PDP-10
'REFERENCE
HANDBOOK

- Prepared by
The Software Writing Group
Programming Department
Digital Equipment Corporation

i .

Additional copies of this handbook may be ordered from the Pro-
gram Library, DEC, Maynard, Mass. 01754. Order code: AIW. $5.00
each. Discounts available on five or more copies. ~

PDP-10 HANDBOOK SERIES

The material in this handbook, including but not limited to instruction
times and operating speeds, is for information purposes and is subject
to change without notice.

Copyright © 1969 by
Digital Equipment Corporation

PDP-10 System Reference Manual, Copyright ©, 1968, by Digital Equip-
ment Corporation. MACRO-10 Assembler, Copyright ©, 1967, 1968, 1969,
by Digital Equipment Corporation. Time-Sharing Monitors, Copyright ©,
11968, 1969, by Digital Equipment Corporation. DDT-10, Copyright®©,
1968, 1969, by Digital Equipment Corporation. PIP, Peripheral Inter-
.change Program, Copyright©, 1968, 1969, by Digital Equipment
Corporation.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts: '
DEC PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

i

7z

/
FOREWORD

One of the significant measures of the quality of a computing system
like the PDP-10 is the utility and availability of systems documenta-
tion. Good manuals are the vital communications link between DEC
and the people who use our systems.

This collection has been organized for the convenience of PDP-10
programmers, systems analysts, engineers and others who work at the
machine language level.

I'm pleased to acknowledge here the work of the many DEC system
designers, engineers, and system programmers who continue to ad-.
vance the state of the time-sharing art in both hardware and software.
Also, to our PDP-10 users, who during the past two years, have helped
immeasurably to improve and refine the system, and to the DEC soft-
ware writers and technical artists who prepared this volume, our special

thanks.

President, Digital Equipment Corporation

I

PREFACE

This volume is a comprehensive library of information for experi-
enced programmers, systems analysts, and engineers who are interested
in writing and operating assembly-language programs in the PDP-10
time-sharing environment. ‘ .
The first three chapters deal with program preparation. Chapters 4
and 5 are about loading, editing, testing, debugging, and running source
language programs, Chapter 6 contains a miscellaneous collection of
utility programs that have proven most useful to system designers and
experienced programmers.

As we expect to improve this book in future revisions, all readers are

earnestly requested to send c9rrections and comments to:
Manager, Software Writing Group
Programming Department
Digital Equipment Corporation
Maynard, Mass. 01754

A companion volume for beginning programmers and others who pre-
fer to write programs in one of the popular compiler or conversational
languages is scheduled for publication in 1970.

v

CONTENTS .
FOTBWOIA ..oocvoioeeit ettt ettt e eee et ese e ese s e s e s e s s e s e s mt
Preface e st st A st e et RS et e e e s eea s e e et een e e v
SYSIEIN OVEIVIEWoiivmeeeecircinireiniteissee ettt et eeeee e eesseess s e s es e e s e e s, VI
Introduction O OREE OSSO x1
Book 1 Programming with the PDP-10 InStruction Setccoevveuereeeeereeerereresrererns, 1

Description of the Central Processor Structure, General Word Format, Memory
Characterlstlcs, and Assembler Source-Programming Conventions, Followed by
a Presentation of the Specific Instruction Format; Mnemoni¢ and Octal Op

Codes, Functions and Timing Formulas. \

Book 2 Assembling the Source Program ettt et ettt st e s s e e s s neen 187

i Reference Information for the PDP-10 Assembly System, containing Explana-

tion of Format of Statements, Use of Pseudo-Operations and the Coding of
Macro Instructions.

Book 3 Communicating with the MONIOTc...oveueeiuiereviriteeeeecce e eesesseseens 283
Complete Guide to the Use of the Time-Sharing Monitors: Monitor Commands,
Allocation of Facilities, Relocation and Protection of User Programs, and De-
scription of the Reentrant Capability.

Book 4 Editing the S0urce PIOIamcoc..corivurivuuirmiceiascceeeecesensseessieassasesssnsssnsses 491
Procedures for Creating, Modifying and Displaying Source Files Recorded in
ASCII Characters.

Book 5 Executing the Program ON-LiMecoceooeorvomereeresreeesrosssessosseseessossesoos 525

Description of Loading and Linking of Relocatable Binary Programs Generated
/ by MACRO-10 or FORTRAN IV and Exposition of Commands and Tech-
niques for On-Line Checkout and Testing of MACRO-10 and FORTRAN IV

. Programs.

Book 6 ULility PIOZTAMSo.voeivcecriceeeceninircrceeetesesanis s teae s sae e tes st esas s erasanaas 583

Transferring Data Files Between Standard Devices, Updating Files Containing |
Relocatable Binary Programs, Manipulating Programs within Program Files,
Cross-Referencing User Defined Operators, Op Codes, Pseudo-Op Codes and:
‘Global Symbols, Comparing Source Files and Comparing Bmary Files, Serving
and Restoring Core Images on DECtape.

Appendices ettt e a sttt e et st s s a ARt se et s et ee sttt eneaena. 629
Master Index/GIOSSaryc.covceeevevieeerciereeones e e e a e e ereanes ST S 637

SYSTEM OVERVIEW

The PDP-10 is the successful culmination of many years
of computer design research — a process which has
enabled Digital Equipment Corporation to provide bet-
ter computers at the lowest possible prices.

Starting with the PDP-1 in 1959, DIGITAL has pio-
neered the development of real-time systems for science
and industry. Since then, each new system has increased
in versatility, yet has consistently decreased the cost of
computation. The PDP-1 was the first powerful real-time
computer for under $150,000. The PDP-8 showed that
an effective computer could sell for less than $20,000,
and newer models in the PDP-8 family have lowered the
cost to less than $10,000.

In developing its time-sharing capabilit)l'f, DIGITAL has

built a history of success very similar to the company’s

record in real-time applications. DIGITAL’s customers
have been building time-sharing systems around PDP
computers since 1960. And, in 1963, DIGITAL devel-
oped its own time-sharing computer, PDP-6 — the first
to be delivered with manufacturer-supplied hardware and
software.

The PDP-10 reflects DIGITAL experience in both real-
time and time-sharing. The system ‘performs time-shar-
ing and real-time operations equally well and simultane-
ously and provides concurrent batch processing.’

In conversational timé-sharing, up to 63 users at local
and remote locations can simultaneously develop pro-
grams on remote consoles and receive answers to mathe-
matical or engineering problems in seconds. PDP-10
time-sharing monitors provide instantaneous response
for the users so that they can perform on-line composi-
tion, editing, and debugging of programs in FORTRAN
IV, MACRO-10, COBOL, BASIC, and AID, with the
use of EDITOR, TECO and DDT. The monitors can
handle any mixture of these languages and programs

concurrently. And most of the software is re-entrant so

that multiple users can share the same compiler or utility
program for increased efficiency.

For programs that don’t require. immediate processing,
users may initiate batch processing — a task which pro-
ceeds concurrently -with time-sharing and real-time

Vi

tasks. In batch processing, the PDP-10 can handle any
stream of programs, such as a mixture of FORTRAN,
MACRO-10 and COBOL. Normally, batch processing
operates without operator attention. However,the PDP-10
allows the operator to stop or start the batch system, re-
arrange the queue or call for a print-out to analyze pro-
gram errors. The operator can also select and assign the
desired input, output, and temporary storage devices to
be used in batch processing.

