
• ..

. EK-EBOX-UD-003

EBOX
INSTRUCTION EXECUTION UNIT
UNIT DESCRIPTION

digital equipment corporation • marlborough, massachusetts

•

1st Edition, May 1976
2nd Edition, January 1976
3rd Edition (Rev), December 1976

The drawings and specifications herein are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part
as the basis for the manufacture or sale of equipment described herein without
written permission.

Copyright © 1976 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice .
Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000
computerized typesetting system_

The following are trademarks of Digital Equipment
Corporation, Maynard , Massachusetts: \

DEC DECtape PDP \
DECCOMM DEC US RSTS
DECsystem-1O DIGITAL TYPESET-8
DECSYSTEM-20 MASSBUS TYPESET-II

UNIBUS

0)

c

)

(

:t 0 \

SECTION 1

1.1
1.2
1.2.1
1.2.2
1.2.3

CONTENTS

OVERVIEW

INTRODUCTION
BASIC FUNCTIONAL BLOCKS

Instruction Register-Dispatch-Main Control Store
Fast Memory
Address Path
Request and MBox Control

KI Style Paging .. .
KL Paging
MBox Error Conditions

1.2.4
1.2.4.1
1.2.4.2
1.2.4.3
1.2.4.4
1.2.5

--VMA Control
____ EBus Control and PI Control

1.2.6
1.2.6.1
1.2.6.2

SECTION 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2 .7
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3 .B
2'.4
2.4.1
2.4.2
2.5
2.5.1
2.5 .2
2.5.3
2.6
2.6.1

Data Path
Information Flow To and From Memory
Information Flow I!O and Priority Interrupt

FUNCTIONAL DESCRIPTION

INTRODUCTION
MICROPROGRAM STATES AND PROCESSOR CYCLES

EBox Reset
Microprogram Halt Loop
Microprogram Running
Microprogram Wait State
Microprogram and EBox Frozen
Microprogram Deferred
Microprogram Organization

ASIC MACHINE CYCLE
Instruction Cycle - NICOND Dispatch to XCTGO
Indirect Word Request
MBox Response to Indirect Word Request
Address Calculation Continues

'-.... A READ Dispatch - Set Up Data Fetch and Prefetch
MBox Response to Data Read - Prefetch Begins . .
Executor - Set Up for Store Cycle
Finish Store Cycle - Perform NICOND Dispatch

PAGE FAIL CYCLE INFORMATION
Page Fail Handling - Functional Flow
Process Table References . . .

TRAP CYCLE - INTRODUCTION
Trap Handling
Address Generation
PT Reference for Trap Instruction

INTERRUPT CYCLE - INTRODUCTION
~ Duration of Uninterruptable Intervals

iii

Page

EBOX/I-I
EBOX/I-5
EBOX!I-B

EBOX/I- II
EBOX/I -15
EBOX/I-18
EBOX/I-19
EBOX/I-22
EBOX/I-37
EBOX! I-37
EBOX/I-39
EBOX/I-42
EBOX! I-42
EBOX/I -46

EBOX!2-1
EBOX!2-1
EBOX!2-1
EBOX!2-4
EBOX!2-7
EBOX!2-8
EBOX!2-B

EBOX!2-12
EBOX!2-14
EBOX!2-20
EBOX!2-24
EBOX!2-26
EBOX!2-29
EBOX!2-29
EBOX!2-29
EBOX!2-33
EBOX!2-33
EBOX!2-35
EBOX!2-35
EBOX!2-38
EBOX!2-42
EBOX!2-42
EBOX!2-42
EBOX!2-44
EBOX!2-44
EBOX!2-44
EBOX!2-47

CONTENTS (Cont)

2.6.2) Interruptable Instructions
2.6.3 General Interrupt Sequencing
2.604 Interrupt Dialogue
2.7 BASIC MACHINE MODES INTRODUCTION
2.7.1 Mode Initialization - Private Instruction
2.7.2 Loading Flags and Changing Mode . . .
2.7.3 User Public Mode
2.7.3.1 Entry from User Public Mode to User Concealed
2.7.3.2 Concealed Violation Data Reference
2.704 Restoration of Programs by the Supervisor
2.704.1 Restoring a Concealed Program
2.704.2 Restoring a Kernel Program ...
2.704.3 Restoring a User Public Program
2.70404 Saving Flags and Leaving User
2.704.5 User Concealed
2.8 ADDRESS PATHS
2.9 DATA PATHS
2.9.1 Virtual Memory Address Register
2.9.2 Program Counting
2.9.3 Loading PC
2.904 General Data Path Organization
2.9.5 General Data Path Mixer Selection
2.9.5.1 AD Field
2.9.5.2 ADA Field
2.9.5.3 ADB Field
2.9.504 AR Field
2.9.5.5 ARX Field
2.9.5.6 BR Field
2.9.5.7 BRX Field
2.9.5.8 FMADR Field
2.9.5.9 SCAD Field
2.9.5.10 SCADA Field
2.9.5.11 SCADB Field
2.9.5.12 SC Field
2.9.5.13 SHFieid
2.9.5.14 The AR Mixer Mixer (ARMM)
2.9.5.15 VMAField

;:i~·l~BOX INS~~0~~~ON SET·FUNCTIONAL OVERviEw·
2.10.1 Effective Address Calculation
2.10.1.1 Indexing
2.10.1.2 Indirection
2.10.1.3 No Indirection or Indexing
2.10.2 Fetch Cycle
2.10.2.1 Instructions That Do Not Require (E)
2.10.2.2 Instructions That Require (E)

iv

Page

EBOX/2-47
EBOX/2-47
EBOX/2-48
EBOX/2-5l
EBOX/2-56
EBOX/2-58
EBOX/2-59
EBOX/2-62
EBOX/2-62
EBOX/2-62
EBOX/2-62
EBOX/2-64
EBOX/2-64
EBOX/2-65
EBOX/2-65
EBOX/2-67
EBOX/2-70
EBOX/2-70
EBOX/2-72
EBOX/2-72
EBOX/2-74
EBOX/2-74
EBOX/2-74
EBOX/2-82
EBOX/2-82
EBOX/2-83
EBOX/2-85
EBOX/2-86
EBOX/2-86
EBOX/2-86
EBOX/2-86
EBOX/2-87
EBOX/2-87
EBOX/2-87
EBOX/2-88
EBOX/2-88
EBOX/2-88
EBOX/2-88
EBOX/2-88
EBOX/2-9l
EBOX/2-92
EBOX/2-92
EBOX/2-96
EBOX/2-96
EBOX/2-96
EBOX/2-99

(

(

2.10.3
2.10.4
2.10.4.1
2.10.4.2
2.10.4.3
2.11
2.11.1
2.11.2
2.11.2.1
2.11.2.2

2.11.2.3
2.11.2.4
2.11.2.5
2.12
2.12.1
2.12.2
2.12.3
2.12.3.1
2.12.3.2
2.12.3.3
2.12.3.4
2.12.4
2.12.4.1
2.12.4.2
2.12.4.3
2.12.5
2.12.5.1
2.12.5.2
2.12.5.3
2.12.5.4
2.12.5.5

SECTION 3

3.1
3.1.1
3.1.2
3.1.3
3.1.3.1
3.1.3.2
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1

CONTENTS (Cont)

Execution Cycle
EBox Data Store Cycle

Basic Four Mode Type Instructions
SKIP, JUMP Compare Instructions
Store Cycle for Other Instructions

INTERF ACE CONTROL
Introduction
MBox Control

DATA FETCH REQUEST EN - Begin EBox Cycle
Begin MBox Cycle - End Current EBox Cycle
and Start Next
SETUP PREFETCH - Wait for MBox Response
MBOX RESPONSE RECEIVED
General Memory Cycle Control

EBUS INTERFACE CONTROL .
EBus Signal Lines
EBus Interface Organization
Interrupt Handling - Loading the Request

Testing the Request ..
Requesting the EBus
Beginning the Dialogue
Interlocks and Dialogue Completion

Basic Input Output Control
Requesting the EBus
Dialogue Overview
Functional Breakdown

PI and EBus to Microcode Interface --:-: .
Sensing the Interrupt .
Requesting the EBus
Beginning the Dialogue .
Terminating the Dialogue
Entry to the PI Handler

LOGIC DESCRIPTIONS

INSTRUCTION REGISTER LOADING AND CONTROL
DRAM and IRAC Control
DRAM Addressing and Selection
IR TEST SATISFIED

Introduction
Implementation

PROCESSOR TIMING
Clock Overview
Crobar and Clock Initialization
EBus Reset ; . . .

Initialization Clock Pulse Generation

v

Page

EBOX/2~101

EBOX/2-103
EBOX/2-103
EBOX/2-107
EBOX/2-108
EBOX/2-108
EBOX/2-108
EBOX/2-110
EBOX/2-112

EBOX/2-112
EBOX/2-116
EBOX/2-116
EBOX/2-116
EBOX/2-116
EBOX/2-120
EBOX/2-123
EBOX/2-123
EBOX/2-123
EBOX/2-123
EBOX/2-124
EBOX/2-124
EBOX/2-124
EBOX/2-124
EBOX/2-124
EBOX/2-126
EBOX/2-127
EBOX/2-127
EBOX/2-131
EBOX/2-131
EBOX/2-133
EBOX/2-133

EBOX/3-3
EBOX/3-7
EBOX/3-8

EBOX/3-10
EBOX/3-10
EBOX/3-10
EBOX/3-15
EBOX/3-15
EBOX/3-17
EBOX/3-19
EBOX/3-19

3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3.3.5
3.3.3.6
3.3.4
3.3.5
3.3.6
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.5.1
3.4.5.2
3.4.5.3
3.4.6
3.4.7

CONTENTS (Cont)

EBox Clock Control
Error Detection
Clock Control Logical and Skew Delays

ARITHMETIC PROCESSOR FACILITY
Introduction
Address Break

Address Break INH and Saving Flags
Address Break INH and Loading Flags

Arithmetic Processor Status Register
SBus Errors
Nonexistent Memory
Other External Errors
Input/Output Page Failure Error
Power Fail
SWEEP and SWEEP DONE

Processor Identification
Cache Refill RAM Facility .
MBox Error Address Register

CONTROL RAM ADDRESSING
Pushdown Stack
Current Location Register (CRA LOC)
Control RAM Dispatch Field
Miscellaneous CR Address Gates ...
Special CR Address Modification Considerations
CLK FORCE 1777 .
CON COND ADR 10
MULDONE
AREAD Logic
CRA Dispatch Parity

APPENDIX A UNDERSTANDING THE MICROCODE

APPENDIX B . ABBREVIATIONS AND MNEMONICS

Figure No.

1-1
1-2
1-3
1-4
1-5
1-6

ILLUSTRATIONS

Title

EBox Simplified Block Diagram
Control Pyramid . .
DRAM I/O, JRST
DRAM Organization
EBox RAM Structures, Interfaces, and Controls Block Diagram
EBox Overall Block Diagram

vi

Page

EBOX/3-19
EBOX/3-22
EBOX/3-25
EBOX/3-27
EBOX/3-27
EBOX/3-27
EBOX/3-3l
EBOX/3-31
EBOX/3-31
EBOX/3-33
EBOX/3-34
EBOX/3-34
EBOX/3-34
EBOX/3-34
EBOX/3-38
EBOX/3-40
EBOX/3-41
EBOX/3-43
EBOX/3-44
EBOX/3-44
EBOX/3-47
EBOX/3-47
EBOX/3-47
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-50
EBOX/3-52

Page

EBOX/l-2
EBOX/1-3
EBOX/l-4
EBOX/1-4
EBOX/1-6
EBOX/1-7 [

(

(

).

(

Figure No.

1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
1-33
1-34
1-35
1-36
1-37
1-38
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13

ILLUSTRATIONS (Cont)

Title

Instruction, Dispatch, and Control Formats
Microprogram Main Loop ..
Basic Fast Memory Structure
VMA Structure Simplified . .
PC + 1 Function
MBox-VMA-EBUS Control Simplified
Page Table Access
KI Style Paging
Physical Memory Address Format
Page Fault Overview
KL Paging Layout
Page Mapping (Virtual to Physical)
Typical Paging Path
Immediate Section Pointer
Shared Section Pointer
Indirect Section Pointer .
Pointer Interpretation (Normal Section Pointer; Shared)
Pointer Interpretation (Indirect Section Pointer)
Pointer Interpretation (Indirect Page Pointer) .
Pointer Interpretation Flow Diagram
KL Core Status Tables Updating Flow Diagram
Basic Address Translation
Virtual Address Mapping, KIl 0 Paging Mode
Simultaneous Interrupts
PI Dialogue Overview
API Word Format
1/0 Instruction Dialogue Overview
KL 1 0 Register Interconnection Diagram
Core and Fast Memory Information Flow
Loading ARX
EBox Data Paths Simplified Paths Diagram
Input/Output Priority Interrupt Information Flow
EBox Functional Block Diagram
Primary Hardware Cycles
Microprogram Static States
Microprogram Halt Loop
Run-Halt-tontinue Logic
Dispatch Path State Diagram
Basic Microprogram Address Control
CRAM Address Inputs Simplified
Wait State
MBox Wait and EBox Clock
MBox Wait on Prefetch from Fast Memory
PI 40 + 2n Skip
M Program Modules

vii

Page

EBOX/1-9
EBOX/l-10
EBOX/l-12
EBOX/l-16
EBOX/1-17
EBOX/l-18
EBOX/l-19
EBOX/1-20
EBOX/l-21
EBOX/1-21
EBOX/l-22
EBOX/l-23
EB0X/I-24
EBOX/l-25
EBOX/l-25
EBOX/l-26
EBOX/l-27
EBOX/l-28
EBOX/l-29
EBOX/I-30
EBOX/l-35
EBOX/l-37
EBOX/l-38
EBOX/1-39
EBOX/1-40
EBOX/l-41
EBOX/l-41
EBOX/1-43
EBOX/I-44
EBOX/l-47
EBOX/1-48
EBOX/I-49

EBOX/2-2
EBOX/2-3
EBOX/2-4
EBOX/2-5
EBOX/2-6
EBOX/2-7
EBOX/2-9

EBOX/2-10
EBOX/2-10
EBOX/2-11
EBOX/2-11
EBOX/2-13
EBOX/2-15

2-14
2-1

2e·17
2-J 8
2-19
2-20
2-21

2-25

2-27

2-30
2-31

2-37

2AO

2-47
2-48

2-53

liLLUSTRATJONS

Fault Handler
Input/Clul:put Handler
I~asic IV[acrdrle ~=ycle ()vervievJ
KL 10 JPn)cessor Openrtiol1
Instruction
Set and, Make Indirect
rvTBox

Iltmox
I~Iardvifare Selection
Executor Setup for Store Cycle

FJerf()rl11.
Page Fan
EBox Priorities
Process Table PF Location
Trap Cycle , , , . . , . .
Central-Server Niodel (Round Robin

Dialogue Overview
IVl:ode Structure and Hierarchy
Mode Transfer

Virtual Address
I<Jode Initialization
Private Instruction
Setting Private Instruction
User Mode Functional Flow

Path

User Public Initial Reference
User Mode Public SeCOT1G Reference

Concealed Page Table Format
(Half Table. . 0 • , , • •

Mode Functional Flow
Leaving User

Functional FIm)'[

viii

E-'B· nv/) __ ",n
, ~,j'~ - -~,

!

EBOXi2-30

EBOX/2-43

EBOX/2-51

Figure No.

2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82
2-83

2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-95

2-96
2-97

2-98
2-99

ILLUSTRATIONS (Cont)

Title

EBox Address Paths Simplified Path Diagram
Typical VMA 13-17 Manipulations
EBox Data and Address Paths
VMA Inputs
Program Count Loop .
PC Loading or Inhibit
ALU Overview
ADA Example
ADB Example
Function A
Function AB
Function AB
Function A
AR Selection
ARX Selection
MQ Selection
Instruction Set Divisions
Major Machine Cycle
Basic Instruction Format
In-Out Instruction Format
Effective Address Calculation
Page Fault During Diverted Indirect Reference
EBox Data Fetch
Fetch Minor Cycle
Address-Fetch-Execute-Store General Memory References
Execute-Register-MBox Control and Miscellaneous
General Memory References . .
EBox Execution Cycle Overview
Microstack Operation
EBox Data Store
MBox-EBox-EBus Control . .
Basic Machine Cycle Summary
Subcycle Summary
Hardware Cycle Summary ..
General Memory Request Control Simplified
Begin EBox Cycle Data Fetch Request
EBox Req~est Fast or Slow
Basic EBox Clock Period
Begin MBox Cycle, End Current EBox Cycle,
Begin Next EBox Cycle
Setup Prefetch Waiting for MBox Response .
Receive MBox Response, End Current MBox Cycle, End Current
EBox Cycle, Begin Next EBox Cycle, Begin MBox Cycle.
General Memory Cycle Control Flow
EBus Interface Functional Block Diagram

ix

Page

EBOX/2-68
EBOX/2-69
EBOX/2-71
EBOX/2-72
EBOX/2-73
EBOX/2-74
EBOX/2-77
EBOX/2-79
EBOX/2-80
EBOX/2-80
EBOX/2-81
EBOX/2-82
EBOX/2-82
EBOX/2-84
EBOX/2-85
EBOX/2-89
EBOX/2-90
EBOX/2-91
EBOX/2-91
EBOX/2-91
EBOX/2-93
EBOX/2-94
EBOX/2-95
EBOX/2-96
EBOX/2-98

EBOX/2-100
EBOX/2-102
EBOX/2-103
EBOX/2-104
EBOX/2-105
EBOX/2-109
EBOX/2-109
EBOX/2-110
EBOX/2-111
EBOX/2-113
EBOX/2-114
EBOX/2-114

EBOX/2-115
EBOX/2-117

EBOX/2-118
EBOX/2-119
EBOX/2-122

'2-1
2-101
2--102

2.'~ 104
3-1

3-5

7
3-8

3=10
3~I 1
3-1
3-13

.:1-

3-15
6

3-17
8

3-,19
3-20
3-21

3-24

3-26
3-27

3-~29

3-30

3--32

3-36

3-,38
.}-39

lI"L1TSTRAl.1'~ONS

EBox PI
EBus ControJ l:1ybricl
Tinle State:
PI
EBox Module UtiHzation
IR DRA.JVl Control
lR_ DR.A,jlyJ[ControX
IR Via AJZ

Tide

Loading III Via FIVll (COND/LOAD IR)

and Waiting

IR Test
IR Test Satisfied

Basic Block Diagram
Source

Basic Clock Block DIagram

Clock Initialization
EEus Reset and Clock Initialization

Timing
Diagram, MEox Sync, Eriox ('lock

Clock Error
and Ske'vv

Clock Control, EBox Contra)'. Timing
Address Break
APR and Interrupt
APR Breakdown
j\rXM Ovefvie\!v
"!'·JXM Error Ovelview
External Error
EI{A Word

AlPR[D Format

x

EHOX!2-131

EBOX!3-12
12

" u

EBOX/3-18

EBOX!3-21
1

EBO XI 3-4, 1
1

Figure No.

3-42
3-43
3-44
3-45
3-46
3-47

Table No.

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

ILLUSTRATIONS (Cont)

Title

Stack Operation Example
CRADR Gates
Example CRADR 08-10
COND and Dispatch Layout and Control
MUL Done
Control RAM Addressing

TABLES

Title

AREAD
FM Selection
Memory Information Flow
EBox Main Loop/Traditional Machine Cycle Comparison
Error Stop Enables
NICOND Priorities
Address Calculation
MBox Cycle Requests
Flags Effecting Mode
Virtual Address Classification
Data and Address Path Breakdown
ALU Functions
ALU Functions With Carry
ADA, ADXA Selection
ADB, ADXB Selection
SCAD Field
SCADA Mixer Selection
SCADB Mixer Selection
AREAD Dispatch
Skip, Jump, Compare Instructions

. Request Summary
Data Transfer Signals
Table Data Transfer Commands
Priority Transfer Signals
Priority Trnnsfer Commands
Skip, Jump, Compare Controls
Test Controls
CONSX and BLKX Controls
Fetch Control Modifiers . .
CRYO Generation (MACRO)
Marker Generator Function
CCA Summary
Sample Algorithm

xi

Page

EBOX/3-46
EBOX/3-48
EBOX/3-49
EBOX/3-51
EBOX/3-52
EBOX/3-53

Page

EBOX/l-ll
EBOX/l-13
EBOX/1-45

EBOX/2-7
EBOX/2-12
EBOX/2-13
EBOX/2-26
EBOX/2-28
EBOX/2-59
EBOX/2-67
EBOX/2-75
EBOX/2-76
EBOX/2-78
EBOX/2-83
EBOX/2-83
EBOX/2-86
EBOX/2-87
EBOX/2-87
EBOX/2-97

EBOX/2-107
EBOX/2-110
EBOX/2-120
EBOX/2-120
EBOX/2-121
EBOX/2-121

EBOX/3-12
EBOX/3-13
EBOX/3-13
EBOX/3-14
EBOX/3~14
EBOX/3-22
EBOX/3-38
EBOX/3-43

PREFACE

This manual contains three levels of EBox theory descriptions. The three levels are:

1. Overview - The overview identifies and introduces, in a simplified fashion, the basic hard­
ware and firmware organization of the EBox. The major elements are presented without
many details to provide a capsule view of the EBox structure.

2. Functional Description - This section describes the primary EBox function, which is to exe­
cute the KL 10 instruction set and thus provide the specified functions, which generally
include the following:

Memory Reads and Writes
Internal Operations
EBus Operations

The functional description is the most comprehensive part of the EBox Theory. Here the
basic elements of the EBox are described in the context of how they implement the primary
EBox function.

3. Logic Description - This section provides a detailed logic description of each of the board
types that comprise the EBox. These descriptions are written to support the functional
description. The logic description section is the most detailed part of the EBox. This mate­
rial is presented to expand the functional description so that the information provided in the
functional description can be directly related to the engineering logic diagrams.

xiii

c

(

SECTION 1
OVERVIEW

1.1 INTRODUCTION
The EBox is the instruction execution unit in the KLlO system. A central processor is formed when a
memory interface unit (MBox), 10-11 interface unit (DTE), and PDP-ll/40 processor are interfaced
with the EBox. The MBox is the memory interface unit in the KLlO system to which the EBox directs
its core memory requests. The PDP-ll/40 is the front end processor that provides console functions
and bootstrapping facilities and drives the standard PDP-II peripherals. The DTE is the interface
between the EBox and the PDP-ll/40 console processor. The EBox communicates with the DTE, and
hence the console processor, over a 36-bit data bus called the EBus, and uses three function lines
(FOO-F02), seven controller select lines (CSOO-06), and two additional signal lines (Demand and
Transfer) for arbitration and control of data transfers between the EBox and its internal and external
devices. A pseudo-interface, which consists of a 23-bit address, 36-bit data, a number of request type
qualifiers, and additional signals (including request and response), provides for arbitration and control
of data transfers between the EBox and MBox.

The EBox contains the following (Figure I-I):

l.

2.

'" 3.

......... 4.

5.

A data path that consists of an Arithmetic Register (AR), Arithmetic Register Extension
(ARX), Adder (AD), Adder Extension (ADX), various other registers, and a shift matrix.

An address path that consists of a 23-bit Program Counter (PC) and 23-bit Virtual Memory
Address register (VMA).

Eight fast register blocks, each containing 16 X 36-bit words; each block of 16 registers is
program -assignable .

A 13-pit Instruction Register (IR), which accepts the 9-bit operation code and 4-bit accu­
mulator address.

J

Two somewhat autonomous control elements to provide control between the MBox and
EBox, as well as the EBus and EBox. These are the MBox control and EBus control, respec­
tively (Figure 1-1)~

6. A control section storing and aiding the implem~ntation of KLlO instructions.

EBOX/I-I

•

DATA DISABLE

DIAG CONTROL • FUNCTIONS DATA

DIAG DIAGNOSTIC
SELECT LINES CONTROL

CONTROL
J. ;:.. J SYNC

MASTER EBUS CLOCK
CLOCK CLOCK

TO CONTROL
CORE CYCLES,MBOX CYCLES LOGIC

"INTERNAL
DEV" CONTROL ---T--

INSTR 00-12
.1 I DISPATCH TIM: MTR

AC 10-12 (SWEEP) IR STORE
,

l IR
TO BUS (ERROR STATUS PAGE FAIL STATUS)

PI
I

•
MBOX

w CONTROL CONTROL MEM
u
ii: MCL 0::
w CON
I- CLK z -
:. CONTROL
"-w

MBOX
ERROR CONDS

DATA

VMA

"INTERNAL
DEV"PAG

CON
APR

"i 7

NO TE:
CACHE clearer device CCA
is in the MBOX

-

1

•
EBUS PI

MAIN AND

CONTROL PI
EBUS CTL CONTROL DATA

STORE
i:-;iAPR
z_Il.",'CTL CONTROL
~-~~ :CON CRM J CRA ,'" 0"" PI

f PI JUMP ADR

"INTERNAL DEV"
ARITHMETIC CONTROL
PROCESSOR
STATUS AND

CONTROL
APR

ADDRESS
AND

DATA PATHS DATA

DP
VMA INTERNAL

SH STATUS OR

!INDEX

ERROR CONDS

E AC

FAST MEMORY

8 BLOCKS
~ APR

DP

CONTROL

Figure 1-1 EBox Simplified Block Diagram

EBOXjl-2

r-- '" ~ --
r--

r---

0::
0
l- f----<[
...J
<Il
Z
<[
0::
I-
~

(J)
::> r--- m
w -

-
-

'--

c
'I 7

'0-1537

(1

(1
t

(

The control portion of the EBox comprises two Random Access Memories (RAMs). The first is called
, the Dispatch RAM (DRAM); it consists of.~torage for 512 decimal words, one word for each KLIO

instruction. During instruction execution, the content of the DRAM word provides information about
'-' the type of memory references required by the executing instruction. It also provides an index into the

main control programs contained in a second control memory called the Control RAM (CRAM). The
CRAM consists of storage for 1280 microinstruction words that are structured into a sophisticated
control program. The main progr:aIilconsists of a main loop and a number of subroutines or handlers.
The structure provides for the implementation of a wide variety of internal register transfers, arithmet­
ic and logical control, memory interface, and EBus control functions. The control program is generally
referred to as the "microcode." Associated with the microcode and CRAM is a hardware pushdown
stack, which enables the control program to make subroutine calls up to four levels deep, while per­
forming various KLI0 instructions. The basic machine control flow may be viewed as a pyramid, as
shown in Figure 1-2. The instruction initially enters the IR consisting of two sections. One section, bits
0-8, holds the op code of the instruction, and the other, bits 9-12, holds the Accumulator (AC)
address. During the instruction fetch cycle, the IR is unlatched via Load IR. During this time, it sets up
with the op code. When the fetch cycle terminates, Load IR is removed and the IR latches.

"INSTRUCT I ON"----.xo

CRAM

CRAM REGISTER

10'1~63

Figure 1-2 Control Pyramid

Because of the provision for prefetching, instructions may enter IR during the execution of the current
instruction. This implies that, for these cases, the information provided by IR for the currently execu­
ting instruction must be somehow saved, while allowing IR to set up with the op code of the next
instruction. This is accomplished by selecting an appropriate word from the DRAM.

The op code contained in the IR is used to address a corresponding DRAM word, and a Next Instruc­
tion Condition (NICOND) unlatches the DRAM register during this time. Encoded in the DRAM
register fields (A, B~ is all information necessary for operand fetching, storing, and the micro­
program executor jump address. Therefore, those instructions that prefetch an instruction do not
require the IR to be reliable beyond the point of loading the DRAM register.

"

Input/output (I/O) instructions never prefetch. The device select code and operation for these instruc­
tions are specified directly in the IR. This must be made available to the microcode I/O handler during
the instruction's execution cycle.

A special case in DRAM addressing is concerned with the JRST instruction. Because the JRST
instruction encodes its JRST type in IR 9-12, these bits can be used directly as part of the DRAM
word for this instruction. Normally, the DRAM address is as shown in Figure 1-3.

EBOX/I-3

777~~~~~~~~~

770~~~~~~~~~
767

700~~~~~~~~~

256 }REFER TO
254 f-L.LL.LL.LL.L.L.L.L.L.L.L.L...<....<j FIG U R E \-4

OTHER MICRO
INSTRUCTIONS

0'--_______ -'

Figure 1-3 DRAM I/O, JRST

Figure 1-4 illustrates the organization of the DRAM. By sharing portions of the DRAM between
even/odd instruction, the shared pieces become half the nonshared. Therefore, the A, B, and 17-10
portions consist of 10 X 512 words and the P, J4, 11-3 portions consist of 5 X 256 words. This saves (
essentially 5 X 256 words of DRAM storage. In addition, for JRST DRAM COMMON, bit 4 is made ~
zero and DRAM 17-10 is replaced by IR 9-12, again yielding a savings. Here the savings is 5 X 16
words of DRAM storage. The areas allocated by the DRAM are indicated in Figure 1-3.

777 .

DRAM REG

IR

- IO-DRAM ADR" OPCODE 00-08
10 - DRAM ADR " SEE NOTE 1

IR

COMMON

NOTE: 1 For IO instructions the
DRAM ADDRESS is formed as follows :

DRAM AOR 03-05 - X

DRAM ADR 06-08 - IR 10-12

x= For internol devices lR 03 - 06 = 0, this makes X = 7

For external device,lR 03-06 ~O, this makes X = IR 07-09

Figure 1-4 DRAM Organization

EBOX/I-4

10-1564

I

./

o

0)

\

(

.j I

Included in the EBox is the master clock, which provides a time base for system operation. It dis­
tributes clock and sync pulses to the MBo.x, DTE, internal devices, system buses, and to the EBox
itself. All operations in the KL-based system are synchronized to the master clock, which runs at 50
MHz. The master clock can be started, stopped, single stepped, and otherwise controlled by the con­
sole processor via the diagnostic control logic. This logic is distributed between the EBox and the
DTE. Besides controlling the master clock, the diagnostic control logic provides a means for mon­
itoring processor status and diagnostic registers in both the EBox and the MBox. The master clock is
divided to supply a 25 MHz clock to the MBox and a 6.25 MHz clock to the EBus and SBus. -------.,
The EBox clock is variable and controlled by the microcode. The EBox and MBox are composed of
emitter-coupled logic (ECL), while the DTE and external devices are composed oftransistor-transistor
logic (TTL}. These two forms oflogic are not directly compatible so the EBus is interfaced to the DTE,
as well as external devices, via a special controllable logic-level shifter called the Translator. This is
steered by the EBox and provides for both ECL to TTL transfer and TTL to ECL transfer.

The normal program flow may be interrupted through the use of one of eight interrupt control lines
(PIO-7). This allows the servicing of peripheral devices and controllers, as well as internal devices,
while executing the main program. The central processor contains six internal devices that are program
selectable via KLIO I/O instructions. These devices are:

Priority Interrupt (PI)
Arithmetic Processor Status (APR)
Paging (PAG)
Cache Clearer (CCA)
Meter (MTR)
Timer (TIM)

Instructions, c9mprising a program, are maintained in core and/or fast memory. These instructions
are fetched and executed by the EBox. The control program within the EBox evaluates fields of infor­
mation that are part of the instruction currently being performed. Using various registers, fast memo­
ry, and adders, together with the VMA register and associated logic, the control program calculates an
effective address; fetches any required operands; performs the instruction-dependent functions (e.g.,
those functions specified in the op code); stores the generated results; and fetches the next instruction.
The logical data path between the instruction itself and the MBox is formed by the AR and ARX,
together with various auxiliary registers, and the several adders contained on the Data Path Board
(EDP). The IR receives the op code and accumulator address (lRAC) effectively for each instruction,
while the ARX receives the entire instruction word consisting of the op code, accumulator address,
Indirect . bit, and Index register address, as well as the initial address supplied with the instruction
referred to as the Y aaaress. The control program contained within the DRAM passes through a well­
defined "loop'" consisting of microcode handlers, each of which performs a portion of the overall
instruction execution. These correspond closely with the traditional processor cycles of Instruction,
Address Calculation, Data Fetch, Execution, and Data Store with auxiliary cycles being Interrupt,
Page Fault, and Trap.

1.2 BASIC FUNCTIONAL BLOCKS
The seven basic EBox functional blocks (Figures 1-5 and 1-6) are:

1. Instruction Register-Dispatch-Main Control Store
2. Fast Memory
3. Address Path
4. Data Path
5. Request and MBox Control
6. EBus and PI Control

/ 7. EBox Control Logic

EBOX/1-5

MBOX MASTER
CLOCK CLOCK

ClK

CONTROL

DATA .1 IR

DRAM ADDRESS _1--------------+1.11 r- - - - - - - '--___ ..::.IR:.:..J
IRAC

I ~ A B
P

L.. -+ ~ DIS:AAJCH -+-------1
C
T

A B P IR

I DISPATCH REGISTER

I

Lr-~--J~-I ,-~A~D~~A~DA~A~D~B~A~R~A~RX~~BR~B~R~XT7.M~Q~F~MA~D~R~S~C:~D~~lsc~A~D7Ar~~A~DB~S~C~F~E.-_·Arr~-__ ~V~M7Ar.T~I~M~Er.M~E~M~S~K~1P~C~O~N~D~D~I~SP~-~#~,
S I IARMM

r--'
I~
I ,.
I
I
I
I

[I
1__--+---4--+-+-~I___4--+--4-~-~CONTROL

RAM
E
C
T
I
o I
N I
eRA~-~~--4--+-+-~~-4-+--4-~-~--~I--+-.--+-r-~-~I---+--+-~--+-~I---~-- CRM

CONTROL REGISTER

CONTROL

E DATA

'---___ =co=NT=Ro'-"--L __ -+-----tWO~35 O~35~$~% If AR ARX ~ FE ~ EBUS ~
t-____ ... _ ______ D.AT.A _______ _~~ AD ADX ~ SCAD ~;j4I-----DAioiTioiA-----~ ApNID t-.. D.AT.A_~ ~

/ 14-.... --~
M

REQUEST
AND

MBOX
CONTROL

~ BR BRX % SC ~ CONTROL

~f~~

CONTROL

APR
MCL
CON

i.....Y I !J.llIA.,L
!"""ADDRESS

CONTROL

VMA

ADDRESS
PATH

VMA

DATA PATH

CONTROL

MIXER
CONTROL

EBOX
CONTROL

LOGIC

I
I

APR I eON
eTl I

I
l­
I
I
I
I

DATA

FM-

EDP

I t VMA AD I
1--7-_-. ___ ---'-'VM""A, FLAGS AND PC I dTHER I PC I EFFECTIVE ADDRESS I • I SCDI seD INTERMEDIATE ADDRESS I Itt t I ADDRESS OF CURRENT INSTRUCTION

L... __ -1_ -1 __ I ____________ --' OTHER

L __________ J

Figure 1-5 EBox RAM Structures,
Interfaces, and Controls Block Diagram

EBOXj1-6

CONTROL

CONTROLv STATUS

MTR
eON

PI
APR
CTl

DIAG
CONTROL

PIO-7

CONTROL
STATUS

10-2179

1.2.1 Instruction Register-Dispatch-Main Control Store
The Instruction register is the center of all-'processor control. Instructions are fetched from Main
Memory or Fast Memory. The instruction enters ARX while the op code and AC address enter the
Instruction register. The op code (bits 00-08) is used to address a word in the DRAM that is unique for
each instruction in the KLlO instruction set. This word contains three fields of information and a
parity bit. The Instruction, Dispatch, and Control formats are illustrated in Figure 1-7.

Because all instructions do not require the same types of data fetches, execution states, or data storage,
they are handled uniquely for each instruction or, in some cases, for each class of instruction.

The A field (0-2) of the DRAM generally specifies the data fetch requirements, if any, as well as
whether the next instruction in the sequence may be fetched early (prefetched). The B field (3-5)
generally specifies where to store the results produced during execution; but in the case of Test, Skip,
Jump, and Compare instructions, it is used to determine whether to skip the next sequential instruction
or jump. The J field (14-23) is used to enter at the appropriate point in the Executor Microprogram

------.,:nd is generally instruction-dependent.

Specific micro routines are used for each class of instruction. Associated with the DRAM is a register
that buffers the word selected for the instruction currently being performed. This register is loaded
soon after the instruction is placed in the I.2!~~gi4-

The microprogram is contained in a 1 75-bit RAM called the CRAM. Both the DRAM and
CRAM are loaded when the KLlO system i powered up. This is accomplished by the PDP-llj40
processor via the DTE and makes use of diagnostic csmtrollogic within the EBox. Associated with the
CRAM is a register that buffers each word or microinstruction read from the CRAM. This register is
called the Control register and its contents are decoded to provide overall control of the seven major
functional blocks described in Subsection 1.2. In addition, the Microprogram is structured into what
might be called a main loop. This loop, which is passed through regularly, is illustrated in Figure 1-8.

When an instruction is fetched, the op code and accumulator address are placed in the IR and the
entire instruction word is placed in one of the Data Path registers called the ARX. Movement from

----- one routine (or handler) in the microprogram to another is made via a microcode Dispatch function.
The Control register contains many fields that are used for different types of control. Two such fields
that are used to control this movement are Jump ~ss and Dispatch Field. The Dispatch function
enables various hardware conditions to be considered when an instruction has been fetched and
enables the most iml2.ortant condition to prevail. Two such conditions that are illustrated in Figure 1-8 (
are Priority Interrupt Request Pending and Trap Request Pending. The hardware is arranged in such a -"
fashion that priority interrupts have highest priority, followed by traps; the current instruction has
~owest priority. The dispatch that takes the microprogram to the Process Il)struction Block is called the

I NICOND and is given after a Fetch request for the next instructiOi1.TI no priority interrupts or traps
are pending, the microprogram enters the next block to calculate the effective address. Here the dis­
ftid\is called Effective Address Modification (EAMOD) and enables the hardware to sample indirect
Ie it 13 of ARX together ~ith indexing field bits 14-17. The KLlO instruction specification allows

multilevel indirect addressing with indexing at each level where indexing, if specified, is performed
first. The microprogram evaluates bits 14-17; if nonzero, the contents of bits 14-17 are used to access
the specified 36-bit Index register0 The right-most half of the Index register (bits 18-35) is added to the
Y field of the instruction word (bits 18-35); the right-most 18 bits of this result are used in the next step

" of the effective address calculation. Simultaneously, the state of ARX bit 13 is tested and, if equal to a
"-1, a memory request is generated to the MBox control portion of the EBox. Each time a word is

fetched in this fashion and has bit 13 equal to 1, the same sequence occurs until finally a word is
fetched with bit 13 equal to O. Then, one more level of indexing may be specified and the result is the
effective address. At this time, the A READ dispatch is given and the A field of the DRAM is eval­
uated to enable a required operand to be Wc!!.ed; if specified, a prefetch is also set up at this time.
Table 1-1 lists the A field codes and Die specific function required.

EBOXjl-8

R1l
\

)

,
?
,

@)

INSTRUCTION

00 0809 12

OP CODE (IR) AC (IR)

0-7778

DISPATCH RAM

00 0203 0506 10 11 12

\ /" ./
\ / "--v./

\ / WHERE TO STORE OPERANDS FOR
\ / CERTAIN INSTRUCTIONS ALSO

\ / PROVIDES SKIP, JUMP, TEST
V AND COMPARE CONTROLS

CONTROL OF DATA FETCH,
WRITE PAGE TESTING AND
PRE - FETCH ENA8LE.

CONTROL RAM

004
DISPATCH ADR (J)

0-3777

CONTROL RAM (Cont'd)

11 12

10 - 81T
SHIFT COUNTER
AND FLOATING
EXPONENT REGISTER
MI XER CONTROL

1\
/ \

14 1718

XR

13 14

DISPATCH ADR (J)

, ./
~ ./ , ./

~~ ./

"~ 0-17778-"""-

AD

VIRTUAL

~-
~­

'./

WHERE TO DISPATCH
TO IN THE EXECUTOR

MEMORY ADDRESS
SELECTION CONTROL

1\

EFFECTIVE ADDRESS (Y)

DATA PATH
36- BIT REGISTER
MIXER CONTROL

GENERALLY CONTROLS
MODIFICATION OF LSB AT
JUMP FIELD BITS01-11

/'"'-..
./ "-

./ "-
./ "-

35

SYNC POINT
II , ,

46 4'1
/ \

/ \
52 53 54 5960"""" '-6 '74' 75

-- --. "--= -=> \ I \ /
--.

\V I \ /
V

lO-BIT SHIFT COUNTER 36- BIT SHIFTER CLOCK
ADDER AND INPUT AND AR MIXER CONTROL
MIXER CONTROL - MIXER CONTROL

MEM

./
"- ./

"- ./
'-./

MBOX
INTERFACE
CONTROL

SKIP/COND I DISP/SPEC

!
~ --l ././

PROVIDE I :~~::CRO CODE
FUNCTION1 AND MAJOR
BRANCHING WITHIN THE
MICRO PR@GRAM

M
A
R
K

--. --

-....-.... ...-...-"'-

-- -----------USED I N CONJUNCTION
WITH THE SPECIAL
FUNCTIONS OF THE
DISPATCH FIELD

10- 2088

Figure 1-7 Instruction, Dispatch,
and Control Formats

EBOX/1-9

II
LOAD INSTRUCTION WORD

• r- ARITHMETIC REGISTER -1
EXTENSION CONTAINED
IN DATA PATH

+
'-- INSTRUCTION ---l "9 1- REGISTER -I

R,J c8bE I AC I I I X I y I OP-CODE 1 AC J

\ /
I- DRAM-

A I B I J
"Load word select,~d into
DRAM Register

• A I B J I DRAM
REGISTER

r ---------.- ~-------""\ JI MICRO

U TRAP REQUEST ,
PROGRAM

.... BEGIN
EXECUTION ,

I PROCESS I TRAP

1')
(

~
~

PROCESS c:-INSTRUCTION

,-: -,>--§~~O..p-, JU- r-

I PROCESS I - / 1 + INTERRUPT 1

LA
I
I

-,/ ~ t- CRAM-

~
CALCULATE
EFFECTIVE t- ' -

ADDRESS INTERRUPT REQUEST --"I

I I
EAMOD:

I
L / ,

""\,. -- -" A READ A READ --- --,
r-------i ~ r----'-(__ J

I --

r 1"
, FETCH

PRE- FETCH I REQUIRED ~llB';"M .. L ___ "" OPERANDS <.
--'I

"I \j --

{ '"Me" """,0' I FETCH
NICOND ./ r-M.I~Q... __ -<- --) r------...,

I J. I I - --r 1\

FETCH NEXT INSTR I I
PERFORM

" J
EXECUT ION I INTERRUPT REQUEST

(

[-~~l~Nf!D--1 U B WRITE --
__ J I

r- - - - ___ f

I I -
I ,

FETCH NEXT INSTRUCTION STORE I ':-I RESULTS -'r---, ____________ v ___________ J - 1
1
1
1 L.

CONTROL 1 'I
REGISTER JUMP DISPATCH I OTHER

10- 2180

Figure 1-8 Microprogram Main Loop

EBOXj1-1O

v'

(

Table 1-1 AREAD

DRAMA 3-Dit Code MEM/AREAD DISP/AREAD

0 Immediate class instruction; pre fetch disabled. DRAMJDISP

1 Immediate class instruction; prefetch enabled. DRAMJ DISP

2 Not used 42
3 Write-check the paging; prefetch disabled. 43
4 Data read required; prefetch disabled. '" 44
5 Data read required; pre fetch enabled.'" 45
6 Data read required as separate cycle; also write-check the 46

paging; prefetch disabled.

7 Data read modify write required; prefetch disabled. 47

*These two cases are distinguished only by dispatching to different microcode locations. The microcode entered at location
45 prefetches, that at 44 does not.

, -

The next block is entered to perform the specific execution function or functions for the particular
instruction by the microprogram giving a DRAM J dispatch. Remember that each instruction has its
own DRAM word with a unique Jump field specifying where to go for that instruction's execution.
The execution is very complex and is described in detail elsewhere in this manual. Basically, it performs
all required arithmetic, logical, or other types of functions required, and may also, in some cases, fetcD
additional operands as required.l Upon completion of this portion of the microprogram, the next
instruction may be started, provided that no data storage is required. If storage is required, two basic
cases must be considered. Those instructions that do not know where to store their data utilize the B
field of the DRAM as an index into the final block to store results. After storing results, the next
instruction is fetched and a NICOND dispatch is issued. Instructions that know where to go specifical­
ly in order to store their data do so by jumping to a specific location in the microprogram, but may use
the B field of the DRAM to decode additional types of memory requests as required. This completes
the basic loop.

1.2.2 Fast Memory
--An instruction word has only one 18-bit address field for addressing any location throughout all of

memory. Most instructions, however.nave two 4i bjt fi~ for addressing the first 16 locations of
memory. These 16 locations consist of a set of 16 general-purpose, high-speed integrated circuit regis­
ters grouped locally into eight physical blocks .. ,.which are software-assignable by block. Non-I/O
instructions have an accumulator address field that ca'n address one of these 16 locations as an accu­
mulator. Every. instruction has a 4-bit Index register address field that can add~ss 15 of these locations
for use as Index registers in modifying the 18-bit memory address. (A zero mdex register address
specifies no indexing.) The factor that determines whether one of the first 1610catio~s in memory is an
accumulator or an Index register is not the information it contains, nor how its contents are used, but
rather how the location is addressed. The eight blocks of fast memory are contained physically on the
data path board within the~ This allows much quicker access to these locations whether they are
addressed as accumulators:lmieX'registers, or ordinary memory locations. They can even be addressed
from the program counter, gaining faster execution for a short but often repeated subroutine. Of the

~ eight blocks contained within the EBox, bl~s permanently assigned to the microcode. Referring
~ to Figure 1-9, the monitor uses an assigne~ock in the same way that a user program described in

the following paragraphs would. The microcode uses the assigned AC block when executing complex
instruction algorithms. From the remaining blocks (0-6), two can be assigned under program control
lDA TAO PAGj as the current and previous context AC blocks. The current context AC block is used
by the user program for' exin in effective address calc . on and for general storage as specified by
the A C field of the instruction and/or by tee ectlve virtual address (location 0-17).

EBOXjl-11

..

CONTROL
REG

CONTROL
RAM

7-(ASSIGNED TO MICRO CODE)

SOURCE FM BLOCK 4,2,1 BLOCK SELECT
OF ADR's FM ADR 10,4,2,1

}
FAST MEMORY

(4 LINES) FM BLOCK
SOURCES

,F_M _______________ (_':r:t"

PREVIOUS CURRENT I'L--- ~~: ~~OMONITOR
"--___ B_L_K _R_EG ____ -'---___ B_L_K _R_EG __ ---' ,.--___ IN STR U CTl 0 N

10-2181

Figure 1-9 Basic Fast Memory Structure

The previous context AC block is used by the monitor to allow the monitor to reference the previous
user's address space to pass arguments, data, or status information between the user program and the
monitor. This is normally done when the user program executes a monitor call for some type of
service.

~ The microprogram running within the CRAM may select eight possible sources to be the word address
?f\. for fast memory; these sources are indicated on the figure as follows:

AC dJ
AC+l
AC+2
AC+3
AC+4
ARX 14 - 17 (¥I'J..) tf3''j<.
VMA32-35 ~~
CRAM 05 - 08 ~~ ""'--

The selection of the appropriate source is a function of the 3-bit microinstruction DR FIELD.
The block to be used is selected by the same FM ADR FIELD and corresponds to three bloc s
as indicated in Table 1-2.

EBOX/l-12

(

(

(

(

Table 1-2 FM Selection

FM ADRField FM ADR 10, 4, 2,1 Source FM ADR BLK 4, 2, 1 Source

0 AC Current Block
AC+1 Current Block

2 ARX 14-17 XR Block*
3 VMA 32-35 VMA Block*
4 AC+2 Current Block
5 AC+3 Current Block
6 AC+4 Current Block
7 CRAM #05-08 CRAM #02-04

*These may select either the current or previous AC block address.

The selection of AC, AC+l, AC+2, and AC+3 is a function of the class ofKLlO instruction being
performed. All non I/O instructions specify an accumulator address in the instruction word, bits 9-12.

The logical instructions - Logical Shift Combined (LSHC) and Rotate Combined (ROTC) - specify
the use of both AC and AC+ 1. Similarly, the fixed-point arithmetic instructions Multiply (MUL),
Divide (DIV), and Arithmetic Shift Combined (ASHC) specify use of AC and AC+ 1. The double
integer arithmetic instructions Double Add (DADO), Double Subtract (DSUB), Double MUltiply
(DMUL), and Double Divide (DDIV) specify use of AC, AC+l, AC+2, and AC+3. As pointed out
previously, the microprogram is permanently assigned AC block 7 for its own use. During extended
instruction processing, the microprogram addresses words in AC block 7 by using magic number field
bits 05-08, while selecting AC block 7 with magic number field bits 02-04. These ACs provide tempo­
rary working storage for the microprogram. Similarly, the microprogram addresses AC+4 by com­
bining the AC address taken from IR AC9-2 with bits of the magic number field in an adder network
to produce AC+4

For selection of AC, AC+ 1, AC+2, AC+3, or AC+4, the current block is always used. Whenever a
main memory reference is made, the microcode references the fast memory location given by YMA
32-35, enabling the hardware to switch the reference to fast memory, if necessary. When the instruc­
tion's effective address is calculated, the microprogram allows the specified Index register to be
addressed in fast memory by enabling ARX.-L4-17 to address the word. For both cases, Le., VMA
32-35 or ARX 14-17 addressing fast memory, the AC block may be either the current block or the
previous block, but is a function of the context of the instruction. -----
If an executive XCT is performed in response to a user's call (MUUO), then the previous physical
block and current physical block will be made to be different unless the operating system saves the
user's current AC block and then wishes to use the same block once again, which is unlikely. As an
example, assume the user is assigned AC block 1; his previous AC block would initially be 1 also. If the
user then performs an MUUO, the executive subroutine entered may safely load the current AC block
with some other block number and the previous user block will remain unchanged. The operating
system may perform an executive XCT utilizing the user's previous block and an AC within that block.
The hardware enables the selection at the time of the previous block for indexing. In addition, the
operating system may also reference the user's AC block (previous context block 1 in the example)
from the VMA. In this case (referring to Figure 1-9), mixer selection 3 is enabled and the micro word
FM ADR field specifies VMA.

During normal instruction processing, if VMA bits 13-31 are equal to 0, the address in bits 32-35 is an
FM address.

EBOX/I-13

f
. >

Some examples using the current AC block in various selections are given below. Assume the following
is performed by the operating system:

EXAC = 1

HRLEI EXAC, 102200

DATAO PAG, EXAC

JRST 2, @ USRPCWD

The following codes are for the user:

AC1 =1
AC2=2
MOVEI AC1, 777777
HRLEM AC 1, AC2
SETCMM,AC1

PUSH AC1, 3(AC2)

;This will default to Exec block
;#0, AC#1
;Load bit, current Blk#2
;Previous Blk#2.

;Load the current Blk# = 2, and the
;Previous Blk# = 2.

;Pick up user mode, flags , and
;turn on user.

;This will be in Blk#2
;This will be in Blk#2
;The word 0,777777 to ACl
;The word 777777 ,777777 to AC2
;The one's comp of the word in ACl to AC2
;Which is equal to 777777 ,0
;This instruction attempts to
;push the contents of AC2 into
Jocation ACl.lt will cause PDOVL
;and this generates TRAP#2.

In the example, the symbol EXAC is defined as the number 1. Assume, for this example, that EXAC is
referenced as an AC accumulator in executive block O. The first use of EXAC is in the instruction
HRLEI EXAC, 102200. This instruction takes the number in the Y field of the instruction, which, in
this example, is the effective address, and places it in the left half of EXAC (which is executive AC1),
with the sign of the right half of the word 0,102200 extended in the right half of EXAC. In this
instruction, the current AC is referenced in bits 9-12 of the instruction, and the mixer selection is O. To
load the user AC blocks, both current and previous, it is necessary now for the executive to perform
the indicated DATAO PAG instruction.

The left half-word in EXAC contains the necessary bits to enable the loading of the current and
previous blocks (EBus bits 6,,7, and 8 for the current block and bits 9, 10, and 11 for the previous
block). Next, we assume location USRPCWD contains the appropriate bit configuration to start the
user for whom we loaded the AC block numbers. The instruction JRST 2, @ USRPCWD makes an
indirect reference to location USRPCWD. The resulting word will then contain the user mode bit (bit
5), possibly the public mode bit (bit 7), any other relevant flags in the remaining left half-word, and the
user virtual address in the right half-word. The user has defined the symbols ACI and AC2 as having
the values 1 and 2, respectively. As indicated in this example, these correspond to ACI and AC2 in
block number 2. The first instruction performed by the user is MOVEI AC1, 777777, which places the
number 0,777777 in accumulator 1. On the next instruction, the word in ACI as addressed by instruc­
tion field bits 9-12 is read out. Remember that during the effective address calculation, the AC number
is loaded from ARX 9-12 into register AC in the EBox.

EBOX/I-14

(

(

c

(

c

\
)

The FM ADR field of the microword that is performing the fast memory reference will specify a field
function of 0, which will select the current }'lock as well as register AC which, as pointed out, contains
the value of AC 1 (1). The operation, specified by the instruction, is to take the right half of ACI and
store it into the left half of AC2 with its sign extended into the other half-word. Because the sign of the
right half-word in ACI is negative, the result is the word 777777,777777. Notice that we must now
reference AC block 2, location 2, by using VMA bits 32-35. This operation is specified with a different
microcontrol word and at a different time than the fetch of the word from ACl. Actually, the content
of ACt is obtained by performing a READ; the word 777777,777777 is stored into AC2 on B WRITE.
The next instruction, SETCMM, reads the word from AC t as addressed by VMA, takes the 1 's com­
plement of it, and stores the result (777777,0) back into ACt again as addressed using VMA. Thus, the
same address is used for read as well as write. Finally, the PUSH instruction performs an indexing
function using the current AC block. The number 3, which is the Y field in the instruction, is added to
the number contained in AC2, as addressed in the example, using the mixer selection of 2 (XR).

Thus, the address is taken from ARX 14-17 during the effective address calculation. The number 3 is
added to the number 777777,777777 and the right half of the result (2) is used as the effective address.
Then the instruction attempts to push the number 777777,777777 onto the stack as addressed by the
updated right half of the word in ACl. The updating takes place first. The word is fetched from AC1
using the current block and the address in the EBox register AC. Then, this word has + 1 added to both
halves and, if the left word is such that the addition causes a carry from bit 0, a pushdown list overflow
trap occurs.

1.2.3 Address Path
The EBox performs a program by executing instructions retrieved from locations addressed by the PC,
a 23-bit register contained in the EBox data path. At the beginning of each instruction, PC is
incremented by one so that it normally contains an address one greater than the current instruction.
Sequential program flow is altered by changing the contents of PC, either by incrementing it an extra
time as in a Skip instruction, or by replacing its contents with the value specified by a Jump instruc­
tion. Instructions may be fetched either from core memory, which is external to the EBox, or from fast
memory, which is internal to the EBox.

Generally, instructions provide at least two operand addresses to the EBox. One address is that of an
internal accumulator, and is addressed by bits 9-12 of the instruction. The other address, also supplied

"-by the instruction, may be used to address eith~re or fast memory and is contained in bits 185 of
the instruction word. This is a composite address, such that bit 13 specifies the type of addressing, i.e.,
direct or indiiect; bits 14-17 specify an index register for Use in address modification; and bits 18-35
address a virtual memory location.

~~

~
Because the PC is used to keep track of where in the program the EBox is executing instructions, an
additional register is provided to handle addresses that can be generated during effective address
calculations, durin&. oj?eran.d reads and/or writes, and at other times. This 23-bit register, also contain­
ed in the EBox data path, is called the VMA register.

Figure 1-10 illustrates the oasic path connections from the-PC and AD. A control field consisting of
two bits in the microinstruction is provided to select the source of1nput to VMA. This field is called
the "VMA field." In addition, two other fields are used to provide alternate iilpUt to the VMA as well
as provide the ability to increment or decrement the VMA directly. These fields, also a part of the
microinstruction word, are called the "condition field" and "magic number field." ,

Referring to Figure 1-10, to load the VMA from AD, the micrOinstruction VMA field is coded sym­
bolically as "VMA/ AD." The field format is indicated at the lower right of the figure. The AD is
enabled into the input of the VMA register by the function VMA +- AD, and the input to VMA is
enabled for any of the following functions: VMA +- PC, VMA +- PC+ 1, or VMA +- AD.

EBOX/1-15

VMA 13-35 71+---------,
M

I
N VMA 27-33
T I+---'-"'c...:...::c.:.....;=-=--{
E
R
F
A MBOX GATE 27-35
~ ~---------~

VMA-#:THIS
ENABLE GIVES PC+1

OR A COMBINATION OF
AND MISCELLANEOUS

SPECIAL CONDITIONS

COND/VMA DECREMENT
COND/VMA INCREMENT

VMA- AD

i4------MICRO INSTRUCTION-----.t

LOAD

CRAM
VMA FIELD

0 0

0 1

0

Figure 1-10 VMA Structure Simplified

EBOX/1-16

FUNCTION

VMA/VMA

VMA/PC

VMA/PC+1

VMA/AD -

VMA-PC
VMA-PC+1
VMA--,m­
(ANY OF THESE
LOAD VMA)

10-1556

(

(

is cod.ed to sp<;clty
to VlvfA +- V1VIA .AD all

ADto
1!l forced to

regi3t{;';r
and A..DJl3':P
is i10t used; H"H'"'"r.·".~.

j·JOTE :
PC+1 I~,JH is normcd!y false e:':.c.ept 1~or Hue fol~owint] :

L NICOND d!5palch

iO--155?

The special number, magic number, and miscellaneous conditions shown on VMA AD in Figure 1-10
are used during LUUO, MUUO, aru1...f!.handliftg to generate a range of special addresses to reference
the user or executive process tables in memory. During these types of functions, the VMA AD is
controlled by VMA #, which enables the Boolean function "B." MVA AD B input bits 27-35 are
manipulated, while bits 18-26 are cleared; this allows for the generation of process table word aadress­
es in the range of 000-777. Note, however, that addresses in the range of 40-510 only are currently
generated by hardware.

1.2.4 Request and MBox Control
In general, most of the EBox memory request type operations are controlled by the 4-bit MEM field in
the microinstruction (Figure 1-12). This may be used alone or with the DRAM A or B field values for
most reads and writes. In addition, the 5-bit special microinstruction field (SPEC) can specify a func­
tion SP MEM CYCLE, which is sometimes used with the magic number field (a 9-bit microinstruction
field) to modify MBox read and write operations, e.g., for MUUO or LUUO. Note that the basic
MBox activity involves a request, a virtual address, and MBox qualifiers consisting of a multitude of
control signals that qualify the type of request being made. This is followed by:

1. A response from the MBox with the data when the request is successful,
2. PF HOLD followed by MBox response IN and no data on a page fault, or
3. MBox response IN with data followed by MB PAR ERR, for an MB parity error condition.

Additional conditions are covered elsewhere in this manual.

_ VIRTUAL ADDRESS VMA NORMALLY FROM

CONTROL AD OR PC

VMA/VMA
PC

E BOX REQ
PC+I
AD DEMAND

MBOX RESP IN
TRANSFER

MBOX QUALIFIERS
MBOX EBUS

CONTROL CONTROL EBUS QUALIFIERS

MB PAR ERR MEMI CONDI
I--- A READ EBUS EBUS PAR BIT

PF HOLD B WRITE CTL

r-J
FETCH
REG FUNC
A IND SPEC I
BYTE IND SPEC

J
LOAD ARX MEM CYC

I
WRITE
RPW

#OO-OB

A B P J
00 52 53 56 5960 65 67 71 76 84

~VM~~MEM COND~SPEC ~ #
DISPATCH

1 RAM r ~I.----- MICRO INSTRUCTION ---------+1 .. 1

Figure 1-12 MBox-VMA-EBUS Control Simplified
..

EBOXjl-18

c

(

(

CJ

are lmplemlell'!:,:!d;
the se:fxmd

U8r:~~ l.JSER B!~SE

ESR - E)(EC B!\SE

Figure 1~1

is obtained am!
half-word entries

regi3ter§ ar©
is I10rmaHy

a normal
th!e

the
""C"d.""''''"' at a

tIle IviBox
a

KIlO

The five bits A, P, W, S, C (generally called use bits or page descriptor bits) are tested against the
qualifiers sent by the EBox during the ref~rence. Then the MBox, using the physical address, looks in
the cache for the word requested. If it does not find the word, it concatenates the physical page address
(Figure 1-14) with the virtual word address provided in VMA bits 27-35 and makes a second physical
memory reference. This address is indicated in Figure 1-15.

USER PROCESS
TABLE

USER PAGES
0-777

PAGE776

?

PAGEO

EXEC PAGES
0- 337

•
•

•

•

(13 BITS)

PAGE777 377

?

600

(13 BITS)

757

(13 BITS)
18

I_ HALF WORD "I

I A I P I W I sic I PH::~~AL I
\-. 18 BITS .. \

{
A - ACCESSABLE IN CORE 1

CAN CAUSE
PAGE FAULTS P - ~UBLIC PAGE USE BITS

W - WRITEABLE

S - FOR SOFTWARE USE

C - USE THE CACHE

2627

PHYSICAL l/.
PAGE:512 1O

WORDS

Figure 1-14 KI Style Paging

EBOXjl-20

35

10-1551

(

/

\.

("
\

(

SUPPLI ED BY
PAGE TABLE

PHYSICAL PAGE

SUPPLI ED BY

(
VMA 27-35

35

QUAD WORD

1+1--------22 BITS----------+l_1

10-1552

Figure 1-15 Physical Memory Address Format

NOTE
A quadword is a block of four contiguous words
whose address differs only in the two least significant
bits.

In practice, address bits 14-33 specify a 4-word block called a quadword; bits 34 and 35 specify which
word within that quadword is required by the EBox, or is being written by the EBox. Once the address
translation process has been successfully completed for a virtual page, subsequent references to that
same page cause the MBox to fill in She corresponding words in the cache within the MBox. Each time
a reference finds a valid word in the cache during a read, it is placed on the EBox cache data lines and
MBox response is issued. Page faults occur as follows: For the initial reference, the MBox looks in the
hardware page table in the MBox, does not find the physical page address, and performs the sub­
sequent process table reference (refill cycle) for the half-word containing the use bits and physical page
address. Then, upon receiving the eight half-word entries from core meriiOrY:""the MBox finds the
access bit turned off, i.e., 0; then a page fault is generated. The eight half-words are always written in
the MBox hardware page table (directory) whether or not the access bit in the associated word is on.
However, when the access bit for the associated word is off, the MBox asserts PAGE FAIL HOLD.
The MBox loads an internal register (EBus register) with a pase fail status..word that describes the type
of fault and also contains information about the user's virtual address. Referring to Figure 1-16, the
EBox detects the PAGE FAIL HOLD level from the MBox, and forces the CRAM address logic to
CRAM location 1777. Here the page fault handler is entered. It performs the indicated functions
(Figure 1-16), ana enters an Executive routine to handle the fault.

READ MBOX, PF WORD E !--"'=c.::-"-.;:...::...c.:.....:....:.--"-= __ --...._

~~W~R~ITE~UP~T~L~0~C~5~00~.~50~1--~

READ NEW PC WORD LOC 502
I
N
T
E
R
F
A
C
E

PF HOLD

MBOX CLOCK
RESPONSE CONTROL
IN ' r-------+t

* If BITS 5 and 7 of
PC WORD are 0

• CLEAN UP
CURRENT
INSTRUCTION

• READ PF
CONDS FROM
MBOX

• WRITE COMPOSITE
PF WORD IN UPT
LOCATION 500

• WRITE OLD PC
WORD IN UPT
LOCATION 501 '

• READ NEW PC WORD
FROM UPT
LOCATION 502

10 -1553

Figure 1-16 Page Fault Overview

EBOX/ I-21

In addition, the MBox asserts MB PARITY ERR five MBox ticks after issuing MBOX RESPONSE
IN. This sets APR MB PAR ERR, which causes an interrupt. The remaining errors set appropriate
APR error flags and likewise cause interrupts 6n the assigned APR interrupt channel.

1.2.4.2 KL Paging - The KL paging facilities support sophisticated operating system features such as
efficient program working set management and demand paging, and extensive sharing of data and
programs on a page-by-page basis. Much of the paging mechanism is implemented by the KL micro­
code, rather than just specific hardware. This combination of microcode and hardware is referred to as
the KLIO pager of TOPS-20 paging.

Refer to Figure 1-17. Each user's virtual address space comprises 32 equal sections of 256K words per
section (512 pages of 512 words per page). A section is represented by one of 32 sectionpointers
located in the User Process Table (UPT). For EXEC sections, the 32 section pointers are in the EXEC
Process Table (EPT). The monitor can divide the EXEC address space into "per-process" and "per­
job" areas through the use of indirect pointers; no such division is built into the Pager. -

USER BASE REGISTER

I ...

L:ER PROCESS TABLE PAGE TABLE PRIVATE PAGE

PRIVATE

USECT
SHARED

SECTION~

SPT BASE REGISTER

SPT {flB0 I l.::ARED PAGE TABL
PAGE TABLE

~ ~~ -
~

\ ~
~

" "
INDIRECT n • ~~

1 SHARED PAGE

~
,,,-"-\.'-: ,\. \. \. \. \. \. \. \. \. '-: ,\. ~ " ,", ,",

~

r-'

PRIVATE PAGE
PAGE TABLE (+ INDIRECT I

UPT ,
T~

l
10-2610

Figure 1-17 KL Paging Layout

EBOXjl-22

c

(

(

A section pointer eventually addresses a page table that represents all pages in a 256K virtual address
space. The section pointer may be Immediat~, Shared, or Indirect, but must yield a physical address of
a page table that represents all pages of the section.

