
Digital Equipment Corporation
Confidential

Retooling Software Engineering
Recommendations of the Internal CASE Initiative

Revision 1.0

January 24, 1994

Acknowledgements

These recommendations are the result of an extended team effort. The following
people participated in that effort.

Without the voluntary help and written contributions of these individuals, this
document would not have been possible.

Leader and Editor

Reuse

Windows IDE

OSF/1 IDE

Chip Nylander

Loren Konkus

Eric Moore

John Campbell, Ward Clark, Tom Lowell,
Richard Wells

Mikael Rolfhamre

Daryl Black, Solange Karsenty, Glenn Lupton

Portable GUI APls

Base Class Libraries

C++ Language Use

Interface Definition

RetOOling Software Engineering

AI Simons

Leo Treggiari, Jake VanNoy, Steve Zalewski

Shawn Woods

Mike Vogl, Thierry Pudet

Greg Nelson,

Alan Martin

Steve Di Pi rro

Michael Gangnet, Paul Patrick

• i

- Digital Confidential -

Code Checking

Testing

Debugging

Performance Analysis

Configuration Management

Business and Legal Advice

Engineering Requirements

David Baird

Jon Campbell

Scott Davidson

Neil Davies

Meg Dumont

Mike Feldman

Gary Feldman

Dick Gumbel

Ted Hess

Peter Lieberwirth

Tim Quinn

Retooling Software Engineering

Joe Wild

Don Carignan, Dave Evans, John Guttag, Jim
Horning, Peter Van Roy, Andreas Podelski,
Walter Van Roggen

Bill Mckeeman

Tony De II afe rra , Andrew Payne, Herve Touati

Rudy Bazelmans

Dave Husson

Bob Morgan

John Yates

Jim Evans

Console/Firmware

Pathworks

NIPG

VMS

USG

ISE Western Hemisphere

SDT

NOS

Workgroup

NT Engineering

Systems Engineering

• ii

Dave Snow

Bruce Taylor

Hiro Yoshioka

- Digital Confidential -

DECWest

Production Systems

ISE Asia

Many other individuals offered consulting, advice, and suggestions. Any serious
omissions from the above list are the responsibility of the Editor.

Retooling Software Engineering • iii

Table of Contents

Purpose Of This Document 1

Executive Summary 3

Introduction 7

Reuse Technology Summary 21

Windows Development Environment Summary 23

OSF/1 Development Environment Summary 25

Portable GUI Programming Interface Summary 27

Base Class Libraries Summary 29

C++ Language Subsetting Summary 32

Data and Interface Definition Tools Summary 34

Code Checking Tools Summary 36

Testing Technology Summary 37

Debugging Technology Summary 38

Performance Analysis Technology Summary 48

Configuration and Build Management Summary 51

Reuse Technology Detail 53

Windows Development Environment Detail 76

OSF/1 Development Environment Detail 90
Retooling Software Engineering • v

- Digital Confidential -

Portable GUI Programming Interface Detail

Base Class Libraries Detail

Data and Interface Definition Tools Detail

Code Checking Tools Detail

Testing Technology Detail

Debugging Technology Detail

Performance Analysis Technology Detail

Configuration and Build Management Detail

Retooling Software Engineering

99

116

144

156

167

178

200

211

• vi

- Digital Confidential -

Purpose Of This Document

The purpose of this document is to:

• Recommend (within the constraints of the goals, scope, and evaluation criteria of
this effort) a set of software development technologies and tools to be deployed
widely across Digital Software Engineering.

• Document the rationale for these recommendations

• Document the actions required to deploy the recommended tools and technologies.

• To a first order of approximation, document the costs to deploy the recommended
tools and technologies.

Is is explicitly not a purpose of this document to:

• Address all perceived Software Engineering problems.

• Address software development process improvements.

• Provide a complete Project Plan for deploying the recommended tools and
technologies.

• Establish goals for implementing these recommendations in individual projects and
organizations.

RetOOling Software Engineering Purpose Of This Document. 1

- Digital Confidential -

Executive Summary

Charter
Recommend how to retool Digital Software Engineering to provide a contemporary
software development environment (tools and technology) to:

• Ensure that Digital software engineering technology reflects (and is competitive
with) industry practice.

• Provide for manageability and reusability of Digital's source code base ..

• Address needs of Digital's software engineers.

• Contribute to engineering cycle time reduction goals.

Requirements
• Windows/NT, as well as OSF and WindowslDOS, host development desktops.

• OSF and NT development servers.

• VMS servers for VMS software development.

• OSF, VMS, and NT target platforms.

• Cross development.

• Distributed development (local and wide area) by groups sharing code and
process.

• Excellent support for use of C and C++.

• Support reuse

Retooling Software Engineering Executive Summary • 3

- Digital Confidential -

• Support use of 0-0 development technologies.

• Scalability of the software development environment across a range of projects (in
terms of people, code, and complexity).

• Other desirable attributes (which can be traded off in favor of other goals) include:

• Support for DOS and WindowslDOS targets.

• Support for Macintosh targets.

• Common technology across heterogeneous development desktops and servers.

Recommendations
• Establish an ongoing central function within Engineering that will continue to

identify, evaluate, acquire, and support use of contemporary software development
technology across Digital Software Engineering.

• World Wide Web technology and client tools to create a Digital Software
Engineering infrastructure for discovery and reuse.

• Establish a Reuse Library Support Center.

• Microsoft Visual C++

• Premia Codewright

• FUSE/OSF

• Microsoft Windows API and Microsoft Foundation Class Library (MFC), using
WindIU from Bristol Technologies on VMS and OSF.

• Unified" COM / OLE / CORBA distributed object model coupled with 3rd party
base class library.

• Fix SDL for current users, and to help dependent groups migrate to C and C++.

• DEC C -check option as standard filter whenever DEC C compiler is used for
compilation.

• Gimpel Software's Flexelint to check C and C++ sources during development.

• ClearCase distributed configuration management and system building technology
from Atria Software.

• Establish a Software Testing Expertise Center.

• tcl as the single portable test scripting language for all platforms.

• tclREX for random testing.

• Jig integrated with tcl for component testing.

• Variety of Debug technology is necessary.

• Performance Analysis:

• PCAon VMS.

RetOOling Software Engineering Executive Summary • 4

- Digital Confidential -

• PCA PC-sampling collector (port to OSF and NT).

• ATOM/OM for cycle-counter collector (port to NT).

• Portable analyzer in C/C++ with tel-based user interface.

• tcl/tk to develop portable performance presentation programs.

Retooling Software Engineering Executive Summary • 5

- Digital Confidential -

Introduction

At the 1993 Engineering Senior Technical Leaders Forum, one of the key Engineering
issues identified was that Digital Software Engineering did not consistently utilize (and did
not have available) contemporary software development tools and technology.

In order to succeed and survive as a software technology provider, software engineering
in Digital needs improvements in:

1. Software development productivity

2. Software time-to-market

3. Software defect prevention

4. Software defect time-to-repair

Digital also needs to provide a software engineering environment that provides it's
software developers with contemporary tools and skills,and that will attract outside
technical talent to Digital.

This is partially a management issue, resulting from planning,process, and operational
issues that cannot be effectively addressed with software development technology.

However, it is partially a software development technology issue. Much software
development within Digital Engineering is being done using the same tools and
methodologies that were used ten years ago.

In order to improve Digital's software engineering performance and standards, we must
provide the infrastructure and tools to advance Digital's software engineering practice.

The result of these observations was to charter an effort to understand the opportunities to
improve the technology available to Digital Software Engineering, and make
recommendations reflecting the following purposes:

RetOOling Software Engineering Introduction • 7

- Digital Confidential -

1. Identify candidate technologies, evaluate these technologies, and recommend
contemporary software development tools and technology for Digital Software
Engineering.

2. Gain Engineering commitment to invest in and implement these improvements to
the software development environment.

3. Enable identification of the appropriate pilot projects or groups who will be early
adopters in FY94.

4. Provide the data necessary for budget planning and for deployment planning,
including the data necessary to plan

- Capital Equipment

- 3rd Party Software

- Training

- Technology Development

- Support

5. Provide the data necessary to plan the introduction of and transition to the
recommended tools and technologies by groups and projects.

Implementation of these recommendations should begin with pilot projects FY94, and
serious transition to the new environment in FY95.

This effort must be the fIrst phase of ongoing improvement of Digital's software
development environment: additional work will be needed to address software
development activities beyond the scope of this effort, and to respond to discoveries made
after this effort is completed.

