PROGRAMMING
MANUAL

LINC -8

DIGITAL EQUIPMENT CORPORATION o« MAYNARD, MASSACHUSETTS

[-L85(A)

LINC -8
PROGRAMMING
MANUAL

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

1st Printing October 1966
2nd Printing May 1968
3rd Printing February 1969

4th Printing July 1969

Copyrighf@'l?éé, 1968, 1969 by Digital Equipment Corporation

Instruction times, operating speeds and the like are in-
cluded in this manual for reference only; they are not to

be taken as specifications.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

PROGRAMMING THE LINC-8

PREFACE

This document is derived from several works developed by persons outside of DEC.

"Programming the LINC" LINC V16 Section 2 Programming and Use, April 1965, by Mary Allen Wilkes

and Wesley A. Clark, Washington University, St. Louis, Mo., was used, with some changes felt ap-
propriate, for the discussion of the instruction set of the LINC portion of the LINC-8. "A LINC Utility
System" Technical Report 1, March 19, 1965, written by M.D. McDonald, S.R. Davisson, and J.R.

Cox, Jr., Biomedical Computer Laboratory, Washington University, St., Louis, Ma., was ysed to
provide a basis for the discussion of the LAP4 and GUIDE systems. To the above individuals, as well

as others at the Computer Research Laboratory of Washington University, the National Institutes of
Health, the National Aeronautics and Space Administration, and individual LINC users, we are greatly
indebted.

see
i

"
w
A W N

2-7.2
2-7.3
2-8

2-10
2-10.1
2-11
2-12
2-13
2-13.1
2.13.2

PROGRAMMING THE LINC-8

CONTENTS
Page

INTRODUCTION . iiiiiiiiiiiiettnnnscnnessnssennsnnnns EEREEEERTR TR 1

Manual Organizationieeiiiritieieeneesssrsessesssecesseesaannas 1
Number Systemsocvievnnn. ettt iraersierereettaetetaneereannn 2
L I 8 I (] 2
Simple Instructions vveuereeeeieiiieieiirernieeeerenaseronseannssnnnns 2
ShiftiNG veeveiienenetieieneeseasorensnesersasssssassosssssnnsacnans 2

LINC Memory and Memory Reference Instructionscovveiiveninennns, 8
The Store-Clear Instruction (4000 + X) Ceeereereeseeteaeaean 9

The ADD Instruction and Binary Addition (2000 + X) ...cvevvvvennnnn. 9
Instruction Location Registervviiiiiiiiniiiiiiiiiniininnennnss 10

The Jump Instruction (6000 + X) suviereiuineeroanocanessennnasssanas 11
Address Modification and Program Loops «.uiviivreeriininererecnsnnnnns 12
Index Class Instructions [..cvueeiieeiiiiiiiiiiieiiniinrocconassnecnanns 18
Indirect Addressing coueeeereeenretessosssssosscsscsssseensasssas 18
Index Registers and Indexing «...viiiiiiiinioninonecsecncanonsnnns 20
Logic Instructions vee e e inraniresenseesccssacasssnsnaessnsasss 22
Special Index Register Instructions e ovvereveeiiieiiieresirennrennnsnnnes 23
The Index and Skip Instruction ..oviviiiiiiriiieiiiiierenesennnenns 23
The SET Instruction......cvvvenne. Cereenees feeseenciiieeaeaeneaans 25
Index Class Instructions II ...ivuiiieuieiiieinsnnrennncenneesnsennnns 28
Double Register Forms ..c.vueeeeerneeeneeornereeerenanncesanconens 28
Multiple Length Arithmetic .vveiiiiieiinieieeerenoncscerononnnnss 31
Multiplication v veieiiieiiiiieierenennns Ceerees teerseseseresaees 36
Half-Word Class Instructions . v vv e et s iarsrsnersesseasssssssseennnns 41
The Keyboard Instruction ...eeeeiiiiiertoriiieresssosessersnnnssarenans 45
The LINC Scopes and the Display Instructions «..vevveeeeesneeencsersnans 46
Character Display «vevvven. Ceteeeunsetsstancasensnarastesatasanns 49
Analog Input and the Sample Instruction .. .cvviiieirereneenrenenenennans 55
The Skip Class Instructions +veueeeeeeereceoseserosoeocesecoesoeannsans 59
Subroutine Techniques cuuevieiiiiiiiinieieriiiiereieneeneennsennnnns 62
Main Programcciiiniiiennnnennas ceeeteestreerseasenrnanas 63
Subroutine «.iiiiiiiiiiii i, Ceeesiersiasersiereaaaans Ceevens 64

2-14

2-14.1
2-14.2
2-15

2-15.1
2-15.2
2-15.3
2-15.4
2-15.5

Appendix

—_

AOWN

Index

PROGRAMMING THE LINC-8

CONTENTS (continued)

Page

Processor Intercommunication «..uiveiiiiiinnieroseroaneorssessoonsnones 64
Control Transfer between Processors «....eeeveeieeersseronesenonanas 64

Example of Use of the OPR 13 Instruction (LINC Program)c.cuu... 70
Magnetic Tape Instructions . ..veeiiinieiriieressnessssrssesssnsasanas 70
Block Transfers and Checking «..vvvtiininiinierernnreeensennanes 72

Group Transfersieieeiiesiniernieneeonsronsocsonennnsans eeees 80

Tape Motion and the Move toward Block Instructioncovevenn. 82

Tape Format ovunenieiitienetnreetsnesnorossssnsssssansoncnssanss 85

Tape Motion Timing ..uvviiiiiieiiiiieiernsssnssenseassoscnssnnas 88

L 1 91

General oo i i i i i et it it a st ac s 91

General Operating Procedure ...oviiniiiiiiiiiiiieeennsenninienenennns 91

Basic System Commands ...ovvvuerranritiiniernnerssersrsnceanssassnsns 21

Use of Basic Commands «.uuieniiiinenreisneeiresassssesesenssnsonannns 92
Loading a User's Program into Me‘mory Cetieennes Cereeraeeene Ceerernaaes 94
LAP4 it Nt s eteetiatareeseststesessetsenrsannns 95
General viiviiiiiiiii it i i it e s Ceerereseiereienens 95
General Operating Procedure ..vvveeereeeniinteecineerosocerasesanens 95
Basic System (Meta) Commands cvvveverrrniiiieernrnnnnesorenennnesenens 95

Use of Basic (Meta) Commands .« .ceeetetreetnenrsscncsesasenenarsnsnses 97
LAP4 Language v vevveeernn i eienenrnnossnsssssoansanasasnssnansanans 102
GLOS S ARY ittt it tinrrsosansesostsseossesssonsessesssssssonsansssasnns 107
O o L IO 115
EXTENDED MEMORY PROGRAMMINGiiiiiiiiineriniecnrnncennonanns 125
INSTRUCTIONS & ittt it tiitiiiteteansiesnssesoncessnssssoncssnnnsannnss 129
INDEX OF PROGRAMMING EXAMPLES .. .vvviiiiiiiiiiinneennennennnnnnnns 145
PAGE INDEX OF LINC-8 INSTRUCTIONSiiiiiiiitietirnnneenonnncnnes 146

vi

PROGRAMMING THE LINC-8

CHAPTER 1
INTRODUCTION

The Digital Equipment Corporation LINC-8 system is comprised of two subsystems: a standard
Programmed Data Processor-8 (PDP-8); and the LINC subsystem consisting of a central processing portion,
a display scope, and a dual tape transport. The two subsystems are interconnected by a special interface
section which mediates the interchange of data and control, and both share a dual console. The LINC-8
is designed to operate in one of two modes. In the first mode, it operates as a standard basic PDP-8 com-
puter system. In the second, it operates essentially as a LINC having certain special in/out and speed
characteristics. Despite these differences and improvements, the LINC subsystem will often be referred
to simply as the LINC throughout the manual.

In the LINC mode, the LINC section is controlled by an ordinary LINC program held in the
upper half of the PDP-8 memory (which is arranged to correspond exactly to the standard LINC memory of
2048 words). The PDP-8 memory can be expanded to 32,768 words. The LINC section is designed to call
and carry out all instructions of the LINC program except MTP, OPR, and a new instruction called EXC.
Instructions of this excepted class, called the execute class, are carried out by interpretive routines held
in the lower half of the PDP-8 memory, which also holds programs for the interpretation of console switch
actions and for the conversion of Teletype input to LINC keyboard code. The interpretive program is
named PROGOFOP (PROGram OF OPeration), and is automatically read into the PDP-8 memory from

magnetic tape by a wired-in LOAD mode initiated at the console.

1-1 MANUAL ORGANIZATION

This manual presents programming information relating to the LINC subsystem of the LINC-8
computer. The registers, switches, and indicators referenced in this document are associated with the
LINC section and are located on the left half of the LINC-8 dual console, The RIGHT SWITCHES used
in the LINC mode of operation also serve as the switch register for PDP-8 operation. Programming infor-
mation for the PDP-8 subsystem of the LINC~8 can be obtained from the PDP-8 Users Handbook, F-85.

The first two chapters of this document acquaint the reader with number systems, instructions,
and programming examples, Chapters 3 and 4 discuss the LINC Utility System (GUIDE and LAP4) which
provides the user with information necessary to use these basic system programs for compiling and manipu-
lating LINC-8 programs.

Like most digital computers, the LINC-8 operates by manipulating binary numbers held in various
registers under the control of a program of instructions which are themselves coded as binary numbers and
stored in other registers. LINC-8 instructions generally fall into types or classes, the instructions of a

class having certain similarities. In this description, however, instructions are introduced as they are

PROGRAMMING THE LINC-8

relevant to the discussion. Reference to chart I appendix 2 is therefore recommended when class charac-
teristics are described. Furthermore, not all LINC-8 instructions are described here in detail; therefore

this document should be read in conjunction with the LINC-8 order code summary in appendix 2.

1-2 NUMBER SYSTEMS

The best way to begin studying number systems is to consider only a few of the registers and
switches which are shown on the LINC-8 control console: the ACCUMULATOR (ACC) which is a register
of twelve lights; the LINK bit (L); the LEFT and RIGHT SWITCHES, which are rows of twelve toggle
switches each; and one lever switch labeled DO. The number systems and operation of several of the
instructions can be understood in terms of these few elements.

The elements (bits) of each register or row of toggle switches are to be thought of as numbered
from left to right starting with 0. This will serve to identify the elements and to relate them to the numer-

ical value of the binary integer held in the register. C(ACC) denotes the contents of the accumulator

register, etc. If the accumulator is illuminated thus

- ACCUMULATOR |

@Lightoff
0 200 O0a&e 080

o 1 2 3 4 5 6 7 8 9 10 1 O tight on
then the binary number stored in the accumulator is

C(ACC) =010 011 100 101 (binary)
which has the decimal value

10

C(ACC)=2 "+ 27 + 26

+25 +22+2O
=1024 +128 + 64 + 32+ 4+ 1
= 1253 (decimal)

This can also be considered as an octal number by considering each group of three bits in turn. In this

example, grouping and factoring proceed as follows:
C(ACC) = (2'0) + (27428 + @) + (2%+20)
S @Y.+ Y429 20 + (223 + (22292
= (2)-8° + (382 + (4)-8' +(5).8
2 3 4 5

= 2345 (octal)

PROGRAMMING THE LINC-8

To put this more simply, each octal digit can be treated as an independent 3-bit binary number

whose value (0, 1, ..., 7) can be obtained from the weights 22, 2], and 20;

I ACCUMULATOR —

208 200 O@e 09
1

4 2 1 4 2 1, 4 L 4

. 2
Y T Y Y

1,

2
'
5 = 2345 (octal)

This ease of representation (the eight possible combinations within a group are easily perceived
and remembered) is the principal reason for using octal numbers; the octal system can be viewed simply as
a convenient notational system for representing binary numbers. Of course, octal numbers can also be

manipulated arithmetically.

Translation from one system to the other is easily accomplished in either direction. Here are

some examples:

1 7 3 0 2 6 5 I (octal)
001 000 111 011 000 010 110 101 111 010 100 110 (binary)

Sometimes it is useful to view the contents of a register as a signed number. One of the bits
must be reserved for the sign of the number. The leftmost bit is therefore identified as the sign bit (0 for

+, 1 for =). To change the sign of a binary number, complement the number (replace all 0's by 1's and

vice versa). Examples:

000 000 000 Oi1 =+3
111 111 111 100 =-3

o1t 111 111 111 =+43777 The largest positive and negative octal integers
100 000 000 000 = -3777 in the 12-bit signed-number system.

The pair of binary numbers 101111110011 and 010000001100 (57638 and 20148) are comple-
ments of each other, and denote the complement of the number N by N. Note that the sum of each
binary digit and its complement is the number 1, and that the sum of each octal digit and its comple-

ment is the number 7. Note also that there are two representations of O:

000 000 000 000 =+0
111t 111 111 =-0

Note finally that the sum of any binary number and its complement is always —0 in this system.

PROGRAMMING THE LINC-8

CLR, COM,
ATR, RTA, RSW
CHAPTER 2

INSTRUCTIONS

2-1 SIMPLE INSTRUCTIONS

LINC-8 instructions themselves are encoded as binary numbers and held in various registers.
The simplest of these instructions, namely those which operate only on the accumulator, are described

first with reference to the LEFT SWITCHES.

Raising the DO lever (DO means "do toggle instruction") causes the LINC to execute the in-
struction whose binary code number is held in the LEFT SWITCHES. The LINC then halts. For example,
if the LEFT SWITCHES are set to the code number for the instruction CLEAR, which happens to be 001]8’
and the DO lever is then momentarily raised, the ACCUMULATOR lights all go out as does the LINK bit
light, so that C(ACC) =0, and C(L) = 0. In setting a switch, up corresponds to 1.

DO l—————————— LEFT SWITCHES

LEFT SWITCHES SET

! 838 a%% 334 a8d L

STOP FOR "CLEAR."

0 (o] 1 1

Briefly: If C(LEFT SWITCHES) = 001]8’ DO has the effect 0 - C(ACC) and 0 -+ C(L). (Read
"0 replaces the contents of the accumulator, " etc.).

Clear (or CLR) is an instruction of the class known as miscellaneous instructions. A second
g’ directs the LINC to
complement the contents of the accumulator and therefore has the effect C(ACC) —~ C(ACC). (Read:

miscellaneous class instruction, COM (complement), with the code number 0017

"the complement of the contents of the accumulator replaces the contents of the accumulator.™)

Two other instructions of this class transfer information between the accumulator and the relay
register. The relay register, displayed on the control console, operates six relays which can be used to
control or run external equipment. An instruction with the code 001 48’ called ATR (accumulator to relay),
directs the LINC to transfer the contents of the right half of the accumulator, i.e., the rightmost six bits,
into the relay register. The accumulator itself is not changed when the instruction is executed. Another
instruction, called RTA (relay to accumulator), 00158, causes the LINC to clear the accumulator and
then transfer the contents of the relay register into the right half of the accumulator. In this case the relay
register is not changed and the left half of the accumulator remains cleared (i.e., contains 0's).

Another instruction called RSW (right switches), 05]68, directs the LINC to copy the contents
of the RIGHT SWITCHES into the accumulator. By setting the LEFT SWITCHES to 05]68, the RIGHT

SWITCHES to whatever value wanted in the accumulator, and then momentarily raising the DO lever,

PROGRAMMING THE LINC-8

the operator can change the contents of the accumulator to any desired new value. The drawing

shows how the switches should be set to put the number 6451, into the accumulator:

8
DO M—— | EFT SWITCHES ——®» M§——— RIGHT SWITCHES — ¥
7 398 9R9 /¢ dég 88 djg Ijd w¢¢
STOP
CODE NUMBER FOR RSW 6451 —8» C(ACC) WHEN
INSTRUCTION = 0516 DO LEVER IS RAISED
2-2 SHIFTING

After a number has been put into the accumulator it can be repositioned (shifted) to the right
or left. There are two ways of shifting: rotation, in which the end-elements of the accumulator are

connected together to form a closed ring, and scaling, in which the end-elements are not so connected.

L Co | 11)
O] Ll el el T[]l]]

Rotation
L 0 11
I O I O T O A I e I R I
Scaling
Examples of shifts of one place:
Effect of rotating Effect of scaling
right 1 place right 1 place
Before | 000 000 011 001 000 000 011 001 =425 (decimal)

After 100 000 001 100 000 000 00T 100 = +12

Before | 111 111 100 110 111 111 100 110= =25 (decimal)
After 011 111 110 011 111 111 110 011 = -12

Note that, in scaling, bits are lost to the right, which amounts to an error of rounding off;
the original sign is preserved in the sign bit and replicated in the bit positions to the right of the sign bit.
This has the effect of reducing the size of the number by powers of two (analogous to moving the decimal

point in decimal calculations).

PROGRAMMING THE LINC-8

ROR, ROL, SCR
The LINC has three instructions, called the shift class instructions, which shift the contents
of the accumulator: rotate right, rotate left, and scale right. Unlike the simple instructions considered
so far, the code number for a shift class instruction includes a variable element which specifies the number
of places to shift. For example, write ROL n (rotate the contents of the accumulator n places to the left),
where n can be any number from 0—178.
As a further variation of the shift class instructions, the link bit can be adjoined to the accum-

ulator during rotation to form a 13-bit ring as shown below, or to bit 11 of the accumulator during scaling

to preserve the low order bit scaled out of the accumulator:

L-LD'—‘H‘IJHLIIl-*lll}“IIL])]-—J

0
Rotation with Link Bit

L-i] IOII]——HIPIHF—UHJ

11
Scaling with Link Bit

The code number of a shift class instruction, e.g., rotate left, therefore includes the number
of places to shift and an indication of whether or not to include the link bit. Use the full expression

ROL i n, which has the octal coding:

{i =0: ACConly
[i=1: linke—> ACC
ROLin 0240 + 20i +n

number of places to shift
(h=0,1, ...,17)

so that, for example, rotate ACC left 3 places has the code 0243, and rotate ACC with link left 7 places
has the code 0267. Note the correspondence between the code terms and bit positions of the binary-

coded instruction as it appears, for example, in the LEFT SWITCHES:

THE “i-BIT"

0 * 1
&@%%JQ Jl(Q\% (gg(g} ROL i 7

CODE NUMBER = 0267

ROL n

Similar coding is used with ROR i n (rotate right), 300 + 20i + n, and SCR i n (scale right), 340 + 20i + n.

PROGRAMMING THE LINC-8

2-3 LINC MEMORY AND MEMORY REFERENCE INSTRUCTIONS

Before proceeding to other instructions, it is necessary to introduce the LINC memory. This
memory is to be regarded as a set of 1024]0regisi'e>rs1L each holding 12-bit binary numbers in the manner
of the accumulator. These memory registers are numbered 0, 1, ..., 1023]0, or0, 1, ..., 17778, and
reference is made to "the contents of register 3," C(3), "the contents of register X, " C(X), etc., refer-
ring to "3" and "X" as memory addresses.

The memory actually consists of a remotely~located array of magnetic storage elements with

related electronics, but for introductory purposes view it in terms of two registers of lights, namely the

memory address register and the memory buffer register:

——— MEMORY ADDRESS ——|
HEpEEEREEEREEER

— MEMORY BUFFER —_—

HEEpEEEREEEREEE
L ———— AcCCUMULATOR ————]

O OO0 O 1] 11 PDP-8

—————— LEFT SWITCHES —» M———— RIGHT SWITCHES —®»

TR TR TR BT T R RRR 3R

By using these two registers in conjunction with the LEFT SWITCHES it is possible to find out
what values the memory registers contain. For example, to find the confents of register 3, set the RIGHT
SWITCHES to memory address 0003 and then operate the key labeled EXAM. As 0003 appears in the
memory address register, the contents of register 3 appear in the memory buffer register. By setfing the
RIGHT SWITCHES to a memory address and pushing EXAM, the contents of any register in the LINC memory
may be examined.

The contents of any selected memory register may be changed by using both the LEFT and
RIGHT SWITCHES and the key marked FILL. For example, to make the memory register whose address is
700 contain -1 (i.e., 77768) set memory address 0700 into the RIGHT SWITCHES . Set the LEFT SWITCHES
to 7776 and operate the FILL key. A 0700 appears in the memory address register and 7776 appears in the
memory buffer register, indicating that the contents of register 700 are now 7776. Whatever value regis-
ter 700 may have contained before FILL was pushed is lost, and the new value takes its place. In this
way any register in the LINC memory can be filled with a new number.

None of the LINC instructions make explicit reference to the memory address register or memory
buffer register; rather, in referring to memory register X, an instruction may direct the LINC implicitly to
put the address X into the memory address register and the contents of register X, C(X), into the memory

buffer register.

1See appendix 3 for the discussion of extended memory programming.
8

PROGRAMMING THE LINC-8

STC, ADD
2-3.1 The Store-Clear Instruction (4000 + X)

Now it is possible to describe the first of the memory reference instructions, STC X (store-clear
X), which has the code number 4000 + X, where 0 <X < 17778. (From now on only octal numbers will
be used for addresses.) Execution of STC X has two effects: 1) the contents of the accumulator are copied
into memory register X, C(ACC)—C(X), and 2) the accumulator is then cleared, 0—~C(ACC). (The link
bit is not cleared.) Thus, for example, if C(ACC) = 0503 and C(671) = 2345, and the code number for
STC 671, i.e., 4671, is set into the LEFT SWITCHES, raising the DO level puts 0 into the accumulator
and 0503 into register 671. The original contents of register 671 are lost,

It will be clear that the memory can be filled with new numbers at any time either by using
the FILL key and the switches, or by loading the accumulator from the RIGHT SWITCHES with the

RSW instruction and the DO lever and then storing the accumulator contents with the STC X instruction

and the DO lever.

2-3.2 The ADD Instruction and Binary Addition (2000 + X)

STC is one of three full-address class instructions. Another instruction in this class, ADD X,
has the code number 2000 + X where 0 < X <1777, Execution of ADD X has the effect of adding the
contents of memory register X to the contents of the accumulator, i.e., C(X)+ C(ACC)- C(ACC).

If the accumulator is first cleared, ADD X has the effect of merely copying into the accumulator the
contents of memory register X, i.e., C(X)—~C(ACC). In any case, the contents of memory register X
are unaffected by the instruction.

The addition itself takes place in the binary system, * within the limitations of the 12-bit
registers. The basic rules for binary addition are simple: 0+0=0; 1 +0=1;1+1=10(i.e., zero,
with one to carry). A carry arising from the leftmost column (end-carry) is brought around and added
into the rightmost column (end-around carry). Some examples (begin at the rightmost column as in

decimal addition):

001 111 010 001 111 100 010 011

000 010 111 001 001 010 010 000

1T 1111 1 (Carries) 1 11 1 (Carries)

010 010 001 010 (Sum) 000 110 100 011
| (End-around carry)
11 (Carries)

000 110 100 100 (Sum)

*See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary Arithmetic," Irving H. Thomae.

9

PROGRAMMING THE LINC-8

HLT

The reader should try some examples of his own, and verify the fact that adding a number to
itself with end~around carry is equivalent to rotating left one place. With signed-integer interpretation,

some other examples are:

000 000 000 101 =+5 111 111 111 010 ==5
111 111 111 100 =-=3 111 111 111 100 = =3
T 111 111 111 1 111 11
&OOO 000 000 001 &Hl 111 110 110
& | > 1
1
000 000 000 010 =+2 111 111 110 111 = =8 (decimal)

It can be seen that subtraction of the number N is accomplished by addition of the complement
of N, N. Of course, if either the sum or difference is too large for the accumulator to hold, the result
of the addition may not be quite the desired number. For example, adding 1 to the largest positive integer
in this system (+ 37778) results in the largest negative integer (— 37778). This is sometimes called over-

flowing the capacity of the accumulator.

2-3.3 Instruction Location Register

It is clear that the code numbers of a series of different instructions can be stored in consecu-
tive memory registers. The LINC-8 is designed fo execute this stored program of instructions by fetching
and carrying out each instruction in sequence, using a special 10-bit register called the instruction lo-
cation register (P), to hold the address of the next instruction to be executed. Using the FILL key
and the LEFT and RIGHT SWITCHES already discussed, can, for example, put into memoryregisters 20-24
the code numbers for a series of instructions which divide by 8 the number held in memory register 30 and

store the result in memory register 31;

Memory Address Memory Buffer Effect

-E—t-git—b?_o CLR 0011 Clear the accumulator.

21 ADD 30 2030 Add the contents of register 30 to the
accumulator.

22 SCR 3 0343 Scale C(ACC) right 3 places to divide by 8.
23 STC 31 4031 Store in register 31.
24 HLT 0000 Halt the computer.
36 N N Number to be divided by 8.
31 N/8 N/8 Result.

Example 1 Simple Sequence of Instructions

10

PROGRAMMING THE LINC-8

JMP
Use the FILL key and the LEFT and RIGHT SWITCHES to put the code numbers for the

instructions into memory registers 20-24 and the number to be divided into register 30, Operating the
console key labeled START 20 directs the LINC to begin executing instructions at memory register 20.
That is, the value 20 replaces the contents of the instruction location register. As each instruction of the
stored program is executed, the instruction location register is increased by 1, C(P) +1-C(P). When
the instruction location register contains 24, the computer encounters the instruction HLT, code 0000,
which halts the machine. To run the program again, merely operate the START 20 key. (The code

numbers for the instructions stay in memory registers 20-24 unless they are deliberately changed.)

2-3.4 The Jump Instruction (6000 + X)

The last full-address instruction, JMP X, code 6000 + X, has the effect of setting the instruc-
tion location register to the value X; X — C(P). That is, the LINC, instead of increasing the contents.
of the instruction location register by one and executing the next instruction in sequence, is directed by
the JMP instruction to get its next instruction from memory register X. In the above example having a
JUMP to 20 instruction, code 6020, in memory register 24 (in place of HLT) would cause the computer
to repeat the program endlessly. If the program were started with the START 20 switch, the instruction
location register (P) would hold the succession of values: 20, 21, 22, 23, 24, 20, 21, etc. (Later in-
structions will be introduced which increase C(P) by extra amounts, causing it to skip.)

JMP X has one further effect: if JMP 20, 6020, is held in memory register 24, then its execu-
tion causes the code for JMP 25 to replace the contents of register 0; i.e., 6025—~ C(0). More generally,
if JMP X is in any memory register p, 0 <p <1777, then its execution causes JMP p+1 —C(0).

Memory
Address Memory Buffer Effect
0 JMP p+1 6000 + p+1
- p JMP X 6000 + X X = C(P), and JMP p+1 - C(0).
p+1
X - - Next instruction,

This JMP p+1 code replaces the contents of register O every time a JMP X instruction is executed
unless X = 0, in which case the contents of 0 are unchanged. Use of memory register 0 in this way is

relevant to a progromming technique involving subroutines which is described later .

tSee appendix 3 for a discussion of JMP X when using extended memory .

11

PROGRAMMING THE LINC-8

The following programming example illustrates many of the features described so far. It finds
one-fourth of the difference between two numbers N1 and N2, which are located in registers 201 and
202, and leaves the result in register 203 and in the accumulator. After filling consecutive memory
registers 175-210 with the appropriate code and data numbers, the program must be started at memory
register 175. Since there is no START 175 key on the console, this is done by setting the RIGHT
SWITCHES to 0175 and operating the console key labeled START RS (start RIGHT SWITCHES).

