[0.001s][warning][perf,memops] Cannot use file /tmp/hsperfdata_ec2-user/479093 because it is locked by another process (errno = 11)
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Editor's 
Introduction 

In 1992, DIGITAL announced the 

rastest 64-bit RISC microprocessor, r.he 
Alpha, with a clock rate of 200 MHz. 

Today's Alpha processor rem:�ins the 
leader in performance; the newest gen

eration operates at 600 MHz, and the 
next generation will operate at greater 
than 1,000 MHz- gigahertz speed. 
With the industry's most powerful 

processor in hand, DIGITAL's engi

neers are working to applv Alpha in 
different areas of computing a.nd eftect 
optimal solutions to computing prob
lems. Samples of that work arc pre

sented in this issue and include 

programming performance tools, the 
Open VMS operating system ror very 

large memory (VLM) applications, 

graphics adapters tor workstations, 
and the DART network acbpter ror 

high-end systems. 

Spike is a profile-directed perror
mance tool for optimizing Alpha exe
cutablcs running on the Windows NT 
operating system. Designed specifi

cally to improve the pcrrormance of 

large, call-intensive programs, such 
as commercial databases, CAD pro

grams, compilers, and productivity 
tools, Spike has been shown to speed 
program execution by as much as 33 
percent. Robert Cohn, Dave Goodwin, 
and Geoff Lowney describe Spike's 
two components.  The Optimizer 
modifies code layout to improve 

instruction cache behavior and pcr

rorms hot-cold optimization to 

reduce the number of instructions 
executed on tl-equcnt parhs through 
the program. The Optimization 
Environment collects, manages, 
;1nd applies profile information 

transparently for the programmer. 

Dif!,ital Technical Journal 

An experimental Atom-based per

formance tool presented by Susanne 
Balle and Simon Steely provides pro

grammers with an understanding of 
the access pattern behavior of their 
technical applications. The tool gen

erates histograms tor each memory 
reference in a program, thus aUowing 

the programmer to spot bottlenecks. 
The authors step through an instruc
tive case studv in the usc of the tool 
with Fortran programs, showing how 

different compiler switches affect tl1e 
execution of a program algorithm. 

The Open VMS Alpha operating 

system version 7.1 e xtends its support 

for VLM applications. The design 
work discussed by Karen Noel and 
Nitin Karkhanis focused on increasing 
tlcxibilitv ror VLM applications and 

on adding svstem man:�gcment capa
bilities. Areas reviewed are the shared 
memory objects designed to improve 
application scaling on the system, 
shared page tables to reduce applica

tion start-up/shut-down times, and 
the physical memory reservation sys
tem to allow cft-icient application use 

of system components, namely the 
translation buffer. 

DIGITAL's PowerStorm series 

of graphics adapters rc.>r mid-range 
workstations provides exceptional 
perform ance on tl1e DIGITAL UNIX 
and the Windows NT op era ting sys
tems. Benj Lipchak, Tom Frisinger, 
Karen Bircsak, Keith Comeford, 

and Mike Rosenblum have written 
an inrormative rutorial about the 
PowerStorm adapter design that was 
shaped in large parr Lw the existing 
competitive environment. Their dis
cussion covers selected benchmarks 
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and real-world performance experi
ences, the advantages and disadvan
tages in choosing a direct-rendering 

or an indirect-rendering scheme, and 
the ways in which the engineering 
team exploited the Alpha micro
processor's exceptional Aoating
point speed. 

DART is a 622-megabit-per-second 

network adapter that connects gigabit
class networks to gigabit-class 1/0 
buses. It is designed to increase net
work throughput and decrease system 

overhead. Bob Walsh explains tlut 
tl1e DART project, started in the 
late 1980s, anticipated the need to 
address fi.mdamental memory band

width bottleneck issues fi-om a system
level perspective. The main approach 
taken in the DART adapter is data 
copy avoidance, without requiring 

changes to svstcrn call semantics. 
The upcoming.fournalwill be a 

special issue that katures papers on 

programming languages and tools. 
Topics include C and Fortran paral
lclizing compilers, the C++ template 
facility, alias analysis algorithms, 
debuggcrs, and pcrtormancc tools 
for software running on the 'vVindows 
NT, ll:-\IX, and Open VMS operating 
systems. 

Jane C. Bbkc 

;\lfana/.;ing tditor 



Optimizing Alpha 
Executables on 
Windows NT with Spike 

Many Windows NT -based applications are 

large, ca l l-intensive programs, with loops that 

span multiple procedures and procedu res that 

have complex control flow and contai n  numer

ous basic blocks. Spike is a profi le-di rected opti

mization system for Alpha executables that is 

designed to improve the performance of these 

applications. The Spike Optimizer performs code 

layout to improve i nstr uction cache behavior 

and hot-cold optimization to reduce the number 

of instructions executed on the freq uent paths 

through the program. The Spike Optimization 

Environment provides a complete system for 

performing profile feedback by handl i ng the 

tasks of col lecting, managi ng, and applying 

profile i nformation. Spike speeds up program 

execution by as much as 33 percent and is being 

used to opti mize appl ications developed by 

DIGITAL and other software vendors. 

I 
Robert S. Cohn 
David W. Goodwin 
P. Geoffrey Lowney 

Spike is a performance tool developed by DIGITAL to 
optimize AJpha executables on the Windows NT oper
ating system. This optimization system has two main 
components: the Spike Optimizer and the Spike 
Optimization Environment. The Spike Optimizer'--' 
reads in an executable, optimizes the code, and writes 
out the optimized version. The Optimizer uses profile 
feedback ti·om previous runs of an application to guide 
its optimizations. Profile teedback is not commonly 
used in practice because it is difficult to coUect, manage, 
and apply profile informatjon. The Spike Optimization 
Environment' provides a user-transparent profile feed
back system that solves most of these problems, 
allowing a user to easily optimize large applications 
composed of m<my executables and dynamic link 
libraries (DLLs). 

Optimizing an executable image after it has been 
compiled and linked has several advantages. The Spike 
Optimizer can see rhe entire image and perform inter
procedural optimizations, particularly with regard to 
code layout. The Optimizer can use profile feedback 
easily, because the executable that is profiled is the 
same executable that is optimized; no awkward map
ping of profile data back to the source language takes 
place. Also, Spike can be used when the sources to an 
application are not available, which is beneficial when 
DIGITAL is working with independent software ven
dors (ISVs) to rune applications. 

Applications can be loosely classified into two cate
gories: loop-intensive programs and call-intensive 
programs. Conventional compiler technology is well 
suited to loop-intensive programs. The important 
loops in a program in this category are within a single 
procedure, which is typically the unit of compilation. 
The control flow is predictable, and the compiler can 
use simple heuristics to determine the frequently exe
cuted parts of the procedure. 

Spike is designed for large, call-intensive programs; 
it uses interprocedural optimization and profile teed
back. In call-intensive programs, the important loops 
span multiple procedures, and the loop bodies contain 
procedure calls. Consequently, optimizations on the 
loops must be interprocedural. The control flow is 
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complex, and pro hle ked back is required to accuratelv 
predict the ti·equcntlv executed parts of a program. 
Call overhead is large tor these programs. Optimiza

tions to reduce call overhead are most efkctive with 
interprocedural intormation or profile feedback . 

The Spike Optimizer implements rwo major optim iza
tjons to improve the pertormance of tl1e call-intensi\'e 
programs just described. The first is code layout:'" 

Spike rearranges the code to improve localitv and 
reduce the number of' instruction cache misses. The sec
ond is hot-cold optimi;.arion (HCO):' Spike optimizes 
the rrequent paths through a procedure at the expense 
of the inrrequenrly executed paths. HCO is particularly 
effective in optimizing procedures with complex con
trol flow and high procedure call overhead. 

The Spike Optimization Em·ironment prO\·idcs a 
system for managing profile feedback optimization .' 

The user interface is simple-it requires only two user 
interactions: ( l) the request to start ked back collec
tion on an application and (2) the request to end col
lection and to usc the feedback data to optimize tl1e 
applicatjon. Spike maintains a database ofprori le int(x
mation. VVhen a user selects an application, Spike 
makes an entry in its database for the application and 
tor each of its component images. For each image, 
Spike keeps an instrumented \'ersion, an optimized 
\"ersion, and profile intrxmation. VVhen the original 
application is run, a transparency agent substitutes the 
instrumented or optimized version of the application, 
as appropriate. 

Tbis paper discusses the Spike performance tool and 
its use in optimizing Windows NT-based applications 
running on AJpha processors. In the Following section, 
we describe the characteristics ofVVi ndows l'\l ·based 
applications . :-Je\t, we discuss the optimizations tiS<.:d 
in the Spike Optimizer ::md e\·aluate their dkctil'cness. 
We then present the Spike Optimization Environment 
for managing protile teedback optimization. A sum
mary of our results concludes the paper. 

Characteristics of Windows NT -based 
Applications 

To evaluate Spike, we selected applications rhat are 
tvpically used on Alpha computers running the 
Windows NT operating system. These applic:ttions 
include commercial databases, computer-aided design 
( .AD) programs, compilers, and personal p roductiv

ity tools. For comparison, we also included the bench
mark programs from rhe SPECint95 suite." T:tble I 
identifies the applications and benchmarks, and the 
workloads used to e\ercise them. A ll programs <1re 
optimized l'ersions ofDIGITALAlpha bin ,lrics and are 
compiled with the same highly optimi zing back end 
that is used on the UNIX and Open VMS systems.'' The 
charts and graphs in this paper contain dara ti·om a 

\'ol. 9 1'\o 4 !997 

core set of applications. Note that we do nor have a full 
set o fmc1surements tor some applications. 

In obtaining most of the profile-direcred optimiza
tion results presented in this paper, we used the same 
input for both training and timing so that we could 
know the limits of our app,·o:�ch. Others in the field 
ha\'C shown that a reasonablv chosen training input 
will vield reliable speedups tor other input sets.'" Our 
e\perience contirms this result. for the code lavout 
results presented in Figure ll, we used the official 
SPF . timing harness to measure the Sl'ECinr bench
marks. This harness uses a SPEC training input for 
profile collection and a different rekrence input tor 
riming runs." 

Figure l is a graph rhat shows, f(Jr each application 
and benchmark, rhe size of the single executable or 

DLL responsib le tor the majmity of the execution 
time. The f)gure contains data fcx most of the applica

tions and all the benchmarks listed in Table l. Some 
Windows NT-based applications are very large. For 
example, PTC has 30 times more instructions than 
GCC, the largest SPECint95 benchmark. Large 
W indo\\'s N -based applications have thousands of 
p mcedures and millions of basic blocks. With such 
programs, Spike achieves signi hcant speedups by rear
ra nging rhe code to reduce instruction cache misses. 
Code rearrangement should also reduce the working 
set of the program and the number of vi rrual memory 
page faults, although we have not measured this 
reduction. 

To characterize a call-intensive application, we 
looked at SQL�ERVR. We estimated the loop behav
ior of'SQLSERVR by classifYing each of its procedures 
bv the a\·crage trip count of its most trequenrlv exe
cuted loop, assign ing a weight to each procedure 
based on the number of instructions executed in the 
procedure, and graphing the cumulati\ e distribution 
of instructions executed. The graph is presented in 
Figure 2. Note that 69 percent of the execution time 
in SQLSERVR is spent in procedures that have loops 
with an average trip count less th<lll 2. Nearly all the 
run tirne is spent in procedures with loops with an 
a\'cragc trip count less than 16. An insigniti.cant 
amount ot· time is spent in procedures containing 
loops wirh high trip counts. Of course, SQLSERVR 
executes manv loops, but the loop bod ies cross multi
ple procedures To improve SQLSERVR per formance, 
Spike uses code layout techniques to optimize code 
paths that cross multiple procedures. Also note that 69 
percent of the e\ecution time is spent in procedures 
where the entrv basic block is the most ti·equentlv n:c

cuted basic block. The entry basic bJock dominates the 
other blocks in the procedure, and com pilers often 
find it a conl'enient location for placing instructions, 
such as register saves. In SQLSERVR., this placement is 
a poor decision. Our HCO targets this opportunity to 



Ta ble 1 
Windows NT -based Applications for Alpha Processors and SPECint95 Benchmarks 

Program Full Name 

SQLSERVR Microsoft SQL Server 6.5 

SYBASE Sybase SQL Server 11.5.1 

EXCHANGE Microsoft Exchange 4.0 

EXCEL Microsoft Excel 5 .0 

WINWORD Microsoft Word 6.0 

TEXIM Welcom Software Technology 
Texim Project 2.0e 

MAX EDA Orcad MaxEDA 6.0 

ACAD Autodesk AutoCAD Release 13 

cv Computervision Pmodeler v6 

PTC Parametric Technology 
Corporation Pro/ENGINEER 
Release 18.0 

SOLIDWORKS SolidWorks Corporation 
SolidWorks 97 

USTATION Bentley Systems MicroStation 95 

EDS Electronic Data Systems 
Unigraphics 11.1 

MPEG DIGITAL Light & Sound Pack 

C1, C2 Microsoft Visual C++ 5.0 

OPT, EM486 DIGITAL FX!32 Version 1.2 

ESRI Environmental Systems 
Research Institute 
ARC/INFO 7.1.1 

VORTEX SPECint95 

GO SPECint95 

M88KSIM SPECint95 

Ll SPECint95 

COMPRESS SPECint95 

IJPEG SPECint95 

GCC SPECint95 

PERL SPECint95 

move instructions from the entry basic block to less 
ti·equently executed blocks . 

Figure 3 presents the loop behavior cbta tor many of 
the Windows NT-based applications listed in Table l. 
Note that the app l ications bll into three groups. The 

most c11l-intcnsive application s arc SQLSERVR, 
ACAD, and EXCEL, which spend approximate!\· 70 
percent of their run time in procedures ll'ith an a\·er
�lge trip count less than 2. C2, WINWORD, and 
USTATION Jre moderately cJII intensive; they spend 

Type Workload 

Database Transaction processing 

Database Transaction processing 

Mail system Mail processing 

Spreadsheet BAPCo SYSmark for 
Windows NT Version 1.0 

Word processing BAPCo SYSmark for 
Windows NT Version 1.0 

Project management BAPCo SYSmark for 
Windows NT Version 1.0 

Electronic CAD BAPCo SYSmark for 
Windows NT Version 1.0 

Mechanical CAD San Diego Users Group 
benchmark 

Mechanical CAD Mechanical model 

Mechanical CAD Bench97 

Mechanical CAD Intake runner model 

Mechanical CAD Rendering 

Mechanical CAD Brake shoe model 

MPEG viewer MPEG playback 

Compiler 5,000 lines of C code 
C1: front end 
C2: back end 

Emulation software BYTEmark benchmark 
OPT: x86-to-Aipha 
translator 
EM486: x86 emulator 

Geographical Regional model 
Information Systems 

Database SPEC reference 

Game SPEC reference 

Simulator SPEC reference 

LISP interpreter SPEC reference 

Compression SPEC reference 

JPEG compression/ SPEC reference 
decompression 

C compiler SPEC reference 

Interpreter SPEC reference 

approximately 40 percent of their run time in loops 
vvith an average trip count less than 2. MAXEDA �md 
TEXJM are loop intensive; they spend approximately 
10 percent of their run time in loops with an ::werage 
trip count less than 2. TEXIM is dominated by a single 
loop with an average trip count of465. 

vVe further characterized the nonlooping proce
dures by control How. If a proced ure consists ofonlv J 
few basic blocks, techniques such as inlining are effec
tive. To estimate the control tlow complexity of 
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SQLSERVR, we classitled each of its procedures by the 
number of basic blocks, assigned a weight to each pro
cedure based on the number of instructions executed 
in the procedure, and graphed a cun1ulative distribu
tion of the instructions executed. vVe restricted this 
analvsis to procedures that have loops with '111 average 
trip count less than 4. (These procedures account 
tor 69 percent of the execution time of SQLSERVR.) 

