FpwArRD FTREDK W
HueustT 1 7¢)
PRELIMINARY DECAL MANUAL /A P2P -~/

INTRODUCTION

The Digital Equipment Corporation Compiler, Assembler and Linking
Loader program for PDP-1 is called DECAL. DECAL has complete assembly
program facilities,

An important feature of DECAL is its function as an algebraic
compiler. This means that the appearance of the algebraic statement:

a<s b+

in a prograzw, has the same effect as writing

lac b «s-.1l0ad the accumulator with contents of ¢
add c ...add to accumulator the contents of b
dac a ..esX¥eplace contents of a with ¢ + b

in assembly language. This provides added brevity and convenience
to the programmer in writing his programs, especially for complicated
algebraic expressions, where a symbolism may be used which corres-
ponds directly to the mathematical notation used in writing formulas.

Another important fcature of the DECAL system is the Linking
Loader which provides for:

a) Relocation of binary programs: The origin of any
program is determined at read-in time.

b) Symbolic cross-reference between programs: This
enables programs to call on other programs which may
be compiled separately, or exist as library tapes.
References o such programs are punched out in their
symbolic form- during assembly by DECAL. These are
replaced by their values at read-in time.)

Several notes are in order: .
(i) This preliminary manual should be taken as
referring solely to the DECAL F tape.

(ii) This is the first draft of a manual for
DECAL which is under development, but already
useful as described below. It is hoped that this
will provide adequate interim information for
programmers who wish to use the current version
of DECAL, (DECAL F tepe).

(iii) Certain exceptions and intricacies of the

system have undoubtedly been overlooked or under-
emphasized. Please inform us of any difficulties.

FUTURE FEATURES

DECAL will progress through various phases, the currently
completed being Phase I (or DECAL F tape). The progression of
phases will be, more or less, as follows:

Phase II

Phase II will include a description of the internal DECAL
symbols and subroutines of practical general use.

PhaSe IIT

Phase III will allow subscripts and indexing. Subscripts
will be able to be multi-dimensional and arithmetic expressions.
The subscripts will not be allowed to contain subscripted variables.
Floating point arithmetic will be completely incorporated
in arithmetic expressions. ”

Phase 1V

Four Linking Loaders will be made available: Low Linking
Loader (LLL), High Linking Loader (HLL), Compact Low Linking
Loader (CLLL), and Compact High Linking Loader (CHLL).

Phase V

This final phase will allow for the use of published algoritkms
in the ALGOL language. Other features include:
1. Complete address arithmetic facilities.
2. Completely general subscripting and indexing facilities.
3. Automatic constants assignments. - The constants will
be available to the LL so that all constants of all programs
are assigned to a minimum number of registers.

DECAL PHASE I

COMPILER CHARACTERISTICS

A. Input

Input to the compiler consists of a symbolic tape. In the
following, a "program" is normally just the contents of one
tape. A "system" consists of a number of programs. A "program"
consists of a series of "statements", which are in turn composed
of a series of "symbols". DECAL may be thought of as operating
on a string of symbols provided by a particular tape. Normally
a statement will occupy just one line (see B); while symbols appear
between blanks on the line (symbols; below). In other words,
statements are normally delimited by "carriage returns", and
symbols by "spaces" or "tabs"; but there are many exceptions to
this which give more power to the system. The exact specifica-
tions are enumerated below

Format: Spéces and tabs may be used in any desired number
between symbols. Extra carriage returns (giving blank
lines) are permitted. :

Suggested Format: Type statements one to a line. Start
with the label symbol (if any), then "tab" and type the

rest of the statement. Comments may also be typed on a

line. '

Characters: Input is a string of legal eight-bit characters
as listed in PDP-1 Manual, F-15A. Tape feed, blank tape,
and error code punches are ignored. Non-printing characters
are represented below as follows:

Space

Tab

Carriage Return
Upper Case
Lower Case
Black

Red

Back Space

T2Dygp e g>

Character Classes: Characters are divided into several
classes for the purpose of defining symbols., Case shifts
are remembered (but are filtered out) and are used to
distinguish upper and lower case characters. At the start
of a compilation, Jy and @ are assumed.

-1~

Class O:
4»Class 1:

Class 2:
Class 3:

Class 4:
Class 5:
Class 6:

Symbols:

Illegal codes (e.g., codes 12-17, 32, 37, 52,

53, 60,

L »

YI([»"

76)

(single quote)

0123456789
abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
? 7 (overstrike)

~3YA > A

, " (center dot)

" (double quotes)

Formed from one or more consecutive characters
as follows: ’

Class O

Class 1

Class 2

Class 3

Class 4

Class 5

characters halt the compiler when read

from tape.

characters delimit any symbol but are

otherwise ignored.

characters are single character symbols,
having a particular significance in the
DECAL system.

characters are those normally used by the
programmer to form location symbols, constants,
numbers, etc. in instruction statements,

and to form the variables of algebraic

symbols already defined in DECAL are either
standard ALGOL connectives, or consist of
three characters. Consequently, programmers
should avoid the use of three-character
symbols for their program variables.

characters are normally used to form symbols
which arg the operators in algebraic statements
(instruction generators). Some Class 4
characters have a special significance to DECAL
when appearing in the address part of an
instruction statément (e.g., ' + -). The

use of Class 4 symbols as operators eliminates
the necessity of spacing between operator and
operand, as long as the operands are of

Class 3.

characters are used to form some symbols of
special significance to DECAL. Other Class 5
symbols are available to the programmer, but

-2-

are not normally used.

Class 6 the character " has a special use, when
it is desired to form symbols of mixed
class (see. (i) below).