Memory Address Memory Buffer Effect
ﬂgﬂ-? 175 CLR 0011 0— C(ACCQ).
176 ADD 201 2201 N] - C(ACC).
177 COM 0017 Forms — N] .
200 JMP 204 6204 Jumps around data; 204— C (P), and
F—— JMP 201~ C(0).
201 N] N]
202 N2 N2 Data and result,
203 (N2-N])/4 (N2—N])/4
204 —>ADD 202 2202 (N2-N])"’ C(ACCQ).
205 SCR 2 0342 Divides by 4,
206 STC 203 | 4203 Stores result in 203; C(ACC) —C(203);
0—~C(ACC).
207 ADD 203 2203 Recovers result in ACC.
210 HLT 0000 Halts the LINC.

Example 2 Simple Sequence Using the Jump Instruction
In executing this program, the instruction location register holds the succession of numbers: 175

176, 177, 200, 204, 205, 206, 207, 210.

4

2-4 ADDRESS MODIFICATION AND PROGRAM LOOPS

Frequently a program of instructions must deal with a large set of numbers rather than just one or
or two. For example, suppose one wishes to add 1008 numbers and that the numbers are stored in the
memory in registers 1000-1077. The sum is to go into memory register 1100. It is possible, of course, to

write out all the instructions necessary to do this,

PROGRAMMING THE LINC-8

AZE
QA;C;?::Z Memory Buffer Effect
- 20 CLR 0011 0—~C(ACQC); 0= C(L).
21 ADD 1000 | 3000 Add 1st number.
22 ADD 1001 | 3001 Add 2nd number.
23 ADD 1002 | 3002 Add 3rd number.
24 ADD 1003 | 3003 Add 4th number.
etc. etc. etc,

but it is easy to see that the program would be more than 1008 registers long. A more complex, but con-
siderably shorter, program can be written using a programming technique known as address modification.
Instead of writing 1008 ADD X instructions, write only one ADD X instruction, which is repeated 1008
times, modifying the X part of the ADD X instruction each time it is repeated. In this case the computer
first executes an ADD 1000 instruction; the program then adds one to the ADD instruction itself and re-

stores it, so that it is now ADD 1001. The program then jumps back to the location containing the ADD

instruction and the computer repeats the entire process, this fime executing an ADD 1001 instruction, In

short, the program is written so that it changes its own instructions while running.

The process might be diagrammed:

—» ADD X

'

Add 1 to the
ADD X instruction

100
numbers

Yes

This technique introduces the additional problem of deciding when all 100 numbers have been
summed and halting the computer. In this context a new instruction AZE (accumulator zero), code
0450, should be introduced. This is one of a class of instructions known as skip instructions; it directs
the LINC to skip the instruction in the next memory register when C(ACC) = +0 (00008 or 77778),,, If
C(ACC) # 0, the computer does not skip. For example, if C(ACC) = 7777, and one writes:

13

PROGRAMMING THE LINC-8

Memory Address Memory Byffer
— p _A_Z_E_ _ 0450
ptl - i -
pt2 - e—= -

the computer takes the next instruction from p+2. That is, when the AZE instruction in register p is
executed, pt+2 replaces the contents of the instruction location register, and the computer skips the
instruction at p+1. If C(ACC) # 0, then p+1 = C (P) and the computer executes the next instruction in
sequence as usual,

The following example sums the numbers in memory registers 1000-1077 and puts the sum into
memory register 1100, using address modification and the AZE instruction to decide when to halt the

computer. (Square brackets indicate registers whose contents change while the program is running.)

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

10

11

12

Start N 2'0
21
22
23
24
25
26
27
30
31
32
33
34

35
36

37

1000
1001

1076
1077
1100

ADD 1000
1
~(ADD 1100)

CLR
ADD 10°
STC 25
STC 1100
—> CLR
[ADD X]
ADD 1100
STC 1100
ADD 25
ADD 11
STC 25
ADD 25
ADD 12

N7

N100

[Sum]

3000
0001
4677.

0011
2010
4025
5100
0011
[20004X]
3100
5100
2025
2011
4025
2025
2012

0450

6024
0000

N

N,

N77

N} 00

[Sum]

lCons‘ronfs used by program,

L Code for ADD 1000—~C(25). 0—-C(ACC).

0—+C(1100), for accumulating sum,

}Cleqr ACC and add C(X) to C(ACC).

Sum so far + C(ACC) ~C(ACC).
Sum so far =C(1100).

ADD X instruction in register 25—~ C(ACC).
Add 1 to C(ACC) and replace in register 25.

C(25) + C(12) C(ACC). If C(25)= ADD 1100,
then C(ACC) =7777.

Skip to register 37 if C(ACC) =7777.

If not, return and add next number.

When C(ACC) = 7777, all numbers have been
summed. Halt the computer.

LNumbers to be summed.

Example 3 Summing a Set of Numbers Using Address Modification

PROGRAMMING THE LINC-8

The instructions at locations 20-22 initially set the contents of memory register 25 to the code
for ADD 1000. At the end of the program, register 25 will contain 3100, the code for ADD 1100,
Adding (in registers 33 and 34) C(25) to C(12), which contains the complement of the code for ADD 1100,
results in the sum 7777 only when the program has finished summing all 1008 numbers, This repeating
sequence of instructions is called a loop, and instructions such as AZE can be used to control the number
of times a loop is repeated. In this example the instructions in locations 24-36 will be executed]OO8
times before the computer halts.

The following program scans the contents of memory registers 400 through 450 looking for
registers which do not contain zero. Any non-zero entry is moved to a new table beginning at location
500; this has the effect of packing the numbers so that no registers in the new table contain zero. When

the program halts, the accumulator contains the number of non-zero entries.

16

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

Start

o N o0 U A

> 100

101

102
103
104
105
106
107
110
111

112
113
114
115
116
117
120
121

122
123
124
125

126
127

ADD 400
STC 500

1

~(ADD 451)
~(STC 500)

CLR .
ADD 4
STC 106
ADD 5
STC 112

—> CLR
[ADD 400]

JMP 112 !
JMP 116
5[STC 500]
ADD 6
ADD 112
STC 112
L >ADD 6
ADD 106
STC 106
ADD 106
ADD 7

|
JMP 105 !
ADD 112<

ADD 10
HLT

2400
4500
0001
5326
3277

0011
2004
4106
2005
4112
0011
[2000+X]
0450
6112
6116
[4000+X]
2006
2112
4112
2006
2106
4106
2106
2007
0450
6105
2112

2010
0000

rConstanfs used by the program.

L~Co<::|e for ADD 400> C(106).

/
}Code for STC 500 -C(112).

C(X) ~C(ACC).

If C(ACC) =0, skip to location 111,
C(ACC) # 0, therefore JMP to location 112,
C(ACC) = 0, therefore JMP to location 116.

Store non-zero entry in new table.

lAdd 1 to the STC instruction in register 112,

/
S

L Add 1 to the ADD instruction in register 106.

Z
C(106) + C(7) =C(ACC). If C(106) = ADD 451,
then C(ACC) =7777.

If C(ACC) = 7777, skip to location 125,

If not, return to examine next number.

If C(ACC) = 7777, then number of non=-zero
entries »C(ACC) and computer halts.

Example 4 Packing a Set of Numbers

17

PROGRAMMING THE LINC-8

ADA
At the end of the program, register 106 contains the code for ADD 451, and all numbers in

the table have been examined. If, say, 6 entries were found to be non-zero, registers 500-505 will
contain the non-zero entries, and register 112 will contain the code for STC 506. Therefore by adding
C(112) to the complement of the code for STC 500 (in registers 125-126 above), the accumulator is left

containing 6, the number of non-zero entries.

2-5 INDEX CLASS INSTRUCTIONS |

2-5.1 Indirect Addressing

The largest class of LINC instructions, index class, addresses the memory in a somewhat in-
volved manner. The instructions ADD X, STC X, and JMP X are called full address instructions because
the 10-bit address X, 0 < X < 1777, can address directly any register in the 20008 register memory . The
index class instructions, however, have only 4 bits reserved for an address, and can therefore address
only memory registers 18—]78. The instruction ADA i B (add to accumulator), 11008 + 20i + B,
is typical of the index class:

1 =0orl
ADA i 3 11100+20i +[13
ADA 1< <17

Memory register B should be thought of as containing a memory address, X, in the rightmost

10 bits,

P 1 L] 1] 1T

0 1 2 1
[]

and X(B), as meaning the right 10-bit address part of register B. The leftmost bit can have any value,
and, for the present, bit 1 must be 0. In addressing memory register B, an index class instruction tells
the computer where to find the memory address to be used in executing the instruction. This is called
indirect addressing .

For example, to add the value 35 to the contents of the accumulator, with 35 held in memory

register 270, use the ADA instruction in the following manner:

18

PROGRAMMING THE LINC-8

LDA, STA

Memory
Address

Memory Buffer

Effect

->@0
7
rd
rd

e
N
. 0035
N e
\:\\
ADAQR)

0270

0035

1100 + g

Address of register contain-
ing 35.

C(270) + C(ACC)—~C(ACC).

Note that the ADA instruction does not tell the computer directly where to find the number 35;

it tells the computer instead where to find the address of the memory register which contains 35. By using

memory registers 1-17 in this way, the index class instructions can refer to any register in the memory .

Two other index class instructions, LDA i B (load accumulator), and STA i B (store accumula-

tor), are used in the following program which adds the contents of memory register 100 to the contents

of register 101 and stores the result in 102, The LDA i B instruction, code 100 + 20i + B, clears the

accumulator and copies into it the contents of the specified memory register. STA i B, code 1040 + 20i + B,

stores the contents of the accumulator in the specified memory register; it does not, however, clear the

accumulator, Addition with ADA uses 12-bit end-around carry arithmetic.

Memory
Address Memory Buffer Effect
10 X] 0100 Address of N] .
11 X2 o101 Address of N2.
12 X3 0102 Address of (N]+N2).
Start : :) .
—>30 LDA 10 | 1010 N], i.e., C(100), - C(ACCQC).
31 ADA 11 [1111 N2, i.e., C(101), + C(ACC)—~C(ACC).
32 STA12 | 1052 N]+N2'*C(102).
33 HLT 0000
100 N] -
101 N -
2
102 [N]+N2] [-]
Example 5 Indirect Addressing

PROGRAMMING THE LINC-8

SAE
2-5.,2 Index Registers and Indexing

When i is used with an index class instruction, that is, when i = 1, the computer is directed to
add 1 to the X part of memory register B before it is used to address the memory . This process is called
indexing, and registers 1-17 are frequently referred to as index registers. In the example below, =6 is

loaded into the accumulator after index register B is indexed from 1432 to 1433 by the LDA i B instruction.

Memo

Aoi;':ez Memory Buffer Effect

B [X] [1432] Address minus 1 of register
containing 7771,

-~ p LDAi g | 1020+ X+1, i.e., 1433, ~C(B), and

C(1433) =C(ACC).

1432 - -

1433 -6 7771

When the LDA i B instruction is executed, the value X(B) + 1 replaces the address part of
register B (the leftmost 2 bits of register B are unaffected). This new value, 1433, is now used to ad-
dress the memory. Note that if the LDA instruction at p were repeated, it would deal with the contents
of register 1434, then 1435, etc. Utility of index registers in scanning tables of numbers should be
obvious.,

Indexing involves only 10-bit numbers, and does not involve end-around carry. Therefore the
address following 1777 is 0000. (The same kind of indexing takes place in the instruction location register,
which counts from 1777 to 0000.)

The following example using indexing introduces another index class instruction, SAE i B (skip
if accumulator equals), code 1440 + 20i + B. This instruction causes the LINC to skip one register in the
sequence of programmed instructions when the contents of the accumulator exactly match the contents
of the specified memory register. If there is no match, the computer goes to the next instruction in
sequence as usual. The program example clears (stores 0000 in) the set of memory registers 1400-1777;

the SAE instruction is used to decide whether the last 0000 has been stored.

20

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

Start :
—> 350

351

352
353
354
355
356

[X] [1377]
356 0356
—SCLR 0011
STA i 3 1063
ADD 3 2003
SAE4 | 1444
|
JMP 350 | | 6350
HLTe<---1 | 0000
1777 1777

Initial address minus 1 for the STA instruction.

Address of test number.

Clear the accumulator.

Index the contents of register 3; store C(ACC) in
the memory register whose address = X(3).

C(3)—~ C(ACCQ).
Skip to 0355 if C(ACC) = C(356).
if not, return to store 0000 in next register.

Halt the computer.

Example 6 Indexing to Clear a Set of Registers

When the program halts at register 355, register 3 will contain 1777, The SAE instruction is

used here (as the AZE instruction was used in earlier examples) to decide when to stop the computer.

The instructions in registers 350-354, the loop, are executed 4008 times before the program halts. A0

is first stored in register 1400, next in 1401, etc.

Another program scans the memory to see if a particular number, Q, appears in any memory

register 0-1777, Q is to be set in the RIGHT SWITCHES, and the address of any register containing Q

is to be left in the accumulator.

Memory Address

Memory Buffer

Effect

17

Start
——> 20

21
22
23
24
25

[X] (-]
RSW 0516
SAEi17 1477
I JMP 21 i 6021
CLRe-- 0011
ADD 17 2017
HLT 0000

Address of register whose contents are to be com-
pared with RIGHT SWITCHES.

C(RS) -C(ACC).
Index register 17, and compare C(ACC) with C(X).

If not equal, return for next test.

If equal, clear ACC, copy address of register
containing Q into ACC, and halt.

Example 7 Memory Scanning

21

PROGRAMMING THE LINC-8

ADM, BCL,
BSE, BCO

if no memory register 0-1777 contains the number Q, the program will run endlessly. The
location of the first register to be tested depends on the initial contents of index register 17,

An index class instruction, ADM i B (add to memory), code 1140 + 20i + B, adds the contents
of the specified memory register to C(ACC), using 12-bit end-around carry arithmetic (as ADD or ADA).
The result is left, however, not only in the accumulator but in the specified memory register as well. The
bit clear instruction, BCL i B, code 1540 + 20i + B, is one of three index class instructions which performs
a so~called "logical” operation. BCL is used to clear selected bits of the accumulator. For every bit of
the specified memory register which contains 1, the corresponding bit of the accumulator is set to 0.

In the following program two sets of numbers are summed term by term. The first set of numbers,
each 6 bits long, is in registers 500-577, bits 6 through 11; bits 05 contain unwanted information. The

second set of numbers is in registers 600677, and the sums replace the contents of registers 600-677.

Memory Address Memory Buffer Effect
3 [X]] {0477 Initial address minus 1 of first set.
4 0410 0410 Address of BCL pattern.
5 [X2] [0577] Initial address minus 1 of second set.
6 (}4” (?4]] Address of test number for halting.
Start ->40(.) —)l..DA i3].023 Index X(3) and load number from first set into AC.
401 BCL 4 1544 Clear the left 6 bits of the ACC.
402 ADM i 5 1165 Index X(5). Add number from second set to C(ACC),
and replace in memory .
403 CLR 0011
404 ADD 3 2003 Check to see if finished.
405 SAE 6 1446
406 JMP 400 | 6400 C(3) £C(411), i.e., £0577.
407 HLT<-——-: 0000 C(3) = 0577; halt the program.
410 7700 7700 BCL pattern for clearing left half of ACC.
411 0577 0577 Test number for halting.

Example 8 Summing Sets of Numbers Term by Term

2-5.3 Logic Instructions

The three logic instructions, BCL i B, BSE i B, and BCOi B, are best understood by studying
the following examples. These instructions affect only the accumulator; the memory register M containing

the bit pattern is unchanged.

22

PROGRAMMING THE LINC-8

XSK
BCLi B bit clear code: 1540 + 20i + B

Clear corresponding bits of the accumulator:
If C(M) =010 101 010 101
and C(ACC)=111 111 000 000
then C(ACC)=101 010 000 000

BSE i B bit set code: 1600 + 20i + B
Set to 1 corresponding bits of the accumulator:
If C(M) =010 101 010 101
and C(ACC) =111 111 000 000
then C(ACC) =111 111 010 101

BCOi B bit complement code: 1640 + 20i +
Complement corresponding bits of the accumulator:
If C(M) =010 101 010 101
and C(ACC) =111 111 000 000
then C(ACC) =101 010 010 101

These instructions have a variety of applications, some of which will be demonstrated later.

2-6 SPECIAL INDEX REGISTER INSTRUCTIONS

Before continuing with the index class, two special instructions which facilitate programming
with the index class instructions will be introduced. These instructions do not use the index registers to
hold memory addresses; rather they deal directly with the index registers and are used to change or ex-

amine the contents of an index register.

2-6.1 The Index and Skip Instruction

The index and skip instruction, XSK i ¢, refers to registers 0-17 (0 < o<17).* |t tests to see
whether the address part of register g has its maximum value, i.e., 1777, and directs the LINC to skip
the next register in the instruction sequence if 1777 is found. It will also, when i =1, index the address
part (X) of register o by 1. Like the index class instructions, XSK indexes register o before examining it,
and it indexes from 1777-0000 without affecting the leftmost 2 bits. These 2 bits can therefore have any
value. In particular, both can be set to the value 1 and XSK i « can be assumed to have the effect of
skipping the next instruction when it finds the number 7777, (—0), in register . Now it is easy to see how

to execute any given sequence of instructions exactly n times, where n <1777 (octal):

*cf. B, 1 <B <17, which does not refer fo register 0.

23

PROGRAMMING THE LINC-8

-n } —n stored in register q.
Start
RN [P
Given Sequ?nce of } Given sequence held in register X, X+1, etc.
— Instructions
XSK i o
_____ —‘l Index o and test. After 1st pass C(q) = —n + 1,
JMP X | after 2nd pass C(o) = —n + 2. After n passes
I C(a)==n+n =—0 so skip over the JMP X
HLT — — instruction and halt,

For example, to store the contents of the accumulator in registers 350-357, using register 6 to

count, the following short program can be written,

Memory Address Memory Buffer Effect
5 [X] [0347] Initial address minus 1 for STA
instruction.
6 [-10] [7767] —n, where n = number of times
to store C(ACC).
Start . . .
— 200 1065 Index register 5 and store
C(ACC).
201 0226 Index register 6 and test for
X(6) =1777.
202 6200 X(6) #1777, return.
203 0000 X(6) = 1777, halt,

Example 9 Index Registers Used as Counters

Using the XSK instruction with i = 0, which tests X(a) without indexing, example 6

which stores 0 in memory registers 1400-1777, can be more efficiently written:

24

PROGRAMMING THE LINC-8

SET
Memory Address Memory Buffer Effect
3 [X] [1377] Initial address minus 1 for STA
instruction.
Start 350 0011 0—~C(ACC).
351 1063 Index register 3 and store zero.
352 0203 Test for X(3) = 1777.
353 6351 X(3) #1777, return.
354 0000 X(3) =1777, halt,

Example 10 Indexing and Counting to Clear a Set of Registers

Here register 3 is indexed by the STA instruction; the XSK then merely tests to see whether
X(3) = 1777, without indexing X(3). The reader should see that example 8 on page 22 can also be

more efficiently progrommed using XSK.

2-6.2 The SET Instruction

The second special instruction which is often used with the index class instructions is SET i q,
code 40 + 20i + o, where o again refers directly to the first 208 memory registers, 0 < o <17, In some
of the examples presented earlier, the contents of index registers are changed, either as counter values
or as memory addresses, while the program is running. Therefore, in order to rerun the program the index
registers must be reset to their initial values.

The SET instruction directs the LINC to set register o to the value in any specified memory
register. |t is different from the instructions so far presented in that the instruction itself always occupies

two consecutive memory registers, say p and p + 1:

QA;CT;ZZ Memory Buffer
p SET i a 40 + 20i + ¢
p+1 c c
p+2 - -

The computer automatically skips over the second register of the pair, p + 1; that is the con-
tents of p + 1 are not interpreted as the next instruction, The next instruction after SET is always taken

from p + 2,

25

PROGRAMMING THE LINC-8

The i-bit in the SET instruction does not control indexing. Instead, it tells the LINC how to

interpret the contents of register p + 1. When i =0, the LINC is directed to interpret C(p + 1) as the

memory address for locating the value which will replace C(a). That is, register p + 1 is thought of as

containing X,

Q\A:QZZ Memory Buffer Effect
10 [.N] [-]
- p ;ET 10 (:)050 C(X), i.e., N, = C(10).
p+ 1 X X
X S

and the contents of register X replace the contents of 10, C(X) =C(10), In this case X is the rightmost

10 bits, the address part, of register p + 1; the leftmost bit of C(p + 1) may have any value and, for

the present, bit 10 must be 0.

In the second case, when i =1, the LINC is directed to interpret C(p + 1) as the value which

replaces C(q).

Thus, below, C(p + 1)—=C(5):

Memo
Ad:rers); Memory Buffer Effect
5 (N] | (-]
- p SETi 5 0065 Clp+1), i.e., N, = C(5).
p+1 N N

The following program scans 1008 memory registers looking for a value which matches C(ACC).

It halts with the location of the matching register in the accumulator if a match is found, or with =0 in

the accumulator if a match is not found. The numbers to be scanned are in registers 1000-1077 .

26

PROGRAMMING THE LINC-8

Memory Address Memory Buffer Effect
3 [-100] [7677] — (number of registers to scan).
4. [.X] ['0777] Scanning address.
Start s 400 SETi3 |0063 C(401), i.e., 100, - C(3).
401 -100 7677
402 SETi 4 [0064 C(403), i.e., 777, = C(4).
403 777 0777
404 —>SAE i 4 |1464 Index X(4) and compare C(X) with C(ACC).
405 IMP 411 i 6411 C(ACC) ¥ C(X), jump to 411.
406 CLR<—=~"{0011
w ||| sove oo || clac0=co0, o pton ot
410 HLT 0000
411 LXSK i 3_ (0223 Index register 3 and test for X(3) = 1777,
412 - JMP 404i 6404 X(3) #1777, return,
413 CLR«—-!|0011
414 COM 0017 if)(f)’_) 5—1’27(2,52; z:gie;rlsfl:\ave been scanned
415 HLT 0000

Example 11 Setting Initial Index Register Values

The two SET instructions are executed once every time the program is started at 400; initially
registers 3 and 4 may contain any values since the program itself sets them to the correct values.
Suppose the programmer had wanted to SET two index registers to the same value, say =100,

He could write either:

27

PROGRAMMING THE LINC-8

AA‘::;?; Memory Buffer Effect
N [-100] | [7677]
12 [-100] | [7677]

- 20 SETi 11| 0071 C(21), i.e., =100,—~ C(11).
21 -100 7677
22 SET 12 | 0052 C(21), i.e., =100,— C(12).
23 21 0021

or:

- 20 SETi 11| 0071 c(21), i.e., =100,—~ C(11).
21 -100 7677 h
22 SET 12 | 0052 (C11), i.e., =100,—~ C(12).
23 11 0011

The programmer could also, of course, have written SET i 12 in register 22 with =100 in

register 23, but there are applications appropriate to each form.

2-7 INDEX CLASS INSTRUCTIONS il

2-7.1 Double Register Forms

The index class instructions have been thought of as addressing an index register B, 1 <p<17,
which contains a memory address X to be used by the instruction. They have been presented as single.
register instructions (unlike SET). However, when an index class instruction is wriffén with B =0, it
becomes a double register instruction like SET, whose operand address depends on i and p + 1. These

two interpretations are shown for STA.

Case: i=0, p=0

m:r::srsy Memory Buffer Effect
450 STA 1040 + 20(0) + 0 C(ACC)—~C(330).
451 330 0330

28

PROGRAMMING THE LINC-8

When i =0, the LINC is directed to use C(p + 1), i.e., C(451) as the memory address at which
to store C(ACC). The leftmost bit of C(p + 1) may have any value, and, for the present, bit 1 must beO.

Case: i=1,8=0

'X‘:g‘;:i Memory Buffer Effect
450 STAi 1060 C(ACC)—~C(451)
451 [-] [-]

When i = 1, the LINC is directed to use p + 1, i.e., 451, directly as the memory address,
and the contents of the accumulator are stored in 451, Note that when B = 0 in an index class instruc-
tion, it does not refer fo memory register 0. In fact, when B =0, no reference is necessarily made to
the index registers. As with SET, the computer automatically takes the next instruction from register p + 2.
Index class instructions may be thought of as having four alternative ways of addressing the

memory, which depend on i and B, and which are summarized below:

Index Class Address Variations

Case i, B Example Form - Comments

1 i=0 LDA B Single Register B holds operand
B#O Register address.

2 i=1 LDA i B Single First, index register B by 1.
B #0 Register Then, register B holds oper-

» ' and address.

3 i=0 LDA Double Second register holds oper-
p=0 X Register and address.

4 i=1 LDA i Double Second register holds op-
=0 N Register erand,

The next programming example scans memory registers 1350-1447, counting the number of in-
stances in which register contents are found to exceed some threshold value, T. In other words if C(X) >
T, X=1350, 1351, ..., 1447, then C(CTR) + 1—~C(CTR), where CTR is a memory registerused as a

counter, initially set to 0. The count, N, is to appear in the accumulator upon program completion.

29

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

14

19
Start 36
31
32
33
34
35
36
37
40

41

42
43

45

47
50
51

52
53
54

[X]
[.-n]

SET i 14
1347
SETi 15
-100
CLR
STC 51
—>LDA i
-T
ADA i 14

BCL i

ADM i
[N]
SXsK i 15

[-]
[:']

0074
1347
0075
7677
0011
4051
1020
T

1134

1560

6777
1460
0000
6052
1020
0001
1160

0235
6036
0000

Address of register to be tested.

-(number of registers to test).

Set index register 14 to initial address minus 1.

Set index register 15 to =100,

Clear CTR; 0—+C(51).

C(37), i.e., -T,~ C(ACC).

Index the address in register 14 and form C(X)-T
in ACC,

Clear all but the sign bit in ACC; C(42) = the bit
pattern for clearing. Then if C(X) > T, C(ACC) =
0000, but if C(X)<T, C(ACC) = 4000,

Does C(ACC) = C(44)? If so, skip to 46.

If not, C(X)< T. Jump to 52.
If so, C(X)> T; 1-C(ACC).

C(ACC) + C(51), i.e., N,= C(51) and = C(ACC).

Index register 15 and test for 7777 .
C(15) # 7777 . Return to check next register.

C(15) = 7777, therefore halt. C(CTR), i.e., C(51),
left in ACC.

Example 12 Scanning for Values Exceeding a Threshold

Note that since the SAE instruction in locations 43 and 44 is written as a double register in-

struction, the LINC skips to location 46 (not 45) when the skip condition is satisifed. The next instruction

in sequence is, in this case, at location 45,

30

PROGRAMMING THE LINC-8

LAM

Note also that if a double register instruction is written following a skip instruction such as

XSK, the LINC tries to interpret the second register as an instruction:

ZA:J;:Z Memory Buffer Effect
[XSK'i B
p+1 LDA | Go top + 1 when X(p) # 1777.
p+2 3<——-| Go to p + 2 when X(B) = 1777.

Since the XSK instruction sometimes directs the LINC to skip to p + 2, care must be taken to
make sure that the LINC does not skip or jump to the second register of a double register instruction.
It is interesting to compare the above statement of the program made in rather detailed machine

language with the following compact but entirely adequate restatement:

1. 0-~C(CTR).

2. 1f C(X) > T then C(CTR) + 1-» C(CTR), for X = 1350, 1351, ..., 1447.
3. C(CTR)— C(ACC).

