SPECIAL CONDITIONS

T \/

T

| =vmA <— aD |

VMA «=— PC

__ VMA<— PC+1

VMA «—

(ANY OF THESE

LOAD VMA)

" MISC
SPECIAL
CONDS"

D

00 83
VMA COND MAGIC #
FIELD | FIELD FIELD

|-_—— MICRO INSTRUCTION _4

CRAM
VMA FIELD | FUNCTION
0 0 VMA /VMA
] 1 VMA /PC
1 0 VMA /PC+1
i 1 VMA /AD
]

Figure 1-10 VMA Structure Simplified

B e
. e

EBOX/1-16

10-1556

\Similarly, to update the PC (Figure 1-11), the microinstruction VMA field is coded to specify the
function “VMA /PC+1.” This disables VMA « AD, and so the VMA defaults to VMA « VMA AD as
input. At this time, the COND field must not be VMA « # if it is desired to enable the VMA AD to
implement the function A+B. The A input to VMA AD is from PC QI}S\B%-%% The B input is forced to
+1if - PC+1 INH is true, and if the VMA field specifies the function™VMA /PC+1.” The input to
VMA is enabled for PC+1 as well. Certain instructions such as JUMPXX, AOJXX, or SOJXX condi-
tionally load VMA with either E or PC+1. Instructions such as SKIPXX, TEST, CAIXX, and
CAMXX conditionally skip an instruction, so VMA may be loaded with either PC+1 or PC+2. In
general, the VMA is loaded with PC+1 for most instructions by the microinstruction following the
effective address calculation (assuming no special instructions and not loading VMA from AD). Those
instructions that perform an instruction prefetch will enable the VMA from PC+1 on the A READ
dispatch function. This function is used to trigger the Fetch cycle and, conditionally, the micro-
program enters the wait state until the operand arrives when the data is fetched from the MBox. If this
is the case, and the prefetch condition is true, the VMA input will be PC+1; when the MBox responds,
restarting the EBox clock, the VMA loads with PC+1.

Instructions such as MOVEI, ADDI, SUBI, and HXXXI fetch no operands during A READ,; instead,
they use the effective address as data. These instructions prefetch the next instruction and the micro-
program does not enter the wait state at all.z hus, the VMA is loaded with PC+1 as the microprogram
passes through A READ dispatch.

The function VMA +1 is used by such instructions as double MOVE, JSA, and JSR. Here, the micro-
instruction VMA field is not used, but the function VMA +1 is enabled by the condition field coded as
COND/VMA INC. The VMA register itself contains logic for the incrementation. Similarly, the
function VMA - 1 is used by byte and ADJBP instructions in cases where a word must be fetched from
E - 1. Once again, the VMA field is not used; instead, the condition field is coded COND/VMA DEC.
This is also a VMA built-in function.

VMA

[\

—VMA<=— AD
VMA AD
+g A +A
VMA AD +B INPUT VMA AD +A INPUT

~PC+1 INH (See note)
: ‘D—\ I PC I

—_D / BIT 35<—{
CRAM VMA FIELD=PC+1

NOTE :
PC+1 INH is normally false except for the following :

1.NICOND dispatch
2.Reset
3.Any special instructions e.g. MUUO, interrupt instruction.

10-1557

Figure 1-11 PC + 1 Function

EBOX/1-17

The special number, magic number, and miscellaneous conditions shown on VMA AD in Figure 1-10
are used during LUUO, MUUO, and PI handling to generate a range of special addresses to reference
the user or executive process tables in memory. During these types of functions, the VMA AD is
controlled by VMA #, which enables the Boolean function “B.” MVA AD B input bits 27-35 are
manipulated, while bits 18-26 are cleared; this allows for the generation of process table word address-
es in the range of 000-777. Note, however, that addresses in the range of 40-510 only are currently
generated by hardware.

1.2.4 Request and MBox Control

In general, most of the EBox memory request type operations are controlled by the 4-bit MEM field in
the microinstruction (Figure 1-12). This may be used alone or with the DRAM A or B field values for
most reads and writes. In addition, the 5-bit special microinstruction field (SPEC) can specify a func-
tion SP MEM CYCLE, which is sometimes used with the magic number field (a 9-bit microinstruction
field) to modify MBox read and write operations, e.g., for MUUO or LUUO. Note that the basic
MBox activity involves a request, a virtual address, and MBox qualifiers consisting of a multitude of
control signals that qualify the type of request being made. This is followed by:

1. A response from the MBox with the data when the request is successful,
2. PF HOLD followed by MBox response IN and no data on a page fault, or
3. MBox response IN with data followed by MB PAR ERR, for an MB parity error condition.

Additional conditions are covered elsewhere in this manual.

VIRTUAL ADDRESS VMA NORMALLY FROM
< CONTROL LAD OR PC
VMA/VMA
PC
EBOX REQ o+t
- DEMAND
MBOX RESP IN
TRANSFER
< MBOX QUALIFIERS MBOX EBUS
CONTROL CONTROL EBUS QUALIFIERS
MEM/ COND/ -
oL Al B L % AEAD EBUS EBUS PAR BIT
PF HOLD B WRITE BiL
FETCH
REG FUNC
A IND SPEC/
| BYTE IND SPEC
LOAD ARX MEM CYC
WRITE
l ke #00-08
A B P J
00 52|53 56|5960]/65 67|71 76 84
z VMA MEM | COND [//] sPEC 2
< DISPATCH < - EM | ©©
RAM 7
L— MICRO INSTRUCTION >l

10-1549

Figure 1-12 MBox-VMA-EBUS Control Simplified

»

EBOX/1-18

1.2.4.1 KI Style Paging - For each MBox request involving a virtual address translation, the MBox
must verify that the virtual address is legal. In general, the physical page must be in core for a read and
be writable for a write. In addition, the address space to which it belongs must correspond to that
being referenced, i.e., a public program cannot read or write into a private address space.

Two styles of paging are implemented; the first is patterned after the KI10 processor’s memory man-
agement scheme; the second after the KL10 style.

The MBox contains two base registers that can be loaded via the EBox. These registers are used as the
base address of core page tables during virtual memory address translation. The base registers are 13
bits wide. The User Base Register (UBR) is loaded by performing a privilegmuction
(DATAO PAG); similarly, the Executive Base Register (EBR) is loaded by performing another privi-
leged I/0O Instruction (CONO PAG). These registers are normally loaded by the operating system at
predetermined times. For example, the EBR is normally loaded once when the operating system is
bootstrapped. Also, each time a user is started in a normal multiprogramming environment, i.e., more
than one user program resident in core memory, the UBR is reloaded to point at the User Page Table.

14 26 27 35
I BASE l PATUAL, I PHYSICAL ADDRESS

UBR-USER BASE See Note 1
EBR-EXEC BASE

je—HALF WORD—2]|
alelulsle] PR alolwls|e] P

EVEN PAGE ODD PAGE

PROCESS TABLE
PAGE TABLE ENTRY

NOTE:
1. The page # is=2 o
facilitate halftable lookups
in the page table, I.E.,
select the even/odd pair
of halfwords.
10-1550

Figure 1-13 Page Table Access

Each time the EBox makes a memory reference to the MBox (Figure 1-13), the MBox evaluates the
virtual address. The details of this operation can be found in the MBox chapter of the KL10 Theory of
Operation Manual. Basically, the page number supplied in VMA 18-26 is used as an index into a
hardware page table within the MBox. The MBox looks for the referenced page in this table. If it is not
found, the MBox uses the appropriate base register (UBR or EBR) with the virtual page number
supplied in VMA to form a'22-bit physical memory address, as indicated.

The appropriate entry is obtained and then written by the MBox into a hardware page table within the

MBox. (Actually, eight half-word entries are fetched at a time, but for this level of explanation, only
one is considered.)

- EBOX/1-19

The five bits A, P, W, S, C (generally called use bits or page descriptor bits) are tested against the
qualifiers sent by the EBox during the referencé. Then the MBox, using the physical address, looks in
the cache for the word requested. If it does not find the word, it concatenates the physical page address
(Figure 1-14) with the virtual word address provided in VMA bits 27-35 and makes a second physical
memory reference. This address is indicated in Figure 1-15.

S| USER BASE
REGISTER

(13 BITS)

s~o__|///EXECUTIVE BASE
REGISTER.
(13 BITS)
USER PROCESS
TABLE 19 26 27 35
"ADDRESS VIRTUAL
XLATION" WORD
PAGET
PAGEO AG o
L]
USER PAGES : (13 BITS)
0-777
o
°
PAGETTGI PAGET777 | 377 MBOX
;B Z
pacEo | PACEl 1500
®
o EXEC
. (13 BITS) PHYSICAL
EXEC PAGES : PAGE
0-337
PAGE 336 [PAGE337 757
k*————HALFWORD———__ﬁ P
PHYSICAL PHYSICAL WORD je—
Alp|w|s|c PAGE PAGE=512,,
WORDS

} 18 BITS % __,,///’_

A — ACCESSABLE IN CORE
CAN CAUSE
PAGE FAULTS{ P — PUBLIC PAGE
W — WRITEABLE USE BITS
S — FOR SOFTWARE USE

C — USE THE CACHE
10-1551

Figure 1-14 KI Style Paging

EBOX/1-20

SUPPLIED BY

14

PAGE TABLE
* 26 27

SUPPLIED BY
VMA 27-35

35

PHYSICAL PAGE

QUAD WORD

Ky

22 BITS

ol

|
10-1552

Figure 1-15 Physical Memory Address Format

NOTE

A quadwordA is a block of four contiguous words
whose address differs only in the two least significant

bits.

\In practice, address bits 14-33 specify a 4-word block called a quadword, bits 34 and 35 specify which

/word within that quadword is required by the EBox, or is being written by the EBox. Once the address
\ translation process has been successfully completed for a virtual page, subsequent references to that
Jsame page cause the MBox to fill in the corresponding words in the cache within the MBox. Each time
[a reference finds a valid word in the cache during a read, it is placed on the EBox cache data lines and
| MBox response is issued. Page faults occur as follows: For the initial reference, the MBox looks in the
| hardware page table in the MBox, does not find the physical page address, and performs the sub-
- sequent process table reference (refill cycle) for the half-word containing the use bits and physical page
| address. Then, upon receiving the eight half-word entries from core memory, the MBox finds the
| access bit turned off, i.e., 0; then a page fault is generated. The eight half-words are always written in
| the MBox hardware page table (directory) whether or not the access bit in the associated word is on.
However, when the access bit for the associated word is off, the MBox asserts PAGE FAIL HOLD.
The MBox loads an internal register (EBus register) with a page fail status word that describes the type
of fault and also contains information about the user’s virtual address. Referring to Figure 1-16, the
EBox detects the PAGE FAIL HOLD level from the MBox, and forces the CRAM address logic to
CRAM location 1777. Here the page fault handler is entered. It performs the indicated functions
(Figure 1-16), and enters an Executive routine to handle the fault.

/

D

READ MBOX, PF WORD

PAGE
,FAULT
~/HANDLER

A

% If BITS 5 and 7 of
PC WORD are O

E
/ [+ WRITE_UPT LOC 500,501
READ NEW PC WORD LOC 502
T
N
i FORCE TRAP
& |_PF HoLD LOC 1777
F -
a| mBox CLOCK
C | RESPONSE | CONTROL
E| IN

EBOX/1-21

NEW PC WORD

—>e CLEAN UP
CURRENT
INSTRUCTION

—ee READ PF
CONDS FROM
MBOX

—e WRITE COMPOSITE
PF WORD IN UPT
LOCATION 500

e WRITE OLD PC
WORD IN UPT
LOCATION 501

— ¢ READ NEW PC WORD
FROM UPT
LOCATION 502

ENTER
KERNEL
HANDLER

10-1553

Figure 1-16 Page Fault Overview

In addition, the MBox asserts MB PARITY ERR five MBox ticks after issuing MBOX RESPONSE
IN. This sets APR MB PAR ERR, which causes an interrupt. The remaining errors set appropriate
APR error flags and likewise cause interrupts on the assigned APR interrupt channel.

1.2.4.2 KL Paging - The KL paging facilities support sophisticated operating system features such as
efficient program working set management and demand paging, and extensive sharing of data and
programs on a page-by-page basis. Much of the paging mechanism is implemented by the KL micro-
code, rather than just specific hardware. This combination of microcode and hardware is referred to as
the KL10 pager of TOPS-20 paging.

Refer to Figure 1-17. Each user’s virtual address space comprises 32 equal sections of 256K words per
section (512 pages of 512 words per page). A section is represented by one of 32 section pointers
located in the User Process Table (UPT). For EXEC sections, the 32 section pointers are in the EXEC
Process Table (EPT). The monitor can divide the EXEC address space into *“‘per-process’ and “‘per-
job” areas through the use of indirect pointers; no such division is built into the Pager.

————

USER BASE REGISTER pfx‘ dertu

USER PROCESS TABLE PAGE TABLE PRIVATE PAGE

ZZ —
PRIVATE [

SHARED [

USECT

SECTION # | by
x\ E

SPT BASE REGISTER g

S

SPT

l SHARED PAGE!TABLQ

PAGE TABLE

LT

1

INDIRECT [n] [

L SHARED PAGE
/\ }§
A\

! SN

4 f_/
PRIVATE PAGE
PAGE TABLE (+ INDIRECT)
- — S@
n

=

=

10-2610

Figure 1-17 KL Paging Layout

EBOX/1-22

A section pointer eventually addresses a page table that represents all pages in a 256K virtual address
space. The section pointer may be Immediate, Shared, or Indirect, but must yield a physical address of
a page table that represents all pages of the section.

The page pointer is divided into three sections: Type Code, Access Bits, and Storage. Figure 1-18

illustrates the basic page pointer format and Figure 1-19 shows the sequence of steps in its
interpretation:

1. A virtual memory reference addresses a section pointer in the UPT or EPT for EXEC
operation.

2. Thesection pointer is used to fetch an entry from the SPT (this is a pointer to a page table).

3. The SPT entry points to a location within a page table representing 512 pages by one page
pointer for each page.

4. The page table holds the physical page number required to complete the virtual to physical
address mapping.

STORAGE ADDRESS*

A
(IMMEDIATE POINTER ONLY) Ve S
0 2 3 4 5 6 7 11 12 17 18 22 23 35
T
CODE P w Cc RESERVED ’
S
k
12-17=0 :PAGE IN MEMORY
CODE:

;23-35 <PHYSICAL PAGE NO.>

0 - NO ACCESS :18-22 <MUST BE ZERO>
1- IMMEDIATE I
2-SHARED “ 12-17#0 :PAGE NOT IN CORE

L ndars A
4-7 - RESERVED (NOT USED) ;<BITS 13-35 MAY BE USED TO

HOLD DISK OR OTHER BACKUP

STORAGE ADDRESS>
BITS: (defined with a

logic O in the bit position).
P = PUBLIC
Reference only from the
concealed or kernel mode.

W = WRITE *STORAGE ADDRESS

Write references not allowed. This example shows an
elementary type of page
mapping: the Section Pointer
points through the SPT to a

C = CACHE

Data from page may be
placed in the cache.

B6 = 1; CACHE Page Table.

B6 = 0; NOCACHE (TOPS-20 uses shared or

indirect section pointers).

10-2611

Figure 1-18 Page Mapping (Virtual to Physical)

EBOX/1-23

UPT SPT PAGE TABLE

(USER PROCESS TABLE) ENTRY (512 WORDS)
sPT .

SECTION (SPECIAL/SHARED PAGE DATA PAGE

POINTER PAGES TABLE) POINTER (512 WORDS)

USECT ‘——/ ___/

PHYSICAL
le— ADDRESS
REQUESTED

10-2612
Figure 1-19 Typical Paging Path
These steps describe the most elementary and immediate reference type. The complexity of other

reference types requires a discussion of pointer types.

Page Pointers - The pointer type is encoded in bits 0-2 of the page pointer word (Figure 1-18). Again
the pointer types are:

Code Function

0 No Access

1 Immediate or Private
2 Shared

3 Indirect

4-7 Not Used (reserved)

The Immediate Pointer (Figure 1-20) holds a storage address in bits 12-35. The pointer is called a
private pointer because it is “private” to the particular page table containing the pointer. This should
not be confused with the Public bit, which describes the type of access allowed.

The Shared Pointer (Figure 1-21) contains an index that addresses into the Special/Shared Pages Table
(SPT). The SPT Base Register (SBR; reserved AC block) points to the beginning of the SPT. The sum
of the SPT index and the SBR points to a word containing the storage address of the desired page. The
word number from the virtual address is used to complete the reference. Regardless of the number of
page tables holding a particular shared pointer, the physical address is recorded only once in the SPT.
Therefore, the monitor can move the page with only one address to update.

The Indirect Pointer (Figure 1-22) identifies both another page table and a new pointer within the page
table. This allows one page to be exactly equivalent to another page in a separate address space. The
object page is located by using the SPT index.

Like a Shared Pointer, the SPT index in the Indirect Pointer allows the physical address of the page
table to be stored in just one place. If the associated page is in memory, the page number field of the
Indirect Pointer is used to select a new pointer word from the page table. This pointer can be any one
of three types previously described, or no access and the access bits are ANDed with the access bits of
the Indirect Pointer.

EBOX/1-24

IMMEDIATE SECTION POINTER (1,)

1] 1 2 3 4 5 6 7 - 22 23 3 35
0 0 1 P W % C PAGE TABLE ADDRESS
BIT DEFINITION DESCRIPTION
00-02 Pointer Type A 1, in this field defines the Immediate
Section Pointer.
03 Public Bit If this bit is off {0), the page may only be
referenced by programs running in Concealed
or Kernel Mode.
04 Write Bit When set, allows write references to be
executed to the page.
05 Not Used
06 Cache Bit When set, allows page data to be entered
into the Cache.
07-22 Not Used
23-35 Address Bits Defines the Page Table Address,
NOTE: BITS 12.35 CONTAIN A *'STORAGE ADDRESS”. IF 12.27 # 0, A TRAP IS CAUSED. 10-2613
Figure 1-20 Immediate Section Pointer
SHARED SECTION POINTER (2,)
0 1 2 3 a 5 6 7 17 18 35
0o | 1 o | P | w % ¢ / SPT INDEX (SPTX)
BIT DEFINITION DESCRIPTION
00-02 Pointer Type A 2, in this field defines the Shared
Section Peinter.
03 Public Bit If this bit is off (0), the page may only be
referenced by programs running in Concealed
or Kernel Mode.
04 Write Bit When set, allows write references to be
executed to the page.
05 Not Used
06 Cache Bit When set, allows page data to be entered
into the Cache.
07-17 Not Used
18-35 SPT Index The SPT entry is found at the physical core
address given by the sum of the SPT base
register and the SPT Index.
10-2614

Figure 1-21 Shared Section Pointer

EBOX/1-25

INDIRECT SECTION POINTER (3;)

-

0 1 2 3 4 5 6 7 .8 9 17 18 35
=
0 1 1 P w % C PAGE NUMBER PAGE TABLE IDENTIFIER (SPTX)
BIT DEFINITION DESCRIPTION
00-02 Pointer Type A 3; in this field defines the Indirect
Section Pointer.
03 Public Bit If this bit is off (0), the page may only be
referenced by programs running in Concealed
or Kernel Mode.
04 Write Bit When set, allows write references to be
executed to the page.
05 Not Used
06 Cache Bit When set, allows page data to be entered
into the Cache.
07-08 Not Used
09-17 Section Table Index Indicates the location within the Page Table
{Page Number) of the new pointer (indirect reference).
18-35 SPT Index The SPT entry is found at the physical core

address given by the sum of the SPT base
register and the SPT Index.

10-2615

Figure 1-22 Indirect Section Pointer

The Indirect chaining may be arbitrary in depth, but the PI will break out of indirect chain and restart
after the PI to service a priority interrupt in the case of long direct chains or indirect loops.

Some examples (Figures 1-23 through 1-25) of pointer interpretation follow: a flow chart (Figure 1-26)
is provided to aid in working through the examples.

Special/Shared Pages Table (SPT) - The Special/Shared Pages Table (SPT) contains the physical
addresses of pages that are shared by many page tables, or of pages used in a special way, i.e., as page
tables. They are stored in one common location to allow modification to the pages by changmg asingle
entry. The SPT Index is added to the STP base address to form a physical address of the associated
entry.

Core Status Table (CST) - Virtual memory management requires information about memory refer-
ences generated by each user’s processes. Adding the Core Status Table (CST) base register to the
physical page number from a storage address permits the monitor to address and update information
regarding the page reference. Figure 1-27 shows the flow of updating using a CST entry. This enables
pages to be ordered by “age” (time of last reference) and classified by the type of process referencing
the page.

The reference indication is carried by assigning one bit to each active process. By placing a 1 in that bit
positon in the pager data word, then, when a reference is made, the 1 is placed in the CST word in the
bit position assigned to the process making reference. The modified bit (35) is set if the page is modi-
fied, permitting the monitor to avoid swapping out of pages to which only read references are made.

EBOX/1-26

gm
UBR A -
. PAGE
| ‘s__] UPT TABLE
SBR I
SPT PAGE
USECT + > &
SECTION NO. ‘
SPTX WORD
NO.
SECTION
NO. PAGE NO. WGORD NO.
d
VMA 00 @ 500 323
] 12 13 17 18 26 27 35
VIRTUAL PHYSICAL
SECTIONNO. = 00 - SECTIONNO. = 00 HARDWARE PAGE TABLE
PAGE NO. = 500 (1) PAGE NO. = 367 500 - 367
WORD NO. =523 - WORDNO. = 323
<SHARED> SPT INDEX (SPTX)
USECT 010 220
0 2 23 35
SPTX =220
PHYSICAL ADDRESS OF PAGE TABLE
SPT ENTRY
035, 220 100 | C(SBR + SPTX)
&2
SBR SPTX ¢ 12 35
N =100
STORAGE ADDRESS OF PAGE
PAGE TABLE
100 500 367 @
S
NOO@ o 2 12 35

<IMMEDIATE POINTER (CODE = 1)>

C (UBR’ USECT + SECTION NO.) CONTAINS SPTX
C (SBR + SPTX) CONTAINS PAGE TABLE PAGE NO. N
C {N'M) CONTAINS STORAGE ADDRESS OF DESIRED PAGE

NOTES: A'B::=A CONCATENATED WITHB

Assume page is in core.

10-2616

Figure 1-23 Pointer Interpretation (Normal Section Pointer; Shared)

EBOX/1-27

PAGE

TABLE
UBR &
SECTION
uPT TABLE
SBR l —L
® PHYSICAL
SPT TABLE
USECT + & _L -
SECTION NO.—> I - |
(n) SPTX LINE
l T_.
SECTION
VWA NO. PAGE NO. LINE NO.
b
00 356 J 562 8
0 12 13 17 18 2% 27 35
SECTION TABLE
<INDIRECT> INDEX SECTION TABLE IDENTIFIER (SPTX)
USECT +
sectionno. | 217 ® toz 172
0 2 9 17 18 35
SECTION TABLE
ADDRESS
SPT ENTRY :
035 172 ® 227 | C(SBR +SPTX)
‘\JJ \/
SBR SPTX ¢ 23 35
PHYSICAL ADDRESS OF NEW PAGE TABLE
SECTION TABLE
227 102 | 001 ® 127 | cien)
s A
® ® o 2 u =
STORAGE ADDRESS OF PAGE
PAGE TABLE
127 356 001 345 clam)
s
® ® ° ¢ i =

VMA PMA
00 356 562 = 00 345 562

NOTE: Assume page is in core.
10-2617

Figure 1-24 Pointer Interpretation (Indirect Section Pointer)

EBOX/1-28

PAGE TABLE 1*

PAGE NO.
& 3 l l ® l SPTX
SPTX' -
PAGE
3 LINE
NO.
PAGE TABLE 2
PRIVATE
PAGE TABLE 1
<INDIRECT> PAGE NO. PAGE TABLE IDENTIFIER (SPTX')
100 500 011 ™ 210 127
4] 2 9 17 18 35
NEW PAGE TABLE PAGE NUMBER
SPT ENTRY
035 127 ® 277
(s s
SBR SPTX' 0 12 35
<IMMEDIATE>
PAGE TABLE 2
227 210 00 1 107
s S
@ @ 0 2 12 35
*Page table pointer now Indirect instead
of Immediate. From Figure 1-23, the UPT YMA PMA o .
addressed Page Table 1. Now, because 00 500 323 00 107 323 which is now equivalent
page table pointer is Indirect, go back to a VMA of:
through SPT again. This results in a 00 210 323
new Page Table (2}. 7
ith SPTX" = 127
NOTE: Assume page table is in core, with $
10-2618

Figure 1-25 Pointer Interpretation (Indirect Page Pointér)

EBOX/1-29

o

The paging cache requires

START -_——f L .
translation information.
A
VMA <13-17>- :' The section no. points to
SECTION NO. L section table at
VMA <18-21>— ESECT to ESECT +37, o
PAGE NO. | USECT to USECT +37.
1 P (public) r
1— W (writable) | _ _ _ _ The local Pager Variables
1= C (cache) Lare initialized to 1.

C(EBR’ ESECT +
SECTION NO.)
— AR

USER
ADDRESS

(EXEC)

(USER)

C(UBR’ USECT + -
SECTION NO.) °
— AR v

- cl)

<>

AR <0-2> —>TYPE
P-AR <3> P r The AR contains
W-AR <4> —W T

C-AR <6> —C L

a Section Pointer.

TRAP
(NO ACCESS)

{(IMMEDIATE)

KEY

Goes to

Logical AND

Logical OR

Concatenated with

Added to

Word whose physical address
is given within parentheses
Bits of

r The entire section has a
no access code. Section
may be non-existant for
the running process.

10-2619A

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 1 of 5)

EBOX/1-30

[Bits 23-35 contain

(IMMEDIATE) 2 - L the Page Table address.
C(SBR +
AR <18-35>
(SHARED) -~ AR

[SPT Base Register (SBR) and
2 — = === SPT Index (SPTX) point to Page
| Table Physical Memory Address (PMA).

l-Same as shared, except
| new section pointer.

AR <9-17> —
SECTION NO.

C(SBR +

AR <18-35>)
- AR

(INDIRECT)

P CST UPDATE
TYT:EA4_7 C{AR<23-35>'
(UNDEFINED) SECTION NO.
—AR
!
3

TRAP
(NOT IN CORE)

10-26198

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 2 of 5)

EBOX/1-31

TRAP
(NOT IN CORE)

Fetch Page Pointer from:
PT PAGE <14-26> and Current
Virtual Page came from either;

1) VMA <18-26>, or
AR <23-35> [X 2) AR <9-17> of last Indirect Point
- PT PAGE Page Table in core use
C(CBR + PTPAGE) |- — —— ~1 PTPAGE to update
- AR L CST information.

AR <0-5>=0

(AR-CSTMSK)
v
CSTDATA —AR
STORE; C (PT PAGE’|

PAGE NO.) > AR I [Modify CST Entry for this

! | physical Page Table.
¥ —— — — - Bit 35 (modified bit) is not
I | set because Page is not
P AR <3> —p = | being changed.
W-AR <4> -\ J
C-AR <6> -C
AR (0-2) - TYPE .
TEST TYPE l Now check page pointer found

~ - by section pointer evaluation.

TRAP
(NO ACCESS)

(IMMEDIATE)

10-2619C

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 3 of 5)

EBOX/1-32

C(SBR +

AR<18-35>)
—AR
(SHARED)
[Get SPT Entry from SPT Base
— —| Register (SBR) and bits 18-35

L of the Share Pointer.

AR<9-17>

—PAGE NO.

(INDIRECT)

Bits 9-17 become new Page Number
6 —_ and bits 18-35 are used as the
SPI Index (SPTX) to identify a
L new page table.

TRAP
TYPE 4-7 J
(UNDEFINED)

TRAP
/ (NOT IN CORE)

AR <23-35>
—PAGE NO.

C(CBR + PAGE NO.)
—AR

10-2619D

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 4 of 5)

EBOX/1-33

-

P Check and update CST information
_ for this reference.

AR <0-5>=0

action is required on a write reference.

r
l “8" used by software to indicate

AR-CSTMSK — e _‘ logically writable.

—~AR r “W* indicates to hardware if special

W-8 |

A ;A& Y
{1 = WRITABLE) wy

(0= NOT N
WRITABLE
WRITE 1—- AR<35>
REFERENCE
N
v
AR V CSTDATA
—-AR
STORE
P'W'S'C’ PAGE NO. r Load paging memory (paging cache)
- ~ — — —| with the resolved VMA to
PAGING CACHE L PMA translation.
A
END — — —— Restart faulted reference
10-2619E

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 5 of 5)

EBOX/1-34

Core Status Tables
, (Each addressed by page number)

CSTO CST1 CST 2 CST 3 CST 4 CST 5
PAGE
No, T e - = e
MICRO-CODE STORAGE SHARED = FORK PHYSIO TEMPORARY
STATUS ADDRESS SPTX OWNERSHIP STATUS
NOTE:
FETCH CST 1 THROUGH CST 5
csT ONLY RELEVANT TO
ENTRY MONITOR SOFTWARE
== — == Page is inaccessible.
AC BLOCK 6 e
Word 0 CST EANTRY ~
CSTMSK :
> —— Set and merge information
fields about current reference.
! |
Re I
AC BLOCK 6 R »
Word 1 v
CSTDATA
WRITE R Set modifiod bi
REFERENCE RVBIT3s [— — — Setmodified bit.
N
A
STORE
CST
ENTRY
10-2620

Figure 1-27 KL Core Status Tables Updating Flow Diagram

EBOX/1-35

Paging Hardware Support - The paging hardware is transpareat to the user. All memory, both virtual
and physical in user and monitor space, is d1v1ded into pages.

The virtual address comprises 23 bits, five (5) bits for section numbers, nine (9) bits for virtual page
numbers, and nine (9) low-order bits (line number), which address the location within the page. The
virtual page number is first used as an index into a hardware page table that contains up to 512 direct
virtual-to-physical address translations. If the 13-bit physical address is found in the hardware page
table, a 22-bit physical address is formed by concatenating the 13-bit physical address with the 9-bit
line number. If the entry does not exist in the hardware page table, a sequence of translations is
initiated to locate a page table in memory that contains a physical address (if one exists) for the virtual

page.

Cached Pagmg Data - The hardware page table referred to at the beginning of this section is effectively
a cache of paging data (not to be confused with the memory data cache) that has been accumulated by
previously fetching the data from memory, or by previous pointer interpretation. A virtual address is
first checked against the current contents of this hardware pager and, if found, immediately returns a
physical address. If the physical address is not found, the pointer interpretation (Figure 1-26) fetches
information from memory to resolve the virtual address. Upon completion, this translation may be
placed in the hardware page table forming the cache of recently used page addresses.

The hardware page table is loaded by the microcode. The paging cache is implemented as 512 entries,
one for each page of a user’s virtual address spaée. The EXEC and USER are offset from each other,
but they share the same 512 entries. Therefore, at any given time, the paging cache holds,translation
information about most of the active pages. A guarantee that the 512 most recently used pages will be
addressed by the paging cache cannot be made. However, the last page used will always be in the
paging cache.

When the monitor takes any action that would invalidate information about existing virtual-to-phys-
ical address translation, the paging cache must be either partially or completely cleared. Examples of
such instances are:

1. Change of user process - clear entire paging memory (entire user address space has
changed).

2. One page removed from core - clear the entire paging memory (several Shared and Indirect
Pointers may have used the page).

3. Pointer is removed from UPT - clear the entire paging memory (association for many pages
through UPT is changed).

4. Monitor mapped page to EXEC space for local use — only one entry cleared (When page is
unmapped, only that one pointer must be cleared. Because this facility is provided by the
pager, it may be used to reduce reload overhead.)

If the paging data is not found, the flow in Figure 1-26 is followed. A special trap is initiated and the
microcode saves vulnerable EBox data before starting on the pointer tracing algorithm. If the
algorithm is successful, the resolved pointer and associated information are loaded into the paging
memory, the EBox registers are restored, and the memory request is again issued.

The microcode must also handle the first Write Request trap, inhibiting the write until the modified bit
can be set. The pager maintains this modified bit. The microcode implements this as follows.

EBOX/1-36

During a paging memory reload, the write access bit (W) is set in the paging memory only if the current
memory reference is a write (and a write is legal for the page). Thus, if the first reference to a pageis a
read, the W bit in the corresponding paging memory entry sets to 0. A subsequent write reference
causes another trap to the microcode. On this second trap, the pointer interpretation is repeated and
the paging memory is reloaded, this time with the W bit set.

1.2.4.3 MBox Error Conditions - In addition to the page fault mechanism, the following five types of
errors can be generated by the MBox to the EBox:

Cache Address Parity Error
MBox Address Parity Error
SBus Error
Nonexistent Memory
MB Parity Error
/K
The MB Parity Error is handled similar to a page fault. The AR Parity Network, upon detecting a
parity error in a data fetch or an instruction fetched from the MBox, causes the page fault handler to
be called.

Sl

1.2.4.4 VMA Control - Two basic types of virtual addresses can be passed to the MBox for core
memory references. The first type is consistent with KI-style paging; the second is consistent with KL-
style paging. In both forms of addressing, note that the VMA lines actually consist of 23 bits. For KI-
style paging, bits 13-17 are unused and forced to 0. In the logical sense, the virtual address may be
viewed for Kl-style paging as consisting of 18 bits of addressing information. The basic address trans-
lation mechanism is indicated in Figure 1-28.

14 26 27 35 13 17 18 26 27 35
2 PMA IS THE PHYSICAL MEMORY
ADDRESS REGISTER IN THE MBOX BASE PAGE # 0 PAGF/ QUK
+2 # WORD
N 7 S P
AN Ve S P
PHYSICAL o7 PHYSICAL ~o -
ADDRESS ~ s ADDRESS ~ P
U= USE BITS e e
PMA 14-35 v VMA 13-35 o
PHYSICAL MBOX EBOX
ADDRESS @ - @
SPACE
"READ PHYSICAL
PAGE PAGE | AND USE BITS
Ul (Y| #
e
®
o le— PAGE TABLE
L]
o 14 26 27 35
=7 | PHYSICAL| QuUAD
S~ PAGE # | WORD
)
QUAD WORD | | 1
(FOUR 36 BIT WORDS) | [
CACHE DATA
3 00-35
THE FIRST WORD TO BE
__J RECEIVED BY THE
* MBOX IS THE WORD
MBOX HARDWAR
RESTRICTION E REQUESTED BY THE EBOX

10-1554

Figure 1-28 Basic Address Translation

EBOX/1-37

Actually, the virtual address in K110 paging mode is derived from the instruction Y field, which may
be modified during the effective address calculation. This consists of 18 bits. The additional five bits
(VMA 13-17) are present to facilitate KL paging mode, which can generate a 23-bit virtual address.
However, the MBox does utilize the high-order part of the VMA as indicated in Figure 1-29 to gener-
ate a Hashed Page Table address for internal use. The hashing technique is basically an associative
process, but precludes the necessity for hardware associative memory.

PHYSICAL ADDRESS |d { VIRTUAL ADDRESS a
‘ 256K | 256K | 286K | 256K
256K | 256K | 256K | 256K
PHYSICAL vnmfum_ 256K
ADDRESS ADDRESS FAGE
e -
256K | 256K | 256K | 256K) g
l 256K | 256K | 256K
EVEN,, |, 00D
‘PAGEﬂ‘PAGE'I
EFFECTIVELY SAME B
'IngNSLATION 553
REQUIRED CORE
PAGE
TABLE PHYS PAGE PHYS PAGE!
PHYSICAL e s
512 WORDS QUAD WORD GROUP 1 oo 1 et ol
000/077[200/277
100/177/300/377
200/277|000 /077
INDEXED [S00/377[100 7177
FUNCTION [400/477[6007677 VIRTUAL
500/577]700/777) 26
1 600 /677|400 /477 HARDWARE
700/777 5007577 | FaGe 777 PASE. PHYSICAL PAGE H USER
la— HASH TABLE — 512 WORDS

T WORD
upP b

A
0
Pt 27-35" 7 2 27'33:> 4 NO MATCH
e ta s
| . __z_—_l— }‘

— 27-35% 27-33 >
-~ A [l - H I —— | NO MATCH

27-35% 27-33 Lze

DIR 3
I 128 27-35% J | 27-33 128

T >IPHYSICAL PAGE

woRo|woro |w02Rn|woawn 128 CAgHE
|IZB
/ 128

128 %
)

128
DIR ©
00 35
I‘—— PHYSICAL ADDRESS —s] t¢——— VIRTUAL ADDRESS —
+ "
6K PA ¥D GROUP | WORD PAGE WORD a
14 1718 26 27 3334 35 8 26 27 35
~ ~
PHYSICAL WORD WITHIN SEL WHICH SELECT
PAGE PHYSICAL PAGE b
27 3334 35
#PHYSICALLY, BITS 27-34 SELECT ONE OF FOUR 256x2 CACHES. BIT 35 PAGE TABLE |
SELECTS A SINGLE WORD FROM THIS LOCATION PAIR. WORD PAIR | ©

8 25

10-1555

Figure 1-29 Virtual Address Mapping, K110 Paging Mode

EBOX/1-38

The VMA can be loaded from the ADDER or VMA ADDER. Generally, during calculations for the
effective address, it is loaded with the contents of ARX via the ADDER. At this time, ARX contains
an intermediate address [Y + C(XR)] or E¥

1.2.5 EBus Control and PI Control

The EBus control consists primarily of two major sections. One section is used exclusively for priority
interrupt handling (PLCONTROL) and the second is used for I/O instruction handling (EBUS CON-
TROL). Each KL10 controller (except the DIA20 I/O Bus Adapter) is assigned a device code. This
code is seven bits wide (IR_3-9). In addition, each device controller is wired to contain a physical
device number that relates to a preassigned scheme, and is slot dependent. Thus, Massbus controllers
hold physical numbers in the range of 0-7; DTE20 numbers 10-133 and DIA20 number 17s. This
provides a physical priority scheme that supplements the programmable priority interrupt system.

In the situation illustrated in Figure 1-30, both DSKs are assigned to the same PI level (level 5). This is
accomplished by the operating system with a CONO PI to the PI system enabling the processor to
accept interrupts on level 5;In addition, the operating system performs a CONO DSK, assigning the
DSK to level 5. For the situation where both DSKs interrupt simultaneously, the EBox arbitrates the
priority interrupt levels and then physical device numbers are requested from both DSKs. These are
arbitrated according to the fixed scheme discussed previously. The DSK with physical No. 0 has
highest priority in this situation.

/\ MASSBUS
DEVICE = DSK

PIS

PHYS#0

p1s| 5

EBOX U MASSBUS

s DEVICE=DSK
PI5
PHYS # 1
=y

10-1566

Figure 1-30 Simultaneous Interrupts

The basic dialogue is shown in Figure 1-31. Once the priority interrupt system has been turned on and
set up by the operating system to handle interrupts, the EBox control automatically carries out all
dialogues necessary to obtain the API function word, When the API function is on the EBus and
transfer is received from the device, the EBus control asserts PI READY, signaling the microprocessor
to take over. The microprocessor looks at this line, however, only at specific times during normal
instructions. One such instance is at NICOND Dispatch, which always occurs at the beginning of each
instruction. If at NICOND time, the PI KDY condition is true (INT REQUEST sets), the P HAN-
DLER is called. To prevent further interruptions until the function can begin, the microprocessor sets
the PI CYCLE flag. This causes the EBus Control to defer any further P READYSs. The P HAN-
DLER evaluates the API function word (Figure 1-32) and performs the indicated service. As long as PI
CYCLE is on, other interrupts are not honored by the microprogessor. The time that PI CYCLE is
cleared is dependent upon the service performed. If the interrupt is a standard interrupt to 40 + 2n, the
instruction in 40 + 2n should save the hardware state of the EBox, i.e., the flags, PC word. Appropri-
ate instructions are JSR and MUUO. Bad choices are JSP and PUSHJ, which use ACs. The choice is
particularly bad because at the time of the interrupt nothing is kiown about their contents.

EBOX/1-39

SET INTERLOCK

PI
PICYCLE
:) HANDLER

/
/

INCOMING PI REQ'S

INCOMING PI REQ'S
N\

// "SELECT HIGHEST PRIORITY LEVEL"
7/ FUNCT PI SERVED
/
MAIN 7/ CONTROLLER SELECT
MICRO 4-6=PI REQUEST TO BE HONORED
PROGRAMS

MICRO PROGRAM
LOOKS oLY

‘ DEMAND E
B
U
RECEIVE PHYS #'S s
PI RDY = INT REQ
@
@
o
SELECT HIGHEST
PRIORITY PHYS #
FUNC PI ADR IN
CONTROLLER SELECT
0-3 = PHY PHYS # SEL
4-6:PI CH TO BE HONORED
pLY
! DEMAND
EBUS TRANSFER
API FUNCTION WORD IS NOW o
10-1567

ON EBUS SEE FIGURE 1-25

Figure 1-31 PI Dialogue Overview

—

/ EBOX/1-40

00 02 03 05 06 07 10 11 12 13 35
PHYSICAL
Aggz%is FUNCTION | Q CONTROLLER 00 VIRTUAL ADDRESS
U (}Q‘xﬂ ASSERTED
= BY PI SYSTEM
1
ADDRESS SPACE * FUNCTION QUALIFIER
(AS SPECIFIED BELOW) (AS SPECIFIED BELOW) (AS SPECIFIED BELOW)
ADR. CODE FUNCTION FUNCTION aBIT
CODE DEFINITION CODE DEFINITION CODE INTERPRETATION
o EPT 0 STANDARD INTERRUPT 0,127 IGNORED
1 EXEC VIRTUAL 1 STANDARD INTERRUPT 3 0=ADD +1
4 PHYSICAL 2 VECTOR INTERRUPT 1= SUBTRACT + 1
2,3,5-7 |UNDEFINED 3 INCREMENT
a DATAO (EXAMINE) 4,5 1= APPLY PROTECTION
5 DATAI (DEPOSIT) AND. RELOCATION
6 BYTE TRANSFER 6 1=TO10 BYTE TRANSFER
7 RESERVED FOR DEC 0=TO11 BYTE TRANSFER

* THESE BITS ARE MICRO CODE-DEPENDENT.

CHECK THE

LATEST MICRO CODE LISTING FOR POSSIBLE CHANGES.

Generally, a JSR instruction is placed in 40 + 2n for calls to the operating system Pl HANDLER. This
instruction causes PI CYCLE to clear. At this time, a pending interrupt may request microprocessor
attention and can raise P READY. In general, for the other cases, the equivalent of one instruction is

Figure 1-32 API Word Format

provided before PI CYCLE is cleared.

I/0 Instruction Dialogue Overview — For I1/0O instruction transfers, the basic concept is illustrated in
Figure 1-33. The EBus Driver is called from the I/O HANDLER to generate the appropriate EBus
dialogue. First, the EBus is requested. This is necessary because the EBus is also used by the PI system.
If the EBus is free, the EBus driver sets a CP GRANT flag to hold control of the EBus; if the EBus is in

use, the EBox waits.

SERIES OF
MICRO
INSTRS
PREFORMED
TO CARRY
ouT
DIALOGUE

GEN DIALOGUE

"EBOX NOW CONTROLS
VIA CP GRANT"

10-1941

Noono) » | CETEBUS
] ©S00-06, FCN 0-
C0H5. 1 ; o -/ WAIT 8 HOLD
cono/ # /
[cono /] # ASSERT DEWAND
cono | # WAIT AND HOLD
AT RELEASE EBUS

PART OF
EBUS DRIVER

10
HANDLER

"MICRO ROUTINES"

EBUS
’ DRIVER

EBUS
CONTROL

NOTE:
The XLATOR provides level shifting
between the ECL side of EBUS and the TTL side.

>

3

P
/

e
FUNCTION DATAO,
DATAI CONO, CONI
BLKO, BLKI
T

CONTROLLER
SELECT=

IR 03-09
L

DEMAND
le——

TRANSFER

&

DATA/STATUS OR.CONTROL
TO/FROM DEVICE EBOX

Figure 1-33 I/O Instruction Dialogue Overview

EBOX/1-41

10-1569

Basically, a sequence of microinstructions is performed having the condition field coded as
>, COND/EBUS CTL and the appropriate bits coded in the magic number field (a 9-bit microinstruction
field). Specific patterns in the number field with EBUS CTL true cause appropriate action in terms of
the dialogue. IR bits 3-9 are used to develop device controller select bits CS 00-07. IR 10-12 specify
the function to be performed by the EBus control logic, i.e., DATAO, CONO, etc. Upon completing
the transfer, the device generates a transfer. The EBus is released and this completes the dialogue.

1.2.6 Data Path
Referring to Figure 1-34, the logical data path consists of the following registers and adders:

Arithmetic Register

Arithmetic Register Extension

Buffer Register

Buffer Register Extension

Multiplier Quotient Register

Fast Memory 4
Adder

Adder Extension

Also included is fast memory and a 36-bit shift matrix that can irnplement various shifting operations
on data i in AR, ARX, or the combined AR and ARX. The above registers and adders constitute the

ic in the EBox. This logic is used to handle words in logical operations, data transfers,
and fixed-point arithmetic (including effective address calculation). In these operations, fast memory is
used as a passive register; its output is the contents of the addressed Index register or Arithmetic
register. In association with the full word registers listed above, the shift counter (SC) and shift matrix
(SH) provide shifting in shift instructions, byte manipulation and, where required, in various instruc-
tions. The SC, with its adder (SCAD), and the floating exponent register (FE) are used for handling
floating-point exponents and various other special functions.

Double-precision floating-point and double precision integer operations require use of ARX, ADX,
and MQ, where ADX is a 36-bit extension of the main AD and ARX is a 36-bit extension of AR. Thus,
the registers AR, ARX, BR, BRX, together with AD and ADX, can constitute a 36-bit, a 72-bit, and
with MQ, a 108-bit path where necessary. In addition, ARX is used as a buffer for instructions fetched
from memory. The main data buffer, for words coming from or going to core or fast memory, is the
AR.

1.2.6.1 Information Flow To and From Memory - Referring to Figure 1-35, this simplified block
diagram illustrates those paths that are used in transferring information into and out of fast memory,
as well as to and from core memory via the MBox. Because of the structure of the EBox and design of
the microcode, a specific type of information will always enter or leave a given register. Table 1-3 lists
the type of request, type of information, source or destination, and comments.

All memory operations that load either AR-or ARX require an MBox request cycle. The generation of
this request cycle, together with the necessary request qualifiers (e.g., Read, Read PSE Write, Write, or
Read-Write), is based upon the code specified in one of the fields of the microinstruction word. This
field is called the M field and is 4 bits wide. Some of the types of requests that can be initiated by
this field are: instruction fetches, indirect word fetches, data fetches, and data writes.

EBOX/1-42

STACK
4 x1

fan

CRA
LOCATION

‘__](n)

S le—— FORCE 1777
E fe—— DRAM u(11)
CONTROL E
RAM c
1280x 75 T
O .
n| & OTHER
g2

l (84 (LOGICAL BITS)

(1)

l(“)

[DIAGNOSTIC REGISTER

LEBUS (11)

[controL resisTER | » TO REGISTER SELECTS (EDP, VMA,SCD, CRM,IR,CRA,CTL)
1 J s $—— TO FAST MEMORY SELECTS (APR)
® I s
[Vma] l) (10) :
L_* » TO CONTROL LOGIC (CON,CTL,MCL,CLK)
=2 AR18,, ARIS, 28 -35
AD FE
(18) 1(10) ~
SCAD
(23)
o, #
o smen], woic
PCH! IMH--- (23) +
AD AR POS
(18) t(3e AR,, ARO-8 %
O-SHIFT AR, ARX A AR EXP %
1- ARX -
(3) 2-AR SWAP \
DRAM A <—— DISPATCH 3-AR CONTROL RAM FCN FM BLOCK 4,2,1 FM ADR 10,4,2,1
DRAM B <31 51218
an| (LosicAL (36) [z6)
praM v < L CTURE) CRY O C FAST MEMORY ADDRESS) AR A0
_CRY 1 AD I L ADX I
EBUS (6) .y ()
(DIAGNOSTIC AR%4
FUNCTION)
(9) T MQ +
(36)
IR IRAC o—
(LATCHES)| | (LATCHES) ARX P ARX%4
FM - - CURRENT PREV
(9) @) BLK & BLK
BR BRX
I (36) #
pN (36)
A M
AD AR RX Q
(13) \/ T T T \/ T \/
SH ADX SH SH
CACHE DATA (36)
BR
. MQ
NOTE +
= }SELECT LINES SCAD TO 6) AR
P FIELD
sca0 rox Y
This symbol means INPUTS EXP EBUS
Level Mixer. ARX BRX

(DIAGNOSTIC MIXER)

10-2182

Figure 1-34 KLI10 Register
Interconnection Diagram

EBOX/1-43

00

A IR
Iy
: T
Iy
A 00 35 4/\ -
4
— DB |- ——D——p—
ARX 4 - 7
) . |
CACHE DATA LINES T Y 4 |
A 4
’A ‘ v
— =< — <)——<:——-<1--<)——<r—--:<7- G i
%ADR 13-35 VA < 44 A 2 i
I ' '
ADR b } | I
32-35 T 4 v
s 4 !
4>_2’ [| 35 +
i
|
B R AD ¢
L b b b R K K X X i
T : ‘-&>—{>—c>—{>—4>——«>—4>—4>—4> M ———] |-
4 2\
w7 |11t
— 1 IF EXECUTING
— p— AN INSTR;
— p— LOAD IT FROM
— FM —] AR INTO ARX
— — AND IR VIA AD
—6 I e e AR B B o
—7 — 4
a
a
004 35
CACHE DATA LINES :Il
LEGEND: NOTES:
>t >>> INSTR FROM CORE™ 1. % = Exceptions are: XCT
-5 INSTR FROM FM* 2. Parity logic is not included on this drawing.
— —p —> ——> (INDEX REGISTER)
—»—»—>—> (Q WORD FROM FM
————>——>——> INDEXED ADDRESS
—-————p——> Y FIELD OF CURRENT INSTRUCTION
—>—>->>3>->-3>-3> DATA READ OR E
bbb DATA WRITE
10-2183

Figure 1-35 Core and Fast Memory Information Flow

EBOX/1-44

Table 1-3 Memory Information Flow
Type of Type of Source Destination Comments
Request Information
Read Instruction Core Memory ARX Loaded via cache data lines if from core mem-
or ory or via the AD if from fast merhory.
Fast Memory
Read Data Core Memory AR, ARX, Loaded via cache data lines if from core mem-
or or both ory or via AD if from fast memory.
Fast Memory
Write Data AR Core Memory AR goes to the FM and to the cache,
or regardless of which reads it.
Fast Memory
Read Indirect Core Memory ARX Loaded via cache data lines if from core mem-
Word or ory or via AD if from fast memory.
Fast Memory
Read Index Fast Memory AR, VMA The contents of the addressed Index register is
Register read into the ADDER “B” input where it is
added to the current value of Y. The sum is
loaded into both AR and VMA under micro-
code control.

The microinstruction contains a number of separate fields for register selection including a 3-bit AR
field and a 3-bit ARX field. In addition, three fields are provided for controlling the adder; two of
these, the ADA (3-bit field) and ADB (2-bit field), select various inputs to the adder. The third field,
AD (a 6-bit field), controls the adder directly. The actual selection of the source or destination registers
depends on the following:

1. The microinstruction register select field function
2. The source or destination memory (e.g., fast memory or core memory).

As an example, consider an instruction fetch (not a prefetch) from fast memory. Refer to Figure 1-36.
The MEM field function of the microinstruction desiring the word is coded as FETCH. From this, the
term MCL LOAD ARX is'produced and routed to EBox Control No. 1, where it partially enables the
ARX SELect 1 and ARX SELect 2 Mixer Selection logic. The final selection is a function of the
address contained in VMA. If this address is a fast memory address (e.g., VMA 13-31 = 0), then the
ARX SELect 2 line is fully enabled and the ARX SELect 1 line is inhibited by VMA AC REF.
Similarly, if the address in VMA is a core memory address, VM A AC REF will be false, inhibiting the
ARX SELect 2 line and enabling the ARX SELect 1 line.