The line labeled ALL in Figure 4 represents the results 
of our analysis. Note that 90 percent of the run time 
of the non looping procedures is spellt in procedures 
with more than 16 basic blocks. The line labeled 
FILTERED in Figure 4 represents the results when we 
ignored basic blocks that are rarclv executed. Note 
that 65 percent of the run time of the non looping pro-
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Complcxitv of Procedures in SQLSERVR for Procedures 
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ri:>1· 69 Percent of rhe Execution Time 

cedures is spent in procedures with more than 16 basic 
blocks. In SQLSERVR, procedures are large; many 
basic b locks arc executed , and many :trc not. Spi ke 
uses code layout and HCO to optimize the frequently 
executed paths through large procedures. 

Figure 5 presents the control flow data for many of 
the Windows NT -based applications listed in Table l. 
Again we measured only nonJooping procedures and 
ignored basic blocks that are rarely executed. Note that 
Jll the JpplicJtions have large procedures. More than 
half the run time of the non looping procedures is spent 
in procedures that execute at least 16 basic blocks. 
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To estimate procedure call overhead, we counted 
the n umber of instructions executed i n  the prolog and 
epilog of each procedure. This estimate is conserva
tive; it ignores the cost of the procedure l inkage and 
argument setup and measures only the number of 
instructions used to create or remove a frame from the 
stack and to save or restore preserved registers. I n  
SQLSERVR, 15 percent o f  al l  instructions are i n  pro
logs and epi logs. HCO removes approximately one 
half of this overhead . 

The chart in Figure 6 shows the procedure call over
head for most of the Windows NT -based applications 
listed in Table l. The overhead ranges fi-om 23 percent 
to 2 percent. The applicJtions are ordered according to 
the amount of run time in procedures with an average 
trip count less than 8 in Figure 3. The call overhead is 
roughly correlated with the amount of run time in  low 
trip count procedures. Figure 6 includes data for some 
of the SPECint95 benchmarks, which are ordered by 
the amount of run time in procedures with an average 
trip count less than 2. The ;1mount of call overhead tor 
these benchmarks ranges from 24 percent to 0 percent 
and is more strongly correlated with the amount of run 
time in low trip count proced ures. 

Optimizations 

The Spike Optimizer is organ ized li ke a compi ler. It 
parses an execu table in to an intermediate representa
tion, optimizes the representation, and writes out an 
optimized executable.  The intermediate representa
tion is a l ist of Alpha machine instructions, annotated 

0 16 32 48 64 80 96 1 1 2  1 28 

Fig u re 5 

SIZE IN BASIC BLOCKS (FILTERED) 

KEY: 

-+- SQLSERVR (69%) -¢- WINWORD (49%) 

--- ACAD (82%) -o- USTATION (44%) 

-- EXCEL (71% ) -6- MAX E D A  (1 3%) 

C2 (44%) 

Nole that the number that appears after the application name indica1es I he percentage of the lolal 
execution time spent in procedures with an average trip counlless than 4. 

Compkxity of Procedures in 'vVindows NT-bascd Applications tor Procedures with <Hl Averc1ge Trip Count Less Than 4 

Digir<tl Technic1l journal Vol. 9 No.4 1 997 7 



8 

0 

� 25 
::l 
&l � 20 
X f-
W O  
([) f-- 1 5  Z LL  0 0 
f= f-- 1 0  
o z  ::J W  
g: frl 5 
([) W 
� � 0 

I 

a: 0 
> <{ 
a: (.) 
w <{ (f) 
_j 
0 
([) 

.- ,--

n 
_j N 0 
w (.) a: (.) 0 X 5: w 

z 

� 

.-

n n I n n 
z <{ � :::J X � 0 (? ([) 0 0 w (? w ([) 
f= w X f-- ([) 0.. w 

X w a: � :::2 a: <{ <{ f-- 0 ro 0.. f-- ro 
([) 2 > 2 :2: 
::l 0 

(.) 
APPLICATION OR BENCHMARK 

Figure 6 
Proced u re Cal l  (),·crhccld ( Time Spent in Prolog and Epi log ) 

with a sma l l  amount of add itional  i n formatio n .  O n  top 
of the i ntermed iate represe ntation,  the opti m i zer 
bui lds compiler- l i k.c structures, includi ng basic blocks, 
proced ures, a H ow graph,  a loop graph,  and a call  
grap h . 1 1  Images arc large, and the a l gorithms and rep
resentations used in the optimizer m ust be t ime and 
space effic ient .  

The Sp ike Optimizer performs an i n terproccd ur;1 1  
dataHo11· analysis to s u m mari ze register usage 11 · i thin 
the i mage. 1 1 This enab les opti m i zations to usc a nd 
real locate registers . The i nterp roce d ura l  dat�lf1ow is 
bst, requ ir ing less than 2 0  seconds on the l a rgest 
applications we teste d .  Memory dataHow is m u c h  
more d i ffic u l t  t o  a n�1 lvze because of t h e  l i m ited i n for
m ation available in  a n  execu table ,  so the opti m izer  
analvzcs onlv references to tl1e stack .  . . 

Opti mi zations rewrite the i n te rmediate rep n:senta
tio n .  The import::�nt opti mizations are code Lwo u t  and 
HCO. The Spike Opti mizer also p c r forrns a d d i tiona l  
optimizations to reduce the 0\'erhcad of shared 
l i braries . 

Code Layout 

We dcri1·ed o u r  code layout algorit h m  fi·om prior work 
on p rori .lc-guid cd code positioning by Pettis and 
Hansen ."  The goal of  the algori thm is to reduce 
instruction cache miss.  Our a l gorithm consists o f' th ree 
ste ps. The fi rst step reorgani zes basic bloc ks so rh�H the 
most freq uent paths in a procedure :� re seq uentia l ,  
which perm its more effic ient usc of cache l ines :mel the 
exploi tation of instruction p refetch . The second step 
places procedu res in memorv to avoid i nstr uction 
e1che contl icts .  The th ird step spl i ts proc e d u res i nto 
hot and cold sections to i m prm·c the pcrtornnncc of 
p rocedure p lacement .  

The fol l owing exa m p l e  i l l ustrates bas 1c  block reor
ganizati on .  Consider  the flow graph in Figure 7, ,, ·here 
each node is a basic block that contains t() u r  i nstruc
tions. The arms of the cond itional branches arc 1<1bclcd 
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with thei r re l atii'C p robabi l ities .  Ass u me thJt the target 
is an A lp lu 2 1 1 64 processor. 1 ·' E�K h  i nstruction is 
4 bytes, a n d  the instruction cache is organi zed i n to 
32 - byte l i nes;  each cache l i ne l10lds two of the tour
i nstruction basic bl ocks. A si m p le bread t h - fi rst code 
lavou t  orders the code AR CD EF G H ,  and the com
mon path A BD FGH req u ires tou r  cache l i nes.  Two 
cache J ines ( CD and EF) each cont:� i n  a basic block 
that is in fi-cq ucntl \' used bur ll'b ich m ust be resid ent in 
the cache for the ti-cq uently used block to be C\ccuted . 
If we ord e r  the code so that the  common path is adja
cent (AB DF GH C E ) ,  the infi-equenrlv used blocks arc 
in the same l ine ( CE ) ,  and thev do not need to be i n  
the cache to execute the ti·eq uentlv used blocks. 

Straight- l i ne code is  :llso bette r able to ex ploit  
i nstruction pre retch .  On a n  instructi o n  c1che miss, the 
Alpha 2 1 1 64 processor p refetchcs the next fo ur cache 
l i nes i n to a rctil l  bu ffer. After an i nstruction cac he miss, 
the p rocessor fi-cqucntlv is able to e\ecute a straight
l ine code path without sta l l ing if the code is i n  the 
sccon d - i ci'CI e1c h c .  A branch that is t aken typica l ly  
requires a n  <ld d i tional  cache m i ss i f  the target of  the 
branch is nor al readv i n  the i nstruction Clchc .  

'vVc reorganize the  basic blocks us ing J s i m p l e ,  
greed1· a l gori t h m ,  similar t o  t h e  tLKe -p icki ng a lgo-

Fig ure 7 
Basic Block Rcorg�Hl iZ<ltion 

�B 
O F  

G H  

C E  



rithm used in trace schedu ling. " Our goal is to find :1 

new ordering of the basic blocks so that the ta l l 
through path is usual ly taken . vVe son the list of flow 
graph edges by execution count and process them i n  
order, beginning with the highest v:�lues. For each 
edge we make the destination basic block immediately 
fol low the source block, un less the source has already 
been :�ssigncd a successor or the destination has 
already been assigned a predecessor. 

We pl :�ce procedures to avoid confl icts in the 
instruction cache.  An Alpha 2 1 1 64 has a primary 
instruction cache of 8 kilobytes ( KB) that holds 256 

l i nes of 32 bvtes each. Two instructions contlict in  the 
cache if thev arc more than 32 bytes ap:�rt Jnd map to 
the s;lrnc c1cbc l i ne ,  specifical lv, if address 0/32 mod 
256 = addressl /32 mod 256 .  Our stratcgv is to p lace 
procedures so that frequentlv cal led proced ures arc 
ncar the cal ler. Consider the simple example in Figure 
8. Assume procedure A cal ls procedure C in a loop . A 
and C map to the same cache lines, so on c:�ch ca l l  to 
C, C replaces A in the cache, and on each retu rn ti-om 
C, A rep laces C.  I f  we reorganize the code such that C 
fol lows A, both A and C can fit in the cache at once, 
:1 11d there Jrc no confl ict misses when A cal ls C. 

We usc another greedy a lgorithm to pbcc proce
dures. The example presented in Figure 9 i l lustrates 
the steps . vVc bui ld a ca l l  graph and assign a weight to 

each edge based on the number of cal l s .  I f  there is 
more than one edge with the same source and destina
tion, we compute the sum of the execution counts and 
delete all but one edge. Figure 9a shows the cal l graph. 
To place the procedu res in the graph ,  we select the 
most heavilv weighted edge (B to C ) ,  record that the 
two nodes shou ld  be placed :1djacently, col lapse the 
t\-vo nodes into one ( B . C ) ,  :1nd merge their edges ( :1s 
shown in Figure 9b ). We ag:1in select the most heavily 
weighted edge and continue ( Figure 9c) u ntil the 
graph is reduced to a s ingle node A.D. B . C  ( Figure 
9d ). The final node contains an ordering of all the pro
ccd u res. Speci:1l care is taken to ensure that we rarelv 
require a branch to span more than the maximum 
branch displacement. 

The effectiveness of procedure placement is l imited 
by large procedures. In the PERL benchmark from 
SPEC, which is one of the smallest p rograms we stu d 
ied, one freq uently executed procedure is larger than 
32 KB, tou r  times the size of the instruction cache on 
the Alpha 2 1 1 64 processor. In SQLSERVR., more than 
hal f the run time is spent i n  procedures with more 
than 16 basic blocks. To address th is problem, we spl it 
procedures into hot and cold sections and treat each 
section as an independent proced ur e  when placing 
procedures. To spl it a procedure, we examine each 
basic block and usc a threshold on the execution count 

A , LJ 

0 w- �  
8-KB P R I MARY 
INSTRUCTION 
CA CHE 

Figure 8 
Procedure Pbcc mcnt 

Figure 9 
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Steps in rhc Procedure Placement Algor-i thm 
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1 0  

to decide i f  a basic block i s  co l d .  We usc a s ingle 
threshold f(x the entire progr.1111 . The thres hold is  
chosen so that the total execution time for a l l  the bJsic 
blocks below the thres hold constitutes no more than 
1 percent of the execution t ime of the progr�1111 . 
Proced ures with both hot and cold basic b l ocks Jrc 
spl it; otherwise, they are lett intact .  

Figure 1 0  i l l ustrates the i m portance of procedure 
splitting. The figure charts the speedup on SQLS E RYR, 

running on an Alpha 2 1 064 workstation, 1 ;  fo r the 
components of our code layout a lgorithm. The bar 
graph i ndicates that cha in ing basic blocks or p l acing 
proced ures results in a speed up of less than 4 percent,  
b u t  p lacing procedu res after splitti ng y ie lds  a IS per
cent spee d u p .  Using al l our opti m i zations ( c h ;� ini ng, 
spl itting, and placing) together produ ces a 1 6  percent 
speed u p .  

Figure I I presents the speedups fTom code la�'out tor 
the Windows NT -based appl ications and t he SPECim 
benchmarks running on an Alpha 2 1 1 64 workstati on . 
Speedups range ft·om 45 percent to 0 percent; most 

Note that this data is for the SQLSERVR a p p l ication running on an 
Alpha 2 1  064 microprocessor. 

Figure 1 0  
Speed up for Code Llyou r  lw Optimization 
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appl ications show a noticeab l e  i mprovement. The 
le ftmost seven Windows NT -based appl ications 
(SQLS E RV R  through TEX I M )  are ordered by the 
amount of time spe nt  in proced ures with a n  average 
trip count l ess than 8 i n  Figure 3. Note that a l l  but the 
most loop-intensive appl ication s how a sig n i ficant 
speedup from code layout. Three programs show min
imal  speed u p :  TEXIM is dominated by a s ingle  loop 
that fi ts in the instruction cac he,  and IJ  PEG and 
COM PRESS are d ominJtcd by two or three sma l l  
loops. These programs d o  not have a n  ap preci ab le  
amount of instruction cache miss; changi ng the code 
layout can not i m prO\'e their performance . 

Hot-Cold Optimization 

Hot-cold opti mi zation i s  J generali zation of the 
proced ure-spl itting tech nique used in our code l avout 
a.lgorit ll m .c vVe opti mize the hot part of the proced ure 
( ignori ng the cold parr) bv e l im i nating all  instructions 
that :�re req u i red on.ly by the cold part. To i m p l e ment 
this opti m i zation,  we create ::1 hot procedure by co py
ing the frequently executed basic blocks of a proce
d ur e .  Al l  c:t!ls to the original procedure are red irected 
to the hot proced ure.  Flow p�nhs in the hot proced ure 
tllat target basic blocks th:�t were not copied :�rc red i 
rected to t h e  appropriate basic b l ock in t h e  original  
(co ld ) proced ure; that is, the tlows jump i nto the mid
d le of the origi n a l  proced ure. We then optimi7.e the 
hot proced ure,  possi bly J t  the e xpense of the rl ows 
that pass through the cold path . 

HCO is best u n derstood by working through an 
exte nded cx:�mple.  Consider  the proced ure f o o 

( shown i n  Figure 1 2 ), which is J s impl ified version of 
a proced ure ti·om the \iVindows NT kern e.l. 