4. HALT

2-7.2 Multiple Length Arithmetic

An index class instruction, LAM i B (link add to memory), code 1200 + 20i + B, makes arith-
metic possible with numbers which are more than 12 bits long. Using LAM, one can work with 24-bit
numbers for example, using 2 memory registers to hold right and left halves. It should be remembered
that addition with ADD, ADA, or ADM always involves end-around carry. With LAM, however, a
carry from bit 0 of the accumulator during addition issaved in the link bit; it is not added to bit 11 of
the accumulator. This carry, then, could be added to the low=-order bit of another number, providing a
carry linkage between right and left halves of a 24-bit number. For simplicity, the illustration uses 3-bit

registers; the principles are the same for 12 bits:

Link ACC
CT T J<—0e—— 0111l
|]
ne'xt endlcarry

addition with LAM

31

PROGRAMMING THE LINC-8

If, for example, the number in this 3-bit accumulator is 7 (all 1's) and C(L) = 0, and 1 is added
with LAM, the link bit and accumulator will then look like:

L ACC

[1]<—{o]o]o0

Furthermore, LAM is an add-to-memory instruction, so that the memory register to which the

LAM instruction refers will now contain O (as does the accumulator),

In addition to saving the carry in the link bit the LAM instruction also adds the contents of
the link bit to the low order bit of the accumulator. That is, if, when the LAM instruction is executed
C(L) =1, then 1 is added to C(ACC). Using the result pictured above, add 2, where 2 is the contents

of some memory register M:

L ACC M
Given: 1 000 010
Using LAM, the LINC is directed first to add C(L) to C(ACC), giving:

ACC M
0 00l 010

There is no end-carry from this operation, so the link bit is cleared. The LINC then adds

C(ACC) to C(M), giving:

ACC M
0 011 011
which replaces both C(ACC) and C(M). Again there is no end-carry so the link bit is left unchanged.

The operation of LAM may be summarized:

1. C(L) + C(ACC)—~C(ACC).

2. End-carry—~C(L). If no end-carry, 0—~C(L).

3. C(ACC) + C(M)—=C(ACC), and = C(M).

4, End-carry—+ C(L). If no end-carry, the link bit is left unchanged.

As an example of double length arithmetic, postulate 2 numbers, N and N2, each 6 bits long,

1
which occupy a total of four 3-bit memory registers, M, through My

M2 M]

000 111 N] =47
M4 M3

101 001 N, = =26

32

PROGRAMMING THE LINC-8

The sum (octal) of +7 and =26 is =17. Using the LAM instruction to get this:

1. Clear the link bit.

2, Add C(M]) to C(M3) with LAM, saving any carry in the link bit. This sums
the right halves of N] and N2.

3. Add C(M2) to C(M4) with LAM, which also adds in any carry from step 2.

This sums the left halves of N] and N2. Any new carry again replaces C(L).
000 (RN N

101 001 N

0
!
!

0
i
|

110 000 N; +N,=-17
| I 1 2
2nd LAM Ist LAM
No end-carry End-carry

Note that only the first LAM produced an end-carry .

To complete the illustration, consider a case in which the final carry appears in the link bit,

as in the addition of +12 and — 2.

001 010 +12
111 101 -2

o]
!
|

0
!

000 111

2nd L!AM Ist LAM
End-carry No end=-carry

whose sum, in 1's complement notation is 001 000, or +10,, but which with LAM results in +7 and an

81
end-carry in the link bit. Since 1's complement representation depends on end-around carry, some extra
programming must be done to restore the result to a true 1's complement number. This is, of course, the

equivalent of adding 1 to the 2-register result. Assuming that the result is in M] and M2,

L M2 Ml

1 000 111
again use the LAM instruction. First clear the accumulator without clearing the link bit (this can be

done with an STC instruction). Then execute LAM with C(M]) which gives
L ACC M]

1 000 000

33

PROGRAMMING THE LINC-8

producing a new end-carry in the link bit. Again clear the accumulator (but not the link bit) and execute

LAM with C(MZ) which gives

L ACC M‘,2

0 001 001

The result in M, and M] now looks like:

2

M2 M]

001 000 = +10 (octal)
It should be clear to the reader that adding in a final end-carry as an end-around carry cannot itself give
rise to a new final end-carry.
The following program illustrates the technique of double length arithmetic with tables of
numbers; similar techniques would be used for other multiples of 12. Assume that lOO8 24-bit numbers,
NO’ N N are to be added term by term to 1008 numbers, RO’ R], vens R77, so that N0+

Vet 77!
RO = SO, Nl + R] = S], etc. All numbers occupy 2 registers: the left halves of NO, N], vees N77 are
in registers 100-177, the right halves in 200-277. The left halves of RO, R], veny R77 are in 1000-1077,
the right halves in 1100-1177. The left halves of the sums, SO’ S], ey 577, replace the contents of

1000-1077, the right halves replace the contents of 1100-1177.

34

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

10
11
12
13
1.4

377
Start 5 400
401
402
403
404
405
406
407
410

411
412
413
414

415
416

417
420

421
422

423
424
425

[X,]
[X

(-]
SETi 10
77
SET i 11
177
SETi 12
777
SETi 13
1077
SETi 14

-100
—>CLR
LDA i 11
LAMi 13

LDA i 10
LAMi 12

STC 377
LAM 13

STC 377
LAM 12

JMP 412
HTLe-~-

!
I
!
|

[-]
[-]
-]
(-]
[j]
-]
0070
0077
0071
0177
0072
0777
0073
1077
0074

7677
0011
1031
1233

1030
1232

4377
1213

4377
1212

0234
6412
0000

L Set index registers to initial addresses

minus 1 for the 4 tables.

Set index register 14 as a counter for
100 loop repetitions.

0— C(ACC); 0-C(L).
Right half of Ni“’ C(ACCQ).

Right half of Nii + right half of R,~ C(ACC),
and — right half of Ri . End-carlry - C(L).

Left half of N.I - C(ACC).

C(L) + C(ACC) + left half of R,—~ C(ACC),
and — left half of Ri . End—cor'ry - C(L).

Clear accumulator by storing in 377. Do
not clear link bit.

C(L) + right half of S, = C(ACC), and
right half of Si . Endl-carry - C(L).

Clear accumulator.

C(L) + left half os S, - C(ACC), and
left half of .. '

Index 14 and test for 7777 .
C(14) #7777, return to form next sum.
C(14) = 7777, so halt.

Example 13 Summing Sets of Double Length Numbers Term by Term

35

PROGRAMMING THE LINC-8

MUL

The instructions in locations 412-416 produce an initial 24-bit sum leaving any final carry in
- the link bit. The instructions in locations 417-422 then complete the sum by adding in the final end-
carry. The link bit always contains 0 after the computer executes the last LAM in location 422, Register

377 is used simply as a "garbage'register so that the accumulator can be cleared without clearing the

link bit.

2-7.3 Multiplication

Another index class instruction which needs special explanation is MUL i B (multiply), code
1240 + 20i + B. This instruction directs the LINC to multiply C(ACC) by the contents of the specified
memory register, and to leave the result in the accumulator. The multiplier and multiplicand are treated
as signed 11-bit 1's complement numbers, and the sign of the product is left in both the accumulator (bit
0) and the link bit,

The LINC may be directed to treat both numbers either as integers or fractions; it may not,
however, be directed to mix a fraction with an integer. The leftmost bit (bit 0) of register B is used to
specify the form of the numbers.

When bit 0 of register B contains 0, the numbers are treated as integers; that is, the binary
points are assumed to be to the right of bit 11 of the accumulator and the specified memory register.
Given C(ACC) = =10, C(B) = 400 (bit O of register B = 0), and C(400) = +2, the instruction MUL B
leaves — 20 in the accumulator, and 1 in the link bit. Overflow is, of course, possible when the product
exceeds £3777. Multiplying +3777 by +2, for example, produces +3776 in the accumulator; note that
the sign of the product is correct, and that the overflow effectively occured from bit 1, not from bit 0.

When bit 0 of register 8 contains 1, the LINC treats the numbers as fractions; that is, the
binary point is assumed to be to the right of the sign bit (between bit 0 and bit 1) of the accumulator and
the specified memory register. Given C(ACC) =+.2, C(B) = 5120 (bit O of register g = 1), and C(1120)
=+.32, execution of MUL B leaves +.064 in the accumulator and 0 in the link bit,

When the LINC multiplies two 11-bit signed numbers, a 22-bit product is formed. For integers
the rightmost, or least significant, 11 bits of this product are left with the proper sign in the accumulator,
and for fractions the most significant 11 bits of the product are left with the proper sign in the accumulator.
If, for example,
cace) binary points _OTO]]OOOOOOOOLbinary points

for fractions " r—For integers
cM) = 000010000000

and

then C(ACC) can be thought of as either +.,38

+2008. The 22-bit product of these numbers looks like:

or +l4008, and C(M) can be thought of as either +.048 or

36

PROGRAMMING THE LINC-8

000 001 100 O, 00 000 000 000.,

\d Y

.014 0.

and if bit O of register B contains 1, the most significant 11 bits with the proper sign are left in the

accumulator:

C(ACC) = 0,000 001 100 00
My
+.3)x(+.04) =+, 0 1 4

Had bit O of register 8 contained 0, the accumulator would be left with +0 as the result of
multiplying (1400)x(200). It is the programmer's responsibility to avoid integer overflow by programming
checks on his data and/or by scaling the values to a workable size.

Use of bit 0 of register B is new to the concept of index registers and should be noted in con-
nection with the four memory addressing alternatives which index class instructions employ. When g %0

then bit 0 of C(B), that is, bit O of the register which contains the memory address, is used. The same

is true when i =0 and B =0, asin:
Memory.
Address Memory Buffer
p MUL 1240
p+1 h, X 4000h + X

That is, bit 0 of C{p + 1), the register containing the memory address, is used, This bit is
sometimes called the h=bit, whether in an index register or in register p + 1. When, however, i =1 and

B=0, it will be recalled that p + 1 is itself the memory address:

Memor

AddresZ Memory Buffer
p MUL i 1240
p+1 N N

There is no memory register which actually contains the memory address, and therafore there is
no h-bit. The computer always assumes in this case that h = 0, and the operands are treated as integers.

In the following program, registers 1200-1377 contain a table of fractions whose values are in
the range +.0176, that is, whose most significant five bits after the sign (bits 1-5) duplicate the sign.
Each number is to be multiplied by a constant, —.62, and the products stored at locations 1000-1177.

To retain significance, the values are first shifted left 5 places.

37

PROGRAMMING THE LINC-8

Memory Address Memory Buffer Effect
6 X, (-]
[X,) (-]
10 [-n] (-]
%560 SéT i6 0666 Initial address minus 1 of table of fractions - C(6).
501 1177 1177
502 SETi7 0067 Initial address minus 1 for STA instruction - C(7).
503 777 0777
504 SETi 10 0070 -n — C(10).
505 -200 7577
506 —>LDA i 6 1026 Fraction— C(ACC).
507 ROL 5 0245 C(ACC)-25 - C(ACC).
510 MUL 1240 Multiply, as fractions, C(ACC) by C(516),
511 4000+516 4516
512 STAi 7 1067 Store product,
513 XSKil10 0230
514 JMP 506 |: 6506 If not finished, return.
515 HLT< - - 0000 If finished, halt,
516 -.62 4677

Example 14 Multiplying a Set of Fractions by a Constant

The ROL instruction at location 507 rotates 0's or 1's, depending on the sign, info the low-
order 5 bits of the accumulator. Since this amounts to a scale left operation, it introduces no new in-
formation which might influence the product. The reader should also note that the original values remain
unchanged at locations 1200-1377,

Another example demonstrates the technique of saving both halves of the product. Fifty (octal)
numbers, stored at locations 1000-1047, are to be multiplied by a constant, +1633. The left halves of
the products (the most significant halves) are to be saved at locations 1100-1147; the right halves (the

least significant halves) at locations 1200-1247.

38

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

3 [X1] [1077] :
4 [Xo] [1177] } Addresses of products.
> [4000+X3) | [4777] } Addresses of multiplier as fraction and inte
6 [X3] [0777] ger.
7 [=n] [7727] Counter,
- 1460 SéT i3 00}3
1401 1077 1077 Set addresses for storing products.
1402 SETi 4 0074 .
1403 1177 1177
1404 SETi 5 0075 Set 5 to address multiplier as fraction.
1405 4000+777 (4777
1406 SETi 6 0076 Set 6 to address multiplier as integer.
1407 777 0777
1410 SETi7 0077
1411 -50 7727
1412 PLDA i 1020
1413 1633 1633 Form left half of producfi in accumulator.
1414 MULi 5 1265
1415 SCRi 1 0361 C(bit 11 of ACC) - C(L).
1416 STAi 3 1063 Store left half of proolué:ri .
1417 STC 1434 15434 0 — C(ACC).
1420 ROR i 1 0321 C(L) = C(bit 0 of ACQ).
1421 STC 1427 15427 4000 or 0000 = C(1427).
1422 ADD 1413 (3413 ,
1423 MUL i 6 1266 } Form right half of producfi in accumulator,
1423 MUL i 6 1266
1424 BCL i 1560 Clear bit 0 of right half,
1425 4000 4000
1426 BSE i 1620 C(bit 11 of left half)—+C(bit O of right half).
1427 [-] (-]
1430 STAi 4 1064 Store right half of producfi .
1431 XSKi7 (0227 ‘ o
1432 IMP 1412 ! 7412 } Return if not finished.
1433 HLT¢<———1 {0000
1434 (-] [-]
Example 15 Multiplication Retaining 22-Bit Products

39

PROGRAMMING THE LINC-8

ZTA
The instructions at locations 1415, 1420-1421, and 1424-1427 have the effect of making the

two halves of the product contiguous; the sign bit value of the right half is replaced by the low-order bit
value of the left half, so that the product may be subsequently treated as a true double length number.,

Through the use of another instruction, ZTA, it is possible to do a double precision multipli-
cation using only one MUL instruction. When the LINC performs a multiplication, it uses three basic
registers: the accumulator for the multiplicand, the memory buffer register for the multiplier, and the
Z register for partial containment of the initial 22-bit plus sign answer. The LINC then decides if the
multiplication was fractional or integer and puts into the accumulator the correct half of the answer
properly signe;i. In a fractional multiply, the most significant bits of the product are found in the ac-
cumulator; however, the low-order protion of the product is not lost but is still in the Z register as an
unsigned number. By executing a Z to A instruction, ZTA (MSC 005), code 0005, the accumulator is
cleared, and the contents of the Z register are copied into bits 1=11 of the accumulator. Bit 0 is always
0 and the number is unsigned. However, the link contains the sign of the product so that, if necessary,
the low=-order portion of the product may be complemented.

Since bit O of the low=-order portion does not contain a significant bit after a ZTA instruction
(unless the product was 3777 or less), it is useful to transfer bit 11 of the most significant portion of the
product into bit O of the low-order portion. The following example multiplies the number in the LEFT
SWITCHES by the number in the RIGHT SWITCHES and stores the double precision product in memory

into two consecutive locations.

40

PROGRAMMING THE LINC-8

Memory Address Memory Buffer Effect
100 [X]] [C(R.S.)] Contents of RIGHT SWITCHES
101 [X2] [H.O.P.] High order product
1(?2 [)‘(3] [I:.O.P.] Low order product
art 5 400 RSW 0516 Read RIGHT SWITCHES info A
401 STC 100 4100 Store into location 100
402 LSW 0517 Read LEFT SWITCHES into A
403 MUL 1240 Multiply (fractional) C(C(p + 1)) by C(A)
404 [4000+0100] | 4100
405 STC 101 4101 Store high order product into location 101
406 ZTA 0005 C(Z)—C(A)
407 LZE 0452 Was product positive?
410 COM 0017 No, complement A
411 STC 102 4102 Store low order product in location 102
412 ADD 101 2101 Get back high order product
413 ROR I 1 0321 Rotate bit 11 into link, link (sign bit)
into bit 0
414 STC 101 4101 Store into 101
415 ADD 102 2102 Get low order product
416 ROL 1 0241 Rotate bit O into bit 11
417 RORI 1 0321 Rotate link into bit 0, bit 11 into link
420 STC 102 4102 Store into 102
421 HLT 0000

Example 16 Multiplication for 22 Bit-Product Using ZTA
There are two remaining index class instructions, SRO i (skip rotate), and DSC i B (display

character), which is discussed later in connection with programming the oscilloscope display .

2-8 HALF-WORD CLASS INSTRUCTIONS

The LINC has 3 instructions which deal with 6-bit numbers or half-words (word is another term
for contents of a register). These instructions use the index registers and have the same four addressing
variations as the index class, but specify in addition either the left half or right half of the contents of
memory register X as the operand. Think of LH(X) as meaning the contents of the left 6 bits of register X,
and RH(X), meaning the contents of the right 6 bits. Then it is possible to think of C(X) = LHlRH, or
C(X) = 100 LH+RH.

41

LDH, STH

PROGRAMMING THE LINC-8

Half-word instructions always use the right half of the accumulator. The load half instruc-

tion, LDH i B, code 1300 + 20i + B, clears the accumulator and copies the specified half-word into the

right half of the accumulator; which half of C(X) to use is specified by bit 0, the h=bit, of register g.
When h =0, LH(X)=RH(ACC). When h =1, RH(X) = RH(ACC):

,';\Aﬁ:z Memory Buffer Effect
B h, X 4000h+X h=1
[::> LD:H B 13(;O+[3 RH(X)—~ RH(ACC) and 0—~ LH(ACC).
X Ll-:IIRH 10(:)LH+RH C(X) unchanged.

The same interpretation of the h-bit applies when i = 0 and B = 0, i.e., when the instruction
occupies two registers:

':23:;2; Memory Buffer Effect
40 LDH 1300 Since h =1, RH(500), i.e., 76,
41 1500 4500 —RH(ACC). 0— LH(ACC).

502) 32:76 32:76

If register 41 contained 500, i.e., h =0, then LH(500), or 32, would replace RH(ACC).
The store half instruction, STH i B, code 1340 + 20i + g, stores the right half of C(ACC) in
the specified half of memory register X. C(ACC) and the other half of memory register X are unaffected.

To illustrate the case of i =1 and 3 =0, write:
'\XZ:;Z Memory Buffer Effect
1000 STH i 1360 RH(ACC) — LH(1001)
1001 6015 6015

42

PROGRAMMING THE LINC-8

SHD

This case, it will be remembered, uses p + 1 itself as the memory address. Since there is no
h-bit, the computer assumes that h = 0, and therefore the left half of C(1001) is affected. If, for example,
C(ACC) = 5017, 17 replaces LH(1001), and the contents of register 1001 become 1715.

SHD i B (skip if half differs), code 1400 + 20i + B, causes the LINC to skip one memory register
in the program sequence when the right half of the accumulator does not match the specified half of mem-
ory register X. When it does match, the computer goes to the next memory register in sequence for the
next instruction. Neither C(ACC) nor C(X) is affected by the instruction. If C(ACC) = 4371, and the pro-

grammer writes:

A:::;r; Memory Buffer - Effect
376 7152 7152
- 377 SHD 1400 Skip to 402 if RH(376) # RH(ACC).
400 4376 | 4376
401 - i -
402 el |-

The computer skips because RH(376), i.e., 52, #RH(ACC), or 71. Had he written 376 in
location 400, that is, h = 0, RH(ACC) would equal LH(376) and the computer would not skip.

When B #0, and when i = 1, the half-word class instructions cause the LINC to index the
contents of memory register g, but in a more complex way than that used by the index class instructions.
In order to have half-word indexing refer to consecutive half-words, the computeradds 4000to C(B) with
end-around carry. This has the effect of complementing h(B) every time register B is indexed, and
stepping X(B) every other time. Suppose, for example, that the instruction is LDH i 3, and that register
3 initially contains 4377, that is, it points to the right half of register 377, The computer first adds
4000 to C(3):

4377 Original C(3) =1,377
4000 Index H(3)
0377

1 End-around carry

0400 New C(3) = 0, 400
which leaves h = 0 and X = 400; C(3) now points to the left half of register 400. The computer therefore
loads the accumulator from LH(400). Repeating the instruction, C(3) is indexed to 4400 and the accumu-
lator is loaded from RH(400). Continuing, register 3 would contain the following succession of values

or half-word references:

43

PROGRAMMING THE LINC-8

4400 : RH(400)
0401 : LH(401)
4401 : RH(401)
0402 : LH(402)
4402 ; RH(402)
0403 : LH(403)

etc. etc.

Since half-word indexing occurs before the contents of register B are used to address the

memory, the memory address, when i = 1, can be described as

h, X+h
where h represents the indexed value of h, and X+h represents the indexed value of X, The succession

of values which appear in register B can be written:

h, X+h

1,X+0
0, X+1
1, X+1
0, X+2
1, X+2

etc.

The four address variations for half-word class instructions are summarized in the following

table.
Half-Word Class Address Variations
Case i, B Example Form Comments

1 i=0 LDH B Single Register B holds half-word operand address.
B#O 4 Register

2 i=1 LDHi B Single First, index register B by 4000 with end-around

Register carry.

B#0 Then, register B holds half-word operand address.

3 i=0 LDH Double Second register holds half-word operand address.
=0 h, X Register

4 i=1 LDH i Double Left half of second register holds half-word
=0 LHIRH Register operand,

For h = 0, the operand is held in the left half of the specified memory register. For h =1, the operand
is held in the right half of the specified memory register.

44

PROGRAMMING THE LINC-8

KBD
2-9 THE KEYBOARD INSTRUCTION

Before continuing with half-word class programming examples, the keyboard instruction, KBD i,
code 515 + 20i, is introduced. The LINC-8 uses the ASR 33 as a keyboard for the LINC section. Each key
has an eight level code which is converted to a 6-bit code by the interpretive program in the PDP-8
(PROGOFOP) (see chart I1). When a key is struck the 6-bit code for that character is transferred into the
right half of the LINC's accumulator by the KBD i. The i-bit is used here in a special way to synchronize
the keyboard with the computer. When i=1, if a key has not been struck, the computer will wait for a key
to be struck before tryingto read a key code into the LINC accumulator. Wheni=0, the computer does not
wait, and the programmer must insure that a key has been struck before the computer triesto execute the KBD
instruction; otherwise a O will be transferred to the LINC accumulator. Use of the i-bit to cause the comput-
er to pause is uniqueto a class of instructions known as the operate instructions, of which KBD is a member.

As a classthey are usedto control or operate external equipment.

The following program reads in key code numbers as keys are struck on the keyboard, and
stores them at consecutive half-word locations, LH(100), RH(100), LH(101), ..., until the Z, code

number 558, is struck, which stops the program.

Memory Address Memory Buffer Effect
.7 [h,.X] [T] Half-word index register.
- 26 SE'i' i7 O(‘.>77 Set index register 7 to one half-word location
less than initial location.
21 1,077 4077
22 —>KBD i 0535 Read code number of struck key into RH(ACC),
and release the key.
23 SHD i 1420 Skip to location 26 if code number # 55,
24 5500|5500
25 HLT i 0000 Code =55, so halt.
26 STH i 7<~: 1367 Half-word index register 7, store code number,
and return to read next key.
27 JMP 22 6022

Example 17 Filling Half-Word Table from the Keyboard

Another example reads key code numbers and stores at consecutive half-word locations only
those code numbers which represent the letters A-Z, codes 248-558. Other key codes are discarded,

and the program stops when 1008 letters have been stored.

45

PROGRAMMING THE LINC-8

DIS
Memory Memory Buffer Effect
Address
5 [h,X] [-]
6 [-n] (-]

- 106 SE';' i6 0666 Set 6 to count 100 times,
101 -100 7677
102 SETi 5 0065 Set 5 for storing letters beginning at LH(1000).
103 1,777 4777
104 =KBD i 0535 Read keyboard,
105 STA i 1060 C(ACC) —=C(106); store key code in 106.
106 [-] (-]
107 ADA i 1120 C(ACC) =23 -C(ACC).
110 -23 7754
111 BCL i 1560 Clear all but the sign bit in ACC.
112 3777 3777
113 AZE 0450 If C(ACC) =0, skip to location 115,
114 JMP 104 : 6104 C(ACC) #0, so key code was less than 24, Return

| to read next key,
115 LDH é——: 1300 Key code 23 represents a letter. Therefore RH(106)
RH(ACC).
116 1106 4106
117 STHi 5 1365 Half-word index register 5 and store code for letter,
120 XSKié 0226 Index register 6 and return if 100 letters have not
: been struck.
121 JMP 104 | 6104
122 HLT<———l 0000
Example 18 Selective Filling of Half-Word Table from the Keyboard
2-10 THE LINC SCOPES AND THE DISPLAY INSTRUCTIONS

The LINC has a cathode ray tube display device called a display scope, which is capable of

presenting a square array of 5]2]O by 51210 spots (lOOO8 by]0008). A special instruction, DIS i o

(display), code 140 + 20i + o, momentarily produces a bright spot at one point in this array. The hori-

zontal (H) and vertical (V) coordinates are specified in the accumulator and in . The vertical coordinate,

46

PROGRAMMING THE LINC-8

—3778 <V < +3778, is held in the accumulator during a DIS i o instruction; the horizontal coordinate,
0<HL 7778, is held in register o, 0 <o <17. The spot in the lower left corner of the array has the
coordinates (0, —377):

(0, +377) , o (777, +377)
Square array, 3" x 3",
of 10008 X 10008 points.
©0 , (777, 0) ‘
) y L (V)
A
\
(0, —377) b J/ 6 (777, = 377)

The coordinates are held in the rightmost 9 bits of register o and the accumulator,

acc L)Ly Lt Ll
S —

unused | (—377<v<+377) —— > |

HEEEE RN NN EN

h—bif—/rm | <——(0<H<777) > |

so that if C(ACC) = 641, i.e., =136, and C(5) = 430, DIS 5 causes a spot to be intensified at (430,
—136) on the scope.

Both channels are positioned af the same time. The production of a bright spot on either channel
depends upon the state of the leftmost bit (the h-bit) of register o« and an external channel selector located
on the face of the display scope. If h =0, then the spot is produced via display channel 0; if h =1, then
the spot is produced via display channel 1. The scope may be manually set to intensify channel 0, chan-
nel 1, or both.

The i-bit in DIS i o is used in the usual way to specify whether to index the right 10 bits of
register o before brightening the spot. This indexing, of course, also increases the horizontal coordinate
by one. To illustrate, the following program will display a continuous horizontal line through the middle

(V=0) of the scope via display channel O:

47

PROGRAMMING THE LINC-8

IX‘Z:;Z Memory Buffer Effect
5 [0, H] [-] Horizontal coordinate and channel selection.
- 20 SETi 5 0065 Set 5 to channel 0 and horizontal coordinate = 0,

21 0 0000

22 CLR 0011 Vertical coordinate = 0~ C(ACC).

23 DISi 5 0165 Index H (actually index entire rightmost 10 bits) and

display. Repeat endlessly.
24 - JMP 23 6023

Example 19 Horizontal Line Scope Display

Another example displays as a curve the values found in a set of consecutive registers, 1400~
1777 . The vertical coordinates are the most significant 9 bits of each value. Since these are only 4008

points to display, the curve will be positioned in the middle of the scope. Channel 1 is used.

x;?zz Memory Buffer Effect
10 [X] [-] Address of vertical coordinates.
11 [1,H] [4000+H] Channel select and horizontal coordinate..
- 306 _>SE'I.' il0 0670 Set 10 to beginning address minus 1,
301 1377 1377
302 SETi 11 0071 ’ Set 11 to select channel 1 and to begin curve at
H = 200.
303 1,177 4177
304 —LDA i 10 1030 Load ACC with value and scale right 3 places to
position it as vertical coordinate,
305 SCR 3 0343
306 DISi 1l 0171 Index the H coordinate and display.
307 XSK 10 0210 Check to see if X(10) = 1777,
310 JMP 304 : 6304 If 400, points have not been displayed, return to get
| next point,
311 L JMP 3004} 6300 If X(10) = 1777, return to repeat entire display .