The page pointer is divided into three sections: Type Code, Access Bits, and Storage. Figure 1-18
illustrates the basic page pointer format and Figure 1-19 shows the sequence of steps in its
interpretation:

1. A virtual memory reference addresses a section pointer in the UPT or EPT for EXEC
operation.

2. The section pointer is used to fetch an entry from the SPT (this is a pointer to a page table).

3. The SPT entry points to a location within a page table representing 512 pages by one page
pointer for each page.

4. The page table holds the physical page number required to complete the virtual to physical
address mapping.

(IMMEDIATE POINTER ONLY)

o 2 3

CODE

CODE:

0- NO ACCESS

1 - IMMEDIATE

4

j.:~~~
4-7 - RESERVED (NOT USED)

BITS: (defined with.

5

logic 0 in the bit position).

P = PUBLIC

Reference only from the

concealed or kernel mode.

W = WRITE

Write r .. sferences not allowed.

C = CACHE

Data fro m page may be
placed in the cache_
B6 1; CACHE
B6 = 0; NO CACHE

6 7

STORAGE ADDRESS·

rr--------------------~A~--------------------_,
11 12 17 18 22 23 35

{

12-17=0

12-1U'0

:PAGE IN MEMORY

;23-35 < PHYSICAL PAGE NO_>

;18-22 <MUST BE ZERO>

:PAGE NOT IN CORE

;< BITS 13-35 MAY BE USED TO
HOLD DISK OR OTHER BACKUP
STORAGE ADDRESS>

·STORAGE ADDRESS

This example shows an

elementary type of page

mapping: the Section Pointer

points through the SPT to a

Page Table_

(TOPS-20 USIS shared or

indirect section pointers).

10-2611

Figure 1-18 Page Mapping (Virtual to Physical)

EBOXjl-23

UPT
(USER PROCESS TABLE)

SECTION
POINTER

USECT ~

SPT

SPT
ENTRY ..

(SPECIAL/SHARED
PAGES TABLE)

f---/

.... '-' ,..L"

PAGE TABLE
(512 WORDS)

PAGE
POINTER

Figure 1-19 Typical Paging Path

DATA PAGE
(512 WORDS)

-- PHYSICAL
ADDRESS
REQUESTED

10·261 2

These steps describe the most elementary and immediate reference type. The complexity of other
reference types requires a discussion of pointer types.

Page Pointers - The pointer type is encoded in bits 0-2 of the page pointer word (Figure 1-18). Again
the pointer types are:

Code Function

0 No Access
1 Immediate or Private
2 Shared
3 Indirect
4-7 Not Used (reserved)

The Immediate Pointer (Figure 1-20) holds a storage address in bits 12-35. The pointer is called a
private pointer because it is "private" to the particular page table containing the pointer. This should
not be confused with the Public bit, which describes the type of access allowed.

(

(

The Shared Pointer (Figure 1-21) contains an index that addresses into the Special/Shared Pages Table (
(SPT). The SPT Base Register (SBR; reserysd AC block) points to the beginning of the SPT. The sum
of the SPT index and the SBR points to a word containing the storage address of the desired page. The
word number from the virtual address is used to complete the reference. Regardless of the number of
page tables holding a particular shared pointer, the physical address is recorded only once in the SPT.
Therefore, the monitor can move the page with only one address to update.

The Indirect Pointer (Figure 1-~2) identifies both another page. table and a new pointer within the page
table. This allows one page to be exactly equivalent to another page in a separate address space. The
object page is located by using the SPT index.

Like a Shared Pointer, the SPT index in the Indirect Pointer allows the physical address of the page
table to be stored in just one place. If the associated page is in memory, the page number field of the
Indirect Pointer is used to select a new pointer word from the page table. This pointer can be anyone
of three types previously described, or no access and the access bits are ANDed with the access bits of
the Indirect Pointer.

EBOX/ 1-24

(J

IMMEDIATE SECTION POINTER (1,)

o 2 3 4 5 6 7 22 23 35

o C PAGE TABLE ADDRESS

BIT DEFINITION DESCRIPTION

00-02 Pointer Type A 1, in this field defines the Immediate
Section Pointer.

03 Public Bit If this bit is off (0), the page may only be
referenced by programs running in Concealed
or Kernel Mode_

04 Write Bit When set, allows write references to be
executed to the page.

05 Not Used

06 Cache Bit When set, allows page data to be entered
into the Cache.

07·22 Not Usee!

23-35 Address Bits Defines the Page Table Address,

NOTE: BITS 12-35 CONTAIN A "STORAGE ADDRESS"_ IF 12-27 .. 0, A TRAP IS CAUSED.
1 (}-2613

Figure 1-20 Immediate Section Pointer

SHARED SECTION POINTER (2.)

o 2 3 4 5 6 7 17 18 35

o o P W~C~ SPT INDEX (SPTX)

BIT DEFINITION DESCRIPTION

00-02 Pointer Type A 2, in this field defines the Shared
Section Pointer_

03 Public Bit If this bit is off (0), the page may only be
referenced by programs running in Concealed
or Kernel Mode_

04 Write Bit When set, allows write references to be
executed to the page_

05 Not Used

• 06 Cache Bit When set, allows page data to be entered
into the Cache_

07-17 Nbt Used

18-35 SPT Index The SPT entry is found at the physical core
address given by the sum of the SPT base
register and the SPT I ndex_

10-2614

Figure 1-21 Shared Section Pointer

EBOXjl-25

~r~Cilp,ECT SECTmN POiNTER !3D)

GI 'I ;;: ::: 4 " 13 '7 8 9 H 113 35

r'""""""I~~I~~~~?:a'~-'""~"~~~-~-~~'---~"-~~-'-'--;I
i) I 'I I ", I I' I 'iN ~~ C ~~ I"J:',GE l\I:iJil,1l8EPi I PP,GE TABLE IOEN1r!Fi1:[I is?TXl !

L~L __ L ____ ~ , ~~L~~~~~,._"~ __ !,",_~,_"",_._._~_"~_~~" .. __ ~~_, __ oj

oo-o:!

18-35

Bit

Cr.whe Bit

Sel~iol1! Ta[oira ~nde;.(

~Pa9!H! NumbF.H"~

Figure]

/5;;. 313 in thiz ne~d dedimt5 the ~ndi[r9Cl

Sf.H.~'-~iofl f\:;JinitG!' ..

U th-is b1i!: ~s (':':rf {fJL tha [p'ilg!:) rrDaJY if}n~v Ihe

~·etenHlItoo;l flJiV prOflnHlI1l:B u"lHIllnirng in C01"l],':ooied
U[f K5fnci ModfJ.

'iJ\lhelil Sli.l'~~ a!k:inlJ5 ':uil'ite ~'il]~:erc!l1lc~~ tli.ll be
f"ncGcfJt('5d to ~-ch!E! ;J'-il{!J'3'.

1rVhen ££',fd ;?Jlk'\-~.Ja p~!lj!8 dfrta t(l', ~]le :a~ll'~.gU'ed

ill'lito, the C;;.eh~.

nm:rh:~;i.t't0S; t]le iq,:H~]il:io;r~ wi1tullun the P21g$ 7Elb~G

o·~ t!1E" new r-Q~nte'; H~l!direct }"ahwen!J;;0L

Th~ gPT ent!t)f is; ·~(wnd at·i;h13 iJhysi~1 ,~oU"£,

~;j(::kllij'~ ghn9:ril bV thi21 :sum of the S~)T ba:se

ire{~ifrt®r and the SPT [nrlI3;~.

Indirect Pointer

The Indirect vUtUU.''"6 arbitrary in depth, but the PI
after nrUt,liT,IV interrupt in the C!l§© lon.g

SpecE:a§/SRuU'ecl! P~ge§ TafulRe Speciai/Shared Table
addresses of that are shared page tables, or of pag'es

entry.

They are stored in OJ1'e COmJ.1lOn location to modification to pages by 't"H(!Wl!,:,>H,,§

Index is added to SIP base to B\ physical address

management requires
the Con;; 318.tu8 Table (CST)

permits the nWflitor to

10-2615

placing a 1 in that bit
in the page:r a H:fe;rence is CST in the

position assigned to the pfOGeSS making bit (35) is set if p0\ge is nlOd£~
fied, tlu;, monitor to swapping out pages to which refennJ.ces are

EBOX/1-26

(
UBR

USECT+
SECTION NO.

UPT

SBR

SPT

SPTX

@

PAGE
TABLE

~t=======r-__ ~r-_P_AG_E __ ,

WORD
NO .

.-l~--t

PAGE NO. WORD NO.

VMA 500 • 323

0 12 26 27 35

VIRTUAL PHYSICAL

SECTION NO. 00 SECTION NO. 00

PAGE NO. 500 -<D> PAGE NO. 367

WORONO. = ;1;23 ... WORD NO. 323
<SHARED>

}
HARDWARE PAGE TABLE

500=367

SPT INDEX (SPTXI

USECT I 010 I 220

0 2 23 35
SPTX =220

PHYSICAL ADDRESS OF PAGE TABLE

SPT ENTRY I I e ~ . 100 C(SBR + SPTXI

SBR SPTX ~0------------------------~12--35~

N = 100

STORAGE ADDRESS OF PAGE

PAGE TABLE I
100 500 367 CD
~ ~ ~~~----------------~----------------------~------------~

N ® 0 2 12

<IMMEDIATE POINTER (CODE = 11>

C (UBR' USECT + SECTION NO.1 CONTAINS SPTX
C (SBR + SPTXI CONTAIJ,lS PAGE TABLE PAGE NO. N
C (N'MI CONTAINS STORAGE ADDRESS OF DESIRED PAGE

NOTES: A'B:: = A CONCATENATED WITH B
Assume page is in core.

35

Figure 1-23 Pointer Interpretation (Normal Section Pointer; Shared)

EBOXjl-27

1 ()'2616

UBR

USECT+
SECTION NO.

(N)

VMA

USECT+
SECTION NO.

UPT

0

<INDIRECT>

I
011 I

0 2

SBR

SPT

SECTION

12 13

SECTION TABLE
INDEX

I® 102

9

SECTION
TABLE, !

®
11-----1

PAGE NO.

356

17 18 26

PAGE
TABLE

LINE NO.

562

27

SECTION TABLE IDENTIFIER (SPTX)

17 18

172

SECTION TABLE
ADDRESS

LINE
NO.

PHYSICAL
TABLE

1....----1

35

35

SPT ENTRY
035 172

'-...IJ '-V
'--_________________________ .J...._®_P _______ 2_2_7---.J1 C(SBR + SPTX)

SBR SPTX o 23 35

PHYSICAL ADDRESS OF NEW PAGE TABLE
SECTION

227
\-.,..-I

T~E~I_0_0_l_.~I _________ ~ __ QY ____________________ 12_7_~ C(P'N)

®

PAGE

127
\-.,..-I

QY

@ 0 2

TABLE
356 001

\-.,..-I

@ 0 2

NOTE: Assume page is in core.

12 35

STORAGE ADDRESS OF PAGE

345 C(A'M)

12 35

VMA PMA

00 356 562 = 00 345 562

Figure 1-24 Pointer Interpretation (Indirect Section Pointer)

EBOXjl-28

10-2617

(

•

SPTX'

1

PAGE TABLE 1
<INDIRECT>

100 500

o 2

SPT ENTRY

035 127
1...,/ 1...,/

SBR SPTX' o

PAGE TABLE 2

,;2.. 27 210

1...,/ 1...,/

<;:IMMEDIATE>

10 0 11

® ®
o 2

*Page table pOinter now I ndirect instead
of Immediate. From Figure 1-23, the UPT
addressed Page Table 1. Now, because
page table pointer is Indirect, go back
through SPT again. This results in a
new Page Table (2).

9

PAGE TABLE 1"

PAGI NO.

-.l
3 I I®I SPTX' I---

PAGE

LILE
NO.

-*--
PAGE TABLE 2

f
PAGE NO.

® 210

®
12

12

PRIVATE

PAGE TABLE IDENTIFIER (SPTX')

127

17 18

NEW PAGE TABLE PAGE NUMBER

VMA
00 500 323

277

107

PMA
00 107 323 which is now equivalent

to a VMAof:

00 210 323
'--./

®
NOTE: Assume page table is in core.

with SPTX' = 127

Figure 1-25 Pointer Interpretation (Indirect Page Pointer)

EBOX/1-29

35

35

35

10-2618

Figure 1

i"
~ T~"'e HR can:ai,lis

, a Sf.!ction Poh~lJ.elJ.
t

+

ell

<>

Goa~ to

l<l'\ji,,~1 AlII!)

log~ro~ OR

C@I1C3tf2~'ila1l:~~ '1Nitth

Poi.nt~r In.terpretation Flow Diagram (Sheet I

EBOXjl-30

10-2619/\

5)

N

N

TRAP
TYPE 4-7

(UNDEFINED)

Y

(IMMEDIATE)

Y

r Bits 23-36 contain
----l

L the Page Table address.

C(SBR +
AR <18-35>
... AR

r SPT Base Register (SBR) and
- - - -I SPT Index (SPTX) point to Page

L Table Physical Memory Address (PMA).

___ ..r Same as shared, except
L new section pointer.

AR <9-17>-+
SECTION NO.

C(SBR +
AR <18-36»

-+ AR

Y
CST UPDATE

C(AR<23-35>'

SECTION NO.
-+AR

10-26198

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 2 of 5)

EBOXjl-31

Y

AR <23-35>
.... PTPAGE
C(CBR + PT PAGE}

.... AR

N

(AR'CSTMSK}
V

CSTDATA AR

TRAP
(NOT IN CORE}

r Page Table in core use
- - - -I PT PAGE to update

L CST information .

TRAP

Fetch Page Pointer from:
PT PAGE <14-26> and Current
Virtual Page came from either;
1} VMA <18-26>, or
2} AR <9-17> of last Indirect Point

STORE; C (PT PAGE' ~
PAGE NO.} AR

P'AR <3> P
W'AR <4> W
C'AR <6> C

AR (O-2} TYPE
TEST TYPE

I r Modify CST Entry for this
I I physical Page Table.
> - - - - -I Bit 35 (modified bit} is not
I I set because Page is not
I L being changed.
I

J
r I Now check page pointer found

/';' by section pointer evaluation. , L

TRAP
(NO ACCESS}

10-2619C

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 3 of 5)

EBOXjl-32

(

•

(SHARED) N

AR <23-35>
-+PAGE NO_
C(CBR + PAGE NO.)
--+AR

C(SBR +
AR<18-35»
--+AR

r Get SPT Entry from SPT Base
- --I Register (SBR) and bits 18-35

L of the Share Pointer_

AR<9-17>
--+PAGE NO_

r
I Bits 9-17 become new Page Number

_ -1 and bits 18-35 are used as the
I SPI Index (SPTX) to identify a
L new page table_

10-2619D

Figure 1-26 Pointer Interpretation Flow Diagram (Sheet 4 of 5)

EBOXj1-33

1-26 P""';nt . VI . er

r

~I

I

L

1O·2EV19E

Flow (Sheet 5 of 5)

Core Status Tables
• (Each addressed by page number)

CST 0 CST 1 ~T2 CST 3 CST4 CST 5

PAGE~~ ______ ~~ __ ~~ ______ -+ __ ~~ ________ +-____ +-______ -+ ____ ~ ________ ;-__ ~~ ______ -;
NO.

MICRO.cODE
STATUS

AC BLOCK 6
Word 0

AC BLOCK 6
Word 1

STORAGE
ADDRESS

FETCH
CST

ENTRY

R~

CST ENTRY
II

CSTMSK

R~

R
V

CSTDATA

N

STORE
CST

ENTRY

SHARED =
SPTX

"\

I

FORK
OWNERSHIP

TRAP

I r

PHYSIO

NOTE:
CST 1 THROUGH CST 5
ONLY RELEVANT TO
MONITOR SOFTWARE

- - - Page is inaccessible.

> ___ -l Set and merge information

I L fields about current reference.

R~

RV BIT 35
Y

- - - Set modified bit.

Figure 1-27 KL Core Status Tables Updating Flow Diagram

EBOXjl-35

TEMPORARY
STATUS

10·2620

..

Paging Hardware Support - The paging hardware is transparent to the user. All memory, both virtual
and physical in user and monitor space, is divided into pages.

The virtual address comprises 23 bits, five (5) bits for section numbers, nine (9) bits for virtual page
numbers, and nine (9) low-order bits (line number), which address the location within the page. The
virtual page number is first used as an index into a hardware page table that contains up to 512 direct
virtual-to-physical address translations. If the 13-bit physical address is found in the hardware page
table, a 22-bit physical address is formed by concatenating the 13-bit physical address with the 9-bit
line number. If the entry does not exist in the hardware page taole, a sequence of translations is
initiated to locate a page table in memory that contains a physical address (if one exists) for the virtual
page.

Cached Paging Data - The hardware page table referred to at the beginning of this section is effectively
a cache of paging data (not to be confused with the memory data cache) that has been accumulated by
previously fetching the data from memory, or by previous pointer interpretation. A virtual address is
first checked against the current contents of this hardware pager and, if found, immediately returns a
physical address. If the physical address is not found, the pointer interpretation (Figure 1-26) fetches (--
information from memory to resolve the virtual address. Upon completion, this translation may be
placed in the hardware page table forming the cache of recently used page addresses.

The hardware page table is loaded b~ the micro~ode. The paging cache is implemented as 512 entries,
one for each page of a user's virtual address space. The EXEC and USER are offset from each other,
but they share the same 512 entries. Therefore, at any given time, the paging cache holds,translation
information about most of the active pages. A guarantee that the 512 most recently used pages will be
addressed by the paging cache cannot be made. However, the last page used will always be in the
paging cache.

When the monitor takes any action that would invalidate information about existing virtual-to-phys­
ical address translation, the paging cache must be either partially or completely cleared. Examples of
such instances are:

1. Change of user process - clear entire paging memory (entire user address space has
changed).

2. One page removed from core - clear the entire paging memory (several Shared and Indirect
Pointers may have used the page).

3. Pointer is removed from UPT - clear the entire paging memory (association for many pages
through UPT is changed). .

4. Monitor mapped page to EXEC space for local use - only one entry cleared (When page is
unmapped, only that one pointer must be cleared. Because this facility is provided by the
pager, it may be used to reduce reload overhead.)

If the paging data is not found, the flow in Figure 1-26 is followed. A special trap is initiated and the
microcode saves vulnerable EBox data before starting on the pointer tracing algorithm. If the
algorithm is successful, the resolved pointer and associated information are loaded into the paging
memory, the EBox registers are restored, and the memory request is again issued.

The microcode must also handle the first Write Request trap, inhibiting the write until the modified bit
can be set. The pager maintains this modified bit. The microcode implements this as follows.

EBOXjl-36

p&ging !nernory r~~load~
rrefe.ren(ce is

aC1ceS8 bit
a write is legal ~Oi"

l§ set in. d'H;; pagmg l1?;femory only if the current
Thus, if the first refen;:!1ce: to a page is a

entry sets to O. A. subsequent reference
the pointer interpretation is repeated! and

]'iI/KBox Enlr)Jl! ComllWol]s <~ to pag(;! following five of
'l~rroi'S can be by the MBm itO the EBox:

Parity
2, Parity

4l , l\JOl1.,exxstent ~\/iemorJ
rvlB Parity

or an
upon detecting a

faunt hamHer to

I.l,A.4VIViA CmlltrOJ - Two addre§~u!s can pa§,~ed to the M:Hm[for ,.~ore
KJ~style paging; i'H:Jcoi1d 15

styh,,: the VfvIA lines actually
style paging, bits 1 unused and forced to O. In the logi(;al sense,
vie'lved for Kl-styk paging as of li 8 bits of addressing

medla:ljgl1l. is indkatled Figl..Ire 1 ~21t

2 PMi\ IS THE PHYSICAL MEMORY
ADDRESS f1EGISTEfl Ii'J THE MDOX

U" IJSE BITS

(JUAD WORD
(FOUfl 36 BIT WORDS)

Figun: 1-28

EBOXjl-37

Translatwn

Actually, the virtual address in KIlO paging mode is derived from the instruction Y field, which may
be modified during the effective address calculation. This consists of 18 bits. The additional five bits
(VMA 13-17) are present to facilitate KL paging mode, which can generate a 23-bit virtual address.
However, the MBox does utilize the high-order part of the VMA as indicated in Figure 1-29 to gener­
ate a Hashed Page Table address for internal use. The hashing technique is basically an associative
process, but precludes the necessity for hardware associative memory.

I
PHYSICAL
ADDRESS
SPACE
IDEALIZED
4096K

L

256K 256K

256K 256K

256K 256K

256K 256K

PHYSICAL
PAGE

PHYSICAL ADDRESS

256K 256K

256K 256K

rUSER EXEC.,

r- 0001077200/277
I 10011.77300/377

200/2770001077
~~D~:l~ 300/377 100/177
FUNCTION 400/477 600/677

L 500/577 7001777
600/677 400 /477
700/777 500/577

I.- HASH TABLE -J

7- *

27-35*

27- 35 *

WORD WITHIN
PHYSICAL PAGE

PAGE 777

T
CORE
PAGE

I..EVEN..j.. ODD .J
I PAGE I PAGE I

TABLE PHYSPAG£PHYSPAG
256
WORDS

L

I
HARDWARE
PAGE
TABLE
512 WORDS

~4--_---J

27-33

27-

27-33

27-33

128
DIR 0

r VIRTUAL ADDRESS I
I ~Kk~CT VIRTUAL I ~~LREDCT I a
18 2627 35

*PHYSICALLY. BITS 27-34 SELECT ONE OF FOUR 256 x 2 CACHES. BIT 35
SELECTS A SINGLE WORD FROM THIS ·LOCATION PAIR.

Figure 1-29 Virtual Address Mapping, KIlO Paging Mode

EBOX/I-38

"MATCH"

10-1 !S!S5

The VMA can be loaded from the ADDER or VMA ADDER. Generally, during calculations for the
effective address, it is loaded with the contents of ARX via the ADDER. At this time, ARX contains
an intermediate address [Y + C(XR)].or E:-

1.2.5 EBus Control and PI Control
The EBus control consists primarily of two major sections. One section is used exclusively for priority
interrupt handling (PI CONTROL) and the second is used for I/O instruction handling ~BUS CQ,N­
TROL). Each IQJQ.controller (except the DIA20 I/O Bus Adapter) is assigned a devIce code. This
code is seven bits wide (ll\..l;;2.). In addition, each device controller is wired to contain a physical
device number that relates to a preassigned scheme, and is slot dependent. Thus, Massbus controllers
hold physical numbers in the range of 0-7; DTE20 numbers 10-138 and D~O number 178 • This
provides a physical priority scheme that supplements the programmable priority interrupt system.

In the situation illustrated in Figure 1-30, both DSKs are assigned to the same PI level (levelS). This is
accomplished by the operating system with a CONO PI to the PI system enabling the processor to
accept interrupts on level SC)ln addition, the operating system performs a CONO DSK, assigning the
DSK to levelS. For the situation where both DSKs interrupt simultaneously, the EBox arbitrates the
priority interrupt levels and then physical device numbers are requested from both DSKs. These are
arbitrated according to the fixed scheme discussed previously. The DSK with physical No. 0 has
highest priority in this situation.

" ~
MASSBUS

DEVICE :DS K

PI5
f-- PHYS#O

~
E
B

EBOX U MASS BUS
S DEVICE=DS K

PI5 - PHYS#1

.......

Figure 1-30 Simultaneous Interrupts

The basic dialogue is shown in Figure 1-31. Once the priority interrupt system has been turned on and
set up by the operating system to handle interrupts, the EBox control automatically carries out all
dialogues necessary to obtain the API function wor.5!... When the API function is on the EBus and
transfer is received from the device, the EHUS control asserts PI READY, signaling the microprocessor
to take over. The microprocessor looks at this line, however, only at specific times during normal
instructions. One such instance is at NICOND Dispatch, which always occurs at the beginning of each
instruction. If at NICOND'time, the PI ROY condition is true (INT REQUEST sets), the PI HAN­
DLER is called. To prevent further interruptions until the function can begin, the microprocessor sets
the PI CYCLE flag. This causes the EBus Control to defer any further PI READYs. The PI HAN­
DLER evaluates the API function word (Figure 1-32) and performs the indicated service. As long as PI
CYCLE is on, other interrupts are not honored by the micro~ssor. The time that PI CYCLE is
cleared is dependent upon the service performed. If the interrupt IS a standard interrupt to 40 + 2n, the
instruction in 40 + 2n should save the hardware state of the EBox, Le., the flags, PC word. Appropri­
ate instructions are JSR and MUUO. Bad choices are JSP and PUSHJ, which use ACs. The choice is
particularly bad because at the time of the interrupt nothing is krlown about their contents.

EBOX/I-39

•

1
\

/

(

MAIN
MICRO

PROGRAMS

MICRO PROGRAM
LOOKS

PI ROY' INT REO

API FUNCTION WORD IS NOW
ON EBUS SEE FIGURE 1-25

DLY

INCOMING PI REO'S

INCOMING PI REO'S

•
•
•

"SELECT HIGHEST PRIORITY LEVEL"

FUNCT PI SERVED

CONTROLLER SELECT
4-6 = PI REOUEST TO BE HONORED

L-______________ ~D~E~M~A~N~D~ __________ ~~

DLY

EBUS TRANSFER

,-________________________ -;U
S

RECEIVE PHYS # 's

PI ADR IN

CONTROLLER SELECT
0-3 = PHY PHYS # SEL
4-6 = PI CH TO BE HONORED

DEMAND

•
•
•

10-1567

Figure 1-31 PI Dialogue Overview

EBOXjl-40

c

(

(

ADDRESS SPACE *
(AS SPECIFIED BELOW)

ADR. CODE
CODE DEFINITION

0 EPT
I EXEC VIRTUAL
4 PHYSICAL
2.3.5-7 UNDEFINED

00 0203 05 06 07 10 II 12 13

I ADDRESS I I I SPACE FUNCTION~. 0
PHYSICAL I I

CONTROLLER 00 VI RTUAL ADDRESS

ASSJRTED
BY PI SYSTEM

FUNCTION QUALIFIER
(AS SPECIFIED BELOW) (AS SPECIFIED BELOW)

FUNCTION FUNCTION OBIT

COOE OEFINITION CODE INTERPRETATION

a STANDARD INTERRUPT 0,1,2,7 IGNORED

I STANDARD INTERRUPT 3 O=AOD+ 1
2 VECTOR INTERRUPT I = SUBTRACT + ,
3 INCREMENT
4 DATAO IEXAMINE) 4,5 , = APPL Y PROTECTION

5 DATAl IDEPOSITI AND RELOCATION

6 BYTE TRANSFER 6 , = TO'O BYTE TRANSFER
7 RESERVED FOR DEC a = TO" BYTE .TRANSFER

* THESE BITS ARE MICRO CODE-DEPENDENT. CHECK THE
LATEST MICRO CODE LISTING FOR POSSIBLE CHANGES.

Figure 1-32 API Word Format

35

I

(

Generally, a JSR instruction is placed in 40 + 2n for calls to the operating system PI HANDLER. This
instruction causes PI CYCLE to clear. At this time, a pending interrupt may request microprocessor
attention and can raise PI READY. In general, for the other cases, the equivalent of one instruction is
provided before PI CYCLE is cleared.

I/O Instruction Dialogue Overview - For I/O instruction transfers, the basic concept is illustrated in
Figure 1-33. The EBus Driver is called from the I/O HANDLER to generate the appropriate EBus
dialogue. First, the EBus is requested. This is necessary because the EBus is also used by the PI system.
If the EBus is free, the EBus driver sets a CP GRANT flag to hold control of the EBus; if the EBus is in
use, the EBox waits.

SERIES OF
MICRO
INSTRS
PREFORMED
TO CARR'!'
OUT
DIALOGUE

"MICRO ROUTINES"

GEN DIALOGUE

GET EBUS

CSOO-OG. FCN 0-

WAIT a HOLD EBUS

ASSERT DEMAND CONTROL

WAIT AN 0 HOLD

RELEASE EBUS

NOTE:

"

FUNCTION DATAO.
DATAl CONO. CONI
BLKO. BLKI

CONTROLLER
SELECT=
IR 03-09

DEMAND

",TRANSFER

DATA/STATUS OR CONTROL
TO/FROM DEVICE EBOX

The XLATOR provides level shifting
between the ECL side of EBUS and the TTL side.

10 - 1569

Figure 1-33 I/O Instruction Dialogue Overview

EBOX/I-41

\

SasicRHy, a hElving the
C01'.TD JEHUS and the appropri.ate number
field} Specific; ;~""H"'rl, the number fidd 'with EBUS C1'1, true I,~au§e

diaLJ,gue. ER 3··9 are
fUl1ction to be

the

Datu JP'ath
Ref1erring to

R~e,gist.ef

Register ExteR!3icm

M\JltipHer
Fast l\1:emory
Adder
A.dicier

included is fast
ARX,or

.,,,A;t,U,\J.'!',!}'Ib:tI!,,,,,,,.,"!;M~~~!;;, in the

register;
register. hl association
(SH) in
tionsG

and a 36-blt shift that can imlpl<&::ment
:Gombined AR and ,,~JitX. The

is used to handle

Double-precision floating-point and pn,:dsion integer operations requine use of
and where ADX is a 36-bit extension the main AD and ARX is a 36-bit

AR, BRX, together with and
with IViQ, a lOS-bit path where In addition, A,RX is as a buffer

hand.ling

memory. The main buffer, words coming or going to eon:; or fast HH,'Aucn

lo;t~'d ill1lformllltiol11! F~mli Til]; alI1lti! }i'mID ~ Referring to Figure
those paths that are used in informatiol1 into

via the MBox. Because of the structtJre
uU" • .,J'", v'Im a

EBOXjl-42

c

o

DRAM A

DRAM B

DRAM J

(3)

(3)

(11)

EBUS (6)
(DIAGNOSTIC
FUNCTION)

STACK
4 x 11

DISPATCH
RAM

512 x 18
(LOGICAL
STRUCTURE)

AD
(13)

CACHE DATA (36)

CONTROL
RAM

1280 x 75

NOTE: ~

M
2}mmu,,,

This symbol means
Level Mixer.

INPUTS

FORCE 1777
DRAM J (II)

1+-----------------------------'--------------------, (11)

(11)
DIAGNOSTIC REGISTER

EBUS (11)

~--------------------------~----_..-... TO REGISTER SELECTS (EDP, VMA,SCD,CRM,IR,CRA,CTL)

AD

1-ARX
2-AR SWAP

(36

SH {

O-SHIFT AR, ARX

3-AR ~--~-r--~

SCAD TO
P FIELD

SH ADX

SCAD
TO

EXP

6)

EBUS

CONTROL RAM FCN

SCAD

AR" ARO-8 *
AR
SIZE

CURRENT
BLK

BR

ARX BRX
(DIAGNOSTIC MIXER)

/

TO FAST MEMORY SELECTS (APR)

TO CONTROL LOGIC (CON,CTL,MCL,CLK)

AR POS

AR EXP *

FM BLOCK 4,2,1 FM ADR 10,4,2,1

FAST MEMORY ADDRESS IR AC
9-12

(3)

PREV
BLK

VMA 32-35

AC+ 1

AC+ 2

AC+3 ADDER

AC+#

Figure 1-34 KLlO Register

Interconnection Diagram

EBOXjl-43

10-2182

LEGE~JD . I\'OTES:

-t;r·9:;:i--1>-'I>-/.";;r.-'';·'--.E>-f.> Ili'ISTR 'FROM

-~-'~-['P>-{/[tto-~-"~~-~'""t~ INSTR FRC>ivl FM ~~ ¢.:... Parity logic is not indi~ded on this drawing.

---!>~l>--l>-i> (INDEX REGISTER -.. ~-··-t,.__ WORD FROM FM

--l>---l>---i>---I> INDEXED .IIDDflESS

-"-['-'-li>- -\l>- -UJ> Y FiELD OF CURRE!H INSTRlJCTIO~J

10-2'1133

Figure Core Fast ~~1\~mory Information Flow

EBOX/l~44

•

Table 1-3 Memory Information Flow
.. -

Type of Type of Source Destination Comments
Request Information

Read Instruction Core Memory ARX Loaded via cache data lines if from core mem-
or ory or via the AD if from fast m~ry .

Fast Memory

Read Data Core Memory AR,ARX, Loaded via cache data lines if from core mem-
or or both ory or via AD if from fast memory.

Fast Memory

Write Data AR Core Memory AR goes to the FM and to the cache,
or regardless of which reads it.

Fast Memory

Read Indirect Core Memory ARX Loaded via cache data lines if from core mem-
Word or ory or via AD if from fast memory.

Fast Memory

Read Index Fast Memory AR, VMA The contents of the addressed Index register is
Register read into the ADDER "B" input where it is

added to the current value of Y. The sum is
loaded into both AR and VMA under micro-
code control.

The microinstruction contains a number of separate fields for register selection including a 3-bit AR
field and a 3-bit ARX field. In addition, three fields are provided for controlling the adder; two of
these, the ADA (3-bit field) and ADB (2-bit field), select various inputs to the adder. The third field,
AD (a 6-bit field), controls the adder directly. The actual selection of the source or destination registers
depends on the following:

1. The ,microinstruction register select field function
2. The source or destination memory (e.g., fast memory or core memory) .

As an example, consider an instruction fetch (not a prefetch) from fast memory. Refer to Figure 1-36.
The MEM field function of the microinstruction desiring the word is coded as FETCH. From this, the
term MCL LOAD ARX is-produced and routed to EBox Control No.1, where it partially enables the
ARX SELect 1 and ARX SELect 2 Mixer Selection logic. The final selection is a function of the
address contained in VMA. If this address is a fast memory address (e.g., VMA 13-31 = 0), then the
ARX SELect 2 line is fully enabled and the ARX SELect 1 line is inhibited by VMA AC REF.
Similarly, if the address in VMA is a core memory address, VMA AC REF will be false, inhibiting the
ARX SELect 2 line and enabling the ARX SELect 1 line.

EBOXjl-45

indicatt:d in
these eight inputs,
atied 01!X!elf are very i'ii.milar to
memory, tlH~ MEIVI field fmlc/don, LOA,D

,;:ontrol, !enabling the
(lfthe

Zif,ro, a(kJer is into th~ ,AR nmnber 2 Input,
nonZ!;;fO, the cach\;;: data Hm:s an~ ,enabled into tltH~ AJ:l number :2 input. As with }l\"RX,
instJi'w;:;tion any of th;e dght hlPUtS em thle AR mixer! if required.
version loath::;. The basic COflJ1iecitnons and the direction tranflf\~rs an~
I~Jong the the::' is portion word format
data path. The not

~/o !'lm~l! lPrllof1ty ll.nternllpt ~ Figure lis a simplified path diagram
"u,"''''',''' ",,',1' operatiomL The major path is area, including the

de'llic,t';s, and i::; cross-hatched
and control the SH, SC, SCAD) F1R, and

pathsi?mOlregisters. EU'\~ u[!H::d ae working usage dep{;;nds CHi,

information data) is not translated, but
inttrnal EeL EBU1L Externall device information, entering or k:aving the

TTL to or EeL hli TTL. If operation being p:erfornH~d is a CONI ()f
the is C01\TO or DATAO, the

but

interrupt
has

The microprogram places a copy of this
on A.PI function code to the appropriate
the i'dl.', Is . the matrix; Hu:n
Address In another type

thf: /~j,Pli word
may involve an instruction ;a

The Inicmprogram begins to process the
transmitted! from device and the EEus

r use later and performs a SHIFT
i microprogram" To

output bits (SH OO~03) 2lre
M",'~"""'H r.~an performed; this is

a standard int©rmpt (API FeN 0 or l)an instruction is ""I,.'""UV'.'

where n is to du~ intlerruJPtillg"chlumd 1 "",7, locations generaHy a
that must be performed! in order to and PC of intecffupted

In addition, the current ACs fiiu§t not be
must be entered

(40 +
to FETCH.

qualifier, lEBox EFT,

1~46

"--'

REQUEST QUALIFIERS

w
u CACHE DATA

~
cr
w

tT1 I-
Z

t::J:j H

0 ::;; MBOX RESP

>< '-
W ---I

~
-..J

EBOX REQUEST

VIRTUAL ADDRESS

""'\

fDATA~----­

I
I
I
I
I

FM
DATA

r -[=r j-ARiTHMETiCl
I PROCESSOR I

STATUS

I
I i= =i' I L _______ A~

f~

~ CRAM ARX SEL4

CRAM ARXM SEL2
ARX SEL2

ARX SEll

CRAM ARXM SEL 1

__ MC.!:J

MCL
LOAD
ARX

IEsOx--'
ICONTROL I
1#2

L _ __ ~Or:!.J

rcLOci(-'
~----~--+14. -,

I L _________ ~.J

I ~E~S~ I
I
I
I
I

I

/------0_-11 - - - .J

VMA AC REF

~----.JI I L __ ~K..I

r---,
I I

I
I

I I 13!~r=v~ I I
VIRTUAL I
IMEMORY
ADDRESS VM.!J L... __ _

~)
• t

) 10- 2184

Figure 1-36 Loading ARX

10 BIT LOGIC

~ MAIN DATA TRANSFER REGISTER
PATHS SHOWN IN FIG 1-4

PROC SERIAL '"

10
BIT

LOGIC
./ "­

./ "'-
./ "'-

./ "'-
./ "'-

./ "-
./ "-

./ "-

36
BIT

LOGIC
/ \

I \

/ \
/ \

/ \

1--- --------------- MICRO INSTRUCT ION DATA PATH CONTROL-------------__

10-1548

Figure 1-37 EBox Data Paths Simplified P~ths Diagram

::::3- When the API function specifies a dispatch (API FCN 2), the virtual address of an interrupt instruc­
tion (JSR) is provided by the device. In this situation, the request does not assert the qualifier EBox
EPT because the address is not an EPT address, but rather somewhere in the virtual address space. For
the situations described up to this time, the instruction will enter ARX. Control is passed to the main
microcode loop for processing. The API function (PI increment or PI decrement) is slightly different,
in that a word must be fetched from the virtual address provided by the device. This word is then
incremented or decremented as specified in the API word and the result is written back into memory.
Here the AR is used both for the read and write operations. ,

; 'PiPI functionsiandj require a DATAO and a DATAl, respectively, to be performed to the device.
Prior to performing the specified DATAO, a word is fetched from the virtual address provided in the
API word and this word is loaded into AR. The path is now from AR to AD and then to the EBus,
which is controlled for the DATAO by the microcode. For the specified DATAl, the operation is the
reverse. The required word is obtained from the device via the EBus under microcode control (EBus
dialogue) and the word is loaded into AR. Next, the contents of AR must be written into the virtual
address supplied by the API word. Of the remaining functions, only API FCN6 is used and this is
reserved for the DTE20 (10-11 Interface). Examines and deposits, as well as byte transfers, may be
requested by the DTE. This subject is covered in Section 2.

EBOXjl-48

"I. ,

.J
"

•

o

o

r---------------------------------l ··
INSPECTION AND CONTROL . I

{

AR 0-3 DISP

FROM
CONTROL

REGISTER
SH DISP

L ______ _

CONTROL RAM
ADDRESS
CONTROL

I
I
t
I

I FE I I

'<r4-4-.:.....c....~

I
I

I
r-----------J
I
I
I
I
I _____ J

,... ---i> - ---i> - ---i>- ---i>- ---i>-- --i> - - --i>-- --i> ----i>

l'

I
'I'
I
I
'I'

--i> - - --i> - - --i> -

~ -- -- -- --.... -- -- -- -- --.... --.... --+<

CACHE DATA

LEGEND:

III MAJOR PATH

~ INSPECTION AND CONTROL PATH

----i> INCOMING DATA FLOW

---+ OUTGOING DATA FLOW

•• 1111111--4---4-- -4---
INTERNAL
DEVICES

--+---+---+-

- --

10-2185

Figure 1-38 Input/Output Priority

Interrupt Information Flow.

EBOX/I-49

-)

(

/

2.1 INTRODUCTION

SECTION 2
FUNCTIONAL DESCRIPTION

Figure 2-1 illustrates the major functional elements of the EBox. The purpose of this drawing is to
support the functional descriptions contained in this section. The major data and address paths and
the individual controls introduced in the previous section are shown on this diagram with some addi­
tional detail. Major interfaces are also shown in some detail.

The interface between the EBox and the MBox is not a bus, but is functionally shown and described as
if it were, because its operation is similar to that of a bus.

As described in Section 1, the EBox serves as the Instruction Execution Unit for the KLlO system.
Access to main memory is logically controlled by the MBox; therefore, as the EBox requires memory
operands or instructions, it performs MBox cycles to obtain these words. These cycles take place over
the E/M interface. In a similar fashion, access to I/O devices is via the EBus. Devices may commu­
nicate with the EBox over the EBus by utilizing the priority interrupt system. In addition, as the EBox
requires status or data from devices connected to the EBus or wishes to transmit data or control
information to devices on the EBus, it does so by performing EBus cycles. These cycles take place over
the EBus. Figure 2-2 illustrates these primary hardware cycles. The implementation of MBox or EBus
cycles is via the microprograms stored in the CRAM.

2.2 MICROPROGRAM STATES AND PROCESSOR CYCLES
Referring to Figure 2-3, the EBox microprogram can be in one of the following states at any time:

Microprogram Running
Microprogram Wait State
Microprogram Halt Loop

.

Microprogram and EBox Frozen
Microprogram Deferred
EBox Reset (Power Up Sequence)

A discussion describing how to read and understand the microcode is provided in Appendix A.

2.2.1 EBox Reset
During the power up sequence, the EBox, MBox, and all controllers are reset to known states. The
EBox, MBox, EBus, and SBus clocks are initialized and the CRAM register is cleared. This clearing
action places the EBox in the diagnostic state, because the dispatch field is equal to zero
(DISP/DIAG). A program running in PDP-II memory then initializes the EBox, loads the Dispatch
RAM andVer'iries it, loads the CRAM and verifies it, and starts the microBrogram into the Halt loop.
In general, at this time, the system must be bootstrapped; to accomplish this, a number of diagnostic
functions are necessary. This is discussed in Section 3 and in the system and interface descriptions. --

EBOX/2-1

c

/"
I

CONSISTS OF A NUMBER
OF EBOX CYCLES USED
TO CONDUCT THE E BUS
DIALOGUE FOR: PI
HANDLING OR 1/0

INSTRUCTION EXECUTION

ONE EBOX CYCLE
FOR EACH MICRO INSTR.

CONSISTS OF (USUALLY)
TWO EBOX CYCLES.
THE FIRST IS FOR ISSUING
THE REQUEST AND THE
SECOND IS USED TO LOAD
THE VMA. IN PRACTICE
THERE ARE FAST AND
SLOW MBOX CYCLES.

10-1580

Figure 2-2 Primary Hardware Cycles

EBOXj2-3

..

rEXTERNAL ACTIONJ
REQUIRED VIA

10-11 INTERFACE
I
I
I

DIAG START
OF MICRO PROG

NOTE:

"POWER UP"

[CRO BAR]

The notation used here is similar to that used
with "PITRI NETWORKS:'The meaning of the
notation, "SJGNAL/n~is as follows. The mnemonic
to the left of the/is a condition which must be in the
state indicated to the right of thel, E.G. 1 or a in order
to pass from one bubble to another.

REQS

[
DEVICE ACTION J
EXTERNAL OR
INTERNAL ACTION

{
EXTERNAL]

__ ACTION REQUIRED
VIA 10-11
INTERFACE (DTE)

* MAY BE SAME STATE

WAIT STATE - MBOX WAIT
MBOX WAIT - MEM 02 (1)

AND MEM CYC (1)

10-158 I

Figure 2-3 Microprogram Static States

2.2.2 Microprogram Halt Loop
The Halt loop is entered following a NICOND Dispatch, when RUN and PI CYCLE are found clear.
Figure 2-4 is the flow diagram. Referring to Figure 2-5, the EBox contains a synchronizer (CON
ST AR T), which is set for three clock periods when CONTINUE is pressed. In addition, it also con­
tains a flag (CON INSTR GO), which is set by CONTINUE and remains set until a HALT instruction
is performed. The RUN flag in the EBox consists of a RUN source enabled by DIAG SET RUN and
CON INSTR GO true. Referring to Figure 2-4, assuming a HALT instruction has just been performed
(JRST 4) and the RUN flag has been found clear at NICOND Dispatch time, the Halt loop is entered.
The following occur immediately:

The AR is cleared.
The HALT flag is set.
The current value of PC is loaded into VMA.
The current value of VMA is placed in PC.

EBOXj2-4

(

(

•

"XCT
INSTR"

EXECUTE
CONTENTS
OFAR

NO

"PC IS NOT
UPDATED"

'CON INT REQ
IS INHIBITED
FOR INSTRUCTION

NO

"SINGLE
I NSTR
MODE"

"THE AR MAY ALSO BE
LOADED WITH THE
DIAGNOSTIC FUNCTION.

ENABLE START
FLAG, VMA<-PC
SPEC INSTR/CONT

MAKE MBOX
CYCLE TO
FErCHINSTR

YES

AR <-INST
,-__ ___ ARX <- AR

"PERFORM
THE INSTR"

CLEAR STATE
REGISTER AND
DO NICOND

PROCEED
FROM
NICOND
DISPATCH

HALT
LOOP

CLEARAR
SET HALT FLAG
FOR PDP·" TO
SEE. VMA<-PC.
PC <- PREVIOUS
VMA

ENTRY VIA:
I ,. JRST 4,

2. NICOND WITH RUN(O)

Figure 2-4 Microprogram Halt Loop

EBOXj2-5

THE ONLY PI
FUNCTIONS
ALLOWED
HERE ARE
FUNC 3,4
OR 5.
THIS IS A
HARDWARE
RESTRICTION

RELEASE
EEBUS

10·1582

Thus, if the HALT instruction was fetched from location 600, and the effective address supplied in the
HALT instruction was 100, PC would become 100 and VMA would become 601 (the updated PC
value). The START flag is tested to determirre if CONTINUE was pressed. In this case, START will
be clear. If an interrupt is pending, the 'PI Handler is entered to service this interrupt.

When this is done the next instruction is requested. This is followed by a NOOP microinstruction.
Finally, the State register (a hardware register in the EBox) is initialized clear. Then NICOND Dis­
patch is issued and the Halt loop is entered again.

If no interrupts are pending, the "Tight loop" is entered, continually checking the START flag and
interrupt requests. Note that HALT INSTR does not clear the RUN source, but merely clears INSTR
GO, which removes the CON RUN signal (Figure 2-5).

- LEGAL TO HALT CON INSTR GO

DIAG CONTINUE

CON CLK 0

DIAG RUN SET SET
RUN

SOURCE
DIAG RUN CLR CLR "CONSISTS OF A :3

TICK SYNCHRONIZER"
CON CLK

NOTE:

LEGAL TO HALT is 0. generic term o.nd o.lso 0. simplifico.tlOn
of the o.ctuo.l 10giC,[(KERNAL MODE V USER IOT)I\(JRST 4,)J

Figure 2-5 Run-Halt-Continue Logic

CON RUN

10-1583

The HALT instruction is a "privileged instruction"; therefore, the EBox must be in either diagnostic,
USER lOT, or KERNEL mode to clear CON INSTR GO. The PDP-II may clear the RUN source at
any time by issuing (via the 10-11 Interface) DIAG RUN CLR. This causes the Tight loop to be
entered at the next NICOND Dispatch (assuming no interrupts are pending).

If it is desired to execute a single instruction, the AR may be loaded with the desired instruction by use
of the prescribed'DIAG function, issued via the 10-11 Interface. After the AR has been loaded, the
STAR T flag is enabled by issuing DIAG CONTINUE. The AR is tested for a nonzero value. If it is

• nonzero, the contents of AR are executed; upon its completion, the Halt loop is once again entered. ---
It should be noted that PC+J INHIBIT is true during the Execute function, to prevent the PC from
being updated. Similarly, by clearing AR and pressing CONTINUE while CON RUN is disabled, one
instruction may be fetched at a time and executed, or the program may be resumed if CON RUN is
true after performing the instruction in AR. For this function, the microcode, at XCTW, is used to
fetch the instruction and wait for it. This instruction is performed, and the PC is allowed to be updated
by + 1. At the end of the instruction, NICOND Dispatch is issued and the state of CON RUN is tested
together with other hardware conditions, to determine what to do next.

EBOXj2-6

2.2.3 Microprogram Running
Once the microprogram is running, it may enter any of the other states (Subsection 2.2). Normally, the
microprogram passes through a regularly~tlefined sequence consisting of at least the five main dis­
patches (Main loop) shown in Figure 2-6. Between each dispatch, some number of microinstructions is
performed. A rough equivalence exists between the traditional computer machine cycles and those of
the EBox. In general, the relationship is as shown in Table 2-1.

Table 2-1 EBox Main Loop/Traditional Machine Cycle Comparison

EBox Dispatch Main Loop

NICOND Dispatch
'- EAMOD Dispatch
::::---. A READ Dispatch
~ DRAM J (See Note)

B WRITE Dispatch

NOTE

Traditional Machine Cycles

Instruction
Address
Fetch
Execute
Store

This dispatch is referred to in the Microcode as IR Dispatch.

10-1584

Figure 2-6 Dispatch Path State Diagram

EBOX/2-7

Altogether, there are 16 dispatches. The five basic dispatches constitute the main loop; an additional
eleven are, in general, instruction dependent and usually, if issued, follow an IR Dispatch (DRAM J
DISP). Each time an EBox clock tick OCl;urs, 'he CRAM register is loaded with a microinstruction.
This microinstruction then contoIs formation of the next microinstruction address. This is accom­
plished by the particular coding of the appropriate microinstruction fields. In general, there are four
types of CRAM address modifications (Figure 2-7):

Branch On Condition
Branch On Condition With Skip
Skip
Jump

The CRAM address logic samples conditions (Figure 2-8) supplied by various portions of EBox logic,
together with the current microinstruction J, COND, and Dispatch fields, and then generates the next
CRAM address (CR ADR 00-10).

2.2.4 Microprogram Wait State ('
As indicated in Figure 2-3, the Wait state (MBOX WAIT) occurs during memory requests involving "
the M Box. In general (Figure 2-9), three main uses of the Wait state exist. The first is to assure that the
microprogram waits for an MBox response after having started an MBox cycle. The second use is to
hold off a second MBox cycle when the MBox has not yet responded to the first MBox cycle.

As shown in Figure 2-10, the EBox clock control samples the following signals:

MBOX WAIT
VMA AC REF
RESP MBOX

If an MBox cycle is started, MEM CYCLE sets, as enabled by the request. It remains set until XFER is
generated. When the request is to the MBox, and VMA 13-33 is nonzero, the XFER is generated as a
direct result of MBOX RESPONSE IN. If, however, VMA 13-33 is zero, VMA 32-35 is a fast memory
address and the EBox aborts the cycle. The XFER is a result of FM XFER, a signal generated from
within the EBox itself. If VMA AC REF is true, the EBox clock ignores MBOX WAIT. However,
when VMA AC REF is false and MBOX WAIT is true, the EBox clock may be inhibited.

The third case involves instruction prefetches from fast memory (Figure 2-11). For this situation, the
microinstruction generating NICOND Dispatch also asserts MB WAIT. This is necessary because the
EBox hardware requested the next instruction from the MBox rather than from fast memory. The
MBox detects that the VMA address contained a fast memory address and aborts the cycle. The EBox
hardware switches- the ARX input to the AD output, thus reading from fast memory.

NOTE
XFER = MB XFER V FM XFER

,
2.2.5 Microprogram and EBox Frozen
The microprogram and EBox frozen state occur in practice when any of the following events occur:

1. D RAM Parity Error while the EBox clock is running.

2. CRAM Parity Error while the EBox clock is running.

3. Fast Memory Parity Error while the EBox clock is running.

EBOXj2-8

/

/

i

I
! ! SH

I
I'

/'

LSB IS
":>eJN T F: 0 Lt. E IJ

BV THE S~UP

i D-15S5

•

IRAC
a

IR

CONTROL
CLKI-----i
CTL

CLK
FORCE 1777

36 BIT
DATA
PATH SH

DP

10
BIT

LOGIC
SCD

CON
CONTROL RAM

ADDRESS
CR ADR 00-10

MEM
CTL

MCL

71

DISP

Figure 2-8 CRAM Address Inputs Simplified

NOTE:
MEM=MB WAIT implies that the micro
instruction mem field contains a code of
2 8 ,

DRAM A=4-7; SOME
FORMAT READ DATA
E.G. READ, READ PRE
FETCH, READ PSE
WRITE, READ-WRITE

DRAM A= 3; WRITE
PAGE CHK

THIS MICRO INSTRUC­
TION HAS MEM=MB
WAIT

EBOX CLOCK IS
INHIBITED UNTIL
RESPONSE IS
RECEIVED FROM
THE BOX

10-1587

Figure 2-9 Wait State

EBOXj2-1O

CRAM
REG

10-1586

•

E
/
M

I
N
T
E
R
F
A
C
E

r---, '" ., I --- '
I M BOX CONTRO Lr-___ I-t--.:C:.:l::.:Kc..;C::;.R::.:M'-+_!'_-_-_ -_ -_-_M_I_C_RO_IN_S_T_R_U_C_T_I O_N.:-_-_ -_ -_-_~ _ _'

I
I
I
I
I
I I ClK CRM

L _______ ...J

MBOX
WAIT

RESP MBOX

VMA AC REF

EBOX
CLOCK

CONTROL

•
•
•

EBOX ClK

ClKS TO OTHER
EBOX BOARDS

MBOX RESP IN
ENABLED BY CYCLE REQ
DISABLED BY XFER

13

VMA

XFER=FM XFER OR
MB XFER

o

Figure 2-10 MBox Wait and EBox Clock

DRAM A=5
READ PRE FETCH

ASSUME PRE FETCH
IS FROM FAST
MEMORY

NOTE:
REQ/1 implies that the request sets up but
VMA remains latched from the previous REQ
until MBOX response, At th~t time RESP/lATCH
REQ implies that the VMA can lATCH for
the 2nd REQ,

* Same EBOX CLOCK
**MICROprogram must reinitiate the FETCH later (NICOND)

10-1589

10-1588

Figure 2-11. MBox Wait on Prefetch from Fast Memory

EBOXj2-11

Associated each
rence the error to

Enable

eLK iFM f' AR CI-:1ECK
eLK CRAM PAR GIECK
eLK DRA,Jv1 PAR CHECK

32

34

Function

mAG FUl'IC 046
mAG FlJNC 046
DIAG FIJNC 046

each il1StnH~tilm,
or dropped an eVI;';fl.

changed the

prior to

up to the point. vl"here it U""I"'<W',lin"I~
it jumps to the

OC(;Uf-

the specified AC, In a fashion, a up or dropped
with equ.aHy disastrous re~lults. .!uicroprogram is R s:ciiucttm::d

errOHleOU3 any its hits in CRl1dvI tl1(;:
could camH~ the microprc,granl to

instruction is into the CRAf'..1 register. Dispatch
be(:omes instead DISP ISIGNS.

signs AR, BR, and AD
CRAM addresses,

Instruction utilize fast memory some
always

errors w'ere not detected,
llses memory to set up indexing function. fast memory parity

memory,
data couid be and possibly erroneous fetched

EBOX/2~12

for p1ending
dght possible can occur

-~->-.--~--. >------.. - .. ---,-,--~.-
Conditi.oHG ~:() Consider Low-C)~oder eRA,pil /\.DR :~:nts as FoHo'ps

Why Vlhe~'~ hi, Go PI RUN MTR INT AC TRAP ANY NlCOND NlCOND I NlCOND NICOND NICOND
INT REQ REF ra,,} TRill? fJ7 ng (;9 liD
REQ EN

Second pzrt BASI-':ADR r?;};i~~ »(' ',-I !,,~~Ir/L/':;"<"" i/}< .. '.··· />;/'. 0 0 0 0
PICydtf': 1./
Halt Instnlc-ijon or JJ.t\.SE ADP:-l-:2 G ;~~;i~ l/~>~/ l~~/(l}l;/ /~/;/ ,>(/

0 0 0 I (}

1; c2used
>--.~.-~

MTRINT BASE ADR+":~ IJ 1 r~;:;0:~ 1/<'/ I./~'/;/ /.,:'/(/~,/(/ 0 1 0 0
Request

PI Request bu t BASEADR+6 0 0 [~~~}:; l~/(/~/r/' .. ,~/(/'" {] I 0
not J.,-ITR

Instru.::t1on ADR+J.2 0 1 IJ 0 1 1 0 0
from menvxy

tr<:lPS p~nding

Instrucrion BAS:S A.DR+13 n ! 0 0

?~f~i ~
1 1 1 1

from memory :JSJ.d :~~~~ a trap is pending

Instruction 0 1 0 0 ~~~1;~~; 1 0 1 1 1 0
b., fetched ~ji:'~ PM and
pending ~;;;,'~:
Instm_ction must BASE i\DP.+ 17 j 1

~~ ~~
1 1 1 1

be fetched from

I
FM and a trap ?~?i ~!~ is pending

Overriding condition

10-1590

Figure 40 +

EBOX/2~13

in LI·D + 2n is performed
DO"NE

~ Dismiss

[BUEll be

interrupt

instruction :should be

Dispatch
at l'.JICOl'U) di§patch is

such 11 nature PI

Th,~ PI HarH:H,er generat,~§ the appropriate 41 +
instruction be perfornv:xl, one\,:: again omitting a NICOND Disp,Bilch,

address and caUSCll/

111lsltruction fetched mu§(
hr.; one the foHcnving:

use

cause PI CYCLE to

2,2.7 rt;Ikropmgnulll Org!;Umiz3.dolTl!
basic control program modules are illustrated

illustrated 2-13 j"'·,·",,·p·opn

'u',",,,,,,,',,,, indud,e

V'b,"""""',",,,,, 1'<"'1,",,"'1'"0,''·1"''''' functional areas the lIIicrocode.
bnmching to e8.ch handiers

intefface (Figure 2~ evaluates initial
. Th,;: nature; the could be a pending priority

aU must pass through process. The nmem.onic for
process is DISP /NIOOND (Next Condition).

Manager (Figure 2,,15)
contains the cunreui

14

indin;:ct ad.dress flag 13, index field
and hardware conditioD.§ such as

aURA"""'" or calculat,es the
cyclt;s.

(

DATA EBUS
- STORAGE I DRIVER

MANAGER FINPU~
\. OUTPUT

~ ________ ~)~~j~ct.~#MiliWilij~f ______ -+~ __ -. ________ {r:~~~:t:;," L{: \HANDLER

HALT
EXECUTOR _ HAN~~)--------;~ --

"NICOND" DISP

DATA
FETCH
MANAGER

--(~

J--l--r---l--/'P;'A~G;;;E~F;A~U:;:LT;:\
I \ HANDLER

A,B

rn~777 700
_ ._677

_= DISPATCH--=- TABLE===

000

TRAP
HANDLER

,-,
EFFECTIVE
ADDRESS
MANAGER

-

00 12

IR INSTRUCTION
REGISTER

0

ARXI OP

"Ill, ARX
LOADING"

C BEG IN) (NT¢gNJt
'Pl$F>'}}}}

",6 " I
89

AC I XR I

Major dispatches -see figure 2-6

y
EAMOD
DISP

35

y I

-LL... __ ---...--__ ...J.J

"CONDS"

'(~I~~~~"
START UP
AN D STOP
INTERFACE 4---

"CONDS"

VARIOUS
HARDWARE
CONDI TIONS

10-1538

Figure 2-13 M Program Modules

EBOXj2-15

•

CONTROL
RAM

1
2

PRI 3
ENCODER 4

5
6
7

PI CYCLE
-RUN
MTR INT REO
INT REO

AC REF

PI CYCLE

Figure 2-14 Startup and Stop Interface

CONTROL
RAM

iO-1540

Figure 2-15 Effective Address Manager

The Data Fetch Manager (Figure 2-16) evaluates the 3-bit A (FETCH) field (for the current instruc­
tion), which is in the Dispatch Table. The code in the 3-bit field defines the type of data fetch or write
or combination operation (if any) required. The Data Fetch Manager takes the proper action, i.e.,
enabling the EBox clock to stop as appropriate, dispatching directly to the executor, or initiating an
instruction prefetch. Note the Instruction register is used to address the proper location in the Dis­
patch Table (DRAM) based upon the op code for the instruction.

EBOXj2-16

•

DISPATCH RAM

CONTROL
RAM

Figure 2-16 Data Fetch Manager

10-1541

The Dispatch Table (Figure 2-17) consists of four fields:

1.

2.

3.

4.

DRAM A - Bits 0-2; defines the type of operand fetch cycle.

DRAM B - Bits 3-5; defines Jump, Skip, and Compare conditions for certain instructions,
or result store mode, etc.

DRAM P - Bit 11; parity bit (parity is normally odd).

DRAM J - Bits 14-13; jump address. This is the entry address of the executor routine. The
mnemonic for the dispatch to the executor is IR DISP (DRAM J) (Instruction Register
Dispatch).

r012.345 ~~14 2.3
777 A A A B B B ~ J

•
•
•

bi- J
000

Figure 2-17 Dispatch Table Fields

EBOXj2-17

The rOl.ltln.e (Figure is mic;wprogram .. It contains a tmrnber
autonomom:, routines used to execute the 3,pe;cific functions, e,g., 1110'111;; a halJ-vv'ord frOll.l
(me to or pl1§h a onto H §ubroutim;

'""'""F,."~'&H.", on the DR,AJ1/K B additiol1,when from
it the appropriate MBox ccmtwl sig··

'"',lUI''',"'''' the operation. When the Dam l'vlanager is entered in the
controTI generally paSI'M;:S to Execut:Of. Finany" a

aDd 'b::ontrol passes to the Startup

tei or from ctiscn:~te
while the

is pass1ed to Fault (Figure 2~20) routine from the Effective Ivianager
or Dam Store IVlanager the l'lflBIJX a;!;sert§ HOLD prior to an rV!Box response

The implication is that a address violaHon
violation, or shnHar In addition,

EBOX HA11'IDLE may be assertt~d to the EBox
that the paging translation shouid be via mkroprogrum

The Page is usred for ,error conditions"

8iTS 14-23

CONTROL
R,\M

DETECT
, IF: lOt,

r-.--",,~ ,JR'ST lOR ii
N(}RMAL '

I D~Sp/.rrCH
. Rl}.M

IROO.'i2i

W-1543

18 ExecutDr

•

CONTROL
RAM

Figure 2-19 Data Store Manager

FORCE ADR
TO 1777

I
MBOX

CONTROL

CONTROL
RAM

LOCATION 1777

MICRO INSTR FORCED
BY HARDWARE

10-1544

10-1545

Figure 2-20 Page Fault Handler

EBOX/2-19

The Halt Handler routine is entered from the Startup and Stop Interface when the RUN flip-flop is
clear at NICOND Dispatch time. The RUN -{lip-flop can be cleared by various mechanisms. For
example, when a HALT instruction is executed, RUN is disabled. On power up, RUN must be set by a
diagnostic function initiated from the DTE20.

The I/O Handler (Figure 2-21) is dispatched via IR Dispatch from the Dispatch Table on DATAO,
CONO after the data or status has already been fetched, or directly on DATAl, CONI, CONSO, or
CONSZ. The handler calls the EBus driver, which generates the necessary EBus dialogue with the
device. On BLKI or BLKO, the pointer has been fetched but must be updated, stored back at E, and
the first word fetched. This is performed in the I/O Handler first. When the data has been fetched, the
EBus driver is called. On DATAl or CONI. the EBus driver is called to negotiate the transfer from the
selected device over the EBus to the EBox. The I/O Handler then passes control to the Data Store
Manager where the data is stored.

2.3 BASIC MACHINE CYCLE
The basic machine cycle for a typical instruction is illustrated in Figures 2-22 and 2-23. The cycle (--
begins at the EBox clock following NI COND Dispatch and terminates at the trailing edge of the next. _
NICOND Di~atch. In this example, assume that the instruction MOVE 3 @ 200 (1) has been fetched
from core memory symbolic location Pc. The following information relates to the example:

PC/
PC+l/
300/
100/
1/

MOVE 3 @ 200 (1)
NEXT INSTR UCTION
000000, 000 100
171717,111111
000000,000100

1-------'------'-----1 777

DISPATCH
RAM

CONTROL
RAM

Current Instruction

Indirect Address = 300
Effective Address = 100
Index Register = 1

10-1546

Figure 2-21 Input/Output Handler

EBOX/2-20

(

LOC/\TION IN-STRUCTION

MOVE 2; \tt'~ 200 il) 300:.000000,OOOEiO 'IOO~rl17nj1l11'H 1 ,;DOOOQO,OO'O~OO

~-;r------ARo
000000, AR"171717,::]11111
000100

, -----------

I INDIREC1' WORD 1
: IN AR)("
:c.._ l2!'OOC:0 ,OOOI00J

NOTES:
.)1, During 1;J.80X wail's EBQ)(SY~.,jC remains

true unHI MSQ)(reel'.

3. MBOX cycles eHe funclion·al operations

which are !)sed 1'0 dosG!'ibe ffi'5!mory rmql!8S'rS
Cit H18 E/f .. 1 lNTERF.ti.CE.

4. lndG}<;ing is p2dormed eVffl thou?,:') ill ¥his exomp!e
ARX 14-17 ~O uno will not D8 used. Th~ EAfv10D
dispu1ch \o1]ill (;OUS·<,l the ne&r:T MICRO instruction ~o

do ih& correct step e.g. ~ P,D; E

5. P,R<:I- 000200+000'100'" 000300
This is the IND!RECT WORD ,o.DORESS

TIME Bft.SE FOR-l,
EBOX CYCLES j

i--- E<)O)(CYCLE

r ,X-----· ... I

10- 1591

Figure IVlachine Ov!erview (Sheet 1

EBOXj2-21

EACH SECTION IS A
MINOR MACHINE CYCLE

ENTRY POINT

PRIORITY

10-1592

Figure 2-22 Basic Machine Cycle Overview (Sheet 2 of 2)

EBOXj2-22

I

MTR REO
FOR PI

c:;0
I

IF INTERRUPTOA TRAP
NleONO DISPA TCI-II'VAS ISSUED AND
UNLESS AN INSTRUCTION PRE FETCH
WAS ATTEMPTED fROM FAST MEMORY,

f--------<oj :~~~%~:~~;~~:~;~NR~=:O~N~HI:~EXT
IS PENDING DIVERT FROM
HERE PERFORMING FIAST
niE PI, THEN THE TRAP

I

I
~

I
~l

I A I ,I ' I

INSTRUCTION, UMA CONTAINS THE ADORES\)
OF THIS INSTRUCTION. IF FAST MEMORY
PRE·FETCH WAS TRIGO IT 010 NOT

IF DIVERTED FROM HALT
HANDLER RETURN AFTER
SERVICING MTR OR DTE.