EBOX/1-45

As indicated in Figure 1-36, there are eight inputs to the ARX. The microinstruction may select any of
these eight inputs, if required, simply by coding the ARX field appropriately. The AR and its associ-
ated mixer are very similar to the ARX. In the case of reading a word of data into AR from core
memory, the MEM field function, LOAD AR, is latched into the request qualifier register in the
memory control, partially enabling the AR mixer select 11 and select 2 lines to the AR mixer. Once
again, the selection is a function of the address in VMA.. If bits 13-31 of the virtual address are equal to
zero, the adder is enabled into the AR number 2 input, but if the address in bits 13-31 of YMA is
nonzero, the cache data lines are enabled into the AR number 2 input. As with ARX, the micro-
instruction may select any of the eight inputs on the AR mixer, if required. Figure 1-37 is a simplified
version of the EBox data paths. The basic path connections and the direction of transfers are indicated.
Along the bottom of the figure is the portion of the microinstruction word format that controls the
data path. The simplified path does not show shift left or shift right connections.

1.2.6.2 Information Flow I/0 and Priority Interrupt - Figure 1-38 is a simplified path diagram used by
I1/O and priotity_interrupt operations. The major path is the shaded area, mcludmg the AR, adder,
EBus, translator external or internal devices, and MQ. The portion that is cross-hatched may be
generically called the “inspection and control path” and includes the SH, SC, SCAD, FE, and CRAM
address logic. The remaining paths and registers are used as working registers; the usage depends on
the specific operation.

Note that internal device information flow (control data) is not translated, but rather utilizes the
internal ECL EBus. External device information, however, entering or leaving the EBox, must be
translated in the direction TTL to ECL or ECL to TTL. If the operation being performed is a CONI or
DATALI the destination register is AR. If the operation is CONO or DATAO, the source is AD. The
processing of interrupts is more complex. The destination for the API functlon word is 1mt1ally AR,
but the function performed in response to the decodmg of this word may involve an instruction fetch, a
data read and write,- a data out, or a data in operation. The microprogram begins to process the
interrupt when the AR contains the API function word transmitted from device and the EBus hand-
shake has been completed.

The microprogram places a copy of this word intg MQ for use later and performs a SHIFT Dispatch
on the API function code to the appropriate routine in the microprogram. To 1mp1ement this dispatch,
the AR is enabled into the shift matrix; then the output bits (SH 00-03) are sampled in the CRAM
Address Control logic. In addition, another type of dispatch can be performed; this is called AR 00-03
Dispatch.

When the API function spemﬁes a standard interrupt (API FCN 0 or 1) an instruction is fetched from
40 + 2n, where n is equal to the mterruptmg channel 1-7. These interrupt locations generally contain a
JSR instruction that must be performed in order to preserve the flags and PC of the interrupted
program. In addition, the current ACs must not be disturbed and the interrupt handler (monitor
routine) must be entered for polling of devices. In these situations, the microcode forms the correct
address in VMA (40 + 2n) and begins an instruction fetch by issuing a microinstruction with MEM
equal to FETCH. This fetch is from the Executive Process Table (EPT) and requires that the request
qualifier, EBox EPT, be asserted in order that the MBox access the EPT for the instruction.

EBOX/1-46

Ly-1/X044d

N

E/M INTERFACE

EBOX REQUEST

Z INHIB

1T
SETTING CLK RESP

MICRO } MEM '—MEWNWCWT%L_ -/
INSTR FIELD I
[FETCH OR LOAD ARX __a TEQUEST
< | REG |
REQUEST QUALIFIERS I MCL
— e ¥, i, MO
::(:CRAM ARX SE‘L: MCL
_______ 3 LOAD
i_DATA PATH 1 = A% o
| TEBOX CONTROL #1 71 TEsox B
| I ARX | | | | ICOZNTROL |
CRAM ARXM SEL2 #
: i I TG-ARX SEL2 H l I /——.__L._
| l b=
2
I 0 1 2 3 4 5 6 :E:: I I — — =y
CACHE DATA _!] R | I AR SEL \ B II _hrCl;—O_C-K— o
1 I CRAM ARXM SEL1 _: l H
| R I L e e e e e e e ST
T - | |
MBOX RESP : I
|

-

VIRTUAL ADDRESS

Figure 1-36 Loading ARX

VMA AC REF

TEST ADR
FOR

13-31=0

VIRTUAL
MEMORY
ADDRESS

I

VMA l
i I
I

!

e o _YMA|

/ 10-2184

B

PROC SERIAL #
EBUS |
REG

\J
&
o

10 BIT LOGIC

[AMAIN DATA TRANSFER REGISTER
PATHS SHOWN IN FIG 1-4

36 10 36
. —BIT BIT BIT
——— LOGIC ™~ LOGIC LOGIC
e N
CARRY IN =1 ~ P
Sy /
~ ~ ~ / \
BOOLEAN =1, ARITH=0 ~ _ ~ \
~ ~ /
THESE ~ - ~ \
ARE FUNCTION ~ // . // \
[—UNUSED [/l—ADXA S ~_

J offfz-s ‘BIADA ADB | AR ARX | BR BRX | MQ :B‘R SCAD | SCAD 7 SCAD sC FE SH__
-1 L 18 —20 22-23(24-26 [27-29 | 30 31 32 |33-35 [36-38| 39-41|/143-44" 46 a7 ARMM
BASE ICONTROLS|SELECTS [/|SELECTS|SELECTS|SELECTS| SEL | SEL | SEL [SELECT| CONT SESLCE%S sgéicgs SEL | SEL SL"IFTJ

PROGRAM| ADDER AD"A" AD"B"| AR ARX BR BRX | MQ FM sc Al e sc FE ARMM = —
“1JUMP ADR|FUNCTIONS| INPUT INPUT | INPUT | INPUT | INPUT | INPUT | INPUT | ADR |ADDER| |npuT |4 INPUT [/] INPUT [INPUT [/1aRMINPUT #0
MICRO INSTRUCTION DATA PATH CONTROL

10-1548

Figure 1-37 EBox Data Paths Simplified Paths Diagram

~——> When the API function specifies a dispatch (API FCN 2), the virtual address of an interrupt instruc-
tion (JSR) is provided by the device. In this situation, the request does not assert the qualifier EBox
EPT because the address is not an EPT address, but rather somewhere in the virtual address space. For
the situations described up to this time, the instruction will enter ARX. Control is passed to the main
microcode loop for processing. The API function (PI increment or PI decrement) is slightly different,

Py in that a word must be fetched from the virtual address provided by the device. This word is then

' incremented or decremented as specified in the API word and the result is written back into memory.
Here the AR is used both for the read and write operations.

—=API functions 4 and 5 require a DATAO and a DATALI, respectively, to be performed to the device.
Prior to performing the specified DATAOQ, a word is fetched from the virtual address provided in the
API word and this word is loaded into AR. The path is now from AR to AD and then to the EBus,
which is controlled for the DATAO by the microcode. For the specified DATALI, the operation is the
reverse. The required word is obtained from the device via the EBus under microcode control (EBus
dialogue) and the word is loaded into AR. Next, the contents of AR must be written into the virtual
address supplied by the API word. Of the remaining functions, only API FCNG6 is used and this is
reserved for the DTE20 (10-11 Interface). Examines and deposits, as well as byte transfers, may be
requested by the DTE. This subject is covered in Section 2. .

EBOX/1-48

INSPECTION AND CONTROL

FROM

CONTROL RAM
ADDRESS
CONTROL

TN

-
|
|
|
l CONTROL
REGISTER
| S oise m
|
!
|
|
|
|
|
|

| ADDER EXT

AN

BRX
2\

{ ARX

CACHE DATA

LEGEND:

Ui

AD

MAJOR PATH

|

SH

//‘

FE

—p——D——DP——D——D—— D ——D———D———D

/] INSPECTION AND CONTROL PATH

-—— INCOMING DATA FLOW
- OUTGOING DATA FLOW

DOAHAPrVZp0-

10-2185

Figure 1-38 Input/Output Priority

Interrupt Information Flow

EBOX/1-49

SECTION 2
FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

Figure 2-1 illustrates the major functional elements of the EBox. The purpose of this drawing is to
support the functional descriptions contained in this section. The major data and address paths and
the individual controls introduced in the previous section are shown on this diagram with some addi-
tional detail. Major interfaces are also shown in some detail.

The interface between the EBox and the MBox is not a bus, but is functionally shown and described as
if it were, because its operation is similar to that of a bus.

As described in Section 1, the EBox serves as the Instruction Execution Unit for the KL10 system.
Access to main memory is logically controlled by the MBox; therefore, as the EBox requires memory
operands or instructions, it performs MBox cycles to obtain these words. These cycles take place over
the E/M interface. In a similar fashion, access to I/O devices is via the EBus. Devices may commu-
nicate with the EBox over the EBus by utilizing the priority interrupt system. In addition, as the EBox
requires status or data from devices connected to the EBus or wishes to transmit data or control
information to devices on the EBus, it does so by performing EBus cycles. These cycles take place over
the EBus. Figure 2-2 illustrates these primary hardware cycles. The implementation of MBox or EBus
cycles is via the microprograms stored in the CRAM.

2.2 MICROPROGRAM STATES AND PROCESSOR CYCLES
Referring to Figure 2-3, the EBox microprogram can be in one of the following states at any time:

Microprogram Running Microprogram and EBox Frozen
Microprogram Wait State Microprogram Deferred
Microprogram Halt Loop EBox Reset (Power Up Sequence)

A discussion deécribing how to read and understand the microcode is provided in Appendix A.

2.2.1 EBox Reset

During the power up sequence, the EBox, MBox, and all controllers are reset to known states. The

EBox, MBox, EBus, and SBus clocks are initialized and the CRAM register is cleared. This clearing

action places the EBox in the diagnostic state, because the dispatch field is equal to zero
WA program running in PDP-11 memory then initializes the EBox, loads the Dispatch

RAM and verifies it, loads the CRAM and verifies it, and starts the microprogram into the Halt loop.

In general, at this time, the system must be bootstrapped; to accomplish this, a number of diagnostic

functions are necessary. This is discussed in Section 3 and in the system and interface descriptions.
N—o

EBOX/2-1

%

CTLE TOT EN

mopmom—z— 2

wCcw m

Figure 2-1

NOTE :

Lines without arrow heads indicate CONTROL RAM CONTROL SIGNALS

3 Current block, Previous block,VMA block,XR block,FM block 4,2,1
%% FM ADR Sel 10,4,2,1

EBOX/2-2

EBox Functional Block Diagram

VMA 13-35 E BUS D@@-35 /\
CACHE CLEARER . IRACig-12 AD@5-87 ADDRESS AND CTL TUTOLESEN
| L
CACHE DATA #g@-35 DATA 'PATHS CTL AD TO E BUS
EDP
MBOX CLOCKS < TIME
CON CLOCK <—| L+ SCD CLOCK APR
CENTRAL BLK
CRM CLOCK = > PI CLOCK FM BLK @ S
CRA cLOCK =—{ PROCESSOR 1 o MR cLock (4.2, . D@@-35
VMA CLOCK < = APR CLOCK FM . APR CONI i
) PHYS #'S
EBOX SYNC <—| cLk [©TL cLock ADR =] . FM ¢9-35 PARTY MizgR [OR DATAI E BUS RETURN
, CONTROLIRER > CONTROL CONTROL CSpa-86
ADR ol Lo E BUS REQ
19,4, e E BUS DEMAND E BUS DEMAND
EBOX REQ IN APRJ2,1 [FM BLK 7 cob: A ARR DISABLE Cs,] cONTROL [=0
CSH_EBOX T8 t_1rACgo-12 COND# CONTROL E _BUS F@1
CSH_EBOX RETRY *| | ADg@-35 JAR CONI OR DATAI cs@e-g3
MBOX_ RESP_IN REQUEST | g xFeR o SEND F@2 i
L EBOX SYNC MEMORY | PF HOLD N
{_MBOX CLK e AC E BUS
Ja CONTROL | PT PUBLIC BLOCK CIL APR PHYS #
SELECT AD@@-12
PF_HOLD el CONTEXT BT
PF_EBOX HANDLE MCL f ¢~ k FORCE EXT_XFER RCVD oTL [eMTR_PHYS #
PT_PUBLIC ol APR X
*%
LLVMA AC REF oy I IRET ICALL EBUS |PI
£ L CONTROL - MicRo
MBOX GATE VMA 27-35_, CON, VMA | YMA_FETCH B |
CACHE DATA @@-35 CACHE DATA #@-35 [T 1q - - .
IR @gg-12 RA|
PAGE TEST PRIV IR IO LEGAL DISPATCH| 2 PI GATE TTLTO ECL| INTERRUPT | PI{-7
PAGE ILL ENTRY RAM I CONTROL
EBOX_USER DRAM ADR T "
DISPAJCH ADR @@-@8[CONTROL E BUS D@Q@-35 PT i&
RA 5 5
EBOX MAY BE PAGED IR 1r| "conps . T
EBOX CACHE ! REQ R
EBOX_LOOK EN le— CLK FORCE 1777
K110 _PAGING MODE r DISPATCH RAM REGISTER
PAGE_ADR_COND I 5 cogmon_
ADDRESS
1 EBOX MAP CONTROL MTR REQ
t L8 g7 NICOND
|
EBOX READ pcP MEN S A o 78 TRAP PI CYCLE
EBOXSESE ToT i RAM g9 i SET PI HOLD | PI GYCLE
EBOX WRITE CRAM 13
MODE DISP J — g7-go oI browss | CONTROL
USER CONTROL SPEC CRA CON CON
uer MBOXI BN B MAGIC # i
EPT CONTROL PT CYCLE
HSER REF - NTROL RAM REGISTER ADR INT REQ
EBOX CCA SRS CTL I CONTHO GISTER cram e MTR INT REQ
: SAVE FLAGS COND ENABLES E BUS CP GRANT
EBOX UBR LOAD FLAGS £oN
EBOX ERA SAVE FLAGS E BUS CTL #
EBOX EN REFILL RAM WR i — SN
EBOX S BUS DIAG MTR REQ
START |
EBOX LOAD REG Sgg'és"z"xgc [
EBOX READ REG MEM DIAG SET RUN, DIAG CLR RUN, DIAG CONT.
KERNEL MODE METES D@@-35
':’TT [u: WRITE ;RUN DIAG LOAD FUNC'S <+— paAGNOSTIC TRAP MTR
03 USER | CONTROL DIAG CONTROL FUNC'S «+— CONTROL CONTROL
MBOX CTL DIAG CONTROL FUNC 01X
BOX CTL 06 USER IOT CON cTL SCD
WR PT SEL @ MCL T ﬁggggs‘isgf?
WR PT SEL 1 AR DS@4 -@6 " sTaTUS DP@-35
CSH ADR PAR ERR ED-CYCLE APR o g
MB_PAR ERR
SXBUSE::“ EBUS DS STROBE
M—ﬁ—- TRN -——l
MBOX C DIR PAR ERI EBUS D@@-g4 L \/
ANY EBOX ERROR

10-1709

ONE EBOX CYCLE
FOR EACH MICRO INSTR.

CONSISTS OF A NUMBER CONSISTS OF (USUALLY)

OF EBOX CYCLES USED TWO EBOX CYCLES.

TO CONDUCT THE E BUS THE FIRST IS FOR ISSUING
DIALOGUE FOR: PI THE REQUEST AND THE
HANDLING OR I/O SECOND IS USED TO LOAD
INSTRUCTION EXECUTION THE VMA. IN PRACTICE

THERE ARE FAST AND
SLOW MBOX CYCLES.
10-1580

Figure 2-2 Primary Hardware Cycles

EBOX/2-3

REQS

EXTERNAL OR

DEVICE ACTION
“ 7 T|INTERNAL ACTION

DIVERTED

REQUIRED VIA
10-11 INTERFACE

[EXTERNAL ACTION}

LOOK AT

DIVERTED STATE

DIAG START
CONTINUE

PROGRAM
LOOPS

2nd REQ PENDING

HALT INSTR,
ERROR

RESP/LATCH
* REQ

DIAG FUNCs
VIA10-11
INTERFACE
CLOCKS
ETC.

DIAG START
OF MICRO PROG

CRAM PAR ERR
DRAM PAR ERR

*
FM PAR ERR MAY BE SAME STATE

WAIT STATE - MBOX WAIT
EXTERNAL MBOX WAIT - MEM 02(1)
--JACTION REQUIRED AND MEM CYC (1)
VIA 10-11
INTERFACE (DTE)
"POWER UP"
[cRO BAR]
NOTE:
The notation used here is similar to that used
with ‘PITRI NETWORKS. The meaning of the
notation, “SIGNAL/n” is as follows. The mnemonic
to the left of the/is a condition which must be in the
state indicated to the right of the/, E.G. 1 or 0 in order
to pass from one bubble to another.
10-1581

Figure 2-3 Microprogram Static States

2.2.2 Microprogram Halt Loop

The Halt loop is entered following a NICOND Dispatch, when RUN and PI CYCLE are found clear.
Figure 2-4 is the flow diagram. Referring to Figure 2-5, the EBox contains a synchronizer (CON
START), which is set for three clock periods when CONTINUE is pressed. In addition, it also con-
tains a flag (CON INSTR GO), which is set by CONTINUE and remains set untila HALT instruction
is performed. The RUN flag in the EBox consists of a RUN source enabled by DIAG SET RUN and
CON INSTR GO true. Referring to Figure 2-4, assuming a HALT instruction has just been performed
(JRST 4) and the RUN flag has been found clear at NICOND Dispatch time, the Halt loop is entered.
The following occur immediately:

The AR is cleared.

The HALT flag is set.

The current value of PC is loaded into VMA.
The current value of VMA is placed in PC.

EBOX/2-4

HALT

LOOP
A
CLEAR AR
SET HALT FLAG
FOR PDP-11 TO
SEE. VMA<—PC.
PC « PREVIOUS
VMA
{
/
YES
“TIGHT
LooP"
EXECUTE ENABLE START
CONTENTS FLAG, VMA«~PC
OF AR SPEC INSTR/CONT
“pC IS NOT
UPDATED"
YE
MAKE MBOX s
CYCLE TO GRAB EEBUS
FETCH INSTR THE ONLY PI
FUNCTIONS
AR « INST MICRO ALLOWED
ARX < AR CODE HERE ARE
- PI FUNC 3,4 MICRO
PERFORM HANDLER OR 5, CODE
THE INSTR THISIS A METER
- HARDWARE DRIVER
RESTRICTION
CLEAR STATE
REGISTER AND RELEASE
DO NICOND EEBUS
NO
RUN(1)
“SINGLE ?
INSTR
MODE" VES
ENTRY VIA:
72 1. JRST 4,
. NICOND WITH R
*CON INT REQ PROCEED 2. NICOND wi UN(0)
IS INHIBITED FROM
FOR INSTRUCTION NICOND
DISPATCH
**THE AR MAY ALSO BE
LOADED WITH THE
DIAGNOSTIC FUNCTION.
10-1582
Figure 2-4 Microprogram Halt Loop

EBOX/2-5

Thus, if the HALT instruction was fetched from location 600, and the effective address supplied in the
HALT instruction was 100, PC would become 100 and VMA would become 601 (the updated PC
value). The START flag is tested to determirte if CONTINUE was pressed. In this case, START will
be clear. If an interrupt is pending, the PI Handler is entered to service this interrupt.

When this is done the next instruction is requested. This is followed by a NOOP microinstruction.
Finally, the State register (a hardware register in the EBox) is initialized clear. Then NICOND Dis-
patch is issued and the Halt loop is entered again.

If no interrupts are pending, the “Tight loop” is entered, continually checking the START flag and
interrupt requests. Note that HALT INSTR does not clear the RUN source, but merely clears INSTR
GO, which removes the CON RUN signal (Figure 2-5).

L

—LEGAL TO HALT — CON INSTR GO

1)
CON RUN
DIAG CONTINUE—

CON CLK — 0

DIAG RUN SET—{SET

RUN
SOURCE .
DIAG RUN CLR—CLR ¥ "CONSISTS OF A 3

ZER"
CON CLK TICK SYNCHRONIZE

NOTE:

LEGAL TO HALT is a generic term and aiso a simplification

of the actual logic. [(KERNAL MODE V USER IOT)A(JRST 4,]] 10-1583

Figure 2-5 Run-Halt-Continue Logic

The HALT instruction is a “privileged instruction”; therefore, the EBox must be in either diagnostic,
USER IOT, or KERNEL mode to clear CON INSTR GO. The PDP-11 may clear the RUN source at
any time by issuing (via the 10-11 Interface) DIAG RUN CLR. This causes the Tight loop to be
entered at the next NICOND Dispatch (assuming no interrupts are pending).

If it is desired to execute a single instruction, the AR may be loaded with the desired instruction by use
of the prescribed DIAG function, issued via the 10-11 Interface. After the AR has been loaded, the
START flag is enabled by issuing DIAG CONTINUE. The AR is tested for a nonzero value. If it is
nonzero, the contents of AR are executed; upon its completion, the Halt loop is once again entered.

It should be noted that PC+1 INHIBIT is true during the Execute function, to prevent the PC from
being updated. Similarly, by clearing AR and pressing CONTINUE while CON RUN is disabled, one
instruction may be fetched at a time and executed, or the program may be resumed if CON RUN is
true after performing the instruction in AR. For this function, the microcode, at XCTW, is used to
fetch the instruction and wait for it. This instruction is performed, and the PC is allowed to be updated
by +1. At the end of the instruction, NICOND Dispatch is issued and the state of CON RUN is tested
together with other hardware conditions, to determine what to do next.

EBOX/2-6

A

2.2.3 Microprogram Running

Once the microprogram is running, it may enter any of the other states (Subsection 2.2). Normally, the
microprogram passes through a regularly "defined sequence consisting of at least the five main dis-
patches (Main loop) shown in Figure 2-6. Between each dispatch, some number of microinstructions is
performed. A rough equivalence exists between the traditional computer machine cycles and those of
the EBox. In general, the relationship is as shown in Table 2-1.

Table 2-1 EBox Main Loop/Traditional Machine Cycle Comparison

EBox Dispatch Main Loop Traditional Machine Cycles
N NICOND Dispatch Instruction
\\\\; EAMOD Dispatch Address
\ A READ Dispatch Fetch
\ DRAM J (See Note) Execute
B WRITE Dispatch Store
NOTE

This dispatch is referred to in the Microcode as IR Dispatch.

MAIN LOOP

10-1584

Figure 2-6 Dispatch Path State Diagram

EBOX/2-7

Altogether, there are 16 dispatches. The five basic dispatches constitute the main loop; an additional
eleven are, in general, instruction dependent and usually, if issued, follow an IR Dispatch (DRAM J
DISP). Each time an EBox clock tick occurs, the CRAM register is loaded with a microinstruction.
This microinstruction then contols formation of the next microinstruction address. This is accom-
plished by the particular coding of the appropriate microinstruction fields. In general, there are four
types of CRAM address modifications (Figure 2-7):

Branch On Condition

Branch On Condition With Skip
Skip

Jump

The CRAM address logic samples conditions (Figure 2-8) supplied by various portions of EBox logic,
together with the current microinstruction J, COND, and Dispatch fields, and then generates the next
CRAM address (CR ADR 00-10).

2.2.4 Microprogram Wait State

As indicated in Figure 2-3, the Wait state (MBOX WAIT) occurs during memory requests involving
the MBox. In general (Figure 2-9), three main uses of the Wait state exist. The first is to assure that the
microprogram waits for an MBox response after having started an MBox cycle. The second use is to
hold off a second MBox cycle when the MBox has not yet responded to the first MBox cycle.

As shown in Figure 2-10, the EBox clock control samples the following signals:

MBOX WAIT
VMA AC REF
RESP MBOX

If an MBox cycle is started, MEM CYCLE sets, as enabled by the request. It remains set until XFER is
generated. When the request is to the MBox, and VMA 13-33 is nonzero, the XFER is generated as a
direct result of MBOX RESPONSE IN. If, however, VMA 13-33 is zero, VM A 32-35 is a fast memory
address and the EBox aborts the cycle. The XFER is a result of FM XFER, a signal generated from
within the EBox itself. If VMA AC REF is true, the EBox clock ignores MBOX WAIT. However,
when VMA AC REF is false and MBOX WAIT is true, the EBox clock may be inhibited.

The third case involves instruction prefetches from fast memory (Figure 2-11). For this situation, the
microinstruction generating NICOND Dispatch also asserts MB WAIT. This is necessary because the
EBox hardware requested the next instruction from the MBox rather than from fast memory. The
MBox detects that the VMA address contained a fast memory address and aborts the cycle. The EBox
hardware switches the ARX input to the AD output, thus reading from fast memory.

NOTE
XFER = MB XFER V FM XFER

2.2.5 Microprogram and EBox Frozen
The microprogram and EBox frozen state occur in practice when any of the following events occur:

1. DRAM Parity Error while the EBox clock is running.
2. CRAM Parity Error while the EBox clock is running.

3. Fast Memory Parity Error while the EBox clock is running.

EBOX/2-8

ENTRY

1 CODE | DISPATCH
/ [DIAG
EBOX CLOCK / 1 DRAM J
2 A READ
/ 3 SBR RET
/ 4 PF DISP
5 SR
CRAM REGISTER— / s NiCoND
MICRO /
INSTRUCTION / 7 SH
/ s
-
7
Ve
/| cope | pispatcH
7 30 MUL
/ 31 DIV
CRAM ADR« o / = SToRS
CRAM J00-10 / = SRANTE
V CRA 00-10 // = e
“2K WAY BRANCH" / g‘;— ';‘gRM’VéD
POSSIBLE 7
37 EA TYPE
Disp 6~ — — ——
30‘37/\(53 l
“3WAY BRANCH” | CRAM ADR-—
POSSIBLE CRAM J00-10 V
NO CRA 08-10
CODE SKIP
40 SPARE
a1 iR AC=0
a2 AROD
a3 ARS8
aa ARX00
a5 BROO
46 SPARE
a7 SPARE CRAM ADR«~
50 SPARE CRAM J0OO-10 V
51 —AD=0 / CRAM ADR< CRA10
52 ADOO / CRAM J00-10
53 AD CRY-02
54 ADX00 /
55 “SCAD=00
56 SCAD SIGN /
57 -SC.GE.36 /
COND /
ADR | MISC HARDW
10 CONDS
LSBIS
CONTROLLED
BY THE SKIP
N
1 1 5 60 65 . 7 CONDITION
J M COND / DISP
10-1585

Figure 2-7 Basic Microprogram Address Control

EBOX/2-9

IRAC 36 BIT B’ﬁ_
& DATA
. SH LOGIC
IR ‘ PATH o o
CLK
FORCE 1777
CONTROL
CLK
CTL
Col CONTROL RAM CR ADR 00-10
ADDRESS -
MEM
CTL
MCL
((_ 60 65 67 71 (
//"/'// / COND DISP /;/ CRAM
I)

10-1586

Figure 2-8 CRAM Address Inputs Simplified

DRAM A=4-7; SOME
FORMAT READ DATA
E.G. READ, READ PRE
FETCH, READ PSE
WRITE, READ-WRITE

DRAM A=3, WRITE
PAGE CHK

REQ/LATCH REQ

THIS MICRO INSTRUC-
TION HAS MEM=MB
WAIT

MBOX RESP/1
EBOX CLOCK 1S

INHIBITED UNTIL
RESPONSE IS
RECEIVED FROM
THE BOX
NOTE:

MEM=MB WAIT implies that the micro

instruction mem field contains a code of

2g.
10-1587

Figure 2-9 Wait State

EBOX/2-10

F=—=<

MBOX CONTROL

MEM 02=1—\l

MEM
~N . FIELD

= e e

J.

CLK CRM

Je———— MICRO INSTRUCTION ———=]

L

I MEM 1 '
l CYCLE l
| EBOX |
. ‘ o l CLK CRM
I |
’—
//
P
o
E - | MBOX
7 r | WAIT
M EBOX CLKS TO OTHER
i | t RESF _MBOX CLOCK EBOX BOARDS
N l | VMA AC REF CONTROL
T —
E I | EBOX CLK
R CLK I
A I MBOX RESP
c
E | I
' @ ENABLED BY CYCLE REQ
!MBOX RESP IN DISABLED BY XFER
| | XFER=FM XFER OR
CLK CONTROL MB XFER
e e e —
\/ 13 33 32 35
VMA 0 AC REF
10-1588
Figure 2-10 MBox Wait and EBox Clock
DRAM A=5
REQ/LATCH READ PRE FETCH
ASSUME PREFETCH
IS FROM FAST
MEMORY
¥RESP/LATCH MBOX WAIT
REQ (FOR DATA)
(PRE FETCH) READ
*MEM CYC=—1
NOTE:

Figure 2-11 MBox Wait on Prefetch from Fast Memory

REQ/1 implies that the request seis up but
VMA remains laiched from the previous REQ
until MBOX response. At that time RESP/LATCH
REQ implies that the VMA can LATCH for

the 2nd REQ.

*
Same EBOX CLOCK
* % MICRO program must reinitiate the FETCH later (NICOND)

10-1589

EBOX/2-11

Associated with each of these error conditions is an enable that must be activated prior to the occur-
rence of the error to be detected. The three enables are listed in Table 2-2.

Table 2-2 Error Stop Enables

Enable EBus Bit Function
CLK FM PAR CHECK 32 DIAG FUNC 046
CLK CRAM PAR CHECK 33 DIAG FUNC 046
CLK DRAM PAR CHECK 34 DIAG FUNC 046

The DRAM words are coded in a specific fashion for each instruction. If a DRAM parity error occurs
undetected, it implies that the DRAM word has picked up or dropped an even number of bits. Sup-
pose, for example, that the DRAM J field picked up a bit, which changed the Jump address from 200
to 500. The microprogram would perform properly up to the point where it dispatched to the executor.
Here, instead of jumping to the MOVE microprogram, it jumps to the half-word microprogram with
erroneous results stored in the specified AC. In a similar fashion, a bit could be picked up or dropped
in the DRAM A or B fields with equally disastrous results. The microprogram is a structured entity; an

- erroneous variation of any of its bits in the CRAM register causes errors in the execution of instruc-
tions and could cause the microprogram to lose control of the EBox. As an example, assume a micro-
instruction is loaded into the CRAM register. The Dispatch field, originally coded as DISP/DRAM B,
because of a dropped bit, becomes instead DISP/SIGNS. Thus, the next CRAM address will be
computed based on the signs of AR, BR, and AD instead of using the B field of the DRAM word; and
this would create the wrong CRAM addresses.

In general, all instructions in the KL10 Instruction Set utilize fast memory in some way. In addition,
the microprogram always uses fast memory to set up the indexing function. If fast memory parity
errors were not detected, bad data could be generated and possibly erroneous instructions fetched
from fast memory.

2.2.6 Microprogram Deferred

~——The microprogram samples the EBox hardware only at specific times for pending priority interrupts or
pending traps. One such time is at NICOND Dispatch. Currently, eight possible conditions can occur
(Table 2-3). Three of these are related to interrupts, two are related to traps, one is for a halted
condition, and the remaining two are the more general cases. Here, the deferred condition is taken to
mean that upon finding an interrupt or a trap pending, the microprogram defers the pending instruc-
tion and instead handles the interrupt_or trap first. In terms of interrupts, the highest priority condition
is with PI CYCLE (1). This implies that on the previous NICOND Dispatch INT REQ was true and
the microprogram diverted to the PI Handler to perform the first part of a standard (40 + 2n) inter-
rupt. For example, assuming device (n) interrupts, the PI system carries out the necessary dialogue and
asserts PI READY. This results in the assertion of INT REQ, which is sampled at NICOND Dispatch
time. Now assuming PI CYCLE (0) and RUN (1), the PI Handler is entered. The handler reads the
API function word on the EBus into AR and processes it. Here we will assume it specifies a standard
interrupt (40 + 2n). Assume the conditions shown in Figure 2-12.

EBOX/2-12

, Table 2:3 NICOND Priorities

Conditions to Consider Low-Order CRAM ADR Bits as Follows
Why Where to Go PI RUN | MTR | INT AC TRAP | ANY |NICOND | NICOND |NICOND | NICOND | NICOND
CYCLE INT REQ | REF EN | TRAP TRAP 07 08 09 10
REQ EN
7 7/

Second part BASE ADR 1 0 0 0 0 0 0 0 0 0

PI Cycle / / 1 1 1 1

Halt Instruction or BASE ADR+2 0 %/ 0 0 0 0 0 0 1 0

11 caused / 1 1 1

Request

MTR INT BASE ADR+4 0 1 A 7 0 0
%

PI Request but BASE ADR+6 0 1 0 / 0
not MTR v / 1
7

Instruction fetched BASE ADR+12 0 1 0 0 0
from memory and
no traps pending

Instruction fetched BASE ADR+13 0 1 0 0 0
from memory and
a trap is pending

NN N N N N
\\ NN N T

pending

Instruction must BASE ADR+16 0 1 0 0 1

be fetched from v,

FM and no traps
.
1

Instruction must BASE ADR+17 0 1 0 0 % 7/, 1/ 1 1 1 1 1
be fetched from e
FM and a trap
is pending

N
N\

/// — Overriding condition

EXECUTIVE

PROCESS
/— TABLE

CONSZ DEV (N), DONE |40+ 2N

JSR, DEV (N) SRV 41+ 2N

i0-15690

Figure 2-12 PI 40 + 2n Skip

EBOX/2-13

E

The PI Handler sets PI CYCLE, interlocking the microprogram and PI Board, and temporarily, at
least, preventing any further INT REQs from-being sampled by the microprogram. The PI Handler
forces an instruction fetch from 40 + 2n; note that NICOND is not now generated. The SKIP instruc-
tion in 40 + 2n is performed and one of two possible actions results (in this case) from the state of the
DONE flag:

DONE (1) - Perform the instruction in 41 + 2n; this instruction must be of such a nature that PI
CYCLE is cleared (JSR is such an instruction.)

DONE (0) - Dismiss the interrupt and clear PI CYCLE.

For this example, assume the instruction should be fetched from 41 + 2n [DONE (1)]. The dispatch,
therefore, is back to the PI Handler for the second part of the interrupt.

When the PI Handler releases the PI system, NICOND Dispatch finds PI CYCLE still set. Because
this is the highest priority condition at NICOND time, the dispatch is back to the PI Handler for the
second part of the interrupt. The PI Handler generates the appropriate 41 + 2n address and causes the
instruction to be performed, once again omitting a NICOND Dispatch. The instruction fetched must
be one of the following:

JSR

JSP Changes the ACs; use
PUSHJ not recommended
MUUO

SKIP (will be satisfied)
All of these instructions cause PI CYCLE to be cleared.

2.2.7 Microprogram Organization

The basic control program modules are illustrated in Figure 2-13, The symbol containing the Data
Storage Manager illustrated in Figure 2-13 represents a predefined process. Examples of such pre-
defined processes include software and hardware subroutines, the Unibus dialogue, and even functions
of an alarm clock.

In the microprogram context, the predefined processes represent functional areas of the microcode.
Figures 2-14 through 2-21 represent the hardware that controls branching to each of the handlers
illustrated on Figure 2-13.

These may be grouped as follows:

The Startup and Stop Interface (Figure 2-14) evaluates initial hardware conditions and dispatches to
the appropriate handler. The nature of the condition could be a pending priority interrupt, halt condi-
tion, etc. Upon completion, all instructions must pass through this process. The mnemonic for the
dispatch to this process is DISP/NICOND (Next Instruction Condition).

The Effective Address Manager (Figure 2-15) evaluates indirect address flag bit 13, index field bits
14-17 in the ARX (which contains the current instruction), and certain hardware conditions such as
PIs or page failures. It either dispatches to the appropriate handler or calculates the effective address

by requesting the necessary fast memory (Index) cycles or MBox Indirect (I) cycles. The mnemonic for
the dispatch to this process is DISP/EAMOD (Effective Address Mode).

EBOX/2-14

DATA EBUS
STORAGE DRIVER
MANAGER

INTERRUPT
HANDLER

EXECUTOR HANDLER
PAGE FAULT
"NICOND " DISP HANDLER
DATA
FETCH

MANAGER A,B

‘—l 777

700

— —l677
| pisPaTcH=] / trap \
— TABLE —— \ HANDLER /

e 000
- EFFECTIVE
ADDRESS
= 12] MANAGER |lq
1R |INSTRUCTION l EAMOD
REGISTER DISP “conps"
0O 89 121314 1718 35
ARX[oP ‘AC!I‘XR ‘ Y
START UP
AND STOP
INTERFACE
"IR, ARX "CONDS"
LOADING"
BEGIN) 1 : VARIOUS
2l , HARDWARE
CONDI TIONS
% Major dispatches —see figure 2-6 10-1538

Figure 2-13 M Program Modules

EBOX/2-15

o
o

ADR |+
00-06

v

CONTROL
RAM
—

v

ADR
7 07-10
7 NICOND
v % J DISP
AN
/07:08: 09 1 10"
Tl
Ll
Ol—PI CYCLE
4 1 —~—RUN
2—MTR INT REQ
2 PRT 31— INT REQ
ENCODER 4 |—
|_1_ 5b— AC REF
TRAP 6—
CONTROL 7+ PI CYCLE

10-1539

Figure 2-14 Startup and Stop Interface

ADR
00-06

CONTROL
RAM

ADR

_~"o7-10
0
|
TF T

| oP 1 AC JI| xR ' Y ACCX
0 89 121314 1718 35

10-1540

Figure 2-15 Effective Address Manager

The Data Fetch Manager (Figure 2-16) evaluates the 3-bit A (FETCH) field (for the current instruc-
tion), which is in the Dispatch Table. The code in the 3-bit field defines the type of data fetch or write
or combination operation (if any) required. The Data Fetch Manager takes the proper action, i.e.,
enabling the EBox clock to stop as appropriate, dispatching directly to the executor, or initiating an
instruction prefetch. Note the Instruction register is used to address the proper location in the Dis-
patch Table (DRAM) based upon the op code for the instruction.

EBOX/2-16

o \ = ~
ADR W
00-06
-V
CONTROL
RAM
L]
A
ADR
|~ 07-10

07.08!09.1 AN

I AREAD I

oli[z] 8 [p] v
A

/

DISPATCH RAM

10-1541

Figure 2-16 Data Fetch Manager

The Dispatch Table (Figure 2-17) consists of four fields:
1. DRAM A - Bits 0-2; defines the type of operand fetch cycle.

2. DRAM B - Bits 3-5; defines Jump, Skip, and Compare conditions for certain instructions,
or result store mode, etc.

3. DRAM P - Bit 11; parity bit (parity is normally odd).

4. DRAM J - Bits 14-13; jump address. This is the entry address of the executor routine. The
mnemonic for the dispatch to the executor is IR DISP (DRAM J) (Instruction Register
Dispatch).

012345 14 23

LY
e O N DCE C
. T

1T

A\Y
ANY

A\
AN Y

000

|

10-1542

Figure 2-17 Dispatch Table Fields

EBOX/2-17

The Executor routine (Figure 2-18) is the bulk of the microprogram. It contains a number of somewhat
autonomous routines used to execute the instruction specific functions, e.g., move a half-word from
one register to another or push a word onto a subroutine stack.

The Data Store Manager (Figure 2-19) dispatches on the DRAM B field. In addition, when called from
the executor as a subroutine only, e.g.,, MEM /WRITE, it defines the appropriate MBox control sig-
nals and dialogue and initiates the write operation. When the Data Store Manager is entered in the
context of a store cycle, control generally passes to that process from the Executor. Finally, a
NICOND Dispatch is generated and control passes to the Startup and Stop Interface.

The Priority Interrupt Handler is dispatched to or from discrete points in the microprogram. Interrupts
are scanned during NICOND Dispatch, while computing the effective address, and during certain
longer instructions, such as BLT.

Control is passed to the Page Fault Handler (Figure 2-20) routine from the Effective Address Manager
or Data Store Manager when the MBox asserts PF HOLD prior to an MBox response during a
memory request. The implication is that a memory address violation occurred, i.e., an access failure.
write protection violation, or similar violation. In addition, when implementing KL 10-style paging, PF
HOLD with EBOX HANDLE may be asserted to the EBox from the MBox. The implication here is
that the paging address translation should be accomplished via microprogram rather than in the MBox
itself. The Page Fault Handler is also used for certain error conditions.

= =
- CONTROL
RAM

B

BITS 00-10
DETECT
BITS 14-23 IRIO, |,
| JrsT, OR
l—’ NORMAL
NEICEE
IR00-08 R
®
| DISPATCH
N : [RAM
oo | 12 :
®_”
J
IROO-12

10-1543

Figure 2-18 Executor

EBOX/2-18

ADR
00-086

ADR
07-10

CONTROL
RAM

7

ool g !
0710808 110

|

TT1 l

ADR

FORCE ADR

DISPATCH RAW

10-1544

Data Store Manager

\

CONTROL
RAM

00-10

LOCATION 1777

!

1

MICRO INSTR FORCED
BY HARDWARE

TO 1777

MBOX
CONTROL

Figure 2-20

10-1545

Page Fault Handler

EBOX/2-19

The Halt Handler routine is entered from the Startup and Stop Interface when the RUN flip-flop is
clear at NICOND Dispatch time. The RUN-flip-flop can be cleared by various mechanisms. For
example, when a HALT instruction is executed, RUN is disabled. On power up, RUN must be set by a
diagnostic function initiated from the DTE20.

The I/0 Handler (Figure 2-21) is dispatched via IR Dispatch from the Dispatch Table on DATAO,
CONO after the data or status has already been fetched, or directly on DATAI, CONI, CONSO, or
CONSZ. The handler calls the EBus driver, which generates the necessary EBus dialogue with the
device. On BLKI or BLKO, the pointer has been fetched but must be updated, stored back at E, and
the first word fetched. This is performed in the I/O Handler first. When the data has been fetched, the
EBus driver is called. On DATAI or CONI, the EBus driver is called to negotiate the transfer from the
selected device over the EBus to the EBox. The I/O Handler then passes control to the Data Store
Manager where the data is stored.

2.3 BASIC MACHINE CYCLE

The basic machine cycle for a typical instruction is illustrated in Figures 2-22 and 2-23. The cycle
begins at the EBox clock following NICOND Dispatch and terminates at the trailing edge of the next
NICOND Dispatch. In this example, assume that the instruction MOVE 3 @ 200 (1) has been fetched
from core memory symbolic location PC. The following information relates to the example:

PC/ MOVE 3 @ 200 (1) Current Instruction
PC+1/ NEXT INSTRUCTION
300/ 000000, 000 100 Indirect Address = 300
100/ 171717, 111111 Effective Address = 100
1/ 000000, 000100 Index Register = 1
N A z
ADR CONTROL
00-10 RAM
v o
T J n
|
] .
A |8 | J 777
, 700
W
DISPATCH

RAM
10-1546

Figure 2-21 Input/Output Handler

EBOX/2-20

LOCATION INSTRUCTION
INSTRUCTION LOADS <—PC MOVE 3 @ 200 (1) 300=000000,000100 100=171717,1i11%1 1=000000,000100

INTO ARX, IR RESULT = 3«— 171717, 111111
FULL MACHINE CYCLE
ﬁll
NICOND EA MOD / EA MOD A READ DRAM J DRAM B NICOND
DISPATCH DISPATCH S/ 7 DISPATCH | DISPATCH DISPATCH | DISPATCH | DISPATCH
2
A INDRCT |ARX =— MEM A READ FETCH B WRITE
M BOX M BOX
WAIT WAIT
EBOX EBOX
REQ REQ EBOX REQ
EBOX EBOX EBOX EBOX EBOX EBOX EBOX EBOX EBOX
CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE
MBOX CYCLE MBOX CYCLE MBOX CYCLE
SEE NOTE 3
AR=—ARX AR «=—ARX|AD <— ARX
+ XR + XR 000000,
SEE NOTE 5 NOT USED | 000100
SEE NOTE 4
VMA <—AD; VMA VMA <— AD; VMA :
LATCHED; LATCHED; VMA LATCHED;
000300 | 500300 000100 | "540100 o+
AR=
000000, AR=171717, 111111
000100
INSTR IN ARX INDIRECT WORD
[200161, IN ARX =
000200] 000000, 000100
VMA
NOTES: AD<—PC+1
% During MBOX waits EBOX SYNC remains)
true until MBOX resp.
3. MBOX cycles are functional operations
which are used to describe memory requests WRITE IN
at the E/M INTERFACE. FM

4. Indexing is performed even though in this example
ARX 14-17 =0 and will not be used. The EAMOD

dispatch will cause the next MICRO instruction fo *Q—EBOX CYCLE ..-—_.i
do the correct step e.g. ARX<— AD;E e

5. AR=— 000200+000100=000300

pu
| x >l
This is the INDIRECT WORD ADDRESS EBOX VARIABLE
TIME BASE FOR CLOCK
EBOX CYCLES
r >

le
s

Id——VARlABLE EBOX
) SYNG

X=32NS + VARIABLE DLY
Y = VARIABLE DLY +32NS *
10-1591

Figure 2-22 Basic Machine Cycle Overview (Sheet 1 of 2)

EBOX/2-21

EACH SECTION IS A
MINOR MACHINE CYCLE

CYCLES PROCEED
NLOCKW!SE
DRESS

ENTIRE AREA IS
EQUIVALENT TO ONE

STORE

MAJOR MACHINE @
CYCLE
EXECUTE
CYCLE

ENTRY POINT

PRIORITY

@ AUXILLIARY
TEAP PAGE CYCLES

FAULT |
/ ENTRY POINT
=7 31

10-1592

Figure 2-22 Basic Machine Cycle Overview (Sheet 2 of 2)

EBOX/2-22

)
|
!
i
!

nFn(:: §IE0 NICOND DISPATCH WAS ISSUED AND
MTR UNLESS AN INSTRUCTION PRE FETCH NOTE IF INTERRUPT OR TRAP
WAS ATTEMPTED FROM FAST MEMORY. IS PENDING DIVERT FROM
HANDLER THE INSTRUCTION IS I ARX AND IR, HERE PERFORMING FIRST
ANY OF THE PC CONTAINS THE ADDRESS OF THE NEXT THE PI, THEN THE TRAP.
OTE CONSOLE FOLLOWING INSTRUCTION, UMA CONTAINS THE ADDRESS IF DIVERTED FROM HALT
START OF THIS INSTRUCTION. IF FAST MEMORY HANDLER RETURN AFTER
HALT LOOP" | CONTINUE PRE-FETCH WAS TRIGD IT DID NOT SERVICING MTR OR DTE.
SINGLE INSTR WORK SO FETCH IS DONE NOW. "
®cT
METER INT
E£XAM, DEPOSIT

L

“CAN BE FROM FAST MEMORY VIA AD." I
|
|
|
|

CACHE DATA

OP-CODE AND “INSTRUCTION" “INDIRECT MBOX REQUEST
AC ADDRESS WoRD" CONTROE

| REQUEST
1 conTROL
— i RESPONSE
aRx
nsTR
AND €A
CcALCULATE EVALUATE
ARX 1417
anp
ARX 13 ‘DIVERT IF PI PENDING”
oiseaTCH

IERFoRMAEAY” -

MICRO PROGRAM
INSTRUCTION
AND EFFECTIVE
ADDRESS
CALCULATION

Fooms

I ADDER AND

PERFORM CoNTROL
. INDEXING
IF SPECIFIED
aRr
“EAMOD <
ISP
FAST MEMORY “ADR"
le———— aRx18-17
READ OUT AND CONTROL
CONTENTS
] ——— - - - OF XROR - -~ —
e I INDIRECT “IF PREFETCH WAS °
“AREAD ol AR CONTAINS 0,E. IF WORD ATTEMPTED FROM FM
Disp DRAMA 1S 0 OR 1 HARDWARE 1T DID NOT WORK SO
DISPATCH IS TO EXECUTOR FETCH NOW. VMA CONTAINS
OTHERWISE DISPATCH IS TO ADDRESS OF INSTR.
DATA FETCH HANDLER.
T
._{_ —————
MICRO PROGRAM
DATA FETCH CACHE DATA
HANDLER “FETCH DATA
IF A=4,5,5,
“DRAM J START WRITE MBOX REQUEST
DIsP ¥ CONTROL + REQUEST
H CONTROL
“DATA WORD" 1 RESPONSE
i
“DRAM J
Dise”
“VMA +17
v
DATA -
FETCH
anD
PRE-FETCH ooen Ao e
NTR
CONTROL AND CDNTROLJ START
PRE-
FETCH
F
“pC+1 TO T
vma”
PREFETCH
“PREFETCH] CONTAROL !
IF A=10R 5"
FAST MEMORY
AND CONTROL
jl—m— IRAC 9-12
“OM SKIPS
A 8 c o e e | et
FORM PC+2”
10-2224

Figure 2-23 KL10 Processor Sequence of Operation (Sheet 1 of 2)

EBOX/2-23

SRICHNC

e e OPERAND
| I 150, E OR
! {AC) OR ()
HERE WITH AR CONTAINING
EITHER 0, OR DATA WORD
DISPATCH IS UMIQUE FOR .
EACH INSTR AND MADE I:L‘I’”EHT
VIA “DRAM
“NICOND T
ISP !
T
1 HICRO PROGRAM
| EXECUTOR UTILIZE THE
DATA PATH
I - DATAPATH
ALSO CONTAINS AND MISC. . ..
1 FETCH AND STORE
| ROUTINES “MANIPULATE
B DISP” paTA”
l
TEST, SKIP, " JUMP TO DATA
sump, STORAGE
i COMPARE MANAGER"”
EXECUTOR | an “DATA READY ARX
| TO STORE”
|
I DRAM B
| ISP
| CACHEDATA
| MBOX REQUEST
CONTR e ——
| ot H REQUEST
H CONTROL
| ' RESPONSE
1
! IF DRAM A =3
I VMA HOLDS E
i FROM A READ
I TIME, O
l_ ADDRESS IS FROM
—
I
A | MICRO PROGRAM via re
. DATA STORAGE
MANAGER
STORAGE i "
= “NICOND DIsP" | I AD AND {
X | 1 “PERFORM READ CONTROL VMA AD AND
OF INSTR”
' ‘ “MAKE WRITE CONTROL
| RECUESTS “VARIOUS
| AS NECESSARY” SOURCES” l
| 1
HERE TO STORE OPERANDS
MICRO PROGRAI
o oS RAM | ACCORDING TO DRAM B OR
| BY JUMPING DIRECTLY TO FROM AR FAST
THE DESIRED MICRO MEMORY
Pl AND I INSTRUCTION TO STORE
TRAP “NICOND l SOME COMBINATION OF:
HANDLER fi AC, AC+1, MEM THEN CAUSE
| FETCH OF NEXT INSTR.
MICRO PROGRAM
TRAP HANDLER
. A
“NICOND
Dise”
10-2225

Figure 2-23 KL10 Processor Sequence of Operation (Sheet 2 of 2)

Figures 2-24 through 2-33 illustrate the microprogram steps and basic EBox hardware used to perform
the example instruction. Figure 2-22 can be used to follow the various operations at each micro-
instruction step. .

2.3.1 Imstruction Cycle - NICOND Dispatch to XCTGO

The instruction enters the ARX through the ARX mixer (ARXM) via the cache data lines. Although
not shown, the MBox response enables the mixer selection and the EBox clock (CLK DP) loads the
ARX on the Data Path Board with the instruction. The NICOND Dispatch for this example is to
symbolic location XCTGO; Figure 2-24 indicates the major microinstruction fields. The Jump address
contains the base address of a 4-word block used to calculate the effective address. Each micro-
instruction in this block is used for a different form of address calculation, and is selected based upon
the state of ARX14-17 and ARX13 when EA MOD DISPATCH is given. The EBox hardware utilizes
ARX14-17 and ARX13 to modify bits 09-10 of the CRAM address. This yields the possibilities listed
in Table 2-4.