Example 20 Curve Display of a Table of Numbers

48

PROGRAMMING THE LINC-8

2-10.1 Character Display

Display scopes are frequently used to display characters, for example keyboard characters, as
well as data curves. Character display is somewhat more complicated since the point pattern must be
carefully worked out in conjunction with the vertical and horizontal coordinates for each point.

For example, to display the letter A, the array on the scope might look like:

First Second
Word Word
—Ar——t—

T T Tolels
7 7B 717
mink JEDE
) W 10| 4 [10] 4
/. /I 115115
b— 4 —

Figure a Figure b

where the shaded areas of figure a represent points which are intensified, and the white areas points not

intensified; the total area represented is 6 vertical positions by 4 horizontal positions. If, for example,

the lower left point has the coordinates (400, 0), then the upper right point has the coordinates (403, 5).
The programmer could, of course, store the H and V coordinates for every intensified point of

the character in a table in the memory, but the letter A alone, for instance, would require 32. registers

to hold both coordinates for all the points which are intensified. Instead he arbitrarily decide]soupon a
scope format, say 4 x 6, and makes up a pattern word in which 1's represent points to be intensified and
0's points which are not intensified. To specify a 4 x 6 pattern of 24 bits requires 2 memory registers.
For efficiency of programming, the points are displayed in the order shown numerically in figure b, i.e.,

from lower left to upper right, column by column. Examining bit 11 of the pattern word first, bit 10 next,

bit 9, etc., the pattern word for the left half of the letter A (the left two columns) looks like:

First 01 2 3 4 5 6 7 8 9 10 11
pattern word - fy Th To 1 Jolo IERE BERE

The pattern word for the right half of the letter looks like:

49

PROGRAMMING THE LINC-8
SRO

Second 2 3 4 5 6 7 8 2 10 N

pattern word Ilil]I “Jﬂw 1]0(0] nn

An index class instruction, SRO i B (skip rotate), code 1500 + 20i + B, facilitates character
display with the kinds of pattern words described above. SRO i B directs the LINC to skip the next
register in the instruction sequence when bit 11 of the specified memory register contains 0, If bit 11
contains 1, the computer does not skip. In either case, however, after examining bit 11, the contents
of the specified memory register are rotated 1 place to the right. Therefore, repeating the SRO instruc-
tion (with reference to the same memory register) has the effect of examining first bit 11, then bit 10,
bit 9, etc. Executing the SRO instruction twelve times, of course, restores the memory word to its
original configuration.

The following example repeatedly displays the letter A in the middle of the scope, using
register 7 to hold the address of the first pattern word and register 6 to hold the H coordinate. Since
4 x 6 contiguous points on the scope array define an area too small to be readable, a delta of 4 is used
to space the points, so that if the first point is intensified at coordinates (370, 0) the second point will

be at (370, 4), the 7th point at (374, 0), etc. (This produces characters approximately 0.5 cm, high.)

50

PROGRAMMING THE LINC-8

Memory

Address Memory Buffer Effect
6 [0, H] [-] Channel selection and H coordinate.
7 [X] [-] Address of pattern word.
- 60 |—>SETié6 0066 Set H coordinate = 370 for lower left point. Selectchannel 0.
61 0,370 0370
62 SETi 7 0067 Set 7 to address of first half of pattern,
63 110 0110
64 —>LDA i 1020 Initial V coordinate = —10—+ C(ACC).
65 -10 7767
66 —>SRO 7 | 1507 Skip to location 70 if bit 11 of pattern word is 0. Rotate
! the pattern word 1 place to right.
|
67 DIS 6 : 0146 If bit 11 of pattern word was 1, display one point.
I
70 ADD 75« | 2075 Add 4 to V coordinate in ACC,
71 SRO i 1520 Skip to location 74 when 6 bits of pattern word have been
examined, Rotate C(72) 1 place to right.
72 3737 _ 3737
73 JMP 66 : 6066 Return to examine next bit of pattern word when bit 0 of
} C(72) =1.
74 LDA ie-l 1020
75 4 0004 When bit 11 of C(72)=0, 6points have been examined. In-
76 ADM 1140 crease H coordinate by 4 to do next column,
77 6 0006
100 SRO i 1520 Check to see if 2columnshave been displayed. Rotate
C(101) 1 place to right.
101 2525 | 2525
102 JMP 64 | | 6064 Two columns have not been displayed; return to do next
" column,
103 XsK i 7¢l | 0227 Two columns have been displayed; index address of the
pattern word.
104 SRO i 1520 Skip to 107 is both halves of pattern have been displayed.
105 2525 2525
106 L JMP 64 6064 Return to display 2nd half of pattern.
107 JMP 60 6060 Entire pattern has been displayed once. Return and repeat.
110 4477 4477 cor |
0 7744 7744 Pattern words for letter A.
Example 21 Character Display of the Letter A

51

PROGRAMMING THE LINC-8

DSC
The SRO instructions at locations 71, 100, and 104 determine when 1 column, 2 columns, and

4 columns have been displayed. After each column the H coordinate is increased by 4 and the V coordi-
nate reset to =10, After 2 columns the address of the pattern word is indexed by one, and after 4 columns
the entire process is repeated.

DSC i B (display character), code 1740 + 20i + B, is the last of the index class instructions; it
directs the LINC to display the contents of one pattern word, or 2 columns of points. Register B holds
the address of the pattern word and the i-bit is used in the usual way to index X(B). The points are dis-
played in the format described above, i.e., 2 columns of 6 points each with a delta of 4 between points.
The pattern word is examined from right to left beginning with bit 11 and points are plotted from lower
left to upper right, as above. When executing a DSC instruction the computer always takes the H coordi-
nate and channel selection from register 1, The delta of 4 is automatically added to X(1) every time a
new column is begun; furthermore, this indexing is done before the first column is displayed, so that if
register 1 inifially contains 0364, the first column is displayed at H = 370, the second ot H = 374, and
register 1 contains 0374 at the end of the instruction.

The vertical coordinate is, as usual, taken from the accumulator, and again +4 is automatically
added to C(ACC) between points, The rightmost 5bits (bits 7-11) of the accumulator are always cleared
at the beginning of a DSC instruction, so that if initially C(ACC) = +273, the first point will be displayed
at V = 240, the second at V = 244, etc. Characters can therefore be displayed using the DSC instruction
only at vertical spacings of 40 on the scope, e.g., at initial vertical coordinates equal to =77, =37, 0,
+40, +100, etc, The rightmost 5 bits of the accumulator always contain 308 at the end of a DSC in-
struction, so that if the initial C(ACC) = +273, the initial V equals +240 and C(ACC) equals +270 at
the end of the instruction.

To display a character defined by a 4 x 6 pattern two DSC instructions are needed, The fol-
lowing example repeatedly displays the letter A in the middle of the scope, just as the program on page
48 (example 20) does, but with greater efficiency using the DSC instruction. Since an initial V ==10

is not possible with DSC, the program uses V = 0.

52

PROGRAMMING THE LINC-8

Memory
Address Memory Buffer Effect
1 [0, H] [-] Channel selection and H coordinate .
7 [X] [-] Address of pattern word .
- 60 CLR 0011 Initial V =0 - C(ACC).
61 —>SET i 1 0061 Set 1 to initial H coordinate minus 4, and select channel 0,
62 0364 0364
63 SETi7 0067 Set 7 to address of first half of pattern,
64 110 0110
65 DsSC 7 1747 Display, using 1st pattern word, the left 2 columns of the
letter A, at initial coordinates of (370, 0).
66 DSCi7 1767 Index address of pattern word, X(7), and display right 2
columns of the letter A at initial coordinates of (400, 0).
67 JMP 61 6061 Return and repeat .
1o 4477 4477 Pattern words for letter A,
n 7744 7744

Example 22 Character Display of the Letter A Using DSC

After the first DSC instruction (at location 65), C(1) = 0374 and C(ACC) = 30. After the
second DSC instruction, C(1) = 0404, C(7) = 0111, and C{ACC) = 30. C(110) and C(111) are unchanged.
By adding more pattern words at locations 112 and following locations, and repeating the DSC i 7 instruc-

tion, it is possible to display an entire row of characters.

The following program repeatedly displays a row of six digits. The pattern words for the char-
actors 0-9 are located in a table beginning at 1000; i.e., the pattern words for the character 0 are at
1000 and 1001, for the character 1 at 1002 and 1003, etc. Keyboard codes for the characters to be dis-
played are located in a half-word table from 1400-1402; i.e., the first code valde is LH(1400), the
second RH(1400), etc. The program computes the address of the first pattern word for each character as

it is retrieved from the table at 1400.

53

PROGRAMMING THE LINC-8

ZAjg:Z:Z Memory Buffer Effect
1 [1,H] [-] Channel selection and H coordinate.
2 [—n] [-] Counter for number of characters.
3 {h,X] [-] Address of keyboard code values.
4 [X] [-.-] Address of pattern word.
- 26 —5S|§T i2 0662 Set 2 to count number of characters displayed .
2] -6 7771
22 SETi 3 0063 Set 3 for loading code values beginning at LH(1400).
23 1,1377 5377
24 SET i 1 0061 Set 1 to initial H coordinate minus 4, and selectchannel 1.
25 1,344 4344
26 ™LDH i 3 1323 Half-word index register 3 and put code value into
accumulator,
27 ROL 0241 Compute address of pattern word by multiplying code value
30 ADA i 1120 by 2 and adding beginning address of pattern table.
31 1000 1000
32 STC 4 4004 Address of pattern word —~ C(4); 0— C(ACC).
3 DSC 4 1744 Display character at initial V =0, and initial H=C(1)+4.
34 DSCi 4 1764
35 LDA i 1020
36 4 0004
37 ADM 1140 Increase H by 4 to provide space between characters,
40 1 0001
4)—(EK—Lg—I 0222 Index X(2) and check to see if six characters have been
42 JMP 26 || 6026 displayed. If not, return to get next character. If so,
43 IMP 20€J| 6020 return to repeat entire display.

acter 7 are at locations 1016 and 1017, Multiplying the code value 07 by 2 (7 x 2 =16

Example 23 Displaying a Row of Characters

Suppose, for example, that one of the six code values is 07, The pattern words for the char-

8) and adding the

beginning address of the pattern table (16 + 1000 = 1016) gives us the address of the first pattern word for

the character 7. It should be clear that pattern words for all the keyboard characters could be added to

54

PROGRAMMING THE LINC-8

SAM
the pattern table; by organizing the pattern table to correspond to the ordering of the keyboard code

values, the same technique of "table look-up" using the code values to locate the pattern could be used

to display any characters on the keyboard .*

2-11 ANALOG INPUT AND THE SAMPLE INSTRUCTION

The sample instruction, SAM i n, refers to the LINC's miscellaneous inputs. The LINC has
16 input lines (0—178) through which external analog signals may be received. The sample instruction
samples the voltage on any one of these lines, and supplies the computer with instantaneous digitalized
"looks" at analog information. Input lines 0-7 are built to receive signals in the range +5 to =5. These
eight lines are equipped with potentiometers (which appear on the display panel as numbered black
knobs) whose voltage is varied by turning the knobs. Lines 10-17, located at the data terminal module,

are for high frequency signals which may range from =1 to +1v at a maximum of circa 20,000 cps.

The number n in the sample instruction specifies which line to sample. Built into the LINC
are analog-to-digital conversion circuits which receive the signal and convert it to a signed 11-bit binary
number in the range £377, leaving the result in the accumulator. Thus, for example, a voltage of 0 on
one of the high frequency lines will be converted to 0 when sampled with a SAM instruction, and the
number O will be left in the accumulator. Voltages on the high frequency lines greater than or equal to
+1v will, when sampled, cause +3778 to be left in the accumulator., Voltages less than or equal to =1v

will cause =377 to be left in the accumulator.

Memory

Address Memory Buffer Effect

- p SAM n 100+ 20i + n Conversion of voltage
on line n = C(ACQC).

The value of this facility, which makes it possible to evaluate data while they are being gen-
erated, can easily be seen. The sample instruction is frequently used with the display instruction in this
context,

To illustrate use of this instruction, look first at a simple example of a sample and display
program, The following sequence of instructions samples the voltage on input line 10, and displays
continuously a plot of the corresponding digital values. |t provides the viewer with a continuous picture
of the analog signal on that line. The sample values left in the accumulator are used directly as the

vertical coordinates. In this example, input 10 is sampled.

*See chart 11l in appendix 2.

55

PROGRAMMING THE LINC-8

%j{i:z Memory Buffer Effect
17 [0, H] [-] For channel selection and H coordinate.
- 1000 SETi 17 0077 Set register 17 to begin H coordinate at H = 0;

channel 0,

1001 1777 1777

1002 —>SAM 10 0130 Sample input 10, leaving its value in the ACC as
the V coordinate.

1003 DISi 17 0177 Index the H coordinate and display.

1004 JMP 1002 7002 Return and repeat endlessly .

any specific horizontal coordinate.

Example 24 Simple Sample and Display

Note that since here a continuous display is wanted, it isnot necessary to reset register 17 to

A second example illustrates one of the uses of the potentiometers. This program plots the

contents of a 51210 word segment of memory registers 0-1777. Location of the segment is selected by

rotating knob 5, whose value is used to determine the address at which to begin the display. As the

viewer rotates the knob, the display effectively moves back and forth across the memory .

56

PROGRAMMING THE LINC-8

AA‘:Z::}Z Memory Buffer Effect
12 [X] (-]
13 [1,H] [T] For channel selection, H coordinate, and counter.
- 26 —%SET il3 0673 Set register 13 to select channel 1 and to begin dis-
playing at H = 0.
21 4777 4777
22 SAM 5 0105
23 ADA i 1120
2 || w0 ome | ek ost 0t e vebe e,
25 " ROL1 0241 and store in register 12,
26 STC 12 4012 y
27 —>LDAT 12 1032) Index the address of the vertical coordinate, and put
30 SCR 3 0343 - the coordinate into the ACC. Position it for display,
31 DIS i 13 0173) index the H coordinate and display.
32 XSK 13 | 0213 Check to see whether 5121 points have been displayed.
| (X(13) = 17772).
33 | JMP 27 : 6027 If not, return to display next point.
34 JMP 20<! | 6020 |I<f sci), return to reset counter and get new address from
nob 5.

Example 25 Moving Window Display under Knob Control

At locations 23-25, a memory address is computed for the first vertical coordinate by adding
400 to the sample value. This leaves the value in the range +1 to +777; it is then rotated left 1 place
to produce an initial address in the range 2-1776 for the display.

A final example illustrates the technique of accumulating a frequency distribution of sampled
signal amplitudes appearing on line 12, and displaying it simultaneously as a histogram. The distribution
is compiled in a table at locations 1401-1777, and the sample values themselves form the addresses for
table entry. Registers 1401-1777 are initially set to — 377 so that the histogram will be from the bottom
of the scope.

Note, at locations 104 and 105, because of using memory registers 1401-1777, the same index
register (register 2) may be interpreted both as address (location 104) and counter (location 105), A
separate counter is not needed because the final address (1777) will serve also as the basis of the skip

decision for the XSK instruction. The same istrue at location 124 and 134,

57

PROGRAMMING THE LINC-8

',\AA:(;:::Z Memory Buffer Effect
[X] [-] Address of vertical coordinates.
[0, H] (-] Channel selection and H coordinate.

100 SET i 2 0062 A
101 1400 1400
102 LDA i 1020 > -Initial routine to set registers 1401-1777 to =377.
103 ~377 7400
104 —> STA i 2 1062
105 XSK 2 4 0202
106 JMP 104 || 6104 J
107 —>SET i 2< | 0062 Set register 2 to initial address minus one of vertical coordi-
110 1400 1400 netes:
111 SET i3 0063 Set register 3 to select channel 0 and begin display at H=201.
112 200 0200 .
113 >S5AM 12 0112 Sample input line 12.
114 SCR 1 0341 Add 1400+200 to the sample value to form an address for
115 ADA i 1120 [recording the event and store.
116 1600 1600
117 STC 123 4123
120 LAD i 1020 |]
121 1 0001 Add 1 to the contents of the register just located by the
122 ADM 1140 [sample value to record the event.
123 [-1 (-1)
124 LDA i 2 1022 Index register 2 and put a histogram value in the accumulator.
125 DISi3 0163 Index the H coordinate and display.
126 >DIS 3 0143 Display without indexing.
127 ADA i 1120
130 -1 7776 Fill in the bar by decreasing the vertical coordinate by 1 and
131 SAE i 1460 continuing the display until a point is displayed at V==377.
132 —400 | 7377
133 JMP 126 -: 6126
134 XSK 2< | 0202 When bar is finished, check to see whether 377 values have

—]I been displayed. (X(2)= 17777).
135 JMP 113 1| 6113 If not, return to get next sample.
136 JMP 107<| 6107 If so, return to reset vertical coordinate address, H coordinate,

and repeat.

Example 26 Histogram Display of Sampled Data

58

PROGRAMMING THE LINC-8

SKP, SXL, APO
2-12 THE SKIP CLASS INSTRUCTIONS

Instructions belonging to the skip class test various conditions of the accumulator, the keyboard,
the tapes, and the external level lines of the data terminal module. Coding for these instructions includes
the condition or level line to be checked and an option to skip or not skip when the condition is met or

the external level is negative.

condition
SKP 0<c<17
t T
SKP i c: 440 + 20i + ¢

i =0: Skip only if condition c is met or level
n is negative.,

or
i =1: Skip only if condition c is not met or
level n is not negative.
SXLin: 4?0 + 20i + I’11
SXL 0<n<17
level line number
In these instructions the i-bit can be used to invert the skip decision. When i = 0, the computer

skips the next register in the instruction sequence when the condition is met or external level is negative.
However, when i =1, the computer skips when the condition is not met or the external level is not neg-

ative. Otherwise the computer always goes to the next register in the sequence.

The four situations which may arise are summarized in the following table. The skip class in-

struction is assumed to be in register p.

Branching in Skip Class Instructions

i : Condition met or level negative? Location of next instruction
0 yes p + 2 (skip)

0 no p+1

1 yes p+1

1 no p + 2 (skip)

SKP i ¢ instructions test 16 conditions, which, because of their variety, are described with
different 3-letter expressions. Thus the AZE i instruction already presented is the same as SKP i 10.

Another instruction, APO i, synonymous with SKP i 11, checks to see whether the accumulator is positive

(bit 0 = 0):

59

PROGRAMMING THE LINC-8

LZE, SNS, KST

Case: 1 =0
Memory Memory Buffer Effect
Address
p APO. 400+ 11 If C(bit 11 of ACC) =0, go to p+ 2 for
o+ 1 _ (_} _ the next instruction; if C(bit 11 of ACC)
| =1, gotop+1.)
p+2 -<-! -
Case: i=1
Memory
Address Memory Buffer Effect
p APO i 1400+20+11 If C(bit 11 of ACC)=1, go top + 2 for
=== . L .
o+ 1 e _ f-he next instruction; if C(bit 11 of ACC)
| =0, gotop+1.
p+2 <! -

Other SKP variations check whether C(L) = 0, (LZE i, code 452 + 20i, which is synonymous
with SKP i 12) or whether one of the 6 sense switches on the console isup (SNSi 0, SNSi 1, ...,
SNS i 5, synonymous with SKPi 0, SKPi 1, ..., SKPi5). (The sense switches are numbered from left
to right, 0-5.)

The SXL i n instruction (skip on negative external level) checks for the presence of a —3v
level on external level line n, 0 <n <13, at the data terminal module. It is often used with the operate
instruction, discussed in the next section, to help synchronize the LINC with external equipment.

The skip instruction KST i (key struck), code 415 + 20i, checks whether a keyboard key has
been struck. KST i is synonymous with SXL i 15,

To illustrate the use of these instructions the following program counts the signal peaks above
a certain threshold, 1008, for a set of 10008 samples appearing on input line 13. The number of peaks

exceeding the threshold will be left in the accumulator.

60

PROGRAMMING THE LINC-8

A:Z?:;rs); Memory Buffer Effect
7 [=n] [-] Counter for 1000 samples.
1() [r.x] [-] Counter for number above 1008.
- 150(") SéT i7 0(567 Set register 7 to count 1000 samples.
1501 -1000 6777
1502 SETi 10 0070 Clear register 10 to count peaks.
1503 0 0000
1504 —SAM 13 0113
1505 ADA i 1160 jzrlllp;lta input line 13 and subtract 100 from the sample
1506 -100 7677
1507 APO i | 0471 Is the accumulator positive ?
1510 XSK i 10 i 0230 If so, the value was above 100; add 1 to the counter.
| If not, skip the instruction in location 1510,
1511 2(§IS_|Z§—_} 0227 Index register 7 and test.
1512 JMP 1504 i 7504 [f 1000 samples have not been taken, return,
1513 LDA<-—-—'| 1000
1514 10 0010 | £ above 100 e the secumelorer anchatt
1515 HLT 0000

Example 27 Counting Samples Exceeding a Threshold

Another program samples and displays continuously the input from line 14 until a letter, i.e.,

a key whose code value is higher than 238, is struck on the keyboard,

61

PROGRAMMING THE LINC-8

x:z:z Memory Buffer Effect
1 11, H) [T] Channel selection and H coordinate .
- 10(.) SE1.' il 0061 Set register 1 to select channel 1 and begin display
at H=1.
101 4000 4000
102 —> SAM 14 0114 Sample line 14 and display its value.
103 DISil 0161
104 KST 1 0415 Has a key been struck?
105 - JMP 102 i 6102 If not, return and continue sampling and displaying.
106 KBD¢ - ! 0515
110 -23 7754)
111 APO | 0451 Is ACC positive?
112 JMP 102 | 6102 If not, the value was less than 23_. Return and con-
- : tinve sampling. 8
113 HLT< - -! | 0000 If so, the value was 24 or greater; halt.

Example 28 Simple Sample and Display with Keyboard Control

Note that the KBD instruction at location 106 is executed only when a key has been struck

(because of KST at location 104) and therefore does not need to direct the computer to pause.

2-13 SUBROUTINE TECHNIQUES

Before describing the remaining instructions, some mention should be made of the technique
of writing subroutines. Frequently a program has fo execute the same set of instructions at several dif-
ferent places in the program sequence. In this case it is an inefficient use of memory registers to write
out the same set of instructions each time it is needed. It is more desirable to write the instructions once
as a separate, or "sub," routine to which the program can jump whenever these instructions are to be ex-
ecuted. Once the instructions in the subroutine have been executed, the subroutine should return control
(jump back) to the main program.

For example, suppose that in two different places in a program we must execute the same set

of arithmetic operations. Visualize the general structure of such a program as follows:

62

PROGRAMMING THE LINC-8

2-13.1 Main Program

Memory Address Memory Buffer
Start 5100 Main
Program
: Instructions
150 JMP 1000 ——> Jump out to subroutine
151 Continue «<—— Return from subroutine
E Main
Program
: Instructions
200 JMP 1000 —— Jump out to subroutine
2(?1 Continue <—— Return from subroutine

Subroutine

Memory Address Memory Buffer
Enter
Subroutine — 1000 Subroutine . .
.) Arithmetic
. Instructions .
. | Operations
1020 JMP MP——>Return to main program

It appears from this example that jumping to the subroutine from the main program (at locations
150 and 200) is straightforward. The subroutine must be able to return control to the main program, how-
ever, reentering it at a different place each time the subroutine is finished. That is, the JMP instruction
at location 1020 must be changed so that the first time the subroutine is used it will return to the main
program via a JMP 151 and the second time via a JMP 201,

It will be remembered that every time the computer executes a JMP instruction (other than
JMP 0) at any location p, the instruction JMP p + 1 replaces the contents of register O (see page 11).
Thus, when JMP 1000 is executed af location 150, a JMP 151 is automatically stored in register 0, saving

the return point for the subroutine. The subroutine might retrieve this information in the following way:

63

PROGRAMMING THE LINC-8

OPR, EXC
2-13.2 Subroutine

Memory Address Memory Buffer Effect
Enter
Subroutine == 1000 LDA C(0) =~ C(ACC); i.e., JMPp +1
-~ C(ACC).
1001 0
1002 STC 1020 C(ACC) —~ C(1020).
Execute arithmetic operations,
1020 [JMP p + 1] Refurn to main program ,

A simple JMP 0 in location 1020 clearly suffices when the subroutine does not, during its
execution, destroy the contents of register 0. In this case, the instructions in locations 1000-1002 would
be unnecessary.

A problem arises in the above example when the subroutine is not free to use the accumulator
to retrieve the return point. Another method, using the SET instruction, is possible when there is an

available B register.

Memory Address Memory Buffer Effect
Enter
Subroutine - 1000 SET 10 C(0) = C(10; i.e., JMP p + 1 is saved
in a free B register.
1001 0
. . Execute arithmetic operations; the
. . accumulator has not been disturbed.
1020 JMP 10 Return to main program by jumping

to register 10,

2-14 PROCESSOR INTERCOMMUNICATION

2-14.1 Control Transfer Between Processors

There are two cases to consider in transferring control between processors. The first and
simplest case is where no dispatching is required: the processor not in use is required to execute only
one subprogram. The second case requires selection among several subprograms or subroutines for execu-

tion in the alternate processor mode. In such a case, modification of the alternate processor's program

counter is necessary.
64

PROGRAMMING THE LINC-8

OPR, EXC
An example of the first, nondispatching case is that of a PDP-8 program using the LINC

processor strictly for display. Another example would be a LINC program relying on the PDP-8 proces-
sor to service only one peripheral device, such as 138E/139E ADC and multiplexer control (not on
interrupt). The second, more general, case is well exemplified by the program of operation, PROGOFOP,
a collection of subroutines to service many of the special LINC features. The appropriate subroutine is
called into play for each particular condition to be serviced.

Let us examine the nondispatching case first. No changes need be made to the program counter
register. Transfer of control back and forth is straightforward. Since the PDP-8 processor is in data break
when the LINC processor is operational, a simple (LINC) HLT instruction stops LINC operation and trans-
fers control back to the PDP-8. Program operation resumes in the PDP-8 at the location following the
one in which control was transferred to the LINC. Similarly, to transfer control from the PDP-8 to the
LINC, the instruction sequence, CLA, TAD (12), ICON, is executed. The LINC subprogram resumes
where it was interrupted by HLT. The programmer can arrange jumps and halts so that a CLA, TAD,
ICON sequence is an effective call to a LINC processor subroutine. In the same way a HLT can be
effectively a call to a PDP-8 subroutine. An example follows below.

The most efficient means by which the LINC scope is used in a PDP-8 program takes advantage
of the shared memory between the two processors. Control is transferred to a short LINC program to dis-
play a list of points. The LINC processor transfers control back to the 8-processor upon encountering
a halt instruction (HLT).

