Book 2

Assembling
~ the

Source Program

188

MACRO-10 Assembler

190

191 .

N oo kR RdRMEREMRELOWLWW®WwWoNNNRNNDR

N oo 00 A w N O N R oo

>R oo

—

CONTENTS
Page
CHAPTER 1
INTRODUCTION

MACRO-10 Language - Statements 1-1
Labels 1-2
Operators 1-2
Operands 1-2
Comments 1-3
Symbols 1-3
Symbolic Addresses 1-3
Symbolic Operators 1-4
Symbolic Operands 1-4

The Symbol Table 1-4
Direct Assignment Statements 1-5

Deleted Symbols 1-5
Numbers 1-6
Binary Shifting 1-7
Left Arow Shifting 1-8
Floating~Point Decimal Numbers 1-8
Fixed-Point Decimal Numbers 1-8
Arithmetic and Logical Operations 1-9
Evaluating Expressions 1-10
Numeric Terms 1-10
Address Assignments 1-11
Setting and Referencing the Location Counter 1-11
Indirect Addressing 1-12
Indexing 1-12
Literals 1-12
Multiline Literals 1-13
Instruction Formats 1-13
Primary Instruction Format 1-14
Input/Output Instruction Forr;wcf 1-15
Communication With Monitors 1-16
Operating Procedures 1-16

oL oL

N RN DN N N NN DN NN DD DN NN NDNNDNDNRNRNDNDNDNDN

O R W W W W W W W W W W

NN Noh oo

N -

NN
»n O»;

N NN
. . .
o O O

NN
. .
(S NS]

NN

NN N NN
N o 0w

-—

N =

- NN T R R N R O

.
—

192

CONTENTS (Cont)

CHAPTER 2
MACRO-10 ASSEMBLER STATEMENTS - PSEUDO-OPS

Address Mode: Relocatable or Absolute
Relocation Before Execution ~ PHASE and DEPHASE Statements
Entering Data ’

RADIX Statements

Entering Data Under the Prevailing Radix

DEC and OCT Statements

Changing the Local Radix for a Single Numeric Term
RADIX50 Statement

EXP Statement

Z Statement

Input Data Word Formatting

BYTE Statement
POINT Statement = Handling Bytes
IOWD Statement: Formatting I/O Transfer Words
XWD Statement: Entering Two Half-Words of Data
Text Input
ASCII, ASCIZ, and SIXBIT Statements
Reserving Storage
Reserving a Single Location

BLOCK Statements

Conditional Assembly

Assembler Processing Statements

END Statements

PASS2 Statements

LIT Statements

VAR Statements

PURGE Statements

Listing Control Statements

Assembler Control Statements
REPEAT Statements
OPDEF Statements

Page

2-1
2-3
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-8
2-9
2-9
2-10
2-10
2-11
2-11
2-11
2-12
2-13
2-13
2-14
2-14
2-14
2-14
2-15
2-17
2-17
2-18

W W W W W W w w
NN O AhwN

N N DN NN
[S, TS, T S RS, B S, RS, R BN S

> O 00 O 8 8 O O O
N NN NN N NN
LR N NN

—

7.
7.
7.3

.8.
.8.
.8.3

3
4

1
2

W N

193

CONTENTS (Cont)

SYN Statements
Permanent Symbols
Extended Instruction Statements
Linking Subroutines
EXTERN Statements
INTERN Statements
ENTRY Statements
HISEG Statements
CHAPTER 3
MACROS
Definition of Macros
Macro Calls
Macro Format
Created Symbols
Concatenation
Indefinite Repecr.
Nesting and Redefinition
ASCII Interpretation

CHAPTER 4
_ERROR DETECTION

Teletype Error Messages

CHAPTER 5
RELOCATION

CHAPTER 6

ASSEMBLY OUTPUT

Assembly Listing
Binary Program Output
Relocatable Binary Programs = LINK Format
LINK Formats for the Block Types
Absolute Binary Programs
RIMI10B Format
RIM10 Format
RIM Format
END Statements

Page
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-22

3-1

3-2
3-3
3-5
3-5
3-7
3-8

6-1
6-1
6-2
6-3
6-4
6-4

6-6
6-6

6-1
6-2
7-1
7-2
7-3
7-4

194

CONTENTS (Cont)

Page
CHAPTER 7
PROGRAMMING EXAMPLES
APPENDIX A
OP CODES, PSEUDO-OPS, AND MONITOR 1/0 COMMANDS
APPENDIX B
SUMMARY OF PSEUDO-OPS
APPENDIX C
SUMMARY OF CHARACTER INTERPRETATIONS
APPENDIX D
ASSEMBLER EVALUATION OF STATEMENTS AND EXPRESSIONS
APPENDIX E
TEXT CODES
APPENDIX F
RADIX 50 REPRESENTATION
APPENDIX G
SUMMARY OF RULES FOR DEFINING AND CALLING MACROS
APPENDIX H
OPERATING INSTRUCTIONS
ILLUSTRATIONS
General RIM10B Format 6-7
- RIM10B Loader 6-8
Sample Program, CLOG ' 7-2
Example of Nested Macro 7-3
Two Byte Unpacking Subroutines 7-3
IRPC Example ' 7-4
TABLES

Error Codes 4-1

vi

195

CHAPTER 1
INTRODUCTION

" MAACRO-10 is the symbolic assembly program for the PDP-10, and operates in a minimum of 5K of core
memory in all PDP-10 systems. MACRO-10 is a two-pass assembler. It is completely device indepen-
dent, allowing the user to select standard peripheral devices for input and output files. For example,
a Teletype can be used for input of the symbolic source program, DECtape for output of the assembled

binary object program, and a line printer can be used to output the program listing.

This assembler performs many useful and unique functions, making machine language programming
easier, faster, and more efficient. Basically, the assembler processes the PDP-10 programmer’s source
program statements by translating mnemonic operation codes to the binary codes needed in machine in-
structions, relating symbols to numeric values, assigning relocatable or absolute core addresses for pro-
gram instructions and data, and preparing an output listing of the program which includes notification

of any errors detected during the assembly process.

MACRO-10 also contains powerful macro capabilities which allow the programmer to create new lang-
uage elements, thus expanding and adapting the assembler to perform specialized functions for each

unique programming job.

1.1 MACRO-10 LANGUAGE - STATEMENTS

MACRO-10 programs are usually prepared on a Teletype, with the aid of a text editing program, as a
sequence of statements. Each statement is normally written on a single line and terminated by a car-
riage return-line feed sequence. MACRO-10 statements are virtually format free; that is, elements of
a statement are not placed in numbered columns with rigidly controlled spacing between elements, as

in punched-card oriented assemblers.

There are four types of elements in a MACRO-10 statement which are separated by specific characters.
These elementis are identified by the order of appearance in the statement, and by the separating, or

delimiting, character which follows or precedes the element.

1-1

196

Statements are written in the general form:

label: operator operand , operand; comments (carriage return)

The assembler interprets and processes these statements, generating one or more binary instructions or

data words, or performing an assembly process. A statement must contain at least one of these element.
and may contain all four types. Some statements are written with only one operand; but others may hav
many. To continue a statement on the following line, the control (CTRL) left arrow (~), echoed as 1=,

is used before the carriage return-line feed sequency (3 ! or 3). Examples of program statements are

given in Chapter 7, Figures 7-1 and 7-3.

1.1.1 Labels

A label is the symbolic name, created by the source programmer to identify the statement. If present,

the label is written first in a statement, and is terminated by a colon (:).

1.1.2 Operators

An operator may be one of the 366 mnemonic machine instruction codes (see PDP-10 System Reference
Manual), a command to Monitor, or a pseudo-operation code which directs assembly processing. These
assembly pseudo-op codes are described in this manual, and listed with all other assembler defined

operators in Appendix A.
Programmers may also create pseudo-ops to extend the power of the assembly language.

An operator may be a macro name, which calls a user-defined macro instruction. Like pseudo-ops,
macros direct assembly processing; but, because of their unique power to handle repetitions and to ex-
tend and adapt the assembly language, macros are considered separately (see Chapter 3). Operators

are terminated with a space or tab.

1.1.3 Operands

Operands are usually the symbolic ‘addresses of the data to be accessed when an instruction is executed,
or the input data or arguments of a pseudo-op or macro instruction. In each case, the interpretation of
operands in a statement depends on the statement operator. Operands are separated by commas, and

terminated by a semicolon (;) or by a carriage return-line feed.

197

1.1.4 Comments

The programmer may add notes to a statement following a semicolon. Such comments do not normally
affect assembly processing or program execution, but are useful in the program listing for later analysis

or debugging. The use of the following special characters should be avoided in comments: <> [].

1.2 SYMBOLS

The programmer may create symbols to use as statement labels, as operators, and as operands. A sym-

bol contains from one to six characters from the following set:

The 26 letters, A - Z

Ten digits, 0 - 9

Three special characters: $ (Dollar Sign)
% (Percent)
. (Period)

The first character in a symbol must not be a digit. If the first character is a period, it must not be
followed by a digit. Spaces must not be embedded in symbols. A symbol may actually have more than

six characters, but only the first six are meaningful to MACRO-10.

MACRO-10 accepts programs written using both upper and lower case letters and symbols. (e.g., pro-
grams written using the Teletype Model 37). Lower case letters are treated as upper case in symbols;

additional special characters, and lower case letters elsewhere, are taken without change.

1.2.1 Symbolic Addresses

A-symbol used as a label to specify a symbolic address must appear first in the statement and must be
immediately followed by a colon (:). When used in this way, a symbol is said to be defined. A de-
fined symbol can reference an instruction or data word at any point in the program. A symbol can be
defined as a label only once. If a programmer attempts to define a symbol as a label again, the second
or successive attempt is ignored and an error is indicated. The assembler recognizes only the first

definition. These are legal symbolic addresses:

ADDR

<TOTAL

$SUM:

ABC: DEF: (Both Labels are legal)

198

The following are illegal:

7ABC : (First character must not be a digit.)
LAB (Colon must immediately follow label.)

1.2.2 Symbolic Operators

Symbols used as operators must be predefined by the assembler or by the programmer. If a statement

has no label, the operator may appear first in the statement, and must be terminated by a space, tab,

or carriage return. The following are examples of legal operators: ,
MOVE (A mnemonic machine instruction operator.)
Loc (An assembler pseudo-op.)
ZIpP (Légal only if defined by the user.)

1.2.3 Symbolic Operands

Symbols used as operands must have a value defined by the user. These may be symbolic references to
previously defined labels where the arguments to be used by this instruction are to be found, or the
values of symbolic operands may be constants or character strings. If the first operand references an

accumulator, it must be followed by a comma.
TOTAL: ADD AC1,TAG)

The first operand, AC1, specifies an accumulator register, determined by the value given to the sym-~
bol AC1 by the user. The second operand references a memory location, whose name, or symbolic
address is TAG. If the user has equated AC1 to 17, and the assembler has assigned TAG to the binary
address, 000537, then the assembler inserts 17 in the accumulator field (bits 9 = 12) and 000537 in the
address field (bits 18 - 35) of this instruction. If an accumulator is not specified, but the operator re-~
quirgs one, accumulator 0 is assumed by default. If an accumulator is specifed by the value >178, the

four least significant bits are used.

1.2.4 The Symbol Table

The assembler processor symbols in source program statements by referencing its symbol table, which

contains all defined symbols, along with the binary value assigned to each symbol.

1-4

199

Initially, the symbol table contains the mnemonic op codes of the machine instructions, the Monitor
I/O command mnemonics, and the assembler pseudo-op codes, as listed in Appendix A. As the source
‘program is processed, symbols defined in the source program, as well as new symbols defined by

MACRO-10 for use by this program, are added to the symbol table.
1.2.4.1 Direct Assignment Statements - The progrcmmer'inserfs new symbols with their assigned values
directly into the symbol table by using a direct assignment statement of the form,
symbo!=value)
where the value may be a number or expression. For example,

ALPHA= 5)
BETA= 17)

A direct assignment statement may also be used to give a new symbol the same value as a previously

defined symbol:

BETA= 17
GAMMA= BETA

The new symbol, GAMMA, is entered into the symbol table with the v\alue 17.
The value assigned to a symbol may be changed:

ALPHA= 7)
changes the value assigned in the first example from 5to 7.

Direct assignment statements do not generate instructions or data in the object program. These state-

ments are used to assign values so that symbols can be conveniently used in other statements.

1.2.5 Deleted Symbols

Sometimes a programmer may want to define a symbol in MACRO but not want to have that symbol
typed out by DDT. In such a case, the programmer should define that symbol with a double equal

sign:

FLAG== 200

" FLAG will be assigned the value 200 and will be
a. Fully available in MACRO.
b. Available for type-in with DDT (assuming that symbols were loaded for the program con-
taining FLAG).
c. Unavailable for type~out by DDT.
This is equivalent to defining FLAG by:
FLAG= 200
and then typing
FLAGSEK

to DDT

If a symbol is defined with == and declared internal, then the == will be ignored.

1.3 NUMBERS

Numbers used in source program statements may be signed or unsigned, and are interpreted by the

assembler according to the radix specified by the programmer, where
23 radix < 10

The programmer may use an assembler pseudo-op, RADIX, to set the radix for the numbers which follow.

If the programmer does not use a RADIX statement, the assembler assumes a radix of 8 (octal).

The radix may be changed for a single numeric term, by using the qualifier 1 followed by a letter, D

(for decimal), O (for octal), B (for binary), or F (for fixed-point decimal fractions). Thus,

D1g is stored as - 1010
1010 is stored as 1000
B10 is stored as 0010

The qualifier tL is used for bit position determination of a numeric value. tln generates an octal
value equal to the number of 0 bits to the left of the leftmost 1, if the numeric value n were stored in

a computer word.

1-6

201

Expression Resultant Value
44g zero bits
Lo 44 © 0000000000. . . .0000000000
41 g zer bits
r A\
TLS 41 0000000000. . . .0000000101

-1 0 NI anntin

1.3.1 Binary Shifting

A number may be logically shifted left or right by following it with the letter B, followed by a number,
n, representing the bit position in which the right-hand bit of the number should be placed. Bmay be
any bit position 0 -35 decimal; if B is not used, B35 is assumed; n is taken as modulo 256 decimal.
Thus, the number tD10 is stored as 000000 000012; but tD10B32 is shifted left three binary positions
and stored as 000000 000120; and tD10B4 is shifted left 31 positions, so that its rightmost bit is in bit
4 and stored as 240000 000000.

Binary shifting is a logical operation, rather than an arithmetic one.

The following are legal binary shifts:

182 400000 000000
1817 000001 000000
1835 000000 000001
-1B35 777777 777777 (see explanation below)
e 000000 777777

000000 000001

Note that the following expressions are equivalent:
10B32 = 1O10B32 = 10B42 - 10 = 10B< t D <42-10>>= 10B<t D42-tD10>

The unary operators preceding a value are interpreted first by the assembler before the binary shift. A
leading plus sign has no effect, but a leading minus sign causes the assembler to shift and then to store

the 2's complement.

Binary shifting may operate on numeric terms, as defined in Section 1.3.6.

202

1.3.2 Left Arrow Shifting)

If two expressions are combined with the operator "=", i.e. <m>« <n>, the 36 bit value of expression
m is shifted V bits (where V is the value of expression n) in the direction of the arrow (left) if V is pos-
itive or against the arrow if V is negative. The effective magnitude of V is that of the address of an LSH

instruction.

1.3.3 Floating-Point Decimal Numbers

If a string of digits contains a decimal point, it is evaluated as a floating-point decimal number, and

the digits are taken radix 10. For example, the statement,

17.0) is stored as 205420 000000.

Floating-point decimal numbers may also be written, as in FORTRAN, with the number followed by the
letter E, followed by a signed exponent representing a power of 10. The following examples are valid:
NUMY 2 li-?F.‘lI)

NUM2: 3.E5E2)
NUM3: -547.£25F33)

1.3.4 Fixed-Point Decimal Numbers
As shown in Section 1.3, 1D followed by a numeric term, is used to enter decimal intergers.

Fixed-point decimal numbers (mixed numbers) are preceded by tF followed by a number (not a numeric
term, defined below) which normally contains a decimal point. The assembler forms these fixed-point
numbers in two 36-bit registers, the integer part in the first and the fractional part in the second. The
value is then stored in one storage word in the object program; the integer part to the left of the assumed

binary point, the fractional part to the right.