V.Vhen'real-time operations such as data acquisition and
control are the primary purpose of the PDP-10, system
software provides response in microseconds, processing
information at speeds that meet the:most demanding re-
quirements. High priority real-time tasks are interfaced
directly to the priority interrupt system and control their
own input/output operations for unlimited flexibility.
Less critical real-time jobs are monitor contrdlled with
a real-time clock assuring that each task does not exceed
its allotted time and destroy the response of other pro-
grams. For even greater efficiency, time not used by the
real-time programs can be used for conversational time-
sharing and/or batch processing.

-

Structure of the PDP-10 K

Every PDP-10 uses one of three levels of monitors to
allocate resources and perform input/output functions.
The single-user monitor ‘is used for dedicated systems
which operate one program at a time. The multi-pro-
gramming monitor controls the execution of multiple
programs in core, switching between them at microsec-
ond speeds. The swapping monitor effectively increases
the available core by swapping programs between high
speed disk or drum storage and core memory. Thus
more.users can be served by a given amount of core.
All language processors (FORTRAN, MACRO-10,
COBOL, BASIC, and AID) operate identically under
the multi-programming and swapping monitors.

To make efficient use of memory, language processors

and important utility programs are re-entrant, that is,
the pure code for each program can be shared by mul- -
tiple users. Re-entrancy is possible since any program

may be separated into a pure segment that never requires
modification, and a segment which contains code or data
which is relevant only to a particular user. For example,

"a re-entrant system can service three FORTRAN users
- with one 8 K compiler (pure code) and three 2 K user

areas, a total of 14 K, whereas a non-re-entrant system
would require 30 K for the same programs. Since more
users can occupy a given amount. of core space, system
response improves and swapping time is reduced. Dual
protection and relocation registers protect the active user
and allow the program segments to reside in two non-
contiguous sections of core memory.

The PDP-10 has a 36-bit word length allowing it to
store 25 to 30 percent more information than a 32-bit
system. The system stores five 7-bit USACII characters
whereas the smaller word length computer stores only
four characters. It also provides more accuracy in single
precision floating arithmetic than computers with 32-bit
word size. :

The PDP-10 has a large instruction repertoire to sim-
plify assembly coding and reduce the size 6f higher level
programs. Its 366 instructions divide logically into fami-
lies and are. easily learned. The list also includes an ex-
tersive set of floating point and byte manipulation

. instructions. Due to instruction set efficiency, fewer in-

structions are required to perform a given function. As-
sembly -laniguage programs are therefore shorter than
with other computers and the instruction set simplifies
monitor systems, language processors, and utility pro-
grams. For example, compiled programs are 30 to 50 per
cent shorter, require less memory, and execute faster
than those of comparable computers.

Sixteen high speed integrated circuit registers also help
improve program execution. Depending on program re-
quirements, these registers can serve as accumulators,

normal memory location, and/or index registers. Inter- -

mediate results of computations are stored in the regis-
ters rather than in core memory; thus, no instructions
are needed to store and retrieve the data and data is

available in nanoseconds. Fifteen of the registers can be :

used as fast memory locations so that program segments
with sixteen or fewer instructions can be executed repet-
itively at very high rates.

The PDP-10 memory bus, structure gives the central
processor and high speed data channels simultaneous
access to separate memory modules. Only when the proc-
essor and a data channel access the same module does
the processor lose a memory cycle. Modules contain up
to four ports, allowing access to a total of four processors
and/or channels. Such parallel operation improves proc-
essor utilization, yielding manyfold improvements over
systems which provide only a single path to memory. The
bus system allows each data channel to transmit full 36-
bit words at speeds of up to one million words (5 mil-
lion 7-bit characters) per second.

Memory can be modularly expanded to 262,144 words
of core, all of which (including the 16 accumulators
and 15 index registers) can be directly addressed. Total
memory capacity can be comprised of combinations of
modules in 8,192-, 16,384-, 32,768-, 65,356-, and
131,072-word blocks. Memory banks are asynchronous
allowing interleaving and making it possible to intermix
memories of different cycle times.

To provide immediate service to real-time requests, the
PDP-10 has a multi-level priority interrupt system. The
system is a hardware feature, but is programmable for

* increased flexibility. Devices may be assigned to any level

under program control and the entire interrupt system
or any level may be selectively turned on or off.

PDP-10 Configurations

The modularity of PDP-10 hardware and software
makes it economical to configure a wide variety of sys-
tems and easy to expand the systems in the field. (See
PDP-10 hardware list in Appendix A.) An individual
can buy a single user system and, at some later date, ex-
pand to a small time-sharing system. Or the small time-
sharing user can expand his system to serve 63 users
simultaneously. Within any basic configuration, the user
has a wide choice of memory sizes and speeds, input/out-
put equipment, and storage facilities. For example, the
input/output system alone can accommodate up to 128
discrete devices ‘and device controllers, permitting al-
most limitless expansion of on-line storage and othcr in-
put/output equipment.

viI

The single-user system in Figure 1 can be simple or
as elaborate as the user requires. As shown, it consists of
an arithmetic processor, one or more core memory mod-
ules, a DECtape control and DECtape units1, a console
teletype, and a paper tape reader and punch. By adding
more core memory and data line scanner, the system can
easily be converted to multi-programming.

) 'MEMORV |

ARITHMETIC
PROCESSOR

DECTAPE

| CONTROL I \,

UPTO 8
DECTAPES

\
DECTAPE DECTAPE
UNIT UNIT
REAL TIME /
EQUIP.

FIGURE 1. SINGLE-USER SYSTEM

| MEMORY I

1/0 BUS

MEMORY

ARITHMETIC
PROCESSOR

. DATA
CHANNEL

DISK
CONTROL

SWAPPING
DisK

CARD
READER
LINE
PRINTER

UP TO 4
SWAPPING
N DISKS

170 8US

UPTO 8

-

J)]
3
-

contROt [1 1 TAPE DRIVES
-
TAPE DRIVE |TAPE DRIVE I
DECTAPE UPTO 8
CONTROL | T T DECTAPES
DECTAPE DECTAPE
UNIT UNIT
DATA LINE . uPTO 8
SCANNER [hd 1 TELETYPES

TECETYPE

| TELETYPE I

FIGURE 2. 8-USER SWAPPING SYSTEM

1A special random access magnetic tape designed by Digital Equipmen
Corporation, -

VHI

The small swapping system shown in Figure 2 can be
expanded in eight user groups to the large time-sharing
system (Figure 3) which can handle up to 63 users.
The large system includes file storage and swapping stor-
age units, additional memory, and more peripheral
equipment. For very large systems, a file storage disk
may replace or supplement the disk packs. A computer-
based communication system may be substituted for the
data line scanner, and synchronous data phone units can
be used to connect the system to remote batch devices
and other computers. o

':(MORY l [MEMORV.J ! MEMORY J I M.EMORYJ

ARITHMETIC | |
PROCESSOR
e = = = -
I FILE STORAGE
=== [—_j:lg SYSTEM
CHANNEL N
DISK PACK
CONTROL

DISK PACK

1/0 BUS

|
!
|
|
t
i
|
!
|
|
l

SWAPPING DISK PACK
DISK d
UPTO 8
CORE UP TO 4 DISK PACKS
SWAPPING SWAPPING
DISKS
PE DRIVES
Lo|Swsiem_ T S I ki o
r-l—-——=—=-—-———-—-=-=-==-—=-—-- 9
| " | CARD l]
READER P TO 63
i : DEVICES |
LINE
! |
i |
SET DEVICES

. » :
| DATA LINE DATA |
' SCANNER r SET 1
i : PERIPHERAL |

TELETYPE TELETYPE
X [euenvee | SYSTEM 7

FIGURE 3. LARGE SWAPPING SYSTEM

The dual processor system in Figure 4 is one of many
possible multi-processor configurations that the user can
tailor his monitor to meet. Since the system shares both
peripherals and core memory, both processors can access
memory at the same time and can compute in parallel.
Such an arrangement doubles the computing power of a
single processor and more than doubles cost/effective-
ness, since the cost of the additional processor is only a
small fraction of overall system cost.