The PDP-8 program is given in detail below:

Memory Address Memory Buffer Effect
MAIN, | L
CLA
TAD (12) /12 OCTAL, TRANSFERS
/CONTROL TO LINC PROCESSOR

EXTT, ICON /AT LOCATION IN LINC P

NOP /REGISTER (LAST PDP-8 INST.)
RETURN, | ... /CONTROL IS RETURNED HERE

65

PROGRAMMING THE LINC-8

The LINC program is given in detail below:

Memory Address

Memory Buffer

Effect

20 DISPL,

SETUP,

LDA i 2

DISi3

XSK i 4

JMP 20
SET i 2
LIST 1

SET i 4
POINTS

SET i3
-1

HLT
JMP 20

/LOADS LINC AC WITH CONTENTS
/OF LOC SPECIFIED BY XR2

/DISPLAYS: X,Y

/Y=(AC), (XR3)=(XR3}M1, X=
/ (XR3)

/SEE IF ENTIRE LIST HAS BEEN
/DISPLAYED

/MORE DISPLAYING

/RESET DISPLAY POINTER TO:
/LOCATION PREVIOUS TO LIST
/OF POINTS

/RESET COUNTER TO:
/NUMBER OF POINTS TO BE
/DISPLAYED

/RESET X-AXIS CONTROL

/RETURN CONTROL TO PDP-8

/NEXT CALL WILL RETURN TO
/THIS LOCATION

LINC INITIALIZATION (DONE ONCE ONLY)

(A PDP-8 SUBPROGRAM)

INITL,

CLA

TAD (SETUP
ISSP

CLA

TAD (10)
ICON

TAD (2

ICON

JMP MAIN

/8 AC TO LINC PROGRAM COUNTER

/ENABLE LINC SECTION

/12 IN AC, GET READY TO
/TRANSFER CONTROL. SEE LINC-8
/USERS HANDBOOK

/GO TO LINC PROGRAM AT
/"SETUP"

/SETUP IS COMPLETE (CONTROL
/RETURNED HERE)

/OTHER INITIALIZATIONS

66

PROGRAMMING THE LINC-8

In the second case, control must be transferred to the appropriate other-processor subroutine.
This can be done when going from the PDP-8 to the LINC by setting the LINC P register with an ISSP
instruction before starting the LINC (with a CLA, TAD, ICON sequence). The LINC program then starts
at the location specified in the P register. Control may be transferred from the LINC main program to a
PDP-8 subroutine by means of the operate (OPR) and execute (EXC) classes of LINC instructions. LINC
execution of these instructions transfers control to PROGOFOP, the "program of operation.” PROGOFOP
determines that a call to the 8-processor has taken place. PROGOFOP has retrieved the instruction from
the LINC processor and retains it in the PDP-8 accumulator. By examining the AC the user may determine
which subroutine to call. He must change a few locations in PROGOFOP to accomplish this. These
changes along with the other programming required to implement such a subroutine are described below.

PROGOFOP sections which need to be modified for user-defined OPR and EXC instructions

follow:

Memory Address Memory Buffer Effect

PROGOFOP NOW READS:

EXECUT, TAD LINSTR /LINC INSTR TO AC
NOP
ALTERATION TO PROGOFOP
EXECUT, TAD LINSTR
JMS EXCTAB /LINC INSTR TO AC
/JMP TO DISPATCHING
/ROUTINE

The user would change the "NOP" to JMP EXCTAB, (jump to EXC class dispatchingsubroutine).

JMS is a jump to subroutine (in PDP-8 coding). The jump is made to EXCTAB + 1, and the
PDP-8 program counter is stored in location EXCTAB. To return to PROGOFOP the user should jump to
the location held in EXCTAB, that is JMP [EXCTAB. PROGOFOP recalls the LINC processor at the
location following the EXC. A program which transfers control to the appropriate EXC subroutine is

shown below (this is called dispatching).

67

PROGRAMMING THE LINC-8

Memory Address

Memory Buffer

Effect

EXCTAB,

JUMPEX,

EXCGOT,

EXCn,
RETURN,

0
AND (37)

TAD (JMP [EXCGOT)
DCA JUMPEX

0

EXCO
EXC 1
EXC 2

JMP 1 EXCTAB

/MASK FOR n of EXCn

/AC HOLDS JMP I EXCGOT+n
/WILL HOLD A JUMP
/INSTRUCTION
/LOCATIONS OF

/EXC SUBROUTINES

/A SAMPLE EXC SUBROUTINE
/RETURN TO LINC PROGRAM

The OPR class is handled in a similar fashion:

PROGOFOP reads:

OPERATE,

NOP

The user would change the "NOP" to "JMS, OPRDO" (jump to operate dispatching subroutine).

Memory Address

Memory Buffer

Effect

OPRDO,

JUMP,

OPRSORT,

0

AND (37
TAD (JMP 1 OPSORT
DCA JUMP

/HOLDS LOC IN PROGOFOP
/TOWHICH RETURN SHOULD BE MADE
/MASK FOR n of EXCn '
/AC HOLDS JMP INSTRUCTION
/"JUMP" HOLDS JMP I OPSORT+n
/WILL DO A JUMP TO

/PROPER LOC IN TABLE
/LOCATIONS OF OPR SUBROUTINES

An operate subroutine would then be written in normal PDP-8 coding with control being

returned through PROGOFOP to the LINC program.

OPRn,

IMP T OPRDO

68

/RETURN TO LINC PROGRAM

PROGRAMMING THE LINC-8

The following OPR instructions are already defined in PROGOFOP.

OPR 13

OPR 14

OPR 15
OPR 16
OPR 17

/EFFECTIVELY JMS TO A
/8-SUBROUTINE AT

/LOCATION SPECIFIED

/BY (NON-ZERO) LINC ACCUMULATOR

/TYPE OUT ASCII CHARACTER
/IN LINC ACCUMULATOR

/READ KEYBOARD
/READ RIGHT SWITCHES
/READ LEFT SWITCHES

A common subroutine calling sequence holds the locations of the arguments directly after the

calling location. What this implies is that PDP-8 subroutines must be able to read the LINC program

counter and that LINC subroutines must be able to read the PDP-8 program counter. In the first case,

parameters can be accessed via the ISSP, IBAC sequence. Modification of the LINC program counter

can be made while in the 8 mode by the ISSP instruction. This P register modification is necessary to

prevent returning control to the LINC at the middle of a list of parameters.

For parameter transmission from a PDP-8 program to a LINC subroutine, the LINC routine

must be able to determine the contents of the PDP-8 program counter. In order to do this a sequence of

instructions must be executed before control is transferred to the LINC. The sequence of instructions is

as follows:
Memory Address Memory Buffer Effect
GOLINC, JMS PCSTOR /GET PROGRAM COUNTER
PCSTOR, 0 /WILL HOLD PC
TAD PCSTOR /GET PC INTO AC
TAD (5 /(AC)+ 5 1S LOCATION OF
/ICON. AC HOLDS ICON LOCATION
DCA XR1 /STORE AC IN XR1
/XR1 IS ALPHA REGISTER 1
/OF THE LINC PROCESSOR
TAD (12 /TRANSFER CONTROL TO LINC
ICON
A /PARAMETER
B /PARAMETERS
C /PARAMETERS

69

PROGRAMMING THE LINC-8

The LINC alpha register 1 holds the PDP-8 location at which control was relinquished. Thus,

a LINC processor instruction LDA i 1 gets the location of first parameter of the subroutine into the accumu-

lator. The sequence LDA i 1, STC 2, LDA 2 gets the parameter itself. Succeeding parameters may be

loaded into the accumulator through use of the same instruction sequence since index register 1 is incre-

mented each time the sequence is executed. Control can be returned to the proper PDP-8 location via

the OPR 13 instruction. Alpha register 1 holds the location of the last parameter. Control should then

be returned to the PDP-8 at the location following the last parameter.

2-14.2 Example of use of the OPR 13 instruction (LINC Program).

Memory Address Memory Buffer Effect
LDA i /THE AC HOLDS PDP-8 LOCATION
SUBR8 /TO WHICH CONTROL IS TRANSFERRED
GOTO8 OPR 13 /GO TO PDP-8 PROGRAM
RESUME, | /RESUME LINC PROGRAM
8 Subroutine
SUBRS, 0 /HOLDS LOCATION IN PROGOFOP
/TO WHICH RETURN SHOULD BE
/MADE FOR RESTARTING THE
/LINC
JMP T SUBR /PROGOFOP WILL RETURN

/CONTROL TO THE LINC AT THE
/LOCATION FOLLOWING THE OPR 13

2-15 MAGNETIC TAPE INSTRUCTIONS

The last class of instructions, for magnetic tape, requires some discussion of LINC tape units

and tape format. The LINC uses small reel (3-3/4 inch diameter) magnetic tapes for storing programs

and data. There are two tape units on a single panel:

70

PROGRAMMING THE LINC-8

RDE
LINC MAGNETIC TAPES

| TAPE HEADS _—l
v 3

TAPE UNIT #0 TAPE UNIT #4

Any magnetic tape instruction may refer fo either the tape on unit 0 or the tape on unit 1;
which unit to use is specified by the instruction itself; only one unit, however, is every used at one time.

In the original LINC, handling of magnetic tape and its instructions was done entirely by the
computer hardware. However, in the LINC-8 system, the tape and its instructions is handled by software,
a program which permanently resides in PDP-8 core memory area to handle magnetic tape, as well as other
input/output and special feature functions. This program is called PROGOFOP (program of operation).
PROGOFOP interprets some of the LINC's instructions as well as handling most input/output for the LINC.
This has no effect on the eventual result of the LINC instructions; it merely means that hardware functions
have been replaced with software equivalents.

A LINC tape can hold 131, 072, 12-bit words of information, or the equivalent of 128]0 full
LINC memories. It is divided into 5]210 smaller segments known as blocks, each of which contains 25610
12-bit words, a size equal to one-quarter of LINC memory. Blocks are identified on any tape by block
numbers, 0—7778; magentic tape instructions specify which block to use by referring to its block number.
A block number (BN) on the tape permanently occupies a 12-bit space preceding the 256 words of the
block itself:

Block
% Number Block g
w/ \ ~ 4
1 word 256 words

There are other special words on the tape, serving other functions, which complete the tape
format, Before describing these, however, look more specifically at one of the magnetic tape instruc-

tions, RDE i u (read tape).

71

PROGRAMMING THE LINC-8

2-15,1 Block Transfers and Checking

Read tape is one of six magnetic tape instructions which copy information either from the tape

into the LINC memory (reading), or from the memory onto the tape (writing). These are generally called

block transfer instructions because they transfer one or more blocks of information between the tape and

the memory:

LINC Tape

256 word
} BN Block BN

256 word
Block

256 word
BN Block 4

1

Write

Read

LINC Memory

Read . 256

Tape to Memory

> Memory
Registers

256
Memory
Registers

256

Write

Memory to Tape

Memory
Registers

256
Memory
Registers

All magnetic tape instructions are double register instructions. RDE, typical of a block transfer

instruction, is written:

Memory
Address

Memory Buffer

p
p+1

3 bits | 9 bits

RDE i v 702 + 20i + 10u
QNI|BN 1000QN + BN

The first register of the instruction has two special bits. The u-bit (bit 8) selects the tape unit:

when u =0, the tape on unit 0 is used; when u = 1, the tape on unit 1 isused. Magnetic tape instructions

require that the tape on the selected unit move at a speed of approximately 60 ips. Therefore, if the tape

is not moving when the computer encounters a magnetic tape instruction, tape motion is started automatically

and the computer waits until the tape has reached the required speed before continuing with the instruction.

72

PROGRAMMING THE LINC-8

The i-bit (bit 7) specifies the motion of the tape after the instruction is executed. [fi =0,
the tape will stop; if i =1, it will continue to move at 60 ips. [t is sometimes more efficient to let the
tape continue to move, as, perhaps, to execute several magnetic tape instructions in succession. If it
stops, it is necessary to wait for it o start again at the beginning of the next tape instruction. Examples
of this will be given later,

In the second register of the RDE instruction, the rightmost 9 bits hold the requested block
number, BN; that is, they tell the computer which block on the tape to read into the memory. The left
3 bits hold the quarter number, QN, which refers to the memory. QN specifies which quarter of memory
to use in the transfer. The quarters of the LINC memory are numbered 0-7,* and refer to the memory

registers as follows:

Quarter Memory Registers
Number (octal)

0 0- 377

1 400 - 777

2 1000 - 1377

3 1400 - 1777

4 2000 - 2377

5 2400 - 2777

6 3000 - 3377

7 3400 - 3777

Suppose, for example, the programmer wishes to transfer data stored on tape into memory

registers 1000-1377. The data is in block 267 and the tape mounted on unit 1:

}IZ\;;TFZZ Memory Buffer Effect
- 200 RDEu | 0712 Select unit 1; C(block 267) =
C(quarter 2).
201 2(267 | 1000x2+267

This instruction will start to move the tape on unit 1 if it is not already moving. It then reads
block 267 on that tape into quarter 2 of memory and stops the tape when the transfer is completed. The
computer will go to location 202 for the next LINC instruction, After the transfer the information in
block 267 is still on the tape; only memory registers 1000-1377 and the accumulator are affected. Con-

versely, writing affects only the tape and the accumulator: the memory is left unchanged.

*See appendix 1. 73

PROGRAMMING THE LINC-8

WRI
Another special word on the tape, located immediately following the block, is called the

checksum, CS:
% BN Block Cs g

\"\/"j \)

1 word 256 words 1 word

The checksum, a feature common to many tape systems, checks the accuracy of the transfer of
information to and from the tape. On a LINC tape, the checksum is the complement of the sum of the
256 words in the block. Such a number is formed during the execution of another block transfer instruc-
tion, WRI i u (write tape). This instruction writes the contents of the specified memory quarter in the

specified block of the selected tape:

Memory
Address Memory Buffer

p WRIiu | 706+ 20i + 10
Pt QN[BN | 1000QN + BN

During the transfer the words being written on the tape are added together without end-around
carry in the accumulator. This sum is then complemented and written in the CS space following the
block on the tape. After the operation the checksum is left in the accumulator and the computer goes to -
p + 2 for the next LINC instruction. QN, BN, i, and u are all interpreted as for RDE.

One means of checking the accuracy of the transfer is to form a new sum and compare it to
the checksum on the tape. This happens during RDE: the 256 words from the block on the tape are added
together without end-around carry in the accumulator while they are being transferred to the memory .
This uncomplemented sum is called the data sum. The checksum from the tape is then added to this data
sum and the result, called the transfer check, is left in the accumulator, If the information has been
transferred correctly, the data sum will be the complement of the checksum, and the transfer check will
equal =0 (7777): the block "checks." Thus, by examining the accumulator after an RDE instruction,
the programmer can tell if the block was transferred correctly. The following sequence of instructions

does this and reads block 500 again if it does not check:

74

PROGRAMMING THE LINC-8

RDC
Memory M Buff Eff
Address emory er ect
- 300 ~RDE 0702 Read block 500, unit 0, into quarter 3. Leave the transfer
check in the accumulator and stop the tape.
301 3(500 3500
302 SAE i 1460 Skip to location 305 if C(ACC) =777, i.e., if the block
checks. If C(ACC) # 7777, return to read the block again.
303 7777 7777
T
304 JMP 300 | | 6300
305 - e |-

The remaining block transfer instructions check transfers automatically. RDC i u (read and
check), does in one instruction exactly what the above sequence of instructions does. That is, it reads
the specified block of the selected tape into the specified quarter of memory and forms the transfer check
in the accumulator, ‘If the transfer check does not equal 7777, the instruction is repeated (the block is
reread, etc.). When the block is read correctly, 7777 is left in the accumulator and the computer goes

on to the next LINC instruction at p + 2, The RDC insiruction is written:

Memo

Addrez Memory Buffer

p RDCivu 700+ 20i+ 10u
p+1 QNI[BN | 1000QN+BN

One of the most frequent uses of instructions which read the tape is to put LINC programs stored
on tape into the memory. Suppose the programmer is given a tape, for example, which has in block 300
a program he wants to run. The program is 1008 registers long, starting in register 1250. He can mount
the tape on either unit and then set and execute either RDE or RDC in the LEFT and RIGHT SWITCHES.
If he uses RDE, he should look at the ACCUMULATOR lights after the transfer to make sure the transfer
check = 7777 . When double register instructions are set in the toggle switches, the first word is set in the

LEFT SWITCHES, and the second in the RIGHT SWITCHES. If the tape is on unit 1, to use RDC the toggle

switches should be set as follows:

75

PROGRAMMING THE LINC-8

CHK
Consc:vl_e Contents
Location
LEFT SWITCHES RDC u 0710

RIGHT SWITCHES 2|300 2300

QN = 2 because the program in block 300 must be stored in memory registers 1250-1347, which
are located in quarter 2. Raising the DO lever will cause the LINC to read the block into the proper
quarter and check it. Start at 1250 from the console, using the RIGHT SWITCHES.

The remaining block transfer instructions will be described later.

A non-transfer instruction, CHK i u (check tape), makes it possible fo check a block without
destroying information in the memory. This instruction does exactly what RDE does, except that the
information is not transferred into the memory; that is, it reads the specified block into the accumulator
only, forms the data sum, adds it to the checksum from the tape, and leaves the result, the transfer
cf\eck, in the accumulator. Since this is a non-transfer instruction, QN is ignored by the computer.

Otherwise this instruction is written as are the other instructions;

Memory

Address Memory Buffer
p CHK i v | 707 +20i+10u
p+1 BN BN

The following program checks sequentially all the blocks on the tape on unit 0. The program
starts at location 200, If a block does not check, the program puts its block number into the accumulator
and halts at location 221, To continue checking, reenter the program at location 207. The program will

halt at location 216 when it has checked the entire tape.

76

PROGRAMMING THE LINC-8

WRC
,T;;T»::Z Memory Buffer Effect
Start .200| CLR 0011
Store 0 in register 203 as first block number.
201 STC 203 4203
202 | F>CHK i 0727 Check the block specified in register 203; transfer
check— C(ACC); the tape continues to move.
203 [BN] [-]1
204 SAE i 1460 If the transfer check = ~ 0, skip to location 207 .
205 7777 7777
206 JMP 217 6217 If the block does not check, jump to location 217.
Reenter 207 || | LDA 1020 |
210 1 0001 Add 1 to the block number in register 203, and
211 ADM 1140 ¢ leave the sum in the accumulator.
212 203 0203 J
213 SAE i 1460 h
214 —]QO—O—-—, 1000 If all the blocks have been checked, skip to loca-
215 JMP 202 : 6202 tion 216. Otherwise return to check next block.
216 HLT -~ 0000 J
217| LLpa 1000 |
220 203 0203 L Load the block number of the block which failed into
the accumulator, and halt,
221 HLT 0000

-

Example 29 Simple Check of an Entire Tape

A block transfer instruction, WRC i u, (write and check), combines the operations of the instruc-

tions WRI and CHK, and, like read=and-check, repeats the entire process if the check fails. That is,

WRC writes the contents of the specified memory quarter in the specified block, forms the checksum in

the accumulator and writes the checksum onto the tape. It then checks the block just written. If the

resulting transfer check does not equal —0, the block is rewritten and rechecked. When the block checks,

7777 is left in the accumulator and the computer goes on to the next LINC instruction at p + 2, WRC is

written:

77

PROGRAMMING THE LINC-8

Memory
Address

Memory Buffer

p
p+1

WRC ivu
QNJBN

704 + 20i + 10u
1000QN + BN

This write—and-check process may be diagrammed:

(Start WRC)

The following sequence illustrates the use of some of the block transfer instructions. Since
the LINC memory is small, a program must frequently be divided into sectians which will fit into tape
blocks, and the sections read into the memory as needed. This example saves (writes) the contents
of quarter 2 of memory (registers 1000-1377) on the tape.
into quarters 1, 2, 3 (register 400-1777) and jumps to location 400 to begin the new section of the

program. Assume that the tape is on unit 0. Memory quarter 2 will be saved in block 50; the program

Memory - Tape

Form & Write Check

sum(WRI)

Tape - ACC Form
Transfer Check in
ACC (CHK)

to be read from the tape is in blocks 201-203:

78

et Next
Instrucﬁo

It then reads a program section from the tape

PROGRAMMING THE LINC-8

Memory

Address Memory Buffer Effect
- 100 WRC i 0724 C(quarter 2) ~C(block 50); transfer is checked, and the
tape continues to move.
101 2|50 2050
102 RDC i 0702
C(block 201) = C(quarter 1), and C(block 202) ~
103 201 1201 C(quarter 2); transfers are checked and the tape con-
104 RDC i 0720 tinues to move.
105 2|202 2202
106 RDC 0720 C(block 203) = C(quarter 3); transfer is checked and the
tape stops.
107 3/203 3202
110 JMP 400 6400 Jump to the new section.
400 -1 [-]

Example 30 Dividing Large Programs Between Tape and Memory

At the end of the above sequence, the contents of memory registers 400-1777 and tape block

50 have been altered; quarter O of memory, in which the sequence itself is held, is unaffected.

Another program repeatedly fills quarter 3 with samples from input line 14 and writes the data

in consecutive blocks on tape beginning at block 200. The number of blocks of data to collect and save

is specified by the setting of the RIGHT SWITCHES. When the requested number has been written, the

program saves itself in block 177 and halts. The tape is on unit 1.

79

PROGRAMMING THE LINC-8

,/;‘Aj;::z Memory Buffer Effect
10 [X] (-] Memory address for storing samples.
11 [-nl] [-] Counter.
~ 1000 RSW 0516 C(RIGHT SWITCHES) C(ACC). Complement the number
1001 COM 0017 and store in register 11,
1002 STC 11 4011
1003 0070 Set register 10 fo store samples beginning at 1400.
1004 1377
1005 o4 Sample input line 14, store value and repeat until 4008
1006 1070 samples have been taken.
1007 0210
1010 7005
1011 0714 When quarter 3 is full, write it on tape and check the
1012 [-] tape stops.
1013 1020
1014 1 0001
1015 ADM 1140 Add 1 to the BN in register 1012.
1016 1012 1012
1017 XSKill 0231 Index the counter and skip if the requested number has
! been collected.
1020 JMP 1003 | | 7003 If not, return.
1021 WRC u<-- | 0714 If so, write this program in block 177, check the transfer
and stop the tape.
1022 2177 2177 Halt the computer.
1023 HLT 0000 Halt the computer.
Example 31 Collecting Data and Storing on ;I'ape

Since the program saves itself when finished, the operator can continue to collect data at a

later time by reading block 177 into quarter 2, and starting at 1000. Since the BN in location 1012 will

have been saved, the data will continue to be stored in consecutive blocks.

2-15.2

Group Transfers

Two other block transfer instructions, similar to RDC and WRC, permit a program to transfer as

many as 8 blocks of information with one instruction. These are called the group transfer instructions;

80

PROGRAMMING THE LINC-8

RCG, WCG

they transfer information between consecutive quarters of the memory and a group of consecutive blocks
on the tape. Suppose, for example, that we want to read 3 blocks from the tape into memory quarters 1,
2, and 3. The 3 tape blocks are 51, 52, and 53. Using the instruction RCG i u (read and check group),

write:

Memor
Addresz Memory Buffer

P RCG iu | 701 + 20i + 10u
p+l 2|51 2051

The first register specifies the instruction, the tape unit, and the tape motion as usual. The
second register, however, is interpreted somewhat differently. It uses BN to select the first block of the
group. In addition, the rightmost 3 bits of BN specify also the first memory quarter of the group. That is,
block 51 will be read into memory quarter 1, (block 127 would be read into memory quarter 7, etc.). The
leftmost 3 bits (usually QN are used to specify the number of additional blocks to transfer. In the above
examhle, block 51 is read into quarter 1, and 2 additional blocks are transferred: block 52 into quarter 2
and block 53 into quarter 3.

The format for WCG i u (write and check group) is the same as for RCG:

Memor

Addres:’ Memory Buffer

p WCG iu | 705 + 20i + 10u
pt 1 3|300 3300

The computer interprets the: above example as: write and check quarter 0 in block 300, and
make 3 additional consecutive transfers: quarter 1 into block 301, quarter 2 into block 302, and quarter 3
into block 303. When the leftmost 3 bits are 0, i.e., 0 additional transfers, the WCG instruction is
like the WRC instruction in that only 1 block is transferred.

The second word of a group transfer instruction may be diagramed:

Initial Memory Quarter/

Y
0 1 2 3 4 5 6 7 8 92 10 11

Pt [HEE NN

of additional- \—— _Initial Block Number ——
transfers

81

PROGRAMMING THE LINC-8

RCG and WCG always operate on consecutive memory quarters and tape blocks. Specifying
3 additional transfers when the initial block is, say, 336, will transfer information between tape blocks
336, 337, 340, and 341, and memory quarters 6, 7, 0, and 1; that is, quarter O succeeds quarter 7.
The tranfers are always checked; when a transfer does not check, the instruction is repeated starting with
the block that failed. With WCG, all the blocks and their checksums are firstwritten, and then all are
checked. If any block fails to check, the blocks are rewritten beginning with the block that failed,
and then all blocks are checked again. As with RDC and WRC, group tronsfér instructions leave =0 in
the accumulator and go to p + 2 for the next LINC instruction.

Using RCG instead of RDC, the program example on page 78 can be written more effeciently:

,I:\Aj(;r;:z Memory Buffer Effect
- 100 WRC i 0724 C(quarter 2) = C(block 50); transfer is checked and tape
continues to move.
101 2|50 2050
102 RCG 0701 Read blocks 201-203 into quarters 1-3; check the transfers
and stop the tape.
103 2|201 2201
104 JMP 400 6400 Jump to the new section.

Example 32 Tape and Memory Exchange with Group Transfer

2-15.3 Tape Motion and the Move Toward Block Instruction

When the computer is searching the tape for a required block, it looks at each block number
in turn until it finds the correct one. Since the tape may be positioned anywhere when the search is
begun, it must be able to move either forward or backward to find the block.

Forward means moving from the low block numbers to the high numbers; physically the tape
moves onto the lefthand reel.

FORWARD BACKWARD

70 00
00 OO

82

PROGRAMMING THE LINC-8

Backward means moving from the high numbers to the low; the tape moves onto the righthand
reel.

When searching for a requested block, the computer decides whether the tape must move forward
or backward by subtracting each block number it finds from the requested number, and using the sign of
the result to determine the direction of motion. If the difference is positive, the search continues in the
forward direction; if negative, it continues in the backward direction. This may, of course, mean that
the tape has to reverse direction in order to find the required block.

Suppose, for example, that the computer is instructed to read block 50, and that the tape is
presently moving forward just below block 75. The next block number found will be 75. The result of
subtracting 75 from 50 is —25, which indicates not only that the tape is 25 blocks away from block 50,
but also that block 50 is below the present tape position. The tape will reverse its direction and go
backward.

To facilitate searching in the backward direction a special word called a backward block

number, B‘l—\l, follows the checksum for each block:

zL BN BLOCK cs| |BN Z
v/

1 word

When searching in the forward direction, the computer looks at forward block numbers, BN;
when searching in the backward direction, it looks at backward block numbers, BN. In either direction,
each block number found is subtracted in turn from the requested number, and the direction reverses as
necessary, until the result of the subtraction is =0 in the forward direction. Transfers and checks are
made only in the forward direction.

Thus, in the above example, the tape will continue to move in the backward direction until
the result of the subtraction is positive, i.e., until the BN for block 49 is found and subtracted from 50,
indicating that the tape is now below block 50. The direction will be reversed, the computer will find
50 as the next forward block number, BN, and the transfer will be made because =0 is the result of the
subtraction and the tape is moving forward.

For all magnetic tape instructions, if the tape is not moving when the instruction is encountered,
the computer starts the tape in the forward direction and waits until it is moving at the required speed be-
fore reading a forward block number, BN, and reversing direction if necessary. If the tape is in motion,
however, (including coasting to a stop), the computer does not change direction until block number com-
parison requires it.

For all tape transfer or check instructions with i = 1, the tape continues to move forward after

the instruction is executed.