EBOX/2-24

sz-z/xo4d

2001861, 000300

l 0 89 12 9 12
IR
- 1R} 200| 3 iR
S = A
000300
DRAM
ADB ADA ADDRESS
DRAM
/ A AN || |
5,5 MOVE
. VMA ADB VMA ADA BRM BRXM
/
M
N DISPATCH
T CRAM ADR 09-10 RAM REGISTER
E CRAM
R XR ADR=1 ADR
A o
¢ M ARX14-17 ARX13 ADDRESS
£
F
M
A]AR l 200161, ooozoo] ARX CRAM
2
0 I 1 compea] [ea mob| | xcTeo
R 000000, 000100 |1
0 ARM \ / ARXM \ COMPEA
CAGHE DATA 00-35 i +1
+2
+3
FM FM WRITE |
CONTROL CONTROL . 1
J AD ADA ADB __ BRX _FM ADR DISP CONTROL RAM
MEMORY EA MO REGISTER
o XCTGO |COMPEA| A+B | ARX FM ARX XR g
CONTROL]
CLOCK CRM
EXAMPLE: MOVE 3@ 200 (1) GEo%
300/0, 100 coR9eK |cLock pp
1007171717, 111111 —
170, 100
NOTE:

This operation reflects the

micro code version 71,

Figure 2-24 Instruction Cycle: NICOND Dispatch - XCTGO

10-1593

Table 2-4 _Address Calculation

CRAM Address ARX14-17 ARX13 Function
COMPEA 0 0 ARX=E
COMPEA+1 Nonzero 0 Perform indexing as specified by ARX14—17.
COMPEA+2 0 1 Perform indirection VMA < ARX18-35
COMPEA+3 Nonzero 1 Perform indexing as specified by ARX14—17, then
perform indirection VMA < ARX18-35 + (XR)

While at XCTGO, to speed things up, the indexing operation is started. The fast memory address field
in the microinstruction causes the FM control to address fast memory utilizing ARX14-17, which in
the example is 1. The ADA input is enabled to select the ARX as input to the ADDER A input. This is
controlled by the microinstruction ADA field. Similarly, the ADB field enables the ADB input to
select addressed FM location 1. The microinstruction AD field specifies the ADDER function as
A+B. Thus, the ADDER begins to add the contents of location 1 in fast memory to the instruction in
ARX. At this time, the Buffer register extension is enabled from ARX by the microinstruction BRX
field.

NOTE
The IR contains the op code of the instruction
MOVE, which is 200, and the AC field, which is 3.

The op code value (200) is used to address the DRAM to obtain the appropriate word for this instruc-
tion. This word is indicated on the input to the DRAM register (5,5,MOVE).

2.3.2 Indirect Word Request

For an Indirect Word request, the CRAM register contains the microinstruction fetched from COM-
PEA+3 as indicated in Figure 2-25. The Jump address now specifies a direct jump to symbolic location
INDRCT. The AD, ADA, ADB, and FMADR fields are maintaining the indexing calculation and the
calculated address 000300 is forming at the input to the VMA. The MEM microinstruction field is
coded as A IND. This enables the memory cycle control to set up and generate an MBox cycle (Figure
2-26). This begins with the assertion of EBOX REQUEST IN, together with the qualifier EBOX
READ. Table 2-5 lists the MEM field function that generates requests. An IND is a function that may
be followed by a microinstruction having the MEM field coded as MB WAIT.

EBOX/2-26

Lz-7/x094d

mMO>TMIMA4Z— T~M

200161, 000300

0 89 12 9 12
| ir]| 200| 3 i 3
AD
PC VMA / /\ \
000300
/ ADB \ / ADA \ \
X Y
000300
000000,000100 200161, 000200
BRX DRAM
/// VMA AD \\\ BR 200161,000200
VAN
VMA ADB { VMA ADA \ / \ BRXM A 8
CLK DRAM| 5 5 MOVE
DISPATCH
RAM REGISTER
4
Fu ARX 1417
AR
2 CRAM
000000, 000100 | MEM
q 5 ARM ARXM
-
CACHE DATA 7 inoLp| AR INDRCT
F M FM WRITE
CONTROL CONTROL"
4 |
qedt J AD ADA ADB DISP MEM !
REQ FM ADR CONTROL RAM
REGISTER
MEMORY COMPEA] INDRCT| A+B | ARX FM XR A IND
EBOX
EBOX CONTROL { T
SETUP FM CONTROL TO LOOK AT ARX 14-17
Coox CLOCK CRM
CLOCK
CONTROL |— CLOCK DP
10-1594

Figure 2-25 Set Up and Make Indirect Work Request

Table 2-5 MBox Cycle Requests

MEM 02 MEM Field MEM 00 Function Causes MBox Wait
0 04 0 A READ Fetch Cycle No
0 05 0 B WRITE Store Cycle No
1 06 0 FETCH Instruction Fetch Yes
1 07 0 REG FUNC MBox register reference Yes
0 10 1 AIND Indirect reference during No
effective address calculation

0 11 1 BYTE IND Indirect reference for byte No
instruction special

1 12 1 LOAD AR Data read during Yes
execution, loads into AR

1 13 1 LOAD ARX Data read during execution, Yes
loads into ARX

0 14 1 AD FUNC Not used No

0 15 1 BYTE RD Data read during byte No
execution loads into AR
and ARX

1 16 1 WRITE Store data during execution, Yes
writes from AR

1 17 1 RPW Initiates a read PSE write Yes

cycle, data loads into AR

The time field for the microinstruction at location COMPEA +3 specifies a period between the EBox
clock that loaded the microinstruction from COMPEA +3 and the next EBox clock. It allows sufficient
time for the access of fast memory to be completed. Note that EBox request and EBox sync are
concurrent (Figure 2-26). The earliest time that the MBox can clear the request is on the MBox clock
following EBox sync. In Figure 2-26, EBox sync occurs one MBox clock prior to where the time field
indicates EBox clock can occur, but because MBox wait is true and the MBox has not yet responded,

the EBox clock is postponed as indicated.

EBOX/2-28

MBOX CLOCK Illl‘llllll'!ll'lllllll—-‘

!‘—— 93ns -——+——-' < 93ns ——i
—
EBOX GLOCK Ianxl T=01p lEBOXl T=01 | PO)S)TPONED]EBOXI
CLK CLK {t CLK
MICRO
INSTRUCTION MICRO INSTRUCTION AT
AT COMPEA +3 INDRCT

[e]
[MEMORY CYCLE |

| wmem=amo | MEM=MB WAIT |

EARLIEST TIME MBOX CAN

-/_ CLEAR EBOX REQ =CSH EBOX TO

MBOX RESPONSE N[/

10-1595

Figure 2-26 MBox Cycle

2.3.3 MBox Response to Indirect Word Request

Figure 2-27 illustrates the microinstruction fetched from symbolic location INDRCT. Again, a direct
Jump is specified (in this instance, to INDLP). A response from the MBox is anticipated. ARX «
MEM is a MACRO statement, It specifies MEM to be MB WAIT and also selects FM as addressed by
VMA 32-35. The ARXM is actually input from both AD on the 2 input and the cache data on the 1
input. The MBox response causes the EBox hardware to generate MB XFER, which selects the correct
input. In this example, the cache data lines containing the indirect word 000000,000100 are loaded into
ARX. :

2.3.4 Address Calculation Continues

Referring to Figure 2-28, the CRAM register contains the microinstruction fetched from symbolic
location INDLP. This setup is once again to perform indexing as though it were really specified. At
this time, ARX contains indirect word 000000,000100; ARX14-17 and ARXI13 are zero. Thus, even
though the microinstruction specifies the calculation of indexing, the hardware calculates the proper
CRAM address based upon ARX14-17 = 0 and ARX13 = 0.

The basic jump address is COMPEA and this is the next CRAM address. The dispatch is EAMOD
and, on the next EBox clock, the microinstruction from COMPEA is fetched. Note, too, that the
DRAM register is latched and contains the A, B, and Executor Jump address.

2.3.5 A READ Dispatch - Set Up Data Fetch and Prefetch

Refer to Figure 2-29. Once the effective address has been calculated, what has been traditionally called
the Fetch cycle follows. The CRAM register contains the microinstruction fetched from COMPEA.
The J field is zero in this case. The EBox hardware, upon detecting a Read Dispatch, inspects the
dispatch A field and forces the CRAM address to 40 + A. Thus, in this example, the address becomes
45. Address 40 + A is defined by hardware. The effective address in ARX18-35 is enabled into the
ADDER A input by the AD field coded as A, with ADA selecting ARX. To begin the data fetch, the
MEM field is coded as A READ and this, with the A field, generates EBOX REQUEST and EBOX
READ. On the next EBox clock, the effective address is loaded into AR.

EBOX/2-29

0€-7/X094d

0 89 12 9 12
000300] I IR 200 3 lA% 3
AD
000300
e g B A
F
f E / ADB \ / ADA \
DRAM
VMA AD X
BR
/ A
. VMA ADB VMA ADA / \ A
£ : 5 5 MOVE
M
|
¥ IN CASE THE "LATCHED" .
E INDIRECT REFERENCE r—————
R IS FROM FM
F #
A !
¢ FM
F
M 3 AR ARX
ADR=0 A
3 000000,000100 |1 000000, 000100 CRAM
GARBAGE o— ARM
EAMOD| |,
¥ INPUT 1 COMPEA| |Dpisp INDLP
SELECTED
BY MB XFER
FM FM WRITE
CONTROL |SETUP FM CONTROL
CONTROL TO LOOK J
gggx AT VMA 32-35 -
‘cﬁ%;%_?)“"* - A =02 ADD TMADR . MEX ‘ il CONTROL RAM
X1 MEMORY ARX<— REGISTER
: B ARX FM VMA
TO 2 eveLE INDRCT:| INDLP MEM
CONTROL
A |
|~ MBOX
RESP
IN
CLOCK CRM
MBOX WAIT gfc%(i LN
[INHCLOCK] | conTROL| | NOT YET GENERATED
'l BUT ABOUT TO BE.
[RESTART -
CLOCK] — CLOCK DP
10-1596

Figure 2-27 MBox Response to Indirect Request

1€-7/x094

Figure 2-28 Address Calculation Continues

GARBAGE 0 8o 12 . o
! IR|200]| 3 w 3
AD
i v = . A N\
_______j 000100 (ACO) 000000,000100
j—l_l)s \ 7 ADA \
"LATCHED"
(ACO) 000000, 000100
DRAM
/// VMA AD \\\ BR
. A\
A B J
; VARt Y Sdteica CL_—A
/ T 5 5 MOVE
| ,
h Fe CRAM ADR
z 09-10=0
£ CRAM >
F ADR l l
Z CONTROL
< F M ARX 4-17=0 ARX 1320 -
= 3
ADR=0 000000, 000100
2
CRAM
1
o ARM ARXM
l 1 0 AREAD COMPEA
F M _J FM WRITE
CONTROL CONTROL
P
~ mel REE tY AR oS l CONTROL RAM
REGISTER
MEMORY INDLP:|COMPEA| A+B | ARX FM xR EA MOD
CYCLE DISP
CONTROL
o~
£BOX CLOCK CRM
CLOCK
CONTROL | CLOCK DP
10-1597

ze-z/xo94d

Z~m

MOPTDM—Z—

0 89 12 9 12
‘ 200 IR 3
AD 1R AC
VMA N i
000100
/ apB \ / apa \
k "LATCHED"
000000, 000100
: DRAM
VMA AD \X
BR
/ A
/ vma ADB \ VMA ADA / \ |ao B J
5 5 MOVE
PC
CRAM ADR 08-10,05 <— 1|
CRAM :
ADR ‘ {
CONTROL
FM
F
M 3 AR | 000000,000100
A 2
° i 000000,000100
o ARM ARXM
: o |reTCh|PRAM |45
000000, 000100
FM FM WRITE
CONTROL CONTROL
R
EBOX REQ J AD ADA __ ADB A vew_oise| § CONTROL RAM
MEMORY COMPEA: ARX A READ REGISTER
A X
CYCLE © AR %4 AD AReaD | A REA
EBOX READ CONTROL
DRAM A=5 EBOX CLOCK CRM
CLOCK
CONTROL L—cLOCK DP
10-1598

Figure 2-29 AREAD Dispatch Setup Data Fetch

2.3.6 MBox Response to Data Read - Prefetch Begins

Figure 2-30 illustrates the CRAM register containing the microinstruction from location 45. The jump
address once again is zero, because the-actual jump address is provided by the DRAM register jump
field. In the case of MOVE, the symbolic address is “MOVE.” This location contains the first micro-
instruction in the executor for the MOVE instruction. Only one microinstruction is required for the
execution of the basic MOVE. This dispatch field contains DRAM J, enabling the CRAM address
control to utilize the jump address in the dispatch register. Thus, for the basic MOVE, symbolic
location “MOVE” contains the desired microinstruction. The MEM field is coded as fetch to enable
the memory cycle control to begin the prefetch by asserting EBox request with EBOX READ.

Until the MBox response to the data read is received, the VMA is latched and only the VMA input
contains the updated PC value. When the MBox response is received, the VMA is loaded with the
updated PC value (PC+1). At the same EBox clock, the data on the cache data lines is clocked into AR
(000100). Referring to Figures 2-30 and 2-31, the FMADR field enables FM to be addressed via VMA
32-35, even though in this example VMA address 000100 is not an FM address. FM location 0 is
actually accessed and enabled via ADDER B into the AR mixer.

The Memory Cycle Control asserts LOAD AR. The address in VMA is checked in the VMA Control
and, because it is not a fast memory address, ~-VMA AC REF is asserted. This is passed to EBox
Control No. 1 logic and inhibits the generation of FM XFER.

MBox RESPONSE IN is passed to the EBox clock control where it becomes (on the next MBox clock)
RESPONSE MBox. This, with LOAD AR, enables the selection of ARM SEL 1, which enables the
cache data into AR. The EBox clock then strobes the AR register. This clock also clocks the next
microinstruction from symbolic location MOVE into the CRAM register.

AN { %;“32.3.7 Executor — Set Up for Store Cycle

N\~ For the basic MOVE instruction, the data word in AR must be stored in the FM location specified in
the AC field of the currently executing instruction. The microinstruction J field contains the base
address for the data storage microprogram. This is symbolic location ST0. The Dispatch field is coded
as DISP B, which enables the B field of the DRAM register to modify the low-order three CRAM
address bits (CRAM 08-10). The B field is 5 for MOVE and this yields symbolic location STAC. If, for
example, STO was physically 60, the resulting address would be generated by logically ORing 60 with 5
for a result of 65, symbolically STAC.

Referring to Figure 2-32, IRAC contains AC address 3, and is enabled to address FM because the
microinstruction FM ADR field is coded as ACO. This is the AC specified by AC 09-12, The MEM
field specifies B WRITE, but no request is issued. This is because the memory cycle control samples the
DRAM B field and inhibits an EBox request when DRAM BO1 is a zero.

EBOX/2-33

ve-z/xo0d4d

Figure 2-30 MBox Response with Data Word Requested

VMA WILL BE LOADED WITH I o_B89 12 3 12
550150] PC+! ON THE NEXT EBOX CLOCK vl 200| 3 R 3
000100 / AD \ he
VMA /\
) PC+1
i / ADB \ / ADA \
PC+1
DRAM
VMA AD \
BR
/ A
41 PC 000000, 000100
. VMA ADB VMA ADA J
/ MOVE
M +1 J T I
|
N PC] CRAM ADR
¥ 00-10
E CRAM
R ADR l l
Z CONTROL
g FM
IN CASE REF ; 3
IS TOFM 000000,000100 | AR
ADR=0 A 2
g 171717, 1
1
GARBAGE 0 / ARXM N\
CACHE DATA 570/ B PRAME T vovE
00-35 WRITE| B
FM ’J FM WRITE
CONTROL CONTROL
EBOX REQ ‘ J
Q e— .
______ - J AD ADA ADB BR MEM DISP FM ADR CONTROL RAM
I REGISTER
CSHEBOX | MEMORY a45: 0 B FM AR FETCH | DRAM J VMA
TO || cYoLE
CONTROL T
— [
MBOX WAIT
[IN CLOCK] EBOX CLOCK CRM
CLOCK
CONTROL
[cLock 10-1599
RESTARTS]

AR SEL Zj : |
¥*
AR SEL 1 CLK DP AR == = e == o
|

_| NOT SELECTED

| EBOX
ARM 4 TM XFER 4 conTROL e
2 #1 _!
0 1 2 3 4 5 6 7 1 — | -
-
MBOX CACHE DATA LINES T T — L
| x
AD —_——
///V +8 +A \\\ r 1
/A Loan ar | meEmory |
CYCLE |
CONTROL
o
" N L——"
CONTENTS OF FM LOCATION O
= == == === '—'-—_"I
| | VMA=000100
MBOX RESP IN |, EBOX CLOCK | RESPONSE MBOX ~-VMA AC REF
1 CONTROL cox¥£o —— |
- 1 = -
- -
e =~ [

* Somewhat idealized.
10-1600

Figure 2-31 Hardware Selection of ARM Data

2.3.8 Finish Store Cycle — Perform NICOND Dispatch

The CRAM register now contains the microinstruction from symbolic location STACK (Figure 2-33).
The J field specifies the base address NEXT and the Dispatch field contains NICOND Dispatch. This
completes the basic machine cycle by reentering the instruction cycle once again.

The FM ADR field maintains the FM address via IRAC and the COND field is coded as FM WRITE
to write the contents of AR into FM location 3. The MEM field is coded as MB WAIT for the cases
where the next instruction has been prefetched from memory. This forces the EBox to wait until the
instruction enters the ARXM and MBOX RESPONSE is received. If the instruction is being fetched
from fast memory, MB WAIT has no effect and the microprogram selects the appropriate micro-
instruction to load ARX from fast memory as addressed by VMA 32-35.

2.4 PAGE FAIL CYCLE INTRODUCTION

~——— Normally, primary memory is the MBox cache memory, secondary memory is core memory, and the
auxiliary memory is a disk or drum. Information is moved into the core only on demand (Demand
Paging), i.e., no attempt is made to move a page into core memory, and consequently words into the
cache, until some program references it. Information is returned to core memory in accordance with a
hardware algorithm in the MBox hardware. Information is returned from core memory to auxiliary
storage at the discretion of the operating system.s,paging algorithm. Information movement across the
gap bridging the level between auxiliary storage and core memory-cache memory is called page traffic.

The MBox, in a sense, is an interface between the EBox (processor) and the SBus. It provides individ-

ual mapping (relocation) of each page (512 words) of both user and monitor address spaces, using
separate maps for each. The MBox uses hardware storage to access and load the mapping information.

EBOX/2-35

9¢-7/X0494d

Figure 2-32

Executor Setup for Store Cycle

0O 89 12 9 12
I ir| 200| 3 IR 3
AC
AD
PC +1 VMA N J
{ E / ADB \ / ADA \
AM R .
/ e \ BR oR LATCHED
EAN
c VMA ADB VMA ADA A 8
¢ 5
M
' ——
T i
T
: CRAM CRAM ADR l { s
'; ADR 08-10
TROL
A 171717, 1 CONTRO
£ Fu r
F
- M -
ADR® 3 ® 171717, 11111 AR
A 2
D
R 1
0 ARM ARXM MEM DISP
Me | NI :STAC
J WAIT |COND :
FM “ FM WRITE
CONTROL CONTROL
DISP
40 e = . =2 et MY ¢ CONTROL RAM
1S MEMORY . BRx 2 A TE REGISTER
ISSUED" CYCLE MOVE:| STO |A+XCRY| AR R co B WRI DRAM B
FOR FM
DATA WR CONTROL ; l
|~
L—DRAM B=5 £BOX CLOCK CRM
CLOCK
CONTROL
10-1601

—=NEXT INSTR COMMING IN

MOPATIMAZ~ T ~NM

LE-7/X0odd

IR IR 3

AD AC
PC+1 VMA // /\ }x l
|
VMA=

[\ [\ N T
/ ;VM;\AD \ . PR

VMA ADB VMA ADA
CRAM ADR
07-10 :
"CoN " CRAM I"—_—__“—___
CONDITIONS" —— DR
CONTROL
FM
: 171717, M
ADR= 3 M |3 17, 10111 3 AR
A 2
B 1 "NEXT INSTR"
0 ARM ARXM
FM
WRITE
FM FM WRITE
CONTROL CONTROL
AD ADA ADB MEM COND FM ADR DISP l P
REGISTER
MEMORY . MB FM
ey STAC:| NEXT |A +XCRY)| wair | wriTe | ACO | NICOND
CONTROL l
£BOX CLOCK CRM
CLOCK
CONTROL

10-1602

}
Figure 2-33 Finish Store Cycle, Perform& NICOND Dispatch

It also contains a 2048 word cache for holding the data for the mapped references. On each memory
request from the EBox, the nine high-order bits of the virtual address and the type of request (read,
write) are compared with the contents of thé' hardware tables in the MBox. If a match is found, the
location containing the match also contains 13 high-order address bits to reference the physical page in
the cache. If no match is found, a 512-word ““Rage Table” in physical core memory is referenced. The
word selected in this page table is determined by a dispatch basgd on the original nine high-order
address bits. The 13 high-order address bits and use bits found in this word are written into the MBox
hardware table; the use bits are checked against the type of EBox refgrence. Four possible cases exist
concerning the disposition of the use bits:

1. The page is not in core. E@e
2. The page is protected from the type of request. C £

3. The page is nonexistent. Q
4. The page is in core and is compatible with the type of request.

For the first three cases, a page fault (trap) occurs; for the fourth case, the requested word is fetched
from core memory (actually words are fetched four at a time, differing only in the two least significant
address bits) and written into the cache. Concern here is with the page fault situations. The MBox
constructs a page-fault word in one of its internal hardware registers, the EBus register. The word
contains information relating to the type of fault that occurred. The EBox is waiting for an MBox
response to its request; the MBox, therefore, asserts PF HOLD, and some time later asserts MBOX
RESPONSE IN. When the EBox recognizes the PF HOLD signal, it forces the CRAM address to

1777. This is the first microinstruction in the micropage fault handler. The EBox does not issue an
EBox clock until the CRAM address has had time to set up. Once the address is stable, a single EBox
clock is issued to the CRAM board to access the microinstruction.

2.4.1 Page Fail Handling - Functional Flow

Figure 2-34 is a functional flow of the microprogram page fault handler. The EBox contains a 4-bit
state register. This register, during certain instructions, holds a number that may be used to modify the
state of the CRAM address. For instructions that do not use the State register, it contains zero.
Generally, the STRING, EDIT, and BLT instructions require cleanup following a page fault so that
they may be properly terminated. For these cases, the State register contains a value in the range of
1-7. The more general case is discussed here; this is where the State register contains zero. For both
cases, INSTR ABORT (coded in the condition field of the microinstruction fetched from CRAM
address 1777) performs the following functions:

TRAP REQ 1 « TRAP CYCLE 1
TRAP REQ 2 ; TRAP CYCLE 2
ADR BRK INH «~ ADR BRK CYCLE

These actions are necessary to assure that the PC flags reflect the state of the EBox when a page fault
occurs during the fetch of the trap instruction, during its execution, or during an address break page
fault. A State register dispatch is given, but because the State register is clear, the base address is used
to obtain the next microinstruction. A priority interrupt has a higher priority than a page fault (Figure
2-35); therefore, a pending interrupt is checked for first. If INT REQUEST is true, the PI Handler is
entered to service the interrupt. If no interrupts are pending, the page fault is handled. The third level
of priority is given to traps and finally to all other events being processed by the microprogram.

A page fault occuring in response to an API interrupt function is a fatal error. Thus, when the page
fault handler finds PI CYCLE set, it sets the I/O Page Failure flag, dismisses the failing interrupt, and
then, if possible, restores the EBox to the state it was in prior to the interrupt. The setting of IOPF
eventually causes an interrupt on the APPR error channel. The PF Handler now attempts an instruction
fetch.

EBOX/2-38

an “ANY PAGE
FAULT ENTRY"

1777

PERFORM STATE REGISTER
DISPATCH. (STATE REGISTER
RANGE 0 <SR < 17}

INSTR ABORT: COPY STATES
OF ACTIVE TRAPS (TRAP
CYCLE 1,2} INTO
CORRESPONDING TRAP REQ
FLAGS THEN CLEAR TRAP
CYCLE 1 AND 2.

iINH ADR BREAKS

I

“NON PAGE
FAILURE ENTRY"

ENTRY FROM
OTHER INSTRS

SR=0 SR=1-7

CLEANUP
EXTENDED
INSTRUCTIONS OR
BLT INSTRUCTIONS

PI HANDLER
NO
10PF <1
“FATAL ERROR" AR—0; CLEAR IT
DISMISS THE GET ECL EBUS
INTERRUPT AND

TRY AN INSTR
FETCH, WHILE
WAITING FOR
THE APR INT.

“FORCED RELEASE"

WAIT FOR BUS

READ EBUS REG
ARX—PC;
CURRENT PC
PC—VMA;
FAILING
VIRTUAL ADR

10-1603

Figure 2-34 Page Fail Handling (Sheet 1 of 2)

EBOX/2-39

SEE PF WORD
NOTE 1, BITS
13-26 OF THE
PF WORD ARE
REPLACED BY
13-26 OF VMA

NOTE 1:

BRX<OLDPC;
(ARX)
ARX<— PF WORD
SEE
NOTE 1
AR<PC; VMA

.

8

PHYSICAL ADDRESS

A

s
13 14 26 27 33 24 35

PHYSICAL QUAD

PAGE = WORD WORD

PAGED REF ——l

PT CACHE

l

RELEASE THE
ECL EBUS

T

COMBINE
ORIGINAL PF
WORD WITH BITS
13-26 OF VMA
WITH THE
ADJUSTED WORD
iN AR

|

LOAD VMA WITH
PROCESS TABLE
ADR 500

|

UPT REF, STORE
PF WORD IN
PROCESS TABLE
LOCATION
UBR+500

|

PT PUBLI(.Z‘l
PFH —]
L J

PF HOLD 01

OLD 05

USER

MBOX WAIT <1
AR<OLD PC WORD
ENABLE VMA
INPUT FROM 501

EBOX REQUEST
<WRITE>
MBOX RESP

UPT REF, STORE
OLD PC WORD IN
PROCESS TABLE
LOCATION

UBR+501

MBOX WAIT <0

)

MBOX WAIT<1
ENABLE VMA
INPUT FROM 502

EBOX REQUEST
<WRITE>
MBOX RESP

MBOX WAm—oJ

EBOX REPLACES BITS
13-26 WITH VMA 13-26
FOR 1080 BIT 13=0
BITS 14-26 CONTAIN
THE VIRTUAL PAGE =
OF THE FAULTING
PAGE.

UPT REF, READ
NEW PC WORD
FROM PROCESS
TABLE LOCATION
UBR+502

I

EBOX REQUEST
<READ>
MOBX RESP

MBOX WAIT+-1
STATE REG-0

i

EBOX MODE SET
ACCORDING TO
NEW PC WORD
BITS 05,06,07.
PERFORM INSTR
FETCH FROM
NEW PC

SEE
NOTE 2

START

NOTE 2:

START IS THE INITIAL ENTRY
POINT FOR THE MICRO PROGRAM
THE AR=FLAGS, PC

THE VMA«<AR

10-1604

Figure 2-34 Page Fail Handling (Sheet 2 of 2)

EBOX/2-40

ENTRY

H‘.

Pi
REQUEST
?

YES

:

NO “1/O PAGE FAULT"
P! HANDLER

|

G

“TRAP INSTR PAGE FAULTS”

YES

PF HANDLER

YES

TRAP HANDLER

J’ OTHER ACTIVITY J‘
l I

10-1605

Figure 2-35 EBox Priorities

Obtaining and Adjusting the PF Word - Assuming PI CYCLE is clear, the AR is cleared and the ECL
EBus is requested. This is to transfer the PF word from the MBox EBus register to the AR register in
the EBox via the EBus. Because the PI system and external or internal devices can also use the EBus,
the microprogram must force its release. When the ECL side is obtained, the EBox reads the PF word
into AR. The PF word, as it is constructed by the MBox, contains the physical page number in bits
14-26. The EBox must replace this with the virtual address and also clear bit 13. The current virtual PC
is temporarily placed into ARX the failing VMA is placed into AR while the old PC is saved in BRX.
The ECL EBus is then released. The ARX and AR are shifted to adjust bits 13-26 to be the VMA
13-26.

Figure 2-36 shows the three locations in the user process table dedicated to page fault handling.

EBOX/2-41

MBOX ..J =

z
500 | STORE PF WORD HERE l
1

STORE OLD PC WORD

HERE SECTION OF

USER PROCESS
TABLE

502 NEW PC WORD

z z

10-1606

Figure 2-36 Process Table PF Location

2.4.2 Process Table References

The VMA is loaded with low-order process table location 500 and an EBox request is issued to write
the PF word (concurrently in AR) into process table location UBR+500. The next microinstruction is
loaded and EBox clock sets MEM CYCLE, causing MBOX WAIT. The AR is enabled from the old
PC word; the input to VMA is now 501. As soon as the MBox responds, MBOX WAIT is removed
and the cycle is repeated. This time the EBox request is to write the old PC word (now in AR) into
process table location UBR+501. Once again, the next microinstruction is loaded and EBox clock sets
MEM CYCLE, causing MBOX WAIT. The VMA input is now 502. As soon as the MBox responds,
MBOX WAIT is removed and the cycle repeats, in this instance for reading a new PC word from
process table location UBR +502. The new PC word places the EBox in a specified mode and the first
instruction is fetched from the appropriate handler. This completes the page fault cycle.

2.5 TRAP CYCLE - INTRODUCTION

A Trap is produced by setting either of two trap request flags in the EBox (TRAP REQI or TRAP
REQ?2). The programmer knows these flags as TRAP2 and TRAPI. The conditions that set TRAP
REQI are equivalent to the arithmetic overflow conditions that set SCD OV. TRAP REQ2 is set by
the various pushdown overflow conditions: the left half of the pointer is counted down to -1 (no carry
out of bit 0) in a POPX, or is counted up to zero in a PUSHX. (The condition for this is the presence of
a carry out of bit 0, but the condition is detected by the microprogram and the trap request flag is set.)

2.5.1 Trap Handling

The Trap Handler (Figure 2-37) is entered at NICOND Dispatch time providing its priority is highest
of the major priority events. The microprocessor NICOND Dispatch, together with four queues
arranged in a round robin priority structure, is shown in Figure 2-38. The TRAP request is served only
when no priority interrupt requests are pending and no page fault is pending. It does, however, pre-
empt the normal instruction cycle. Both the user and exec process tables contain dedicated locations
for processing traps. These locations are XXX 421 for arithmetic overflow (TRAP1), XXX 422 for
pushdown overflow (TRAP2), and XXX 423 for the programmed trap (TRAP3). XXX is replaced by
the appropriate base register (UBR or EBR), which resides in the MBox. The base register used by the
MBox is determined by the state of the qualifiers sent during the EBox request. The MBox fetches the
appropriate trap instruction and places it on the cache data lines while issuing MBOX RESPONSE
IN. The EBox then executes the trap instruction. It is possible for the EBox request for the trap
instruction to cause a page fault. If this occurs, the page fault handler is entered at CRAM address
1777 and the trap cycle flags are pushed into the trap request flags so that the trap flags may be saved;
the trap cycle properly reenters at a later time.

EBOX/2-42

€p-7/X09d4d

AN

morTnIM-AZH =Z~m

TRAP TRAP -
CYCLE 2 CYCLE 1 o NI'COND DISP
421-AROV BIT3d oy B
VMA= 422~ PDOVL -
423-PROGRAMMED TRAP VMA COND=VMA ~—#
CONTROL "SEL VMA AD" l
EBOX_CLOCK | I N RSty
MICRO | VMA=—420+TRAP
A el -
_______ See Noie 1
EBOX REQUEST LOAD ARX '
EBOX -
REGUEST | MCL MBOX | - PT REF,READ
CSH EBOX T® CONTROL |CY C REQ MICRO | TRAP INSTR.
J MMEM Mspec(#* |-INSTR FROM USER OR
- EXEC PROCESS
~=~___ | TABLE INTO ARX
MBOX CLOCK
MCL VMA UPT SP_MEM CYCLE
MCL VMA EPT PAGE TABLE
REFERENCE | .04 05
| MCL PAGE UEBR REF CONTROL : ~
N _—==—"7"] WAIT FOR MBOX
MICRO RESP ENABLE
WI AD ‘ADA ‘MEMICOND %—INSTR ARX INTO AD
- ENABLE AD
ARX =— MEM | = INTO IR TRAP
oA HANDLER
MEMO2=1
MODE USER EBOX CLK MEMORY AD
CONTROL CYCLE ,
CONTROL "EBOX CLOCK"
"ARX"
MCL ADA
LOAD
CLK ARX
CESe EBOX CLK—I ARX l
MBOX
MBOX RESPONSE IN EBOX MBOX WAIT
Cioy L SEL2 ARXM GO AND EXECUTE
CONTROL | cLk RESP MBOX - SELY THE TRAP INSTR
SELECT “— F
CACHE DATA l
CACHE DATA LINES (TRAP INSTR) — L]
NOTE 1:
VMA | VMA | VMA
o B |V | VAL | TYPE OF TRAP
420g o] i AROU
4205 | 1 0 PDOVL
PROGRAMMED
4205 ! ! TRAP
10-1607
Figure 2-37 Trap Cycle

3

. [HIGHEST]
B o

Q1
MICRO | MICRO | MICRO | MICRO | NICOND DEV DEV DEV PI
INSTR | INSTR | INSTR | INSTR | DISP [N 2 1 REQ 1
AN\ B
\
- ~ J
MICRO PROCESSOR PAGE
WITH EMPHASIS ON a2 FAULT | FAULT |—
NICOND REQ
Q3 TRAP TRAP
FLAGS | REQ [
NOTE : s
Event Q would be for example the EV(E)NT Jé'::g’zg |
INSTRUCTION CYCLE
[LOWEST]

10-1608

Figure 2-38 Central-Server Model (Round Robin Priorities)

2.5.2 Address Generation

Referring to Figure 2-37, the VMA is enabled to be input from the VMA ADDER. The condition field
of the current microinstruction enables the number field to generate the process table low-order
address 420; the low-order two bits of VMA AD 34 and 35 assume the state of the trap flags.

2.5.3 PT Reference for Trap Instruction

The next microinstruction must generate the EBox request and enable the appropriate qualifiers to
appear on the E/M Interface lines. The page table reference control samples the state of the USER,
together with the special function and number bits and then asserts either MCL VMA UPT and MCL
PAGE UEBR REF for a USER trap situation or asserts MCL EPT and MCL PAGE UEBR REF for
an EXEC trap situation. The MEM field is coded to load ARX and enable the EBox request.

Assuming no page fault occurs, the MBox fetches the instruction, places it on the cache data lines, and
asserts MBOX RESPONSE IN. The MEM cycle control samples the MEM field function LOAD
ARX to enable one leg of the ARXM and CLK RESP MBOX enables the other leg. Thus, the instruc-
tion enters ARX on the next EBox clock. Next, op code and AC field of the instruction in ARX must
be enabled into the ADDER and then latched into IR. The condition field of the current micro-
instruction COND/LOAD IR unlatches the IR for one EBox cycle, allowing the AD to load into IR.
On the next EBox clock, it latches again. The final step is to perform the trap instruction. This com-
pletes the trap cycle.

2.6 INTERRUPT CYCLE - INTRODUCTION

The system must possess a true priority interrupt system that is flexibly structured and controlled. Its
operation in establishing priorities and recording and sequencing interrupt requests is essentially
instantaneous and independent of EBox action. Interrupts of high priority must be permitted to inter-
rupt partially completed responses to those of lower priority. To maintain fast response, interrupt
requests should require no decoding action on the part of the EBox to determine their source or
nature. Capability for dynamically varying the priority structure to meet the demands of a changing
environment must be available. In addition, no other system element may be designed such that its
proper operation requires inhibition of the priority interrupt system for any period of time.

EBOX/2-44

Well The basic priority interrupt level has four mutually exclusive states that can be described as Disarmed
(-PI ON), Armed (PI ON), Waiting (PI REQ), and Active (Pl HOLD). Figure 2-39 shows the basic
concept of the interrupt system for two channels. It is arranged in four groups, the interrupt state, the
FF configuration for two of the seven possible channels, the level enable, and the source of change
signal. In the Disarmed state, the interrupt level rejects all incoming interrupt trigger signals. By
performing a CONO PI and specifying the appropriate bits, the priority interrupt system can be armed

\Of disarmed for any or all channels.

~—>In Figure 2-39, the processor (CPU) performs a CONO PI and arms both channels. In the armed state,
the interrupt level accepts a trigger signal from an outside source or from an internal source, e.g., the
APR, and moves to the waiting state (REQUEST STATE), where it remains until it is acknowledged
by the EBox: All waiting and enabled requests are input to a priority network where they are compared
with the current state of the priority interrupt system. In this example, both channel 1 and channel 2
are requesting service, and both channels have previously been armed by a CONO PI instruction. In
addition, an interrupt is shown holding on channel 2. Thus, until it is dismissed by the processor, the
channel 2 request pending is held in abeyance. Furthermore, the channel 1 request causes the device
subroutine for channel 2 to be interrupted, diverting the processor to the device subroutine for channel
1. The first instruction that will be executed as a result of an interrupt (subroutine type service) is a JSR
instruction. This instruction saves the processor flags, program counter value, and also holds the
interrupt.

INTERRUPT FF CONFIGURATION LEVEL SOURCE OF
STATE o cn# ENABLE CHANGE SIGNAL
DISARMED l | | |
(~ PION) & s

! | "CONO PI"

e T CPU

I SET SET
ARMED q 1
(PION)

: DEV A} INTERNAL OR

a— DEV B[EXTERNAL SIGNAL

]

-]

le—
|
1
WAITING 1
(PI REQ)
|
|
|
¥
l

TO MICRO CODE
ARBITRATION PI NET }——» PT HANDEER
]
| CH#1 I 4
| REQ ! E BOX FETCHES
| HIGHEST : JSR INSTR
, ENABLED SET PI HOLD FROM 40+2N
|
]
! :.—C———-——-—— TIMING
1 1
I
| : NO HIGHER PRIORITY
LEVEL ACTIVE
—— 1 WAITING, AND ENABLED
(PI HOLD) ©
CHANNEL #2 THIS WILL SET HOLDING THE
DEVICE SUBROUTINE IS HOLDING NOW INTERRUPT ON CHANNEL #1
IN PROGRESS 18 TO DISMISS THE INTERRUPT A JEN
DEFERRED FOR INSTRUCTION IS EXECUTED IN THE

HIGHER PRIORITY

ON CHANNEL # 1 CORE MEMORY INTERRUPT HANDLER

10-1609

Figure 2-39 Interrupt Level Operations

EBOX/2-45

When service has been completed, the service routine dismisses the interrupt, restores the flags and
program counter, and the channel 2 subroutine continues. Interrupt channels are organized into seven
basic levels, which are software assignable (armed): the lowest number has the highest priority within
the numbered sequence (Figure 2-40). Each channel is subdivided into finer levels or priority by hard-
wired physical device numbers. As indicated, the first eight physical numbers (0-7) are assigned to 1-8
Massbus controllers in the system. The next four physical numbers (8-11) are assigned to 1-4 DTE20s
(10/11 Interfaces); and numbers 12-14 are reserved for expansion. Finally, physical number 15 is
assigned to the I/O bus adapter (one exists per system, if needed).

Each interrupt channel has a dedicated pair of unique locations within the EPT. These locations may
be indicated as 40 + 2n, and 41 + 2n, where n represents the channel number. When a device initiates
an interrupt in the KL10 system and is selected for service, the device places onto the EBus a special
function word hereafter labeled API function. This function contains information that specifies the
type of service required. Figure 1-32 indicates the format of this word. Note that the format varies
from device to device, but the functions that can be specified in bits 3-5 are common to all system
devices. Function codes of 0, 1, and 7 cause instruction fetches from 40 + 2n initially and, depending
upon the type of instruction in 40 + 2n, may at some point perform an instruction fetch from 41 + 2n.
In general, 40 + 2n contains one of the following types of instructions: —

__ PUSHJ*
MUUO

1st PRIORITY MTR

HIGHEST u J
INTERNAL TO PROCESSOR

2nd PRIORITY
3rd PRIORITY
4th PRIORITY
5th PRIORITY HIGHEST PHYSCAL # WIRED LOWEST
o1 2 3 4 5 6 7‘ 8 9 10 11 12 13 14 15 . 35
6th PRIORITY MIMIMIM M IMIM|MIUIU|U]U I
B|B|B|(B|B|B|B|B|B|B|B|B B
~~ "Tth PRIORITY \\L/ LEGEND
LOWEST / MBC~ MASS BUS CONTROLLER-RH-20
N~ = -7 UBC- UNIBUS CONTROLLERDTE-20
e IBC- I/0 BUS CONTROLLERDIA-20

APR - ARITHMETIC PROCESSOR STATUS REG
MTR - DEVICE DK-20

10-1810

Figure 2-40 Typical Interrupt Priority Chain

*These instructions should not be used because nothing is known about the ACs when the interrupt occurs. JSR
or MUUO are better choices.

EBOX/2-46

All of these instructions save the flags and PC, a requirement when entering the device service routine.
If the instruction at 40 + 2n is a BLKX instruction, a specified number of transfers are performed, one
transfer at a time, each time returning to the interrupted program or to a higher level subroutine. On
the last transfer, the return to the interrupted program is “NOT SKIPPED” and an instruction is
fetched from 41 + 2n. In a similar fashion, if 40 + 2n contains a SKIP class instruction; when the skip
condition is satisfied, a return to the interrupted program takes place. If the skip is not satisfied, the
instruction in 41 + 2n is executed instead of the return. The API function generated by the Massbus
controller is always a function code of 2 in bits 3-5; this implies a dispatch to the physical address
provided in the API function word. The dispatch is into the device handler for the Massbus devices.
| The type of API function requested varies with the device or controller responding.

It is possible for the processor to generate a program request for an interrupt on any of the seven

channels. This permits the processor to carry out the highly time-sensitive portion of the interrupt

response, and to then create for itself a low priority interrupt to call for the deferred servicing of the
\st time-sensitive portion at a less pressing time.

2.6.1 Duration of Uninterruptable Intervals

Such an interrupt system is of little value if the CPU can remain in an uninterruptable state for any
significant period of time. Under normal operating conditions, the longest uninterruptable interval
must be kept short. In addition, no malfunctioning peripheral hardware or software can be allowed to
“hang up” the CPU in a noninterruptable state.

2.6.2 Interruptable Instructions
To ensure that the longest uninterruptable interval that the EBox may experience in normal operation
is short, some long instructions have been designed so that they may be interrupted during execution.
First, all instructions are interruptable at indirect references during the effective address calculation.
Second, instructions that consist of two parts may be interrupted between the two parts, a PC flag
being set to record this for later, when only the second part will be done. Third, iterative instructions,
such as BLT, may be interrupted at any point, as an AC pointer defining work still to be done is beng
updated continually.
———
g 2.6.3 General Interrupt Sequencing
The mechanism for handling the various levels of interrupt priority in the hardware, and the relation
between this mechanism and the device subroutine call and return sequence as it might occur in prac-
tice are shown in Figure 2-41. Three channels are armed by setting their PION flags. Channel 2 has
highest priority, followed by channel 3, and finally by channel 4. Note that the execution of a CONO
PI instruction caused the PION flags to set. Three separate interrupts occur simultaneously on chan-
| nels 2, 3, and 4. The priority network is shown arbitrating the three priorities. The lowest channel
" (highest priority) is serviced, provided it is of higher priority than the current level.

- In this example, all three channels are requesting and no channels are currently holding interrupts;
thus, the channel with the lowest number is selected. As a result of the arbitration, the selected channel
number is combined with the appropriate constant to form the address 44[40+2X (2)]. In Figure 2-41,
the device subroutine is entered by fetching and executing the instruction in EPT location 44, which in
this instance is a JSR. The request is not cleared until the program issues CONO, DEV. Notice during
the entire service routine (in this example), the requests on channels 3 and 4 are waiting for the process-
or. The last instruction to be executed in the device subroutine is a JEN (JRST 12); this restores the
flags saved by the JSR instruction executed in 40 + 2n and dismisses the interrupt on channel 2, which
is holding off channels 3 and 4.

EBOX/2-47

CONO PI

PION 2 (ARMED) /

)

PION 3 (ARMED) /:‘

N

ll

\PION 4 (ARMED) / /
Al

PIREQ 2 (WAITING) I
(lll
PIREQ 3 (WAITING) I
@ 4§
4§ I
\PIREQ 4 (WAITING)
L0
DEV REQ'S 4 [
PI HOLD 2 (ACTIVE) 2,3,4
\ (l';
{0

PI HOLD 3 (ACTIVE)

DISMISS B |

~HOLD

CONO CONO THUS
PI HOLD 4 (ACTIVE) DISMISS
DISMISS

PRI NET (ARBITRATION) |CH 2,3,4 CH 4)
JSR JRSTF DISMISSES
(s
DEV "
DEV SUBR CH 2 40+2Nf SERV Rl?UTlNE TR
) MUUO
if
DEV SUBR CH 3 40+2N”DEV SERV ROUTINE
DEV SUBR CH 4 40+ 2N—w (firBinﬁgrd)
SINGLE _|
i INSTR 7]
)
MAIN PROGRAM
("

)

NOTE:
ASSUME 40+2N, 41+2N TYPE INTERRUPTS.
CH#2 —44,45
CH# 3 —46, 47
CH#4 —50, 51
10-1611

Figure 2-41 Basic Interrupt Sequencing

2.6.4 Interrupt Dialogue

The handling of the EBus dialogue and processor bus requests during I/O instruction execution and

priority interrupts is provided by the Priority Interrupt Board, which comprises the necessary inter-
—Dfacing logic, control logic, and registers. Initially (Figure 2-42), assume that the appropriate PION

flags have been set on the PI Board and it is now capable of accepting interrupts. For this example, the

DTE20 will generate an interrupt for a byte of data. The drawing is divided into three sections: EBox,

control activity, and DTE20. The control activity corisists of control action taken by either the EBox
or the DTE20, as appropriate.

EBOX /2-48

CONTROL

EBOX ACTIVITY DTE 20
INTERNAL.
PRIORITY oTE 20
INTERRUPT INTERNAL
LOGIC PROCESSING
IDLE
le—— OTHER DEV X ___}
IDLE E-BOX X INTERRUPT CH #[@— GENERATE PI
ARBITRATES [@——00 OTHERDEVY lissertep By L"‘gi‘:;o XFER
CH# WITHANY |g SENSE DTE 20
OTHER INCOMING Pl
PI'S
ALERT

*
HAND SHAKE ~ [@——THIS ——

AND TRANSMIT DEV ?3
PI SERVED [DTE 20]

FUNCT 4 e—DEMAND— _Ag Ay
TO
OTHER
DEVS
E-BOX
ARBITRATES
TELL —®] DTE 20 DETECTS * PHYSICAL
DTE 20 Pl SERVED AND ASSERT CONTROLLER #
— — | WITHANY OTH
DEMAND TRANSMITS ITS #T0 PHYSICAL SENSE DTHER
PHYSICAL E-BUS CONTROLLER # PHYS # INCOMING #8S.
CONTROLLER # ONLY ONE OF
THESE WILL BE
SELECTED.
AP
FCN TO ——] f
DTE 20 DETECTS |@— TELL GRANT
BUS *
THAT IT HAS DTE 20 ASSERT SELECTED #
BEEN SELECTED CS 00-03 AS [DTE-20 ONLY],
ACK AND GENERATES SELECTED #
AP! FUNCTION <@—— DEMAND ——— G DEMARND e
XFER
ACK: TELLS I/0
BUS ADAPTER
) NOT TO RESPOND
* TELL ——t}
36 BIT API LL E-BOX EVALUATES |——“FUNCT DATAI"——® preponse is” [“FUNCT DATAI"
E-BOX ar
FUNCTION TELLS TA'K’;ZNCT'ON AND ABYTE OF
E-BOX WHAT TO ACH et THE APPRO- — & DATA
po PRIATE ACTION. DEMAND DEMAND
XFER 1IN THIS EXAMPLE 1
TAKES A BYTE I
<§———— BYTE FROM BYTE
FROM E-BUS. £.BUS PASSES DTE 20 PLACES
RO EBUFFER ONTO
OTE 20 E-BUS THEN
RELEASES E-BOX
* 4————-xx=sn————l
IDLE ACCEPTS BYTE
OF DATA
L aCK
PRIORITY g
INTERRUPT | g XFER
Logic INTERNAL
IDLE ACK
DTE 20
INTERNAL
PROC

10-1812

Figure 2-42 Interrupt Dialogue Overview

EBOX/2-49

The DTE20 asserts one of its mterrupt lines PL 1-7; this level enters the PI Board where, as indicated, it
is arbitrated with any other incoming requests and any holding interrupts. The PI Board now com-
mences a dialogue between all candidates on the selected interrupt channel. The selected channel
~~number is encoded in controller select (CS) lines 04-06. The function “PI SERVED” is encoded in
function (F) lines 00-02. These signals are placed on the EBus and 200 ns later the PI Board asserts the
signal DEMAND. This signal instructs the device (DTE20) to place its physical controller number on
a prespecified bit position of the EBus (bit positions 8-11). Each controller, therefore (including the
I/O bus adapter, bit position 15, disks or drums, bit positions 0-7), on the selected channel does the
same. Approximately 400 ns later the EBox drops DEM AND; however, the controller select and
function lines do not change for an additional 150 ns after DEMAND is removed. The physical
controller numbers received by the EBox over the EBus are arbitrated in much the same way as the
channel priorities. An exception is the ARP, which is an internal KL10 device, and does not fall into
= quite the same type of scheme, i.e., it does not place a physical number on the EBus; obviously this is
“not necessary because it is already within the EBox. Rather, it provides a physical number directory on
the board. This device vies with the device that is selected on the basis of physical number highest
priority (Figure 2-40). Basically, the lower the numeric value of the EBus bit position onto which the
device is hardwired to place its physical number, the higher the priority of that bit. The highest phys-
ical number priority, therefore, is given to bit position 0, and the next to bit 1, and so on. The highest
priority physical number (in this example only) is assumed to be that of the DTE20 (one of four such
possible Unibus controllers on the EBus). —~———..

The PI Board now asserts the encoded ical number of the selected controller (DTE20) in con-
troller select (CS)_lines 00-03, the mterruptmg channel number encoded in CS lines 04-06, and the
function “PI ADDRESS iN” is encoded in function lines (F) 00-02. Again, the EBox waits a period of
200 ns and then asserts DEM AND. At this point only, one controller has been selected; it compares its
physical number (hardwired on its backplane) to the number received on EBus blts 00-03. Upon
determining that it is the selected controller, the DTE20 places the required API interrupt function
onto the EBus data lines and asserts ACKNOWLEDGE and TRANSFER to the EBox. The
ACKNOWL%DGE signal causes the I/O bus adapter to ignore the function code “PI ADDRESS
IN.” In the absence of ACKNOWLEDGE, PI ADDRESS IN would enable the I/O bus adapter to
send its API function to the EBox, because no decoding and comparison logic exists in the adapter.
This logic does exist in the DTE20 and other devices. The TRANSFER signal specifies to the EBox
that the appropriate device has responded, and alerts the EBox that an interrupt is set up and pending.
If the API function is sent during a DTE20 to 10 byte transfer, this could specify that the EBox
perform a DATALI function to the DTE20; in this way, a byte of data is picked up as indicated in
Figure 2-40.