Normalization: Symbols are normalized with respect
to case by filtering out all case shifts from the
input string, supplying case shifts only as needed.

Thus, a symbol is any string of characters that
satisfies the following conditions:

Either v

The characters immediately before and after the
string are " (the Class 6 character, which we call
a symbol bracket), and the string does not contain
a L] -
ox :
ii) The string consists of just one Class 2 character
or ~
iii) The string consists of characters of like class
{Classes 3, 4, or 5), and the characters immediately
before and after the string are of a different class.

E.g., consider the following strings of characters
on tape:

(i) symbolod Abafrabag ())

(ii) sotsadbtdesmbepnst

z*, z°, z°, _

(iii)e+ 2A ¥

(iv) " f2tPF .a"

These break down into symbols

(i) symbol
AaAaAa
(
)
v
(5 symbols)
(ii) s e z
t n H
a t z
St)
e z z
. m : :
(18 symbols)

(iii) +
A
(2 symbols)

(iv) 2444F. a
(1 symbol)

Integer Number: A symbol beginning with a numeral
(0, 1, « « « 9) is assumed to be an Integer Number.
An Integer Number is a sequence of consecutive
numerals terminated with a non-numeric character.
Integers are always octal, except when the Data
Word dec is used. ‘

Symbol Types: The class of characters which comprises
a symbol has no effect upon its type; although, by
convention, different classes are commonly used for
different type symbols, e.g., bs ps ss wd as oc, Type
3; ig, Type 4. The symbol type is determined either
by previous definition in the DECAL system, or by

its context in program. Any symbol appearing in
program is assigned to a particular type when read
from tape. Except for symbols of types un and ss,
every symbol has a numerical value. The type and
value of a symbol are entered by DECAL in the DECAL
symbol table upon definition. The various symbol

- types and the significances of their values follow:

Action operator (ao): The value of an ao is
the address of a subroutine in the DECAL system.
Whenever an ao symbol is encountered in program, its
associated subroutine is called. The assignment
of types and values to symbols (except un) is done
by ao's. A symbol is assigned to type ao by the
2o dao (See L).

Instruction Generator (ig): Used as an operator
in algebraic statements. The value of an ig is the
address of the first of a series of "pattern words"
in memory. When an ig is encountered, the pattern
words are combined with the values of the appropriate
operators to assemble a series of instructions.
Assignment is done by the ao dig (See M).

Constants (wd, as, oc): These are used in the
formation of the output Word on the LLD tape. These
types must be distinguished from the types bs and ps
below principally for the sake of the LLD relocating
feature., The value of a constant is an 18~bit quantity.

—4-

If the left 6 bits are zeroes the type is as (address-
size). If the right 6 bits are zeroes, the type is
oc (order-code). Otherwise, the type is wd (woxd).
Assignment is done by the ao's ewd, eas, eoc (See N).*

Prcgram Symbol (ps): The value of a ps is the
relative address of an instructicn in program. Type
ps is distinguished from type as above, so that the
LLD may adjust the contents of registers in which a
ps was used in assembly. Assignment is done by the
ao :. (center dot; period; periodj. A ps symbol is

- &
wn——

expunged by the ao fin only.

Block Symbol (bs): Used exactly the same as ps,
only a bs may also be expunged by the ao blk. This
" enables the programmer to divide his programs into
blocks, and use bs symbols independently in each.
Assignment is done by the ac : (center dot; period).

Unassigned Symbol (un): A bs or ps may be used

before it is assigned. At the time of its use it will

- be assigned to type un, and reassigned on the appropriate
20. In connection with certain ao's, it is necessary to
use ps and bs synbols only. At the end of any compila-
tion, there should be no un symbols remaining. (Note:
References below to un symbols refer to occurrences
of symbols that are un at the time of reading.)

System Symbol (ss): In a system, it may be
necessary to refer to bs and ps symbols defined only
in other programs of the system. Such a symbol, which
refers to another program compiled separately, is of
type ss. Assignment is done by the ao dss. A
symbol may be used by other programs as an s only if
the 2o ' (single quote) is used. This involves the
"linking" feature of the LLD. At load time ss symbols
are evaluated as the locations where ' was used, and
are substituted at the appropriate points in other
programs of the system.

Numbers: Numbers have immediately available values
(their octal values), hence are not included in the
symbol table.

* In DECAL II, the distinctions between wd, as, oc will be waived.

~5=

Data: In connection with the ao's beci and dec,
any character string has an immediately available
value, which is a function of the CONCISE III representa-
tions of the individual characters.

B. Simple Statements

Simple statements are separated by a ; or a Q. (Empty
statements are permitted). Simple statements are of one of
the three following types. A simple statement is assumed to
be an algebraic statement unless it starts with a symbol which
identifies it as of another type.

Simple Algebraic Statement Results in a sequence of _
instructions in object program.
Simple Instruction Word Introduced by a symbol of the
Statement type wd, as, or oc. Results
in one instruction in object
program,
Data Word Statement Introduced by an ao.

C. Algebraic Statements

A An algebraic Statement consists of a string of operators,
operands, and parentheses. The operators are ig symbols.

e.g., go to =2, (=, s, o :A :v:Nc = #l>l <lél ,>.'.
+, -, X, /- (See section Q) ‘

Operands ‘are bs, ps, un, or "§_§ symbols (but not numbers). For
each operator, a level is defined (lv0, 1lvl ¢« « ¢« o o o o <1lV7).
For the ig's now in DECAL these are:

1v0: goto => &

lvl: = l .
1v2: AV

lvi: ~~

wi: =S5 L & =2

lv5: + =

- 1lve: x/mpy dvd

I1f no parentheses are present, instructions for the higher order
operators of the string are compiled first, and, for expressions
at the same level, the leftmost is compiled first.