~I~~LE INSTA WORK SO FETCH IS DONE NOW."

eXAM, DEPOSIT

I

I

~ "DIVERT IF PI PENDING"

~D ."

"EAMOD 13_17"'0

DISP"

'"

I

________ .J

A
CACHE DATA

'f

ReaUEST
____ CONTROL

r-L ____ • _____ J4---'--- RESPONSE.

I

CONTROL

i ...
~ARX14_17

INDIRECT
WORD

'--__ J~ :.,_;,;,~c;;_w", .
ATTEMPTED FROM fM
IT DID NOT WORK SO
FETCH NOW. VMA CONTAINS

ADDRESS OF INSTR:'

I

III ~:!~O:::~~RAM I !~ --------oor---------...... l<1\.. ~
II II IF A~4.5.6, 7 I 'I .

~
; START WRITE

L
..:"D='c..AM_'-,-________ ---,V ~~S~~M J

OISP" t
T

REOUEST
CONTROL
RESPONSE

~ I I

I

l...---r-----r

f L Jr"
...--.....L..---, I VMA ADD" I-r-

AND CONTROL :!:~T

FETCH

OF NEXT
INST1'I

'==:=--t-.f-' II__--+----+--+---~I__--'

FAST MEMORY
ANDCDNTROL

'-___ -'~ lRAC9-12

"ON$KIPS
ETC ••••

'0- 2224

Figure 2-23 KL 10 Processor Sequence of Operation (Sheet 1 of 2)

EBOX/2-23

•

EXECUTOR

STORAGE

PIANO
TRAP
HANDLER

1

"NICOND
DISP"

"NICDND DISP"

"NICONO
OISP"

r---------'-:---
HERE WITH AR CONTAINING
EITHER O"E OR DATA WORD
DISPATCH IS UNIQUE FOR
EACH INSTR AND MADE
VIA "DRAMJ"

I
I
I
I
I
I
I
I
I
I
I

BDISP"

L __ - --,
I
I

I
I
I

I "MAKE WRITE
I REQUESTS
I AS NECESSARY"

I HERE TO STORE OPERANDS
I ACCORDING TO DRAM B OR

I ~;~~~::;~:'~~~I.YTO
I INSTRUCTION TO STORE

I !~~!C~~~:~~A;~~~ ~~~SE
I FETCH OF NEXT INSTR.

I I L ____ ..J

"JUMPTODATA
STORAGE
MANAGER"

CACHE DATA

REQUEST
CONTROL

,----1. ____ ---..--____ 1--'--- RESPONSE

IFDRAMA"'S
VMA HOLDS E
FROMA READ

:~DER~~HI~RF~~~ ~----,

FADM AR

10-2225

Figure 2-23 KLIO Processor Sequence of Operation (Sheet 2 of 2)

Figures 2-24 through 2-33 illustrate the microprogram steps and basic EBox hardware used to perform
the example instruction. Figure 2-22 can be used to follow the various operations at each micro­
instruction step.

2.3.1 Instruction Cycle - ~]COND Dispatch to XCTGO
The instruction enters the A~X through the ARX mixer (ARXM) via the cache data lines. Although
not shown, the MBox response enables the mixer selection and the EBox clock (CLK DP) loads the
ARX on the Data Path Board with the instruction. The NICOND Dispatch for this example is to
symbolic location XCTGO; Figure 2-24 indicates the major microinstruction fields. The Jump address
contains the base address of a 4-word block used to calculate the effective address. Each micro­
instruction in this block is used for a different form of address calculation, and is selected based upon
the state of ARX14-17 and ARX13 when EA MOD DISPATCH is given. The EBox hardware utilizes
ARX14-17 and ARX13 to modify bits 09-10 ofthe CRAM address. This yields the possibilities listed
in Table 2-4.

EBOXj2-24

VM,i1.

I
I
I~ I ~I
! rJ
h

r-~~·· -I
SRI ... ,

" ~-.~
J:--., \

)' BR~" .'> L __ =,_~

Dri.4M

E
R

tll
IF A W I ~ I "~ FM ("" '-'

>:~
~-... -
~,jl

I N
LA'> I

"0

AR

r~":EMo:l
, CYCLE I i CONTROL "

l~-.-J

XCTGO

1111 i1

NOTE:
Thi's clj)et"(Jiioi'i fGfiect11 th~ rrnitl'O cocl~ ve!"~ion <t'a 0

10-159-3

Instruction Cycle: NICOND Dispatch -7 XCTGO

•

Table 2-4 ~ Address Calculation

CRAM Address ARX14-17 ARX13 Function

COMPEA 0 0 ARX=E

COMPEA+1 Nonzero 0 Perform indexing as specified by ARX14-17.

COMPEA+2 0 1 Perform indirection VMA ~ ARX18-35

COMPEA+3 Nonzero 1 Perform indexing as specified by ARX14-17, then
perform indirection VMA +- ARX18-35 + (XR)

While at XCTGO, to speed things up, the indexing operation is started. The fast memory address field
in the microinstruction causes the FM control to address fast memory utilizing ARX14-17, which in
the example is 1. The ADA input is enabled to select theARX as input to the ADDER A input. This is
controlled by the microinstruction ADA field. Similarly, the ADB field enables the ADB input to
select addressed FM location 1. The microinstruction AD field specifies the ADDER function as
A + B. Thus, the ADDER begins to add the contents oflocation 1 in fast memory to the instruction in
ARX. At this time, the Buffer register extension is enabled from ARX by the microinstruction BRX
field.

NOTE
The IR contains the op code of the instruction
MOVE, which is 200, and the AC field, which is 3.

The op code value (200) is used to address the DRAM to obtain the appropriate word for this instruc­
tion. This word is indicated on the input to the DRAM register (5,5,MOVE).

2.3.2 Indirect Word Request
For an Ind~rect Word request, the CRAM register contains the microinstruction fetched from COM­
PEA + 3 as indicated in Figure 2-25. The Jump address now specifies a direct jump to symbolic location
INDRCT. The AD, ADA, ADB, and FMADR fields are maintaining the indexing calculation and the
calculated address 000300 is forming at the input to the VMA. The MEM microinstruction field is
coded as A IND. this enables the memory cycle control to set up and generate an MBox cycle (Figure
2-26). This begins with the assertion of EBOX REQUEST IN, together with the qualifier EBOX
READ. Table 2-5 lists the MEM field function that generates requests. An IND is a function that may
be followed by a microinstruction having the MEM field coded as MB WAIT.

EBOXj2-26

tTl
~ o
><
~ • Ie.)
--l

000300 o tl 3 12 9 12

000000,G0010(} 2(10!6!.0(>0200

\I M 1-\

8R VMA I~D

r~-~' 'J-!PI C'

ACL_~,"_
r-' ~-1 ,. I

I R 12~~O~L~J

I
,....1_ _"'''~~'''-;?

\ /
" I
"~-'-r--'

r~---L._--._-~."

i I ! DRAM I
l __ !~.J

I I I r~' .~.~J~.~ . ." r-~--\ !~--L.......~_\ f·--..J.~··-~,\ r, B!

.: / VCMI ADB \ I VMA ADA \ I '\ I _BR)(~ \ r~l~ -~--T~~--~
,C. I {~~~.---..::. 1- \, ~-.. ---.... ~. ..-.-~~-.~-~ (" K "RrM e , " 'Mnv. E I
i ~; ~~. "~'.f2_1 J .. i ~L~,..J

i : DISPATCH
I N I RAM REGISTER
I Til r-----.---. ~
d -----.-~--~--.------- l i 111 . . I R I ____ .. ' "\ _____ ... _____ ~ __ ; ,

~I ~--~-~ I 1 I "/ I ~' FM I ARX1 1 - 17 1 ~-~~-r-'- ,
'I 1/, 7'7777777/' '-"J' [-, I~~---'-~~-~ 1

//1//, /' 1/1 ib I L AC' ~ -1 ~ .. ~L~~~ n

I --f I - ~---A-' GRAM

000000.000100 ,1'--- r:: f ~ .~~." '-\ I MEM
#" - ---- 10 / ARM \ f Il.RXM - 1-----, -:-;-: ~~,~g-:;"'-1ir ~_-==-'--- (.5 L-~ I"':{h.:~;,; Li"""'1

I J-I [], . I I--~~'-~'-l I
, FM I II L'"~:''' . --T~~' I
~BOX ~ 'DB F. DR DISF' ME" ~ I REQ r~-~~~~~ ~_J ~ ___ -=p,DA ~-::_'~",--.,,_ ~!"'l:1. '\ == ---"T""":~ -j~' -L~~_~_~ CON1R0l Rt\~;.!1

---_. i '---r-~ /77/ /J RFGI"TER
I I' MEMORY I COM~EA ~NDRCT I A+r:, I ,,:Ix FM 1 ~AR ~ // //a" 1[10 1 1}:-_-1 ' i ~ CYCLE. -~)'; I 1/// / I 1 r I 1

i j CONTROL ~ L~ ____ I ~- ~- I ~-'-..L""_::,-=_~J~'---'-- -.~~ I I I i __ L ___ ._________ I J I
3 0 ---' -- - I _ _ __ ---l.____ _ _____ ._____ , ____________ ----1

.r ~-~--! I
" ____ SC:TUP FM c:.l}!:~TROL 10 LOOI< AT I~RX 14-'7 1,--_~~, . .' ~

I I CLOCK CRM
EBOX ----.-.----- -

; CLOCr:
i CONTROL r- CLOCK DP
~-~-<,~-~~-==<..~~

10 -159~~

Figure 2-25 Up and Make Work

Table 2-5 MBox Cycle Requests

MEM02 MEM Field MEMOO Function Causes MBox Wait

0 04 0 A READ Fetch Cycle No

0 05 0 BWRITE Store Cycle No

1 06 0 FETCH Instruction Fetch Yes

1 07 0 REGFUNC MBox register reference Yes

0 10 1 AIND Indirect reference during No

effective address calculation

0 11 1 BYTEIND Indirect reference for byte No

instruction special

1 12 1 LOADAR Data read during Yes
execution, loads into AR

1 13 1 LOADARX Data read during execution, Yes
loads into ARX

0 14 1 ADFUNC Not used No

0 15 1 BYTERD Data read during byte No

execution loads into AR
andARX

1 16 1 WRITE Store data during execution, Yes
writes from AR

1 17 1 RPW Initiates a read PSE write Yes
cycle, data loads into AR

The time field for the microinstruction at location COMPEA+3 specifies a period between the EBox
clock that loaded the microin~truction from COMPEA + 3 and the next EBox clock. It allows sufficient
time for the access of fast memory to be completed. Note that EBox request and EBox sync are
concurrent (Figure 2-26). The earliest time that the MBox can clear the request is on the MBox clock
following EBox sync. In Figure 2-26, EBox sync occurs one MBox clock prior to where the time field
indicates EBox clock can occur, but because MBox wait is true and the MBox has not yet responded,
the EBox clock is postponed as indicated.

EBOXj2-28

c

Mt,MORY CYCLE

~~@:-;:o~~j~~~- ~~'=~~J
E!~,;=tllEST T!ME i'A80>: Cf,N
CLEA,R EG,C)(REQ t; CSH EBOX TO

'Wm'o R.'~'lJlne§t
fc:tched frOhn symbolk: LV'~<iC'._'VU.

INDLP), A respom;e frmn th,e
MEM to be ME T¥\/AIT

response causes the

to-1596

input In this example, cache data

symbolic
a§ though it WeIll.: specified, At

and i!~J1X13 are z'eHL Thus, even
microinstruction specifies the indexing, the calculates: the proper

The
and, on
DRAM registl~r is

upon i\RXR4-17 "'" o and ARXB "" 0,

and this is the next CH.Ar\l~ Th,:; M">;'H.<t .. ~,J'"
from COIVIPEA is fetdu;ct

B, Executor Jump address,

Up DllI.ta Fetch l'mrll Prefetdl!
been calculated,

"",,;'" "'UI.CD< t h I:~
upon detecting a Read Dispatch, inspects

+ A. Thus, in this exan1p~e, the address be:comes
address jl .. R10 8~35 is: enabled into

ai3 Jl\ .. , with ADA,. seleiCting AJOC To begin the data the
thIs, the Held;. genemt1es REQtTEST and EBOX

addre3s is loaded

tTl
tJ:j

o
><
--­tv

I
Vol
o

•
~ I 0 6 ~ 1~ ~ ,~

000300 I r:::T":'"l I I 000300 lVMA ~ B AD \ IR~ i~ 3 I
f i Tl

/ \ =1 ADB \ =1 ADA \ \ /

1
/ VMA AD \ BR~ DRAM

, / '"' "'\ / ,.,1", \ ~ , j
~ l 5 I 5 MOVE

I
N . T IN CASE THE '--_,, ______ ...1

E INDIRECT REFERENCE LATCHED"

~ IS FROM FM •

~ ~ FM \ / t

F

ADR=O : V//lmili////;: ~AR [IARX ~
~ 000000,000100 1 r 000000,000100 CRAM

~ GARBAGE 0- ARM / ARXM ~ l

I-------t------------+---------------.Tf i INPUT 1 COMPEA
1 ED~~~DI :INDLP I SELECTED ~I I

BY MB XFER

I FM I FM WRITE L CONTROL SETUP FM CONTROL
....... ".,.-,..-_....1 CONTROL TO LOOK
~~gx AT VMA 32 -35' I

~: 0- __ ~ J AD ADA ADB FM ADR MEM • DISP

f~SEBOX J :gE~1~rL INDRCT:IIND1LP B ARX I FM I VMA I A~~; I ~ 1 ~~~;rsR,.~LRRAM
~ MBOX -~ '------------------~I--+-----------------------~------------

RESP I
IN

EBOX CLOCK CRM
MBOX WAIT CLOCK I ,

'--___ ~[iN~H~C~L~O~C~K]~ CONTROL I NOT YET GENERATED
[RESTART J BUT AB~UT TO BE.
CLOCK] I- CLOCK DP

10-1596

Figure 2-27 MBox Response to Indirect Request

tI1
c:I
o
><
--­IV

I
IN

E
I
M

I
N
T
E
R
F
A
C
E

,.r

•

I 1
u

1:1 '"
1<:: '" 1<::

IR 1200 I 3 I 1~1 I
1 IVMA Wfi1 AD \

3

PC
+B +A

f lOOO100
000000,000100

(ACO)

/ \ ~ ADB \=/ ADA \ \ /
f "LATCHED" 1

(ACO) 000000,000100

/ VMA AD \ ·'3
DRAM

,

t
B 1

/ VMA ADB \ / VMA ADA \
A J

t l I
T MOVE 5 5

I I PC CRAM ADR
09-10=0

CRAM 1 ! -t
ADR

~ ARX 4-17=0 IIARX13=0

CONTROL \ 7 FM
F 1

ADR=O ~ M V///////// / / // 3 ~ .. i OOOOOOiooo,ooi A -
0

2

R 1
CRAM

~j 0 ARM / ARXM \

o 11 AREADl f COMPEA

~ CO::ROL 1- I FM WRITE I
CONTROL

t I
AD ADA ADB FM ADR DISP l

MEMORY INDLP: I COMPEA A+B I ARX I
I I I

I CONTROL RAM

CYCLE
FM XR EA MODI

REGISTER

CONTROL
DISP I

l I

EBOX
CLOCK CRM

CLOCK
CONTROL f-- CLOCK DP

10-1597

Figure 2-28 Address Calculation Continues

E
/
M

I
N
T
E

tTl R
tJ::J F

0 A
C

>< E

----tv
I

W
tv

•
o 89 12 9 12

AD
VMA

lR \200 I 3 ~ i~\ 3

"~
DRAM

/
...... ~ ,-........

\ L
........ .--.--.

~

PC

,---J CRAM ADR 08-10,05-1

IjJf///ug,~ tAR

I
/ ARXM \

0 :45

000000,000100

EBOX REQ r-~---.--~~-r~~~'-~~--r------'-------r~~~-r~~-L~-------------'i CONTROL RAM

MEMORY
CYCLE

EBOX READ I CONTROL

DRAM A=5 EBOX
CLOCK

CONTROL

Figure 2-29 AREAD Dispatch Setup Data Fetch

/-\

CLOCK CRM

CLOCK DP

REGISTER
~

10-1598

2.3.6 MBox Response to Data Read - Prefetch Begins
Figure 2-30 illustrates the CRAM register cop.taining the microinstruction from location 45. Thejump
address once again is zero, because the 'actual jump address is provided by the DRAM register jump
field. In the case of MOVE, the symbolic address is "MOVE." This location contains the first micro­
instruction in the executor for the MOVE instruction. Only one microinstruction is required for the
execution of the basic MOVE. This dispatch field contains DRAM J, enabling the CRAM address
control to utilize the jump address in the dispatch register. Thus, for the basic MOVE, symbolic
location "MOVE" contains the desired microinstruction. The MEM field is coded as fetch to enable
the memory cycle control to begin the prefetch by asserting EBox request with EBOX READ.

Until the MBox response to the data read is received, the VMA is latched and only the VMA input
contains the updated PC value. When the MBox response is received, the VMA is loaded with the
updated PC value (PC+ 1). At the same EBox clock, the data on the cache data lines is clocked into AR
(000100). Referring to Figures 2-30 and 2-31, the FMADR field enables FM to be addressed via VMA
32-35, even though in this example VMA address 000100 is not an FM address. FM location 0 is
actually accessed and enabled via ADDER B into the AR mixer.

The Memory Cycle Control asserts LOAD AR. The address in VMA is checked in the VMA Control
and, because it is not a fast memory address, - VMA AC REF is asserted. This is passed to EBox
Control No.1 logic and inhibits the generation of FM XFER.

MBox RESPONSE IN is passed to the EBox clock control where it becomes (on the next MBox clock)
RESPONSE MBox. This, with LOAD AR, enables the selection of ARM SEL 1, which enables the
cache data into AR. The EBox clock then strobes the AR register. This clock also clocks the next
microinstruction from symbolic location MOVE into the CRAM register.

~./-:::)2.3.7 Executor - Set Up for Store Cycle
'\.) .. For the basic MOVE instruction, the data word in AR must be stored in the FM location specified in

the AC field of the currently executing instruction. The microinstruction J field contains the base
address for the data storage microprogram. This is symbolic location STO. The Dispatch field is coded
as DISP B, which enables the B field of the DRAM register to modify the low-order three CRAM
address bits (CRAM 08-10). The B field is 5 for MOVE and this yields symbolic location STAC.If, for
example, STO was physically 60, the resulting address would be generated by logically ORing 60 with 5
for a result of 65 .. symbolically STAC.

• Referring to Figure 2-32, IRAC contains AC address 3, and is enabled to address FM because the
microinstruction FM ADR field is coded as ACO. This is the AC specified by AC 09-12. The MEM
field specifies B WRITE, but no request is issued. This is because the memory cycle control samples the
DRAM B field and inhibits an EBox request when DRAM BOI is a zero.

EBOXj2-33

tTl
t:Ij

o
><

---­IV
I

!..hI

""'"

E
/
M

I
N
T
E
R
F
A
C
E

rr

•
VMA WILL BE LOADED WITH 0 I:l 9 1~ ':I 1~

000100 PC + I ON THE NEXT EBOX CLOCK I
IRE[] h~1 I 3

000100 IVMA / AD \
) PC+l L

\ / / \ / ADB \ / ADA \
! PC+I

DRAM

/ VMA AD \ BR I I
I +1' I PC 000000,000100

1 / VMA ADB \ / VMA ADA \ ~ \ J

I I
I MOVE

+ 1 --.1 i
I I PC • CRAM ADR

00 10
CRAM ~ ~ ADR I

CONTROL \ / ~ FM

• IN CASE REF F

'i'//////////// I I IS TO FM M 3
1000000,000100 I AR

ADR~ 0 A
.....

2
D i 171717,111111 R 1
.('" L \ / \ GARBAGE 0- ARM ARXM

CACHE DATA ~)11, B :IDRAMI f f STO WRITE B MOVE
00-35

FM FM WRITE I
CONTROL CONTROL

EBOX REO J
~ ~~-- -~ -J AD ADA ADB BR MEM DISP FM ADR

45: I I I I I FETCH I DRAM J VMA I
L CONTROL RAM

CSH EBOX i MEMORY REGISTER
0 B FM AR

TO ...J CYCLE I CONTROL
--,

MBOX WAIT
CLOCK CRM UN CLOCK] EBOX

CLOCK
CONTROL

[CLOCK 10-1599

RESTARTSJ

Figure 2-30 MBox Response with Data Word Requested

r,

AR SEL 2

* AR SEL 1

MBOX CACHE DATA LINES

r-----.,
MBOX RESP IN II EBOX CLOCK I RESPONSE MBOX

...;.:;,::c,;:.,;.;....:.:.::.::.:.-...:'-'--____ --.j. CONTROL

1 _-..J
L-"""""'"

* Somewhat idealized.

r-----.,
I EBOX 1

1--'-"'--'-"-==---1 CONTROL 1-1 -----,

#1

--~

r----l
LOAD AR I MEMORY I

CYCLE I
CONTROL

I ---J

L-

r,----;, II VMA=OOOI00 II
-VMA AC REF

1 VMA 1------'

I CON:O:-_J L_-

Figure 2-31 Hardware Selection of ARM Data

(2.3.8 Finish Store Cycle - Perform NICOND Dispatch
The CRAM register now contains the microinstruction from symbolic location STACK (Figure 2-33).
The J field specifies the base address NEXT and the Dispatch field contains NICOND Dispatch. This
completes the basic machine cycle by reentering the instruction cycle once again.

The FM ADR field maintains the FM address via IRAC and the COND field is coded as FM WRITE
to write the contents of AR into FM location 3. The MEM field is coded as MB WAIT for the cases
where the next instruction has been prefetched from memory. This forces the EBox to wait until the
instruction enters the ARXM and MBOX RESPONSE is received. If the instruction is being fetched
from fast memory, MB WAIT has no effect and the microprogram selects the appropriate micro­
instruction to load ARX from fast memory as addressed by VMA 32-35.

_--- 2.4 PAGE FAIL CYCLE INTRODUCTION
____ Normally, primary memory is the MBox cache memory, secondary memory is core memory, and the

auxiliary memory is a disk or drum. Information is moved into the core only on demand (Demand
.. Paging), i.e., no attempt is made to move a page into core memory, and consequently words into the

cache, until some program references it. Information is returned to core memory in accordance with a
hardware algorithm in theMBox hardware. Information is returned from core memory to auxiliary
storage at the discretion of the operating system:a,pagi0ia,algorithm. Information movement across the
gap bridging the level between auxiliary storage and core memory-cache memory is called page traffic.

The MBox, in a sense, is an interface between the EBox (processor) and the SBus. It provides individ­
ual mapping (relocation) of each page (512 words) of both user and monitor address spaces, using
separate maps for each. The MBox uses hardware storage to access and load the mapping information.

EBOX/2-35

tI1
tl:i o
~

--­tv
I

W
0'\

E
/
M

I
N
T
E
R
F
A
C
E

1,./

•

~
1

I PC +1 IVMA L AD \
t

I I I
L \ / ADB \ / ADA \

/ VMA AD \ "~ "
I I

/ VMA ADB\ / VMA ADA \

~ 171717,111111l
FM

F
ADR: 3 M 31/////////;7;/// 3 I lAR I l A

171717,111111

D
2

R 1 I 1

~ 0 / ARM \ / ARXM \
I

I FM
CONTROL

I FM WRITE 1
CONTROL

"NO REQ
AD ADA ADB FM ADR MEM DISP L

IS MEMORY
MOVE: I A +XCRyl I BR* 2 I ACO I I B WRITE DRAM B I ISSUED" CYCLE

STO AR

FOR FM CONTROL
DATA WR

I I
LDRAM 8=5 EBOX

CLOCK
CONTROL

Figure 2-32 Executor Setup for Store Cycle

u 89 Ie 9 Ie

IRED IR~1 AC 3 I
.r

\ /
1

DRAM
"LAT CHED"

A J
I I 5 I

I I

•
CRAM CRAM ADR 1 1 ADR OB-l0

CONTROL \ /
1

MEM DISP

1MB_I NI
WAIT COND :STAC

I
I CONTROL RAM

REGISTER

I

CLOCK CRM

10-1601

t'I1
IJ:j

o
~

-........
IV
I

VJ
-...l

E
/
M

I
N
T
E
R
F
A
C
E

,.r

•

--NEXT INSTR COMMING IN

t±J 9

IR i~1
I

PC+l IVMA / AD \
J I I I

\ / \, / ADS \ / ADA \
1 J..-- -~ VMA=

AC REF

/ / VMA AD \ BR3 DRAM

I I 1
/ VMA ADS \ / VMA ADA \

I I r
CRAM ADR
07-10

"CONDITlONS"- CRAM
ADR

CONTROL \ ~ FM
F 1

ADR= 3 M 3 171717,111111 3

~ARI I A 2
D f"NEXTINSTR" R 1

~)
0 ARM / ARXM \

f
FM

I CO~TMROL . ~
WRITE I FM WRITE I

CONTROL

MEM CONDI

I
AD ADA ADS FM ADR DISP ~

STAC: I NEXT IA + XCR1
I

I CONTROL RAM
MEMORY

I MS I FM I
REGISTER

CYCLE WAIT WRITE ACO NICOND I
CONTROL

I I
I

ESOX
CLOCK CRM

CLOCK
CONTROL

Figure 2-33 Finish Store Cycle, perform! NICOND Dispatch

12

3

I
I

/

"f

!

/

.-

10-1602

It also contains a 2048 word cache for holding the data for the mapped references. On each memory
request from the EBox, the nine high-order bits of the virtual address and the type of request (read,
write) are compared with the contents of the' hardware tables in the MBox. If a match is found, the
location containing the match also contains 13 high-order address bits to reference the physical page in
the cache. If no match is found, a 512-word "Page Table" in physical core memory is referenced. The
word selected in this page table is determined by a dispatch bas d on the original nine high-order
address bits. The 13 high-order address bits and use bits found in tn word are written into the MBox
hardware table; the use bits are checked against the type of EBox re rence. Four possible cases exist
concerning the disposition of the use bits:

* 1 The page is not in core. £? 8 ~
2. The page is protected from the type of request. (... ~
3. The page is nonexistent. '\
4. The page is in core and is compatible with the type of request.

For the first three cases, a page fault (trap) occurs; for the fourth case, the requested word is fetched
from core memory (actually words are fetched four at a time, differing only in the two least significant (
address bits) and written into the cache. Concern here is with the page fault situations. The MBox
constructs a page fault 'Ulrd in one of its internal hardware registers, the EBus register. The word
contains information relating to the type of fault that occurred. The EBox is waiting for an MBox
response to its request; the MBox, therefore, asserts PF HOLD, and some time later asserts MBOX
RESPONSE IN. When the EBox recognizes the PF HOLD signal, it forces the CRAM address to
1777. This is the first microinstruction in the micropage fault handler. The EBox does not issue an
EBox clock until the CRAM address has had time to set up. Once the address is stable, a single EBox
clock is issued to the CRAM board to access the microinstruction.

2.4.1 Page Fail Handling - Functional Flow (
Figure 2-34 is a functional flow of the microprogram page fault handler. The EBox contains a 4-bit I
state register. This register, during certain instructions, holds a number that may be used to modify the
state of the CRAM address. For instructions that do not use the State register, it contains zero.
Generally, the STRING, EDIT, and BLT instructions require cleanup following a page fault so that
they may be properly terminated. For these cases, the State register contains a value in the range of
1-7. The more general case is discussed here; this is where the State register contains zero. For both
cases, INSTR ABORT (coded in the condition field of the microinstruction fetched from CRAM
address 1777) performs the following functions:

TRAP REQ 1 +- TRAP CYCLE 1
TRAPREQ2 2 TRAPCYCLE2
ADR BRK INH +- ADR BRK CYCLE

These actions are necessary to assure that the PC flags reflect the state of the EBox when a page fault
occurs during the fetch of the trap instruction, during its execution, or during an address break page
fault. A State register dispatch is given, but because the State register is clear, the base address is used
to obtain the next microinstr1!ction. A priority interrupt has a higher priority than a page fault (Figure
2-35); therefore, a pending interrupt is checked for first. If INT REQUEST is true, the PI Handler is
entered to service the interrupt. If no interrupts are pending, the page fault is handled. The third level
of priority is given to traps and finally to all other events being processed by the microprogram.

A page fault occuring in response to an API interrupt function is a fatal error. Thus, when the page
fault handler finds PI CYCLE set, it sets the I/O Page Failure flag, dismisses the failing interrupt, and
then, if possible, restores the EBox to the state it was in prior to the interrupt. The setting of IOPF
eventually causes an interrupt on the APPR error channel. The PF Handler now attempts an instruction
fetch.

EBOX/2-38

L

IOPF-l
"FATAL ERROR"
DISMISS THE
INTERRUPT AND
TRY AN INSTR
FETCH. WHILE
WAITING FOR
THE APR INT.

"NON PAGE
FAILURE ENTRY"

YES

READ EBUS REG
ARX-PC;
CURRENT PC
PC-VMA;
FAILING
VIRTUALADR

SR=O

WAIT FOR BUS

"ANY PAGE
FAUL T ENTRY"

PERFORM STATE REGISTER
DISPATCH. (STATE REGISTER
RANGE 0 .; SR .; 17)
INSTR ABORT: COPY STATES
OF ACTIVE TRAPS (TRAP
CYCLE 1.2) INTO
CORRESPONDING TRAP REO
FLAGS THEN CLEAR TRAP
CYCLE 1 AND 2.
INH ADR BREAKS

CLEANUP
EXTENDED

Figure 2-34 Page Fail Handling (Sheet 1 of 2)

EBOXj2-39

10·1603

N01"E

: I
pr- HOLD 01 I

~}S~R ~ ____ ==-u,-.-",-=-__

INPUT fROM 501

ESOX REQUEST

<WRnE>
1'1180)(REsr

I

Ji--~I

JL
~
UPT REF, STORE 1M

I OLD PC WORD Ir~ !I:

i I PROCESS TABLE ~'
ullOC,'lTION
U UBR+,;;5,;;,O~1~_~_ -, "r MBOJ(WAIT~O

I~~-J 4 " lViBOX WAIT'~l , , EBOX REQUEST I ENI\BlE VMA' <WRITE>
, H>JPUT FROM 5[12 i\!ISOX FlESP , -f'~ "~"""~O J

\,~X' f
'I

(2 "I
"',-"I

Handling

PHYS~C!';;'L A.DDRE!]S

~BOX REPU·\CES [Ins
'1;2,-2G 't1~ lH '1!'L,~.~, 'j 3-:26

mTS 14-~G GO~~TA~,r'J
THE V1B"rU.I.4.L PAGE:;¢
,')r iHE F,~.ULTH\jG

PAGE,

PC WORD
f-H(JM rnOCESS
TP,m .. E lOCAT:1.:)r\l
UBR+5!D2

N07E 2:

EBOX R:=OUEST
<READ>
;iJlOBX RES?

START T:-~= HjrTii~L Ef'JTR':r'

FO~NT FOR THE fv'H;C:RG Pt:10GiR,j.,\M
THE ,t:\;~ = FLAGS, FC
THE vr\"1;\~-/.\j:~

(ENTRY)

YES

NO "I/O PAGE FAUL r'
PI HANDLER

"TRAP INSTR PAGE FAULTS"

YES

PF HANDLER

YES

NO

TRAP HANDLER

OTHER ACTIVITY

10-1605

Figure 2-35 EBox Priorities

Obtaining and Adjusting the PF Word - Assuming PI CYCLE is clear, the AR is cleared and the ECL
EBus is requested. This is to transfer the PF word from the MBox EBus register to the AR register in
the EBox via the EBus. Because the PI system and external or internal devices can also use the EBus,
the microprogram must force its release. When the ECL side is .obtained, the EBox reads the PF word
into AR. The PF word, as it is constructed by the MBox, contains the physical page number in bits
14-26. The EBox must replace this with the virtual address and also clear bit 13. The current virtual PC
is temporarily placed into ARX; the failing VMA is placed into AR while the old PC is saved in BRX.
The ECL EBus is then released. The ARX and AR are shifted to adjust bits 13-26 to be the VMA
13-26.

Figure 2-36 shows the three locations in the user process table dedicated to page fault handling.

EBOXj2-41

~I
UBR I

II ~
_ ...!BOX ;..J

500 STORE PF WORD HERE

501 STORE OLD PC WORD
HERE

502 NEW PC WORD

fSECTION OF
USER PROCESS
TABLE

!

i,..-

10-1606

Figure 2-36 Process Table PF Location

2.4.2 Process Table References
The VMA is loaded with low-order process table location 500 and an EBox request is issued to write
the PF word (concurrently in AR) into process table location UBR+500. The next microinstruction is
loaded and EBox clock sets MEM CYCLE, causing MBOX WAIT. The AR is enabled from the old
PC word; the input to VMA is now 501. As soon as the MBox responds, MBOX WAIT is removed
and the cycle is repeated. This time the EBox request is to write the old PC word (now in AR) into
process table location UBR + 501. Once again, the next microinstruction is loaded and EBox clock sets
MEM CYCLE, causing MBOX WAIT. The VMA input is now 502. As soon as the MBox responds,
MBOX WAIT is removed and the cycle repeats, in this instance for reading a new PC word from
process table location UBR + 502. The new PC word places the EBox in a specified mode and the first
instruction is fetched from the appropriate handler. This completes the page fault cycle.

2.5 TRAP CYCLE - INTRODUCTION
A Trap is produced by setting either of two trap request flags in the EBox (TRAP REQ1 or TRAP
REQ2). The programmer knows these flags as TRAP2 and TRAPI. The conditions that set TRAP
REQ1 are equivalent to the arithmetic overflow conditions that set SCD OV. TRAP REQ2 is set by
the various pushdown overflow conditions: the left half of the pointer is counted down to -1 (no carry
out of bit 0) in a POPX, or is counted up to zero in a PUSHX. (The condition for this is the presence of
a carry out of bit 0, but the condition is detected by the microprogram and the trap request flag is set.)

2.5.1 Trap Handling
The Trap Handler (Figure 2-37) is entered at NICOND Dispatch time providing its priority is highest
of the major priority events. The microprocessor NICOND Dispatch, together with four queues
arranged in a round robin priority structure, is shown in Figure 2-38. The TRAP request is served only
when QO priority interrupt requests are pending and no page fault is pending. It does, however, pre­
empt the normal instruction cycle. Both the user and exec process tables contain dedicated locations
for processing traps. These locations are XXX 421 for arithmetic overflow (TRAP1), xxx 422 for
pushdown overflow (TRAP2), and XXX 423 for the programmed trap (TRAP3). XXX is replaced by
the appropriate base registel' (UBR or EBR), which resides in the MBox. The base register used by the
MBox is determined by the state of the qualifiers sent during the EBox request. The MBox fetches the
appropriate trap instruction and places it on the cache data lines while issuing MBOX RESPONSE
IN. The EBox then executes the trap instruction. It is possible for the EBox request for the trap
instruction to cause a page fault. If this occurs, the page fault handler is entered at CRAM address
1777 and the trap cycle flags are pushed into the trap request flags so that the trap flags may be saved;
the trap cycle properly reenters at a later time.

EBOXj2-42

tI1
t:Ij

o
~

--­tv
I

"'" I.U

--

E
/
M

I
N
T
E
R
F
A
C
E

•

,...
CYCLE Z CYCLE 1 " ~\

421-AROV
'l"BIT 34" lBIT 35" /1- ()O

VMA= 422- PDOVL #=420

423-PROGRAMMED TRAP VMA
COND=VMA-#

CONTROL "SEL VMA AD"
EBOX CLOCK --------r J ~VMA~CONDl #"

MICRO
INSTR

EBOX REQUEST LOAD ARX 1 EBOX

MCl MBOX I --' REQUEST --
CSH EBOX Till CY C REQ ---

CONTROL r J ~MEM~SPECT #"
MICRO
INSTR

, f --------
MBOX CLOCK

MCl VMA UPT
SP MEM CYCLE

MCl VMA EPT PAGE TABLE
REFERENCE #04,05

MCl PAGE UEBR REF CONTROL

~ AD TADATMEMICOND~ MICRO

INSTR
ARX-MEM T T ------- ..

"ADA" T
T

lOAD IR

I MEM02=1] IR

I

~ \ MODE USER EBOX ClK MEMORY AD

CONTROL CYCLE
CONTROL "EBOX C

"ARX"

'\ MCl L--f ADA

lOAD
ARX

I ClK EBOX ClK ARX RESP
MBOX I MBOX RESPONSE IN EBOX MBOX WAIT

CLOCK -t:SEl2 ARXM \ CONTROL
ClK RESP MBOX -'''SELECT SEll

'----' CACHE DATA" T CACHE DATA LINES (TRAP INSTRJ-

NOTE l'

VMA
27-33

4208

4208

7 4208

Figure 2-37 Trap Cycle

PT REF,READ
TRAP INSTR.
FROM USER OR
EXEC PROCESS
TABLE INTO ARX

WAIT FOR MBOX
RESP ENABLE
ARX INTO AD
ENABLE AD

INTO IR I L TRAP
HANDLER ...

:/

VMA I VMA I TYPE OF TRAP
34 35

o

o

AROU

PDOVl

PROGRAMMED
TRAP

10-1607

L MICRO

~
[H IGHEST]

01
MICRO MICRO MICRO NICOND - DEV DEV DEV PI

f--
INSTR INSTR INSTR INSTR DISP - N 2 1 REO -- -

. \
, I ,

MICRO PROCESSOR
02 PAGE

WITH EMPHASIS ON FAULT FAULT r--
NICOND REO

03 TRAP TRAP
FLAGS REO -

NOTE:
Event 0 would be for example the

04 EVENT INSTR
0 CYCLE -

INSTRUCTION CYCLE

[LOWEST]
10-1608

Figure 2-38 Central-Server Model (Round Robin Priorities)

2.5.2 Address Generation
Referring to Figure 2-37, the VMA is enabled to be input from the VMA ADDER. The condition field
of the current microinstruction enables the number field to generate the process table low-order
address 420; the low-order two bits of VMA AD 34 and 35 assume the state of the trap flags.

2.5.3 PT Reference for Trap Instruction
The next microinstruction must generate the EBox request and enable the appropriate qualifiers to
appear on the EjM Interface lines. The page table reference control samples the state of the USER,
together with the special function and number bits and then asserts either MCL VMA UPT and MCL
PAGE UEBR REF for a USER trap situation or asserts MCL EPT and MCL PAGE UEBR REF for
an EXEC trap situation. The MEM field is coded to load ARX and enable the EBox request.

Assuming no page fault occurs, the MBox fetches the instruction, places it on the cache data lines, and
asserts MBOX RESPONSE IN. The MEM cycle control samples the MEM field function LOAD
ARX to enable one leg of the ARXM and CLK RESP MBOX enables the other leg. Thus, the instruc­
tion enters ARX on the next EBox clock. Next, op code and AC field of the instruction in ARX must
be enabled into the ADDER and then latched into IR. The condition field of the current micro­
instruction CONDjLOAD IR unlatches the IR for one EBox cycle, allowing the AD to load into IR.
On the next EBox clock, it latches again. The final step is to perform the trap instruction. This com­
pletes the trap cycle.

2.6 INTERRUPT CYCLE - INTRODUCTION
The system must possess a true priority interrupt system that is flexibly structured and controlled. Its
operation in establishing priorities and recording and sequencing interrupt requests is essentially
instantaneous and independent of EBox action. Interrupts of high priority must be permitted to inter­
rupt partially completed responses to those of lower priority. To maintain fast response, interrupt
requests should require no decoding action on the part of the EBox to determine their source or
nature. Capability for dynamically varying the priority structure to meet the demands of a changing
environment must be available. In addition, no other system element may be designed such that its
proper operation requires inhibition of the priority interrupt system for any period of time.

EBOX/2-44

c

(

'" f

(

~ The basic priority interrupt level has four mutually exclusive states that can be described as Disarmed
(-PION), Armed (PION), Waiting (PI REQ), and Active (PI HOLD). Figure 2-39 shows the basic
concept of the interrupt system for two channels. It is arranged in four groups, the interrupt state, the
FF configuration for two of the seven possible channels, the level enable, and the source of change
signal. In the Disarmed state, the interrupt level rejects all incoming interrupt trigger signals. By
performing a CONO PI and specifying the appropriate bits, the priority interrupt system can be armed
or disarmed for any or all channels.

>-In Figure 2-39, the processor (CPU) performs a tONO PI and arms both channels. In the armed state,
the interrupt level accepts a trigger signal from an outside source or from an internal source, e.g., the
APR, and moves to the waiting state (REQU..,gST STATE), where it remains until it is acknowledged
by the EBox: All waiting and enabled requests are input to a priority network where they are compared
with the current state of the priority interrupt system. In this example, both channell and channel 2
are requesting service, and both channels have previously been armed by a CONO PI instruction. In
addition, an interrupt is shown holding on channel 2. Thus, until it is dismissed by the processor, the
channel 2 request pending is held in abeyance. Furthermore, the channel 1 request causes the device
subroutine for channel 2 to be interrupted, diverting the processor to the device subroutine for channel
1. The first instruction that will be executed as a result of an interrupt (subroutine type service) is a JSR
instruction. This instruction saves the processor flags, program counter value, and also holds the
interrupt.

INTERRUPT
STATE

DISARMED
(- PION)

ARMED
(PION)

WAITING
(PI REO)

ARBITRATION

FF CONFIGURATION

CH # 2 CH # I

LEVEL
ENABLE

SOURCE OF
CHANGE SIGNAL

[EJ LEJ
I I

I : "CONO PI"
~I.----------TI---------CPU

cd]' dJ'
I ' ..

I
I

rn
I
I
I

+
PI NET

I
I
I

t

I DEV A} INTERNAL OR
14:.---------DEV B EXTERNAL SIGNAL

I-__ ~_ TO MICRO CODE
~ PI HAN DLER

~~---CH-#--l----~I~ I
REO I E BOX FETCHES
HIGHEST: I JSR INSTR

ENABLED !KtSET PI HOLD :~:~N:0+2N

: NO HIGHER PRIORITY dJ LEVEL ACTIVE

ACTIVE ~ WAITING, AND ENABLED

(PI HOLD) 1 0 r CHANNEL #2 THIS WILL SET HOLDING THE

[

DEVICE SUBROUTINE IS HOLDING NOW INTERRUPT ON CHANNEL #1
IN PROGRESS IS TO DISMISS THE INTERRUPT A JEN
DEFERRED FOR
HIGHER PRIORITY INSTRUCTION IS EXECUTED IN THE
ON CHANNEL # 1 CORE MEMORY INTERRUPT HANDLER

10 - 1609

Figure 2-39 Interrupt Level Operations

EBOXj2-45

•

When service has been completed, the service routine dismisses the interrupt, restores the flags and
program counter, and the channel 2 subroutin~ continues. Interrupt channels are organized into seven
basic levels, which are software assignable (armed): the lowest number has the highest priority within
the numbered sequence (Figure 2-40). Each channel is subdivided into finer levels or priority by hard­
wired physical device numbers. As indicated, the first eight physical numbers (0-7) are assigned to 1-8
Massbus controllers in the system. The next four physical numbers (8-11) are assigned to 1-4 DTE20s
(10/11 Interfaces); and numbers 12-14 are reserved for expansion. Finally, physical number 15 10 is
assigned to the I/O bus adapter (one exists per system, if needed).

Each interrupt channel has a dedicated pair of unique locations within the EPT. These locations may
be indicated as 40 + 2n, and 41 + 2n; where n represents the channel number. When a device initiates
an interrupt in the KL10 system and is selected for service, the device places onto the EBus a special
function word hereafter labeled API function. This function contains information that specifies the
type of service regui~d. Figure 1-32 indicates the format of this word. Note that the format varies
from device to device, but the functions that can be specified in bits 3-5 are common to all system
devices. Function codes of 0, 1, and 7 cause instruction fetches from 40 + 2n initially and, depending C
upon the type of instruction in 40 + 2n, may at some point perform an instruction fetch from 41 + 2n.
In general, 40 + 2n contains one of the following types of instructions: --.

~JSR
,.--. JSP* -
.---- PUSHJ*
, ___ MUUO

151 PRIORITY

HIGHEST

2nd PRIOR ITY

3rd PRIORITY

41h PRIORITY

5th PRIORITY

6th PRIORITY·

'" - -7th PRIORITY - -

\
LOWEST /

INTERNAL TO PROCESSOR

HIGHEST PHYSCAL # WIRED LOWEST
PRIORITIES

o 1 2 3 4 5 6 7' 8 9 10 11 12 13 14 15 35

M M M M M M M
B B B B B B B
C C C C C C C

L'
M
B
C

U U U U I
B B B B B
C C C C C

~
LEGEND

M BC- MASS BUS CONTROLLER -RH-20
U BC- UNIBUS CONTROLLER DTE-20
IBC- I/O BUS CONTROLLER DIA-20
APR - ARITHMETIC PROCESSOR STATUS REG
MTR - DEY ICE OK -20

10-1610

Figure 2-40 Typical Interrupt Priority Chain

*These instructions should not be used because nothing is known about the ACs when the interrupt occurs. JSR
or MUUO are better choices.

EBOX/2-46

(

/
f

\.

{

All of these instructions save the flags and PC, a requirement when entering the device service routine.
If the instruction at 40 + 2n is a BLIQ(~ction, a specified number of transfers are performed, one
transfer at a time, each time returning to the interrupted program or to a higher level subroutine. On
the last transfer, the return to the interrupted program is "NOT SKIPPED" and an instruction is
fetched from 41 + 2n. In a similar fashion, if 40 + 2n contains a SKIP class instruction; when'the skip
condition is satisfied, a return to the interrupted program takes place. If the skip is not satisfied, the
instruction in 41 + 2n is executed instead of the return. The API function generated by the Massbus

\
controller is always a function code of 2 in bits 3-5; this implies a dispatch to the physical address
provided in the API function word. The dispatch is into the device handler for the Massbus devices.
The type of API function requested varies with the device or controller responding.

It is possible for the processor to generate a program request for an interrupt on any of the seven
channels. This permits the processor to carry out the highly time-sensitive portion of the interrupt

""" ~esponse, and to then create for itself a low priority interrupt to call for the deferred servicing of the
~ss time-sensitive portion at a less pressing time.

2.6.1 Duration of Uninterruptable Intervals
Such an interrupt system is of little value if the CPU can remain in an uninterruptable state for any
significant period of time. Under normal operating conditions, the longest uninterruptable interval
must be kept short. In addition, no malfunctioning peripheral hardware or software can be allowed to
"hang up" the CPU in a noninterruptable state.

2.6.2 Interruptable Instructions

-9

To ensure that the longest uninterruptable interval that the EBox may experience in normal operation
is short, some long instructions have been designed so that they may be interrupted during execution.
First, all instructions are interruptable at indirect references during the effective address calculation.
Second, instructions that consist of two parts may be interrupted between the two parts, a PC flag
being set to record this for later, when only the second part will be done. Third, iterative instructions,
such as BLT, may be interrupted at any point, as an AC pointer defining work still to be done is beng
updated continually.

2.6.3 General Interrupt Sequencing
The mechanism for handling the various levels of interrupt priority in the hardware, and the relation
between this mechanism and the device subroutine call and return sequence as it might occur in prac­
tice are shown in Figure 2-41. Three channels are armed by setting their PIOtJ" flags. Channel 2 has
highest priority, followed by channel 3, and finally by channel 4. Note that the e~cution of a CONO
PI instruction caused the PION flags to set. Three separate interrupts occur simultaneously on chan­
nels 2, 3, and 4. The priority network is shown arbitrating the three priorities. The lowest channel
(highest priority) is serviced, provided it is of higher priority than the current level.

In this example, all three channels are requesting and no channels are currently holding interrupts;
thus, the channel with the lowest number is selected. As a result of the arbitration, the selected channel
number is combined with the appropriate constant to form the address 44[40+2X (2)]. In Figure 2-41,
the device subroutine is entered by fetching and executing the instruction in EPT location 44, which in
this instance is a JSR. The request is not cleared until the program issues CONO, DEV. Notice during
the entire service routine (in this example), the requests on channels 3 and 4 are waiting for the process­
or. The last instruction to be executed in the device subroutine is a JEN (JRST 12); this restores the
flags saved by the JSR instruction executed in 40 + 2n and dismisses the interrupt on channel 2, which
is holding off channels 3 and 4.

EBOX/2-47

PION 2 (ARMED)

PION 3 (ARMED)

~ON 4 (ARMED)

PIREQ 2 (WAITING)

PIREO 3 (WAITING)

•
~IREO 4 (WAITING)

PI HOLD 2 (ACTIVE)

PI HOLD 3 (ACTIVE)

~ HOLD 4 (ACTIVE)

PRI NET (ARBITRATION)

CONO PI

DE

I

I :
~ :

V REO'S
2,3,4

DISMISS

CONO

iCH 2,3,4 I CH 3,4

JiR

"
JR~TF

DEV SUBR CH 2 IIIDEV 40+2N SERV ROUTINE

NOTE:

DEV SUBR CH 3

DEV SUBR CH 4

MAIN PROGRAM
I\------..J

ASSUME 40+2N, 41+2N TYPE INTERRUPTS.
CH#2 -44,45
CH#3-46,47
CH#4 -50, 51

MUUO

Figure 2-41 Basic Interrupt Sequencing

2.6.4 Interrupt Dialogue

"

"
I

CONO

DISMISS

E
JRSTF

"'HO LD
S
ISS

THU
DISM

BL KO
SES DISMIS

j-SINGLE
INSTR

10-1611

The handling of the EBus dialogue and processor bus requests during I/O instruction execution and
priority interrupts is provided by the Priority Interrupt Board, which comprises the necessary inter-

-~acing logic, control logic, and registers. Initially (Figure 2-42), assume that the appropriate PION
flags have been set on the PI Board and it is now capable of accepting interrupts. For this example, the
DTE20 will generate an mterrupt fOJ a byte 0Ldata. The drawing is divided into three sections: EBox,
control activity., and DTE20. The control activIty consists of control action taken by either the EBox
or the DTE20, as appropriate.

EBOX/2-48

(

(

(

E 8UX
CO:\~it:'lOl

,l\C'ff';ltrl"

Dialogue

DYE 20

//?'"'------I ~\rf E F; r~Al ~"'~--."" .. "\

,f \. \, r: .~!)
'''-.-Ji I)TE 20 ~ /

II !NT~rqNp.t f"-
, PROe
kc· ___ ~_~-=

10-1'51:?

The DTE20 asserts one of its interrupt lines P\.,l-7; this level enters the PI Board where, as indicated, it
is arbitrated with any other incoming requests and any holding interrupts. The PI Board now com­
mences a dialogue between all candidates on the selected interrupt channel. The selected channel

_ number is encoded in controller select (CS) lines 04-06. The function "PI SERVED" is encoded in
function (F) lines 00-02. These signals are placed on the EBus and 200 ns later the PI Board asserts the
signal DEMAND. This signal instructs the device (DTE20) to place its physical controller number on
a prespecified bit position of the EBus (bit positions 8-11). Each controller, therefore (including the
I/O bus adapter, bit position 15, disks or drums, bit positions 0-7), on the selected channel does the
same. Approximately 400 ns"later, the EBox drops DEMAND; nowever, the controller select and
function lines do not change for an additional 150 ns after DEMAND is removed. The physical
controller numbers received by the EBox over th.e EBus are arbitrated in much the same way as the
channel priorities. An exception is the ARP, which is an internal KLlO device, and does not fall into

~ quite the same type of scheme, i.e., it does not place a physical number on the EBus; obviously this is
"not necessary because it is already within the EBox. Rather, it provides a physical number directory on
the board. This device vies with the device that is selected on the basis of physical number highest
priority (Figure 2-40). Basically, the lower the numeric value of the EBus bit position onto which the
device is hardwired to place its physical number, the higher the priority of that bit. The highest phys­
ical number priority, therefore, is given to bit position 0, and the next to bit 1, and so on. The highest
priority physical number (in this example only) is assumed to be that of the DTE20 (one of four such
possible Unibus controllers on the EBus).

The PI Board now asserts the enco,~d phY§~1 number of the selected controller (DTE20) in con­
troller select (CS) lines 00-03,., the interrupting channel number encoded in CS lines 04-06, and the
function "PI ADDRESS IN" is encoded in function lines (F) 00-02. Again, the EBox waits a period of
200 ns and then asserts DEMAND. At this point only, one controller has been selected; it compares its
physical number (hardwired on its backplane) to the number received on EBus bits 00-03. Upon
determining that it is the selected controller, the DTE20 places the required API interrupt function
onto the EBus data lines and asserts ACKNOWLEDGE and TRANSFER to the EBox. The
ACKN.0trL!DGE signal causes the I/O bus adapter to ignore the function code "PI ADDRESS
IN.'' In tea sence of ACKNOWLEDGE, PI ADDRESS IN would enable the I/O bus adapter to
send its API function to the EBox, because no decoding and comparison logic exists in the adapter.
This logic does exist in the DTE20 and other devices. The TRANSFER signal specifies to the EBox
that the appropriate device has responded, and alerts the EBox that an interrupt is set up and pending.
If the API function is sent during _!! DTE20 to lO byte transfer, this could specify that the EBox
perform aDA T AI function to the DTE20; in this way, a byte of data is picked up as indicated in
Figure 2-40.

~he case of DTE20 byte transfer is somewhat unique in that the DTE20 holds onto the EBus until the
EBox transmits the appropriate function, in this case DATAl encoded in function select lines 00-02 (at
this time CSOO-06 = 0). The byte is picked up by the EBox, and the DTE20 generates ACKNOWL­
EDGE and TRANSFER once again. This completes the operatiora Note that ACKNOWLEDGE
informs the I/O bus adapter not to respond to the functions being carried out(Because the requests on
channels 3 and 4 have been pendihg during the service routine, when the interrupt that has been
holding on channel 2 is dismissed, the priority net arbitrates between channels 3 and 4 and selects 3 for
service. This generates the address 46 (40 + 2n), and this time the instruction is an MUUO. As with the
lSR during the execution of the MUUO, the request is transferred to the channel 3 hold flag. Note that
in the example, the request on channel 4 is still waiting for service. Finally, the lEN instruction at the
end of the channel 3 service routine restores the flags and priority interrupt system, dismissing the
interrupt on channel 3. In the same fashion as with the other interrupts, the priority net generates the

EBOX/2-50

(

(

address 50 (40 + 2n). In this case, however, location 50 contains a BLKO instruction, which cannot
save the flags or PC of the interrupted proc.ess. This type of instruction behaves in a special manner
when used in an interrupt location; the BLKO instruction performs a series of transfers to a specific
device; however, after each transfer, return is passed to the current PC value, whatever it is. This
continues until the last transfer is completed, when the instruction in EPT location 51 (41 + 2n) is
executed. This instruction should be of the type that saves the flags and PC, and will generally enter a
subroutine probably to set up a new block pointer, because the currenf one has been expended. Note
that in the beginning some main program, perhaps the monitor, was interrupted, and now control is
passed back to it.

2.7 BASIC MACHINE MODES INTRODUCTION
In general, the KLl 0 permits the operation of a number of different programs, all resident in the
machine simultaneously, without interference or undesired interaction among them whether due to an
inadvertent program bug or maliciousness. The operation of the machine is divided into two modes,
User mode and Exec mode, each with two submodes. User mode consists of Public mode and Con­
cealed mode. Exec mode consists of Supervisor mode and Kernel mode. The machine mode structure
and hierarchy are illustrated in Figure 2-43.

I" PUBlIC------*foo~----

r - - -::L~U:;-

I
I
I
I
I

EXEC

~~=~xxxxXlI
LEG.END

K KERNEL
S SUPERVISOR
C CONCEALED

-C NON CONCEALED

10-1613

Figure 2-43 Mode Structure and Hierarchy

EBOXj2-51

•

Basically, the programs of individual users operate in Public User mode, where the program can have
access to one of two possible virtual address spaces. If KL 1 0 paging is in effect, the user has access to a
virtual address space of 256K words via an 18-bit virtual address, which may not be referred to by any
other user (without the cooperation of the monitor). If KIlO paging is turned on, the program has
access to a virtual address space of 256K addressed via a 18-bit virtual address, which as previously
pointed out cannot be referenced by any other user without the monitor's cooperation. All instructions
that do not compromise the integrity of the system are legal; this includes the following:

1. The halt instruction (JRST 4)
2. Any instruction attempting to affect the PI system (JEN)
3. Any I/O instruction directed at devices with device select codes below 740
4. Any reference to the concealed address space except for fetching of a portal instruction
5. All illegal instructions or op codes.

C:

The user's address space (when KLlO paging is in effect) is divided into 32 (decimal) sections; each
section contains 512 (decimal) pages and each page consists of 512 (decimal) words. The existence of (~'
these pages is nominally invisible to the user program. However, the amount of physical address space '
available is actually a number of these pages (at least one page), none of which need be contiguous
either in physical core or in the user's virtual address space, although it is desirable from a machine
standpoint to do so. Each of these pages can be designated public or writable by a 1 in bit 1 or 2,
respectively, in the page table word for the page. Pages that are not designated writable cause an
instruction, which attempts to write them, to trap to the monitor as a write protection violation page
failure. A program running in pages designated public is in Public mode. A program running in pages
not designated public is running in Concealed mode. Whether an instruction is performed from Public
or Concealed mode is determined by the Last Instruction Public bit of the PC word (bit 7). The Last
Instruction Public biUs copied from the Public bit of the page map word for the page from which the
instruction was fetched. An instruction in Public mode (that is, one performed with the Last Instruc-
tion Public bit a 1 in the PC word), which attempts to transfer to a location in a non public area not
containing any Portal instruction, or an instruction in Public mode which attempts to read, write, or
execute a location in a nonpublic area, traps to the monitor as a concealed violation page failure. A
Public mode program can only transfer to a Concealed mode program by transferring to locations that
contain Portal instructions. A Concealed mode program can read, write (if writing is allowed), execute,
or transfer to any user location designated pUblic. Concealed mode is provided to allow the loading of
a proprietary software package together with a user's program and data while preventing the user's
program from copying information discerning the structure of the proprietary software. This provides
protection of proprietary software without complicated protective overlay or transfer schemes
involving the monitor and allows direct interaction between user and software package with virtually
no overhead.

The monitor operates in Exec mode. It is responsible for scheduling users, allocating memory and
other facilities, servicing interrupts, and performing actual I/O. At any instant, the monitor has access
to an effective address space of up to 8192K (for KLlO paging mode) or 256K (for KIlO paging mode)
words and by overt action may address any portion of physical memory. The monitor can be divided
into two parts: a normally small part, which operates in Kernel mode and is resident, and a larger part,
which operates in User or Supervisor mode and may be swapped as necessary.

EBOX/2-52

The Kernel mode part of the monitor handles the PI system, performs the direct I/O for the system,
performs page management, and perfor~ all other functions that affect all users of the system. The
Supervisor mode part of the monitor performs the general management of the system (such as MUUO
handling and dispatch) functions which affect only one user at a time. The Supervisor mode and
Kernel mode of the monitor are analogous to the Public mode and Concealed mode of the user's
programs in that the Supervisor runs in that part of the Exec address space designated public and the
Kernel runs in that part of the Exec address space which is designated nonpublic; this simplifies illegal
reference detection logic. Each address from 20 through 337,777 is broken up into pages, but these
addresses can be made to refer to the same addresses in the physical memory space by making the
virtual page address equal to the physical address portion in the corresponding page table entry. The
entire Exec address space is broken into pages of 512 words which may be designated either accessable
or not access able, public or nonpublic, and writable or nonwritable and can be swapped out. An
instruction in Supervisor mode that attempts to write into a page which is not writable will trap as a
page failure. An instruction in Kernel mode may write into any location whether or not it is designated
public. An instruction in Supervisor mode (that is, one performed with the Last Instruction Public bit
a 1 in the PC word) that attempts to transfer to a location in an Exec nonpublic area not containing a
Portal instruction traps to the monitor as a page failure. An instruction in Supervisor mode that
attempts to read, write, or execute a location in an Exec nonpublic area traps to the monitor. In each
instance, the trap is a Kernel violation page failure. A Supervisor mode program can only transfer, i.e.,
jump to a Kernel mode program, by transferring to locations that contain Portal instructions (JRST
1).

A Supervisor mode program can also reach Kernel mode (or any other mode) by performing an
MUUO or other instruction that causes a trap, if the appropriate trap new PC word indicates that the
next instruction is in Kernel mode. A Kernel mode program can read, write, execute, or transfer to any
location designated public, i.e., in Supervisor mode; all instructions illegal in User mode are also illegal
in Supervisor mode.

The mode control logic consists of the following:

User Mode
Public Mode
User lOT
Private INSTR
Miscellaneous Combinational Logic

The mode control exerts a powerful influence over the disposition of the processor. It monitors
instruction fetches from Public mode to prevent illegal entry to either Concealed mode from User
Public mode OJ Kernel mode from Supervisor. In addition, it detects the fetch of a Portal instruction
and adjusts the state of the mode logic accordingly. The relationships between the various modes and
their transfer instructions are shown in Figure 2-44. In general, two instructions allow flags that affect
processor modes to be manipulated. These instructions are:

MUUO
JRST 2

Of the two, only the MUUO can cause transfers to any mode from any other mode. The JRST 1
(Portal 1) simply allows entry to a Private mode from a Public mode. Each time an instruction fetch is
specified and the reference is to a nonpublic page, a test for illegal entry must take place to maintain
integrity in the system.

EBOX/2-53

•

PUBLlC-O
PRIVATE INSTR-1

MUUO OR
JRST 1 (PORTAL)

USER-1
PUBLIC (1)

PRIVATE INSTR-1

PUBLlC-1
PRIVATE INSTR-0

JRST 2

PUBLIC (1)
USER-I

USER (1)
PUBLlC-1
PRIVATE INSTR-0

BIT ASSIGNMENTS

CONTROL OF

USER MODE

USER lOT

PUBLIC MODE

PREVIOUS CONTEXT

Figure 2-44 Mode Transfer

USER CAN CLEAR BY
JRST 2 BIT 6 (0), BUT

CAN NOT SET IT BY
PLACING BIT 6 (0) AND
ISSUING A JRST 2

10-1614

Referring to Figure 2-44, assume a User Public program has been started by a monitor routine that
performed a JRST 2 (ajump and restore flags). To place the processor in User Public mode, bits 7 and
5 of the flag's PC word must be set; this results in the setting of Public mode and user mode, respective­
ly. The processor is now in User Public mode. Assume that the User executes some miscellaneous
instructions and then performs an instruction fetch from a nonpublic area. The following test takes
place: instruction fetch is decoded from the microinstruction MEM field or specified as a prefetch in
the DRAM A field. The ElM Interface asserts EBOX READ and loads the address into VMA. Note
that if a reference to a private address for a read or write of data is attempted, it page fails on the
attempted reference because PA.GE TEST PRIVATE is asserted. However, in this case, the fetch must
be allowed from the private address space. Its identity is checked in the EBox and, if it is not aJRST 1
(portal), a page failure occurs on the very next memory reference. This is implemented by delaying
generation of the signal that would cause a page failure to be generated by the MBox (P AG E ILLE­
GAL ENTRY), until the instruction fetch is completed. When the MBox responds with the level -
PAGE TABLE PUBLIC (PT PUBLIC), this signal with the MB response sets PRIVATE INSTRUC­
TION. This causes the generation of PAGE ILLEGAL ENTRY. If the instruction which is decoded
by the hardware is not a Portal, Public mode remains set maintaining PAGE ILLEGAL ENTRY,
which enables a page fault on the next MBox reference for whatever reason. If the instruction fetched
is a portal (JRST 1), then Public is cleared and the processor enters Concealed mode.

EBOX/2-54

(

(

All user references and concealed references are paged. The difference between the types of paged
references is that user paged references ar.e public while concealed references are nonpublic when
referencing the concealed address space and may be public when referencing the users address space.
Executive references are paged, this includes both Kernel and Supervisor references. Supervisor mode
programs must be capable of reading both User Public and User Concealed address spaces. To bypass
the portal mechanism normally necessary for any public program to reference a nonpublic program
area, a bypass exists, which is under control of the Kernel; when operational, the Supervisor is allowed
to read and possibly write the concealed area as necessary, remembering, of course, that the supervisor
is part of the operating system and it is performing job-related tasks within that context.