~——The case of DTE20 byte transfer is somewhat unique in that the DTE20 holds onto the EBus until the
EBox transmits the appropriate function, in this case DATAI encoded in function select lines 00-02 (at
this time CS00-06 = 0). The byte is picked up by the EBox, and the DTE20 generates ACKNOWL-
EDGE and TRANSFER once again. This completes the operatlorb Note that ACKNOWLEDGE
informs the I/O bus adapter not to respond to the functions bemg carried out{ Because the requests on
channels 3 and 4 have been pendihg during the service routine, when the interrupt that has been
holding on channel 2 is dismissed, the priority net arbitrates between channels 3 and 4 and selects 3 for
service. This generates the address 46 (40 + 2n), and this time the instruction is an MUUO. As with the
JSR during the execution of the MUUO, the request is transferred to the channel 3 hold flag. Note that
in the example, the request on channel 4 is still waiting for service. Finally, the JEN instruction at the
end of the channel 3 service routine restores the flags and priority interrupt system, dismissing the
interrupt on channel 3. In the same fashion as with the other interrupts, the priority net generates the

EBOX/2-50

address 50 (40 + 2n). In this case, however, location 50 contains a BLKO instruction, which cannot
save the flags or PC of the interrupted process. This type of instruction behaves in a special manner
when used in an interrupt location; the BLKO instruction performs a series of transfers to a specific
device; however, after each transfer, return is passed to the current PC value, whatever it is. This
continues until the last transfer is completed, when the instruction in EPT location 51 (41 + 2n) is
executed. This instruction should be of the type that saves the flags and PC, and will generally enter a
subroutine probably to set up a new block pointer, because the current one has been expended. Note
that in the beginning some main program, perhaps the monitor, was interrupted, and now control is
passed back to it.

12.7 BASIC MACHINE MODES INTRODUCTION

In general, the KL10 permits the operation of a number of different programs, all resident in the
machine simultaneously, without interference or undesired interaction among them whether due to an
inadvertent program bug or maliciousness. The operation of the machine is divided into two modes,
User mode and Exec mode, each with two submodes. User mode consists of Public mode and Con-
cealed mode. Exec mode consists of Supervisor mode and Kernel mode. The machine mode structure
and hierarchy are illustrated in Figure 2-43.

fe PUBLIC PRIVATE———————
S it RS ——
| CALL (MUUO) l
I READ WRITE
v/ XFER _CONTROL
I (aﬁbg) PASS THRU
| J s PORTAL | exec . "
PORTAL
CALL
' CALL
SELF READ % L SELF
READ WRITE WRITE EAD
XFER XFER XFER WRITE
CONTROL CONTROL ONTROL XFER
CONTROL N
% CALL
SELF
PASS
\ CALL THRU
(MUUO) PORTAL] USER
' -C NPORTAL ¢ USER
CALL
(SEbS) READ XFER CONTROL
CALL (MUUO)
DI \
v
LEGEND
K [KERNEL
S_| SUPERVISOR
C_| CONCEALED
—C | NON CONCEALED
10-1613

Figure 2-43 Mode Structure and Hierarchy

EBOX/2-51

Basically, the programs of individual users operate in Public User mode, where the program can have
access to one of two possible virtual address spaces. If KL10 paging is in effect, the user has access to a
virtual address space of 256K words via an 18-bit virtual address, which may not be referred to by any
other user (without the cooperation of the monitor). If KI10 paging is turned on, the program has
access to a virtual address space of 256K addressed via a 18-bit virtual address, which as previously
pointed out cannot be referenced by any other user without the monitor’s cooperation. All instructions
that do not compromise the integrity of the system are legal; this includes the following:

The halt instruction (JRST 4)

Any instruction attempting to affect the PI system (JEN)

Any I/0 instruction directed at devices with device select codes below 740

Any reference to the concealed address space except for fetching of a portal instruction
All illegal instructions or op codes.

S R

The user’s address space (when KL10 paging is in effect) is divided into 32 (decimal) sections; each
section contains 512 (decimal) pages and each page consists of 512 (decimal) words. The existence of
these pages is nominally invisible to the user program. However, the amount of physical address space
available is actually a number of these pages (at least one page), none of which need be contiguous
either in physical core or in the user’s virtual address space, although it is desirable from a machine
standpoint to do so. Each of these pages can be designated public or writable by a 1 in bit 1 or 2,
respectively, in the page table word for the page. Pages that are not designated writable cause an
instruction, which attempts to write them, to trap to the monitor as a write protection violation page
failure. A program running in pages designated public is in Public mode. A program running in pages
not designated public is running in Concealed mode. Whether an instruction is performed from Public
or Concealed mode is determined by the Last Instruction Public bit of the PC word (bit 7). The Last
Instruction Public bit is copied from the Public bit of the page map word for the page from which the
instruction was fetched. An instruction in Public mode (that is, one performed with the Last Instruc-
tion Public bit a 1 in the PC word), which attempts to transfer to a location in a nonpublic area not
containing any Portal instruction, or an instruction in Public mode which attempts to read, write, or
execute a location in a nonpublic area, traps to the monitor as a concealed violation page failure. A
Public mode program can only transfer to a Concealed mode program by transferring to locations that
contain Portal instructions. A Concealed mode program can read, write (if writing is allowed), execute,
or transfer to any user location designated public. Concealed mode is provided to allow the loading of
a proprietary software package together with a user’s program and data while preventing the user’s
program from copying information discerning the structure of the proprietary software. This provides
protection of proprietary software without complicated protective overlay or transfer schemes
involving the monitor and allows direct interaction between user and software package with virtually
no overhead.

The monitor operates in Exec mode. It is responsible for scheduling users, allocating memory and
other facilities, servicing interrupts, and performing actual I/O. At any instant, the monitor has access
to an effective address space of up to 8192K (for KL 10 paging mode) or 256K (for K110 paging mode)
words and by overt action may address any portion of physical memory. The monitor can be divided
into two parts: a normally small part, which operates in Kernel mode and is resident, and a larger part,
which operates in User or Supervisor mode and may be swapped as necessary.

EBOX/2-52

i

The Kernel mode part of the monitor handles the PI system, performs the direct 1/O for the system,
performs page management, and performs all other functions that affect all users of the system. The
Supervisor mode part of the monitor performs the general management of the system (such as MUUO
handling and dispatch) functions which affect only one user at a time. The Supervisor mode and
Kernel mode of the monitor are analogous to the Public mode and Concealed mode of the user’s
programs in that the Supervisor runs in that part of the Exec address space designated public and the
Kernel runs in that part of the Exec address space which is designated nonpublic; this simplifies illegal
reference detection logic. Each address from 20 through 337,777 is broken up into pages, but these
addresses can be made to refer to the same addresses in the physical memory space by making the
virtual page address equal to the physical address portion in the corresponding page table entry. The
entire Exec address space is broken into pages of 512 words which may be designated either accessable
or not accessable, public or nonpublic, and writable or nonwritable and can be swapped out. An
instruction in Supervisor mode that attempts to write into a page which is not writable will trap as a
page failure. An instruction in Kernel mode may write into any location whether or not it is designated
public. An instruction in Supervisor mode (that is, one performed with the Last Instruction Public bit
a 1 in the PC word) that attempts to transfer to a location in an Exec nonpublic area not containing a
Portal instruction traps to the monitor as a page failure. An instruction in Supervisor mode that
attempts to read, write, or execute a location in an Exec nonpublic area traps to the monitor. In each
instance, the trap is a Kernel violation page failure. A Supervisor mode program can only transfer, i.e.,
jump to a Kernel mode program, by transferring to locations that contain Portal instructions (JRST

1).

A Supervisor mode program can also reach Kernel mode (or any other mode) by performing an
MUUO or other instruction that causes a trap, if the appropriate trap new PC word indicates that the
next instruction is in Kernel mode. A Kernel mode program can read, write, execute, or transfer to any
location designated public, i.e., in Supervisor mode; all instructions illegal in User mode are also illegal
in Supervisor mode.

The mode control logic consists of the following:

User Mode

Public Mode

User 10T

Private INSTR

Miscellaneous Combinational Logic

The mode control exerts a powerful influence over the disposition of the processor. It monitors
instruction fetches from Public mode to prevent illegal entry to either Concealed mode from User
Public mode or Kernel mode from Supervisor. In addition, it detects the fetch of a Portal instruction
and adjusts the state of the mode logic accordingly. The relationships between the various modes and
their transfer instructions are shown in Figure 2-44. In general, two instructions allow flags that affect
processor modes to be manipulated. These instructions are:

MUUO
JRST 2

Of the two, only the MUUO can cause transfers to any mode from any other mode. The JRST 1
(Portal 1) simply allows entry to a Private mode from a Public mode. Each time an instruction fetch is
specified and the reference is to a nonpublic page, a test for illegal entry must take place to maintain
integrity in the system.

EBOX/2-53

PUBLIC=—0
PRIVATE INSTR<—{1

1—=USER IOT
MUUO OR 1—=USER

JRST 1 (PORTAL) i—PUBLIC

PUBLIC «—1
PRIVATE INSTR<—@

SUPERVISOR
MODE

PRIVATE INSTR=—1
USER<—©@
PUBLIC=—0

PUBLIC=—1
PRIVATE INSTR<—@

JRST 2

USER CAN CLEAR BY
JRST 2 BIT 6 (0),BUT
CAN NOT SET IT BY
PLACING BIT & (0) AND
ISSUING A JRST 2

PUBLIC (1)

USER<—1
PUBLIC (1)
PRIVATE INSTR=—1

USER (1)

PUBLIC <1
JRST2 _ PRIVATE INSTR—g /"
CONCEALED
MODE l JRST 1 (PORTALT(CO',"W%EDAELED

PRIVATE INSTR=—|

PUBLIC=—0
USER (1)
BIT ASSIGNMENTS
CONTROL OF BITOS | BITOS | BITOT NOTES
USER MODE X
USER IOT x IN USER MODE
PUBLIC MODE X
PREVIOUS CONTEXT X IN EXEC MODE
10-1614
Figure 2-44 Mode Transfer

Referring to Figure 2-44, assume a User Public program has been started by a monitor routine that
performed a JRST 2 (a jump and restore flags). To place the processor in User Public mode, bits 7 and
5 of the flag’s PC word must be set; this results in the setting of Public mode and user mode, respective-
ly. The processor is now in User Public mode. Assume that the User executes some miscellaneous
instructions and then performs an instruction fetch from a nonpublic area. The following test takes
place: instruction fetch is decoded from the microinstruction MEM field or specified as a prefetch in
the DRAM A field. The E/M Interface asserts EBOX READ and loads the address into VMA. Note
that if a reference to a private address for a read or write of data is attempted, it page fails on the
attempted reference because PAGE TEST PRIVATE is asserted. However, in this case, the fetch must
be allowed from the private address space. Its identity is checked in the EBox and, if it is not a JRST 1
(portal), a page failure occurs on the very next memory reference. This is implemented by delaying
generation of the signal that would cause a page failure to be generated by the MBox (PAGE ILLE-
GAL ENTRY), until the instruction fetch is completed. When the MBox responds with the level -
PAGE TABLE PUBLIC (PT PUBLIC), this signal with the MB response sets PRIVATE INSTRUC-
TION. This causes the generation of PAGE ILLEGAL ENTRY. If the instruction which is decoded
by the hardware is not a Portal, Public mode remains set maintaining PAGE ILLEGAL ENTRY,
which enables a page fault on the next MBox reference for whatever reason. If the instruction fetched

is a portal (JRST 1), then Public is cleared and the processor enters Concealed mode.

EBOX/2-54

All user references and concealed references are paged. The difference between the types of paged
references is that user paged references are public while concealed references are nonpublic when
referencing the concealed address space and may be public when referencing the users address space.
Executive references are paged, this includes both Kernel and Supervisor references. Supervisor mode
programs must be capable of reading both User Public and User Concealed address spaces. To bypass
the portal mechanism normally necessary for any public program to reference a nonpublic program
area, a bypass exists, which is under control of the Kernel; when operational, the Supervisor is allowed
to read and possibly write the concealed area as necessary, remembering, of course, that the supervisor
is part of the operating system and it is performing job-related tasks within that context.

Normally a public program is only allowed to fetch an instruction from a nonpublic area and this
instruction must be a portal (JRST 1) instruction; however, this is necessary for the supervisor to
perform its system tasks. Basically, the process for checking a User Public program’s reference to a
concealed address is as follows. The mode is User Public and an instruction fetch begins. EBOX
REQUEST is issued to the MBox, together with the appropriate paging qualifiers and any other
appropriate signals. The MBox performs the necessary check of the page descriptor bits; then the state
of the Public bit in the page table is asserted over the E/M Interface where, together with signal MB
XFER and a signal indicating an instruction fetch is being performed, it is used to enable the setting of
Private instruction. If the Page Table Public bit is off, Private instruction is set on the clock occurring
concurrently with MBox response. PAGE ILLEGAL ENTRY is not asserted. The response given by
the MBox was given at the same time it placed the desired instruction onto the cache data lines; this
instruction is now in ARX. If the instruction is indeed a portal instruction (JRST 1), the Public mode
will be cleared, removing the PAGE ILLEGAL ENTRY signal. This procedure then has effected the
proper entry to Concealed mode. If the instruction was not a Portal, then the PAGE ILLEGAL
ENTRY signal will not be removed nor will Public be cleared, which constitutes an illegal state in the
EBox. On the very next MBox request by the EBox (providing VMA AC REF is false), a page fault
occurs and an appropriate code is placed in the EBus register in the MBox identifying the disposition
of this fault. This will shortly be followed by a trap to the operating system as a concealed violation
page failure. This same procedure is applied to a Supervisor reference to the Kernel address space, and
in this way the integrity of the system is protected from any unwarranted references. Figure 2-45 shows
a typical layout of the virtual address space for the various modes. The space shown is for K110 paging
mode (256K, made up of 512 pages numbered 0-777 octal). Any program can address locations 0-17
as these are in a fast memory block and are completely unrestricted (although the same addresses may
be in different blocks for different programs). The Public mode user program operates in the public
area, part of which may be write protected. The Public program cannot access any locations in the
concealed area, except to fetch instructions from prescribed entry points. The Concealed mode user
program has access to both the public and concealed areas, but it cannot alter any write protected
location whether public or concealed; fetching an instruction from the public area automatically
returns the processor to Public mode. The Supervisor mode program is confined within the paged area
of the address space. Part of the public area in this space may be write protected, but the program can
read information in the concealed area. It cannot, however, alter any location in a concealed area,
whether that area is write protected or not. Pages 340-377 constitute the per process area, which
contains information specific to individual users and whose mapping accompanies the user page map.
In other words, the physical memory corresponding to these virtual pages can be changed simply by
switching from one user to another, rather than the operating system changing its own page map. The
Kernel mode program can access all of the unpaged area without restriction and can reference all of
the accessible paged area both public and concealed, with the usual restriction that it cannot alter a
write protected area. As in the case of Concealed mode, fetching an instruction from a public area
returns control to Supervisor mode. "

EBOX/2-55

USER MODE EXECUTIVE MODE
PUBLIC CONCEALED SUPERVISOR KERNEL
0 0 - o 0
FAST MEMORY FAST MEMORY FAST MEMORY FAST MEMORY
PUBLIC PUBLIC
WRITE ABLE WRITEABLE
PAGED AND
AVAILABLE TO
THE RESIDENT
MONITOR
340 340
PUBLIC PUBLIC
CONCEALED CONCEALED
400 400 400 400
vasll;'s PWURBI';'EC PUBLIC PUBLIC
PROTECTED PROTECTED WRITEABLE WRITEABLE
o CEALED CONCEALED PUBLIC PUBLIC
WRITE WRITE WRITE
PROTECTED PROTECTED PROTECTED
CONCEALED
CONCEALED WRITE ABLE
CONCEALED
WRITE
PROTECTED
777 777 777 777
10-1615

Figure 2-45 Typical Virtual Address Space Configuration

2.7.1 Mode Initialization — Private Instruction

When the KL10 system is powered up, the power control issues the signal CROBAR for approx-
imately 5 seconds. This results in the generation of RESET, which causes LEAVE USER to be
asserted. LEAVE USER enables the clearing of USER, USER IOT, and PUBLIC and sets PRIVATE
INSTRUCTION. This action places the KL10 in Kernel mode. Referring to Figure 2-46, each time an
instruction is fetched from either Fast Memory or Core Memory (via MBox), the private instruction
recirculation path is broken (Figure 2-47).

EBOX/2-56

CROWBAR

GENERATE
LEAVE USER.
RESET CLEAR: USER,
' USER 10T AND
PUBLIC
4
PRIVATE
INSTR- 1
KERNEL MODE
“DATA FETCH
OR STORE”

NO

“MBXFER"
NO EFFECT ON
PRIVATE INSTR

L

PUBLIC
PAGE
?

!

PRIVATE
INSTR- 0

FLAGS

USER 10T~ 1
KERNEL MODE
PREV CONTEXT
OPERATIONS MAY
BE PERFORMED

PUBLIC- 1

USER- 1

NO

USER- 1

F

SUPERVISOR MODE

USER MODE CONCEALED

ARO06=1

USER 10T~ 1

USER MODE PUBLIC

F

USER 10T MODE

101616

Figure 2-46 Mode Initialization

EBOX/2-57

. }

PRIVATE
INSTRUCTION

—INSTR FETCH

RESET

10-1617

Figure 2-47 Private Instruction Recirculation Path Simplified

If the instruction is fetched from a nonpublic address space (-PUBLIC PAGE), or the mode of the
machine is not public (-PUBLIC), then the private instruction is enabled to be set once again (Figure 2-
48).

PRIVATE
INSTRUCTION
INSTR FETCH—_
FM XFER—L
—-PUBLIC
MB XFER
— PUBLIC PAGE
10-18i8

Figure 2-48 Setting Private Instruction

Note that if data .is read or written, the upper recirculation leg (Figure 2-48) is not disabled. The
Private Instruction flip-flop is used with additional logic that (with the exception of previous context
references) detects references to Public mode; together, these elements detect entry to a privileged
address space. The Kernel may access any part of the address space regardless of its type. Because the
Kernel does not operate in Public mode, illegal entry has no significance.

2.7.2 Loading Flags and Changing Mode
Two instructions can change the mode of the machine. These instructions are MUUO and JRST with
AC bit 11 set, i.e., JRSTF.

As indicated in Table 2-6, AR bits 05 and 07 are used in various combinations to enter appropriate
submodes.

EBOX/2-58

Table 2-6 Flags Effecting Mode

Instruction being performed is MUUO,JRSTF (See Note) Major Mode

Enable User IOT Flag Bits Effecting Modes Exec Submodes User Submodes
PREVCONTXT ARO6 AROS ARO7 Kernel Super Concealed Public

0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0

N/A 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1
0 1 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 1 1 1 0 0 0 1 0

NOTE

A JRSTF may not clear user by placing bit 05 (0) but an MUUO may.

In addition, for Direct User I/O, bit 06 (USER IOT) is available to allow the running of privileged
user programs with paging in effect. This mode provides some protection against partially debugged
monitor routines, and permits running infrequently used device service routines as a user job. Direct
control by the user program of special devices is particularly important in real-time applications. A
special MUUO is available to enter USER IOT mode, but it is privileged because time-sharing is
effectively stopped while in this mode.

2.7.3 User Public Mode

Once the processor is in User Public Mode (Figure 2-49), the user program can freely read and write
data in the user public address space with the cooperation of the system. When demand paging is in
effect, each reference to a previously unreferenced page causes an access page fault. The operating
system page manager must assess the fault, obtain the page from mass storage, and build an entry in
the user’s process table.

Assuming that the current user’s process table (PAGE TABLE PART) is initially clear, the first refer-
ence causes a NOT IN CORE page fault (Figure 2-50). The EBox, upon detecting the PAGE FAIL
HOLD signal from the MBox, enters a microcode page fault handling routine that communicates the
failure to the operating system. Next, the page manager or a related routine requests the page from
mass storage. When the page is in core, the appropriate process table is constructed and the reference
by the user program may be tried once again (Figure 2-51).

The MBox performs the reference to the process table; the use bits now reflect the following:

PAGE IS IN CORE A = 1

PAGE IS WRITABLE W = 1

PAGE IS PUBLICP =1

PAGE SHOULD BE CACHED C =1

EBOX/2-59

"USER MODE
PUBLIC

““AC REF”
3

NO

PUBLIC

AC REFERENCES
ARE NOT
EFFECTED

PAGE
R IF “MBXFER"
PAGE TEST
PRIV —1
¥
PRIVATE PUBLIC—1
INSTR —1 SEE NOTE 1
ILL ENTRY ~ 1
| S —

PORTAL

YES >
ILL ENTRY(1):
NEXT MBOX
REF WILL PAGE
PAGE FAULT CLEAR PUBLIC
FAULT
WILL OCCUR ILL ENTRY -0
ON THIS REF. PRIVATE
INSTR—1
V,
USER MODE
CONCEALED
PAGE FAULT NOTE:
HANDLER IF THE USER FETCHES A

MUUO, MODE CHANGES
ACCORDING TO FLAGS.

10-1619

Figure 2-49 User Mode Functional Flow

EBOX /2-60

PROCESS TABLE BEFORE

PAGE @ PAGE @ /_USER REFERENCE

UBR lJ ? ¢ 000
° L]
L] °
L] °
° ° EBOX REQ: PAGE 1
L] L]
) % 377
’//;/// 400 INTO PT
s /
77/, USED FOR
'/// OTHER PURPOSES
S
v 777

PAGE FAIL HOLD

ACCESS BIT=@% PAGE NOT IN CORE
10-1620

Figure 2-50 User Mode Public Initial Reference

PROCESS TABLE AFTER
ENTRY IS WRITTEN

PAGE 1
> APWSC l ‘///F—

PHYS
L_ver | 2 1ol [RE | 000 MBOX READS
o o OR WRITES
o DATA AS
¢ (5) APPROPRIATE
. . EBOX REQ:PAGE 1
* ° READ @
° ° ENTRY @
o 2 377
400 INTO PT
USED FOR
OTHER PURPOSES
/
7 777
ACCESS BIT=1
WRITEABLE BIT:1
PUBLIC BIT =1 NO PAGE FAILURE
CACHE BIT =1

10-1621

Figure 2-51 User Mode Public Second Reference

EBOX/2-61

The entry (one of eight half-word entries fetched) is written into the page table in the MBox, the MBox
then performs the data reference part of the request. This can involve reading or writing and depends
upon the type of EBox request. During the reference, PAGE ILLEGAL ENTRY was not asserted
because the reference made by the user program was to a public page and it was for an instruction.

2.7.3.1 Entry from User Public Mode to User Concealed - To correctly enter User Concealed mode,
the User Public program must execute a Portal instruction (Figure 2-49) from the concealed address
space. The EBox generates the EBox request and provides the MBox via VMA with the concealed
address. The MBox either finds the page entry and use bits in the MBox Page Table (hardware) or
performs a refill cycle to obtain it from core memory. Figure 2-52 shows the typical Concealed Page
Table format. Presumably, the entry is nonpublic and write protected, and may or may not be cached.

ACPOW S G e 13 BITS i

i
11010 PHYSICAL PAGE
0

e N
[- . 18 BITS |

10-1622

Figure 2-52 Typical Concealed Page Table Format (Half Table Entry)

The MBox asserts PT PUBLIC (0) and MBOX RESPONSE IN to the EBox. Referring to Figure 2-48,
MB XFER resulting from MBox response and -PUBLIC PAGE resulting from PT PUBLIC (0)
enables the setting of Private instruction. The instruction fetched by the MBox is in ARX at this time.
If it is a JRST 1 (Portal), its execution clears Public and the processor enters User Concealed mode. If
the instruction is anything else, Public remains set and the next MBox reference occurs with PAGE
ILLEGAL ENTRY true, PUBLIC PRIVATE INSTR (1); this causes a page failure.

2.7.3.2 Concealed Violation Data Reference - If a User Public program references the concealed
address space for read or write, PAGE TEST PRIVATE is asserted during the EBox request and
results in an immediate page fault. Page Test Private is a signal composing Public and -INSTR
FETCH.

2.7.4 Restoration of Programs by the Supervisor

The Supervisor portion of the operating system deals with those tasks which affect one job at a time. It
must, therefore, have the ability to restore various programs to an operational status, e.g., by executing
a JRST 2 instruction that picks up a PC word consisting of the appropriate flags in the left half and a
virtual PC in the right half of the word.

2.7.4.1 Restoring a Concealed Program - The Supervisor may restore a concealed program providing
it also sets User. Referring to Figure 2-53, while executing a JRST 2 instruction, LOAD FLAGS is
derived from the presence in the magic number field of bit 04, and this together with -User (User is off
in Supervisor mode), and AD bit 05 (which will set User) generated CLR PUBLIC. Thus, on the next
clock pulse, Public clears and User sets, restoring Concealed mode. Figure 2-54 shows the necessary
conditions. Note that performing a JRST 2 cannot generate Leave User, unless the processor is in
Kernel mode.

EBOX,/2-62

£9-7/X0494d

SUPERVISOR
MODE

PUBLIC

PAGE
?

PUBLIC YES SEE NOTE 1

PUBLI

PAGE
?

PAGE TEST
PRIVATE <1

AC REFERENCES
NOT EFFECTED

PRIVATE
INSTR <1
ILL ENTRY <1

PORTAL
?

ILL ENTRY(1):
NEXT MBOX REF

PAGE FAULT
WILL OCCUR ON
THIS REF.

NOTE 1:

IF THE SUPERVISOR FETCHES
AN MUUO, MODE CHANGES
ACCORDING TO FLAGS.

)2

PAGE FAULT

HANDLER

WILL PAGE FAIL

CLEAR PUBLIC
ILL ENTRY <0
PRIVATE
INSTR<1

.

KERNEL MODE

C1
OTE 1

YES
“JRSTF”

ARO05(1)

SUPERVISOR
RESTORES
USER MODE

A
ARO7(1) ARO7(1) & ARO6(1) AROG(1)
USER MODE USER MODE USER MODE USER MODE
PUBLIC CONCEALED PUBLIC (10T) CONCEALED (10T)

Figure 2-53 Supervisor Mode Functional Flow

10-1623

SPEC FLAG CTL ___Lﬂ START OR MUUO

-#00
SPEC SAVE FLAGS
PI CYCLE— |

RESET

JSR

LEAVE USER

KERNEL

-#04 JRST 2 FROM

KERNEL MODE

10-1624

Figure 2-54 Leaving User

2.7.4.2 Restoring a Kernel Program - The restoration of a Kernel mode program from Supervisor
mode is somewhat different in its mechanics than the restoration of the Concealed program. Basically,
the Supervisor must first perform a JRST 2 instruction; this instruction restores all flags except for
Public. The JRST must enable the fetching of a Portal instruction that clears Public, placing the
machine in Kernel mode. This is a safeguard in the event that the Supervisor may, in error, try to
restore some random set of bits and cause the Kernel to be disturbed. In addition, it forces entry to
Kernel mode at a known and unique entry point. Figure 2-55 shows that it is not possible for a JRST 2
instruction to clear Public while not setting User as well. Note that a JRST 2 instruction does not
generate Leave User unless it is given in Kernel mode. The conditions which enable Leave User are
indicated on Figure 2-54.

SUPERVISOR
ADDRESS
SPACE

C JRST 2,@8B
B FLAGS, C

KERNEL
ADDRESS
SPACE

(o]

JRST 1, ADDRESS

10-1625

Figure 2-55 Restoring Kernal Program

2.7.4.3 Restoring a User Public Program - To restore a User Public program, the Supervisor gives a
JRST 2, which sets User. This is the only requirement because both Supervisor and the User Public
program run with Public set. The special field function SPEC FLAG CTL, together with magic num-
ber 04(1) enables SPEC/LOAD flags which, with AD bit 05, enables User to set on the next clock.

EBOX/2-64

2.7.4.4 Saving Flags and Leaving User - It is not generally known at just what moment an interrupt
will occur with respect to execution of a given instruction. The microprogram governs the handling of
interrupts by looking for interrupts only~at certain times. In general, an interrupt is sampled for
between each instruction and during certain classes of instructions. The following classes of instruc-
tions can be interrupted:

Byte Instructions
Block Transfer Instruction
Input/Output Instructions

In addition, for any instruction, an interrupt is sampled during the portion of the microprogram that
performs indirect addressing (INDRCT). An interrupt has higher priority than a Page Fault and thus,
upon entry to the Page Failure microroutine, an interrupt condition is tested for; if found, a dispatch
to the microroutine for interrupt handling is given.

When an interrupt occurs and the PI logic has completed the handshake, it informs the EBox by
asserting a signal P READY. This results in the microprogram generating a skip to a microinstruction
that asserts SPEC/SET PI CYCLE. As a result, Kernel cycle (normally false as long as P CYCLE is
clear) sets, and MCL VMA PUBLIC is disabled. This is necessary to disable the MCL PAGE ILLE-
GAL ENTRY signal when PI CYCLE sets because the interrupt instruction, which will be fetched
from a Kernel address, must not generate a page fault.

When the interrupt instruction is being fetched, User and Public may be set, or Public alone may be
set. In the last instance, a page fault would result if some action were not taken to prevent it. This is
why MCL PAGE ILLEGAL ENTRY is disabled (by setting PI CYCLE). At the time of the interrupt,
the state of the current user ACs is unknown. The instruction in 40 + 2n, therefore, must not disturb
the ACs in any way while transferring the flags and PC to the Kernel mode subroutine. Therefore, JSR
is a likely instruction for use in 40 + 2n. The JSR instruction causes the flags and current PC to be
stored in the effective address of the JSR instruction and then enters the subroutine by performing an
instruction fetch from E + 1. After calculating the effective address for the JSR instruction, the micro-
program performs a write test which, if successful, is followed by a branch via the DRAM J field to the
executor. Now the flags and PC are loaded to be copied into the AR for storage and are then disabled.
The microinstruction asserts SPEC FLAG CTL; this with PI CYCLE generates LEAVE USER, which
detaches the feedback path for User, User 10T, and Public. In addition, if User were set, User IOT
would be set at this time and represent ‘“Previous Context User.”” This is an indicator to the hardware
that previous context references must be in User mode. In any event, the processor enters Kernel mode
and begins to handle the interrupt.

2.7.4.5 User Concealed - This mode is useful for running certain proprietary programs in User mode
without allowing the user to discern the composition of the concealed program. For example, assume a
user has developed a program that performs circuit analysis. The user is a time-sharing house and
desires that this program be available to users for execution only, that is, the user must not be able to
read or write into this program.

In some computer systems, complex overlays in core memory are necessary to assure concealment of
the program from its users. In the KL10, this program has been solved by creating two submodes from
User mode, each with separate powers and each separate from the other. Both modes, however, run
with User on. Figure 2-56 indicates the hierarchial structure present in the KL10 processor. The User
Public program can only transfer to a concealed program at a selected entry called a Portal. The
instruction fetched must be a Portal instruction (JRST 1). The concealed program can read or write
data to the Public area. Figure 2-57 is the Concealed mode functional flow diagram.

EBOX /2-65

EFFECT ON
USER,PUBLIC,
AND PRIVATE PREVIOUS NEW

MODE

INSTRUCTION INSTR FLAGS MODE
* PUBLIC AND USER
MUUO CLEAR ,PRIVATE USER KERNEL
INSTR SETS
PUBLIC CLEARS,
ENTRY TO KERNEL MUUO PRIVATE SUPERVISOR| KERNEL
INSTR SETS
RESTORE A
KERNEL PROGRAM MUUO USER CLEARS CONCEALED KERNEL
FFECT
PORTAL MUUO NO EFFE! KERNEL KERNEL
KERNEL PRIVATE i
PORTAL) INSTR SETS, USER CONCEALED
(JRST 1 PUBLIC CLEARS
INSTR PRIVATE .
FETCH (':%ZTTA‘L) INSTR SETS, | SUPERVISOR | KERNEL
l PUBLIC CLEARS
MUU
LEVE?_ | READ OR WRITE DATA
XFER SUPERVISOR RESTORE A USER PUBLIC PROGRAM
(PUBLIC)
RESTORE A
CONCEALED PROGRAM
MUUO
LEVEL RESTORE A USER
XFER READ DATA \ PUBLIC PROGRAM
READ OR WRITE DATA USER — PORTAL
CONCEALED
B
MUUO H
LEVEL
YFER READ OR WRITE DATA
READ OR WRITE DATA USER {PUBLIC)
10-1626
Figure 2-56 Mode Hierarchy
USER MODE
CONCEALED
PUBLIC PUBLIC
PAGE PAGE
? ?
NOTE 1:
SEE NOTE 1 PUBLIC--1 THE CONCEALED PROGRAM MAY
PRIVATE INSTR-0 FREELY READ DATA FROM THE
PUBLIC ADDRESS SPACE AND
MAY WRITE INTO IT, PROVIDING
l THE ADDRESS SPACE IS WRITE
ENABLED.
USER MODE
PUBLIC
10-1627

Figure 2-57 Concealed Mode Functional Flow
EBOX/2-66

2.8 ADDRESS PATHS

The address paths contained within the EBox are illustrated in Figure 2-58. These paths are imple-
mented to facilitate the formation of the appropriate MBox virtual address. This address is transiated
by the MBox for KI paging mode and by the microprogram and the MBox for KL paging mode. The
MBox can generate the following two basic forms of physical addresses:

1. Refill Address (Relocated)
2. Physical Page Address (Paged)

The VMA serves as a source of data when loading the following MBox registers:

1. User Base Register (UBR)
2. Executive Base Register (EBR)
3. Cache Clearer (CCA)

In addition, it serves as an address and data source when loading the cache refill RAM. As indicated in
Figure 2-59, the VMA has the three following basic sources of input:

1. Previous Context Section register (PCS)
2. Virtual Memory Address Adder (VMA AD)
3. Adder (AD)
The following two major addressable areas are addressed by the VMA:

I. MBox
2. Fast Memory (FM)

The MBox may be addressed logically by two types of addresses. Within each type (18-bit and 23-bit

addressing) is a class of process table addresses. These addresses are identified to the MBox by the
qualifiers asserted during the EBox request (Table 2-7).

Table 2-7 Virtual Address Classification

Type of Address Class Addressing Information Supplied

18-Bit KI Paged VMA 13-17=0
VMA 18-26 = Virtual Page
VMA 27-35 = Quad Word

18-Bit KI Process Table Reference VMA 13—17 = MBox Ignores
VMA 18-26 = MBox Ignores
VMA 27-35 =Process Table Word

23 KL Paged VMA 13—17 = Virtual Section
VMA 18-26 = Virtual Page
VMA 27-35 = Quad Word

23 KL Process Table Reference VMA 13—17 = MBox Ignores
VMA 18-26 = MBox Ignores
VMA 27-35 = Process Table Reference

NOTE
There are several other special VMA combinations. These will
be covered elsewhere.

EBOX/2-67

BR¥*2

AR¥%4

ARX e

VMA HELD
OR PC

B004 0008

35D

PC e
TO VMA13-17

USED FOR PI, TRAPS,
MISC PC UPDATES

VMA AD

VMA PREV
SECT

AD13-17

® — THESE REGISTERS MAY ACTIVELY BE INVOLVED
IN SOME FORM OF ADDRESS. CALCULATION WHICH
WILL ULTIMATELY BE PLACED INTO VMA.

* — USED DURING KL10 STYLE PAGING ONLY

(D~ USED TO FORCE PC+1 OR PC+2

Figure 2-58 EBox Address Paths
Simplified Path Diagram

EBOX/2-68

-
MAGIC #

VMA
ADDRESS SOURCE OF
TYPE VMA 13-17 VMA 18-35 ADDRESS BY WAY OF
18BIT PC 13-17 VMA AD 18-35 PC VMA AD ',<
18BIT RECIRCULATED AD 18-35 E AD P
18 BIT CLEAR VMA AD 18-26=0, 2735 TRAP VMA AD é
18 BIT CLEAR VMA AD 18-26=0, 27—35 Pl OR SPECIAL VMA AD |
18 BIT RECIRCULATED AD 18-35 @ AD g
18 BIT RECIRCULATED AD 18-35 MISC AD
23BIT VMA PREV SECT AD 18-35 PC 13—17 OR E BUS VMA PREV SECT AD | ¢
13-17 L
23 BIT AD 13-17 AD 18-35 E (EXTENDED) AD PA
23 BIT CLEAR VMA AD 18—26=0, 2735 TRAP VMA AD G
23 BIT CLEAR VMA AD 18-26=0, 27—-35 Pl OR SPECIAL VMA AD :“
23 BIT PC 13-17 VMA AD 18-35 PC VMA AD G
USER ~ USER
KI PAGING KL PAGING Ki PAGING KL PAGING
MODE MODE MODE MODE
VMA VMA 13-33=0 VMA 13-33=0 VMA 13-33=0 VMA 13-33=0
AC VMA 32-35= VMA 32-35= VMA 32-35= VMA 32—-35=
REF FM ADDRESS FM ADDRESS FM ADDRESS FM ADDRESS
[USER PUBLIC] [USER PUBLIC] [SUPERVISOR] [SUPERVISOR]
PUBLIC
VMA 13—-17=0 VMA 13-17=SECT VMA 13-17=0 VMA 13—17=SECT
~ VMA 18-26= VMA 18—26= VMA 18-26= VMA 18-26=
VMA VIRTUAL PAGE VIRTUAL PAGE VIRTUAL PAGE VIRTUAL PAGE
AC VMA 27-35= VMA 27-35= VMA 27-35= VMA 27-35=
REF QUAD WORD QUAD WORD QUAD WORD QUAD WORD
[USER PUBLIC] [USER PUBLIC] [SUPERVISOR] [SUPERVISOR]
VMA VMA 13-33=0 VMA 13-33=0 VMA 13-33=0 VMA 13—33=0
AC VMA 32-35= VMA 32-35= VMA 32-35= VMA 32—-35=
REF FM ADDRESS FM ADDRESS FM ADDRESS FM ADDRESS
[USER CONCEALED] [USER CONCEALED] [KERNEL] [KERNEL]
~ PUBLIC
VMA 13—17=0 VMA 13-17=SECT VMA 13-17=0 VMA 13—-17=SECT
~ VMA 18-26= VMA 18—26= VMA 18—26= VMA 18—26=
VMA VIRTUAL PAGE VIRTUAL PAGE VIRTUAL PAGE VIRTUAL PAGE
AC VMA 27-35= VMA 27-35= VMA 27-35= VMA 27-35=
REF QUAD WORD QUAD WORD QUAD WORD QUAD WORD
[USER CONCEALED] [USER CONCEALED] [KERNEL] [KERNEL]

NOTE: THIS IS THE GENERAL FORMAT ONLY.

10-1628

CWSY o0

| .JVMA PREVSECT<—@
ASSUME ZINITIALLY: PUBLIC <— {

USER =1

KL PAGING MODE ® KI PAGING MODE
PROGRAM w

PROGRAM
RUNNING RUNNING

@
CURRENT)\ VMA 13-17<—AD13-17 wgzo. WORD, \.VMA 13-17 RECIRCULATES f/viimnreNT
SECTION “{pAaTA FETCH DATA FETCH| SECTION
=0-37 OR OR :
STORE STORE
VMA 13-17e—PC13-17 VMA 1317 +—PC13-17
INSTR INSTR e
(FETCH FETCH)
[NORMAL] [NORMAL]
VMA 13-17 CLEARS YMA 13-17 CLEARS
OTHERWISE
SPECIAL . - . SPECIAL
VMA 1317 «—AD13-17
PI, TRAP o INSTR'S PI, TRAP
SXCT
=
~ TRANSFER TO =
- EXEC MODE .
1 [t}
- ©
g 3
z VMA PREV SEC >
f nsTR's | B17e—AD1w [|
MUUO -
L—) S}
o w
" w
2 @
© ~ TRANSFER TO x
o \ N EXEC MODE
s \ h s
> \ \\ >
\ N
MUUO, E
PREV OLD PC WORD
CONTEXT | GWSX (1) PROCESSOR ENTERS EXEC
REFS FOR NEW PC WORD VODE
USER
MONITOR READS THIS | CWSX+VMA
I
CWsx (@) PREV SECT
INSTR'S
PXCT
ARMM 13-17 IS NORMALLY=PC13-17 BUT
FOR PXCT OR EXEC PREV CONTEXT OPS
ARMM:=VMA PREV SEC 13-17 AND
ARMM 12 = CWSX
10-1629

Figure 2-59 Typical VMA 13-17 Manipulations

EBOX/2-69

For these process table references the EBox supplies valid addressing information only on VMA bits
27-35. The MBox replaces VMA 13-26 with the PMA mixer 14-26 to generate a proper physical
address. 4 h

2.9 DATA PATHS
The specific address and data paths in the EBox are illustrated in Figure 2-60.

The functional elements in the address path between the VMA at the MBox/EBox Interface and the
primitive address source involved in forming the virtual addresses are:

Virtual Memory Address Register (VMA)
VMA Held or PC Mixer

VMA Held Register

VMA Previous Section

VMA Mixer

VMA Adder (VMA AD)

SCD TRAP Mixer

ADDER (AD)

Arithmetic Register Extension (ARXML)
Arithmetic Register (AR)

Program Counter (PC)

Microinstruction Number Field

Other Miscellaneous EBox Registers

The appropriate virtual address is formed by the VMA under explicit control of the VMA control and
the microprogram.

2.9.1 Virtual Memory Address Register

The VMA is loaded during an EBox request and remains latched until the MBox responds (Figure 2-
61). The VMA is a 23-bit register that accepts input from a double mixer arrangement. Thus, the
incrementing or decrementing is performed in the register itself. When both VM A SEL 2 and 1 are
clear, the lower mixer is enabled into VMA. The level VM A « AD selects AD as input. The default is
VMA AD as input.

/In general, the VMA AD contains one of the following:

PC (18-35)

PC+1 (18-35) + (1)

PC+2 (18-35) + (2)

Process Table Address (27-35)
Fast Memory Address (32-35)

The AD contains one of the following:

Effective Address
@ Word Address
Some Special Address

The VMA Held register is loaded during each MBox memory request [MEM 02 (1)]. The left-most 12
bits of VMA Held are loaded with the request qualifiers, type of paging, context of the reference, and
various other signals asserted during the request. The right-most 23 bits of VMA are preserved in
VMA Held right. The contents of VMA Held are used during KL Paging mode to buffer the request
state while the page fault handler sets up an MBox Page Refill cycle. This operation is generally
described in Subsection 1.2.4.2, KL Style Paging and is described later in greater detail.

EBOX/2-70

A AR 36 r—-.-—_——__———_-——_-_——____---__-—----‘

AR PAR sSPaM | Fune {sionaLs I —] A
oop 00 SHIFT |
i} 9
ol AR SHIFT INH | SCAD CRY IN !
FM DD PARITY o ARX AET AR, | SCAD CRAM SCAD | I
1 arswap [0 H | CRAM SCAD2 |
SCAD SI
o o o - o o s o = e o e e = s o o ooy s e e e 2 s I
i = [8 va SCAD 50
| ‘ ' . e r] l A |
| CURRENT BLOCK I ! I I 2 2 CRAM E = !
i o 1 ! | m ! I I CRAN SCADBSEL 2 scap s SCAD A SEL 2 SCAD A SCAD A DIS !
1 .] wRITE] :] | ™ | : CRAMSCADB SEL 1 3 2) cRAM SgADA s 2 \ i
¥ ¢
I PREVIOUS BLOCK ———> 1 ! FM BLOCK 4,21 I -CLK MBXFER osEL IR =t IR . f ! sn-mmuc“g_’ 0= SHIFT AR, ARX !] o AR SIZE - AR POS !
| Lola ¥ | oL TR —1roup (INSTR) (40) I | seL2 ™) - 1 4R 00-08 anexe |
! o5 | | i] s cram _f2- arx | [o AN] [9 s
i H-ARMM SEL1 3- ARSWAP | I sc ! L FE
I |current] xr PREVIOUS | L olg | ! cACHE AD I ! ! | |
BLOCK (AR} (aRX)
I w—sf? ! ! | I | scoResET |
] | e e e e e e M8s22 | o M8510_ | Il cramscmseL2 CRAMFE LoD
i | e e - o L || Srecea !
l _______.._________..___._____....._..1I
rey ! [A% !
1 eock MCL VMA MCL LOAD !] ! MB8524 !
T I PREV EN VMACONTEXT ,c_ .l | LL____..__.__._.__........___________.____.___ E
N . acal o ———— o —_——————— o o ———
T ! < ' | B - - o
E : ARX 14-17 —»l2 I | U
0 17 18 35 Q s
F VMA 32-35 513 | 38
A] ‘?‘DEQER ACH FM ADR10,4,2,1 ARL LOAD —{LOAD ARR LOAD—|LOAD ARX LOAD ARX MO 0:LOADL o sy 2 I
¢ TR AC 09 -12 —»| NET, I 1 =SHRT]
E ! P — | o ,) ::::tg»——noszu 1]
| P ac+2 1 T 7 T I
: Acs+3 | |
o 17
M8539 ! AR CLR AR CL L2 22 QM EN [
o e o o e o o o e e e) L AnSELS ARM ARSEL S ARM CRAM ARXM SEL 4 MQM SEL 2 |
L T Mo e s s 2 7N MW o 1 o3 a5 2 v AL HaN SEC 1 i
VHA HELD OR PC P VRARED R P T) i | st | abx | em | atx i
13 35 1 o | iy | cacHe emus %2\[/~4 CACHE EBUS #2\|/+4
SEL VMA HELD | el i I
1 1 | -2 35 0 35 |
] ADCRY36 ADXCRY36 o o o -
| SCO Flags VMA FIAGS : i | CRAM AD SEL & AD r
i 35 | | 1 I I CRAM AD SEL 4]
¥ CRAM AD SEL 2
LOAD PC PC LOAD VMA PREV VMA HELD e e MB530 4y | CRAM AD SEL 1] o runcrion | CRAM[cono [Ma [ma | ma
| CRAM AD BOOLE 18 A +a te A +4 | vas|ma# | En | sEL | seL
VMA 1315 3 7 | HOLD o | - o oo |1t
] o o [#3 [o [00] o0
LOAD PREV CONTEXT A PREV SEC 1 ~CRAM ADA DIS CRAM ADA DIS ! SHIFT LEFT. o [#1 [00 [10
B CRAM ADA SEL 2 ADA Apxa ! sH - |1 ol |eo
A0 i1 CRAM ADA SEL | | 2 3 | " @35 | 1 | 1o | oo
l l SHIFT RIGHT %2 1 #1 ! 00 0C
vMA (7-26 VHA 13-36 \ on aix M e | i [I I T
D—’\fmrcn ! CRAM ADB SEL 2 ADB \ / " I OIV (SHLEFT) o | - o joo ji
] 3 35] ! CRAM ADB SEL | o | 3 \ / ADxE MUL (SHRT %2)] - ! 00 | oo
VMA SEL 2 | \ 2 ! 2 I RESET (1) = - T I 00
ADR BREAK | W i CLR) - [] 00 | 00
VMA SEL 1 l x BR¥*2 *2 ‘
. ps 1
[AR% 4 | ARX %4]
VHA SEL 2| VMA SEL I | FUNC P! [35 o 3 I tove:
! s AR SHIFT (fill on loft with ARI8)
[0| vmA < VvMA CRAM BR LOAD B8R CRAM BRX LOAD —|
o i VMA <~ VMA+ 1] : ! Bex '
!] VMA <-VMA- | 1 I
VMA <-AD 1 | VMA LOAD] | i
(N8 Mesi2 -
| _—_———__-___::::::______::_____..._...__.._.._._.__._.__...__._.___
VMA INC I '— —l
SPEC/ VMA = # | i 00 o8 13 17 i
M8523 | CRAM SH-ARMM SEL 2 ARMM ARMM |
i e o o [N o | | CRAM SH ~ ARMM SEL | o | 2 3 ° ' I
#3234 T
r N | w T scap PCI3AT VMA PREV |
| arsion P scaopos 13-17 1
SMEAR
CRAM VMA SEL 2 | I
v ~PCH+I INK M8524 g v
e e e e o e e o o = = o S o S o = ——

| |
|]
| I
] I
| COND EN 30-37 i
| |
| |
| !
| !

SCD TRAP MIX COND 03
COND 04
ot 2 3 &4 5 6 7 CoND 05
[}
chu»os-oe_j_l_f t [
AR32-35
I- PI4,2,1,#8 mMs524 _.I
——— - - — 10-1529

Figure 2-60 EBox Data and Address Paths

EBOX/2-71

13 17 i8 ™ 35

A A | vMA SEL 2
v
N\ —vmMa sEL 1

f \{o- LOAD
SPECIAL 1-INC
CONTROL 2-DEC
SEE FIG. 3-HOLD

2-49 / 3. 2 1 0 x

VMA‘—ADﬁ/ 0 MIX 1 \

f f

VMA AD AD

10-1630

Figure 2-61 VMA Inputs

The first three selections (Subsection 3.2.1) enable the output of VMA into the VMA register for any
of the following select codes:

VMA SEL 2 (0) and VMA SEL 1 (1) - Increment
VMA SEL 2 (1) and VMA SEL 1 (0) - Decrement
VMA SEL 2 (1) and VMA SEL 1 (1) - Hold

2.9.2 Program Counting

The PC is normally loaded from VMA at NICOND Dispatch, except when PI Cycle is true; this
prevents alteration of PC during priority interrupt handling. When the processor is ready to fetch an
instruction in sequence, the incremented PC address is supplied to VMA via the VMA AD. The VMA

then supplies the address to PC. Thus, program counting is effected by the loop of PC, VMA AD,
VMA, and back to the PC (Figure 2-62).

Mhen a skip condition is satisfied, this loop is used to advance the PC during the instruction execution
cycle. The PC, therefore, is automatically updated at NICOND time and if the skip is satisfied, it is
updated a second time, pointing PC to the location two beyond the current location.

The PC output is available to the AD for saving a return address in a subroutine call JRST, MUUO,
or similar instruction. Generally, the address saved should be for a return to the next instruction, i.e.,
the instruction that would have been performed had the call or jump not occurred. However, if an
instruction is terminated because of a page fault or interrupt, the current address must be saved for a
later return to the beginning of the interrupted instruction.

2.9.3 Loading PC
New addresses are always supplied to PC via the VMA regardless of the point of origin. The update of

the PC or its inhibition is controlled by the microprogram. The following conditions cause PC+1 INH
to set, inhibiting the update of PC via VMA AD:

Priority Interrupts — Setting PI Cycle

Console Instruction Execution

Halting the Processor - Halted

Performing the Trap instruction in process table location 421, 422, 423

EBOX/2-72

VMA

—PC+ 1 INH—
CRAM VMA=PC +1—

Figure 2-62 Program Count Loop

10-1631

The PC is loaded at NICOND Dispatch time (Figure 2-63), providing PI CYCLE is clear. In addition,
the special field function LOAD PC may also be used to load PC from VMA. During page fault
handling, the SPEC/LOAD PC function is used to save the failing virtual address (VMA) in PC while
saving the current PC value in ARX. Basically, the MBox builds a page fault status word in its EBus
register. The physical page number is stored in bits 14-26 of this word. The EBox page fault handler
must replace this address with the virtual page number in VM A 14-26 and then store the updated page
fault word in user process table location 500. The operation is as follows:

Simplified Microprogram Steps Ref PF Handler

1. ARX « old PC, PC « failing VMA
AR ~EBus Register; PF word

2. BRX+~ARX; old PC~ ARX AR; PF WORD
AR+ PC; failing VMA

3. At this time, the AR and ARX are Ref PF Handler shifted in such a way as to discard the
physical page number and align the proper virtual page number in AR 14-26.

A second case is where SPEC/LOAD PC is used while halting the EBox. In this case, either a Console
Halt was issued via the 10-11 interface, or a Halt instruction was performed in either user IOT mode or
Kernel mode. The VMA is loaded with the current PC and the PC is loaded with the effective address
currently held in VMA. At the time of the halt, the PC value in VMA points to an address one greater
than the location containing the Halt and the PC contains E. PC+1 INHIBIT is set to prevent pre-
mature incrementation of the jump address now in PC.

EBOX/2-73

DISP/NICOND : 13

| SPEC/LOAD PC) LOAD PC Pe

P—

VMA

PI
CYCLE

CON NICOND CON LOAD
— SPEC INSTR
RESET— 7 ::::>——— CON PC+1INH

PC+1
INH

CON CLOCK — [
SCDTRAP MIX35
VMA SEL2:=PC+1 "TO VMA AD B INPUT"

#02 (1)

COND/SPEC INSTR

COND VMA DISP ##

Ny

MICRO INSTRUCTION

hA

10-1632

Figure 2-63 PC Loading or Inhibit

2.9.4 General Data Path Organization
The data path (Figure 2-60) is divided into four major areas, as listed in Table 2-8.