Goals

• Provide a software development environment that meets the needs of Engineering today,
and which looks to the future.

• Reflect Industry Practice

• Utilize platforms and technology for software development that are representative
of the environment to which customers, ISV s, and the industry are moving.

• Move Digital Software Engineering into the developmental mainstream.

• Be positioned to ride and exploit the development technology innovation curve.

Retooling Software Engineering Introduction • 8

- Digital Confidential -

• For Digital's Software Code Base

• Help protect and maintain the security integrity of the source code pool.

• Improve code quality, reliability, maintainability, and supportability.

• Increase software reuse.

• Improve the management and sharing of source code.

• For Digital's Software Engineers

• Provide a contemporary technical environment that supports keeping skills current,
to which the technical literature being published is relevant, and from which
Digital's software engineers get professional satisfaction.

• Attract talented engineers from outside Digital.

• Retain talented engineers.

• Make sure that Digital Software Engineers have the tools they need to get their job
done.

• Contribute to Engineering Cycle Time Reduction. Achieve modest Phase 2 improvement,
and additional cycle time reduction by overall productivity across the software lifecycle:

• Improve software development productivity, time-to-market, defect rate, and time
to-repair.

• Attract and retain superior people.

• Reuse

• Less maintenance effort; for example:

• Improved quality (improved code, reuse, testing, performance)

• Improved debugging

• Improved configuration management (reconstruct sources for complex
software configuration to diagnose system engineering problems)

• Etc.

Requirements
The overall requirements guiding these recommendations include:

• Windows/NT, as well as OSF and Windows/DOS, host development desktops.

• OSF and NT development servers.

RetOOling Software Engineering Introduction • 9

- Digital Confidential -

• VMS servers for VMS software development.

• OSF, VMS, and NT target platforms.

• Cross development.

• Distributed development (local and wide area) by groups sharing code and
process.

• Excellent support for use of C and C++.

• Support reuse

• Support use of 0-0 development technologies.

• Scalability of the software development environment across a range of projects (in
terms of people, code, and complexity).

• Other desirable attributes (which can be traded off in favor of other goals) include:

• Support for DOS and WindowslDOS targets.

• Support for Macintosh targets.

• Common technology across heterogeneous development desktops and servers.

Retooling Software Engineering Introduction • 10

- Digital Confidential -

These requirements, combined with a certain amount pragmatism, resulted in the
following Goal Matrix for supporting various target platforms from various developer
desktops:

Developer
Desktop

NT/AXP

NT/Intel

Win/DOS

OSF/AXP

VMS/AXP

•••••••••••••••••••••••••••• Target for Development ••••••••••••••••••••••••••••

NT/AXP NT/Intel Win/DOS OSF/AXP VMS/AXP

Yes Off the Shelf Off the Shelf Yes Yes

Yes Off the Shelf Off the Shelf Yes Yes

No Off the Shelf Off the Shelf No No

No No No Yes No

No No No No No

Developer Desktop = The desktop platform with which the engineer
directly interacts.

Target for Development = Platform for which software is being developed.
The target system must host the technology required
for system build, testing, debugging, and
performance collection, independent of the desktop
used by the engineer.

Yes = A Goal of these Recommendations

No = Not a Goal of these Recommendations

Off the Shelf = Goal, but recommendations assume only the use of commecial
technology available off the shelf for the development software
required on the target platform (debuggers, compilers, etc.).
It is a non-goal for Digital to develop or port target-required
technology for these targets.

Retooling Software Engineering Introduction • 11

- Digital Confidential -

Scope
The scope of this effort will be the desktop and server tools and technology supporting the
following software development activities:

• Code Preparation

• Code management

• Code sharing and reuse

• Component and System build

• Component and System test

• Component and System debugging

This sort of activity must be ongoing in support of Software Engineering at Digital, and
future work should address other opportunities in a wider scope (e.g. design, problem
tracking).

The technologies evaluated and recommended in support of the above development
activities are:

• Software Reuse Technology

• Desktop Interactive Development Environment (IDE)

• Platform Independent GUI Development

• Base Class Library(s)

• C++ Language Use / Subsetting

• Data and Interface Definition

• Source Code Checking / Filtering

• Source Code Management, Configuration Management, System Build

• Testing Technology

• Debugging Technology

• Performance Analysis

RetOOling Software Engineering Introduction • 12

- Digital Confidential -

Non-Goals

• Address all perceived Software Engineering problems

There are many issues in Software Engineering, having to do with requirements, strategy,
decision-making, communication, education, etc.

These recommendations are purposefully and exclusively focussed on the tools and
technology used by Digital software engineers in the code/buildltest/debug cycle.

• Address software development process improvements

It is not a goal of these recommendations to define new software development processes
or improvements, or to address application of development process methods including
Contextual Inquiry, QFD, YCA, SGIA, Six-Sigma, SEI Assessment, Demming Methods,
Concept Engineering, TQM, Formal Inspections, Meetings-that-Work, Change
Management, Yoice of the Customer, etc.

There are a number of parallel efforts addressing software development process within
Software Engineering. This effort is complementary.

We expect that these recommendations will be consistent with the implementation of a
well-defined and repeatable software development process.

In the absence of a plan to widely implement software development process changes or
improvements, these recommendations can address their stated goals without direct
reference to such process changes or improvements.

• Provide a complete Project Plan for deploying the recommended tools and technologies.

Rather, the purpose is to provide the information necessary to write such a Project Plan.

• Establish goals for implementing these recommendations in individual projects and
organizations.

Rather, the purpose is to provide the information necessary for individual projects and
organizations to plan and commit implementation of these recommendations, as
appropriate to each project and organization.

Each project and organization has specific attributes and constraints that will make
implementation of these recommendations a highly individual exercise.

RetOOling Software Engineering Introduction • 13

- Digital Confidential -

• Provide a Change Management Plan for introducing new tools and technologies.

Such a plan will be a function of both the general Project Plan for deploying these
recommendations, and the specific plan to implement them in each organization.

• Recommendations for any of the following development activities and technologies:

• Requirements Analysis

• Design

• Rapid Prototyping

• Project Management

• Inter-product dependency management

• Product Documentation

• Installation Procedures

• Software submission to manufacturing

• Software manufacturing

• Problem reporting and tracking

• Metrics and measurement of productivity and reliability (such as tools to support
application of QSM).

These activities and technologies may be addressed by parallel efforts, or by future phases
of this effort.

• Recommendations for Compilers

Choice of compiler can be a critical decision for a software project or organization.

However, the technical and sourcing issues around compilers generally require that a
number of compilers be supported for internal use, and in addition there are parallel efforts
within engineering to recommend compiler strategy for internal development.

These recommendations have not assumed or recommended any particular compiler
technology.

• U sing what we build

To the extent that Digital builds or has access to technology which evaluates as equal or
superior to competitive technologies, choosing the Digital-built or Digital-available
technology is the obvious choice.

RetOOling Software Engineering Introduction. 14

- Digital Confidential -

However, biasing technology choices towards Digital-built or Digital-available technology
is an explicit non-goal of these recommendations (versus recommending the best
technology for the job).

• Provide a strategy for software development using VMS desktops.

• Immediate application to System Integration or Digital Information Systems.

Assumptions
Key assumptions that guided these recommendations included:

• In the future, most software engineering technology will execute on the software
engineer's desktop, supported by shared servers.

• Non-desktop servers can be used for source pool management and sharing, builds,
regression testing, and other batch procedures.

• c++ is the base language of choice for Digital software engineering.

• Object Oriented technology (in some form) can help increase productivity and
reuse.

• 3rd party environments and tools are where much of the action is (especially on
Windows desktops), and Digital currently has a severely limited ability to invest.

• The productivity of Digital's software development and maintenance can actually
be significantly increased by application of technology to the coding / build / test /
debug cycle described above.

• The capital investment is possible to provide the necessary desktop environment
and server-based infrastructure to Digital's software engineers.

• This effort is the ftrst phase of ongoing improvement of Digital's software
development environment: additional work will be needed to address software
development activities beyond the scope of this effort, and to respond to
discoveries made after this effort.

Relationship to Development Processes
It is absolutely clear that, in principle, the most appropriate use of software development
tools and technology is in support of a well-deftned, documented, measurable, and
repeatable software development processes.

Ideally, these recommendations would be made within the framework of such a defined
process, and would support that process.

RetOOling Software Engineering Introduction. 15

- Digital Confidential -

Although there are many efforts ongoing within software engineering to define and
improve software development process, implementation plans for such process definition
or improvements are not available today.