The binary shift (B) operator is used to position the assumed point. The number 1F123.45B8 is formed in

two registers:

000000 000173 (the integer part)
346314 631462 (the fraction part, left-justified)

The B operator sets the assumed point after bit 8, so the integer part is placed in bits 0-8, and the
fraction part in bits 9-35 of the storage word. In this case, the integer part is truncated from the left
to fit the 9-bit integer field. The fraction part is moved into the 27-bit field following the assumed
point and is truncated on the right. The result is,

173346 314631

1
(assumed point)

If a B shift operator does not appear in a fixed-point number, the point is assumed to follow bit 35, and

the fractional part is lost.

1-8

203

Fixed-point numbers are assumed to be positive unless a minus sign precedes the qualifier:

000000 000173 123 .45

000173 346314 123 .45%17

346314 631462 TF123 .45 -1

777777 777604 StF123.45 :
777604 431463 -tF123.45%17

S 1234551

431463 146316
Negative fixed~point numbers, such as the example above, are assembled as if they were positive num

bers, complemented, and then logically shifted.

1.3.5 Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and logical operators. The following

arithmetical and logical operators may be used.

Operator Meaning

+

Add
Subtract
Multiply
Divide

AND

Inclusive OR

-0 N\ ¥ |

The assembler computes the 36-bit value. of a series of numbers and defined symbols connected by
arithmetic and logical operators, truncating from the left, if necessary. The following examples

show how these arithmetic and logical operators are written in statements.

R= AS+X11-2)
MILT ACT+7,KRHO/31,
MOVF NA+3,R5TA-5)

Combinations of numbers and defined symbols using arithmetical and logical operators are called ex-

pressions.

1-9

1.3.6 Evaluating Expressions

When combining elements of an expression, the assembler first performs unary operations (leading + or
then binary shifts. The logical operations are then-done from left to right, followed by multiplications
and divisions, from left to right. Division always truncates the fractional part. Finally, additions and

subtractions are performed, left to right. All arithmetic operations are performed modulo 235,
For example, in the statement:
TRG: TRO 3,1+0n80)

The first operand field is evaluated first; the comma terminating this operand indicates that this is an
accumulator. In the second operand field, the logical AND is performed first, the result is added to

one, and the sum is placed in the memory address field of the machine instruction.

To change the normal order of operations, angle brackets may be used to delimit expressions and indi-

cate the order of computation. Angle brackets must always be used in pairs.

Expressions may be nested to any level, with each expression enclosed in a pair of angle brackets. The
innermost expression is evaluated first, the outermost is evaluated last. The following are legal expres-
sions:

A+ /5

<< =D~ O>¥<h-gl -X>>+]

1.3.7 Numeric Terms

A numeric term may be a digit, a string of digits, or an expression enclosed in angle brackets. The
assembler reduces numeric terms to a single 36-bit value. This is particularly useful when specifying

operations such as local radix changes and binary shifts, which require single values.

For example, the 1D operator changes the local radix to decimal for the numeric term that follows it.

The number, 2310, may be represented by

D
OrtN<H*2 417>
or T <TEN#2 +THRFF >

but 23

10 May not be written;

tD190-77

because the tD operator affects only the numeric term which follows it, and in-this example the second

term (77) is taken under the prevailing radix, which is normally octal.

The B shift operator is preceded by a numeric term (the number to be shifted) and is followed by another

term (the bit position of the assumed point). The following are legal:

tF167817

*B10211B8

56685

<MARK + SIGN>B<PT-XXV>

A bracketed numeric term may be preceded by a + or a - sign.

1.4 ADDRESS ASSIGNMENTS h

As source statements are processed, the assembler assigns consecutive memory addresses to the instruc-
tion and data words of the object program. This is done by incrementing the location counter each time
a memory location is assigned. A statement which generates a single object program storage word in-
crements the location counter by one. Another statement may generate six storage words, incremeﬁting

the location counter by six.

The mnemonic instruction and Monitor command* statements generate a single storage word. However,
direct assignment statements and some assembler pseudo-ops do not generate storage words, and do
not affect the location counter. Other pseudo-ops and macros may generate many words in the object

program.

1.4.1 Setting and Referencing the Location Counter

The MACRO-10 programmer may set the location counter by using the pseudo-ops, LOC and RELOC,
which are described in Chapfer 2. He may reference the location counter directly by using the symbol,

point (.). For éxample, he can transfer fo the second previously assigned storage word by writing:

JRST .-2)

*The terms Monitor command (as used here) and programmed operator are synonymous.

1-11

1.4.2 Indirect Addressing

The character @ prefixing an operand causes the assembler to set bit 13 in the instruction word, indica-
ting an indirect address. For an explanation of indirect addressing and effective address calculation,
see the PDP-10 System Reference Manual, DEC-10-HGAA-D (page 1-7).

1.4.3 Indexing

If indexing is used to increment the address field, the address of the index register used is entered in pa-
rentheses, as the last bcrf of the memory reference operand. This is normally a symbolic name defined
by a direct assignment statement, or an octal number in the range 1-17, specifying } of the 15 index

registers. However, the address of the index register may be any legal expression or expression element.

This is a symbolic, indirect, indexed, memory reference:

A TADD 450NUVCTIT))

NOTE

The parentheses cause the value of the enclosed ex-
pression to be interpreted as a 36-bit word with its two
halves interchanged, e.g., (17) is effectively
0000170000008.

1.4.4 Literals

In a MACRO-10 statement, a symbolic data reference may be replaced by a direct representation of
the data enclosed in square brackets. This direct representation is called a literal. The assembler
stores the bracketed data in its literal table, assigns an address to the first word of the data and inserts
that address in the machine instruction.

A literal may be any term, symbol, expression or statement, but it must generate data. Statements
which do not generate data, i.e., some pseudo-ops, such as RADIX, and direct assignment statements,

may not be written as literals. Literals may be nested, up to 18 levels.

Here is a simple example. Byte instructions must reference a byte pointer word, like this:

LDB 4,8P)
BP: POINT 10,A+3.14)

(POINT is a speudo-op which sets up a byte pointer Word.) A literal can be used to insert the POINT

statement directly. (The use of literals is also shown in Chapter 7, Figure 7-3.)
LDB 4+ [POINT 10,A+35141) B

I--IZ;i

207 -

1.4.4.1 Multiline Literals - MACRO optionally allows multiline literals. The following is legal:

\

GETCHR: SO0SG 1IBUF+2 “ 3ANY CHARS LEFT?
PUSHJ P, CIN N> - 5NOs> READ SOME IN

PORPJ P, 3NO UNUSUAL CONDITIONS
STATZ N»>749029 3CHECK FOR ERRORS

JRST [MOVEI E»> [SIXBIT /INPUT ERROR/]
JRST ERRPNT] 3PUBLISH ERROR MESSAGE

JRST ENDFIL] SEND OF FILE HANDLER
ILDB AC,IBUF +1 3PICKUP NEXT CHAR
POPJ P> 5TRA 154

Two new pseudo-operations have been added to control whether or not this feature is available. Use of

these pseudo-ops is required since

MOVE AC>[SIXBIT/TEXT/

is legal in MACRO-10, even though the closing right bracket (1) of the literal has been c;mitfed. In

normal mode, MACRO allows such an unterminated literal. However, the pseudo-op

’

MLON

causes the assembler to consider all code following a left bracket as part of a literal , until such time
as the assembler processes a matching right bracket. Thus, carriage-return, line-feed no longer ends

N
a literal, but rather the programmer must insert a right bracket. The pseudo-op -
MLOFF

places MACRO back into the (initial) compatibility mode in which literals may occupy only a single

line.
The symbol . (currenf location) is not changed by the use of literals:

It retains the value it had before the literal was entered.

1.5 INSTRUCTION FORMATS

There are two types of machine instruction word formats: primary and input/output..

208

The 366 PDP-10 machine instructions are fully described in the PDP-10 System Reference Manual and
listed alphabetically in Appendix A of this manual. Monitor 1/O commands, or programmed operators,

have the same formats. (See Monitor manuals.)

The primary instruction statements may have two operands: (1) an accumulator address and (2) a memory

address. A memory address may be modified by indexing and indirect addressing.

1.5.1 Primary Instruction Format

>

After processing primary instruction statements, the assembler produces machine instructions in the

general 36-bit word format shown below:

0 8 9 12 13 14 17 18 35

I O i

« _)
v v
INSTRUCTION INDIRECT ADDRESS
PART 8IT . PART

ACCUMULATOR INDE X 10-0061
REGISTER

In general,, the mnemonic operation code, or operator, in the symbolic statement is translated to its
binary equivalent and placed in bits 0-8 of the machine instruction. The address operand is evaluated
and placed in the address part (bits 18~35) of the machine instruction. The assembler assigns sequen-
tial binary addresses to each statement as it is processed by means of the location counter. Labels are
given the current value of the location counter and are stored in the assembler’s symbol table, where
the corresponding binary addresses can be found if another instruction uses the same symbol as an ad-

dress reference.

The 16 accumulators are specified by writing them (symbolically or numerically) as operands in the
statement, followed by a comma. The indirect address bit is set to 1 when the character @ prefixes a
memory reference. Indexing is specified by writing the index register used in parentheses immediately
following the memory reference. (All PDP-10 accumulators, except gccumulator 0, may be used as
index registers.) Actually, expressions enclosed in parentheses (in the index register position) are
evaluated as 36-bit quantities; their halves are exchanged, and then each half is added into the cor-

responding half of the binary word being assembled. For example, the statements

MOVS 1T AC»(1.0) 3MOVE 1.0 TO AC)
MOVSI AC,(SIXBIT /DSK/)

are equivalent to

MOVST AC-201400 sMOVE

1.8 TO AC
MOVST AC.,446353 2

To illustrate this general view of assembler processing, here is a typical symbolic instruction. Assume

that AC17, TEMP and XR are defined symbols, with values of 17, 100, and 3, respectively.
LABEL: ADD AC17,@TEMP (XR) ;STATEMENT EXAMPLE ~

This is processed by the assembler and stored as a binary machine instruction like this:

<
o 8 9 12 13 14 17 18 35
o 1 0 1 1 0 © OI! 1 1 1]\[0 0 1J0 © 0 0 00 0O 0 0 0 0 1 ¢ 0 0 0 0 0
—
/ g —
INSTRUCTION INDIRECT ADDRESS
PART 8T PART
ACCUMULATOR INDEX
REGISTER - 10-0062

.

The mnemonic instruction code, ADD, has been translated to its octal equivalent, 270, and stored in
bits 0-8. The first operand specifies accumulator 178. The effective memory address will be found at

execution time by adding the contents of index register 3 fo the value of TEMP, then taking this value

as the address of the word whose address point; to the word to be added to AC17.

A comment, STATEMENT EXAMPLE, follows a semicolon. Such comments do not affect the program in
any way, but are printed in the output listing.

1.5.2 Input/Output Instruction Format

In the eight PDP-10 I/O statements, the first operand is either a peripheral device number or a device
mnemonic (see PDP-10 User's Handbook for complete list). - The second operand is a memory address.

For example,
READ: DATAI PTR,>@NUM(4))

requests that data be read in from a paper-tape reader, to be stored at the indirect, indexed, address

given.

210

The format for 1/O instruction words is shown below:

0 2 3 9 10 12 13 14 17 18 35
L] e |
-
DEVICE INDIRECT ADDRESS
SELECTION BIT PART
1/0 INSTRUCTION INDE X
INSTRUCTION PART REGISTER 10-0063

1.6 COMMUNICATION WITH MONITORS

Programs assembled with MACRO-10 which operate under executive control of a Monitor must use

Monitor facilities for device independent 1/O services. This is done by means of programmed operators

(operation codes 040 through 077) such as CALL, INIT, LOOKUP, IN, OUT, and CLOSE.

Additional Monitor commands are available to allow the user program to exercise control over central

. ’ .
processor trapping, to modify its memory allocation, and other services, which are described in the

Monitor programmer's manuals.

Monitor commands are listed in Appendix-A.

1.7 OPERATING PROCEDURES

Commands for loading and executing MACRO-10 are contained in the PDP-10 System User's Guide

(DEC-10-NGCC-D).

1-16

21

CHAPTER 2

MACRO-10 ASSEMBLER
STATEMENTS - PSEUDO-OPS

Assembler statements of pseudo-ops direct the assembler to perform certain assembler processing opera-
tions, such as converting data to binary under a selected radix, or listing selected parts of the assembled

object program. In this chapter, these assembler processing operations are fully described.

NOTE

The pseudo-op name must follow the rules for construct-

ing a symbol (refer to paragraph 1.2) and must be termi-

nated by a character other than those listed in paragraph
1.2 as valid symbolic characters. (Normally, a space or
tab is used as a terminator.)

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE

MACRO-10 normally assembles programs with relocatable binary addresses, so that the program can be
loaded anywhere in memory for execution as a function of what has been previously loaded. When
desired, the assembler will also assign absolute location addresses, either for the entire p'rogram or for

selected parts. Two pseudo-ops control the address mode: RELOC and LOC.

RELOC N

This statement sets the location counter to n, which may be a number or an expression, and causes the
assembler to assign relocatable addresses to the instructions and data which follow. Since most re-

locatable programs start with the location counter set to 0; the implicit statement,

-

RELOC 0)

begins all programs, and need not be written by the ;;rogrcmmer who wants his program assembled with
relocatable addresses .

LOC N)
This statement sets the location counter to n, a number or an expression, and causes the assembler to
assign absolute addresses, beginning with n, to the instructions and data which follow. If the entire

program is to be assigned absolute locations, a LOC statement must precede all instructions and data.

2-1

212

If n is not specified
(Loc)

zero is assumed initially.

If only a part of the program is fo be assembled in absolute locations, the LOC statement is inserted at

the point where the assembler begins assigning absolute locations. For example, the statement,
LOC 2008)

causes the assembler to begin assigning absolute addresses, and the next machine instruction or data

word is stored at location 2008.

To change the address mode back to relocatable, an explicit RELOC statement is required. If the pro-

grammer wants the assembler to continue assigning relocatable addresses sequentially, he writes,
RELOC)

To switch back to the next sequential absolute assignment, he writes,
LOC p

Thus, the programmer is not required to insert a location counter value in either a LOC or RELOC
statement, and unless he does, both the relocatable coding and the absolute coding will be assigned
sequential addresses. This is shown in the following skeleton coding. The single quote mark is used

here, and in MACRO-10 listings, to identify relocatable addresses.

Location.Counter Program
200000 " ADD 1,X JRELOC © IS IMPLICIT.
P000T74" LOC 1000 3CHANGES TO ABSOLUTE. STARTING
001000 SUB S,TOT SWITH 001000 .
./
201034 RELOC 3SETS LOCATION COUNTER TO 74.
PRRBT 4" ADD 2,XAT .
0Do0DT5" LOC 3SWITCHES LOCATION COUNTER
201034 EXP A-X+7 SJBACK TO ABSOLUTE SEQUENCE.

When operating in the relocatable mode, the assembler determines whether each location in the object

program is relocatable or absolute, using an algorithm described in Chapter 5.

2.1.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be moved into other locations for execution. This feafure is often used to re-
locate a frequently used subroutine, or iterative loop, into fast memory (accumulators 0-178) just prior

to execution.

To use this feature, the subroutine is assembled at sequential relocatable or absolute addresses along
with the rest of the program, but the first statement before the subroutine contains the assembler opera-
for,bPHASE, followed by the address of the first location of the block into which the subroutine is to be
moved prior to execution. All address assignments in the subroutine are in relation to the argument of
the PHASE statement. The subroutine is terminated by a DEPHASE statement, which requires no oper-

ands, and which restores the location counter.

In the following example, which is the central loop in a matrix inversion, a block transfer instruction

moves the subroutine LOOP into accumulators 11-16.

: MOVE [XUD LOCGPX>LGOF]
Relocatable BLT LOOP+4

Address JRST LGCP
TS L00Px: PHASF 11

LOOP : MOUN A (XD
FMP MPYR
Absolute FADM A (Y)
Address SOJGE X, «-3
JRST MALN
DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE instruction represents accumu-

lator 14, -
2.2 ENTERING DATA

2.2.1 RADIX Statements

When the assembler encounters a numerical value in a statement, it converts the number to a binary

representation reflecting the radix indicated by the programmer. The statement,

RADIX N)

24

where n is‘a decimalinumber, 2 <n <10, sets the radix to n for all numerical values that follow, unless

another RADIX statement changes the prevailing radix or a local radix change occurs (see below).

For example, if the programmer wants the assembler to interpret his numbers as decimal quantities,

then the prevailing radix must be set to decimal before he uses decimal numbers.
RADIX 10)
The statement, RADIX 2, sets the prevailing radix to binary.