Fast Memory and Fast Memory Address Logic

Virtual Memory Address, Program Counter and related logic; 23- and 18-bit logic
Arithmetic logic - 36-bit logic

Instruction register — 12-bit logic

P

All of these areas derive control functions from specific fields in the microinstruction.

2.9.5 General Data Path Mixer Selection

The microinstruction or microword consists of 75 bits including parity. It is organized into variable
length fields that are used to control the data path and control sections of the EBox. In the following
pages each field is described functionally in terms of the particular logic with which it is associated.

2.9.5.1 AD Field - This field consists of six bits and is used to control the main adder (AD and
ADX), that is constructed of type 10181 Arithmetic Logic Units. Table 2-9 lists the ALU functions.
The low-order four bits specify one of 16,0 functions. These functions are Boolean or Arithmetic as a
function of bit 1 (the mode bit). If bit 1 is a one, the functions are Boolean,; if zero, the functions are
Arithmetic. Bit 0 is the carry in, when true it adds +1 to any Arithmetic function.

EBOX/2-74

Table 2-8 Data and Address Path Breakdown

Major Area

Microfield

Fast Memory

Virtual Memory Addressing

VMA HELD
PC FLAGS (PC LEFT)

PC (RIGHT)

IR

Shift Count and Auxiliary Arithmetic 10-Bit Logic

Arithinetic 36-Bit Logic and 72-Bit Logic

72-Bit Operations Require SPEC/AD Long

FMADR Field
COND/FM Write

VMA Field
COND/VMA < #
+ x (see Note)
COND/VMA DEC
COND/VMA INC

COND/LDVMA HELD

COND/AD Flags
COND/PCF « #
SPEC/LOAD PC
DISP/NICOND with PI Cycle (0)

COND/LOAD IR

SCAD Field
SCADA Field
SCADB Field
SC Field

FE Field

AD Field
ADA Field
ADB Field
AR Field
ARX Field
BR Field
BRX Field
MQ Field
SH Field
ARMM Field

NOTE

X is a constant selected by the low-order three bits of the

COND code.

EBOX/2-75

Table 2-9 ALU Functions

BOOLEAN - BOOLEAN

CIN M S S S S FUNCTION CARRIES

0 I 0 0 0 0 A A

0 I 0o o0 0 1 AVE A+(AB)

0 10 0 1 0 AVB A+(AB)

0 10 0 1 1 1 2FA

0 I 0 1 0 0 AB AVB

0 I o 1 0 1 B (AB) + (AVB)

0 10 1 10 EQV A+B

0 1 0 ! I 1 AVE A+(AVB)

0 1 1 0 0 o0 AB AVB

0 1 1 0 0 1 XOR A-B-1

0 1 1 0o 1 0 B (AVB) + (AB)

0 11 o0 1 1 AVB A +(AVB)

0 11 1 0 0 0 -1

0 1 1 10 1 AB AB-1

0 1 1 1 1 0 AB AB-1

0 11 | N A A-1
ARITHMETIC ARITHMETIC

CIN M S, S S S FUNCTION CARRIES

0 0O 0 0 0 O A A

0 0 0 0 0 1 A +(AB) A+ (AB)

0 0 0 o0 1 0 A +(AB) A + (AB)

0 o0 0o o0 1 1 2% A 2% A

0 0 0 1 0 o0 AVB AVB

0 0 0 1 0 1 (AB)+ (AVB) (AB)+(AVB)

0 0 0 1 10 A+B A+B

0 0 0 1 11 A +(AVB) A+ (AVB)

0 o 1 0 0 0 AVB AVB

0 0O 1 0 0 1 A-B-1 A-B-1

0 01 0 1 o0 (AVB) + (AB) (AVB) + (AB)

0 o 1 0 1 1 A+ (AVB) A +(AVB)

0 0 1 1 0 0O -1 -1

0 0o 1 1 0 1 AB -1 AB -1

0 0 1 1 1 0 AB -1 AB -1

0 o 1 1 1 1 A -l A-l

NOTE: If CIN is true, add +1 to the given arithmetic function. Carry out is true if the adder,
extended left, would need carry in to generate the correct function.
Carry Out is not affected by the mode (i.e., BOOLEAN FUNCTIONS give the same
carry as the ARITHMETIC FUNCTIONS).

EBOX/2-76

For Boolean functions, the carry in can cause a carry out if the corresponding Arithmetic function for
the same S-bits would have produced a carry given the appropriate inputs. For example, assume the
AD function to be performed is A and the A input equals 777777,777777. The Boolean function A
performs the Is complement of the A input, which yields a result of 000000,000000. The corresponding
Arithmetic function is A and thus, if carry is true, this yields A + 1. Using the existing A input
777777,777777 +1 gives a sum of 000000,000000 and a carry. If the Boolean function A is given and
carry in is true, assuming the same A input as above, the function out is 000000,000000 and a carry is
generated.

The 10181 may be thought of as concurrently performing the Arithmetic operation specified and the
Boolean operation specified; the sum, however, is not affected when the Boolean functions are imple-
mented, yet the state of Carry Generate and Carry Propagate will reflect the Arithmetic result that
would have formed the sum.

MC10181 Arithmetic Logic Unit Description
Figure 2-64 is an overview diagram of the ALU logic. Table 2-10 lists the ALU functions, with carry.

GEN = A(S: B + S;3B)
PROP = A + §;B + S,;B

Signals GEN and PROP are used in each digit to generate the output signal Fn. In the logic mode,
carries are inhibited on the output stage, and the logic function F is given by

F GEN v PROP (XOR)
(The output function is the Exclusive-Or of the two internal signals GEN and PROP).
When adding two numbers, in the absence of a CARRY IN, the Exclusive-Or function is the function

required. A CARRY IN signal always complements this in this circuitry by controlling the final Exclu-
sive-Or on the output stage.

LOGIC LOW

ARITH MODE L 2" CARRY HIGH

CARRY IN L Q

sg—d SgAB
5 89) 8
9 GEN A(SgB+S4B) D
Fn
[: Sq—(g) S4AB

A g

S1—d SyB PROP A+SB+S558
<
B

ALL SIGNALS LOW:=TRUE
GEN=A(S4B+SgB)
PROP=A+S{B+Sp2B
10-1633

Figure 2-64 ALU Overview

EBOX/2-77

Table 2-10 ALU Functions With Carry

Code GEN- PROP Logic Fn Arithmetic
s, S, g S, CARRY LOW CARRY HIGH
0 0 0 0 A 0 A A A+l
0 0 0 I A AB AVB A+AB A+AB+HI
0 0 1 0 A AB AVB A+AB A+AB+]
0 0 1 I A A 1 2%A A
0 1 0 0 AVB 0 Al AVB AVB+1
0 i 0 1 AVB AB B ABHAVB) ABHAVB)*H
0 I 1 0 AVB AB EQV A+B A+B+1
0 1 1 1 AVB A AVE A+(AVB) AHAVB)+I
1 0 0 0 AVB 0 AB AVB AVB+]
1 0 0 1 AVB AB AVB AB 1 AB _
I 0 I 0 AVE AB B ABHAVB) ABHAVB)*+1
I 0N 1 1 AVB A AVB A+HAVE) A+HAVB)*1
1 1 0 0 | 0 0 - 0
1 1 0 | 1 AB AB AB 1 AB
1 1 1 0 1 AB AB AB | AB
1 i I 1 1 A A Al A

NOTE

All signals high true except GEN and PROP.

The MC10181 carries out an addition by converting the two numbers at A and B to two alternative
signals GEN and PROP, given by

GEN = AB (Ss=1,8,=0)
PROP = A+B (8, =1,8,=0)
For example:
A = 0011 3
B = 0101 5
f then AB = 0001 1 (GEN)
J/ ~ A+B = 0111 7 (PROP)
SUM = 1000 8§

Adding any two numbers A and B is equivalent to adding the two functions AB and A+B. However,
the advantages of the second part are that one (AB) shows when carries should be generated, while the
other (A+B) shows when carries should be propagated. The final sum is the XOR of the two numbers
(AB and A+B), complemented by the CARRY IN signal.

GEN
PROP

A(SsB + S4B)
A+ S, +S;B

i

These two equations show that PROP is generated whenever A is true, which is a requirement for
GEN to be true, i.e., GEN implies PROP, and thus whenever GEN is a one, PROP is also a one, and
thus GEN plus PROP must generate a carry.

EBOX/2-78

GEN is sufficient indication of carry generation. Similarly, PROP is sufficient indication of carry
propagate.

High Logic ' :
Actually, the circuit was designed to promote understanding for low logic, and the descriptions and
tables given in the literature are far clearer for this case.

Although the circuit does give the correct answers for high logic, the circuit does operate on the low
signals. Thus, an addition can be considered as an addition of the zeros, with carry generated from the
addition of two zeros, and propagated, as before, by the XOR of the two numbers.

A =00110

B =01010
10011 XOR
10001 GEN
11101 PROP

COUT « 10000 < Cin(low)
COUT « 10001 <« Carry (high)

The correct answer, therefore, occurs when Cin is asserted to the least significant bit. This can be
viewed in two ways:

I. Carry is asserted high. In this case, the function considered above is Fn = A plus B and carry
input adds a one. This is simple, but GEN and PROP meanings become obscure (especially
when passed through the LOOK-AHEAD CARRY block).

Generate = > (G = High and P = High)
Propagate = > (G = High)

[¥]

Carry is asserted low. In this case, the above function is Fn - A plus B plus 1, and the carry
input subtracts a one, but hardware is simple to foliow:

Generate = > (G = Low)
Propagate = > (P = Low)

To functionally describe the use of the various Boolean and Arithmetic functions, it is first necessary to

define two other microinstruction fields which are used to enable various data to the AD A and B
inputs. The first field is ADA, a 3-bit field. ADA can select the inputs shown in Figure 2-65.

FIELD CODEg INPUT

0 AR%*4
1 ARX

ENABLE
2 MQ SEI2
3 vMA OR pc SETI

|
AR*4 ARX MQ VMA
OR PC

16-1635

Figure 2-65 ADA Example

EBOX/2-79

The second field is ADB, a 2-bit field. ADB can select the inputs shown in Figure 2-66.

e

FIELD CODEg INPUT

0 FAST MEMORY

1 BR X 2

2 BR

3 AR X4 . T
*ADR also controls ADXB, FM BR¥*2 B2 AR*4

See ADB Field.
10-1634

Figure 2-66 ADB Example

The following examples illustrate various operations that might be performed using EBox registers and
the ADA or/and ADB input mixers. No guarantee is made that the operations illustrated are used in

the microcode.

Example: A - Function 20
Initial Conditions: AR = 010101, 101010
ADA Field Function = 0

The function A performs the 1s complement of the data in AR (Figure 2-67). The AD funétion output
is 767676,676767. Note that at this time the Carry In is false. No carries are generated in thlS example

because the corresponding carries function is A (Table 2-9).

Example: AB - Function 24
Initial Conditions: ARX = 777777,777777
FM = 777777,777776

ADA Field = 2
ADB Field = 0
NO CARRY ,
FUNCTION
—‘— FURCTION - 767676,676767
FCN v
=4 0 \
A
t FCN
/ ADA 0
/ 010101,101010 | AR

10-16386

Figure 2-67 Function A

EBOX/2-80

The Boolean function AB performs the logical AND of the complement of A with the complement of
B (Figure 2-68). The value in ARX is selected on the ADA input mixer (777777,777777) and the value
in some addressed fast memory location is selected on the ADB input mixer (777777,777776). The
result presented to the function output is 000000,000000. Referring to Table 2-9, the corresponding
Boolean carries function is A v B; carries are generated for the given values of A and B. For any values
of A and B, no carries are generated.

Example: AB - Function 36

Initial Conditions: AR 000000,100001
BR 000765,100070

ADA Field 0

ADB Field 2

NO CARRY —
FCN
24

)]l
T S

TT7TT77,777776 [777777,777777 J AR

FUNCTION
" QUTPUT 000000,000000

FAST MEMORY

& P 10-1637

Figure 2-68 Function AB

The Boolean function AB performs the logical AND of A and B (Figure 2-69). The value in AR
(000000,100001) is ANDed with the value in BR (000765,100070) and the result presented to the
function output is 000000,100000. Referring to Table 2-9, the corresponding carries function is AB - 1
and, given the existing inputs, it can be demonstrated that a carry from the most significant bit results
if the AND of any two values results in a nonzero sum. The following demonstrates this:

000000, 100001
A 000765, 100070
000000100000
+ 77777 7,777777
1 <« 00000077777

AB Example: A - Function 37
Initial Conditions: ARX = 000000,000100
ADA Field = 2

EBOX/2-81

A CARRY IS
GENERATED FUNCTION 000000, 100000
. OuUTPUT !
FCN ? . AD \
36 A 1
FCN N\ FCN
o] ADB / ADA 0

l l

BR [OOO?GSJOOO?O I lT)OOOOOJOOOOl J AR

10-1638

Figure 2-69 Function AB

The Boolean function A produces (at the function output) the value at the ADA input (Figure 2-70). In
this example, the result is 000000,000100, but notice that the corresponding carries function is A - 1.
Subtracting 1 from 000000,000100 is equivalent to adding -1, which is 777777,777777 in 2’s com-
plement notation. The result gives a carry out of the most significant bit of the AD (CRY 0). Thus,

although the sum represents the ADA input 000000,000100, a carry is generated.

A CARRY IS
GENERATED FUNCTION _
OUTPUT = 000000, 000100
FCN
37 _g AD \
A\ l
ADA FCN
o 1 2 3 2

000000,000100 | ARX

10-1639

Figure 2-70 Function A

2.9.5.2 ADA Field - This field consists of three bits and is used with the main ADDER. Referring to
Table 2-11, the low-order two bits select AR(0), ARX(1), MQ(2), and VMA HELD or PC(3). The
high-order bit is used as a disable. This bit also controls ADXA. When the high-order bit of the ADA

field is zero, ADXA selects ARX and when it is one, it selects zeros.

2.9.5.3 'ADB Field - This field consists of two bits and is used in a similar fashion to that of ADA in
conjunction with the main ADDER. Referring to Table 2-12, the selection is as follows: FM(0),

BR*2(1), BR(2), and AR*4(3).

EBOX/2-82

Table 2-11 ADA, ADXA Selection

CRAM ADA Source ADXA Source
0 AR ARX
1 ARX ARX
2 MQ ARX
3 PC ARX
4-7 Os Os

Table 2-12 ADB, ADXB Selection

CRAM ADB ADB Source ADXB Source
0 FM (unused)
1 BR*2 BRX#*2
2 BR BRX/2
3 ARX*4 ARX*4

In addition, ADB directly controls ADXB utilizing the same 2-bit field. Here the selection is unused
(0), BRX*2(1), BRX/2(2) and ARX*4(3). Although AD and ADX together with ADA, ADXA, ADB,
and ADXB normally function concurrently, information in ADX does not affect AD unless so speci-
fied. Carries from ADX must be specifically enabled to AD in order to affect its sum.

2.9.5.4 AR Field - This field consists of three bits. Figure 2-71 details the breakdown of various
combinations of CRAM AR Selection and hardware controlled selection. Generally, the CRAM AR
field specifies selection as follows: ARMM(0), CACHE(1), AD(2), EBUS(3), SH(4), ADX*2(5),
ADX(6) and ADX/4(7).

AR register loading is controlled by either the hardware or microcode. Normally, the AR register
recirculates its contents. Selecting any of the AR select lines CRAM ARM SEL 4, 2, or 1 enables
loading AR. The selection of none of the CRAM ARM SEL lines enables the AR mixer to select
ARMM. The loading of AR is then a microcode function.

During reads from core, the signal CLK RESPONSE MBOX, selects ARM SEL 1 to enable the cache
data lines into AR. Similarly, on reads from fast memory via AD, FM XFER selects ARM SEL 2 to
enable the AD into AR. Various combinations of clearing of AR are possible depending on the condi-
tions. This information is given in table form on Figure 2-71.

EBOX/2-83

SIGNAL

FUNCTION

CTL ARO0-11CLR

ENABLES LOADING 0'S INTO
AR 00-08

SIGNAL FUNCTION
CTL REG # 00 ENABLES MICRO CODE LOAD
CTL AR 00—11CLR ENABLES LOADING 0'S INTO ARMM INTO AR [COND/REG
AR 09-17 CTL]
CTL REG # 01 ENABLES MICRO CODE TO CTL COND/ARLL ENABLES MICRO CODE TO
LOAD PC/SECT 13—17 INTO LOAD LOAD ARMM INTO AR
AR [COND/REG CTL]
CTL ARL SEL 4,2,1 TO ENABLE LOADING AR
CTL COND/ARLR ENABLES MICRO CODE TO 00—08 WHEN ANY ARL
LOAD LOAD PC/SECT INTO AR SEL 1,24

CTL ARL SEL 4,2,1

TO ENABLE LOADING
AR 09—17 WHEN ANY

CTLARLIND A
CRAM # 01

TO ENABLE AR 00—-08 TO
BE LOADED VIA ARRM

SIGNAL FUNCTION
CTL ARRCLR ENABLES LOADING 0'S INTO
AR 18-35
CTL REG# 02 CURRENTLY USED TO ENABLE

SER # TO BE LOADED INTO
AR 18-35

CTL COND/ARR LOAD

CURRENTLY USED TO
ENABLE SER # INTO ARR

CTL ARM SEL 4,21

ENABLE LOADING AR 18-35

SEL 1,24 INDEPENDENT OF AR 09-35 ON ANY ARM SEL 4,2,1
CTL AR 09-17 LOAD CTL AR 00—08 LOAD 3 CTL ARR LOAD
00 08 09 17 18 ——— 35
g
ARLL ARLR ARR
CLK DP—
CTL AR 00-11CLR —EN EN
CRAMSEALRIX ARM 4 ARM 4 ARM
SIGNAL FUNCTION 2 2
/i 0 1 2 3 4 5 6 7 10 1 3 4 5 6 7 —1 0 1 2 3 4 5 & 7
MCL 23 BIT EA EXTENDED EA CALCULATIONS | | | | | |
ARMM AD SH ADX CACHE | EBUS | AD%2 | ADX14 SER # AD SH ADX
CTL AR 12-17 CLR SEE TABLE AR 12-17 CLR CACHE EBUS AD¥2 ADXi4 PC/ SH ADX CACHE EBUS AD¥%2 ADXi4
SECTION CTL ARL SEL 1
‘ SIGNAL FUNCTION
CTL ARR SEL 2
DIAG LOAD AR VARIOUS USES FOR EXAMPLE
SIGNAL FUNCTION LOADING AN INSTR INTO AR
VIA DTE-20 FOR EXECUTION
DIAL LOAD AR VARIOUS USES FOR EXAMPLE
LOADING INSTR INTO AR VIA CTL ARL IND SEL 1 MICRO CODE MUST CONTROL
DTE-20 FOR EXECUTION OR SELECTS ONE OF THESE
BOOTSTRAP SEQ CACHE, E BUS, AD*2, AD/4
. CRAM ARM SEL 2 SELECTING ONE OF THESE MCL LOAD AR A READ INSTR ON OCCASION
AD, E BUS, ADX, AD/4 CLK RESP MBOX OR DATA VIA MBOX
CTL ARL SEL 2 — | CTL ARRSEL 1 CON FM XFER A READ INSTR ON OCCASION MCL LOAD AR DIAGNOSTIC FUNC
AR 1217 CLR MCL LOAD AR OR DATA VIA FAST MEMORY CLK RESP SIM
SIGNAL FUNCTION SIGNAL FUNCTION
SIGNAL FUNCTION CTL DISP/A READ ENABLE E VIA AD INTO ARR
DIAG AR LOAD VARIOUS USES FOR EXAMPLE DIAG LOAD AR VARIOUS USES FOR EXAMPLE
LOADING AN INSTR INTO AR LOADING AN INSTR INTO AR MCL 18 BIT EA NON EXTENDED EA CALCU—
VIA DTE-20 FOR EXECUTION VIA DTE-20 FOR EXECUTION LATION
L_| cTL ARRCLR
CTL ARL IND SEL 2 MICRO CODE MUST CONTROL CRAM ARM SEL 1 SELECTING ONE OF THE CTL RESET POWER CLEAR DIAGNOSTIC
SELECTING ONE OF THESE FOLLOWING CACHE, E BUS, FUNC SIGNAL FUNCTION
AD, E BUS, ADX, AD/4 AD*2, AD/4
COND/AR CLR ALLOWS MICRO CODE TO CTL RESET POWER CLEAR OR DIAGNOSTIC
CON FM XFER A\ READ INSTR ON OCCASION MCL LOAD ARA READ INSTR ON OCCASION CLEAR AR 00-17 FUNC
MCL LOAD AR OR DATA VIA FAST MEMORY CLK RESP MBOX OR DATA VIA MBOX
ARL IND A ALLOWS MICRO CODE TO CTL ARL IND A ALLOWS MICRO CODE TO
CTL 36 BIT EA DURING A READ WITH CTL MCL LOAD AR A DIAGNOSTIC FUNC CRAM # 04 CLEAR AR 00—17 INDE— CRAM # 05 CLEAR AR 18-35 INDE—

AR 00—11 CLEAR FALSE

CLK RESP SIM

PENDENTLY

PENDENTLY

Figure 2-71 AR Selection

EBOX/2-84

10-1640

o~

2.9.5.5 ARX Field - This field consists of three bits. Figure 2-72 details the breakdown of various
combinations of CRAM ARX selection and hardware controlled selection. Generally, the CRAM
ARX field specifies selection as follows: UNUSED(0), CACHE(1), AD(2), MQ(3), SH(4), AD*2(5),
ADX(6), and ADX/4(7). ARX register loading is controlled by either the hardware or microcode.
Normally, the ARX register recirculates its contents. Selecting any of the ARX select lines CRAM
ARXM SEL 4, 2, or 1 enables loading ARX. The selection of none of these lines currently defaults to
an unused input (0). As with AR, during reads from core, CLK RESPONSE MBOX, selects ARXM
SEL 1, to enable the cache data lines into ARX. Similarly, on reads from fast memory via AD, FM
XFER selects ARXM SEL 2 to enable the AD into ARX. Generally, the ARX is cleared via ARL
IND and number 03. The various combinations are shown on Figure 2-72 in table form.

SIGNAL FUNCTION CTL ARX CLR

CRAM ARXM SEL 4 SELECTING ONE OF THESE, SIGNAL FUNCTION

SH, AD*2, ADX, AD/4

CTL ARL IND ~ TO CLEAR ARX WHILE OPERA—

CTL ARX SEL 2 SEE TABLE BELOW CTL ARXR CRAM # 03 TING ON AR

SEL 2
CTL ARXSEL 1 SEE TABLE BELOW CTL ARXR

SEL 1
CTL RESET POWER CLEAR OR DIAG FUNC
CTL ARX CLR SEE TABLE CTL ARX CLR
CTL ARX LOAD

00 35
ARX
CLIC DP—
ARXM
3 4 5 6 7
SH ADX
MQ ADX %2 ADX/4
CTL ARXSEL 2 L CTL ARXSEL 1
- SIGNAL FUNCTION
SIGNAL FUNCTION

MCL LOAD ARX ~
CLK RESP MBOX

READ OF INSTR, INDIRECT

SELECTING ONE OF THESE WORD OR DATA VIA MBOX

AD, MQ, ADX, ADX/4

CRAM ARX M SEL 2

MCL LOAD ARX ™ DIAGNOSTIC FUNC
CONFM XFER M

MCL LOAD ARX

READ OF INSTR, INDIRECT
WORD OR DATA VIA FAST
MEMORY

CRAM ARXM SEL 1 SELECTING ONE OF THESE,

CACHE, MQ, ADX*2, ADX/4

10-1641

Figure 2-72 ARX Selection

EBOX/2-85

2.9.5.6 BR Field - The BR field consists of one bit and is used to select one of two possible sources as
input to the Buffer Register (BR). The following sources may be selected: BR(0), AR(1).

2.9.5.7 BRX Field - The BRX field consists of one bit and is used to select one of two possible sources
as input to the Buffer Register Extension (BRX). The following sources may be selected: BRX(0),
ARX(1).

2.9.5.8 FMADR Field - The FMADR field consists of three bits and is used in the selection of source
addresses for fast memory. Basic selection is as follows:

1. ACO0(0), IRAC 9-12),

2. ACI(1), IRAC 9-12)+1 Modulo 16,

3. XR(2), (ARX 14-17),

4. VMA(3), VMA 32-35,

5. AC2(4), (IRAC 9-12)+2 Modulo 16,

6. AC3(5), (IRAC 9+2)+3 Modulo 16,

7. CBj#6) current ac block and selection within it is via # field,

8. #B#(7), this is some block selected by # field.
2.9.5.9 SCAD Field - The SCAD field consists of three bits and is used to control the Shift Counter
Adder (SCAD) during various microinstruction operations. It is wired to implement eight functions as
illustrated in Table 2-13. The input mixer structure is similar to that for the AD or ADX in that there

are two input mixers labeled SCADA and SCADB. These mixers are selected via two control RAM
fields labeled SCADA and SCADB.

Table 2-13 SCAD Field

CRAM SCAD SCAD Function Function Breakdown

4 2 1 M | S8 S4 S2 S1 IN
0 0 0 A 0 0 0 0 0 0
0 0 1 A-B-1 0 1 0 0 1 0
0 1 0 A+B 0 0 1 1 0 0
0 1 1 A-1 0 1 1 1 1 0
1 0 0 A+1 0 0 0 0 0 1
1 0 1 A-B 0 1 0 0 1 1
1 1 0 AorB 0 0 1 0 0 0
1 1 1 Aand B 0 1 1 1 0 1

EBOX/2-86

2.9.510 SCADA Field - The SCADA field consists of three bits and is used to select various sources
as input to the SCADA Input. The following sources may be selected: FE(0), AR POS(1), AR EXP(2),
#(3). SCADA selections of 4-7 disable SCADA producing zeros as output.

The floating-point exponent register (FE) is a 10-bit register. The AR position field is used in byte
instructions and consists of AR 00-05. The AR exponent field consists of AR bits 00-08 and the magic
number field is a 9-bit control RAM field used to implement various operations. The SCADA mixer
selection is shown in Table 2-14,

Table 2-14 SCADA Mixer Selection

CRAM SCADA Source
0 FE
1 ARO-5
2 AR EXP
3 #
47 Os

2.9.5.11 SCADB Field - The SCADB field is a 2-bit field used to select various sources as input to the
SCAD =B input. The following sources may be selected in the SCADB mixer: SC(0), AR SIZE(1),
ARO00-08(2), and #3). Selection of 4-7 disables SCADB, producing zeros as output. The SCADB
mixer selection is shown in Table 2-15.

Table 2-15 SCADB Mixer Selection

CRAM SCADB Source
0 sC
1 AR 6-11
2 AR 00-08
3 #
4-7 Os

The shift counter (SC) is a general-purpose 10-bit register used in shift counting operations such as
performed in floating-point instruction and shift instruction execution. It also controls the shifter
when the SH-ARMM field is zero (SH AR and ARX). The AR SIZE field is used in byte instructions
and consists of AR bits 06-11. The AR00-08 is used in string and edit functions. The magic number
field is a 9-bit general-purpose CRAM field used for various functions.

2.9.5.12 SC Field - The SC field consists of one bit and is used with the special field function SCM
alternate. With SC and SCM alternate, four possible sources may be selected as follows:

EBOX/2-87

With the special field function SCM ALT and SC field equal to zero, FE is selected. Similarly, with
SCM ALT and SC field equal to one, AR SHIFT is selected. AR SHIFT consists of bits 18 and 28-35
of AR, which are derived from the effective-address for shift instructions. If bit 18 is set, the shift
specified is a right shift; otherwise, it is a left shift.

2.9.5.13 SH Field - The SHIFTER field consists of two bits and is used to select four possible inputs
to the shifter. The selection is as follows: the combined AR, ARX(0), AR(1), ARX(2), and AR
SWAPPED(3). When shifting AR, ARX left (which is the only way SH shifts physically), SC can
specify up to 35, shifts. Any number less than 0 or greater than 35;, selects ARX as output.

2.9.5.14 The AR Mixer Mixer (ARMM) - The AR Mixer Mixer (ARMM) field consists of two bits
and is used with other control signals and the absence of ARM SEL 4, 2, and 1 to select various
sources as input to AR mixer.

The ARMM comprises three parts: bits 00-08, bit 12, and bits 13-17. The same field that controls SH
controls ARMMO0-08. The following may be selected as input to ARMMO00-08: #0), AR SIGN
SMEAR(1), SCAD EXP(2), and SCAD POS(3). AR SIGN SMEAR is AR0-8 from ARO. SCAD
EXP is AR0-8 via SCAD, and SCAD POS is AR0-5 via SCAD.

ARMM bit 12 is controlled by CRAM SH-ARMM SEL 1 when transferring the previous section to
AR for certain operations. ARMM bits 13-17 are also under control of CRAM SH-ARMM SEL 1
but the signal is actually MCL PREV SECT to ARMM. The default value for ARMM 13-17 is PC
13-17 and the selected value is VMA previous section 13-17.

2.9.5.15 . VMA Field -~ The VMA field consists of two bits and is used to select various sources as
input to VMA. The following are specified by the CRAM field VM A(0), PC(1), PC+1(2), and AD(3).
- Address control is presented in Subsection 2.4 and a path diagram is provided to show various com-
binations in Figure 2-58.

2.9.5.16 MQ Field - The MQ field consists of one bit and is used in combination with the following:

DISP/MUL

DISP/DIV

SPEC/MQ SHIFT
SPEC/REG CONTROL
MAGIC NUMBER FIELD

Refer to Figure 2-73 for various combinations.

2.10 EBOX INSTRUCTION SET FUNCTIONAL OVERVIEW

Figure 2-74 breaks down the KL10 instruction set into several functional areas. These areas are related
to the minor machine cycles and to the microcode dispatch RAM decoding. The figure shows seven
basic areas as follows:

1. Group Class of instruction

2. Address Calculation xr, @, B, Y

3. Data Fetch IMM, Read, Read-Write, Write, Read, Pse Write

4. Execution 36-Bit Data Path (DP), 18-Bit Address Path
(AP), 23-Bit AP, 10-Bit AP

5. Special Conditions Can cause PI, Trap

6. Store Data Write

7. Interruptable
EBOX/2-88

0=LOAD L wmq SEL 2
1= SHRT
Ma 2= SHLT
3=HOLD L mq SEL 1
£
MQM EN
MQM SEL 2
0 1 2 3 MQM SEL 1
A
esa SH AD 1,8
MQM Out MQM EN MQM Sel 2 MQM Sel 1 MO+ MO Sel 2 MQ Sel 1
mMQ/4 1 0 0 MaM 0 0
SH 7 0 1 Mam/2 0 [
AD 7 7 1 MamM*2 i 0
s 7 7 7 Hold 7 7
COND/REG
CRAM CTL
MQ Field SELECTED CONTROL SIGNALS CONTROLLING FIELDS
CRAM SPEC/MQ | DISP/ | DISP/ | #0708
Mo MQM EN MQM Sel2 | MQM Sel 1 | MQ Sel 2 MQ Sel 1 SHFT piv | MuL
0 . 0 [0 1 1 [} 0 0 00*
] 0 0 0 T 0+ 0 i 0 [
0 0 0 0 (G 0+ 7 0 0 OX*
1 1 7+ 0~ 0 0 T
7 7 0" B 0 0 0% 0~ o~ 00%
7 7 0 o0+ 0] 0 0 T 00
0 0 0 0 7 0 0 0 0 01
1 1 T G 0 0 0 0 0 10
7 7 0" 0 0 0 0 [0 e
Reset 1 0 0 0 0 4] 0 0 0
10-1642

Figure 2-73 MQ Selection

EBOX/2-89

{INTERRUPTABLE *SPECIAL ADDRESS MANIPULATIONS
GROUP ADDRESS CALCULATION DATA FETCH EXECUTION SPECIAL CONDS STORE DATA
OP CODES CLASS XR @ B ¥ MM READ READ-WRITE WRITE READ PSE WRITE 3505” 125’” ZZPB'T ‘gg” CAN PC[AUSE TRAP WRITE INTERRUPTABLE
MM TO FM
F
200-217 MOVE GROUP YES YES NO YES MM BASIC MEM SELF ALL NO NO mﬂr‘.‘r;% M
SELF TO E AND FM
500—577 2':;*:,:’030 YES VES NO YES MM BASIC MEM SELF ALL NO NO SAME AS FULL WORD GROUP
DOUBLE WORD BASIC TO FM, FM+1
120-125 FULL WORD YES YES NO YES BASIC MEM ALL NO NO MIEM TO E, E+1
GROUP
BOOLEAN
400-477 aRoUP YES YES NO YES MM BASIC SETMB MEM BOTH ALL NO NO SAME AS FULL WORD GROUP
VES IMM TO FM ALSO CAUSES A FETCH
_ NO
260-263 STACK GROUP YES YES NO YES MM READ p ALL ALL {PDOVL] o
104-105 f;Jss:ND YES VES NO YES MM ALL Jsvs NO YES IMM TO FM
NO N IMM TO FM
600677 TEST GROUP YES YES NO YES MM BASIC ALL 0 BASIC TO FM
330-337 ARITHMETIC S0 SXX
350-357 YES YES NO YES SKIPXX ALL NO NO SKIPXX: IFA # STORE (E); INAC
370377 SKIPS AO SXX
/ CONDITIONAL CAIXX STORES NOTHING
300-317 COMPARES YES YES NO YES CAIXX CAMXX ALL ALL NOo NO CAMXX STORES NOTHING
v JUMPX STORES NOTHING
;;g‘gg; CONDITIONAL VES YES NO vES MM ALL CONDITIONAL NO :g_‘l')’(([AROV] ACJX TO FM
— JUMPS ALL SOJX TO FM
ARITHMETIC CONDITIONAL
_ v ALL NO NO ALL TO EM
252-253 SESTING ES YES NO YES MM 7 oo
JSRTOE
SUBROUTINE UNCONDITIONAL JSP TO FM ALL CAUSE
264-267 Susa YES YES NO YES MM ALL ALL NO NO 1SA TO E AND EM { FETCH
JRATO AC
AC DECODED JRSTS ARE HIGHER LEVEL FUNCTIONS
= NO NO
254-255 JUMPS YES YES NO YES MM ALL UNCONDITIONAL PERFORMED
256 XcT* YES YES NO YES ALL UNCONDITIONAL NO NO FETCH
MM IN KERNAL MODE PXCT
257 mMAP YES YES NO YES MM % ALL UNCONDITIONAL NO NO PAGING INFO TO FM
FIXED POINT ADDI ADD ADDM ADDB Ve
= YES NO ALL YES NO ALL [AROV
270-277 AmiTh YES YES som s / SuBM Pyt { 1 SAME AS FULL WORD
IMULL, IDIVI TO FM
IMUL, IDIV TO FM
IMULM, IDIVM TO MEM
220-227 FIXED POINT MuL XMULM, XMULB ALL IMULB, IDIVB TO FM, MEM
bt A YES YES NO YES DIV o ALL NO ALL [AROV] MULI. BIVM TO FM, £N+1
: MUL, DIV TO FM, FM+1
MULM, DIVM TO E, FM+1
MULB, DIVB TO E, FM+1
D ADD TO FM, FM+1
DOUBLE D SUB TO FM, FM+1
114-117 bt YES VES NO YES BASIC ALL ALL NO 7/ ALL [AROV] D MUL TO AC, ACH, 42, 43
DDIVTOE, E+1
:gg—:g; SINGLE PREC MEM j
180187 FLOATING YES YES NO YES MM BASIC o ALL ALL NO /ALL [AROV]
170-177 POINT
130-132 UFA, DFN, FSC UFA, FIX
122 FIX, FIXR YES YES NO YES FsC FIXR DFN ALL TAROV]
126-127 FLTR FLT, FLTR
000-103 uuo's YES YES NO YES MM 7 ALL ALL NO NO HIGHER LEVEL FUNCTIONS
AC#0 o8 s 18P, UPDATE POINTER (E) ves
134-137 BYTE GROUP® YES YES NO YES :2:5’) \DPB ALL ALL NO NO 'B':{DTBE' EPF[;:TE POINTER {E} Ne
18P (FPDI IDPB, UPDATE POINTER (E) BYTE « AC Loop
LSH, ASH: AC — FM
240-247 SHIFTS AND LSHC, ASHC: AC+1 -+ FM+1
{NOT 243) ROTATES YES YES NO YES MM ALL ALL NO NO FOT: AG - FM
ROTC: ACH1 — FM+1
MULTIPLE WORDS MOVED SOURCE+N
251 BLT*
YES YES NO YES MM / YES YES NO YES NO NO 70 DESTN YES
700-777 INPUT YES YES NO YES MM BASIC BLKX MEM ALL ALL YES NO E/E INTERFACE OPERATIONS
ouTPuT {CONO PI]
250 EXCH YES YES NO YES EXCH ALL NO NO NO ETFm
. Ee DFAD, DFSB: RESULT TO AC, Al
110-113 FLOATING YES YES NO YES ALL ALL ALL - DFSB: - ACH
POINT > /] No ALL [AROVIZ A pEmP, DFDV: RESULT TO AC, ACH

Figure 2-74 Instruction Set Divisions

EBOX/2-90

10-1643

Once the instruction has been loaded into IR and ARX, the major machine cycle begins; this is shown

in Figure 2-75..

wr

Three functional flows and two tables are included to supplement the functional descriptions of the
address, fetch, and store cycles that follow.

|

INDEXING
INDIRECTION
INTERUPT

i0-1644

Figure 2-75 Major Machine Cycle

2.10.1 Effective Address Calculation

Figures 2-76 and 2-77 illustrate the instruction word formats. Bits 13-35 have the same format in every
instruction whether the instruction addresses a memory location or not. Bit 13 is the indirect bit, bits
14-17 are the Index register address and, if the instruction must reference memory, bits 18-35 are the
memory address Y. The effective address E of the instruction depends of the values of I, X, and Y.

00 . 08 09 12 13 14 17 18 N 35
1 T
INSTRUCTION CODE | ACUMULATOR ADDRESS @ 'NfggRggg'(sxT)ER VIRTUAL MEMORY ADDRESS
{§ ol
INDIRECTION

00 0z 03

Figure 2-76 Basic Instruction Format

.08 10 12 13 14

AR

17 18

(Y)

10-16456

INSTRUCTION
CODE

INSTRUCTION
DEVICE CODE| "~ Spi @

it
1R}

INDEX REGISTER ADDRESS

o 35
1R]
VIRTUAL MEMORY ADDRESS

INDIRECTION

Figure 2-77 In-Out Instruction Format

EBOX/2-91

{6
[R]

10-1646

2.10.1.1 Indexing - If the Index register address is nonzero, the contents of the specified Index regis-
ter are added to the Y address to produce a.modified virtual address.

Referring to Figure 2-78, the EBox tests ARX 14-17; if it is nonzero, the contents of the specified
Index register are added to ARX 00-35. The result in AD 18- 35 is loaded into AR 18-35 with AR
00-17 cleared, and also loaded into VMA 18-35 while VMA 13-17 is recirculated.

2.10.1.2 Indirection —Whether indexing is performed or not, if ARX 13 is equal to 1, indirection will
be performed. Two cases are to be considered. The first is where no indexing was performed. Here
(indicated on Figure 2-78 as) VMA 18-35 is loaded via AD with ARX 18-35. In the second
case, indexing is performed and the VMA is loaded via AD with AR. Here AR holds the sum of ARX
18-35 and FM 18-35 effectively, with AD bits 00-17 clear.

. In either case, VMA 13-17 is recirculated while VMA 18-35 will be loaded via AD. The micro-
instruction MEM field function for the indirect request is MEM /AIND. This function has MEM 02 =
0, so MBOX WAIT is conditionally a function of the next microinstruction.

Testing for Interrupts
The microinstruction causing the EBox request also tests for a pending priority interrupt. If an inter-
rupt is pending, the CRAM address is modified to allow entry to the PI Handler (Figure 2-79).

The request, which is made both to fast memory and core memory via the MBox, is ignored as long as
it does not page fault. MBOX WAIT is false, so the EBox clock does not stop at this time. The EBox
ignores an indirect reference when an interrupt is pending, but the EBox hardware remembers a page
fault (if one occurs) until the page fault handler has been called. After the PF Handler is called, Force
1777 will be cleared.

Referring to Figure 2-80, assume the indirect request has been started. Because the indirect reference is
always a “READ,” the only types of page faults that can occur in KI paging mode are no access (page
not in core) or proprietary violation.

The requesting microinstruction detects the interrupt and the microprogram branches (via CRAM
Address) to the PI Handler.

If the page fault occurs (for example) because of no access, the MBox must first read from the in core
process table to obtain the paging information (use bits A, P, W, S, C and physical page). Reading this
can take between 600 and 1000 ns. During this period, the PI Handler is setting up the requested PI
service.

Eventually, a read, write or instruction fetch occurs, caused by the handler. When MBOX WAIT
becomes true, the clock board (which remembered the Page Fail Hold level) forces the microprogram
to the page fault handler.

Now the page fault handler detects the pending interrupt and the microprogram branches back to the
PI Handler or to the instruction cycle. Thus, the entry to the page fault handler satisfied the clock
board “page fail hold condition” and this condition now clears. Should the EBox make a second
MBox reference before the page fault occurs, the EBox waits.

EBOX/2-92

NOTE 1:

IF NO INDEXING

BEGIN
ADDRESS CYCLE

INDEXING
REQUIRED

Fd
: “ARX14-17#0"

NO

ADD THE CONTENTS
OF THE SPECIFIED
INDEX REGISTER
TO ARX IN AD

:

AR+ 00-17-0
AR18-35- ADJ8-35
VMA13-17--VMA13-17
VMA18-35-- AD 18-35

|

NDIRECT

WAS PERFORMED WORD
AD=(ARX) ELSE REQUIRED “ARX13=0"
THE (AR) ?
@ AR00-17+0
YES AR18-35- AD18-35
r (0, E)
FMADR32-35
VMA32-35. VMA13-17--VMA13-17
“ACCESS FAST VMA18-35--AD18-35
MEMORY" “BEGIN EBOX REQ”
YES
2 INTERRUPT
“ ?
“MBOX DETECTS PI HANDLER
EBOX DOES NOT THIS AND ABORTS WAIT FOR
USE THE FAST THE REQUEST"” INDIRECT WORD
MEMORY WORD TO ARX
NO
INTERRUPT
?
ARX11-35- &
INDIRECT WORD -

NUMBER OF EBOX CYCLES REQUIRED @ SEE NOTE 2
REF CAN MBOX COMPLETE | VMA AC INDIRECT | INTERRUPT REQUESTING | NEXT MICRO
YCLE FASTMEM CYCLE
PAGE FAIL? CYCLE? REF? MBOX CYC REF? ? MICRO INSTR | INSTR
NO MBOX BEGIN CYCLE, BEGIN CYCLE, @ MEM 02-1
. TERMINATES YES BUT EBOX IGNORES | WORD TO ARX YES R MEM/AIND MBOX WAIT
NO MBOX BEGIN CYCLE, BEGIN CYCLE e YES-DIVERT
No TERMINATES YES BUT EBOX IGNORES | BUT EBOX IGNORES S ToPI MEM/AIND MEM02=0
HANDLER
YES, IF SO EBOX
DIVERTS TO PF YES NO BEGIN CYCLE, @ BEGIN CYCLE, YES NO MEM/AIND MEM02=1
HANDLER WORD TO ARX BUT EBOX IGNORES MBOX WAIT
YES, BUT NOT
ACTED UPON YES NO BEGIN CYCLE, BEGIN CYCLE, YES :;sP'ID'VERT MEM/AIND MEM02=0
UNTIL THE NEXT BUT EBOX IGNORES | BUT EBOX IGNORES e
MBOX WAIT *
*ONCE IN THE PAGE FAULT HANDLER NDTE?:

THE INTERRUPT PENDING WILL
CAUSE A RETURN TO THE PI HANDLER
AND THE PF HOLD EN LEVEL WILL BE
CLEARED, REMOVING TEMPORARILY
ALL TRACES OF THE FAULT.

MEM CYCLE A MEM 02(1) = MBOX WAIT
MBOX RESP OR FM RESP CAUSES MEM CYCLE TO CLEAR
MBOX WAIT A~VMA AC REF.. EBOX CLOCK STOPS IF:
a. MBOX IS SERVICING THE EBOX REQ
b. WORD IS IN THE CACHE AND
TIMEFIELD IS<3OR...
. MBOX IS SERVICING THE EBOX REQ
. WORD IS NOT IN THE CACHEOR.....
. MBOX IS SERVICING THE EBOX REQ
. APAGE FAULT OCCURSOR....
. ACONTROL RAM PARITY ERROR IS
DETECTEDOR....

T T

10-1647

Figure 2-78 Effective Address Calculation

EBOX/2-93

.)
it

"PAGE FAULT DUE TO INDIRECT REF." [IAKE INDIRECT
WORD REQUEST

r _— T ==
PF HOLD |
MBOX | CLOCK | MBOX WAIT=— i
| BOARD |
~ 7] ForcE
CLEAR 1777 DETECT

PF_HOLD l PF HANDLER LNTERRUPT PI HANDLER

MAKE MEMORY
REF

10-1648

Figure 2-79 Page Fault During Diverted Indirect Reference

Normal Case — No Interrupts, MBox Request

When the EBox request is made specifically to the MBox, no interrupts are pending, the micro-
instruction following that which made the request (MEM /AIND) has its MEM field coded as ARX «
MEM. This function, together with MEM Cycle (1), will generate MBOX WAIT.

Assuming a page fault does not occur, the word loads into ARX. Now as indicated on Figure 2-79, the
loop is reentered once again.

Normal Case - No Interrupts, Fast Memory Request

When the hardware determines that the VMA contains a fast memory address, it asserts VMA AC
REF. This signal is used to inform the MBox that the EBox request is not to be handled by the MBox.
Note that the fast memory address control uses VMA 32-35 to access fast memory even though the
virtual address may be a core memory address. The hardware directs the use of the information
accessed in this manner.

The effective address manager (Figure 2-15) branches within itself using the information provided
from ARX 13 and 14-17. In addition, each time it samples this information it should branch to a
microinstruction that enables the correct registers to be loaded; it may, however, invoke certain “don’t
care” operations, providing the next microinstruction executed performs the proper action. For
example, assume a microinstruction is to always perform the indexing function in AD, but dispatch to
a microinstruction that uses this information only if ARX 14-17 ¢ 0. This approach simplifies the
design of the logic.

The table at the bottom of Figure 2-78 lists the four possible conditions resulting from indirect refer-
ences to either MBox or fast memory.

EBOX/2-94

YES

“DRAM A=4,5,8,0R 7"

YES

BEGIN FETCH

l “DRAM A=4"
PERFORM READ &
PAGE TEST OF
EFFECTIVE
ADDRESS.

PAGE
FAILURE
?

YES

PAGE FAULT
HANDLER

AR~ DATA WORD

SIMPLE

INSTR AND

~PC CHNG
?

READ
PSE WRITE

DisP
DRAM
J
NO
“DRAM A=6"
“READ-WRITE"”

PERFORM READ
AND WRITE PAGE
TEST OF
EFFECTIVE
ADDRESS

PAGE
FAILURE
?

YES

AR<-DATAWORD

PAGE FAULT
HANDLER

Disp
DRAM

TYPE
?

YES
“READ PSE

WRITE"”

“DRAM A=5"

ENTER WITH AR=E

DRAM A=0,10R 3

WRITE IN E

TPERFORM READ &

PAGE TEST, OF
EFFECTIVE
ADDRESS

“DRAM A=1"

COMPLEX YES
INSTR OR
PC CHNG “DRAM A=0"

NO DATA
FETCHED. AR=E

NO DATA
FETCHED. AR=E

YES
“DRAM A=3"

Disp
DRAM

PERFORM WRITE
PAGE TEST OF
EFFECTIVE
ADDRESS. NEVER
PREFETCH

PAGE

PERFORM READ
AND WRITE PAGE
TEST OF
EFFECTIVE
ADDRESS
{DOING READ
PSE WRITE)

PAGE
FAILURE
?

NO

AR - DATAWORD

Disp
DRAM

NS

N YES
PAGE ves F u.7uns
FAILURE !
L
PAGE FAULT
HANDLER
4 FETCH (AC). FAST
MEMORY
PAGE FAULT ADDRESSED VIA
AR- DATA HANDLER IRAC 09-12
AR-AC
DISP
DRAM
START PREFETCH 3
OF NEXT INSTR
TO ARX
DISP
DRAM
J
YES
PAGE FAULT
HANDLER
10-1649

Figure 2-80 EBox Data Fetch

EBOX/2-95

2.10.1.3 No Indirection or Indexing - For this case, ARX 18-35 contains the effective address. Here, it
remains only to load AR 18-35 via AD with E and clear AR 00-17. The Fetch cycle is now entered.

2.10.2 Fetch Cycle
Once the effective address has been calculated, the second minor machine cycle is entered. This is the
Fetch cycle and is illustrated in Figure 2-81,

ADDRESS [

CYCLE IMM

IMM-PF
READ
READ-PF
WRITE TST
READ-WRITE

READ PSE WRITE

-~

10-1650

Figure 2-81 Fetch Minor Cycle

After the effective address has been calculated, the microprogram effective address manager gives “A
READ DISPATCH” and control is passed to the Data Fetch Manager.

In general, two major classes of instructions exist in terms of the Data Fetch cycle. These two classes
are those instructions that require the contents of the effective address and those that do not. Within
each of these two categories are a number of divisions. The flow of the Fetch cycle is illustrated in
Figure 2-80.

2.10.2.1 Instructions That Do Not Require (E) - Three general groups form this category.

1. Complex or PC change instructions
2. Immediate non-PC change instructions
3. Instructions that write in E

For these three groups, the DRAM A field is coded 0, 1, and 3, respectively. The AREAD Dispatch
functions are listed in Table 2-16.

Complex or PC Change Instructions

The DRAM A field is coded as 0, and no data is requested. In addition, the next instruction is not
prefetched. The AREAD/Dispatch dispatches directly to the execute code. This consists of a table
lookup, where one discrete entry exists for each instruction. Thus, for example, the move instruction
indexes into location “200” in the DRAM. The organization of the DRAM is illustrated in Figure 1-4.

Immediate and Non-PC Change Instructions

The DRAM A field is coded as 1, and no data is requested. The next instruction is prefetched and
loads into ARX when the instruction becomes available. The AREAD /Dispatch dispatches directly to
the execute code.

EBOX/2-96

Table 2-16 AREAD Dispatch

DRAM A DISP/AREAD MEM/AREAD Require (E)
0 Executor No Prefetch No
1 Executor Start Prefetch No
2 Not used N/A
3 Symbolic Address 43* Perform write test. No
4 Symbolic Address 44% “LOAD AR.” Yes
5 Symbolic Address 45% A read operation is in progress: Yes
“LOAD AR, PREFETCH.”
6 Symbolic Address 46* LOAD AR. READ-PAUSE-WRITE Yes
7 Symbolic Address 47* LOAD AR, WRITE TEST Yes

*The Data Fetch manager is a combination of hardware mostly on MCL and the microprogram consisting of 43—47.

Instructions That Write in E

The DRAM A field is coded as 3 and a write page test is initiated. If the address is not writable, a page
failure occurs. This action causes a transfer to the page fault handler as indicated in Figure 2-80.

The appropriate Fetch EBox Qualifiers may be determined by referring to Figure 2-82. For DRAMA

= 3 the following qualifiers are specifically asserted:

EBOX REQUEST
EBOX PSE
EBOX WRITE

In addition, the state of the qualifiers is more complex and may depend on the previous history of the
EBox. The state is indicated by an asterisk (*). Once again referring to Figure 2-80, if the write page
test is successful, the EBox fetches the contents of the addressed fast memory location (via IRAC

09-12) and then dispatches via the DRAM] field to the executor.