Normally a public program is only allowed to fetch an instruction from a non public area and this
instruction must be a portal (JRST 1) instruction; however, this is necessary for the supervisor to
perform its system tasks. Basically, the process for checking a User Public program's reference to a
concealed address is as follows. The mode is User Public and an instruction fetch begins. EBOX
REQUEST is issued to the MBox, together with the appropriate paging qualifiers and any other
appropriate signals. The MBox performs the necessary check of the page descriptor bits; then the state
of the Public bit in the page table is asserted over the EjM Interface where, together with signal MB
XFER and a signal indicating an instruction fetch is being performed, it is used to enable the setting of
Private instruction. If the Page Table Public bit is off, Private instruction is set on the clock occurring
concurrently with MBox response. PAGE ILLEGAL ENTRY is not asserted. The response given by
the MBox was given at the same time it placed the desired instruction onto the cache data lines; this
instruction is now in ARX. If the instruction is indeed a portal instruction (JRST 1), the Public mode
will be cleared. removing the PAGE ILLEGAL ENTRY signal. This procedure then has effected the
proper entry to Concealed mode. If the instruction was not a Portal, then the PAGE ILLEGAL
ENTRY signal will not be removed nor will Public be cleared, which constitutes an illegal state in the
EBox. On the very next MBox request by the EBox (providing VMA AC REF is false), a page fault
occurs and an appropriate code is placed in the EBus register in the MBox identifying the disposition
of this fault. This will shortly be followed by a trap to the operating system as a concealed violation
page failure. This same procedure is applied to a Supervisor reference to the Kernel address space, and
in this way the integrity of the system is protected from any unwarranted references. Figure 2-45 shows
a typical layout of the virtual address space for the various modes. The space shown is for KilO paging
mode (256K, made up of 512 pages numbered 0-777 octal). Any program can address locations 0-17
as these are in a fast memory block and are completely unrestricted (although the same addresses may
be in different blocks for different programs). The Public mode user program operates in the public
area, part of which may be write protected. The Public program cannot access any locations in the
concealed area, except to fetch instructions from prescribed entry points. The Concealed mode user
program has access to both the public and concealed areas, but it cannot alter any write protected
location whether public or concealed; fetching an instruction from the public area automatically
returns the processor to Public mode. The Supervisor mode program is confined within the paged area
of the address space. Part of the public area in this space may be write protected, but the program can
read information in the concealed area. It cannot, however, alter any location in a concealed area,
whether that area is write protected or not. Pages 340-377 constitute the per process area, which
contains information specific to individual users and whose mapping accompanies the user page map.
In other words, the physical memory corresponding to these virtual pages can be changed simply by
switching from one user to another, rather than the operating system changing its own page map. The
Kernel mode program can access all of the unpaged area without restriction and can reference all of
the accessible paged area both public and concealed, with the usual restriction that it cannot alter a
write protected area. As in the case of Concealed mode, fetching an instruction from a public area
returns control to Supervisor mode. •

EBOXj2-55

USER MODE

PUBLI C

0..--------. o

FAST MEMORY

PUBLIC
WRITEABLE

CONCEALED

- o

FAST MEMORY

PUBLIC
WRITEABLE

340

EXECUTIVE MODE

SUPERVISOR KERNEL

o

FAST MEMORY FAST MEMORY

PAGED AND
AVAILABLE TO
THE RESIDENT

MONITOR

340

PUBLIC PUB LIC

------ -------

4001---------1

PUBLIC
WRITE

PROTECTED

CONCEALED
ENTRY POINTS

777 I..-____ ----J

400

777

400

PUBLIC
WRITE

PROTECTED

CONCEALED
WRITE

PROTECTED

777

CONCEALED CONCEALED

400

PUBLIC PUBLIC
WRITEABLE WRITEABLE

PUBLIC PUBLIC
WRITE WRITE

PROTECTED PROTECTED

CONCEALED CONCEALED
WRITEABLE

CONCEALED
WRITE

PROTECTED

777

10-1615

Figure 2:45 Typical Virtual Address Space Configuration

2.7.1 Mode Initialization - Private Instruction
When the KLlO system is powered up, the power control issues the signal CROBAR for approx­
imately 5 seconds. This results in the generation of RESET, which causes LEAVE USER to be
asserted. LEAVE USER enables the clearing of USER, USER lOT, and PUBLIC and sets PRIVATE
INSTRUCTION. This action places the KLlO in Kernel mode. Referring to Figure 2-46, each time an
instruction is fetched from either Fast Memory or Core Memory (via MBox), the private instruction
recirculation path is broken (Figure 2-47).

EBOXj2-56

(

•

CROWBAR

YES

NO

YES

GENERATE
LEAVE USER.
CLEAR: USER,
USER lOT AND
PUBLIC

"DATA FETCH
OR STORE"

USER lOT· 1
KERNEL MODE
PREV CONTEXT
OPERATIONS MAY
BE PERFORMED

YES

USER MODE PUBLIC

Figure 2-46 Mode Initialization

EBOXj2-57

USER lOT MODE

101616

10-1617

SiInplified

the
machine is not

is fetcIH',:d fWIn a :~p8ce (~.PUBUC
private in5tructkm is enabled to

r~~'1
! INSTRUCTION
~~~ 

INST!~ FETCH~ 

F M ~:FER ~;r--':h 
--PUBLIC~~~, ____ _ 

L ,IJ ,,'/Ifj--
MB XFER -.:::.r~ 

- PUBLiC PAGE-.-~-· 
JO - 1618 

Figun:: 2·43 Setting Private 

or written, the redrculatil)rl leg 
is used with (with 

to Public together, these 
access amy part the address space 

mode, iHega! entry no significance, 

1,(Jll;uUlrng Hags C~umgnng rV!odiIC 

As 
submo;,:lces" 

can change the of the machine. Thf;':se instructions aH~ 
JRSTF. 

bits and various 

or th!\'; fnodf.!of the: 
(FIguTe 2~ 

previous ';;;OJ1text 
to a privileged 

Because the 

and 

to 'enter appropriate 



• 

Table 2-6 Flags Effecting Mode 

Instruction being perfonned is MUUO,JRSTF (See Note) Major Mode 

Enable User lOT Flag Bits Effecting Modes Exec Submodes User Submodes 
PREVCONTXT AR06 AR05 AR07 Kernel Super Concealed Public 

0 0 0 0 0 1 0 0 0 
1 0 1 0 0 1 0 0 0 

N/A 0 1 0 1 0 0 
0 0 0 1 1 0 0 0 1 
0 1 1 1 1 0 0 0 1 
0 0 0 1 0 0 0 1 0 
0 1 1 1 0 0 0 1 0 

NOTE 
A JRSTF may not clear user by placing bit 05 (0) but an MUUO may. 

In addition, for Direct User I/O, bit 06 (USER lOT) is available to allow the running of privileged 
user programs with paging in effect. This mode provides some protection against partially debugged 
monitor routines, and permits running infrequently used device service routines as a user job. Direct 
control by the user program of special devices is particularly important in real-time applications. A 
special MUUO is available to enter USER lOT mode, but it is privileged because time-sharing is 
effectively stopped while in this mode. 

2.7.3 User Public Mode 
Once the processor is in User Public Mode (Figure 2-49), the user program can freely read and write 
data in the user public address space with the cooperation of the system. When demand paging is in 
effect, each reference to a previously unreferenced page causes an access page fault. The operating 
system page manager must assess the fault, obtain the page from mass storage, and build an entry in 
the user's process table. 

Assuming that the current user's process table (PAGE TABLE PART) is initially clear, the first refer­
ence causes a NOT IN CORE page fault (Figure 2-50). The EBox, upon detecting the PAGE FAIL 
HOLD signal from the MBox, enters a microcode page fault handling routine that communicates the 
failure to the operating system. Next, the page manager or a related routine requests the page from 
mass storage. When the page is in core, the appropriate process table is constructed and the reference 
by the user program may be tried once again (Figure 2-51) . 

The MBox performs the reference to the process table; the use bits now reflect the following: 

PAGE IS IN CORE A = 1 
PAGE IS WRITABLE W = 1 
PAGE IS PUBLIC P = 1 
PAGE SHOULD BE CACHED C = 1 

EBOX/2-59 



Figure 

PUBliC 

USER MODE 
COf'JCEALED 

10-151 S 



PROCESS TABLE BEFORE 

PAGE i1l PAGE f1) / USER REFERENCE 

5! ~ ~ 
UBR i1l (/j 000 

® 
READ 

• ENTRY 

® 

(/) (/j 377 

400 

® 

ACCESS BIT'(/) PAGE NOT IN CORE 

Figure 2-50 User Mode Public Initial Reference 

PAGE 1 PROCESS TABLE AFTER 
I /ENTRY IS WRITTEN 

,------- A P W S C • / 

UBR II "'---0--""T"'""-r-r-;--r:~"'~';"~.".r;~ 000 

• 
• 

ACCESS BIT'1 } 
WRITEABLE BIT' 1 NO PAGE FAI LURE 
PUBLIC BIT "1 
CACHE BIT' 1 

• 

• 

Figure 2-51 , 

MBOX READS 
OR WRITES 

DATA AS 
® APPROPRIATE 

® 

® 

User Mode Public Second Reference 

EBOX/2-61 

EBOX REO' PAGE 1 

CD 

CD PAGE FAIL HOLD 

10-1620 

EBOX REO' PAGE 1 

CD 

RESPONSE 

10-1621 



The entry (one of eight half-word entries fetched) is written into the page table in the MBox, the MBox 
then performs the data reference part of the request. This can involve reading or writing and depends 
upon the type of EBox request. During the reference, PAGE ILLEGAL ENTRY was not asserted 
because the reference made by the user p'rogram was to a public page and it was for an instruction. 

2.7.3.1 Entry from User Public Mode to User Concealed - To correctly enter User Concealed mode, 
the User Public program must execute a Portal instruction (Figure 2-49) from the concealed address 
space. The EBox generates the EBox request and provides the MBox via VMA with the concealed 
address. The MBox either finds the page entry and use bits in the MBox Page Table (hardware) or 
performs a refill cycle to obtain it from core memory. Figure 2-52 shows the typical Concealed Page 
Table format. Presumably, the entry is nonpublic and write protected, and mayor may not be cached. 

A P W S C I. 13 BITS -I 

111010~ PHYSICAL PAGE I 
l- IB BITS -I 

10·1622 

Figure 2-52 Typical Concealed Page Table Format (Half Table Entry) 

The MBox asserts PT PUBLIC (0) and MBOX RESPONSE IN to the EBox. Referring to Figure 2-48, 
MB XFER resulting from MBox response and -PUBLIC PAGE resulting from PT PUBLIC (0) 
enables the setting of Private instruction. The instruction fetched by the MBox is in ARX at this time. 
If it is a JRST 1 (Portal), its execution clears Public and the processor enters User Concealed mode. If 
the instruction is anything else, Public remains set and the next MBox reference occurs with PAGE 
ILLEG AL ENTRY true, PUBLIC PRIVATE INSTR (1); this causes a page failure. 

2.7.3.2 Concealed Violation Data Reference - If a User Public program references the concealed 
address space for read or write, PAGE TEST PRIVATE is asserted during the EBox request and 
results in an immediate page fault. Page Test Private is a signal composing Public and -INSTR 
FETCH. 

2.7.4 Restoration of Programs by the Supervisor 
The Supervisor portion of the operating system deals with those tasks which affect one job at a time. It 
must, therefore, have the ability to restore various programs to an operational status, e.g., by executing 
a JRST 2 instruction that picks up a PC word consisting of the appropriate flags in the left half and a 
virtual PC in the tight half of the word. 

2.7.4.1 Restoring a Concealed Program - The Supervisor may restore a concealed program providing 
it also sets User. Referring to Figure 2-53, while executing a JRST 2 instruction, LOAD FLAGS is 
derived from the presence in the magic number field of bit 04, and this together with -User (User is off 
in Supervisor mode), and AD bit 05 (which will set User) generated CLR PUBLIC. Thus, on the next 
clock pulse, Public clears and User sets, restoring Concealed mode. Figure 2-54 shows the necessary 
conditions. Note that performing a JRST 2 cannot generate Leave User, unless the processor is in 
Kernel mode. 

EBOX/2-62 

( 



t'I1 
~ 

~ 
~ 

I 
0'\ 
IoU 

NOTE 1: 
IF THE SUPERVISOR FETCHES 
AN MUUO. MODE CHANGES 
ACCORDING TO FLAGS. 

• 

, NO 

WILL OCCUR ON 
THIS REF. 

SUPERVISOR 
MODE 

PRIVATE 
INSTR-1 
ILL ENTRY-l 

CLEAR PUBLIC 
ILL ENTRY-O 
PRIVATE 
INSTR-l 

KERNEL MODE 

YES SEE NOTE 1 

NEXT MBOX REF 
WILL PAGE FAIL 

AR07(1) 

l 
USER MODE 
PUBLIC 

USER MODE 
CONCEALED 

Figure 2-53 Supervisor Mode Functional Flow 

NO 

YES 

"JRSTF" 

AR05(1) 

~UPERVISOJ RESTORES 
USER MODE 

AR07(1) & AR06(1) 

1 
USER MODE 
PUBLIC (lOT) 

AR06(1) 

1 
USER MODE 
CONCEALED (lOT) 

10-1623 



SPEC FUiG en. 

1,7A.2 a KelrrieH Program .- The 
is somewhat different in 

must 1:.1 

Public. Th~ JRST 

entry 
"while not setting 

ST,~RT OR MUUO 

,JSR 

JRST 2 FROM 
~(ERNEL 11i10DE: 

10-162<.1 

User 

it is given in KJ::rnei 

SUPEFiVI50R I 
,~DD RE 5S I 

SP,i\CE I 
(- JRST 2,@8 

I 
'-8 FLAGS, C J 

C 

10 -1625 

Figure 2~55 Restoring KernEl.! 

2,7 Ai.3 Restoring a Public PmgnuI! -
JRST 2, sets User. This is 

Public set. The 
SPEC/ 

EBOX/2-64 



2.7.4.4 Saving Flags and Leaving User - It is not generally known at just what moment an interrupt 
will occur with respect to execution of a given instruction. The microprogram governs the handling of 
interrupts by looking for interrupts only~at certain times. In general, an interrupt is sampled for 
between each instruction and during certain classes of instructions. The following classes of instruc­
tions can be interrupted: 

Byte Instructions 
Block Transfer Instruction 
I nput/Output Instructions 

In addition, for any instruction, an interrupt is sampled during the portion of the microprogram that 
performs indirect addressing (INDRCT). An interrupt has higher priority than a Page Fault and thus, 
upon entry to the Page Failure microroutine, an interrupt condition is tested for; if found, a dispatch 
to the micro routine for interrupt handling is given. 

When an interrupt occurs and the PI logic has completed the handshake, it informs the EBox by 
asserting a signal PI READY. This results in the microprogram generating a skip to a microinstruction 
that asserts SPEC/SET PI CYCLE. As a result, Kernel cycle (normally false as long as PI CYCLE is 
clear) sets, and MCL VMA PUBLIC is disabled. This is necessary to disable the MCL PAGE ILLE­
GAL ENTRY signal when PI CYCLE sets because the interrupt instruction, which will be fetched 
from a Kernel address, must not generate a page fault. 

When the interrupt instruction is being fetched, User and Public may be set, or Public alone may be 
set. In the last instance, a page fault would result if some action were not taken to prevent it. This is 
why MCL PAG E ILLEGAL ENTRY is disabled (by setting PI CYCLE). At the time of the interrupt, 
the state of the current user ACs is unknown. The instruction in 40 + 2n, therefore, must not disturb 
the ACs in any way while transferring the flags and PC to the Kernel mode subroutine. Therefore, JSR 
is a likely instruction for use in 40 + 2n. The JSR instruction causes the flags and current PC to be 
stored in the effective address of the JSR instruction and then enters the subroutine by performing an 
instruction fetch from E + 1. After calculating the effective address for the JSR instruction, the micro­
program performs a write test which, if successful, is followed by a branch via the DRAM J field to the 
executor. Now the flags and PC are loaded to be copied into the AR for storage and are then disabled. 
The microinstruction asserts SPEC FLAG CTL; this with PI CYCLE generates LEAVE USER, which 
detaches the feedback path for User, User lOT, and Public. In addition, if User were set, User lOT 
would be set at this time and represent "Previous Context User." This is an indicator to the hardware 
that previous context references must be in User mode. In any event, the processor enters Kernel mode 
and begins to handle the interrupt. 

2.7.4.5 User Concealed - This mode is useful for running certain proprietary programs in User mode 
without allowing the user to discern the composition of the concealed program. For example, assume a 
user has developed a program that performs circuit analysis. The user is a time-sharing house and 
desires that this program be available to users for execution only, that is, the user must not be able to 
read or write into this program. 

I n some computer systems~ complex overlays in core memory are necessary to assure concealment of 
the program from its users. In the KLlO, this program has been solved by creating two submodes from 
User mode, each with separate powers and each separate from the other. Both modes, however, run 
with User on. Figure 2-56 indicates the hierarchial structure present in the KLlO processor. The User 
Public program can only transfer to a concealed program at a selected entry called a Portal. The 
instruction fetched must be a Portal instruction (JRST 1). The concealed program can read or write 
data to the Public area. Figure 2-57 is the Concealed mode functional flow diagram. 

EBOX/2-65 



Figure 

I I WECT~-i-, --~- I I 
j nJ3TRu~T'':'.Nll_ l_, __ J. __ ._,_,, __ .~i 

~ PUE,LIC AI',JD USER I '1 I MCIUC I CLEI',," ,PRIVATE I hEfiNEL. I 
I, -I 

1 MUUO I ;'<E~NEi_ ! 
I If\JSTFt SETS 

c-~Z--~i USEr~ CLE.ii.RS I<ERNEL 

l_~_:~_ i r',iO EFFECT ~~E::;;!',jEL r(E~j,jE~ 
j ?ORT.i1L l Pr,'I\iATE ~.--~~---::---- ,I 

~l' i. .IRS, I) p~;~I~;ri .~"_, lJS~H COi'JCEALED I' 

PR'j\/ATE 
?ORTAL INS"!:=( SETS I SUeERVL30R I<E~";;1"'lEL 

1 (,IRST n PU8LIC CLEAr~S 1 
I ___ J 

USER MODE 

CONCEALED 

USER MODE 

PUBLIC 

f\lOT~ 'I: 

THE C()NC£P,LED PROGRP,;,fV: r.J~!J.,Y 

FF:EELY RE);",(:; 0/;',1;4. fRCWJl THE 
PUBLIC /,\DDRESS SP,iJ.CE AND 
M.£!i,'1/ WR!TE !NTO ,PROVIDH..JG 

THE i\DDRESS SPJ'~.CE tS WR!TE 
E:\jf,\8tED. 

10-1626 

~,~-----~--~ ,,-,--, ----~~,-~- '10·'1627 

2-57 ConceaJled Mode Flo~ll 



2.8 ADDRESS PATHS 
contained 

KI paging mode and 
l'v1Box can generate the following two 

Refill (f{docated) 
2. ?hysical Page 

The 'VMA ~,erves as, a source 

In 

The 

!. 
2. 

2~59, the VIVIA 

f'/l 
L Fast Memory 

The 1'\;1 Box may 
addressing) 
qualifiers 

Type of Address I 
~------------------------ .. --

I 
IS-Bit 

lS-Bit 

1 
I 

I 

I 
I 

----------------1--.. _------_ .. -----------_ .. _------

K1 

KI Process Table Reference 

KL 

II Vl\1A ]3-17 = 0 
V};IA 18-26 "" Virtual 

I V1v1[A 27-35 """ 
I 

Word 

\T]V1}'t 13-17 "" IvlBox. 
1/!vlA 18-26 = ~"mox 
'llVJIPll 27 -35 ;;;; Process T'able 'Vord 

VNIA 13-17 "" Virtual Section 
I I' V1vlA ] 8-26 == Virlc;al Page 

VMA 27-35 = ~VDid 
i , 
I I I Kl hoces~ Table Reference I '\,r~vL4. 13-,7::: lvml): 

I V11;11.\ 2;<i~ '" PJOcess Tilble Ref:."renc,~ I I I/]I/IA 18 - 2t, '" j,lBo:y: 

---~----~---~-------______ I ______ ---------------.. __ 

There are sei~.reI(a~ other 
be c!Ctvere(l eJsevvhereo 

N()'IE 
VTi1lA comhinationso The:;e ",viE 



TO 

'" - THESE REGISTERS MAY ACTIVEl if BE if'NOLVED 
IN SOME FORM Ol~ ADDRESS. CALCUlATION WHICH 
WILI_ Ul TIM,D,TEl V BE PU'.CED INTO VMA. 

USED DURING I{UO STYLE P/\Gir'.IG ONLY 

USED ToO FORCE PG+, OR f'C+2 

PUBUC 

USED FOR PI, TR,4PS, 
Mise 

---- PUBL!C 

USE" 

1~'<~-~~~~-=-;~~--~~~=-7;L~;:~~~~~~-"~T-=~~-~--i(-L ~]=;G~rM~--~~ 
'''''''' MODE MODE I MODE MOD::: I I" -~---- ~ -r------'_: 

i VMll, I VM,;, 13-33=0 I Wilt\ r,-33=O I VM,!\ 13-33=iJ I VMl\ 13-33=0 I 
ii, ,\C I 'i,;'M.il,32-35= I VMp,32-36= I VMi\ 32-35= I VMA 32-35= 
, REF I FM ADDRESS I FM ADDRESS FM ADDRESS I'M ADDRESS I 

I I rUBEn PUBLIC} J [USER PUBLIC] [SUPERViSOR] [SUPERVISOR] I '--. ------~f-------

j
ll!, ~~A I gJ~7£;:' ~g,~~~," JII111 g~;:f~:, II, ~~~~:~::CT I 

REF QUP,D WORD OUJ.lD WORD QUAD WORD OU,"D WORD i! 

[USER PUBLIC} [USER PUBLIC] [SUPERVISOR] [SUPERVISOR] _1,1 

.. :i.e 
REF 

\n\1l:\ -13-33::0 I VMA 1~-33""O 11'--- \!~~f\ 13-33=0 1 \lh'.C", 13-33=0 l 
VMA 3:2-35= [VfifiA 32-35= ~ VivlA 32-~~5= ! Vn!!A 32-35= 

'"nil ""DDRI:::SS I FM ADDPlESS FM ADDRESS I' 

[USER CmJCE,<\lED} II, [USER CONCEP',L::D] [KERNEL] 

. Ir--------~ }" 
\iIVi!~ <i3-·17~O V~\A,~< 13-17:::SECT VM!-t~ 1:3-17=0 I 

I'M ,<\ODRESS 

[KERNEL] 

VMA '13- 'l7=SECT 
vr\f!_4 1:t:-26= I V~}L!I~ '18-26= VM,tJ, 18-26;;;: ! V71J1tl18-26= 

VIRTUAL PAGE I VMII I' VIRTU":'o,L PA.GE I VIRTW\l PI~GE VIRTUAL f',~GE 
I t\c 'iN! l\ 27~~3~= V~n,A 27-35=- VP/1A 27~35~ VMJ!~ 27'-35= l R::F 1 OUAD'\~IORD ~_U/l,DWom: OUA.DWOflD QWI.DWORD II:,,: 

__ ~ __ . ___ ~t!S;::R C_or'I~~~~~~J [USER CONCEi\l.ED] [](ER~,]EL] [i<ER~jEL] -.. -" --- ----- -~-_~~_~_~~~~.J 



• 

ASSUME {
CWSX-Ill 

INITIALLY' VMA PREVSECT-Ill 
• PUBLIC-I 

USER-I 

PROGRAM 
RUNNING 

r-____________ ~K~L~P~A~G~I~N~G~M~O~D~E~~~~KI:-P~A~G~I~N~G~M~O~D=E ______________ , 

PROGRAM 
RUNNING 

VMA 13-17 RECIRCULATES 

VMA 13-17-PCI3-17 

VMA 13-17 CLEARS VMA 13-17 CLEARS 

OTHERWISE 
VMA t3-17-ADI3-17 

I 

~ 
<t 
::;: 
> 
t 
I-

1rl 
rJ) 

> 
lIJ 
a: 
n. 
<t 
::;: 
> 

TRANSFER TO 
EXEC MODE 

ARMM 13-\7 IS NORMALLY=PCI3-17 BUT 
FOR PXCT OR EXEC PREY CONTEXT OPS 
ARMM= VMA PREY SEC 13-17 AND 
ARMM 12 = CWSX 

MUUO, E 

OLD PC WORD 

PROCESSOR ENTERS ~--------l 

READS THIS 

NEW PC WORD 

CWSX+VMA 
PREY SECT 

TRANSFER TO 
EXEC MODE 

<t 
::;: 
> 
t 
I­
U 
lIJ 
rJ) 

> 
lIJ 
a: 
n. 

10-1629 

Figure 2-59 Typical VMA 13-17 Manipulations 

EBOXj2-69 



For these process table references the EBox supplies valid addressing information only on VMA bits 
27-35. The MBox replaces VMA 13-26 with the PMA mixer 14-26 to generate a proper physical 
address. ~, 

2.9 DATA PATHS 
The specific address and data paths in the EBox are illustrated in Figure 2-60. 

The functional elements in the address path between the VMA at the MBoxjEBox Interface and the 
primitive address source involved in forming the virtual addresses are: 

Virtual Memory Address Register (VMA) 
VMA Held or PC Mixer 
VMA Held Register 
VMA Previous Section 
VMA Mixer' 
VMA Adder (VMA AD) 
SCD TRAP Mixer 
ADDER (AD) 
Arithmetic Register Exten~lion (ARXML) 
Arithmetic Register (AR) 
Program Counter (PC) 
Microinstruction Number Field 
Other Miscellaneous EBox Registers 

The appropriate virtual address is formed by the VMA under explicit control of the VMA control and 
the microprogram. 

2.9.1 Virtual Memory Address Register 
The VMA is loaded during an EBox request and remains latched until the MBox responds (Figure 2-
61). The VMA is a 23-bit register that accepts input from a double mixer arrangement. Thus, the 
incrementing or decrementing is performed in the register itself. When both VMA SEL 2 and 1 are 
clear, the lower mixer is enabled into VMA. The level VMA ~ AD selects AD as input. The default is 
VMA AD as input. 

~In general, the VMA AD contains one of the following: 

• 

PC (18-35) 
PC+ 1 (18-35) + (1) 
PC+2 (18-35) + (2) 
Process Table' Address (27-35) 
Fast Memory Address (32-35) 

The AD contains one of the following: 

Effective Address 
@ Word Address 
Some Special Address 

, . 

The VMA Held register is loaded during each MBox memory request [MEM 02 (1)]. The left-most 12 
bits of VMA Held are loaded with the request qualifiers, type of paging, context of the reference, and 
various other signals asserted during the request. The right-most 23 bits of VMA are preserved in 
VMA Held right. The contents of VMA Held are used during KL Paging mode to buffer the request 
state while the page fault handler sets up an MBox Page Refill cycle. This operation is generally 
described in Subsection 1.2.4.2, KL Style Paging and is described later in greater detail. 

EBOXj2-70 



I 
N 
T 
E 
R 
F 
A 
C 
E 

000 PARITY 

r-------------------~ I I 
I • " 1 
I 1 

r-------------------, 
CURRENT BLOCK -,.--------.-10 

1 1 
1 1 
I -CLK HMO~7~: I 
1 I 
1 I 

CRAM SIGNALS SH-ARMM 

00 SHIFT 

SHIFT INH 

'0 AR< 

" ARSWAP 
, 

r----------------~ 
1 I 

1 : 
1 I 
I CRAM I 
I SH-ARMM 

I CRAM I SH-ARMM SEU 
1 
1 

r-------------------------------------l 
1 1 

SCAD ~~~ ~~:~ I 
CRAMSCAOZ 

SCAD 51 
1 
I 
I 
I 
I 
1 
I 
1 

I AO I L ________________ ~~U 1 L ______ _ 1 
_~~I2..J I ---------, : 

I 
1 
1 

II~ __ ~~~L_~========~~~~ I 

LIL------------------------------~~~J ------------------------, 
1 

MOSEL 2 

MOS£L I 

LM~5::_____ ____ ______ l WROTE 

r-------- -- - - - - ---;M::E:;;o7p";" - -- - -- =F':;M~E¥o-iPc=-ll' 

1 
I 
I 
I 
I 
1 
1 
I 
I 
I I 13 35 1001211 

I I I 
1 I 0 , II 
I I SCD flAGS VMA flAGS :: 

I 1 M8530 I 
IV ... "." L. _______ :.l1 

: ,OAO mv CONTEXT -F PR;V SEd 
I • 
I 

VMA 17-26 

VMA SEL 2_l'----..L--.=AA 

VMA S[L I -L ___ -y-_-l.:.!!2!.21 

VMASEL2 VMASELI fUNC 

o 0 ViolA _VMA 
VMA _ VMA+I 

VMA _VMA-I 
VMA LOAD 

--------------~~~ 

r----------.J 

-CRAMADADIS-<¥--~::_--',_--+_----_l_-£2~~!L,;r-__:=:_-"\ 
CR"IroIADASEL2 

CRAM ADA SEL I -'~I-~I--jl---ir-~ 

--------------------------------------------------~~~~ r----------------------------------, 
I " I " 1 I CRAM SH-ARMMSEL 2 / ARMM '------ I 
I CRAMSH-ARMMSELI,,' t :s- I 

I PC 13~17 VMA PftEV I 
I ARSIGN 13-17 I 
1 SMEAR 1 

L __ ~---------------------------~~~~ 

MO FUNCTION 
CRAM CONO 
MO." MO. 

HOLD ° -
° ° ., 
SHifT LEFT 0 ., 
S' , 
AO , ., 
SHIFT RIGHT *2 , ., 
, , Nt 
OIV ISH LEfTl 0 -
MUL(SHRT*ZI , -
RESET (II - -
"" 0 -

NOTE: 
ARSHIFT (fill lin I.n with ARIII 

.. 
EN 

0 

° ° , , , , 
° , , 
° 

MO .. 
SEC '" 00 " 00 00 
00 '0 

" 00 

" 00 
00 00 

" 00 
00 " 00 00 

" 00 
00 00 

B 
U 
5 

Figure 2-60 EBox Data and Address Paths 

EBOXj2-71 



13 17 

I VMA I 
f 

SPECIAL 
CONTROL 
SEE FIG. 

2-49 

VMA AD AD 

Figure 2-61 VMA Inputs 

O-LOAD 
I-INC 
2- DEC 
3-HOLD 

10-1630 

The first three selections (Subsection 3.2.1) enable the output of VMA into the VMA register for any 
of the following select codes: 

VMA S EL 2 (0) and VMA S EL 1 (1) - Increment 
VMA S EL 2 (1) and VMA S EL 1 (0) - Decrement 
VMA SEL 2 (1) and VMA SEL 1 (1) - Hold 

2.9.2 Program Counting 
The PC is normally loaded from VMA at NICOND Dispatch, except when PI Cycle is true; this 
prevents alteration of PC during priority interrupt handling. When the processor is ready to fetch an 
instruction in sequence, the incremented PC address is supplied to VMA via the VMA AD. The VMA 
then supplies the address to PC. Thus, program counting is effected by the loop of PC, VMA AD, 
VMA, and back to the PC (Figure 2-62). 

Wihen a skip condition is satisfied, this loop is used to advance the PC during the instruction execution 
cycle. The PC, therefore, is automatically updated at NICOND time and if the skip is satisfied, it is 
updated a second time, pointing PC to the location two beyond the current location. ( 

The PC output is available to the AD for saving a return address in a subroutine call JRST, MUUO, 
or similar instruction. Generally, the address saved should be for a return to the next instruction, i.e., 
the instruction that would have been performed had the call or jump not occurred. However, if an 
instruction is terminated because of a page fault or interrupt, the current address must be saved for a 
later return to the beginning of the interrupted instruction. 

2.9.3 Loading PC 
New addresses are always supplied to PC via the VMA regardless of the point of origin. The update of 
the PC or its inhibition is controlled by the microprogram. The following conditions cause PC+ 1 INH 
to set, inhibiting the update of PC via VMA AD: 

Priority Interrupts - Setting PI Cycle 
Console Instruction Execution 
Halting the Processor - Halted 
Performing the Trap instruction in process table location 421, 422, 423 

EBOXj2-72 



CRAM 
AD FUNC 
A+B 

-PC+ 1 INH 

CRAM VMA=PC + 1 

Figure 2-62 Program Count Loop 

10-1631 

The PC is loaded at NICOND Dispatch time (Figure 2-63), providing PI CYCLE is clear. In addition, 
the special field function LOAD PC may also be used to load PC from VMA. During page fault 
handling, the SPEC/LOAD PC function is used to save the failing virtual address (VMA) in PC while 
saving the current PC value in ARX. Basically, the MBox builds a page fault status word in its EBus 
register. The physical page number is stored in bits 14-26 of this word. The EBox page fault handler 
must replace this address with the virtual page number in VMA 14-26 and then store the updated page 
fault word in user process table location 500. The operation is as follows: 

Simplified Microprogram Steps Ref PF Handler 

1. ARX +-- old PC, PC +-- failing VMA 
AR +--EBus Register; PF word 

2. BRX+--ARX; old PC+-- ARX AR; PF WORD 
AR+-- PC; failing VMA 

3. At this .time, the AR and ARX are Ref PF Handler shifted in such a way as to discard the 
physical page number and align the proper virtual page number in AR 14-26. 

A second case is where SPEC/LOAD PC is used while halting the EBox. In this case, either a Console 
Halt was issued via the 10-11 interface, or a Halt instruction was performed in either user lOT mode or 
Kernel mode. The VMA is loaded with the current PC and the PC is loaded with the effective address 
currently held in VMA. At the time of the halt, the PC value in VMA points to an address one greater 
than the location containing the Halt and the PC contains E. PC+ 1 INHIBIT is set to prevent pre­
mature incrementation of the jump address now in PC. 

EBOXj2-73 



\ 

• 

DISP/NICOND 

SPEC/LOAD PC 

PI 
CYCLE 

PC+1 
INH 

CON CLOCK (Il 

17 

PC 

VMA 

CON PC+lINH 

SCDTRAP MIX35 
VMA SEL2'PC+1 "TO VMA AD B INPUT" 

#02{11 

COND/SPEC INSTR 

141-------- MICRO INSTRUCTION ---------t .. 1 
10-1632 

Figure 2-63 PC Loading or Inhibit 

2.9.4 General Data Path Organization 
The data path (Figure 2-60) is divided into four major areas, as listed in Table 2-8. 

1. Fast Memory and Fast Memory Address Logic 
2. Virtual Memory Address, Program Counter and related logic; 23- and 18-bit logic 
3. Arithmetic logic - 36-bit logic 
4. Instruction register - 12-bit logic 

All of these areas derive control functions from specific fields in the microinstruction . 
. 

2.9.5 General Data Path Mixer Selection 
The microinstruction or microword consists of 75 bits including parity. It is organized into variable 
length fields that are used to control the data path and control sections of the EBox. In the following 
pages each field is described functionally in terms of the particular logic with which it is associated. 

2.9.5.1 AD Field - This field consists of six bits and is used to control the main adder (AD and 
ADX), that is constructed of type 10181 Arithmetic Logic Units. Table 2-9 lists the ALU functions. 
The low-order four bits specify one of 1610 functions. These functions are Boolean or Arithmetic as a 
function of bit 1 (the mode bit). If bit 1 is a one, the functions are Boolean; if zero, the functions are 
Arithmetic. Bit 0 is the carry in, when true it adds + 1 to any Arithmetic function. 

EBOX/2-74 

c 



Table 2-8 Data and Address Path Breakdown 

Major Area 

Fast Memory 

Virtual Memory Addressing 

VMAHELD 

PC FLAGS (PC LEFT) 

PC (RIGHT) 

IR 

Shift Count and Auxiliary Arithmetic 10-Bit Logic 

Arithmetic 36-Bit Logic and 72-Bit Logic 

72-Bit Operations Require SPEC/AD Long 

NOTE 

Micro field 

FMADR Field 
COND/FM Write 

VMA Field 
COND/VMA +- # 
+ X (see Note) 
COND/VMA DEC 
COND/VMA INC 

COND/LDVMA HELD 

COND/AD Flags 
COND/PCF +- # 
SPEC/LOAD PC 
DISP/NICOND with PI Cycle (0) 

COND/LOAD IR 

SCAD Field 
SCADA Field 
SCADB Field 
SC Field 
FE Field 

AD Field 
ADA Field 
ADB Field 
AR Field 
ARX Field 
BR Field 
BRX Field 
MQ Field 
SH Field 
ARMM Field 

X is a constant selected by the low-order three bits of the 
COND code. , 

EBOX/2-75 



Table 2-9 ALU Functions 

BOOLEAN· BOOLEAN 

CIN M S~ S4 S2 SI FUNCTION CARRIES 

a a a a a A A 
a a a a 1 AYB A+(A8) 

a a a a AYB A+(AB) 

a a a 1 1 2*A 
a a a a AS AYB 

a a a 1 I3" (AB)+(AYB) 

a a 1 a EQY A+B 

a a 1 1 AYB A+(AVB) 

a a a a AB AVB 
a a 0 1 XOR A-B-l 

a a a B (AYS) + (A B) 

a a 1 AYB A + (AYB) 

a 1 a a a -1 

a a 1 A-S A13-l 

a a AB AB-l 

a A A-I 

ARITHMETIC ARITHMETIC 

CIN M Sx S4 S2 SI FUNCTION CARRIES 

0 a a 0 a a A A 
a a a a 0 1 A + (AB) A + (A"if) 

a a a a a A + (AB) A + (AB) 

a a a a 1 1 2 * A 2 * A 
a a a 0 a AYB AYB 

a a a a (AB) + (AYB) (AB) + (AYB) 

a a a a A+B A+B 

a a a 1 1 1 A + (AYB) A + (AYB) 

a a a a a AYB AYB 

a a a a 1 A-B-l A-B-1 

a a ' a a (AYE) + (AB) (AY-if) + (AB) 

a a a 1 1 A + (AYB) A + (AYB) 

a a a a -1 -I 

a a a 1 AB -1 AB -1 

a a a AB -1 AB-1 

a a A-I A-I 
._--------------

NOTE: If CIN is true, add +1 to the given arithmetic function. Carry out is true if the adder. 

l, extended left, would need carry in to generate the correct function. 
Carry Out is not affected by the mode (i.e., BOOLEAN FlINCfIONS give the same 
carry as the ARITHMETIC FlINCfIONS). 

EBOXj2-76 



F or Boolean functions, the carry in can cause a carry out if the corresponding Arithmetic function for 
the same S-bits would have produced a carry given the appropriate inputs. For example, assume the 
A D function to be performed is A and the ~ input equals 777777,777777. The Boolean function A 
performs the I s complement of the A input, which yields a result of 000000,000000. The corresponding 
Arithmetic function is A and thus, if carry is true, this yields A + 1. Using the existing A input 
777777,777777 + 1 gives a sum of 000000,000000 and a carry. If the Boolean function A is given and 
carry in is true, assuming the same A input as above, the function out is 000000,000000 and a carry is 
generated. 

The 10181 may be thought of as concurrently performing the Arithmetic operation specified and the 
Boolean operation specified; the sum, however, is not affected when the Boolean functions are imple­
mented, yet the state of Carry Generate and Carry Propagate will reflect the Arithmetic result that 
would have formed the sum. 

MCI0181 Arithmetic Logic Unit Description 
Figure 2-64 is an overview diagram of the ALU logic. Table 2-10 lists the ALU functions, with carry. 

GEN ";A'{S4 B + SsB) 

PROP = A + SIB + S2B 

Signals GEN and PROP are used in each digit to generate the output signal Fn. In the logic mode, 
carries are inhibited on the output stage, and the logic function F is given by 

F GEN V PROP (XOR) 

(The output function is the Exclusive-Or of the two internal signals GEN and PROP). 

When adding two n umbers, in the absence of a CARRY IN, the Exclusive-Or function is the function 
required. A CARRY IN signal always complements this in this circuitry by controlling the final Exclu­
sive-Or on the output stage. 

ARITH MODE L -----~:f--_......, 

CARRY IN L-------Q 

B ---.------.(J 

A ----+---.(J 

ALL SIGNALS LOW = TRUE 
GEN=A(S4 B+ Ss B1 

PROP=A+S18+S2B 

LOGIC LOW 
CARRY HIGH 

~-------------~ 

Figure 2-64 AL U Overview 

EBOXj2-77 

10-1633 



• 

Table 2-10 ALU Functions With Carry 
~ 

Cooe GEN' PROP Logic Fn Arithmetic 

S, Sl S2 SI CARRY LOW CARRY HIGH 
-

0 0 0 0 A 0 A A i A+ ] 
0 0 0 I A AS A v's A+AB A+AB+] 
0 0 I 0 A AB AVB A+AB A+AB+] 
0 0 I I A A 1 2*A 2*A+! --
0 1 0 0 AVB 0 AB AVB AVB+J 
0 I 0 1 AVB AB B AB+(AVB) Ai3+( A VB)+ I 
0 I 1 0 AVB AB EQV A+B A+B+I 
0 I I 1 I AVB A AVB A+(AVB) A+(AVB)+ I 
I 

i 
0 0 0 A V'S 0 AB AVB AV-S+l 

] I 0 0 1 AVS AS AVB A B I A B 
I 0 I 0 AVB AB B AB+(AVB) AB+(AVB)+l 
I O~ 1 1 AV-S A AVB A+(AV"t3) A+(AV-B)+l 

I I 0 0 1 0 0 I 0 
1 1 0 I 1 AS AS All 1 AS 
1 1 1 0 1 AB All All I AB 
I I I 1 1 A A Al A 

NOTE 
All signals high true except GEN and PROP, 

The MClO181 carries out an addition by converting the two numbers at A and B to two alternative 
signals GEN and PROP, given by 

GEN = 
PROP = 

For example: 

A 
B 

then AB 
A+B 
SUM 

AB 
A+B 

= 0011 
= 0101 
= 0001 
= 0111 
= 1000 

(Ss = 1, S4 = 0) 
(SI = 1, S2 = 0) 

3 
5 
T (GEN)' 
7 (PROP) 

8" 

Adding any two numbers A and B is equivalent to adding the two functions AB and A + B. However, 
the advantages of the second part are that one (AB) shows when carries should be generated, while the 
other (A + B) shows when carries should be propagated. The final sum is the XOR of the two numbers 
(AB and A + B), complemented by the CARRY IN signal. 

GEN = A(SsB + S4B) 
PROP = A + S, +S2B 

These two equations show that PROP is generated whenever A is true, which is a requirement for 
GEN to be true, i.e., GEN implies PROP, and thus whenever GEN is a one, PROP is also a one, and 
thus G EN plus PROP must generate a carry. 

EBOX/2-78 

( 



/' 

G EN is sufficient indication of carry generation. Similarly, PROP is sufficient indication of carry 
propagate. 

High Logic 
Actually, the circuit was designed to promote understanding for low logic, and the descriptions and 
tables given in the literature are far clearer for this case. 

Although the circuit does give the correct answers for high logic, the circuit does operate on the low 
signals. Th us, an addition can be considered as an addition of the zeros, with carry generated from the 
addition of two zeros, and propagated, as before, by the XOR of the two numbers. 

A 001 1 0 

B 01010 

1001 I XOR 

I 000 1 GEN 

I 1 1 0 1 PROP 

COUT +- 10000 +- Cin (low) 

COUT +- 1 0001 +- Carry (high) 

The correct answer, therefore, occurs when Cin is asserted to the least significant bit. This can be 
viewed in two ways: 

I. Carry is asserted high. In this case, the function considered above is Fn = A plus B and carry 
input adds a one. This is simple, but GEN and PROP meanings become obscure (especially 
when passed through the LOOK-AHEAD CARRY block). 

Generate = > (G = High and P = High) 
Propagate = > (G = High) 

2. Carry is asserted low. In this case, the above function is Fn - A plus B plus 1, and the carry 
input subtracts a one, but hardware is simple to foliow: 

/ Generate = > (G = Low) 
Propagate = > (P = Low) 

• 
To functionally de~cribe the use of the various Boolean and Arithmetic functions, it is first necessary to 
define two other microinstruction fields which are used to enable various data to the AD A and B 
inputs. The first field is ADA, a 3-bit field. ADA can select the inputs shown in Figure 2-65 . 

FIELb CODES INPUT 

o AR*4 

ARX 

2 MO 

3 VMA OR PC 

AR*4 ARX MO VMA 
OR PC 

Figure 2-65 ADA Example 

EBOXj2-79 

10-1635 



is i\DB, a 2~bit 

FIELD CODEs nWUT 

BR :2 

2 8R 

JJlI'!\OR a~so :::0!"\trol~, ADXB, 
£,e l; ,2\08 Fif.!1j;:J, 

can 

various operatiom; might be performed. u:!iln.g and 
guarai!1itei~ is made that the operatio:rJ§ Hh~stl'ated are used in 

"'" OHHOl, 10 
=0 

The A 13 corrupllement of the 
is 767676,676767. at tirne the In is 

corresponding carries function i§ A 

~ Function 24 
I nidal ARX """ 777777, 
PM = 777777,777776 
ADA Field::: 2 
.AJJB "'" 0 

50-1536 

()utpl1li 
~!{amplie 



ADA, Fidd C 
id~,"DjB .Field 2 

Figure 2-68 Functinn AIf 

logical AND 
is the vahu~ in BR 

out1Jiut is 000000, Referring to Table 2-9, the; 
and, the existing it can be demonstrated lJ.1!it a 
if the A.I'-JD any two values H')3UItS a nonzero sum, Tfule 

/\ 000765,100070 

000000100000 

-:~ 777777 

.~ 00000 077777 

A ~ Function 37 
ARX "" 'V'vV"JV"""",vv 

EBOXj2-81 



is 
GENEnt'!TED 

2-70 

FUl.1Gtl0l1 

2-70). 
is .A ""' 1. 

10-1639 

maill1 Referring to 
and 'VIvlA, HELD or PC(3). The 

high-order bit of the 

in a similar fashion to that 
the i~ as 

i1.Dii 
FIV1(O), 



Table 2-11 ,.ADA, ADXA Selection 

CRAM ADA Source ADXASource 

0 AR ARX 
1 ARX ARX 
2 MQ ARX 
3 PC ARX 
4-7 Os Os 

.. ~ 

Table 2-12 ADD, ADXD Selection 

CRAMADB ADB Source ADXB Source 

0 FM (unused) 

BR*2 BRX*2 
2 BR BRXj2 

3 ARX*4 ARX*4 

In addition, ADB directly controls ADXB utilizing the same 2-bit field. Here the selection is unused 
(0), BRX*2(1), BRXj2(2) and ARX*4(3). Although AD and ADX together with ADA, ADXA, ADB, 
and ADXB normally function concurrently, information in ADX does not affect AD unless so speci­
fied. Carries from ADX must be specifically enabled to AD in order to affect its sum. 

2.9.5.4 AR Field - This field consists of three bits. Figure 2-71 details the breakdown of various 
combinations of CRAM AR Selection and hardware controlled selection. Generally, the CRAM AR 
field specifies selection as follows: ARMM(O), CAClfE(l), AD(2), EBUS(3), SH(4), ADX*2(5), 
ADX(6) and ADXj4(7). 

AR register loading is controlled by either the hardware or microcode. Normally, the AR register 
recirculates its contents. Selecting any of the AR select lines CRAM ARM SEL 4, 2, or 1 enables 
loading AR. The selection of none of the CRAM ARM SEL lines enables the AR mixer to select 
ARMM. The loading of AR)s then a microcode function. 

During reads from core, the signal CLK RESPONSE MBOX, selects ARM SEL 1 to enable the cache 
data lines into AR. Similarly, on reads from fast memory via AD, FM XFER selects ARM SEL 2 to 
enable the AD into AR. Various combinations of clearing of AR are possible depending on the condi­
tions. This information is given in table form on Figure 2-71. 

EBOXj2-83 



--I 

( 

SIGNAL FUNCTION 

CTl AR 00-11 ClR ENABLES lOADING O'S INTO 
AR OO-DB 

SIGNAL FUNCTION 
CTl REG#OO ENABLES MICRO CODE LOAD SIGNAL FUNCTION 

CTl AR 00-11 ClR ENABLES lOADING O'S INTO ARMM INTOAR [COND/REG 
AR 09-17 CTl] CTl ARR ClR ENABLES lOADING O'S INTO 

AR 18-35 
CTl REG#01 ENABLES MICRO CODE TO CTl COND/ARll ENABLES MICRO CODE TO 

lOAD PC/SECT 13-17 INTO lOAD lOAD ARMM INTO AR CTl REG#02 CURRENTLY USED TO ENABLE 
AR [COND/REG CTl] SER # TO BE lOADED INTO 

CTl ARl SEL 4,2,1 TO ENABLE lOADING AR AR 18-35 
CTl COND/ARlR ENABLES MICRO CODE TO 00-08 WHEN ANY ARl 
lOAD lOAD PC/SECT INTO AR SEl1,2,4 eTl COND/ARR lOAD CURRENTLY USED TO 

ENABLE SER # INTO ARR 
CTl ARl SEl 4,2,1 TO ENABLE lOADING CTl ARl IND fI TO ENABLE AR 00-08 TO 

AR 09-17 WHEN ANY CRAM#OI BE lOADED VIA ARRM CTl ARM SEl 4,2,1 ENABLE lOADING AR 18-35 
SEL 1,2.4 INDEPENDENT OF AR 09-35 ON ANY ARM SEl 4,2,1 

r-- CTl AR 09-17 lOAD - CTl AR OO-DB lOAD - CTL ARR lOAD 

00 08 09 17 18 ~ 35 

-
( 

ARlL ARlR ARR 
ClK OP-

I I 1 
CTl AR 00-11 ClR EN r-- EN EN 

\ CRAM AR~-i4 ARM 4 ARM 4 ARM 
SIGNAL FUNCTION SEL 4 2 

2 r--- 2 
.--/1 0 I 2 3 4 5 6 7 0-r ' 0 1 2 3 4 5 6 7 r-- I 0 1 2 3 4 5 6 

MCl23 BIT EA EXTENDED EA CALCULATIONS 

ARIMM l'!o J SIH J A6x J J CAJHEI EBlusl A01*2 1 AO~'4 SE~ # I do J SIH J Abx I 
CTl AR 12-17 ClR SEE TABLE AR 12-17 ClR CACHE EBUS AO*Z AOX14 PCI AD SH AOX CACHE EBUS AO*2 AOX14 

SECTION CTl ARl SEll 

CTl ARR SEl'2 
SIGNAL FUNCTION '---

I 
VARIOUS USES FOR EXAMPLE OIAG lOADAR I ~ SIGNAL FUNCTION lOADING AN !NSTR INTO AR 

c 
DIAL lOADAR VARIOUS USES FOR EXAMPLE 

VIA DTE·20 FOR EXECUTION 

I lOADING INSTR INTO AR VIA CTl ARl INO SEll MICRO CODE MUST CONTROL 
DTE·20 FOR EXECUTION OR SELECTS ONE OF THESE 
BOOTSTRAP SEa CACHE, E BUS, AD*2, AD/4 . CRAM ARM SEl 2 SELECTING ONE OF THESE 

MCl lOADAR fI READ INSTRPN OCCASION 
AD, E BUS, ADX, AD/4 ClK RESP MBOX OR DATA VIA MBOX 

CTl ARl SEl 2 1- CTl ARR SEll CON FM XFERfI READ INSTR ON OCCASION 
MCl lOADAR DIAGNOSTIC FUNC 

AR 12-17 ClR MCl lOADAR OR DATA VIA FAST MEMORY 
ClK RESPSIM 

SIGNAL FUNCTION SIGNAL FUNCTION 
SIGNAL FUNCTION CTL DISP/A READ ENABLE E VIA AD INTO ARR 

DIAGAR lOAD VARIOUS USES FOR EXAMPLE DIAG lOADAR VARIOUS USES FOR EXAMPLE 
lOADING AN INSTR INTO AR lOADING AN INSTR INTO AR MCl 18 BIT EA NON EXTENDED EA CAlCU-

( 
VIA DTE·20 FOR EXECUTION VIA DTE·20 FOR EXECUTION lATION 

'-- eTl ARR ClR 
CTl ARLIND SEl 2 MICRO CODE MUST CONTROL CRAM ARM SEll SELECTING ONE OF THE CTl RESET POWER CLEAR DIAGNOSTIC 

SELECTING ONE OF THESE FOllOWING CACHE, E BUS, FUNC SIGNAL FUNCTION 
AD, E BUS, ADX, AD/4 AD*2,AD/4 

COND/AR ClR AllOWS MICRO CODE TO • eTl RESET POWER CLEAR OR DIAGNOSTIC 
CON FM XFER fI READ INSTR ON OCCASION MCl lOADARfI READ INSTR ON OCCASION CLEAR AR 00-17 FUNC 
MCl lOADAR OR DATA VIA FAST MEMORY ClK RESP MBOX ORDATAVIAMBOX 

ARl IND fI AllOWS MICRO CODE TO eTl ARl IND fI AllOWS MICRO CODE TO 
CTL 36 BIT EA DURING A READ WITH CTl MCl lOAD AR fI DIAGNOSTIC FUNC CRAM#04 CLEAR AR 00-17INDE- CRAM #05 CLEAR AR 18-35INDE- , 

v AR 00-11 CLEAR FALSE ClK RESPSIM PENDENTLY PENDENTLY 

10· '640 

Figure 2-71 AR Selection 

EBOXj2-84 



\ 

2.9.5.5 ARX Field - This field consists of three bits. Figure 2-72 details the breakdown of various 
combinations of CRAM ARX selection and hardware controlled selection. Generally, the CRAM 
ARX field specifies selection as follows:, UNUSED(O), CACHE(l), AD(2), MQ(3), SH(4), AD*2(5), 
ADX(6), and ADX/4(7). ARX register loading is controlled by either the hardware or microcode. 
Normally, the ARX register recirculates its contents. Selecting any of the ARX select lines CRAM 
ARXM SEL 4, 2, or 1 enables loading ARX. The selection of none of these lines currently defaults to 
an unused input (0). As with AR, during reads from core, CLK RESPONSE MBOX, selects ARXM 
SEL 1, to enable the cache data lines into ARX. Similarly, on reads from fast memory via AD, FM 
XFERselects ARXM SEL 2 to enable the AD into ARX. Generally, the ARX is cleared via ARL 
IND and number 03. The various combinations are shown on Figure 2-72 in table form. 

SIGNAL FUNCTION CTlARXClR 

CRAM ARXM SEl 4 SELECTING ONE OF THESE, SIGNAL FUNCTION 
SH, AD*2, ADX, AD/4 

CTl ARl IND A TO CLEAR ARX WHilE OPERA-

CTl ARX SEl2 SEE TABLE BELOW CTl ARXR CRAM#03 TING ON AR 
SEl2 

CTlARXSEll SEE TABLE BELOW CTl ARXR 
SEll 

CTl RESET POWER CLEAR OR DIAG FUNC 

CTl ARXClR SEE TABLE CTl ARX ClR 

.-- CTlARX lOAD 

00 35 

ARX 
CLiC DP-

I 
CRAM ARX EN 

M SEl 4 4 
ARXM 

2 
.-/1 0 1 2 3 4 5 6 7 

} 
I 

I 
I 

I 
I 

I I AD SH ADX 

CACHE MQ ADX*2 ADX/4 

"--
CTl ARXSEl 2 CTl ARXSEl 1 

SIGNAL FUNCTION 
SIGNAL FUNCTION 

MCl lOAD ARX A READ OF INSTR, INDIRECT 
CRAM ARX M SEl 2 SELECTING ONE OF THESE ClK RESP MBOX WORD OR DATA VIA MBOX 

AD, MO, ADX, ADX/4 

MCl lOAD ARX A DIAGNOSTIC FUNC 
CONFM XFER A READ OF INSTR, INDIRECT 
MCl lOADARX WORD OR DATA VIA FAST CRAM ARXM SEll SELECTING ONE OF THESE, 

MEMORY CACHE, MO, ADX*2, ADX/4 

10-1641 

Figure 2-72 ARX Selection 

EBOX/2-85 



:lFh;'M - The UR 18 to Ol'H':; tw~) 

to the Regl§tel· (BR), Tl"H:: §ources [nay be seleGt~d: BR(O), 

BRX fiif:id. - BRXt1.ekl to one t'Il\fO po§§ibRe SOUK'{;eg 

to §ourcI;;s may b~ selected: 

fatl[ 
three bits :and is 'Us,;:;;d in the 

§·eliection is ::iB foHo1:1\,l!l: 

L 

~~" 'V.MA 32--35, 

5. AC2(4), {IRA.C 9~·12)+2 

6. (IRAC 9+2)+3 ModlJJk~ 

it is, # 

8. 

SCAD If:i'nleld ~. SCAD field three bits and is uSI;d to control the Counter 
(SC.,,'IlD) during various microinstrw;:tiol1 operations. It i5 wired to implement eight functions as 

TabXe 2-L1 The §~nlctme is similar to that the AD Of ADX there 
are two input labeled SCADB. These are selected two control RAM 

labeled and SCADS. 



• 

2.9.5.10 SCADA Field - The SCADA field consists of three bits and is used to select various sources 
as input to the SCADA Input. The following sources may be selected: FE(O), AR POS(I), AR EXP(2), 
#(3). SCADA selections of 4-7 disable SCAD A producing zeros as output. 

The floating-point exponent register (FE) is a lO-bit register. The AR position field is used in byte 
instructions and consists of AR 00-05. The AR exponent field consists of AR bits 00-08 and the magic 
number field is a 9-bit control RAM field used to implement various operations. The SCADA mixer 
selection is shown in Table 2-14. 

Table 2-14 SCADA Mixer Selection 

CRAMSCADA Source 

0 FE 
1 ARO-5 
2 AREXP 
3 # 
4-7 Os 

2.9.5.11 SCADB Field - The SCADB field is a 2-bit field used to select various sources as input to the 
SCAD ±B input. The following sources may be selected in the SCADB mixer: SC(O), AR SIZE(I), 
AROO-08(2), and #(3). Selection of 4-7 disables SCADB, producing zeros as output. The SCADB 
mixer selection is shown in Table 2-15. 

Table 2-15 SCADB Mixer Selection 

CRAM SCADB Source 

o 
1 
2 
3 
4-7 

sc 
AR6-11 
AROO-08 

# 
Os 

The shift counter (SC) is a general-purpose lO-bit register used in shift counting operations such as 
performed in floating-point instruction and shift instruction execution. It also controls the shifter 
when the SH-ARMM field is zero (SH AR and ARX). The AR SIZE field is used in byte instructions 
and consists of AR bits 06-11. The AROO-08 is used in string and edit functions. The magic number 
field is a 9-bit general-purpose CRAM field used for various functions. 

2.9.5.12 SC Field - The SC field consists of one bit and is used with the special field function SCM 
alternate. With SC and SCM alternate, four possible sources may be selected as follows: 

EBOX/2-87 

-



With the special field function SCM ALT and SC field equal to zero, FE is selected. Similarly, with 
SCM ALT and SC field equal to one, AR SHIFT is selected. AR SHIFT consists of bits 18 and 28-35 
of AR, which are derived from the effective..address for shift instructions. If bit 18 is set, the shift 
specified is a right shift; otherwise, it is a left shift. 

2.9.$.13 SH Field - The SHIFTER field consists of two bits and is used to select four possible inputs 
to the shifter. The selection is as follows: the combined AR, ARX(O), AR(l), ARX(2), and AR 
SW APPED(3). When shifting AR, ARX left (which is the only way SH shifts physically), SC can 
specify up to 3510 shifts. Any number less than 0 or greater than 3510 selects ARX as output. 

2.9.5.14 The AR MixerMixer (ARMM) - The AR Mixer Mixer (ARMM) field consists of two bits 
and is used with other control signals and the absence of ARM SEL 4, 2, and 1 to select various 
sources as input to AR mixer. 

The ARMM comprises three parts: bits 00-08, bit 12, and bits 13-17. The same field that controls SH 
controls ARMMOO-08. The following may be selected as input to ARMMOO-08: #(0), AR SIGN 
SMEAR(I), SCAD EXP(2), and SCAD POS(3). AR SIGN SMEAR is ARO-8 from ARO. SCAD ( .. ~ 
EXP is ARO-8 via SCAD, and SCAD POS is ARO-5 via SCAD. 

ARMM bit 12 is controlled by CRAM SH-ARMM SEL 1 when transferring the previous section to 
AR for certain operations. ARMM bits 13-17 are also under control of CRAM SH-ARMM SEL 1 
but the signal is actually MCL PREY SECT to ARMM. The default value for ARMM 13-17 is PC 
13-17 and the selected value is VMA previous section 13-17. 

2.9.5.15 . VMA Field - The VMA field consists of two bits and is used to select various sources as 
input to VMA. The following are specified by the CRAM field VMA(O), PC(l), PC+ 1(2), and AD(3) . 

. Address control is presented in Subsection 2.4 and a path diagram is provided to show various com­
binations in Figure 2-58. 

2.9.5.16 MQ Field - The MQ field consists of one bit and is used in combination with the following: 

DISP/MUL 
DISP/DIV 
SPEC/MQ SHIFT 
SPEC/REG CONTROL 
MAGIC NUMBER FIELD 

Refer to Figure 2-73 for various combinations. 

2.10 EBOX INSTRUCfION SET FUNCTIONAL OV,ERVIEW 
Figure 2-74 breaks down the KLtO instruction set into several functional areas. These areas are related 
to the minor machine cycles and to the microcode dispatch RAM decoding. The figure shows seven 
basic areas as follows: 

1. Group Class of instruction 

2. Address Calculation xr, @, B, Y 

3. Data Fetch IMM, Read, Read-Write, Write, Read, Pse Write 

4. Execution 36-Bit Data Path (DP), 18-Bit Address Path 
(AP), 23-Bit AP, to-Bit AP 

5. Special Conditions Can cause PI, Trap 

6. Store Data Write 

7. Interruptable 

EBOX/2-88 



\ 

MOM Out MOM EN 

MO/4 1 
SH , 
AD 1 
1', 1 

CRAM 
MO Field 

CRAM 
MO MOM EN 

0 0 
0 0 
0 0 
1 1 
1 1 
1 1 
0 0 
1 1 
1 1 

Reset 1 .. 

MQ 

MOM Sel2 MOM Sell MO~ 

0 0 MOM 

0 1 MOM/2 
1 0 MOM*2 
1 1 Hold 

SELECTED CONTROL SIGNALS 

MOMSel2 MOM Sell MO Sel2 MOSel 1 

0 0 1* '* 
0 0 1* 0* 
0 0 l' O· 

l' 0' 0 0 
0* l' 0 0 
0 0' 0 -0 
0 0 1 0 
l' 1* 0 0 
O· 0 0 0 
0 0 0 0 

0= LOAD 

1 = SHRT 
2 = SHLT 
3= HOLD 

MO Sel2 

0 
0 
1 
1 

MQ SEL 2 

MQ SEL 1 

MOSel 1 

0 
1 
0 
1 

I COND/REG 
I CTL 

CONTROLLING FIELDS 

SPEC/MO DISP/ DISP/ #07-08 
SHFT DIV MUL 

0 0 0 00* 
0 l' 0 OX* 
l' 0 0 OX' 

'" O· O· 0' 00' 
0 0 1" 00 
0 0 0 01 
0 0 0 10* 
0 0 0 11* 
0 0 0 0 

10-1642 

Figure 2-73 MQ Selection 

EBOX/2-89 



1 INTERRUPTABLE ·SPECIAL ADDRESS MANIPULATIONS 

GROUP ADDRESS CALCULATION DATA FETCH EXECUTION SPECIAL CONDS STORE DATA ( 
OPCODES CLASS XR @' WRITE READ PSE WRITE 36 BIT 18 BIT 23 BIT 10BIT CAN CAUSE TRAP WRITE INTERRUPTABLE B Y IMM READ READ-WRITE 

DP AP AP DP PI 

• IMMTO FM 

MOVE GROUP YES SELF ALL NO NO 
BASIC TO FM 

200-217 YES NO YES IMM BASIC MEM MEMTO E 
SELF TO E AND FM 

500-577 HALF WORD 
YES 

GROUP 
YES NO YES IMM BASIC ~ MEM SELF ALL NO NO SAME AS FULL WORD GROUP 

DOUBLE WORD 

~ - g BASIC TO FM, FM+1 
120-125 FULL WORD YES YES NO YES BASIC MEM ALL NO NO MEMTO E, E+1 

GROUP 

400-477 
BOOLEAN 

YES YES NO YES BASIC SETMB MEM BOTH ALL NO " NO SAME AS FULL WORD GROUP 
GROUP IMM 

YES YES ~ ~ ~ ALL ALL NO ~7P~VL0 IMM TO FM ALSO CAUSES A FETCH 
260-263 STACK GROUP NO YES IMM READ FROM FM 

104-105 JSYSAND 
ADJSP 

YES YES NO YES IMM ~ ~ ~ ~ ALL JSYS NO YES IMM TO FM 

~ ~ ~ NO NO 
IMMTO FM 

600-677 TEST GROUP YES YES NO YES IMM BASIC ALL BASIC TO FM 

330-337 ARITHMETIC 

~ ~ ~ 
SOSXX NO NO SKIPXX, IFA * STORE {EI; INAC 350-357 YES YES NO YES SKIPXX ALL 

370-377 SKIPS AOSXX 

~ ~ ~ 
CONDITIONAL NO NO 

CAIXX STORES NOTHING 
300-317 COMPARES YES YES NO YES CAIXX CAMXX ALL CAMXX STORES NOTHING ALL 

~ ~ ~ ~ 
. ~ AOJX [AROVI' ~ JUMPX STORES NOTHING 

320-367 CONDITIONAL YES YES NO YES IMM ALL CONDITIONAL NO AOJXTO FM 
252-253 JUMPS ALL V}~)//// SOJXTO FM 

( 
". 

252-253 
ARITHMETIC 

YES YES NO IMM ~ ~ ~ ~ ALL CONDITIONAL NO NO ALL TO FM 
TESTING YES 

ALL 

• • • • JSRTOE } 
SUBROUTINE YES 

UNCONDITIONAL 
NO NO 

JSP TO FM ALL CAUSE 
264-267 YES NO YES IMM ALL 

ALL JSA TO E AND FM FETCH CALL 
JRATO AC 

254-255 
AC DECODED 

YES IMM ~ ~ ~ ~ ALL JRSTSARE NO NO 
HIGHER LEVEL FUNCTIONS 

JUMPS YES NO YES 
UNCONDITIONAL PERFORMED 

256 XCP YES YES NO YES IMM ~ ~ ~ ~ ALL UNCONDITIONAL NO NO 
FETCH 
IN KERNAL MODE PXCT 

257 MAP YES YES NO YES IMM V////~ V/////,/ V/////i; V/////i; ALL UNCONDITIONAL NO NO PAGING INFO TO FM 

FIXED POINT ADDI ADD 

~ 
ADDM ADDB ALL NO '0'/'///// 

270-277 YES YES NO YES YES )'//~~oj0 SAME AS FULL WORD 
ARITH SUBI SUB SUBM SUSB 

• • • WI IMULI.IDIVI TO FM 
IMUL, IDIV TO FM 
IMULM, IDIVM TO MEM 

220-227 FIXED POINT 
YES YES NO YES 

IMUL XMULM, }(MULB ALL ALL NO 
IMULB, IDIVB TO FM, MEM 

230-237 ARITH IDIV XDlVM, XDIVB MUll, DIVM TO FM, FM+1 

~ 
MUL, DIV TO FM, FM+1 
MULM, DIVM TO E, FM+1 
MULB, DIVB TO E, FM+1 

• • • • ~("~ 
D ADD TO FM, FM+1 

114-111 
DOUBLE YES YES NO YES BASIC ALL ALL NO 

o SUB TO FM, FM+1 
INTEGER o MUL TO AC, AC+1, +2, +3 

~/////0 o DlV TO E, E+1 

140-147 SINGLE PREC MEM ~ ~ ~ft.{~6~ 150-157 FLOATING YES YES NO YES IMM BASIC ALL ALL NO 
160-167 BOTH /};///,'/ 170 177 POINT 
130-132 UFA, DFN, FSC UFA, FIX w:w w:w ~{~{~t~ 122 FIX, FIXR YES YES NO YES FSC FIXR DFN 
126-127 FLTR FLT, FLTR //"/'}7/ '/ 

( 
000-103 UUO'S YES YES NO YES IMM ~ ~~ ALL ALL NO NO HIGHER LEVEL FUNCTIONS , 

• AC*O 
ILDB 

.~ 
IBP, UPDATE POINTER {El 

YES 
134-137 BYTE GROUp· YES YES NO YES 

ADJBP 
IDPB ALL ALL NO NO 

ILDB, UPDATE POINTER {EI 
IN@ 

AC=O BYTE- FM 
IBP 

[FPDI .. IDPB, UPDATE POINTER {EI BYTE - AC LOOP 

• • • • LSH, ASH: AC -10 FM 
240-247 SHIFTS AND 

YES NO YES IMM ALL ALL NO NO 
LSHC, ASHC: AC+1 -10 FM+1 

{NOT 2431 ROTATES YES ROT: AC-IoFM , 
ROTC: AC+1 -10 FM+1 

251 SLT" YES YES NO YES IMM ~ ~ ~ ~ YES YES NO YES NO NO 
MULTIPLE WORDS MOVED SOURCE+N 
TO DEST+N 

YES 

700-777 
INPUT 

NO BASIC ~ ALL ALL YES EIE INTERFACE OPERATIONS 
OUTPUT YES YES YES IMM BLKX MEM 

[CONOPI] 
NO 

250 EXCH YES YES NO YES ~ ~ ~ ~ EXCH ALL NO NO NO E:FM . 
DOUBLEPREC 

~ ~ ~ ~ ~{(tfo(~ 110-113 FLOATING YES YES NO YES ALL ALL ALL NO 
DFAD,DFSS: RESULT TO AC, AC+1 

POINT ///////; DFMP.DFDV: RESULT TO AC, AC+1 

Figure 2-74 Instruction Set Divisions 

EBOXj2-90 



• 

. Once the instruction has been loaded into IR and ARX, the major machine cycle begins; this is shown 
in Figure 2-75.· 

Three functional flows and two tables are included to supplement the functional descriptions of the 
address, fetch, and store cycles that follow. 

.. ~ INDEXING 
.,__--( INDIRECTION 

INTERUPT 

10-1644 

Figure 2-75 Major Machine Cycle 

2.10.1 Effective Address Calculation 
Figures 2-76 and 2-77 illustrate the instruction word formats. Bits 13-35 have the same format in every 
instruction whether the instruction addresses a memory location Qr not. Bit 13 is the indirect bit, bits 
14-17 are the Index register address and, if the instruction must reference memory, bits 18-35 are the 
memory address Y. The effective address E of the instruction depends of the values of I, X, and Y. 

00 08 09 12 

I '.'T"C:' •• C.DE AC'.'CAT.' .... E" 
14 17 IS 35 

INDEX REGISTER VIRTUAL MEMORY ADDRESS 
ADDRESS (X) 

INDIRECTION (Y) 

Figure 2-76 Basic Instruction Format 

14 17 IS 35 

INDEX REGISTER ADDRESS VIRTUAL MEMORY ADDREsS 

7 INDIRECTION 

10 -1646 

Figure 2-77 In-Out Instruction Format 

EBOX/2-91 



2.10.1.1 Indexing -If the Index register address is nonzero, the contents of the specified Index regis- ( 
ter are added to the Y address to produce a.modified virtual address. 

Referring to Figure 2-78, the EBox tests ARX 14-17; if it is nonzero, the contents of the specified 
Index register are added to ARX 00-35. The result in AD 18- 35 is loaded into AR 18-35 with AR 
00-17 cleared, and also loaded into VMA 18-35 while VMA 13-17 is recirculated. 

2.10.1.2 Indirection ~hether indexing is performed or not, if ARX 13 is equal to 1, indirection will 
be performed. Two cases are to be considered. The first is where no indexing was performed. Here 
(indicated on Figure 2-78 as (;\) ) VMA 18-35 is loaded via AD with ARX 18-35. In the second 
case, indexing is performed and tile VMA is loaded via AD with AR. Here AR holds the sum of ARX 
18-35 and FM 18-35 effectively, with AD bits 00-17 clear. 

In either case, VMA 13-17 is recirculated while VMA 18-35 will be loaded via AD. The micro­
instruction MEM field function for the indirect request is MEMj AIND. This function has MEM 02 = 
0, so MBOX WAIT is conditionally a function of the next microinstruction. 

Testing for Interrupts 
The microinstruction causing the EBox request also tests for a pending priority interrupt. If an inter­
rupt is pending, the CRAM address is modified to allow entry to the PI Handler (Figure 2-79). 

The request, which is made both to fast memory and core memory via the MBox, is ignored as long as 
it does not page fault. MBOX WAIT is false, so the EBox clock does not stop at this time. The EBox 
ignores an indirect reference when an interrupt is pending, but the EBox hardware remembers a page 
fault (if one occurs) until the page fault handler has been called. After the PF Handler is called, Force 
1777 will be cleared. 

Referring to Figure 2-80, assume the indirect request has been started. Because the indirect reference is 
always a "READ," the only types of page faults that can occur in KI paging mode are no access (page 
not in core) or proprietary violation. 

The requesting microinstruction detects the interrupt and the microprogram branches (via CRAM 
Address) to the PI Handler. 

If the page fault occurs (for example) because of no access, the MBox must first read from the in core 
process table to obtain the paging information (use bits A, P, W, S, C and physical page). Reading this ( 
can take between 600 and 1000 ns. During this period, the PI Handler is setting up the requested PI 
service. 

Eventually, a read, write or instruction fetch occurs, caused by the handler. When MBOX WAIT 
becomes true, the clock board (which remembered the Page Fail Hold level) forces the microprogram 
to the page fault handler. 

Now the page fault handler detects the pending interrupt and the microprogram branches back to the 
PI Handler or to the instruction cycle. Thus, the entry to the page fault handler satisfied the clock 
board "page fail hold condition" and this condition now clears. Should the EBox make a second 
MBox reference before the page fault occurs, the EBox waits. 

EBOXj2:.92 



c EBOX OOES NOT 
USE THE FAST 
MEMORY WORD 

NO 

FMADR32-35 -
VMA32·35. 
"ACCESS FAST 
MEMORY" 

NOTE 1: 
IF NO INDEXING 
WAS PERFORMED 
AD=(ARXI ELSE 
THE (ARI 

VMA13·17 ·-VMA 13·17 
VMA 18·35 --AD18·35 
"BEGIN EBOX REO" 

ADD THE CONTENTS 
OF THE SPECIFIED 
INDEX REGISTER 
TOARX IN AD 

AR - 00-17 - 0 

AR18-35' AD~8·35 
VMA 13·17 ··-VMA 13·17 
VMA18·35-· AD18·35 

REF CAN MBOX COMPLETE 

PAGE FAIL? CYCLE? 

NO MBOX 
NO TERMINATES 

NOMBOX 
NO TERMINATES 

YES, I F SO EBOX 
DIVERTS TO PF YES 
HANDLER 

YES,BUT NOT 
ACTED UPON YES 
UNTIL THE NEXT 
MBOX WAIT' 

'ONCE IN THE PAGE FAULT HANDLER 
THE INTERRUPT PENDING WILL 
CAUSE A RETURN TO THE PI HANDLER 
AND THE PF HOLD EN LEVEL WILL BE 
CLEARED, REMOVING TEMPORARILY 
ALL TRACES OF THE FAULT. 

I 

NUMBER OF EBOX CYC JES REQUIRED 

VMAAC MBOX CYCLE 
I 

FASTMEM CYCLE 
REF? 

BEGIN CYCLE, BEGIN CYCLE, @ 
YES WORD TO ARX BUT EBOX IGNORES 

BEGIN CYCLE, BEGIN CYCLE 
YES BUT EBOX IGNORES BUT EBOX IGNORES 

NO BEGIN CYCLE, @ BEGIN CYCLE, 
WORD TO ARX BUT EBOX IGNORES 

NO BEGIN CYCLE, BEGIN CYCLE, 
BUT EBOX IGNORES BUT ~BOX IGNORES 

0 
INDIRECT 
REF? 

YES 

YES 

YES 

YES 

SEE NOTE 2 

INTERRUPT REQUESTING NEXT MICRO 
? MICRO INSTR INSTR 

MEM02=1 
NO MEM/AIND MBOX WAIT 

YES -DIVERT 
TO PI MEM/AIND MEM02=0 
HANDLER 

NO MEM/AIND M EM02=1 
MBOXWAIT 

YES-DIVERT 
MEM/AIND MEM02=0 

TOPI 
HANDLER 

NOTE 2: 
MEM CYCLE 1\ MEM 02( 11 = MBOX WAIT 
MBOX RESP OR FM RESP CAUSES MEM CYCLE TO CLEAR 
MBOX WAIT I\-VMA AC REF:. EBOX CLOCK STOPS IF: 

•. MBOX IS SERVICING THE EBOX REO 
b. WORD IS IN THE CACHE AND 

TIME FIELD IS < 3 OR ... 

MBOX IS SERVICING THE EBOX REO 
b. WORD IS NOT IN THE CACHE OR . .•. 

• . MBOX IS SERVICING THE EBOX REO 
b. A PAGE FAULT OCCURS OR .. . . 

• . A CONTROL RAM PARITY ERROR IS 
DETECTED OR .. .. 

10-1647 

Figure 2-78 Effective Address Calculation 

EBOX/2-93 



Figure 79 Du.ring Div!ef!:ed 

NOl!'lIT!ud Case - Nt} I~ternupt§~ IV.lLBm. Re{ll!lu')§t 
When the ERox is made specificaHy are pending, the micrct~ 

fonowing which made the field coded as i-

MEl".!!, This function, together with IV!:EM 'VAIT, 

fault not occur, the word the 
once again. 

~ No Interrupt§!, FlBl§t Memoli:! ReqMte§t 
determines the contains 

is used to the EBox 
mernory address, it asserts 

is not to by 
fast memory control uses VMA to 8!1,;::cess 

may a care memory address;. The dirc'cts the information 

The address manager (Figure 2m 1 
13 ami 14-17. In addition, it s81111pies this 

information provided 
it to a 

assu.me a 
a rnkWl11strw:::tion 

of the logic. 

."HaL'''.-''' the correct registers to be loaded; it may, 
the: next performs 

is to always perform indexing AD, 
information only if ARX 7 ~ O. This approach 

The at the of Figme Ihrw the four possiMe resu1ting 
ences to either MBox or IT}.emory. 

to 
the 

indirect refer-



"DRAM A=4, 5, 6~9R 7" 

YES 

"DRAMA=4" 

PERFORM REAO & 
PAGE TEST OF 
EFFECTIVE 
ADDRESS. 

NO 

NO 
PAGE FAULT 
HANDLER 

"READ-WRITE" 

PAGE FAULT 
HANDLER 

PERFORM READ 
AND WRITE PAGE 
TEST OF 
EFFECTIVE 
ADDRESS 

AR-·DATAWORD 

"READ PSE 
WRITE" 

PERFORM READ 
AND WRITE PAGE 
TEST OF 
EFFECTIVE 
ADDRESS 
IDOING READ 
PSE WRITE) 

YES 

AR- DATA 

PAGE FAULT 
HANDLER 

WRITE IN E 

YES 

PAGE FAULT 
HANDLER 

Figure 2-80 EBox Data Fetch 

EBOXj2-95 

ENTER WITH AR=E 

YES 

"DRAM A=O" 

NO DATA 
FETCHED. AR=E 

NO DATA 
FETCHED. AR=E 

FETCH lAC). FAST 
MEMORY 
ADDRESSED VIA 
IRAC 09·12 
AR-"AC 

10-1649 



• 

2.10.1.3 No Indirection or Indexing - For this case, ARX 18-35 contains the effective address. Here, it 
remains only to load AR 18-35 via AD with E and ((lear AR 00-17. The Fetch cycle is now entered. 

2.10.2 Fetch Cycle 
Once the effective address has been calculated, the second minor machine cycle is entered. This is the 
Fetch cycle and is illustrated in Figure 2-81. 

IMM 
IMM-PF 

READ 
READ-PF 
WRITE TST 
READ-WRITE 
READ PSE WRITE 

10-1650 

Figure 2-81 Fetch Minor Cycle 

After the effective address has been calculated, the microprogram effective address manager gives "A 
READ DISPATCH" and control is passed to the Data Fetch Manager. 

In general, two major classes of instructions exist in terms of the Data Fetch cycle. These two classes 
are those instructions that require the contents of the effective address and those that do not. Within 
each of these two categories are a n umber of divisions. The flow of the Fetch cycle is illustrated in 
Figure 2-80. 

2.10.2.1 Instructions That Do Not Require (E) - Three general groups form this category. 

1. Complex or PC change instructions 
2. Immediate non-PC change instructions 
3. Instructions that write in E 

For these three g'roups, the DRAM A field is coded 0, 1, and 3, respectively. The AREAD Dispatch 
functions are listed in Table 2-16 . 

Complex or PC Change Instructions 
The DRAM A field is coded as 0, and no data is requested. In addition, the next instruction is not 
prefetched. The AREAD /Dispatch dispatches directly to the execute code. This consists of a table 
lookup, where one discrete entry exists for each instruction. Thus, for example, the move instruction 
indexes into location "200" in the DRAM. The organization of the DRAM is illustrated in Figure 1-4. 

Immediate and Non-PC Change Instructions 
The DRAM A field is coded as 1, and no data is requested. The next instruction is prefetched and 
loads into ARX when the instruction becomes available. The AREAD /Dispatch dispatches directly to 
the execute code. 

EBOX/2-96 

c 



Table 2-16 AREAD Dispatch 

DRAMA DISP/AREAD MEM/AREAD Require (E) 

0 Executor NoPrefetch No 

1 Executor Start Prefetch No 

2 Not used N/A 

3 Symbolic Address 43 * Perform write test. No 

4 Symbolic Address 44* "LOAD AR." Yes 

5 Symbolic Address 45* A read operation is in progress: Yes 
"LOAD AR, PREFETCH." 

6 Symbolic Address 46* LOAD AR. READ-PAUSE-WRITE Yes 

7 Symbolic Address 47* LOAD AR, WRITE TEST Yes 

*The Data Fetch manager is a combination of hardware mostly on MeL and the microprogram consisting of 43-47. 

Instructions That Write in E 
The DRAM A field is coded as 3 and a write page test is initiated. If the address is not writable, a page 
failure occurs. This action causes a transfer to the page fault handler as indicated in Figure 2-80. 

The appropriate Fetch EBox Qualifiers may be determined by referring to Figure 2-82. For DRAMA 
= 3 the following qualifiers are specifically asserted: 

EBOX REQUEST 
EBOX PSE 
EBOX WRITE 

In addition, the state of the qualifiers is more complex and may depend on the previous history of the 
EBox. The state is indicated by an asterisk (*). Once again referring to Figure 2-80, if the write page 
test is successful, the EBox fetches the contents of the addressed fast memory location (via IRAe 
09-12) and then dispatches via the DRAM J field to the executor. 

EBOX/2-97 



EBOX REQUEST QUALIFIERS 

> c: W t-
~ w 2 

w > " S " -' ~ 0 

" ~ " " W '" :E t:; u " t- O; " £ t;; " 0 
S :'i w a: w .. '" c: -' 

c: 0 0 
if 

., 
w Z W " -' -' REMARKS 

0; c: ;: :J ., a ~ :::! t- " w w 
X X X X X > ~ " 

w w w J: J: 
0 0 0 0 0 '" '" '" ~ u 
ffi ffi ffi ffi ffi " ;; :E " ~ ~ " :E > .. u u 

CYCLE MEM DRAM DRAM 
FUNC A B 

ADDRESS A IND FOLLOWED 
INDIRECT WORD READ, MAY BE TO MBOX OR 

BY LOAD AAX X X * * * * * * TO FAST MEMORY, VMA AC REF INDICATES 
WHICH VMA HOLDS ADR. 

INSTR FETCH. MAY OCCUR FOLLOWING A 
FETCH FETCH 10R5 X X * * * • * * * READ WITH DRAM A=1 OR 5 TOGETHER WITH 

MEMiFETCH. 

FETCH AREAO 0 X X * * * * • * * * INSTR FETCH FOR JRST 0 OR=JRSTO) 

EXECUTE 
X STORE FETCH X * * * * • * * * 

PI CYCLE IS CLEAR. USED WHERE NO PRE FETCH 
WAS ISSUED TO CAUSE AN INSTR FETCH. 

DATA READ ISSUED BY INSTRUCTIONS REQUIRING 
THE fE) AS FOLLOWS: COMPLEX OR PC CHANGE 

FETCH A READ 4-5 X X * * * * eD* * * 
INSTRUCTIONS OR SIMPLE NON PC CHANGE INSTRUC· 
TIONS. <D ASSERTED IF ATTEMPTING TO READ DATA 
FROM A PRIVATE ADDRESS SPACE WITHOUT PROPER 
PROTOCOL. MBOX READ PAGE TESTS. 

DATA READ-WRITE ISSUED BY INSTRUCTIONS 
REOUIRING THE (E) WHICH CONDITIONALLY WRITE 
INTO E. THESE INSTRUCTIONS ARE AS FOLLOWS: 

FETCH A READ 6 X X X * * * * (V* * * NON READ PSE WRITE TYPE@ ASSERTED IF 
ATTEMPTING TO READ DATA FROM A PRIVATE 
ADDRESS SPACE WITHOUT PROPER PROTOCOL. 
MBOX READ AND WRITE PAGE TESTS. AR LOADS. 

DATA READ PSE WRITE ISSUED BY INSTRUCTIONS 
REQUIRING THE (E) WHICH WILL UNCONDITIONALLY 
WRITE INTO E.@ASSERTEDIFATTEMPTINGTOREAD 
DATA FROM A PRIVATE ADDRESS SPACE WITHOUT 

FETCH AREAD 7 X X X X * * * * @* * * THE PROPER PROTOCOL. MBOX READ AND WRITE 
PAGE TESTS. IF CACHE IS DISABLED FOR THE CYCLE 
MBOX WAITS FOR WRITE PORTION OF CYCLE. I.E., PT 
CACHE (0) OR CACHE LOAD (O)I\NOT FOUND. AR 
LOADS. 

DATA WRITE PAGE TEST ONLY. ISSUED BY 
INSTRUCTIONS NOT REOUIRING (E) BUT WHICH 

FETCH A READ 3 X X X * * * * @ * * * 
WILL WRITE INTO E. ® ASSERTED IF ATTEMPTING 
TO WRITE DATA INTO A PRIVATE ADDRESS SPACE 
WITHOUT THE PROPER PROTOCOl. MBOX WRITE 

" PAGE TESTS. 

DATA WRITE (WRITE PAGE TEST AND WRITE DATA) 
USED BY THE GENERAL 4 MODE TYPE INSTRUC· 
TlONS. I.E., IMM, BASIC, MEM, SEL FOR BOTH. SELF 

STORE BWRITf 2-3 X X * * * * ®* * * 
MODE STORES CONDITIONALLY IN E WHILE BOTH 
MODES ALWAYS STORE IN E. IN ADDITION BOTH 
MODES STORE UNCONDITIONALLY IN AC WHILE 
SELF E MODE STORES CONDITIONALLY IN AC. 
STORE VIA AR. ® SAME AS@. 

BYTE POINTER INDIRECT WORD READ. USED AFTER 
BYTE POINTER HAS BEEN FETCHED WHEN BIT 13 

EXECUTE BYTE IND X X * * * ®* 
OF THE POINTER IS 1. USED ONLY BY BYTE TYPE 

* * * INSTRUCTIONS. ACTS LIKE EBOX READ TO MBOX. , 
MBOX READ PAGE TESTS. BOTH AR AND ARX ARE 
LOADED.®SAME AS@. 

BYTE DATA READ. USED AFTER BYTE INDIRECT 
HAS COMPLETED. USED BY BYTE TYPE INSTRUC· 

EXECUTE BYTE RD X X * * * * 0* * * TIONS. ACTS LIKE EBOX READ TO MBOX. MBOX 
READ PAGE TESTS. BOTH AR AND ARX ARE LOADED. 
Q)SAME AS®. 

GENERAL PURPOSE WR ITE. USED MANY PLACES. 
SOME EXAMPLES WOULD BE INSTRUCTIONS WHICH 

EXECUTE STORE MORE THAN ONE OPERAND, SUCH AS DOUBLE 
STORE WRITE X X * * * * ®* * * TYPE INSTRUCTIONS. INSTRUCTIONS WHICH SKIP, 
MISC OR MODIFY AND SKIP BUT DID NOT FETCH (E) AND 

ARE GOING TO WRITE INTO E. MBOX TREATS AS 
WRITE, WRITE PAGE TESTS, 

EXECUTE LOADAR X X * * * * * * * * 
• IF AN INSTRUCTION IS FETCHED BY A PUBLIC PROGRAM FROM A PRIVATE ADDRESS SPACE, AND THE INSTRUCTION IS NOT A PORTAL, ILL ENTRY WILL CAUSE THE 

MBOX TO PAGE FAIL ON THE NEXT MBOX REF. 

* THESE aUALIFIERS ARE TRUE OR FALSE DEPENDING ON THE SPECIFIC TYPE OF REQUEST BEING MADE. 

Figure 2-82 Address-Fetch-Execute-Store General Memory References 

EBOXj2-98 



2.10.2.2 Instructions That Require (E) - Under this category are four general groups. These groups 
are as follows: 

1. Complex or PC change instructions 

2. Simple non-PC change instructions 

3. Non-(read-PSE-write) type instructions 

4. Read PSE write type instructions 

For these four groups, the DRAM A field is coded 4, 5, 6, or 7, respectively. 

Complex or PC Change Instructions 
The DRAM A field is coded as 4, causing a dispatch to location 44. A read page test is performed by 
the MBox. If the address is not accessible (not in core), the MBox performs a refill cycle and then 
checks the use bits. 

If the access bit is clear, a page fault occurs and the EBox transfers to the page fault handler (micro­
code page fault handler). Otherwise, the requested word is loaded into AR. For the appropriate EBox 
qualifiers, refer to Figure 2-83. Finally, a DRAM J dispatch is performed to the executor. 

Simple Non-PC Change Instructions 
The DRAM A field is coded as 5, causing a dispatch to location 45. The basic read is the same as for 
DRAM A = 4. If no page fault occurs, the MBox issues MBox RESPONSE with the data word. Now 
the VMA loads with the prefetch address and this cycle begins. This MBox cycle will run in parallel 
with the Execution cycle, which may not use ARX. Finally, a DRAM J dispatch is performed at 
location 45; the VMA is loaded with PC + 1 and the prefetch begins. 

Non-Read PSE Write-Type Instructions 
A number of instructions are in this category; a few examples follow. 

The first example is SETMB. This instruction (Boolean Group), reads a word from memory and 
unconditionally stores it in memory and AC. Because writing the word back into the same address is 
redundant, only a write page test is required to assure that the word (if in core memory) is writable. If 
this page fails, then the operation is aborted anyway. Otherwise, the word read is stored only in fast 
memory as addressed by IRAC 09-12. The read-write (separate cycles) may be thought of as consisting 
of a read and conditional write. If the write cycle is really desired, the MEM field function 
MEM/Write m.ay be used to write (Figure 2-82). 

The second example concerns instructions such as IDIVM, IDIVB, DIVM, and DIVB. These instruc-
• tions reference memory for both read and can generate no divide. This aborts the division operation. If 

the class of instruction is read PSE write and the cache is disabled for the reference, then the MBox 
waits for the write portion -of the cycle; the EBox performs an unnecessary write operation. 

A third cause is for BLKI and BLKO I/O instructions. Here a pointer word is fetched from the 
effective address. This pointer is normally updated and stored back in the effective address. 

One problem is that the legality of performing the I/O instruction is tested after the pointer has been 
fetched. This is necessary because the pointer is fetched during the Fetch cycle, while legality (IO 
LEGAL) is tested during execution. Should the BLKX instruction be illegal in the current EBox mode, 
an unnecessary pointer back off and write would be necessary. 

Other cases are concerned with very long instructions, which could hold up the MBox. 

EBOX/2-99 



CYCLE 

EXECUTE 
MUUO 
PART 1,2. 
METER 
REQUEST, 
PAGE FAIL 
PART 1,2. 

EXECUTE 
MUUO 
PART 3, 
PAGE FAIL 
PART3 

EXECUTE 
DEPOSIT 

EXECUTE 
EXAMINE, 
DEPOSIT, 
METER REQ 

EXECUTE 
STD 
4Ot2N INT 
2ND PART 
STD INT 

COND 
FUNe 

SPEC 
FUNe 

SP MEM 
CYCLE 

SPMEM 
CYCLE 

SPMEM 
CYCLE 
:t08(1):. 

PHYS REF 

SPMEM 
CYCLE 
#08( 11:. 
PHYS REF 

SPMEM 
CYCLE 
#00( 1): 

FETCH 
EN IN 

MEM 
FUNC 

WRITE 
SEE FIG 
2·54 

LOAD AR 
FOLLOWED 
8YMB 
WAIT 
SEE FIG 
2·54 

WRITE 
SEE FIG 
2·54 

LOAD AR 
FOLLOWED 
BYMB 
WAIT 
SEE FIG 
2·54 

LOAD ARX 

-= FIELD 
o 8 

=220 

=220 

=110 

=110 

=510 

x x 

x X 

X X 

X X 

X X 

.::1 10 SPEC 
IF EPT EXEC 

w 

'" '" m 
w 
:> 
w 
<.:> 
~ 

x 

X 

X 

X 

X 

EXECUTE 
NICOND 
PI VECT, 
EXAMINE 
SEE FIG 
1·25 

SPMEM 
CYCLE 
.N08(1):. 

PHYS REF 

LOAD AR 
FOLLOWED 
BY MB 
WAIT SEE 
FIG 2·54 

SPECIFIED X * KILLS * 
SEE FIG USER 

'·25 EN 

NICOND 
TRAP 
FETCH 

EXECUTE 
BLKO PI 

EXECUTE 
DATAl 
PAG 

EXECUTE 
CON I 
PAG 

EXECUTE 
BLKI PI 

EXECUTE 
BLKO PAG 

EXECUTE 
DATAO 
PAG 

EXECUTE 
CONO 
PAG 

EXECUTE 
MAP 

EXECUTE 
BLKO 
APR 

I/O 
LEGAL 

I/O 
LEGAL 

I/O 
LEGAL 

I/O 
LEGAL 

MBOX 
CTl 

I/O 
LEGAL 

I/O 
LEGAL 

I/O 
LEGAL 

I/O 
LEGAL 

SPMEM 
CYCLE 

LOAD ARX 
FOLLOWED 
BY LOAD 
ARX 

REG FUNC 

AEG FUNC 

REG F!JNC 

REG FUNC 

REG FUNC 

REG FUNC 

REG FUNC 

REG FUNC 

.::30 

.::142 

:::'" 143 

STEP 1=!:"1 

STEP 2==21 
STEP 3=0 

=242 

=243 

=540 

=145 

X * 

X 

X 

X 

X 

X 

X 

X 

Figure 2-83 Execute-Register-MBox 
Control and Miscellaneous General 

Memory References 

EBOX/2-100 

* * 

EBOX REQUEST QUALIFIERS 

x 

X x 

X x 

X x 

x x 

x X 

X X 

x X 

X x 

REMARKS 

WRITE INTO USER PROCESS TABLE. MBOX 
USES VMA 27-35 ONLY. MBOX APPENDS 
UBR 14-26 TO FOAM PHYSICAL REFER· 
ENCE UNPAGED. CANNOT PAGE FAIL. 

READ NEW PC WORD FROM USER PROCESS 
TABLE. MBOX USES VMA 27-35 ONLY. MBOX 
APPENDS UBR 14-26 TO FORM PHYSICAL 
REFERENCE UNPAGED. CANNOT PAGE FAIL. 

FOA DEPOSIT WRITE ACCORDING TO 
RELOCATED VIRTUAL ADDRESS. THERE 
WAS NO PROTECTION VIOLATION. 

FOR DEPOSIT OR EXAMINE, READ PROTEC· 
TlON AND RELOCATION INFORMATION 
FROM EXEC PROCESS TABLE. FOR MTR 
REQUEST READ DOUBLE PRl:.CISION WORD 
AS APPROPRIATE . . 
INSTR FETCH FROM EPT FOR STD INTER· 
RUPT OR 2ND PART OF STD INTERRUPT. 
MBOX USES VMA 27-35 ONLY. MBOX 
APPENDS EBR 14-26 TO FORM PHYSICAL 
REFERENCE UNPAGED. CANNOT PAGE 
FAIL. 

FETCH WORD FROM ADDRESS SPACE 
SPECIFIED VIA API WORD BITS 0-2MAY 
BE: EPT, EXEC VIRTUAL, UPT, USER 
VIRTUAL, PHYSICAL. THE STATE OF 
VMA EPT, VMA UPT, MAY BE PAGED 
CONTROLS CONTEXT OF REFERENCE. 

FETCH INSTA FROM USER PROCESS 
TABLE If TAAP OCCURRED IN USER 
MODE AND EXEC PROCESS TABLE IF 
TRAP OCCURRED IN EXEC MODE. 
THE STATE OF VMA UPT AND VMA 
EPT IS A FUNCTION OF MCL USER EN . 

TRANSMITS 36 BITS OF CONTROL INFOR· 
MATION FETCHED FROM E TO THE 
INTERNAL OR EXTERNAL MEMORIES. 
THIS IS PERfORMED VIA THE MBOX. 
THE MEMORY CONTROLLER SELECTED 
RETURNS A WORD WHICH IS STORED 
IN E+1 . 

READS INFORMATION FROM EBOXAND 
MBOX. FIRST READS AC BLOCKS, CWSX 
AND VMA PREV SECT THEN REOUESTS 
MBOX TO PUT UBR INTO EaUS REG. 
EBOX THEN READS EBUS REG. 

READS INFORMATION FROM EBOX AND 
MBOX. FIRST READS LOOK, LOAD, SEC 
TRAPEN, THEN REQUESTS MBOX TO PUT 
EBR INTO EBUS REG. EBOX THEN READS 
EBUS REG AND STORES RESULT IN E. 

READS THE MBOX ERROR ADDRESS 
REGISTER. THE WORD IS STORED IN 
THE SPECif iED AC . 

INVALIDATE ENTRIES IN THE PAGE TABLE 
WITHIN THE MBOX. EBOX USER REFLECTS 
USER MODE, AND THE PAGE TO INVALIDATE 
IS IN VMA. 

LOADS CONDITION ALL Y AC BLKS, PREY 
CONTEXT, AND UBR (IN MBOX) AND 
CLEARS THE PAGE TABLE IN THE MBOX. 

~~:D2E5~~~~~~~:~N THE Dp A TO BE 

LOADS THE CACHE STRATEGY BITS 
(LOOK, LOAD) SECTION AND TRAP EN 
FLAGS IN THE EBOX. THE EaR (lNTHE 
MBOX) IS LOADED VIA VMA 24-35. 

READS PAGE FAILWORD FROM MBOX 
EBUS REGISTER. THE WORD IS STORED 
IN THE SPEC[FIED AC . 

WRITE THE CACHE REFILL ALGORITHM. 
VMA 18-20 CONTAINS THE ALGORITHM 
B[TS AND VMA27-33 CONTAIN THE REFILL 
ALGORITHM ADDRESS. 

( 

( 



The DRAM A field is coded as 6, causing a dispatch to location 46; the MBox performs both a read 
and write page test. The address must be b<¥:h accessible and writable, even though this portion of the 
operation only reads a word. If a page failure occurs, the EBox transfers control to the page fault 
handler. Otherwise, the word enters AR and then a DRAM J dispatch is issued. 

Read PSE Write Type Instruction 
The DRAM A field is coded as 7 causing a dispatch to location 47; the request qualifiers are shown on 
Figure 2-82. The MBox performs both a read and write test, and if no page fault occurs, reads a word 
from the specified (Xlated) address. 

If the cache is disabled for the reference and the word requested was not in the cache (a Refill cycle was 
necessary first), then the MBox is held waiting until the EBox issues the write portion of the cycle. The 
word requested loads into AR and a DRAM J dispatch is issued to enter the Executor. 

2.10.3 Execution Cycle 
The Executor is entered from the Fetch cycle. While in the Fetch cycle, the (E) or (AC) is fetched in 
accordance with the DRAM A field. In addition, read and/or write page testing is performed while in 
the Fetch cycle. The EBox Execution cycle overview is in Figure 2-84. 

Early in the Instruction cycle, the DRAM is accessed using one of three basic types of addresses. 

Referring to Figure 2-84, if the instruction is JRST 0-17, then the IR address is used to address the 
DRAM initially as indicated. Thus, the JRSTs handler is entered at location 254 for JRST and 255 for 
JFCL. 

From the initial dispatch into the handler, the IRAC is used to redispatch within the handler for the 
proper type of JRST. For JFCL, a JUMP is made to a separate handler from the initial dispatch 

If the instruction is an I/O type, then the DRAM address is formed by the hardware such that the 
dispatch is in the range of 700-777. Once the I/O handler has been entered, a determination must be 
made as to whether the instruction is legal in the current processor mode. If it is determined that the 
instruction is not legal, the MUUO executor is used to store the illegal instruction and PC word in the 
user process table. Following this, a new PC word is fetched. This new PC word causes the processor to 
enter an executive routine in core memory. If the I/O instruction is legal, use of the EBus is obtained 
and the appropriate EBus dialogue is carried out. The specific actions evoked depend upon the device 
and the type of I/O instruction being performed. 

The remaining instructions index into the DRAM utilizing the op code in IR bits 00-08. Two general 
categories exist ,as follows: 

1. Simple Type - stores in AC, E, or both 

2. Complex Type - may store in AC, AC+ 1, E via normal store cycle or else store via a special 
handler, or may do some of each 

The complex instructions may nest microcode subroutines up to four levels deep. 

Referring to Figure 2-85, the mechanism consists of CRA LOC, a register that is loaded with the 
"current microinstruction address." This register is loaded at the same time that the CRAM register is 
loaded with a new microinstruction. In addition, a 4-word stack is provided. The contents of CRA 
LOC are pushed onto the top of the stack when the call has been asserted by the microinstruction. To 
return from a subroutine, the returning microinstruction asserts DISP /Return. This pops the top entry 
off of the stack and onto the CRAM address mixer lines, where it is logically ORed with the J field of 
the microinstruction, asserting DISP /Return. 

EBOX/2-101 



STORE IN AC,AC+1, E 

STORE IN E 

·1'0 LEGAL DETECTS 
ILLEGAL INPUT 
OUTPUT INSTRUCTIONS 
IF INPUT OUTPUT IS 
ILLEGAL AN MUUO 18 
PERFORMED AND THE 
INSTRUCTION IS STORED 
AS IF IT WAS AN MUUO. 

MIXTURE OF COMPLEX 
AND SIMPLE 

MIXTURE OF COMPLEX 
AND SIMPLE 

NO 

~ORAM-----1 

INSTRUCTIONS 
WHICH MAY 

DISPATCH TABLE 

DRAM 
REGISTER 

"MICRO PROGRAM SUBROUTINE 
CALLS MAY BE NESTED TO 
FOUR LEVELS" 

OPERANDS 

Figure 2-84 EBox Execution Cycle Overview 

EBOXj2-102 

( 



• 

CLK CRAM 

CLK CRA 

"NEXT ADDRESS" 

CRAM 
REGISTER 

2 

3 

4 

I , 
I I 

\ ,: 

PUSH 
POP 

"ALWAYS POP OFF THE LAST PUSHED ON" 

Figure 2-85 Microstack Operation 

"CRAM 
ADDRESS 

MIXER" 

10-1654 

Some of the complex instructions, such as DMUL, which stores in AC, AC+ 1, AC+2, and AC+3, use 
a separate handler for storing multiple operands. This type of instruction does not pass through the 
normal store cycle. Other complex instructions, such as MULB, which stores in AC, AC+ 1 and E, 
store multiple operands via the normal store cycle. 

2.10.4 EBox Data Store Cycle 
The flow for the EBox Store cycle, illustrated in Figure 2-86, is used by most of the instructions 
executed by the microprogram Executor. Exceptions to this are certain instructions such as D MUL, 
which stores more than two ACs. For these instructions, a special handler exists that is entered from 
the executor. This handler stores all the operands and then issues an instruction fetch followed by a 
NICOND Dispatch. In this text, the more general categories (which do use the normal store cycle) are 
covered. 

2.10.4.1 Basic Four Mode Type Instructions - This type of instruction may have one of four basic 
modes as follows: 

1. Immediate or Basic - store in AC only 

2. Memory - store in E 

3. Both - store both in AC and E 

4. SELF - store in Eand conditionally store in AC. Note that if writing back in E is redundant, 
the write cycle is ~kipped. 

Writing for these four mode instructions is controlled by MEMjDRAM B and the DRAM B field 
code. The store cycle is dispatched with DISP jDRAM B. Thus, the dispatch RAM B field (three bits) 
is used to form the low-order three bits of the Store cycle address. 

Immediate or Basic Mode 
Referring to Figure 2-87, the DRAM B field is coded as 5. The contents of AR are written into fast 
memory, which is addressed via IRAC 09-12. Because a large number of these instructions prefetch 

( the next instruction, it is necessary to assert MB WAIT in the event MEM cycle is set waiting for a 
response from the MBox. This has no affect if MEM cycle is clear. NICOND Dispatch enables entry 
to the instruction cycle if no priority interrupts, page faults, or traps are pending. 

EBOXj2-103 



• 

NOTE 1: 
CERTAIN COMPLEX INSTRUCTIONS. 
SUCH AS DOUBLE MUL.DOUBLE D!V. 
ETC. STORE ALL, OR A PORTION OF 
THEIR RESULTS VIA THEIR OWN 
SPECIAL MICRO ROUTINES . 

NOTE 1: 
DISP/DRAM B ENABLES THE B fiELD 
Of THE DISPATCH RAM WORD FOR THE 
CURRENT INSTRUCTION TO MODIfY 
THE CRAM BASE ADDRESS INTO THE 
STORE CYCLE fOR H MODE TYPE 
INSTRUCTIONS 
MEM/DRAM 8 WRITE ENABLES THE 
MEMORY CONTROL HARDWARE TO 
PERFORM A WRITE TO MEMORY IF 
DRAM 8=3, 6, 7 

STORE AR IN E 
MBOX OR FM VMA 
AC REf TELLS 
WHICH TYPE 

Figure 2-86 

IN AC AND AC+1 

"SC=3S" .... -ST-O-R""'E'"A"R--IN""A'"C,..-'" 

AS ADDRESSED 

"STORE LOW ORDER 

VIA IRAC09·12 
PUT$IGN Of 
RESULT INAR 
00-35 

WORD IN AC+'" .... ___ 1-__ ..... 

EBox Data Store 

EBOX/2-104 

F-- SIGN --::3 AR 

LOW ORDER WORD MARX 

I s I LOW ORDER WORD AR 

10-1655 



• 

-

USER EN 

l PAGE"E~"8l~ ~"'02.04-05 
CONTIIOI. . t-SPEC/SPMEMCYC 

~ . ..J MCLLOAOVMJlCONTEXT 