(.') 0 
1- ([) 

w Q. co 
<t Q. 0 2 2 w 

:::; X � u -' 0 (.') (f) 
w 0 a: (.') w (f) 
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Figure 1 1  
Speedup ti-om Code LJ\'ou r 
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1 f o e :  l d a  s p , 1 6 ( s p )  a d j u s t  s t a c k  
2 s t q  s O , O < s p )  s a v e  s O  
3 s t q  r a , 8 ( s p )  s a v e  r a  
4 add l a 0 , 1 , s 0  s O  = aO + 
5 add l aO , a 1 , a O  a O  = a O  + a 1  
6 b n e  s 0 , L2 b r a n c h  i f  s O  ! =  
7 L 1 :  b s r  f 1  c a l l  f 1  
8 a d d l s O , a O , t 1  t 1  = a O  + s O  
9 s t l t 1 , 4 0 ( g p )  s t o r e  t 1  

1 0  L2 : l d q  s O , O ( s p )  r e s t o r e s O  
1 1  l d q  r a , 8 ( s p )  r e s t o r e  r a  
1 2  l d a  s p , - 1 6 ( s p )  a d j u s t  s t a c k  
1 3  r e t  ( r a )  r e t u r n  

Figure 1 2  
Simpliticd Version of a Procedure from rhc Windows �T 
Kernel 

0 

Assume that the branch in l i ne 6 of f o o is a l most 
always taken and that l ines 7 through 9 arc a lmost 
never executed . When we copy rlK hot part of the pro
ced u re, we exclude l i nes 7 thro ugh 9 of f o o. The 
resu l ting proced ure f o o 2  i s  shown in Fi gu re 1 3 . 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  

f oo 2 : l d a s p ,  1 6 ( s p )  
s t q s 0 , 0 ( s p )  
s t q  r a , 8 ( s p )  
add l a 0 , 1 , s 0 
add l a O , a 1  , a O  
b e q  s O , L 1  
l d q s O , O < s p )  
L d q r a , 8 ( s p )  
l d a  s p , - 1 6 ( s p )  
r e t  ( r a )  

Figure 1 3  
Hor Procedure 

Note the reversal of the sense of the br:meh hom 
b n e  in f o o  to b e q  in f o o 2  and the change of the 
branch's target from L 2 to L 1 . All ca l ls to f o o are 
red irected to the hot procedure f o o 2. I f  the branch in 
l i ne 6 of f o o 2  is taken ,  then comro l transt-Crs to l i ne 
7 of f o o ,  which is in the middle of the origina l proce
d u re .  O nce passed to the origi na l proced ure, control 
nel'er passes back to the hot procedure . This kature 
of HCO enables opti mi zatio n ;  when opti miz ing the 
hot proced ure, we can relax some of the constrai nts 
imposed by the cold procedure.  

So hr, we have set up t he hot proced u re t(>r opti
mi zJtion , but we have not made the proced u re �my 
faster. Now we show how to opt imize the proced u re . 
The hot proced u re n o  longer conta ins :1 cal l ,  so we em 
de lete the save and restore of the return add ress i n  
l ines 3 and 8 o f f  o o 2 i n  F igure 1 3 .  I fthe branch trans
fers control to L 1 in the cold proced u re f o o ,  we m ust 
arrange 6:x r a to be saved on the stack. In ge nera l , 

whenever we enter the origina l proced u re ti·om the 
hot proced u re,  we mu st fix up the state to match the 
expected state . 'vVe ca l l  the fix-up operations compe n 
sation cod e .  To insert compensation code, \\'e cre�ue J 

stu b and red i rect the branch in l ine 6 of f o o 2 to 

branch to the stub.  The stub saves r a on the stack and 
branches to L 1 . 

Next, note that the instruction in l ine 5 of f o o 2 
writes a 0 ,  bur the value of a 0 is never read in the hot 
proced ure. a 0 i s  n ot truly dead, however, because i t  is 
sti l l  read if the branch i n  l i ne 6 of· f o o 2  is taken . 
Therefore, we delete l ine 5 ti·om the hot proced ure 
and pl ace a copy of the i nstruction on the stu b .  HCO 
tries to e l imi nate the uses of prese rved registers in a 
procedure.  Preserved registers can be more expensive 
than scratch registers because they must be saved and 
restored if  they are  used . Preserved registers are  typ i 
cal ly used when t h e  l ifetime of a val ue crosses a call. I n  
t h e  h o t  proced ure, no l i tCtime crosses a c a l l  a n d  the 
use of a preserved register is un necessary. We rename 
all uses of s 0 in the hot procedure to use a free scratch 
register t 2 .  We insert a copy on the stub from t 2 to 
s 0 .  'vVe can now e l imi nate the save and restore instruc
tions in J ines 2 and 7 of Figure 1 3  and p l ace the save 
on the stub .  

We have e l i m i nated a l l  refere nces t o  tl1e stack i n  
t h e  h o t  proced ure. T h e  stack adj usts on l ines l and 9 
in Figure 1 3  can be deleted trom the hot procedu re ,  
a n d  t h e  i n i tia l  stack adj ust c:m b e  p laced i n  t h e  st u b .  
T h e  final code, inc luding the  stub s t u b 1 ,  i s  l isted i n 
Fi gu re 1 4 .  The number of in structions executed in the 
ti·eq uent path has been red u ced from 10 to 3 .  If the 
stu b is ta ken, then the fu ll  1 0 instructions and an extra 
copv and branch are executed. 

1 f oo 2 : a d d l  a O ,  1 ,  t 2  
2 b e q  t 2 , s t u b 1  
3 r e t  ( r a )  
4 s t u b 1 : L d a  s p , 1 6 ( s p )  
5 s t q s O , O < s p )  
6 s t q ra , 8 ( s p )  
7 add l a 0 , a 1 , a 0  
8 mov t 2 , s 0 
9 b r  L 1 

Figure 1 4  
Optimized Hor  Proo:d u rc 

Final lv, we \\ 'Ou ld l i ke to i n J i n e  the hot proced u re . 

Copies of i nstr uctions 1 a nd 2 can be placed i n l i n e .  
For t h e  i n l i ned branch,  we must create a new stub th:n 
materia l izes the re turn address into r a before transtcr
ring control to s t u b  1 .  

Except t(.>r p:1rrjal i nli ni ng, we have implemented all the 
HCO opti mizations in Spike. These optimizations are 

• Partia l dead code e l i m i nation 1 c'-the removal of  
dead cod e in the hot proced ure 

• Stack poin te r adjust e l imin:nion-the removal of 
the stack adj usts in the hot procedu re 

• Presen·ed registe r e l i m i nation-the re moval  of the 
save and restore of preserved registers in the hot 
procedure 
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• Peephole optim ization-the removal i n  the hot 
procedure o r' se lf-assignments an d cond itiona l 
branches with an always-false cond ition 

Figure 1 5  shows coverage statistics tor th e H C O
_ optimi zations . CoverJge represents the percentage or 

execu tion time spent i n  each categorv. To compute 
coverage, we assigned ea ch proce d u re to a cnegor v  
a n d  then for e a c h  category ca lcu lated t h e  total n u m ber 
of i nstr uctions execu ted l)\' i ts procedures .  The cate
gory OPTIMI ZED indic1tes the set o f  proced u res 
optim ized Lw H C : O .  T h e  portion of the execution 
t ime spent in  these proced ures i s  typ ica l ly 60 percent 
but often higher. The category INFR.EQ UEr1T is the 
set of p roce du res whose execution ti mes arc so sma l l  

( less than 0 . l  percent of the total time ) th�1t \\'e d i d  nor 
think i t  \\'JS wort h ,,· h i l c  to optimize the proced ures.  

I crnorincr proced u res with small execu tion ti mes �1 1 10\\'S 0 0 . . 
us to optimize less than 5 percen t of the in stru ctions 1 1 1  

J program, a s ignificant red uc tion in  optimizer n m c .  
The category NO SPLIT rep resents t h e  proced u res 

thJt we cou ld not spl i t  into bot and col d parts because 
a l l  basic bl ocks had simi lar e xec u tion counrs. The cate
aorv SP M O D I F J E D  contains proced ures in ,,·hich the 0 • 

. . 
stack pointer is mod i ri cd after the initi ,t l  stack adjust l l1 
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the prolog. We deci ded not to opti m i ze these proce
d u res,  but it i s  possible to do so with ex tra a nalysts. 
Note that the execution time spent i n this category of 
proce d u res is smal l  except for i n  C2, where the cate 
gory contains two p roced u res and the coverage IS 7 
percent.  hn �1 l ly, the category NO ADVANTAGE rep
resents the procedu res that were sp l i t  but that the 
optimizer ,,.,,s not able to i mpro,·e . 

Figure 1 6  shows the O\·era l l  reduction in path 
leng;h �1s a resu l t of H C O ,  broken dmm by optimiu 
tion.  Most of the reduction i n  path l cngt h comes 

e q u a l l y  h-om the removal of un nece ssary sa
_
ve and 

restore instructi on s Jnd from the removal of partial 
dead code .  Stack po i n ter adjust e l i m i n atio n and peep
hole opti mi zation resu lt  in sm.1 l ler  additional gai ns . A 
l arge pee ph ol e category is usu:�l l y  the result  of a save 
a n d  restore of�1 prcsen·ed register that is made unnec
essarl· lw H C O ;  the restore is co m-er ted to a self
assig;lm�nt  Lw copy prop:1 g;atio n , which is then 
removed by peep hole opti mizatio n .  

HCO i s  most effective on ca l l - in te ns ive programs 
s u c h  as SQLS E RVR, ACAD, and C2, where we 
e lim in::� te calls when creating the hot proced u res. for 
WINWO R D ,  the speedup is  sma l l  because coverag.e is 
k_>,, . . \I'C could not ri nd a \\'<lV to s p l i t  the proced ures . ' . 

APPLICATION OR BENCHMARK 
KEY: 
CJ NO ADVANTAGE 
c::::::J SP MODIF IED 
D NO SPUT 

INFREQUENT 
- OPTIM IZED 

Figure 1 5  
HCO Covcr<lg,c lw F\L· c u t ion Time 
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KEY 

0 PEEPHOLE 

D SP ADJUST 

- DEAD CODE 

- SAVE/RESTORE 

Figure 1 6  
Red uction in P:trh Lmgrh As a Resu lr of HC:O 

For EXCEL, HCO was able to spl i t  the procedures, 
but there is often a cal l in the hot path .  In l in ing may 
help in  optimizing EXCEL, but frequentl y  the call is 
to a shared l ibrary. 

HCO is less effective on loop- intensive programs 
such as USTATION, fvlAXEDA, and TEX I M . HCO 
provides a framework for opti mizing loops, and 
Chang,  Mahlke ,  and Hwu have shown that  e l iminat
ing the i n frequent paths in  loops enables additional 
optimizations, such as loop invariant removal . 1 7  
However, our current i mplementation of Spi ke 
includes :�lmost no information about the al iasing of 
memory operations; it can only optimize operations to 
local stack locations, such as spil ls  of registers. 

A leaf procedure is a proced u re that does not 
contain a procedure cal l .  F igure 17 compares the 
amount of time spent i n  leaf procedures before a nd 
after H CO is appl ied.  B y  eli mi nating i nfrequent 
code, HCO is ab le  to e l iminate a l l  ca l ls  i n  proced ures 
that represent 10 percent to 20 percent of the execu
tion time in  C2, ACAD, SQLSERVR, and MAXEDA. 
For the other Windows NT-based appl ications, the 
increase in t ime spent in  leaf procedures is very sma l l .  
Most Windows N T  - based applications spend much 
less than ha lf  the t ime i n  leaf  procedures. To improve 

the performance of these app l i cations, an optimizer 
n eeds to improve the performance of code with cal ls 
in the frequent pat h .  

Code size a n d  its efkct on cache behavior i s  a major 
concern for us .  In IJrge applications, local ity for 
i nstructions is present but not high . If an optimization 
decreases path length but also decreases loca l ity as a 
side eftect, the net result  can be a loss i n  performance. 

Figure 1 8  shows the total i ncrease in code size as a 
result of opti mization . HOT + COLD is the part of the 
increase that comes from replacing a single procedur e  
with the original procedure plus a copy of the hot part. 
STUB is the increase attri buted to stub procedu res . 
Overall, the i ncrease in size is small. The maximum 
increase is 1 1 .6 percent for C 2 .  SQLSERVR has  the 
best speedup and is only 3 . 1 percent  larger. Looking at 
the i ncrease in  total code size is misleading, however. 
HCO is  not applied to procedures that are executed 
infrequently, which typical ly accou nt  for more than 95 
percent of the i nstructions in  a program, so tripl ing  
the size of  optimized proced ures would resu lt i n  on ly  a 
modest increase in code size. Note that tripl i ng the 
size of the active part of an application usuall�r disas
trously decreases perf(xmance. 
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Figure 1 7  
Time Spent i n  Leaf Procc d u t·es before and after HCO 

For this reason, we also measu red the i ncrease i n  
code size based o n  the procedures that were optimized . 
Figure 1 9  compares the total si zes of the hot proce
d u res with the total si zes of the original proced ures 
from which they were deri,·ed .  For each procedure,  by 
copying just the ti·equent l y  executed part of the proce
dure, we excluded about 50 percent of the original. 
Next, we el iminated code that was ti-equent ly executed 
but only reachable through an  inffequently nccuted 
path and therefore u n reachable in the hot procedure. 
This code usual ly represents only 1 percent of the total 
size of a proced u re .  final ly, we optimized the hot pro
cedure, reducing the  remaining code size bv  about 
lO percent, which i s  5 percent of the size of the origi-
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nal procedure .  The fi nal sizes of the hot procedures as 
pcrcentJ.ges of the sizes of the originJ. I  procedures 
are shown in the .l ine labeled HOT. l'v!aking the most 
freq ucntlv executed part of a program 50 percent to 
80 percent smal ler yields a big improvement in 
instruction cache behavior; however, i t  would be mis
lead ing to <l ttri bute tbis improvement to HCO, since 
our code layout optimization achieves the same result. 
When HCO is enabled, the cache layout optimizations 
arc run after HCO. The basel ine  we compare against 
a lso has cache optimizations enabled, so improve
ments a ttributed to HCO are improvements beyond 
those th::Jt  the other optimizations can make. HCO 
does make the ti·eq uently executed parts 1 0  percent 
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Figure 1 8  
Overa l l  Increase in  Code Size after HCO 
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Figure 1 9  
Size of  Optimized Procedures after HCO 

smal ler, but we did not see significantly better i nstruc
tion cache behavior when we ran programs with a 
cache simul ator. 

If we were to perform partia l  i n l in i ng, only the hot 
procedure would be copied . Since the hot procedure is 
less than half the size of the original procedure, partial 
in l in ing wou ld greatly reduce the growth in code size 
due to i nl in ing. 

The l ine labeled COLD i n  Figure 19 shows how the 
size of the cold procedure is affected by HCO. When 
we redirect all cal ls to the hot proced ure, some code in 
the origi nal  procedure becomes unreachable.  The 
amount of unreachable code is  usual ly Jess than 10 
percent, which is much smal ler than the 50 percent of 
the code we copied to create the hot procedure .  The 
infrequent paths in a p rocedure often rejoin the fre 
q u e n t  paths, which makes it  necessary t o  have copies 
of both types of paths in the original procedure. 

The line labeled STUB shows the code size of the 
stubs, which is  very smal l .  A stub contains the com 
pensation code we i n troduce on a transition from 
a hot routine to a cold routine. We also implemented a 
variation of HCO that avoided stubs by reexecuting 
a procedure from the beginning instead of us ing a stub 
to reenter a routine in the middle. It is usually not pos
sible to reexecute the procedure from the beginning 
because arguments have been overwritte n .  Given the 
smal l cost of stubs, we did not pursue this method. 

The l ine labe led TOTAL shows that HCO makes 
the total code (HOT + COLD + STUB )  20 percen t  to 
60 percent bigger. A procedure is partitioned so that 
there is less than a 1 percent chance that the stllb and 
cold part are executed, so their size should not have a 
significant e ffect on cache behavior as long as the pro
file is representative. 

Figure 20 shows how spli tti ng affects the d istri
bu tion of time spent among different procedure sizes 
for two programs where HCO is  eftective ( C2 and 
SQLSERVR) and two programs where it is not 
(�'\EDA and vVIl\TWORD) .  For the graphs shown 
in parts a through d of Figure 20, we classified each 
procedure by its size in i nstructions before and after 
HCO and plotted two cumulative clistributions of exe
cution time. The farther apart the two l ines, the better 
HCO was at shifting the distribution from large proce
dures to sma l ler procedures. Note that most of the 
programs spend a large percentage of the time in large 
procedures, which suggests that optimizers need to 
handle complex control flow wel l ,  even if profile infor
mation is used to e l iminate infreq uent paths . 