€.g., aybv~bsac goto 4

may be written ((a>b)V (~™(b4lc))) gotc 4 and produces the same
program as the sequence of instruction statements.

lac a cescalling sequenée for >
jda >
lac b

jda) eee(b& c is equivalent to cpb)

Xct ~- : e cdOes cma
ior al eee{am»b)V~ (blc)
xct goto s cdoes spa
jmp d
al: loc eseaP>b

Temporary storage register (e.g., al, in the above example) are
automatically supplied at the end of the current program.

The presence of parentheses indicates that the parenthesized
expression is to be compiled first, before proceeding with the

rest of the statement. Parentheses may be used to any required

depth. It should be noted that the operators currently available

in DECAL correspond in both notation and significance to those

of ALGOL., Many features of DECAL (e.g., the : to indicate a

location) have been included with a view to the ultimate incorporation
of ALGOL within the system.

D. Simple Instruction Word Statements

i} A simple instruction word statement must be introduced
by a constant symbol (wd, as, or oc), and consist of a
string of symbels of types wd, as, oc, bs, ps, £s, un, or
numbers.

ii) 1If no ss or un symbols are involved, an instruction

word is assembled, which is the iaclusive "or" cf the valuses
of the symbols. If an odd number of bs or ps syiubols ars
used, the output tape is coded to indicate that the instructio:
word is "relocatable", and its address part will be corrected
at "load time" according to the "relocation constant®. This
deals with the simple cases of address arithmetic in which

(a2 = b) should not be relocated, while (a - b + ¢c) is
relocatable.

iii) If an ss or un symhol is used, only the first 6 bits
of the instructicn word are assembled. The outp*t hrue is
coded to indicate that the address part is to be filled in
by the LLD. If the syrbol is un, then the LI.D expecis to
pick up its value at another location on the same tap=.

-8-

If the symbol is ss, the LLD gets its value from some
other tape loaded at the same time. Consequently, the
only other symbols that should appear with ss or un
‘8ymbols are oc or numbers, with the right 12 bits zero.

E. Defined Expression (DE)

A number os ao's to be described make use of a "Defined
Expression”, which consists of octal numbers and/or symbols whose
value is known to DECAL at that point in the compilation, i.e.,
wd, as, oc, bs, ps symbols and +, = signs, but not un, ss. That
is, the symbols appearing in a Defined Expression must have been
previously defined in the program. A DE is terminated by a j or
2+ In the absence of + or - signs, a logical "or" is taken of the
values (as in the evaluation of the address parts of instruction
statements).

" F. Action Operators in Instruction Word Statements

. i) Most of the PDP instructions are represented in DECAL
as wd or oc constants. Some instructions, however, have
been given special treatment:

a) s2s is defined as an ao, which plants the value
of the succeeding defined expression (DE) in a skip
instruction: i.e., 828 S produces 6400S0, and has
the action "skip" on zero sense switch "S".

b) All "rotates" and "shifts" are defined as ao's,
which plant a number of "ones" equal to the value of
the succeeding defined expression (DE) in the
'appropriate "shift" or "rotate” instruction: e.g.,
rcl % produces 663777 and has the action "rotate
combined left 9 bits“

The above may not be preceded by any other part of the
instruction word statement.
e.g., 8zf 1 szs 2 produces a diagnostic print.

1:[) The symbol -» in the address part of a statement is
treated as a bs whose value is.the current value of the
location counter (the relative address of the instruction)

| iii) The symbols'i,': in the address part of a statement
change the mode of combination of the succeeding symbol
into the rest of the statement to an ®add" or ":.:tract",

respectively. Address arithmetic cannot be done with un
or ss symbols. ; : :

iv) The symbol / in the address part of a statement adds
a defer bit 10000 to the resulting word.

v) For sequence-break instructions, the following ao's
are used:

chn appearing in the address part of an instruction word
plants the 'valpe of the DE that follows at the appropriate
point in the instruction, e.g.,

isb chn 17 produces 721752
dsc chn 6 produces 720650

bac, bio, bpc, bjm are used in the address part when referring
to the sequence-break storage locations for accumulator, in-
out register, program counter, and the sequence-break jump
respectively. - e.g., . ‘

jmp ‘'bpc 7 produces 610035 -
(35 is the program counter storage locatlon for
channel 7) ‘

~ chn, bac, bio, bpc, and bjm, may not be the first symbol in
- a statement.u-' ' B

G. Labels, Locatzon Symbols,:and Varlables | o o

,Algebraic, Instruction Word, and Data Statements may be
labeled by a bs or ps. Such labels are actually location symbols,
in that the symbol has associated with it the corresponding location
- of the (initial) instruction of the labeled statement. If the purpose
" of the statement so labeled is to provide a stwrage register(s)
for a variable, then the labeling 'symbol may L. used as a variable
(operand) 1%;an algebralc statement appearing in the program.

The labeling is accompllshe by punchlng the desired symbol
at the beglnnlng of a statement foilowed by a : for bs or a :. for
a ps. The insertion of a ' causes the preceding symbol to be trans-
mitted as a symbol defined by the program, and available as an Ss
to other programs of the system. The ' must be followed by a :
or :.. For example:

name:'*a + ct = 4
- RXyz:. .jmp art

abc': b+ c=a

abd':. jmp X

' Any number of labels may be applied to a statement. Labels are
neglected when classifying a statement as "algebralc",'instructlon
word", etc.