The implicit statement, RADIX 8, begins every-program; if the programmer wants to enter octal numbers,

this statement is not necessary.

2.2.2 Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed by a carriage return:
765432234567)

Data may be labeled and contain expressions:
LAB: 456+A+B/<C+D>)

Data may also be entered by first using a direct assignment statement to place a symbol with an assign-
ed vdlue in the symbol table, and then using the symbol to insert the assigned value in the object
program. For example, the direct assignment statements,
A=2 3
B=5)

cause two entries in the symbol table. The following statement enters the sum of the assigned values in

the object program at symbolic address REX.

REX: A+B)}) REX contains 000000 000007

v
'

The radix can also be changed Iocaliy, that is, for a single statement or a single value, after which

the prevailing radix is automatically restored, as described in Section 1.3.

215

2.2.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer writes:

DEC N)N}NJ.-.N)

where all of the numbers and expressions are to be interpreted as decimal numbers. The numbers or

expressions following the operator are separated by commas, and each will generate a word of storage.
OCT N>N>NsesoN)

Changes the local radix to octal for this statement only, and generates a word of memory for each

number or expression.
The statement,
DEC 1054.553+141656.03E-2653)

generates five decimal words of data.

2.2.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric term is prefixed with 1D tO, 1B, -

or 1F, as explained in Chapter 1. If an expression is used, it must be enclosed in angle brackets,
tD<A+B-C/200>

These prefixes may generate a word, or part of an instruction word. The statement,

TOTAL2:MOVE tD10,ABZ)

causes the contents of ABZ to be moved to qccumulutor 128.

When the assembler encounters a numeric term, it forms the binary representation in a 36-bit register

under the prevailing or local radix. If the quantity is a part of an instruction, it is truncated to fit

in the required field.
For example , the accumulator field must have a final value in the range 0—178. In the statement,

MOVE 1tD6B,ABZ }

216 .

the assembler first interprets the accumulator address in a 36-bit register, forming the integer
000000000074: but takes only the rightmost four bits and places them in the accumulator field of the

instruction, which results in the selection of accumulator 148.

2.2.5 RADIX50 Statement

Another radix changing statement. is available, but it is used primarily in systems programming. This

is RADIX50 n, sym) which is used by the assembler, PDP-10 Loader, DDT, and other systems programs
to pack symbolic expressions into 32 bits and add a 4-bit code field n in bits 0-3. This is explained in
Appendix F of this manual. (The mnemonic SQUOZE may be used in place of RADIX50.)

2.2.6 - EXP Statement

Several numbers and expressions may be entered by using the EXP statement:

EXP Xs4, tD65,HALF,B+362-A)

which generates one word for each expression; five words were generated for the above example.

2.2.7 Z Statement

A zero word can be entered by using the operator, Z.
LABEL: 2Z)

generates a full word of all zeros at LABEL. If operands follow the Z, the assembler forms a primary

machine instruction, with the operator field and other unknown fiélds zeroed. In the statement,
Z 35)

the assembler finds an accumulator field, but no address field, and generates this machine instruction:

000140 000000.

217

2.3 INPUT DATA WORD FORMATTING

2.3.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit words. Bytes‘ of any length,

from 1 to 36 bits, may be entered by using a BYTE statement .
‘BYT‘F (N) XsX5X)

The first operand (n) is the byte size in bits. It is a decimal number in the range 1-36, and must be
enclosed in parentheses. The operands following are separated by commas, and are the data to be
stored. If an operand is an expression, it is evaluated and, if necessary, truncated from the left to the

* specified byte size. Bytes are packed into words, starting at bit 0, and the words are assigned sequent-
ial storage locations. If, during the packing of a word, a byte is too large to fit into the remaining

bits, the unused bits are zeroed and the byte is stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are 'entered:
LARFE]L ¢ RYTE (12)35,177,0)

This assembles at LABEL as, 0005 0177 0316, where N=316.

The byte size may be altered by inserting a new byte size in parentheses immediately following any
operand. Notice that the parentheses serve as delimiters, so commas must not be written when a new

byte size is inserted. The following are legal:
RYTE (6)5(14INT(36,2,5)

where 5 is entered in a 6-bit byte, NT in the following 14-bit byte, 6 in the following 3-bit byte,
followed by 2 and 5 in 3-bit bytes. A BYTE statement can be used to reserve null fields of any byte

size. If two consecutive delimiters are found, a null field is generated.

BYTE (18155
.

When the assembler finds two delimiters, it assembles a null byte. In this case, 000000 000005.
To enter ASCII characters in a byte, the character is enclosed in quotation marks.

BYTE C7ITA")

Text handling pseudo-ops are discussed in Section 2.3.4. An example of the use of the BYTE statement

is given in Chapter 7, Figure 7-3.
-
- 2-7

218

2.3.2 POINT Statement - Handling Bytes

Five machine instructions are available for byte manipulation. These instructions reference a byte

pointer word, which is generated by the assembler from a POINT statement of the form,
LABEL: POINT s, address, b) (and b are decimal)

where the first operand s is a decimal number indicating the byte size, the second operand is the
address of fh\e meméry location which contains the byte, and the third operand, b, is the bit position
in the word of the right-hand bit of the byte (if b is not specified, the bit position is the nonexistent
bit to the left of the bit 0). The address specified in the second operand may be indirect and indexed.
If the byte size is not specified, MACRO-10 assumes 36 bits.

In the following example, an LDB (load a byte from a memory location into an accumulator) and an
ILDB instruction are used, along with three assembler statements. The ILDB instruction "increments"

AC to look like AB, then does a load byte; the effect of the two instructions is the same.

200008 ©S2000 0V0000 AA: BYTE (615
o0PPO1 369620 0BOOBD' AB: POINT 6,AA»5
200002 440620 00000 AC: POINT 6s,AA .
000003 135120 ©0P0B1 - START: LDB 3,AB
000004 134140 0QO00R2° ILDB 3,5AC

The first statement enters the quantity 5 in a 6-bit byte at symbolic address AA which is 0. The

second statement is for reference by the load byte instruction. When the LDB is executed, the machine
goes to AB for the byte size, its address, and bit position. In this case, it finds that the byte size is

6 bits, the byte is located in the word AA, and the right-hand bit of the byte is in bit 5. The byte is
then loaded into accumulator 3, where' it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the byte pointer word in similar ways.
The deposit byte (DPB) insiruction takes a byte from an accumulator and deposits it, in the position
specified by the pointer word, in a memory word.

The increment byte\i)ointer (IBP) instruction increments the bit position indicator (the third operand in
the referenced POINT word) by the Byte size. This is useful when loading or depositing a string of

bytes, using the same byte pointer word.

2-8

219)

The increment and load byte (ILDB) and increment and deposit byte (IDPB) instructions increment the

byte pointer word by the byte size before loading or depositing.

An example of the use of the POINT statement is given in Chapter 7, Figure 7-3.

2.3.3 IOWD Statement: Formatting 1/O Transfer Words

The assembler generates 1/O transfer words in a special format for use in BLKI and BLKO and all four

push-down instructions. The general statement is,
10WD N,M)

where two operands, which may be numbers or expressions, follow the IOWD operator. This statement
generates one data word. The left half of the assembled word contains the 2' complement of the first
operand n, and the right half-word contains the value of the second operand m, minus one. For

example,
10WD 6, 1D256)

assembles as 777772 000377 .

2.3.4 XWD Statement: Entering Two Half-Words of Data)

The XWD statement enters two half-words in a single storage word. It is written in the form,
XWO LHW,RHW)

where the first operand is a symbol or expression specifying the left half-word, and the second operand
specifies the right half-wrod. Both are formed in 36-bit registers and the low order 18-bits are placed

in the half-words. Three examples follow:

XWD ALB) |
XWD SUM+2,DES+S)
XWD STARTEND)

. XWD statements are used to set up pointer words for block trarsfer instructions. Block transfer pointer
words contain two 18-bit addresses: the left half is the starting location of the block to be moved, and

the right holf is the first location of the destination. '

23.5 Text Input

The assembler translates text written in full 7-bit ASCII or.6-bit compressed ASCII. It will also format
7-bit ASCII with a null character at the end of text, if desired. These codes are listed in Appendix E.

In all three text modes, the printing symbols in the code set are translated to their binary representation.

In 7-bit ASCII, five control characters are also accepted:

Horizontal Tab

Line Feed)
Vertical Tab -) ,
Form Feed

Carriage Return

To translate and store a single word containing as many as five 7-bit ASCII characters, right-justified,

the input characters are simply enclosed in quotation marks.

“AXE") is stored as .
0 0000000 0000000 1000001 1011000 1000101
0 null null A X E

Notice that characters are right-justified, and bit 0, which is not used, is set to zero.

Lo,
2.3.5.1 ASCIl, ASCIZ, and SIXBIT Statements - To enter one or more words of text characters, the
operators ASCII, SIXBIT, and ASCIZ are used. The delimiter for the string of text characters is the first
nonblank character following the character that terminates the operator (refer to the note on page 2-1).
The binary codes are left-justified. Unused character positions are séf to zero (null). Text is terminated
by repeating the initial delimiter. The statement,

ASCI1 "AXE")

assembles as,

1000001 1011000 1000101 0000000 0000000 0
A "X E noll null O

The operator ASCIZ (ASCII Zero) guarantees a null character at the end of text. If the number of

characters is a multiple of five, another all zero word is added. For example,

ASCTZ/"AXE"/)

21

assembles as,

0100010 1000001 1011000 1000101 0100010 0O
n A X E n

followed by another word of zeros.

0000000 0000000 0000000 0000000 0000000 O

null

When the full 7-bit ASCII code set is not required, the 64-character 6-bit subset may be entered, using
the SIXBIT operator. Six characters are left~justified in sequential storage words. Format of the SIXBIT
statement is the same as for ASCII statements. To derive SIXBIT code:

a. Convert lower case ASCII characters to upper case characters.
b. Add 408 to the value of the character.

c. Truncate the result to the rightmost six bits.

2.3.6 Reserving Storage

The programmer can reserve single locations, or blocks 'of many locations for use during execution of

his program.

2.3.6.1 Reserving a Single Location - The number sign (), suffixing a symbol in an operand field,
is used to reserve a single location. The symbol is defined, entered in the assembler's symbol table,

and can be referenced elsewhere in the program without the number sign. For example,
LAB: ADD 3,TEMP#)

reserves a location called TEMP at the end of the program, which may be used to store a value entered
at some other point in the program. This feature is useful for storing scalars, and other quantities which

may change during execution.

2.3.6.2 BLOCK Statements ~ To reserve a block of locations, the BLOCK operator is used. It is
followed by a single operand, which may be a number or an expression, indicating the number of words

to be reserved. The assembler increments the location counter by the value of the operand. For

222) ~

example, -
MATRIX: BLOCK Nx*M

reserves a block of N*M words starting at MATRIX for an array whose dimensions are M and N.

2.4 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional basis depending on conditions

defined by an assembler IF statement. The general form is,

IF Ns <eeoeeccocescoscese>

where the coding within angle brackets is assembled only if the first operand, n, meets the statement

requirement .

The IF statement operators and their conditions are listed below:

Operator Assemble angle-bracketed coding IF:

IFE No» <eos> ﬂ=0, or blunk

IFG N» <eee> n>0

IFGE N> <eoo> n=0,o0rn>0

IFL N» <eu.> n <0

IFLE N» <ese> n=0, or n <0

IFN Ns <eeoe> n=0

IFls <eee>

encountered during pass 1

IF2, <eee>
’ encountered during pass 2

The following conditional statements operate on character strings. Arguments are interpreted as 7-bit
ASCII character strings, and the assembler makes a logical comparison, character-by~character to

determine if the condition is met.

The coding within the third set of angle brackets is assembled if the character strings enclosed by the

first two sets of angle brackets:

IFIDN <A-Z> <A-Z>5<e¢se> (1) are identical
IFDIF <A-Z> <A~X>5<+e¢e> (2) are different

These statements, IFIDN and IFDIF, are usually used in macro expansions (see Chapter 3) where one or

both arguments are dummy variables.

2-12

223

In the following conditional statements, assembly depends on whether or not a symbol has been defined.
The coding enclosed in angle brackets is assembled_if,

IFDEF SYMBOL, <...> this symbol is defined.
IFNDEF SYMBOL> <eo.> this symbol is not defined.

The last pair of conditional statements is followed by a single bracketed character string, which is

either blank or not blank, and which is followed by conditional coding in brackets.
The coding enclosed in the second set of angle brackets is assembled if,

IFB <evee>5<ecana> the first operand is blank .
IFNB <ees>s<eccess> the first operand is not blank .

A blank field is either an empty field or a field containing only the ASCII characters space (408) or

fab (11 8) .

2.5 ASSEMBLER PROCESSING STATEMENTS

These statements direct the assembler to perform various kinds of processing .

2.5.1 END Statements

The END statement must be the last statement in every program. A single operand may follow the END
operator toAspecif)l' the address of the first instruction to be executed. Normally this operand is given
only in the main program; since subprograms are called from the main program, they need not specify

a starting address.
END START)

When the assembler first encounters an END statement , it terminates pass 1 and begins pass 2. The
END also terminates pass 2, after which the assembler automatically assembles all previously defined,

literals starting at the current location.*

The following processing operations can be performed at any point in the program.

*The END statement is also used to specify a transfer word in some output file formats. (See
Section 6.2.2.4.)

224) .

2.5.2 PASS2 Statements
PASS2)

This statement switches the assembler to pass 2 processing for the remaining coding. Coding preceding
this statement will have been processed by pass 1 only. This is used primdrilyxfor debugging, such as

testing macros defined in the pass 1 portion.

The two assembly operators, LIT and VAR, are used to control assembly allocation of storage.

2.5.3 LIT Statements
LIT)

This statement causes literals that have been previously defined to be assembled, starting at the current
location. ' If n literals have been defined, the next free storage location will be at location counter

plus n. Literals defined after this statement are not affected.
2.5.4 VAR Statements

VAR)

This statement causes symbols which have been defined by suffixing with the # sign in previous state-
ments to be assembled as block statements. This has no effect on subsequent symbol definitions of the

same type.
If the LIT and VAR statements do not appear in the program, all literals and variables are stored at the

end of the program.

2.5.5 PURGE Statements

The PURGE statement is used to delefe defined symbols. Its general form is:
PURGE symbol, symbol, symbol }

where each operand is a user-created label, operator, or macro call which is to be deleted from the
assembler’s tables. The PURGE statement is normally used at the end of programs to conserve storage .

Purged symbol table space is reused by the assembler.

2-14

25

If the programmer uses the same symbol for both a macro call and/or OPDEF and for a label, a PURGE
statement deletes the macro call or OPDEF. A repeat of the symbol in the PURGE statement also
purges the label. For example, the following statement purges both: '

PURGE SOLV,SOLV)

The first SOLV purges the macro call; the second SOLV purges the label.

2.5.6 Listing Control Statements

As the source program statements are processed during pass 2, the program listing is normally printed on
a line printer or a Teletype, depending on the listing file device specified. A sample listing is shown

in Figure 7-1.

From left to right, the standard columns contain the location counter, the instruction or data is octal
(divided into two 6—digit columns for easier reading), and the symbolic instruction or data, followed
by comments. Relocatable object-code addresses are suffixed by a single quote mark ('), which may

occur in either the left or right half.

A line printer listing dlways begins at the top of a page, and up to 55 lines are printed on each page.
Consecutive page numbers are printed in the upper right-hand corner of each page.

Listing is suppressed within macro expansions, so that only the macro call and any succeeding lines that

generate object program coding are listed.

These standard listing operations can be augmented and modified by using the following listing control

statements .

TITLE NAME) The single operand may contain up to 60 characters
which will be printed on the top of each page. The
first six characters of the title appear in the assembl-
ed program as the program name. If no title is given,
the assembler inserts *. MAIN". The program name
given in the TITLE statement is used when debugging
with DDT to gain access to the program's symbol
table.

SUBTTL SUBTITLE The single operand may contain up to 40 characters.
It is printed as the second line at the top of each
page. If the subtitle is changed by another SUBTTL
statement , the new subtitle appears in the second
line of the following page.

226

PAGE) This statement causes the assembler to skip to the
top of the next page. (A form feed character in
the input text has the same effect.)

XLIST) This statement causes the assembler to stop listing
the assembled program. The listing printout actually
starts at the beginning of pass 2 operations. There-
fore, to suppress all program listing, XLIST must be
the first statement in the program. If only a part of
the program listing is to be suppressed, XLIST is in-
serted at any point to stop listing from that point .