Managing Profile Feedback Optimization 

Profile feedback is rarely used in practice because of 
the difficulty of collecting,  managing, and applying 
profile information.  The Spike Optimi zation Environ
ment' provides a system for managing profile feedback 
that simplifies this process. 

The first step in profile-directed optimization is to 
i nstrument each i mage in  an appl ication so that when 
the application is  run, profi l e  information is collected. 
I nstrumentation is most com monly done by using a 
compiler to i nsert cou n ters into a program d uring 
compi lation's or by using a post- l ink tool to i nsert 
counters into an image. '9·20 Statistical or sampling
based profi l ing is an al ternative to counter- based tech
niq ues.2u2 Some compiler-based and post- l ink systems 
requ ire that the program be compiled special ly, so that 
the result ing i mages are only usefi.!l for generating 
profi les. Many large appl ications have lengthy and 
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complex b u i l d  procedures.  For these appl icatio ns, 
req u i ri n g  a special  re b u i ld of the appl ication to col l ect  
profi les i s  an obstac l e  to the use  of profi l c - d i n.:ctcd 
optim ization . 

Spike d i rectly instruments the fina l  production 
i m ages so that a speci a l  compilation is not req u i red.  
Spike does require that the im ages be l i n ked to include 
relocation i n rcm11ati on ; howe1'er, incl uding this  extra 
i n formation d oes nor i ncrease the n u m ber ot- 'i nstruc
tions in the image and does not prn·e n t  t he compi ler 
fi·om perform ing fu l l  opti m i Lations when ge nerating 
the i mage. 

Most applications consist of a main executable :llld 
many DLLs. Instru menting all  tl1 e i m ages in an app l i 
cation ca n be d i fficu lt ,  especia l lv when the user doing 
the profi le-directed opti m i zation does not  kno\\· a l l  
the  DLLs i n  the appl ication . Spike relie1·es the user of 
this task bv finding a l l  tile D LLs that the app l icltion 
uses, even i f rhev are loaded dynamical ly wi th a c:dl to 
Load L ibrary. 
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After instrumentation,  the next step i n  profi le
di rected opti m i Lation is to exec ute the i nstru mented 
appl ication and to collect profile i n f(mn ation.  Most 
profile-di rected opti m ization systems req u i re the user 
to fi rst exp l i ci t ly  create instr u mented copi es of each 
im age in an app l icati o n .  Then the user m us t  assemble 
tbe instrumented i mages i n to a new version of the 
appl ication and run it to collect proti l e  i n r(>rmati o n .  As 
the pro fi l e  i n f-ormation is generate d ,  the user is  
responsi b le  for l ocating all  the profile i n formation 
generated for each i mage and m ergi ng that i n forma
tion i nto a single set of profiles.  Our experience with 
users has shown that req u i ring the user to ma nage the 
instru mented copies of the i m ages and the profile 
inform ation is a frequent source of problems. For 
example,  the user mav fai l  to in stru ment each i mage or 
mav attempt to i nstru ment an i mage that has already 
been instru mented . The user mav be unable to locate 
a ll the generated profi l e  i n form ation or m:ty i n cor
recrlv com bine the i n forma tion.  Spik�: frees the user 



from these tedious and error-prone tasks by managing 
both the instrumented copy of each image and the 
profile information generated for the image. 

After profile information is col lected, the final step is 
to use the profile information to optimize each i mage. 
As with instrumentation, the typical profile-directed 
optimization system req uires the user to optimize each 
image explicitly and to assemble the optimized appl i 
cation. Spike uses the profile information collected for 
each image to optimize all  the i mages in an application 
and assembles the opti mized application for the user. 

Spike Optimization Environment 

The Spike Optimization Environment (SOE) provides a 
simple means to instrument and optimize large applica
tions that consist of many images. The SOE can be 
accessed through a graphical interface or through a 
command -line interface that provides identical func
tionality. The command-line interface allows the SOE to 
be used as part of a batch build system such as make.23 

In addition to providing a simple-to-use interface, 
the SOE keeps the instrumented and optimized ver
sions of each image and the profile information associ
ated witl1 each image in a database. When an 
application is instrumented or optimized, the original 
versions of the i mages in the application are not modi
fied; instead, the SOE puts an instrumented or opti
mized version of each image into the database. When 
the user invokes the original version of an application, 
the SOE uses a transparency agent to execute the 
instrumented or optimized version. 

The SOE allows the user to instrument and optimize 
an entire application using the fol lowing procedure: 

1 .  Register: The user selects the application or applica
tions that are to be instrumented and optimized. The 
user needs to specifY only the application's main 
image. Spike then finds aU the implicitly linked images 
( DLLs loaded when the main image is loaded) and 
registers that tl1ey are part of the application. 

2 .  I nstrument: The user requests that an appl ication 
be instrumented . For each i mage in the application, 
the SOE invokes the Spike Opti mizer to instrument 
that image. The SOE places the instrumented ver
sion of each i mage in the database. The original 
i mages are not modified . 

3 .  Collect profile information: The user runs tl1e origi
nal application in the normal way, e .g. ,  from a com
mand prompt, from Windows Explorer, or indirectly 
through another program . Our transparency agent 
( explained later in this section) invokes tl1e instru
mented version of the application in place of the 
original version. Any i mages dynamically loaded by 
the application are i nstrumented on the fly. Each 
time the application terminates, profile information 
for each image is written to the database and merged 
\vith any existing profile information. 

4. Optimize :  The user requests that an appl ication be 
opti mized.  For each image in the application, the 
SOE i nvokes the Spike Optimizer to optimize the 
image using the collected profi le information and 
places the opti mized version of each i mage i n  the 
database. 

5. Run the optimized version: The user runs the orig
inal application, and our transparency agent substi 
tutes the optimized version, al lowing the user to 
evaluate the effectiveness of the optimization . 

6. Export: The SOE exports the optimized i mages 
from the database, placing them i n  a directory spec
ified by the user. The optimized images can tl1en be 
packaged \vith other application components. 

The Spike Manager is the principal user interface for 
the SOE. The Spike Manager displays the contents of 
the database, showing the applications registered with 
Spike, the i mages contained i n  each application, and 
the profile information collected for each i mage . The 
Spike Manager enables the user to control many 
aspects of the i nstr u mentation and optim ization 
process, including specifYing which i mages are to be 
i nstrumented and optimized and which version of the 
application is to be executed when the original applica
tion is invoked. 

Transparent Application S ubstitution (TAS) is the 
transparency agent developed for the Spike system to 
execute a modified version of an application transpar
ently, without replacing the origi nal images on disk. 
TAS was modeled after the transparency agent in the 
DIGITAL FX!32  system24 but uses different mecha
nisms. When the user invokes the original application, 
the SOE uses TAS to load an i nstrumented or opti 
m ized version. With TAS, the user does not need to do 
anything special to execute tl1e instru mented or opti
mized version of an application . The user simply 
i nvokes the original appl ication in the usual way (e .g . ,  
from a command prompt, from Windows Explorer, or 
i ndirectly through another appl ication),  and the 
instrumented or optimized application runs in its 
place. TAS performs application su bstitution in two 
parts . First, TAS makes the ·windows NT loader use a 
modified version of the main i mage and DLLs. 
Second,  TAS makes it appear to the application that 
the original images were i nvoked . 

TAS uses debugging capabil ities provided by the 
Windows NT operating system to specify that when
ever the main i mage of an application is i nvoked, the 
mod ified version of that i mage should be executed 
i nstead . In each image, the table of i mported DLLs is 
altered so that instead of loading the DLLs specified i n  
t h e  original image, each i mage l oads its modified 
counterparts. Thus, when the user invokes an applica
tion, the Windows NT operating system loads the 
modified versions of the i mages contained i n  tl1e appli 
cation.  Some applications load DLLs with explicit calls 
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to LoadLibrary. TAS intercepts those cal ls and i nstead 
loads the modified versions .  

The second part ofTAS makes the  modified version 
of the appl ication appear to be the original version of 
the application . Applications often use the name of the 
main image to rind other ti les. For example, if an 
instrumented image requests its ful l  path n::tme, TAS 
instead returns the tl1 l l  path name of the correspond ing 
original image . To do this, TAS replaces certain cal ls to 
kernel32 .dli in  tJ1e instrumented and optimized images 
witl1 cal ls to hook procedures. Each hook procedure 
determines the outcome the call wou ld have had for 
the original appli cation and returns tlut result .  

Instrumentation 

Spike instruments an image by inserting counters into 
it .  Using the results of these coun ters, the optimizer 
can determine the number of ti mes each basic block 
and con trol tlow edge in the image is executed.  Spike 
uses a spanning-tree technique proposed by Knuth" 
to reduce the number of counters required to ful ly  
instrument  an image . For example, i n  an i fthen-clse 
clause, counti ng the number of ti mes the i f  and then 
statements are executed is enough to determine the 
number of times the else statement is executed . 
Register usage information i s  used to find free registers 
for the instru mentation code,  thereby red ucing the 
number of saves and restores necessary to fi·ee up reg
isters . 1 2  Typical ly, instrumentation makes the code 30 
percent larger. As part of the profi le ,  Spike a lso cap
tures the last target of a jump or procedure cal l  that 
cannot be determined statically. 

Spike's profi le i nformation is persistent; smal l 
changes to an  image do not i nval idate the profile infor
mation collected f(x that image. Profi l e  persistence is 
essential for appl ications that requ i re a lengthv or 
cumbersome p rocess to generate a profile ,  even when 
using low-cost methods l ike statistical samp l ing. For 
example, generating a good profi le of a transaction 
process ing system requires extensive stagi ng of the sys
te m .  Even when i t  is possible to automate the genera
tion of profi les, some ISVs find tJ1e extr� bui ld time 
unacceptable .  vVith persistence, the user can col lect a 
profile once and continue to use it for successive bui lds 
of  a program as sma l l  changes are made to it .  Our 
experience with an rsv has shown t hat the speedup 
trom Spike declines as the profile gets older, but using 
a two- or three -week-old proti le is acceptable. It is also 
possible to merge a profi l e  generated by an  older 
image with a profi le generated by a newer image . 

·when using an old profi le, Spike must match up 
procedures in the current program with procedures in  
the profiled program. Spike discards profi les tor proce
dures that have changed . Re lying on a proced ure 
name derived trom debug in formation to do the 
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match ing is not practical in a prod uction environment. 
I nstead , Spike generates a signature bJsed on the flow 
graph of each procedure .  Since signatu res are not 
based on the code ,  smal l  changes to a procedure wil l 
not i nval idate the profi le .  Signatures are not unique, 
however, so it can be difficult to match two lists of sig
natures when there are d i fferences. A min imum edit 
d istance J lgorithm2" is used to fi nd the best match 
between the list of signatures of the current program 
and the J ist of signatu res of the p rofi l ed program.  

Summar y  

Many Wind ows NT-based appl ications are large, cal l 
intensive programs, with loops that cross mul tiple pro
ced ures and proced ures that have complicated control 
How and many basic blocks. The Spike opti mi zation 
system uses code l ayout and hot-cold opti mization to 
optimize cal l - i ntensive programs. Code lavout places 
tbe ti·equen tly executed portions of the program 
together in memory, thereby reducing instruction 
cache miss and improving pertonnance up to 33 per
cent. Our code layout algorithm rearranges basic 
blocks so that the fa l l - through path is the common 
path . The algorith m also spl i ts each procedure into a 
frequentlv executed ( hot) part and an intreg uentlv 
executed (cold ) part. The split procedures are pl aced 
so that tt·equent (ca l ler, cal lee) pairs are adjacent .  

The hot part of a procedure is the collection of the 
common paths through the proced ure. These paths 
can be optimized at the expense of the cold paths by 
removing instructions tl1at are required only if the cold 
patJ1s are executed. Hot-cold optimization exploits this 
opportunity by performing opti mizations that remove 
partial ly dead code and replace uses of preserved regis
ters with uses of scratch registers. Hot-cold optimiza
tion reduces the instruction path length through the 
call - intensive programs by 3 percent to 8 percent. 

Proti l e  feed back is rarely used because of  the d iffi
culty of col lecting, managing, and applying profile 
information. Spike provides a complete system for 
profi l e  feed back optimization that e l iminates these 
problems. It is a practical system that is being actively 
used to optimize applications for A lpha  processors 
running the Windows NT operating system .  
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Analyzing Memory 
Access Patterns of 
Programs on Alpha
based Architectures 

The development of efficient algorithms on 

today's high-performance computers is far from 

straightforward. Applications need to take ful l  

advantage of the computer system's deep mem

ory hierarchy, and this impl ies that the user 

must know exactly how his or her implementa

tion is executed. The ability to understand or 

predict the execution path without looking 

at the machine code can be very difficu lt with 

today's com pi lers. By using the outputs from 

an experimental memory access profiling tool. 

the programmer can com pare memory access 

patterns of different algorithms and gain insight 

into the a lgorithm's behavior, e.g.,  potential 

bottlenecks resu lting from memory accesses. 

The use of this tool has helped improve the 

performance of an application based on sparse 

matrix-vector m u ltipl ications. 

I 
Susanne M. Balle 
Simon C. Steely, Jr. 

The development of efficient algorithms on today's 
high-performance computers can be a challenge. One 
major issue in implementing high-performing algo
rithms is to take fu l l  advantage of the deep memory 
h ierarchy. To better understand a program's perfor
mance, two things need to be considered : computa
tional intensiveness and the amount of memory traffic 
involved. In addition to the latter, the pattern of the 
memory references is important because the success of 
hierarchy is attributed to locality of reference and 
reuse of data in the user's program .  

In this paper, we investigate the memory access pat
tern of Fortran programs. We begin by presenting an 
experimental Atom' tool that analyzes how the pro
gram is executed. We developed the tool to help us 
understand how different compiler s>vitches impact 
the algorithm implemented and to determine if the 
algorithm is doing what it  is  intended to do. In add i 
tion, o u r  tool helps the process o f  translating a n  algo
rithm into an efficient implementation on a specific 
machine.  The work presented in this paper focuses 
primarily on a better understanding of the behavior 
of technical applications. Related work for Basic 
Linear Algebra Su broutine implementations has been 
described.2 In most scienti fic programs, the data ele
ments are matrix-elements that are usua!Jy stored in two
dimensional (2-D )  arrays (column-major in Fortran) .  
Knmving the order o f  array referencing i s  important in 
determining the amOLmt of memory traffic. 

I n  the fi nal section of this paper, we present an 
example of a memory access pattern study and i llus
trate how the use of our program analysis tool 
improved the considered algorithm's performance. 
Guidelines on how to use the tool are given as wel l  as 
comments about conclusions to be derived from the 
histograms generated .  

Memory Access Profiling Tool 

Our experimental tool generates a set of histograms 
for each reference in the program or in the su broutine 
under i nvestigation .  The first histogram measures 
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strides ti·om the previous reference, the second his
togram gives the stride  ti·om the second - to - l ast rder
ence, and so on, f(x a total of MAXEL h istograms for 
each memory reference in the part of the program we 
investigate . By  stride, we mean the distance bct\vecn 
two memory reterences ( load or store ) .  We chose a 

J\1AXEL of five for our case study, but MAXEL can be 
given any va lue .  

Two variants of this tool were implemented . 

I .  The first version takes all memorv references into 
account in al l h istograms. 

2. The second version takes into account i n  the next 
h istogram those memory references whose stride 
is more than 1 28 bytes. It does not consider in the 
( i + l ) th histogram ( i = 1 , . . .  ,5 ) strides that are less 
than 1 28 bytes in the ith histogram .  

The second version o f  the too l bas proven to be 
more usefu l  in understanding the access patterns. It 
highl ights memory accesses that are stride one for a 
while and then have a stride greater than 1 28 bytes. 
The choice of 1 2 8  bytes was arbitrary; the value can be 
changed.  