These recommendations are complementary to the various development process efforts
underway, and we expect that these recommendations will either work as is, or can be
easily adapted to, any development process definition or improvement implemented
throughout Software Engineering.

Implementation
These recommendations should be implemented by the following program:

1. Establish a project, with qualified manager and technical staff.

These recommendations need to be carried forward and deployed as a project,
with a manager, technical staff, and plan. Subsequent to piloting and full
deployment, this group must support internal tools and technology for Digital
Engineering, acquire and distribute new tools and versions, and keep Digital
Software Engineering on the development technology curve.

2. Initiate Pilots

The next step in the process should be a set of Pilots, begun immediately and
evaluated by the end of FY94. These projects should be identified as soon as
possible (volunteers will be solicited), the appropriate technologies made available
to them, the necessary support made available to them, and the presence
established to collect and understand the lessons learned.

The function of these pilots is to:

• Test these recommendations in the context of real projects.

• Provide the data necessary to modify these recommendations based on real
experience.

• Provide the data necessary for successful wide deployment.

3. Plan wide deployment

Engineering must decide how and at what rate to introduce the recommended
improvements to Engineering, decide the rate at which new desktop hardware and
software will be capitalized, and decide the rate at which the recommendations are
implemented in specific groups.

An implication of these recommendations is that many VMS desktops will be
replaced by NT (or OSF) desktops; this capitalization must be planned.

There should not be a fixed timetable set for all of Engineering. These
recommendations should roll out across Engineering over time, beginning in early
FY95.

Retooling Software Engineering Introduction • 16

- Digital Confidential -

These recommendations should be planned for introduction into individual groups
and projects at a rate and in a manner appropriate to each group (considering the
current technology used by the group, the technology developed by the group, the
group's current and future commitments and schedules, etc.)

4. Manage wide deployment

Wide deployment must be managed, and will require both management and
technical support.

5. Improve and update on an ongoing basis

This effort must be the first phase of ongoing improvement of Digital's software
development environment: additional work will be needed to address software
development activities beyond the scope of this effort, and to respond to
discoveries made after this effort is completed.

In addition, these recommendations include the creation of a small number of
"expertise centers" to support use of testing technology, reuse technology,
configuration management technology, etc. across Software Engineering. These
expertise centers should be managed by the same person that manages the general
Internal CASE project.

Summary of Costs
The following table summarizes the costs associated with implementing these
recommendations. These costs are more fully explained and associated with specific tasks
and actions in the detailed recommendation sections.

Some caveats apply to these costs:

• These are only estimates, and do not have the accuracy of a project plan.

• This table is intended to provide a "ballpark" view of costs across Software
Engineering. In all cases, the detailed sections are the final authority, and
should be consulted by the seriously interested reader.

• The costs in this table do not include capital hardware.

• Some costs are still to-be-detennined, as noted below and in the detailed
sections.

• The indicated software costs are probably worst case, and represent the
"typical price"; using Digital's leverage for site or volume license
agreements is likely to lower these software costs significantly.

RetOOling Software Engineering Introduction • 17

- Digital Confidential -

Labor Costs Across All Software Engineering

Must Be Done

Software Before Before Ongoing
Costs per Pilots Wide Infra-
developer (person Utilization structure

months) (person (persons)
months)

General 1* 3 person

Reuse 2 3 person

Windows $200-$350 4 0.5
IDE person

OSF/IIDE 24 1 person

GUIAPIs see details 18

Base Class $100-$500 3 3
Library

Interface 12
Definition

Code $200-$400 1 0.5
Checking person

Testing variable 18 4 person

Debugging see details 3 39 see detail
6 tasks tbd

Performance 9 14

Config. Mgt. $ 1 ODD? 1
(see details) 1 task tbd

Should Be Done

Before Before Ongoing
Pilots Wide Infra-
(person Utilization structure
months) (person (persons)

months)

6

6 6

24 6 1 person
1 task tbd

12 2 person

Other
Cost

$ 120K/year

$100Konce

* A manager / driver for implementing these recommendations must be funded and named. This 1
month of labor represents the startup time for this person.

Retooling Software Engineering Introduction • 18

- Digital Confidential -

Hardware Considerations
Analysis of the recommended development environment for Software Engineering did not
reveal any startling new requirements.

With a few exceptions for certain special cases (noted in the detail sections), the
recommended software development tools and technology can be supported by a properly
configured software development workstation.

In 1994, such a workstation consists of:

• A fast processor (50 Mhz Intel or 166 Mhz Alpha, or better)

• 32 - 64 MBytes main memory (64 recommended for OSF)

• 800 or more MBytes local disk (e.g. two (2) RZ25 disks)

• Large color monitor (VRCI6 minimum, 19" better)

• 3.5" floppy

• CD-ROM

• Ethernet board

One exception to this simple story is the network bandwidth between workstations and
servers, and between servers.

If Digital Software Engineering achieves a true client/server environment, including
distributed configuration management and parallel builds, the network bandwidth must be
available to support this.

For some sites and groups, these recommendations may stress the network more than has
previously been experienced.

In addition, effective multi site development (particularly development that includes
overseas groups) requires high bandwidth long haul network connections.

RetOOling Software Engineering Introduction • 19

- Digital Confidential -

Reuse Technology Summary

Problem Statement
According to the Booz-Allen study, Digital's software products are twice as
expensive to build and maintain and are of lower quality than competitors'
products. This gives companies like Hewlett-Packard a large competitive
advantage. One of the reasons for their success is software reuse.

Software Reuse requires culture and process changes, which are currently
underway at Digital in the form of several different reuse and process improvement
initiatives. The initiative that is most closely allied with this Internal CASE
technology recommendation is the Engineering Excellence Reuse Change program.
An aspect that each of these initiatives shares is the need for a technology for
discovering reusable resources.

Digital's current resource discovery process is chaotic. Engineers searching for an
existing component, document, or even someone that has knowledge that they
need must do all of the foot work:

• searching notes conferences

• asking other engineers they know or meet in the hallway

• looking through public directories for file names they recognize

• reading through a usenet newsgroup

• searching for a name archie recognizes

• searching through FTP file archives on the Internet

This process takes a long time, requires expertise with many different tools, and
the results are uncertain. This leads to the perception that it's often faster to recode
than reuse.

Retooling Software Engineering Reuse Technology Summary • 21

Goals

- Digital Confidential -

The technology recommended will:

• Increase the amount of source code sharing and reuse in all forms across
Software Engineering,

• Increase the exposure to and communications with other software engineers
outside Digital,

• Be readily accepted by Digital engineers and incorporated into the culture
(rather than change the culture), and

• Meet all of the critical requirements of the Engineering Groups.

Summary of Recommendations
• Deploy the World Wide Web tools to create a Digital Software Engineering

infrastructure for reuse discovery

• Providing style guides, concept dictionaries, standard abstract templates, and other
tools to ensure consistency across information providers

• Establish a Reuse Library Support Center for ongoing enhancement and
consulting.

Summary of Rationale
Finding software components is just one part of software engineering. If we ignore
the information services available to us through the network we miss a practical,
available, and growing infrastructure to enable Digital software engineers to tap
into the attitudes and concerns of the customer base, to interact with their peers in
other companies and countries, and to distribute software quickly and efficiently to
customers. To use the network and tap into these information sources, Digital
must use the tools that the Internet community uses. With a small amount of
incremental work, the same tools we use for finding publications, conference
announcements, phone numbers, weather maps, software patches, and news
articles make a very capable Reusable Resource Discovery System

Retooling Software Engineering Reuse Technology Summary • 22

- Digital Confidential -

Windows Development Environment
Summary

Problem Statement

Goals

Digital needs to provide its software engineers with a contemporary software
engineering environment on the Windows desktop. This environment should
provide Digital's software developers with contemporary tools and skills and also
help attract technical talent to Digital.

Individual developer productivity is heavily dependent upon the tools available.
However, good tools do not necessarily work together, and do not present a
consistent, easy to use interface to the developer.

In addition to lower productivity, this may also incur opportunity costs by raising
barriers to process changes or to teamwork. These opportunity costs are
frequently not as visible, but more significant.

• Provide Digital's software engineers with a state-of-the-industry development
desktop, encouraging use of contemporary tools and skills.

• Increase productivity by encouraging the use of IDEs.

• Increase acceptance by being open and avoiding 'religious' issues.