-10-

H. Data Word Statements

- Octal: oct followed by an octal integer

: of not more than six digits, In1t1a1
zeroes may be omitted.
(oct is an as with value 0)

Alghan umeric: bei (binary-coded-information) followed
by one separating character (usually
ap or ,) followed by a string of
characters terminated by a .. The
resulting data is packed three characters
‘per word with zeroes filling out the
last word if necessary

Any character may be included in the
string, although special handling of
the , and , is required. To include
either a ., or , in the resulting data,
it is necessary to precede each instance
by a 4.

Decimal: : dec followed by a decimal number of the
form:

1123.456 +789
or of the form:
+123

The first case will result in a two-
register floating point number and the
second in a one-register integer., The
plus signs are optional, as is every
other part in the floating-point case
which is not essential to specify

the value, or to distinguish it from
-the integer case. “If the decimal point
is omitted from the first case, it is
assumed to lie to the rlght of the
number. -

Je Statement Parentheses

For certain ao's it is necessary to generalize the deflnition

13

of a "statement" A compound statement either o

i)’ is a simple statement, as already deflned (dellmlted
by'L or.L).

-11-

or

ii) 1lies between two occurrences of the statement
parentheses beg and end. Compound statements may contain
other compound statements, so intermediate occurrences

of beg and end must count out in the usual fashion for
parentheses.,

K. Tape Terminators

Tapes are terminated by the ao's stp or fin. The former
permits the read-in of several physically separate tapes which
comprise a single program. The CONTINUE button will read-in
the next tape. The latter finishes the compilation process,
and expunges all symbols defined during the program from the symbol
table, unless fix was used. In order that the symbols stp and
fin be recognized, they must be delimited by a terminal character.
Any character other than one in Class 3 will suffice, but period
(.) is suggested. The period may be followed by a & to restore
the carriage. ' :

L. The Action Operator dao

dao defines the preceding symbol as a new ao by the
compound statement which follows it. When the dao is encountered,
the defining statement is assembled directly into the compiler
storage area in DECAL. The defining statement, normally using
beg and end, must be capable of a complete one-pass compilation,
so may contain no un or ss symbols. The compiled program is
called on every subsequent occurrence of the new ao symbol.
Return to the main program is achieved through the MAC return
ml. An example of the use of a dag is as follows:

X dao
jmp rml

(may be used to make the symbol X irrelevant). A complete
description of dao will be given in a later phase.

M. The Action Operator dig

dig defines the preceding symbol as a new instruction
‘'generator by the statement which follows it. The action of
dig is precisely the same as that of dao, except that the new -
symbol is now defined as an ig in the symbol table. The
‘associated sequence of registers in the compiler storage area
will now be decoded every time the new symbol is encountered in
an algebraic statement. The ig operator may have either one or

=12~

two operands. For one operand, the operand occurs after the ig
symbol. For two operands, these occur separated by the ig symbol.
They are referred to in the encoded registers by the numbers 1, 2,
respectively, in the address part. Other codes are

i) ths (as 3000); when encountered in decoding, results

in the address part of the appropriate word being treated

as an ss, where the zppropriate symbol is the labeling symkol
for the ig. At load time, the LLD will expect a tape on
which the labeling symbol is defined as the location of a
subroutine, or an instruction, to be executed by the generated
Erogram.

ii) st (as 400); indicates the last register in the encoded
sequence.

The first register of the sequence contains some necessary
information for the compiler, and does not result in a register
of decoded program. The codes for the first register are:

iii) 1v0, lvl 1v7 (oc 04 - 14 in bits 0 - 3);
indicate the level of precedence of the ig (see C).

iv) opl, op2 (as 100, 200); the number of operards expected.
v) xsl (as 10); nﬁmber of results (currently no choice).

vi) cmt (as 2000); indicates that the two operands (op2)
are interchangeable.

vii) nlc (as 1);Xindicates that the first generated instruction
word is not lac 1; in the absence of nlc, a lac 1 is inserted
without being specified in the encoded program.

Exzmples: mpy dig ,
beg 1lv6 opl rsl nlc
jda ths
lac 1 1st end
(a tape with mpy must be supplied at lcad time).

= dig
beg
lvl op2 rsl cmt
xct ths
. Xor 2 lst end
(a tape with =': cma must be supplied).

-13-

The instruction generatof is restricted as follows:

i) . The full address part is used in decoding-the
instructions, the only acceptable constants must occupy
bits 0-6, thus cla, "law 0", etc., may not be used
(hence, the circumlocution is = above).

ii) The only acceptable references from the address
part are to the operands or to just one associated
location.

iii) It is not possible to use ao's to control the
compilation process, or to use "nested" ig's.)

N. Other Action Operators

blk introduces a new block. If SW 2 is ON, the bs's
previously defined will be printed. If SW 3 is ON, the un's
will be printed., All bs's are expunged from the symbol table.

dss declares as type ss the symbols which follow in the
same statement. (i.e., up to ; or j)

*eas equates the preceding symbol as an as to the DE
which follows in the same statement.

*eoc equates for oc, as above.
ewd equates for a wd, as above.

fix fixes the symbol table for subsequent compllatlons-
prints current bs and un.

lve leaves a gap in the program of length given by the
DE which follows in the same statement.

Xsy expunges from the symbol table the symbols which
follow in the same statement. (i.e., up to ; or)

N

«ss the remainder of statement is comment material and
is therefore ignored. ‘

O. List of Constants Supplied

S ol Type Value - Ogeratién
add Y oc 400000 Cc(AC) €& c(Yy) + C(acC)

*This feature will be eliminated in future tapes. ewd may be used
instead.