The fo l lowing bins are used in the b istogrJms: 0-
through 1 27-byte strides Jre accounted tor separately. 
Strides greJter than or equal to 1 28 bytes arc grouped 
into the fol lowing intervals: [ 1 28 through 2 5 5 ] ,  [ 2 56 
through 5 1 1 ] , [ 5 1 2  through 1 ,023 ] ,  [ 1 ,024 through 
2 ,047] ,  [ 2 ,048 through 4,095 ], [ 4,096 through 
8 , 1 9 1 ] , [ 8 , 1 92 through 1 6,383 ] ,  [ 1 6 ,384 through 
32,767] ,  and [32 ,768 through infinity ] .  

I n  the nex t  section ,  we  present the output his
tograms obtained with the second version of this 
experimental tool ror a Fortran loop . In our ClSC studv, 
we chose to perform the histograms on a s ing le arrav 
instead of a l l  rdercnccs in the program .  This method 
provided a clearer picture of the memory access pat
tern for each array in the piece of the program under 
consideration .  We present  separate h istograms tor the 
.loads and the stores of each array in the memory traffic 
of the subroutine we investigated . 

\Vhen looking at memory access patterns, it is 
important not to include load instructions that per
form prdetch ing. Even though prefetch ing adds to 
the memory traffic ,  i ts load i nstructions pol lute the 
memory access pattern picture. 

Case Study 

In this section,  we study and compare d i fferent ver
sions of the code presented in Figure l usi ng our 
experimental memory access profi l i ng tool . We show 
that the same code is not executed i n  the same way for 
d ifferent compi ler switches. Often a developer has to 
delve deeply into the assembler of the given loop to 
u nderstand how and when the different i nstructions 
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Q ( i ) =O,  i =1 ,  n 
2 do k 1 = 1 ,  4 
3 i nd e x = ( k 1 -1 ) * n u m r o w s  
4 do j = 1 , n  
5 p 1 = C O L S T R ( j , k 1 ) 
6 p 2 = C O L S T R ( j +1 , k 1 ) - 1  
7 p3= [ s n i p ]  
8 s umO=O . dO 
9 s um 1 =0 . d 0 
ill sum2=0 . d0 
1 1  s um3=0 . d0 
12  x1  P ( i ndex+ROW I D X ( p 1 , k 1 ) )  
13 x2 P ( i n d e x + R OW I D X ( p 1 +1 , k 1 ) )  
14 x3 P ( i n d e x + R OW I D X ( p1 +2 , k 1 ) )  
15 x4 P ( i nd e x+ROWI D X ( p1 +3 , k 1 ) )  
16  d o  k = p1 , p 3 ,  4 
1 7  s umO s umO + AA ( k , k1 ) * x 1  
1 8  s u m 1  s u m 1  + AA ( k+1 , k1 )  * x 2  
1 9  sum2 sum2 + AA ( k + 2 , k 1 ) * x 3  
20 sum3 sum3 + A A ( k+3, k 1 ) * x4 
2 1  x 1  P ( i n d e x +ROW I D X ( k+4 , k 1 ) )  
22 x 2  P ( i n d e x+ROWI D X ( k+ S , k 1 ) )  
23 x 3  P ( i nd e x+ROW I D X ( k+6 , k 1 ) )  
24 x 4  P ( i n d e x + R O W I D X ( k + 7 , k 1 ) )  
25 enddo 
26 do k = p3+ 1 , p2 
27 x 1 =P ( i n d e x + R O W I D X ( k , k 1 ) )  
28 s umO = sumO + AA ( k , k 1 ) * x 1  
29 enddo 
30 Y T E M P ( j , k 1 ) =s umO+s um1 + s um2+sum3 
3l  enddo 
32 do i = 1 ,  n ,  4 
33 Q ( i )  = Q ( i ) + Y T E M P ( i , k 1 ) 
34 Q ( i +1 )  Q ( i +1 ) + Y T E M P ( i + 1 , k 1 ) 
35 Q ( i +2 )  Q ( i +2 )  + Y T E MP ( i +2 , k 1 ) 
36 Q ( i +3 )  Q ( i +3 )  + Y T E M P ( i +3 , k 1 ) 
37 enddo 
38 enddo 

w h e r e  n = 1 4 0 0 0 ,  
r e a l * 8  AA ( 5 1 1 3 5 0 , 4 ) ,  Y T E MP ( n , 4 )  
r e a l *8 Q ( n ) ,  P ( n )  
i n t e g e r * 4  ROW I D X ( 5 1 1 3 5 0 , 4 ) ,  C O LS T R ( n , 4 )  

Figure 1 
Origi nJ I  Loo�) 

are executed . The output h istograms from our tool 
ease that process and give a clear picture of the refer
ence patterns. The loop presented in figure 1 imple 
ments a sparse matri x -vector multipl ication and is part 
of a larger appl ication .  Ninery-six percent of tbe appl i 
cation's execution t ime  i s  spent in that loop. 'vVe ana
lyze the loop compiled with t\vo d i fferent sets of 
compiler switches. To i l lustrate the dkcrive use of the 
tool, we present the enhanced performance resu l ts 
due to ch�mges made based on the output h istograms. 

From l ines 5 and 6 in  the loop shown in  F igure l ,  
we wou l d  expect the array COLSTR to be read stride 
one 1 00 percent of the time.  Line 30 of the figure 
ind icates that lTEMP is accessed stride  one through 
the wholc j loop .  From l ines 33 through 36, we expect 
YTEMP's stride to be equal to one most of the time and 
equal to the number of columns in the array every 
time k1 is i ncremented.  Q should be referenced 100  



percent stride one tor both the loads and the stores 
( l ines 33 through 36) .  As i l lustrated in lines 1 2  
through 1 5 , 2 1  through 24, and 2 7, RO WIDX is  
expected to be accessed with a stride of one between 
the p1 and p2 bounds of the k loop . Even though i t  
looks l ike the k loop is violating the array bounds of 
RO WIDX in lines 2 1  through 24 for the last i teration of 
the loop, this is not the case. We expect array P to have 
nonadjacent memory references since we have deliber
ately chosen an algorithm that sacrifices this array's 
access patterns to improve the memory references of 
Q and AA. 

Original Code 

We investigate the memory access patterns achieved 
by the loop in  Figure 1 when compiled with the fol 
lowing switches: 

f 7 7  - g 3  - f a s t  - 0 5  

The - g 3  switch i s  needed to extract the addresses 
of the arrays from the symbol tabl e.  For more infor
mation on DIG ITAL Fortran com piler switches, see 
Reference 3 .  

From Figures 2 and 3 ,  we see that array Q is accessed 
as we expected , 1 00 percent stride one for the loads 
and the stores. Since Q is accessed contiguously in 100 
percent of its m emory references, we wi l l  not  h ave any 
entries in the next four histograms. As described i n  
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the previous section, we only record i n  the next his
togram the strides that are greater than 128 bytes in  
the current histogram . 

Figure 4 i l lustrates that COLSTR i s  accessed 50 
percent stride zero and 5 0  perce nt stride one . This is  
u nexpected since lines 5 and 6 in  Figu re 1 suggest that 
this array would be accessed stride one 100 percent of 
the ti me.  The fact that we have entries only for the 
strides between the current and the previous loads 
indicates that the eleme nts of COL57R are accessed in  a 
nearly contiguous way. A closer look at Figure l tells 
us that the compiler i s  loading COLSTR twice. We 
expected the compi ler  to do only one load into a regis
ter and reuse the register. The work-around is to per
form a scalar replacement as described by Blickstein et 
al . •  We put p2 = COLSTR( l ,kl ) -1 outside the j loop 
and substituted inside the j loop p1 = COLSTR(j, k1) 
with p1 = p2 + 1 .  Inside the j loop, p2 remains the 
same. Eliminati ng the extra loads did not en hance per
formance, and a possible assumption is that the analy
sis done by the compiler concluded that no gain would 
resu lt from that optimization . 

Figu res 5 and 6 show the strides for the loads and the 
strides for the stores for the array Y"IFJvJP. One more 
time, the im plementation is not being executed the 
way we thought it would.  In Figure 1 ,  J ines 33 through 
36 su ggested that ITEAIP would be referenced stride 
one through the whole i loop as well  as with a stride 

(\J .., 0 ,... Lf) ("') ,... Lf) a; ("') ,... � Lf) Lf) .., (\J Lf) ;;; (\J .,. "' 00 .., (\J 0. 0 o_ ("') ,... 
I I I "' .,. a5 <J5 "' z 

.,. 00 .., I I I I ("') u:: (!) � Lf) (\J � -.:: -.:: I I � N (\J .,. -.:: -.:: ;;; I KEY: STRIDES I N  BYTES 00 � -.:: 
0 

N 
1 STEP AGO 4 STEPS AGO C') 

0 2 STEPS AGO • 5 STEPS AGO 
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Figure 2 
Strides for Array Q between the Current Load and the Load One through Five Steps Ago 
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equal to the n umber of col u m ns in the array when k 1 is  
i ncremen ted . Bv consideri ng Figure 5 along with l i nes 
33 through 36 in Figure 1 ,  we conclude tlut YTEMP is 
u nrol led by four in the kl -direcrion in the i loop . The 
fact that a l l  strides between the current load and the 
load two loads back or three loads back or tou r  loads 
back have a stride between 32K and i n fin ity is consis
tent wi th traversing a matrix along rows. Figure 6 
s hows that the j loop is not u n ro l led by four i n  the 
kl -d irection, because a.ll the loads of >77:/11/P are 100 
percen t  stride o n e .  The compiler m u s t  spl i t  t h e  k<l loop 
i n to two separate loops, the first consists of the j loop 
and the second consists of the i loop. The latter has 
been unrol led bv four i n  the /;>} -direction thcrebv el i m 
i nati ng the extra O\'erhead ti-om d1e /�I loop. 

Figure 7 shows that the matrix A./1 i s  accessed as we 
expected.  The strides arc not greater than 1 28 lwtes 
or, in other words, a maxi m u m  strid e of 1 6  eJements .  
The tact that there i s  n o  stride other than the one 
between the c u rrent load a n d  the previous l oad in the 
histograms shows that AA i s  referenced i n  a control led 
way. In this  case , AA is accessed 39 percen t  o f  its total 
loads in stride one and 23 percen t  in stride  two. 

From l i nes 1 2  through 1 5 , 1 7  through 20, and 2 1  
through 24 i n  Figure l ,  we know that the arrays AA 
;md RO WIDX should have re lativelv s imi lar  behaviors .  
O n l y  t h e  tour extra prefctches of RO IX 7DX in l i nes 2 1  
through 2 4  for the last iteratio n  i n  the j l oop d i fferen -

50 

45 

40 

i=" z 35 w 
(.) 
0: w 
� 30 

Ul 
0 
<( 25 0 ...J 
lL 
0 

0: 20 

LU co 
::;; 1 5  
=> 
z 

1 0  

5 

0 
0 '<t co C\J <D 0 "' co C\J <D 0 '<t C\J C\J C\J (') (") "' '<t 

.� 
co '<t 

tiate the access patterns of the two arrays. Figure 8 
confirms that assu mption . RO WID.X:. i s  referenced with 
control led strides.  B ecause RO 'W7DX is accessed cJose 
to contiguously, we wil l not have any entr ies in the 
next tou r  h istograms. As described in t.l1e previous sec
tio n ,  we only record in the next histogram the strides 
that are greater than 1 28 bytes in  the current his
togram .  NO \Vff)X. is referenced 24 percen t  of i ts total 
loads in stride one and 34 percent in stride two. 

As illustrated in Figure 9, array P is accessed exactly 
the way we expected it .  VVhen desigrung this algorithm, 
we had to make some compromises. We decided to 
have AA <UKi Q retCrenced as closeJy as possible to stride 
one, thus givi ng up the control of P's references. 

Bv exam i ning tJ1csc arrays' access patterns, we can sec 
how they arc accessed and ll'bethcr or not the imple
mentation is doing what i t  i s  supposed to do.  I f'thc loop 
i n  Figure l is used on a larger matrix [ 11 = 75,000 and 
rl.A( 204427, 1 2 )  has 1 5  m i l l ion nonzero elements ] ,  tJ1c 
execution ti me for the total app l ication on a si ngle 
2 1 1 64 processor of an AlphaServer 8400 5/625 system 
is l ,970 seconds. The appl ication executes 26 x 75 
( = 1 ,950 )  times the considered loop. When profi l ing 
the program , we measured that  the loop under i nvesti 
gation takes 96 percent of the total execution ti me.  It i s  
tl1erdore a tair assumption t o  sav tJ1at any improvement 
i n  t.l1 is bui lding block wi l l  imprm·e the O\'eral l  perfor
mance oftbe total program. 
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Modified Code 

I n  this section, we describe a new experiment in which we 
used different compiler switches and changed the original 
loop to the loop in Figure 10 .  The code changes were 
based on the analysis in the previous section as wel l  as on a 
more extended seties of investigations. 

In this example, we used the tol lowing compiler 
switches: 

f 7 7  - g 3  - f a s t  - 0 5  - u n r o l l  1 

Lines 3, 5, and 6 fi.·om Figure 10  show that we imple
mented tl1e scalar replacement technique as described by 
Blickstein et al .' to avoid COL57R being loaded twice. From 
Figure 1 1 , we sec that array COLS7R is now behaving as we 
expect: 100 percent of tl1e sui des for tl1e loads are stride one. 

In our first attempt to optimize the original loop, we 
spl it the kl loop into r-vo loops in the s:�me way the com
piler d id as described in tl1e previous section . We then hand 
unrol led the 'rTEMP array in the kl direction.  Further 
analysis showed that a considerable gain  cou ld be made 
by removing the Y"fEMP array and writing the results 
directly into Q. By replacing tl1e zeroing out of the Q array 

2 
3 
4 
5 
6 
7 
8 
9 
10 
I I  
1 2  
13 
14 
15 
16  
1 7  
1 8  
1 9  
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
L9 
30 
31 
32 
33 
34 
35 

do k 1 = 1 ,  4 
i nd e x = C k 1 -1 ) * n u m r o w s  
p 2 = C O L S T R ( 1 , k 1 ) - 1  
do j = 1 , n  

p 1 = p 2 + 1  
p 2 = C O L S T R ( j +1 , k 1 ) -1 
p3= [ s n i p ] 
s umO=O . dO 
sum1 =0 . d0 
sum2=0 . d0 
s um3=0 . d0 
x 1  = P ( i nd e x + R O W I D X ( p 1 , k 1 ) )  
x 2  = P ( i nd e x + R OW I DX ( p 1 +1 , k 1 ) )  
x 3  = P ( i nd e x+ROW I D X ( p 1 +2 , k 1 ) )  
x 4  = P ( i nd e x + R OW I DX ( p 1 +3 , k 1 ) )  
d o  k = p 1 , p 3 ,  4 

sumO = s umO + A A ( k , k 1 ) * x 1  
sum1 = sum1 + A A ( k + 1  , k 1 ) * x 2  
sum2 = sum2 + A A ( k + 2 , k 1 ) * x 3  
s um3 = s um3 + A A ( k + 3 , k 1 ) * x 4  
x 1  = P ( i n d e x + R O W I D X ( k + 4 , k 1 ) )  
x 2  = P ( i n d e x + R O W I D X ( k+ 5 , k 1 ) )  
x 3  = P C i n d e x + R OW I D X ( k+6, k 1 ) )  
x 4  = P ( i n d e x + R OW I D X ( k + 7 , k 1 ) )  

enddo 
d o  k = p3+ 1 , p2  

x 1 = P ( i n d e x+ROW I D X ( k , k1 ) )  
s umO = - sumO + AA( k , k 1 ) * x 1  

enddo 
i f < k1 . eq . 1 )  t h e n  

Q (  j )  = s umO + s u m 1  + s um2 + s um3 
e l s e  

Q ( j )  = Q ( j )  + s umO + s u m 1  + s u m 2  + s um3 
e nd i f  

enddo  
36 enddo 

w h e r e  n = 1 40 0 0 ,  
r e a l * 8  AA ( 5 1 1 3 5 0 , 4 )  
r e a l * 8  Q ( n ) ,  P ( n )  
i n t e g e r * 4  ROW I D X ( 5 1 1 3 5 0 , 4 ) ,  C O L S T R < n , 4 )  

F igure 1 0  
Mod i ticd Loop 
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( Figure l ,  line l )  with an JF statement ( Figure 10,  line 30), 
we further improved the performance of tl1e loop. The last 
t\\'O changes were possible because we decided that, for 
pertonnancc enhancement issues, the serial version of the 
code was going to be different from its parallel  version . 