=]] o]
C 1L T

ARITHMETIC
PROCESSOR

ARITHMETIC
PROCESSOR

1/0 8US

CARD
READER
LINE
PRINTER

hd DECTAPE uP 108
CONTROL DECTAPES
DECTAPE DECTAPE
UNIT UNIT
[oara e | uP 10 63
i | SCANNER ' TELETYPES
[rewivee | oooo | vererver |

REAL-TIME
EQUIPMENT

FIGURE 4. DUAL PROCESSOR SYSTEM

In other multi-processor systems, the processors may
work independently or communicate through shared
memory. One may serve as the input/output processor
while the other performs most of the calculations. Or the
processors can share all input/output and processing.
Multi-processor systems can also combine a PDP-10
arithmetic processor with other DIGITAL computers.

In Summary

The PDP-10 exemplifies the versatility required for to-
day’s large computing tasks. With its 366-instruction
repertoire, re-entrant software, multi-programming hard-
ware, and flexible priority interrupt system, it provides
power arid excellent response for a multitude of applicg-
tions. And with the system’s wide range of hardware and
software, the user can purchase to serve present needs,
yet easily expand to meet future system requirements.
Every PDP-10 is backed by service — software support
for a full range of customer assistance, service through
a worldwide system of over 60 service centers, and for-
mal training through a variety of available training
courses.

- At a cost of less than half that of comparable systems,

IX

the PDP-10 provides the best price/performance avail-
able today — another step toward Digital Equipment
Corporation’s goal of providing the most for every com-
puting dollar. \

INTRODUCTION

SYSTEM DESCRIPTION

DEC PDP-10 software is divided into eight functional groupings with respect to common programming

activities, as follows:

a. Source Program Preparation , ‘ N

b. Conversational Language Translators

c. Program Loading and Library Facilities

d. Debugging . A !

e. Utilities 7

f. Calculators
Batch Processing

h. Monitoring

Groups a through g are programs called CUSPs (commonly used system programs) and are run

under control of the Single-—User,r Mﬁlﬁprogramming non-disk, Multiprogramming disk or Swapping Monitor.

Source Program Preparation (EDITOR, LINED, TECO)

The DECtape Editor, LINED (Line Editor for Disk), and the Text Editor and Corrector (TECO) programs
can be used to create (and later correct or modify) text files (e.g., Macro-10 and FORTRAN source
language programs) for subsequent assembly or compilation. Editor creates and modifies files on DEC- \
tape; LINED creates and modifies files on disk; and TECO performs more complex editing functions on

any standard 1/0 devices.

Language Translators (MACRO, F40)

The Macro-10 Assembler (MACRO) and the FORTRAN Compiler (F40) translate source programs written
in the Macro-10 and FORTRAN 1V languages, respectively, into binary machine language for subse-

‘quent loading and execution,

Program Loading and Library Facilities (LOADER, LIB40, JOBDAT, FUDGE2)

Loading is performed by the Linking Loader, which loads specified relocatable binary programs in core,
links their references to each other, and searches the appropriate subroutine libraries (e.g., LIB40) for
required subroutines. A job data area (JOBDAT) is created by the Loader for each program; this area is
used to store the current status of the job during execution. Library files of binary programs can be up-

dated by use of the File Update Generator (FUDGE2).

Debugging (DDT, CREF, GLOB)

After a program is compiled (or assembled), it can be loaded in conjunction with the Dynamic Debugging
Technique (DDT) program and debugged. DDT allows the user to control program execution and to
modify the program in ahy of several modes, including symbolic. For purposes of further program anal-
ysis (and for documentation), the user can use the Cross Reference Listing (CREF) program, which pro-
duces a cross-referenced listing of all symbols within his Macro program, and the Global Cross-Reference
Listing (GLOB) program, which produces one to three listings of all global symbols encountered in one

or more programs.

N

Utilities (PIP, CODE, SRCCOM, BINCOM)

A variety of utility programs are available for general-purpose data handling. Among these programs
are: the Peripheral Interchange Program (PIP), which transfers data between any standard 1/O devices;
Code Translator (CODE), which performs translations between standard ASCII codes and code of other
manufacturers; Source Compare (SRCCOM), which compares two versions of an’ ASCII file; and Binary
Compare (BINCOM), which compares two versions of a binary file.

. I . \
Conversational Languages (AID, BASIC)

Two problem=solving conversational Iang‘uceges for scientists, engineers, and students are included as

part of the PDP-10 software: the Algebraic lnl'erpret.ive Dialogue (AID), a prog;um based on the RAND
JOSSTMalgebraic language; and Advancéd BASIC® ; a conversational language for .sciehﬁfic, business,
and educational applications that includes among many other features a special set of matrix processing

operations. :) ' -

™ JOSS is the trademark and service mark of the RAND Corporation for its computer program and
services using that program.
@ Registered, Trustees of Dartmouth College. -

. XIn -

Batch Processing (BATCH, STACK)

The Batch Processor (BATCH) monitors the sequential execution of a series of user jobs with a minimum
of operator attention; operates as one of the "users” in a time-sharing environment and runs concurrent-
_ly with the Batch-controlled jobs (as well as other jobs on the system); and permits constant communica-~

tion by the operator.” Job Stacker (STACK) prepares input stacks for BATCH and processes output stacks
from BATCH.

~.

' Monitors

PDP-10 software inclydes two major categories of Monitors: ﬂ\te Single-User Monitor (10/30.configura-
tion) and the Time-Sharing Monitors (10/40 and 10/50 configurations). The latter category includes the
Multiprogramming non-disk Monitor (10/40), Multiprogramming disk Monitor (10/40) and the Swapping

Monitor (10/50). The Swapping Monitor was used in the generation of all examples in this manual.

'

The 10/30 Monitor is a subset of the 10/40 and 10/50 Monitor:. They are compatible at the source and
relocatable binary levels. The 10/40 and 10/50 Monitors are compatible at the source, relocatable

binary, and saved core image levels.

SYSTEM OPERATION

The following basic procedures and rules are necessary to communicate with the Monitor and load and

execute DEC commonly used system programs (CUSPs), as well as user programs.

Step . " Procedure
1L Ta establish communication with the Monitor, ﬁluce the Teletype in Monitor Command Mode

by typing 1 C (i.e., hold down the CTRL key while striking C; Monitor will respond with a
. period (.). If you have a 10/30 or a 10/40 system, skip the LOGIN procedure in the next
step.

2. Type LOGIN followed by carriage return. The system will respond with
JOB n NAME OF SYSTEM

followed by a number sign. Then type your project-programmer number, followed by a car-
riage return. The system will then type

PASSWORD:

Then type your secret password followed by a carriage return. The system will keep it secret
by not printing it on the paper. If the project-programmer number agrees with the password,
you will be logged, and any messages of the day will be typed for you.