LIST) Normally used following an XLIST statement to re-
sume listing at a particular point in the program.
The LIST function is implicitly contained in the
END statement .

LALL) This statement causes the assembler to list everything
that is processed including all text, macro expansions,
list control codes, and repeats, all of which are sup-
pressed in the standard listing.

XALL) Normally used following a LALL statement to resume
standard listing with all text, macro expansions, list
control codes and repeats suppressed

NOSYM . The assembler normally prints out the symbol table
at the end of the program, but the NOSYM statement
suppresses the symbol table printout .

TAPE) This pseudo-op causes the assembler to begin assem-
bling the program contained in the next source file
in the MACRO command string. For example,

.R MACRO
*DSK:BINAME ,LPT: <TTY:,DSK:MORE
PARAM =6

TAPE

1z

would set the symbol PARAM equal to 6 and then
assemble the remainder of the program from the
source file DSK:MORE. Since MACRO is a 2-
pass assembler, the TTY: file would probably be
repeated for pass 2:

END OF PASS 1
PARAM=6
TAPE

tZ:

Note that all text after the TAPE pseudo-op is
ignored.

2-16

27

PRINTX MESSAGE? This statement, when encountered, causes the single
operand following the PRINTX operator to be typed
out on the TTY. This statement is frequently used
to print out conditional information. PRINTX state-
ments are also used in very long assemblies to report
the progress of the assembler through pass 1.

The operand is treated as a comment and will be

. output on the error message media. It is not counted
as an error, but if error messages are suppressed,
PRINTX messages are also suppressed.

REMARK COMMENTS) The REMARK operator is used for statements which
contain only comments. Such statements may also
be started with a semi-colon.

2.5.7 Assembler Control Statements K

2.5.7.1 REPEAT Statements ~ The statement '

REPEAT N, <ee.>)

-

causes the assembler to repeat the coding enclosed in angle brackets n times. If more than one instruc-

tion or data word is to be repeated, each is delimited by a carriage return. For example,

ADDX: REPEAT 3, <ADD 6,X(4))
ADDI 451>}

assembles as,

ADDX: ADD 6,X(4)
ADDI 4,1
ADD 65XC4)
ADDI 4-1
ADD 6,X(4)
ADDI 4>1

Notice that the label of a REPEAT statement is placed on the first line of the assembled coding. REPEAT

statements may be nested to any level . The following simplified example shows how a nested REPEAT

statement is interpreted.

REPEAT 35<Aj
REPEAT 2,<B)
: co)
D>)

228

assembles as,

1T

NOTE

Brackets indicate repetition.

COITVOTDPOODOTD>OOCTRDD
LI Lt I T

T

2.5.7.2 OPDEF Statements - The programmer can define his own operators using an OPDEF statement ,

which is written in the form:

OPDEF_ SYM {STATEMENTI1)

!
where the first operand is defined as an operator, whose function is defined by the second operand,
AN
which is enclosed in square brackets. The second operand is evaluated as a statement, and the result

is stored in o 36-bit word. For example,
OPDEF CAL1 [USRUUOZ

defines CAL1 as an operator, with the value 030000 000000. CAL1 may now be used as a statement

operator,
M3N14H. OP1234 CAL1 31234
which is equivalent to,

D3040 BN1234 Z 3,1234(30000)

When MACRO-10 encounters a user-defined operator, it assembles a single object-program storage

word in the format of a primary instruction word (see Chapter 1). The defined 36-bit value is modified

by accumulator, indirect, memory address and index fields as specified by the user-defined operator .

229

For example,

OPDEF CAL [MOVE 1,@SYM(2>1)
CAL 1,BOL(2))

The CAL statement is equivalent to:

MOVE 2,@SYM+BOL(4))

,

In this modification the accumulator fields are added, the indirect bits are logically ORed, the memory

" address fields are added, and the index register addresses are added.

2.5.7.3 SYN Statements - The statement
SYN symbol, symbol

defines the second operand as éynonbmous with the first operand, which must have been previoﬁsly de-
fined. Either operand may be a symbol or a macro name. If the first operand is a symbol, the second
is defined as a symbol with the same value. If the first is a macro nu‘me, the second becomes a macro I
name which operates identically. If the first is a machine, assembler, or user-defined opetator, the
second will be inrérprered in the same manner. If the first operand in a SYN statemerit has been pre-

viously defined as both a label and as an operator, the second operand is synonomous with the label.
The following are legal SYN statements:

SYN KsX) S5IF K=5, X=5'
SYN FAD,ADD)
SYN END,XEND)

2.5.7.4 Permanent Symbols - Redefinition of permanent symbols (e.g., device names like DIS) is

permitted. Macro takes the newly defined value, but also flags the line with a "Q" warning message.

2.5.7.5 Extended Instruction Statements ~ For programming convenience, some extended operation
codes are provided in the MACRO-10 Assembler. Primarily, these are used to replace those PDP-10
instructions where the combindtion of instruction mnemonic and accumulator field is used to denote a

single instruction. For example:

JRST 4

- 230’
/
i

is equivalent to a halt instruction. Additional, they are used to replace certain commonly used 1/O

instruction-device number combinations.

The extended instruction statements are exactly like the primary instruction statements or 1/0 instruc-

tion statements, except that they may not have an accumulator field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent
Extended Machine Meaning
Instructions Instructions
JEN JRST 12, Jump and enable the PI (priority interrupt) system
HALT JRST 4, Halt
JRSTF ‘ JRST 2, Jump and reset flags
Jov JFCL 105 Jump oﬁ overflow and clear
JCRYOQ JFCL 45 Jump on CRYO and clear
JCRY1) JFCL 2, Jump on CRY1 and clear
JCRY JFCL 6> Jump on CRYO or CRY1 and clear
JFOV JFCL 1, ' Jump on floating overflow
RSW DATAI @ . Read the console switches

2.5.8 Linking Subroutines

Programs usually consist of subroutines which contain references to symbols in external programs. ‘Since
these subroutines may be assembled separately, the loader must be able to iaentify "global" symb‘ols{
For a'given subroutine, a global symbol is either a symbol defined internally and available for reference
by other subroutines, or a symbol used internally but defined in another subroutine. Symbols defined
within a subroutine,, but available to others, are considered internal . Symbols which are externally

defined are considered external .

These linkages between internal and external symbols are set up by declaring global symbols using the
operators EXTERN, INTERN, or ENTRY.

2-20

231 -

2.5.8.1 EXTERN Statements ~ The EXTERN statement identifies symbols which are defined elsewhere.

The statement,

EXTERN SQRT, CUBE,TYPE)

declares three symbols to be external. External symbols must not be defined within the current subrou-
tine. These external references may be used only as an address or in an expression that is to be used as

an address. For example, the square root routine declared above might be called by the statement,

PUSHJ P>SQRT)

{
External symbols may be used in the same manner as any other relocatable symbol . Examples:

EXTERN A
200300 OVANN3 MOVE 65A+3
ARNO3 200NN XWD A+3,A
777777 777771 B= A-17

OPDEF QIXWD B+3,A-51
7717774 777773 Q

There are three restrictions for the use of external symbols:

a. Externals may not be used in LOC and RELOC statements.

b. The use of more than one external in an expression is not permitted. Thus, A-B (where A
, and B are both external) is illegal.

c. An internal symbol may not be set equal to an external symbol .

2.5.8.2 INTERN Statements - To make internal program symbols available to other programs as ex-
ternal symbols, the operators INTERN or ENTRY are used. These statements have no effect on the
actual assembly of the program, but will make a list of symbo! equivalences available to other programs

at load time. The statement,

INTERN MATRIX 2

makes the subroutine MATRIX available to other programs. An internal symbo! must be defined within

the program as a label, variable, or by direct assignment .

2.5.8.3 ENTRY Statements — Some subroutines have common usage, and it is convenient to place
them in a library. In order to be called by other programs, these library subroutines must contain the

statement,

ENTRY NANME)

2-21

. 232

where "name" is the symbolic name of the entry point of the library subroutine .

ENTRY is equivalent to INTERN except for the following additional feature. All names in a list
following ENTRY are defined as internal symbols and are placed in a list at the beginning of the
library of subroutines. If the loader is in library search mode, a subroutine will be loaded if the pro-
gram to be executed contains an undefined global symbol which matches a name on the library ENTRY

list.
If the MATRIX subroutine mentioned before is a library subroutine, it must contain the statement,
ENTRY MATR 109

Since library subroutines are external to programs using them, the calling program must list them in

EXTERN statements.

2.5.9 HISEG Statements
HISEG)

The HISEG pseudo-op statement generates information that directs the Loader to load the current program
into the high segment if the system has re-entrant (two-segment) capability. (Refer to "Block Type 3
Load Into High Segment" in paragraph 6.2.1.1 for additional information.) This pseudo-op may appear
anywhere in the source program, but it is recommended that it be placed near the beginning to avoid

confusion.

2-22

- 233

CHAPTER 3
MACROS

When writing a program, certain coding sequences are often used several times with only the arguments
changed. If so, it is convenient if the entire sequence can be generated by a single statement. To do
this, the coding sequence is defined with dummy arguments as a macro instruction. A single statement

referring to the macro by name, along with a list of real arguments, generates the correct sequence.

‘

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the operator DEFINE followed by the symbolic
name of the macro. The name must be constructed by the rules for construction symbols. The macro

name may be followed by a string of dummy arguments enclosed in parentheses. The dummy arguments
are separated by commas and may be any symbols that are convenient--single letters are sufficient. A

comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is delimited by angle brackets. The

body of the macro normally consists of a group of complete statements.

For éxqmple, this macro computes the length of a vector:

DEF INE VMAG (A»>B) 3ROUTINE FOR THE LENGTH OF A VECTOR
<MOVE @,A 3GET THE FIRST COMPONENT

FMP @ 3SQUARE IT

MOVE 1,A+1 3GET THE SECOND COMPONENT

FMP 1,1 3SQUARE IT

FAD 1 - 3ADD THE SQUARE OF THE SECOND

MOVE 1,A+2 S5GET THE THIRD COMPONENT

FMP 1,1 35SQUARE IT

FAD 1 3ADD THE SQUARE OF THE THIRD

JSR FS@QRT 3USE THE FLOATING SQUARE ROOT ROUTINE

MOVEM B 3STORE THE LENGTH>

3.2 MACRO CALLS

A macro mdy be called By any statement containing the'macro name followed by}a list of arguments.
The arguments are separated by commas and may be enclosed with parentheses. If parentheses are used
(indicated by an Opén parenthesis following the macro name), the argument string is ended by a closed
parenthesis. If there are n dummy arguments in the macro definition ; all arguments beyond the first n,
if any, are ignored. If parentheses are omitted, the argumént string ends when all the dummy arguments
of the macro definitions have been assigned, or when a carriage return or semicolon delimits an argu-

ment. . R f

The arguments must be written in the order in which they are to be substituted for dummy arguments.
That is, the first argument is substituted for each appearance of the first dummy argument; the second
argument is substituted for each appearance of the second dummy argument, etc. For example the

appearance of the statement:

VMAG VECT, LENGTH

in a program generates the instruction sequence defined above for the macro VMAG. The character
string VECT is substituted for each occurrence in the coding of the dummy argument A, and the

character string LENGTH is substituted for the single occurrence of B in the coding.

Statements with a macro call may have label fields. The value of the label is the location of the first

instruction generated.

CAUTION

MACRO arguments are terminated only by COMMA,
CARRIAGE RETURN, SEMICOLON or CLOSE PAREN-
THESIS (when the entire argument string was started

- with an open parenthesis). These characters may not be
included in arguments unless < >are used. Specifically,
spaces or tabs do not terminate arguments; they will be
treated as part of the argument itself.

3.3 MACRO FORMAT

a. Arguments must be separated by commas. However, arguments may also contain commas.
For example: ’

DEFINE JEQ(A>B,C)

<MOVE [A]) ‘ \
CAMN B

JRST C>

3-2

235 . /

If the data in location B is equal to A (a literal), the program jumps to C. If A is to be the in-
struction ADD2,X, the calling macro instruction would be written:

JEQ <ADD2,sX>Bs INSTX

The angle brackets surrounding the argument are removed, and the proper coding is generated.

The general rule is: If an argument contains commas, semicolons, or any other argument de-
limiters, the argument must be enclosed in angle brackets. "

b. A macro need not have arguments. The instruction:

DATAO PTP,PUNBUF (4)

which causes the contents of PUNBUF, indexed by register 4, to be puﬁched on paper tape, may
be generated by the macro: ’

DEF INE PUNCH
<DATAO PTP,PUNBUF (4)>

The calling macro instruction could be written:
PUNCH

PUNCH calls for the DATAOQ instruction contained in the body of the macro.

c. The macro name, followed by a list of arguments, may appear anywhere in a statement .
The string within the angle brackets of the macro definition exactly replaces the macro name
and argument string. For example:

DEFINE L(A>B)<3%<B-A+1>>

gives an expression for the number of items in a table where three words are used to store each
item. A is the address of the first item, and B is the address of the last item. To load an index
register with the table length, the macro can be called as follows:

MOVEI X,L(FIRST>LAST)

3.4 CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols without explicitly stating them in the
call, for example, symbols for labels within the macro body. If it is not necessary to refer to these
labels from outside the macro, there is no teason to be concerned as to what the labels are. Neverthe-
less, different symbols must be used for the labels each time the macro is called. Created symbols are

used for this purpose.

Each time a macro that requires a created symbol is called, a symbol is generated and inserted into the
macro. These generated symbols are of the form ..hijk, that is, two decimal points followed by four
digits. The user is advised not to use symbols starting with two points. The first created symbol is
..0001, the next is ..0002, etc. 7

If a dummy symbol in a definition statement is preceded by a percent sign (%), it is considered to be a
created symbol. When a macro is called, all missing arguments that are of the form %X are replaced
by created symbols. However, if there are sufficient arguments in the calling list that some of the ar-
guments are in a position to be assigned to the aymmy arguments of 'fhe form %X, the percent sign is

overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered to be the same as missing arguments. For example, suppose a macro
)
has been defined with the dummy string:

(A>7ZB>%C)
If the macro were called with the argument siring:
(OPDs)> or OPDs>

the second argument would be considered to have been declared as a null string. This would override
the % prefixed to the second dummy argument and would subsitute the null string for each appearance
of the second dummy argument in the statement. However, the third argument is missing. A label

would be created for each occurrence of %C. For example:

DEFLNE TYPE(A,ZB)
<JSR TYPEOUT

JRST 7%B

SIXBIT/A/

7B >

This macro types the text string substituted for A on the console Teletype. TYPEQUT is an output rou-
tine. Labeling the location following the text is appropriate since A may be text of indefinite length.
A created symbol isbappropriafe for this label since the programmer would not normally reference this

location. This macro might be called by:

~TYPE HELLO

which would result in typing HELLO when the assembled macro is executed. If the call had been:

TYPE HELLO,BX

the effect would be the same. However, BX would be substituted for %B, overruling the effect of the

percent sign.’

3.5 CONCATENATION

The aposfropbe character or sir;.gle quote (') is defined as the concatenation operator and may

. not be uséd otherwise inside a macro definition. (Outside a macro definition, it is ignored except as a
character in textual data.) A macro argument need not be'a complete symbol. Rather, it may be a
string of characters which form a complete symbol when joined to characters already contained in the
macro definition. This joining, called concatenation, is performed by the assembler when the program-

mer writes an apostrophe between the strings to be so joined. As an example, the macro: .

DEFINE J(A>B,C) b
<JUMP'A B,C>

When called, the argument A is suffixed to JUMP to form a single symbol. If the call were:

J (LE»35X+1)

the generated code would be:

,

JUMPLE 3,X+1

The concatenation operator (') may be used in nested macros. However, the assembler removes the
operator when it performs concatenation in first level macros, but does not remove the operator during

concatenation in the second or deeper levels.