Figures 1 2  and 1 3  show that Q's load and store access 
pattern is 1 00 percent stride one :ts we expected i t  to be .  
For both RO U:I7DXand AA, we sec a significant increase in  
stride one references. Figure 1 4  shows tllat AA is now 
accessed 69 percent stride one instead of 39 percent. 
RO WIDX's stride one increased to 52 percent  from 24 
percent as i l lustrated in  Figure 1 5 .  These r-vo arrays are 
the reason tor using the - u n r o l l  1 switch .  vVithout it, 
stride one for both arrays would stay approximately the 
same as in  the previous study. The pattern of accesses of 
array P in Figure 16 is  s imi lar  ro the prior pattern of 
accesses i n  Figure 9 as expected.  

To better understand the effects of the umoLi ing, we 
counted the number of second- level cache misses for 26 
calls to the loop, using :: m Atom tooP tlut simulated a 
4-megabyte direct-mapped cache. By considering only tl1cse 
26 mau-Lx-vector multiplications, we do not get a fu l l  picture 
of what is going on and how the different arrays interact. 
Nevertheless, it gives us hints about what caused the 
improvement in performance. Usc of the cache tool on the 
whole application would increase the run time dramatical ly. 

Twentv-six calls to the original loop ( Figure 1 )  have a 
total of l ,476,0 1 7,322 memory references, of ,,·hich 
77,638,624 are cache m isses. The modified loop ( Figure 
10 ) ,  on the other hand,  has fewer references due to the fact 
that we eliminated :111 expensive array initialization at each 
step and removed tJlC temporary array YT&WP. The number 
of cache misses dropped from 77,638,624 to 72,384,348 
or a reduction in  misses of 7 percent. If we compi le the 
modified loop witl1out the -u n r o l l 1 switch , the number 
of cache misses incre:�scs sl ightly. On tl1e 2 1 1 64 Alpha 
microprocessor, al l the misses are cflectively performed in 
serial . This means that for memory- bound codes l ike tl1e 
loop we arc currcntlv investigating, execution time primar
i.lv depends on tllC number of cache misses. 

The histograms i l lustr::�ting tl1c access strides for the d i f� 
ferent arm·s helped us design a more suitable algoritl1m for 
our architecture. By increasing the su·ide one references in 
the loads for the arrays AA and RO WJDX, eliminating the 
extra references in C0!57Nand Q, and improving the strides 
for Q, we increased tl1e performance of this application d ra
matical ly. Counting the number of cache m isses gave us a 
better understanding as to why the new access patterns 
achieve enhanced performance. It also helped us under
stand that not allowing the compiler to unrol l  the already 
hand-unrol led loops in the modified loop decreased the 
number of cache misses. The execution time for this appl i
cation I n = 75,000 and AA( 204427, 1 2 )  has 15 mil l ion 
nonzero c lements] decreased !Tom l ,970 seconds to l ,8 3 1  
seconds o n  a single 625-megahertz ( MHz) 2 1 1 64 Alpha 
microprocessor of an AlphaScrver 8400 5/625 system .  
This i s  a n  improvcmcm o f  1 39 seconds or 8 percent. 
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Concl usion 

The case study shows that, given the right program 
analysis tools, a program developer can rake better 
advantage of his or her computer system.  The experi 
menta l  tool we designed was very usefu l in provid ing 
insight into the algorithm's behavior. The approach 
considered yields an  improvement in performance of 
8 percent on a 625-MHz 2 1 1 64 Alpha microproces
sor. This is definitely a worthwhile exercise since a su b
stantia l  reduction i n  execution rime was obtained 
using straightforward and easy guidelines. 

The data collected from a memory access profil ing 
tool he lps the user understand a given program as well 
as its memory access patterns. It  is an easier and faster 
way to gain  insight into a program than examining the 
l isting and the assembler generated by the compiler. 
Such a tool enables the programmer to compare mem
ory access patterns of d ifferent algorithms; therefore, 
it is very usefu l  when optim izing codes . Probably i ts 
most important value is that it shows the developer i f  
h is  or her  implementation i s  do ing what he  or she 
th inks the algorithm is  doing and highl ights potential 
bottlenecks resulting from memory accesses. Optimiz
i ng an application is an iterative process, and being able 
to use relative!�' easy- to-use tools l i ke Atom is a very 
important part of the process. The major advantage of 
the tool presented in this paper is  that no source code 
is needed, so it can be used to analyze the perf(mnaJlce 
of program executables. 
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Open VMS Alpha 64-bit 
Very large Memory 
Design 

The OpenVMS Alpha version 7 . 1  operating 

system provides memory management features 

that extend the 64-bit VLM ca pabi l ities intro

duced in version 7.0. The new OpenVMS Alpha 

APis and mechanisms al low 64-bit VLM applica

tions to map and access very large shared mem

ory objects (g loba l sections). Design a reas 

include shared memory objects without disk 

file backing storage (memory-resident globa l 

sections), shared page tables, and a new physi

cal memory and system fluid page reservation 

system. 

I 
Karen L. Noel 
Nitin Y. Karkhanis 

Database products and other applications impose heavy 
demands on physical memory. The newest version of 
DIGITAL's Open VMS Alpha operating system extends 
its very large memory (VLM) support and allows large 
caches to remain memory resident. OpenVMS Alpha 
version 7 . 1  enables applications to take advantage of 
both 64- bit virtual addressing and very large memories 
consistent with the Open VMS shared memory model .  
In  this paper, we describe the new 64-bit VLM capabili
ties designed for the Open VMS Alpha version 7 . 1  oper
ating system. We explain application flexibil ity and the 
system management issues addressed in the design and 
discuss the performance improvements realized by 
64-bit VLM applications. 

Overview 

A VLM system is a computer with more than 4 giga
bytes (GB)  of main memory. A flat, 64-bit address 
space is commonly used by VLM applications to 
address more than 4 GB of data . 

A VLM system al lows large amounts of data to 
remain resident in main memory, thereby reducing 
the time required to access that data. For example, 
database cache designers implement large-scale caches 
on VLM systems in an effort to improve the access 
times for database records. Similarly, VLM database 
applications support more server processes than ever 
before . The combination of large, in-memory caches 
and an increased number of server processes signifi
cantly reduces the overall time database c l ients wait to 
receive the data requested . 1  

The OpenVMS AJpha version 7 . 0  operating system 
took the first steps in accommodating the virtual 
address space requirements of VLM applications by 
introducing 64-bit virtual addressing support. Prior to 
version 7.0, large applications-as well as the Open VMS 
operating system itself-were becoming constrained by 
the limits imposed by a 32-bit address space. 

Although version 7.0 eased address space restric
tions, the existing OpenVMS physical memory man
agement model did not scale well enough to 
accommodate VLM systems . Open VMS imposes spe
cific l imits on the amount of physical memory a 
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process can occupy. As a result,  applications lacked the 
abi l i ty to keep a verv large object i n  ph ysical memory. 
I n  systems on whi ch the physical memory is not plen
t ifu l ,  the mechan isms that l imit per-process me mory 
ut i l ization serve to e nsure tair- ::111d -equal  access to a 
potenti a l l y scarce resou rce . However, on systems rich 
with memory whose intent i s  to service appl ications 
creating VLM objects, the l imitations placed on per
process memory uti l ization inh ibi t  the overa l l  perfor
mance of those appl ications. As a resu l t , the benefi ts of 
a VLM system may not be completely real ized . 

Applications that require very large amounts of 
physical mem ory need additional VUvl su pport. The 
goals of the Open VMS Alpha VLM project were the 
fol l owi ng:  

• fvlaxi mize the operating system's 64 - bit  capabi l i ties 

• Take full advantage of the Alpha Archi tecture 

• Not req uire excessive appli cation change 

• Simpl i f)' the system management of a VLM system 

• Allow tor the creation of VLM objects that e x hibit  
the same basic c haracteristics, from the program 
mer's perspective, as other virtual memory objects 
created with the OpenVMS system service pro
gramming i nterface 

Th ese goals became the foundation fo r the fol l ow
ing VLM technology i m p l emented in the OpenVlviS 
Alpha version 7 . 1  operating syste m :  

• M emory-resident global sections-shared mem ory 
objects that do not page to disk 

• Shared page tables-page tables mapped by m u l tiple 
processes, which in turn map to memory-resident 
global sections 

• The reserved memory registry-a me mory reserva
tion system that supports memory-resident global 
sections and shared page tables 

The re mai nder of this paper describes the major 
design areas of VLM support tor Open VMS and dis
cusses the problems addressed by the design team ,  tl1e 
alternatives considered, and the benefits of the extended 
VLM support in Open VMS AI pha version 7 . 1 .  

Memory-resident Global  Sections 

We designed memory- resident global sections to 
resolve the scal ing prob lems experi enced by VLM 
appl ications on Open VMS . We focused our design on 
the existing shared memory m odel, using the 64- bit 
address ing support. Our project goals i ncluded s impli
f),ing system ma nagement and harnessing the speed of 
tJ1e Alpha microprocessor. Before describing memorv
resident global sec tions, we provide a brief explanation 
of shared me mory, process worki ng sets, and a page 
fau l t  hand ler. 

Global Sections 

An OpenVMS global section is a shared me mory 
object. The memory within the global section is 
s hared among diflere n t  processes in the syste m .  Once 
a process has created a global section, others may map 
to the section to share the data. Several types of global 
sections can be created and mapped by cal l ing 
Open VMS system services. 

G lobal Section Data Structu res I n ternally, a global 
section consists of several basic data structures that are 
stored in system address space and are accessible to a l l  
processes from kernel mode. When a global section i s  
created , OpenVMS al locates a n d  initia l izes a set of 
these d ata structu res.  The re lationship between the 
structures is i l l ustrated in Figu re 1 .  The sample global 
section is  named "SHROBJ" and is 2 ,048 Alpha pages 
or 1 6  mega bytes ( M B )  in size . Two processes have 
mapped to the global section by referri ng to the global 
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section data structures in their process page table 
entries (PTEs) .  

Process PTEs Mapping t o  Global Sections When a 
process maps to a global section, its process PTEs reter 
to global section pages in a one-to-one fashion . A page 
of physical memory is allocated when a process 
accesses a global section page for the first time. This 
results in both the process PTE and the global section 
page becoming val id .  The page frame number ( PFN) 
of the physical page allocated is stored in the process 
PTE. Figure 2 i l lustrates two processes that have 
mapped to the global section where the first process 
has accessed the first page of the global section. 

When the second process accesses the same page as 
the first process, the same global section page is read 
from the global section data structures and stored in 
the process PTE of the second process. Thus the two 
processes map to the same physical page of memory. 

The operating system supports two types of global 
sections: a global section whose original contents are 
zero or a global section whose original contents are 
read from a file. The zeroed page option is referred to 
as demand zero. 

Backing Storage for Global Sections Global section 
pages require backing storage on disk so that more fre
quently referenced code or data pages can occupy 
physical memory. The paging of least recently used 
pages is typical of a virtual memory system.  The back
ing storage for a global section can be the system page 
files, a file opened by OpenVMS, or a file opened by 
the application. A global section backed by system 
page files is referred to as a page-fi le- backed global sec
tion.  A global section backed by a specified fi le is 
referred to as a fi le- backed global section . 

When a global section page is i nvalid in all process 
PTEs, the page is eligible to be written to an on-disk 

backing storage fi le .  The physical page may remain in 
memory on a l ist of modified or free pages. Open VMS 
algorithms and system dynamics, however, determine 
which page is written to disk. 

Process Working Sets 

On OpenVMS, a process' valid memory is tracked 
within its working set lists. The working set of a 
process reflects the amount of physical memory a 
process is consuming at one particu lar point in time. 
Each valid working set list entry represents one page of 
virtual memory whose corresponding process PTE is 
val id . A process' working set l ist includes global sec
tion pages, process private section pages, process pri 
vate code pages, stack pages, and page table pages. 

A process' working set quota is l imited to 5 1 2  MB 
and sets the upper l imit on the number of pages that 
can be swapped to disk. The l imit on working set 
quota matches the size of a swap I/0 request . 2  The 
effects on swapping would have to be examined to 
increase working set quotas above 5 1 2 MB.  

Process working set lists are kept in 32-bit system 
address space. When fi·ee memory is plentiful in the sys
tem, process working set lists can increase to an extended 
quota specified in the system's account file for the user. 
The system parameter, WSMAX, specifies the maximum 
size to which a process working set can be extended . 
Open VMS specifies an absolute maximum value of 4 GB 
for the WSMAX system parameter. An inverse relation
ship exists between the size specified for WSMAX and the 
number of resident processes Open VMS can support, 
since both are maintained in the 32-bit addressable por
tion of system space. For example, specifYing the m<L"Xi
mum value for WSMAX sharply decreases the number of 
resident processes that can be specified . 

Shou ld OpenVMS be required to support larger 
working sets in the future, the working set l ists would 
have to be moved out of 32-bit system space. 

FIRST PROCESS PTEs GLOBAL PAGE TABLE SECOND PROCESS PTEs 

Figure 2 
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Page Fault Handling for Global Section Pages 

The data within a global section may be heavily 
accessed by the many processes that are sharing the 
data . Therefore, the access time to the global section 
pages may influence the overall performance of the 
application. 

Many hardware and software factors can influence 
the speed at which a page within a global section is 
accessed by a process. The factors relevant to this dis
cussion are the following: 

• Is the process PTE valid  or inval id? 

• I f  the process PTE is inval id,  is the global section 
page valid or i nvalid ? 

• If the global section page is inval id, is the page on 
the modified l ist, free page list, or on disk vvithin the 
backing storage file? 

If the process PTE is invalid at the time the page is 
accessed , a translation inval id fault, or page fault, is 
generated by the hardware. The Open VMS page fault 
handler determines the steps necessary to make the 
process PTE val id .  

If  the global section page is val id,  the PFN of the 
data is read from the global section data structures. 
This is caUed a global val id  fault .  This type of fault is 
corrected quickly because the data that handles this 
fault is readily accessible from the data structures i n  
memory. 

If the global section page is invalid, the data may sti l l  
be witl1in a physical page on the modified or free page 
list maintained by OpenVMS. To correct this type of 
fault, the PFN that holds the data m ust be removed 
from the modified or free page list, and the global sec
tion page must be made val id .  Then the fault  can be 
handled as if it were a global valid fault. 

If the page is on disk within the backing storage file, 
an I/0 operation must be performed to read the data 
from the disk into memory before the global section 
page and process PTE can be made val id.  This is the 
slowest type of global page fau lt, because performing a 
read ljO operation is much slower than manipulating 
data structures in memory. 

For an application to experience the most efficient 
access to its shared pages, i ts process PTEs should be 
kept valid . An application may use system services to 
lock pages i n  the working set or in memory, but typi 
cally the approach taken by  applications to reduce 
page fault  overhead is to increase the user account's 
working set quota. This approach does not work when 
the size of the global section data exceeds the size of 
the working set q uota l imit  of 5 1 2  MB. 