3. Then, direct Monitor to load and start a program from the System Library (.R prog), start a
program already loaded in core (.START), discontinue your job (.KJOB), or perform any of

a variety of other operations. A complete list of Time=-Sharing Monitor commands is given
in Table 9-1.

X

! . . ’ AN

Al CUSPs ‘(excepi' EDITOR and LINED) su‘ppliedr by DEC are device independent; therefore, the user
must tell the CUSP, via a command string t*pein, which devices to use. Readiness to receive a com~
mand string is signalled by the CUSP via an asterisk (*) typeout after loading. For example, when the
FORTRAN 1V Compiler has been cqlle& and it has responded with an asterisk, the user types in a

command string indicating:

a.- The device containing the source program to be compiled
b. The device on which the binary output is to be placed and

c. The device on which the compilation listing is to be written
*binary -output-device, listing-device + source-device

Devices are specified by a 3-character device name (a fourth character, a digit, specifies the particu-

lar unit in the case of DECtapes, teletypes, and magnetic tapes), followed by a colon.

Device ‘ Device Name .
Card reader CDR:
Card punch CDP: '
Line printer = ‘ LPT:
Paper tape reader PTR:
Paper tape punch - PTP:
Teletype TTY: or TTYn:
DECtape DTAn:
Magnetic tape MTAn:
Disk ' . DSK:

For file-oriented devices (DECtape and disk), a filename (maximum of six characters) is also required
following the device name to specify either the specific file to be read or the filename to be assigned
to the output. A filename can be further specialized by adding a 3-character extension name to it,
preceded by a period (.). Extension names are generally used to classify a file into a particular cate-
gory, and certain standard extensions are used and recognized throughout the system (e.g., .REL for

- relocatable binary files, .SAV for saved core image files, .MAC for Macro-10 source files, .F4 for

" FORTRAN source files, etc.). The following example shows a sample FORTRAN command string.

Example:
7 DTA1:BIN.REL, LPT: - DTA0:SOURCE - ‘ Compile the file designated as SOURCE on DECtape

0; write the binary output on DECtape 1, designa-
ting it BIN.REL; print the listing on the line printer.

X1V

Batch Processing (BATCH, STACK)

The Batch Processor (BATCH) monitors the sequen;ial execution of a series of user jobs with a minimum
of operator attention; operates as one of the "users" in a time-sharing environment and runs concurrent-
.ly with the Batch-controlled jobs (as well as ﬁfher jobs on the system); and permits constant communica-
tion by the operator.” Job Stacker (STACK) prepares input stacks for BATCH and processes output stacks
from BATCH. '

" Monitors

PDP-10 software includes two major categories of Monitors: the Single-User Monitor (10/30.configura-
tion) and the Time-Sharing Monitors (10/40 and 10/50 configurations). The latter category includes the
Multiprogramming non-disk Monitor (10/40), Multiprogramming disk Monitor (10/40) and the Swapping

Monitor (10/50). 'The Swapping Monitor was used in the generation of all examples in this manual.

The 10/30 Monitor is a subset of the 10/40 and 10/50 Monitor : They are compatible at the source and
relocatable binary levels. The 10/40 and 10/50 Monitors are compatible at the source, relocatable

binary, and saved core image levels.

SYSTEM OPERATION

The following basic procedures and rules are necessary to communicate with the Monitor and load and

execute DEC commonly used system programs (CUSPs), as well as user programs.

Step . " Procedure
1. To establish communication with the Monitor, place the Teletype in Monitor Command Mode

by typing 1 C (i.e., hold down the CTRL key while striking C; Monitor will respond with a
. period (.). If you have a 10/30 or a 10/40 system, skip the LOGIN procedure in the next
step. :

2, Type LOGIN followed by carriage return. The system will respond with
JOB n NAME OF SYSTEM

followed by a number sign. Then type your project-programmer number, followed by a car-
riage return. The system will then type

PASSWORD:

Then type your secret password followed by a carriage return. The system will keep it secret
by not printing it on the paper. If the project-programmer number agrees with the password,
you will be logged, and any messages of the day will be typed for you.

3. Then, direct Monitor to load and start a program from the System Library (.R prog), start a
program already loaded in core (.START), discontinue your job (.KJOB), or perform any of
a variety of other operations. A complete list of Time-Sharing Monitor commands is given
in Table 9-1.

XIII

TYPOGRAPHIC CONVENTIONS IN THIS MANUAL

All computer typeouts are underscored (single line) or enclosed in brackets (multiple lines).

All operator typeins dre not underscored.

SYMBOLOGY USED IN CONSOLE EXAMPLES

tC Hold down the CTRL key whilé striking C. Normally echoes as tC.

tx Hold down the CTRL key while striking the "x" key, where "x" is any character.
Normally echoes as tx.

Some special control symbols and their re;pecﬁve key designations for Models 33, 35, ’
and 37 Teletypes are given below.

Symbol in This

Key Designation ‘ Manual Model 37

Models 33 and 35

| R

(not~TAPE)
(horizonf;ml tab)

WD (vertical tab)

RETURN

- ALTMODE or PREFIX or ESC

tT
1G

© - or-tl
t
tK

tQ

ts

Hold down CTRL key while

striking R.
Hold down CTRL key while

 striking T.
. Hold down CTRL key while

striking G. :

Hold down CTRL key while
striking 1. ‘
Hold down CTRL key while
striking L. :

Hold down CTRL key while
striking K.

(Initialize paper tape reader
input.) Hold down CTRL key -

while striking Q.

(Terminate paper tape reader
input.) Hold down CTRL key

while striking S.
Hold down the SHIFT key
while striking O.

Strike the RETURN key.
Normally echoes back as a
carriage return, line feed.

Strike the ESC key (sometimes
labeled ALTMODE or PREFIX)

Same as 33/35

Same as 33/35
Same as .33/35
Strike TAB key
Same as 33/35

Same as 33/35

- Same as 33/35

Same as 33/35

Strike ~key

Same as 33/35

Same as 33/35

Hold down the SHIFT key while Strike [key

striking K.

XV

Key Designation

Symbol in This
“Manual ‘ Models 33 and 35

<
>

LINE FEED
RUBOU_T

\

SPACE BAR

] Hold down the SHIFT key while
striking M.

t . When appearing alone (as in
DDT), hold down the SHIFT
key while striking N,

< Hold down the SHIFT key while
striking "', ".

> Hold down the SHIFT key while

v striking " . ".

4 Strike the LINE-FEED key.

RUBOUT Strike the RUBOUT key. Nor-

mally echoes back as a back-
slash (\), XXX, or a repeat
. of the character erased.

\ Hold down the SHIFT key
. while striking L.

— Strike the space bar to space
* to indicated position. TAB
can also be used in most in-

stances.
'NOTE
Due to recent changes in ASCﬁ, some terminals may have
the keytops "A " (caret) and " " (underline); these char~

acters have the same codes as " " and " +", respectively.

Where possible, DEC will supply all teletypes with the
arrow characters.