3.6 INDEFINITE REPEAT

It is often convenient to be able to repeat a macro one or more times for a single call, each repetition
substituting successive arguments in the call statement for specified arguments in the macro. This may
be done by use of the indefinite repeat operator, IRP. The operator IRP is followed by a dummy argu-
ment, which may be enclosed in parenl'hesés. 'i'his argument must also be contained in the DEFINE
statement's list. This argument is broken into subarguments. When the macro is called, the range of
the IRP is assembled once for each subargument, the successive subarguments being substituted for each

appearance of the dummy argument within the range of the IRP. For example, the single argument:

238

<ALPHABETA > GAMMA >
consists of the subarguments ALPHA, BETA, and GAMMA. The macro definition:

DEF INE DOEACH(A),
<IRP A

<A>>

and the call:

DOEACH<ALPHARETAGAMNMA >
produce the following coding:

- ALPHA
BETA
GAMMA

An opening angle bracket must follow the argument of the IRP statement to delimit the range of the IRP.
A closing angle bracket must terminate the range of the IRP. IRPC is like IRP except it takes only one
character at a time; each character is a complete argument. An example of a program that uses an 1RPC
is inen in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite repeat depending on conditions given by the
assembler. This is done by the operator STOPI. When the STOPI is encounft;red, the macro processor
finishes expanding the range of the IRP for the present argument and terminates the repeat action. An

example:

DEFINE CONVERT (A)
<IRP A<IFF K-A,<STOPI
CONV1 A>>>

Assume that the value of K is 3; then the call:
COMVERT <515253,455,6,7>

generates:

<IRP
IFE K-0,<STOP1
CONVI 0> A
IFE K-15<STOPI
CONVL 1>

IFE K-2,<STOPI
convi 2>

IFE K-3,<STOPI
CONVI 3>

3-6

239

The assembly condition is not met for the first three arguments of fhg macro. Therefore, the STOPI code
is not encountered until the fourth argument, which is the number 3. When the condition is met, the
STOPI code is processed which prevents further scanning of the arguments. .However, the action con-
tinues for the current argument and generates CONV1 3,Ai .e., acall for the macro CONV1 (defined

elsewhere) with an argument of 3.

3.7 NESTING AND REDEFINITION

Macros may be nested; that is, mdcros may be defined within other macros. For ease of discussion,
levels may be assigned to these nested macros. The outermost macros, i.e., those defined directly to
the macro processor, may be called first level macros. Macros defined within first level macros mdy be
called second level macros; macros defined within second level macros may be called third level

macros; etfc.

At the beginning of processing, first level macros are known to the macro processor and may be called
in the normal manner. However, second and higher Ieve] macros are not yet defined. %en a first
level macro containing second and higher level macros is called, all its second level macros become
defined to the processor. Thereafter, the level of definition is irrelevant, .and macros may be called
in the normal manner. Of cqurse, if these second level macros contain third level macros, the third

level macros are not defined until the second level macros containing them have been called.

When a macro of level n contains a macro of level nt1, calling the macro results in generating the
body of the macro into the user's program in the normal manner until the DEFINE statement is encoun-
“tered. The level n+1 macro is then defined to the macro processor; it does not appear in the user's pro-

gram. When the definition is complete, the macro processor resumes genéraﬁng the macro body into

the user's program until, or unless, the entire macro has been generated.

If a macro name which has been previously defined appears within another definition statement, the

macro is redefined, and the original definition is eliminated.

The first example of a macro calculation of the length of a vector may be rewritten to illustrate bsth

nesting and redefinition.

DEFINE VMAG (A,B,»%C)
<DEFINE VMAG (D,E)
<JSP SJ, VL

EXP D,E>

UMAG (A,B)

3-7

JRST ZC

VL:® HRRZ 2, (S
MOVE (2)
FvP @
MOVE 1,1(2)
FMP 1,1
FAD 1
MQVE 1,2(2)
FMP 1,1
FAD 1
JSR FSORT
MOVEM @1 (S
JRST 2(Sd>

The procedure to find the length of a vector has been written as a closed subroutine. It need only ap-

pear once in a user's program. From then on it can be called as a subroutine by the JSP.irstruction.

The first time the macro VMAG is called, the subroutine calling sequence is generated followed im-
mediately by the subroutine itself. Before generating the subroutine, the macro processor encounters
a DEFINE statement-contdining the name VMAG. This new macro is defined and takes the place of the
original macro VMAG. Henceforth, when VMAG is called, only the calling sequence is generated.

However, the original definition of VMAG is not removed until after the expansion is complete,

Another example of a nested macro is given in Chapter 7, Figure 7-2.

3.7.1 ASCII Interpretation

If the reverse slash (\) is used as the first character in a macro call, the value of the following sym-

bol is converted to a 7-bit ASCII character in the current radix. If the call is
MAC \A

and if A=500 (in the current radix), this generates the three ASCII characters "500".

-

3-8

41

CHAPTER 4
ERROR DETECTION

-

MACRO-10 makes many error checks as it processes source language statements. If an apparent error is
detected, the assembler prints a single letier code in the left~hand margin of the program listing, on

the same line as the statement in question.

The programmer should examine each error indication to determine whether or not correction is required.
At the end of the listing, the assembler prints a total of errors found; this is printed even if no listing is

requested.

Each error code indicates a general class of errors. These errors, however, are all caused by illegal

usage of the MACRO-10 language, as described in the preceding three chapters of this manual.

TABLE 4-1
ERROR CODES

Error Code Meaning Explanation
A Argument error in pseudo-op This is a broad class of errors which may be
caused by an improper argument in a pseudo-op.
D Multiply-defined symbolic This statement contains a tag which refers to a -
: reference error multiply-defined symbol. It is assembled with

the first value defined.
E External symbol error Improper usage of an external symbol. Example:
EXT: EXTERN TXTsBRTSEXT

EXT CANNOT BE BOTH AN EXTERNAL
AND INTERNAL SYMBOL.

L Literal error A literal is improper. A literal must generate 1
to 18 words.

EXP [SIXBIT //15; NO CODE GENERATED .

4-1

242

TABLE 4~1 (Cont)
ERROR CODES

Error Code Meaning Explanation

M Multiply-defined symbol A symbol is defined more than once. The symbol
) retains its first definition, and the error message
M is typed out during pass 1.

If this type of error occurs during pass 2, it is a
phase error (see below).

If a symbol is first defined as a #-sign suffixed
tag, and later as a label, it retains the label
definition.

' Examples: ‘
A: ADD 3,X;
A: MOVE 5>Cs3 M ERROR
A: . ADD 3:X#3 .
X: MOVE >C3; X IS ASSIGNED THE CURRENT

VALUE OF THE LOCATION
COUNTER «

Multiple appearances of the TITLE pseudo-op
~ (which generates both a title line and program
name) are flagged as "M" (Multiple definition)

errors.
N Number error A number is improperly entered.
Examples:
tF13.33E38 (Exceeds range)
+D15BZ (Number must fol-
low B shift operator.)
But tD15B<z> is legal if Z is de-
fined.

If @ number contains meaningless letters or special
characters, a Q error is given.

0 Operation code undefined The operation field of this statement is undefined.
‘ It is assembled with a numeric code of 0.

P Phase error A symbol is assigned a value as a label during
' pass 2 different from that which it received during
pass 1. In general, the assembler should gener-
ate the same number of program locations in pass
1 and pass 2, and any discrepancy causes a

4-2 ,

TABLE 4-1 (Cont)
ERROR CODES

Error Code Meaning , Explanation
P Phase error (cont) phase error. For example, if an assembly condi-

tional, IF1, generates three instructions, a phase
error results unless another conditional, such as
IF2, generates three program locations during
pass 2. ‘

Q Questionable This is a broad class of possible errors in which
the assembler finds ambiguous language.

Example:

ADD ,TOTAL SUM3
SUM IS NOT NEEDED AND IS TREATED
AS A COMMENT.

R Relocation error LOC or RELOC are used improperly.

Example:

LOCA; WHERE A IS NOT DEFINED.

S Symbol format error Usually caused by inclusion of illegal special
characters.
Example: SY?M: ADD 3,X3

U Undefined symbol A symbol is undefined.

v Value previously undefined A symbol used to control the assembler is unde-

fined prior to the point at which it is first used.
Causes error message in pass 1.

Error messages during pass 1 consist of two lines. The most recently used label is printed on the first
line, followed by +n, where n is the (decimal) number of lines of coding between the labeled statement
and the Qtafemenf containing an error. The second line of the error message is a copy of the erroneous
line of coding, with a letter code in the left~hand margin to indicate the type of error. If more than
one type of error occurs on the same line, more than one letter is printed; but if the same type of error

occurs more than once in the same line, a single letter code is printed.

During pass 2, as the listing is printed out, lines containing errors are marked by letter codes, and a

total of errors found is printed at the end of the listing.

4-3

4.1 TELETYPE ERROR MESSAGES

The following error messages may. be typed out on the Teletype by MACRO. Those preceded by a
question mark are treated as fatal errors when running under Batch Processor (the run is terminated by
BATCH.)

END OF PASS 1 Manual loading is required to start pass 2 when the
input is paper tape or cards.

LOAD THE NEXT FILE Manual loading is required if the next file is on

paper tape or cards.

?COMMAND ERROR
?NO END STATEMENT Error in MACRO command string.
ENCOUNTERED ON INPUT FILE

PASS 1 cannot be completed because the source pro-

‘- ?CANNOT ENTER FILE XXX gram is not terminated by an END statement.

?CANNOT FIND FILE XXX
?INSUFFICIENT CORE

?.PDP, OVERFLOW, TRY/P
?INPUT ERROR ON DEVICE DEV
?DATA ERROR ON DEVICE DEV
?DEV NOT AVAILABLE

2THERE ARE N ERRORS This is the total number of errors detected by
MACRO during assembly. These are the errors
marked by letter codes on the listing. Under BATCH,
if there are one or more errors the run is terminated.

44

25

CHAPTER 5
RELOCATION

) The MACRO-10 assembler will create a relocatable object program. This program may be loaded into
any part of memory as a function of what has been previously loaded. To accamplish this, the address

- field of some instructions must have a relocation constant added to it. This relocation constant, added
at load time by the PDP-10 Loader, equals the difference between the memary location an instruction
is actually loaded into and the location it is assembled into. If a program is loaded into cells begin-

ning at location 1400g, the relocation constant k would be 1400g.

Not all instructions must be modified by the relocation constant. Consider the two instructions:

MOVEI 25.-3
MOVEI 2,1

The first is used in address manipulation and must be modified; the second probably should not. To ac-
complish the relocation, the actual expression forming an address is evaluated and marked for modifi-
cation by the Linking Loader. Integer elements are absolute and not modified. Point elerry.enrs (.)are
relocatable and are always modified.* Symbolic elements may be either absolute or relocatable. If a
symbol is defined by a direct assignment statement, it may be relocatable or absolute depending on the
expression following the equal sign (=). “If a symbol is defined as a macro, it is feplc:ced by the string
and the string itself is evaluated. If it is defined as a label or a variable (#), it is relocatable. *

Finally, references to literals are relocatable. *

/

To evaluate the relocatability of an expression, consider what happens at load time. A constant, k,

must be added to each relocatable element and the expression evaluated. Consider the expression:

X - A+2%B-3%C + D

*Except under the LOC code or a PHASE code which specifies absolute ~¢:1ddressing.

\

where A,B,C, and D are relocatable. Assume k is the relocation constant. Adding this to each reloca-

table term we get:

Xg = (A+K)+2%(B+K)-3*(C+K)+(D+K)

’

! .
This expression may be rearranged to separate the ks, yielding:

XR = A+2%B-3*C+D+K

This expression is suitable for relocation since it involves the addition of a single k. In general, if the

expression can be rearranged to result in the addition of

@*K The expression is legal and fixed.
1*K The expression is legal and relocatable.
N*K Where n is any positive or negative integer other thanO or 1,

the expression is illegal.

Finally, if the expression involves k to any power other than 1, the expression is illegal. This leads to

the following conventions:

a. Only two values of relocatability for a complete expression are allowed, k and 0.
An element may not be divided by a relocatable element.
Two relocatable elements may not be multiplied together.

d. Relocatable elements may not be combined by the Boolean operators.
If any of these rules are broken, the expression is illegal and the assembled code is flagged.
If A,C, and B are relocatable symbols, then:

A+B-C isrelocatable
A-C is fixed

A+2 . isrelocatable
2*A-B isrelocatable
ogn-p isillegal

’

A storage word may be relocatable in the left half as well as the right half. For example:

XWD A,B

247

CHAPTER 6
ASSEMBLY OUTPUT

'There are two MACRO-10 outputs, a binary program and a program listing. The listing is controlled by
the listing control pseudo-ops, which were described in Chapter 2.

6.1- ASSEMBLY LISTING

All MACRO-10 programs begin with an implicit LIST statement. From left to right, the columns on a
listing page contain:

a. The 6-digit address of each storage word in the binary program. These are normally sequen-
tial location counter assignments. In the case of a block statement, only the address of the first
word allocated is listed.

b. The assembled instruction and data words, shown in two columns for easier reading, the 6~
digit left half-word and the 6-digit right half-word. An apostrophe following either half-word
indicates that the word is relocatable.

c. The source program statement, as written by the programmer, followed by comments, if any.

If an error is detected during assembly of a statement, an error code is printed on that statement's lihe,
near the left edge of the page. If multiple errors of the same type occur in a particular statement, the
error code is printed only once; but if several errors, each of a different type, -occur in a statement,

an error code is printed for each error. The total number of errors is printed at the end of the listing.

The program bredk is also printed at the end of the listing. This is the highest relocatable location

assembled, plus one. This is the first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The choice depends on whether the pro-
gram is relocatable or absolute, and on the loading procedure to be used to load the program for execu-

tion.

6-1

[

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC statement, the LINK format output is
implicit and is automatically produced for all relocatable MACRO-10 programs unless onol’hen" format
(RIM, RIM'IO, RIMI0B) is explicitly requested. The LINK format is the only format that may be used
with the Linking Loader. ' ‘

The Linking Loader loads subprograms into memory, properly relocating each one and adjusting addresses
to compensate for the relocation. It also links external and internal symbols to provide communication
between independently assembled subprograms. Finally, the Linking Loader loads subroutines in

library search mode.

Data for th; Linking Loader is formatted in blocks. All blocks have an identical format. The first word
of a’LINK block consists of two halves. The left half is a code for the block type, and the right half

is a count of the number of data words in the block. The data words are grouped in sub-blocks of 18
items. Each 18-word sub-block is preceded by a relocation word. This relocation word consists of

18 2-bit bytes. Each byte corresponds to one word in the sub-block, and contains relocation informa-

tion regarding that word.
If the byte value is:

0 no relocation occurs

1 the right half is relocated
2 the left half is relocated
3

both halves are relocated

These relocation words are not included in the count; they afways appear before each sub-block of 18

words or less to insure proper relocation.

All relocatable programs may be stored in LINK format, including programs on paper tape, DECtape,
magnetic tape, punched cards, and disks. This format is totally independent of logical divisions in the

input medium. It is also independent of the block type.

249

6.2.1.1 LINK Formats for the Block Types

Block Type 1 Relocatable or Absolute Programs and Data

WORD 1 The location of the first data word in the block
WORD 2 - A contiguous block of program or data words
WORD N (N must be less than 2000,000 octal)

Block Type 2 Symbols

Consists of word pairs

IST WORD Bits 0-3 code bits

IST WORD Bits 4-35 radix 50 representation of symbol
(see below) .

2ND WORD Data (value or pointer)

CGDE @G4: Global (internal) definition

2ND WORD Bits 0-35 value of symbol

CODE 10: Local definition

2ND WORD Bits 0-35 value of symbol

CODE 60 : Chained global requests:

2ND WORD Bits 0-17 =0

2ND WORD Bits 18-35 pointer to first word of chain requiring

definition (see Loader Manual)

Global symbol additive request: (see Loader Manual)
CODE 60:

Bit0=1
g?? ‘;’ORD Subtract-value before addition
BIT 2 . Swap halves before addition
BIT 3 Rotate left 5 before addition
BIT 9 Replace left half with result in storage
BIT 12 Replace right half with result in storage
BIT 11 Replace index field with result in storage .
S;ls ! ?8_3 . Replace accumulator field with result in storage

Pointer to word requiring addition
Block Type 3 Load Into High Segment

When block type 3 is present in a relocatable binary program, the Loader loads the program into the high
segment if the system has re-entrant (two-segment) capability. When used, block type 3 appears imme-

diol’ély after any entry blocks (type 4). This block typé transmits no additional data.

Block Type 4 Entry Block

This block contains a list of radix 50 symbols, each of which may- containa 0 or 1 'in the high—-order
code bit, - Each represents a series of logical AND conditions. If all the globals in any series are re-
quested, the following program is loaded. Otherwise, all input is ignored until the next end block.
This block must be the first block in a program. 7

6-3

Block Type 5 End Block

This is the last block in a program. It contains one word which is the program break, that is, the loca-
tion of the first free register above the program. (Note: This word is relocatable.) 1t is the relocation

constant for the following program loaded.