Database Caches as File-backed Global Sections 

Quick access to a database application's shared mem
ory is critical for an application to handle transactions 
quickly. 
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Global sections implement shared memory on 
Open VMS, so that many database processes can share 
the cached database records. Since global sections 
must have backing storage on disk, database caches are 
eitJ1er backed by the system's page files or by a file cre
ated by the database application. 

For best performance, the database application 
should keep al l its global section pages valid in the 
process PTEs to avoid page fault  and I/0 overhead . 
Database processes write modified buffers from the 
cache to the database files on an as-needed basis. 
Therefore, the backing storage fi le required by 
Open VMS is redundant storage. 

Vety Large Global Sections 

The OpenVMS VLM project focused on VLM data
base cache design. An additional goal was to design 
the VLM features so that other types of VLM applica
tions could benefit as well. 

Consider a database cache that is 6 GB in size. 
Global sections of this magnitude are supported on 
OpenVMS Alpha with 64- bit addressing support. If 
tl1e system page files are not used, the application must 
create and open a 6-GB file to be used as backing stor
age for the global section. 

With the maxi mum quota of 5 1 2  MB for a process 
vvorking set and with the maximum of a 4-GB working 
set size, no process could keep the entire 6-GB data
base cache val id in its working set at  once . When an 
OpenVMS global section is used to implement the 
database cache, page fau lts are i nevitable. Page fault 
activity severely impacts the performance of the VLM 
database cache by causing unnecessary I/0 to and 
from the disk while managing these pages. 

Since all global sections are pageable, a 6-GB fi le 
needs to be created for backing storage purposes. In 
the ideal case, the backing storage file is never used. 
The backing storage file is actually redundant with the 
database files tJ1emselves. 

VLM Design Areas 

The VLM design team targeted very large global sec
tions ( 4 GB or larger) to share data among many 
processes. Furthermore, we assumed that the global 
section's contents would consist of zeroed memory 
instead of originating from a file. The team explored 
whetJ1er this focus was too narrow. We were con
cerned that implementing j ust one type ofVLM global 
section would preclude support for certain types of 
VLM applications. 

We considered that VLM appl ications might use 
very large amounts of memory whose contents origi 
nate ti-om a data fi le .  One type of read-onJy data from 
a file contains program instructions (or code) .  Code 
sections are currently not pushing the limits of 32-bit  
address space. Another type of read-only data from a 
file contains scientific data to be analyzed by the VLM 



application.  To accommodate very large read -only 
data of this type, a large zeroed global section can be 
created, the data from the fi le  can be read into mem
ory, and then the data can be processed in memory. 

If writable pages are initially read trom a file instead 
of zeroed , the data w i l l  most l ikely need to be written 
back to the original file .  In this case, the tile can be 
used as the backing storage for the data. This type of 
VLM global section is supported on Open VMS Alpha 
as a ti le-backed global section . The operating system's 
algori thm for worki ng set page replacement keeps the 
most recently accessed pages i n  memory. Wo rki ng set 
q u otas greater than 5 1 2  MB and working set si zes 
greater than 4 GB help this type of VLM application 
scale to h igher memory si zes. 

We a l so considered very large demand-zero private 
pages, "mal loc" or " heap" memory. The system page 
fl ies are the backing storage for demand-zero private 
pages. Currently, processes can have a page fi le quota 
as large as 32 G B .  A VLM application,  however, may 
not wan t these private data pages to be written to a 
page file since the pages are used i n  a simi lar fashion as 
i n - memory caches . Larger working set quotas also 
help this type ofVLM application accommodate ever
mcreasmg memory si zes. 

Backing Storage Issues 

For many years, data base cach e  designers and database 
performance experts had requested that the 
Open VMS operating system support memory with no 
backing storage ti les. The backi ng storage was not 
only redundant but also wastefu l  of disk space. The 
waste issue is made worse as the sizes of the database 
caches approach the 4-GB range . As a result,  the 
OpenVMS Al pha VLM design had to a l low for non
file- backed global sections. 

The support of64-bit addressing and VLM has always 
been viewed as a two-phased approach, so that function
alit)' could be del ivered in  a timely fashion .' Open VMS 
Alpha version 7.0 provided the essentials of 64- bit 
addressing support. The VLM support was '�ewed as an 
extension to tJ1e memory management model and was 
deferred to Open VMS Alpha version 7. 1 .  

Working Set List Issues. Entries i n  rl1e process work
ing set l ist are not required for pages that can never be 
written to a backing storage fil e.  The fu ndamental con
cept of the Open VMS worki ng set algorithms is to sup 
port the paging of data from memory to disk and back 
into memory when it is needed aga in .  Si nce the focus 
of the VLM design was on memory that wou ld not be 
backed by disk storage, the VLM design team rea lized 
that these pages, although valid in the process PTEs, 
did not need to be in the process' working set list. 

VLM Programming Interface 

The Open VMS Alpha VLM design provides a new pro
gramming i nterface for VLM applications to create, 

map to, and delete dema nd-zero, me mory-resident 
global secti ons. The existing programming i n terfaces 
d id  not easily accommodate the new VLM features. 

To j ustif)' a new programmin g interface, we looked 
at me applications mat would be cal l ing the new system 
service routines. To add ress more than 4 GB of mem
ory in rl1e flat Open VMS 64-bit address space, a 32-bit  
application must be recompiled to use 64-bit pointers 
and often requires source code changes as wel l .  
Database applications were already modifYing meir 
source code to use 64-bit pointers and to scale rl1eir 
algorithms to hand le VLM systems.1 Therefore, cal l ing 
a new set  of system service routines was considered 
acceptable to the program mers of VLM applications. 

Options for Memory-resident Global Sections 

To in i tialize a very large memory-resident global sec
tion mapped by several processes, the overhead of 
hardware fa ults,  a l locating zeroed pages, setting 
process PTEs val id ,  and setting global section pages 
val id is el i m in ated by preallocating the physical pages 
for the memory-resident global section . PreaJiocation 
is  performed by the reserved m emory registry, and is 
d iscussed later in this paper. H ere we tal k  about 
options for how the reserved memory is used.  

Two options, ALLOC and FLUID, are ava ilable 
for creating a demand -zero, me mory-resident global 
section . 

ALLOC Option The ALLOC option uses preal located, 
zeroed pages of memory for the global section. When 
me ALLOC option is used , pages are set aside during 
system start-up specifically for tJ1e memory-resident 
global section.  Preallocation of contiguous groups of 
pages is  discussed in  the section Reserving Memory 
du ri ng System Start- up. Preallocated memory-resident 
global sections are taster to i nitialize man memory
resident global sections mat usc rl1e FLUID option . 

Run-time performance is im proved by using the 
Alpha Architecture's granu larity h int, a mechanism we 
discuss later i n  this paper. To use the ALLOC option , 
the svstem must be rebooted tor large ranges of physi
cally contiguous memory to be al located . 

FLU I D  Option The FLUID option a l lows pages not 
yet accessed within the global section to remain flu id  
within the syste m .  This is also referred to as  the t:ud t 
option because the page fault  algorirl1m is used to allo
cate the pages. When the F LUID (or fault)  option 
is used,  processes or the system can use the physical 
pages unti l  they are accessed wit h i n  the memory
resident global section.  The pages remain within the 
syste m's fluid me mory unt i l they are needed.  This l:)'pe 
of me mory-resident global section is more flexible 
than one that uses the ALLOC option.  If an applica
tion that uses a mem ory-resident global section is run 
on a system th at cannot be rebooted d u e to system 
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availabil ity concerns, it can still use the FLUID option. 
The system wil l  not al low this appl ication to run u nless 
enough pages of memory are available in the system 
for the memory-resident global section . 

The system service i nternals code checks the 
reserved memory registry to determine the range of 
pages preallocated for the memory- resident global 
section or to determine if the FLUID option wi l l  be 
used. Therefore the decision to use the ALLOC or the 
FLUID option is not made within the system services 
routine interface. The system manager can determine 
which option is used by specifYing preferences in the 
reserved memory regisu·y. An application can be 
switched from using the ALLOC option to using the 
FLU ID option without requiring a system reboot. 

Design Internals 

The internals of the design choices underscore the m od
ularity of the shared m emory model using global sec
tions. A new global section type was easily added to the 
Open VMS system.  Those aspects of memory-resident 
global sections d1at are identical to pageable global sec
tions required no code modi fications to support. 

To support memory-resident global sections, the 
M RES and ALLOC flags were added to the existing 
global section data structures. The MRES flag indi 
cates that the global section is memory resident, and 
the ALLOC flag i n dicates that contiguous pages were 
preal located for the global section .  

The file - backi ng storage information within global 
section data structures is  set to zero for memory
resident global sections to i ndicate that no backing 
storage fi le is used . Other than the new flags and the 
lack of backing storage ti le information,  a demand 
zero, memory-resident global section looks to 
Open VMS Alpha memory management like a demand
zero, file- backed global section. Figure 3 shows d1e 
updates to d1e global section data structures. 

One i mportant d i fference with memory-resident 
global sections is that once a global section page 
becomes valid, it remains valid for the l i fe of the global 
section . G lobal section pages by definition can never 
become invalid for a memory-resident global section . 

When a process maps to a memory-resident global 
section, the process PTE can be ei ther vali d for the 
ALLOC option or i nval id for the FLUID option . 
When the ALLOC option is used, no page fau l ting 
occurs for the global section pages. 

\¥hen a process first accesses an in valid memory
resident global section page, a page fau l t  occurs j ust as 
with traditional fi le- backed global sections. B ecause 
the same data structures are present, the page f:··wlt 
code in itial ly executes the code for a demand-zero, 
fi le-backed global section page . A zeroed page is allo
cated and placed in the global section data structures, 
and the process PTE is  set val id.  

The working set l ist manipulation steps are skipped 
when d1e M RES fl ag is  encountered in the global sec
tion data structures.  Because d1ese global section 
pages are not placed i n  d1e p rocess working set l ist, 
t hey are not considered in i ts page -replacement algo
rithm. As such,  the OpenVMS Alpha working set 
manipu l ation code paths remained unchanged. 

System Management and Memory-resident Global 

Sections 

When a memory-resident global section is used 
i nstead of a traditional, pageable global section for a 
database cache, there is no longer any wasted page file 
storage required by OpcnVMS to back up the global 
section . 

The od1er system man agement issue aJleviated by 
the implementation of memory-resident global sec
tions concerns working set sizes and quotas. When a 
file -backed global section is used for the database 
cac he, the database processes req uire elevated worki ng 
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set quotas to accommodate the size of the database 
cache . This is no l onger a concern because memory
resident global section pages are not placed i nto the 
process working set l ist. 

With the use of memory-resident global sections, 
system m a nagers may red uce the val ue for the 
WSMAX system parameter such that more processes 
can remai n resident within the syste m. Recal l  that a 
process working set list is in 32 -bit  system address 
space, which is l imited to 2 G B .  

Shared Page Ta bles 

VLM appl ications typically consume l arge amounts of 
physical memory in an attempt to minimize disk I/0 
and enhance overall appl ication performance . As the 
physical me mory requirements of VLM appl ications 
increase, the fol lowi ng second -order effects are 
observed due to the overhead of mapping to very large 
global sections: 

• Noticeably long application start-up and shut
down times 

• Add itional need tor physical memory as the num
ber of concurrent sharers of  a large global section 
mcreases 

• Unanticipated ex haustion of the working set q uota 
and page file quota 

• A reduction i n  the nu mber of processes resident in 
memory, resulting in i ncreased process swapping 

The first two effects are related to page table map
ping overhead and size . The second two effects, as 
they rel ate to page table quota accou nting, were also 
resolved by a shared page tables i mplementation . The 
fol lowi ng sections address the first two issues since 
they u niquely pertain to the page table overhead . 

Application Start-up and Shut-down Times 

Users of VLM appli cations can observe long applica
t ion start-up and shut-down times as a result  of creat
i ng and deleting very large amounts of virtual 
me mory. A single process mapping to a very large 
v irtual memory object does not im pact overall system 
performance. However, a great number of processes 
that s imultaneously map to a very l arge vi rtual mem
ory object have a noticeable i mpact on the system's 
responsiveness. The primary cause of the pertormance 
d egradation is the acce lerated contention for internal 
operati ng system locks . This observation has been 
witnessed on OpenVMS systems and on DIGITAL 
UNIX systems (prior to the addition ofVLM support. )  

O n  OpenVMS, the memory management spinlock 
(a  synchronization mechanism) serializes access to priv
ileged, memory-management data structures. \Ve have 
observed increased spinlock contention as the result  
of hundreds of processes simu ltaneously mapping to 

large global sections. Similar lock contention and sys
tem unresponsiveness occur when multiple processes 
attempt to delete their address space sim u l taneously. 

Additional Need for Physical Memory 

For pages of virtual memory to be valid and resident, 
the page table pages that map the data pages m ust also 
be val id and resident. If  the page table pages are not in 
memory, successful address translation cannot occur. 

Consider an 8-GB, memory-resident global section 
on an Open VMS Alpha system ( witl1 an 8-ki lobyte page 
size and 8- byte PTE size ) .  Each process that maps the 
entire 8-GB, memory-resident global section requires 
8 MB for the associated page table structures. If 1 00 
processes are mapping tl1e memory-resident global sec
tion, an additional 800 MB of physical memory must be 
avai l able to accommodate all processes' page table 
structures. This further requ i res that working set list 
sizes, process page fi l e  quotas, and system page fi l es be 
large enough to accommodate tl1e page tables. 

When 1 00 processes are mapping to the same 
mem ory-resident global section, the same PTE data is 
repl i cated into the page ta bles of the 1 00 processes. 
If each process could share the page table data, only 
8 MB of physical memory would be required to map 
an 8 - G B ,  me mory-resident global section; 792 MB of 
physical memory wou l d  be avai la ble for other system 
pu rposes. 

Figure 4 shows the amount of memory used for 
process page tables mapping global sections ranging i n  
s ize from 2 to 8 G B .  Note that as the n u mber of 
processes that map an 8 - G B  global section exceeds 
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l ,000, the amount of memory used by process page 
tables is larger than the global section i tself. 

Shared Memory Models 

We sought a sol ution to sharing process page tables 
that >vould alleviate the performance problems and 
memory uti l ization overhead yet stay within the 
shared memory fra mework provided by the operating 
system and the architecture . Two shared memory 
models are implemented on Open VMS, shared system 
address space and global sections. 

The Open VMS operating system su pports a n  address 
space layout that i ncl udes a shared system address 
space, page table space, and private process address 
space. Shared system address space is created by plac
ing the physical address of the shared system space 
page tables i n to every process' top-level page table .  
Thus,  every process has the same lower-level page 
tables in its virtual-to- physical address translation 
path . In  turn, the same operati ng system code a nd 
data are found in al l  processes' address spaces at the 
same virtual address ranges. A si milar means cou ld be 
used to create a shared page table space that is used to 
map one or more memory-resident global sections. 

An alternative for shari ng the page tables is to create 
a global section that describes the page table structure. 
The operati ng system could maintain the association 
between the mem ory-resident global section and the 
global section for its shared page table pages. The 
shared page table global section coul d  be mapped at 
the upper l evels of the table structure such that each 
process that maps to it  has the same lower- level page 
tables in i ts virtual -to-physical address translation 
path . This in turn would cause the data to be mapped 
by ali the processes. 

Figu re 5 provides a conceptual representation of the 
shared memory model . Figure 6 extends the shared 
memory model by demonstrati ng that the page tables 
become a part of the shared memory object. 

The benefits and drawbacks of both sharing models 
are highli ghted in Ta ble 1 and Table 2 .  