-14-

Symbol

and
cal
dac
dap
dio
dip

dis

iax

ior

iot

isp
jda
jmp
. jsp
lac
law
lio
mus
nop
opr

sad

K K

¢

Type
oC
oC
oC
ocC
ocC

ocC

- oC

ocC

oc

oc
oc

ocC

.. OC

ocC

ocC

ocC

ocC

ocC

ocC

ocC

ocC

ocC

vValue

20000

160000

240000

260000
320000
300000
560000
340000
440000

40000

720000

460000
170000
600000
620000
200000
700000
220000
540000
660000
760000

500000

-15-

Operation
c(ac) € c(v)A\ c(ac)
jda 100

c(¥) & c(ac)

C6-17(Y) & Cg-17(AC)

c(y) ¢ c(10)

| Co-5(Y) € Co-5 (AC)

divide step

c(y)€ o

c(yY) € c(ac) € c(y) +1
c(AC) € c(Y)V c(ac)
in-out transfer group
idx ¥Y; spa

dac ¥; jspY¥ + 1

C(PRC) & Y

‘lap ; jmp Y

c(ac) & c(v)
c(ac) &£ v
c(10) & c(Y)
mﬁltiply sﬁep
no §peration
operator group

if C(AC) # C(Y) then skip next
instruction

symbol Type

sas Y oc
sft oc
skp oc
sub Y oc.
xct Y oc¢

xXor Y ocC

skip group:

sma oc
spa ~oc
spi oc
sza oc
szf £ oc
sz0 oc

(szs see F (i))
usk oc

operate group:

cla oc
~clf £ oc
cli oc
cma oc
hlt oc
lap oc
lat oc
stf £ wd

value

520000

660000

640000

420000

100000

60000

640400

640200

642000

640100

640000

641000

640600

760200

760000

764000

761000

760400

760300

762200

760010

~16-

Operation
if C(AC) = Cc(¥Y) then skip
shift group
skip group
C(AC) & Cc(AC) - c(Y)
execute instruction in Y

C(Ac) &~ (c(ac) = c(y))

if BOA(AC) 1 then skip
if By (AC) = 0 then skip

0 then skip

if Bg (10)
if C(AC) = 0 then skip
if Flag (f) = O then skip

if overflow Ind = 0 then skip

skip (unconditional)

C(AC) & O
Flag (£f) € 0
c(10) & O

C(AC) &~V C(AC)

halt

C(aAc) £ C(PRC)-
C(AC) & C(test word)

Flag (f) & 1

Syiwbol

Typea

Value Operation

ir-ocut transfer group:

asc

cnv
dpy
dsc
esm
isb
lsm
ppa

PPb

rch
rpa
rpb
rrb
srb
tyi

tyo

wd

wd

wd

wd

wd

wd

wd

wd

wa

wd

wd

wd

‘wd

wd

wd

720051 activate sequence-break channel
720040 convert, analog to digital
720007 - - display (C(AC), C(10))

720050 deactivate sequence-break channel
720055 - ' enter sequence-break mode
720052 initiate sequence break

720054 R leave sequence-break mode
720005 punch paper tape, alphanumeric
720006 - punch paper tape, binary

720031 read converté; buffer

720001 read paper tape, alphanumeric
720002 | read paper tape, binary

720030 - read rélay buffer

720021 set relay buffer

720004 type in

726002 | type out

" (see also ao's chn, bac, bio, bpr, bim, section F(v))

shift-rotate gzoup (see F (i)):

other program constants:

loc.

oct

rml

as

as

as

as

124 - return to MAC from a called
“whroutine

~17~

Symbol Type "Value R Operation

constants for dig statements

1st " as - 400 last pattern word
ths as 3000 "this" symbol

cmt as 2000 commutative operator
1vO0 ' oc 200000)

vl oc 240000;

iv2 oc : 300000;

1v3 oc 340000; | . precedence levels
lvd oc ‘ 400000;

1v5 oc 4400002

1v6 e .sooooo;

1v7 - oc 540000;

nlc as 1l not lac 1 as first-pattern‘word
opl as ‘ ‘ 100 one opefand

op2 as 200 two operands

rsl -as 10 one result

P. Error Detection

DECAL detects and prints about 30 types of errors. The format
of the print in each case is a three-character code in red followed
by the last defined symbol (or NS if there is none) followed by
the current symbol. For the cases ich and fpe, the offending
character is printed as a three-digit octal integer.

Code V Error Action
bos bracket or separator (where it ignore
shouldn't be) g

-18-

~ Code :

cas

ciw

dda

dds —

fpe

-
ias
ich
idn
iig
ino
nas -

nds?

nfs

sdi

spu .

vEfror’

compiler algebraic statement
in'dig or dao (not permitted).

compiler improper word

duplicate definition attempted

duplicate definition of symbol
attempted by dss

parity error (this error stop
is presently deactivated)

illegal address arithmetic

instruction word in algebraic
statement -

A_ illegal character

improper decimal number
incorrect ;g'
incorrect number of operands

number not allowed in

‘algebraic statement

number in dss

not first symbol in statement
(when defining)

. number in xsy

symbol definition indefinite
(expression contains undefined
symbol)

syﬁbbl previeusly uéed when
definition attempted

-19-

Action

gives a try anyhow

store anyhow
do not re—define.
do not re-define

halt; load desire & bit
character in test word

" (right-justified) and

continue

try anyhow

handle as instruction
word

treat as space

proceed with conversion

ignore ig
gives a try anyhow

treat as oct

ignore number

proceed with definition

ignore number

define as zero

do not define

Code

tmd

XCS

Xmp

Xps

xst

X)