83

PROGRAMMING THE LINC-8

MTB
For all magnetic tape instructions stops are made in the backward direction. For transfer or

check instructions this means that the tape always reverses before stopping. Furthermore, the tape then

stops below the last block involved in the instruction, so that when the tape is restarted, this block will

be the first one found. This reduces delay in programs which make repeated references to the same block.
The last magnetic tape instruction illustrates some to the tape motion characteristics. MTB i u

(move toward block) is written:

Memory
Address Memory Buffer

p MTBiu | 703 + 20i + 10u
p+1 BN BN

As in the other magnetic tape instructions, the u-bit selects the tape unit. The tape motion
bit (the i-bit) and the second register, however, are interpreted somewhat differently. MTB directs the
LINC to subtract the next block number it finds on the tape from the number specified in the second word
of the instruction, and leave the result in the accumulator. QN is ignored during execution of MTB.

For example, if the block number in the second register of the instruction is 0, and the tape is just below
block 20 and moving forward, then —20, or 7757, will be left in the accumulator. The MTB instruction
can thus be used to find out where the tape is at any particular time.

When i = 0, the tape is stopped as usual after the instruction is executed. When i =1, however,
the tape is left moving toward the specified block. The result of the subtraction is left in the accumula-
tor, and the tape direction is reversed if necessary as the computer goes on to the next instruction. MBT i
does not actually find the block; it merely orients the tape motion toward it.

The initial direction of motion and possible reversal are determined for MTB just as they are for
all other magnetic tape instructions, as described above. Note, however, that since MTB i makes no
further corrections to the direction of motion, the specified block may eventually be passed.

The move-toward-block instruction serves not only to identify tape position, but also to save
time. If, for example, a program must read block 700, and then, at some later time, write in block 50,

it is efficient to have the tape move toward block 50 in the interim while the program continues to run:

84

PROGRAMMING THE LINC-8

A'\\/ZIZT::SY Memory Buffer Effect
- 100 RDC i 0720 C(block 700) = C(quarter 3); tape moves forward.
101 31700 3700
102 MTB i 0723 C(103)-next BN — C(ACC); tape reverses and moves
‘ backward toward block 50.
103 50 0050
. . . Tape contfinues to move backward while program continues.
360 WRI 07.06 C(quarter 0)— C(block 50); tape stops.
301 50 0050

In this example it would be inefficient to stop the tape (i = 0) with the RDC instruction at lo=
cation 100 or to let it continue to move forward until block 50 is called for. Although the number left
in the accumulator after executing the MTB at location 102 may not be of interest, the MTB does reverse

the tape. Then, when block 50 is called for, the delay in finding it will not be so long.

2-15.4 Tape Format

Certain other facts about the tape format should be mentioned. Other special words on the

tape are shown:

512 Block Zones
A

4 N
[nter
End Lr;:;rk)g Block | End
Zone | 7one Zone Zone
- — = -~
about 5 feet - S~
-~ -~ - g ~ ~ ~
-~ - ~ -
= . | Infer N
Q BN |G Block cs|clclc|aN| Block (
Zone
N .) -
1 1 256 words 1 1T 1 1 1 5

At each end of the tape is an area called end zone which provides physical protection for the
rest of the tape. When a tape which has been left moving as the result of executing a tape instruction
with i = 1 reaches an end zone, the tape stops automatically. (This prevents the tape from being pulled

off the reel.) Words marked C and G above do not generally concern the programmer except insofar as

85

PROGRAMMING THE LINC-8

IBZ
they affect tape timing. The computer uses words marked C to insure that the tape writers are turned off

following a write instruction. Words marked G, called guard words, protect the forward and backward
block numbers when the write current is turned on and off.

I nter-block zones are spaces between block areas which can be sensed by the skip class instruc-
tion, IBZ i, when either tape is moving either forward or backward. The purpose of such sensing is to
make programmed block searching more efficient. For example, suppose that somewhere in a program
block 500 must be read into quarter 2; assume it does not matter when as long it is before the program
gets to the instructions beginning at location 650. The following illustration uses a subroutine to check
the position of the tape and execute the read instruction if the tape is within 2 blocks of block 500. If
the tape is not in an inter-block zone, the main program continues without having to wait for a block
number to appear. For purposes of simplicity, assume that the tape (on unit 0) is moving. The program
begins at location 400 and the subroutine at location 20.

Note that the following example works only if the tape is stopped by the RDC instruction in
register 32. If the tape is not stopped here, subsequent jumps to the subroutine may continue to find
the tape at an inter-block zone (locations 20-22) and block 500 may be read repeatedly. The test with
the APO instruction at location 646, which signifies if the transfer has been made or not, is necessary to
guarantee that the transfer will occur before focation 650. At this point, if the transfer has not been

made, the JMP 32 at location 647 will be executed.

86

PROGRAMMING THE LINC-8

%jg::: Memory Buffer Effect
20 Bz 0453 Enter subroutine and sense tape position.
21 . JMP 0 5 6000 Return if tape is not at an inter-block zone.
22 MTB i 0723 If it is, subtract BN or BN from 500. Tape continues
to move toward block 500,
23 500 0500
24 AEQ__.-, 0451 Is result positive?
25 COM II 0017 If negative, complement it.
26 ADA i (J 1120 Add — 2 to see if tape is within 2 blocks of block 500.
27 -2 7775
30 APQO i 0471 Is result positive?
———— |
31 JMP O : 6000 If result is positive, return to main program.
32 RDC ! 0700 If negative, tape is within 2 blocks of block 500,
Make the transfer and stop the tape.
33 2 500 2500
34 STC 645 4645 Store the transfer check = — 0 in location 645 to indicate
transfer has been made, and return,
\?5 , JMP 0 60(?0
-~ 400 CLR 0011 Store positive 0 in location 645 to indicate transfer has
401 STC 645 | 4645 not been made.
402 JMf 20 , 6(120)
U Jump to subroutine at these points; return to p + 1 and
5(.)0 4—%‘&9 6(120 " continue with main program,
6(?0 JNiD 20 . 6020
644 LDA i 1020 J Put test number (either 0000 or 7777) into accumulator.
645 (-] [-]
646 APOi | 0471 Skip to location 650 if the transfer has been made;
: (C(ACC) =7777).
647 JMP 32 : 6032 If not, jump to subroutine to make transfer, and return
| to location 650,
650

Example 33 Block Search Subroutine

87

PROGRAMMING THE LINC-8

-2-15,5 Tape Motion Timing

When a tape is moving at a rate of 60 ips, it takes approximately 43 msec to move from one
forward block number to the next, or 160 usec per word. The following table summarize s some of the

timing factors:

LINC TAPE MOTION TIME

START (from no motion to 60 ips) ~0.1 sec

STOP (from 60 ips to no motion) ~0.3 sec

REVERSE DIRECTION (from 60 ips
to 60 ips in opposite direction) ~0.1 sec

CHANGE UNIT (from no motion
to 60 ips on new unit) ~0.1 sec

BN to BN (at 60 ips) ~ 43 msec

END ZONE to END ZONE
(at 60 ips) ~23 sec

Some methods of using the tape instructions efficiently become obvious from the above table.
Generally speaking, tape instructions should be organized around a minimum number of stops and a
minimum amount of tape travel time. When dealing with only one tape unit, it is usually efficient to
use consecutive or nearly consecutive blocks in order to educe the travel time between blocks.

It is also efficient to request lower-numbered blocks before higher-numbered blocks, avoiding
unnecessary reversals. The write-and-check instruction, requiring two reversals, is thus costly. It first
must find and write in the block in the forward direction; the tape must reverse and go backward until it

is below the block, and then reverse a second time and go forward to find and check the block:

- Inter
BN Block BN G Block CS

Zone 8
N .)
Requested Block
Forward .‘ find |_ Write
BN |
Reverse
find < - - < <
/ I BN Backward
Rexqe
. find | .' >
Forward BN ! .% Check

88

PROGRAMMING THE LINC-8

Because of these reversals it is sometimes more efficient to use two tape instructions, WRI

followed by CHK, than fo use WRC. This is true, for example, when more than one block must be

written and checked. For example, write quarters 1, 2, and 3 in blocks 100, 101, and 102, and check

the transfers: using WRC, this would take @ minimum of six reversals. The following sequence requires

a minimum of two reversals:

Q\Ajo?:::z Memory Buffer Effect
- 20 LDA 1000 1 Put the BN of the first block to be checked in register 32,
21 24 0024
22 STC 32 4032 |
23 WRI | 0726 |)
24]I]OO 1100 Write 3 consecutive blocks on the tape on unit 0 and
25 WRI i 0726 ~ leave the tape moving forward after each transfer.
26 2101 2101
27 WRI i 0726
30 3102 3102 |)
31 >CHK i 0720 Check the blocks, beginning with block 100,
32 [BN] (-]
33 SAE i 1460 |
34 7777 7777 > If a block does not check, repeat entire process.
35 JMP 20 E 6020 <
36 LDAi<- | 1020
37 1 0001
40 ADM | 1140
o || | L e 2 et 100
42 SAE i 1460 block . ‘
43 1]103 1103
44 JMP 31| | 031 | J
45 MTB«— | 0703 |]
4% 0 0000 g :/g/hs?rzpai:]:z\;geih:zl;e:élte.xecu’re move-toward-block
47 HLT 0000)

Example 34 Write and Check with Fewest Reversals

89

PROGRAMMING THE LINC-8

In this example the two reversals will occur the first time the CHK instruction at location 31
is executed. Other reversals may be necessary when the computer initially searches for block 100, and
when a block does not check, but careful handling of the tape instructions can re uce some of these
delays. It should be noted that there are 9 words on the tape between any CS and the next BN in the
forward direction. When the tape is moving at speed, it takes 1440 psec to move over these 9 words,
Thus the program has time to execute several instructions between consecutive blocks, i.e., before the
next BN appears. In the above example, then, there is no danger that the next block will be passed

while the instructions at locations 33-44 are being executed.

90

PROGRAMMING THE LINC-8

CHAPTER 3
GUIDE

3-1 GENERAL

GUIDE is a system of routines which controls a file of binary programs stored on LINC-tape.
By using the keyboard, an operator may obtain from LINC-tape any program in the file by its é-character
name, cduse it to be read into the computer memory, and then execute it as a program. Using GUIDE,
an operator inay put a binary program located anywhere on either tape on the tape drives into the binary
file on either drive. It is also possible to remove from a file a program which is no longer desired. GUIDE
will, upon command, display to the operator an index of the binary programs currently in its file so that
the operator may determine if a desired program is on the tape. GUIDE also provides direct communica-
tion with the LAP system. GUIDE occupies blocks 400 to 477 on the tape. Blocks 410 to 477 are used

for the storage of user's programs.

3-2 GENERAL OPERATING PROCEDURE
To set the basic GUIDE system into memory:

1. Mount tape with GUIDE system on it on tape unit 0
Set 0700 into the LEFT SWITCHES

Set 3400 into the RIGHT SWITCHES

Operate DO

O A W N

After tape stops moving, operate START RS
The basic GUIDE system is now in memory and on the display the words "EXECUTE THE

3-3 BASIC SYSTEM COMMANDS

a. INDIS - This is a command to GUIDE to display to the operator the index of
programs in the file area. The following information is displayed: 6-character
title of each program, the first block number used to store the program, the num-
ber of blocks (or quarters) the program occupies, and the starting address of the
program. Only a portion of thé index will be displayed at any given time. To
advance to the next higher portion (higher block numbers), type F on keyboard.
To move back to a lower portion (lower block numbers), type B on keyboard.

Typing EOL (1 key on keyboard) returns GUIDE to "EXECUTE..." display. .

21

PROGRAMMING THE LINC-8

b. REWIND - This is a command to GUIDE to rewind the tape on the specified drive.
REWIND or REWIND 0 rewind tape drive 0 and the computer halts. REWIND 1
causes tape drive 1 torewind and returns to the "EXECUTE..." display.

c. LAPGO - This command causes GUIDE toread the LAP system into memory and

start LAP with a cleared working area.

d. LAPRTN - This command causes GUIDE to read the LAP system into memory and

start LAP; the working area is the same as when LAP was last used.

e. CAST - Use of this command causes GUIDE to copy onto the tape on tape drive 1
the LAP and GUIDE systems from tape drive 0, The tape on unit 1 must, however, -

have the mark and timing tracks already written on it,

f. FILEBI - Use of this command allows the operator to file any binary program
from either tape onto the other tape so that the program muy be accessed by GUIDE
and placed in memory, After the program has been filed, its statistics are entered

in the index of binary programs, displayed by iNDIS, for reference,

g. DELETE - When this command is used, GUIDE deletes a specified program from

the binary file area.

3-4 USE OF BASIC COMMANDS

The following assumes the basic GUIDE system is in memory and running, and that the presen-
tation "EXECUTE..." is on the display. Information typed to GUIDE is normally terminated
with EOL (1 key).

a. INDIS
1. Type INDIS (EOL).
2. Type F to advance display to next four entries in index.
3. Type B to retreat display to last four entries in index.

4. Type EOL to return to basic display.

b. REWIND
1. Type REWIND (EOL), REWIND 0 (EOL), or REWIND 1 (EQL) to rewind
specified unit,
2. If unit 1 is rewound, basic GUIDE display is presented,
3. If unit O is rewound, LINC halts and gong chimes,

92

PROGRAMMING THE LINC-8

c. LAPGO
Type LAPGO (EOL). LAP is taken from unit 0 and uses the working area of unit 0.

d. LAPRTN
Type LAPRTN (EOL). LAP is taken from unit 0, and uses the working area of unit 0.

e. CAST
1. Type CAST (EOL).
2. Mount a marked tape on unit 1,
3. Type 0 (EOL) or 1 (EOL) in answer to question asked on display. Question

concerns the index on unit 1.

f. FILEBI
1. Type FILEBI (EOL).
2. Type origin of binary program, either name or block number of first block
occupied by program, then (EOL),
3. Type origin reel, then (EOL).
4. Type destination reel, then (EOL).
5. If block number was typed, assign a 6 character name to program, type it in,
then type (EOL).
6. Type starting address (EOL),
7. Type number of blocks of tape (or quarters of LINC memory) program occupies

(EOL).

g. DELETE
1. Type DELETE (EOL).
2. Type name of program, then (EOL).
3. Type unit number where program is located, then (EOL).

LOADING A USER'S PROGRAM INTO MEMORY
a. Get basic GUIDE system into memory and running.,

b. Type INDIS (EOL) to search index to determine if desired program is on the tape.
Return to "EXECUTE..." display after title has been found in index.,

c. Type 6-character title, then (EOL). GUIDE loads program into memory and starts

it at the address indicated in the index as the program's starting address.

93

PROGRAMMING THE LINC-8

CHAPTER 4
LAP 4

4-1 GENERAL

LAP4 (LINC Assembly Program 4) isa system which aids the programmer in creation and in manipu-
lation of the symbolic text of source programs, and converts the symbolic texf into binary so that it may
be executed as a program. The symbolic text is often called a manuscript.

LAP4 occupies blocks 270-377 on a reel of LINC-tape. Blocks 270-327 are used for the storage
of the system itself, and blocks 330-377 are used as working area for LAP4. Iiis here that the manuscript
is written during generation of symbolic text as well as where the binary of the converted program is tem-
porarily stored (the binary should be filed by GUIDE for permanent storage) .

The LAP4 system is operated from the keyboard and it is from here that the symbolic text is in-

putted and commands are given to the system.

4-2 GENERAL OPERATING PROCEDURE
To get the LAP4 system into memory:

1. Read the basic GUIDE system into memory and start it running

2. Type LAPGO (EOL) or LAPRTN (EOL)

The LAP4 system is then read into memory. LAPGO causes LAP4 to be read into memory with
the working area cleared of all manuscript material (no symbolic text) and the number 0001 displayed on
the scope to indicate the first line of symbolic text. LAPRTN causes LAP4 toberead into memory with
the working area in the same condition as when LAP 4 was lastused (manuscript is still intact if LAP4 was
exited properly) and the first free line number displayed on the scope. Normally only the current line

number and its contents are displayed.

4-3 BASIC SYSTEM (META) COMMANDS

a. REMOVE - Use of this command causes LAP 4 toremove from the working area the
specified line (or lines) of text thereby deleting it (or them). All succeeding lines

are renumbered to maintain continuity of line numbers.

b. INSERT - This command causes all text typed after the issuing of this command,
until the END command is given, to be inserted before the specified line. All

succeeding lines are renumbered to maintain continuity of line numbers.

95

PROGRAMMING THE LINC-8

c. PACK - The insertion and deletion of lines of text in the manuscript working
area causes physical gaps in the text stored; thus the text is stored inefficiently.
To remove these gaps, the command PACK is given which causes the text to be

physically repositioned, fills the gaps, and makes room for more lines of text to

be stored in the working area.

d. DISPLAY = Use of this command causes consecutive lines of text to be displayed
on the scope. The operator may display from 1 to]008 lines of text at one time;
however, no editing can take place while the display command is being executed.
Typing F advances the display to the next higher (numerical) set of lines of text;
typing B retreats the display to the next lower set of lines of text. Typing F when
at the highest sef of lines or typing B when at the lowest set of lines has no effect.

Typing (EOL) causes LAP4 to return to the normal input mode.

e. SAVE MANUSCRIPT - This is a command to LAP4 towrite the manuscript in the
LAP4 working area into the specified blocks anywhere on either reel of LINC-tape.

An unpacked manuscript is packed by LAP 4 before it is saved.

f. ADD MANUSCRIPT - This command adds a manuscript to the manuscript currently
in the LAP4 workingarea. The added manuscript may be located anywhere on either

tape as long as its location and size is known.

g. CONVERT - The convert command causes LAP 4 to convert the manuscript in the
LAP4 workingarea intoits binary equivalent, The resultant binary is stored in

blocks 330-333. Information for quarter O is in block 330, quarter 1 in block 331, etc.
If multiply-defined or undefined symbolic addresses (tags) are encountered, LAP4

displays these on the scope to inform the operator that such errors exist.

h. CONVERT MANUSCRIPTS - To convert manuscripts not in the working area,
give this command. Up to eight manuscripts may be converted by this command;
however, all manuscripts must be on tape unit 0. The result of the conversion will
be in blocks 330-333 on unit 0. The manuscript in the working area is neither

affected or converted by this command.

i. COPY - This command allows the operator to copy any number of blocks of in-
formation from anywhere on tape to anywhere on tape. The information moved may

be manuscripts, binary programs, or anything else written on tape. Care must be

96

PROGRAMMING THE LINC-8

taken when copying overlapping blocks to prevent destruction of data since only three
blocks will be moved at a time. More than three blocks can be specified for any

copy, but copy moves it in three block segments,
i. START LAP4 - Torestart LAP4 with the workingarea cleared, give this command .

k. START GUIDE - To transfer control of the computer to GUIDE to do something
with GUIDE, this command saves the manuscript in the working area and then reads
the basic GUIDE system into memory and starts it running. The operator can return
to LAP 4 from GUIDE with the saved manuscript in the working area by executing the
GUIDE command LAPRTN,

[. MANUSCRIPT CONTROL - This command allows the user to manipulate manu-
scripts into and out of manuscript files and the LAP 4 workingarea. After giving this
command, the operator is given his choice of the several functions which LAP4 can
do for him. He can examine the index of any of the eight manuscript files on each
tape unit so that he may determine if a desired manuscript is filed there. He may
add to the working area any manuscript in any file, or put into any file the manu-
script currently in the LAP4 workingarea. He may remove from any file manuscripts
which he no longer wants filed. He may clear a file of all manuscripts, After doing
all of the above the operator may then return to normal input with the LAP4 working

area intact, or, if he prefers, may transfer control of the computer to GUIDE.

4-4 USE OF BASIC (META) COMMANDS

The following assumes that the current line is displayed on the scope and that it contains no
text. If anything else is displayed, it is necessary fo return to the normal input mode by the appropriate
manner before the command is given. Commands issued to LAP 4 are terminated by META, as compared

to lines of fext which are ferminated by EOL. Both are 1 key.,

a, REMOVE

1. Type RE LN, n (META) or RE LN —LN + n (META) where LN is a

line number (octal) and n is the number of lines (octal) to be deleted.

2. If the RE LN —LN + n format is used, LAP4 will remove from line LN to

LN + n =1 (n lines of text), . The higher line number will not be removed.

97

PROGRAMMING THE LINC-8

3. To remove all lines after a given line, type the first line number to
be removed and then any value of n equal to or greater than the number

of lines to be removed.
4, Attempts to remove non-existent lines causes LAP 4 to respond with NO.

5. LAP4returnstonormal input mode after the specified lines have been

removed .,

b. INSERT

1. Type IN LN (META) where LN represents the number of the line before
which the insertion should be made. All text typed is then inserted before
the specified line until the termination command is given, at which time

LAP 4 returns to the normal input mode.

2. Type EN (META) on a separate line to terminate the insertion of text.
LAP 4 then returns to the normal input mode with a new line number displayed

on the scope.

3. LAP4allows the operatorto insert up to 1]08 lines on one INSERT com-
mand. Attempts to exceed this cause LAP 4 to automatically terminate that

insertion. However, an INSERT command can be given again immediately

if desired.

4. LAP 4respondswith NOif certain operator errors are made during insertion,
such as: inserting before a non-existent line, or inserting no lines after giving
the INSERT command. LAP 4 questions META commands other than EN (META)

(end) issued during an insertion.

c. PACK

Type PA (META). LAP 4thenpacksthe manuscript in the working area, filling in any
physical gaps which may exist in the manuscript. LAP 4returns to normal input mode

when packing is completed.

d. DISPLAY

1. Type DI LN, S (META), where LN is the number of the first line to be dis-
played and S is the size {(number of lines) of the display. The text is displayed

S lines at a time, the first display starting with line number LN.

98

PROGRAMMING THE LINC-8

2. If LN is not specified, the number 0001 is assumed. [f S is not specified,

the number 108 is assumed. Thus, typing D1 (META) causes 10 lines starting

with line 0001 to be displayed.

3. Type F to advance display to next higher S lines segment.
4. Type B to retreat display to next lower S lines segment.
5. Type EOL to return to normal input mode.

6. Lines of text are displayed along with their line numbers.
7. LAP 4 packsanunpacked manuscript before displaying it.

8. Type NS to change size of display (number of lines) once the display of

text has begun.

9. Type LN L to change first line number of display once the display of text

has begun.

e. SAVE MANUSCRIPT

1. Type SM (META). LAP4thendisplaysto the operator the number of blocks

of text to be moved and asks for the destination of the text.

2. Type the destination block number, terminating with (EOL).

3. Type unit number, terminating with (EOL).

4. LAP 4 packsanunpacked manuscript before saving it.

5. LAP4returnstonormal input mode when this command is completed.
f. ADD MANUSCRIPT

1. Type AM BN, UN (META) where BN represents the first block occupied
by the desired manuscriptand UN indicates the unit (number of tape drive) where the

manuscript is located.
2. LAP4returns fo normal input mode after executing this command.

3. It is advisable to pack the working area after adding manuscripts.

99

PROGRAMMING THE LINC-8

4. LAP4respondswitha NO if there is no manuscript at the indicated lo-
cation. Typing any key allows LAP4 to recover.
g. CONVERT

1. Type CV (META). LAP 4conwverts the manuscript in the working area of
LAP4 and stores the binary in blocks 330-333. Manuscripts can be no longer
than 3777, lines.

8
2. If no errorsoccur, LAP4 returns to the normal input mode.
3. The LAP4 systemisable to detect certain types of errors in the manuscript,
mainly multiply-defined symbols and undefined symbols. If these errors occur,
LAP4 displays the error(s) and the symbols which caused them. Typing F ad-
vances the error display to the next higher set, while typing B retreats the
error display to the next lower set. Multiply-defined symbols are displayed
separately from undefined symbols. Typing (EOL) returns LAP 4 to the normal
input mode.

h. CONVERT MANUSCRIPTS

1. Type CM (META).

2. Type in the block numbers of the first block of each manuscript to be

converted, Separate each entry with a space. Terminate the string with

(EOL). To deletecnentry type (DEL) before the (EOL).

3. All manuscripts must be on unit 0.

4. No single manuscript may be longer than 20008 lines,

5. Manuscripts are converted in the order typed.

6. Up to eight manuscripts may be converted with each CM.

7. Binary version of manuscripts is in blocks 330-333 as with CV.

8. Multiply-defined symbols and undefined symbols are displayed the same
way as with CV,

100

PROGRAMMING THE LINC-8§

9. If no manuscript is found at the indicated bilock, LAP4 respondswith NO.

Striking any key returns LAP4 to the normal input routine .

i. COPY

1. Type CP (META).

2. Type number of blocks to copy, then (EOL).

3. Type first block number of origin, then (EOL).

4. Type unit number of origin, then (EOL).

5. Type first block number of destination, then (EQOL).
6. Type unit number of destination, then (EOL).

7. LAP4 then copies the specified blocks, 3 at a time., Care must be taken

when origin and destination blocks overlap.
8. LAPA4 returns to normal input mode when copying is completed.

9. No more than 7778 blocks may be copied.

10. Individual entries (b), ¢), d), e), f)) may be deleted by typing (DEL)
before final (EOL).

11. If an illegal (non-numeric) entry is made, LAP4asksall its questions
again,
i. START LAP4
Type LA (META). LAP4 isrestarted with the working area clear and the number 0001
(line 0001) displayed. LAP4will be in the normal input mode.
k. START GUIDE

Type GU (META). Control of the computer is transferred to the GUIDE system,
The manuscript in the working area of LAP4 issaved for restoration by the GUIDE
command LAPRTN.

101

PROGRAMMING THE LINC-8

I. MANUSCRIPT CONTROL

NOTE: For most of the options presented to the operator, use of this META
command causes LAP4 to examine sense switch 0. [f SSWO0 is O, LAP4 performs
the specified function on file 2, unit 0, which is commonly called the standard
file. If SSWO is 1, LAP 4 performs the specified operation on the specified file
on either tape unit. The files are numbered 0 to 7 and start at blocks 000, 100,
200, etc., respectively. All files except file 2 are 100 blocks long. File 2

is 70 blocks long since LAP4 beginsat block 270.

1. Type MC (META). LAP4 thendisplays a series of options from which the

operator may choose the function he desires LAP4 to perform.
2. Type the desired option number, then (EOL).

3. Type in the answers to each question LAP4 asks, terminating each with
(EOL). Typical questions concern manuscript name, file number, unit

number, block number. The final (EOL) causes LAP4 to execute the function.

4. Except for going to LAP4 or GUIDE, after function is complete, LAP4
returns to MC option display .

5. If a manuscript file is being displayed, typing F advances the display,
typing B retreats the display, and typing EOL returns LAP4 to the MC cption
display .

4-5 LAP4 LANGUAGE
a. CHARACTER SET

1. All 26 upper case letters of the alphabet.
2. The octal number set (0-7).

3. The following special or punctuation characters

a. H (origin) specifies an origin

b. # (number sign) specifies a symbolic tag

c. i (lower case 1) specifies bit 7on a1

d. v (lower case U) specifies bit 8 on a1

e. | (vertical bar) separates QN and BN in magnetic tape instructions

102

PROGRAMMING THE LINC-8

f. (lower case P) specifies the current location
+ (plus) add values of syllables in 1's complement
~ (minus) subtract values of syllables in 1's complement
i. = (equal) parometer assignment
i | (left bracket) initiates a comment
k. (EOL) terminate statement
. (CASE) change case of keyboard for upper case characters
m. (META) terminates command to LAP4
n. (SPACE) separation character for ease of reading text
o. (DEL) delete all information to previous line terminator

b. PROGRAMMING RULES

1. The following elements must be alone on a line of text.

a.
b.