EBOX/2-97

EBOX REQUEST QUALIFIERS

CYCLE

MEM
FUNC

DRAM

DRAM

EBOX REQ

EBOX READ

EBOX PSE

EBOX WRITE

EBOX USER

MAY BE PAGED

K1 PAGING MODE

VMA AC REF

PAGE ILLEGAL ENTRY

PAGE TEST PRIVATE

PAGE ADR COND

CACHE LOAD

CACHE LOOK

REMARKS

ADDRESS

AIND FOLLOWED
BY LOAD ARX

INDIRECT WORD READ, MAY BE TO MBOX OR
TO FAST MEMORY. VMA AC REF INDICATES
WHICH VMA HOLDS ADR.

FETCH

FETCH

10RS5

INSTR FETCH. MAY OCCUR FOLLOWING A
READ WITH DRAM A=10R 5 TOGETHER WITH
MEM/FETCH.

FETCH

A READ

INSTR FETCH FOR JRST 0 (IR=JRSTO0)

EXECUTE
STORE

FETCH

PI CYCLE IS CLEAR. USED WHERE NO PREFETCH
WAS ISSUED TO CAUSE AN INSTR FETCH.

FETCH

A READ

DATA READ ISSUED BY INSTRUCTIONS REQUIRING
THE (E} AS FOLLOWS: COMPLEX OR PC CHANGE
INSTRUCTIONS OR SIMPLE NON PC CHANGE INSTRUC-
TIONS. (D ASSERTED IF ATTEMPTING TO READ DATA
FROM A PRIVATE ADDRESS SPACE WITHOUT PROPER
PROTOCOL. MBOX READ PAGE TESTS.

FETCH

A READ

DATA READ-WRITE ISSUED BY INSTRUCTIONS
REQUIRING THE (E) WHICH CONDITIONALLY WRITE
INTO E. THESE INSTRUCTIONS ARE AS FOLLOWS:
NON READ PSE WRITE TYPE (2) ASSERTED IF
ATTEMPTING TO READ DATA FROM A PRIVATE
ADDRESS SPACE WITHOUT PROPER PROTOCOL.
MBOX READ AND WRITE PAGE TESTS. AR LOADS.

FETCH

A READ

DATA READ PSE WRITE ISSUED BY INSTRUCTIONS
REQUIRING THE (E) WHICH WILL UNCONDITIONALLY
WRITE INTO E. (3) ASSERTED IF ATTEMPTING TO READ
DATA FROM A PRIVATE ADDRESS SPACE WITHOUT
THE PROPER PROTOCOL. MBOX READ AND WRITE
PAGE TESTS. IF CACHE IS DISABLED FOR THE CYCLE
MBOX WAITS FOR WRITE PORTION OF CYCLE. L.E., PT
CACHE (0) OR CACHE LOAD (0)ANOT FOUND. AR
LOADS.

FETCH

A READ

DATA WRITE PAGE TEST ONLY. ISSUED BY
INSTRUCTIONS NOT REQUIRING (E) BUT WHICH
WILL WRITE INTO E. (@) ASSERTED IF ATTEMPTING
TO WRITE DATA INTO A PRIVATE ADDRESS SPACE
WITHOUT THE PROPER PROTOCOL. MBOX WRITE
PAGE TESTS.

STORE

BWRITE

DATAWRITE (WRITE PAGE TEST AND WRITE DATA)
USED BY THE GENERAL 4 MODE TYPE INSTRUC-
TIONS. LE., IMM, BASIC, MEM, SEL FOR BOTH. SELF
MODE STORES CONDITIONALLY IN E WHILE BOTH
MODES ALWAYS STORE IN E. IN ADDITION BOTH
MODES STORE UNCONDITIONALLY IN AC WHILE
SELF E MODE STORES CONDITIONALLY IN AC.
STORE VIA AR. ® SAME AS @) .

EXECUTE

BYTE IND

BYTE POINTER INDIRECT WORD READ. USED AFTER
BYTE POINTER HAS BEEN FETCHED WHEN BIT 13
OF THE POINTER IS 1. USED ONLY BY BYTE TYPE
INSTRUCTIONS. ACTS LIKE EBOX READ TO MBOX.
MBOX READ PAGE TESTS. BOTH AR AND ARX ARE
LOADED.(®) SAME AS (D) .

EXECUTE

BYTE RD

BYTE DATA READ. USED AFTER BYTE INDIRECT
HAS COMPLETED. USED BY BYTE TYPE INSTRUC-
TIONS. ACTS LIKE EBOX READ TO MBOX. MBOX
READ PAGE TESTS. BOTH AR AND ARX ARE LOADED.

@ SAME AS ().

EXECUTE
STORE
MisC

WRITE

GENERAL PURPOSE WRITE. USED MANY PLACES.
SOME EXAMPLES WOULD BE INSTRUCTIONS WHICH
STORE MORE THAN ONE OPERAND, SUCH AS DOUBLE
TYPE INSTRUCTIONS. INSTRUCTIONS WHICH SKIP,
OR MODIFY AND SKIP BUT DID NOT FETCH (E) AND
ARE GOING TO WRITE INTO E. MBOX TREATS AS
WRITE. WRITE PAGE TESTS.

EXECUTE

LOAD AR

X

X

*

#*

*

#

#*

#

#

*

@ IF AN INSTRUCTION IS FETCHED BY A PUBLIC PROGRAM FROM A PRIVATE ADDRESS SPACE, AND THE INSTRUCTION IS NOT A PORTAL, ILL ENTRY WILL CAUSE THE
MBOX TO PAGE FAIL ON THE NEXT MBOX REF.

* THESE QUALIFIERS ARE TRUE OR FALSE DEPENDING ON THE SPECIFIC TYPE OF REQUEST BEING MADE.

101681

Figure 2-82 Address-Fetch-Execute-Store General Memory References

EBOX/2-98

2.10.2.2 Instructions That Require (E) - Under this category are four general groups. These groups
are as follows: .

1. Complex or PC change instfuctions
2. Simple non-PC change instructions
3. }{ron-(read-PSE-write) type instructions
4. Read PSE write type instructions
For these four groups, the DRAM A field is coded 4, 5, 6, or 7, respectively.

Complex or PC Change Instructions

The DRAM A field is coded as 4, causing a dispatch to location 44. A read page test is performed by
the MBox. If the address is not accessible (not in core), the MBox performs a refill cycle and then
checks the use bits.

If the access bit is clear, a page fault occurs and the EBox transfers to the page fault handler (micro-
code page fault handler). Otherwise, the requested word is loaded into AR. For the appropriate EBox
qualifiers, refer to Figure 2-83. Finally, a DRAM 1J dispatch is performed to the executor.

Simple Non-PC Change Instructions

The DRAM A field is coded as 5, causing a dispatch to location 45. The basic read is the same as for
DRAM A = 4. If no page fault occurs, the MBox issues MBox RESPONSE with the data word. Now
the VMA loads with the prefetch address and this cycle begins. This MBox cycle will run in parallel
with the Execution cycle, which may not use ARX. Finally, a DRAM J dispatch is performed at
location 45; the VMA is loaded with PC + 1 and the prefetch begins.

Non-Read PSE Write-Type Instructions
A number of instructions are in this category; a few examples follow.

The first example is SETMB. This instruction (Boolean Group), reads a word from memory and
unconditionally stores it in memory and AC. Because writing the word back into the same address is
redundant, only a write page test is required to assure that the word (if in core memory) is writable. If
this page fails, then the operation is aborted anyway. Otherwise, the word read is stored only in fast
memory as addressed by IRAC 09-12. The read-write (separate cycles) may be thought of as consisting
of a read and conditional write. If the write cycle is really desired, the MEM field function
MEM /Write may be used to write (Figure 2-82).

The second example concerns instructions such as IDIVM, IDIVB, DIVM, and DIVB. These instruc-
tions reference memory for both read and can generate no divide. This aborts the division operation. If
the class of instruction is read PSE write and the cache is disabled for the reference, then the MBox
waits for the write portion of the cycle; the EBox performs an unnecessary write operation.

A third cause is for BLKI and BLKO I/O instructions. Here a pointer word is fetched from the
effective address. This pointer is normally updated and stored back in the effective address.

One problem is that the legality of performing the I/O instruction is tested after the pointer has been
fetched. This is necessary because the pointer is fetched during the Fetch cycle, while legality (10
LEGAL) is tested during execution. Should the BLK X instruction be illegal in the current EBox mode,
an unnecessary pointer back off and write would be necessary.

Other cases are concerned with very long instructions, which could hold up the MBox.

EBOX /2-99

EBOX REQUEST QUALIFIERS
£
Q
o 2 8 s | <
< = (2 < =} 8 8
o & o 2 2 < « « < < 2 3 5 3 g & REMARKS
w I e & < S S 3 @ & x 2 2 o o ES 5 &
« & g =3 = = « 3} =) w w o @ 7]] =
5 o 2 w x X x 5l % x x o x = = £3 5 % 3
GYIE COND SPEC MEM “FIELD | © = = Q o)) 3 o <]) = S & & = N 2 2
FUNC FUNC FUNC 0-8 8 s s |8 &) 8 8 8 8 a1 & & H H & & = =
EXECUTE
MUUO
PARD. e e WRITE INTO USER PROCESS TABLE. MBOX
METER' CYCLE SEE FIG =220 X X X USES VMA 27-35 ONLY. MBOX APPENDS
EAtEST 254 UBR 14-26 TO FORM PHYSICAL REFER-
Diaelait ENCE UNPAGED. CANNOT PAGE FAIL.
PART 1.2,
EXECUTE LOADAR
e FOLLOWED READ NEW PC WORD FROM USER PROCESS
PART3, SPMEM BY MB =220 X X X TABLE. MBOX USES VMA 27-35 ONLY. MBOX
PATE AL CYCLE WAIT APPENDS UBR 1426 TO FORM PHYSICAL
AR SEE FIG REFERENCE UNPAGED. CANNOT PAGE FAIL.
254
SPMEM
EXECUTE cvcfs :’E"E'lfs FOR DEPOSIT WRITE ACCORDING TO
DEPOSIT £08(1) e =110 X[X RELOCATED VIRTUAL ADDRESS. THERE
R y WAS NO PROTECTION VIOLATION.
LOAD AR
EXECUTE P MEM FOLLOWED FOR DEPOSIT OR EXAMINE, READ PROTEC-
EXAMINE, CYCLE BY/MB i TION AND RELOCATION INFORMATION
DEPOSIT, #08(1)- WAIT # X | X X FROM EXEC PROCESS TABLE. FORMTR
METER REQ PHYS REF SEE FIG REQUEST READ DOUBLE PRECISION WORD
264 AS APPROPRIATE.
.
EXECUTE SP MEM INSTR FETCH FROM EPT FOR STD INTER-
STD CYCLE RUPT OR 2ND PART OF STD INTERRUPT.
40+2N INT #0001)- LOAD ARX =510 X | X X MBOX USES VMA 27-35 ONLY. MBOX
2ND PART FETCH APPENDS EBR 14—26 TO FORM PHYSICAL
STD INT ENIN REFERENCE UNPAGED. CANNOT PAGE
FAIL.
ol N, CoASTAR P oot FETCH WORD FROM ADDRESS SPACE
b b FOToNED IF EPT i SPECIFIED VIA API WORD BITS 0-2MAY
i bty s secikien | X | % [ki | % BE: EPT, EXEC VIRTUAL, UPT, USER
SEeri e WAITSEE SEE FIG e VIRTUAL, PHYSICAL. THE STATE OF
s FIG 264 125 o VMA EPT, VMA UPT, MAY BE PAGED
CONTROLS CONTEXT OF REFERENCE.
FETCH INSTR FROM USER PROCESS
NICOND <P MEM LOAD ARX TABLE IF TRAP OCCURRED IN USER
TRAP CYCLE FOLLOWED 230 33|y *x | % MODE AND EXEC PROCESS TABLE IF
FETCH BY LOAD TRAP OCCURRED IN EXEC MODE.
ARX THE STATE OF VMA UPT AND VMA
EPT IS A FUNCTION OF MCL USER EN.
TRANSMITS 36 BITS OF CONTROL INFOR-
MATION FETCHED FROM E TO THE
EXECUTE 1o INTERNAL OR EXTERNAL MEMORIES.
B H REG FUNC =7 X X THIS IS PERFORMED VIA THE MBOX.
THE MEMORY CONTROLLER SELECTED
RETURNS A WORD WHICH IS STORED
INE+1.
g READS INFORMATION FROM EBOX AND
110 MBOX. FIRST READS AC BLOCKS, CWSX
RATAL LEGAL REQIFUNC 12 X X X AND VMA PREV SECT THEN REQUESTS
L MBOX TO PUT UBR INTO EBUS REG.
EBOX THEN READS EBUS REG.
e . READS INFORMATION FROM EBOX AND
110 MBOX. FIRST READS LOOK, LOAD, SEC
REG FUNC =143 y]
;:(A)gl SECAL L X X X TRAPEN, THEN REQUESTS MBOX TO PUT
EBR INTO EBUS REG. EBOX THEN READS
EBUS REG AND STORES RESULT INE.
EXECUTE 1/0 REG FUNC 144 X READS THE MBOX ERROR ADDRESS
BLKI P LEGAL X X . REGISTER. THE WORD IS STORED IN
THE SPECIFIED AC.
INVALIDATE ENTRIES IN THE PAGE TABLE
EXEC
BLKO‘:,:Z g'?fx X X WITHIN THE MBOX. EBOX USER REFLECTS
USER MODE, AND THE PAGE TO INVALIDATE
ISIN VMA.
EEEUTE iio LOADS CONDITIONALLY AC BLKS, PREV
DATAO LEG. REG'FUNC b X X X CONTEXT, AND UBR (IN MBOX) AND
ol e CLEARS THE PAGE TABLE IN THE MBOX.
VMA 25-35 CONTAIN THE DATA TO BE
LOADED INTO UBR.
EXECUTE o LOADS THE CACHE STRATEGY BITS
CONO LEGAL REG FUNC =243 X X X (LOOK, LOAD) SECTION AND TRAP EN
PAG FLAGS IN THE EBOX. THE EBR (IN THE
MBOX) IS LOADED VIA VMA 2435,
EXECUTE 10 REG FUNC 2540 X X X READS PAGE FAILWORD FROM MBOX
MAP LEGAL EBUS REGISTER. THE WORD IS STORED
IN THE SPECIFIED AC.
EXECUTE WRITE THE CACHE REFILL ALGORITHM.
BLKO :_/EOGAL REG FUNC =145 X X X VMA 18—20 CONTAINS THE ALGORITHM
APR BITS AND VMA 2733 CONTAIN THE REFILL
ALGORITHM ADDRESS.

101652

Figure 2-83 Execute-Register-MBox
Control and Miscellaneous General
Memory References

EBOX/2-100

The DRAM A field is coded as 6, causing a dispatch to location 46; the MBox performs both a read
and write page test. The address must be both accessible and writable, even though this portion of the
operation only reads a word. If a page failure occurs, the EBox transfers control to the page fault
handler. Otherwise, the word enters AR and then a DRAM J dispatch is issued.

Read PSE Write Type Instruction
The DRAM A field is coded as 7 causing a dispatch to location 47; the request qualifiers are shown on
Figure 2-82. The MBox performs both a read and write test, and if no page fault occurs, reads a word

If the cache is disabled for the reference and the word requested was not in the cache (a Refill cycle was
necessary first), then the MBox is held waiting until the EBox issues the write portion of the cycle. The
word requested loads into AR and a DRAM J dispatch is issued to enter the Executor.

2.10.3 Execution Cycle

The Executor is entered from the Fetch cycle. While in the Fetch cycle, the (E) or (AC) is fetched in
accordance with the DRAM A field. In addition, read and/or write page testing is performed while in
the Fetch cycle. The EBox Execution cycle overview is in Figure 2-84.

Early in the Instruction cycle, the DRAM is accessed using one of three basic types of addresses.

Referring to Figure 2-84, if the instruction is JRST 0-17, then the IR address is used to address the
DRAM initially as indicated. Thus, the JRSTs handler is entered at location 254 for JRST and 255 for
JFCL.

From the initial dispatch into the handler, the IRAC is used to redispatch within the handler for the
proper type of JRST. For JFCL, a JUMP is made to a separate handler from the initial dispatch

If the instruction is an I/O type, then the DRAM address is formed by the hardware such that the
dispatch is in the range of 700-777. Once the I/O handler has been entered, a determination must be
made as to whether the instruction is legal in the current processor mode. If it is determined that the
instruction is not legal, the MUUO executor is used to store the illegal instruction and PC word in the
user process table. Following this, a new PC word is fetched. This new PC word causes the processor to
enter an executive routine in core memory. If the I/O instruction is legal, use of the EBus is obtained
and the appropriate EBus dialogue is carried out. The specific actions evoked depend upon the device
and the type of I/O instruction being performed.

The remaining instructions index into the DRAM utilizing the op code in IR bits 00-08. Two general
categories exist as follows:

1. Simple Type - stores in AC, E, or both

2. Complex Type - may store in AC, AC+1, E via normal store cycle or else store via a special
handler, or may do some of each

The complex instructions may nest microcode subroutines up to four levels deep.

Referring to Figure 2-85, the mechanism consists of CRA LOC, a register that is loaded with the
“current microinstruction address.” This register is loaded at the same time that the CRAM register is
loaded with a new microinstruction. In addition, a 4-word stack is provided. The contents of CRA
LOC are pushed onto the top of the stack when the call has been asserted by the microinstruction. To
return from a subroutine, the returning microinstruction asserts DISP/Return. This pops the top entry
off of the stack and onto the CRAM address mixer lines, where it is logically ORed with the J field of
the microinstruction, asserting DISP/Return.

EBOX/2-101

OP CODE

DEVICE [TYPE

EBUS CONTROL.

DEVICE SELECT

o 2 000
IRAC
JRST FUNC MIXTURE OF COMPLEX
AND SIMPLE
253
254
JRST
256
257
MIXTURE OF COMPLEX
AND SIMPLE
677
700
‘HARDWARE
INPUT OUTPUT o ADDRESS
: GENERATED
77
DRAM—-;
LOGIC USES
ISPATCH TABLE
DRAM
Jump REGISTER
SIMPLE TYPE
EXECUTOR, ONE
OR SEVERAL

MICRO
INSTRUCTIONS

STORE IN AC, E OR BOTH

JFCL

JFCL

JRST *
INSTRUCTIONS

HAVE THEIR
OWN HANDLER

STORE IN AC, AC+1, E

TO
INSTR
CYCLE

rCALL»

COMPLEX

WHICH MAY
STORE VIA
SPECIAL
ROUTINES OR
VIA NORMAL
STORE CYCLE

INSTRUCTIONS

SUBROUTINE
TO STORE
RESULTS

Jump

l

STORE IN E

——CALL.

EBUS

HANDLER

INPUT OUTPUT

HANDLER

STORE
CYCLE

*1/0 LEGAL DETECTS

ILLEGAL INPUT

OUTPUT INSTRUCTIONS

IF INPUT OUTPUT IS

ILLEGAL AN MUUO 1S
PERFORMED AND THE
INSTRUCTION IS STORED
AS IF IT WAS AN MUUO.

FOUR LEVELS"

STORE
MULTIPLE
OPERANDS

Figure 2-84 EBox Execution Cycle Overview

- EBOX/2-102

“MICRO PROGRAM SUBROUTINE
CALLS MAY BE NESTED TO

10-1653

]

CR
ADR

CLK CRAM CRAM CLK "NEXT ADDRESS" / RETURN CALL /<§j
CRAM
REGISTER
00 l 10
"CRAM
CLK CRA CRA CLK)¢ CRA LOC . ADDRESS
MIXER"
et PUSH
01 10 (PP
STK "ALWAYS POP OFF THE LAST PUSHED ON"

ERECE N

~7 l

Figure 2-85 Microstack Operation

10-1654

Some of the complex instructions, such as DMUL, which storesin AC, AC+1, AC+2, and AC+3, use
a separate handler for storing multiple operands. This type of instruction does not pass through the
normal store cycle. Other complex instructions, such as MULB, which stores in AC, AC+1 and E,
store multiple operands via the normal store cycle.

2.10.4 EBox Data Store Cycle

The flow for the EBox Store cycle, illustrated in Figure 2-86, is used by most of the instructions
executed by the microprogram Executor. Exceptions to this are certain instructions such as DMUL,
which stores more than two ACs. For these instructions, a special handler exists that is entered from
the executor. This handler stores all the operands and then issues an instruction fetch followed by a
NICOND Dispatch. In this text, the more general categories (which do use the normal store cycle) are
covered.

2.10.4.1 Basic Four Mode Type Instructions - This type of instruction may have one of four basic
modes as follows:

1. Immediate or Basic - store in AC only
2. Memory - store in E
3. Both - store both in AC and E

4. SELF - store in E and conditionally store in AC. Note that if writing back in E is redundant,
the write cycle is skipped.

Writing for these four mode instructions is controlled by MEM/DRAM B and the DRAM B field
code. The store cycle is dispatched with DISP/DRAM B. Thus, the dispatch RAM B field (three bits)
is used to form the low-order three bits of the Store cycle address.

Immediate or Basic Mode

Referring to Figure 2-87, the DRAM B field is coded as 5. The contents of AR are written into fast
memory, which is addressed via IRAC 09-12. Because a large number of these instructions prefetch
the next instruction, it is necessary to assert MB WAIT in the event MEM cycle is set waiting for a
response from the MBox. This has no affect if MEM cycle is clear. NICOND Dispatch enables entry
to the instruction cycle if no priority interrupts, page faults, or traps are pending.

EBOX/2-103

BASIC STORE

MEM=DRAM B WRITE
DISP=DRAM B

NO

“THE REST KNOW WHERE
TO GO TO STORE"”

“DRAM B=5""

YES

STORE AR IN AC
AS ADDRESSED
VIA IRAC 09-12

MB WAIT
DISP/NICOND

“ALL OTHERS
STORE THRU
HERE”

MEM~—DRAM B=6
BOTH-DRAM B=7 |

MEM OR
YES

STORE ARIN € VIAl
MBOX OR FM, VMA No
AC REF TELLS
WHICH TYPE
START
INSTRUCTION
FETCH “DRAM B=3"
“SELF MODE"
NO
STORE AR IN E
MBOX OR FM VMA
AC REF TELLS
vES WHICH TYPE
PERFORM NOP TO J
STORE IN AC AS g:::é?;ii ONE
ADDRESSED VIA START INSTR
s BETWEEN INSTR i
FETCH AND
NICOND
I—A “VMA AC REF
SET UP TIME”
NO AC09-12
MB WAIT =0
DISP/NICOND
STATE REG
CLEAR

STORE AR IN AC
AS ADDRESSED
NOTE 1: VIA IRAC08-12
CERTAIN COMPLEX INSTRUCTIONS,
SUCH AS DOUBLE MUL, DOUBLE D1V,
ETC.STORE ALL, OR A PORTION OF
THEIR RESULTS VIA THEIR OWN
SPECIAL MICRO ROUTINES.

NOTE 1:

DISP/DRAM B ENABLES THE B FIELD
OF THE DISPATCH RAM WORD FOR THE
CURRENT INSTRUCTION TO MODIFY
THE CRAM BASE ADDRESS INTO THE
STORE CYCLE FOR H MODE TYPE
INSTRUCTIONS

MEM/DRAM B WRITE ENABLES THE
MEMORY CONTROL HARDWARE TO
PERFORM A WRITE TO MEMORY IF
DRAM B=3,6,7

AND STORE

“DOUBLE WORD
ARITH” STORE
IN AC AND AC+1

NO

STORE
RESULTS
?

STORE AR IN AC
AS ADDRESSED
VIA IRAC 09-12

Now

COMPLEX YES

BOTH

“STORING IN E” 3

REQUEST IN
PROGRESS TO
STORE IN E
MB WAIT

“gC=35"

STORE AR IN AC
AS ADDRESSED
VIA IRAC09-12
PUT SIGN OF
RESULT IN AR

CAIXX
JUMPXX

STATE REGISTER
CLEAR MBWAIT
DISP NICOND

“INSTR FETCH

IN PROGRESS"

“STORE HIGH ORDER
IN AC WORD FIRST"

|::m_.:.|AR

START
INSTRUCTION
FETCH

LOAD CORRECT
SIGN AND LOW
ORDER WORD
INTO AR FROM
SHIFTER

| LOW ORDER WORD g ARX

“STORE LOW ORDER
WORD IN AC+1"

CLEAR STATE
REGISTER

STORE AR IN AC+1
AS ADDRESSED
VIA (IRAC09-12+1)

Figure 2-86 EBox Data Store

EBOX/2-104

ls | LOW ORDER WORD l AR

10-1655

P

mumnu,]nlel s

£a0x e

o2

o2

s E60x RETAY REQ

mew

#60% CrCLE
REQUEST

———y
cea Reo —
ue AE0 — = PRy
cnREQ —f NET
0
T | susy
2
L5
not
T4 feusy
Toe

Csn £80% TO

g% CLK

£80% SYNC

[n——
con |

MIXER SELECTION

2R.ARX MO
et

PAGE FAIL HOLD

nEOX BESP I

PAGE FaiL HOLO

MBOX GATE 27-35

vMa SEL 2.5EL 1 L

v ap
Vs e—ap | COMTROL
ey

coor T e o i o hig B
08| conreren M2,
e Ao
uo xren
; .
] con weos ! -MEW 02 wew 00 MEW/ARERD
coox sy S
wew 02 :
cuos
CLOC i
o
- e |
or oise
I A | conn/uma e #
EBUX CLK i
wna_sc age

conp/via IHC
COND/VMA DEC

YMA o

COND/DIAG FUNC

vma
conTROL

#
conTROL
ML

cTuconp/Esus CTL

PR £BUS RETURN c
aPR EBUS REQ @
aPR £8US DEMAND @

40

4 ac v .
v ac REF vna LoaD wma IR TEST saT
VmAX ENLSEL 1, s
SEL 2.PREV EN sxcr.excr
controL
e -
ceox AEAD P N '—‘47&:09 2
P | WEm 0407 1017
REQUEST TYPE vMa LOAD VMA CONTEXT
0% wRITE | wEM 00,01 conTEXT
MCL REQ EN c
o el ey el
oL
vma reren | vma FETen Loap seec
PAGE TEST PRIVATE 1 - TnstR
Ve PusLI v
uaLIC USER EN PREV EN
PAGE ILL ENTRY Rac~
PRIVATE INSTR PUBLIC EN e
PAGE DR CON PAGE ADR COND.
Ea0x UsER Seen e ML #03-08
x us user
R come USER. PUBLIC LOAD AC BLOCKS
CoRTEXT READ | apn BREAK ARD CONCEALED
come | conos CONTEXT CowTROL
#o fercn esus 00-01
sp mEm Cve cou apn {998
e M fem conoyseec
e e LISTR mix
T #or-08
EBOX MAY BE PAGED N PRIVATE INSTR 1 e
¥ . | 1080 via CONTEXT .
Cacwe | tRar £n —
conTRoL E£BUS 00-04
co0x cacne e | ACHE Loap en T
= cono o1 #05
s Func
0% Lo0K €N cackE Look £n cono o1x "
e #03-05 wa | xp
KI10 PAGING MODE KI10 PAGIN oe PREV | PREVIOUS.
110 PAGING MODE ¢ fros-os o
ego -ro2
Finc con cou
REGISTER REQ EN EBOX
£BOX MAP MaP CONTROL srne €8us
L CuRRENT 95-08
BUK 420
usen en
el pace, Tasce #02,08-08
€r '
ial] conteon SPEC/SP MEM CYC
e 2005 -07
L "0a0 vma contexT MODE CONTROL,
D15 PAGE UEBR AEF
£0x cca sc co s R TS
LEAVE SEOCLA | anp SAvE PRIVATE TO AC BLK SEL
FosLic
ce0x usR Ser Pon NS MIXER ON P DRAWING
sox E6R o O1SP/FLAG CTL
E£BOX ER: #06-08 fe— SPEC LOAD FLAGS
recisten woDE SYRCRONIZATION o oo
E€BOX EN REFILL RAM WR 'EF TYPE fo— vma FETCH
e ne6 Func [e— P31 cvee
560 ju— SPEC SAVE FLAGS
£60% SBUS DIAG ¥ i
aen
b= 2 Reoen ne o
£60% L0AD REG s REF XFER Heer
CONTROL #01-02
£60x READ RES
268 jo— REG FUNC
e seT
AR be— #01.02.04.08
PR SET
U 10 PF ERR maox c1u
FUNCTIONS
1 we
PR e COND/MBOX CTL
eox cTL 03
}s— #03.06.07.08
80X CTL 06
MBOX REG
W PT SEL O FuncTion
conTRoL
W PTSELS
- 4pR_fe— COND/MBOX CTL
P1 PuBLIC
2# o7-05 07 A0R 03-05
=
03-06
#0 74 ELSE ©
1r 03-06) 18 10-12 |,
1 SeL
sweep DONE i
Qo 12 1R 00-02
i
17 10 €N,
o - st
f 1R € ac e -CLX MB XFER——fBEC
aerCLx oLD 0 RAM woLo woLo 1a—7koL
cca reo 2 i
o T
SWiER BusY £
Cacr DATA LINES 00-
& DATALINES 00-3% CACHE DATA LINES 00-12 4D 00-12
CSH ADR PAR ERR FLAG
#480% ADR PAR ERR
nBox saus £ar
HBOX NXN €AR
80X HB PAR £RR

Figure 2-87 MBox-EBox-EBus Control (Sheet 1 of 2)

EBOX/2-105

10-1752A

OXGXO)

ous 27

P1 cono

€6us 23

P1 cono

PI ONREGISTER oo

CHANNELS ARMED"

"SYSTEM ARMED"

80X SEND
Foz

"wAITING”

PIcono ous 2o
E8us 29-35

1 cono

PI_GENREGISTER oy

FIREG 3.2.1

“ACTIVE™

PI HOLD REGISTER o | Ton set
I HOLD

Con PI DISHISS

<2 “sus w-w
o cm}r-lb—‘

1 cono
——*E_é& Eaus 21-27
PI CONI

P17

PIREQUEST REGISTER

P

FTTono
€ous P100
<

TRANS RCVD ARBITRATE F 00-02 (1) (3)
.
PI e NFERRCVD6) 2 xren
TITTrL -
e
GRANT g'o?g f—wair 2
© A
P15 0001 55 X |eous xren
PIREQ RCVD
U DISABLE CP GRANT
P o
i
2000 —s]ss SiGN—s32 P READY €8s RETURN CTL GATE ECL TOTTL xLaToR
AD CRY-02 —={54 |BIT 10 ORAM B—2{33 | 8ITS 810 NTERRUPT
40%00 —of53 o7 o3 seec caue NTERRge rn ngo coNsoLE coNTROL
~SCADY0 —»52 NORM —35 Fg:éi T DISP RET ROL
-5C:GE-36 —ui EATYPE —{37 CON INT REQ
AR0O ERNEL WOOE | £8US CP GRANT.
ARIB bt SBRET —&{3 BITS 7-10 [—scD useR L E80X
ARX00 PFDISP—al4 B CON NICOND 07 —| L. C) syne
B8RO0 sR—s]5 - — 1, o Lol __cruspec
—= M CON NICOND 09— L. orr e conmvreea | CONTAOL [STI samisrieo
Sonme CON NICOND TRAP EN—|LATCH|e—] | ENCODER 4 fo— conp2
T acner FHoee,
6la—t FLAG CTL I
;
CON !
1
-sTART |
7 ‘
PXCT OR SXCT |
€D 3-5 AC REF ‘
~MTR INT REQ ‘
| !
EIEEE
67| e8| es[Fo| 71 i "
00 | o1 | 0z | 03 | oa 9 FIELD I
- DISPATCH,
201-04, CRM CLK SPECIAL |
Jo7-10 N LOGICAL ORGANIZATION (Seq acte 31 TiME (Sewnote 2) mASICS !
o i 1 salss. s _ |] 1
o[| o conrmo FT o 5T |
T T T |
- Ea sgtno
1ol Parity bit fioats COND. |
o “ ‘
E
B8
s
S
i |
A |
NOTES © |
3. The ramainder of the availoble CRAM bits control the data poth |
e seus | wxm | 1O PF |ue PAR|C DIR |5 AOR | PWR |SWEEP |
EBOX E1 |
[et |
i
e o d W |
clen cux aon ok o] 590s | wxn | z0r [wepan | ©.20 s non [ewrran SYEEP
INT En | 0T €N | INT En | INT EN | iR T, L INT En | INT €] oy |
[e |
APR INT EN |
APR ERR 1
1
U

Figure 2-87

MBox-EBox-EBus Control (Sheet 2 of 2)

EBOX/2-106

10- 17528

Memory or Both Mode

The DRAM B field is coded as 6 for memery mode instructions. If VMA 13-33 is clear, storing is to
fast memory. Otherwise, an MBox request is made to store AR in cache memory. VMA AC REF
notifies the MBox to abort the cycle when it is to fast memory. An unconditional instruction fetch is
enabled at this time. The VMA input is via VMA AD (PC+1) and, as soon as MBox RESPONSE is
received, this is latched into VMA.

To allow VMA addressing to stabilize in case the instruction is being fetched from fast memory, a
NOP microinstruction is performed. This is followed by MB WALIT, state register clear (in case the
instruction fetch page fails), and finally NICOND Dispatch is issued.

For Both Mode, DRAM B is coded as 7. Here, the departure is made after storing the AR in E. The
AR is also stored in fast memory as addressed by IRAC 09-12. Now MB WAIT is asserted while
clearing the state register and NICOND Dispatch is issued.

SELF Mode

Once again referring to Figure 2-87, the DRAM B field is coded as 3. SELF mode instructions are
generally read/write type; this means that the virtual address was read and write page tested during the
fetch cycle.

Writing is allowed only if not redundant, or as specified by IRAC being nonzero. AR is stored in E, the
instruction fetch is started, and the AC field of the instruction is tested (in IRAC). If IRAC is nonzero,
the AR is stored in the addressed fast memory location (as addressed via IRAC). If IRAC is zero, no
storing in fast memory is performed. In either case, a microinstruction NOP is performed. This guar-
antees one EBox clock between the instruction fetch and the NICOND Dispatch to follow, allowing
adequate setup time for the NICOND loglc to detect a fast memory reference (VMA AC REF) for
those cases where the instruction fetch is to fast memory.

2.10.4.2 SKIP, JUMP Compare Instructions - The following instructions listed in Table 2-17 fall into
this category.

Table 2-17 Skip, Jump, Compare Instructions

Main Group Instr Unconditional Store Conditional Store Stores Nothing Op Code
Arithmetic Skips SKIPXX No Yesif IRAC# 0 No 330-337
AOSXX Yes Yesif IRAC#0 No 350-357
SOSXX Yes No No 370-377
Conditional Jumps JUMPXX No No Yes 320-327
AOJXX Yes No No 340-347
SOIXX | Yes No No 360367
Arithmetic Testing AOBJP Yes No No 252
AOBIN Yes No No 253
Compares CAIXX No No Yes 300-307
CAMXX No No Yes 310-317

EBOX/2-107

No Results Stored - CAIXX, JUMXX

Referring to Figure 2-87, because CAIXX and JUMPXX store no results, preparations are made for
entry to the instruction cycle. The state register is cleared, MB WAIT is asserted, and a NICOND
Dispatch is issued. Depending upon the outcome of Test Satisfied, the next instructionfetch is from
PC+1, PC+2, or E.

Conditional Storage in AC - SKIPXX AOSXX, SOSXX

IRAC is sampled and if nonzero, AR is stored in fast memory as addressed via IRAC 09-12. Depend-
ing upon the outcome at Test Satisfied, the next instruction fetch is from PC+1 or PC+2 and this is in
progress. The state register is cleared, MB WAIT is asserted, and a NICOND Dispatch is issued.

Unconditional Storage - SOJXX, AOJXX, AOBJX

These instructions all store unconditionally, in fast memory from AR, as addressed via IRAC, then
prepare to enter the Instruction cycle. The state register is cleared, MB WAIT is asserted, and
NICOND Dispatch is issued. Both SOSXX and AOSXX unconditionally store in E and conditionally
store in AC.

2.10.4.3 Store Cycle for Other Instructions — Generally, the remaining instructions that use the Store
cycle fall into two groups. These are instructions that store results in AC, AC+1 and E, and those
instructions that store results in AC and AC+1 only. All these are complex instructions.

Complex and Store Both

For these instructions, the store flow is entered with a write request already in progress to store the
high-order result of some operation and MB WAIT is asserted (MEM /MBWAIT). Also, the shift
counter (SC) contains 35, enabling alignment of the low-order word with the sign of the high-order
word later in this flow. The AR is now stored in fast memory as addressed via IRAC and the sign is
smeared in AR 00-35. At this time, AR contains all sign bits and ARX contains the low-order word
left-justified. The instruction fetch begins. The AR and ARX are shifted left 35 places and the result
(correctly signed) is loaded into AR via SH. Now the state register is cleared and the low-order word
(in AR) is stored in IRAC + 1. The EBox hardware facilitates the incrementation of IRAC by +1.
Finally, the appropriate entry to the instruction cycle is made.

Complex and Store in AC, AC+1
The basic difference here is that these instructions bypass the storage into E. Otherwise, the operation
is identical to that for Complex and Store Both.

2.11 INTERFACE CONTROL

2.11.1 Introduction

Figure 2-88 illustrates the major functional control elements of the EBox. The purpose of this drawing
is to support the functional descriptions contained in this section. In addition, it is provided to support
the E/M interface control and E/E interface control functional descriptions to follow.

The EBox is associated with two interfaces, the EBox/MBox Interface and the EBox/EBus Interface.
The E/M interface is treated as a pseudo-bus because in many ways it behaves as a bus. In the first
portion of the functional description, the basic organization and function of the firmware micro-
program was described. In addition, the major machine cycle was defined and described in terms of its
functional elements.

Thus, the individual microprogram modules (Figure 2-13), taken collectively, comprise the main

microprogram. The blending of this program with certain pieces of EBox hardware constitutes the
basic machine cycle (Figure 2-88).

EBOX/2-108

USED TO
EXECUTE
THE INSTR

o

BASIC
MACHINE
CYCLE

[HOW GONTROLS]

:

MICRO
PROGRAM
pa—— AUXILLIARY
: CY?LES
DISPATCH N
PT PF TRAP
STARTUP TABLE gigié
AND / DATA STORAGE
INf%g¥Zce DATA FETCH MANAGER ADDRESS
MANAGER
EXECUTOR
EFFECTIVE
ADDRESS
MANAGER
10-1656

Figure 2-88 Basic Machine Cycle Summary

Figure 2-89 is the subcycle summary and Figure 2-90 is the hardware cycle summary.

BREAKDOWN

10-1657

Figure 2-89 Subcycle Summary

EBOX/2-109

NEED (E)

RESPONSE

CONTROLLED
BY MICRO
INSTR

10-1658

Figure 2-90 Hardware Cycle Summary

Next, the basic subcycle was presented in terms of a functional flow with additional graphics to sup-
port the description; in the interface section, the relationship of the hardware to the internal EBox
cycles was described. These basic cycles were introduced in Subsection 2.1 as EBox, MBox, and EBus
cycles. For example, the fetch cycle can be viewed as composed of a number of EBox and MBox cycles.

2.11.2 MBox Control

Referring to Figure 2-91, a number of functional elements work together to implement the basic MBox
cycle. The grouping of the interface signals shown is as listed in Table 2-18.

To exercise the functional areas illustrated on Figure 2-91,

a basic data fetch is covered in four steps.

These steps are related to EBox timing in terms of occurrence.

Table 2-18 Request Summary

Grouping

Signals

Basic EBox Request Handshake

Address and Address Control

Timing

Type Request

Address Violation Logic

EBOX REQUEST

CSH EBOX TO

CSH EBOX RETRY REQ
PF HOLD

MBOX RESPONSE IN

VMA 13-35
VMA AC REF

EBOX SYNC
MBOX CLOCK

EBOX USER
EBOX READ
EBOX PSE
EBOX WRITE

PAGE TEST PRIVATE
PT PUBLIC

PAGE ILLEGAL ENTRY
PAGE ADDRESS COND

EBOX/2-110

DRAM REGISTER l A ! 8 t/ /// j

£=1,3,4-7 BO1=1
r—- B
@ #00=1
EBOX / MBOX (1) SPMEN CYC
==—====3 EBOX REQ ® REQUEST
D CONTROL (D) MEM FIELD FUNC =04-07,10-17
® CLK
E£BOX
REQ MBOX CYCLE REQ
o cf— @
CSH EBOX RETRY REQ
!
- CLK
csh esox To D2 @ respmBox [MEM CYCLE
CONTROL
MBOX LK ®006 l
MBOX CLK £80x cLk @ ® MEM MEMO2=1
CLK CLK jojeje] CYCLE (1)
CLOCK VEBO ®
CONTROL [CLK 0DD WAIT C.L‘
MISCELLANEOUS
PAGE FAIL HOLD LOGIC AND
£BOX AR EBOX FIELDS TO
0X SYNC @ [VARIABLE] ON T ASSUME® Laox conELDs 19
CVARIABLE ASSUME(@)] CONTROL |VMA EM XEER
MBOX RESP IN ACRE l
VMA AC REF
le—— TIME =00 ®
AD MIXER
. i SELECTION ARL IND
VMA AC REF - AND
C RE ® [0) VMA<— AD CONTROL ARL_IND
vMA SEL 2 SPMEM CYC AR, ARX,MQ
V| CONTROL seLt N
“A" LOAD VMA CONTEXT
VMA 13-35
® PC VMA o®
. # SELECT
QAL Ew— £B0X o6
CLK vmaseL 2,1 D
MBOX i LOAD VMA
#'s ®06 e—— -~ MEM/COND JUMP
conp, VMA NG MeL le— - TEST SATISFIED
VMA DEC
EBOX READ ARL IND
LOADAR LOADARX
. EBOX PSE REQUEST TYPE FETCH WRITE READ
EBOX WRITE ® REQ EN
REQ
® QUALIFIERS
EN
MEM
FIELD
- VMA FUNC 04-07 MEM
FETCH 10-17 00-=1
OR
o1=1
®
comP 2oR
BREAK
MATCH SReak
PAGE TEST PRIVATE
VMA PUBLIC
.
ADDRESS
CONTEXT PRIVATE
INSTR
PAGE ILL ENTRY CONTROL
®06 PUBLIC
PRIVATE USER
INSTR
PAGE ADR COND
¢ MODE
EBOX USER CONTROL
ASSUME MOVE INSTR PT PUBLIC
DISP= AREAD FETCH 3 L
(D) MEM=AREAD MCL VMA INC ’ -
VMA = AD MCL
e IRTEST
SATISFIED
#01
MICRO INSTR EXECUTOR
(® FOR MOVE IS ONE
MICRO INSTR
P
/ T 7 7 | CRAM ARM SEL 4,2,1
CRAM REGISTER AR ARX MQ vMA | TIME MEM | COND SPEC |/ # CRAM ARXM SEL 4,21
g 7, | cRAM MQ SEL
© 2a | 2627 | 29 32 52 5354 | 5556 5960 6566 67 7173 74 75 7
® 81-83
® TIME
=00

10-1659

Figure 2-91 General Memory Request
Control Simplified

EBOX/2-111

2.11.2.1\ DATA FETCH REQUEST EN - Begin EBox Cycle (Figure 2-92) - The flow is entered at an
EBox clock and the CRAM register loads. The microinstruction begins to be decoded. Note that the
MEM field is the major input to the MBox control logic. Assume that the effective address has been
calculated, the MEM field is coded as AREAD, and the dispatch RAM A field is 5. In Figure 2-91 at

(D , the MEM field function AREAD is a code of 4. This enables MBOX CYCLE REQ. In addi-
tion, if MEM 01 = 1, then REQ EN is asserted to enable the request qualifiers to be latched on the
next EBox clock. MBOX CYCLE REQ enables the EBox request to be asserted on the next MBox
clock. As indicated on the flow, this is a fast cycle. Two basic classes exist: fast and slow. The timing is
illustrated in Figure 2-93.

Signal CLK SYNC EN must wait to occur, so that (for a fast cycle) EBOX SYNC sets at the same time
as EBox request.

Referring to Figure 2-91, the VMA field, with other signals, enables LOAD VMA. In addition, the
effective address must be input to VMA via AD so the VMA code (3) generates VMA «AD.

The basic period between the leading edge of one EBox clock and the leading edge of the next is
controlled by the T field of each microinstruction, along with certain other hardware signals. The basic
pulse width of the positive EBox clock is fixed at 32 ns but the time between clocks is variable. EBOX
SYNC occurs one MBox clock prior to the MBox clock that causes EBox clock to occur. The basic
relationships are indicated in Figure 2-94.

2.11.2.2 Begin MBox Cycle - End Current EBox Cycle and Start Next (Figure 2-95) - As soon as
SYNC EN is true, EBOX SYNC sets and MBOX CYCLE REQ (FAST CYCLE) enables EBox
request to set (refer to (2) on Figure 2-91). At this point, MBOX WAIT is tested and found clear.
(This function is described in basic terms is Subsection 2.2.4.)

To summarize, the EBox request is then issued, and the VMA input mixer is set up and enabled to load
with E via AD. The request type logic is enabled to assert the appropriate combination of EBox Read,
PSE, and/or Write (which occur on the EBox clock to come at (@)). In addition, the Address
Context Control is enabling the proper combination of its qualifiers also to be asserted at

Now another MBox clock occurs (3) ; simultaneously, an EBox clock occurs. The following actions
result:

EBOX CLOCK « 1
EBOX REQ « 1 (REDUNDANT)
MEM CYCLE « 1; MBOX WAIT « 1
VMA LOADS AND LATCHES
CRAM « NEXT MICRO INSTR
EBOX QUALIFIERS LATCHED
Thus, we have passed through one EBox cycle and now reenter the flow to begin a second EBox cycle.

EBOX/2-112

LOAD CRAM
REGISTER BEGIN
DECODING
MICRO INSTR

-'MCL REQEN: ; .
ENABLE REQ.
QUALIFIERS 7

@ -
YES/MEM/

LTI I I L LI XD
N N R N N

“FAST CYCLE”
" MCL MBOX B
.- CYCLE REQ

O

T ——
WAIT SPECIFIED
8Y CRAM T
FIELD

—O

‘5 MBOX CLOCK '

10-1660

Figure 2-92 Begin EBox Cycle Data Fetch Request

EBOX/2-113

r———saox CYCLE v‘l: EBOX CYCLE--——»I
CLK EBOX CLK l I | l I |

CLK SYNC EN _——]__L
MBOX CYCLE REQ / \
CLK EBOX SYNC I——————L——
EBOX REQ (FAST) I——— _____
MBOX CYCLE REQ | /-———_—
EBOX REQ (SLOW) l—-— -

10-1664

Figure 2-93 EBox Request Fast or Slow

TIME FROM LEADING
EDGE TO LEADING EDGE
(APPROXIMATE)
l‘—-EBOX CYCLE—”

T=00 40 40 80ns

r—— EBOX CYCL E—»I

[l

T=01. : i20ns

TIME

FIELD 1 r—— EBOX CYCLE—-"
VALUES

T= 140 l | l 160ns

r—-————'- EBOX CYCLE———I

T= 11 I I :

- 0

: I 200ns

10-1665

Figure 2-94 Basic EBox Clock Period

EBOX/2-114

-

‘ ENTRY ’
: LOAD CRAM

EBOX REGISTER BEGIN
CLOCK DECODING
MICRO INSTR

MCL REQ EN:
ENABLE. REQ
QUALIFIERS

i I N N O O B I

A=5

T T TTTT,

“FAST CYCLE"”

MCL MBOX
CYCLE REQ

WAIT SPECIFIED
BY CRAM T
FIELD

o e e

O

NO

MBOX CLOCK

BOX CLOCK+«1
CL MBOX CYC
)i 3 B
AST OR SLOW

CYCLE: EBOX
REQ«1 i
‘MEM CYCLE+1
{VMA LOADS
‘CRAM REG LOADS |
WITH NEXT
MICRO INSTR.
MCL REQEN:
LATCH MEMORY
CONTROL i

10-1661

Figure 2-95 Begin MBox Cycle, End Current EBox Cycle, Begin Next EBox Cycle

EBOX/2-115

2.11.2.3 SETUP PREFETCH - Wait for MBox Response — Referring to Figure 2-96, the flow is
reentered at (5) where the EBox clock generated loads the second microinstruction (Figure 2-91

). Now the MEM field function is FETCH and MEM 02 = 1. If the MBox has not responded
with the word requested (E), MEM cycle is still set. The combination of MEM 02 (1) and MEM Cycle
(1) generates MBOX WAIT. Providing that the request is not to fast memory, the EBox stops until the
MBox response occurs.

This is true whether a page fault occurs or not, although PF hold is asserted 5 MBox clocks before
MBOX RESPONSE is asserted when a page fault has occurred. In this example, assume that the
MBox is working on the request, but has not yet responded.

Referring to the flow (Figure 2-96), the current microinstruction MEM field function fetch is a code of
6. Note, however, that because a priority interrupt takes precedence over any other activity, PI
CYCLE is checked before enabling the MCL MBOX CYCLE REQ. Here PI CYCLE is clear, so

points to a ““Fast Request.” Again, a wait for SYNC EN, as defined by the T field, takes place.
The state of the SYNC EN during MBOX WAIT is always true; this keeps EBOX SYNC true until the
response is received.

The MBox continues to run during the waiting period. Thus, MBOX CLOCK sets EBOX REQUEST
even though the VMA is still latched up with E. During the waiting period, the VMA input receives
PC+1 via VMA AD.

The EBox now loops, waiting for MBOX RESPONSE to restart the EBox clock.

2.11.2.4 MBOX RESPONSE RECEIVED - Referring to Figure 2-97, MBOX RESPONSE enables
the EBox clock. Thus, EBOX CLOCK becomes true and, simultaneously, EBOX SYNC becomes
false. The third microinstruction is now loaded into the CRAM register (Figure 2-91 (5)) and is
decoded. In addition, the VMA is loaded and latched with PC+1, the request qualifiers are latched
and now, with the requested data word in AR, a DRAM J dispatch is issued.

2.11.2.5 General Memory Cycle Control - Figure 2-98 contains all combinations of the MEM field
that can generate MCL MBOX CYCLE, and hence EBOX REQ. In general, the following functions
are of the ““Slow Cycle” type:

B WRITE

PI FETCHES

SKIP SATISFIED FETCHES
REG FUNCTIONS

SP MEM CYCLES

A Slow cycle is required during MEM/REG FUNC because the MBox requires additional time to
decode the type of request. In all the “slow” cycle types, the EBOX does not necessarily have time to
determine whether to make the request (or not) before EBOX SYNC. Thus, the decision, and therefore
the request, is delayed purely for hardware timing reasons.

2.12 EBUS INTERFACE CONTROL

The I/0 system for the KL10 processor includes the EBus, the peripheral equipment with its interfaces
to the EBus, and various control logic. The EBus interface may be controlled either by the EBox
during input or output instruction execution, or by the PI system during priority interrupt handling.
Subsection 2.8.1 gives a basic summary of the EBus signals. This is followed by a functional descrip-
tion of the interface, which is covered at two levels. The first level describes the basic functional
organization and operation of the PI board and other related logic. The second description deals with
the microprogram to PI board interfacing. This description attempts to give insight into the manner in
which the hardware and the microprogram interact to carry out various interface related functions.

EBOX/2-116

ENTRY

LOAD CRAM
EBOX REGISTER BEGIN
CLOCK DECODING

MICRO INSTR

MCL REQEN:
ENABLE REQ
QUALIFIERS

MBOX WAIT

S B
TTTTTTT.