8’-9

’

Error

too many digits in octal
numbers '

too many operands
to00 many results

exceeded compiler storage

exceeded MAC push-down list
exceeded MAC protected storage
(commonly occurs with in-
correctly written instruction
statement

exceeded symbol table

right paren without left

right pafen missing

8 or 9 in octal number

comma found out of place

Q. Available ig's

the same output as

right.

a+b

a-b

| lac a
add b
lac a

sub b

Action

ignore left digit

new operand replaces previous
ignore excess

halt; continue with
store over last word

halt; no recovery

halt; no recovery

halt; no recovery
ignore paren

treat current symbol
as right paren

take mod 8

ignore comma

Appearances of the left hand expressicns in program cause
the sequence of instruction statements on the -

lac a (= is (equal sign; greater-than sign)

dac b

-20=-

axb v. - lac a (integer multiply)*
| jda imp |
lac b
a/b _ " lac a (integer divide)*.
jda iav
lac b

loc idv (halts on error; address points to
’ routine in which error occurs)

mpy a : jda mpy = (fractional multiply)*
’ lac a
dvd a . jda dvd (fractional divide)*
| lac a |

loc d@vd (halts on error; address points to
routine in which error occurs)

a &b lac b (é is ("less-than" sign; equal sign))
.dacva

b goto a ' lac b
spa
jmp a

asb | lac a (= is (understrike; equal sign)

xct ~ *
xor b

asb lac a
xct ~ *

*Calling sequence for associated subroutines. If these are used,
the appropriate tape must be loadad at run time (supplied with DECAL).

21~

aAb

avb

~a

a=:

a#b

vb

14}

alb

ior b
lac a
and b
lac a
ior>b

lac a

xct ™~

lac a

sas b

lac a

jda =

sad b
lac a
jda ?
lac b
lac b
jda &
lac a
lac a

jda

v

lac

o o

lac

jda

In

lac a

(# is (vertical bar; equal sign))

*

(> is (understrike; greater-than sign))

*

(4 is (understrike; less-than sign))

‘%

-2

R. Available Action Cpexz:or

For use in place of oc symbols:

Symbol Associated Value Significance
ral 661000 Rotate AC left

rar 671000 Rotate AC right

rcl 663000 Rotate combined left
rcr 673000 Rotate combined right
ril 662000 Rotate IO left

rir 672000 Rotate IO right

sal 665000 Shift AC left

sar 675000 Shift AC right

scl 667000 ’Shift combined left
sar ' 677000 Shift combined right
sil ’ 666000 Shift IO left

sir | 676000 Shift IO right

szs ‘640000 Skip on zero sense-switch
(See F(i))

For use in place of as symbols:

Symbol _ Significance

chn ' Channel number

bac . Sequence-break storage for AC
bpc Sequence-break storage for PRC
bio) Sequence-break storage for IO
bjm Sequence-break jump

(see F(v)) |

-23-

For use in address part of instruction word statements;
(these do not have these significances elsewhere),

Symbcl Significance
/ Defer bit 10000 (F(iv))
-» Location counter (F{ii))
+ Change composition to "add" (F(iii))

- | Change compositionAto "subtract" (F(iii))
For use in algebraic statements: .
if ‘ None (a dummy, for purposes of ALGOL format)
then ANone

For use in data statements:

dec Decimal convert
bci Binary coded information
(See H)

Other action operators:

blk ' End of block (N)

dao Define action operator (L)

dig Define instruction generator (M)
dss , Declare system symbols (N)

eas Equals address-size (N)

.eoc ' Equals order-code (N)

ewd AEquals word (N)

fin End of program-(K)

fix Fix symbol table (N)

ive Leave space in program ()

-24-

symbol

stp

Xsy

Significance

Pause; end of tape (N)
Expunge symbols (N)
Location of ps (G)
Location of bs (G)
Comment (N)

Location of usable ss (G)

S. Operating Instructions

1. Place DECAL F tape in reader and press READ-IN.

2. Place program to be compiled in reader, turn on
punch, and start at 400.

3. After first program has compiled, subsequent

programs may be compiled by pressing CONTINUE or by
starting at 400.

25=

Linking Loader for DECAL, Phase I .

At precent, there is a low Linking Loader (LL) occupying 0000-
1777. The symkol table of LL occupies 1400-1777. SA = 400. This
present LL will allow relocatable loading of LL subroutine tapes
(output of DECAL) in any order.

Operating Procedure:
1. Clear memory, if desired.

2. 'Load LL Binary tape (uses Hi P+L loader); identified
as BIN Low Linking Loader F. Program stops at 100.

3. Set test‘address switches to 400.

4. Load reader with LL tape (output of DECAL) to be loaded.
Rememrber that what was last punched by DECAL is first loaded
by LL. I.e., place tape backwards in the reader keeping

the feed holes in normal orientation with respect to the
reader. Turn the reader on.

5. Press START. The tape should read-in, then come to a
stop. (See Note 4 following for descrlptlon of typeouts
during use of LL). -

6. Computer halts at 502. To lcad additional tapes, re-
located to follow programs already loaded, put subsequent
tapes in reader (see (4) above), and press CONTINUE., After
each program is loaded, the computer will halt at 502.

7. After all tapes are loaded, put SS 6 up and press
CCKTINUE., If the system has been properly loaded, the
typewriter will type out fin in black. This mezns you
are all set to run your program. If there are still any
undefined system symbols, the typewriter will type out
in red the required system symbols. E.g., the following
would be typed out all in red. :

rq: symbol-1

rq symbol-2
rq ' symbol-n
fin

After type-outs, computer again halts at 502.