Block Type 6 Name Block

The first word of this block is the program name (RADIX 50). It must appear before any type 2 blocks.

The second word, if it appears, defines the length of common.

Block Type 7 Starting Address

The first word of this block is the starting address of the program. The starting address for a relocatable

program may be relocated by means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half is the pointer to the program. The right half is the value.

Either quantity may be relocatable.

6.2.2 Absolute Binary Programs

Three output formats are available for absolute (non-relocatable) binary programs. These are requested
by the RIM, RIM10 and RIM10B statements.

6.2.2.1 RIMIO0B Format - If a program is assembled into absolute locations (not relocatable), a
RIM10B statement following the LOC statement at the beginning of the source program causes the as-
sembler to write out the object program in TIM10B format. This format is designed for use with the

PDP-10 hardware read-in feature.

The program is punched out dufing pass 2, starting at the location specified in the LOC statement. If

the first two statements in the program are:

x

LOC 1000)
RIMIOB)

the assembler assembles the program with absolute addresses starting at 1000, and punches out the pro-
gram in RIM10B format, also starting at location 1000. The programmer may reset the location counter
during assembly of his program, but only one RIM10B statement is needed to punch out the entire pro-

gram,

6-4

251 . \ \

In RIM10B format, (see Figures 6-1 and 6-2) the assembler punches out the RIM10B Loader, (Figure 6-2)
followed by the program in 17-word (or less) data blocks, each block separated by blank tape. The |
assembler inserts an 1/O transfer word (IOWD) preceding each data block, and also inserts a 36-bit
checksum following each data block as shown in Figure 6-1. The word count in the IOWD includes
only the data words in the block, and the checksum is the simple 36-bit added checksum of the IOWD
and the data words.

Data blocks may contain less than 17 words. If the assembler assigns a non-consecutive location, the
current data block is terminated, and an IOWD containing the next location is inserted, starting a new

data block.

The transfer block consists of two words. The' first word of the transfer block is an instruction obtained
from the END statement (See Section 6.2.2.4.) and is executed when the transfer block is read.’ The

second is a dummy word to stop the reader.

6.2.2.2 RIM10 Format - Binary programs in RIM10 format are absolute, unblocked, and not check-
summed. When the RIM10 statement follows a LOC statement in a program, the assembler punches out
each storage word in the object program, starting at the absolute address specified in the LOC state-

ment.
In order to use the Read-in-Mode switch with format, the programmer must begin with the statement:
I0WD N,FIRST)

where n is the length of the program including the transfer instruction at the end, and FIRST is the first
memory location to be occupied. The last location must be a transfer instruction to begin the program,

such as:
JRST 4,G0)

For example, if a program with RIM10 output has its first location at START and its last location at

FINISH, the programmer may write:

IOWD FINISH-START+1 »START)

252

NOTE

In cases where the location counter is increased but
no binary output occurs (such as with BLOCK, LOC n,
and LIT pseudo-ops), MACRO inserts a zero word into
the binary output file for each location skipped by the
location counter.

6.2.2.3 RIM Format ~ This format, which is primarily used in PDP-6 systems, consists of a series of
' paired words. The first word of each pair is a paper~tape read instruction giving the core memory ad-

dress of the second word. The second word is the data word.

DATAI PTR>»LOC
DATA WORD

The last pair of words is a transfer block. The first word is an instruction obtained from the END state-
ment (See Section 6.2.2.4) and is executed when the transfer block is read. The second word is a

* dummy word to stop the reader.
The loader that reads this format is:

LOC 20

CONO PTR»60
A: CONSO PTR,10
JRST -1
DATAI PTR,B
CONSO PTR,10
JRST -1
B: - 0
JRST A

This loader is normally toggled into memory and started at location 20.

6.2.2.4 END Statements - When the programmer wants output in either RIM or RIM10B format, he may
insert an instruction or starting address as the first word in the two-word transfer block by writing the
instruction or ac%éress as an argument to the END statement. The second word of the transfer block is

zero. In RIM10 assemblies, this argument is ignored.

If bits 0 through 8 of the instruction are zero, MACRO will insert the instruction JRST 4, 0, causing a

halt when executed. The END statements

~END S5A 2 OR END JRST SA) .

- L 6-6

will start automatically at address SA.
Some other examples:
Ist Transfer Block Word

END XCTe1234 XCTe1234

END Z4,SA JRST 4,5A
END JRST 4,0
RIM 188
LOADER

// s BLANK TAPE {6 FRAMES)

X1€1710= NUMBER OF WORDS IN
IOWD X;, ADDR, tst DATA BLOC
5 ADDRy= ADDRESS OF
15t DATA BLOCK

1st BLOCK
OF
PROGRAM DATA

IOWD IS INCLUDED
IN CHECKSUM

// // BLANK TAPE (6 FRAMES)

10WD X,,, ADDR,,

CHECKSUM

nth BLOCK
OF
PROGRAM DATA

CHECKSUM
// /// BLANK TAPE (6 FRAMES)
JRST START
TRANSFER BLOCK
[

10-0060

Figure 6-1 General RIM10B Format

6-7

24

ST:
ST1:
RD:

Az
TBL1:
TBL2:

ADR ¢
CKSM=ADR+1

XWD ~-16,0
CONO PTR,60
HRRI AsRD+1
CONSO PTR»10

JRST

DATAI PTRs @TBL1-RD+1(A)
XCT TBL1-RD+1(A)
XCT TBL2~-RD+1 (A)
S0JA A,

.CAME CKSM»>ADR
ADD CKSMs»1 (ADR)D
SKIPL CKSM,ADR

JRST 4,5ST
AOBJN ADR>RD
JRST ST1

Figure 6-2 RIM10B Loader

6-8

255

CHAPTER 7
PROGRAMMING EXAMPLES

A MACRO-10 routine for calculating the logarithm of a complex argument iis shown in Figure 7-1. The
routine begins with an ENTRY statement, identifying this library routine as CLOG (Complex Logarithm
Function), and uses three external routines, ALOG, ATAN2 and CABS.

The second example, shown in Figure 7-2, contains a nested macro, SBL, and uses conditional assembly
statements, which cause PIXTART and PIXOPT to be generated as either internal or external symbols,

depending on the value of SBLSW. In the example, both are externals.

The third example, Figure 7-3, shows two ways of writing a byte unpacking subroutine. Both UNPACK
and UNPAX use literals to set up pointer words, and load the bytes in accumulators 0 and 1. The call-
ing sequence for UNPACK actually contains the bytes to be unpacked. For UNPAX, the calling

sequence contains the address of the bytes, thus, UNPAX must refer to them indirectly.

The fourth example, Figure 7-4, demonstrates the use of the IRPC (indefinite repeat character) pseudo~
op. A macro call, HEX, is made with the arguments ANS, a symbo! name, and F, a hexadecimal
number. The processing of the macro causes the symbol, ANS, to be assigned the converted value of
the hexadecimal number, F. In this example the hexadecimal "digits", listed in ascending order, .ore_:

0,1,2,3,4,5,6,7,8,9,A,8,C,D,Eand F.

NOTE

Each complete program (see Figures 7-1 and 7-4) must
have an END statement. All other statements may be
used at the programmer’s discretion; however, a TITLE
statement is recommended for documentation and de-

bugging purposes.

7-1

CLOG

000060
200001
naBRe2
000003
BO00B4
600205
000006
00007
000010
000011
200012
200013
200214
N0AR1S
nAAB1 6

MACROX»H

vR0BBY
201436
200450
200410
266790
200000
266700
000000
250000
266700
200000
nQo000
200040
200000
267716

THERE ARE NO ERRORS

PROGRAM BREAK 1S aeoa17

CLOG

ALOG
ATAN2

CABS
CLOG
D
Q

MACROXsH
SYMBOL TABLE

5K CORE USED

13:46 7-APR-67 PAGE 1

[l ddida]
2002071
200010
onanlt
Q00016

[10dg
BOORBY
000001
(e dayila
V00600
BOVR1O
000000
[dda]
o0n010
000000
(1 BN]
200000
[dddd2

‘000010

200001

13:46

000000

000006° EXT
@00@11"' EXT

000001
00210

20R004° EXT
2onARe " INT

goeall
o016

TITLE CLCG
SUBTTL APRIL 7,1967

3COMPLEX LOGARITHM FUNCTIGN
5THIS ROUTINE CALCULATES THE LOGARITHM OF A COMPLEX ARGUMENT
3 Z = X+1*Y WITH THE FOLLOWING ALGORITHM

3LOG(Z) = LOG(ABSF(Z)) + I*THETA
JWHERE ABSF(Z) = SORT(X12 + Y12)
JAND THETA IS THE COMPLEX ANGLE ATANCY/X)

STHE ROUTINE 1S CALLED IN THE FOLLOWING MANNER:

H JsA QsCLOG

H EXP ARG

SJTHE REAL PART OF THE ANSWER IS RETURNED IN ACCUMULATOR A
JAND THE IMAGINARY PART IS RETURNED IN ACCUMULATOR B

ENTRHY CLOG
EXTERN ALOG,ATAN2,CABS

A=
B=1
c=10
D=11
8=16
CLOG: @ SENTRY TO COMPLEX LOG ROUTINE
MOVE L C, €C1) 3GET ADDRESS OF COMPLEX ARGUMENT
MOVE D,1¢C) 3GET IMAGINARY PART OF ARGUMENT
MOVE C,(C) 5GET REAL PART OF ARGUMENT
Jsa 1,CABS SCALCULATE MAGNITUDE OF Z
EXP c 3ADDRESS OF COMPLEX ARGUMENT
JsA §,ALOG 3CALCULATE LOG(ABSF(Z))
EXP A SADDRESS FOR LOG ROUTINE
EXCH A.C 3SWAP ‘ANSWER WITH REAL PART
‘Jsa Q,ATANZ 5CALCULATE ANGLE AS ATANCY/X)
EXP D 3ADDRESS OF Y
EXP A ;ADDRESS OF C
MOVE B,A 3PUT THETA IN IMAGINARY PART
MOVE ~ A,C . SRESTORE REAL PART
JRA As1(Q) SEXIT
END
LA

7-APR-67 PAGE 2

Figure 7-1 Sample Program, CLOG

7-2

000001

200023

UNPACK:

UNPAX:

LALL
PSBLSW=1

DEFINE SBLR (A)><IRP A,<SBL A>>"

DEFINE SBL (A)<

257 -

IFE SBLSW-PSBLSW, <INTERN: A>

IFN SBLSW-PSBLSW, <EXTERN

SBLSW=3
SBLR <PIXSTART,PIXOPT>tIRP
SBL PIXSTART?®

IFE SBLSW-PSBLSW, <INTERN
IFN SBLSW-PSBLSW,<EXTERN

SBL PIXOPT?

IFE SBLSW-PSBLSW, <INTERN
IFN SBLSW-PSBLSWs <EXTERN

T

A>>

PIXSTART>
PIXSTART>1t

PIXOPT>
PIXOPT>1t

3GENERATES PIXSTART AND PIXOPT AS EXTERNALS

Figure 7-2 Example of Nested Macro

1
3
1

QW>
([T}

(4]

JSP 17,UNPACK
BYTE (3)A(15)B(18)3C

LDB 8, [POINT 3,0(173,2]
LDB 1,CPOINT 15,0(17)5171
HRRZ 2,0(17)

JRST 117)

© JSP 17 ,UNPAX
EXP [BYTE (3)A(15)B(18)C1

LDB @,[POINT 3,@0(17),21

LDB 1,[POINT 15,@@0¢17), 171

HRRZ 2,e8(17)
JRST 1C17)

SPICK UP A
5PICK UP B
SPICK-UP C
3RETURN

sPICK UP A
5PICK UP B
3PICK.UP C

Figwe 7-3 Two Byte Unpacking Subroutines

7-3

- 258 \\

«MAIN MACRO.V34 15:23 24-MAR-69 PAGE‘1

000002

200046

201152

000000

o017

000000

00001

000020
000000
000011
000232
004653
115274

325715

536336

746757

NO ERRORS DETECTED

PROGRAM BREAK IS 020000

LALL

DEFINE HEX (N»X)>< '

N=0

IRPC X5 <IFGE "X"-"A",<N=N*tDi6+"X"-"A"+1D10>
IFLE "X"="9", <N=N*1D16+"X"-"8">>>

HEX ANS,F1

ANS =0

IRPC

IFGE "F"-"A", <ANS=ANS*tD16+"F"-"A"+tD10>
IFLE "F"-"9", <ANS=ANS*tD16+"F'-"Q" >

t

HEX ANS,101t

ANS=0

IRPC

IFGE "1"-"A", <ANS=ANS*tD16+"1"-"A"+1D10>
IFLE '1'='""9'", <ANS=ANS*tD16+"1"-""'Q">

IFGE "@"-"A",<ANS=ANS*1D16+"0Q'" -"A"+1D10>
IFLE "@"-"9",<ANS=ANS*%D16+"Q"-""0" >

t

HEX ANS,9ABCDEF t

ANS=0

IRPC

IFGE "9"-"A", <ANS=ANS*1D16+"9"-"A"+tD10>
IFLE "9"-"9", <ANS=ANS*tD16+"9"-"0">

IFGE "A'-"A'""> <ANS=ANS*tD16+"A"-"A"+1D10>
IFLE "A"-"9", <ANS=ANS*tD16+"A"-"Q" >

IFGE "B'"-"A",<ANS=ANS*tD16+"B"~-"A"+tD10>

IFLE "B"-'"9'", <ANS=ANS*tD16+"B"-"0">
IFGE "C"-"A'",<ANS=ANS*tD16+"C"-"A'"+1D10>
IFLE ™"C"~-'"9", <ANS=ANS*1tD16"C"-"0">
IFGE "D -"A", <ANS=ANS*1tD16+"D"-"A"+1D'10>
IFLE "'D'"-'"'9",<ANS=ANS*1tD16+'"D"-"0">
IFGE "E'-""A", <ANS=ANS*tD16+"E"~-"A"+tD10>
IFLE "E"-""9'",<ANS=ANS*tD16+"E"-"0" >
IFGE "F"-"A',<ANS=ANS*tD16+"F"-"A'"+tD10>
IFLE "F'=""9", <ANS=ANS*tD16+"F"-"Q">

END

Figure 7-4 IRPC Example

259

APPENDIX A

OP CODES, PSEUDO-OPS, AND
MONITOR I/O COMMANDS

This appendix contains a complete list of assembler defined operators including
machine instruction mnemonic codes, assembler pseudo-ops, Monitor programmed

operators, and FORTRAN programmed operators.

These programmed operators, or

user utilized operation codes are called UUO's in the list.

The notes are used to specify which pseudo-ops generate data, and which do not.
Pseudo-ops which generate data may be used within liFerals, and in address

operand fields.

The initial values given by MACRO-10 to I/O instructions and FORTRAN UUO's for

which the octal op code is not shown, are also given in the notes.

be useful in checking listings.