“FAST CYCLE"”

MCL MBOX
CYCLE REQ

'SYNC -1

.
f
i

i “MBOX CYC REQ(1)
WAIT SPECIFIED MBOX CLOCK FAST CYCLE:
BY CRAM T EBOX REQ«~1
FIELD o
J——
" MBOX D
WAIT(1)
?
MBOX CLOCK :

EBOX CLOCK <1
MCL MBOX CYC
(1

FAST OR SLOW
CYC:

EBOX REQ <1
MBOX CLOCK MEM CYCLE -1
VMA LOADS
CRAM REG LOADS
WITH NEXT
MICRO INSTR.
MCL REQEN:
LATCH MEMORY
CONTROL
QUALIFIERS

10-1662

Figure 2-96 Setup Prefetch Waiting for MBox Response

EBOX/2-117

- LOAD CRAM

REGISTER
1 DECODING -
_MICRO INSTR.

MCL REQEN:
ENABLE REQ
QUALIFIERS

MBOX WAIT

YES AM/

T T T T T T N™
TTTTTITT.()

“FAST CYCLE"
MCL MBOX
CYCLE REQ

<) YES
—

WAIT SPECIFIED
BY CRAM T
FIELD

‘ MBOX CLOCK ’

'EBOX CLOCK —

EBOX REQ ~
MEM CYCLE

'VMA LOADS
CRAM REG LOADS
WITH NEXT MICRO
INSTR. MCL REQE
LATCH MEMORY i

10-1663

Figure 2-97 Receive MBox Response, End Current MBox Cycle, End Current EBox Cycle, Begin
Next EBox Cycle, Begin MBox Cycle

EBOX/2-118

SLOW CYCLE: FOR THIS

TYPE OF CYCLE, MBOX
CYCLE REQ IS NOT
ASSERTED UNTIL EBOX
SYNC SETS LOAD CRAM REQ
BEGIN DECODING
MICRO INSTR
YES
NO YES
YES
YES
MCL REQ EN;
ENABLE REQ A
QUALIFIERS MBOX WAIT
A

L L1

A= A=1

A=2 A=3 A=4 A=5 A=6 A=7

T T L
T T T T .

NN N—

WAIT SPECIFIED
BY CRAM T
FIELD

MBOX
CLK

NO

“FAST CYCLE"”
MCL MBOX
CYCLE REQ
1
- CYCLE"
CLK SLOW
SYNC
EN
?
SYNC—1 MBOX
MBOX cYC REQ(1)
FAST CYCLE:
EBOX REQ--1

MBOX
WAIT(1)
?

EBOX CLK- 1
MCL MBOX CYC{(1)
FAST CYCLE OR

SLOW CYCLE: EBOX

REQ-—1

MEM CYCLE~-1
MBOX VMA LOADS
CLK CRAM REG. LOADS

WITH NEXT MICRO
INSTR MCL REQ
EN: LATCH
MEMGORY CONTROL
SiGS CACHE DATA
CLOCKED INTO AR,
ARX, IR AS
ENABLED

e

MEM/
REG FUNC
?

YES

SLOW CYCLE 1

SLOWCYC-1

SLOW CYCLE <1

‘o————- EBOX cvm.&—+——eeox cveLe

EBOX CLK I | I I
SYNC EN I I

EBOX SYNC

MBOX CYC REQ /

EBOX REQ (FAST)

MBOX CYC REQ

sLow

EBOX REQ (SLOW)

10-1666

Figure 2-98 General Memory Cycle

Control Flow

EBOX/2-119

2.12.‘ " EBus Signal Line; '
The E] 0 signals. All devices, including the KL10, are connected to these lines in

parallel. The bidirectional nature of 36 of the signals permits some information to flow in both direc-
tions. These lines are the data lines. The remaining 24 signals are used for control functions. Table 2-19
lists the data transfer signals.

Table 2-19 Data Transfer Signals

Name Mnemonic Number of Lines
Data D(00:35) 36
Controller Select CS(00:06) 7
Function F(00:02) 3
Demand DEM 1
Acknowledge ACK 1
Transfer XFER 1

DATA LINES D(00:35) - The 36-data lines transfer information between the EBox and its devices.
The most significant bit is bit 00; the least significant bit is bit 35.

CONTROLLER SELECT LINES CS(00:06) - These seven lines select the desired controller for a data
transfer. Each controller has a unique select code hardwired on the backplane of the device.

FUNCTION LINES F(00:02) - The function lines specify the type of data transfer (or non data
transfer) to take place. Table 2-20 lists the functions implemented.

Table 2-20 Table Data Transfer Commands

F00 FO1 F02 Operation
0 0 0 CONO
0 0 1 CONI
0 1 0 DATAO
0 1 1 DATAI

DEMAND (DEM) - This line causes the addressed controller to inspect the CS and F lines and decode
their meaning. Upon implementing the specified function, Transfer and Acknowledge are asserted in
response and data is placed onto or taken from the EBus as specified by the decoded function.

ACKNOWLEDGE (ACK) - This signal line notifies the I/O bus adapter not to respond to the current
operation. If it does not detect ACKNOWLEDGE within some period following assertion of
DEMAND, it attempts to perform the transfer. It does not decode the CS lines as the standard KL10
devices do.

TRANSFER - This line is asserted by the selected controller when it is ready to execute the specified
function as decoded in F(00:02).

EBOX/2-120

PRIORITY TRANSFER LINES - To perform priority interrupts between the KL10 and its devices,
the same basic set of signals is used in a slightly modified form. Table 2-21 lists the necessary signals as
they are used. :

Table 2-21 Priority Transfer Signals

Name Mnemonic Number of Lines
Controller Select CS(04:06) 3
Controller Select CS(00:03) 4
Function F(00:02) 3
Demand DEM 1
Acknowledge ACK 1
Transfer XFER 1

CONTROLLER SEL CS (04:06) - During interrupt arbitration, these three lines represent the octal
encode of the interrupting channel.

CONTROLLER SEL CS(00:03) - These four lines specify the controller or device that the EBox is to
honor during this interrupt sequence. This is, of course, only a single device or controller, even though
several may be interrupting on the same channel. This code also corresponds to the hardwired physical
device number of the appropriate controller or device. In CONTROLLER SEL CS(00:03), the range is
0 through 17.

FUNCTION F(00:02) - Two functions are generated during the interrupt dialogue. The first is a code
of 4 in F(00:02) and specifies to the interrupting controllers that those controllers being addressed by
Channel number in CS(04:06) should send their Physical Controller number by placing them onto the
EBus upon sensng DEMAND. The second function is a code of 5 in F(00:02) and specifies to the
interrupting controllers or devices that one has been selected. The selected controller will see CS(00:03)
as the same number as its physical controller number.

ACKNOWLEDGE (ACK) - Same as for data transfers.
TRANSFER (XFER) - In the case of interrupts, the device selected for service by the EBox places a

special function on the EBus data lines D(00:35). Figure 2-99 is the EBus interface functional block
diagram. Table 2-22 lists the priority transfer commands.

Table 2-22 Priority Transfer Commands

F00 FO1 F02 Operation
1 0 0 PI SERVED
1 0 1 PI ADDRESS IN

EBOX/2-121

CON EBUS REL

DATA FOR DATAO

CONTROL INFO FOR
/\{_CONO

APR EBUS REQ 000- 33
EBOX EBUS CP GRANT TE
PI DISMISS PI REQ I-7 |
SET PT HOLD| PI REQUEST PI REQ O [DTE-20] | I
DECODING AND
CONTROL PI_REQ | |
"LOAD THE REQUEST" | l
AND ARBITRATE IT o I
LOAD
WAITI WAIT2 TEST PI GATE TTL TO ECL I ek op |
- EBUS RETURN | ARM |
PI COMP EBUS |
LOAD REQUEST EBUS |
RING COUNTER {waiTs CONTROL 1.D00-35 I
aPR | | MTR
(WA'TZ) API WORD FOR i
HOLD CONTROLI TEST APR INTERRUPTS STATUS
F PI EBUS PHYS E| | INFO FOR CONI,CONsO, |
PI REQ f PIGRANT NO. { 3 LLDATA FOR DATAT EBOX
mosme s fammsie, | |5 3 O
MP N ¥
= TRO3-09 —# o i
PI READY,/" [TIME 7 APR EBUS _| e—
- e Ll DEMAND
{ NG APR BOX <
| SEND FO2 €S00-03
. ALOGUE | cs04-06
1 DIALOGUE -
%E?; TIME 5 CONTROL [~ - [DEV=
TIME 4 ’ DTE 20
MICRO Fo2
PROGRAM TIME 3 DEMAND e
i TIME 2 —
INTERLOCK S PI CYC —TRANS EBUS TRANSFER
START EBUS DO7-D10 EBUS D00-35
TIME STATE —
GENERATOR
1
i e -
CYCLE .
. —PI CYC START \V
| —TIMER DONE PI TIMER
: AND NOTE:
Mg — L CVCLE TIME STATE [$orr Providing CON PI CYCLE is clear, PI
CLK PI (35MH2) CONTROL | poNE REQ fogether with TEST will cause the
RING COUNTER to hold in the TEST

APR EBUS FOf{

CTL T TO E EN

APR EBUS RETURN

Figure 2-99 EBus Interface Functional
Block Diagram

EBOX/2-122

STATE until EBUS PI GRANT sets. Once
GRANT SETS TEST is removed and the
counter (all stages) produces @'s until
a). The hand shake completes and both
EBUS PI GRANT clears and PI CYCLE
sets and clears.

&

10-1667

2.12.2 EBus Interface Organization
Referring to Figure 2-99, the interface consists basically of six functional elements. These elements are
as follows: '

PI Request Decoding and Control
PI Request Counter and Control
EBus Request and Control

EBus Dialogue Control

PI Timer and Time State Control
Time State Generator

ISAISARE I S e

The EBus request control and EBus dialogue control are used both by the EBox to carry out I/O
transfers and by the PI system in response to an interrupt. During priority interrupt handling, the
EBus dialogue is carried out in asynchronous fashion. This operation is controlled by the PI timer and
time state control, together with the time state generator.

To obtain the use of the EBus dialogue control, the PI request decoding and control logic must com-
pete with the EBox. No priority exists, and control is obtained on a first-come, first-served basis. Once
the EBus has been granted to the EBox, the priority interrupt must wait until the EBox releases the
bus.

If the PI system obtains the EBus, the EBox may ‘“demand” the EBus if a page fault occurs (EBus
Return).

2.12.3 Interrupt Handling - Loading the Request

Referring to Figure 2-99, there are two cases. The first is an interrupt request from some device on PI
1-7. This may be from any KL10 device, including the APR. The second case is an interrupt from the
DTE20 on channel 0. Only the DTE20 may generate channel 0 interrupt requests.

In either case, the PI request enters the PI request decoding and control logic. Here there is a variation
in priority. The PI system must be turned on in order for a request on channel 1-7 to be inspected,
while interrupts on channel 0 will always be inspected whether the PI system is on or off. The ring
counter controls the sampling of PI requests and also determines when a particular request (the high-
est) is ready to be serviced. In general, “PI LOAD” enables all active requests 0-7 into a request
register, providing corresponding PI ON enables are on for channels 1-7.

A programmer may disable interrupts on selected channels by clearing PI ON for each channel he
desires to inhibit (note PIONO is in the DTE20). This is done by performing a CONO PI instruction.
While the ring counter advances through “WAIT 1 and “WAIT 2,” the priority network arbitrates
all incoming priority interrupt levels and selects the one with the highest priority (numerically lowest
number).

2.12.3.1 Testing the Request - Next, PI TEST is asserted with PI REQ to request the EBus. PI TEST
remains true until EBUS PI GRANT sets, giving the EBus to the PI system. Once PI GRANT sets, the
PI TEST condition is cleared and the ring counter is disabled until the entire EBus dialogue is carried
out and PI CYCLE is “set and cleared” by the microprogram.

2.12.3.2 Requesting the EBus - Setting EBUS PI GRANT begins the EBus dialogue by enabling the
assertion of C§_04-06 as the selected channel and F00(4) as function PI SERVED, and also causes the
PI timer to begin its sequence by setting PI CYC START.

In general, all external devices that connect to the EBus are presumed to be composed of TTL logic.
The PI and EBox logic consist of ECL logic. To temporarily connect these two different types of logic
requires use of a logic level shifter. This device is called a translator. The translator must be notified of
the conversion direction, TTL to ECL or ECL to TTL. Actually, only the data portion of the EBus is
switched from one level to the other. The control signals are connected to fixed level shifting logic. For
example, EBUS DEMAND is a unidirectional signal and it is connected to a noncontrollable level
shifting gate on the translator module (ECL to TTL).

EBOX/2-123

2.12.3.3 Beginning the Dialogue - The setting of PI EBUS PI GRANT asserts the level PI GATE
TTL TO ECL, which causes translation of incoming data from TTL logic levels to ECL logic levels.
The PI timer and time state control manipulates the time state generator such that each time state is
held for the appropriate length of time. The following relationships exist between the dialogue signals
and the time state logic:

CSH 04-06: EBUS PI GRANT

F00: EBUS PI GRANT

DEMAND: sent at T2, TS, and T6

LATCH INCOMING PHYS numbers: T3

CS00-03: T3

F02: T4

EBUS TRANSFER: WAIT AT T5 FOR TRANSFER
PI CYCLE: WAIT AT T6 FOR PI CYCLE TO SET

2.12.3.4 Interlocks and Dialogue Completion - Upon entering TS5, the timer is inhibited from
incrementing the count until EBUS TRANSFER is received or forced. While waiting, the timer holds
the loaded count. As soon as TRANSFER is received and recognized by the PI logic, the timer is once
again allowed to count down TS5.

W\ Thus, while T5 is counted down, the API word is stabilizing on the input to AR. Next, T6 is entered
and here the absence of PI cycle causes STATE HOLD to be asserted. This time the timer may count
down and even generate TIMER DONE. If this point is reached and PI CYCLE is still false, the timer
loads the count specified by T6 and continues to count while waiting for PI CYCLE to set. The PI
board must not begin to service a second interrupt before the microprogram has a chance to look at
the first one. Hence, the timer is prevented from entering T7 COMP, until the microprogram has set PI
CYCLE. This also enables the ring counter to perform load.

Assuming PI CYCLE sets, the time state generator proceeds through T7 and into complete (COMP).
Note that the EBus dialogue control removes DEMAND some time before removing the CS and F
lines. This avoids the possibility of misselection of a device. The generation of COMP enables PI
EBUS PI GRANT to clear, removing FOO and CS04-06.

2.12.4 Basic Input Output Control
Referring to Figure 2-99, the implementation of 1/O operations is similar to interrupt processing, if
taken at the point where the EBus is requested. The difference is that instead of a hardware arbitration
" process taking place, followed by a single request subsequently asking for the EBus, the microprogram
1/0 handler (part of the executor) requests the EBus. This is accomplished utilizing the condition field
function COND/EBUS CTL, together with a particular pattern in the magic number field all in the
same microinstruction. Only the resulting signal is indicated on the figure (APR EBUS REQ) but the
various other signals are simply formed by combinations of COND/EBUS CTL and an appropriate
magic number.

2.12.4.1 Requesting the EBus — The EBus request control treats both an EBox-EBus request (APR
EBUS REQ) and a PI EBus request equally. Whichever request is seen by the EBus request control
first receives the EBus.

The microprogram is waiting for an indication that it has been granted the EBus. The indication of this
condition is EBUS CP GRANT. The microprogram loops, waiting for this signal to become true.
Once this occurs, the next step in the operation may be performed.

2.12.4.2 Dialogue Overview - Basically, the EBox decodes bits 10-12 of the instruction to determine
which type of I/O operation is to be performed. Eight possible combinations exist; these are indicated
in Figure 2-100 at the bottom left. The logical mapping of I/O op code into appropriate DRAM
addresses is also illustrated in Figure 2-100.

EBOX/2-124

~APR APR F02
#5(0) 46 AC10(1) | EN(1)
MAGIC # FIELD #0 #1 %2 3 %4 | #5010 %6 #7 #8
TOND/ APR EBUS |APR EBUS |CON EBUS |APR EBUS| HOLD|SELECTION | APR EBOX | APR EBUS | APR EBOX
OPERATION | gayscrL 012345678 | TUNCTION fperypn | REQ REL | DEMAND [STATE| CONTROL |DISABLECS [Fo1 SEND Foz | OS5 0006
BASIC EBUS YES 010000000 | REQUEST X
OPERATION
USED BY ALL YES 000011000 | I/OINIT X X X X IR 03-09
1/0 INSTR
YES 000110000 | SETEBUS X X Holding Holding | Holding
DEMAND
YES 000010000 | CLEAR EBUS X Holding Holding | Holding
DEMAND
YES 001000000 | RELEASE X
EBUS
MTR INT, USED TO YES 700000000 | GRABECL X
INTERNAL | OBTAIN ONLY EBUS
DEVICE THE ECL SIDE YES 000000000 | RELEASE
CONTROL, | OF EBUS. THEN ECL EBUS
PAGE FAIL | GIVE BACK
HANDLER, | LATER
READ EBUS
REG
DEPOSIT, BYTE
XFER OR PI
DATAO, FOL- YES 000010110 | SETDATAO X X X o's
LOWED BY
BASIC EBUS)
OPERATION
EXAMINE, BYTE|
XFER OR PI
DATAI, FOL YES 000010100 | SETDATAI X X os
LOWED BY
BASIC EBUS
OPERATION
“FOR ALL 1/0
INSTRS
IR00-02=7"
IR 0-2
0-2=7
DRAM FOR 1/0 INSTRS
EXTERNAL DEVS
S M~ - = - = — X | 03
03.06| .]
o 7 OR 0" DRAM EXTERNAL MAP INTO
- i DEVICES 770.777 '
FOR oo z [77
03-05 110 LOCAL 767 2217
A DEVICES 2 |
TS, 710 ===y L ___ _LOCAL DEVS
r CONSO APR 707 = \pap o [2PR 000
| CONSZ APR v 1710767 R 004
l CONI APR LI PAG 010
| CONO APR : ' 014
. DATAO APR ! 020
! BLKO APR Ll 024
| DATAI APR MAP INTO .. _ _|SPARES | 030
R | BLKI APR - 700707 ¢
- 0, e o 4
1012 X I T e
] | *NOTE: FOR EXTERNAL DEVICES
® bl IR 03-06#0 SO MAKE
| 1 DRAM ADR 03-05=7
!
=== S A |
1 1
| MAP INTO |
| ® xoxxr |
OPERATION AC10 | AcC1 Aci2 | Foo Fo1 F02
CONO 1 [)) o [) e
CONI 1) 1 0 0 '
DATAO o 1 1 0 1"
DATAI 0* 1 [) 1"
BLKO 0 1 0) 1
BLKI o+ 0 0 1"
CONSO 7 1 1 [) [)
CONSZ 1 1 0 0 0

INPUT OUTPUT
INSTR ENTER
HERE

EBUS REQ

DEVICE
CODE

T

APR EBUS REQ

N

/

“TEST"

EBUS CP GRANT

PIHANDLER "

PICYC

EBOX CLK —I

“EORPI

HANDLING MAY

ENTER HER

WITH FCN AND

CS ALREAD
SET UP

PI BOARD IS
WAITING IN T6
FORPICYCLE

TO SET

/O INIT*

_—
E

v

wair

ASSERT DEMAND

“IF OUTPUT PUT
@————— AR ONTO EBUS
VIA AD”

APR EBUS DEMAND

wAaIT

AR<EBUS; IF
INPUT OPERATION
DROP DEMAND

WAIT THEN DROP
F,CS LINES

RELEASE EBUS

EXT
TRANS
REC

CON EBUS REL

el

10-1668

PI BOARD WAITS
AT T6 UNTIL PI
HANDLER TAKES
DATA AND SETS
PICYCLE

COMP
T7
T6
5
T4
T3
T2
T

Figure 2-100 EBus Control Functions

EBOX/2-125

The dispatch to the proper operation is obtained by mapping bits 10-12 into DRAM ADR 06-08,
while the device address 3-6 is mapped into DRAM ADR bits 03-05. Thus, for example, a DATAI
APR with op code 701 is mapped into DRAM address 701. Similarly, BLKO PAG, with op code 722
is mapped into DRAM address 722. This is device 010g; therefore, the type of operation performed is
determined in advance and the DRAM jump address is coded to cause a jump to the appropriate
group of microinstructions. The device select code is in bits 3-9 of IR and must be used to address the
device. This addressing is accomplished by converting 3-9 to CS00-06 in the proper form. The func-
tion is controlled by the combination of two EBox control signals, APR EBOX SEND F02 and APR
EBUS F01. With these two signals, all combinations of input and output operations may be performed
as indicated on Figure 2-100. Notice that EBus F00 is not used for any of the operations. This signal is
generated during priority interrupt dialogue for the function PI SERVED (Function 4) and for PI
ADDRESS IN (Function 5).

2.12.4.3 Functional Breakdown - Figure 2-100 is essentially composed of three sections. The first is a
breakdown of the EBus microcode operations into four basic suboperations as follows:

1. Basic EBus operation as used by all I/O instructions.

2. ECL EBus acquisition and subsequent release

3. Generation of the DATAO function followed by the basic EBUS operation
4. Generation of the DATALI function followed by the basic EBus operation

The second section illustrates how the operation specified in IR 10-12 and a portion of the device
select code IR 03-05 are mapped into the DRAM words that pertain to I/O operations.

Finally, the third section consists of a simplified flow of the basic EBus operation, including the
handshake between the microprogram EBus driver and the PI Board.

Basic EBus Operation

This is illustrated in the flow on the bottom right of Figure 2-100. Five basic COND/EBUS CTL
functions are generated from particular magic number bits. The first is to request the EBus from the PI
Board. This consists of asserting APR EBUS REQ.

The microprogram now loops, waiting for an indication that it has obtained the EBus. The indication
consists of receiving EBUS CP (Central Processor) GRANT from the PI Board. This moves the micro-
program to the next logical step which is IO INIT. Here magic number 5 enables the function lines FO1
and FO02 to be driven from -APR AC10 and APR FO02 EN, respectively. The table of I/O operations
given at the bottom left on Figure 2-100 shows that FO1 is true whenever AC10 is false. This is true for
DATAO, DATAI, BLKO, and BLKI. Conversely, F02 is true whenever ACI10 is true, or both AC10
and ACI11 are false.

Magic number 4 is used to latch the particular function (HOLD IT). Note that during the IO INIT
period, IR 03-09 is passed to the PI Board to become CS00-06. A fixed delay is generated by the
microcode at this time to allow the controller select lines to set up at the device.

Next, SET EBUS DEMAND is issued, while holding the previous function lines FO1 and F02 as
previously set up. Once again, the microprogram waits a predetermined period. The waiting is con-
trolled by the time field and the number of successive microinstructions issued. Thus, two successive
microinstructions with T = 5 is approximately 300 ns.

Now the microprogram loops, waiting for TRANSFER from the device. This signal indicates that the
device has completed the specified transaction and has either taken or transmitted status, data, or
control over the EBus. At this time, if the operation was CONSO, CONSZ, CONI, BLKI or DATAI,
the EBus is loaded into AR. If the operation was CONO, BLKO or DATAO, during IO INIT the AD
is enabled to the EBus. The AD contains the contents of AR.

EBOX/2-126

Finally, DEMAND is removed by issuing the function CLR EBUS DEMAND. Notice that number 4
holds the function lines up. It is necessary to remove DEMAND first while still maintaining the
function and CS lines in order to prevent a spurious misselection. Now the function and CS lines are
dropped and the EBus is relinquished by issuing RELEASE EBUS. This action causes EBUS CP
GRANT to clear.

PI Handler and EBus Operation
Once again referring to the flow on Figure 2-100, note that after issuing EBUS REQUEST and while
testing for CP GRANT, an interrupt is tested for. If an interrupt is pending, the PI Handler is entered.
This means that EBUS PI GRANT was set when EBUS REQUEST was issued and EBUS CP
GRANT could not set anyway.

The PI Board has negotiated with the device for the API function word that is now on the input to AR.
The PI Board is holding in T6, waiting for PI cycle to be set.

Examine, Deposit, or Byte transfers requested by the 10-11 interface require separate control of the
controller select and function lines. For these cases, SET DATAO or SET DATAI is issued independ-
ently. Then the EBus routine is entered at the point where the CS and F lines are setting up. If the
operation is DATAO of TO11 transfer, the AR is placed onto the EBus via AD. The remainder of the
EBus operation is identical to that for basic EBus operation.

ECL EBus Acquisition — At various times, the ECL portion of the EBus is required for some form of
transfer. Some examples of this requirement would be processing interrupts for internal devices such as
APR, PI SYSTEM, or TIM. Also, performing I/O instructions involving these devices would require
the use of the ECL EBus. A second example is the case of page fault handling in the microcode. At
some time, the MBox-EBus register must be read over the EBus into AR. Thus, the ECL EBus is
necessary for this operation. The function necessary to acquire the ECL EBus is COND/EBUS CTL
with magic number bit O set. This actually takes the EBus away from the PI system. It does not abort
the PI operation (if any) but merely causes it to be dealyed. The signal APR EBUS RETURN causes
the PI timer and time state generator to HOLD and it clears EBUS P GRANT. The ECL EBus is
relinquished by issuing RELEASE ECL EBUS, which takes away APR EBUS RETURN. Now the PI
may continue from the point at which it was held.

2.12.5 PI and EBus to Microcode Interface

Figures 2-101, and 2-102 are concerned with the interaction of the PI Board and certain other EBox
related hardware with the PI Handler and EBus Driver. Both of these handlers are microprograms.
Figure 2-101, illustrates the basic signal interfacing between fucntional elements of the PI Board,
Control Number 1 Board, and various EBox hardware used during EBus transactions with the Micro-
code PI Handler and EBus Driver. Figure 2-102 generally relates the PI Handler and EBus Driver
functions to the PI Board hardware for given operations. Figure 2-103 is supplied to support function-
al descriptions to follow.

2.12.5.1 Sensing the Interrupt - Initially, assume that the PI Board is enabled and idle. Two devices
(DSK) assert interrupts on the same priority interrupt channel; DSKA on channel 5 and DSKB on
channel 5. Thus, based on the fixed physical number scheme, the range of physical numbers is 0-7.
Further, assume that DSK A is wired to be physical number 1 and that DSK B is wired to be physical
number 7, and that DSKA is the device selected.

Referring to Figure 2-101, PI Level 5 is received from both devices and is loaded into PI Request
register 5 for arbitration. Because both DSKs are interrupting on the same channel, the PI Network
need only check those channels holding interrupts. If none is holding on 5 through 1 (0 is DTE20 and
never holds), then channel 5 is selected. The next phase begins by asserting REQ to obtain use of the
EBus.

EBOX/2-127

y/4

/I’) y
T TOE EN /\ -
o
E
B
u
s
M
!
AD 7%
PI BOARD
APR EBUS FO1
E
B
XLATOR u DEV X
s
B
PI a—
STACK HANDLER — CLR
cTL _ APR DISABLE CS G;Ifm E£BUS XFER
MICRO, EXT TRANS REC SET
INSTR —* £80X
"caLL* | |"RET" o HOW APR EBUS RETURN I cs 00-03
EBUS APR EBUS DEMAND SET PI CYCLE
DRIVER START TO BEGIN.. €S 04-06
CMICRO CODE] APR EBUS REQ
T g%k%fg’A;gE ONE DIALOGUE WITH
TIMER WITH F0O,F02
TO GET THE J
805 OR REL. TIME STATE GEN,|
"SIMPLIFICATION
e
onL PHYS #'s ON
] EBUS 00-15
CRAM REGISTER
" O YOOND/
JUMP £B08
cTL LOAD UP REQS
- ARBITRATE THEM EBUSPIO-T7
MAGIC #'s W —|ISELECT HIGHEST e——
CRAM REQ"/|ONE O HIGHEST, PIO-7
RAl 7 LOWEST V NOTE!
"LOAD"
RING
"SKIP" "TEST"|| COUNTER @ '
“SKIP ON" PI EXT XFER REC
CRAMBIT O PI CP GRANT REMOVE TEST
CON INT REQ
PI RDY
"SET PI B @
CYCLE"
CONTROL "EBUS RELEASE" WHAT LOAD WAITT | WAIT2 | TEST
#1
BOARD LOAD REQS 0-7 1 0 [0 .\
S
CLK CON —g— pIO PINETSETS UP 0 1 0 0 R
3
CYCLE o 0 1 0 P
q PICK WHICH REQ E
e o Q 0 1 A
T
— HOLD IN TEST UNTIL PIGRANT .
FLIP REMOVE TEST 0 0 1) Y
FLOP ¢
PI EBUS PI) 1 0 0 L
1 GRANS. E
LoGiC E— SET DURING 1 o 0
THE DIALOGUE
PICYC SETS 0 0 o 0
DURING THE
- END OF DIALOGUE *REMAINS CLEAR UNTIL PICYC < 0
INT
REQ
“ N NOTES: *PIGRANT
FROM METER" — 1 1. PIO only generated if device is 10-11 interface. “ DIALOGUE -
2. Detailed COND/EBUS CTL functions on Fig. 2.70.
Pl CYCLE | « MICROCODE
HANDLER
ap 10-1669

Figure 2-101 EBox PI Board
to Microcode Interface

EBOX/2-128

PI HANDLER AND EBUS DRIVER

T

2

(MICRO PRCGLRAM}

"3 PORTION OF STD LT ERRUPT®

Vs

MICR

HERE
OR P

0 CODE SAMPLES

INT REG AND DIVERTS

IF INT REQ IS SE
TCYCLE 1S SET

LOOKS FOR INTERRUPTS :
nicoND

5
Tl 2 PF HANDLER

INTRET

®

8

Ce—z, FCN
ALLIGNMENT

SET P CYCLE

COND/SET I CYC

St DISPATCH

GTL € BUS RELEASE

WAYS ON 00 - 03}

FonCTIoN 1S
SHO1-03
"STO INT" “STO INT" "VECTOR TYPE" "PI INCT "PI DATAQ OR "PI DATAL OR “TO 10 OR 1 "NOT USED DO
EXAMINE " DEPOSIT™ BYTE XFER" STD INT™
cfcxz 00 ot 0z 03 04 05 o6 or
1
VHA <= 81420; —aoe2n; AR=-APIWORD w4 | | VHMA<—ADDRESS VHA=—ADDRESS VHA o ADORESS MQs-aPI ORD - .
EIERET| | e Trend | | e ons - MO e=APT WORD | | Mo API WORD TIME 5 TICKS | |aReapTwoRDws| | w4 STHO 2N
EPT"FETCH" MQ +— AP WO Q MQ <—API WORD AR < WORD SKIP IF Q1 MQ =— APT WORD SKIPIF Q=1
Il 1
PI
Vet
0 BiTS o v
0 BITS 0F P
cpT FETCH 9 BITS 0
ARQQ -03 SPEC/FLAG CTL
{TYPE OF DEVICE}
"TO 10 XFER"
FERE
FOR PT, MCL SKIP SATISFIED
Lo SPEC/SAVE FLAGS
EBOX SYNC —
1 a PI CYCLE (N
"EPT" "EXEC VIRTUAL" “PHYS"
FILO CDECR”
2 A& @— WORD THIS INCREMENT THE DECREMENT THE
Ane—wonD s word rrok | | 4575 FIVS R CONTENTS O AR | | GORTENTS OF AR
VIA EPT $O 1T TAKES BOwN BY +1 AND STORE BY +1 AND STORE
AOR s “MAY BE PAGED " HE RESULT E RESULT

RETURN 2"

"ERROR NOT USED'

FINISH T

"NO PROT 8 RELOC"
“RESTRICTED TvES
DEPOSIT'

AR e-ARE2
SCo— 13
"RESTRICTED

asit”

SPACE SPECIFIED

DISPATCH ON
AR00-03
DEPENDS ON ADR

o

EPT BASE ADR
USED 145

peen

0
==

l EXEC VIRTUAL" l

EXTRACT ADDRESS
FROM API WORD,

PUT WORD INTO
AR VIA BRX AS
SAVED. STORE.
ITINEPT

RELOC WORD INTO AR

PUT WORD INTQ

ADDRESS SPACE

PUT WORD INTO
AR VIA BRX

AS SAVED.
STORE IT INPHYS
ADDRESS SPACE

[

VHA o ARH

SKIP 'OVER
CURRENT ADDRESS
TO PROTECT WORD

ADDRESS

&3

AR<B!

STORE
NOTHING

VMA<—VMAH READ
RELOC WORD
INTO AR VIA EPT

WAIT FOR RESPONSE

CONDUCT EBUS
DIALOGU]

PUT BYTE
INTO ARX,
PUT API WGRD
#2 INTO AR

"RESUME AS BEFORE"

HYS REF" [2-3
a-5

"ERROR NOT USED"

PILD

CALLED 70 READ
WORD FROM

CONTROL LINES

SAVE WORD IN
PI

ASSERT DATAT

CONDUCT £BUS
01ALOGUE

ARX GET Al
WORD INTO
ARVIA MO

SPECIFIED
ADDRESS

AR<=API WORD#2
ot

“RESTRICTED
EXAMINE"

ASSERT DATAO
CONTROL LINES

EBUSK €
onDUCT £8US
DIALOGUE

AR<—0
SEND O's

CALLS
READ PROTECTION
WORD

XTRACT ADDRESS

WORD ADDRESS

PI LD TO

TO DEVICE

CHAN 0-7 CHAN 4-7 DTE 0-3 EXTERNAL
VMA«—API WORD VMA=—API WORD ARO-Be—142 A =— APT WORD
STORE WORD IN ADDRESS 13- 35 ADDRESS 13 - 3 +LOW ORDE} ADDRESS 13- 35
RELOCATED ADDRESS FETCH INSTR FETCH PHYS # BITS FOR REQUEST INSTR
*PHYS REF" FROM EPT F OTE is 0,1,2,3 FETCH INTO ARX
[N Il]
o
e
f_SHIFT N

RESULT TO AR

VMA=~AODRESS
IN EPT FOR

DTE 20 FETCH
INSTR FROM EPT

I

Figure 2-102

“ADDRESS IN AR 27-35"

A VHA +1;
READ RELOCATIGN
WORD INTO
AR V1A EPT

WAIT FOR WORD

VHMAS-ADR+RELOC:
READ WORD INTO
AR (PHYS REF)

“8R s WORD"

PUT EPT LOCATION
INTO ARD8;

1404880

PUT PROPER EPT
LOCATION INTO
AR 27-3

TO 10 XFER

VMA<-EPTLOCATION| |VMA=-EPT LOCATION
"ADDRESS OF TO# +1"ADDRESS OF
BYTE PTR"

TIO BYTE PTR"

READ BYTE

POINTER FROM
EPT LOCATION

PI CYCLE CLR

¥

UPDATE BYTE
POINTER "P o= p-s"
AND CHECK
OVERFLOW

BASE EPT
ADDRESS UPDATE POINTER,
USED 145 ORE COPY IN
VE_COP
B8R
PUT POINTER 1N
ARX ALRE #0Y
HAVE IN AR AND 81T
PUT PIN SC
FE CONTAINS S
L 1S INHIBITED”
T0 10 XFER
PUT BYTE SAVED
PUT P4S IN SC IN BRX INTO AR
FE CONTAINS S PUT 36-PIN
SC FE=S

STORE BYTE

GET THE BYTE
[[W SPECIFIED

RIGHT JUSTIFIED

EBus Control Hybrid Flow (Sheet 1 of 2)

EBOX/2-1

29

10-1751A

¥ PI AND EBUS CONTROL LOGIC - et %

RECIRCULATE
TEST UNTIL
PI GRANT SETS

INK REQ

IDEALIZED
S Samon
~CON EBOX
NaLTED
—~ TLTTOE en
PION O :NO 2l (AL
N INTERRUPTS
P1cux on 1-7
Provece
FT CoRD [P2 WaTT [PLWATT 2 | FTTEST | FUNET Loso
o o
! ° ° o NEXT STATE
5 i) o - |
- 5 T v - ne e Ty consove T G1e-seno
7
OLD T DiiIss . conree. foz 2l
o o o v el ! 1 . 2
PI GRANT P'aRzEEL HOLD CONT OR |
™ .2, DaTAT ~CONSOLE
@ o o : [Tun KEQ EE?’LSESD of— |resr SonsoLe |
NOTE : Afrer 4 clock e creor ;
€ o clocks oil stages ore cleo: £aus XFER |
Trans
- - REC
P . |
| [rrneaoy o
1DEALIZED| PL |
Lk
o1 !
PI
Tee
cone , |
e] |
ol | ~
PI
P
= |
oL
. . cuen nese |
€ R
Bu"RE0 |
REavest Bus |
e cous Lr
eSO -gous |
F e1 RETURN :
1080 | 1{uen | cr consoLe — on i
st | “T-EonTRaL o TT care 1L
YO ECL |
(INJECT & B1T) |
es 00-03 |
00 0203 06 07 09 10 12 f PI TIME 4 ALSO USED FOR 10 INSTRUCTIONS
e[7 | oev [oev | or S e . I
PI
cve |
staaT P1TME 3
5 s 2
g
O cont H
SEL b
mvsaoo-ts ||
Prvs seL 84,20
FTTWE S |
10 INT, SETUP \
CS+FCHN LINES CS 04-06 : I
crLpisasLe cs ¢ |
(P REQ SELECTED) FoRces PHYS 40
FOR API DATAQ
oatar |
dvre |
PL SERVED (FCW 4) |
P Time 1o PI 20R IN (FON 51
4150 Vs rom BvTE TRANS (FCN 6) |
16 s THoC Tions UNUSED (Fen 71 €eus Fo0 i
aew eg0x
SEND FOR |
DATAD (FCN 2) |
DATAL (FCN 3)
BYTE TRANS (FCN 6) |
DNUSED (FeN 71 £aus ror
> |
P1 TiME 1.0 cont ren 1 |
ALs0 USES For OATAT (FCH 3) .
IG INSTRUCTIONS PI ADR IN (FCH 5) £8US FO2 [‘: i
o1 comp — ! ‘
e - |
ot e 2])] o1 e 256 I
ALSC USED FOR 1
P1TimE 5 16 NSTRUCTIONS cous oemanD
v DEMARND ‘
PITINE 6 |
o
TR REQ Si
1

WAIT 15605

b
MTR REQUESTING ON ASSIGNED cHannEL [T = N\

"
INTERNE PI TIMER TABLE A
O ASEiGNER Channe
N ASSIGNED CHANNEL wew | new | % | oto | new
Y | Y| o | 8% | RN | ovmarion| ey | e | ex
GE76g | GETS: | TiMER | STATE | STATE | (n%) L
1
e [oor | 0 |l
C CICE TN T e T
3 oo T2 s
35 [oror [D)
300 | Ta e TS
WA w75 AsseRT
23 Lo | 5 16 ForTRaNS | 1 READY
e T Eoox wiLL | wart m 16
S e e SET INT REQ |FOR PICYCLE
0o o0z 03 o5 osor o vz 5 POR PV R
envs
200RESS | oy conrmaier| o ADDRESS ALCEROING
SPACE we e P o @iTs oo- 2 L0AD TIMER 15 TIMER DONE
T
|
cuncrion H
SUPPLIES THIS FUNC MEANING OF G
auaLIFIER G.1.2.7] TGHORED
o-gpT B
| EREC vimTuA APPLY PROTECTION
v
4 - Privsica 2.8 AND RELOCATION
2-3 - RESERVED o
: 10 BYTE X
5-7 - RESERVED B o0 BYTE XER

10-17518

Figure 2-102 EBus Control Hybrid Flow (Sheet 2 of 2) '

EBOX/2-130

1
EBUS BI cve SHIFT REG SHIFT REG
PI GRANT |- START 10141 10141
T CLR SETT SHIFT O IN SHIFT O IN
PI CLK o
REQ T4 T5
T2 T6
TIMEG T T7
T4 COMP
~PI CYCLE
STATE HOLD
_eT ove 2 @=LOAD 2 B:LOAD
START 1 1=SHOIN 1 1=SHEIN
PT
PI CLK—{CLK cLKLELK
—TIMER DONE PI
TIMER
(See table

on figure 2-94)

10-1670

Figure 2-103 Time State Generator Control

2.12.5.2 Requesting the EBus - To obtain use of the EBus, the PI logic must set EBUS PI GRANT.
This is illustrated on Figure 2-102. Note that the following requirements must be fulfilled to set EBUS
PI GRANT:

PI test must come up.

REQ must be true (PI 4, 2, 1 = some selection).

The Ebox may not be halted or there are no interrupts selected on 1-7.
EBUS PI GRANT is currently clear.

The PI Board is not trying to set CP Grant.

B

WV W

If all five conditions are satisfied, EBUS PI GRANT sets. If the conditions are not currently satisfied,
the interrupt waits.

2.12.5.3 Beginning the Dialogue - At this time, several events take place. The setting of EBUS PI
GRANT enables setting of cycle state, which begins the dialogue. In addition, the PI Timer (see the

\%{able on Figure 2-104) is loaded with 25¢, which defines the duration of the time state entered, in this
case time 1. The time states are used to direct the EBus dialogue from beginning to completion. EBUS
PI GRANT forces F0O to a 1. This function (4) is PI served and is issued together with CS 04-06,
which are encoded to be the selected channel (5). The interrupting devices (in this example two DSKs)
decode the function lines F00-02, together with the controller select lines CS 04-06. The PI timer
counts from 25; to 373 then-generates TIMER DONE. The devices have now had sufficient time to
decode the CS and F lines so the next phase of the dialogue begins. The timer is now loaded with 114,
Time T1 is removed and T2 is entered.

EBOX/2-131

PI BOARD RUNS AT
MBOX CLOCK RATE

PI2 CLK

PI5 cvc STRT [

PI2 TIMI I l
PI2 TIM 2 I |

WAIT IN TS PI BOARD SUPPLIES PHYS CONT #
TO EBUS FOR APT WORD
WAIT IN T5 FOR
i T . EBUS XFER
PI2TIM 4 [s Nteo. 1

PI2TIM 5 | L

PI2TIM 6 . |
PI2TIM 7 - =]
PI2 COMP - |]

PI2 STATE
wors L g

PI2 TIMER 16]I Lo [

PI2 TIMERS _0 | L l |] e e l o ofi Lo 0 i

—

PI2 TIMER4 |1 0 1 I OMO LI le I I L

PI2 TIMER2 O] 0 0 00 0 (2]

3
]
o

PI2 TIMER
8,4,2, CRY IN j__,,_J
PI2 TIMER
16 CRY IN]! N 1 B S n_n N n.
PI2 TIMER
o, 4, EFRRIER 1 R n_n K. n_n n n
§ier SiaER TiMeR uer FMer TivER FMER MER §Mer
PIR TMER R R . b o R R
PIS EBUS e
PESsRANT |
EBUS €S [/4 TIMER GETS [CURRENT STATE| NEW STATE
00-03 e il 255 PI CYC START T
EBUS CS B s 5 i
0405 Ilg T T2
EBUSF s 34 T2 T3
00 J | 8
o 25 T3 T4
EBUS F I 7/ 1 8
w 2lg T4 TS5
EBUS DEM [| Jigz l gg”i R 20g 5 T6
WAIT FOR PL
LATCH PHYS #'s x CYCLE TO SET 35g Te T6
20 T6 T
EBUS XFER il] l 2
v 20g T7 comp
PI TRANS REC o | 1
P12 READY i &
CON PI CYCLE - [~
NOTE:
SET B;Rg'g'gﬁa/ IF PI CYCLE DOES NOT SET BY THE COMPLETION

Figure 2-104 PI Timing

EBOX/2-132

OF THE TIMER COUNTDOWN DURING T6 THE
PI BOARD HOLDS AT T6 UNTIL PI CYCLE SETS

10-1754

Time 2 enables EBUS DEMAND. Note that the function PI served and controller select lines are
maintained. The DSKs are commanded to place their “hardwired” physical numbers onto the EBus,
bit 1 for physical number | and bit 7 for number 7. Referring to Figure 2-103, DEMAND is held up
through Time 2 and then removed while the F and CS lines are maintained. It is good procedure to
remove the DEMAND signal before attemping to change the function lines; this avoids any spurious
misselection. The timer is next loaded with 255 and T3 (a brief time state) is entered. Here, two func-
tions are performed: '

1. - The physical numbers, by now on the inputs to a register on the PI Board, are clocked into
that register for arbitration.

2. The PI Board is timing out a period of time until it is safe to change the function lines.
The next part of the dialogue is begun when Time 4 is entered.

Here, FOO and F02(5) are asserted; CS00-03 reflect the encoded physical number that has highest
priority (#01) and CS04-06 still reflect the PI channel being served. When Time 4 is removed and TS5
sets, DEMAND is asserted once again. This time DSKA is selected as the DSK to be serviced.
DEMAND commands DSKA to place its API word on the EBus and to assert EBUS TRANSFER to
the EBox. The PI Board waits in Time 5 until TRANSFER is received, or forced. If, for example, the
interrupting device (DSKA) can respond to most of the dialogue but cannot send EBUS TRANSFER,
31 the P1 Board waits. If TRANSFER is not forthcoming, TRANSFER is forced and the EBus (which
%}contains zeros) is treated as an API function of 0. This ultimately causes a 40 + 2n interrupt on the
" interrupting channel. The DSKs service routine must then decide what went wrong. Assume that the
DSKs succeed in placing the appropriate API function word on the EBus and generate TRANSFER.
The timer is loaded with 355 and Time 6 is entered where PI READY is asserted. At this point, the PI
Board is notifying the EBox microprogram that the API word is currently on the AR mixer inputs.

2.12.54 Terminating the Dialogue - With the assertion of PI READY, the PI Board waits in Time 6
until the PI Handler (microcode handler) looks at the interrupt. PI READY enables INT REQ to set
in the EBox and when the PI Handler detects this, it sets PI CYCLE. Now the timer continues by
entering Time 7, drops DEMAND and finally enters COMP, where the CS and FUNC lines, together
with EBUS PI GRANT, are removed. This compietes the PI Boards dialogue.

2.12.5.5 Entry to the PI Handler - Referring to Figure 2-102, the handler is entered at symbolic
location INTRPT, with the API word loading into AR, and PI CYCLE not yet set. Thus, the PI Board
is at this time in Time 6, waiting for P CYCLE to be set. The shift counter is loaded with 2, in order to
enable the API word in AR to be shifted left two positions, bringing the function code in bits 03-05
into bits 01-03. PI CYCLE is set and then a shift dispatch is given; depending upon the function 0-7,
the dispatch is to one of eight routines within the main handler.

., Function 00 - STD INTERRUPT NO TRANSFER

?The word is buffered in MQ. The VMA is loaded with the appropriate 40 + 2n address. This address is

mplemented via the SCD TR AP mixer (refer to Figure 2-60) and derived from number with P14, 2, 1.

PI 4, 2, 1 is simply the octal equivalent of the channel on which the interrupt was taken. Thus, the

' mstructlon is fetched from 40 + (2 X 5) in the example cited in Subsection 2.8.5.3. This yields an
"address in VMA of 0000050.

The program branches to Execute Wait (XCTW) where the microprogram waits for the instruction
fetched to load into AR. This instruction should be a “JSR,” which saves the flags and PC and then
enters a subroutine in main memory to deal with the situation. The performing of a JSR causes
SPEC/SAVE flags, which clear PI cycle and set PI HOLD, to hold the interrupt.

EBOX/2-133

Function 01 - STD INTERRUPT KI10, KA10 Device via I/0O Bus Adapter or KL10 Device via EBus
The implementation of this function is identical to that for Function 00. The difference between the
function codes is that Function 01 is a premeditated request for a “STD INTERRUPT,” where Func-
tion 00 is a bus failure condition.

Function 02 - VECTOR INTERRUPT

The word is buffered in MQ. The API word contains an address in bits 13-35 and an address space
qualifier in bits 0-2. The address is loaded into VMA. Now a dispatch is given on AR00-03. The API
word format is presented on Figure 2-102. Note that only three address spaces may currently be
specified:

0 - EXEC PROCESS TABLE (EPT)
1 - EXEC VIRTUAL ADDRESS SPACE
4 - PHYSICAL ADDRESS

A routine is called for the storage operation PILD (illustrated in Figure 2-102).

Fetching from EPT - T
VMA bits 27-35 receive the AR bits 27-35 via AD. The EBox makes an EPT reference. Referring to
Figure 2-83, the qualifiers asserted to the MBox are as follows:

EBOX REQUEST
VMA EPT
PAGE UEBR REF

The hardware normally looks at a combination of SPEC/SP MEM cycle with magic number and user
enable to select either VMA EPT or UPT, depending on the state of user. In this case, however, user
must be disabled to enable a direct reference to EPT. The AR is loaded with the instruction fetched
from CPT. This instruction is either the first of a series of instructions in a service routine or an
instruction directing entry to a service routine. As with 40 + 2n interrupt instructions, the instruction
should be a JSR to save the flags and PC. By performing a JSR, SPEC/SAVE flags clear PI CYCLE
and set PI HOLD on the PI Board. This holds the interrupt.

Fetching from EXEC Virtual Address Space

The API word is buffered in the MQ. For this case, the address in bits 13-35 of the API word is a
complete virtual address. In fetching from EPT, only bits 27-35 of the address in bits 13-35 contain
address information. The MBox appended a base address (EBR) to this 9-bit address. Here the request
qualifiers are as follows:

EBOX REQUEST
EBOX READ

The M Box translates the address and supplies the instruction that loads into AR. Once again, transfer
is to XCTW, to wait until the instruction actually loads into AR. Then the instruction is performed as
with the previous EPT reference.

* Fetching from Physical Memory

Here, the address contained in the API word bits 13-35, contains a physical address in bits 22-35 while
bits 13-17 are clear. To cause a physical reference to occur, the magic number field is coded with
number 08 set and this, together with SPEC/SP MEM cycle, inhibits the qualifier MAY BE PAGED.
If this signal is not present during EBus request, the MBox does not page the address. The instruction
loads into AR as before and then performs. Once again, SPEC/SAVE flags clears PI CYCLE and sets
PI HOLD.

EBOX/2-134

Function 03 - PI INCREMENT

This function causes a word in the specified address (API word bits 13-35) to be incremented or
decremented as a function of the Q BIT in the API word. If Q = 1, the function is decremented,;
otherwise, it specifies increment. Referring to Figure 2-102, the API word is buffered in MQ and Q is
tested. If Q = 0, the contents of the address specified in the API word 13-35 are fetched and
incremented. The incremented word is then stored back in the same address and an instruction fetch is
performed from PC. This contains the interrupted program. Note that the microcode must set PI
HOLD in order to hold an interrupt on the PI Board. This is done when the 40 + 2n or vector function
fetches and performs a JSR or similar instruction. Here, after completion of the storage operation, the
interrupt is dismissed and PI CYCLE is cleared. PI CYCLE is cleared with SPEC/FLG CTL and
number 02.

Function 04 - PI DATAO or EXAMINE
The 10-11 interface may perform an Examine function to either core memory or fast memory. In
addition, the address supplied in the API word may be a relocated address or not depending on the Q
IT in the API word. Associated with the Examine operation are two words of information for each
10-11 interface in the system. These word pairs are in predefined areas in the EPT. One word of the
pair is a protection constant, which limits the address of the virtual address sent in the API word. The
number of pages specified in bits 13-26 may be less than or equal to the value of the protection
constant, but not greater than that value. The microprogram utilizes the low-order 2 bits of the phys-
ical number supplied to the API word (bits 7-10) and forms an address 140 + 8n, where n is the low-
order 2 bits of the physical number for the interrupting 10-11 interface. The physical numbers are
hardwired as 10s—133. This gives low-order 0, 1, 2, or 3. The FPT location thus obtained is accessed for
the protection constant and the comparison is made. If a violation occurs (protection violation), a
word of zeros is transmitted to the 10-11 interface via the EBus. If no violation occurs, the relocation
word is fetched from EPT and added to the address supplied in 13-26 of the API word. This address is
now treated as a physical reference and it is not paged. The word is obtained and transmitted via
DATAO function to the 10-11 interface. Upon completion of the EBus dialogue, the PI CYCLE is
cleared. Note that for the 10-11 interface Examine function, the interrupt occurs on channel 0.

gThis channel is implemented solely to enable the 10-11 interface to utilize the PI facility at any time,

| whether it is on or off for DMA type transfers. No HOLD flip-flop exists for PI0, so clearing PI

/CYCLE effectively releases the PIO interrupt. Devices other than the 10-11 interface may utilize this

\ operation under the classification PI DATAO. Two differences in its implementation from that of
Examine exist. First, no protection or relocation is applied and hence no violation can occur. A page
fault, however, can occur. If this occurs, the PF Handler sets IOPF and transfers control to the oper-
ating system. The second difference is that other devices interrupt on channels in the range of 1-7.
Once again, holding the interrupt for this one time transfer is unnecessary and only clearing PI
CYCLE is necessary to release the PI Board. Other than these differences, the operation is identical to
Examine.