Model 37

Strike 1 key

Strike t key

Strike <key .
Strike > key

Strike LINE SPACE key
Strike DELETE key

Strike the \ key

Same as 33/35

' DEMONSTRATION PROGRAMS

The following demonstration programs illustrate the simplicity and flexibility of a PDP-10 software system:

a. Demonstration #1 is a typical example of the: procedure for creating a FORTRAN main pro-

. gram source file and a Macro-10 subprogram file. These two files are then translated, loaded,
and executed together. A bug is encountered during execution, and the DDT (Dynamic De-
bugging Technique) program is used to correct the erroneous instruction. The programs are now
executed successfully, their core image is saved for future execution, and the original source
file is altered to reflect the correction made to the binary code.

b. Demonstration #2 i |s a more complex example. The sequence of operations is similar to
that of Demonstration #1 (source program file creation, translation, loading, execution, de-
bugging, saving the core image, and altering the source code to reflect changes made to the
object code). In addition, such procedures as leaving the current job, logging in and begin-
ning a second job, and then later returning to the original job are included. Figure 1-1 con-
tains the flow diagram for Demonsi'rahon 2.

Demonstration #1

+C

-LOGIN

JOB 10 45.51G DEC PDP-10 #40

#10,63

PASSWORD: .

1641 B1-JUL-69 TTY22

THE DISK WILL BE REFRESHED AT 1300 HOURS DAILY
. . ,

tC

-ASSIGN DTA

DTA2 ASSIGNED : -

sMAKE MAINPG

*1 ¢ FORTRAN PROGRAM FOR TYPING TTY PHYSICAL NAME
CALL GETTYN(R) -
TYPE 6.R)

6 FORMATC' THE NAME OF YOUR TELETYPE IS: ',AS)

: END :

$$

*EXSS

EXIT

+C

=MAKE SUBRTE .MAC

*ITITLE GETTYN’MACRO SUBROUTINE
SUBTTL SUBROUTINE TO GET TTY NAME AND CONVERT TO ASCII.

INTERNAL GETTYN -

AC4=4
. AC5=5

AC6=6

GETTYN: 0@
CALL AC4,[SIXBIT/GETLIN/] 35GET TTY NAME.

GETBYT: ILDB AC6,NMPTRI1) 3GET A SIXBIT CHARACTER.
SKIPN AC6 “3DONE? .
JRST NAMDON 3YES. » «
ADDI AC6s40 . 3NO> CONVERT CHAR TO ASCII.
" IDPB AC 65NMPTR2 3SAVE CONVERTED CHARACTER.
JRST GETBYT' . " 3GO GET NEXT CHARACTER.

NAMDON: MOVE AC5,@(16) - 3STORE NAME.

' JRA 1651C16) ’ SRETURN TO MAINPG.

NMPTR1: POINT 6,AC4-1,35

NMPTR2: POINT 7,AC5-1,34
END

5%

*EXS

\ .
[%XIT
.C - .

XVIII

- Log into the system by typing LOGIN, followed by the prescribed "login" information for your particu- *

lar system. The monitor responds with time, date, and Teletype number.

ASSIGN DTA assigns a DECtape for storage of the completed program.

MAKE MAINPG calls in TECO (Text Editor and Corrector program) to create MAINPG, your
FORTRAN 1V source program file. The text of the source program is preceded by TECO insert com=-
mand 1. To terminate the text, type two ALTMODEs $$. TECO command EX$$ deposits the file in

your disk area and returns you to the monitor .EXIT. t C acknowledges the return to the monitor.

MAKE SUBRTE.MAC creates a MACRO-10 source program file SUBRTE.MAC. This subroutine with the
program name of GETTYN is called from the above FORTRAN program to obtain the Teletype name in
SIX-BIT code and convert it to USASCII code for outputting. The I, $$, and EX$$ commands perform

the functions previously mentioned.
1]

XIX

+EXECUTE SUBRTE/CREF,MAINPG/L

FFORTRAN:
MACRO: GET
LOAD ING

LOADER 5K

EXIT
tC

.DIRECT

PO3EDS « TMP
MAINPG
SUBRTE «MAC

PO3MAC . TMP
@@83SVC .TMP
OO3CRE .TMP
MAINPG.LST
MAINPG.REL
SUBRTE.REL
SUBRTE.LST
Q03P IP .TMP

TOTAL BLOC

EXIT

MAINPG
TYN

CORE

@@3L0A-TMP.

KS

DIRECTORY 27,20 0901

01
21
21

+LIST MAINPG.LST

[EXIT.

«CREF

EXIT
-'C

+DEBUG SUBRTE,MAINPG

LOADING

LOADER 7K

CORE

THE NAME OF YOUR TELETYPE IS:

29-JAN-69

29-JAN-69
29-JAN-69
29~JAN-69
29-JAN-69
29-JAN-69
29-JAN-69
29-JAN-69
29-JAN-69

29-JAN-69

29-JAN-69
29-JAN-69
29-JAN-69

JEXECUTE SUBRTE/CREF ,MAINPG/L instructs the system to: 1. Assemble SUBRTE.MAC, generating o'
cross reference listing file (CREF), and compile MAINPG, creating a normal listing file (L). 2. Load
the two resulting relocatable binary files together. 3. Start execution. System acknowledges each

step as it is being executed and types out the total core requirement for loading.

The program has a bug. It didn't éomplete’ the message: THE NAME OF YOUR TELETYPE IS:

To find the bug, it may be helpful to list the directory of your disk area by using the command DIRECT.
Besides the two text files created with TECO, there are many others. The REL files contain the relo-

catable binary output from the assembly and compilation. The LST files contain the listings. The TMP

files are temporary command files created by the COMPIL CUSP. These include 003CRE.TMP, which
contains the names of LST files to be output to the line printer when a CREF command is given.

You can now print the listing files for examination. LIST MAINPG .LST éufputs the listing file pro-
duced when the FORTRAN program was compiled. CREF outputs the CREF listing file produced when
the MACRO-10 subroutine was assembled. Examination shows that the MOVE instruction in the
MACRO-10 subroutine should be a MOVEM.

To debug your pro§ram, load the DDT (Dynamic Debugging Technique) program by typing DEBUG
SUBRTE,MAINPG. Note that assembly and compilation are not repeated since the REL files are more

recent than the source files.

GETTYNS : ‘NAMDON/ MOVE ACS,ep(16) MOVEM ACS,@(16)
$G

THE NAME OF YOUR TELETYPE IS: TTY13
EXIT -
*C

.SAVE DTAZ2:IMAGE
JOB SAVED
tC

+TECO SUBRTE.MAC ‘ .

* BUNMOVESIMSOLTSS
NAMDON: MQVEM ACS5,8(16) 3STORE NAME.

*EX$S
EXIT
+C

XXI1

GETTYN$: accesses the symbol table for the MACRO subroutine, and NAMDON/ accesses the
location of fllleAenk'one"ous instruction. Type in the correction MOVEM AC5, @ (16) and use $G to
re=execute the program so that you can check the result. The bug is out! The méssage is completed:
THE NAME OF YOUR TELETYPE IS: TTY13. | ‘

. The final steps are to store the core image of ybur program on DECtape and correct the source file.
SAVE DTA2:IMAGE stores the program on DECtape 2, giving it the name IMAGE. TECO SUBRTE.MAC
calls in TECO to correct the source file. And the TECO command string BJNMOVESIMS$OLTSS -
searches for the word MOVE, inserts an M after it, and types out the corrected line. EX$$ deposits

the corrected source program in your disk area or;d returns to the monitor. The user can now log off

the sysfem or start somé other program .