C.

Origins
Comments

Parameter assignments (use of =)

2. Tags (a symbol used to represent a memory location)

a.

b.

Must begin with #,

Must be two characters of the format number-letter (e.g., #4E).

Only octal numbers allowed, and capital letters,

c.
d.

€.

No tag delimiter is required.
No space may occur in the tag.

Tags defined by parameter assignment may not be used with a #,

3. Spaces

a.,

f.

g.

Not permitted on origin line except before the character H,
Not permitted before a [.

Not permitted before a #,

Not permitted anywhere on a parameter assignment,

Not permitted in the middle of the digits of a number.

Not permitted in the middle of an address calculation.

Not permitted in the middle of a symbolic mnemonic.

h. May be used to separate tag, operation, index, address, vertical bar

fields of a line.

.
1.

Not required anywhere on a line.

103

PROGRAMMING THE LINC-8

4. Symbolic Mnemonics
a. Only the defined symbolic mnemonics may be used as instructions.
5. Paramefer Assignments

a. Defined by equal sign (=).

b. Number-letter combination must appear on left of =,
¢. Octal assignment must be on right of =,

d. Octal assignment may not be signed.

e. Must appear alone on a line.

f. No spaces allowed on the line.
6. Address Calculation

a. No spaces permitted in the address calculation.

b. Symbolic or relative addressing allowed with any combination of
number-letter combinations or p or octal numbers (e.g., JMP p-1,

ADD 500, ADA i 32, STC 4P-1, 6E + 3, RDC i u).

c. All undefined number-letter combinations are assigned the value“OOOO.
d. All multiply-defined number-letter combinations are assigned the last

value specified.

7. Example of a symbolic program and its octal equivalent.

0001 [LTHIS PROGRAM

ooo2 [DISPLAYS THE

0003 [LCONTENTS OF

0004 LTHE RIGHT

0005 [SWITCHES AS

0006 A DECIMAL

0007 [NUMBER AT

0010 L THE CENTER

0011 LOF THE SCOPE

0012 83504

0013 [TABLE OF

0014 CCONSTANTS

0015 LFORrR DISPLAY

0016 LOF DIGITS
0354 0017 #oK 4136 4136
0355 0020 364l 3641
0356 0021 2101 2101
0357 ooz2 0177 o171
0360 0023 4523 4523
0361 0024 2151 2151
0362 oozs 4122 4122
0363 0026 26051 26051
0364 0027 2414 2414
0365 0030 04717 0477
0366 0031 5172 5172
0367 0032 4651 4651

104

PROGRAMMING THE LINC-8

0370 0033 1506 1506
0371 0034 4225 4225
0372 0035 4443 4443
0373 0036 6050 6050
0374 0037 5126 5126
0375 0040 - 2651 2651
0376 0041 5120 5120
03177 0042 3651 3651

0043 [{ THESE o

0044 {LINSTRUCTIONS

0045 {SET INDEX

0046 [REGISTERS

0047 [FOR 4

0050 L CHARACTERS»

0051 (HORIZONTAL

0052 [COORDINATE

0053 LOF 320, A

0054 (POINTER TO

0055 [6Es AND A

0056 CCOUNTER TO O
0400 0057 #SH SET i 2P 0062
0401 0060 -4 7773
0402 0061 SET i 1P 0061
0403 0062 320 ' 0320
0404 0063 SET i 3P 0063
0405 0064 6E 0453
0406 0065 SET i 4P 0064
0407 0066 ' 0000
0410 0067 RSW 0516
0411 00170 STC 6Z 4452

0071 { THESE

0072 L INSTRUCTIONS

0073 CDETERMINE

0074 CHOW MANY

0075 {1000, 100

0076 [10s 1,

0077 { DECIMAL»

0100 [(ARE IN THE

0101 [(NUMBERs ONE

o102 LAT A TIME ~
0412 0103 #6B CLR ~ 0011
0413 0104 ADA 3P 1103
0414 0105 coM 0017
0415 0106 ADA i 1120
0416 0107 1 0001
0417 oi1o LAM 1200
0420 oiii 6Z 0452
0421 oliz XSK i 4P 0224
0422 0ti3 ' LZE 0452
0423 0lia JMP p-11 6412
0424 0115 LDA 3P 1003
0425 olieé LAM i200
0426 oii7 67 0452

0120 L THESE

0121 [INSTRUCTIONS

oiz2 {SET UP THE

0i23 [TABLE ENTRY

0i24 CPOINT TO

0125 [DISPLAY THE

o126 LCORRECT

0i27 [DIGIT

105

PROGRAMMING THE LINC-8

0427 0130 LDA i 1020
0430 0131 -1 1176
0431 0132 #6C ADD 4P 2004
0432 0133 ROL 1 0241
0433 0134 ADA i 1120
0434 0135 5E 0354
0435 0136 STC 5P 4005

0137 { THESE

0140 L INSTRUCTIONS

0141 [DISPLAY THE

0142 [DIGIT AT O V

0143 [AND 320+ H
0436 0144 DSC 5P 1745
0437 0145 DsSC i Sp 1765

0146 { THESE

0147 [INSTRUCTIONS

0150 [SET UP FOR

0151 [LTHE NEXT

0152 (DIGIT

0153 [DISPLAY
0440 0154 LbA i 1020
0441 0155 4 0004
0442 0156 ADM 1140
0443 0157 iP 0001
0444 0160 SET i 4P 0064
0445 0161 0 0000
0446 0162 XSK i 3P 0223

0163 [THIS XSK

0164 {TESTS TO SEE

0165 (IF 4 DIGITS

0166 { WERE

0167 [DISPLAYED
0447 0170 XSK i 2p 0222
0450 0171 JMP 6B 6412
0451 0172 JMP SH 6400
0452 0173 #6Z 0O 0000

0174 { TABLE OF

0175 [OCTAL VALUES

01176 LOF 1000,

01717 (1005 10, 1
0453 0200 #6E 1750 . 1750
0454 0201 144 0144
0455 0202 iz 00i2
0456 0203 i 0001

0204 CDEFINITION)

0205 LOF

0206 [PARAMETERS

0207 1P=1"

0210 2P=2

0211 3P=3

0212 4P=4

0213 S5P=5

106

Al-1

WORD DEFINITIONS

Address

Assembler

BN

Binary

Block

Case

Comment

PROGRAMMING THE LINC-8

APPENDIX 1
GLOS SARY

A unique 11-bit binary number assigned to each 12-bit
binary word (core storage location in'LINC-8 memory;

allowable range for addresses is (0000-3777)8.

A program which translates program statements in a symbolic
language closely resembling machine language into machine

language.

Refers to bits 8-11 of certain LINC=8 instructions which

may reference the B-registers (addresses 0001-0017).
Abbreviation for block number; see Block.

Used to refer to the aggregate of the machine language ins-
tructions generated by the conversion (assembly) of a manu-

script by LAP4,

A numbered section of a marked LINC tape capable of re-
taining 4008 12-bit binary words; blocks are numbered
consecutively from (000—777)8.

The upper leftmost key on the LINC keyboard ,used in input
to this LINC-8 utility system to cause the system to treat the

next struck character as upper case.
In LAP4, an MS line beginning with the comment character

([), used by the programmer to illustrate his MS, but ignored
by LAP4 during conversion.

107

PROGRAMMING THE LINC-8

GLOSSARY (continued)

Compiler A program which translates program statements in a symbolic
language closely resembling English or mathematics into

machine language.

Control Block See MS control block or file control block.

Control Console The LINC-8 panel which contains the toggle switches,
pushbuttons, levers, rotary switches, and indicator lights;
operation of the LINC-8 utility system is initiated via the

control console.

Conversion The assembly process whereby LAP4 translates a program
written in a symbolic language into machine language;

MS is converted into binary.

Core Storage The LINC-8 memory.

Delete To remove a line of MS or an answer to a displayed question

in this LINC-8 Utility system, use the del key.

EOL Abbreviation for end of line; the key used to indicate to the
utility system the end of a MS line or the end of an answer

to a displayed question.

Equality An MS line in LAP4 used to assign an absolute numerical

value to a tag.
File Either the file of binary programs maintained by GUIDE or

a file of MS created and maintained under the control of

the MC meta command in LAP4.

108

File Control Block

Full-size Character

GUIDE

Half-size Character

Index

Keyboard Codes

LAP4

LN

Line

MS

PROGRAMMING THE LINC-8

GLOSSARY (continued)

The first block in an MS file; used in LAP4 by the MC meta

command to retain titles, block numbers, etc., of filed MS.

A character displayed on the scope via a 4 x 6 grid pattern,

the grid spacing being 4 units between points.

The GUIDE to binary programs; one of the two systems which

comprise this LINC-8 utility system; used for the filing and

execution of binary programs.

A character displayed on the scope via a 4 x 6 point grid

pattern, the grid spacing being 2 units between points.

The i-bit; bit 7 of certain LINC-8 instructions.

Either the index to the GUIDE file of binary programs or the

index to an MS file.

The 6-bit codes for the characters on the LINC keyboard;
generated in the accumulator upon the execution of a KBD

instruction after a key has been struck.

LINC-8 Assembly Program 4; one of the two systems which
comprise this LINC-8 utility system; used for the creation,
conversion, and filing of MS.

Abbreviation for line number; see line.

A string of characters (keyboard codes) in a LAP4 manu-
script, last character of which is EOL (or META).

Abbreviation for manuscript; see manuscript.

109

PROGRAMMING THE LINC-8

GLOSSARY (continued)

MS Control Block The first block of every LAP4 MS, created during regular
input of an MS by LAP4 in the working area; contains
information about number of lines, number of tape blocks

occupied, etc.

MS Line A line retained by LAP4 as a permanent part of an MS; i.e.,
program lines, equalities, origins and comments; as opposed

to meta commands.

Machine Language The directly machine-interpretable, i.e., binary, form of

the LINC-8 instructions,

Manuscript A series of one or more program lines, equalities, origins,

and comments fyped into the LAP4 system and stored on tape.

Marking The process whereby a virgin tape is readied for use on the
LINC-8.
Meta Command A line not retained by LAP4 as part of an MS; a direct,

immediately executed command to LAP4.

Mnemonics Three-character acronyms or abbreviations for the LINC-8

instructions.

Object Program The binary generated by conversion of an MS.
Order Code The LINC-8 instruction repertoire.,
Origin An MS line used to locate sections of a program in core

storage at absolute addresses.

110

Packing

Palimpsest

Pass

Program

Program Line

QN

Q&A

Quarter

Regular Input

PROGRAMMING THE LINC-8

GLOSSARY (continued)

Keyboard character; interpreted by LAP4, on a program
line, as referring to the present location; i.e., the ad-
dress of the location in which the binary for the current

line will reside.

The process whereby gaps in MS left by the operation of

the meta commands RE, IN, AM, or MC are removed.

A parchment which has been re-used, the earlier writing

having been erased.

In LAP4, a scan of an MS from beginning to end during

conversion.
A series of instructions to the LINC-8.

An MS line which will cause binary to be generated; i.e.,

will occupy a location in core storage upon conversion.
Abbreviation for quarter; see quarter.
Abbreviation for quarter number; see quarter.

Abbreviation for the Questions and Answers subroutine, used
for displays by the GUIDE system commands, convenience

programs, and the LAP4 meta commands CP and MC.

One fourth of a 102410 word LINC-8 memory bank; consists

of 4008 contiguous 12-bit words.

The section of LAP4 which accepts input from the keyboard

of MC lines and meta commands.

11

SSW

Scope

Source Program

Subroutine

Symbolic Address

Symbolic Operation
Code

System Tape

Tag

Tape Block

UN

Unit

PROGRAMMING THE LINC-8

GLOSSARY (continued)

Abbreviation for size; refers to the number of lines of MS

displayed on the scope by the DI meta command.
Abbreviation for SENSE switch.

The standard LINC-8 display scope.

MS.

A program written to perform some special function; may
be entered from another program, to which it will return
control upon completion of its operation.

A number, letter combination (tag) used to reference a core
location, the absolute value of which is assigned by LAP4

during conversion.

Mnemonics.

A tape which contains the LAP4 and GUIDE systems.

A number, letter combination used as a symbolic address by

LAP4.

See Block.

Abbreviation for unit number; see Unit.

LINC-8 tape unit 0 (left) or 1 (right).

112

PROGRAMMING THE LINC-8

Utility System

Working Area

Al-2 SYMBOL DEFINITIONS
Al1-2,1 Registers
Symbol Function

A
B
C
L
P
R
S
Z

Accumulator
Memory buffer
Control

Link bit

Program counter
Output of relays
Memory address

Odd jobs

GLOSSARY (continued)

A programming system for the LINC-8 composed of two
communicating systems, LAP4 and GUIDE.

That section of a system tape used by the LAP4 system for
storing MS and the binary converted from MS; occupies
blocks 330 and ff.

113

Al-2.2

Other Symbols

Symbol

X(p)
X(p+1)

h(B)
h(p+1)
X(B) s
X(B)h ndx

Y(p+1)
Y(B)

PROGRAMMING THE LINC-8

Definition

Bit | of register A.

Bits j~k, inclusive, of A.

Bit 7 of the instruction word or of the contents of C.
Bit 8 of the instruction word or of the contents of C.

Bits 8-11 of the instruction word, when these bits are not used to
refer to one of the first 16 memory locations as index registers.

Bits 8-11 of the instruction word, in those instructions which may
use these bits to specify the address of an index register.

The address of the memory location from which the first word of
the current instruction was obtained.

Bits 2-11 of a twelve bit word.
Bits 2-11 of the contents of index register f.
Bits 2-11 of the contents of the memory location whose address is p+1.

A bit which is used to specify which half of the operand word is used
by a half-word instruction.

Bit 0 of the contents of index register .

Bit O of the contents of the memory location whose address is p+1.
1 + X(B), using 10-bit 2's complement addition.

X(B), 4. = X(8) iF h(g) = 0

X(B) 4 = X(B) , ifh(®)=1.

The address of the operand of an instruction, 11 bits in length.
Bits 1-11 of the contents of the memory location whose address is p+1.

Bits 1-11 of the contents of index register .

114

PROGRAMMING THE LINC-8

APPENDIX 2
CHARTS

A2-1 CHART I CLASSES OF LINC INSTRUCTIONS AND THEIR CODES

Miscellaneous Shift
*HLT 0000 *ROL () n 0240
0001 *ROR (i) n 0300
0002 *SCR (i) n 0340
0003

0004 Skip On Level
e gzgz *SZL (i)n 0400
0007 0401
0010 0402
*CLR 0011 0403
0012 it
(MARK) 0013 0405
*ATR 0014 0406
*RTA 0015 0407
*NOP 0016 0410
*COM 0017 Oj:‘
0412
0413
Alpha n 0414
*SET () o 0040 *KST (1) 0415
*SAM (i) n 0100 0416
*DIS (i) o 0140 0417

*XSK (i) a 0200

*These mnemonics are defined to LAP4

115

Skip On Condition

*SNIS (i) n 0440
0441
0442
0443
0444
0445
0446
0447
*AZE (i) 0450
*APO (i) 0451
*LZE (i) 0452
*IBZ (i) 0453

FLO (i) 0454
ZZZ (i) 0455
0456
0457

Magnetic Tape

*RDC (i) (u) 0700
*RCG (i) (u) 0701
*RDE (i) (u) 0702
*MTB (i) (u) 0703
*WRC (i) (u) 0704
*WCG (i) (u) 0705
*WRI (i) (u) 0706
*CHK (i) (u) 0707

Execute PDP-8

EXC 0740

PROGRAMMING THE LINC-8

Operate

*OPR (i) n

(PDP)
(TYP)
*KBD (i)
*RSW
*LSW

0500
0501

0502
0503
0504
0505
0506
0507
0510
0511

0512
0513
0514
0515
0516
0517

Unused Codes

0540

Memory Bank Selection

LMB 0600
UMB 0640
Full Add['_gs_g
*ADD X 2000
*STC X 4000
*JMP X 6000

*These mnemonics are defined to LAP4

116

*LDA (i) B
*STA (i) B
*ADA (i) B
*ADM (i)
*LAM (i)
*MUL (i) B

1000
1040
1100
1140
1200
1240

PROGRAMMING THE LINC-8

Index (or Beta)

(*LDH (i)B

Half
Hord<) *STH ()
*SHD (i) B
*SAE (i) B
*SRO (i) B

*These mnemonics are defined to LAP4.

A2-2 CHART [l ASR 33 LINC CODE
ASR 33 LINC
ézge“ Symbol lc':loljg Symbol
260 0 00 0
261 1 01 1
262 2 02 2
263 3 03 3
264 4 04 4
265 5 05 5
266 6 06 6
267 7 07 7
270 8 10 8
271 9 11 9
212/215 LF/CR 12 META/EOL
377 RUBOUT 13 delete
240 SPACE 14 SPACE
275/246 =/& 15 =/
300/247 @®/" 16 u/p
254/255 , /- 17 /-
256/253 . /+ 20 ./t
244/257 $// 21 0o/ |
333/243 [/# 22 /#
375 ALTMODE 23 CASE
301 A 24 A
302 B 25 B
303 C 26 C

117

1300 *BCL (i) B 1540
1340 *BSE (i) B 1600
1400 *BCO (i) B 1640
1440 1700
1500 *DSC (i) B 1740
ASR 33 LINC
ézge” Symbol EI:JJS Symbol
304 D 27 D
304 E 30 E
306 F 31 F
307 G 32 G
310 H 33 H
311 | 34 |
312 J 35 J
313 K 36 K
314 L 37 L
315 M 40 M
316 N 41 N
317 ©) 42 O
320 P 43 P
321 Q 44 Q
322 R 45 R
323 S 46 S
324 T 47 T
325 u 50 u
326 \ 51 \
327 w 52 w
330 X 53 X
331 Y 54 Y
332 yA 55 z

PROGRAMMING THE LINC-8

A2-3 CHART III PATTERN WORDS FOR CHARACTER DISPLAY

A table of 24-bit patterns for 4 x 6 display, using the DSC instruction, of all characters on the
LINC keyboard. The table is ordered numerically as the characters are coded on the keyboard. Table

entries for non-displayable characters are 0.

0 4136 A 4477 u o177
3641 7744 7701
1 2101 B 5177 vV 0176
0177 2651 7402
2 4523 C 4136 W 0677
2151 2241 7701
3 4122 D 4177 X 1463
2651 3641 6314
4 2414 E 4577 Y 0770
0477 4145 7007
5 5172 F o 4477 Z 4543
0651 4044 6151
6 1506 G 413 = 1212
4225 2645 1212
7 4443 H 1077 u 0107
6050 7710 0107
8 5126 | 7741 , 0500
2651 0041 0006
9 5120 J 4142 . 0001
3651 4076 0000
EOL 0000 K 1077 H 4577
0000 4324 7745
del 0000 L 0177 [4177
0000 0301 0000
SPACE 0000 M 3077
0000 7730
i 0101 N 3077
0126 7706
p 3700 o 4177
3424 7741
- 0404 P 4477
0404 3044
+ 0404 Q 4276
0437 0376
| 0000 R 4477
0077 3146
3614 S 5121
1436 4651
CASE 0000 T 4040
0000 4077

118

PROGRAMMING THE LINC-8

A2-4 UTILITY SYSTEM TAPE ALLOCATION

Block Allocation
000 - 012 Loaders
013 - 267 Available to user (may be used for MS files)
270 - 327 LAP4 system
330 - 377* LAP4 working area
400 - 407 GUIDE system
410 - 477 GUIDE file area
500 - 777 Available to user (may be used for MS files)

A2-5 GUIDE TAPE ALLOCATION

Block Allocation
400 Input control
401 Display index (INDIS)
402 Index of binary program file
403 Questions and answers subroutine
404 File a binary program (FILEBI)
405 Create a system tape (CAST)
406 File a binary program (FILEBI)
407 Delete a filed program (DELETE)
410 - 477 Binary programs

*LAP4 does not test for an upper limit on the length of a manuscript. Manuscripts of maximum length (40008
lines) in unpacked form might exceed the working area assigned above.

119

PROGRAMMING THE LINC-8

A2-6 LAP4 TAPE ALLOCATION

Block Allocation
270
271
272
273
274 MANUSCRIPT CONTROL meta command
275
276
277
300 Regular input
301 COPY meta command
302 Temporary Storage
303
ggg CV and CM meta commands
306
307 Reserved block
310 SAVE MANUSCRIPT meta command
31 DISPLAY met d
312 meta comman
313 PACK meta command
g:g INSERT meta command
316 ADD MANUSCRIPT meta command
317 REMOVE meta command
320 Pass 111
2?2 Regular input
323 Temporary storage
324 .
395 Temporary storage for INSERTED lines
326 Pass | for conversion
327 Pass [l for conversion
330
331 Bi ft .
332 inary program after conversion
333
334 Temporary storage
335 Manuscript contro! block
336 and ff. Manuscript

120

PROGRAMMING THE LINC-8

A2-7 LAP4 META COMMANDS
Command Required InFornrlafion Requ.ested Comments
Format During Operation
REMOVE RE LN,n none *Removes n lines of MS beginning
RE LN-LN+n with line LN
INSERT IN LN none *Allows insertions of lines prior to
END EN line LN; insertion terminated by EN
PACK PA none *Removes gaps in MS left by RE,
IN, AM, and MC (option 2)
DISPLAY DILN,S none *Displays MS; F: forward; B: back-
ward; L after octal nos.: LN; S
after octal nos.: S
SAVE SM unit number; *Saves MS in any designated block
MANUSCRIPT initial block number on either unit
ADD AM BN, UN none Adds MS to working area from any
MANUSCRIPT block on either unit
CONVERT cv none *Converts MS
CONVERT CM initial block number(s) on Converts manuscripts residing any-
MANUSCRIPTS unit 0 of each MS to be where on unit 0 tape
converted
COPY CP number of blocks to be Copies up to 777, blocks from either
copied; UN and initial BN tape to either tape
of places from and to which
copy will be made
START LAP LA none Starts LAP4 system
START GUIDE GU none Starts GUIDE system

MANUSCRIPT MC

option number 0 -4; various

Allows manipulation of MS files;

CONTROL additional information re- SSWO down - standard MS file;
quested by options 1-4 up - file requested

LN - line number BN - block number

n - number of lines UN - unit number

s - size of display

*Operates only on MS in working area

121

PROGRAMMING THE LINC-8

A2-8 GUIDE SYSTEM COMMANDS
Command Inforn'.la’rlon Requ.es’red Comments
During Operation
INDIS none Displays index
REWIND none Rewinds tapes
LAPGO none Starts LAP4
LAPRTN none Returns to LAP4
CAST create basic index or Creates a systems tape
retain old index
FILEBI name or block number of Files a binary program by name or block number
program; if necessary, short from and onto either unit
title, starting location and
number of blocks, units to
and from; return option 0-1
DELETE name and unit number; Deletes a filed program by name from either unit

return options 0-2

122

A2-9

PROGRAMMING THE LINC-8

SUMMARY OF ANSWERING PROCEDURE FOR Q & A

Status of Display

Result when Key Struck

del

EOCL

CASE

All others

no questions

no entries in
current question

partial entry in
current question,
question marks
remaining

complete entry in
current question,
no question marks
remaining (EOL not
yet struck)

inoperative

answers to all pre-
vious questions
deleted

answer to current
question deleted

answer to current
question deleted

proceed*®

current question
filled completely
with blanks (14);

remaining question
marks filled with
blanks (14);

proceed*

proceed*

display fades from
scope until next
character struck;
any next character
treated as upper
case

display fades from
scope until next
character struck;
any next character
treated as upper
case

display fades from
scope until next
character struck;
any next character
treated as upper
case

display fades from
scope until next
character struck;
any next character
treated as upper
case

inoperative

struck character
appears on scope
in place of one
question mark

struck character
appears on scope
in place of one
question mark

inoperative

*Proceed either back to program or to next question, whichever applies.

123

PROGRAMMING THE LINC-8

APPENDIX 3
EXTENDED MEMORY PROGRAMMING

A3-1 DOUBLE MEMORY

The LINC has been presented as having a single 12-bit, 1024]0 word memory. A second
addressable memory provides 204810, or 40008 12-bit words. This second memory is addressable for data
storage and retrieval; it can not, however, be used to hold running programs.

Bit 1 of a register containing a memory address, e.g., a B register, is designated as the memory

select bit. When this bit is 1, the second memory is addressed: ;
B 019 000 000 OO/O

- Y
Memory select bit——————/]\ X

The addresses for the second memory may then be thought of as 2000 + X, where 0 < X L1777,

as usual ,

More simply perhaps, it is referred to as memory registers 2000-3777,. While this scheme

g
makes the memory addresses of the two memories continuous, they can not always be treated as such by
the programmer, The instruction location register, having only 10 bits, prohibits using the second mem-
ory to hold running programs; the next sequential instruction location after 1777 is always 0. Moreover,
the full-address class instructions can address only registers 0-1777,

All other memory reference instructions have available a memory select bit, and can address

either memory . The instruction

P LDA

p+l 2133
will load the accumulator with the contents of register 2133, i.e., register 133 of the second memory .
It must be remembered, however, that all instructions which index the first 16 registers (index class,
half-word class, XSK, and DIS) index 10 bits only, and thus index from 1777 to 0 without affecting the
memory select bit. Therefore, by setting bit 1 the programmer can index through either memory he

chooses, but he cannot index from one memory to the other, e.g.:

Memory Address Memory Contents
3 [2000 + X1 | [-]

—+40 SETi 3 0063

41 3777 3777

42 LDAi 3 1023

43 i JMP 42 6042

125

PROGRAMMING THE LINC-8

In this example register 3 will contain the succession of values: 3777, 2000, 2001, ..., 3777,

2000, etc., repeatedly scanning the second memory. In order for the first execution of the LDA instruc-

tion at location 42 to index register 3 to 2000, register 3 must be set initially to 3777, i.e., X(3) = 1777

and memory select bits = 1,

For many purposes this indexing scheme presents no disadvantages. Often, however, one would

like to use both memories, for example to collect a large number of data samples. The following program

fills memory registers 400~3777 with sample values of the signal on input line 10. The sample-and-store

part of the program is written as a subroutine (locations 31-40), and the sample rate is controlled by a

OPR i n instruction:

Memory
Address Memory Confents Effect
7 [-] [-] For memory address.

10 —> [JMP X] [-] For return point.

__)g(]) 35; t7 82;’; SSel: Z ttc?niniﬁol address minus 1 and jump to
22 JMP 31 6031 whrovtine.
23 SETi 7 0067 Return from subroutine; set 7 to initial address
24 3777 3777 minus 1 for second memory, and jump to sub~-
25 JMP 31 6031 routine.
26 WCG 0705 Return from subroutine; write memory quarters 1
27 6|31 2031 through 7 in blocks 31-37 and halt
30 HLT 0000 on it) e
31 L>SET 10 0050 Enter subroutine and save return point in
32 0 0000 register 10,
33 —>OPR i 1 0521 Pause until restart signal appears on external

level line 1,
gg g?XAI]7(.) ?]Olg } Sample input on line 10 and store.
36 XSK7 0207 If X(7) = 1777, return to get next sample.
37 JMP 33 | 6033
40 JMP 10 & 6010 When X(7) = 1777, return to main program via
register 10,
Example 35 Indexing Across Memory Boundaries
A3-2 CHANGING MEMORY BANKS

In actuality there are more than 2048]0 words in the LINC-8 computer. The basic LINC-8

contains 4096]0 words with the capacity of expansion up to 32,768]0 words. From the LINC point of view,

126

PROGRAMMING THE LINC-8

it is best to envision this 32K as 32 1K segments numbered from 008 to 378 (we will call these 1K segments
memory banks in this discussion). In memory bank 0, PROGOFOP resides. Normally, LINC programs
reside in memory bank 2 (instructions) and 3 (data--see previous discussion). It is possible, however, to

change this if such a condition is found desirable.