8. To load missing subroutines to define the missing system
symbols, just put SS 6 down, and resume procedure from step (6)

-26-

NOTES:

a. Programs are nornally loaded into zuul and up; each
program being reioczated to follow those already loaded.

To start loading a system at some arbitrary loaction above
2000 (say 4100), set test word switches to desired address
{4100) , and put SS 2 up, when loading first program START -
at 400, After this program is lcaded put SS 2 down, and all
subsequent programs will be relocated to follow the first
" program by continuing from 502. (Press CONTINUE)

b. START at 400 causes the symbol t:tle to be initialized.
CONTINUE at 502 leaves symbol table unchanged.

c. Re: Check sum error. If there is a check sum error
noted when the program has been read, the LL will type-out:
CKS, and halt at 502. 1In order to reload the erroneously
loaded program use the following procedures:

1. Reload program tape into reader.
2. Set test word switches to 415.
3. Press START.

This procedure will cause the program to be loaded in the
same space it was previously loaded. However, since there
may have been system symbols defined during the first loading,
this second loading might cause LL to erroneocusly type-out
dda (duplicate definition zttempted). Such type-outs during
a reloading after check sum error should be ignored.

d. The following is a description of the type-outs during
use of LL :

1. First word is not checksum. This is typed if the
LL tape being loaded is not properly loaded in the

reader.

2. Ppgm XXXX
sst NAAAS
11 2222

The above is normally the first type-oat during loadinc
of an LL tape. XxxxxX is the octal address of the first
register of the program. yyyy is the octal address of
the first temporary storage used by algebraic stateme
of the program (if any). 2zzzz is the address of the
last location used by the program including temporary
storage.

27~ .

i

. Example of type-out normally following above.
Syrtol-1 aaaa
Symkol-2 bbbb

Symbol-n nnnn

end
Svmbol~1l, Symkol-2, and symbol-n represent certain
symbols (ss) defined in the prcgram by apostrophes
('). a=2aa is the cctal address which is the definition
of symbol-1l; bkbb is the octal address which is the
definition of symkol-2; and nnnn is the octal address
which is the definition of symbol-n. The symbol end
signifies program has been read in.

4, dda eeee

Symbol ffff
Error diagnostic type-out for duplicate definition
attempted:. eeece is the octal address which is the
preserit value of the location counter; Symbol is an
example of some symbol of the program identified by
an apostrophe (') as a system symbol (ss). When LL
sees this symbol and finds it already defined in the
symbol table, it types out the above., ffff is the
octal address which is the definition of the symbol
found in the symbol table. LL does not change the
definition in the symbol table.

5. cks gggg9ag hhhhhh

This is the error diagnostic type~out for checksum
error. gggggg is the octal representation of the
computed checksum. hhhhhh is the octal representation
of the read checksum. To reload the program see
instructions, not C.

6. rqg symbol (in red).
See operating procedure Step 9.

-28-

How To Read A Li, Tape

The following is intended to allow DECAL and LL users to
recome familiar with the opesration of LL, and to be able to read
LL tapes and understand how they will be loaded by LL.

The LL tapes should be held so that the last part punched
(first part to be read) is put at the top. The feed holes are to
Below is a schematic rzpresentation of a
LL tape for visval reading.

be toward the right.

properly oriented

4

8171695114 312 1
* *
% %
* *
Leader *
* %
* %
* %
® %
Three lines X x1xXix| *1 X
per word- X1X X * X
space X1X1X X|* X
*
%
* X ix
*
%
X1x| *x X
*
*
etc. *
*

Identification of bits
in each line.

Part cof tape last punched
by DECAL and first r=ad
by LL.

)

) One word-space

)

indicates pznéhed information bit
indicates fced hole

The LL tapes consist of a sequence of words punched on the tape.
That is, there are 3n lines on the tape where n is the number of
We will now direct our attention to the
arrangement of information w~ithin each word-space (3 lines) on
the tape. We note that there are 8 hole spaces per line, I.e.,
there are 24 bits per word space.
space labeled as follows:

words on the tape.

Consider the bits in a word

) Word Space
)

*

*

*
D|AjJa|bjcl*ld{e |f |)
E[Bjg|lh{i]*|j1k |1
FiCiminjol*ipig lr

*

Now consider these bits as consisting of two parts: the Word and
the Code, as follows:

Word: abcdefghijklmnopgr
Code: ABCDEF

The word is a string of 18 bits where a is the high order bit and
r is the low order bit.

The Code is a string of 6 bits where A is the high order bit and
F is the low order bit.

For convenience, we will represent the word as a 6 octal digit
rumber, and the code as a 2 octal digit number.

We now present a description of the meaning of the various
codes which appear on LL tapes.

Code o Meaning-
00: B .Normally this code means that the word sharing its

word-space is to be loaded directly into memory as a
non-relacatable word. This coce also appears with
words which consist of concise codes for 3 characters
of alphanumeric information, one character per line.

It also appears with the second and third words on the
tape respectively: the number of words of temporary
storage required by the algebraic statements in the
source language programs; and the total number of words
of memory (registers) required by the program, i.e.,
the program size, not counting temporary storage.

0l1: This code identifies the word it accompanies as a

' relocatable word. The location of the first word in
the program (the last word of program read by LL) is’
added to the accompanying word and the result is
stored in memory. :

04: This code identifies the accompanying word as having
an address which refers to temporary storage. The
location of the first register following the program,
i.e., the first register of temporary storage for the
program, is added to the accompanying word, and the
result is stored in memory.