• Provide flexibility for the different technical and business needs of product groups.
Address the needs of mainstream developers and projects, while minimizing the
impact on individuals who must use one or more different tools (different compiler
etc.)

• Allow use of multiple compilers from multiple compiler vendors.

• Integrate the tools recommended by the Internal CASE effort.

• Scale from small to large projects

• Support use of both Intel and AXP for development desktops.

• Although the IDE does not itself support cross-development, allow access to and
integration of cross-development tools.

Retooling Software Engineering Windows Development Environment Summary • 23

- Digital Confidential-

Summary of Recommendations
I

A Windows-based integrated development environment (IDE) is the current
industry approach to address these problems for the Intel and AXP based
Windows desktop. (The Windows desktop' is defined as MS-Windows v3.1 or
later, and Windows/NT.)

• Two-tiered approach to Windows IDE's: allow choice of either Microsoft
Visual C/C++ (including the Microsoft compiler), or the Codewright
editor as the IDE (with choice of compiler not determined by Codewright).

• Extend and customize VC++ (via extending the Tools menu) and
Codewright (via the support extension / customization interfaces) to
integrate the tools and technologies otherwise recommended by the
Internal CASE effort.

• Customizations of the Codewright IDE should use a generic interface
whenever possible, so that a user can swap compilers, s/w configuration
managers etc. with as little impact as possible.

• These extensions and customizations should be the responsibility of a
central Internal CASE Project, which should continue to develop, maintain,
and distribute the extensions to the standard IDEs.

Summary of Rationale
Microsoft Visual C/C++ has the following advantages:

• It is an industry standard visual GUI shell

• Populated with well-integrated tools

• Directly supporting other strategic initiatives, such as COM / CORBA
(assumption), and the MFC GUI interfaces (recommended by Internal
CASE as the standard GUI API).

• Supporting PC cross-development, including Macintosh.

• Available on AXP (in progress) and Intel, on NT Windows and DOS
Windows.

However, Microsoft VC++ has the following disadvantages and limitations that
limit its applicability to certain projects and environment:

• Extensibility is very limited; other tools can be invoked as applications by
extending the Tools menu, but there is no real integration between the
environment and the invoked tool. DLL's cannot be invoked.

• There is no choice of compilation tools (compiler, debugger, etc.); the
Microsoft tools must be used.

Retooling Software Engineering Windows Development Environment Summary • 24

- Digital Confidential -

• YC++ was designed as a tool for individuals and small projects; it does not
currently scale well to large projects and code bases.

Codewright, an editor-based interactive development environment, has the
following advantages versus Microsoft YC++:

• Codewright is open and extensible: it ships with source code and has a
well-designed architecture intended for user extension and customization.
This allows good integration of external tools and invocation of DLL's,
provides a way to bypass scaling problems (by pushing them down into the
integrated tool), and allows well integrated access to cross development
tools.

• Codewright is available on both Windows 3.1 and Windows NT.

• Codewright does not dictate choice of language, compiler, debugger, etc.

• Codewright editor emulation includes illM CUA editor, Brief, UNIX vi,
and Emacs. Codewright is a good environment for the "power developer"
and developers who frequently utilize non-Windows desktops.

However, there is not yet any plan for a native AXP version of Codewright.

OSF/1 Development Environment
Summary

Problem Statement
Digital needs to provide its software engineers with a contemporary software
engineering environment on the aSF/1 desktop. This environment should provide
Digital's software developers with contemporary tools and skills and also help
attract technical talent to Digital.

Retooling Software Engineering OSF/1 Development Environment Summary • 25

Goals

- Digital Confidential -

Individual developer productivity is heavily dependent upon the tools available.
However, good tools do not necessarily work together, and do not present a
consistent, easy to use interface to the developer.

In addition to lower productivity, this may also incur opportunity costs by raising
barriers to process changes or to teamwork. These opportunity costs are
frequently not as visible, but more significant.

The goals for an IDE on OSF!l is to provide a graphical software development
environment that:

• Provides Digital's software engineers with a state-of-the-industry development
desktop, encouraging use of contemporary tools and skills.

• Increases productivity by encouraging the use of an IDE.

• Meets the needs for development for an OSF/l target.

• Increases acceptance by being open and avoiding 'religious' issues.

• Provides flexibility for the different technical and business needs of product
groups.

• Allows for easy integration of tools, especially the tools recommended by the
Internal CASE effort.

• Scales from small to large projects

• Allows access to and integration of cross-development tools ..

Summary of Recommendations
• DEC FUSE as the Integrated Development Environment (IDE) for OSF!l

development.

• Modest enhancement to FUSE in order to meet engineering's needs.

Summary of Rationale
• FUSE meets or exceeds most of the Internal CASE IDE requirements for an OSF!l

desktop and target.

• FUSE is populated with a rich set of highly graphical and tightly integrated tools.

• The FUSE tools are layered on top of native UNIX tools, allowing engineers to "break
out" and work in the native UNIX environment as needed.

• The FUSE architecture is open and allows for easy integration of additional tools.

• The architecture is well designed for distribution and FUSE can with some investment
be extended to VMS targets.

RetOOling Software Engineering OSF/1 Development Environment Summary. 26

- Digital Confidential -

• Alternatives to FUSE (e.g. Softbench, Centerline, etc.) have essentially the same
limitations that FUSE has, and do not offer significant additional advantages in the
Digital Engineering environment. These alternatives also do not exist on or support
OSF/l today.

Portable GUI Programming Interface
Summary

Problem Statement

Goals

Graphical User Interface (GUI) programming on multiple platforms currently
requires recoding per windowing system.

• Developers of Digital applications with GUI components are currently
spending significant resources developing and maintaining multiple parallel
interfaces for Windows, Motif and Macintosh.

• Some groups have investigated various solutions/work -arounds for this,
resulting in a hodge-podge of techniques and wasted analysis effort.

• Currently, there are no known solutions with coverage of Digital's strategic
platforms, resulting in Alpha AXP being less attractive to ISV s.

These recommendations are intended to:

• Provide a single GUI coding technique that most groups can use, reducing
wasted effort.

• Leverage third party efforts in GUI design and building tools.

RetOOling Software Engineering Portable GUI Programming Interface Summary • 27

- Digital Confidential -

• Support Digital engineers keeping their skills current.

• Attract talented engineers to Digital.

Summary of Recommendations

Strategic

Use the Microsoft Windows API everywhere as the windowing program interface.
Applications that do not require per-platfonn GUI development1 should design and
code to the Windows API.

Further, for new application development, use the Microsoft Foundation Class
Library (MFC) for aUI access.2

Tactical

• Partner with or otherwise influence Bristol Technologies to make WindIU
and related products available on OSF/1 AXP and Open VMS on VMS and
AXP.

• Create a better licensing agreement with Bristol, based on volume.
(Leverage Windows effort in Open VMS group.)

• Use the soon-to-be-available Windows on Macintosh product from
Microsoft.

Summary of Rationale
By any measure, Microsoft's Windows API is the overwhelmingly predominant
windowing system.

• There are an order of magnitude more desktops installed with Windows
than any other windowing system.

• Most new aUI development tools will be written for Windows.

• Most of the world's aUI programmers program to the Windows API.

lSome groups interviewed for this effort stated that they are under such great competitive
pressure that they must code their aUI on a per-platfonn basis, and that they would not use any
common tool, regardless of type. The competitive pressures that were cited, without metrics,
were look and feel, and perfonnance.

2lssue: Borland's Object Windows Library is another possible alternative for a aUI base class
library. There are corporate level discussions about joint development work between Digital
and Borland which may affect this. However, to be a viable candidate, OWL would have to be
on Alpha NT, Mac and UNIXes. This will require waiting for Borland's "OWL for AppWare"
product, which is probably at least a year away.

RetOOling Software Engineering Portable GUI Programming Interface Summary • 28

- Digital Confidential -

By writing to the Windows GUI, Digital's software will have the best possible
perfonnance and fit on the primary desktop platform-Windows.

WindIU is the best technology for this purpose on non-Windows platfonns.

Prioritization

Taken by itself, this recommendation only rates a medium priority. Digital internal
developers simply don't do enough GUI work for this to be a major area of pain
for Digital Software Engineering taken as a whole.

However, the recommendations made here are highly synergistic with efforts
planned in Open VMS development. With a little oversight work to ensure that the
negotiations reflect the needs of Digital at large, the goals described here can be
accomplished.