XXH1

XX1v

wp.Boiq mo|4 N.* wouBold uoyypiysuowaqg |-| ainbiy

2600-04

0$1v 80¢ -
AVHL TN

*{9 80F) GOF ¥IHLO
HNOA OL :o’:i@

(€ 80r) 8or A¥0193M10 3dv493Q) 3000 INIHOVM OL 34v1230
WN0A T 1% ENa O 1511°3dv1930 SNO1193¥80 100 %0 41 134 O ¥NOANO 3000
? RS LA ¥NOA NO 3713 1237438 04 3dV1230 WO 4 03453880
AR 358N0S OHIVW 3714 304N0S WYHO0¥d NNY 40 39V K1
@ 031935500 38048 @ O¥OVW 1038500 @ 34803 3AVS
. 1NdLNo (€ gor) “LD3NMOONI
1334800 J¥Y S11NS3Y 1034400N1| (e gor) aor WyuoQud (9 gor) gor unar $1 1ndino
——— ‘ONV 031531 WY H9OHd — 40 3SAVO [#— TUNISINO —] NVN1HO4 40 he—] 80r M3IN fe— 40 ‘SWYY90ud OML HNOA
Q31034800 NO¥Y3 1238400 NV 04 HOVLLY ONI1SIT NI938 v SV NI 901 (31N53X3 ONV 'av01

aNIi 0L 9n83Q HOvl3g

'3LVISNYYEL) 31ND3IX3

XXV

: > > -
SWYNOOHJ ONOVN
031 ViA 3714 30un0s 39vy0LS
le—— "iIno —| mvusoud 30unos [43,%04543 | © Nvdisod wnos 3Ni1noNans V1VA HI1V | W3isaAs
viane oi-Ouovn [*— 43103430 {38ha3xs oy 01-0H3 VA §NOK 404 90F 4N0A OL OLNI 907
HNOA 103W¥0D 21vISNVEL) 9nE3a (31v382) INYN 3dVid30 Norssv

Demonstration #2

_« LOGIN ‘ . .
JOB 3 4534
#27,20

2955 27-JAN-69 TTY13 . .
THE DISK WILL BE REFRESHED DAILY AT 4:45 PM UNTIL FURTHER NOTICE.

tC

+ASSIGN DTA DT
DTA2 ASSIGNED

+MAKE RANDOM

*ITITLE RANDOM NUMEEBER GENERATING SUBROUTINE

_SUBTTL CHARLIE PROGRAMMER 27 JAN 1969

sRANDOM NUMBER GENERATING SUBROUT INE

$% ; -

*I3THE FORTRAN CALLING SEQUENCE IS --

3 ‘ CALL RANDOM (ARG)

SWHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING
3SINGLE PRECISION FLOATING POINT RANDOM NUMBER WILL BE
5STORED. NUMBERS PRODUCED BY THIS ROUTINE ARE PSEUDO:RANDOM
3NUMBERS BUT ARE ~-UNIFORMLY DISTRIBUTED OVER [@,11.

$3% .
\ *INTERNAL RANDOM
ACX=5)
ACY=6 '
ACZ=ACY+1 3ACCUMULATOR SYMBOLIC DEFINITIONS.
. $3
. *IRANDOM: 0@ SJENTERED BY JSA 16,RANDOM. -
% CALL ACX,[SIXBIT/TIMERY GET TIME IN CLOCK TICKS.
ANDI ACX»3 . 3USE TIME TO SELECT 1-4 ITERATIONS.
3 .
*IRLOOP : MOVE ACY,RNUMBR FETCH PREVIOUS PSEUDO-RANDOM NUMBER.
MUL ACY,>MAGIC 5MULTIPLICATIVE RANDOM NUMBER GENERATOR.
MOVEM ACZ,RNUMBR 3SAVE NEXT PSEUDO-RANDOM NUMBER .
SOJGE ACXsRLOOP ;ITERATE AGAIN?
5%
*1 . LSH ACZ,-1D8 3CONVERT TO FLOATING POINT FORMAT.
TLO ACZ,20000 5 IN THE RANGE [(0,113.
FADRI ACZ,0 3NORMALIZE.
MOVEM ACZ,@(16) 3STORE RESULT., AND

JRA 16,1(16) 3 **%RETURN*x* .

~

XXVI

i

Log into the system by typing LOGIN (may be abbreviated as LOG); Monitor responds with the job
number assigned to your job and the version number of the Monitor. Following the typeout of the #
symbol, type in your project-programmer number. Monitor then waits for a password. Type ydur pass-
word (echo-typeout is suppressed). If your password matches correctly with your project-programmer
number, Monitor types out the correct time, date, and the physical name of the teletype you are using.
Monitor may type out some informative messages and return you to Monitor level. At this point, any

B Y
Monitor command can be typed.

Assign a DECtape unit to the job for later storage of files, and assign it the logical name DT. Monitor
responds that DECtape unit 2 has been assigned to the job. -Mount an available reel on,this‘unil', and
place the WRITE switch in the WRITE-ENABLED position. The reel contains the FORTRAN source pro-
gram for later use. From this point, refer to the DECtape unit as either DTA2: or DT:.

Now, create the source program file for the Macro-10 subroutine to be run in conjunction with the
FORTRAN program. TECO (Text Editor and Corrector) can be used to create such a text file. Type
MAKE RANDOM to call in the TECO program and cause TECO to open a file for creation; give it the
filename RANDOM. After TECO has responded with an asterisk, type an Insert command (I) followed
by the first portion of the text of your Macro-10 source program. Note that a typing mistake was made
on the first line -~ NUME; this can be corrected by pressing the RUBOUT key to echo the previous
character and then typing the correct character. If a typing error occurs several characters back,
press the RUBOUT key repeatedly until you have reached the erroneous character. To avoid overflow-
ing the input command buffer, break the text into several segments, rather than typing it as one con-
tinvous block. This is done by typing two successive ALTMODEs (an ALTMODE echoes as $) after
every six or seve:n lines of text to cause the contents of the input command buffer to be transferred to
the TECO output buffer and the input command buffer to be cleared. Following the subsequent asterisk
typeout, repeat the Insert command before continuing the text. After typing the program, request a
typeout of the entire text by typing HT$$. Notice that an Insert command was not typed at the begin~
ning of the third segment of the text. Luckily, TECO took the "I" in INTERNAL as the Insert command,
but this resulted in NTERNAL. Correct this by typing BJ (set the TECO pointer at the beginning of the
text), S (Search) for NTERNAL, 7R (Reverse the pointer seven characters), Il (Insert an "I"), and OLT
(Type out the corrected Line). Note that each command step is terminated by an ALTMODE ($). Also,
insert a space following PP in the line ;ACM. eens .PP83-89) and request that the corrected line be
typed out. Type EX $$ to direct TECO to write out its output buffer onto disk, assign it the filename
previously specified in the MAKE command, and close the file. ‘

XXvil

$3

X*I5THE MULTIPLIER USED IS 5t15 (SEE COMPUTER REVIEWS., VOL 6, #3.,
SREVIEW NUMER 7725, AND THE REFERENCED PAPER IN JOURNAL OF

5ACMs JANUARY> 1965, PP83-89).

MAGIC : S*S5*S*5*5KkSKS¥5¥5*Sk5%x5%5%5*5 ;THE MULTIPLIER.

RNUMBR : 1 3THE NEXT RANDOM NUMBER IS ALWAYS HERE.
35THE ITERATION STARTS FROM A VALUE OF 1.)

PATCH: BLOCK 10 5PATCHING SPACE. ’ .