Function 05 - PI DATAO or DEPOSIT

In terms of the 10-11 interface, this operation is the reverse of Examine, except that after the 10-11
interface sends the API function (which contains the address), the EBox must perform a DATAI
function to obtain the 36-bit word to deposit in the specified address. A second difference is that if a
violation occurs, after performing the protection check a violation occurs, no word is stored in the
specified address. With these exceptions, the operation is basically the same from the point where the
36-bit word is obtained from the 10-11 interface to the completion of the operation.

EBOX/2-135

Function 06 - PI BYTE TRANSFER

This function can only be carried out betweerra 10-11 interface and the EBox. This function is initiated
on PI channel 0 as are Examine and Deposit. The transfer is part of either a TO11 or TO10 byte transfer
occurring in the 10-11 interface. The information being transferred is either a byte right-justified in
EBus bits 28-35, or a word right-justified in EBus bits 20-35. The API word specifies whether the
transfer is TO10 or TO11 by the state of the Q BIT. If Q = 1, the transfer is TO10; otherwise, itisa TC11
transfer. In addition, the PI Board is supplying the physical number in bits 07-10 of the EBus while the
API word is present. The other portions of the word 0-2, 11-35 are ignored.

T010 Byte Pointer Fetch, Byte Read, and XFER

The low-order two bits of the physical controller number 0, 1, 2, or 3 are obtained and combined with
EPT base location 14X to form the EPT location of the TO11 byte pointer. Next, the byte pointer is
obtained from the EPT and updated. The pointer is a standard KL 10 byte pointer. The microcode for
load byte instructions is used for the pointer update. Note that the byte pointer may specify indirection
and/or indexing. Once the effective address has been calculated, the updated byte pointer is stored
back in its slot in EPT and the byte is obtained by performing an EBox request. Finally, the byte now
in AR is transferred via the EBus (DATAQ) to the 10-11 interface and PI CYCLE is cleared.

T010 Byte Pointer Fetch, Byte Transfer and Storage

The byte is initially requested by issuing a DATAI to the 10-11 interface. The byte is then picked up via
EBus 28-35 and loaded into ARX and into BRX. Next, the low-order two bits of the physical con-
troller number 0, 1, 2, or 3 are obtained and combined with EPT base location 14X to form the EPT
location of the TO10 byte pointer. The byte pointer is obtained from the EPT and updated. The pointer
is a’standard KL10 byte pointer. For the TO11 XFER, the microcode for deposit byte is used for the
pointer update and, as with the byte pointer for TO11 XFER, may specify indirection and/or indexing.
Once the effective address has been calculated, the updated byte pointer is stored back in its slot in the
EPT and the byte is stored in the pointer’s effective address. Finally, PI CYCLE is cleared and this
terminates the operation.

Function 07 - UNASSIGNED
This function is unassigned and currently behaves the same as function 00.

EBOX/2-136

SECTION 3
LOGIC DESCRIPTIONS

In this section, a selection of the twelve board types comprising the EBox are described in detail.
Wherever possible, a functional perspective is given to highlight the particular functions a board or
portion of a board implements, and multiple boards are shown interconnected to aid in tracing various
control signals from one functional area to another.

PHYSICAL CONFIGURATION
The EBox consists of a total of 23 modules, configured as indicated in Figure 3-1. A brief description
of each module is contained in the following paragraphs.

Module M8532, Priority Interrupt Control (PIC) - One board, illustrated on customer prints PIC
1-6, contains PI ON register 1-7, PI GEN register 1-7, PI REQUEST Register 0-7, P HOLD
register 1-7, and the PI ACTIVE flip-flop. In addition, it contains the priority interrupt networks
for arbitration of priority interrupt requests, EBus dialogue logic, control and internal timing,
and the assignment registers for the ABR: PIA APR 1,2,4 and Meter PIA 1,2,4.

Module 8526, Clock (CLK) - One board, illustrated on customer prints CLK 1-6, contains the
crystal-controlled master clock oscillator and crystal-controlled margin clock oscillator, as well as
Source and Rate Selection registers and their associated logic. It contains logic and counters to
produce the EBus clock, SBus clock, MBox clocks, and EBox clocks. In addition, it contains
single step, burst, normal, and diagnostic mode logic and registers. It also contains MR reset,
EBus reset, crobar logic, error detection logic, page fail, and MBox request logic.

Module 8539, Arithmetic Processor Status (APR) - One board, illustrated on customer prints
APR-7, contains an 8-bit APR Status register, 8-bit Interrupt Enable register, and associated
interrupt request detection logic. It contains the EBus dialogue control logic used while per-
forming I/O instructions. In addition, it contains the address break compare enable bits, fetch
comp, read comp, write comp, and user comp. It contains a 5-bit section register, fast memory bit
36, RAM storage, and parity network. It also contains the fast memory block and word address-
ing logic, mixers, adder network and current, previous XR, and VMA Block Selection registers. It
also contains MBox control and MBox register function decoding logic.

Module 8525, EBox Control No. 2 (CON) - One board, illustrated on customer prints CON 1-6,
contains CRAM condition field decoding; COND and SKIP enables; and VM A select lines CON
VMA SEL 1 and 2. It contains meter, interrupt request and interrupt request detection logic, run
and continue logic, IR strobe, DRAM strobe, start logic, various flip-flops, and associated sych-
ronizer logic. It also contains the NICOND decoding and COND ADR bit 10 logic. It contains a
4-bit State register, diagnostic function decoding logic, Parity Enable register, Cache Strategy
register, paging enable, trap-enable bits, and I/O control signals for CONO APR, CONO PI,
CONO PAG, and DATAO APR. It contains the Load AC blocks and Load Previous Context
signals, 4-bit Microcode State register, AR and ARX bit 36 with associated logic, fast memory,
write logic, various PI control signals, and associated logic.

EBOX/3-1

[-€ 2an31

UONEZII() SMPON ¥odHd

L8iz-0t

PAZ ot St 1474 i 44 34 o 6¢ 8¢ pAS 9¢ S¢ ve ce 2¢ e O0€---=------}

8t

s 2s 3¢} o¢

12"

M8532
PI CONTROL

mM8526
CLOCK

M8538
METERS

M8539
APR

mM8525
EBOX CONTROL #2

M8527
EBOX CONTROL #1

BACK PLAIN JOINING

M8528
VMA

mM8512
DATA PATH BITS 30-35

16-19

Mes2s {gg-gg
AM -

CR BITS 2278

M8512
DATA PATH BITS 24-29

12-15
m8528 32-35
CRAM BITS 52-55
72,74

M8512
DATA PATH BITS 18-23

i1
-31
-51

8_
M8528 _]Egs
CRAM BITS 48
68,70

mM8511
CRAM ADDRESS

M8510
SHIFT MATRIX

M8530
MEMORY CONTROL

M8522
IR,DRAM,CARRY

m8512
DATA PATH BITS 12-17

47
M8528 {23_2;

44-3
CRAM BITS | d9-47

M8512
DATA PATH BITS 06-11

M8528 95223
CRAM BITS T 40-43
60.62

mM8512
DATA PATH BITS 00-05

mes524
SCAD

X083

7-€/X0494d

1L3INIGYD 0TI

L3INIGVO
Ndd

13INIgVO
aN3 LNOYd

Module 8527, EBox Control No.l (CTL) - One board, illustrated on customer prints CTL 1-4,
contains CRAM dispatch, field decoding, some adder carry control logic, and register mixer
selection control logic for AR, ARX, MQ, and PC. It also contains the majority of the diagnostic
decoding logic and the translator enables T to E enable and E to T enable.

Module 8523, Virtual Memory Address (VMA)- One board, illustrated on customer prints VMA
1-6, contains an 18-bit VMA adder, VMA AC reference detection logic, a 23-bit VMA register,
and associated input mixing logic. It also contains a 23-bit Address Break register, associated
match logic, 23-bit Program Counter register, 23-bit VM A Held register, and AR Mixer Mixer
(ARMM) logic bits 13-17.

Module 8528, Data Path (DP) - Six boards, illustrated on customer prints DP 1-5, each contain
six bits of a full 36-bit data path. Each board contains the following mixers: AR Mixer (ARM),
ARX Mixer (ARXM), MQ Mixer (MQM), ADA Input Mixer, ADB Input Mixer, ADXA Input
Mixer, and ADXB Input Mixer. In addition, each board contains the following registers: Arith-
metic Register (AR), Arithmetic Register extension (ARX), Buffer Register (BR), Buffer Register
extension (BRX), and Multiplier Quotient register (MQ). It also contans fast memory, the adder
(AD), and adder extension (ADX). In addition, it contains the fast memory, write pulse gener-
ation logic, and fast memory, write pulse generation logic, and fast memory parity network.

Module 8512, Control RAM (CR) - Five boards, illustrated on customer prints CR 1-7, each
contain 14 bits of the control word (microinstruction) stored in RAMs containing 1280 words. In
addition, each board contains CRAM address gating and 14 bits of the CRAM output register
(CRAM register).

Module 8511, Control Ram Address (CRA) - One board, which is illustrated on customer prints
CRA 1-6. This board contains the circuitry to generate the address of the next CRAM word. This
includes the microcode push-down stack, plus the Dispatch and Skip logic.

Module 8510, Shift Matrix (SH) - One board, illustrated on customer prints SHM 1-5, contains
shift counter decoding logic, shift matrix, and AR and ARX parity networks.

Module 8530, Memory Control (MCL) - One board, illustrated on customer prints MCL 1-7,
contains CRAM MEM field decoding; memory request enable logic; request type decoding, e.g.,
MCL VMA Read, MCL VMA Pause, MCL VMA Write. It also contains User and Public
Enable logic, as well as all the request-type qualifiers. It contains bits 1-12 of the VM A Held or
PC Mixers, together with various VM A Control and Selection logic.

Module 8522, IR, DRAM, and Carry (IRD) - One board, illustrated on customer prints IRD 1-5,
contains the 13-bit Instruction register (IR), 4-bit IRAC register, DRAM address mixers,
DRAM, and 15-bit DRAM Output register. In addition, it contains the IR Test Satisfied logic
and normalization CRAM address bits (IR NORM 08-10). It also contains the AD and ADX
carry anticipation networks (CARRY SKIPPER).

Module 8524, Shift Counter Adder (SCAD) - One board, illustrated on customer prints SCD 1-6,
contains the 10-bit Shift Counter register and associated input mixer, 10-bit Floating Exponent
register, and associated input mixer, AR Mixer Mixer (ARMM) bits 0-8, and SCD TRAP Mixer
(32-35). It also contains the 10-bit Shift Counter Adder (SCAD) as well as the Program Counter
Flags register and mode control logic.

INSTRUCTION REGISTER LOADING AND CONTROL

Refer to Figures 3-2 and 3-3. The IR is composed of 13 mixer latches as illustrated. The default
selection is AD selected by -CLK MB XFER. The alternate selection is the cache data lines selected by
CLK MB XFER. Because the IR consists of latches (DC devices), the clock is used indirectly to
synchronize unlatching and latching of IR. This is done by ORing the EBox clock with the control
signal on the IR Board. Unlatching the IR may be accomplished in one of three ways.

EBOX/3-3

MBOX

g Z
1 vma BoARD 1 I conwa 7 R
.8 35 | I —1 ol—nNiconD ottt .
A
| VMA REF I I condls jeessi [||=IR I/0 LEGAL
VMA 13-35 § | LOGIC N
} | Cl— CON CLK |
| IS I o U e I CON
VMA AC REF FM XFER COND/LOAD RUN
' Dfﬂ = gy gt
— — — — — — — l [MEM l €
% MCL | | McL mBOX cye :
. L CYC REQ | | C}—CoN cLK L
QUALIFIERS TO MBOX| [I* 1 CON CLK— EBUS D04-06 | S
D
LR e
_! ON S
AM STROBE—+—— C 2
| —| RreaD R i DIAG IR 8
CON LOAD DRAM STROBE 3 E
X 1 4 R
— PAUSE CON DIAG CONTROL
| FETCH CYCLE FUNC 81X
— WRITE
MCL VMA
I ! FETCH I I L_ﬂ COND/IR LOAD I
i 1
OTHER I REQ EN -
QUALIFIERS " CEQCEK— Las | i A DECODER /
FROM OTHER L J
BOARDS PR o711 & S SR | e e s e i i e T T il e e S S s i
—_——— e — — ST o i it P 0y Sy e e s o s s e e
|_CRAM BOARD 1 | IR IR 09 112 IR3-6=74 "I/0 LEGAL |
| j
IR :g
| g I MEM | Icom) . l I CLk IR e OD»IR AC:=9 |
O
l — | -CLK MB XFER_I o I
<——CRAM REG———+ | 2 I
CACHE DATA LINES T e e e ST) - T 09 »
L
e e e * |
T\ IR AC
I-ELK 1 1 HOLD DRAM HOLD I
I | | CLK IR
| | I - IRAL EN—7/SEL \ I
cLK Resp ! I | —L— |
l Ll 2 et SO v pincneieget s it 0
| | il — = OE T e T ey e
MBOX RESP IN I MBOX CLK I ‘ | EDP A
EBOX REQ | | |
] CON AD
CRAM AD FIELD
CLK EBOX MBOX WAIT +B +A |
I MBOX r— ' I
| | | I
CRAM
| MBOX SYNC — | GREM ADB FIELD ADB ADA ADA FIELD
CHS EBOX l
RETRY REQ _I EBOX SYN CEN— I Pl A T
CSH EBOX_T@ at I & l AR l I
| cLk MBOX CYC DISABLE | REFER I
RESET TO
I CLK PAGE FAIL EN Vi alss MEQ%TRY FIGURE 2- I
l ~-VMA AC REF—- I I ARM SELECTION |
| l ' ¥ T T T 11 T |
* \{ i AR

Figure 3-2 IR DRAM Control (Part 1)

EBOX/3-4

10-1674

DRAM ADR 00-02
}.—FO;N:%’:SIO_.* EVEN HALF EVEN HALF EVEN HALF EVEN HALF
5 56 25 . 256X3 256X3 256X 256X3
/S,
Y
;?///
L RN
DRAM ADR 03 ~05 COMMON COMMON COMMON
256 X3 2561 2561
0 2) —
O ™) DRAM ADR 06-07
FOR _
ALL
INSTRS
0DD HALF 00D HALF 0DD HALF 0DD HALF
v 256X3 256X3 256X 1 256X3
L~TsEL
3 §7 9 10 te AB-2% AB-2Y B@-2X B@-2Y PARX PARY J01-03 Jg7 J@8-10X |J@8-10Y
IF IR | 3F R or 5— Jpa
3-6:0| 7-9-
LocAL | CODE 1 0)] 0 1
LocaL | -0CA
-IR JRST—A\SEL SEL SEL
fe—— FOR IO INSTRS—s]
IROG-02:7 0 B o 2 3 P o & eamity 10
HOLD HOLD HOLD HOLD Y noLp ARITY HOLD J
INSTR TROS IR10-12
XX .TTT
770 ALL OTHER DEVS 034-774 IR 9RST
767
r o le— D1AG 04-08 1544 RESERVED 030
Ll 1 757
. Kb MTR 024 ' o7 8) 1
IR EN Hi J
{HoLD
15 3 a7 TiM 020
JRST | iR ‘5‘ e DEV SEL
. 120 ccA 014
7 ls—DIAG LOAD FUNC 06X 727 Ao
: SET 720 010 DRAM 00D PARITY __[oop o 00D °
7 " "
. m . 004 TO CLOCK BOARD! ,2 ,2 DRAM A00-02
AC 707 DRAM JO1-04
. LR o APR 000 | Z 3
4 DRAM B00-02
47 5 sH
ALL OTHER INSTRS s ¢
PARITY 7 _ PARITY 7
256 / / e §—DRAM JO7-10 er 1
9 °
~CON LOAD DRAM HOLD DRAM 2s% o JRST, JFCL It 10
054 g i u DRAM PARITY
CcLK IR
253 13 13
ALL OTHER INSTRS 14 1
000 15 15

IR@9-12
Pnbiatiiai

DRAM STORAGE
ALLOCATION

NACCESSIBLE 2377
INACCESSIBLI i
1717
1700
.
-~ ® -
.
INACCESSIBLE 1277
1220
1217
1200
INACCESSIBLE nrr
120
m7
1100 v
INACCESSIBLE
oCEs 1020
1017
1000
INACCESSIBLE T
720
7
700 .
677 | THE AREAS MARKED
INACCESSIBLE 620 | INACCESSIBLE ARE
617 r NOT ADDRESSABLE
VIA THE
600 DRAM J FIELD.
INACCESSIBLE s
520
517
500
INACCESSIBLE 4Tt
420
a7
400 o
INACCESSIBLE
320
37
300
INACCESSIBLE e
220
217
200
INACCESSIBLE r
120
"r
100
INACCESSIBLE ”
20
17
)

CRAM ADDRESSES
INACCESSIBLE TO DRAM
"HARDWARE ADDRESSING MISSING"

10-1672

Figure 3-3 IR DRAM Control (Part 2)

EBOX/3-5

During an instruction fetch, a logic level MQ-L.E%TC;_IJS developed together with EBox Read. These
qualifiers are latched at the same time that the V is latched during the EBox request. They are
latched until the next EBox request. Each time'a memory cycle is begun for any reason, MEM CYCLE
sets. It remains set until one of two events occurs. Either MBXFER occurs in response to an MBox
cycle, or FM XFER occurs in response to an internal fast memory cycle. Either of these decouples the
feedback path for the MEM CYCLE flip-flop. Note that while MEM CYCLE and MCL VMA
FETCH are true, the IR is unlatched because -CON LOAD IR becomes false removing HOLD IR.

A second method for unlatching the IR is via the microinstruction COND field function
COND/LOAD IR. This may be used in cases where an instruction is loaded into AR to be executed.
The microinstruction selects the AD function as ‘“A” while selecting the AR on the ADA input.
Because the default selection for IR is the AD, the instruction in AR would appear on the IR input
mixer.

The operation of unlatching and loading in this manner takes one microinstruction as indicated in
Figure 3-4. Note that CLK IR is logically ORed with -CON LOAD IR on the IR Board.

CRAM REG D(MICRO INSTRUCTION X MICRO INSTRUCTION ><
EBOX CLOCK | | | | 1
T=00
EBOX SYNC | | | |
COND/LOADIR / NG
AD/A _/ X
ADA/AR _/ X
HOLD IR I UNLATCHES I LATCHES

IR MIXER IN / / \

10-1673

Figure 3-4 IR Loading Via AR (COND/LOAD IR)

By using diagnostic console function 014 (STROBE IR), information previously loaded into AR or
ARX may be loaded into IR. This provides a powerful diagnostic tool. In addition, this function is
used to address the DRAM while loading it.

When fetc;li\ng instructions from fast memory via AD, it is sometimes necessary to use the COND/IR
LOAD function to enable AD to IR. Referring to Figures 3-2 and 3-5, VMA bits 32-35 address fast
memory as specified by the microinstruction FM ADR field. At the same time (for example), the ARX
field selects AD while the AD field selects “B”. The ADB field function is FM and once again the
COND field is LOAD IR.

Once again, note that the unlatching and latching of IR is in step with the EBox clock (CLK IR).

EBOX/3-6

CRAM REG)4 X
EBOX CLOCK : [|
COND/LOAD IR L \

AD/B /

ADB/FM / N\
IR | UNLATCHES] LATCHES
IR MIXER IN X FM DATA pd

EBOX SYNC]
FM ADR / N
FM DATA / AN

10-1874

Figure 3-5 Loading IR Via FM (COND/LOAD IR)

3.1.1 DRAM and IRAC Control

The DRAM register is controlled in a manner similar to that of IR. The DRAM register consists of 19
mixer latches. Refer to Figure 3-3; unlatching the DRAM register may be accomplished in one of three
ways. As with IR, note unlatching and latching of the DRAM register is synchronized by ORing the
EBox clock with the control signal on the IR Board.

\\Each time that the COND/LOAD IR function is Esed to unlatch the IR, it also enables the generation
'of CON LOAD DRAM on the next EBox clock*Thus, the IR unlatches beginning with the trailing
edge of one EBox clock and latches on the leading edge of the next. Similarly, the DRAM register
unlatches beginning with the trailing edge of the EBox clock that latched IR, and latches once again on
the leading edge of the following EBox clock. The timing is illustrated in Figure 3-6.

A similar operation takes place following NICOND Dispatch. Referring to Figures 3-2 and 3-7,
NICOND is latched into a flip-flop on the control board at the same time that the microinstruction
selected by the NICOND Dispatch loads into the CRAM register.

Here we assume the case where some instruction has completed its store cycle. An earlier micro-
instruction generated MEM /FETCH which started the EBox Request.

EBOX/3-7

CRAM REG :>< Dd)l j ><

EBOX CLOCK

EBOX SYNC

COND/LOAD IR

AD/A

_/

X X X
ADA/AR :}< X X

_X

IR LATCHED | UNLATCHED |
~
con 1335 / «
ReGINEM LATCHED | uniatcheo |
R 14

IRAC (IRAC 09-12 <— IR 09-12) LATCHED I UNLATCHED [

10-1875

Figure 3-6 DRAM Loading Following COND/LOAD IR

3.1.2 DRAM Addressing and Selection

Assume IR EN IO, JRST, and IR EN AC are set. The DRAM addressing logic maps the incoming
instruction code into the DRAM register as indicated in Figure 3-3. Note that I/O instructions address
the DRAM in a slightly different fashion than non-I1/0 instructions. I/O instructions have bits 0-2 of
IR equal to 7; this is detected on the IR Board as IR INSTR 7XX and enables the DRAM ADR to be
formed as follows:

DRAM ADR 00-02 IR 00-02
DRAM ADR 03-05 [IR 7-9 v111]
DRAM ADR 06-08 IR 10-12

As indicated on the figure, for I/O instructions, IR 3-9 is the device select code. If bits 3-6 are equal to
zero, the device is local to the processor, i.e., in the EBox. Currently, there are six local devices:

APR: DEV 000

PI: DEV 004

PAG: DEV 010

CCA: DEV 014

TIM: DEV 020

MTR: DEV 024
(UNUSED: DEV 030)

EBOX/3-8

CRAM REG SEE NOTE 1 X X
EBOX CLOCK [I I | |
EBOX SYNC | | l
NICOND DISP \
LATCH ON
CON BOARD I l
CON
LOAD DRAM 7 N
UNLATCHED
DRAM REGISTER LATCHED i I LATCHED
MEM CYCLE |
MCL VMA l
FETCH
IR UNLATCHED [LATCHED
INSTR LOADS
ARX ‘\:I

CLK
RESPONSE MBOX

LN SLINNY SEN

MBOX DATA

sz

NOTES:
1. Micro Instr Asserting NICOND
Disp and Waiting for Instr.

2. Micro Instr Selected According
to NICOND Disp.

10-1676

Figure 3-7 NICOND Dispatch and Waiting

If IR bits 3-6 are nonzero, the device is external to the processor. This includes device select codes 034
to 774.

All other op codes in the range of 000-677 address locations in the DRAM that correspond to loca-
tions 000-677. This is illustrated in Figure 3-2. DRAM address 00-02 is formed from IR 00-02, while
DRAM address 03-08 is formed from IR 03-08.

AC decoded jumps JRST and JFCL reference locations in the DRAM that correspond to their numer-
ical op codes (254 and 255, respectively). The DRAM register is loaded specially for JRST. Note that
IR JRST (Figure 3-3) forces DRAM register J4 to zero while enabling DRAM J07-10 to be input from
IR 09-12. This enables the microcode for JRST to be entered at the appropriate location relative to the
type of code in IR 09-12.

DRAM register bits 00, 05, and 06 are missing in the hardware (Figure 3-3). This prevents DRAM J
Dispatch from accessing certain CRAM locations.

EBOX/3-9

3.1.3 IR TEST SATISFIED

3.1.3.1 Introduction - The IR TEST SATISFIED logic is illustrated in Figure 3-8. It is used with the
following types of instructions:

CAMXX
CAIXX
SKIPXX
JUMPXX
TXXXX
BLKX
AOSXX
SOSXX
AOJXX
SOJXX
AOBJX
JFCL

In general, these instructions test some condition or conditions and, depending upon the result of the
test, fetch an instruction. The fetch can be from PC+1 or PC+2, (in the case of CAIXX, CAMXX,
SKIPXX, AOS, TXXXX, and BLKX), or from E or PC+1 (in the case of JUMPXX, AOJXX,
SOJXX, AOBJX).

3.1.3.2 Implementation - To supplement this section, five tables are presented (Tables 3-1 through 3-
5), which aid in understanding the table presented in Figure 3-8. Table 3-1 is Skip, Jump, Compare
controls. This table is divided into four areas. Eight Skip, Jump, Compare controls are indicated.
These are microcode mnemonics for the indicated coding of the DRAM B field and imply the type of
Skip, Jump, or Compare condition being tested. For example, the instruction CAIE compares the
effective address with the contents of AC and skips the next instruction in the program sequence if the
condition is satisfied. The DRAM B field mnemonic is “SJCE,” which is a value of 1 in DRAM B. The
coding of DRAM B0 controls the sense of the skip. Thus, referring to Figures 3-9 and 3-10, IR TEST
SATISIFIED is the Exclusive OR of DRAM B0 with the signal indicated on the figure as “resultant.”
In the current example, because DRAM BO00 is equal to zero, the IR TEST SATISFIED signal is true
only if the “resultant” line is true.

As indicated in Figure 3-9, the combination of AD = 0 with DRAM B 01 (0) and CRAM #07(1)
enables “resultant” to be true. This yields IR TEST SATISFIED. Referring to Figure 3-8, the VMA
contains E, which it received at AREAD time. The VMA field function is PC+1 [CRAM VMA SEL 1
(0) ACRAM VMA SEL 2 (1)]. Because PC+1 INHIBIT is false at this time, the “B” input to VMA
AD is equivalent to +1, while the VMA AD function is “A+B.” The MEM field function is
“FETCH,” and the magic number field function is “COMP FETCH,” which is coded as #201. Thus,
#01 (1) with “FETCH” and IR TEST SATISFIED gives MCL SKIP SATISFIED. Providing PI
CYCLE is clear, MCL VMA INC increments the VMA AD SUM, which is now PC+1, to a value of
PC+2.

Note that either bit of the CRAM VMA field enables one side of the MCL VMA load gate and that IR
TEST SATISFIED or -MEM/COND JUMP enables the other side. This is necessary to allow IR
TEST SATISFIED to inhibit loading the VMA during Jump-type instructions. VMA contained the
jump address prior to the test. Note that the magic number field function and MEM field function for
Jump-type instructions is different than that for Skips and Compares. It is necessary to prevent PC+2
from occurring and this is accomplished by blocking the term MCL SKIP SATISFIED. Because the
magic number field function for jumps, which is “JUMP FETCH,” has #01 (0), the gate is inhibited. If
the test is not satisfied, VMA loads with PC+1 and program operation continues.

EBOX/3-10

11-¢/x044d

R — — —_— — — —_— — e
CON #2 BOARD - I MCL BOARD -l l_\/MA BOARD
| I VMA CONTAINS
E INITIALLY
| I | 13 35
| I ' D N YwmcL Loap vma, 2&21 VM I
| I l I_D——/ l | Lvma cik
pr b DEFAULT l
| fovcLe | I SELECTION—/SEL \
- ! = - =6 INPUT / o A 1
| 5 1 o Lo | i
\ ; MCL VMA INC
i ol / VMA AD \ / AD |
PT 0 SATiSFIED
I CYCLE ' I 3 | | [A _tA A
—PC+1 iy
I I l TNH
! J/ CRAM SEL 2
I CON l I I | I
L— = 1 L] 1
#01 (1) See Table :
-MEM/COND_JUMP, MEM/COND JUMP, MEM/FETCH
CRAM VMA SEL2, CRAM VMA SEL1, VMA/PC+1
'IR BOARD -I ' [
je———DRAM REG ——=] | I I
' A |so|ei|B2 IR TEST SATISFIED l I l
l | "CONTROLS SENSE OF TEST", l l g
I "RESULTANT" I
Ni=
I CRAM | CRAM | CRAM|CRAM| INSTR |SELECTION THIS SIGNAL NOTES I VMA MEM / # l
#01 | #02 |#07 | #08 |USED FOR| FOR 1S EQUAL TO P
4
|e——CRAM REGISTER——— l
| o | o | unusep X NOT USED CURRENTLY ' I ¢
l 1 o o | | CAMX |G or E | G=(AD@® ¥ ADCRY-02)A-#06 | IF ADG@ ¥ ADCRY-02 I I cram I
CAIX | OR BOTH [E-(AD-00)A-#01 IS TRUE ADA>ADB
' skip=t [skip=o | [[skiPx [Lor 6 |L=ADO@ A-#07 IF AD@G=1 THE AD I | I
JUMP=0 | JUMP:=1 JUMPX |OR BOTH [G=(AD=00) A -#01 IS NEG
TXXX
l 1 0 1 1 BLKx x ADCRY-02 AD CRY@ l I I
L— J '_CRAM BOARD J

Figure 3-8 IR Test Satisfied

10-1677

ap=0—9 __
DRAM # 08 '
DRAM # 07

—~DRAM 01—C

"RESULTANT"

IR TEST SATISFIED

10-1678

Figure 3-9 IR Test Equal

~DRAM BO2

~DRAM BO1
CRAM# 07& canx
CRAM#08 AD=0
ADOO DA>B — CRAM # 07
IR TEST
ADCRY-02 SATISFIED
AD/XOR
CARRIES
A-B - ~CRAM#08
SKIPXX
- ADCRY-02 TEST
ADOG M CONSO
CONSZ
BLK T
BLKO
NOTE:
Comp fetch=201
Skip fetch=202
Test fetch =203
Jump fetch =102
10-1679
Figure 3-10 IR Test Satisfied Logic
Table 3-1 Skip, Jump, Compare Controls
DRAM B Field Skip, Jump, Compare Controls Controls Sense of Skips, Jumps, and Compares
DRAM B0O
3 SIC- 0
2 SICL 0
1 SICE 0
0 SICLE 0
7 SICA 1
6 SICGE 1
5 SICN 1
4 SICG 1

NOTE

See Table 3-4; uses Skip or Jump fetch with various AD

functions.

EBOX/3-12

Table 3-2 Test Controls

DRAM B Field Test Controls Controls Sense of Test
DRAM B0O

TN_

TNE
TNA
TNN
TZ-

TZE
TZA
TZN
TC-

TCE
TCA
TCN
TO-

TOE
TOA
TON

=W W I ON N NN W e = DO
HOQM»—\OO»—:;—AOOH»—AOQM

NOTE
See Table 3-4; uses TEST fetch with various AD functions.

Table 3-3 CONSX and BLKX Controls

DRAM B Field CONSX, BLKX Controls Controls Sense of COND Causing Skip
CONSX, BLKX, Skip
DRAM B0O

2 BLKI 0 TEST FETCH
TEST BRL

0 BLKO ' 0 TEST FETCH
TEST BRL

5 CONSO 1 TEST FETCH
TEST AR BR

1 | CONSZ 0 TEST FETCH
TEST AR BR

EBOX/3-13

Table 3-4 Fetch Control Modifiers

Actual Instruction Microinstruction Function MEM Field Magic No. Field 0102107 | 08
Using

CAMXX, CAIXX COMP FETCH FETCH 201 1 0 0 1

SKIPXX SKIP FETCH FETCH 202 1 0 1 0

BLKO, BLKJ, TEST FETCH FETCH 203 1 0 1 1

CONSO, CONSZ,

TXXXX

JUMPXX JUMP FETCH FETCH 102 0 1 1 0

Table 3-5 CRY0 Generation (MACRO)

Instruction That Uses CRYO0 Generators Used AD Field Function Additional Signal
BLKI, BLKO TEST BRL ORCB+1 GEN CRY 18
CONSO, CONSZ TEST AR°BR CRY A-B#0
TEST TEST AR-ACO CRY A-B#0
TEST NO CRY SETCA

Figure 3-10 illustrates the actual logic that develops IR TEST SATISFIED. The use of the E, G, L and
X portions is indicated. The result of the test in the AD determines one of the conditions on each gate.
For Equal (E), the term is straightforward AD = 0. In the case of Greater (G), the Exclusive OR of the
sign of AD (ADO00) with a carry out of the AD sign (AD CRY -02) produces the A >B output when
AD is performing the Exclusive OR function. For example, assume CAIG AC, 010101.

AR = 000000, 010101 ;O,E
AC = 000000, 007777 ;(AC)

The function performed in AD is:

ADB<FM; (AC)
ADA-AR; O, E
AD = XOR

Note that while the AD performs the logical function XOR, the carry function is A-B-1 (Table 2-8,
ALU Functions). Therefore, the ADB input is 000000,007777 and the ADA input is 000000,010101.
The operation is as follows:

s complement of ADB input 000000,010101 <————— ADA Input
T 777777770000
ADCRY-02 000000 000101 T Adding the 1s complement

of Bto A=A-B-1

EBOX/3-14

Note that the following relation is true:

-B = B+1 T
-B-1 = B+1 -1
-B-1 = B, which is the s complement of B.

XORing AD CRY -02 with ADOQO, which is 0, should indicate A >B.

For less than (L), the term is ADOO, and this indicates the AD result as a negative value. Skips utilize
the Boolean AD function A. Here, the carries function is really A-1. Thus, if the instruction is SKIP L
0, E, the contents of E are compared with zero and a SKIP occurs if (E) is any negative value. The
implementation follows:

X: SKIPL 0, E
(E) = 777777, 777774 ; -4
AR = (E)

The function performed in AD is ADA <~AR, AD = A and effectively the (AR) is compared to zero
because any negative value in AR satisfies the SKIP until a value of zero is placed in AR. This turns off
ADO0O, :

The remaining term (X) is used during TEST, BLKI, BLKO, CONSO, and CONSZ instructions. The
AD carries function is AB-1. For example, assume the instruction is CONSO DEYV, 1. At the time of
the test, BR contains 000000,000001, the effective address, and AR contains the bits (if any) from the
device. The implementation follows:

BR = 000000,000001 :0E
AR = 000000, 000001 ;assume the bit was set in the device

000000,000001

“AND” 000000 000001

000000,000001

For the carries function add -1 777777,777777

AD CRY -02 < 000000,000000

Here ADCRY-02 inhibits the (X) function but DRAM BO is coded to enable the IR TEST SATIS-
FIED condition. The PC is updated by +2 and loaded into VMA (Figure 3-9). If the instruction were
CONSZ DEV, 1 and the device flag was not set, the AD function [000000,000000-1] yields -1 and -AD
CRY-02. This satisfies the (X) function and DRAM BO is clear. Once again, the IR TEST SATIS-
FIED condition is satisfied and the SKIP occurs.

3.2 PROCESSOR TIMING ;
The KL 10 is a synchronous machine. Figure 3-10 illustrates the basic clock layout and distribution.

3.2.1 Clock Overview

The clock resides in the EBox and contains a selectable source (Figure 3-12). This source can be a
crystal controlled 50 MHz oscillator, for normal processor operations, but may be an external source
for special applications or a 56 MHz crystal-controlled oscillator for speed margining.

Basically, the clock consists of three other rather distinct sections: the clock control, the EBox clock
control, and the clock diagnostic control labeled (D) , @ , (3 , respectively, in Figure 3-13.

EBOX/3-15

4
DMA-20 ,,, MEMORY

SHIFT
MATRIX
BOARD
SH
CLK SBUS CLK
CRAM ADR
PI BOARD 8o RDCRA
PT
[o e e s e e .
BOARD
I CLOCK CLOCK ' CR
EXT—s{ SOURCE DIAGNOSTIC
| CLK_CONTROL CONTROL |
[
l 50MHz FREE I B\éxsn
/\ | CLK PI I VMA L
CLK CRC i CLK SELECT
CLK MB 00 ' CLK FUNCTIONS I DATA PATH
CLk MB 06 | | BOARDEDP
CLK MB 12 ! CLK GRA. |
cLk cH i CLK CRM EBOX
CLK_CHS | EBOX —»| CONTROL #2
CLOCK CLOCK | CLK vMA] BOARD
CLK_CHX | CONTROL CONTROL! t CON
1 CLK EDP g
CLK MBC . CLK 0DD]
CLK CON
CLK MBZ | CLK MBOX I -
MBOX | ik coL | CLK EBOX SOURCE ™!
¥ CLK MCL §
CLK cCcw 1 CLOCK| CLK CLK | CTL
| CONTROL cLK| CLK APR
CLK MBOX 13 CONTROL I
CLK MBOX 14 | Gl MEMORY
CONTROL
I cLK sco | e AR
CLK MBX 8 { BO
c | CLK DK20 3 MCL
CLK PMA i
8 PAGE FAIL HOLD | APR
S v | DIAGNOSTIC
I N ED R | BOARD
CLK EBOX SYNC , APR (
CLK EBUS CLK AN
IR AND
E BUS DRAM BOARD-
IR
SCAD, PC,
RH-20 DTE-20 DIA-20 FLAGS BOARD
SCD
DK20
‘\/
10-1680

Figure 3-11 Clock Basic Block Diagram

EBOX/3-16

50MHz =~ == - 64 MHz FREE
EXT w ST
SOURCE 1T =T
56 MHz l»- - = ~4——— 68 MHz FREE
10-1881

Figure 3-12 Clock Source Simplified

CL.OCK
SOURCE
3 A 50MHz DCLK PI
A O g
SBUS CLOCK
EBOX
~ CLOCK CLOCK EBOX
A CONTROL CONTROL CLOCKS
S
gl MmBOX ® ®
U | CLOCKS
S
CLOCK
CLOCK CROWBAR FUNG
EBUS GATE
CLOCK CLK
SEL
o SOURCE SEL CLOCK
- DIAGNOSTIC
/ o~ RATE SEL CONTROL
< CLK GO ©)]
T
4 EBUS 2
; DS04-06 LOAD
CGNTROL
POWER CROWBAR
C
ONTROL STROBE
DS0O0-07

10-1682

Figure 3-13 Basic Clock Block Diagram

3.2.2 Crobar and Clock Initialization

When the KL10 system is powered up, the EBox clock board must be initialized to a known state. In
addition, the device controllers on the EBus must be initialized and a series of MBox, EBox, SBus, and
EBus clocks must be generated for various initializtion purposes. First. the power controller asserts
CROBAR for approximately 5 seconds. This signal is passed to the clock diagnostic control logic,
where it enables the initialization process. The clock diagnostic logic contains a 2-bit source selection
register, a 2-bit rate selection register, and various other registers and logic. During power up, the state
of these registers is undefined. To avoid an improper source selection, the clock CROBAR signal is
used directly to select the 50-MHz oscillator as the clock source to be used during the power up
initialization phase (Figure 3-14).

The selected 50-M Hz source is now divided down as indicated in Figure 3-15 to provide 25-MHz, 12.5-
MHz, and 6.25-MHz free-running clocks.

EBOX/3-17

50 MHz "normal”
XTAL 0
CONTROLLED]
2
I > EXT CLOCK 3 CLK 50 MHz FREE
Gt L -
“FOR 15
SPEED 16
56 MHz MARGINS' L7
XTAL X
CONTROLLED
’ CROBAR
CLK CROBAR
SOURCE SEL1 (/
SELECTION =
REGISTER
INITIAL STATE SELZ
UNDEFINED
10~ 1683
Figure 3-14 Basic Source Selection
—bi 20ns I«s—
CLKSOMHzFREEI I l | I | l l l I l I l l |
|<—40ns —»1
CLK 25MHz FREE | [l] I I | 1
80ns 4=!
CLK 12.5 MHz FREE ‘ | I I
{A 160ns -
CLK 6.25 Mtz FREE l 1
10-1684

Figure 3-15 Free-Running Clocks

The 50 MHz FREE clock source is next passed to a rate-selectable mixer. However, because the Rate
register may initially be in an undefined state, the selected rate is apt not to be the 50 M Hz source. This
presents no problem because the inputs to the mixer (50 MHz FREE, 25 MHz FREE, 12.5 MHz
FREE, or 6.25 MHz FREE) are all even multiples; the rate is not critical during the power up phase of

operation. The mixer is shown in Figure 3-16. Its output is labeled 2*Rate Selected, and this output is
twice the clock selected frequency.

[
S Sy

50 MHz FREE
25 MHz FREE CLK 2* RATE SELECTED
12.5 MHz FREE TE S E D CLK
6.25 MHz FREE . SELECTED
c
RATE
SELECT
REGISTER
INITIAL
S TATE REG SEL2 | REG SEL! |RATE SELECTED
UNDEFINED 0 0 50 MHz FREE
) i 25MHz FREE
1 0 12.5MHz FREE
1 1 5.25MHz FREE

10—1685

Figure 3-16 Basic Rate Selection

EBOX/3-18

3.2.3 EBus Reset
Referring to Figure 3-18, the CLK CROBAR signal enables the counter to subtract one on each 12.5

MHz clock pulse. Once again, the initial state of the counter is undefined. During the crobar period
(approximately 5 seconds), the counter is decremented toward zero. When zero is reached, a carry is
generated and if CROBAR is false at this time, the -1 function is disabled and the counter is loaded
with zeros. This removes-EBUS RESET. In practice, the counter passes through zero many times until
finally CROBAR is removed by the Power Controller logic. Signal EBUS RESET is a 1280 ns square
wave.

3.2.3.1 Initialization Clock Pulse Generation — As shown in Figure 3-18, CROBAR is shifted four
places into the shift register, activating the CLK SS stage. This, with the Clock Selected flip-flop,
enables the gated clock. It is this signal (GATED CLK) that becomes the source of the clocks gener-
ated via the clock control and EBox Clock Control. When CROBAR is removed, 4 CLK selected
pulses later, CLK SS is also removed. The approximate sequence is indicated in Figure 3-17. Figure 3-
19 shows the power up timing. Note that this shift register also serves to synchronize CROBAR.

3.2.4 EBox Clock Control
The EBox Clock Control provides a source of clocks for the EBox boards together with an MBOX
Sync Point (EBOX SYNC), which is always asserted one MBOX Clock prior to the generation of the

EBox clock (Figure 3-20).

Depending upon the nature of the EBox cycle (a period extending from the rising edge of one EBox
clock to the rising edge of the next), the period between EBOX CLOCK pulses may be extended by
some multiple of 40 ns, i.e., 80, 120, 160, 200, etc.

Refer to Figure 3-22; this drawing illustrates the functional structure of the EBOX CLOCK Control. It
consists of an MBOX CLOCK counter/marker generator, a clock phase sync detector, an EBox sync
source, and an EBox clock source. The CRAM time field (T00, TO1) specifies the duration of the EBox
cycle (Figure 3-21).

The marker generator consists of a shift register that may be loaded with zeros when EBOX CLK EN
is true or have ones shifted in (beginning with the 40-ns stage) for each MBOX CLK generated, as long
as EBOX CLK is false. Table 3-6 describes the marker generator.

(®12.5MHz FREE T~

@ cLKk SELECTED CLOCK MBOX
l CONTROL CLOGCKS
?CROWBC’:)R bS] CLock CLK CROWBAR
POWER ~ 5 SECONDS
CONTROL DtCAOGNNTongdc VR RESET PICLK
(NS MRRESET
CLK CLKODD
CLK
CLK
EBUS
CONTROL CLOCKS

S EBUS > @

Figure 3-17 Clock Initialization

10-1686

EBOX/3-19

-

COUNTER INPUTS

ARE ALWAYS
&_,____ﬁq—J
CARRY (\
SEE NOTE lour
1= -1
CLK 0=LOAD CLK EBUS RESET
CROBAR 4-BIT COUNTER @8
12.5 MHz FREE —{ ¢ LK
| 640ns I 640ns l
E
B
U
s
CLK | | 1
1=SHIFT CLK SS
CROBAR A BIT
CLK SHIFT REG
seLecteD oCN T — D CLK GATED |
CLOCK |EBUS CLK
olc CONTROL
L
CLK SELECTED CLK CLK
NOTE CLK 0DD
It CROBAR is false
a CARRY OUT disables P P71 esox)
the—1 functions and . CLK GBOX |sBus cLk
loads O's into the counter.) CONTROL
2 % RATE c
SELECTED
S
B
CLOCK . .
DIAGNOSTIC |—
CONTROL RESET

v

10-1687

Figure 3-18 EBus Reset and Clock Initialization

EBOX/3-20

gl

CROWBAR / « \

CLK CROWBAR /. \

25MHz FREE III'II'IIII"'IIlllllll'lll

12.5MHz FREE 17 16 15 1 0

CLK EBUS RESET | - |_n

CLK SELECTED

CLK S8

CLK RESET ___J
MR RESET ___l

10-1688

Figure 3-19 Power Up Timing

CLK MBOX CLK 2
NOTE
Actually, EBOX CLOCK is
clocked via CLK ODD which
CLK EBOX SYNC 1 occurs ®16ns earlier than
MBOX CLK
CLK EBOX CLK 2

10-1690

Figure 3-20 Simplified Diagram, MBox Clock, Sync, EBox Clock

s -

EBOX CLOCK mIABLE j
FIXED

10-1689

Figure 3-21 EBox Cycle

EBOX/3-21

Table 3-6 Marker Generator Function

TOO TO01 Duration MBOX Marker Generator EBOX EBOX EBOX

CLK 40 ns 80 ns 120 ns CLK CLK SYNC
EN
0 0 1 0 0 0 0 1 0
0 0 80 2 1 0 0 1 0 1
0 1 1 0 0 0 0 1 0
0 1 2 1 0 0 0 0 0
0 1 120 3 1 1 0 1 0 1
1 0 1 0 0 0 0 1 0
1 0 2 1 0 0 0 0 0
1 0 3 1 1 0 0 0 0
1 0 160 4 1 1 1 1 0 1
1 1 1 0 0 0 0 1 0
1 1 2 1 0 0 0 0 0
1 1 3 1 1 0 0 0 0
1 1 4 1 1 1 0 0 0
1 1 200 5 1 1 1 1 0 1
X X 1 0 0 0 0 1 0

The clock phase sync detector compares the marker generator content with the CRAM time field
(loaded at EBOX CLOCK TIME) whenever EBOX CLOCK EN is false. If the marker count com-
pares with the bit combination in the time field, SYNC EN is asserted and the next MBox clock sets
EBOX SYNC. EBOX SYNC then enables EBOX CLOCK EN and similarly disables the detector.
This completes one cycle.

Note that with MBOX WAIT true, -EBOX CLK EN is also true and EBOX CLK EN is false (Figure
3-22). This enables the MBox clock counter/marker generator to keep shifting 1s from the 40-ns stage
toward the 120-ns stage. Similarly, the detector is enabled and when the marker compares with the bit
combination in the time field of the CRAM word, SYNC EN will be asserted and remain so until the
MBox responds or aborts the cycle. Thus, one MBOX CLK after SYNC EN is asserted, EBOX SYNC
will set. In other words, EBOX SYNC is asserted one MBOX CLOCK prior to where EBOX CLOCK
would have been asserted.

With SYNC EN true when MBox response is received (Figure 3-22) EBOX CLOCK EN becomes true
allowing the marker to reset to 000, and SYNC EN is removed allowing EBOX SYNC to clear on the
next MBOX CLOCK. At the same time, EBOX CLK EN becomes true and EBOX SOURCE EN is
also true; thus, when EBOX SYNC is cleared, EBOX CLOCK sets (Figure 3-23).

3.2.5 Error Detection
Figure 3-24 illustrates the logic that stops all clocks in the event of any of the following:

1. A DRAM parity error occurs.

2. A CRAM parity error occurs.
3. A fast memory parity error occurs.

EBOX/3-22

CRAM 2 BIT TIME FIELD
—TIME IN CONTROL RAM
FIELD 4//__REmSTER
N ftoofTot|
CLK CRM —J L-——-

SYNC EN
EBOX
EBOX CLK EBOX SYNG
40ns CLOCK CLK GENERATOR
PHASE MBOX CLK
CLK MBOX CLOCK 120ns ~EBOX CLK EN
—»| COUNTER/
CLK MARKER
GENERATOR SEE NOTE
EBOX CLK EN
o - c(T —-MBOX WAIT
’ N\ cLK RESP MBOX
CLK EBOX
SOURCE EN
) ERox CLK EBOX
NOTE CLK 0DD GENERATOR CLOCK
EBOX CLK EN

IMPLIES SYNC EN «—0O
10-1691

Figure 3-22 EBox Clock Control Block Diagram

EBOX
rbYCLE*T—————————EBOXCYCLE———————W
MBOX CLK I]] Il II I l| l| | l| || | II I II I]

POST
EBOX CLK ! | [L~ PONED l
EBOX SYNC | [

MBOX
RESPONSE

MBOX WAIT l |

10-1892

Figure 3-23 Basic MBox Cycle Timing

EBOX/3-23

CLK ERROR CLK ERR STOP EN

]

)

CLK ODD

__D— MBOX CLOCKS

CLOCK
CONTROL

LOGIC

CLK EBOX
SOURCE EN

CLK EBOX DRAM PARITY ERROR

T oleERROR HOLD |~ T ERRO
CONTROL CRAM PARITY ERROR

FM PARITY ERROR

o] C CLK ODD

CLK ODD I l I | | I | I S

EBOX CLK

1]

CLK CRM

CRAM PAR 16 2222; |

CLK ERROR HOLD

il
CLK ERROR “INHIBITS ALL CLOCKS”
A

CLK ERROR STOP EN —f 4

10-1693

Figure 3-24 Clock Error Stop

The timing shown is for a CRAM parity error. The CRAM register is clocked by CLK CRM; some-
time later, the parity network settles and asserts -CRAM PAR 16. This indicates that the CRAM word
has dropped or picked up bits and is not correct. The signal -CRAM PAR 16, together with an enable
previously set by a diagnostic cycle (CLK CRAM PAR CHECK), enables the generation of CLK
ERROR HOLD. ‘

If it is desired to stop on parity errors, CLK ERROR STOP EN must have been set by the console. In

this case, on the next occurrence of CLK EBOX SOURCE EN, the CLK ODD gate will be latched
false, inhibiting all clocks and freezing the system.

EBOX/3-24

3.2.6 Clock Control Logical and Skew Delays

Figure 3-25, illustrates the delays necessary to assure that the proper timing relationship exists between
the actual MBOX CLOCKS, EBOX CLOCKS, and the sampling of the CRAM time field. The lum-
ped delay of ~ 128 ns consists of fixed logic delays, gate and wire delays. The output is CLOCK ODD
and is used to clock a 10141 Shift register, which has a propagation delay of ~2.65 ns.

NOTE
The times given here are approximate times only.

LUMPED DLY CIRCUIT DLY

Grzans Y268)—__x_) o

CLK 0DD :} 22,65 1
L CLK ODD
TO LINE UP
ouGTA;tETs CIRCUIT DLY
FIXED DLY 2.63ns
CANCELS —
CKT DLY :
N MBOX
(Cezes —(C ¥) CLOCKS
: TRUE EBOX I l
‘ CLOCKS
DLY X EDGE CAN
BE MOVED TO LINE UP
g'égf’ DLY 7 DISCREPANCIES IN GATE
«— OFF CLK -6ons CHARACTERISTICS.
BOARD
CLK CLK 0 TRUE, MBOX | +f<LoLy v |
BACK ONTO

CLK BOARD CLK MBOX CLK % |
D, CLK MBOX CLK CONTROL RAM
REGISTER T FIELD

DLY Z
EBOX SYNC E;;géi I

i0-18694<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>