Base Class Libraries Summary

Problem Statement
The majority of the programming infrastructure in object oriented environments is
provided by objects from a base class library. Both design and coding style in C++
is heavily influenced by the base class library chosen. Since Digital software
engineering is expected to heavily migrate to C++, Digital Engineering must decide
whether to standardize on one base class library and, if so, what it should provide
and how it should be sourced.

Furthennore, C++ has an early, compile-time binding model that inhibits binary
code binding. C++ client code must bind at compile time to the detailed
implementation of any object it uses; the object implementation virtually cannot be
changed without recompiling the client code. This makes it impractical to deploy
C++ applications or class libraries as executables. Instead they have to be shipped

Retooling Software Engineering Base Class Libraries Summary • 29

Goals

- Digital Confidential -

as source that can be recompiled when supporting classes are upgraded. This is a
serious impediment to large-scale code reuse and practical deployment of class
library based software.

c++ base class library technology should:

• Solve the C++ limitation of early binding and client knowledge of a
service's implementation that retard practical software reuse, sharing, and
deployment.

• Provide a leadership standard C++ infrastructure inherently supporting
internationalization, concurrency, distribution, and persistence.

• Simplify learning C++ by providing focus on what features to use,
encapsulation of difficult or complex features, and commonly needed
extensions.

• Move C++ into an open 00 environment to share objects across other
languages and legacy code, broadening the software reuse base and
facilitating software engineering's move into C++.

• Lead to consistency in C++ design and coding style and to economy of
scale in securing a good C++ infrastructure cheaply.

Summary of Recommendations
• Adopt the CORBA / OLE2 Component Object Model (COM) to provide

the binary standard and late binding necessary for binary reuse and
deployment of C++ code.

• Procure a single standard base class library through the following steps:

• Negotiate with an existing base class library vendor to get a modifiable
source code base for the general C++ base class library.

• Modify that source code base to build inherent COM support, concurrency
support, and internationalization into the library.

• Port the base class library to all the target platforms.

• Add distribution and persistence extensions on top of the library later.

• Use the existing Pegasus project (SDT) to negotiate with the class library
vendor and port/extend the class library.

• Use the future COM products (NOS) to provide object distribution.

• Extend the COM model by adding a full binary inheritance mechanism and
porting an object scripting tool like Visual Basic to Digital's target systems.

RetOOling Software Engineering Base Class Libraries Summary • 30

- Digital Confidential -

Summary of Rationale
• Standardizing on an existing C++ base class library will NOT appreciably help

engineering achieve software reuse nor client/server programming because no
existing library solves the C++ compile-time binding problem.

• No existing base class library has inherent concurrency support. The best in class
libraries are only threadsafe; they don't provide the needed synchronization
mechanisms and their objects are not shareable.

• Microsoft's Component Object Model (COM), built into a C++ base class library,
will greatly impact C++ reuse and distributivity.

• A COM-based base class library will benefit from the expected host of tools the
industry will produce to support and add value to COM.

• Binary binding and concurrency have to be built into the base class library, not
added on top of it.

• There are a variety of existing base class libraries that are acceptable starting points
for a COM-ized class library. The difficulty will be in negotiating a suitable
agreement with a vendor to modify their code.

• If Digital cannot negotiate for a starting code base, we can produce a product
quality COM-based base class library internally in a short time (6 months field
test, 9 months VI).

c++ Language Subsetting Summary

Problem Statement
C++ will be the language of choice for an increasing number of Digital's projects.
The language is powerful, but is easily abused. The problem is to devise a strategy
that maximizes the benefits we get from C++, while minimizing the costs.

Retooling Software Engineering c++ Language Subsetting Summary • 31

Goals

- Digital Confidential -

The wide-spread successful deployment of C++ at Digital could increase
programmer productivity and code reuse; improve communications between
different programming groups; and help attract and retain strong programmers to
the company.

But projects that have leapt recklessly onto the bandwagon have been bruised.
This is clear from the recommendations that Bjarne Stroustrop gives to projects
starting to use C++, which can be summarized: Go Slowly.

The internal case effort should provide a "road map" that can be used by projects
that are adopting C++, to help them harvest the full potential of the language and
avoid the pitfalls.

Summary of Recommendations
Digital's internal case effort should provide

• a well-defined C++ subset to be used for new C++ code written in Digital.

• a conformance checker to test whether code conforms to the subset.

• education in basic object-oriented programming using the subset.

Summary of Rationale
The benefits of C++ are primarily its growing popularity and its support for object
oriented programming. This makes it the language of choice from a long-term
point of view.

The costs are primarily its complexity. A team employing the language for the frrst
time must expect a substantial initial decline in productivity as programmers learn
to use the language effectively.

The benefit-to-cost rratio of C++ can be increased by subsetting the language.
Much of the learning experience consists of falling into traps. Most experienced
C++ programmers confine themselves to some subset; many projects and teams
using C++ provide written guidelines for using the language; there are a number of
published books of such guidelines.

A subset is more valuable if it can be enforced by an automatic conformance
checking program. However, this is technically much more difficult than merely
formulating vague guidelines. Every effort should be made to define a subset that
can be enforced by a checking program. Such a checker must be able to deal with
programs that include code from outside the subset. The definition of such a
subset and checker should be a part of the next phase of the internal case
initiative.

One of the main benefits of C++ is its support for object-oriented programming.
Programmer education is required to realize this benefit. An internal education

Retooling Software Engineering C++ Language Subsetting Summary • 32

- Digital Confidential -

program appears to be the best way to achieve this in a focussed and cost-effective
way. Setting up such a program should also be a part of the next phase of the
internal case initiative.

Status of Detailed Recommendations
We are making no detailed recommendations at this time.

This must be an action item at some appropriate near-future time.

At the time of this writing, the Digital C and C++ compiler strategies for internal
use were undergoing fundamental examination and revision by an effort outside the
Internal CASE effort.

In addition, the COM (CORBA + OLE) initiative is just beginning to be
understood within Engineering. The use of COM will influence the C++ object
model utilized, which will influence the language features recommended and how
those features are used.

All this in turn affects the recommended subset definition, the conformance
checking tool, and the choice or development of an education program.

The effort to provide language guidelines to Digital Software Engineering must
continue, but detail could not be provided in time for this set of recommendations.

D'ata and Interface Definition Tools
Summary

Problem Statement
"Interface Definition" can have several possible interpretations. For the purposes
of this report, it is defined to be a mechanism by which multiple languages share
data structures and procedure definitions, either for communication or in an

RetOOling Software Engineering Data and Interface Definition Tools Summary • 33

Goals

- Digital Confidential -

environment where it is necessary for multiple languages to share the same
deftnitions.

In environments where this is required, it is highly desirable to maintain a single
definition. Maintaining multiple language copies of the same definitions is error
prone and labor intensive.

The problem is how to write these definitions once and yet have access to them
from all languages which need them. The solution must meet the demands of the
development environment for performance, stability, and support.

Digital Software Engineering appears to be moving towards a greater reliance on
C and C++, rather than other (multiple) languages.

In addition, the choice of interface definition language for data structures and
program interfaces in a distributed heterogeneous is not yet clear, and because of
industry activity, cannot be dictated by these recommendations.

In light of these factors, the goal is to meet the requirements for multilanguage
interface definition language(s) and tools for those who currently depend on these
capabilities, in the most cost -effective manner possible, while providing a growth
path towards the future.

Summary of Recommendations
The only firm requirements in this area come from VMS engineering. However,
others have expressed interest in this technology or potentially will require it in the
future.

The thrust of these recommendations is to solve the immediate problems of VMS,
and others currently developing or maintaining VMS-based products in multiple
languages, and to provide an evolutionary path towards the future.

• Solidify SDL as an internal development tool.

• Enhance SDL to meet the short-term needs of VMS engineering and others
working on multilanguage VMS-based software.

• Implement a C++/C -> SDL conversion utility to provide an evolutionary
path away from SDL dependencies. (This will allow new definitions to be
written in C++/C, while allowing these definitions to be accessed from
legacy code).

• Enhance SDL to better fit into the CASE tool development environment.

• C/C++ development with no multi-language dependencies will define data
structures and functional interfaces using language-specific means and, in
some cases, using CORBA or DCE IDL.

Retooling Software Engineering Data and Interface Definition Tools Summary • 34

- Digital Confidential -

• Industry activity towards a more abstract interface definition language or
tool, perhaps including support of distributed systems and/or multiple
languages, needs to be tracked for possible adoption by Digital Engineering
when/if appropriate.