‘ END

$$

*HT

$% .
(TITLE RANDOM NUMBER GENERATING SUBROUT INE

SUBTTL CHARLIE PROGRAMMER 27 JAN 1969

5RANDOM .NUMBER GENERATING SUBROUT INE

3THE FORTRAN CALLING SEQUENCE IS --

H CALL RANDOM (ARG)

SWHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING
3SINGLE PRECISION FLOATING POINT RANDOM NUMBER WILL BE
5STORED. NUMBERS PRODUCED BY THIS ROUTINE ARE PSEUDO:RANDOM
SNUMBERS BUT ARE UNIFORMLY DISTRIBUTED OVER (@,11.

NTERNAL RANDOM

ACX=5
ACY=6
ACZ=ACY+1 ACCUMULATOR SYMBOLIC DEFINITIONS.
RANDOM: @ SENTERED BY JSA 165RANDOM.) .

CALL ACX,[SIXBIT/TIMER]1 GET TIME IN CLOCK TICKS.
. " ANDI ACX»3 USE TIME TO SELECT 1-4 ITERATIONS.
RLOOP: MOVE ACY,RNUMBR 3SFETCH PREVIOUS PSEUDO-RANDOM NUMBER.
MUL ACY>MAGIC SMULTIPLICATIVE RANDOM NUMBER GENERATOR.
MOVEM ACZ,RNUMBR 3SAVE NEXT PSEUDO-RANDOM NUMBER.
SOJGE ACX,RLOOP ;ITERATE AGAIN?

LSH ACZ,-1tD8 3CONVERT TO FLOATING POINT FORMAT.
TLO ACZ,20000 3IN THE RANGE [@,11.
FADRI ACZ,0 5NORMALIZE.
MOVEM ACZ,@(16) 3STORE RESULT, AND
JRA 16,1(16) 5 %*%RETURN** .

5THEVMULTIPLIER USED IS 5t15 (SEE COMPUTER REVIEWS, VOL 6, #3.
SREVIEW NUMBER 7725, AND THE.REFERENCED PAPER IN JOURNAL OF
3ACM> JANUARY, 1965, PP83-89).

MAGIC 3 SkS*S*¥Sk5KkSKSkS*5*5*%5%5%5%5%5 STHE MULTIPLIER.

RNUMBR : 1 5THE NEXT RANDOM NUMBER IS ALWAYS HERE.
3THE ITERATION STARTS FROM A VALUE OF 1. . *

PATCH: BLOCK 10 3PATCHING SPACE.

L END §

*BJSNTERNALSTRIISOLTSS

INTERNAL RANDOM

*SPP83%-2C1 $OLTSS

5ACM, JANUARY, 1965, PP 83-89).

XEXITSS '

i

XXVII A

Demonstration Program #2 Continues On Next Page

| OXXIX -

DIRECT

-DIRECTORY 27,20 1019
PO3EDS . TMP 21
RANDOM 23
PB3PIP.TMP 21
TOTAL BLOCKS 25
EXIT
tC

27-JAN-69

27-JAN=69
27-JAN-69
27-JAN-69

+RENAME RANDOM.MAC=RANDOM

FILES RENAMED
RANDOM

EXIT tC

+«DEBUG RANDOM/CREF,DT :ARRIVE/L

T FORTRAN: ARRIVE.F4
MACRO: RANDOM

A 200001 040240
T TIME IN CLOCK TICKS.

?1 ERROR DETECTED
LOAD ING

?EXECUTION DELETED
LOADER 8K CORE
EXIT

+C

<TECO RANDOM.MAC

[3 K CORE]
*BJIN/TIMERSI/$0LT$S

ooRV26"

CALL ACX,ESIXBIT/TIMER]

>

GE

CALL ACX:[SIXBIT/TIMER/]’ JGET TIME IN CLOCK TICKS.

*EXITSS

| EXIT
tC .

XXX

- e

t

Typing DIRECT causes the directory of the disk area to be typed out on the console. In addition fo the
RANDOM file, thére are two other files, 003EDS.TMP and 003PIP.TMP. These files are temporary
commar;d files created by the COMPIL CUSP and contain the commands generated by MAKE and
DIRECT, respectively. Note that the assigned job number forms the first three characters of the file~

names.

Change the name of the text file from RANDOM to RANDOM .MAC by fypin§

RENAME RANDOM. MAC RANDOM.
- Standard filename extensions should be used (e.g., .MAC for Macro-10 source program files, .F4 for
. FORTRAN source program files, .REL for relocatable binary files, etc.).

Use the DEBUG command as folk;ws:

- a. Assemble your Macro-10 source program, RANDOM. its filename éxfensnon of .MAC
identifies it as a Macro program. Request that a CREF (cross-reference) listing file be pro-
duced At a later time, this file can be listed on the printer via the CREF command.

" b. Compile your FORTRAN source program, ARRIVE, which has a filename extension of .. F4
identifying it as @ FORTRAN program. Request a normal listing file (/L). This previously
prepared program file is on the DECtape reel that was mounted on DECtape 2 (symbolnc name
DT:).

c. Load the two relocatable binary files produced by the assembly and compilation processes
and also load the Dynamic Debugging Technique (DDT) program to examine and debug the
program coding.

d. If no major errors were encountered during franslahon and loodlng, begin execution under
control of DDT.

In this case, however, a source coding error was encountered in the Macro-10 source program (a slash

was riot typed following TIMER) and execution of the programs is inhibited.

Type TECO RANDOM.MAC to recall TECO and to open an dlreody existing file, RANDOM.MAC,
~for editing. Type the command string shown to insert a slash after TIMER . Set the TECO pointer at
the beginning (BJ) of the text, do .a nonstop (N) search for /TIMER, msen‘ a slash (1/) followmg it, and °
fype the current line (OLT).

XXXI1

+DELETE *.REL,>*.LST

[FILES DELETED
ARRIVE REL
RANDOM REL
ARRIVE = LST
RANDOM LST
EXIT
1

_+EXECUTE RANDOM/CREF >DT :ARRIVE/L
FORTRAN: ARRIVE.F4

MACRO: RANDOM

LOADING

LOADER 6K CORE

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

\
TYPE NUMBER OF SAMPLE TIMES DESIRED:10

B.777S1067TE+04
P.79615811E+84
0.79469139E+04
0.786T7823E+04
0.78103187TE+04
0.77700529E+04
B.778205S01E+84
0.777254T0E+04
?.79530156E+04
0.77917609E+04

oo owonnnonn

EErEEEEEEEE

/
TYPE MEAN WAITING TIME PLEASE: = tC

DETACH t
LOGIN .
JOB 6 4534

#27.20

1029 27-JAN-69 TTY13

THE DISK WILL BE REFRESHED DAILY AT 4:45 PM UNTIL FURTHER NOTICE.

tC \

XXXIL

To repeat the translation of the programs, delete those files from your disk area that were createa by
the DEBUG process. These files are the two relocatable binary files (these were aufomaﬁcall* given a’
filename extension of .REL) and the two lisffng files (fhese‘ were automatically givefy a filename extension
of .LST). The form *.ext refers to all files, regardless of filename, that have the specified éxfgnsion.

. In this example, DELETE *.REL, *_LST causes all files with an exfen;ion of .REL and all files with an
extension of .LST to be deleted. To conserve disk space, note that all temporary command files gen-
erated by Monitor commands can be periodically deleted by typing DELETE *.TMP.

An attempt is made to translate, load, and execute without DDT. The EXECUTE command has the same

general format as the DEBUG command. After loading, the program will automatically begin execution. .

s

E t
Translation was successful; the programs are loaded; and execution is begun.