15 Bit
Absolute Addresses

00000 to 01777 OO8 PROGOFOP ~
0 f

2000 to 03777 018 ! Basic Memory
04000 to 05777 028 "NORMAL" Lower Memory Bank of LINC-8
06000 to 07777 038 "NORMAL" Upper Memory Bank .
10000 to 11777 048
12000 to 13777 058 Ist 4K
14000 to 15777 068 Expansion
16000 to 17777 078
20000 to 21777 108
22000 to 23777 ”8
70000 to 71777 348
72000 to 73777 358 : 7th 4K
74000 to 75777 368] Expansion
76000 to 77777 378

Diagramatic Representation of LINC-8 Memory

An example of a desirable condition would be when a program requires more than 1024]0 data
words to be in computer memory at one time. A decision is made to store the data in memory bank 1 and
memory bank 3. The program will occupy memory bank 2 (where it normally is) and the double memory
programming technique discussed previously will be used to access this data. The accessing of the data
in bank 3 is no problem as bank 3 is the "normal upper memory bank." However, when it is desired to
access the data in bank 1 the "number" of the upper memory hank must be changed. This is accomplished
by executing the instruction UMB N (640 + N), change upper memory bank to N. N must be nonzero to
change the upper memory bank selector. After this instruction is executed, all references to "upper mem-

ory" will be to this memory bank (1 in our example) until it is changed by another UMB N.

127

PROGRAMMING THE LINC-8

Another example of when it would be desirable to change memory banks would be if a program
were too large to occupy one memory bank and it was desirable to store a frequently used subroutine in a
different memory bank. Again, let us use memory bank 1, this time to hold the subroutine. The main
program is in memory bank 2; the data, in bank 3. To change memory banks and transfer the control of
a program, the instruction LMB N (600 + N), change lower memory bank to N (N # 0), is given. Upon
executing the next JMP X (X % 0) control will be transferred to location X of bank N (1 in our example)
and JMP p+1 will be stored in location O of the new memory bank. To exit bank 1 to the original pro-

gram in bank 2, a LMB 2 instruction is given, followed by a JMP 0.

Bank = 2 Bank =1

0 - 0 JMP 502 <

- —> 20 -

500 LMB 1 2000 LMB 2
501 JMP 20 JMP O

502 - < |

The upper memory bank number is not affected by the LMB instruction (nor is it directly af-
fected by the JMP X).

128

PROGRAMMING THE LINC-8

APPENDIX 4
INSTRUCTIONS

Ad-1 MSC CLASS INSTRUCTIONS

HLT 0000 3 psec HLT

Halt. The computer halts. The RUN light on the console is extinguished. The gong chimes if it

is turned on. The computer can be restarted only from the console.

ZTA 0005 3 psec ZTA

Z to A. The contents of Z, bits 0 to 10, replace the contents of A, bits 1 to 11. Bit 0 of A is

set to 0. Bit 11 of Z is ignored. The contents of Z are not changed.

CLR ' 0011 3 usec CLR

Clear. Clear A, L, and Z.

ATR 0014 3 usec ATR

A to R. The contents of the right half of A (Aé-A]]) replace the contents of R. The contents

of A are not changed,

129

PROGRAMMING THE LINC-8

RTA 0015 3 psec RTA

R to A, The contents of R replace the contents of the right half of A, The left hailf of A is cleared.

The contents of R are not changed.,

NOP 0016 3 psec NOP

No operation. This instruction provides a delay of 3 psec before proceeding to the next instruction.

It does nothing.

COM 0017 3 pusec COM

Complement. Complement the contents of A,

A4-2 SKIP CLASS INSTRUCTIONS

Address of Next Instruction to be Executed
Following Skip Class Instruction

i Condition Address of Next Instruction
0 met p+2
0 not met p+1
1 met p+1
1 not met p+2
SNS i n 0440 + 20i + n 3 psec SNS

Sense switch, Check if sense switch n (0< n<5) is up.

130

PROGRAMMING THE LINC-8

AZE i 0450 + 20i 3 psec AZE

A zero. Check if A contains either 0000 or 7777 .

APO i 0451 + 20i 3 psec APO

A positive. Check if AO (the sign bit of A) is 0,

LZE i 0452 + 20i 3 usec LZE

L zero. Check ifLisO.

IBZ i 0453 + 20i 3 psec 1BZ

Inter-block zone. Check if either tape unit is up to speed and reading an inter-block zone mark.

FLO i 0454 + 20i 3 psec FLO

Overflow. Check if overflow flip-flop is in the one state. FLOFF (overflow flip-flop) will be set
on ADD, ADA, ADM, or LAM if an overflow occurred. Overflow exists when the sum of two posi-

tive numbers is negative or the sum of two negative numbers is positive .

ZZZ i 0455+ 20 i 3 psec ZZZ

Z bit 11 on a zero. Check if bit 11 of Z isa 0.

131

PROGRAMMING THE LINC-8

SXLin 0400 + 20i + n 3 psec SXL

Skip on external level. Check if external level input linen (0< n £ 138 is in its negative state.

(=3v)

KST i 0415 + 20 3 psec KST

Key struck. Check if a key has been struck and is in the locked position.

- A4-3 SHIFT CLASS INSTRUCTIONS

ROLin 0240 + 20i +n see table below ROL
Rotate left. Shift the contents of A n places to the left. If i=0, bit AO is shifted into bit A”, and
the contents of L are unchanged. if i=1, bit Ao is shifted into L and L is shifted into bit A” . No
effect on Z.

ROR i n 0300 + 20i +n see table below ROR

Rotate right. Shift the contents of A n places to the right, [If i=0, bit A” is shifted into bit AO’

and Z0 and the contents of L are unchanged. If i=1, bit A” is shifted into L and L is shifted into

bit AO’ A” is shifted into Zye Zyy s always lost.

SCRin 0340 + 20i +n - see table below SCR

Scale right. Shift the contents of A n places to the right with bit AO never changing. If i=0, the

information shifted outofA” isshifredinto ZO and L is not changed. If i=1, bit A” is shifted into

L and the information shifted out of L is lost. A” is shifted info ZO. Z” is always lost.

132

PROGRAMMING THE LINC-8

A4-3.1 Execution Times for Shift Class Instructions

n t n f

0 3 psec 10 9.0 psec
1 3 psec 11 9.0 psec
2 4.5 psec 12 10.5 psec
3 4.5 psec 13 10.5 psec
4 6.0 psec 14 12.0 psec
5 6.0 psec 15 12.0 psec
6 7.5 psec 16 13.5 psec
7 7.5 psec 17 13.5 psec

A4-4 FULL ADDRESS CLASS INSTRUCTIONS

ADD X 2000+X 3 usec ADD

Add. Add the contents of memory register X to the contents of A, and leave the resulting sum in A.
The addition is 1's complement binary addition (i.e., with end-around carry). The contents of

memory register X are not changed.

STC X 4000+X 3 psec STC

Store and clear A. The contents of A are copied into memory register X and A is then cleared.

JMP X 6000+X see note JMP

Jump to X. If X #0, 6000 +p + 1 is stored into memory register 0. Regardless of the value of X,

the next instruction is taken from the memory location whose address is X.

NOTE: If X #0, this instruction is executed in 3usec. If X =0, the instruction
is executed in 1.5 psec.

133

PROGRAMMING THE LINC-8

" A4-5 INDEX CLASS INSTRUCTIONS

Addressing and set up time in index class instructions.

L B Y t Indexing
0 0 Y (p+1) 4.5usec —mmmmmmmeee
1 0 p+1 3.0usec mmmmmmmmme-
0 1<B<L17 0 Y(B) 4.5usec —mmmmemmem-
1 1<BLT7 0 YB) g : 4.5 usec X(B) = X(8)
LDA i B 1000 + 20i + B t psec LDA

Load A. Copy the contents of memory register Y into A. The contents of memory register Y are

not changed.

STA T B 1040 + 207 + 8 tpsec+ 1.5 psec STA

Store A, Copy the contents of A into memory register Y. The contents of A are not changed.

ADA i B 1100 + 20i + B t psec ADA

Add to A. Add the contents of memory register Y to the contents of A and leave the resulting sum
in A. The addition is 1's complement binary addition (i.e., with end-around carry). The contents

of memory Y are not changed.

ADMi B 1140 + 20i + B t+ 3.0 psec ADM

Add to memory. Add the contents of A to the contents of memory register Y and leave the sum
bothin A and in memory register Y. The addition is 1's complement binary addition (i.e.:, with

end-around carry). The contents of L are not changed.

134

" PROGRAMMING THE LINC-8

LAMi B 1200 + 20i + B t + 3.0 psec LAM

Link-add to memory. First, add the contents of L (0 or 1) to the contents of A and leave the sum
in A. The addition is 2's complement 12-bit binary addition with the end-carry replacing the
original contents of L. If there is no end=-carry, L is cleared. Next, add the contents of memory
register Y to the contents of A and leave the sum in A and in memory register Y, If there is an

end-carry, set Lto 1,

MUL i B 1240 + 20i + B t + 30.0 psec MUL

Multiply . Multiply the contents of A by the contents of memory register Y and leave half of the
product in A, The contents of A and of memory register Y are treated as 1's complement binary
numbers with bit O serving as a sign bit. Their full product contains 22 bits plus a sign bit. If bit
0 (the h bit) of B is 0, the multiplication is.carried out as an integer multiplication and the least
significant 11 bits of the product are left'in the least significant 11 bit positions in A. The left-
most bit of A contains the sign of the product. [f the h bit is 1, the multiplication is carried out as
a fraction multiplication and the most significant 11 bits of the product are left in the least signif-
icant 11 bit positions in A. The left-most bit of A contains the sign of the product. The least
significant bits of the product are in Z bits 0 to 10, The sign of the product is also left in L in both

cases. The contents of Y are unchanged.

SAE i B 1440 + 20i + B t+ 1.5 psec SAE

Skip if A equals. If the contents of A exactly match the contents of memory register Y, take the
next instruction from memory location p+2. Otherwise take the next.instruction from memory lo-

cation p+1. The contents of A and of memory register Y are not changed.

SROiB 1500 + 20i + B t + 1.5 psec SRO

Skip and rotate. Rotate the contents of memory register Y one place to the right. If, after the ro-
tate, bit 0 of the contents of memory register Y is a 0, take the next instruction from memory loca-

tion pt2. Otherwise, take the next instruction from memory location ptl.

135

PROGRAMMING THE LINC-8

BCLiB 1540 + 20i + B t usec BCL

Bit clear. For each bit position of memory register Y that contains a 1, clear the corresponding

bit position in A. The contents of memory register Y are not changed.

BSEi B 1600 + 20i + B tusec + 1.5 psec BSE

Bit set. For each bit position of memory register Y that contains a 1, set the corresponding bit

position in A to a 1. The contents of memory register Y are not changed.

BCO i B 1640 + 20i + B t psec BCO

Bit complement. For each bit position of memory register Y that contains a 1, complement the

corresponding bit position in A. The contents of memory register Y are not changed.

DSCi 8 1740 + 20i + B 75=140 pusec DsSC

Display character. Intensify points in a 2 x 6 grid on the display scope with the pattern displayed
controlled by the contents of memory register Y. Each bit position of memory register Y controls the
intensification of one of the twelve points in the grid. The diagram below specifies the bit positicn

controlling each grid point,

6 0
7 !
8 2
9 3
10 | 4
n | s

Spacing between points is +4 in both the horizontal and vertical directions. The contents of memory
register 1, augmented by +4, controls the horizontal position of the lefthand edge of the grid. The
contents of the accumulator, with bits 7-11 set to 0, controls the vertical position of the grid's
lower edge. Bit 0 of memory register 1 selects one of two display channels for intensification. At
the end of the instruction, the accumulator has been augmented by 308 and register 1 has been aug-

Memory register Y is left unchanged. The Z register is used by this instruction,

’merrjfied by 1 08 .

136

PROGRAMMING THE LINC-8

A4-6 HALF WORD CLASS INSTRUCTIONS

Addressing and set up time in half-word class instructions

i B Y h + Indexing
0 0 Y (pt+1) . h(p+1) 4.5 ysec = mmmmem——en
1 0 p+i 0 3.0 usec = mmmmmm——me
0 1<B<17 Y(B) h(B) 4,5 usec = —=mm————-
1 1<B<17 Y(B)hndx h{B) 4.5 usec See note below

If h=0, the left half of memory register Y is the operand. If h=1, the right half of memory

register half of memory register Y is the operand .

LDHi B 1300 + 20i + B t usec LDH

Load half. Copy the contents of the designated half of memory register Y into the right half of A.

The left half of A is cleared. The contents of memory register Y are not changed.

STH i 1340 + 201 + B tpsec+ 1.5 psec STH

Store half. Copy the contents of the right half of A into the designated half of memory register Y.

The contents of A and of the remaining half of memory register Y are not changed.

SHD i 1400 + 20i + B tusec+ 1.5 psec >HD

Skip if half differs. Compare the contents of the right half of A with the contents of the specified
half of memory register Y. If they do not match exactly, take the next instruction from memory
address p+2, If they do match, take the next instruction from memory address p+1. The contents

of A and of memory register Y are not changed.

NOTE: X(g), — X(B) and h(B)—h(p)

137

PROGRAMMING THE LINC-8

A4-7 ALPHA CLASS INSTRUCTIONS

SET i a 40 + 20i + o i=1: 4.5 psec, i=0: 6.0 psec SET

Set. Set the contents of memory register « equal to the contents of memory register Y. The contents

of memory register Y are not changed.

DIS i « 140 + 201 + o 18 psec DIS

Display . Index the contents of memory register a if i=1. Intensify a point on the scope whose
horizontal position is specified by bits 3-11 of memory register a and whose vertical position is
specified bybits3-110of A, Bit O of memory registera selects one of two display channels for

intensification.

The leftmost point which can be displayed corresponds to the horizontal coordinate 000 octal,
and the rightmost point to 777. The lowest point which can be displayed-corresponds to the vertical
coordinate — 377, and the highest to +377. Bits O through 2 of mermory register a and of A do not

effect the position of the point which is intensified.

XSK i a 200 + 20i + « 4.5 psec XSK

[ndex and skip. Index the contents of memory register o if i=1. If contents of (d) equals 1777, take

the next instruction from pt2. Otherwise, take the next instruction from p+1.

A4-8 SAMPLE CLASS INSTRUCTIONS

SAM in 100 + 20i +n 19.5 psec SAM

Sample. Sample the signal on one of 16 input channels selected by n. Leave its binary value,
seven bits plus sign bit, in the least significant bit positions of the accumulator. The sign bit is ex-
tended through bit 0. 0< n< 7 selects one of the potentiometers on the display scope: 10< n< 17
selects one of the analog inputs in the terminal box. The i bit has no effect unless equipped with

additional analog channels; then i selects the second 16 channels.

138

PROGRAMMING THE LINC-8

A4-9 MAGNETIC TAPE CLASS INSTRUCTIONS

These instructions are used fo transfer information between the internal core memory of the
LINC and digital tapes on either of the two LINC tape transports. Two additional instructions in this
class permit moving tapes and checking the integrity of information stored on tapes without modifying
the contents of the tapes or the core memory .

LINC tapes are subdivided permanently info blocks by an initial process of marking which
records a fixed pattern on certain portions of the tape. This pattern includes fixed block addresses which
permit references to information stored on tape by means of a block number. Information is always trans-
ferred and checked in units of complete blocks which are specified by their block addresses. Each block
includes a checksum for verifying the integrity of information transfers to and from the tape.

A standard LINC tape contains 10008 (512]0) addressable blocks numbered consecutively from
000-777 . Each block on a standard tape contains 4008 (256

]0) words corresponding to the contents of
one quarter of a LINC core memory module. The first core memory address whose contents are transferred
to or from a given block is the first address within the specified memory quarter. Quarter 0 begins with
address 0, quarter 1 with address 400, and so on up to quarter 7, which begins with address 3400. The
length of blocks as well as the format of the block addresses can be varied by using a non-standard tape

which has been marked using a non-standard marking program. Once a given tape is marked, however,

the format is fixed for that tape unless it is completely erased and remarked.

A4-9.1 Tape Motion and Searching

Tape motion and searching are essenfially identical for all magnetic tape instructions. The
tape system automatically searches for and finds the specified block on tape and then completes the de-
sired operation. If the tape transport selected by a magnetic tape class instruction is not in motion at the
time it is selected, it starts to move the tape in the forward direction (i.e., toward larger block addresses)
until the next block address is read. If the tape unit selected is already in a state of motion, the initial
direction of motion continues until the next block address is read., At this time the desired block number
is compared with the block address just read and the tape is subsequently moved in the correct direction
to approach the desired block. When the desired block address is reached and the tape is moving in the
forward direction, the specified tape operation is carried ouf.

At the conclusion of a tape instruction the i-bit of the tape instruction determines whether
the motion of the tape is to continue or not. If the i-bit is a 1, tape motion continues in the direction
it was moving at the completion of the instruction (usually forward). If the i-bit is a 0, the tape is moved
backwards for a fraction of a second and is then stopped. In the event that the tape has been left in motion
by a 1 in the i-bit position, the motion continues until either the end of the tape is reached, the computer
is halted, or the next magnetic tape instruction is executed. Only one tape transport can be in motion

under computer control at a given time.

139

PROGRAMMING THE LINC-8

A4-9.2 Transfer Check

The term data sum refers to the sum (2's complement) of all the data words in a block. A data
sum is automatically calculated in the accumulator whenever a block of tape is written, and its comple-
ment, called the checksum, is written in a special place at the end of the block. When a block of tape
is read, a new data sum is automatically calculated in the accumulator and the checksum from tape is
added to it. If the result, called the transfer sum, is not —0, there has been a transfer error. Usage of

this feature varies from instruction to instruction and is, therefore, described in detail for each.

A4-9.3 Instruction Format

All magnetic tape class instructions are two-word instructions. The first word specifies the
instruction, selects the left or right tape unit, and determines the motion of the tape following the com-
pletion of the instruction. The second word specifies the memory quarter(s) and the tape block address(es)

used in the transfer.

First word: 000 111 0Oiu XXX
tape class .___/ / ___.instruc’rion
motion bit
unit bit

Secondwo_r_d_; XXX XXX XXX XXX

QN bits —/‘ /
BN bits

Motion bit: See A4-9.1

Unit bit: If u=0, the lefthand unit is selected.
If u=1, the righthand unit is selected.
QN & BN bits: (for instructions RDC, RDE, WRC, WRI)

The QN bits specify the quarter of memory involved.
The BN bits specify the block of tape involved.

QN & BN bits: (for instructions RCG and WCG)

The QN bits specify the number of consecutive block-quarter transfers
to occur, after the first block-quarter transfer.

The BN bits specify the first block of tape involved in the transfer.
Bits 0-2 of the BN bits specify the first quarter of memory involved
in the transfer.

QN & BN bits; (for instructions MTB and CHK)

The QN bits have no meaning. [n the CHK instruction, the BN bits
specify the block involved. The use of the BN bits in the MTB in-
struction is explained under that instruction.

140

PROGRAMMING THE LINC-8

RDCiu 700 + 20i + 10u RDC

Read and check. The specified block is read into the specified quarter of memory and the accumu-
lator is examined for —0. If it is —0, the computer goes on to the next instruction. If not, the

block is re-read until either a — 0 results or the computer is halted from the console.

RCGivu 701 + 20i + 10u RCG

Read and check group. The specified blocks are read into the specified quarters of memory . After
each block is read, the accumulator is examined for — 0. If it's not, the block is re-read until either
a =0 results or the computer is halted from the console. When all blocks have been read success-

fully, the computer goes on to the next instruction,

RDE i v 702 + 20i + 10u RDE

Read tape. The specified block of tape is read into the specified quarter of memory. The transfer

sum is left in the accumulator and the computer goes on to the next instruction.

MTB i u 703 + 20i + 10u MTB

Move towards block . The first block address read from tape is subtracted from the block number

specified by the BN bits of the instruction and the difference is left in the accumulator. If i=1, the
tape is left in motion at the end of the instruction. Tape motion will be in the forward direction if
the accumulator is positive and in the backwards direction if the accumulator is negative (including

—0). |fi=0, tape motion stops at the end of the instruction.

WRC i u 704 + 20i + 10u WRC

Write and check. The specified quarter of memory is written in the specified block of tape. The
tape then reverses, re-finds the specified block, reads it, and examines the accumulator for = 0. I[f
it is —0, the computer goes on to the next instruction. If not, the block is re-written and re-read
until either — 0 results or the computer is halted from the console. Memory is not changed by this

instruction.

141

PROGRAMMING THE LINC-6

WCG i v 705 + 20i + 10u ' WCG

Write and check group. The specified quarters of memory are written into the specified blocks of
tape. After all the blocks are written, the tape reverses, re-finds the first block, and reads all of
the blocks just written. Thelqccumulotor is examined for — 0 after each block is read, and if it is
not —0, the whole instruction is repeafed, beginning with the block that failed. When all blocks
have been successfully written, the computer goes on to the next instruction. Memory is not changed

by this instruction.

WRI i u 706 + 20i + 10u WRI

Write tape. The specified quarter of memory is written in the specified block of tape. The checksum
is left in the accumulator and the computer goes on to the next instruction. Memory is not changed

by this instruction.

CHK i v 707 + 201 + 10u CHK

Check tape. The specified block of tapeis read and the transfer sum is left in the accumulator,

Memory is not changed by this instruction.

A4-10 OPERATE CLASS INSTRUCTIONS

OPRin 500 + 20i +n OPR

Operate channel n. These instructions form a powerful, though complex, set of input-output com-
mands whose functions are partially controlled by signals from external equipment. They are ex-

ecuted by the PDP-8 portion of the LINC-8.

OPR i 13 513 + 20i < 200 psec (PDP)

Transfer control to PDP-8 mode by executing a PDP-8 JMS instruction to the absolute address speci-
fied in the Linc A register. This address is taken to be in the first 4K segment of LINC-8 memory.

i Bit has no effect.

142

PROGRAMMING THE LINC-8

OPR 14 (TYP) 514 <200 psec TYP

Print the ASCII Character in bits 4-11 of the Linc A register. If Teletype Printer is free, put charac-
ter in printer buffer and immediately return to LINC programming. If printer is not finished, then

pause until character can be put in printer buffer.

OPRi 15 515 + 20i <200 psec KBD

Read keyboard. If a key has been struck, the code number corresponding to the key is read into A,
and the instruction is completed without pausing whether i=0 or i=1. If no key has been struck and

i=1, the computer pauses until a key is struck, then reads the key code into A, and continues to the
next instruction. If no key has been struck and i=0, there is no pause and the computer goes to the

next instruction with A cleared.

OPR i 16 516 + 20i <200 psec RSW

Right switches. The contents of the RIGHT SWITCHES on the console are read into A. There is no

pause. The i bit has no effect.

OPR i 17 517 + 20i <200 psec LSW

Left switches. The contents of the LEFT SWITCHES on the console are read into A. There is no

pause, The i bit has no effect.

143

—_—
.

W W W W WWNRNNRNDRNDNDDBRNDDNDDNRN = — —a o o e —a
O KX OO N —m © Vv ®© N 00 O N W N — O Vv 00 N O O A W N —

O 0 O N O 0 MAWON

PROGRAMMING THE LINC-8

INDEX OF PROGRAMMING EXAMPLES

Simple Sequence of Instructions vuueveeeereereeoererereeereseeesseoensconones

Simple Sequence Using the Jump instruction +eeeeeseeesesssosecssoesssescsonnns

Summing a Set of Numbers Using Address Modification ..ceeiecececesscnsncannns
Packing a Set of Numbers ...vvvtiiiirirnrenernananes cesesssoene cesesesesans
Indirect Addressing cocesesesesessesnsonncens Geesessecserasessstsassenacanes
Indexing to Clear a Set of Registers Ceesesresesessentssssesasaesasensnse
Memory Scanning .eeveee.. Ceecececrtnsnanans sresecetecacassesasasatetanans
Summing Sets of Numbers Term by Term teresaserernnes ceseceacnnnas
Index Registers Used as Counters ...eeeeee cesscccsssesanonsnasses eeens ceenes
Indexing and Counting to Clear a Set of Registers sessescesessnsanennsanas
Setting Initial Index Register Values . .vvveeveeeroreeoernonnsenss ceerranens ces

Scanning for Values Exceeding a Threshold ...vevuiiiriennrneesrnosresnsncenss
Summing Sets of Double Length Numbers Termby Term ,...ciereeeeeeerecnnns
Multiplying a Set of Fractions by a Constantu0ase Ceerrssesicaessatnaaenns
Multiplication Retaining 22-Bit Products vueseesesseseosassssosssscsosssccsses
Multiplication for 22-Bit Product Using ZTAcevvenen. Ceeesetenneesannanens
Filling Half-Word Table from the Keyboardeuieeesereoreecsssssnscsanssses
Selective Filling of Half-Word Table from the Keyboardc0vve... seceessanann
Horizontal Line Scope Display tuvuuieiueeeeosecessssasssasssscessasnscsces ..
Curve Display of a Table of Numbersvivviveneesense Ceeeseaes
Character Display of the Letter A L. ..ueieieiieeiensssessonssessssscecsacses
Character Display of the Letter A Using DSC . ..vuvurrsoesescsessasessoncnsons
Displaying a Row of Charactersieeieieseeeresessseesessocescsaccanness
Simple Sample and Display ..vceveveereennns S esesscseseseesesnssaresenansan
Moving Window Display Under Knob Control ., cereens Cretececatananans cees
Histogram Display of Sampled Data . .veveeerersvacesonncrsaroscesoncaccssns ces
Counting Samples Exceeding a Thresholdiviiurnrnrnernereneerennsnonacss
Simple Sample and Display with Keyboard Control ,..cuuieerniennneeeeeennnnans
Simple Check of an Entire Tape ...viiierreicnseannens
Dividing Large Programs Between Tape and Memoryceeeevececssaoscacanes
Collecting Data and Storing on Tape ...evevenass cecesesesasacacsesaaarans .
Tape and Memory Exchange with Group Transferviieeeienenncecnns ceceves
Block Search Subroutinecvvviiieeeenn. Ceeeesicstnetstatttternannanse
Write and Check with Fewest Reversals ...vevevecesannons tetesssssaananse cese
Indexing Across Memory Boundaries ceceseesases ceeeseranen Appendix 3:

Display Contents of RIGHT SWITCHES as Decimal Number on Scope
145

10
12
15
17
19
21
21
22
24
25
27
30
35
38
39
41
45
46
48
48
51
53
54
56
57
58
61
62
77
79
80
82
87
89
126
104

PROGRAMMING THE LINC-8

PAGE INDEX OF LINC-8 INSTRUCTIONS

ooooooooooooooo

129
131

133
143
132
135
134
137

146

50,
19,

130
135
134

9, 133

42,
59,
127
81,
77,
74,
23,
40,

137
132

142
141
142
138
129

dlilgliltiall

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS
PRINTED IN U.S.A.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	xBack