Summary of Rationale
Although SDL is hardly strategic for Digital Software Engineering, there are still
important dependencies on it. These recommendations are intended to address the
immediate needs as well as future requirements in this area.

Prioritization

Taken by itself, this recommendation is rather low priority. Digital Engineering
appears to be moving away from dependency on multilanguage software
development, and the problems addressed by these recommendations are confined
to VMS Engineering and a small number of projects doing similar work.

However, the cost of implementing these recommendations is quite modest, and
doing so will have high payoff for VMS Engineering and other similar projects,
and will establish a needed path to the future.

Code Checking Tools Summary

Problem Statement
It is easy for developers to make mistakes that are expensive to correct later in the
development cycle. This problem is likely to increase as Digital Software

RetOOling Software Engineering Code Checking Tools Summary • 35

Goals

- Digital Confidential -

Engineering moves from C to C++, because C++ is a more complicated language,
with far greater complexity and "language traps". Many of these mistakes can be
caught by lint-like code checkers during development

Proper use of code checkers should help find software problems earlier and easier
than current methods.

• Use code checkers to find problems in Digital software earlier and easier that
current methods (reviews, testing, debugging, ...).

• Get developers to begin using code checkers.

Summary of Recommendations
• Projects using DEC C for development should use the compiler's built-in -check

option. This option reports more than 50 questionable practices that could lead to
problems.

• All projects should use Gimpe1's PC-lint to check their C and C++ sources during
development (both individually and during project builds). This is especially
important for projects moving to C++.

Summary of Rationale
The DEC C compiler's -check option flags a large number of potential problems
for little extra effort if the compiler must be used in the software build process.

Gimpe1's PC-lint flags the largest number of potential problems of any of the tools
evaluated. It provides an excellent mechanism for filtering unwanted diagnostics
and runs on the platforms used by Digital Engineering. It is particularly good at
flagging potential C++ problems. This is important because C++ can be more
error prone than C, especially for novice C++ users.

RetOOling Software Engineering Code Checking Tools Summary • 36

- Digital Confidential -

Testing Technology Summary

Problem Statement

Goal

Software testing in Digital is currently ineffective because it is too late, labor
intensive, tedious, and slow.

Make software testing during development and maintenance comprehensive,
efficient, unifonn and simple. This includes finding bugs early, convincingly
demonstrating function and performance, and minimization of human, computer
and software costs.

Summary of Recommendations
• Establish a Software Testing Expertise Center to give the Engineering

testing effort direction, and to provide consulting and guidance on applying
the variety of available testing technologies to the specific testing goals and
proplems of individual projects.

• Provide a Testing Web, giving the latest infonnation on

• Tool availability and evaluation

• Technology consultation and courses

• Contract for and support needed tools not otherwise available

• Component testing capability for C/C++ (based on McKeeman Jig
Generator)

• Port UNIX DejaGNU (Tcl-based) command line driven test
scripting to VMS and NT

• Random testing capability (based on TclREX)

• Model based testing

Retooling Software Engineering Testing Technology Summary • 37

- Digital Confidential -

Summary of Rationale
Testing has a rich set of categories, a few of which apply to each project.
Currently available testing tools are highly competitive and therefore changing.

Therefore we do not recommend a choice, but rather a means of choice where tool
and method evaluation is centralized and made available to developers. Two
necessary testing technologies (component and random) are not available
commercially, therefore need to be developed. Using a single scripting language
for all platforms simplifies many aspects (especially portability) of build systems
(especially test systems).

Debugging Technology Summary

These recommendations address some of the problems inherent in developing
software, and the solutions recommended to diagnose and eliminate these
problems.

These recommendations address the problems of developing software for VMS,
OSF, NT and WindowslDOS given a desktop that is running any of these.
Although the ultimate goal is to have a consistent debugging environment for all
these scenarios, product availability and cost demand a patchwork solution which
is less than ideal.

Problem Statement
The development of software is plagued by a myriad of problems from logic
errors, to coding errors, to problems with the underlying hardware and system
components (the operating system, compilers and run-time libraries among other
things). The goal of these recommendation is to offer productive approaches to
identifying and resolving these problems through various debugging aids. This will
be done in the context of the overall programming environment solution that is
recommended out of the Internal CASE effort.

RetOOling Software Engineering Debugging Technology Summary • 38

Goals

- Digital Confidential -

Beyond the complications inherent in software development, Digital Engineering is
required to develop products which target a wide array of platforms including:
VMSN AX, VMS/ AXP, OSF/ AXP, NT/ AXP, NT/lntel, and WindowslDOS
(Intel). In order to avoid requiring multiple targets development systems on each
engineer's desk, it is necessary to identify development (and debugging) tools
which can be used to cross develop to these various targets from whatever desktop
the developer has3.

Beyond the overall Internal CASE goals of leveraging high quality third party
tools, maintaining the skills of Digital engineers, and making the development
environment attractive to talented engineers; the goals of the debugger
recommendations include providing:

• Solutions to the broad range of problems which plague developers
including: logic errors, coding errors, and memory leaks.

• Debugging aids to the various classes of applications that are developed:
application programs (both GUI and character-cell applications),
kernel/operating system code, drivers, and run-time libraries.

• Debugging tools which are easy to use without overly restricting the
functionality that is available. Where possible, provide consistent solutions
across platforms in order to reduce training and maximize programmer
portability and productivity.

• Debugging tools which are well integrated into the recommended
programming environments (the IDE's).

• Debugging tools to handle the complexities of modem applications such as:
very large applications, threads, distributed applications, and optimized
code.

• Debugging solutions that are easy and quick to configure and set up (for
example not requiring a complete recompilation of the system for simple
operations).

3Limits in the possible combinations of desktops and targets are outlined elsewhere in this
document.

Retooling Software Engineering Debugging Technology Summary • 39

- Digital Confidential -

Summary of Recommendations
The problems of the developer are addressed in multiple ways depending on the
desktop (host) platform and the target platfonn, and depending on the type of
problem (for example: threads) and type of application (for example: user
application versus kernel). A summary of the recommendation (in arbitrary order)
is presented here:

Prelim Testing

VC++, Windbg VC++ V1.5 for DECladebug &
Multiscope? Prelim Testing Windows GUI

Key: ~ This mix of host and target is not a requirement by overall Internal CASE effort

o Denotes a native development environment (i.e. OSF->OSF versus OSF->NT)

eXcursion
wNMSDebug
& Sys-code
Debugw/GUI

eXcursion
w/VMSDebug
& Sys-code
Debugw/GUI

VMS Debug &
Sys-code
Debug w/Motif
GUI

As this chart shows, there are a mix of recommended debugging solutions. The
reason for this is

• The general lack of availability of third party debug solutions on NT, and
particularly on NT / AXP

• The further lack of cross-platform debugging solutions to and from NT

• The fact that unique tools are often required in order to solve the complex
and specialized problems which come up in software development.

RetOOling Software Engineering Debugging Technology Summary • 40

- Digital Confidential -

The shaded squares with "NI A" in them are not addressed by the Internal CASE
effort, and squares with "?"-marks in them indicate the lack of a near-tenn
solution. VMSN AX and Ultrix/RlSC are not listed in the matrix; these platfonns
are not a priority for the Internal CASE effort. The details of the platfonns above
are discussed in the sections below:

NT Hosted Development

For native application debugging on NT: The Windows development
environment recommendation is two-tiered with VC++ as the standard, closed
environment and Codewright as the open, extensible environment.

That VC++ product is essentially a closed environment precludes the effective
integration of third party debuggers. This means that the default solution for
application debugging on NT is restricted to the VC++ debugger. Restricting
developers to a single debugger (on NT or any other platfonn) is unrealistic given
the variety of complex problems that developers have. (Symantec is working to
port their Multiscope debugger to NT and it is expected to work with the VC++
symbol table on NT but it is not clear when this will be available.)

The second tier IDE solution of Codewright is an appropriate environment to
integrate such debuggers. At the moment though, there are no good third party
debuggers on NT -- the only one currently available is Windbg from Microsoft
which has many deficiencies. 4

• The recommendation is therefore to rely on VC++ and Windbg for now but
to drive internal or external developers to address the debugging needs on
NT (particularly on AXP). One other tool which is recommended is
BOUNDS-CHECKER (from NuMega) which is being actively ported to
NT!Intel.We should encourage the vendor to port to NT/AXP.

For native kernel debugging on NT: The solution for kernel development on NT
is restricted because of the fact they will be debugging some of the code that might
be needed to run the debugger.