~~~~~::;,J::;: 1--,,<-0, ~'''''''' eo. •• I- ." "" 

,~~: ;ii): =1
APIISET

lOP. EIUI MBOlCTL
FUNCTIONS

PT'loUBL'C

, 1 CONTROL

."

Figure 2-87 MBox-EBox-EBus Control (Sheet 1 of 2)

EBOXj2-105

,-LlO::O .. OlfBlISCTL

~ APIIEBvSI!£TURN

I-­
~I--I~~~~--"~

~
I-­

~
L..!!!

1#05

I

10-1752A

•

10- 17528

Figure 2-87 MBox-EBox-EBus Control (Sheet 2 of 2)

EBOXj2-106

Mer{~1liry Or." Both
The DliV\1\,~ B field is coded as 6 memiory mode iE1§tructloI1i§. If VMA liS ,:::ie:ar, lItoring is to

is fnadle to ston;; AR in catche U"'~!LA"'-'" VM:AAC REF
men1ory. An l.mcondiHonaJ "''''''''''''''''''' fetch 13

enabled at
n~cdved,

AD 1) as soon a§ IvIBox

"ell"-'RAJ''''''' in case the irH~truction is being fetched
This is by M13 :state n"''''''''''iF'''"

tlnaHy I"HCOl"'ID Disp"atch is

me;l:110ry, a
(in I:!~lgf, tt.Ht;

For Both r·.,1oc!e, DRl-\Jl! B is coded as 7, Hen~, th,e departure is
is stor,ed in by IRiLC

dearing state Dispatch is h;sued.

SELF Mml!u:
to Figure 2-87, the DRAM B i.s coded as; 3, SELF

iih.is means address 'wa§ read and
HSHlllCI:H)H§ are

page tested during the

being nonzero.l~R is stored in the
is tC'lsted (in IRJ!!:~qo [RAe i§ nonzero,

location (ml addre!lsed via IRAC), If HV\C is zero, no
iill performed. In '6~a8;e, a microinstru;ction NOlP' Is This guar-

antelElf; one between instruction and NICOND
adequate setup time for the logic to detect a memory
those cases where the feV;h is to fa§t memory.

2,i0.4,,2 SlK}[P~ JUrVIP Olllmpare b.l§tn,!(:tiOlrm­
category.