: . \
However, there is an error. The output is far from random and conspicuously in the wrong range.

Retum to Monitor level by typing 1C.)

The following is an example of how to detach from the current job and begin a second job without
affecting the status of the current job. Detach the Teletype console by typing DETACH. A new job

can now be initiated. The current job (job #3) remains in its present status until you attach to it again.

* Type LOGIN (or LOG) to request another job number. Job #6 is assigned. Perform the same procedures
for logging in as in Step 1. !

XXXHIL

s
. sLIST ARRIVE.LST
C B . v
+CCONT

2K CORE

ATTACH 3 (27,201

<DEBUG RANDOMsARRI
LOAD ING

LOADER_ 8K CORE

$G

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED:10

B.T7751867E+04 ,

9.79615811E+04 -
0.79469139E+04

0.786T7823E+04
0.78103187E+04
0.7T7700529E+04
0.:77725470E+04
0.80251919E+04
0.78686508E+04
P4779176Q9E+04

EFEEEEEEEEER
wn-dm u 10 HHH

TYPE MEAN WAITING TIME PLEASE: “ac

+DDT

XXX1V

LIST the listing file ;qenerafed by the compilation of the FORTRAN program on the line printer.
Once the listing has begun, interrupt it by typing 1C to return to Monitor level.
Type CCONT to continue the listing and maintain the console at Monitor level.

Now, detach from this job and reattach to the original job by typing ATTACH jobf [project, programmer] .
(ATTACH can be abbreviated to AT.)

Now, attached to the original job (job #3) other tasks can be performed while the listing is being

completed.

The error that caused the incorrect results (a 0 was omitted in the TLO ACZ, 20000 instruction) is

determined by scanning the teletype sheet. Now, DEBUG the programs to correct this error.

The DEBUG process finds that two relocatable binary files (created during the previous EXECUTE
process) are more recent than their related source files. Therefore, no retranslation is needed , and .
the existing .REL files are immediately loaded. Execution is begun under control of DDT, and DDT

awaits a command typein.

A $G (ALTMODE G) transfers control to the programs and begins execution. Again, incorrect answers,

result.

To retumn to the DDT program, type (1C) to retum to Monitor level; then, type "DDT."

XXXV

-

RANDOMS : RLOOP+5/ . KTLO ACZ,20000
=661340,,200000 «TLO ACZ,200000

.

MAIN.S: 12P+10$T/ RED:' "/RED: /
12P+10$T/ RED: LINEFEED

12P+11/ $) EVARE 3V

12P+11$T/ '$)

$G

RANDOM INTERARRIVAL TIME GENERATOR FOR PQISSON

TLO ACZ,200000

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED: 10

0.13360079E+03
0.59776286E+02 -

D .31049938E+082 !
0.43099106E+02 :

" @.12045378E+02
2.20455130E+02 '
0.21030612E+02
0.39184699E+01
0.39241011E+02
B +45517379E+Q2

Mg aagaaa?
L 1 | O § O T 1 S [I |}

TYPE MEAN WAITING TIME PLEASE: *C

XXXVI

PROCESSES

i

i

Open the DDT symbol table for the Macro program by typing RANDOMS: (the program name; taken
from the TITLE statement of your source program, followed by an ALTMODE and a colon). Now, any
of the symbolic tdgs contained in this program can be used.

_ Open the location conf&ining the erroneous instruction by typing the address of the location, relative
to a symbolic tag (in this case, RLOOP+5). DDT types out the contents of this location in symbolic

form. Now, type in the correct contents, also in symbolic form.

Typing an equal (=) sign causes the new contents to be typed out in halfword mode. Typing a left -

f
airow causes the contents to be typed in symbolic. The proper instruction has been entered correctly.

During exe;ufion, no spacing was performed Followin>g the second request for input. To correct this
condition, open the symbol table for the FORTRAN program (FORTRAN programs are assigned the
program name MAIN. unless otherwise titled by the programmer), and correct that portion of the
literal sfore& in :Iocafions 12P+10$T and 12P+118T by inserting a space after the colon (DESIRED:).
Examine the two locations to ensure that the correction was made properly (a LINEFEED causes the

next sequential location to be opened).

Type $G to restart execution.

The results seem to be correct. Return to Monitor level.

XXXV

’

+SAVE DT :PROGA
JOB_SAVED
1C

sRUN DT :PROGA

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED: 5

0.19732386E+02

0.68401470E+02

?.16503109E+03

D .36447561E+01 ‘

. B.97657T015E+82

YPE MEAN WAIT]ING TIME PLEASE: SPE+1

e
nowononon

TYPE NUMBER OF SAMPLE TIMES DESIRED: 5

0.54349454E+03
0.45728928E+03
8.57901405E+03
0.22740226E+03
@.14563251E+083

=)
nwnnun

TYPE MEAN WAITING TIME PLEASE: tC

=TECO RANDOM.MAC
*BINSACZ,20000310$0LTSS .
TLO ACZ,200000 5IN THE RANGE [@,11].

XEXITSS
EXIT
+C ‘

R PIP
#DT :RANDOM.MAC ~DSK :RANDOM . MAC e

*1C

=DIRECT DT:

XXXVIIL

SAVE the core image of the two programs and DDT on DECtape. Assign this image file the name
P‘ROG‘A (an extension .SAV is automatically appended by the system).

AN

As a double check, RUN the program you just saved on DECtape. Note that R'is used to call in a
program from the system device (SYS:) and RUN followed by a device name is used to call in a program

from other devices. : \

Again, the results appear to be correct.

Use TECO to correct the Macro-10 source file to reflect the DDT correction.

Run Peripheral Interchange Program (PIP) to transfer the corrected Macro-10 source file to DECtape.
At the end of every console session, it is suggested that the user transfer any files he might want to
reuse from the disk area to tape or other storage medium. This procedure releases the disk space for

other users and ensures that a l;efreshing of the disk will not destroy the only copy of a file.

Obtain a DIRECTory listing of the DECtape to ensure that it contains all thév files you want to preserve.
(DIRECT can be abbreviated as DIR.)

XXXIX i

> a3

[sc4. FREE BLOCKS LEFT
PROGA .SAV 27-JAN-69
RANDOM.MAC .27-JAN-69
ARRIVE .F 4 22- JAN-69
EXIT
0
“

R 27,20 OFF TTY13 AT 1108 ON 27-JAN-69
9 MIN» 20 SEC

AY

JOB 3, ONE OF USE
FILES DELETED: @, FILES SAVED: ALL » RUNTIME

\

AT 6 [27,201

=K
CONFIRM: K

JOB 6, USER 27,20 OFF TTY13 AT 1118 ON 27-JAN-69

FILES DELETED: 11, FILES SAVED: @, RUNTIME @ MIN, 02 SEC

Kill the job. Monitor responds by printing the job number, project-programmer number; Teletype name;

time, date, number of disk files deleted/saved; and the total run time.

ATTACH (or AT) to the second job (job #6), and kill it also. Following the CONFIRM: message, sev-
eral opﬂoﬁs are available to determine what is to be done with the disk files. In this parﬁculcr case,
: becqus’e all files that are to be preserved have already been stored on DECtape, type K to cause all

disk files to be deleted.

Monitor prints the same information as in Step 13. You are now off the system; the core memory, disk

space, and DECtape unit have been returned to the Monitor pool for others to use.

END OF DEMONSTRATION SESSION

XLI

XL