These may

ASSEMBLER PSEUDO-OPS AND MONITOR COMMANDS

ASCII, pseudo-op, generates data
ASCIZ, pseudo-op, generates data
BLOCK, pseudo-op, no data generated
BYTE, pseudo-op, generates data
CALL, @4¢, Monitor UUO

CALLI, @47, Monitor UUO

CLOSE, #7#, Monitor UUO

DATA., #2@, FORTRAN UUO

DEC, pseudo-op, generates data
DEC., @33, FORTRAN UUO

DEFINE, pseudo-op, no data generated
DEPHASE, pseudo-op, no ddta generated
ENC., @34, FORTRAN UUO

END, pseudo-op, no data generated
ENTER, @77, Monitor UUO

ENTRY, pseudo-op, no data generated
EXP, pseudo-op, generates data
EXTERN, pseudo-op, no data generated
FIN., #21, FORTRAN UUO

GETSTS, @62, Monitor UUO

HISEG, pseudo-op, no data generated
IF1l, conditional pseudo-op

IF2, conditional pseudo-op

IFB, conditional pseudo-op

IFDEF, conditional pseudo-op

IFDIF, conditional pseudo-op

IFE, conditional pseudo-op

IFG, conditional pseudo-op

IFGE, conditional pseudo-op

IFIDN, conditional pseudo-op

IFL, conditional pseudo-op

IFLE, conditional pseudo-op

IFN, conditional pseudo-op

IFNB, conditional pseudo-op

IFNDEF, conditional pseudo-op

IN, @56, Monitor UUO

IN., §16, FORTRAN UUO

INBUF, @64, Monitor UUO

INF., #26, FORTRAN UUO

INIT, @41, Monitor UUO

INPUT, @66, Monitor UUO

INTERN, pseudo-op, no data generated
IOWD, pseudo-op, generates data
IRP, pseudo-op, no data generated
IRPC, pseudo-op, no data generated
LALL, pseudo-op, no data generated
LIST, pseudo-op, no data generated
LIT, pseudo-op, no data generated
LOC, pseudo-op, no data generated
LOOKUP, @76, Monitor UUO

MLOFF, pseudo-op, no data generated
MLON, pseudo-op, no data generated
MTAPE, @72, Monitor UUO

MTOP., @24, FORTRAN UUO

A-1

NLI., @31, FORTRAN UUO

NLO., @32, FORTRAN UUO

NOSYM, pseudo-op, no data generated
OCT, pseudo-op, generates data
OPDEF, pseudo-op, no data generated
OPEN, @58, Monitor UUO

ouT, @57, Monitor UUO

ouT., @17, FORTRAN UUO

OUTBUF, @65, Monitor UUO

OUTF., #27, FORTRAN UUO

OUTPUT, @67, Monitor UUO

PAGE, pseudo-op, no data generated
PASS2, pseudo-op, no data generated
PHASE, pseudo-op, no data generated
POINT, pseudo-op, generates data
PRINTX, pseudo-op, no data generated
PURGE, pseudo-op, no data generated
RADIX, pseudo-op, no data generated
RADIX5@, pseudo-op, generates data
RELEAS, @71, Monitor UUO

RELOC, pseudo-op, no data generated
REMARK, pseudo-op, no data generated
RENAME, @55, Monitor UUO

REPEAT, pseudo-op, no data generated
RERED., @3¢, FORTRAN UUO

RESET., @15, FORTRAN UUO

RIM, pseudo-op, no data generated
RIM1g, pseudo-op, no data generated
RIM1@B, pseudo-op, no data generated
RTB., §22, FORTRAN UUO

SETSTS, @68, Monitor UUO

SIXBIT, pseudo-op, generates data
SLIST., #25, FORTRAN UUO

SQUOZE, same as RADIXS5@

STATO, @61, Monitor UUO

STATUS, @62, Monitor UUO

STATZ, @63, Monitor UUO

STOPI, pseudo-op, no data generated
SUBTTL, pseudo-op, no data generated
SYN, pseudo-op, no data generated
TAPE, pseudo-op, no dath generated
TITLE, pseudo-op, no data generated
TTCALL, @51, Monitor UUO

UGETF, @73, Monitor UUO

UJEN, 1¢@, Monitor UUO

USETI, @#74, Monitor UUO

USETO, @75, Monitor UUO

VAR, pseudo-op, generates data
WTB., @23, FORTRAN UUO

XALL, pseudo-op, no data generated
XLIST, pseudo-op, no data generated
XWD, pseudo-op, generates data

Z, pseudo-op, generates data

ADD
ADDB

° ADDI

ADDM
AND

ANDB
ANDCA
ANDCAB
ANDCAI
ANDCAM

ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM

ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM

AOBJN
AOBJP
AOQJ
AOJA
AOJE

AO0JG
AOJGE
AOJL
AOJLE
AOJN

A0S
AOSA
AOSE
AOSG
AOSGE

AOSL
AOSLE
AOSN
ASH
ASHC

BLKI
BLKO
BLT
CAI
CAIA

CAIE
CAIG
CAIGE
CAIL
CAILE

CAIN
CAM

CAMA
CAME
CAMG

270
273
271
272
404

407
410
413
411
412

440
443
441
442
420

423
421
422
405
406

253
252
340

‘344

342

347
345
341
343
346

350
354
352
357
355

351
353
356
240
244

7-00
7-1¢
251
300
304

302
307
305
301
303

306
310
314
312
317

CAMGE
CAML
CAMLE
CAMN
CLEAR

CLEARB
CLEARI
CLEARM
CONI
CONO

CONSO
CONSZ
DATAI
DATAO
DFN

DIV
DIVB
DIVI
DIVM
DPB

EQV

EQVB
EQVI
EQVM
EXCH

FAD

FADB
FADL
FADM
FADR

FADRB
FADRI
FADRM
FDV
FDVB

FDVL
FDVM
FDVR
FDVRB
FDVRI

FDVRM
FMP
FMPB
FMPL
FMPM

FMPR
FMPRB
FMPRI
FMPRM
FSB

FSBB
FSBL
FSBM
FSBR
FSBRB

315
311
313
316
400

403
401
402
7-24
7-20

7-34
7-30
7-04
7-14
131

234
237
235
236
137

444
447
445
446
250

140
143
141
142
144

147
145
146
170
173

171
172
174

T 177

175

176
160
163
161
162

164
167
165
166
150

153
151
152
154
157

MACHINE MNEMONICS

AND OCTAL CODES

FSBRI
FSBRM
FsC
HALT
HLL

HLLE
HLLEI
HLLEM
HLLES
HLLI

HLLM
HLLO
HLLOI
HLLOM
HLLOS

HLLS
HLLZ
HLLZI
HLLZM
HLLZS

HLR
HLRE
HLREI
HLREM
HLRES

HLRI
HLRM
HLRO
HLROI
HLROM

HLROS
HLRS
HLRZ
HLRZI
HLRZM

HLRZS
HRL
HRLE
HRLEI
HRLEM

HRLES
HRLI
HRLM
HRLO
HRLOI

HRLOM
HRLOS
HRLS
HRLZ
HRLZI

HRLZM
HRLZS
HRR
HRRE
HRREI

155
156
132
254-4,
500

530
531
532
533
501

502
520
521
522
523

503
510
511
512
513

544
574
575
576
577

545
546
564
565
566

567
547
554
555
556

557
504
534
535
536

537
505
506
524
525

526
527
507
514
515

516
517
540
570
571

HRREM
HRRES
HRRI
HRRM
HRRO

HRROI
HRROM
HRROS
HRRS
HRR2Z

"HRRZI

HRRZM
HRRZS
IBP
IDIV

IDIVB
IDIVI
IDIVM
IDPB
ILDB

IMUL

IMULB
IMULI
IMULM

-IOR

IORB
IORI
IORM
JCRY
JCRYP®

JCRY1
JEN
JFCL
JFFO
JFOV

Jov
JRA
JRST
JRSTF
JSA

JSp
JSR
JUMP
JUMPA
JUMPE

JUMPG
JUMPGE
JUMPL’
JUMPLE
JUMPN

LDB
LSH
LSHC
MOVE
MOVEI

A-2

572
573
541
542
560

561
562
563
543
550

551
552
353
133
230

233
231
232
136
134

220
223
221
222
434

437
435
436
255-6,
255-4,

255-2,
254-12,
255
243
255-1,

255-10,

254
254-2,
266

265
264
320
,324
322

327
325
321
323
326

135
242
246
200
201

MOVEM
MOVES
MOVM

MOVMI
MOVMM

MOVMS
MOVN

MOVNI
MOVNM
MOVNS

MOVS
MOVSI
MOVsM
MOVSs
MUL

MULB
MULI
MULM
OR
ORB

ORCA
ORCAB
ORCAI
ORCAM
ORCB

ORCBB
ORCBI
ORCBM
ORCM

ORCMB

ORCMI
ORCMM
ORI
ORM
POP

POPJ
PUSH
PUSHJ
ROT
ROTC

RSW
SETA
SETAB
SETAI
SETAM

SETCA
SETCAB
SETCAI
SETCAM
SETCM

SETCMB
SETCMI
SETCMM
SETM
SETMB

202
203
214
215
216

217
210
211
212
213

204

205
206
207
224

227
225
226
434
437

454
457

455

456
470

473
471
472
464
467

465
466
435
436
262

263
261
260
241
245

7-04
424
427
425
426

450
453
451
452
460

463
461
462
414
417

SETMI
SETMM
SETO

SETOB
SETOI

SETOM
SETZ

SETZB
SETZI
SETZM

SKIP
SKIPA
SKIPE
SKIPG
SKIPGE

SKIPL
SKIPLE
SKIPN
soJ
SOJA

SOJE
S0JG
SOJGE
SOJL
SOJLE

SOJN
SOs

SOSA
SOSE
SOSG

SOSGE
SOSL
SOSLE
SOSN
SUB

SUBB
SUBI
SUBM
TDC

TDCA

TDCE
TDCN
TDN

TDNA
TDNE

TDNN
TDO

TDOA
TDOE
TDON

TDZ
TDZA
TDZE
TDZN
TLC

415
416
474
477
475

476
400
403
401
402

330
334
332
337
335

331
333
336
360
364

362
367
365
361
363

366
370
374
372
377

375
371
373
376
274

277
275
276
650
654

652
656
610
614
612

616
670
674
672
676

630
634
632
626
641

TLCA
TLCE
TLCN
TLN

TLNA

TLNE
TLNN
TLO

TLOA
TLOE

TLON
TLZ

TLZA
TLZE
TLZN

TRC
TRCA
TRCE
TRCN
TRN

TRNA
TRNE
TRNN
TRO

TROA

TROE
TRON
TRZ

TRZA
TRZE

TRZN
TSC

TSCA
TSCE
TSCN

TSN
TSNA
TSNE
TSNN
TSO

TSOA
TSOE
TSON
TSZ

TSZA

TSZE
TSZN
UFA
XCT
XOR

XORB
XORI
XORM

645
643
647
601
605

603
607
661
665
663

667
621
625
623
627

640
644
642
646
600

604
602
606
660
664

662
666
620
624
622

626
651
655
653
657

611
615
613
617
671

675
673
677

631

635

633
637
130
256
430

433
431
432

ASCII

ASC1Z
BLOCK

BYTE
" DEC

DEF INE
DEPHASE

END
ENTRY

EXP
EXTERN

Conditional Assembly Statements

IF1

IF2
IFB

IFDEF
IFDIF

IFE
IFG

IFGE
1FIDN

IFL
IFLE

IFN
IFNSB

261

APPENDIX B
SUMMARY OF PSEUDO-OPS

Seven-bit ASCII text.

Seven-bit ASCII test, with null character guaranteed at end.
Reserves block of storage cells.

Input bytes of length 1-36 bits.

Input decimal numbers.

defines macro

Terminates PHASE relocation mode.

Last statement of the program.

Enters subroutine library.

Input expressions.

Identifies external symbols.

Assemble if:

Encountered during pass 1
Encountered during pass 2
Blank

Defined

Different

Zero

Positive

Zero, or positive

Identical

“Negative

Zero, or negative

Non-zero-

Not blank

Format

PRI

PRI

Operator

ANDCAB
ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCB1
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBJN
AOBJP
AOQJ
AOJA
AQJE
A0JG
AOJGE
AOJL
AQJLE
AOJN
AOS
AOSA
AOSE
AOSG

AOSGE

262

413

412
440
443
441
442
420
423
421

422

405
406
253
252
340
344
342
347
345
341

343
346
350
354
352
357

355

Page

A-2

Notes

VAR
XALL
Xl; IST
XWD

Assemble variables suffixed with?
Stop expanded listing

Stop listing

Input‘fwo 18-bit half words

Input zero word

B-3

265

APPENDIX C
SUMMARY OF CHARACTER INTERPRETATIONS

The characters listed below have special meaning in the contexts indicated. These interpretations do

not apply when these characters appear in text strings, or in comments.

Character Meaning Example
: : ' Colon. Immediately follows all LABEL: Z
labels.
o Semi-colon. Precedes all comments. 3THIS IS A COMMENT
. Point. Has current value of the loca= JURST .+5 JUMP FORWARD
fion counter. FIVE LOCATIONS
P Comma. General operand or argument DEC 10> 5,6
delimiter EXP A + B, C - D
Accumulator field delimiter MOVEI 1,TAG
Referen.ces cn:fcumulator 0. The MOVEI »TAG
. comma is optional.
Delimits macro arguments. MACRO (A,B,C)

Inclusive OR
AND

Logical Operators

Multiplication

Division Arithmetic Operators
Add (+A outputs the value of A)

Subtract
Ist character - In ASCII, ASCIZ and SIXBIT test ASCII/STRING/ 3
of text string strings, the first non-blank character
is the delimiter.
B Follows number to be shifted and pre- 782
cedes binaryshift count. _
E Exponent. Precedes decimal exponent F22.1ES5 EXPONENT

in floating-point numbers. ‘ IS 5.

(@)

Parentheses. Use to enclose
index fields.

Enclose the byte size in BYTE
statements.

Enclose the dummy argument
string in macro DEFINE state-
ments.

Angle brackets. In an expression,
enclose a numeric quantity .

In conditional assembly statements
contain a single argument, and the
conditional coding.

In REPEAT statements, contain
coding to be repeated.

In macors, enclose the macro de-
finition
Square brackets. Delimits literals.

In OPDEF statement, contain
new operator,

Equal sign, direct assignment

Quotation marks enclose 7-bit
ASCII text, from one to five
characters.

Number sign. Defines a symbol
used as a tag. Variable.

Apostrophe or single quote. Cate-
nation character, used only within
macro definitions.

Reverse slash. If used as the first
character in a macro call, the value
of the following symbol is converted
to an ASCII symbol in the current
radix.

Control left arrow. Line continua-
tion.

Left arrow. N<«M shifr n left (or
right) n times.

ADD AC1.-X (7)
MOVET A, (SIXBIT/ABC/)

BYTE (6) 8, 8, 7

DEFINE MACC(A,>B,C)

<A-B+540/C>
IF1, <MOVE ACB, TAX>
REPEAT 3, <SUB 17, TAG>

DEFINE PUNCH
<DATAO PTP> PUN3UF (4)>

ADD S,{MOVEI 3,TAX]
OPDEF CAL [MOVE]

SYM=6
SYM-A+Bx*D

""ABCDE"

"ADD 3,TAG#

DEFINE MAC (A,B,C)3;
<JUMP'A B, C>

MAC \ A IF A=50@, THIS
GENERATES THREE 7-BIT
ASCII CHARACTERS.
ASC11/500/

120«<3=1000
100<3=10

267

APPENDIX D

ASSEMBLER EVALUATION OF
STATEMENTS AND EXPRESSIONS

Order of Statement Evaluation:

The following table shows the order in which the assembler searches each statement field.
‘Label field Operator field Operand fields
1. Symbol suffixed by colon.

Machine Operator
Assembler Operator

Assembler operator
Symbol

1. Number 1. Number

If colon not found no 2. Macro/OPDEF 2. Symbol

label is present. 3. Machine operator 3. Macro/OPDEF
4. 4.
5. 5.

Notice that a single symbol could be used as a label, an operator, or an operand, depending upon

where it is used.

The assembler checks the operator field for a number, first, and if found, assumes that no operator is
present. Likewise, if a symbol is not a macro, OPDEF, machine operator or assembler operator, the

assembler will search the symbol table. If a defined symbol is found, no operator is present.

If a defined operator appears in an operand field, it must generate at least one word of data. State-
ments which do not generate data may not be used as part of operand expressions. If a statement used
in an operand expression generates more than one word of data, only the first word generated is mean-

ingful .

Order of Expression Evaluation: - (Unary operator)
D, 10, 1B, F, 1L
B Shift, « Shift
Logical operators
Multiply/Divide
Add/, Subtract

At each level, operations are performed left to right.

D-1

APPENDIX E
TEXT CODES
SIXBIT Charac'fer ;‘-SB(I:'II'E‘ SIXBIT | Character }A_SB?'_I: Character ;__SBC“IL
00 Space 040 40 @ 100 \ 140
01 ! 041 4 A 101 - a 141
02 " 042 42 B 102 b 142
03 # 043 43 C 103 c 143
04 $ 044 44 D 104 d 144
05 % 045 45 E 105 e 145
06 & 046 46 F 106 f 146
07 ' 047 47 G 107 g 147
10 (050 50 H 110 h 150
1) 051 51 I m i 151
12 * 052 52 J 112 i 152
13 + 053 53 K 113 k 153
14 , 054 54 L 114 ! 154
15 - 055 55 M 115 m 155
16 . 056 56 N 116 n 156
17 / 057, 57 o) 117 ° 157
20 0 060 60 P 120 p 160
21 1 06 61 Q 121 q 161 -
22 2 062 62 R 122 r 162
23 3 063 63 S 123 s 163
24 4 064 64 T 124 t 164
25 5 065 65 U 125 u 165
26 é 066 66 v 126 v 166
27 7 067 67 w 127 w 167
30 - 8 070 70 X 130 x 170
31 9 071 71 Y 131 y 171
32 : 072 72 z 132 z 172
33 ; 073 73 [133 { 173
34 < 074 74 \ 134 | 174
35 = 075 75 1 135) 175
36 > 076 76 t 136 ~ 176
37 ? 077 77 - 137 Delete 177

*MACRO-10 also accepts Five of the 32 control codes in 7-bit- ASCII:

Vertical Tab 013
Form Feed 014

Horizontal Tab
Line Feed

on
012

Carriage Return 015

270

APPENDIX F
RADIX 50 REPRESENTATION

Radix 50g representation is used to condense é character sixbit symbols into 32 bits. Let each charac-
ter of a symbol be subscripted in descending order from left to right; that is, let the symbols be of the

form

Lglstglaloly

' i
If C,, denotes the é-bit code for L, the radix 50g representation is generated by the following:
n n 8 rep Y
(CCCC *52)+C I*50+C I *S0+C) *50+C,) *50+C
6 s 4 3 2

where all numbers are octal.