• The recommendation is to use Windbg as the remote debugger (between
homogeneous NT systems).

For application cross-debugging targeted toward Windows/DOS: There are
no solutions now available for cross-debugging Window sID OS applications from
an NT system, but there is a productive use of a NT /Intel system that can be used
to develop WindowslDOS applications:

• Use the upcoming VC++ V1.5 for DOS on an NT!Intel system to generate
WindowslDOS code.

4 NuMega's Soft-ICE/W on Window sID OS was evaluated, but it neither applies nor is it available
on NT. Symantec's Multiscope debugger on WindowslDOS is also appealing but isn't available
either. DECladebug is a possibility depending on the level of investment we want to put into
DECladebug on NT (AXP and Intel).

Retooling Software Engineering Debugging Technology Summary • 41

- Digital Confidential -

Using VC++ will allow preliminary testing on NT and final testing of the
same code on WindowslDOS. This will provide a superior development
platform for DOS developers at the expense of having a DOS and NT
systems available (although rebooting the Intel PC between NT and
WindowslDOS is a possibility).

• Development of a traditional cross-debugging environment by Digital
should be avoided.

For kernel cross-debugging targeted toward Windows/DOS: There are no
tools available to aid in the cross-debugging of Window sID OS kernel code from
an NT platform.

• This is not worth investing in.

For application and kernel cross-debugging targeted toward OSF:

• Remote debugging from NT to OSF could be addressed through having
DECladebug cross-debug applications that run on OSF. A Windows GUI
is needed to have windowed debugging, otherwise, dbx -sty Ie character cell
debugging would be the default.

• If no cross-development is needed from NT to OSF, then an eXcursion
window can be used to debug the OSF applications using the DECladebug
debugger (w/GUI) on OSF5.

• Cross-kernel debugging depends on the integration of the kernel debugging
capabilities into DECladebug.

• eXcursion is also a possibility for Kernel debugging. An eXcursion
approach requires network access to source code.

For application and kernel cross-debugging targeted toward VMS:

• The debugging solution from NT and Window sID OS platforms to VMS is
to use eXcursion to run the VMS Debug product. Network access to the
source code is required.

Windows/DOS Hosted Development

For native application debugging on Windows/DOS: The solutions available on
this platform are the broadest and provide us with something to aspire towards on
NT/AXP.

• The debugger for use with the VC++ IDE is the VC++ debugger (because
that environment is closed).

• The Multiscope debugger is the debugger of choice for it's general
debugging functionality but it's use with VC++ is restricted to the use of

5 DECladebug currently runs on NT/AXP and could easily be made to remotely debug OSF
applications.

Retooling Software Engineering Debugging Technology Summary • 42

- Digital Confidential -

C7 compatible symbol tables. Some integration of Multiscope with the
Codewright IDE would make sense.

• For special purpose debugging (like kernel debugging or debugging
involving system interactions) the Soft-ICEIW debugger from NuMega is
the debugger of choice. In addition the use of BOUNDS-CHECKER is
also recommended.

OSF Hosted Development

For native application debugging on OSF:

• For developers doing native development on OSF, the recommendation is
to use DECladebug as a part of the FUSE environment. This is consistent
with the current debug strategy of the corporation.

For kernel debugging targeted toward OSF:

• For native kernel development we recommend that integration of the kernel
functionality currently included in the kdbx into DECladebug.

For application and kernel cross-debugging targeted toward VMS:

• For developers who have OSF desktops and want to develop toward VMS,
the FUSE environment with the integrated Corporate Debugger aUI6 will
remotely connect to the VMS Debug product on VMS and allow cross
debugging of VMS (AXP or V AX) applications or a VMS/ AXP kernel.

VMS Hosted Development

For native application debugging on VMS:

• The recommendation is to use the current VMS Debug product (with its
Motif aUI) for all application development.

• Additional Motif workstations are recommended for those situations where
aUI debugging is hindered by debugging on the same screen as the
application being debugged.

• Worthwhile investments could be made in improving the debugging of aUI
applications and making improvements in the support for debugging
distributed and optimized applications.

• This recommendation is equally appropriate for AXP and V AX
development although there is a question as to whether the investment in
new functionality is worthwhile on V AX (unless it comes free with the
changes in the AXP debugger7).

6 The FUSE aUI is being replaced with the Motif aUI that is shared between VMS Debug and
DECladebug.

7 The AXP and V AX Debug products share most of their code.

Retooling Software Engineering Debugging Technology Summary • 43

- Digital Confidential -

For kernel cross-debugging targeted to VMS:

• For AXP kernel development, use the enhanced VMS Debug product
developed by the SID and EVMS Kernel Group (this includes the VMS
Debugger with the Motif GUI and enhancements for kernel debugging).
We recommend the inclusion of functionality of the existing delta and SDA
products into this debugger.

• For V AX Kernel debugging, rely on xdelta rather than port these
capabilities to V AX.

• Although cross-development is common in debugging the operating
system, it is unlikely that VMS developers will require additional hardware
since they already do cross-debugging with more primitive tools now.

For application cross-debugging targeted to NT/Intel: There are no cross
debugging products currently available which will allow users with a
Windows/DOS desktop to debug NT applications. There may be something that
appears on the market in the future.

• There isn't currently enough demand to invest in developing a solution
here.

Summary of Rationale
Same

Debugger
Everywhere Cost Effective

& Productive
Solutions

The goal of delivering the same debugging solution across all host and target
platforms seems noble but the cost of developing such a solution and the
effectiveness of such a solution weighed slightly heavier in this recommendation.
The balancing of these two issues are addressed in the various rationales below and
shouldn't be considered static; decisions around the IDEs used on the platforms
and what Digital's priorities are play an important factor on the recommendation.
The recommendation at the moment is to postpone recommending a single unified
solution and reassess at a later time.8 In general the strategy around debugging
solutions should be monitored and should evolve as circumstances (like NT tool
availability) and needs change. The rationale below is broken down in a similar
way as the Summary Recommendation Section above -- by desktop and target
platform.

8 The likely candidate for a unified debugger for all native and cross platforms is DECladebug. It
is running on OSF/AXP, NT/AXP and Ultrix/RISC, it has been used for remote debugging and
is the focus of current debugger language enhancements.

RetOOling Software Engineering Debugging Technology Summary • 44

- Digital Confidential -

NT Hosted Development

For native NT debugging: For NT debugging: the default debugger is the VC++
debugger since the VC++ environment precludes the integration of any third party
debuggers. This could change depending on the source licensing agreement Digital
strikes with Microsoft.

The Windbg debugger is the only other solution (besides several kernel debugging
tools) that is available. The popular WindowslDOS debuggers are not yet available
on NT and although DECladebug is running internally on NT, it is not at a par
with PC-based debuggers.

It is premature to select a debugger with such a narrow choice.

We should 1) use the default choices for now, 2) encourage third parties to
provide debuggers for NT/AXP, 3) continue to invest in the DECladebug
debugger because of it's support of Digital's compilers, and 4) make a decision
later when there are real choices.

Several Windows debuggers (such as NuMega's Soft-ICElWand Symantec's
Multiscope debuggers) are available.

Unfortunately Soft-ICEIW addresses the specific debugging needs of the
WindowslDOS environment and the functionality isn't applicable to the NT
environment. In discussions with NuMega - they think they will be going to NT
but don't have much sense about the functionality and positioning yet.

The Multiscope debugger is expected to be ported to NTlIntel but the delivery is
unknown.

We must monitor these and other products that appear on NT. Besides the primary
debugger that is integrated into VC++, it is likely that in the future another, more
specialized debugger can be recommended for common use.

For cross-debugging targeted toward OSF: Debugging OSF applications from
NT can most naturally be done with the DECladebug debugger since this debugger
already runs on OSF/ AXP and the code base has been compiled and run on
NT/ AXP. The capabilities to do the remote debugging are already there and would
cost much less to deliver than any other solution.

Integrating this with the VC++ IDE is unlikely given the closed architecture of the
VC++ environment so the most likely environment for this cross-debugging would
be the Codewright environment.

A Windows GUI will need to be developed for this debugger. The approach of
using an eXcursion window is not an adequate solution given the IDE integration
restrictions that would exist.

Windows/DOS Hosted Development

For native application debugging targeted on Windows/DOS: The solutions
available on this platform are the broadest and the selection of solutions was based
on using the best available solutions that map to the IDE strategies.