Conditional Jumps

Pliithmetic AOJ3JP
AOEJI\[I

I
CAIXX I· I Cl\JvIXX .•

~~~.~. ~~. __ -1 ______ L __ _ 

Yes 
Yes 

No 
No 

fonowing lIlstrUi::t1ons listed 

EBOX/2-H)7 

fan into 



• 

No Results Stored - CAIXX, JUMXX 
Referring to Figure 2-87, because CAIXX arrd JUMPXX store no results, preparations are made for 
entry to the instruction cycle. The state'register is cleared, MB WAIT is asserted, and a NICOND 
Dispatch is issued. Depending upon the outcome of Test Satisfied, the next instructionfetch is from 
PC+l, PC+2, or E. 

Conditional Storage in AC - SKIPXX AOSXX, SOSXX 
IRAC is sampled and if nonzero, AR is stored in fast memory as addressed via IRAC 09-12. Depend­
ing upon the outcome at Test Satisfied, the next instruction fetch is from PC+ 1 or PC+2 and this is in 
progress. The state register is cleared, MB WAIT is asserted, and a NICOND Dispatch is issued. 

Unconditional Storage - SOJXX, AOJXX, AOBJX 
These instructions all store unconditionally, in fast memory from AR, as addressed via IRAC, then 
prepare to enter the Instruction cycle. The state register is cleared, MB WAIT is asserted, and 
NICOND Dispatch is issued. Both SOSXX and AOSXXunconditionally store in E and conditionally 
store in AC. 

2.10.4.3 Store Cycle for Other Instructions - Generally, the remaining instructions that use the Store 
cycle fall into two groups. These are instructions that store results in AC, AC+ 1 and E, and those 

, instructions that store results in AC and AC+ 1 only. All these are complex instructions. 

Complex and Store Both 
For these instructions, the store flow is entered with a write request already in progress to store the 
high-order result of some operation and MB WAIT is asserted (MEM/MBWAIT). Also, the shift 
counter (SC) contains 35, enabling alignment of the low-order word with the sign of the high-order 
word later in this flow. The AR is now stored in fast memory as addressed via IRAC and the sign is 
smeared in AR 00-35. At this time, AR contains all sign bits and ARX contains the low-order word 
left-justified. The instruction fetch begins. The AR and ARX are shifted left 35 places and the result 
(correctly signed) is loaded into AR via SH. Now the state register is cleared and the low-order word 
(in AR) is stored in IRAC + 1. The EBox hardware facilitates the incrementation of IRAC by + 1. 
Finally, the appropriate entry to the instruction cycle is made. 

Complex and Store in AC, AC+ 1 
The basic difference here is that these instr1,!ctions bypass the storage into E. Otherwise, the operation 
is identical to that for Complex and Store Both. 

2.11 INTERFACE CONTROL 

2.11.1 Introduction 
Figure 2-88 illustrates the major functional control elements of the EBox. The purpose of this drawing 
is to support the functional descriptions contained in this section. In addition, it is provided to support 
the ElM interface control and E/E interface control functional descriptions to follow. 

The EBox is associated with two interfaces, the EBox/MBox Interface and the EBox/EBus Interface. 
The ElM interface is treated as a pseudo-bus because in many ways it behaves as a bus. In the first 
portion of the functional description, the basic organization and function of the firmware micro­
program was described. In addition, the major machine cycle was defined and described in terms of its 
functional elements. 

Thus, the individual microprogram modules (Figure 2-13), taken collectively, comprise the main 
microprogram. The blending of this program with certain pieces of EBox hardware constitutes the 
basic machine cycle (Figure 2-88). 

EBOX/2-108 

l 



• 

.-------------~HOW 

MICRO 
PROGRAM 

LL-.,,~~~:::±:t--___ AUX I lLiARY 

, /YylEZ 
DISPATCH PI PF TRAP 

Til BlE ::---.:..:: STARTUP 
AND 

STOP 
INTERFACE 

/ NATA STORAGE 
DATA FETCH MANAGER 

EFFECTIVE 
ADDRESS 

MANAGER 

MANAGER 
EXECUTOR 

Figure 2-88 Basic Machine Cycle Summary 

Figure 2-89 is the subcycle summary and Figure 2-90 is the hardware cycle summary. 

BREAKDOWN, 

10'1657 

Figure 2-89 Subcycle Summary 

EBOXj2-109 

10-1656 



• 

CONTROLLED 
BY MICRO 
INSTR 

Figure 2-90 Hardware Cycle Summary 

Next, the basic sub cycle was presented in terms of a functional flow with additional graphics to sup­
port the description; in the interface section, the relationship of the hardware to the internal EBox 
cycles was described. These basic cycles were introduced in Subsection 2.1 as EBox, MBox, and EBus 
cycles. For example, the fetch cycle can be viewed as composed of a number of EBox and MBox cycles. 

2.11.2 MBox Control 
Referring to Figure 2-91, a number of functional elements work together to implement the basic MBox 
cycle. The grouping of the interface signals shown is as listed in Table 2-18. 

To exercise the functional areas illustrated on Figure 2-91, a basic data fetch is covered in four steps. 
These steps are related to EBox timing in terms of occurrence. 

Table 2-18 Request Summary 

Grouping 

Basic EBox Request Handshake 

Address and Address Control 

Timing 

Type Request 

Address Violation Logic 

EBOXj2-11O 

Signals 

EBOX REQUEST 
CSHEBOXTO 
CSH EBOX RETRY REQ 
PFHOLD 
MBOX RESPONSE IN 

VMA 13-35 
VMAACREF 

EBOXSYNC 
MBOXCLOCK 

EBOXUSER 
EBOXREAD 
EBOXPSE 
EBOXWRITE 

PAGE TEST PRIVATE 
PTPUBLIC 
PAGE ILLEGAL ENTRY 
PAGE ADDRESS COND 

( 



AS3ur"lE MOVE If~STR 

10-J65':1 

ngUl'!ie 2-9 
Control ,","l,Uj.!'!,"""'''" 

EBOX/2-111 



.. 

2.11.2.1\ DATA FETCH REQUEST EN - B~in EBox Cycle (Figure 2-92) - The fl'Ow is entered at an 
EB'Ox cl'Ock and the CRAM register l'Oads. The micr'Oinstructi'On begins t'O be dec'Oded. N'Ote that the 
MEM field is the maj'Or input t'O the MB'Ox c'Ontr'OII'Ogic. Assume that the effective address has been 
calculated, the MEM field is c'Oded as AREAD, and the dispatch RAM A field is 5. In Figure 2-91 at 

CD ,the MEM field functi'On AREAD is a c'Ode 'Of 4. This enables MBOX CYCLE REQ. In addi­
ti'On, if MEM 01 = 1, then REQ EN is asserted t'O enable the request qualifiers t'O be latched 'On the 
next EB'Ox cl'Ock. MBOX CYCLE REQ enables the EB'Ox request t'O be asserted 'On the next MB'Ox 
cl'Ock. As indicated 'On the fl'Ow, this is a fast cycle. Tw'O basic classes exist: fast and sl'Ow. The timing is 
illustrated in Figure 2-93. 

Signal CLK SYNC EN must wait t'O 'Occur, S'O that (f'Or a fast cycle) EBOX SYNC sets at the same time 
as EB'Ox request. 

Referring t'O Figure 2-91, the VMA field, with 'Other signals, enables LOAD VMA. In additi'On, the 
effective address must be input t'O VMA via AD S'O the VMA c'Ode (3) generates VMA +-AD. 

The basic peri'Od between the leading edge 'Of 'One EB'Ox cl'Ock and the leading edge 'Of the next is 
c'Ontrolled by the T field 'Of each micr'Oinstructi'On, al'Ong with certain 'Other hardware signals. The basic 
pulse width 'Of the p'Ositive EB'Ox cl'Ock is fixed at 32 ns but the time between cl'Ocks is variable. EBOX 
SYNC 'Occurs 'One MB'Ox cl'Ock pri'Or t'O the MB'Ox cl'Ock that causes EB'Ox cl'Ock t'O 'Occur. The basic 
relati'Onships are indicated in Figure 2-94. 

2.11.2.2 Begin MBox Cycle - End Current EBox Cycle and Start Next (Figure 2-95) - As s'O'On as 
SYNC EN is true, EBOX SYNC sets and MBOX CYCLE REQ (FAST CYCLE) enables EB'Ox 
request t'O set (refer t'O Q) 'On Figure 2-91). At this p'Oint, MBOX WAIT is tested and f'Ound clear. 
(This functi'On is described in basic terms is Subsecti'On 2.2.4.) 

T'O summarize, the EB'Ox request is then issued, and the VMA input mixer is set up and enabled t'O l'Oad 
with E via AD. The request type l'Ogic is enabled t'O assert the appr'Opriate c'Ombinati'On 'Of EB'Ox Read, 
PSE, and/'Or Write (which 'Occur 'On the EB'Ox cl'Ock t'O c'Ome at Q) ). In additi'On, the Address 
C'Ontext C'Ontr'Ol is enabling the pr'Oper c'Ombinati'On 'Of its qualifiers als'O t'O be asserted at 0. 
N'Ow an'Other MB'Ox cl'Ock 'Occurs Q) ; simultane'Ously, an EB'Ox cl'Ock 'Occurs. The f'Oll'Owing acti'Ons 
result: 

EBOX CLOCK +- 1 
EBOX REQ +- 1 (REDUNDANT) 
MEM CYCLE +- 1; MBOX WAIT +- 1 
VMA LOADS AND LATCHES 
CRAM +- NEXT MICRO INSTR 
EBOX QUALIFIERS LATCHED 

Thus, we have passed thr'Ough 'One EB'Ox cycle and n'Ow reenter the fl'Ow t'O begin a sec'Ond EB'Ox cycle. 

EBOX/2-112 

( 



10·1660 

Figure 2~92 Begin EBo]l; Data Fetch Request 



I- EBOX CYCLE t EBOX CYCLE -I 
ClK EBOX ClK ~ I I 

ClK SYNC EN 

MBOX CYCLE REQ ~ \ 

ClK EBOX SYNC 

- - ---

( EBOX REQ (FAST) 

MBOX CYCLE REQ / \ 

EBOX REQ (SLOW) 

10-1664 

Figure 2-93 EBox Request Fast or Slow 

TIME FROM lEADING 
EDGE TO lEADING EDGE 

(APPROX I MATE) 

rEBOX CYClE-j 

T=OO --.J 40 40 I 80ns 

iEBOX CYClE--, 

T- 01. ~ TIME 

120ns 

FIELD I- EBOX CYCLE -I VAlUES 2 

T= 10 ~ I 160ns 

I- EBOX CYCLE -I 
T= 11 ~ I 200ns 

10-1665 

Figure 2-94 Basic EBox Clock Period 

EBOX/2-114 



WAIT SPECIFIED 
BVCRAMT 

Figure 2-95 

MCl REO EN, 
ENABLE. REO 
OUALIFIERS 

.... ~~~~~~:~~~i? 

1;;~~~I~~····~~~~~~Z~:; ~ \VMA lOADS'" . 
"'CRAM REG lOADS', 
:: WITH NEXT:. 
,', MICRO INSTR.'i}" 
:" MCl REO EN, ,i)i\, 
':: lATCH MEMDRV: 

... ~~~~~~.~~; •••.•.•.. ' ....••.•••. 

lOAD CRAM 
REGISTER BEGIN 

10-1661 

Begin MBox Cycle, End Current EBox Cycle, Begin Next EBox Cycle 

EBOX/2-115 



• 

2.11.2.3 SETUP PREFETCH - Wait for MBox Response - Referring to Figure 2-96, the flow is 
reentered at G) where the EBox clock generated loads the second microinstruction (Figure 2-91 
G) ). Now the MEM field function is FETCH and MEM 02 = 1. If the MBox has not responded 

with the word requested (E), MEM cycle is still set. The combination of MEM 02 (1) and MEM Cycle 
(I) generates MBOX WAIT. Providing that the request is not to fast memory, the EBox stops until the 
MBox response occurs. 

This is true whether a page fault occurs or not, although PF hold is asserted 5 MBox clocks before 
MBOX RESPONSE is asserted when a page fault has occurred. In this example, assume that the 
MBox is working on the request, but has not yet responded. 

Referring to the flow (Figure 2-96), the current microinstruction MEM field function fetch is a code of 
6. Note, however, that because a priority interrupt takes precedence over any other activity, PI 
CYCLE is checked before enabling the MCL MBOX CYCLE REQ. Here PI CYCLE is clear, so 
Q) points to a "Fast Request." Again, a wait for SYNC EN, as defined by the T field, takes place. 

The state of the SYNC EN during MBOX WAIT is always true; this keeps EBOX SYNC true until the (" 
response is received. , 

The MBox continues to run during the waiting period. Thus, MBOX CLOCK sets EBOX REQUEST 
even though the VMA is still latched up with E. During the waiting period, the VMA input receives 
PC+ 1 via VMA AD. 

The EBox now loops, waiting for MBOX RESPONSE to restart the EBox clock. 

2.11.2.4 MBOX RESPONSE RECEIVED - Referring to Figure 2-97, MBOX RESPONSE enables 
the EBox clock. Thus, EBOX CLOCK becomes true and, simultaneously, EBOX SYNC becomes 
false. The third microinstruction is now loaded into the CRAM register (Figure 2-91 G)) and is C 
decoded. In addition, the VMA is loaded and latched with PC+ 1, the request qualifiers are latched 
and now, with the requested data word in AR, a DRAM J dispatch is issued. 

2.11.2.5 General Memory Cycle Control - Figure 2-98 contains all combinations of the MEM field 
that can generate MCL MBOX CYCLE, and hence EBOX REQ. In general, the following functions 
are of the "Slow Cycle" type: 

B WRITE 
PI FETCHES 
SKIP SATISFIED FETCHES 
REG FUNCTIONS 
SP MEM CYCLES 

A Slow cycle is required during MEM/REG FUNC because the MBox requires additional time to 
decode the type of request. In all the "slow" cycle types, the EBOX does not necessarily have time to 
determine whether to make the request (or not) before EBOX SYNC. Thus, the decision, and therefore 
the request, is delayed purely for hardware timing reasons. 

2.12 EBUS INTERFACE CONTROL 
The I/O system for the KLlO processor includes the EBus, the peripheral equipment with its interfaces 
to the EBus, and various control logic. The EBus interface may be controlled either by the EBox 
during input or output instruction execution, or by the PI system during priority interrupt handling. 
Subsection 2.8.1 gives a basic summary of the EBus signals. This is followed by a functional descrip­
tion of the interface, which is covered at two levels. The first level describes the basic functional 
organization and operation of the PI board and other related logic. The second description deals with C/, 
the microprogram to PI board interfacing. This description attempts to give insight into the manner in . 
which the hardware and the microprogram interact to carry out various interface related functions. 

EBOX/2-116 



• 

WAIT SPECIFIED 
BY CRAM T 

YES 

MCl REQEN: 
ENABLE REQ 
QUALIFIERS 

FAST OR SLOW 
CYC: 
EBOX REQ- 1 
MEMCYClE-l 
VMA lOADS 
CRAM REG lOADS 
WITH NEXT 
MICRO INSTR. 
MCl REQEN: 
lATCH MEMORY 
CONTROL 
QUALIFIERS 

lOAD CRAM 
REGISTER BEGIN 

,....---, DECODING 

Maox WAIT 

Figure 2-96 Setup Prefetch Waiting for MBox Response 

EBOXj2-1l7 

10-1662 



WA,IT S(P\EClf~ED 
BY Ct:;AM T 
F~EU) 

Figure 

YES 

~JlCl t~IEGB'!.: 

~f\M·.13lE t~EQ 

QUt\.Ur-IEr-~S 

~Imox Respomle, End 
Next EBox Cycie, 

YES 

10·1663 

Current 



WAIT SPECIf-itD 

SLOW C'::'CU:.: FOR TH\:3 
:,"'VPE OF CYCU£, [\1130),; 

CYGL~ REG IS "'lOT 
ASSEC'!TED lJNTIL [:130;< 

r'-~'"""! 
mm(SY"C ~ ~ 

~"~"~_~~ t~" 

I~-""'""'l\ 

MBOX eye HEQ If SLOW '\ 

-~"~"~"~~" \_~~."-

10-165G 

Figure 2-98 



• 

2.12. . EBus Signal Line 
The E 0 signals. All devices~ including the KLlO, are connected to these lines in 
parallel. The bidirectional nature of 36 of the signals permits some information to flow in both direc­
tions. These lines are the data lines. The remaining 24 signals are used for control functions. Table 2-19 
lists the data transfer signals. 

Table 2-19 Data Transfer Signals 

Name Mnemonic Number of Lines 

Data D(OO:35) 36 
Controller Select CS(OO:06) 7 
Function F(OO:02) 3 
Demand DEM 1 
Acknowledge ACK 1 
Transfer XFER 

DA TA LINES D(00:35) - The 36-data lines transfer information between the EBox and its devices. 
The most significant bit is bit 00; the least significant bit is bit 35. 

CONTROLLER SELECT LINES CS(00:06) - These seven lines select the desired controller for a data 
transfer. Each controller has a unique select code hardwired on the backplane of the device. 

FUNCTION LINES F(00:02) - The function lines specify the type of data transfer (or non data 
transfer) to take place. Table 2-20 lists the functions implemented. 

Table 2-20 Table Data Transfer Commands 

FOO FOI F02 Operation 

0 0 0 CONO 
0 0 1 CONI 
0 1 0 DATAO 
0 1 1 DATAl 

DEMAND (DEM) - This line causes the addressed controller to inspect the CS and F lines and decode 
their meaning. Upon implementing the specified function, Transfer and Acknowledge are asserted in 
response and data is placed onto or taken from the EBus as specified by the decoded function. 

ACKNOWLEDGE (ACK) - This signal line notifies the I/O bus adapter not to respond to the current 
operation. If it does not detect ACKNOWLEDGE within some period following assertion of 
DEMAND, it attempts to perform the transfer. It does not decode the CS lines as the standard KLlO 
devices do. 

TRANSFER - This line is asserted by the selected controller when it is ready to execute the specified 
function as decoded in F(OO:02). 

EBOX/2-120 

( 



o 

c 

PRIORITY TRANSFER LINES - To perform priority interrupts between the KLlO and its devices, 
the same basic set of signals is used in a slightly -modified form. Table 2-21 lists the necessary signals as 
they are used. 

Table 2-21 Priority Transfer Signals 

Name Mnemonic Number of Lines 

Controller Select CS(04:06) 3 
Controller Select CS(OO:03) 4 
Function F(OO:02) 3 
Demand DEM 
Acknowledge ACK 
Transfer XFER 

CONTROLLER SEL CS (04:06) - During interrupt arbitration, these three lines represent the octal 
encode of the interrupting channel. 

CONTROLLER SEL CS(00:03) - These four lines specify the controller or device that the EBox is to 
honor during this interrupt sequence. This is, of course, only a single device or controller, even though 
several may be interrupting on the same channel. This code also corresponds to the hardwired physical 
device number of the appropriate controller or device. In CONTROLLER SEL CS(OO:03), the range is 
o through 17. 

FUNCTION F(00:02) - Two functions are generated during the interrupt dialogue. The first is a code 
of 4 in F(OO:02) and specifies to the interrupting controllers that those controllers being addressed by 
Channel number in CS(04:06) should send their Physical Controller number by placing them onto the 
EBus upon sensng DEMAND. The second function is a code of 5 in F(OO:02) and specifies to the 
interrupting controllers or devices that one has been selected. The selected controller will see CS(OO:03) 
as the same number as its physical controller number. 

ACKNOWLEDGE (ACK) - Same as for data transfers. 

TRANSFER (XFER) - In the case of interrupts, the device selected for service by the EBox places a 
special function on the EBus data lines D(OO:35). Figure 2-99 is the EBus interface functional block 
diagram. Table' 2-22 lists the priority transfer commands. 

Table 2-22 Priority Transfer Commands 

FOO FOI F02 Operation 

I 0 0 PI SERVED 
1 0 1 PI ADDRESS IN 

EBOX/2-121 



CON EBUS REl 

APR EBUS REQ 
EBOX 

EBUS CP GRANT 

PI DISMISS PI REQ 1-7 

SET PI HOle PI REQUEST 
DECODING AND 

PI REQ 0 [DTE-20] 

CONTROL PI REQ 
r--

"lOAD THE REQUEST" 

I AND ARBITRATE IT 

lOAD 
WAiTI WAiT2 TEST PI GATE TTL TO ECl 

I EBUS RETURN 
EBUS PI COMP 

REOUEST (lOAD0 RING COUNTER WAin 
<'WAIT2 

HOLD CONTROL I <. TEST 

PI REO t t 

COMP 

PI READY TIME 7 
, ,-- TIME 6 I-I 
I 
I 

1 
INT TIME 5 
REO 

TIME 4 
MICRO 

PROGRAM TIME 3 
lOOKS 

TIME 2 
INTERLOCK 

TIME 1 

TIME STATE 
GENERATOR 

I 
PI 

~ CYCLE HOLD 
-PI CYC STA.RT 

I -TIMER DONE 
I , 

-PI CYCLE , ,-
Clf<. PI (35MHz) I 

I 
APR EBUS FOI I 

CTl T TO E EN I 
I APR EBUS RETURN I 

Figure 2-99 EBus Interface Functional 

Block Diagram 

EBOX/2-122 

CONTROL 
APR MTR 

r--

APR 
PI EBUS PHYS 
PIGRANT NO. 

APR DISABLE CS-
MTR PHYS NO. 

EBUS 000-015 
IR03-09-

APR EBU~_ 
DEMAND 

S~~~ ~g~- CSOO-03 
EBUS 

DIALOGUE CS04 -06 
CONTROL 

FOO 

F02 

DEMAND 

PI CYC -T~ EBUS TRANSFER ,"'" Q'" EBUS 007 - 010 

DISABfE 
COUN . 

PI TIMER 
AND 

TIME STATE 

I TIMER CONTROL DONE 

( 
DATA FOR DATAO 

/'. C NTR l 
CONO 

• .. DOO-3~ 

o 0 INFO FOR 

r---1---, 
r- I / EBUS MIX , I 

I t I 
I / ~ \ I 
I T I 
I I AR 1 I 
I ClK DP---1 r I 
I / ARM ~ I 
I EBUS i I 
I 000 -35 I I API WORD FOR I 

INTERRUPTS STATUS 
E I INFO FOR CONI, CONso,1 

X B ~Al!~~A2!I~B~J l U 
A S 
T PI 1-7 0 ~ R 

PI 0 I-

( 

l-
r--
r--

DEv, r-- DTE 20 

l-
II 

r-- ( 
I-
r-- EBUS 000-35 

r--
'-- ~ 7 

NOTE: 
ProvidinQ CON PI CYCLE is clear, PI 
REO tOQether with TEST will cause the 
RING COUNTER to hold in the TEST 
STATE until EBUS PI GRANT sets. Once 
GRANT SETS TEST is removed and the 

( 
counter (all staQes) ,produces 0's until 
a). The hand shake completes and both 
EBUS PI GRANT clears and PI CYCLE 
sets and clears. 

10-1~67 



( 

c 

( 

( 

2.12.2 EBus Interface Organization 
Referring to Figure 2-99, the interface consists basically of six functional elements. These elements are 
as follows: 

1. PI Request Decoding and Control 
2. PI Request Counter and Control 
3. EBus Request and Control 
4. EBus Dialogue Control 
5. PI Timer and Time State Control 
6. Time State Generator 

The EBus request control and EBus dialogue control are used both by the EBox to carry out I/O 
transfers and by the PI system in response to an interrupt. During priority interrupt handling, the 
EBus dialogue is carried out in asynchronous fashion. This operation is controlled by the PI timer and 
time state control, together with the time state generator. 

To obtain the use of the EBus dialogue control, the PI request decoding and control logic must com­
pete with the EBox. No priority exists, and control is obtained on a first-come, first-served basis. Once 
the EBus has been granted to the EBox, the priority interrupt must wait until the EBox releases the 
bus. 

If the PI system obtains the EBus, the EBox may "demand" the EBus if a page fault occurs (EBus 
Return). 

2.12.3 Interrupt Handling - Loading the Request 
Referring to Figure 2-99, there are two cases. The first is an interrupt request from some device on PI 
1-7. This may be from any KLlO device, including the APR. The second case is an interrupt from the 
DTE20 on channel O. Only the DTE20 may generate channel 0 interrupt requests. 

In either case, the PI request enters the PI request decoding and control logic. Here there is a variation 
in priority. The PI system must be turned on in order for a request on channel 1-7 to be inspected, 
while interrupts on channel 0 will always be inspected whether the PI system is on or off. The ring 
counter controls the sampling of PI requests and also determines when a particular request (the high­
est) is ready to be serviced. In general, "PI LOAD" enables all active requests 0-7 into a request 
register, providing corresponding PION enables are on for channels 1-7. 

A programmer may disable interrupts on selected channels by clearing PION for each channel he 
desires to inhibit (note PIONO is in the DTE20). This is done by performing a CONO PI instruction. 
While the ring counter advances through "WAIT I" and "WAIT 2," the priority network arbitrates 
all incoming priority interrupt levels and selects the one with the highest priority (numerically lowest 
number). 

2.12.3.1 Testing the Request - Next, PI TEST is asserted with PI REQ to request the EBus. PI TEST 
remains true until EBUS PI GRANT sets, giving the EBus to the PI system. Once PI GRANT sets, the 
PI TEST condition is cleared and the ring counter is disabled until the entire EBus dialogue is carried 
out and PI CYCLE is "set and cleared" by the microprogram. , 

2.12.3.2 Requesting the EBus - Setting EBUS PI GRANT begins the EBus dialogue by enabling the 
assertion of CS 04-06 as the selected channel and FOO(4) as function PI SERVED, and also causes the 
PI timer to begin its sequence by setting PI CYC START. 

In general, all external devices that connect to the EBus are presumed to be composed of TTL logic. 
The PI and EBox logic consist of ECL logic. To temporarily connect these two different types of logic 
requires use of a logic level shifter. This device is called a translator. The translator must be notified of 
the conversion direction, TTL to ECL or ECL to TTL. Actually, only the data portion of the EBus is 
switched from one level to the other. The control signals are connected to fixed level shifting logic. For 
example, EBUS DEMAND is a unidirectional signal and it is connected to a noncontrollable level 
shifting gate on the translator module (ECL to TTL). 

EBOX/2-123 



2.12.3.3 Beginning the Dialogue - The setting of PI EBUS PI GRANT asserts the level PI G ATE 
TTL TO ECL, which causes translation of incoming data from TTL logic levels to ECL logic levels . 
The PI timer and time state control manipulates the time state generator such that each time state is 
held for the appropriate length of time. The following relationships exist between the dialogue signals 
and the time state logic: 

CSH 04-06: EBUS PI GRANT 
FOO: EBUS PI GRANT 
DEMAND: sent at T2, T5, and T6 
LA TCH INCOMING PHYS numbers: T3 
CSOO-03: T3 
F02: T4 
EBUS TRANSFER: WAIT AT T5 FOR TRANSFER 
PI CYCLE: WAIT AT T6 FOR PI CYCLE TO SET 

2.12.3.4 Interlocks and Dialogue Completion - Upon entering T5, the timer is inhibited from 
incrementing the count until EBUS TRANSFER is received or forced. While waiting, the timer holds C ) 
the loaded count. As soon as TRANSFER is received and recognized by the PI logic, the timer is once 
again allowed to count down T5 . 

" Thus, while T5 is counted down, the API word is stabilizing on the input to AR. Next, T6 is entered 
and here the absence of PI cycle causes STATE HOLD to be asserted. This time the timer may count 
down and even generate TIMER DONE. If this point is reached and PI CYCLE is still false, the timer 
loads the count specified by T6 and continues to count while waiting for PI CYCLE to set. The PI 
board must not begin to service a second interrupt before the microprogram has a chance to look at 
the first one. Hence, the timer is prevented from entering T7 COMP, until the microprogram has set PI ( 
CYCLE. This also enables the ring counter to perform load. 

Assuming PI CYCLE sets, the time state generator proceeds through T7 and into complete (COMP). 
Note that the EBus dialogue control removes DEMAND some time before removing the CS and F 
lines. This avoids the possibility of misselection of a device. The generation of COMP enables PI 
EBUS PI GRANT to clear, removing FOO and CS04-06. 

2.12.4 Basic Input Output Control 
Referring to Figure 2-99, the implementation of I/O operations is similar to interrupt processing, if 
taken at the point where the EBus is requested. The difference is that instead of a hardware arbitration 

. process taking place, followed by a single request subsequently asking for the EBus, the microprogram ( 
I/O handler (part of the executor) requests the EBus. This is accomplished utilizing the condition field 
function COND /EBUS CTL, together with a particular pattern in the magic number field all in the 
same microinstruction. Only the resulting signal is indicated on the figure (APR EBUS REQ) but the 
various other signals are simply formed by combinations of COND/EBUS CTL and an appropriate 
magic number. 

2.12.4.1 Requesting the EBus - The EBus request control treats both an EBox-EBus request (APR 
EBUS REQ) and a PI EBus request equally. Whichever request is seen by the EBus request control 
first receives the EBus. 

The microprogram is waiting for an indication that it has been granted the EBus. The indication of this 
condition is EBUS CP GRANT. The microprogram loops, waiting for this signal to become true. 
Once this occurs, the next step in the operation may be performed. 

2.12.4.2 Dialogue Overview - Basically, the EBox decodes bits 10-12 of the instruction to determine 
which type of I/ O operation is to be performed. Eight possible combinations exist; these are indicated 
in Figure 2-100 at the bottom left. The logical mapping of I/O op code into appropriate DRAM 
addresses is also illustrated in Figure 2-100. 

EBOX/ 2-124 



cuND 
OPERATION 

EBUS CTL 

BASIC EBUS YES 
OPERATION 
USED BY ALL YES 
I/O INSTR 

YES 

YES 

YES 

MTR INT, USED TO YES 
INTERNAL OBTAIN ONLY 
DEVICE THE ECL SIDE YES 
CONTROL, OF EBUS. THEN 
PAGE FAIL GIVE BACK 
HANDLER, lATER 
READ EBUS 
REG 

DEPOSIT, BYTE 
XFER OR PI 
DATAO, FOL· YES 
LOWED BY 
BASIC EBUS 
OPERATION 

EXAMINE, BYTE 
X FER OR PI 
DATAl , FOL YES 
LOWED BY 
BASIC EBUS 
OPERATION 

c 

MAGIC # FIELD 

012345678 
FUNCTION 

010000000 REQUEST 
Eeus 

000011000 I/O INIT 

000110000 SET EBUS 
DEMAND 

000010000 CLEAR EBUS 
DEMAND 

001000000 RELEASE 
EBUS 

100000000 GRAB ECl 
EBUS 

000000000 RELEASE 
ECl EBUS 

000010110 SET DATAO 

000010100 SET DATAl 

"FOR ALL I/O r INSTRS I I ROO-02_7" 

r--

IR 0-2 
().2=7 

# 0 # 1 
APR EBUS APR EBUS 
RETURN REO 

X 

X 

# 5101 # 6 
#2 # 3 # , # 511 1 # 6 

CON EBUS APR EBUS HOLD SELECTION APR EBOX 
REL DEMAND STATE CONTROL DISABLE CS 

X X 

X X 

X 

X 

X X 

. 
X X 

- r--DRAM FOR 1/0 INSTRS--1 
EXTERNAL DEVS -IR 

03·06 "7 OR 0" EXTERNAL 
'0 DRAM 

DEVICES 

'@ ADR 
FOR - 03-05 liD LOCAL 

777 - - - - - -bt)-03. 

MAP INTO 

770·777 : : 

770 z 774 
767 :=::_~--

DEVICES 

- APR 
AC10111 

# 7 
APR EBUS 

F01 

X 

Holding 

Holding 

X 

r-- 710 - --, L _ _ LOCAL Devs 

IR 
07·09 

® 
'--

r-
IR 
10-12 

@ -
r-

,--
CONSO APR 

I CONSZ APR 

I CONI APR 
CONO APR 

I 
DATAO APR . I BLKO APR 

I DATAl APR 
I BLKI APR 

06·08 I 
,-

I I 4NOTE: fOR EXTERNAL DEVICES 

I 

I 
- ---' 

MAP INTO 
XXO-XX7 

I CD IR 03-06*0 SO MAKE 
= DRAM ADR 03 05 7 

707 - l I MAP INTO 
I 1710.767 
, I 

, I 

I~ ~= =- __ .-: -
MAP INTO ... _ -
700·707 ' 

700 ---- - ~ 

APR 000 
PI 004 
PAG 010 
CCA 01. 
TIM 020 
MTR 02. 
SPARES 030 

APR F02 
EN 111 

# 8 
APR EBOX 

CS 00-06 
SEND F02 

X IR 03-09 

Holding Holding 

Holding Holding 

O'S 

O'S 

INPUT OUTPUT 
INSTR ENTER 
HERE 

r-
I 
I 
I 
I 
I 
I 

IR 

APR EBUS REO 

eBUS CP GRANT 

--------, 

EBOX CLK 

SET PI CYL 

I 
I 

I 
I 
I 
I 
I 

_CO':.! 

"EOR PI 
HANDLING MAY ----------1 
ENTER HERE 
WITH FCN AND 
CS ALREADY" 
SET UP 
PI BOARD IS 
WAITING IN TG 
FOR PI CYCLE 
TO SET 

HOLD 
CS, F 

NO 

NO 

WAIT 
HIF OUTPUT PUT 

~ AR ONTO EBUS 

===:;;;;;:=== VIA AD" 

APR EBUS DEMAND 

WAIT 

AR~EBUS; IF 
INPUT OPERATION 1----' 
DROP DEMANO 

WAIT THEN DROP 
F, CS LINES 

EXT 
TRANS 
REC 

RElEASEEWS t _______ CO_N_E~BU~S~R~E~L~ ______ ~ ______ ~ 
~----~ ~ 

10-1668 

PI BOARD WAITS 
AT T6 UNTIL PI 
HANDLER TAKES 
DATA AND SETS 
PI CYCLE 

COMP 
T7 
T6 
T5 
T4 
T3 
T2 
T1 

Figure 2-100 EBus Control Functions 

EBOXj2-125 



The dispatch to the proper operation is obtained by mapping bits 10-12 into DRAM ADR 06-08, 
while the device address 3-6 is mapped into DRAM ADR bits 03-05. Thus, for example, a DATAl 
APR with op code 701 is mapped into DRAM address 701. Similarly, BLKO PAG, with op code 722 
is mapped into DRAM address 722. This is device 0108; therefore, the type of operation performed is 
determined in advance and the DRAM jump address is coded to cause a jump to the appropriate 
group of microinstructions. The device select code is in bits 3-9 of IR and must be used to address the 
device. This addressing is accomplished by converting 3-9 to CSOO-06 in the proper form. The func­
tion is controlled by the combination of two EBox control signals, APR EBOX SEND F02 and APR 
EBUS FOI. With these two signals, all combinations of input and output operations may be performed 
as indicated on Figure 2-100. Notice that EBus FOO is not used for any of the operations. This signal is 
generated during priority interrupt dialogue for the function PI SERVED (Function 4) and for PI 
ADDRESS IN (Function 5). 

2.12.4.3 Functional Breakdown - Figure 2-100 is essentially composed of three sections. The first is a 
breakdown of the EBus microcode operations into four basic suboperations as follows: 

I. Basic EBus operation as used by all I/O instructions. 
2. ECL EBus acquisition and subsequent release 
3. Generation of the DA TAO function followed by the basic EBUS operation 
4. Generation of the DATAl function followed by the basic EBus operation 

The second section illustrates how the operation specified in IR 10-12 and a portion of the device 
select code IR 03-05 are mapped into the DRAM words that pertain to I/O operations. 

Finally, the third section consists of a simplified flow of the basic EBus operation, including the 
handshake between the microprogram EBus driver and the PI Board. 

Basic EBus Operation 
This is illustrated in the flow on the bottom right of Figure 2-100. Five basic COND/EBUS CTL 
functions are generated from particular magic number bits. The first is to request the EBus from the PI 
Board. This consists of asserting APR EBUS REQ. 

The microprogram now loops, waiting for an indication that it has obtained the EBus. The indication 
consists of receiving EBUS CP (Central Processor) GRANT from the PI Board. This moves the micro­
program to the next logical step which is 10 INIT. Here magic number 5 enables the function lines FOI 
and F02 to be driven from -APR AClO and APR F02 EN, respectively. The table of I/O operations 
given at the bottom left on Figure 2-100 shows that FO 1 is true whenever AC 10 is false. This is true for 
DATAO, DATAl, BLKO, and BLKI. Conversely, F02 is true whenever AClO is true, or both AClO 
and ACII are false. 

Magic number 4 is used to latch the particular function (HOLD IT). Note that during the 10 INIT 
period, IR 03-09 is passed to the PI Board to become CSOO-06. A fixed delay is generated by the 
microcode at this time to allo~ the controller select lines to set up at the device. 

Next, SET EBUS DEMAND is issued, while holding the previous function lines FOI and F02 as 
previously set up. Once again, the microprogram waits a predetermined period. The waiting is con­
trolled by the time field and the number of successive microinstructions issued. Thus, two successive 
microinstructions with T = 5 is approximately 300 ns. 

N ow the microprogram loops, waiting for TRANSFER from the device. This signal indicates that the 
device has completed the specified transaction and has either taken or transmitted status, data, or 
control over the EBus. At this time, if the operation was CONSO, CONSZ, CONI, BLKI or DATAl, 
the EBus is loaded into AR. If the operation was CONO, BLKO or DATAO, during 10 INIT the AD 
is enabled to the EBus. The AD contains the contents of AR. 

EBOX/2-126 

JI 

( 



function 

I02 generaHy 
operation:;L Figure 

that i.s now 011 

DSKA on 
range of 

Flirth";T, aSSlJ))TIe that DSKAc is R and that J)SKB 
7, that DSKA is 

check those cha:meIs holding 
never holds), 5 1:3 seh~I~'ted. The nf.",t pha5e 
iE,Bus. 

E.J3()J(/2~ 127 

and is P] 
PI 

011 5 through 1 ('0 is DTE20 
a3.sj~rtirtg REQ:o obtain use the 



~. l 

.. ,pil' Board 1,4'1 EBOJL., F' "1l'l're 2-.HJ 
lie ' . ... ~ terfae.:; 1,kicrOicod~ JlllL . to If.l. 



Figure 2-102 

"2, .. 1 PORTION OF 5TO IERRUPT-

CONO/SET "lCVC 

FUNCTION IS IN 
SHOI-O! 

EBus Control Hybrid Flow (Sheet 1 of 2) 

EBOX/2-129 

10-1751A 



• 

I-[X[CVIRTUAL 

4-PHYSICAL 

2-3-RESERVEO 

1-------------------- PI AND EBUS CONTROL LOGIC 

IGNORED 

0'.0.00.' 
,-SU8+1 

ADDRESS Ao..::L'ROING 
TO BITS OC·-,2 

'-APPLY PROTECTION 
ANORElOCATION 

'.TQ10BYT[ltfEI'I 
D-TOII BYTE X'ER 

PI SERVED (~COl 4) 
PI AORIN{FCN 5) 
BYTETRAN$ (FeN 6) 
UNUSED (FCN7) 

CO"'l!FCN!) 
DATAl (FCfII3) 
PI ADR IN(FCN5) 

NEW "* OLD "lEW 
TIMER LOAD TIMER TIMER 
GEfS2 TIMER STATt STATE 

" READY 

TI T2 

T2 13 

" COMP 

CONSOLE 
CONTROL 

-osoo 
CONI OR 

OArAI -CONSOLE 
CONTRO\. 

EBuSXfER 

C500-03 

P>1VSII'OO-15 

C!'-tNT 

'" 
'! 

CYCLE 

W.6IT,,, T~ .l,SSERT 
FORTRIINS PIR[ADY 

[BOX WILL WAITt'" T6 
SET tNT REO FOR PI CYCLE 

1 
01; 
·I~ 

1 
1 

1 

I 
I 
1 

I 
I 
I 
I 
I 
I 
I 
I 
1 

I 
1 

I 
I 
I 
I 

10-17516 

Figure 2-102 EBus Control Hybrid Flow (Sheet 2 of 2) 

EBOXj2-130 



PI ClK 

TIMEG 

-PI CYCLE 

- PI CYC 
START 

r-
1 

EBUS 
PI GRANT 

~ 
"R!O" 

......-

.-----.. 

-TIMER DONE 

r-
h CYC SHIFT REG 

START 10141 

ClRt SETf -+ SHIFT 0 IN 

T1 

T2 

13 

T4 

STATE HOLD 
2 0'lOAD 

-RESET- 1 1·SH0IN 

PI ClK- ClK 

SHIFT REG 
10141 

-- SHIFT 0 IN 

T5 

T6 

T7 

I-- COMP 

20'lOAD 

I I =sH0IN 

PI 
CLI(- ClK 

PI 
TIMER 

(See lable 
on figure 2-94) 

10-1670 

Figure 2-103 Time State Generator Control 

2.12.5.2 Requesting the EBus - To obtain use of the EBus, the PI logic must set EBUS PI GRANT. 
This is illustrated on Figure 2-102. Note that the following requirements must be fulfilled to set EBUS 
PI GRANT: 

1. PI test must come up. 
2. REQ must be true (PI 4, 2, 1 = some selection). 
3. The Ebox may not be halted or there are no interrupts selected on 1-7. 
4. EBUS PI GRANT is currently clear. 
5. The PI Board is not trying to set CP Grant. 

~ 

If all five conditions are satisfied, EBUS PI GRANT sets. If the conditions are not currently satisfied, 
the interrupt waits. 

2.12.5.3 Beginning the Dialogue - At this time, several events take place. The setting of EBUS PI 
G RANT enables setting of cycle state, which begins the dialogue. In addition, the PI Timer (see the 

· ....... " .. table on Figure 2-104) is loaded with 258, which defines the duration of the time state entered, in this 
~ase time 1. The'time states are used to direct the EBus dialogue from beginning to completion. EBUS 
PI GRANT forces FOO to a 1. This function (4) is PI served and is issued together with CS 04-06, 
which are encoded to be the selected channel (5). The interrupting devices (in this example two DSKs) 
decode the function lines (,00-02, together with the controller select lines CS 04-06. The PI timer 
counts from 258 to 378 then, generates TIMER DONE. The devices have now had sufficient time to 
decode the CS and F lines so the next phase of the dialogue begins. The timer is now loaded with lis, 
Time T1 is removed and T2 is entered. 

EBOXj2-131 



PI2CLK 1111111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIrfI~ 
PI BOARD RUNS AT 
MBOX CLOCK RATE 

PI5 CYC STRT rL 
PI2 TIM I j L 

PI2 TIM 2 _____ ...J L WAIT IN T5 PI BOARD SUPPLIES PHYS CONT -

~
TO EBUS FOR API WORD 

PI2TIM 3 ______________ ....Jr--l vWAITINT5FOR 
I L- EBUS XFER 

.------. EBUS r---1 PI2 TIM 4 _______________ --1 L 007-010 ---l L-

PI2 TIM 5 __________________ --::--...... 1 L 
P~TIM6 __________________ ~~_~i~j'--------_~ 

PI2TIM 7 _____________________ -,'/-__________ -' 
// L 

i " 
PI2 COMP _____________________ -,'/-________________ --' 

PI2 STATE U 
HOLD 

PI2 TIMER 16 j I 

PI2 TIMER4 

PI2 TIMER 2 

PI2 TIMER I I 

U 
I 

LfIJ I Lr' 
0 L.fi'LJ1 W' I I 

I~l 

PI2 TIMER I I 
8,4,2,1 CRY IN "--Ir----' 

LIl..I 
l.JiiLJ1 

PI2 TIMER n n rL..II n 16 CRY IN ___ ....J '-_____ _ __ ....JI~,I-' ______ --" ILJI 
PI2 TIMER n n rL..II n ILJI 

LOAD LOAD 

U 
UI 
I 0 

n 
n 

LOAD 8,4,2,1 CRY OUT LOAD LOAD LOAD LOAD 'L......,!,I-'L":'"OA:":D------:--:-:-:::-' 

PIR T~~~ ;y'TlMER V TIMER TlMER"fL...Jt: TIMER Ft:;"TlMER TIMER'):] I'("TIMER A:::::T I M ER 

~PG~~~~ J ,,,' 

EBUSCS r------~,jl-'--------------------~ 00-03 _____________ --' L-__ _ 

E~~~g~ J 
EBUb~ J 
EBUb~ _______________ __' 

I, 

,.,' 

// 

EBUS OEM '--_____ -'r' 
LMCH PHYS#', ===========================:x~---------------------------

EBUS XFER -----------------------I/,;-J 
PI TRANS REC -------------------.:----I';----J 

PI2READY __________________ -.:-___________ -'r---1~ _______ _ 

CONPICYCLE ___________ ~-~--------~"(----------~I 
SET BY MICRD/ 

PROGRAM 

Figure 2-104 PI Timing 

EBOXj2-132 

L 
If 

Il 
Il 

LOAD 
R:TIMER 

T I MER GETS CURRENT STATE NEW STATE 

25 8 PI CYC START 

118 TI 

348 T2 

25 8 T3 

21 8 T4 

I WA~~ FOR EBU XFER 208 T5 

LWAITFOR PI 
CYCLE TO SET 35 8 T6 

208 T6 

20 e T7 

NOTE: 
IF PI CYCLE DOES NOT SET BY THE COMPLETION 
OF THE TIMER COUNTOOWN DURING T6 THE 
PI BOARD HOLDS AT T6 UNTIL PI CYCLE SETS 

TI 

T2 

T3 

T4 

T5 

T6 

T6 

T7 

COMP 

10-1754 

( 

( 



Time 2 enables EBUS DEMAND. Note that the function PI served and controller select lines are 
• J maintained. The DSKs are commanded to place their "hardwired" physical numbers onto the EBus, 

bit 1 for physical number 1 and bit 7 for number 7. Referring to Figure 2-103, DEMAND is held up 
through Time 2 and then removed while the F and CS lines are maintained. It is good procedure to 
remove the DEMAND signal before attemping to change the function lines; this avoids any spurious 
misselection. The timer is next loaded with 258 and T3 (a brief time state) is entered. Here, two func­
tions are performed: 

1. The physical numbers, by now on the inputs to a register on the PI Board, are clocked into 
that register for arbitration. 

2. The PI Board is timing out a period of time until it is safe to change the function lines. 

The next part of the dialogue is begun when Time 4 is entered. 

Here, FOO and F02(5) are asserted; CSOO-03 reflect the encoded physical number that has highest 
priority (#01) and CS04-06 still reflect the PI channel being served. When Time 4 is removed and T5 
sets, DEMAND is asserted once again. This time DSKA is selected as the DSK to be serviced. 
DEMAND commands DSKA to place its API word on the EBus and to assert EBUS TRANSFER to 
the EBox. The PI Board waits in Time 5 until TRANSFER is received, or forced. If, for example, the 
interrupting device (DSKA) can respond to most of the dialogue but cannot send EBUS TRANSFER, 

,,\ the PI Board waits. If TRAl'fSFER is not forthcoming, TRANSFER is forced and the EBus (which 
\Jcontains zeros) is treated as an API function of O. This ultimately causes a 40 + 2n interrupt on the 

interrupting channel. The DSKs service routine must then decide what went wrong. Assume that the 
DSKs succeed in placing the appropriate API function word on the EBus and generate TRANSFER. 
The timer is loaded with 358 and Time 6 is entered where PI READY is asserted. At this point, the PI 
Board is notifying the EBox microprogram that the API word is currently on the AR mixer inputs. 

2.12.5.4 Terminating the Dialogue - With the assertion of PI READY, the PI Board waits in Time 6 
until the PI Handler (microcode handler) looks at the interrupt. PI READY enables INT REQ to set 
in the EBox and when the PI Handler detects this, it sets PI CYCLE. Now the timer continues by 
entering Time 7, drops DEMAND and finally enters COMP, where the CS and FUNC lines, together 
with EBUS PI GRANT, are removed. This completes the PI Boards dialogue. 

2.12.5.5 Entry to the PI Handler - Referring to Figure 2-102, the handler is entered at symbolic 
location fNTRPT, with the API word loading into AR, and PI CYCLE not yet set. Thus, the PI Board 
is at this time in Time 6, waiting for PI CYCLE to be set. The shift counter is loaded with 2, in order to 
enable the API word in AR to be shifted left two positions, bringing the function code in bits 03-05 
into bits 01-03. PI CYCLE is set and then a shift dispatch is given; depending upon the function 0-7, 
the dispatch is to one of eight routines within the main handler. 

-,

Function 00 - STD INTERRUPT NO TRANSFER 
. The word is buffered in MQ. The VMA is loaded with the appropriate 40 + 2n address. This address is 

implemented via the SCD TRAP mixer (refer to Figure 2-60) and derived from number with PI 4, 2, 1. 
. PI 4, 2, 1 is simply the octal' equivalent of the channel on which the interrupt was taken. Thus, the 

instruction is fetched from 40 + (2 X 5) in the example cited in Subsection 2.8.5.3. This yields an 
address in VMA of 0000050. 

The program branches to Execute Wait (XCTW) where the microprogram waits for the instruction 
fetched to load into AR. This instruction should be a "JSR," which saves the flags and PC and then 
enters a subroutine in main memory to deal with the situation. The performing of a JSR causes 
SPEC/SA VE flags, which clear PI cycle and set PI HOLD, to hold the interrupt. 

EBOX/2-133 



F~mcdol1i 02 - 'VECTOR. H'''ITER.RUPT 
PtP'I and an addness space 

a dispatch is given on ARGO-03 TI:H;; ,6\,1"1 

A ~ L 

'VI'V1A. 
ote, that thre:e address currently tl\;; 

o - EXEC TABLE (EPT) 
1 - EXEC VIRTUAL l!lLDDRESS SPA.CE 
4 ~ PHYSICAL ADDRESS 

is caHed for the 

the bits 27~35 
the qualifiers asserted to the 

EBOX REQUEST 
VMA 
P /-\(] E :REF 

PH,]) (iHustrated FIgure 1(2). 

A,D. T!H: EBox l1:1ake§ an EPT 
are as fol1o\A/s: 

to 

looks at a SPEC/SF MEM cycle number and u.ser 
either VIvIA or U PT, depending on state of user. In this case, 

a direct referen(x~ to EP'T. The AR RS loaded the 
is either the first a in a service or an 

instruction directing entry to a service As 40 + 2n interrupt the instruction 
be a to save the flags and PC. By performing a PICYCLE 

set PI HOLD 011 PI Board. This holds the interrupt. 

Vi1ituud Address 
the IVI Q. this case, 

from EPT, only of the addre§s 
address a base address (EBR) to this address. Here thtneques1t 
qualifiers are as foHovvs: 

EBOX REQUEST 
EBOX READ 

MBox instruction 
instruction actualliy AR. Then as 

EPT reference. 

lFet.d'ming fmm Phy§nc:d Memi()lry 
Here, address contained Bl physical 

to occur, magic number is vvith 
cyde, inhibits th;:; qualifier MAY BE PAGED. 

du.ring MBox not page the address. instruction 
perfonns, One.:;: again, SPEC/SAVE flags PI sets 

EBOX/2-1 



( 

Function 03 - PI INCREMENT 
This function causes a word in the specified address (API word bits 13-35) to be incremented or 
decremented as a function of the Q BIT in the API word. If Q = 1, the function is decremented; 
otherwise, it specifies increment. Referring to Figure 2-102, the API word is buffered in MQ and Q is 
tested. If Q = 0, the contents of the address specified in the API word 13-35 are fetched and 
incremented. The incremented word is then stored back in the same address and an instruction fetch is 
performed from Pc. This contains the interrupted program. Note that the microcode must set PI 
HOLD in order to hold an interrupt on the PI Board. This is done when the 40 + 2n or vector function 
fetches and performs a JSR or similar instruction. Here, after completion of the storage operation, the 
interrupt is dismissed and PI CYCLE is cleared. PI CYCLE is cleared with SPEC/FLO CTL and 
number 02. 

Function 04 - PI DA TAO or EXAMINE 

~he \ 0-\\ interface may perform an Examine function to either core memory or fast memory. In 
addition, the address supplied in the API word may be a relocated address or not depending on the Q 

IT in the A PI word. Associated with the Examine operation are two words of information for each 
\ 0-\\ interface in the system. These word pairs are in predefined areas in the EPT. One word of the 
pair is a protection constant, which limits the address of the virtual address sent in the API word. The 
number of pages specified in bits 13-26 may be less than or equal to the value of the protection 
constant, but not greater than that value. The microprogram utilizes the low-order 2 bits of the phys­
ical number supplied to the API word (bits 7-10) and forms an address 140 + 8n, where n is the low­
order 2 bits of the physical number for the interrupting 10-11 interface. The physical numbers are 
hardwired as 108-138 • This gives low-order 0,1,2, or 3. The FPT location thus obtained is accessed for 
the protection constant and the comparison is made. If a violation occurs (protection violation), a 
word of zeros is transmitted tn the 10-11 interface via the EBllS. If no violation occurs, the relocation 
word is fetched from EPT and added to the address supplied in 13-26 of the API word. This address is 
now treated as a physical reference and it is not paged. The word is obtained and transmitted via 
DATAO function to the 10-11 interface. Upon completion of the EBus dialogue, the PI CYCLE is 
cleared. Note that for the 10-11 interface Examine function, the interrupt occurs on channel O. 

} 
This channel is implemented solely to enable the 10-11 interface to utilize the PI facility at any time, 
whether it is on or off for DMA type transfers. No HOLD flip-flop exists for PIO, so clearing PI 
CYC LE effectively releases the PIO interrupt. Devices other than the 10-11 interface may utilize this 
operation under the classification PI DA TAO. Two differences in its implementation from that of 
Examine exist. First, no protection or relocation is applied and hence no violation can occur. A page 
fault, however, can occur. If this occurs, the PF Handler sets IOPF and transfers control to the oper­
ating system. The second difference is that other devices interrupt on channels in the range of 1-7. 
Once again, holding the interrupt for this one time transfer is unnecessary and only clearing PI 
CYCLE is necessary to release the PI Board. Other than these differences, the operation is identical to 
Examine. 

Function 05 - PI DATAO or DEPOSIT 
I n terms of the 10-11 interface, this operation is the reverse of Examine, except that after the 10-11 
interface sends the API function (which contains the address), the EBox must perform a DATAl 
function to obtain the 36-bit word to deposit in the specified address. A second difference is that if a 
violation occurs, after performing the protection check a violation occurs, no word is stored in the 
specified address. With these exceptions, the operation is basically the same from the point where the 
36-bit word is obtained from the 10-11 interface to the completion of the operation. 

EBOX/2-135 



• 

Function 06 - PI BYTE TRANSFER 
This function can only be carried out betweerr'a 10-11 interface and the EBox. This function is initiatecj 
on PI channel 0 as are Examine and Deposit. The transfer is part of either a TO 11 or TO 1 0 byte transfer 
occurring in the 10-11 interface. The information being transferred is either a byte right-justified in 
EBus bits 28-35, or a word right-justified in EBus bits 20-35. The API word specifies whether the 
transfer is TO 1 0 or TO 11 by the state of the Q BIT. If Q = 1, the transfer is TO 1 0; otherwise, it is a TO 11 
transfer. In addition, the PI Board is supplying the physical number in bits 07-10 of the EBus while the 
API word is present. The other portions of the word 0-2, 11-35 are ignored. 

TOtO Byte Pointer Fetch, Byte Read, and XFER 
The low-order two bits of the physical controller number 0, 1, 2, or 3 are obtained and combined with 
EPT base location 14X to form the EPT location of the TOll byte pointer. Next, the byte pointer is 
obtained from the EPT and updated. The pointer is a standard KLIO byte pointer. The microcode for 
load byte instructions is used for the pointer update. Note that the byte pointer may specify indirection 
and/or indexing. Once the effective address has been calculated, the updated byte pointer is stored 
back in its slot in EPT and the byte is obtained by performing an EBox request. Finally, the byte now 
in AR is transferred via the EBus (DATAO) to the 10-11 interface and PI CYCLE is cleared. 

TOtO Byte Pointer Fetch, Byte Transfer and Storage 
The byte is initially requested by issuing a DATAl to the 10-11 interface. The byte is then picked up via 
EBus 28-35 and loaded into ARX and into BRX. Next, the low-order two bits of the physical con­
troller number 0, 1, 2, or 3 are obtained and combined with EPT base location 14X to form the EPT 
location of the TO 10 byte pointer. The byte pointer is obtained from the EPT and updated. The pointer 
is a'standard KLIO byte pointer. For the TOll XFER, the microcode for deposit byte is used for the 
pointer update and, as with the byte pointer for TOll XFER, may specify indirection and/or indexing. 
Once the effective address has been calculated, the updated byte pointer is stored back in its slot in the 
EPT and the byte is stored in the pointer's effective address. Finally, PI CYCLE is cleared and this 
terminates the operation. 

Function 07 - UNASSIGNED 
This function is unassigned and currently behaves the same as function 00 . 

EBOX/2-136 



SECTION 3 
LOGIC DESCRIPTIONS 

In this section, a selection of the twelve board types comprising the EBox are described in detail. 
Wherever possible, a functional perspective is given to highlight the particular functions a board or 
portion of a board implements, and multiple boards are shown interconnected to aid in tracing various 
control signals from one functional area to another. 

PHYSICAL CONFIGURATION 
The EBox consists of a total of 23 modules, configured as indicated in Figure 3-1. A brief description 
of each module is contained in the following paragraphs. 

Module M8532, Priority Interrupt Control (PIC) - One board, illustrated on customer prints PIC 
1-6, contains PION register 1-7, PI GEN register 1-7, PI REQUEST Register 0-7, PI HOLD 
register 1-7, and the PI ACTIVE flip-flop. In addition, it contains the priority interrupt networks 
for arbitration of priority interrupt requests, EBus dialogue logic, control and internal timing, 
and the assignment registers for the ABR: PIA APR 1,2,4 and Meter PIA 1,2,4. 

Module 8526, Clock (CLK) - One board, illustrated on customer prints CLK 1-6, contains the 
crystal-controlled master clock oscillator and crystal-controlled margin clock oscillator, as well as 
Source and Rate Selection registers and their associated logic. It contains logic and counters to 
produce the EBus clock, SBus clock, MBox clocks, and EBox clocks; In addition, it contains 
single step, burst, normal, and diagnostic mode logic and registers. It also contains MR reset, 
EBus reset,crobar logic, error detection logic, page fail, and MBox request logic. 

Module 8539, Arithmetic Processor Status (APR) - One board, illustrated on customer prints 
APR-7, contains an 8-bit APR Status register, 8-bit Interrupt Enable register, and associated 
interrupt request detection logic. It contains the EBus dialogue control logic used while per­
forming I/O instructions. In addition, it contains'the address break compare enable bits, fetch 
comp, readcomp, write comp, and user compo It contains a 5-bit section register, fast memory bit 
36, RAM storage, and parity network. It also contains the fast memory block and word address­
ing logic, mixers, adder network and current, previous XR, and VMA Block Selection registers. It 
also contains MBox control and MBox register function decoding logic. 

Module 8525, EBox Control No.2 (CON) - One board, illustrated on customer prints CON 1-6, 
contains CRAM condition field decoding; COND and SKIP enables; and VMA select lines CON 
VMA SEL 1 and 2. It contains meter, interrupt request and interrupt request detection logic, run 
and continue logic, IR strobe, DRAM strobe, start logic, various flip-flops, and associated sych­
ronizer logic. It also contains the NICOND decoding and COND ADR bit 10 logic. It contains a 
4-bit State register, diagnostic function decoding logic, Parity Enable register, Cache Strategy 
register, paging enable, trap-enable bits, and I/O control signals for CONO APR, CONO PI, 
CONO PAG, and DATAO APR. It contains the Load AC blocks and Load Previous Context 
signals, 4-bit Microcode State register, AR and ARX bit 36 with associated logic, fast memory, 
write logic, various PI control signals, and associated logic. 

EBOX/3-1 



Z-£/XOH3 

, , 

XCD 
orn<n\::o:S: 

~~~b~~ 
(/)Y).!J>~~x

VI
0 -

~
M8532
PI CONTROL

VI M8526
N CLOCK

VI M8538
VI METERS

VI M8539
-I> APR • VI M8525
()I EBOX CONTROL # 2

VI M8527
m EBOX CONTROL # 1

-)
VI
-.j BACK PLAIN JOINING

"Tj VI
CD -.

0tI

MB528
VMA

~
'"1 VI (\) tD
Yo.)

M8512
DATA PATH BITS 30-35

I ..-
-I>
0

tI1

{16-19
M8528 36·39
CRAM BITS 56-59

76,78

Ij;j
:!! 0

><
M8512
DATA PATH BITS 24-29

~ -I>
0 N

0..
S -I> (\) VI

{12-15 M8528 32-35
CRAM BITS 52-55 rn

72,74 CD
0

M8512 x
DATA PATH BITS 18-23

C
E: -I>
N· -I>

IlJ

{8-11 M8528 28 -31
CRAM BITS 48-51

68,70
.......

-I> o·
()I ::s

M8511
CRAM ADDRESS

-I> M8510
m SHIFT MATRIX

-I> M8530
-.j MEMORY CONTROL

-I> M8522
CD IR, DRAM ,CARRY

-I> M8512
,tD DATA PATH BITS 12-17

()I

0
{4-7 M8528 24-27

CRAM BITS 44-47
64,66

()I M8512
DATA PATH BITS 06-11

()I

N
{0-3 M8528 20-23

CRAM BITS 40-43
6062

()I M8512
VI DATA PATH BITS 00-05

()I M8524
-I> SCAD

r
\

(

(

(

Module 8527, EBox Control No.1 (CTL) - One board, illustrated on customer prints CTl 1-4,
contains CRAM dispatch, field decoding, some adder carry control logic, and register mixer
selection control logic for AR, ARX, MQ, and PC. It also contains the majority of the diagnostic
decoding logic and the translator enables T to E enable and E to Tenable.

Module 8523, Virtual Memory Address (VMA) - One board, illustrated on customer prints VMA
1-6, contains an 18-bit VMA adder, VMA AC reference detection logic, a 23-bit VMA register,
and associated input mixing logic. It also contains a 23-bit Address Break register, associated
match logic, 23-bit Program Counter register, 23-bit VMA Held register, and AR Mixer Mixer
(ARMM) logic bits 13-17.

Module 8528, Data Path (DP) - Six boards, illustrated on customer prints DP 1-5, each contain
six bits of a full 36-bit data path. Each board contains the following mixers: AR ryfixer (ARM),
ARX Mixer (ARXM), MQ Mixer (MQM), ADA Input Mixer, ADB Input Mixer, ADXA Input
Mixer, and ADXB Input Mixer. In addition, each board contains the following registers: Arith­
metic Register (AR), Arithmetic Register extension (ARX), Buffer Register (BR), Buffer Register
extension (BRX), and Multiplier Quotient register (MQ). It also contans fast memory, the adder
(AD), and adder extension (ADX). In addition, it contains the fast memory, write pulse gener­
ation logic, and fast memory, write pulse generation logic, and fast memory parity network.

Module 8512, Control RAM (CR) - Five boards, illustrated on customer prints CR 1-7, each
contain 14 bits of the control word (microinstruction) stored in RAMs containing 1280 words. In
addition, each board contains CRAM address gating and 14 bits of the CRAM output register
(CRAM register).

Module 8511, Control Ram Address (CRA) - One board, which is illustrated on customer prints
CRA 1-6. This board contains the circuitry to generate the address of the next CRAM word. This
includes the microcode push-down stack, plus the Dispatch and Skip logic.

Module 8510, Shift Matrix (SH) - One board, illustrated on customer prints SHM 1-5, contains
shift counter decoding logic, shift matrix, and AR and ARX parity networks.

Module 8530, Memory Control (MCL) - One board, illustrated on customer prints MCl 1-7,
contains CRAM MEM field decoding; memory request enable logic; request type decoding, e.g.,
MCl VMA Read, MCl VMA Pause, MCl VMA Write. It also contains User and Public
Enable logic, as well as all the request-type qualifiers. It contains bits 1-12 of the VMA Held or
PC Mixers, together with various VMA Control and Selection logic.

Module 8522, lR, DRAM, and Carry (IRD) - One board, illustrated on customer prints IRD 1-5,
contains the 13-bit Instruction register (IR), 4-bit IRAC register, DRAM address mixers,
DRAM, and IS-bit DRAM Output register. In addition, it contains the IR Test Satisfied logic
and normalization CRAM address bits (IR NORM 08-10). It also contains the AD and ADX
carry anticipation networks (CARRY SKIPPER).

Module 8524, Shift Counter Adder (SCA D) - One board, illustrated on customer prints SCD 1-6,
contains the 10-bit Shift Counter register and associated input mixer, 10-bit Floating Exponent
register, and associated input mixer, AR Mixer Mixer (ARMM) bits 0-8, and SCD TRAP Mixer
(32-35). It also contains the lO-bit Shift Counter Adder (SCAD) as well as the Program Counter
Flags register and mode control logic.

3.1 INSTRUCTION REGISTER LOADING AND CONTROL
Refer to Figures 3-2 and 3-3. The IR is composed of 13 mixer latches as illustrated. The default
selection is AD selected by -ClK MB XFER. The alternate selection is the cache data lines selected by
ClK MB XFER. Because the IR consists of latches (DC devices), the clock is used indirectly to
synchronize unlatching and latching of IR. This is done by ORing the EBox clock with the control
signal on the IR Board. Unlatching the IR may be accomplished in one of three ways.

EBOXj3-3

-

MBOX

-

VMA 13-35

VMA AC REF

-:f -:;
I VMA BOARD I

1 ,13 ____ ---:-:-.;..,35 I
.1 AC L I VMA 1 0 REF I I

: 1 I 1
L ______ U

rZo"N;;- - - - - - - - - - - - - - - ----1
I ~-NICOND I
I CO~¥~OL LEGAL I IR I/O LEGAL FQONIIO

I LOGIC II
C-CON CLK

~ ~~ 11--< IR

~-CL- -- - - - -I t.lCL MBOX· I r-l----/ ~~~ I
I .----.....FM ~ W~f?- ==1 D_COND/LOAD R~N ,

t CYC REO I C-CON CLK _ I
OUALIFIERS TO MBOX L ;: II-I-+-,--"--'---+-t-I, +-----+------' CON CLK- _ ~_ ~ ~ ,

I W 1 I DIAG DRAM STROBE-t------I CON 2 0 I
- READ CON LOAD DRAM DIAG IR 3 0

.! l' STROBE 4 E

OTHER
~ OUALIFIERS
-FROM OTHER

BOARDS

MBOX RESP IN

EBOX REO

CHS EBOX
RETRY REO

CSH EBOX T0

:::(- PAUSE f-- I I CON R I- DIAG CONTROL I
I j-F_ET_C_H_-,-CY--,C...::;L",E _ FUN C 01 X

I = WRITE I-I--__ -tll-~E__LC_:_M_A_'I ~I 1-----4------, I COND/IR LOAD I C:L.>- '
I REO EN- LOAD II I ,
L_MC~L=~L~_.J l ___ r-- __ ~---:OD~~-- __ - __ --------J
~~;;R;---i

I, If I I f I
/1 I M EM I I COND 1/1 I I j f

&... ~C~ :::.---=-=-. J

I
I

MBOX SYNC

EBOX SYN CEN

·1 CLK MBOX CYC DISABLE D
I RESET

CLK PAGE FAIL EN , -VMA AC REF-

1

CLK EBOX
MBOX

1
I
I
I
I .
I

I :
CON
MBOX WAIT

I
I
I
I
I
I

::!:

Figure 3-2 IR DRAM Control (Part 1) \
I

EBOXj3-4

E
B
U

EBUS 004-06 S

10-1671

c

(

(

(

DRAM ADR 00-02

I---- FOR NON 10--1 EVEN HALF INSTRS
256X3 3 56 8 9 12

l I ~
~

.- DRAM ADR 03 -05

0 2
])-1 - SEL

0 DRAM ADR 06 -07
FOR
ALL

INSTRS

- ODD HALF
256X3

67 r-: 10 I 12

I

/'S'EL
3

IAIIl-2X 1AIil
-

2Y I IF IR Il~6~~ opi 3-6'0 7-9' CODE
DRAM ADR OIL\ ~EL 'L LOCAL LOCAL

DEV

I--- FOR 10 INSTRS---j 1
IR011l-02'7~ 0 2

A
HOLD

INSTR
7XX . 777

770
r--- 767

r-- SET 0 I-- DIAG 04-06 760
~I ~ I 757

2 750 IR EN
IO 3 747

JRST CLR
4 740
5 737

~ ,-- 6 730
t- I-- 7 I--DIAG LOAD FUNC 06X 727

-r;--F '--- 720
717

IR EN 710
AC 707

0
CLR 700

'--- 667

256

255
-CON LOAD DRAM HOLD DRAM 254

CLK IR

EVEN HALF
256X3

ODD HALF
256X3

IB0-2X B0-2Y

~~EL '/

0 2
B

HOLD

ALL OTHER DEVS

RESERVED

MTR

TIM

CCA

PAG

PI

APR

/.1 ~:% ~ ~ ;:: ~ :/, ~/
JFCL

JRST
'/ / / / / / / / / / / // // / / /

L __ DRAM STORAGE~ r- ALLOCATION ~

I
!