The code numbers corresponding to the characters are:

Code (Octal) Characters
— ,/ abiaiebidbab
00 Null character
01-12 0-9
13-44 “A-Z
45 .
46 : $
47 %

271

APPENDIX G

SUMMARY OF RULES FOR
DEFINING AND CALLING MACROS

i Assembler Interpretation:

MACRO-10 assembles macros by direct and immediate character substitutions. Whenever a macro call
is encountered, in any field, the character substitution is made, the characters are processed, and the
assembler continues its scan with the character following the delimiter of the last argument, except

when it is delimited by a semicolon. Macros can appear any number of times on a line.

Character handling:

a. Blanks: A macro symbol is delimited by a blank or tab and the character following the
delimiter is the start of the argument string, even if it is also a blank or a tab. Other than the
delimiter, blanks and tabs are treated as standard characters in the argument string.

b. Brackets: Angle brackets are only significant in the argument fields if the first character
of any field is a left angle bracket. In this case, no terminator or parenthesis tests are made
between it and its matching right bracket. The matching brackets are removed from the string
but the scan continues until a standard delimiter is found.

c. Parentheses: Parentheses serve only to terminate an argument scan. They are only signifi-
cant when the first character following the blank or tab delimiter is a left parenthesis. In this
case, it is removed and if its matching right parenthesis is encountered prior to the normal
termination of the argument scan, it is removed and the scan discontinued.

d. Commas: When a comma is encountered in an argument scan, it acts as the delimiter of
the current argument. If it delimits the last argument, the character following it will be the
first scanned after the substitution is processed.

e. Semicolons: When a semicolon is encountered in an argument scan, the scan is discon-
tinued. If some arguments have not been satisfied, the remainder is considered to be null, It
is saved,, however, and will be the first character scanned after the substitution is made, nor-
mally acting as a comment flag.

f. Carriage return: A carriage return, except when pre-empted by angle brackets (see b
above) will terminate the scan similar to the semicolon. This can be circumvented, if desired,
by the control left arrow key described elsewnere.

272

g. Back-slash: If the first character of any argument is a back-slash, it must be directly
followed by a numeric term. The value of the numeric term is broken down into a string of
ASCII digits of the current radix, just the reverse of a fixed-point number computation. The
value is considered to be a 36-bit positive number having a value of 0 to 777777 777777 .
Leading zeros are suppressed except in the case of 0, in which case the result is one ASCII 0.
The ASCII string is substituted and the scan continued in the normal manner (no implied term-

inator).
[

The default listing mode is XALL, in which case the initial macro call and all lines within its range
which produce binary code are listed. The pseudo-op LALL will cause all lines to be listed. Substitu-
ted arguments are bracketed by t's by the assembler.

Concatenation:

The rules for concatenation are as follows:

a. Within the outer level .of angle bracket nesting one apostrophe is removéd from each string
of apostrophes. Thus, if a single apostrophe is encountered, it is removed; if a pair are en-
countered, one is removed and one left, etc.

b. Within nested brackets, all single apostrophes are passed on to the macro processor.

Outside of macro definitions, single apostrophes are ignored except when in text strings. Therefore,

MO"VEI is the equivalent of MOVEI. In any event, apostrophes will appear on the listing.

Requirements

Monitor

Minimum Core:

Additional Core:

Equipment:

Initialization

273

APPENDIX H
OPERATING INSTRUCTIONS

6K

Automatically requests additional core assignments from the time-sharing
monitor as needed

One input device (source program input); two output devices (machine
language program output and listing output). If the listing output is to

be used as input to the Cross Reference (CREF) program, it must be written
on either DECtape, magnetic tape, or disk.

R MACRO Loads the Macro-10 Assembler into core.

The Assembler is ready to receive a command.

Commands

General Command Format

274

objprog~dev:filename. ext, list-dev:filename .extsource-dev:filename .ext,

objprog-dev:

list-dev:

source-dev:

7 filename.ext (DSK

...... source-n)

The device on which the object program is to be
written.

MTAn: (magnetic tape)
DTAn: (DECtape)

PTP: (paper tape punch)
DSK: (disk)

The device on which the assembly [isting is to be
written.

MTAn: (magnetic tape) Must be one of
DTAn: (DECtape) these if input
DSK: (disk) to CREF.*
LPT: (Line printer)

TTY: (Teletype)

PTP: (paper tape punch)

The device(s) from which the source-program input
to assembly is to be read.

MTAn: (magnetic tape)

CDR: (card reader)
DTAn: (DECtape)

DSK: (disk)

PTR: (paper tape reader)
TTY: (Teletype)

If more than one file is to be assembled from a mag-
netic tape, card reader, ar paper tape reader, dev:
is followed by a comma for each file beyond the
first.

Input via the Teletype is terminated by typing
CTRL Z (1Z) to enter pass 1; the entries must be
retyped at the beginning of pass 2.

: and DTAn: only)

The filename and filename extension of the object
program file, the listing file, and the source file(s).

The object program and listing devices are separated
from the source device by the left arrow symbol.

*If /C switch is given, but no list-dev: is specified, DSK:CREF.TMP is assumed.

Disk File Command Format
DSK:filename.ext [proj,progl

[proj,prog]

275

Project-programmer number assigned to the disk area

to be searched for the source file(s) if other than the
user's project-programmer number.

The standard protection* is assigned to any disk file
specified as output.

NOTE

If object coding output is not desired (as in the case where
a program is being scanned for source language errors),

objprog-dev: is omitted.

If an assembly listing is not de-

sired, list-dev: is omitted.

Examples

<R MACKO)
*DTA3 :0BJPRG,LPT :«CDR:)

END OF PASS 1)

THERE ARE 2 ERRORS)
PROGRAM BREAK IS 0025372
SK CORE USED}

*1C)

Assemble one source program file from the card
reader; write the object code on DTA3 and call the
file OBJPRG; write the assembly listing on the line
printer.

The source program cards must be manually re-fed
for pass 2. '

Number of source errors. Size of object program.
Core used by assembler.

Return to the Monitor.

R MACRO3}

*MTA3 :,MTA2:«MTAl 1553
[THERE ARE NO ERRORS
PROGRAM BREAK IS 993552}
6K CORE USED)

*,LPT:«DTA1 :FILE1,FILE2,FILES)
[THERE ARE NO ERRORS)

PROGRAM BREAK IS 0201027)

| 6K CORE USED)

Assemble the next three source files located at the
present position of MTAT; write the object program
on MTAS; write the listing on MTA2 for later print-

ing.

Assemble the source files named FILE1, FILE2, and
FILES from DTAI; produce no object coding; write
the listing on the line printer.

*Standard protection (055) designates that the owner is permitted to read or write, or change the
protection of,, the file while others are permitted only to read the file.

276

*5DSK:FILEI.MAC[14,12]) Scan the source program called FILE1.MAC, loca-
THERE ARE NO ERRORS) ted in area 14, 12 on the disk, for source language
PROGRAM BREAK IS 000544) errors; produce no object coding or assembly listing;
SK CORE USED } print all error diagnostics on the Teletype.
*1C) Return to the Monitor.
<R MACRO
AMTAL t,TTY:eTTY:) Assemble a source file from the Teletype; write the
- object code program on MTA1 and print the assem-
JMP R} Enter the bly listing on the Teletype.
R: A0S G) source
G: ézg L)) statements
+Z) Terminate input.

R ter Teletype input.
END OF PASS —12 e—enter |eéle)'p inpu

JYP R Re-enter the first statement.
“MAIN MACRO 18:14 20-DEC-67 PAGE1) Page heading.
0 A 000000 000000 @VOY01° JMP R) First assembled.
R: A0S G Re-enter second.
000001 350009 @0@002' R: A0S G2 Second assembled.
G: JFCL) Re-enter third.
000002 255000 QVYPRY G: - JFCL) Third assembled.
END Re-enter fourth.
END) Fourth assembled.
[THERE IS 1 ERROR)
-|PROGRAM BREAK 1S 000003)
MAIN MAGRD \0:14 - 2O-DEC-67 PAGE 2) Typeout of symbol table.
SYMBOL TABLE2
G 000082)
R 200001 ")
|SK CORE USED)
*tC) Return to the Monitor.

H-4

Switches ‘ ' 277
Switches are used to specify such options as:

a. Magnetic tape control
b. Macro call expansion
c. Listing suppression

d. Pushdown list expansion

e. Cross-reference file output.

All switches are preceded by a slash (/) (or enclosed in parentheses) and usually occur prior to the left”

arrow.
Table 3-1
Macro-10 Switch Options
Switch Meaning

A , Advance magnetic tape reel by one file.

B Backspace magnetic tape reel by one file.

C Produce listing file in a format acceptable as input to CREF; unless the
file is named, CREF.TMP is assigned as the filename; if no extension is
given, .TMP is assigned; if no list-dev: is specified, DSK: is assumed.

E List macro expansions (same function as LALL pseudo-op).

L Reinstate listing (used after list suppression by XLIST pseudo—op or S
switch).

N Suppress error printouts on the Teletype.

P Increase the size of the pushdown list. This switch may appear as many
times as desired (pushdown list is initially set to a size of 8070 locations;
each /P increases its size by 8010).

Q Suppress Q (questionable) error indications on the listing; Q messages
indicate assumptions made during pass 1.

S Suppress listing (same function as XLIST pseudo-op).

T Skip to the logical end of the magnetic tape.

w Rewind the magnetic tape.

X Suppress all macro expansions (same function as XALL pseudo-op).

Y4 Zero the DECtape directory.

‘NOTE
Swifches A through Cand T, W, X, and Z must immediately
follow the device or file to which the individual switch refers.

Examples

<R MACRO)
*MTA1:,DTA3:/C+«PTR:)

END OF PASS 1)

PROGRAM BREAK IS 0008401)

THERE ARE 3 ERRORS)
5K CORE USED)

" #DTA2 sASSEMB.ONE/Z,LPT:
“MTAZ:/Ws)

PROGRAM BREAK IS ©05231)

THERE ARE NO ERRORS)
6K CORE USED)

#MTA1:/W,LPT:~MTA3:
/WsCAAY, (BBY)

Z78

Assemble one source file from the paper tape reader;
write the object code on MTA1; write the assembly
listing on DTA3 in cross—reference format and call
the file CREF.TMP.

The paper tape must be refed by the operator for
pass 2.

End-of-assembly messages.

Rewind MTA4 and assemble the first two source files
on it; write the object code on DTA2, after zeroing
the directory, and call the file ASSEM.ONE; write
the assembly listing on the line printer.

Rewind MTA1 and MTA3 and assemble files 1, 4,
and 3 (in that order) from MTA3. Print the assembly

listing on the line printer. Write the object code
on MTAT.

PROGRAM BREAK IS 000655) -

THERE IS 1 ERROR3?
'SK CORE USED)

*1C)

Diagnostic Messages

Return to the Monitor.

Table 3-2
Macro-10 Diagnostic Messages
Message Meaning
?CANNOT ENTER FILE DTA or DSK directory is full; file cannot be entered.
filename .ext
2CANNOT FIND filename. ext The file cannot be found on the device specified.
?COMMAND ERROR The last command string is in error.
?DATA ERROR ON DEVICE dev: Output error has occurred on the device.

H-6

1

279

Table 3-2 (Cont)
~ Macro~10 Diagnostic Messages

Message Meaning

END OF PASSI This message is issued prior to pass 2 whenever the

input source file is on a medium which must be man-
vally re-entered by the operator (PTR:, CDR:, TTY:).
When this message appears, the operator must re-feed
the tape or cards or retype the entries.

?IMPROPER INPUT DATA
?INPUT ERROR ON DEVICE dev:
PINSUFFICIENT CORE

The input data is not in the proper format.
Data cannot be read.

An insufficient amount of core is available for assembly .

nK CORE USED
LOAD THE NEXT FILE

?NO END STATEMENT
ENCOUNTERED ON INPUT FILE

?dev: NOT AVAILABLE
?PDP OVERFLOW, TRY/P
PROGRAM BREAK IS nnnnn

Amount of core used for this assembly.

Manual loading is required for the next card or paper
tape file.

The END statement is missing at the end of the source
program file.

The device is assigned to another user or does not exist.
A pushdown list overflow has occurred.

The highest relative location occupied by the object

. program produced.

?THERE ARE n ERRORS
THERE ARE NO ERRORS
? THERE IS 1 ERROR

Number of source language errors found.

)

Error Detection

MACRO-10 makes many error checks as it processes source language statements. If an apparent error
is detected, the assembler prints a single letter code in the left~hand margin of the program listing, on

the same line as the statement in question.

The programmer should examine each error indication to determine whether or not correction is re=
quired. At the end of the listing, the assembler prints a total of errors found; this is printed even if

no listing is requested.

Each error code indicates a general class of errors. These errors, however, are all caused by illegal

usage of the MACRO-10 language .

280

Table 3-3

Macro=10 Error Codes

Error Code

Meaning

Explanation

A

D

Argument error in pseudo-op

Mu|tip|);-defined symbolic .
reference error

External symbol error

Literal error

Multiply-defined symbol

Number error

Operation code undefined

This is a broad class of errors which may be caused
by an improper argument in a pseudo-op.

This statement contains a tag which refers fo a
multiply~defined symbol. It is assembled with the
first value defined.

Improper usage of an external symbol. Example:
EXT: EXTERN TXT, BRT, EXT
EXT cannot be both an external and internal
symbol .

" A literal is improper. A literal must generate 1 to
18 words.
Example:
EXP [SIXBIT //1; no code generated.

A symbol is defined more than once. The symbol
retains its first definition, and the error message M
is typed out during pass 1.

If this type of error occurs during pass 2, it is a
phase error (see below).

If a symbol is first defined as a #-sign suffixed tag,
and later as a label, it retains the label definition.
Examples:

A: ADD 3,X%;

A: MOVE ,C; M error

A: ADD3,X¥;

X: MOVE ,C; X is assigned the current value

of the location counter.

Multiple appearances of the TITLE pseudo=-op (which
generates both a title line and program name) are
flagged as "M" (Multiple definition) errors.

A number is improperly entered.
Examples:
tF13.33E38 (Exceeds range)
tD15BZ {(Number must follow
B shift operator.)
But, tD15B<Z> is illegal if Z is defined.

If a number contains meaningless letters or special
characters, a Q error is given.

The operation field of this statement is undefined.
It is assembled with a numeric code of 0.

H-8

o

281

Table 3~3 (Cont)
Macro=10 Error Codes

Error Code

Meaning

Explanation

P

Phase error

Questionable

Relocation error

Symbol format error

Undefined symbol

Value previously undefined

A symbol is assigned a value as a label during pass

2 different from that which it received during pass 1.
In general, the assembler should generate the same
number of program locations in pass 1 and pass 2,
and any discrepancy causes a phase érror. For ex~
ample, if an assembly conditional, IF1, generates
three instructions, a phase error results unless
another conditional, such as IF2, generates three
program locations during pass 2.

This is a broad class of possible errors in which the
assembler finds ambiguous language .
Example:
ADD ,TOTAL SUM;
SUM is not needed and is treated as a
comment.

LOC or RELOC are used improperly .
Example:
LOCA; where A is not defined.

Usually caused by inclusion of illegal special
characters.
Example:

SY?M: ADD 3,X;

A symbol is undefined.

A symbol used to control the assembler is undefined
prior to the point at which it is first used. Causes
. error message in pass 1.

Monitor Commands

Assembly of Macro source program files can be performed by use of the COMPILE, LOAD, EXECUTE,
and DEBUG commands. See Table 9-1, Time-Sharing Monitor Commands, in Chapter 9 of this manual

for details.

H-9

282