05: This code identifies the accompanying wor< us having
an address which refers to a block symbol (bs) or

-30-

L]
“J

.

10:

program synbol (ps) which was undefined at that point

- in the ccmpilation of the source language program which

resulted in this word. 7o find the address part to be
daped into the word, lock at the address part of the
register whose location is egqual to the sum of the
address part of the word and the location of the first
word of the program. The address part of this found
register is daped into the word and the result is stored
in memory. (See code 11 to understand how the appro-
priate address is stored into the found register).

This code identifies the accompanying word as having

an address which refers to a system symbol (ss)
identified in the source language program by a dss
statement. It also indicates that the word(s) to
follow are the concise codes for the alphanumeric
representation of the system symbol (ss) of the ‘address
reference, (See codes 00 and 70.) The alphanumeric
information is read by LL into the next available
portion of memory reserved for the symkol table. The
symbol is tested to determine whether or not it is
already in the table, and if it is in the table, whether
or not it hzs been defined, (i.e., that the address
corresponding to this symbol has been determined.

See code 10.) If the symbol is defined, the defining
address is daped into the word and the resulting word
is stored in memory. If the symbol is undefined or

not &lready present in the table, a list is extended
or initiated so that when the symbol beccmes defined,
the definition will be daped into the word, already
stored in its appropriate register in memory. In

the meantime, the address of the word is set to esta-
biish the appropriate list, and the result is stored

in memory. If the symbol was not already in the symktol
table, it is added to the symbol table.

This code accompanies a woxrd which is 000000. It
informs the LL that the word(s) to follow consist of
concise codes for alphanumeric information. (See
codes 00 and 70.) This alphenumeric information is
a system symbol (ss) which appeared in the source
language program with an apostrophe (') at a point
corresponding to the present word-space. LL reads
the alphanumeric information into the next available
part of the symbol table, and checks to see if the
symbol is already in the table or not. If not, the
symkol is added to the symbol table and the v lue
set squal to the LL location counter which poists

to the previous word stored in memory. If the
symbol is already in the symbol table, its value is

-31-

11:

12:

13:

70:

77:

set the same way, and the value is daped into all
words of the system which referenced chis symbol.
This is made possible by the list set up at the
appearances of code 07 at earlier points in the
loading of the system. (See code 07.)

This code accompanies a word of the form O00XXXX.

That is only the address part is non-zero. This word
space corresponds to that point in the source language
program where a block symbol (bs) is identified by
colon (:) and for a program symbol is identified by

a colon-period (:.). This code causes the LL to set
the address part of the contents of the register, whose
location is defined below, egqual to the LL location
counter which points to the previous word stored in
memory. The definition of the location (where the
location ccunter value is put into the address part

of the register) is equal to the sum of the address
part of the word and the location of the first register
(origin) of the program. That is, the LL adds the
address part of the word to the origin of the program
being lcoaded to determine the location. Then the
location-counter is daped into that location. (See
code 05.)

This code accompanies a word which is 000000. This is
the first thing punched on the tape by DECAL and the
last thing read by LL while lcading the LL tape for a
program. This ccde causes LL to check the checksum
and then halt at 502,

This ccde accompanies a word of the form 00XXXX, i.e.,
only the address part is non-zero. This code and word
are punched by DECAL at that point in the compilation
where a lve (formerly leave) statement appears. This
code causes LL to vpdate the location counter by -the
quantity appearing in the word. .

This code accompanies the last word of a string of
words (maybe only one word) which contain alpha-
numeric information.

This code accompanies a word which is the checksum

for the program LL tape. This is the last thing punched
by DECAL and the first thing read by LL.

-32-

Stunmary of Cperation of .

When STARTing at 400, LL sets the origin of program to 2000,
if ss2 is down, and to the contents of the test word switches if
ss2 is up. When CONTINUEing at 502, LL sets the origin of program
equal to previous origin, plus size of previous program, plus number
of words of temporary storage of previous program, if ss2 is down.
If ss2 is up, LL sets the origin of program equal to contents of
test word switches. LL sets the location counter equal to the origin
of current program plus size of current program.

The first word-space read by LL contains code 77 and a word
which is the checksum which is the sum of all worés and codes. This
checksum is stored so that it can be checked at tha completiorn of
loading the program.

The second word space read._by LL contains code 0C and a woxrd
. of the form 00XXXX, whose address equals th:s number of temporary
storage registers required by the program being loaded.

The third word space read by LL contains code CO and a word of
the form 00XXXX, whose address equals the size ¢f the orogrem. T
then reads one word space at a time and operates on it as indicated
in the description of codes presented above.

When starting to load the first word of program read by LL

(last word of program punched by DECAL), the location counter
points to the register just past the last register to be occupied
by the program (not counting temporary storage if any). Just
before storing a program word in memory (Codes 00, 01, 04, 05,
07), the gquantity one (1) is subtracted from the location counter,
and the resulting value of the location counter points to the
register into which the word is to be stored.

The last word space which LL reads contains a code 12 and a
word 000000, which signifies the end of the tape.

-33-

EXAMPLE

Symbolic Program : Decal Printout
.+« .CoOln subroutine ss coin 0000
eoeJduly 11, 1961 un
dss random
coin':b: ioc
dap a
lac b bs
spa
jop a coin 0009
jsp random b 0020
spa a G013
cma
sub b ps
sma
idx a
a: jrp : ss
fin.,
random
as
oc
wd
ao
ig

LINKING LOADER STORAGE MAP

pgm 4000
sst 4014
11 4013
coin 4000
end

-34-

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