EVEN HAL1' EV,N HALF
256XI 56X3

I
i

I

I

COMMON COMMON COMMON
256X3 256Xl 256XI

I --
I

ODD HALF ODD HALF
256Xl a56X3

1
IPARX IPARY 1J01-03 IJ07 t:rOX 1J08

-
1 IJ04 1 1 fill I I
OY

\~EL 'L \~EL I

-IR JRST~~EL '/ 0 'L \0 ! '/ SEL SEW

I I I I ! I
I 3 4 7

~ ~HO~D I1ARITY IOJ P J J PARITY J
HOLD HOLD HOLD HOLD I J

034-774

030

024

020
DEV SEL

014

010

~~~MCL~~~ ~~~~6~-
004 

000 

I ALL OTHER INSTRS 

JRST, JFCL 

I 
IR JRST~~EL 

ODD 

PARITY 
NET 

I 
'HOLD 

07 
J 

0 

~ §--DRAM JOI-04 

5 

~ ~ORAM J07-10 

10 

" 12 
13 
14 
15 

IR09 I IRIO-I 

'/ \~J Y 
IJ 

I I 8 I 10 J I J 

I 
I 

I 
i 

o ! ODD 

~ErDRAM AOO-02 

3 I 4mDRAM 
BOO-02 

5 ' 
6 

PARITY 7 
NET 8 

9 
10 
" ----;DRAM PARITY 
12 
13 
14 
15 

2 

1717 
1700 

1217 
1200 

'''7 
1100 

1017 

100 0 

7 71 
70 0 

7 6\ 

60 0 

51 

50 

7 

0 

7 41 

40 0 

7 3\ 

30 0 

7 21 
20 0 

11 

10 

7 

0 

7 
0 

I NACCESS IBLE 

· · · 
INACCESSIBLE 

INACCESSIBLE 

INACCESSIBLE 

I NACCESS IBLE 

I NACCESS IBLE 

INACCESSIBLE 

INACCESSIBLE 

INACCESSIBLE 

INACCESSIBLE 

INACCESSIBLE 

I NACCESS IBLE 

~ CRAM ADDRESSES ------.J 
r---INACCESSIBLE TO DRICM---'l 

"HARDWARE ADDRESSING MISSING" 

2377 

720 I 

I 

I 

277 

220 

I 177 

1120 

I 
I 
077 

020 

777 

720 

677 

620 

577 

520 

477 

420 

377 

320 

277 

220 

177 

120 

77 
20 

THE AREAS MARKED 
INACCESSIBLE ARE 
NOT ADDRESSABLE 
VIA THE 
DRAM J FIELD, 

Figure 3-3 IR DRAM Control (Part 2) 

EBOXj3-5 



During an instruction together EBox React 
qualifiers the ERax They are 

reason, MEIvl 
setso It one of t'l~;VO events oc~;;urEL 
cycle, or XFER oC:CUl'S response to an internal 
feedback path MEIVI CYCLE mp~nop, 
FETCH are is because ~COl"'J LOAD 

COND 

The operation unlatching ami loading in. this lTumner one 
Figun;: Note eLK 1R i:~; RogicaHy ORed ,·COl'"T LOAD 

-=''\,. f'rrED~--~~-~~'--~~----'=, ,,~'-~~=~--=- c' - \ I' 
CR.~,1\l REG >( MICRO IHSTl'~UCTIOi\l ,,< MICRO li·1STRUCTION >.:. 

~f '~__ _ _ _ :," ~~,,~~~. ___ ._~ __ ~~/ -, 

EBOX CLOGlI ~ !i I~ I l~. _~~ ___ J _, __ ~~~~.~ 

E'Se})!.: SV!~C r 
~ ____ ~. ---.I 

ii ~--~~--, 

L-_. ~.~. _.~. _I L 

COND/LO,O;O 1R 

ADIA 

ADA/A,R _/~ 

10-1673 

cwU''''''Hl,;e; Via AR (COND fLOAD tRy 

or 
IS 

AD, it is sometimes necessary to UBI;: the COND f!R 
L 
memory as 

selects AD 
COT'Il"D field is 

()nce note and 

to Figures 3-2 bits 32~·35 fast 
ADRfield. 

. The 

H{ is in step EBox dock (eLK IR) .. 



• 

/ 

CRAM REG ==>< X 
EBOX CLOCK ~ . L 

COND/LOAD IR #~ " AD/B~ " ADB/FM ~ " 
IR UNLATCHES I LATCHES 

IR MIXER IN ________ ----'XFM DATA X,-__ 

EBOX SY NC 

FM ADR / 
-----' 

FM DATA / ______ ----J 

Figure 3-5 Loading IR Via FM (COND jLOAD IR) 

3.1.1 DRAM and IRAC Control 
The DRAM register is controlled in a manner similar to that oflR. The DRAM register consists of19 
mixer latches. Refer to Figure 3-3; unlatching the DRAM register may be accomplished in one of three 
ways. As with IR, note unlatching and latching of the DRAM register is synchronized by ORing the 
EBox clock with the control signal on the IR Board. 

"Each time that the COND jLOAD IR function is Ilsed to unlatch the IR, it also enables the generation 
orCON LOAD DRAM on the next EBox clockLThus, the IR unlatches beginning with the trailing 
edge of one EBox clock and latches on the leading edge of the next. Similarly, the DRAM register 
unlatches beginning with the trailing edge of the EBox clock that latched IR, and latches once again on 
the leading edge of the following EBox clock. The timing is illustrated in Figure 3-6. 

A similar operation takes place following NICOND Dispatch. Referring to Figures 3-2 and 3-7, 
NICOND is latched into a flip-flop on the control board at the same time that the microinstruction 
selected by the NICOND Dispatch loads into the CRAM register. . . 

Here we assume the case where some instruction has completed its store cycle. An earlier micro­
instruction generated MEMjFETCH which started the EBox Request. 

EBOXj3-7 



CRMf. REG 

COND/LOi\D IR 

If1rtill:~(ER "'=-""""r." ,'- ~"'\,~,,~'~~-~--'-'--'--~'~~' --~-',,~. ~-~-,-~'=~":'''''''''''''''''''''-

:IIIPUTS _~"_,>\,~""~ __ , __ ~~",~~ __ " ,.~._."_~~_~_ ~~_. __ ~_"~.~ __ '""_. ~.~. _~~.~. _. ~~~ 

Jt=--~-~·-··U_'-~~-~~~--~~, 

/ '\ 
-----..-.~'" \_----~~-~--~~ 

CON 

LA7CHED !i. UH L ATCHED I~--~-'~---'~' --~~.~ 

IRAC (IRAC 09-12.,,- IR 09-12) LATCHED 

10-1675 

Figure 3-6 DRAM Following IR 

DR.AM Addre§sirng ~md '-''''.,'''', ... '"''' 
DR EN 10, JRST, 

into the DRAM 

DRAM 

,ilkS indicated on the figure, 
zero~ device is 

APR:DEV 
PI: DEV 

. DEV 1010 
OCA: DEV 014 

to 
to 



c.~-

( 

r 

( 

CRAM REG SEE NOTE 1 X X ><= 
EBOX CLOCK I 

EBOX SYNC 

NICOND DISP " LATCH ON 
CON BOARD 

CON 
LOAD DRAM / " UNLATCHED 

DRAM REGISTER LATCHED LATCHED 

MEM CYCLE 

MCL VMA 
FETCH 

IR UNLATCHED LATCHED 

INSTR LOADS~ 
ARX 

CLK 
RESPONSE MBOX 

MBOX DATA $$ 
NOTES: 

1. Micro Instr Asserting NICOND 
Disp and Woiting for Instr. 

2. Micro Instr Selected According 
to N ICOND Disp. 

to- 1676 

Figure 3-7 NICOND Dispatch and Waiting 

If IF. bits 3-6 are nonzero, the device is external to the processor. This includes device select codes 034 
to 774. 

All other op codes in the range of 000-677 address locations in the DRAM that correspond to loca­
tions 000-677. This is illustrated in Figm:e 3-2. DRAM address 00-02 is formed from IR 00-02, while 
DRAM address 03-08 is formed from IR 03-08. 

AC decoded jumps JRST and JFCL reference locations in the DRAM that correspond to their numer­
ical op codes (254 and 255, respectively). The DRAM register is loaded specially for JRST. Note that 
IR JRST (Figure 3-3) forces DRAM register J4 to zero while enabling DRAM J07-1O to be input from 
IR 09-12. This enables the microcode for JRST to be entered at the appropriate location relative to the 
type of code in IR 09-12. 

DRAM register bits 00, 05, and 06 are missing in the hardware (Figure 3-3). This prevents DRAM J 
Dispatch from accessing certain CRAM locations. 

EBOXj3-9 



,3,:£.3 

CA1VKXX 
CAl.IXX 

JUlv1PXX 

sosxx 

SOJXX 
AOIJJX 

SATiSFIED 

It is with 

instructi.ons test S(HlH') or conditions, dept'!ll1ding UpOl.l result 
The fetch can be from tl~C+ 1 or PC+2, (in the case of CiUXX, CAMXX, 

TXXXX, and BLKX), Olr from E PC+- 1 (ill the CBlse of AOJXX, 

3,L:~,2 1ll1!ll,X;~~~'H;!Jmtathm ~ To supplerulent this section, five tables tH'le prf;sent\~d (Tab1es 30 1 throll.gh 3~ 
which aid in understanding the taMe Figure 3-8. Tablie 1 is Skip, Compa.re 

controls. is divided areas, Eight Skip, Jump, are indicated, 
These are microcode indicated coding of DRAM field and imply the type 

Jump, or Compare condition being tested, example, the nrlStructiol1 CAIE compares the 
address with the contents of AC next instruction in the program sequence if 

condition is satisfied. The DRAM B field mnemonic is "SJCE," which is at value of 1 in DRAM B. The 
coding of DRAM SO controls the sense the Thus, referring to Figures 3~9 and 3~1O, IR 
SATISIFIED is the of DRAM BO the §ignaJ indicated on the figure as "resultanL" 
Kn current to zero, the IF. TEST SA,TISFIED signal is tn.ll<:: 

onliy if the "resultant" is true, 

As inoj(';ated Figure of := 0 DRAM 13 OR (0) CRAJ~.1 #070) 
enables "resultant" to be true, This yields TEST SATISFIED. Referring to Figur~ 3-8, the VIVIA 

which it received at AREAD The field is PC+ 1 [CRftLlIcII V1VIA SEL 1 
(O) /'.CRAM SEL 2 0)], Because 1 INHIBIT is false at this time, the ":8" input to VMA 
AD i§ equivalent to + 1, while VIvlA ilicD function is "A + R'" field function is 
"FETCH," and the lnagnc field function is "corv[p FETCH," is coded as i¥20L Thus, 

0) with "FETCH" and IR TEST SA, MeL SKJf11 g,ATISFIED, Providing PI 
is clear, INC incn::r,nents is now PC+ 1, to a of 

bit of the CRAM load gate that IR 
TEST SATISFIED or roMEMjCOl'·lD is nece§§ary to anow 

SATISFIED to loading the during Jump-type VMA, contained the 
add.ress prior to that the number field function and ME:M 

instructions is different than COfnpares. It lis necessary to prevent PC+2 
occurring by blocking the term !ltfCL SKIP SATISFIED. Because the 
nuraber field ftH1ctloJr1l for jumps, 'which is "'JUMP FETCH,." has #01 (0), the gate is inhibited, If 

test is fwt satisfied, with PC+ 1 and operation continul'::§. 

EBOXj3o 



tI1 = ~ .......... 
W 
I --

~ 

rco~,,:;~o;;D-1 

I 
I 
I 
I 
I 
I 
I 
I 

r 
I 

PI I CYCLE 

I 
I CON 

ClK 

L ____ J 

• 

~ 
I 
-------

I 
I 
I 
I 
I 
I 
I 
I 

I BOARD 

--DRAM REG-----l 

CRAM CRAM CRAM 
#01 #02 #07 

0 

0 0 

SKIP=I SKIP=O 

JUMP=O JUMP=I 

0 

CRAM 
#08 

0 

0 

( 

~~o~----l 

I 
r.-----------, 

VMA BOARD I I VMA CONTAINS r 
IE INITIAllY I 

I SEl2 
SEll 

I. 
I 
I MCl VMA INC 

I I -PC+I 
INH 

CRAM SEl2 

I I _____ J L _________ 
#01 (1\ See Table 

-MEM/COND JUMP. MEM/COND JUMP. MEM/FETCH 

CRAM VMA SEl2. CRAM VMA SEll. VMA/PC+1 

-----------, r --
I I I 

IR TEST SATISFIED I I 
"CONTROLS SENSE I I 

I I 
INSTR SELECTION THIS SIGNAL NOTES I I USED FOR FOR IS EQUAL TO 

UNUSED X NOT USED CURRENTLY I I 
CAMX G or E G=(AD00 ¥ ADCRY-02) 1\-#06 IF AD!Il!ll ¥ ADCRY-02 I I 

CRAM 
ClK 

CAlX OR BOTH E=(AD=OO)I\-#Ol IS TRUE ADA> ADB 

I SKIPX l or G l= AD00 1\ - #07 IF AD!Il0 = I THE AD I JUMPX OR BOTH G= (AD=OO) 1\ -#01 IS NEG 

TXXX I I X ADCRY-02 AD CRY!Il 

I 
KI 

I 
I 
I 
I 

--.J 

---, 
I 
I 
I 
I 

9' I 
9' I 
I 
I 
I 

I I ! I I CL"" I I I. 'J L _________________ _ I ,,"''''IVI ov""nu J 
'--------

,0-,677 

Figure 3-8 IR Test Satisfied 

/) 

"! 



• 

DRAM.,08 

DRAM#07 

CRAM#07 

Figure 3-9 IR Test Equal 

-DRAM B02 -DRAM B01 

CRAM#08~ ___ ~~==~t---~A~D~=~0~~jl-J 

ADOO 

ADCRY-02 

ADOO 

A>B 

AD/XOR 
CARRIES 
A-B-1 

-CRAM#07 

-CRAM#08-_-, 

- ADCRY-02--",,--.J '-.. TEST 
}()---" '" CO N S 0 

NOTE' 
Comp fetch' 201 
Skip fetch' 202 
Test fetch' 203 
Jump fetch' 102 

CONSZ 
BlK I 
BlKO 

Figure 3-10 IR Test Satisfied Logic 

IR TEST SATISFIED 

10-1679 

10-1678 

IR TEST 
SATISFIED 

Table 3-1 Skip, Jump, Compare Controls 

DRAM B Field Skip, Jump, Compare Controls Controls Sense of Skips, Jumps, and Compares 
DRAM BOO 

3 
2 
1 
o 
7 
6 
5 
4 

SJC­
SJCL 
SJCE 
SJCLE 
SJCA 
SJCGE 
SJCN 
SJCG 

NOTE 
See Table 3-4; uses Skip or Jump fetch with various AD 
functions. 

EBOXj3-12 

o 
o 
o 
o 
1 

1 

( 

c 

( 



DRAM BField 

2 

0 

• 5 

1 

Table 3-2 Test Controls 

DRAM B Field Tist Controls Contro18 Sense of Test 
DRAM BOO 

4 
o 
o 
4 
5 

1 
5 
6 
2 
2 
6 
7 
3 
3 
7 

TN­
TNE 
TNA 
TNN 
TZ­
TZE 
TZA 
TZN 
TC­
TCE 
TCA 
TCN 
TO­
TOE 
TOA 
TON 

NOTE 

1 
o 
o 
1 
1 
o 
o 
1 
1 
o 
o 
1 
1 
0' 
o 
1 

See Table 3·4; uses TEST fetch with various AD functions. 

Table 3-3 CONSX and BLKX Controls 

CONSX, BLKX Controls Contro18 Sense of 
CONSX, BLKX, Skip 

DRAM BOO 

BLKI 0 

BLKO 0 

CONSO 1 

, 
CONSZ 0 

EBOXj3-13 

COND Causing Skip 

TEST FETCH 
TESTBRL 

TEST FETCH 
TESTBRL 

TEST FETCH 
TEST ARBR 

TEST FETCH 
TEST ARBR 



Table 3-4 Fetch Control Modifiers 
.. 

Actual Instruction Microinstruction Function MEM Field Magic No. Field 01 02 07 08 
Using 

CAMXX, CAIXX COMPFETCH FETCH 201 1 0 0 1 

SKIPXX SKIP FETCH FETCH 202 1 0 1 0 

BLKO, BUG, TEST FETCH FETCH 203 1 0 1 1 
CONSO, CONSZ, 
TXXXX 

JUMPXX JUMP FETCH FETCH 102 0 1 1 0 

Table 3-5 CRYO Generation (MACRO) 

Instruction That Uses CRYO Generators Used AD Field Function Additional Signal 

BLKI,BLKO TESTBRL ORCB+l GENCRY 18 
CONSO, CONSZ TEST AR-BR CRY A-B#O 
TEST TEST AR-ACO CRY A-B#O 
TEST NO CRY SETCA 

Figure 3-10 illustrates the actual logic that develops IR TEST SATISFIED. The use ofthe E, G, Land 
X portions is indicated. The result of the test in the AD determines one of the conditions on each gate. 
For Equal (E), the term is straightforward AD = O. In the case of Greater (G), the Exclusive OR of the 
sign of AD (ADOO) with a carry out of the AD sign (AD CRY -02) produces the A > B output when 
AD is performing the Exclusive OR function. For example, assume CAIG AC, 010101. 

AR = 000000, 010101 ;O,E 
AC = 000000,007777 ;(AC) 

The function performed in AD is: 

ADB+-FM; (AC) 
ADA+-AR; 0, E 
AD = XOR 

Note that while the AD performs the logical function XOR, the carry function is A-B-l (Table 2-8, 
ALU Functions). Therefore, the ADB input is 000000,007777 and the ADA input is 000000,010101. 
The operation is as follows: 

Is complement of ADB input____ 000000,010101 ... ADA Input 
777777 770000 

ADCRY-02 000000000101 ----- Adding the Is complement 
of B to A = A- B-1 

EBOXj3-14 



• 

Note that the following relation is true: 

-B = H±1 
-B-1 = B+l -I 
-B-1 = H, which is the Is complement of B. 

XORingAD CRY -02 with ADOO, which is 0, should indicate A > B. 

For less than (L), the term is ADOO, and this indicates the AD result as a negative value. Skips utilize 
the Boolean AD function A. Here, the carries function is really A -I. Thus, if the instruction is SKIP L 
0, E, the contents of E are compared with zero and a SKIP occurs if (E) is any negative value. The 
implementation follows: 

X: SKIPL 0, E 
(E) == 777777, 777774 ; -4 
AR = (E) 

The function performed in AD is ADA .-AR, AD = A and effectively the (AR) is compared to zero 
because any negative value in AR satisfies the SKIP until a value of zero is placed in AR. This turns off 
ADOO. 

The remaining term (X) is used during TEST, BLKI, BLKO, CONSO, and CONSZ instructions. The 
AD carries function is AB-1. For example, assume the instruction is CONSO DEV, 1. At the time of 
the test, BR contains 000000,000001, the effective address, and AR contains the bits (if any) from the 
device. The implementation follows: 

;O,E BR = 000000,000001 
AR = 000000,000001 ;assume the bit was set in the device 

"AND" 

F or the carries function add - 1 

000000,000001 
000000 00000 1 

000000,000001 
777777,777777 

AD CRY -02 +- 000000,000000 

Here ADCRY -02 inhibits the (X) function but DRAM BO is coded to enable the IR TEST SA TIS­
FlED condition: The PC is updated by +2 and loaded into VMA (Figure 3-9). If the instruction were 
CONSZ DEV, 1 and the device flag was not set, the AD function [000000,000000-1] yields -I and -AD 
CRY-02. This satisfies the (X) function and DRAM BO is clear. Once again, the IR TEST SATIS­
FIED condition is satisfied and the SKIP occurs. 

3.2 PROCESSOR TIMING 
The KL 10 is a synchronous machine. Figure 3-10 illustrates the basic clock layout and distribution. 

3.2.1 Clock Overview 
The clock resides in the EBox and contains a selectable source (Figure 3-12). This source can be a 
crystal controlled 50 MHz oscillator, for normal processor operations, but may be an external source 
for special applications or a 56 MHz crystal-controlled oscillator for speed margining. 

Basically, the clock consists of three other rather distinct sections: the clock control, the EBox clock 
control, and the clock diagnostic control labeled CD , ~ , (J) ,respectively, in Figure 3-13. 

EBOX/3-15 



• 

C 

B 
U 
S 

MBOX 

DMA-20 ~,~ 
" v 

MEMORY 

~ sL :) 
ClK SBUS'I ClK t 

PI BOARD 

PI 

r----- ------, 
I CLOCK I ~ CLOCK I EXT SOURCE DIAGNOSTIC I ClK CONTROL CONTROL I 
I 50MH{ FREE I 
I. ClK PI I 

t--=C..::;l:,.:.K....:C:.;..R:;:C __ -+_--; ClK SELECT 

ClK MB 00 • ClK FUNCTIONS I 
ClK MB 06 I I 

w..::cC=.;lKc....:.:;Mc;:cB....:Ic=2 __ t-I -\ 
,... I ClK CRA I 
.... Cl;:;.;K,,;....:..CH'-'--__ f--I---l C l K CRM I 

ClK CHS EBOX I 
I CLOCK CLOCK ClK VMA 

!+"C..::l'-'.K-'C:..;,H'-X'--_-+_--ICONTROl CONTROlr:::..:....-='-'-I----' 
ClK MBC I ClK ODD ClK EDP I 

14-"'=-.;='------II~---l ClK CON I 
~~..::~.:.::....::.:::::..::=------=--I---l ~~: :B:~X SOURCE I 
~C..::;l.:.:K-C:..:C:.:W'----t_I---l CLOCK ClK ClK 

ClK MBOX 13 I CONTROL 

ClK MCl J 

ClK ClK APR I 
CONTROL ClK IR I 

I 
ClK SCD j 

ClK MBOX 14 

: ClK MBX I 
ClK PMA I ClK DK20 I 

PAGE FAil HOLD! I 
L-t------I---- .... 

ClK EBOX SYNC. 1 

ClK EarS ClK 
A .. 

E BUS 

~ 
~ 1 11 v 

• 
RH-20 DTE-20 DIA-20 

, 

Figure 3-11 Clock Basic Block Diagram 

EBOX/3-16 

c~ 

SHIFT 
MATRIX 
BOARD 

SH 

CRAM ADR 
BOARD 

CRA 

CRAM 
BOARD 

CR 

VMA 
BOARD C--VMA 

,--. DATA PATH 
BOARD 

EDP 

EBOX 

r- CONTROl#2 
BOARD 

CON 

EBOX 
CONTROL #1 

BOARD 
CTl 

MEMORY - CONTROL 
BOARD 

MCl 

APR 

L.....:to DIAGNOSTIC 
BOARD 

APR 

IR AND 
DRAM BOARD 

lR 

SCAD. PC •. 
FLAGS BOARD 

SCD 

DK20 

10-1680 

l 



• 

( 

• :. 

EXT 
SOURCE 

I 50 MHz ~ - - - -

---,0-----------

EJ----
64 MHz FREE 
EXT 

66 MHz FREE 

10-1681 

Figure 3-12 Clock Source Simplified 

I CLOCK I SOURCE 

50MHz 
I 

SBUS CLOCK 

ClK PI 

CLOCK 
CONTROL 

S 
MBOX-Q- CD 

EBOX 
CLOCK 

CONTROL 

® 
-D-EB Cl 

OX 
OCKS 

B 
U 
S 

WER PO 
CON TROl 

7 

CLOCKS 

EBUS 
CLOCK 

... 
EBUS 

" I 

I 

j CLOCK CROWBAR CLOCK 
FUNC 
GATE 

ClK 
SEl 

SOURCE SEl CLOCK 
DIAGNOSTIC 

RATE SEl CONTROL 
ClK GO ® 

DS04-06 lOAD 

CONTROL 

CROWBAR 

STROBE 
DSOO-07 

Ficure 3-13 Basic Clock Block Diagram 

3.2.2 Crobar and Clock Initialization 

EBOX 
CONTROL 

#1 

~ 
10-1682 

When the KL10 system is powered up, the EBox clock board must be initialized to a known state. In 
addition, the device controllers on the EBus must be initialized and a series of MBox, EBox, SBus, and 
EBus clocks must be generated for various initializtion purposes. First. the power controller asserts 
CROBAR for approximately 5 seconds. This signal is passed to the clock diagnostic control logic, 
where it enables the initialization process. The clock diagnostic logic contains a 2-bit source selection 
register, a 2-bit rate selection register, and various other registers and logic. During power up, the state 
of these registers is undefined. To avoid an improper source selection, the clock CROBAR signal is 
used directly to select the 50-MHz oscillator as the clock source to be used during the power up 
initialization phase (Figure 3-14). 

The selected 50-MHz source is now divided down as indicated in Figure 3-15 to provide 25-MHz, 12.5-
MHz, and 6.25-MHz free-running clocks. 

EBOX/3-17 



50 MHz "normal" 
XTA l \-----_._---1 

CONTROllED 

EXT CLOCK 

"FOR 
,------, SPEED 

56 MHz 
XTAl 

CONTROllED 

SOURCE} SELECTION 
REGISTER 

I NITIAl STATE 
UNDEFINED 

MARGINS" 

SEll 

SEl2 

ClK 50 MHz FREE 

Figure 3-14 Basic Source Selection 

ClK 50 MHz FREE 

1---40n5 ---I 
ClK 25MHz FREE 1 1 i-I ---, 1 

141 .. ---- 80n5 ____ +l .. LI -----I 

ClK 12.5 MHz FREE 1 I I 

10 ... 1683 

141 .. ----- 160n5 ------.... 

ClK 6.25 MHz FREE I 
10-1684 

Figure 3-15 Free-Running Clocks 

c 

The 50·MHz FREE clock source is next passed to a rate-selectable mixer. However, because the Rate 
register may initially be in an undefined state, the selected rate is apt not to be the 50 MHz source. This 
presents no problem because the inputs to the mixer (50 MHz FREE, 25 MHz FREE, 12.5 MHz 
FREE, or 6.25 MHz FREE) are all even multiples; the rate is not critical during the power up phase of 
operation. The mixer is shown in Figure 3-16. Its output is labeled 2*Rate Selected, and this output is 
twice the clock selected frequency. ( 

RATE} SELECT 
REGISTER 

INITIAL 
STATE 

UNDEFINED 

50 MHz FREE 0 
25 MHz FREE 

12.5 MHz FREE 
6.25 MHz FREE 

SEll 

SEl2 

ClK 2* RATE SELECTED 

'------JC 

+2 

ClK 
SELECTED 

REG SEl2 REG SEll RATE SELECTED 

o 
o 

o 
1 
o 

50 MHz FREE 
25M Hz FREE 

12.5MHz FREE 
6.25MHz FREE 

10-1685 

Figure 3-16 Basic Rate Selection 

EBOXj3-18 



-. 

( \ 

3.2.3 EBus Reset 
Referring to Figure 3-18, the CLK CROBAR signal enables the counter to subtract one on each 12.5 
MHz clock pulse. Once again, the initial ttate of the counter is undefined. During the crobar period 
(approximately 5 seconds), the counter is decremented toward zero. When zero is reached, a carry is 
generated and if CROBAR is false at this time, the -1 function is disabled and the counter is loaded 
with zeros. This removes~. In practice, the counter passes through zero many times until 
finally CROBAR is removed by the Power Controller logic. Signal EBUS RESET is a 1280 ns square 
wave. 

3.2.3.1 Initialization Clock Pulse Generation - As shown in Figure 3-18, CROBAR is shifted four 
places into the shift register, activating the CLK SS stage. This, with the Clock Selected flip-flop, 
enables the gated clock. It is this signal (GATED CLK) that becomes the source of the clocks gener­
ated via the clock control and EBox Clock Control. When CROBAR is removed, 4 CLK selected 
pulses later, CLK SS is also removed. The approximate sequence is indicated in Figure 3-17. Figure 3-
19 shows the power up timing. Note that this shift register also serves to synchronize CROBAR. 

3.2.4 EBox Clock Control 
The EBox Clock' Control provides a source of clocks for the EBox boards together with an MBOX 
Sync Point (EBOX SYNC), which is always asserted one MBOX Clock prior to the generation of the 
EBox clock (Figure 3-20). 

Depending upon the nature of the EBox cycle (a period extending from the rising edge of one EBox 
clock to the rising edge of the next), the period between EBOX CLOCK pulses may be extended by 
some multiple of 40 ns, i.e., 80, 120, 160, 200, etc. 

Refer to Figure 3-22; this drawing illustrates the functional structure of the EBOX CLOCK Control. It 
consists of an MBOX CLOCK counter/marker generator, a clock phase sync detector, an EBox sync 
source, and an EBox clock source. The CRAM time field (TOO, TO 1) specifies the duration of the EBox 
cycle (Figure 3-21). 

The marker generator consists of a shift register that may be loaded with zeros when EBOX CLK EN 
is true or have ones shifted in (beginning with the 40-ns stage) for each MBOX CLK generated, as long 
as EBOX CLK is false. Table 3-6 describes the marker generator. 

® 12.5MHz FREE 

® ClK SELECTED 

,...-_---,CDCROWBAR 
[ .. 5 SECONDS] CLOCK 

.---"--......... @ ClK CROWBAR 

i-=-----=-----.j D IAGNOSTI C 
CONTROL 

ClK 
QA EBUS 
'eY RESET 

EBUS 

@MRRESET 

CLOCK 
CONTROL 

ClK ClKODD 
ClK 

Figure 3-17 Clock Initialization 

EBOX/3-19 

MBOX 
CLOCKS 

EBOX 
CLOCKS 

10-1686 



• 

COUNTER INPUTS 
ARE ALWAYS 

~ 

r-------------+_~--~--+__.CARRY 

CLK 
CROBAR 

CLK 
SELECTED 

NOTE 

CLK 
CROBAR ---'L-~ 

12.5 MHz FREE 

If CROBAR is false 
a CARRY OUT disables 
the -1 functions and 
loads O's into the counter. 

OUT 

1 =-1 
0= LOAD CLK EBUS RESET 

4 - BIT COUNTER Qal-----------------------------------t 
CLK J 640ns 640ns I 

CLK GATED 

EBUS CLK 

C 

CLK SELECTED CLK 
CLK 

CLK 
ODD 

'------------+----lD 

CLOCK 
DIAGNOSTIC 

CONTROL 
MR 
RESET 

EBOX 
CLOCK 

CONTROL 
SBUS CLK 

E 
B 
U 
S 

S 
B 
U 
S 

10-1-11'87 

Figure 3-18 EBus Reset and Clock Initialization 

EBOXj3-20 



• 

CROWBAR / 
II 

\ 

CLK CROWBAR / 
II 

\ 

50 MHz FREE 

25 M Hz FREE 

12.5 MHz FREE 

!I 
CLK EBUS RESET 

"'mm"~ 
CLK SS 

~------------------------------------------R 
CLK RESET ~ 

~----------------------------------------~n 
MR RESET ~ 

Figure 3-19 Power Up Timing 

CLK MBOX CLK 

CLK EBOX SYNC 

CLK EBOX CLK ______ -I 

NOTE 
Actually. EBOX CLOCK is 
clocked via CLK ODD which 
occurs ",6 ns earl ier than 
MBOX CLK 

10-1690 

10-1688 

Figure 3-20 Simplified Diagram, MBox Clock, Sync, EBox Clock 

-1 40 I-
EBOX CLOCK ~:ABLE =j 

-LFI~ 
10-1689 

Figure 3-21 EBox Cycle 

EBOXj3-21 



Table 3-6 Marker Generator Function 

TOO TOt Duration MBOX Marker Generator EBOX EBOX EBOX 
CLK 40ns 80ns l20ns CLK CLK SYNC 

EN 

0 0 1 0 0 0 0 1 0 
0 0 80 2 1 0 0 1 0 1 
0 1 1 0 0 0 0 1 0 
0 1 2 1 0 0 0 0 0 
0 1 120 3 1 1 0 1 0 1 
1 0 1 0 0 0 0 1 0 
1 0 2 1 0 0 0 0 0 
1 0 3 1 1 0 0 0 0 
1 0 160 4 1 1 1 1 0 1 
1 1 1 0 0 0 0 1 0 
1 1 2 1 0 0 0 0 0 
1 1 3 1 1 0 0 0 0 
1 1 4 1 1 1 0 0 0 
1 1 200 5 1 1 1 1 0 1 
x x 1 0 0 0 0 1 0 

The clock phase sync detector compares the marker generator content with the CRAM time field 
(loaded at EBOX CLOCK TIME) whenever EBOX CLOCK EN is false. If the marker count com­
pares with the bit combination in the time field, SYNC EN is asserted and the next MBox clock sets 
EBOX SYNC. EBOX SYNC then enables EBOX CLOCK EN and similarly disables the detector. 
This completes 'One cycle. 

Note that with MBOX WAIT true, -EBOX CLK EN is also true and EBOX CLK EN is false (Figure 
3-22). This enables the MBox clock counter/marker generator to keep shifting 1 s from the 40"ns stage 
toward the 120-ns stage. Similarly, the detector is enabled and when the marker compares with the bit 
combination in the time field of the CRAM word, SYNC EN will be asserted and remain so until the 
MBox responds or aborts the cycle. Thus, one MBOX CLK after SYNC EN is asserted, EBOX SYNC ( 
will set. In other words, EBOX SYNC is asserted one MBOX CLOCK prior to where EBOX CLOCK ' 
would have been asserted. 

With SYNC EN true when MBox response is received (Figure 3-22) EBOX CLOCK EN becomes true 
• allowing the marker to reset to 000, and SYNC EN is removed allowing EBOX SYNC to clear on the 

next MBOX CLOCK. At the same time, EBOX CLK EN becomes true and EBOX SOURCE EN is 
also true; thus, when EBOX SYNC is cleared, EBOX CLOCK sets (Figure 3-23). 

3.2.5 Error Detection 
Figure 3-24 illustrates the logic that stops all clocks in the event of any of the following: 

1. A DRAM parity error occurs. 
2. A CRAM parity error occurs. 
3. A fast memory parity error occurs. 

EBOX/3-22 



• 

2 BIT TIME FIELD 

~ I N CONTROL RAM 
REGISTER 

~- - +--r--i- , , , 

ClK CRM j .l-.,.......L-.,......J.. _ .... 

SYNC EN 

CLOCK 
PHASE 
SYNC 

~~2~ ClK EBOX SYNC 

ClK MBOX 
ClK 

NOTE 

EBOX ClK EN 

MBOX 
CLOCK 

COUNTER/ 
MARKER 

GENERATOR 

IMPLIES SYNC EN-O 

40 ns 

80ns 

120ns 

ClK GENERATOR 
MBOX ClK 

DETECTOR 
-EBOX ClK EN 

EBOX ClK EN 

ClK EBOX 
SOURCE EN 

ClK ODD 

EBOX 
CLOCK 

GENERATOR 

ClK EBOX 
CLOCK 

Figure 3-22 EBox Clock Control Block Diagram 

MBOX ClK 

r- EBOX .. ot·---- EBOX CYC lE ----1°1 I CYCLE 

r-1 r-r-- POST 
EBOX ClK..J L..J L ___ ~N!D _____ _ 

EBOX SYNC 

MBOX 
RESPONSE 

MBOX WAIT L 
10-1692 

Figure 3-23 Basic MBox Cycle Timing 

EBOX/3-23 

-MBOX WAIT 

___ ---'~--- C l K RES P M BOX 

10-1691 



• 

ClK ERROR ClK ERR STOP EN 

CLOCK 
CONTROL 

o 

ClK ODD 

EBOX ClK 

ClK CRM 

CRAM PAR 16 

C l K ERROR HOLD 

ClK ERROR 

ClK 

lOGIC 

ClK EBOX 
SOURCE EN 

ClK ODD 

CLOCK 
DIAG 

CONTROL 

MBOX CLOCKS 

ERROR HOLD t DRAM PARITY ERROR 
EBOX 

CLOCK 14------1 CRAM PARITY ERROR 
CONTROL 

ClK ODD 

II II 

II II 

II #/// 

~I _____ ...J 

FM PARITY ERROR 

_____ -'~ITS All CLOCKS" 

ClK ERROR STOP EN --iI-I ------~I\ 
10-1693 

Figure 3-24 Clock Error Stop 

, 
The timing shown is for a CRAM parity error. The CRAM register is clocked by CLK CRM; some­
time later, the parity network settles and asserts -CRAM PAR 16. This indicates thatthe CRAM word 
has dropped or picked up bits and is not correct. The signal-CRAM PAR 16, together with an enable 
previously set by a diagnostic cycle (CLK CRAM PAR CHECK), enables the generation of CLK 
ERROR HOLD. ' 

If it is desired to stop on parity errors, CLK ERROR STOP EN must have been set by the console. In 
this case, on the next occurrence of CLK EBOX SOURCE EN, the CLK ODD gate will be latched 
false, inhibiting all clocks and freezing the system. 

EBOX/3-24 



lA}~k!!i all'~d 
the IleCeli',sary ~o ammre that the pWpt~r timing rdaticJI1§hip exists ~'",.'·h,.''''''~'''' 

MBOX CLOCKS, CLOCKS, of thY.': CRAM time fiel(t hun~ 
ns consists of delays, gate and Th,e CH.ltput is CLOCK. ODD 

to dock a HH41 Shift \vhkh has a propagation of ~!2,65 ilii!L 

NOTE 
t'U'2! i!!!p[l!n:rxhllll!!lte dRlrlt~§ O~l~Y. 

cu:. , .. , rr'""~·~. ~~"-i 
otJlJ,.~ ~<C1/I~~2.65 ~ 

Figure 3<25 

The feeds various gates 
for lining up the oul:put§ of the gates, 

are actu.ally paths near the on the 'board and once the 
connection is at ,... ... ,,,,"',,,'" poinL Figure 3~26 the 

the MBoxdock 

a been insl;:rted in 
Connected in this path i13 DLY Y, 

the EBOX 



• 

A 

Xo 

...---....,.---C.LK CRM 00 

CLK CRM 04 
L-_1--_ CLK CRA 

..----_....r-- C LK CRM 08 

CLK CRM 12 

....... .--''--- CLK CRM 16 

..----_....r-- CLK EDP 30 

CLK EDP 24 
L-__ '--_ CLK EDP 18 

....-_,,--- CLK EDP 12 

CLK EDP 06 

CLK EDP 00 

CLK APR 

CLK CON 

CLK VMA 

CLK MCL 

CLK IR 

CLK SCD 

10 -1695 

Figure 3-26 EBox Clock Fanout 

.--_.....--- CLK MB 06 

CLK MB 12 

CLK CCW 

..----_....,------ CLK CCL 

CLK CRC 

CLK CH 

..----_....,------ CLK MBC 

CLK MBX 

CLK MBZ 

CLK MBOX -J.I-~B~-{=~Y~I~)------t 

C 

....-_,.--- CLK MBOX 13 

CLK MBOX 14 

CLK MB 00 

CLK MTR 

CLK CLK OUT 

CLK PI 

....... -.....--- C L K PMA 

CLK CHX 

CLK CSH 

to - 1696 

Figure 3-27 MBox Clock Fanout 

EBOX/3-26 

( 



1ir!dM'(ldul['tr'~m 
facmty .81nd contains Iogk k'elaidng to t11.;: fol1C1'lVling hardvifa.ne 

Proce~ssor IdeJl1iifi·eaHon. 
Fat;;ility 

F~legister 
lvi''';"Inory Addressing 

K.L iZlstmctioml as t~Clllows: 

DA APP. -, Sets facility. 

COi\JO .APR ~ Sets selected 
on APR priority 

APRID - Reads foHowing information frorn 

options 
Microcode version 
Hardware: 
Processor 

RDEHA ~ Reads ERA 

enablf.'Js 

EBox: 

the 
monitor by a UIH;:r (e,g., 

that is being debugged: 

i:8 associated .BREAK CmIlml-md, 

Vlin l1bt [)DT 

2. Destroys DDT Il"hen DDT is l.oaded 

3. Df;stroys the contents of a m!ernory 
execution. 

.tt is p"Dssible to 
possible to l::m::ak 

tlH;; spe,eined is 
refeorence§ to items in 

Figure the address break 

011 InBtnlction FETCH 
DATA, 
I)ATAI';VRITE 

A 

d.1ebugging This is l~f!eful 

at an point during program 

into, andl or n"·~·'-'VM 
addr,ess E\J')ace~ 

It is 



ClK 2'" RATE SELECTED H 

ClK GO l ________ _ 

-ClK SELECTED l 

ClK GATED 

DlY l14 INTERNAL 

DlY l14 INTERNAL 

DlY l14 INTERNAL 

ClK GATED 20ns DlYD 

E69-3 

lATCH E61-15 

ClK SBUS CLOCK ___ ...I 

ClK EBUS CLOCK -----r--, ....... _..:.... __ s-----,L..... ____ .J 

Dl Y L15 INTERNAL 50' C===:::J 1 ti =:5~02:=1~===:::J ~=~=]il~bE , ' , 
DlY l15 INTERNAL :1 50 :1 C===:::J II 50 1;-1--'5'"'0"---' , 

ClK ODD A,B,C __________ ~11 11 11 11 11 11 rl rl rl rl rl rl rl rl rl r-1 rl rl r-l 11 rl 11 r-l 11 r-l r-
l:~~:,~---------------: :---' ,---

ClK MBOX A,B,C -----------__t' ' , , , 
I I : I 

ClK ClK " , ' 

:; 16 ~ r--1 r--1 ,......, ,.., ,......, ,......, ,.., ,.., ,......, ,......, ,.., ,.., ,.., r--1 ,......, 11 r-1 r-1 ro n ri,' r-1 ro r--ClK M BOX C lK A, B, C, D, E, F _________ ---':..;..::.:..--'--'!--1 L-..J L......J L..-I L......J '---' '---' '-- L....-I '---' L-....I L-....I L-....I '--I '---' '--I ~ ~ ~ ~ t--1 ~ H ........... 
ClK EBOX SOURCE .J-h ;---, Ii ,~h ' :: :: 

ClK EBOX SYNC pi-- P'-- r_ ---.J ~f----l : ;; :: 
ClK EBOX SOURCE EN _____________ ~r- r- r-- r---L-.J-- : :: :: 

I I I I I I I I 

: " ' I r---, I 
elK 31n5 --------------:,,---+--~:, L---~ : ---.J : ~ ~ :, !: : r 

ClK 62ns I , : : I I}----- I I I:: II 

ClK EBOXCl::3;~ ____________ ~~ SHIFT i SHIFT ~ SHIFT: SHIFT; SHIFT ~ SHIFT: SHIFT 1 SHIFT I SHIFT: SHIFT 6
1 

SHIFT i lOAD SHIFT i i : i l~AD!-: ------
EBOX ClK ! ~32: ~ : ! ~ i pm;i f77777;l ! : : ! : ! 
ClK CRM : ~ : r----. : : r--t : n-r----, : : : : : 

CRAM TOO : 0 : 0 I 1 I I 0 : 0 I 0 : : : : : 

CRAM T01 ; 0 : 1: 0 :: 0 : 0: 0 : : : : : 

ClK SYNC EN :: i : .r-i:L--1 i L-~-1 : ; i i : : 
Mel MBOX WAIT : I I L- I : : : : !-,------

ClK RESP MBOX :: I : " , 
, I 
I I 

: I I 

MBOX RESP IN --------------::---+----:--~:---+------------+-----------~ : ,i , 
PAGE FAil HOlD ____________________ J: __ -4 __ -1 ____ -l, ____ -4 ______________________ -f _____________________________ ~---------~-----------Jr----:, --~, -:::--t'~'--:'--

: I : I 1 I I I 

eLK PAGE FAIL EN ___________________ ~:----+-----1--~;-----+-------------------~------------------------------4---------4-----------------~_::--::--::--i:--~:--i:-----, 
ClK PAGE FAil --------------------r--4---~,----~:----~-----------------+------------------------------t--------t---------~------'/ ;-: __ ~:--~::~'---~~:-~:------

PF DlYD A -------------------------r--4----~----~:----~---------------------_+----------------------------t-----------t----------------------...I : :: : 
ClK PF DlYD B ----------------~--4_--~----~:-----4----------------+---------------------1~~--~--------~-----------------------~: ~r-_r:--:i~lL----

ClK FORCE 1777 ------------------------+----~----_:_----~'----~--------------------_f--------------------------------_t __________ ~--------------------------...IFORCE 1777~---------, 
ClK SBR CAll -------------------------+----~----_:_----~:----~---------------------f---------------------------------t __________ ~-----------------------------~ 

eLK 1777 EN I r-t-________ _ , 
I , 

ClK INSTR 1777 _____________ ~ _ _+--~--~'--+-----------r_---------------r_----~-------------------4 
EBOX CYCLES 

Figure 3-28 Clock Control, 

EBox Clock Control Timing 

EBOXj3-28 

~T'01Z --.... ---- T'lOz ----1 ... 1---- T'OOz,MEMORY CYClE-----.j-T'OOz --t~-- T'OOz,MEMORY CYClE,PAGE FAUlT------<*'1-1777 CYCLE-

10- 1702 

( 



tT1 
IXI 
o 
:>< 

........... 
w 
I 
tv 
'-0 

• 

lOADED VIA AD 
DURING DATAO PAG 

lOADED VIA 
E BUS 09-12 

DURING DATAO APR 
INSTRUCTION 

CON DATAO APR 

APR ClK 

ADDRESS 
BREAK 

CONTROL 
REGISTER 

FETCH 
COMP 

READ 
COMP 

WRITE 
COMP 

USER 
COMP 

MCl ___ . 

NOTES: 

I. Output compares if either of 
the following is true: 

(a) MCl USER II USER 
COMP 

(b) -MCl USER II -USER 
COMP . 

Thus (a) can be used in U1ler 
public or concealed mode and 
(b) can be used in supervisor 
or KERNEL MODE 

2, A public program has fetched 
an instruction from a non 

.-----L._..., 

EBOX 
MEMORY 

CYCLE 
CONTROL 

lOGIC 

public oddress 9 
MCl 

-:? 

lOADED AS 
APPROPRIATE 

TABLE A 

CON INSTR I SCD PI e. ICTL DISP/ISCD LOAD 
ABORT SAVE FLAGS N ICOND FLAGS FUNCTION 

YES NO NO NO 2nd PART OF ENTRY TO STANDARD 
INTERRUPT 

YES NO NO NO PAGE FAULT ENTRY 

VMA ClK NO YES NO NO 40+2N OR 41+2N INSTR IS ONE 0 
THESE: JSR, JSP, PUSH J, MUUO 

NO NO YES NO 
NICONO PRIORITIES,INSTRUCTION 
CYCLE POINTS 
ONE OF THE FOLLOWING CONSOLE 

NO I NO NO YES START, JRST F, JRST 10, JEN, MUUO 
JFCL 

o SEE PAGE FAil DESCRIPTION IN SECTION 2 

Mel 
VMA 
READ 

~ 

-:? 
MCl ClK 

o 
SCD ADR BREAK PREVENT 

SCAD ClK 

MCl 
REQ 
EN 

9 
MCl ClK 

-:? 

CONTROL 
#1 

BOARD 

CON COND INSTR ABORT 
SCD PI a SAVE FLAGS 

CTl DISP/MCOND 

CTl 
P 

SCD lOAD F:::: 1 I I 
CON IRSTR ABORT -----'-----j---[ 

"VARIOUS REQUEST QUALIFIERS" INCLUDING EBOX REQUEST 

Figure 3-29 Address Break Facility 

SCD 
ADR 
BRK 
CYC~ 

1 

SCD 
ADR 
BRK 
INH 

1 

E 
I 
M 

I 
N 
T 
E 
R 
F 
A 
C 
E 

MBOX 

10-1721 

~ ! 



In addition, the reference may be further qualified to a user or executive reference. The address break 
conditions are loaded into the EBox hardware by performing a DATAO APR instruction. The left half 
of (E) specifies the following: 

Bit 09: Address Break on FETCH 
Bit 10: Address Break on DATA READ 
Bit 11: Address Break on DATA WRITE 
Bit 12: Address Break on USER REF 

The right half of (E) specifies the break address in bits 13-35, where 13-17 represents the virtual 
section number and 18-35 the virtual page number, line number. 

The Address Break Inhibit logic, illustrated in Figure 3-29, may be set up to inhibit an address break 
by performing any of the following instructions: 

JRSTF - JRST2 
JEN - JRST 12 
JRST 10 
MUUO 

The PC word provided by these instructions must have bit 8 = 1 to set SCD ADR BRK INH. If a 
JRSTF is given setting SCD ADR BRK INH, the NICOND Dispatch occurring during the JRSTF 
transfers the set state of SCD ADR BRK INH into SCD ADR BRK CYC, while clearing ACD ADR 
BRK INH. Therefore, for the duration of the next instruction, address breaks cannot occur. This is 
useful, for example, when continuing from an address which subsequently caused an address break. 
Consider the following example: 

677/ 
700/ 
701/ 
702/ 
703/ 
704/ 

SET03, 
ADDM3,3oo 
AOS700 
HRRZ4,7oo 
CAIE4,lOoo 
JRST700 

;PUT -1 IN AC3 
;ADD TO TABLE 
;ADD 1 TO TABLE ADR 
;PUT CURRENT TABLE 
;ADRIN AC4 
;WHEN IT IS 1000 ALL DONE 

NOTE 
This sample program illustrates the use of ADR 
BRK INH and is not meant to be a well-structured 
program. 

The sample program adds -1 to a table beginning at location 3008 and ending at location 1000s. A bug 
exists, however, in this program. Note that the AOS instruction in location 701 is incrementing the 
table address in the right half of location 700. The problem occurs when the right half of the instruc­
tion in 700 becomes 700. At'this time, the instruction becomes ADDM 3,700 and this wipes out the 
instruction in location 700. Several references to location 700 are in the program. First the monitor is 
requested from a terminal to set ADR break on data write for address 700 to assure that the AOS 
instruction is working correctly, i.e., attempting a write into 700. The monitor performs a DATAO 
APR, which sets USER COMP, WRITE COMP, and loads the address break register with 700. At this 
time, ADR BRK INH is clear and when the EBox performs the write request, the comparator will 
satisfy the OR gate labeled CD because the following conditions are true: 

1. VMA 13-35 = ADR BRK register 13-35 
2. MCL VMA WRITE = WRITE COMP 
3. MCL VMA USER = USER COMP 

EBOX/3-30 

( 

( 



• 

At this time, both SCD ADR BRK INH and SCD ADR BRK CYC are clear; therefore, the signals 
MCL PAGE ADR COND and MCL PAGE ILL ENTRY are asserted together with all other neces­
sary request qualifiers. The MBox detects this condition and places a page fail word in its EBus register 
(indicating an address break page failure) and asserts PF HOLD to the EBox. The EBox senses this, 
and enters the microcode page fault handler. Now the EBox flags must be gathered for storage in user 
process table location 501. Because SCD ADR BRK INH is one of the processor flags, it must be 
made available; however, at this time it is clear. Regardless of this, the process of obtaining this flag 
will be discussed. Upon entry to the microcode, CON INSTR ABORT is generated to cause proper 
termination of the faulting instruction. Referring to Figure 3-29, CON INSTR ABORT enables SCD 
TRAP CIR, which breaks the recirculation paths for both SCD ADR BRK INH and SCD ADR BRK 
CYCLE; it also transfers the state of SCD ADR BRK CYC into SCD ADR BRK INH. This makes 
the flag available for storage in 501. The page fault handler reads the MBox EBus register and stores a 
page fail word in user process table location 500, stores the flags PC word (PC is now 701) in 501 and 
then fetches a new PC word from user process table location 502. The processor now enters Execute 
mode and handles the page failure appropriately. 

Eventually, after evaluating the page fault word in 500 and other data, the monitor informs the user at 
his terminal that a write was attempted to location 700. If after giving the problem some thought, the 
user requests a break on the same address for write but now suspects that somehow the instruction in 
700 is being overwritten by itself, the break can be inhibited. Now the monitor wishes to continue the 
program by performing the entire AOS instruction to ascertain that it works but also must avoid 
thewrite page fault associated with this instruction. 

The monitor can perform a JRSTF instruction that sets ADR BRK INH and restores the old PC of 
701 for the AOS instruction via user process table location 501. Referring to Figure 3-29, during the 
execution portion of JRSTF, SCD LOAD flag sets SCD ADR BRK INH. During the JRSTF instruc­
tion NICOND Dispatch occurs and transfers the set state of SCD ADR BRK INH into the BRK 
CYCLE flip-flop while clearing SCD ADR BRK INH. The AOS instruction is successfully fetched 
from 701 and the "AOS write reference" to 700 is prevented from causing MCL PAGE ADR COND 
because this is blocked by SCD ADR BREAK COND (L). The next NICOND Dispatch clears SCD 
ADR BRK CYCLE, enabling the ADR BREAK to occur if a write is performed to 700. Eventually, 
through many tries, the overwrite of the instruction in 700 will be detected by this method. Note this is 
only a simple example and is not necessarily a practical one. 

3.3.2.1 Address Break INH and Saving Flags - The signal CON COND INSTR ABORT is generated 
by the microcode whenever external conditions require the microcode to abort a partially completed 
instruction. If this occurs during an address break cycle, this signal copies the state of SCD ADR BRK 
CYC back into SCD ADR BRK INH, thus making it available to save as a bit in the flag's PC word. 

3.3.2.2 Address Break INH and Loading Flags - SCD LOAD FLAGS can be generated in a number 
of ways: JRSTF, JRSTIO, JEN, JRST, and MUUO can set SCD ADR BRK INH. The 10-11 interface 
can place the flags PC word in AR and perform a console start. This causes the microcode to generate 
SCD LOAD FLAGS. During a JFCL instruction, the flags are read and the specified flags cleared. 
Then the microcode reloads'the flags using the signal SCD LOAD FLAGS. 

3.3.3 Arithmetic Processor Status Register 
This facility enables special internal conditions to signal the monitor on a priority interrupt channel 
assigned to the processor. Condition I/O instructions are used to control the appropriate flags and to 
inspect the conditions of interest. 

The arithmetic processor status register consists of two 8-bit registers and associated control logic. One 
register receives the error or status signals and the other register enables or inhibits the generation of 
an interrupt when one or more of these error or status flags sets. 

EBOX/3-31 



• 

Figure 3-30 provides the basic format for the CONO APR word, the basic organization of the error or l 
status flag and the interrupt enable or inhibit for the two registers. In addition, the bit assignments are 
provided in two tables, as well as the source of the error or status signals available to set the appropri-
ate flags in the APR register. 

APR APR INT 

-APR RESET------, 

CON SEL DIS 

APR EBUS WW 

CON SEL EN ____ ---I 

APR EBUS XX-----~ 

APR CLK 

BASIC CONFIGURATION 
8 FLIP FLOPS. 
FOR LOADING INFORMATION 
SEE TABLE A 

-CON SEL SET------, 

E 

APR E BUS YY --~--, 

-CON SGL CLR 

-APR RESET ---'===j::;;::gE:!9'i 

-APR E BUS ZZ -------rlC'::J 

ERROR SIGNAL ------~ 

TABLE A 

E BUS CON CON E BUS INTERRUPT 
BIT WW SEL Di'S SEL EN BIT XX EN SETS 

02 
0.. """" " 

YES 06 S BUS ERR 
03 YES L" "-.. "-.." 06 ,"'-"'-"'-"'-"'-'<" 
02 ['\,"'-"'-"'-" YES 07 NXM ERR 
03 YES ,,,,-"'-" 07 ,,,,-"'-"'-"'-"'-"'-'< 
02 ['\,"'-"'-" YES 08 I/O PF ERR 
03 YES 

t'-.."''''''' 
08 l"'-"'-"'-"'-'" "'-" 02 "",- YES 09 MB PAR ERR 

03 YES ~"'" 09 ~"''''''''''''' 02 
t'-.."" "" '" 

YES 10 C DIR P ERR 
03 YES ~"'''..:. 10 ~"''''''''''''''' 02 l"-.. "-.. "-.." YES 11 S ADR P ERR 
03 YES 0..""'" 11 

0.. "" "" "" "" '" 02 ~"''''" YES 12 PWR FAIL 
03 YES 

~"""" 
12 

t'-.."'''''''''''''''' 02 ~ '" '" "-.. YES 13 SWEEP DONE 
03 YES 

~ "'" 13 
~"'''''''''''''''' 

APR CLK 

FOR SPECIFIC SIGNALS 
SEE TABLE C 

INTERRUPT 
EN SETS 

10.."""""""""""" S BUS ERR 

~"'''''''''''''''' NXM ERR 

~"''''''''''" I/O PF ERR 

,'" '" '" '" '" " MB PAR ERR 

~ "" "" "" "" "" '" C DIR P ERR 

t'-.."'''''''''''''''' S ADR P ERR 

~ '" '" '" '" '" '-PWR FAIL 

~"''''''''''''..:. SWEEP DONE 

TABLE C 

ERROR FLAG ERROR SIGNAL 
S BUS ERR MBOX S BUS ERR 
NXM ERR MBOX NXM ERR 

E BUS 
BIT YY 

04 
05 
04 
05 
04 
05 
04 
05 
04 
05 
04 
05 
04 
Oe, 
04 
05 

I/O PF ERR APR SET I/O PF ERR 
MB PAR ERR MBOX MB PAR ERR 
C DIR P ERR CSH ADR PAR ERR 
$> BUS ADR P ERR MBOX ADR PAR ERR 
PWR FAIL PWR WARN 

" BASIC CONFIGURATION 
"--- 8 FLI P FLOPS. 

FOR LOADING INFORMATION 
SEE TABLE B 

TABLE B 

CON CON E BUS ERROR 
SEL SET SEL CLR BIT ZZ FLAG CLRS 

~""""'" 
YES 06 S BUS ERR 

YES 

0.. "" "" '" 
06 

t'-.. "" "" "" "" "" " ~ '" '" '" YES 07 NXM ERR 
YES ~ '" '" '- 07 

~ '" '" '" '" '" " ~"''''" YES 08 I/O PF ERR 
YES ~"''''" 08 

t'-.."''''''''''''''' 

~'" "''' YES 09 MB PAR ERR 
YES ~"'''''< 09 ,,,,-,,,-,,,,,,-,,,-,, 

0.. "" "" '" 
YES 10 C DIR P ERR 

YES ~"''''''' 10 

~ '" '" '" '" " ,"-.. "-.. "-.." YES 11 S ADR P ERR 
YES ~ "" "" '" 11 

~ '" '" "" "" "" '" ~,," YES 12 PWR FAIL 
YES ."-.. "-.. "-.." 12 

,"-.. "-.. "-.. "''''''' 0-.,,'- YES 13 SWEEP DONE 
YES 

t'-.."'''''' 
13 

1:'-..."'''''''''''''''' 

SWEEP DONE APR SWEEP BUSY II -APR SWEEP BUSY EN 

27 2B 29 30 31 32 33 

ERROR 
FLAG SETS 

~"'''''''''''' S BUS ERR 

~"''''''''''" NXM ERR 

~ '" '" '" '" "'-" I/O PF ERR 

1:'-...""",, 
MB PAR ERR 

0.. "" "" "" "" '" " C DIR P ERR 
1'-.."-.."-.."-.."-.."-.."-.. 
S ADR P ERR 

t'-.. , , '" """" "-.. PWR FAIL 

~"''''''''''" SWEEP DONE 

34 35 

~I.-----------------CONO APR WORD FORMAT---------------~.I 

10-1722 

Figure 3-30 APR Register and Interrupt Enables 

EBOXj3-32 

( 



The basic organization of the APR is illustrated in Figure 3-31. The register is broken down into four 
sections based on the origin of the error. Jhe first five flags set as a result of an error condition 
involving some memory activity. Three·oftlie flags: [SBus Error, Nonexistent Memory (NXM) Error, 
and S ADR Parity Error] originate in the memory adapter (DMA). The remaining two originate in the 
MBox. The flag IN-OUT PAGE FAIL (lOPF) sets because of an external stimulus, but the actual 
setting takes place by the microprogram, in response to a page failure that occurred during a priority 
interrupt. The power failure flag sets when the power controller detects a low voltage condition. The 
sweep done flag signals the completion of a cache sweep operation. This operation is the result of 
performing a sweep instruction. 

* * MB C DIR 
S BUS NXM PAR PARITY 
ERROR ERROR ERROR ERROR 

EXTERNAL TO EBOX 
ERROR CONDITIONS 

* These errors originate 
inthe DMAand are 
passed to the M BO X 
which then passes 
them to the EBOX. 

B * S ADR 
PARITY 
ERROR 

~ 

SET INTERNALLY 
BUT DUE TO AN 
EXTERNAL 
CONDITION -

Figure 3-31 APR Register Breakdown 

POWER SWEEP 
FAIL DONE 

~ ~ 

FROM EXTERNAL 
POWER CONDITION 

CONTROLLER' NON ERROR 

--.... -
10-17?3 

Once again referring to Figure 3-30, to enable interrupts for any or all of the eight conditions, a CONO 
APR is performed with bit 20 equal to 1 and ones in bits 24 through 31 for the desired flags. Similarly, 
to disable interrupts for any of the eight flags, which have previously been enabled, place bit 21 equal 
to 1 and ones in bits 24 through 31 for the flags to be disabled. This means that once the processor has 
been powered up, and providing a power failure condition has not occurred, that once an interrupt 
enable has been set, it must be specifically cleared as indicated above. 

Any of the eight flags can be selectively set or cleared by placing bit 23 or 22 on, respectively, together 
with those bits in 24-31 to be changed. 

3.3.3.1 SBus Errors - Two error lines are available frpm the DMA to the MBox. These are SBUS 
AD R PAR ERR and SBUS ERR. If the DMA starts a memory cycle and also detects bad address 
parity, it sends SBus Acknowledge (SBUS ACKN) to the MBox, acknowledging receipt of the address 
and within 125 ns transmits SBUS ADDRESS PAR ERR. The MBox now latches the error address 

• register (ERA), which contains the address in question and additional bits which specify information 
associated with "data parity error conditions." These two bits specify which of the four memory 
buffers (MBs) the parity errQr is associated with. The address used to address memory specifies which 
word is to be transmitted (for a write) or received (for a read) first. This information is contained in 
bits 34 and 35 of the address. If, for example, the address in the ERA is 101 [bit 34(0) and bit 35(1)] and 
the address in the PMA used to address memory is 100, the indication is that the word requested by the 
EBox, for example, was not the word actually causing the data parity error. Thus, in this example, the 
EBox requested the contents oflocation 100, received it, and how, while fetching a word from 101 (of a 
quad word group), an error occurred associated with that word. 

EBOXj3-33 



• 

In addition, a 3-bit code identifies the origin ofthe data in the memory buffer register and indicates the 
type of reference, i.e., read, write, etc. As the MBox latches the ERA, it transmits MBOX RESPONSE 
IN and MBOX S ADR PARITY ERROR to the EBox. MBOX S ADR PARITY ERROR occurs 
concurrently, with an MBox clock and, therefore, on the next MBox clock (that will be also an EBox 
clock) APR S ADR PARITY ERROR sets. Providing the SBUS ADR PARITY ERROR INTER­
RUPT enable is set, an interrupt will be requested on the APR channel. In addition, to prevent the 
MBox error condition from being changed, the APR error flag which sets is sent over the E/M inter­
face to recirculate the MBOX SBUS ADR PARITY ERR COND; also, APR ANY EBOXERR sets 
and is passed to the MBox to hold the ERA. As a result of the interrupt, the monitor determines that 
the APR was the source of the interrupt via a condition I/O instruction (CONSO, CONSZ, CONI, 
APR), make a determination, and finally clear the error flag, releasing the MBox ERA and associated 
error logic. 

3.3.3.2 Nonexistent Memory - Each time the EBox makes a memory reference, the MBox interprets 
the request qualifiers and performs all the steps necessary to satisfy the request. A core memory 
reference must be issued by the MBox in order for NXM to occur. When the MBox issues a memory 
request to read or write a word to core memory via the memory adapter (DMA), it starts a timeout (32 
Jls) and waits for SBUS ACKN from the DMA indicating acceptance of the request and address. If 32 
JlS elapse and SBUS ACKN is not forthcoming, the MBox sets MEM ERR (Figure 3-32) .. An addition-rt al 32 JlS elapses and if SBUS ACKN has not been received by the MBox, MBox NXM error is asserted 

~tOgether with MBOX RESP IN. 

Referring to Figure 3-33, MBOX NXM ERROR is loaded into the APR register with APR CLK. If 
the NXM ERR interrupt enable is set, APR INTERRUPT is asserted to the PI Board. To preserve the 
ERA and NXM ERROR in the MBox, the APR NXM flag is recirculated back to the MBox. In 
addition, PAR ANY EBOX ERR sets, holding the ERA information in the ERA register. 

3.3.3.3 Other External Errors - Referring to Figure 3-34, all five external error conditions set the 
appropriate APR ERROR flag and request interrupts (if enabled) on the error channel assigned. Also, 
all the indicated error flags recirculate to the MBox and all cause APR ANY EBOX ERROR to set, 
preserving the contents of ERA. Of the five errors, one, MB PAR ERROR, is handled as if it were a 
page fault. That is, it causes control to be passed to the microcode page fault handler, where it is 
evaluated. The status word is obtained from the ERA in the MBox. The format for this word is 
initially as indicated in Figure 3-35. 

The page fault microcode places a code in bits 0-5 of 268 and places the virtual address for the refer­
ence in bits 13-35 where bits 13-17 are 0 for KI paging mode; this word is stored in user process table 
location 500. The remainder of the operation is identical with that for a page failure and is covered in 
Section 2. 

3.3.3.4 Input/Output Page Failure Error - During a priority interrupt [PI CYCLE (1)], page failures 
are not expected to occur for interrupt instruction fetches or PI dispatches. This is regarded as a fatal 
error, and it causes an interrupt on the assigned APR error channel. The page fault handler sets 10PF 
in the APR register and then dismisses the interrupt. The PC is placed in VMA and an instruction fetch 
begins while waiting for the PI system to honor the interrupt for the APR. 

3.3.3.5 Power Fail - The power controller asserts the signal POWER WARN whenever the power 
supplies reach a marginal value. This results in the setting of the APR POWER FAIL flag and requests 
an interrupt on the APR error channel. 

EBOX/3-34 

( 

( 

( 



• 

MBOX CLK 

EBOX SYNC ~ 
n 

EBOX CLK 
------' 

EBOX REQ ____ ---1 

CSHEBOXTO ~L-----------nll---------------_______ ----1 MBOX GENERATES 

:: 
'---- ITS OWN DATA VAll 0 

MBOX TI ME __________ LI T:...:1~1 T.:,:2::...1..I.:...T3:....1..1 T.:...4-l.1_...:E:.....:..CO.:..R...:E:.....:..R..::..Dl~ __ RQ-=--------'!- SEQ CLEARING 0 UT 
STATES MBOX REQ LOGIC 

MEMSTART ________________ ~ 

NXMTIMEOUT ________________ -L ______ t:~:-6-4~~-S-----~ 

MEMERR _______________________ ~!~ 

TIMEOUT ________________ ~_32~~_S __ ~:~ 
INDMA .~ 

MBOX NXMERR _______________________ II~I---~---__ 

MBOX RESPIN _____________________ II~I--__ ---__ ---' 

EBOX DETECTS AND 
SETS APR NXM ERR r REQUESTING AN 
INTERRUPT 

~ 

CLKRESPMBOX _______________________ lll~--------------'r----

APR NXM ___________________ -_-I!I~----------~r----
10-1724 

Figure 3-32 NXM Timing Overview 

EBOXj3-35 



10-\713 

Error 



"TO MBOX' '-1 
"FROM 1 MBOX" 

MBOX S BUS ERR 
MBOX NXM ERR 

MBOX M B PAR ERR 
CSH ADR PAR ERR 

MBOX ADR PAR ERR 

"TO MBOX" 
APR ANY EBOX ERR 

THESE FLAGS CAN BE 
SET OR CLEARED 

~. 

I I 
i,BY CONO APR 

AND READ BY 
CONI APR 

If_ENABLE SET= E BUS 04 Is BUS' NXM' MB ,CDIR, SADR , 
I ERR ERR ~~~ f~~ ~~~ 

APR CLK --.J 

~r-< 
I I 

'---
r- APR CLK 

S BUS ERR 
ERR INT EN 

NXM ERR 

NXM ERR INT EN 

MB PAR ERR 

MB PAR ERR INT EN 
S ADR PAR ERR 

S ADR PAR ERR INT EN 

-E BUS BITS 06,07, 09,10, 11 
If-ENABLE CLR= E BUS 05 

/, 

APR APR INTERRUPT 

10-1714 

Figure 3-34 External Error Conditions (MBox, SBus) 

o 2 3 4 

DATA SOURCE CODE WRITE REF 

~ EBOX RELATED EVENT 

5 6 7 

DATA SOURCE 

MEMORY (READ, RPW ) 

CHANNEL STORE STATUS (WRITE) 
CHANNEL DATA (WRITE) 

AR (EBOX WRITE) 
CACHE (PAGE REFILL, CHANNEL READ) 
CACHE WRITE 

Figure 3-35 ERA Word 

EBOXj3-37 

EBOX VIRTUAL ADDRESS 
WILL REPLACE THIS 

35 

10-1715 



3.3.3.6 SWEEP and SWEEP DONE - The MBox contains a section oflogic called the Cache Clearer 
(CCA). This is addressed as if it were a device (014), using I/O instructions. Six operations may be 
initiated. These are listed in Table 3.7. . 

Table 3-7 CCA Summary 

New Mnemonic 

SWPIA 
SWPVA 
SWPUA 
SWPIO 
SWPVO 
SWPUO 

Old Mnemonic 

DATAICCA 
BLKOCCA 
DATAOCCA 
CONICCA 
CONSZCCA 
CONSOCCA 

Function 

Invalidate all cache data; do not update core. 
Sweep cache, validate core, leave cache valid. 
Unload all pages updating core; validate the cache. 
Invalidate one page of the cache; do not validate core. 
Sweep cache, validate one page of core, leave cache valid. 
Unload one page, update core, invalidate the cache. 

To request CCA cycles from the MBox as a function of one of the six instructions in Table 3·7, the 
EBox places the virtual page number into VMA 27-35, verifies that the performance of the Sweep 
instruction (which is privileged) is legal in the current mode of the processor and then either begins the 
operation or, if illegal, performs an MUUO. 

Figure 3·36 illustrates the various logic associated with the sweep operation. Three basic operations 
can be specified in various combinations by the six types of Sweep instructions. These are illustrated in 
Figure 3-36 in the table at the upper left. 

In the cache, associated with each word of a four word block (quadword), are two bits labeled valid (~. 
and written. If the valid bit is off for any of the four words, these words are considered to contain . 
incorrect data and, if referenced (for example by the EBox), the words must be fetched from main 
memory. Similarly, if the written bit is on for any of the valid words, these words contain different data 
than the copy in main memory and the cache copy is correct. At some point, the written words must be 
flushed from the cache into core memory. On power up, the cache must be invalidated, clearing all the 
entries. For this case, the DATAl instruction is performed to device CCA. Because AC bit 10 is 0, the 
MBox, upon receiving the EBox request and appropriate qualifiers (APR EBOX CCA and APR 
EBOX LOAD register), will invalidate the entire cache. Similarly, because AC bit 11 is 0, the MBox 
disregards the written words and no writebacks are performed to core memory. Finally, AC bit 12 is 1, 
which specifies invalidation. ( 

Referring to Figure 3-36, IRAC contains the AC field 9-12 of the instruction. The microcode executor 
sets up the request utilizing the MEM field function MEM/REG FUNC together with the magic 
number field coded as LOAD CCA (60ls). To follow the memory request, it is best to refer to Figure 2-

• 98 which can be found in Subsection 2.7.2.5. Note that on Figure 3-36 MEM/REG FUNC (07) has bit 
01 equal to 1 and this generates MCL REQ EN. This signal is used to enable the various registers 
involved in the EBox request tQ load with the appropriate information prior to latching the VMA. The 
following conditions set up for the CCA request. 

Controlling Signal(s) 

MEM/REG FUNC 
MCL REQ EN/\ MEM/REG FUNC /\ CRAM#OO 
MCL REQ EN/\ MCL REG FUNC /\CRAM#<)I 

APR REG FUNC EN /\ CRAM#<)6-08 = 1 
MCL REG FUNC/\CLK EBOX SYNC 

EBOX/3-38 

Signal Generated 

MCLREQEN 
MCLREGFUNC 
APR EBOX LOAD 
REG 
APREBOXCCA 
MCL MBOX CYCLE 
REQ 



c 

BASIC 
CCA 

REOUEST 
TIMING 

NOTE: 

CLK MBOX CLK 

CLK EBOX SYNC 

CLK EBOX CLK 

CRAM REGISTER __ --J 

MEM REG FUNC --.l 

MCL REO EN ~ 

MCL MBOX CYCLE REO 

MCL REG FUNC 

APR REG FUNC EN _______ --JI! 

APR EBOX LOAD REG 

.,..---EBOX OR CHANNEL 
CAN STEAL A 

IDLE CACHE CYCLE HERE 

__ EBOX MAY EXECUTE 
MBOX READS AND 
WRITES WHILE THE 
CACHE CLEARER IS 
WORKING ON THE 
CURRENT CACHE 
SWEEP 

i~'-----
1 

-

----
MBOX 

-
----00 

-----
-
--

, .... -------, 1"'----------:-'""1 SELECTION FUN CTION IJR BOARD I I CLOCK BOARD i I 
I NSTR AC 10 AC \I AC 12 ONE W RITE INVALIDATE PAGE B ACK 

I I I I I 
ClK VMA OATA I 0 0 I NO NO YES 

I 
IRAC 

I I I ClK IR , 

TR ~LK i BlK 0 0 I 0 NO Y ES NO 

I I I ClK APR 
ClOCKi I '-------_..1 I ClK MCl CONTROL I 

DAtA 0 0 I I NO Y ES YES 

ClK PI 

I CON I I 0 I YES NO YES I 
ClK EBOX REO I CONS Z 1 I 0 YES Y ES NO 

I I 1":":'-----------1 I VMA CONS 0 , 1 I YES Y ES YES I BOARD t: 26 27 ::J I ClK EBOX I I ClK RESP I I VMA I PAGE #< I I REO EBOX I 
UMA I I MBOX ClK I 27- 35 I 

L ___________ J L ________ , 
I --.-.-

MBOX RESP IN 

CSH EBOX TO 

APR EBOX CCA 

APR EBOX lOAD REG 

MBOX CCA REO 

~~~D-------------, I'" I !Pi BOARD - -I "APR INTERRUPT I SWEEP 
ENABLE REGISTER" I PNOTNE~ I I

I APR CLK- I I
I L-"_A_P_R_R_E_G_IS_T_E_R_"_-,-I_~_~,...~_~P~ ~)-..,------+-+-----+--1' I

APR EBOX CeA _____ -JI!: :\\'--__ _
1 I

SWEEP TERMINATION

r--il
APR SWEEP BUSY ---.J

I - --- A I L ___ _

I :ECODER -+- U I rMC'L - r- r-. - - - - - - - - - - - - - -,
4- ~ REG _~RAM# I BOARD ~M~l~B~:O CLK EBOX REO

MCL MEM CYCLE

MCL MBOX WAIT

MBOX CCA REO

MBOX RESP IN

CLK RESP MBOX

APR SWEEP BUSY

----~~~I ~I---­
I
I

I

I I
___________ ~r-l~-----

I I

I I
________ ~r_l~ ______ _

______________ ~r_l~ ____ _

MBOX CCA REO -.J
_____ ~:~~O~~~H~p~~~F~~~R

II--"---, OPERATIONS
! • TERMINATES

CCA
OPERATIONS

MBOX ClK JUI.,~

APRClKLF~

APR SWEEP BUSY EN J/ ~'---
APR SWEEP DONE

r- INTERUPT
_ __________ --11- ~~O~6~~DTO

APR APR TNT ----------~~ .

I ': -L- 06-08 I
I 7 EN l -APR ClK I I
I --- MCl REG FUNC Ii j

I ----CRAM #0' Iii : I 1 ~~~ r--

I REG I: I '-----+-------l REG

II EN MCl REO EN I' I I ENt---

. ~~lK
-APR ClK 1

1 ---'
Ii I

I l SWEEP 'J I ' I I BUSY , I
J APR ClK--.J I, I
i I:

CRAM #00

MEM/REG FUNC

I\!EM 00

MEM 01

MAGIC'" for LOAD CCA· 601. L _________ ~ ______ ..Jl

Figure 3-36 Sweep Logic

EBOXj3-39

The basic timing for the CCA request as well as CCA termination is illustrated in Figure 3-36. The
VMA must contain the virtual page number in VMA 27-35 for CONI, CONSZ, or CaNSO CCA
operations. In the current example (DATAl CCA), the MBox cache clearer does not use this informa­
tion because the entire cache is to be invalidated. However, the cache clearer has an associated register
that is loaded by the MBox with VMA 27-35. IRAC bits 10-12 are similarly loaded into the MBox
control logic that directs the type of operation carried out. Each time a CCA cycle is completed in the
MBox, an idle period occurs where the channels or EBox can obtain an MBox cycle. The EBox can
continue to execute instructions but must guard against defeating the purpose of the Sweep operation,
i.e., write new data into already swept words in the cache. Summarizing, three of the six instructions
operate on one page of the cache (512 words). For these three instructions a different set of sweep
functions is available; these are: invalidate, writeback all written words in the specified page, or per­
form both. Similarly, three instructions operate on the entire cache (2048 10 words) but the operations
are the same as with the other three. In all cases, the EBox performs an EBox Request providing the
appropriate qualifiers and the VMA contains (in bits 27-35) the page number. The MBox loads its
CCA register and then asserts MBox CCA Request together with MBOX RESPONSE IN. Now the
EBox is free to perform operations while waiting for SWEEP DONE to generate an APR interrupt. If
a second sweep instruction is started by the EBox before the first is completed, the MBox begins the (
second sweep just as it would another instruction; however, it reloads the CCA register with the new .
information supplied by the second sweep instruction and does not complete the first.

3.3.4 Processor Identification
The processor identification consists of four parts:

Microcode options
Microcode version number
Hardware options
Processor serial number

This information is obtained by performing what was traditionally a BLKI APR, now called APRID.
The format is illustrated in Figure 3-37.

LEFT
HALF

o

18

8 9

MICRO CODE OPTIONS MICRO CODE VERSION NUMBER

23 24

HARDWARE OPTIONS PROCESSOR SER~L NUMBER

Figure 3-37 APRID Format

17

35

10-1717

This is not strictly a visible hardware function, but rather a combination of microcode and hardware.
The microcode for a given version is coded in such a fashion that the version number is obtained
utilizing the magic number field and the function AROO-O&'- number. The microcode obtains the
processor serial number that is hardwired to the 0 input of the ADXB mixer and places it in AR. Next,
the microcode version number is obtained and adjusted as follows. The serial number in AR is copied
to BR and the version number is loaded into AROO-08; next, the ARX. At this time the BR, AR, and
ARX are as indicated in Figure 3-38.

EBOXj3-40

(

o 8 9 35
r~~~~' ~-~~-"'---~-'~-~'~~'-'~'~I'~'~' --~-~~r--- ~'---i

,j .i'ie I SERf~~L +~(. J .~I~
!I I '
~--.. ~. ~~-~~. ~.-.. - ... ~-~~~.~-. ~"'~~~~'--'~~-~1l--"'-----""~""~~~

()

I'-'-~'-~--""'~'''''-~~'-

L~ __ ~~_._._ .. ~~.

8 9 35
~--~--"'~""~-'--"~-~'--~"'~--l f-"--"~~~-~~I

.L .. ~ .. _~ .. ~.=:'~~ ... _~,,_ .. _.~~!Iil,R:'
!O-H18

AHgnrriJ:mt Step 1

are

IlUruber hi pkal:>led
stored in location

AR 17, the and resulting

27 28 35
i;"7""~~'·~"?7""'-'~r'"'7"""""~.,-:Fr7-rr.",..r···~··-·~~n!iir-"·-·~-"·i--~~~· '~~~'~-'-~-'--~~~--'i

S· ... , I' L u. II VER "" J . R " Cj', H ~.,.,,:; ¥:. \ ,; i p~ .

!:..::..~~,-,,-t-{..~.~L""~~~-';''";,,(--'''''' __ ~.~~!~~_~ __ .~_~_~._~~_~~~.. (LOADED

C~dlle P.tefm
The cache ren11 RAlvll in
This RAM is:

for :new ones.
aJgorithm was
into cache.
the form.at

SH

Figure 3·39 AHgnment 2

0r-____________ ~

127

M130X
14--------1 ADDRESS

LOGIC
I+--------VMA 27-33

t======~==~~r-----~W~R~IT~E------1

VMA 18-20

o

OR D E R -----!--L-_---JI'----'-__ ---!
\--LRU--l

T2

REFILL RAM
WRITE

18 19 20 27 33 34 35

E I REFI~L RAM: DATA ADDRESS ~

~I.--------------------- BLKO APR WORD FORMAT ----------------------1-1

Figure 3-40 Refill RAM Overview

When the instruction. is legal, the microcode performs a MEMjREG FUNC with the magic number
field coded as WR REFILL RAM. The APR logic decodes the REG FUN during the EBox Request:

APR EBOX READ REG
APR EN REFILL RAM WR

The MBox writes the three high-order bits (18-20 of VMA) into the refill RAM at the location
addressed by bits 27-33 of VMA. Writing the entire algorithm requires a loop using the basic instruc­
tion BLKO APR as a focal point. The following is an example:

RAMI:
SETZBZ,AC

MOYE AC,TABLE(Z)
BLKO APR,O(AC)
CAIN Z,127
JSRDONE
AOSZ
JRSTRAMI
THE TABLE

;CLEAR REGISTERS

;PICK UP A WORD
; WRITE THE FILL RAM
;DONE ALL 12810 WORDS?
;YES'
;NO, UPDATEZFORNEXT
;PICK UP NEXT WORD FROM

In the sample program, table through table+ 127 contain the appropriate entries to be written into the
MBox Refill RAM. These words are in the format indicated on Figure 3-40. The refill algorithm may
be adjusted by changing the sequence of the bit patterns. By doing this, portions of the cache may be
bypassed as appropriate. Normally, all four cache quarters would be used equally. Table 3-8 is repro­
duced as extracted from the MBox theory section simply as an example.

EBOXj3-42

r~

•

Table 3-8 Sample Algorithm
'!'

Refill RAM Locations Refill RAM Contents

0-7 0 1 2 3 4 5 6 7
8-15 3 1 2 3 2 1 2 3
16-23 7 1 2 7 1 1 2 7
24-31 6 5 6 7 5 5 6 7
32-39 0 3 2 3 0 2 2 3
40-47 0 1 2 3 4 5 6 7
48-55 0 7 7 7 0 0 0 7
56-63 4 6 6 6 4 4 6 4
64-71 3 3 3 1 1 1 3
72-79 0 7 7 7 0 0 0 7
80-87 0 1 2 3 4 5 6 7
88-95 4 5 5 7 4 5 4 7
96-103 0 1 2 2 0 2 1
104-111 0 5 6 6 0 5 6 0
112-119 4 5 6 5 4 5 6 4
120-127 0 2 3 4 5 6 7

3.3.6 MBox Error Address Register
The MBox contains a number of registers that can be loaded and read by the EBox. These.registers are
address registers for storing the address in the event of an error and for modifying the physical memory
address in response to certain request qualifiers. The registers are:

a. User Base Register - UBR
b. Executive Base Register - EBR
c. Cache Clearer Address - CCA
d. Error Address - ERA

The ERA register can only be read by the EBox. In addition, the EBox can also read the contents of
the page table to transform (map) the virtual address to the physical address and load the cache refill
RAM with the cache refill algorithm.

A status word i~ formed and stored by the MBox in the event that an error is discovered. The error
address is basically a status word that is formed and stored by the MBox when an error is sensed. In
the case of a parity, time-out, or an NXM error, the corresponding error flags are set and the error
address and associated status bits are loaded into the ERA register. The format of this word was
shown in Figure 3-35. This register is read by the EBox when an RDERA (BLKI, PI) instruction is
executed.

EBOXj3-43

of

L

Cond fIelds ~i microinstruction

Mixers

3. Forcing a special CR address fault

output gates.

is on the
logic is described

3.41.1 P!lli§MO'WIl Stadt
The stacie, consists eleven docked shift registers

SPEC/CALL CTL DISP /RET,
a secp.H:;I}Ce two subroutine cans followed two sUbroutine return,§',

on fIgure is not a practical of and retiIrn:7"tmt an
stack behaves in respons i:;: to the and return controR In practice,

microinstructions. For conveni,ence, these additional instructions
the first asserts the

the CR address is "A", is the address
significant events occur.

The CR docked in.to current address (eRe

2, The second the CRAM

this micwinstnlctioDl begins and, stack to push
LOC on the next CLOCK.

c

MI XER f-------,

SKIP 40-47

CON COND ADR 10 7)-------l

r------,

: DRAM A 00-02 -7:
I I
I I
I I
I
I
I

I
DRAM J 00 - 10 -71

I
1 I R I l ______ J

MIXER

SKIP
50-57

A READ
lOGIC

JI-4,J7-1O

CRM DIA
FUNC 052

CRADR 10

A READ 1-4,7-10

J 1- 4,7- 10

04 05

EBUS

~
_ _ _ _ __ ~ MR RESET CLEARS

CRM ClK
'------:..:...:....-....,1

I- PORTION OF CRAM_I
REGISTER ON CRM~

CRM DIA
FUNC 051

MIXER

SBRET 0-10
.--.L.-----..L...,

OUT IN

+ •
PUSHDOWN

STACK 4 X II BITS
CRADR 8-10

0-10

DISP 30-378 CRA ClK
CRA lOC

eLK

~-----~3

~----~2

3

1--~--+--+---t2

MIXER CRADR
7-10

DISP 0-78

I------...... ---.l 0 CRA D R 0 - 6

MIXER DISPENO-3

DISP EN 0-7

CRA ClK

CRADR 0-10

CRADR 0-6

CRADR 7-10

CRADR 8-10

CRADR 10

FORCE 1777

MUl DONE

NOTE:
CRADR 0-10 is the logical "OR" of
JUMP 0-10 wilh all the indicated
signals _

CRA ClK
~ ___ ---..I..-___ .,_~MR RESET CLEARS

JUMP
(11) CRM ClK I

I...-PORTION OF CRAM---1
MR RESET C EARS 1- REGISTER ON CRM -I

0-7 , FORCE 1777

8-IO,FORCE 1777

SKIP 40-47,SKIP 50-57,
CON COND ADR 10

ASSERTED BY ClK BOARD
DURING PAGE FAilURE

USED DURING MULTIPLY INSTR

MAY BE MODIFIED

TO CONTROL RAM AND TO
- - _ .£9NTROl RAM ADDRESS RAM ---

CONTROL
RAM

DISPATCH
RAM

Ot-05
E
B
U
S

CRM DIA FUNC 054

10-1961

Figure 3-41 CR Addressing Overview

EBOXj3-45

CRI\ LOC
r--~-;~~-I-~~';;-~-~~~~-~'-I~-~8+1 1--~

L __ ~. ~_._._ ~.~~_~I _. _.~.,_~.. ___ ._~l _,,_~._!
SBRET(QO)

01 r-~
___ ~, ______ ~ _ __ _ .~~~--.c_'~'_~ " ___ ________ _

Q3

10-1957

Figur.e Example

r~.lOT:£

.e)\Uillmlin,2;~ A $md Ei an: IlB§tml1r:!:i ~fIi i'!VI,m

nmlf~bef:~,

,'L"..I"l".'ltj'YI!ll R{~g:i§te:r (CRP!
register 1 it ,docked. D-typl;;:

provide; the cwrrent addrei:l's
2. the current for diagnostic

The the
patch of 5 bits, is contained on.
board is used to address

duringJY1.!LRESJ;I,
the D.!agnostic: register
for loading or reading.