Retooling Software Engineering Debugging Technology Summary • 45

- Digital Confidential -

OSF Hosted Development

For native application debugging: Of the alternatives for OSF targeted
debugging, DECladebug is the most appropriate.9 DECladebug is being staffed and
planned as a replacement for the dbx debugger for all application debugging in the
Gold OSF release.

The possible alternatives (such as the HP DDE debugger) had only marginal
functional advantage over the DECladebug solution but when the cost of
partnering and porting DDE are considered, the best solution is the one which is
consistent with the current product strategy.

For kernel debugging: Both dbx and DECladebug were evaluated for kernel
debugging, but considering the goal of replacing dbx with DECladebug for
application debugging, we should consider doing likewise for kernel debugging in
order to completely eliminate the dependency on dbx.

For cross-debugging targeted toward VMS: The approach of developing a true
cross development environment from OSF to VMS (by either porting the VMS
debugger to OSF or modifying the DECladebug debugger to cross-debug VMS
applications) was deemed too costly for the small benefit of being able run the
entire debugger on OSF.

The recommendation is to interface the Debug GUI in FUSE running on OSF to
the character-cell debugger running on VMS.

VMS Hosted Development

For native VMS debugging: The needs of VMS developers differ from those of
OSF and NT in that they are primarily working with legacy Bliss code and the
individuals know the environment and tools very well (though the tools are in need
of improvement). Using the existing tools (but with some improvements) is
appropriate: use the VMS/AXP System-code Debugger with it's Motif GUllO and
further integrate the kernel debugging components (like xdelta and SDA) on AXP
so that those other tools can be retired.

9 The alternatives are dbx and HP DDE. Both alternatives are discussed further into this paper.

lOThe System-code debugger on AXP is a product that combines the kernel debugging capabilities
of xdelta and SDA with the VMS Debug product. This provides a source level Motif debugger
for kernel development. This enhancement effort was done by- the EVMS Kernel group.

RetOOling Software Engineering Debugging Technology Summary • 46

- Digital Confidential -

Performance Analysis Technology
Summary

These recommendations address the issues of perfonnance measurement and
evaluation tools needed by Digital Software Engineers for developing application
and system programs. The perfonnance of modem chip CPU s, such as ALPHA
AXP and Pentium, are sensitive to the uses of resources within the application.
Small changes in the uses of the computational resources can make large variations
in the execution speed of the software. We recommend a set of high-level and low
level tools that can be implemented quickly from existing Digital AID and
development projects that can be used to measure the limiting resources for
software.

Problem Statement
During software development, the developers must make a significant number of
choices which cannot be validated, including process structures, software
architecture, and data structures. During the testing process these choices effect
software perfonnance. This is particularly true for modem chips, such as the
ALPHA AXP and the Pentium. These processors execute available instructions at
a high rate, however unusual events may slow these processors to the extent that
their high performance is compromised. Such unusual events include:

• Instruction Cache Misses

• Data Cache Misses

• Secondary Cache Misses

• Translation Lookaside Buffer Misses

• Context switching

• Page Faults

• System Call Overhead

• Subroutine Call Overhead

The software developer needs tools to approximate the cost of these events
together with the normal perfonnance measurement infonnation needed for tuning
the software:

• Real Time for each statement, subroutine, thread, or whole program

Retooling Software Engineering Performance Analysis Technology Summary • 47

Goals

- Digital Confidential -

• CPU Time for each statement, subroutine, thread, or whole program

• Approximate cycle counts for each statement, subroutine, thread, or whole
program

• Correlation of call graph with these other measures

Besides standard measurements, software developers need specialized
measurements that are specific to the particular application. They need tools easily
automate these measurements.

• Provide tools for both pc-sampling and cycle counting performance measurement.

• Include facilities in these tools to measure the performance bottlenecks such as
cache misses (as listed above).

• Also provide the software developer a flexible performance toolkit to develop
special case tools.

• These tools must be available on OSF/l, NT, and VMS, and measure applications
for these systems.

Summary of Recommendations
Digital Software Engineering requires two kinds of performance tools.

• For real-time measurements and measurement of production systems, pc
sampling based tools are requires.

• For detailed measurements including information such as cache-misses
cycle-counting performance tools are required.

The collector for PCA should be ported to OSF/l and NT to provide the pc
sampling collector. ATOM, developed at WRL, should be used as the cycle
counter collector and basic performance toolkit. The following operations must be
performed:

• Port ATOM/OM to operate on ALPHA/NT. ATOM will be the basis for
all cycle-counting collector systems.

• Transliterate the pc-sampling collectors of PCA to operate on OSF/l and
NT. This code is used to provide the pc-sampling collection information.

• Use Tcl/fk to develop display programs that provide the graphical
representation of the information provided by the collectors created above.

• Provide improved documentation and sample systems to demonstrate how
to use ATOM for the development of special purpose measurement tools

RetOOling Software Engineering Performance Analysis Technology Summary • 48

- Digital Confidential -

Summary of Rationale
Digital already has two significant assets in perfonnance measurement tools:

• PCA, which is part of the DECSET tools

• ATOM, which is a research project developed at WRL.

These two systems should be built upon to provide tools for software developers.
General perfonnance tools have two components: the collector and the analyzer.
ATOM and the collector from PCA can be used as the collector components. The
computations needed in the analyzer are simple, but the display of infonnation may
be complex. We recommend that the display component be developed using
Tcl/fk to allow quick implementation of the graphic interface.

More specialized collectors are not excluded by these recommendations.
However, specialized tools (such as IPROBE) are not normally useful to the
majority of Digital software engineers, due to the very fine granularity of the
infonnation collected.

Configuration and Build Management
Summary

Problem Statement
Configuration management is the ability to identify, manage and control multi
versioned software source code and software-related components, such as plans,
specifications, documentation and test suites. All contemporary CM technologies
are layer on some fonn ofversioned source code repository (e.g. CMS, SCCS,
RCS, etc). But true configuration management goes well beyond version control.

Retooling Software Engineering Configuration and Build Management Summary • 49

Goals

- Digital Confidential -

In Digital Software Engineering today there is very little configuration
management technology in use. The technologies that are being used tend to be
home grown and generally bound to idiosyncrasies of the versioned source code
repository (frequently eMS), the Digital environment, or a given project.

In UNIX, DOS, NT and the more enlightened VMS-based projects development
proceeds with essentially the same technological support as was available nearly
two decades ago.

The resulting opportunities for human error, and required labor to manage
development artifacts in a sophisticated way, has a negative impact on both the
productivity of Digital Software Engineering and the quality and support of the
resulting software.

• Contribute to the succcesful development, maintenance, and use of Digital's
software code base:

• Security

• Manageability

• Shareability

• Resusability

• Supportability

• Contribute to improved development productivity

• improve support for parallel work and integration within a given code base

• enhance confidence that what gets built is what the developer intends

• automate the detection and tracking of source dependencies ("includes")

• minimize rebuilding by tracking dependencies and by sharing build results
between developers

• exploit available hardware parallelism to speed up required rebuilds

• Support the required desktop platforms (Alpha/OSF and Windows NT), and
integration into the IDE chosen for each.

• Support configuration management and builds on OSF, NT,'flil<fVMS servers.

Summary of Recommendations
Standardize on the ClearCase technology from Atria Software.

RetOOling Software Engineering Configuration and Build Management Summary • 50

- Digital Confidential -

Atria Software is porting its ClearCase product to Alpha/OSF and to WindowS
NT. The Alpha/OSF port should enter beta-test in February 1994. Digital has
contracted for this port. Multi-Site, a product enhancement to provide explicit
support for geographically distributed development groups, should go to beta-test
in about the same time frame.

The Windows NT port will follow the OSF version by a few months.

Digital should deploy each product as soon. as it becomes available.

Early clients of the Internal CASE technologies may have to use beta version of
ClearCase. Atria will be looking to Digital to provide beta sites for the Alpha/OSF
and Alpha/Windows NT port. For the Multi-Site technology , however, Atria is
looking to organizations that are already actively using ClearCase. Hence, the
Multi-Site technology probably will not be available to Digital development groups
until it ships.

Summary of Rationale
Multiple processes within Digital Engineering over the last two years have
investigated third party CM product from various perspectives. Invariably, these
analyses have identified Atria Software's ClearCase product as the first choice.

These Digital analyses are consistent with industry analyses, such as the Ovum
Report on configuration management.

Evaluated by the goals of the Internal CASE exercise and the evaluation criteria,
ClearCASE is strongly recommended for standard use by Digital Software Engineering.

RetOOling Software Engineering Configuration and Build Management Summary • 51