3.4.4 l\1Ustl:eHalrlIB,rms CR

tVi/O

Refer to 3-43. there are four sections

eft
CR
eft Address

This grouping correspDnds to the '.vay
The of course,) i'3'ees only an address o~

EBOXj3-47

:rnay

•. C~'}
ClK FORCE 1777

CRAM JOO
CRADR 00

CRAM J01
CRADR 01

CRAM J02
CRADR 02

CRAM
CRADR 03

I
CRAM ~04

I CRADR 04

CRA1
CRAM J05 (

CRADR 05
TO CRAM
INPUTS

CRAM J06
CRADR 06

CRA2 CRAM J07
CRADR 07

CRAM J08
CRADR 08

CRAM J09
CRADR 09

CRA2 CRA MUl DONE

CRAM JlO CRADR 10

CON COND ADR 10

CRA2

CRA2
10-1958

Figure 3-43 CRADR Gates

EBOXj3-48

•

The fact that the CR address gates are OR gates should be kept in mind when trying to determine an
CR output address from a particular input condition or set of conditions. To enable a particular CR
address line only requires one of its input lines to be true. For example, consider the example presented
in Figure 3-44, which shows the mixers' that are used to select conditions to modify CR address bits

_ 08-10. In the example, the dispatch function is effective address modification (EA MOD), which is
encoded in the dispatch field as 368• Note that in the example the J field (CRAM J 08-10) is 4 in bits
08-10. The four possible combinations of ARX 13 and SH indexed allow any of the following:

1. No modification to CR ADR 09 and 10
2. Modification to only CRADR 10
3. Modification to only CRADR 09
4. Modification to both CRADR 09 and 10.

Because CRAM J 08 is a 1, the respective output gate, CRADR 08, will be a 1 even though the open
pin on that mixer (input 6) is effectively a O.

o
CRAM J08

ARX 13
CRAM J09

SH INDEXED CRAM J10

DISP 02-04
-------~----~----~

01 SP EN 30-31 -----'-----'-----'

~ DISPATCH FUNCTION V- IS EA MOD (36 8)

CONTROL INPUTS OUTPUT

D~SPEN DISP ARX 13 SH INDEXED
CRAM J CRADR

30-31 02-04 08-10 08-10

YES 6 0 0 4 4

YES 6 0 1 4 5

YES 6 1 0 4 6

YES 6 , 1 1 4 1

Figure 3-44 Example CRADR 08-10

EBOX/3-49

CRADR 08

CRADR 09

CRADR 10

10-1959

•

3.4.5 Special CR Address Modification Considerations
Three special CR address modification comiderations are:

1. CLK FORCE 1777
2. CRA MUL DONE
3. CON COND ADR 10.

3.4.5.1 CLK FORCE 1777 - This signal originates on the clock board and is used to force the output
gates CR address 01-10 to the address 17778• This event occurs during a page fault. The page failure
microcode handler begins at CRAM location 1777. Thus, the EBox, as controlled by the clock, enters
a prearranged page fail sequence. Loading the first microinstruction from the page fault handler, CLK
FORCE 1777 forces the CRAM address lines, as indicated, and then issues a single CRM CLK, which
loads the microinstruction into the CRAM register. At this point, EBox's normal operation continues.
Note that CLK FORCE 1777 does not affect CR ADR 00, and thus may force the microcode to either
1777 or 3777. The first step of the page fault handler is duplicated in these two locations.

Note, also, that at the same time as the CLK board is forcing CLK FORCE 1777, the CTL board is
forcing CTL SPEC CALL in order to place the return ~ddress on the pushdown stack.

3.4.5.2 CON COND ADR 10 - This external signal is formed on the CON board and routed to CRA
2 as CON COND ADR 10. Refer to Figure 3-45, which shows the boards involved in decoding the
Cond and Dispatch fields. Note that each board contains tables indicating those functions that are
decoded on that board. The signal CON COND ADR 10 is formed when Skip 60-67 or Skip 70-77 are
decoded. The various hardware conditions involved are indicated on the tables.

3.4.5.3 MUL DONE - During the Dispatch function, MUL, the state of the sign of FE, as well as c--
MQ34 and MQ35, are used to modify the CRAM address in the multiply loop. When the sign of FE _
becomes false an exit is made from the multiply loop. This is done via CR ADR 08. Simultaneously,
MUL DONE (Figure 3-46) is generated to force address bits 09 and 10. This is done merely to save
microcode words. Without this logic, MUL DISP would be an 8-way branch; with this logic, it is a 5-
way branch.

3.4.6 AREAD Logic
Refer to Figure 3-47. The AREAD logic is shown on the lower right-hand side. It consists of a mixer
and various gating elements. Basically, this logic is controlled by bits of the DRAM A field. Specifical-
ly, when the DRAM A field bits 00 and 01 are Os; then the AREAD logic AREAD 01-04 and AREAD ("
~7-110 bhecomAeReEquAivDaloenl to(4bit fOdrob7it)10to DRAM 4JoOI-04Aandi? DRAh!'1 J07-11O· ~he4n2DhRAMhA4070.or 0h1 ,
IS a ,t en - an - generate 8 + ~ spatc mg to ocatIon t roug m t e
microcode.

The outputs of the AREAD logic (to be able to modify the CR address lines) must be selected in the
appropriate mixers. Once again referring to Figure 3-47, the mixers involved are those controlling
CRADR bits 00-06 and 07-10. These mixers will select the AREAD function when the dispatch field
is coded as "2." ,

EBOX/3-50

COND
I

NON SKIP SPECIAL FUNCTIONS I

LABEL OCTAL DECODED

NOP 0 t .. D1SP (CRA 7-10)

TO OTHER LD AR 1 DISPATCHES

BOARDS 0-8

LDAR 2 DECODED
LABEL OCTAL DECODED

9-17 ON DIAG 0 1 -
LD AR 3 CTL2 I • DRAMJ 1

'8-35 DRAM 2 DECODED

AR CLR 4 A AD ON

CRAl - CRADR 7-10
ARX CLR 5 RETURN I 3

SKIP (CON COND ADR 10) SI(IP (CON COND ADR 10) ARL IND 6 PG FAIL 4

MICRO PROGRAM SKIPS M ICRO PROGRAM SKIPS REG CTL 7 SA 5

LABEL OCTAL DECODED LABEL OCTAL DECODED
NICOND 6

FETCH 60 t t SH 0-3 7
70

KERNEL 61 71

USER 62 DECODED 72 DECODED I
PUBLI C 63 ON 73 ON -
APW 64

CON2
74

CON2 -

AEF

TO OTHER PI CYCLE 65 75

BOARDS - EBUS 66 76
r--

"'I GRANT

- EBUS 67 77 DISP (CRA 8-JO)
XFER

DISPATCHES ,
I

/ LABEL OCTAL DECODED

COND COND / CTL 2 t / CRA 1
MU l 30

NON SK IP SPECIAL FUNCTIONS NON SKIP SPECIAL FUNCTIONS / DIV 31
/

11 0 LABEL OCTAL DECODED LABEL OCTAL OECODED / SIGNS 32 DECODED

/ DRAM B 33 ON -
CRADR 0-6

FM 10 DIAG 20 / DISP 0-7 I
CRA2 -

WRITE FUNC / BYTE 34

PCF - =: 11 EBOX 21 (NORM 35
"- , CONDS FROM

STATE '- , OTHER BOARDS EAMOD 36

DECODED -
'-

FE SHRT 12 DECODED EBUS 22 '- , CRA 2 EATYPE 37
'- ,

ON - eTL ON '- ,
AD FLAGS 13 CONl MBOX CON' - '-

'-
, COND 0 - 7 I SK IP (CRA 10) SKIP (CRA '0)

eT l
'- , ,

, ,
~

MICRO PROGRAM SKIPS MICRO PROGRAM SKIPS

LOAD 14 SPARE 24
, ,

IA CON 2
, , CON COND ADR 10 LABE L OCTAL DECODED LABEL OCTAL DECODED

-V SPEC 15 SPARE 25 SPARE 40 t SC-LT -36 50 t
INSTR EVEN 41 SCADO 51

SA = 16 SPARE 2. PrAR

SEL VMA 17 SPARE 27 BAO 42 DECODED SCAD = 0 52 DE~O:ED _
TO OTHER ARXO 43 ON ADXO 53
BOARDS COND CRA2 CRA2 -

'J
AR18 44 AD CRY 0 54

NON SK IP SPECIAL FUNCTIONS AAO 45 ADO 55
SKI P

LABEL OCTAL DECODED 60 -67
SKI P
70-77 AC.:; 0 46 AD::: 0 56 .

t seo 47 SPARE 57
VMA = 30

VMA- = • 31 ft 11 TRAP DISP SKIP SKIP
VMA- =. 32 DECODED 30-37 40-47 50-57
MODE ON

VMA- '" + 33 CON' - CONDS FROM

AR 32-35
01 11 OTHER BOARDS

f--I --,
VMA- :::+ 3. I

PI·2 JUMP I
\

VMA DEC 35
__ J

'--

VMA INC 36

LDVMA 37

HELD CON 1
I ~.

COND COND COND I
10-17 20-27 30-37

I

60 1 65 66 67 71
,---------

I U 1
-----------,

I
OTHER FIELDS-': OTHER FI ELDS COND DISP

I \
L _________ _ _______ ___ J

~14o------------- CONTROL RAM REG I STE R ------------.!-I
10 - 1963

Figure 3-45 COND and Dispatch

Layout and Control

EBOX/3-51

FE WENT TO Of- FE SIGNp-
-CRA DISP 02 1\ MUL DONE
-CRA DISP 03

DISP FUNC 30=MUL(-CRA DISP 04

DISP EN 30-37

10-1960

Figure 3-46 MOL Done

3.4.7 eRA Dispatch Parity
Control RAM dispatch parity is computed using a 10160 parity circuit. This circuit (except during
periods when MR RESET is true) samples CRA DISP bits 00-04 and computes CRA DISP parity.
Normally the combined CRAM parity is odd, when correct. The clock board monitors the state of
CRAM parity, which includes the parity for the dispatch field. If the CLK CRAM PARITY CHECK
flag is set on the clock board (via diagnostic function 044), then any CRAM parity error stops all
clocks. This will occur on the EBox clock following the CRAM parity error.

During the power up sequence MR RESET sets and remains set. This generates the signal DISP
RESET PARITY, which forces the state of the dispatch parity network to indicate odd parity,
although the parity of the dispatch field (which now contains all zeros) is even. This, together with the
remainder of the control RAM register which is clear, yields odd parity. The effect is to make the
parity of the CRAM register appear to be odd following MR RESET. This logic assures that the
clocks have no chance of stopping in the event that CLK CRAM PAR check is true when a CONO
instruction is issued after the EBox has been powered up and this instruction causes MR RESET or
similarly if a diagnostic MR RESET is issued.

EBOXj3-52

c

(

c

(

SPARE-~
~ SH - SH AR PAR ODD 41 M034 -

BROO
BR00-r 31 42

ARXOO
43 BIT 10 32

I CRA2 ARI8
DRAM BOI- 33 44

EDP AROO
45 BRI2- 34

IR AC'O
IR NORM 09- 35 46

~ SC SIGN
47 ~CON SKIP FE SIGNt s= ARX 13- 36

'i'24 EN 40-47 31 MCL EA TYPE 09--V

IR NORM OS-10 AROO- 32

DRAM BOO- 33 BIT OS

Q SCD FPD-
CRA2

34

SC·GE·36
IR NORM OS- 35 50

SCAD SIGN 0- 36
51

0-- 37 ",,1EN

&EATYPE10

- SCAD'O
52

ADXOO ~2 4 53 BIT 10 ..r: " BIT 10
AD CRY- 02 CRA2

54
CON CON~~/ ~ ADO O

55 ADR 10 DIAG ADR 07-10
AD'O

CON I 56
DRAM J07-10 __ I

SPARE- 57 ,...-~ CON SKIP A READ 07-10 -- 2
,...- EN 50-57 SBRET 07-10 I 2 4 3 BITS 07-10

CLK CLK PF DISP 07 -10 CRA2
4

CON SR 00- 03
5

CON NICOND 07-09,
6

SCD N ICOND 10

7 "'~EN SH 00-03

l(24

07-10

DIAG ADR 0-6 1"'--,
0

0 4 5 10

DIAGNOSTI C DIAGNOSTIC
3
1

JO~,g4~~,~ -- 1 ADDRESS ADDRESS
CRA3 CRA3 BITS 00-06

CRAI
CRM DIA EBUS CRM DIA EBUS

O'tl~g5~g -- 2 FUNC 01-05 FUNC 00-05
051 051 .

SBRET 00- 06
3/

l(2 EN

c COND oo-~~~ 1 ~
~--

---'
I --- --J~I~;I~~s;I~ls;I~ls; 1~ls;I--J OTHER I COND I DISP EN 1 DISP EN 1 DISP EN

FIELDS 00 01 02 03 04 00-03 00-07 30 -37

------------ ---------
-OU

-00 00
- 01 - 01 01

0
-02

J DECODE

I DISP 00 - 02
(J) CRA3

'-- ::;)

m
w

-......

~
CRA5 ~ (~) CONTROL

(RAM J
) DISPATCH CONTROL RAM 1280 WORDS BY 75 BITS

RAM
) ON CRA }

(BOARDI280X5 I

I

BIT 09 r-

CRA CLK

CRM

M035-~ .'
ADCRY-02 - 31 "CURRENT

LOCATION"
ADOO - "32

iJ."STACK" DRAM B02 - 33 BIT 10
r----

SCAD SIGN - 34 10

IR NORM 10- 35 I
3

2 SH INDEXED - 36
CRA4

MCL EA TYPE 10 -

V

1

)

0 1 2

T CTL SPEC CAL
0 10

L
CTL CTL

SPEC o ISP
CALL RET

1 CRA LOC 31
CRA3 "CO," 'tj 1 1

CRA1CLK
'--

'---J

~>-
CLK FORCE 1777

MUL DONE CRAI
CRA2

---j

r

I
00 10 \-r -~UM; - -r"!

'- ____ ____ J

I
I

I

,

1 0
NEXT
ADDRESS" CTL

0 1

0 0

CR ADR 00-10

~ DRAM J07 - 0
3

0_1 AREAD 07

DRAM J08 _ 0
AREAD 08

DRAM AOO - I

DRAM J09 _ 0
AREAD 09

DRAM AOI - 1

DRAM JIO _ 0 ARE AD 10

SEL
DRAMA02_~

-DRAM AO~ V ARE

DRAM AOI

AD 05

DRAMA
00 01
0 0
0 1
1 0
1 1

DRAM

0
1
2
3
4
5
6
7

(SEE TABLE BELOW)

TABLE A
AREAD

01 02 03 04 05 06
JOI J02 J03 J04 0 0

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0

AS FUNCTION

IMM
IMM-PF
UNUSED
WR TST
READ
READ-PF
RD-WR
READ PSG WRITE

DRAM J02

DRAM J03

DRAM J04

07 08 09 10
J07 JOB J09 JIO

o 0 1 A02
o 0 A02
o A02

FUNC

NOT
USED

PUSH

POP

HOLD

AREAD 01

AREAD 02

AREAD 03

AREAD 04

10-1962

Figure 3-47 Control RAM Addressing

EBOXj3-53

(

APPENDIX A
UNDERSTANDING THE MICROCODE

The control portion of the EBox comprises the DRAM and the CRAM. The DRAM has storage for
512 decimal words, one for each KL instruction. During instruction execution, the DRAM word
provides information about the type of memory references by the executing instruction. It also provid­
es an index into the main control programs contained in the CRAM.

- The CRAM provides storage for 1280 microinstruction words that are structured into a complicated
control program called the "microcode." This section defines and explains the microcode. Although
many figures of sample listings from the microcode listing are used throughout the discussion, an
assumption is made that the reader has an up-to-date copy of the microcode listing (either hard copy
or microfiche). The examples shown here refer to specific sections of the listing; the reader may wish to
follow the examples through the actual listing while reading this section.

The discussion begins by introducing the microcode and describing field, value, label, and micro­
instruction definitions. This leads into defining macros, pseduo-operators, and location control. Then,
two instructions (MOVE and ADD) are illustrated, leading the reader through the microcode listing.
Figures A-17 through A-23 (located at the end of this appendix) complement the discussion and define
all the CRAM and DRAM fields. Refer to these figures whenever necessary.

The microcode is presented in groups, with each group (designated a through g) representing four octal
digits as they appear in the listing. Each group represents one or more fields. For example, the listing
for microcode address 0724 is shown in Figure A-l.

a b d 9 +- GROUP

U0724 0004, 3242, 4600, 0000, 0206, 1010, 0400

1 J

ADI~I~ AR-FM 10-BIT SH-MEM CaNOl #
LOGIC SPEC

+- FIELD

CRAM location into which this word is loaded

10-2621

Figure A-I Sample Microcode Listing

EBOXjA-I

•

Each of the group's coding is defined in the respective figures listed below:

Group Figure

a A-I7
b A-18
c A-19
d A-20
e A-21
f A-22
g A-23-25

The DRAM contains storage for each instruction. During instruction execution, the DRAM word
(Figure A-4) provides information about the type of memory references required by the executing
instruction and also provides an index into the main control program located in the CRAM.

Conditional Assembly Variable Definitions
The Conditional Assembly variables observed in the microcode listing are listed and defined below.
(The definitions are presented for the variable set to 1. The values shown are the normal settings.)

Variable

TRACKS = 0

OP.CNT = 0

OP.TIME = 0

FPLONG = I

MULTI = 0

KLPAGE = 0

MODEL.B = 0

XADDR = 0

IMULI.OPT = 0

*This feature is not supported.

Definition

Enables storing the PC after every instruction and creates
DATAI/O PI, to read/setup the PC Buffer address.*

Enables code to build a histogram in core to count the usage of
each op code in both USER and EXEC mode. *

Enables code to accumulate time spent by each op code. *

Enables KA style double precision floating-point instructions
(e.g., F ADL, FSBL). This feature is not supported in systems
running the TOPS-20 monitor.

If operating a multiprocessor system, this suppresses cache on
unpaged references; paged references are left up to EXEC. *

Enables the KL-Paging mode, for systems running the TOPS-20
monitor.

Indicates extended addressing hardware, primarily a 2K
CRAM, rather than a 1280 word CRAM.*

Enables extended addressing microcode. (Cannot do extended
addressing without Model B; Cannot have extended addressing
without KL page).*

Enables optimization of IMULI to take only nine multiply
steps.

EBOX/A-2

(

Variable

SXCT = 1

EXTEND = 1

DBL.lNT = 1

ADJBP = 1

RPW = 1

WRTST = 0

Definition

Enable&' special XCT instruction, which allows diagnostics to
generate large addresses. (Do not need SXCT with extended
addressing. Cannot do it in Model B hardware.)

Enables the extended instruction set.

Enables double integer instructions.

Enables adjust byte pointer.

Enables Read-Pause-Write cycles for non-cached references by
some instructions.

Enables Write-Test cycles at AREAD time for instructions such
as MOVEM and SETZM.*

BACK.BLT = 0 Enables BLT to decrement addresses on each step if E < RH
(AC); breaks many programs. *

.SET jINSTR .ST A T = 0 Enable instruction statistics code. *

Field Definitions
The actual (physical) CRAM bits are derived from the CRAM Board logic. However, no logical
relationship exists between the physical bits and the respective microword bit names. Figures A-2 and
A-3 are located at the end of the introductory discussion, just before the two examples. Figure A-2
shows how the physical CRAM bits are derived. Figure A-3 shows the physical bits and the corre­
sponding microword bit position (and name). The microcode listing is ordered with respect to the
microword bit positions, not the actual CRAM order.

Microcode field definitions have the form SYMBOLj = J, K, L, MI The J parameter is only mean­
ingful when "D" is specified as the default mechanism. The K parameter defines the field size in the
number of bits (in decimal). The L parameter defines the field position (in decimal) as the bit number
of the right-most bit of the field; bits are numbered from 0 on the left. Note that the position of bits in
the microcode word (Figure A-3) bears no relation to the ordering of bits in the hardware microword,
where fields are often broken up and scattered. The M parameter is optional; it selects a default

" mechanism for the field. The legal values of this parameter are the characters D, T, P, or +, where:

D

T

P

Indicates that J is the default value of the field if no explicit value is specified.

Is used on the time field to specify that the value of the field depends on the time
parameters selected for other fields. Within the microcode, Tl parameters are used to
specify functions that depend on the adder setup time; T2 parameters are used for
functions that require additional time for correct selection of the next microinstruction
address.

Is used on the parity field to specify that the value of the field should default, such that
parity of the entire word is odd. If this option is selected on a field where the size (K) is
zero, the microassembler attempts to find a bit somewhere in the word for which no
value is either specified or defaulted.

*This feature is not supported.

EBOXjA-3

ROIA!

1 -, [}::;. SCA!);."!. :'J[S

.:/.:::-: FE tOi;,,!)
:3 --48 == JfJEUJ (,3)

12 = JPlr:LD en
-" 16 = "VIQ SEL

CRfv'j OUT H\l+OOIH

CR;\Jj (HJT (N+2G1H

CF;M OUT (r,~+40)H

(;R~V~ OUT {H\i'H}OH--;

RO!iJ\1

CRIVI SEL 2 H

CRM S~L 1 H

CR_M cu~ A H

20=ADSEL W}

24 = l~D BODLE
28:=:: !-.. 08 ;:;i::::L. {21
32 Ave SEt

36 = l\R:~r-.l1 SEL

S}~~f"T REG

'~'LH41

(N+OO}H

5

'''' SCAD ~o.ll

,',.IFI ELD Wi
2 .j~H::l.D {41

13 = .lfu ELD 131
1~' = r.~!(iPjGOND WJ

CRM OUT (r-~+(r!/H

(N-:-21J}H

GR!Vl OUT \f'J+<tOH

{i\1+4,OlH
CRr-fi OUT {i~·~·-,n}H

O\!+60!H

CPer-../~ eLK E: H

5

21 =;1,D ScL (in

2.5 = tl,Ot" filS
2f) "" CRAM #(0)

33"" GR.'1.M t-;:-(3)

:~7 = CR,&,M -tt{G)

" -~ 40 SC/1.0A Sf:: l (;j 60"" SC.:1,DB SEL
64 = _B..RM SEL {2}

t:!'l SGADA SEt (1)

45 = ARbl!" SEL {4l
49 MEfJ~ {1)

:2 -, "" Vni}1A SEL

3 ----;.~.g j\'l~M WJ
4 -,. 5L ~-= 8f~ LOt,i)

5 -> 56 = ftif\ /\,DR \cfi

63 ,t\nxr",] SEL (Z)

72:::-: VivlA SEl {'I ~

1'6 = TOO
'58 "'" SKW!COh~D ::3)
57 FIV: .6.DR. {21

(r~+i}1IH

;3

.2::.:; S(~!\U t?)
=-- JFiElD \~n

H~""JrlELD (5}

14 JF1~LD WI
18"" SKtPlCOI'JD (1)

CAM oU'r (N+O~·dH

(N+21IH

CRM OUT !N+22iH

(i~':'<11IH
CRM OUT {N+42:!I-j

{r>J+t:,1IH
CRM OUT (i'.H52)H

cnfv~ r:u< H

42::-: SCI-\DE', :;EL (~l

--~5 = SH/f-~,RM~\·'l (2)-

50 = MElV~' i2i

540 Dr-"\X to,:'"D
58- fr\l; ,Lo,DR !:1)

9

~ 2C/~.tU (1,

'~B = f' = Jr-;;:;::~_J) ,;21
:j,u-;;; GRf;f,fl n ,- JrriClD {C;

34 = C fLt.J,,1

3:3 = e~ip-Jv"i :2:rn

!llh021H

{f\l-+~2~H

li\;+,.t2iH
;:::HM OU"(

(f-,J+6ZiH

'11

,.-i2 = SCi\:1

\A5 Ai-W",! S0L ~"li

70;'" £~R:<i\~ St::L \'1.~

"" /\[;

= Y,)1

(H.JTE:

1t~ "-' ,_in~u}< {'if);

"" ~~GP/CO~~:D 12i

RC!1N 1 := del 52; !\j=O-l;'

SQ!;\,' ,"<: = sk,t 50; f'J=4

ROiN ~~ :::. ::,jot <~4; N' 3

HCP;'ii 4 = ~2; f\!='i2
RC;I.!"\j [5 := d.)"[j\£="i 6

";;:i

.~\D ~jt::L HI
.= r4.D,L\ SF:. L

= c:;:;t~r;i~ ;::('2i

:J;~~ = CfL':.M -# iSl

iN·;·03IH

(!\i+2::;:iH

{r"':'';'4:~,:!~~

!j.:J = rll'l{ooRK

47 "" SH!f)"r-itviiV~

Gl -"" ;',fH::~··.n

55 -, S[:':!P/CutJD (J.)

58 = SKW!C::.;~~D is)

r

C

(

-
(

MICRO WORD
POSITIONS 00·15

CRAM PHYSICAL
BITS 00·15

MICRO WORD
POSITIONS 16·31

CRAM PHYSICAL
BITS 16·31

'---

t

MICRO WORD
POSITIONS 32·47

CRAM PHYSICAL
BITS 32·47

~
MICRO WORD

POSITIONS 48·63

CRAM PHYSICAL

BITS 48·63

~

MICRO WORD

POSITIONS 64-79

CRAM PHYSICAL

BITS 64·79

~

MICRO WORD
POSITIONS 80-83

CRAM PHYSICAL
BITS 91·95

AD AD
N.U.

DISPATCH ADR (JO-Jl0) CRY AD SELB AD r-____________________ ~A~ ______________________ __

V
DIS 2 SCAD LOAD DISPATCH ADR (JO·Jl0)

4

AD ADA ADA ADB ARM

SEL 2 AD DIS SEL 1 SEL 2 SEL 4

AD SEL 2 AD BOOLE ADA SEL 2 ADA SEL 2 #0 #2
SEL 4 SEL 1 DIS SEL 1

MQ SCAD SCM
SEL 4 N.U. SEL 2 FE

SEL 1 #5 SEL 4 #6

SEL 1

SHARMM VMA MEM MEM COND COND

N.U.SHARMMSEL 1 SEL 2
VMA

TOO 00 MEM 02 MEM 0 COND 2

MEM 02 MEM LOAD N.U. SEL 2 N.U.

01 03 4

COND DISPI

4 COND N.U. N.U. MARK #1 #3

SEL 2 N.U. N.U. SEL 2 N.U. SEL 1 N.U, N.U. CRY N.U. N.U. N.U.

#5 #7 N.U.
~

'\

"'-----------------.,y,.--------------' DISPI
N.U. DISPI SPECl DISPI SPEC3 DISPI

SPECO SPEC2 SPEC4

10· 2623

Figure A-3 Actual CRAM Physical Bit Position to Microword Bit Position Correlation

EBOX/ A-5

•

+ Is used on the jump address field to specify that the default jump address is the address
of the next instruction asse~.bled (not, in general, the current location of + 1).

In general, a field corresponds to the set of bits that provides select inputs for mixers or
decoders, or controls for ALUs. For example:

1. AR/ = 0, 3, 26, D; the microcode field that controls the AR mixer (and, therefore, the data
to be loaded into AR on each EBox clock) is three bits wide. The right-most bit is shown in
the listing as bit 26 of the microinstruction. If no value is specifically requested for the field,
the microassembler ensures that the field is zero.

2. AD / = 0, 6, 17; the field that contains the AD is six bits wide, ending on bit 17. The fourth
parameter of the field is omitted, so that the field is available to the microassembler (if no
value is explicitly called out for the field) for modification to ensure odd parity in the entire
word.

Value Definitions
Following any field definition, symbols may be created in that field to correspond to values of the field.
The form is

where:

N

Tl and
T2

SYMBOL = N, Tl, T2

(Octal) is the value of SYMBOL when used in the field;

Are optional and specify parameters in the time field calcultation for microinstructions
in which this field/SYMBOL is used. The microassembler computes the sums of all the
TIs and T2s specified for field/SYMBOL specifications in a word and uses the max­
imum value of the two sums as the default value for the field whose default mechanism
is T. For example:

AD/ = 0,6, 17
XOR = 31
A + B = 6, 1

; field definition is which of the following
; symbols exist.

Here, the symbols "XOR" and "A + B" are defined for the AD field. To the assem­
bler, therefore, writing "AD/XOR" means "place the value 31 into the 6-bit field
ending on bit 17 of the microword." The symbols are chosen for mnemonic signifi­
cance. Therefore, reading the microcode would interpret "AD /XOR" as "the output
of AD shall be the exclusive OR of its A and B inputs." Similarly, "AD / A + B? is
interpreted as "AD produces the sum of A and B." The second parameter in the defini­
tion of A + B is a control to the microassembler's time-field calculation, which tells the
assembler that this operation takes longer than the basic cycle and, therefore; that the
time field should be increased.

AR/ = 0, 3, 26, D
AR = °
AD = 2

;field definition for following symbols

Here, the symbols "AR" and "AD" are defined for the field named "AR," which
controls the AR mixer. Because only the default case is used, the AR does not change
unless a specific request to do so is made. Therefore, the field definition specifies zero
as the default value of the field. If the AR is loaded from the AD output, AR/ AD is
written to set the mixer selects to pass the AD output into the AR.

EBOX/A-6

By

a rnicroinstruc:tjon
th,;;;

on iCfa:::J[

of the

A 6, 17 ;field.
;exlst.

) that data semk:olon i~

by
string, digit
t rerirriJ1ated by a f/(;;riod), "r"'i:''''''~rr

+ AR/A,D

definition of a microinstruction rnay onto two or more
any comms., That if the last IHJJn.blank, lt10ncramment

W ooilie Fm

cause the
value

with commas.

on B
" and Held

breaking
011 ;:; Ene is a commR, the

i\DB/BR, ADA/ A,R,
AD/A + E, AR/AD

;§elect and BR as AD inputs.

continuation are

"ADB/BR,

app,earanc:e a macro a microinstru(:tlon

;takl; th.e sum AR

A + El,

t,o

7'

and/or macros, A
'i5 the valw;,:

,.

Pseudo-Operators
The microassembler contains ten pseudo-operators:

1-2.

3.

4.

5.

6.

7.

S.

9.

10.

•.
. DCODE and. UCODE Select the RAM into which subsequent microcode is

loaded and, therefore, the field definitions and macros
that are meaningful in subsequent microcode.

.TITLE

.TOC

.SET

. CHANGE

. DEFAULT

.IF

.IFNOT

.ENDIF

Defines a string of text to appear in the page header.

Defines an entry for the Table of Contents at the
beginning.

Defines the value of a conditional assembly parameter.

Redefines a conditional assembly parameter .

Assigns a value to an undefined value .

Enables assembly if the value of the parameter is not
zero.

Enables assembly if the parameter value is zero .

Re-enables assembly if suppressed by the parameter
named.

(

Location Control (
A microinstruction labeled with a number is assigned to that address. The character "=" at the begin-
ning of a line, followed by a string of Os, Is, and/or *s, specifies a constraint on the address of the
following microinstructions. The number of characters in the constraint string (excluding the" =") is
the number of low-order bits contained in the address. The microassem bIer attempts to find an unused
location whose address has zero bits in .the positions corresponding to Os in the constraint string and
one bits where the constraint has Is. ~terisks denote "don't care" bit positions.

I f any zeros are in the constraint string, the constraint implies a block of (2 * * N) microwords, where
N is the number of Os in the string. All locations in the block have Is in the address bits corresponding
to I s in the string. Bit positions denoted by *s are the same in all block locations.

I n such a constraint block, the default address progression is counting in the "0" positions of the
constraint string, but a new constraint string occurring within a block may force skipping over some
locations of the block. Within a block, a new constraint string does not change the pattern of default
address progression, it merely advances the location counter over those locations. The microassembler
fills them in later.

A NULL constraint string ("=" followed by anything except 0, 1, or *) serves to terminate a constraint
block. For example:

a. = 0

This specifies that the low-order address bit must be zero. The micro assembler finds an even­
odd pair of locations and places the next two microinstructions into them.

EBOX/A-S

b. = 11

This specifies that the two low-order bits of the address must both be ones. Because there are
no zeros in this constraint, the assembler finds only one location meeting this constraint.

c. = 0*****

This specifies an address in which the 408 bit is zero. Due to the implementation of this
feature in the assembler, the default address progression applies only to the low-order five
bits. Therefore, this constraint finds one word in which the 408 bit is 0 and does not attempt
to find one where that bit is a 1.

Microcode Examples
The following paragraphs lead the reader through the microcode, while defining two instructions:
MOVE and ADD. The requirements that the microcode is loaded and running (i.e., in the HALT
loop) are assumed. A dispatch (test for an interrupt) occurs during a HALT loop. Once an interrupt is
present, the microcode leaves the HALT loop and goes to the first microinstruction.

MOVE Instruction
Refer to Figure A-4. The initial dispatch is a NICOND Dispatch. It is a decision starting at microcode
address 140 that is used to decide which condition (e.g., TRAP, NICOND) is satisfied. Looking up
Next Instruction Dispatch in the microcode listing Table of Content refers the reader to line 2549 in
the listing. The decision begins at line 2549. Notice that the actual decisions and respective implemen­
tations begin at microcode address 140 (NEXT), and assuming a NICOND Dispatch is present, the
listing refers the reader to NEXT + 12 (microcode address 152).

The NICOND Dispatch is the normal case; the instruction is in the ARX and begins execution.
Location NEXT + 12 leads (jump to the correct decision) the reader to microcode address 152
(XCTGO), line 2606. Notice in the listing (and Figure A-5):

At XCTGO, on line 2606, the comments state "save the instruction, sign extend Y and calculate the
effective address (EA)." The macros define all the things that happen here. Initially, one should con­
sider where to go next. That information is contained in:

1. The l-field, which typically contains the "suggested" next address. In this example, it is 160.
Whether that is used or not depends on item 2.

2. The Dispatch (or SPEC) field.

The SPEC field follows the "r' column in the microcode listing (Figure A-22). Specifically, the field
• observes the last two digits of the "r' column. In this example, those digits are "36." Going to Figure

A-22, notice that a decoded 36 in the SPEC field is an EA MODE Dispatch.
, ,---------

An EA calculation is called for, which indicates that under certain conditions the l-field (160) may not
be the actual next address. These conditions are Indexing (bits 14-17 of the instruction), Indirection
(bit 13), both conditions, or neither condition. In this case, EA MODE dispatch looks at those bits of
information in the instruction and then ORs them with 160 (the l-field). Because this simple MOVE
instruction uses neither indexing nor indirection, go directly to 160. This appears on line 2647 (if you
cannot easily locate this, go to the index at the rear of the listing, look up address 160 and find that line
2647 is where microcode address 160 appears). Refer to Figure A-6.

EBOX/A-9

START

52

(HALT LOOP)

100 (-

• (170 V5)17 ..,=5=~,.",....,

10-2624

Figure A-4 MOVE Instruction Flow Diagram

EBOXjA-lO

(

(

c

(

;2606 XCTGO: BRX/ARX,AR ARX,SET ACCOUNT EN, ;SAVE INSTR, SIGN EXTEND Y,

UOI52,0160,0001 ,4022,2000,2136,01 05 ;2607 XR,EA MOD D1SP, J/COMPEA ;GO CALCULATE EA

Figure A-5 Microcode Address 152

UOI60,0000,3701,0000,0000,0204,0002,0000 ;2647 COMPEA: GEN AR , A READ ;LOCAL

Figure A-6 Microcode Address 160

Again looking at the "f' column, observe the SPEC field is "02." Checking Figure A-22, SPEC code
02 indicates doing an A READ Dispatch by stating DRAM A RD. Go to the microcode listing index
for D RAM words (it appears just before the microcode address index). The MOVE instruction is op
code 200. Find 200 and notice it refers you to line 2782. Refer to Figure A -7.

\
00200,5500,0100
~

;2782 200: R-PF , AC, J/MOVE ;BASIC MOVE

Figure A-7 DRAM Word 200

This is the DRAM word for the basic MOVE instruction. The A-field is a "5" (Figure A-26). This "5"
is ORed with 40 (a constant used whenever an A RD DISPATCH is performed) and the J-field (0000)
of microinstruction 160. This results in a "45." Turning again to the index, look up microcode address
45. The index indicates line 2711; see Figure A-8.

;2711 BR/AR,FIN XFER, I FETCH, ;GET OPERAND, PREFETCH,

U0045,0000,3240 ,0043,0000,0226,0001,0400 ;2712 TIME 3T, IR D1SP , J/O ;& START EXECUTE

Figure A-8 Microcode Address 45

This part of the microcode states: get the operand (from the MBox), begin a prefetch of the next
instruction, and-begin instruction execution. Notice also in the macros, that an IR Dispatch is called.
Looking now at the SPEC field, it is "01;" looking this up in Figure A-22 states DRAM J DIS­
PA TCH. A DRAM J DISPATCH dictates calculating where to go by taking only the J-field of the
DRAM word as the address. In the case of the simple MOVE instruction (look back at Figure A-7),
notice the A-field is "5," the B-field is "5," and the J-field is "100."

Looking up microcode address 100 in the index leads the reader to line 2819 (Figure A-9).

UOI 00,0170,0001 ,0000,0000,0005,0033,0000 ;2819 MOVE: EXIT ;STORE AS IS FROM AR

Figure A-9 Microcode Address 100

EBOX/A-ll

The SPEC field is "33" and, again referring to Figure A-22, now a DRAM B is called. DRAM B is the
actual "store the operand." The MOVE began by fetching the operand and placing it in the AR.
Finally, it is placed in a particular AC. The DRAM B Dispatch takes the B-field of the DRAM word
(5) and ORs it with the l-field (170) of the current microinstruction (address 100). This results in: 170 V
5 = 175. The index takes the reader to line 2749; see Figure A-IO.

UOI75 ,OI40AOOl.OOOO,0403 ,0002,I006,OOOO ;2749 STAC': ACO_AR,NXT INSTR ;NORMAL AND IMMFDIATE MODES

Figure A -10 Microcode Address 175

Observing the SPEC field indicates "06;" this is a NICOND Dispatch. Also, the l-field is 140, taking
the reader to the original decision matrix. Again, all the possibilities are considered when the next
instruction arrives and the process continues.

Not all fields were discussed here, only the major fields. All fields are illustrated and defined in Figures (
A-17 through A-26. It is left to the reader to check the unmentioned code fields with the respective
defining figures.

ADD Instruction
Many of the assumptions used in the MOVE example are used again here (refer to Figure A-II) .
Assume that the last instruction was a NICOND Dispatch; go through the decision matrix to micro­
code address 152. Assume Indexing this time, this leads the reader to address 161. Locate address 161
on line 2648 of the listing (see also Figure A-12).

Indexing is handled at this time. The AR is added to the contents of the XR (Index register) to generate (
the EA. Also, an A READ Dispatch is called out. The A READ leads to the next microcode instruc-
tion, which is where the operand is located. Assume AC3 is being used (for example) and its content is
"50;" assume the Y-field contains "100." This results in EA = 150.

Again, because of a COMP EA (EA calculation), a "40" is forced into the l-field by the hardware
during the A READ Dispatch. Figure A-13 shows the DRAM word for the ADD (270) instruction.
Use the DRAM index to locate line 4091.

The A-field of the DRAM word is "5." This, ORed with the forced "40," results in "45." This is
microcode address 45, just as in the MOVE example. Locate address 45 on line 2712; this is where the (
operands are fetched (see Figure A-14).

A "01" is in the "r' column of the SPEC field, a DRAM 1 Dispatch. Looking back at Figure A-13,
notice that the l-field of the DRAM word is "504." Go to the microcode address index and locate
address 504 at line 4098 (see Figure A-15).

This is where the ADD takes place. The macros state "A plus B (the two operands) into the AD." The
SPEC field (Figure A-13) is a "5." The l-field of the current microinstruction is 170. These two are
ORed, resulting in 175. Using the index again, locate address 175 on line 2749 (see Figure A-16).

The operand is stored in ACO and the l-field leads the reader back to location 140 again, the NICOND
Dispatch. The microcode is now ready for the next instruction.

EBOXjA-12

r~------~-~ -"-"---"
I

I
I

Figure

10<2631

InstriJction Flmi:!

EBOX/A-13

UOI 60,0000,3701 ,0000,0000,0204,0002,0000 ;2647 COMPEA: GEN AR, A READ ;LOCAL

U0I61,0000,0600,0002,4000,2224,0002,0000 ;2648~' GEN AR + XR, INDEXED, A READ ;LOCAL UNLESS XR> 0

Figure A-12 Microcode Address 160, 161

D 0270,5500,0504 ;4091 270: R-PF, AC, J/ADD

Figure A-13 DRAM Word 270

;2711 BR/AR, FIN XFER, I FETCH ;GET OPERAND, PREFETCH,

U0045 ,0000,3240,0043,0000,0226,0001 ,0400 ;2712 TIME 3T, I/R DISP, J/O ;& START EXECUTE

Figure A-14 Microcode Address 45

U0504,0170,0600,2000,0000,002S,1333,0000 ;4098 ADD: AR AR*ACO, AD/A+B, AD FLAGS, EXIT

Figure A-15 Microcode Address 504

UOI75,0I40,4001,0000,0403,0002,1006,0000 ;2749 STAC: ACO_AR,NXT INSTR ;NORMAL AND IMMEDIATE MODES

MICRO WORD
POSITION

Figure A-16 Microcode Address 175

l_ UaU

J FIELD
MICRO CODE BASE ADDRESS

1
0

1 1
2

1
3

1
4

1
5 6 7

NOTES:

1. The J FI ELD defines the base address
to which this microinstruction jumps.

Figure A-17 Microword "a" Field

EBOXjA-14

·1

8

1
9

1
10 11

1

10-2637

(
'-.

•

MICRO WORD
POSITION

MICRO WORD
POSITION

I" ___ "b" __ 1 ---+t~
AD ADA/ADXA ADB/ADXB I

CONTROLS ALU FUNCTIONS SELECTS AD "A" SELECTS AD "B"

I " I " 1 " 1 " I' " I" "I" 1 ~ ~ " 1 n 1
00 A +XCRY
03 A * 2
06 A+B
11 A-B-l
17 A-l
40 A + 1
43 A * 2 + 1

46 A + B + 1
50 ORCB + 1
51 A-B
54 XCRY-l
20 SETCA
21 ORC
22 ORCA
23 l's
24 ANDC
25 SETCB
26 EOV
27 ORCB
30 ANDCA
31 XOR

32 B
33 OR
34 O's
35 ANDCB
36 AND
37 A

I-
AR

I 24 25 I
0 AR
0' AR if SPEC 22

1 CACHE
2 AD

3 E-BUS
4 SH
5 AD*2
6 ADX
7 AD*.25

01 A +ANDCB
02 A +AND
44 OR + 1

05 OR + ANDCB
07 A + OR
52 AND + ORCB
53 A + ORCB

15 ANDCB-l
16 AND-1
17 A-l

Bit 18:
0 EN
1 O's

o AR
1 ARX
2 MO
3 PC

Figure A-I8 Mieroword "b" Field

~#cn

I ARX BR BRX MO

26 I 27 I 28 I 29 30 31 32

0 ARX
CACHE

2 AD

0 0 0

BR BRX MO

3 MO
4 SH
5 ADX*2 AR ARX SH
6 ADX
7 ADX*.25

If SPEC/MO
SHIFT:

0 MO*2
MO*.25

If COND/REG
CTL:

0 MOSEL
MOMSEL

Figure A-I9 Mieroword "e" Field

EBOX/A-15

33

o FM • .1 (See Note)
BR"2

2 BR
3 AR-'4

NOTE:
Must have time
for parity check

10-2638

FMADR

~I

1
34 35

o ACO (lR 9·12)
1 AC1 (ACO + 1)

2 XR (ARX 14-17)
3 ,VMA (32·35)
4 AC2 (ACO + 2)

5 AC3 (ACO + 3)
6 CB
7 #B

1

10·2639

•

14 J I+---------------.. d .. ----,------------~

SCAD

1
36 37

o A
1 A-B-1
2 A+B
3 A-1
4 A + 1
5 A-B
6 OR
7 AND

38 39

SCADA

40 41

o FE
1 AR 0-5 (NOTE 1)
2 AREXP (NOTE 2)
3 # (NOTE 3)

Bit 39
1 0'5

NOTES;
1. Byte Pointer Position Field

2_ IAR (01-08)j XOR IAROOI
3_ Sign e>ctended with #00

42

SCADB

43 44

o SC
1 AR6-11
2 AR 0-8
3 #(no

sign extend)

Figure A-20 Microword "d" Field

SC

~ 46 47

1 N.U.

0 0
SC FE

SCAD SCAD

If
SPEC'13

0
FE
1

AR
SHIFT

10-2640

I ... ·--.---SH-'-A-RM-M---------- T' --T-IM-E--I----------·~I
MICRO WORD
POSITION

49

SH

o SHIFT AR ARX
1 AR
2 ARX
3 AR SWAP

ARMM

o #0-8
1 EXP <-SIGN
2 SCAD EXP

3 SCAD POS

o 2T
1 3T
2 4T
3 5T

Figure A-21 Microword "e" Field

EBOX/A-16

5 B WRITE
6 FETcH
7 'REG FUNC

10 AIND
11 BYTEIND
12 LOAD AR
13 LOADARX
14 AD FUNC
15 BYTE READ
16 WRITE
17 RPW

10-2641

c

[,/HeRO WORD

POSlTlON

!<'---------.. ~.--. ---~.- "'~"","---.--
I II

NON-SKIP IFUNCTHJNS

IJ

3

5

7

11

15
16

20

21
22
23
24
25
26
21
30
31
32
33
34
35
36.
37

I\lOI'
LiD ,lU::;: o-e
tD Ae! !J-'1i7

""!'leu!
Ml), eLR

Ai'lL 11\10

REG CTL

,I\D FL4GS
lOP'~[) ~R

SPEC ~!,JST

SR -t- #
SEt VMA

E130XSTATE
EBIJS CTl
MBOXGTl
SPARE
SP,l\RE
SPARE

SPARE

VMA~#

VMA'~ # +TRAP
VMA ~ #+ MODE

VM.l\,- # +AR 32·35

VMA ~ #+1'1'2
VMA DEC
VMA If,le

LD VMA HELD

CO!~D

SKiP FU~.CTiONS

,t~2

43

45

47

53
54
55
56
57
60
6~

62
63
64-
65
66
67

10
71
n
73
74
75
76
77

SPARE
EVEi\~ Pr:\,P,

il.RXO
lUllS
AJ'tIl
AC #0
SC I)

SC.t\D 0

SCAilD 7:: 0

ADX III

AD CRY 0

AD *0

USER
?U8LIC
RPW REF
PI eye
EBUSGRAiIlT
EBUS TRANS
IN,RI'T
·START
RUN
10 lEGAL

iEI30XI'F
AC REF
~;V!ll'!l REG

A~22

EBOX/A-17

Field

SPEC

DiSP/:; TCHES

7
30
31

33

36
31

10
1'1
12
13
14
15
16
17
20
2'1

22
23
24
25
26
27

DRAMJ

RETURN
fiG FAil

SR

SH 0-3

MUL
DiV
S~Gr',]s

DR.4.M B
BYTE

r~ORM

lEA MODiE

NOP
!NH CRY 18
MOSHIFr
SCM Pd.'
elR FPD
lD PC
XCRY ARO
GErt.j CRY 18

SEC HOLD
CALL
ARl !~JD

MTn CTL
FLAG CTl
SAVE Ftt'tGS
SP rtliEr .. 1 CYCLE

,<m lONG

10-2642

14
"g"

ENABLE REOUIRED
MAGIC NUMBER FIELD 1

MICRO WORD ~~ 74

I
75

I
76

I
77 78

I
79

I
80 81

POSITION
N.U. N.U.

I USED TO ADDRESS FAST MEMORY

I- - -- -- - - - -
1 =

AR 0·8
1· LD

CLR ARL

1 ARR 11 ARR +MO 0 ARL

ARL IND 2 ARL 13 AR+MO 0 ARMM + SPEC
3 AR 14 ARX+MO 1 CACHE
4 ARX 16 ARL+ARX+MO 2 AD
6 ARL + ARX 3 EBUS
7 AR +ARX 4 SH

10 MO 17 AR +ARX +MO 5 AD*2
6 ADX

7 AD*.25

AR CTL EXP TST

COND/REG CTL 1 ARR LOAD 1=

2 AR 9·17 LOAD AR·EXP

3 AR 0·8 LOAD
4 ARL LOAD

MOCTL

COND/REG CTL
0 MO

AND
1 MO"2

MO/MO SEL
2 MO".5
3 O's

COND/REG CTL 0 SH

AND 1 MO*.25

MO/MOMSEL 2 l's

3 AD

PC FLAGS c
20 TRAP 1 424 DIVCHK

COND/PCF - # 40 TRAP 2 620 FLOV
100 FPD 624 FDV CHK
420 AROV 630 FXU • 10-2643

Figure A-23 Microword "g" Field (Magic Numbers)(Sheet 1 of 3)

EBOX/A-18

14
"g" -I

ENABLE REQUIRED MAGIC NUMBER FIELD

~ 74

1

75

1

76 77

1

78 79 80

1

81

1

82

1

83

1 N.U. N.U.

FLAG CTL

SPEC/FLG CTL 20 SET FLAGS 502 DISMISS
412 PORTAL 602 JFCL
420 RSTR FLAGS 622 JFCL + LD
442 HALT

SPEC I NSTR

4 INSTR ABORT 100 IN H PC + 1
COND/SPEC INST 10 INTRPT IN H 200 KERNEL CYCLE

10 CONT 302 HALTED
20 PXCT 310 CONSXCT
40 SXCT 704 SET PI CYCLE

FETCH

MEM/FETCH 201 COMP 400 UNCOND
202 SKIP 502 JUMP
203 TEST 503 JFCL

2 CACHE IN H 111 EPT

SPEC/SP MEM
10 EPT EN 200 USER

CYCLE
20 UPT EN 221 UPT
31 PT 400 FETCH
40 SECO 431 PT FETCH

100 EXEC 511 EPT FETCH
101 UNPAGED 621 UPT FETCH

MREG FUNC

7 SBUS DIAG 505 WR REFILL RAM
MEM/REG FUNC 140 MPA 601 LOAD CCA

502 READ UBR 602 LOAD UBR
503 READ EBR 603 LOAD EBR
504 READ ERA

MBOXCTL

COND/MBOX CTL
00 NORMAL 21 CI..R PTLINE
01 PT DIR CLR 100 SET I/O PF ERR
10 PTWR 200 SET PAGE FAIL
20 PTDIR WR

10·2644

Figure A-23 ' Microword "g" Field (Magic Numbers)(Sheet 2 of 3)

EBOXjA-19

I- "g"

·1
ENABLE REOUIRED MAGIC NUMBER FIELD

~~ 74 I 75 76 77 78 79 80 81 82 83 I N.U. N.U.

EBUS CTL

0 REL EBUS 26 DATAO

COND/EBUS CTL
1 INPUT 27 DATAl
2 DATA 1/0 30 I/OINIT
4 DISABLE CS 60 EBUSDEMAND

10 CTL·IR 100 REL EBUS
20 EBUS NO DEMAND 200 REO EBUS

400 GRAB E EBUS

DIAG FUNC

400 .5 j.LSEC 511 DATAl PAG (L)
404 LD PA LEFT 511 RD PERF CNT
405 LD PA RIGHT 512 CONI APR (L)
406 CONO MTR 512 RD EBOX CNT
407 CONOTIM 513 DATAl APR
414 CONOAPR 513 RD CACHE CNT

CQND/DIAG FUNC
415 CONO PI 514 RDINTRVL
416 DATAOAPR 516 CONIMTR
425 LD AC BLKS 517 RDMTR REO
426 LD PCS + CWSX 530 CONI PI (PAR)
500 CONI PI (R) 531 CONI PAG
501 CONI PI (L) 567 RD EBUS REG
510 CONI APR (R) 620 DATAO PAG
510 RD TIME

0 CLR TIM 1 CLR PERF

SPEC/MTR CTL
2 CLR E COUNT 3 CLR MCOUNT

4 LD PA LH 5 LD PA RH
6 CONOMTR 7 CONOTIM

10·2645

Figure A-23 Microword "g" Field (Magic Numbers)(Sheet 3 of 3)

•

EBOX/A-20

A

0 IMMED
1 IMMED/PREFETCH
2 NOT USED
3 WR-TST
4 READ
5 READ/PREFETCH
6 RD/WR
7 RD/PAUSE/WR

B

B/STORE 0, 1,2
1 DBlAC
2 DBl BOTH
3 SELF
5 AC
6 MEM
7 BOTH

B-1-2-FCT STORE

1 AC
2 MEM
3 BOTH

BO INVERTS TESTS
o CRYO=O
1 CRYO = 1

B/SKIP/JUMP/COMP

o SJC l,E
SJCE

2 SJC l
3 SJC NEVER
4 SJCG
5 SJC NEVER
6 SJCGE
7 SJCAlWAYS

DRAM WORD

P

l .. ,;'Y;' ~,."
the assembler.

J-Field (Dispatch Address)
(bits 5 and 6 are
always 0)

.--f"'ov

Figure A-24 DRAM Word Format

EBOXjA-21

10-2646

_A~~=
j\iC~K]\J

f\lC:T
.AD
ADf\
A.DB
A,DR

AF
ALT
ALU
APR

AR
ARL

ARI,,1

.ARX

ARXL

ARXR

BOOLE
BR
SRK
BF:X
BUF

A

A
Adder B

Action Flag

Register
Arithmetic Register
Arithmetic Register
Left
Arithmetic Register

Arithmetic Register

Registt~r
Extension
Arithmetic Register
Extension Left

Register
Extension ~¥1ixer

Register
Extension Right

Break
Buffer Extension

APPENDIX B
ABBREVIA TIONS AND IVINEr~A

CT01\1

cwsx
C~~{C

D
DIAG
DIR
DIS
DISP
DIV

E
Eto T
EBR
EBUS
ECL
EDP
EI"J
ENA

EPT
EX
EXP
EXT
EXT TRi\,
REC

RAM

Controller

Controller-tcl-N[emory
or Cache-to-~vlemory
Counter
~2aned
Cycle

Data
Diagnostic

Dispatch
Divide

E
Effective
ECLto TTL
Executive Register
Execution Bus
Emitter-Coupled Logic
EDox Data Path

Error
Executive ProC(;:ss Table
Extension

External
Exte;rnal
1.-'ransfer]R.ec!eive.:~

F MR Master
F Function MTR Meter
FE Floating Exponent
FE Front End N,O
FLG Flag NICOND N ext Instruction
FM Fast Memory Condition
FOY Floatiog Overflow NXM Non-Existent Memory
FPD First Part Done NXT Next
FPD Floating Point Divide OP Operation (code)
FUNC Function OYN Overrun
FXU Floating Exponent

Underflow P,Q
PA Physical Address

G,H PAG Pager
G Gated PAR Parity
GE Greater or Equal PC Program Counter
GEN Generate PCF_# Previous Context Flags
H High from Number

PCP Previous Context Public
I PC Program Counter

INC Increment PERF Performance
INH Inhibit PF Page Fault
INSTR Instruction PGRF Page Refill
INT Internal PI Priority Interrupt
INTR Interrupt PIA Priority Interrupt
INYAL Invalid Assignment

C lOT Input/Output Transfer PIH Priority Interrupt
IR Instruction Register Hold

PMA Physical Memory
J,K,L Address

J Jump PREY Previous
L Low PT Page Table
LRU Least Recently Used PWR Power

R
M RAM Random Access Memory (MB Memory Buffer RD Read

MBC MBox Control RE Receive ECL
MBX MBox Control REC Receive
MBZ MBox Control REF Reference

• MCL Memory Control REG Register
MEM Memory REL Release
MHz Mega Hertz REQ Request
MIX Mixer RESP Response
MQ Multiplier Quotient RET Return
MQM Multiplier Quotient RIP Request in Progress

Mixer RQ Request

l
EBOX/B-2

S ADR P

SCAD
SCADA

S~H
SHRT
SKM

SPEC

1't.o E
TE
T
TRA

UBR
UCODE
VAL

XFER
XR

WAR:N
we
WD

T
to EeL

Transmit

Transistor-Transistor

W, Y l Z
Warning

Count

2-120

ALU

1-41

A READ

B

c

2-67
Paging
Refill RiA M Facility 3~4 R

2-67

Clock

CST 1

Basic Machine;
Begin MBox 112
EBox Data Store
Execution 101

Fail! 2-35
Processor

Fetch
EBol(
IV!anage:r 2- 6
REQUEST EJ'~

Data 2-
G!\;;neral

E' n jI1',TDE'V 1 . 100X ~~,.,'j~ko>l

JD, . J '

•

Dispatch
A READ 2-29,2-96,2-97
CRA Parity 3-52
DRAM J 1-11
IR 1-8
NICOND 1-3, 1-8, 1-11, 2-4, 3-9
State Diagram 2-7
Table 2-17

DRAM 1-3, 1-8,2-12, 2-101, 3-7, A-I
Addressing and Selection 3-8
Organization 1-4
Parity Error 2-8
Register Fields 1-3
Word Format A-21

DTE20 2-48, 2-50

EA Calculation A-9
EA MOD 1-8,2-14
EBox 1-2

E

Clock 2-11, 3-6, 3-19
Data Fetch 2-95
Data Paths 1-48
Data Store Cycle 2-103
Execution Cycle Overview 2-102
Frozen 2-8
Instruction Set 2-88
Main Loop 2-7
Module Utilization 3-2
Priorities 2-41
REQUEST IN 2-26
Reset 2-1

EBR 1-19, 2-67
EBus

Basic Operation 2-126
Control 1-39
ECL Acquisition 2-127
Interface Control 2-116
Interface Organization 2-123

. Requesting 2~ 124, 2-131
Reset 3-19
Signal Lines 2-120

Effective Address
Calculation 2-91, 2-93
Manager 2-14

EPT 1-22
ERA Word 3-37, 3-43
Error

CRAM Parity 2-8
Detection 3-22
DRAM Parity 2-8
External 3-34

I/O Page Fail 3-34
MBox 1-37
MBox Address Register 3-43
NXM Overview 3-36
SBus 3-33
Stop Enables 2-12

EXEC Virtual 2-134
Execution Cycle 2-101
Executor 2-18, 2-33

F
Fast Memory 1-11, 1-42

Address Field 1-13
Addressed by VMA 2-67
ADR Field 2-86
Information Flow 1-44
Parity Error 2-8
Request 2-94

Fetch Cycle 2-96
Field 1-8

ARMM 2-88
Microword A-14
MQ 2-88
SC 2-87
SCAD 2-86
SCADA 2-87
SCADB 2-87
SH 2-88
SPEC A-9
VMA 2-88

Flags 2-58, 2-65
Function

00 2-133
01 2-134
02 2-134
03 2-135
04 2-135
05 2-135
06 2-136
07 2-136

Functional Blocks 1-5

G
General Interrupt Sequencing 2-47

Halt
Handler 1-8, 2-20
Loop 2-4

Hardware

H

Cycle Summary 2-110
Page Table 1-36

EBox/INDEX-2

(~

I, J, K
Indexing 2-92
Indirect Word Request 2-26
Indirection 2-92
Instruction Cycle 2-24
Instructions 1-5

Basic Four Mode Type 2-103
Complex 2-96
Immediate 2-96, 2-103
N on-PC Change 2-96
Non-Read PSE 2-99
Not Requiring (E) 2-96
PC Change 2-96
Read-PSE-Write 2-101
Requiring (E) 2-99

Instruction Set
Divisions 2-90
Overview 2-88

Interface Control 2-108, 2-116
Interlocks 2-124
Interrupts 1-5, 1-39, 2-44

Dialogue 2-48
General Sequencing 2-47
Handling 2-123
Instructions 2-47
Priority Chain 2-46
Sensing 2-127
Simultaneous 1-39
Testing For 2-92

Introduction 1-1
I/O

Basic Control 2-124
Handler 2-20

IR 1-8
AC Control 3-7
DRAM Control 3-4
Loading and Control 3-3, 3-6
Test Satisfied 3-10

L
Lines

CS 1-1, 2-120
DATA 2-120
EBus Signal 2-120
FUNCTION 2-120 '
PRIORITY TRANSFER 2-121

Loading Flags 2-58
Logic Descriptions 3-1

M
Mapping

Virtual Address 1-38
MBox 1-1

Clock 2-28
Control 1-18, 2-110
Cycle 2-8
Error Conditions 1-37
Request Cycle 1-42, 2-28, 2-70, 2-94
Response 2-29, 2-33, 2-42, 2-117
Response Received 2-116
Wait 2-11

Memory Cycle Control 2-116
Memory References 2-98, 2-100
Memory Request 1-18

MBox 2-70
Microcode 1-36, 2-14, A-I

Example A-9, A-12
Field Definitions A-2
PI and EBus Interface 2-127
PI Board Interface 2-128
Sample Listing A-I
Variable Definitions A-2

Microinstruction 1-45
Microprogram 1-10,2-7, A-I

Address Control 2-9
Deferred 2-12
Frozen 2-8
Halt Loop 2-4
Organization 2-14
States 2-1, 2-4
Wait 2-8

Microstack Operation 2-103
Mnemonics B-1
Mode

Control Logic 2-53
Initialization 2-56
Memory 2-107
SELF 2-107
Structure 2-51
Transfer 2-54
User Concealed 2-65
User Public 2-59, 2-60

MOVE Instruction Example A-9
MQ

Field 2-88
Selection 2-89

MUUO 2-50, 2-53, 3-41

EBox/INDEX-3

N
NICOND 1-3, 1-8, 1-11, 2-4, 2-12,

2-13, 3-9, A-9
Nonexistent Memory 3-34, 3-35

o
Overview

Basic Machine Cycle 2-21
Clock 3-15
Execution Cycle 2-lO2
I/O Instruction 1-41
Instruction Set 2-88
Interrupt Dialogue 2-49
Page Fault 1-21
PI Dialogue 1-40

Page Fail
Cycle 2-35
Handling 2-38

p

Word Adjusting 2-41
PAGE FAIL HOLD 1-21,2-59
Page Fault 2-38

Handler 2-18
Overview 1-21

Page Mapping 1-23
Page Pointers 1-23, 1-24

Immediate 1-24, 1-25
Indirect 1-24, 1-26
Shared 1-24, 1-25

Page Table 1-19, 1-23, 2-44
Paging

Hardware Support 1-36
KI 1-19, 1-20, 1-37
KL 1-22, 1-37
Path 1-24

PC
Loading 2-72
Loading or Inhibit 2-74
Loop 2-73

Physical Memory Address Format 1-21
Physical Page Address 1-20
PI 1-46

Control 1-39
Handler 2-14, 2-18, 2-92, 2-127
Timing 2-132

Pointer Interpretation 1-28
Power Fail 3-34
Power Up Timing 3-21
Priority Transfer Lines 2-121
Process Table References 2-42

Processor
Cycles 2-1
Identification 3-40
Timing 3-15

Program Counting 2-72
Pushdown Stack 3-44

Q
Quadword 1-21

R
Restoring

Concealed Program 2-62
Kernel Program 2-64
Programs by Supervisor 2-62
User Public Program 2-64

s
Saving Flags 2-65
SBus Error 3-33
SC Field 2-87
SCAD Field 2-86
SCADA Field 2-87
SCADB Field 2-87
Section Pointer 1-23
Setup PREFETCH 2-116
SH Field 2-88
Skew Delays 3-25
SPEC Field A-9
SPT Index 1-24, 1-26
Startup /Stop Interface 2-14
SWEEP 3-38
SWEEP DONE 3-38

T
Timing

Clock Control 3-28
Power Up 3-21

TOlO Byte Pointer Fetch 2-136
TRANSFER 2-50,2-120
Translator 1-5
Trap

Cycle 2-42
Handling 2-42

UBR 1-19, 2-67
UPT 1-22

EBox/INDEX-4

u

•

Violation 2-62
Virtual Address 1-19

Adder 2-67
Classification 2-67
Effective 1-11

v

Space Configuration 2-56
VMA 1-15, 1-20,2-70

Control 1-37
Field 2-88
Register 2-70

Wait 2-10
MBox 2-11

Word Request 2-26

w

X,Y,Z
XCTGO 2-24, 2-26
XCTW 2-133
XFER 2-8, 2-55, 2-121

EBoxjINDEX-5

I
I

('.
-1

I
I
I
I

I~
I~

E-<
E-<

~~lg
l __ 6

I~
IB

I
, I

• I
I
I
I

~.

I

EBOX INSTRUCTION EXECUTION UNIT
UNIT DESCRIPTION
EK-EBOX-UD-003

Reader's Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful? --

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? __________ _ Why? _______________________________ ___

Would you please indicate any factual errors you have found.

Please describe your position.

Name _________________________________ Organization

Street _________________________________ Department _____________________ ___

City _______________ _ State _________________ _ Zip or Country

- - - - - - - - - - - Fold Here - - - - - - - - - -

(

-- -- -- -- Do Not Tear - Fold Here and Staple - - - - - -- -- - (

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

I'()sla~l' will he Illiid hy:

Digital Equipmcllt Corporation
Technical Doculllt'litation Dt'partment
146 Main Sired
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO . 33

MAYNARD, MASS.

u

a