Model Chosen for Sharing Page Tables 

After examining the existing memory-sharing models 
on Open VMS and taking carefu I note of the composi
tion and characteristics of shared page tables, the design 
team chose to implement shared page tables as a global 
section. In addition to the benefits listed i n  Table 2 ,  the 
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Figure 6 
Shared Memory Objects Using Shared Page Tables 

Ta ble 1 
Shared Page Ta ble Space-Benefits a nd Drawbacks 

Benefits 

Shared page table space beg ins at the same 
virtua l  add ress for a l l  processes. 
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Drawbacks 

The v i rtua l  add ress space is reserved for every process. 
Processes not us ing shared page tab les are pen a l ized 
by a loss in avai lab le  address space. 

Shared page ta ble space i s  at least 8 G B in size, 
reg a rd less of whether the entire space is  used. 

A sign ifica nt amount of new code wou l d  need to be 
added to the kernel s ince shared system space is man
aged sepa rately from process add ress space. 

Global Sections for Page Tab l es-Benefits and Drawbacks 

Benefits 

The same virtual  add resses can be used by a l l  
processes, but this  is  not req u i red.  

The amount of virtual address space ma pped by shared 
page tables is determined by appl ication need. 

Sha red page ta b les are ava i l a b le only to those processes 
that need them. 

Shared page tables a l low for s ign ificant reuse of exist i ng 
global section data structures and process add ress space 
management code. 

Drawbacks 

Shared page tables a re mapped at di fferent virtual  
add resses per  process un less additional steps are taken. 
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design team noticed that shared page table pages bear 
great resemblance to the memory-resident pages they 
map. SpecificaUy, for a data or code page to be valid and 
resident, its page table page must also be valid and resi
dent. The ability to reuse a signjfican t  amount of the 
global section management code reduced the debug
ging and testing phases of the project. 

In the initjal implementation, shared page table 
global sections map to memory-resident global sec
tions only. This decision was made because the design 
focused on the demands ofVLM applications that use 
memory-resident global sections. Should significant 
demand exist, the implementation can be expanded to 
allow the mapping of pageable global sections. 

Shared page tables can never map process p1ivate data. 
The design team had to ensure that the shared page table 
implementation kept process private data from entering 
a virtual address range mapped by a shared page table 
page. If this were to happen, it would compromjse the 
security of data access between processes . 

Shared Page Tables Design 

The goals tor the design of shared page tables included 
the following: 

• Reduce the time required for m u ltiple users to map 
the same memory-residen t  global section 

• Reduce the physical memory cost of maintaining 
private page tables for multiple mappers of the same 
memory-resident global section 

• Do not req uire the use of a backj ng storage file fo r 
shared page table pages 

• Elimi nate the working set l ist accounting tor tl1ese 
page table pages 

• Implement a design that a l lows upper levels of the 
page table h ierarchy to be shared at a later time 

Figure 6 demonstrates the shared page ta ble global 
section model .  The dark gray portion of the figure 
h ighlights the level of sharing supplied i n  Open VMS 
Alp ha version 7 . 1 .  The l i ght  gray portion h ighlights 
possible levels of sharing allowed by creating a shared 
page table global section consisting of u pper-level 
page table pages. 

Modifications to Global Section Data Structure Table 2 
noted as a benefit the abil ity to reuse existi ng data 
structures and cod e .  Mi nor modifications were 
exacted to the global section data structures so that 
they could be used to represent a shared page table 
global section.  A new flag, SHARED_PTS , \Vas added 
to the global section data structures. Coupled with 
this change was the requirement that a memory
resident global section and its shared page table global 
section be u niquely l i n ked together. The correspon
d e nce between the two sets of global sections is man
aged by the operating system and is used to locate the 
data structures for one global section when the struc
tures for the other glo bal section are i n  hand . Figure 7 
highlights the c hanges made to the data structures. 

Creating Shared Page Ta bles To create a memory
resident global section, an application calls a system 
service routi n e .  No flags or extra arguments are 
required to enable the creation of an associated shared 
page table global secti o n .  

The design team also provided a means to disable 
the creation of the shared page tables i n  the event that 
a user might find shared page tables to be undesirable. 
To disable the creati o n  of shared page tables, the 
reserved memory registry entry associated with the 
memory-resident global section can specif)r that page 
tables are not to be used . Witlun the system service 
routine that creates a memory-resident global section , 
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the reserved memory registry is examined for an entry 
associated with the named global section.  If an entry 
exists and it specifies shared page tables, shared page 
tables are created . If the entry does not specify shared 
page tables, shared page tables are not created. 

If no entry exists for the global section at all, shared 
page tables are created.  Thus, shared page tables are 
created by default  if no action is taken to disable their 
creation . We believed that most applications wou ld 
benefit from shared page tables and thus should be 
created transpare ntly by defau lt. 

Once the decision is  made to create shared page 
tables for the global section, the system service routine 
a l locates a set of global section data structures for the 
shared page table global secti on. These structures are 
in itia l ized in the same man ner as their memory
resident cou nterparts, and in many cases the fields in 
both sets of structures contai n identical data. 

Note that on current Alpha platforms, there is  one 
shared page table page for every l ,024 global section 
pages or 8 M B .  (The number of shared page table 
pages is rounded up to accommodate global sections 
that are not even multiples of8 MB in size . )  

Shared PTEs represent the data within a shared page 
table global section and are initial ized by the operating 
system. Since page table pages are not accessible 
through page table space' u n ti l  the process maps to 
the data, the initia l i zation of the shared page table 
pages p resented some design issues. To i n itial i ze the 
shared page table pages, they m ust be mapped, yet 
they are not mapped at the time that the global section 
is created.  

A s imple solution to the problem was chosen . Each 
shared page table page is  temporarily mapped to a sys
tem space virtual page solely for the purposes of initial
izing the shared PTEs. Te mporarily mappi ng each 
page allows the shared page table global section to be 
fu l ly i nitialized at the time it is created. 

An interesting alternative for in itial izing the pages 
would have been to set the upper-level PTEs i nvali d ,  
referencing t h e  shared page table global section.  The 
page fault handler could i nitialize a shared page table 
page when a process accesses a global section page, 
thus referenci ng an i nval id  page table page. The 
shared page tab le page cou ld then be in itial ized 
through its mapping in page table space . Once the 
page is in itialized and made val id ,  other processes 
referencing the same data wou ld incur a global valid 
fault for the shared page ta ble page . This design was 
rejected due to the additional overhead of fau lting 
during execution of the application, especial ly when 
the ALLOC option is used for the memory-resident 
global section. 

Mapping to a Shared Page Table Global Section Map
ping to a memory-resident global section that has 
shared page tables presented new challenges and con-

stt·aints on the mapping criteria normal ly  imposed by 
the virtual address space creation routi nes. The map
ping service routines require more stri ngent mapping 
criteria when mapping to a memor y - resident global 
section that has shared page tables. These require
ments serve rwo purposes: 

l .  Prevent process private data from being mapped 
onto shared page tables. If part of a shared page 
table page is unused because the memory-resident 
global section is  not an even multiple of 8 MB, the 
process would normally be allowed to create private 
data there. 

2. Accommodate the vi rtual addressing al ign ments 
required when mapping page tables into a process' 
address space. 

For applications that cannot be changed to conform 
to these mapping restrictions, a memory-resident 
global section with shared page tables can be mapped 
using the process' private page tables. This capability is 
also useful when the memory-resident global section is 
mapped read-on ly. This mapping cannot share page 
tables witl1 a writable mapping because the access pro
tection is stored within the shared PTEs. 

Shared Page Table Virtual Reg ions The virtual region 
support added i n  OpenVMS Alpha version 7 . 0  was 
extended to aid in prohibiting process private pages 
from being mapped by PTEs within shared page 
ta bles. Virtual regions are l ightweight objects a 
process can use to reserve portions of its process 
virtual address space. Reserving add ress space prevents 
other threads in the process ti·om creating address 
space in the reserved area, un less they specifY the 
handle of that reserved area to the address space cre 
ation rou tines. 

To control which portion of the address space 
is mapped with shared page ta bles, the shared page 
table attribute was added to virtual regions.  To map a 
memory- resident gl obal section with shared page 
tables, the user must supp ly the mapping routine with 
the name of the appropriate global section and tl1e 
region handle of a shared page table virtual region. 

There are two constraints on the size and alignment 
of shared page table virtual regions. 

1 .  The size of a shared page table virtual region m ust 
be an even multiple of bytes mapped by a page table 
page . For an 8- KB page system ,  the size of any 
shared page table virtual region is an even multiple 
of 8 M B .  

2 .  The cal ler c a n  specif)' a particular starting vi rtual 
address for a virtual region. For shared page table 
virtual regions, tl1e starting virtual address must be 
aligned to an 8-MB bound ary. If the operating 
system chooses the v irtual address for the region, it 
ensures the virtual address is properly al igned. 
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If either the size or the align ment req uirement for a 
shared page table virtual regi on is not met, the service 
fai ls  to create the region . 

The size and al ignment constraints placed on shared 
page table virtual regi ons keep page t:J.ble pages from 
spa n n i ng two diffe rent virtual regions. This allows the 
operati ng system to restrict process private mappi ngs 
in shared p:1ge table regions and shared page table 
mappings in other regions by checking the shared 
page ta ble's attribute of the region before start ing the 
mapping operatio n .  

Mapping within Shared Page Table Regions The address 
space mapped within a shared page table virtual region 
also mu st be page table page <l l i gned . This ensures that 
mappings ro m u l tiple memory-resident global sec
tions that have u nique sets of shared page tables do 
not encroach upon each other. 

The map length is the only argu ment to the map
ping system service rou tines that need not be an even 
multip le  of bytes mapped by a page tab le  page. This 
is  al lowed because it is possible fo r the size of the 
mem ory-resident global section to not be a n  even 
m u l tiple of bytes mapped by a page ta ble page . A 
memory-resident global section that ti ts this length 
description wi ll have a portion of i ts last shared page 
table page u n used . 

The Reserved Memory Registry 

Opcn VMS Al pha VLM support provides a p h ysical 
memory reservation system that c<1n be exploited by 
VLM appl icatio ns. The main pu rpose of this system is 
to provide portions of the syste m 's plwsicaJ memory 
to m u l tiple consum ers .  \Vhen nccessarv, a consu mer 
can reserve J q u antity of physical Jddrcsscs i n  an 
attempt to make the most efficient usc of system com
ponents, namely the translation buffer. More efficient 
use of the CPU and i rs periphera l compone nts leads to 
i ncreased appl ication performanc<.:. 

Alpha Granularity Hint Regions 

A translation buffer (TB) is a CPU component that 
caches recent  virtual -to- physical add ress translations 
of va l id pag<.:s. The TB is  a sma l l  amount of very fast 
memory and theref(xe is only capable of cach ing a l im
ited nu m ber of translations. Each entry i n  the  TB rep
resents a singk successfu l virtual -to-physical address 
translation.  TB e ntries arc purged either when a 
req uest is made by software or when the TB is fld l and 
a more recent translation needs to be cac hed . 

The Alpha Arch itecture cou pled with software can 
help make more dkctive use of the TB by a l lowi ng 
several contiguous pages (groups of 8,  64, or 5 1 2 ) to 
act as a single huge page . This single huge page is 
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cal led a granu larity hint region and is composed of 
contiguous virtual and physical pages whose respective 
first pages are exactly a l igned accord ing to the nu mber 
of pages in the region . \Vhen the conditions for a gran
ularity hint region prevai l ,  the s ingle h uge page is 
a l lowed to consu me a single TB entry i nstead of sev
era l .  Minimizing the nu m ber of e n tries consumed for 
contiguous pages greatly reduces tu rnover within the 
TB, l eading to h igher chances of a TB hit .  I ncreasing 
the l ike l ihood of a TB h i t  in turn minimizes the n u m 
ber o f  virtua l - to- physical translations performed by 
the CPU.5 

Since memorv- residenr global sections are nonpage
able, mappings to m e mory-resident g l obal sections 
greatly benefit by exploiting granu larity h i nt regions. 
Unfortunately, there is no guarantee that a contiguous 
set of physical pages ( let alone pages that meet the 
a l ign ment criteri a )  can be located one<.: th<.: system is 
ini tial ized and ready for steady-state operations. 

Limiting Physical Memory 

One techniq ue to locate a contiguous set of PFNs on 
OpenVMS ( previously used o n  Alpha and VAX plat
forms) is to l i m it the actual n u m be r  of p hysical pages 
used by the operating system .  This is accomplished by 
setting the PHYSTCAL_MEMORY system parameter 
to a val u e  smal ler than the actuJI amount of physical 
memory avai l a ble in the syste m .  The system is then 
rebooted, and the PFNs that represent higher physical 
addresses than that speci fied by the p<�ramcter are a l lo
cated bv the appli catio n .  

This technique works wel l  for a single application 
that wishes to a l locate or usc a range of PFNs not used 
bv the operating system . Unfortu nately, it sufkrs from 
the fol l o\\'ing problems: 

• It  requires the application to deter mine rhe first 
page not used by the operating syste m .  

• It  req uires a process running this appl ication to be 
highly p rivi leged since the opcr:tting system does 
not check which PFNs arc being mapped.  

• Since the operating system docs not arbi trate access 
to the isolated physical addresses, only one appl ica
tion can safely use them . 

• The Alpha Architecture al lows for implementa tions 
to support di scontiguous physical me mory or phys
ical me mory hol es .  Tbis mcms that there is no 
gua rantee that the isolated physical add resses are 
successively adjacent. 

• The PFNs above the l imit  set :�re not ma naged by 
the operating system ( p hysical memory data struc
tures do not describe these PFNs ) .  Therefore, rhe 
pages above the l i m i t  cannot be rec laimed by the 
operating system once the :tppl ication is  fi nished 
using them u n less the system is  rebooted . 



The Reserved Memory Solution 

The Open VMS reserved memory registry was created 
to provide contiguous physical memory for the pur
poses of further improving the performance of VLM 
applications. The reserved memory registry al lows the 
system manager to specify multiple memory reserva
tions based on the needs of various VLM applications. 

The reserved memory registry has the ability to 
reserve a preallocated set of PFNs. This allows a set of 
contiguous pages to be preallocated with the appro
priate alignment to allow an Alpha granularity hint 
region to be created with the pages. I t  can also reserve 
physical memory that is not preallocated . Effectively, 
the application creating such a reservation can allocate 
the pages as required . The reservation ensures that the 
system is tuned to exclude these pages. 

The reserved memory registry can specifY a reserva
tion consisting of prezeroed PFNs. It can also specify 
that a reservatjon account for any associated page 
tables. The reservation system allows the system man
ager to free a reservation when the corresponding 
consumer no longer needs that physical memory. 

The memory reserved by the reserved memory reg
istry is communicated to OpenVMS system tuning 
facil ities such that the deduction in fluid memory is 
noted when computing system parameters that rely on 
the amount of physical memory in the system .  

SYSMAN User I nterface The Open VMS Alpha 
SYSJ\tlAN utility supports the RESERVED_MEMORY 
command for manipulating entries in the reserved 
memory registry. A unique character string is specified 
as the entry's handle when the entry is added , modi
fied, or removed. A size in megabytes is specified for 
each entry added. 

Each reserved memory registry entry can have the 
following options: preallocated PFNs (ALLOC), zeroed 
PFNs, and an allotment for page tables. VLM applica
tions enter their unique requirements for reserved 
memory. For memory-resident global sections, zeroed 
PFNs and page tables are usua!Jy specified. 

Reserving Memory during System Start-up To ensure 
that the contiguous pages can be allocated and that 
run-time physical memory al location routines can be 
used, reserved memory allocations occur soon after 
the operating system's physical memory data struc
tures have been initialized . 

The reserved memory registry data file is read to 
begin tJ1e reservation process. Information about each 
entry is stored in a data structure. Mu l tiple entries 
result in multiple structures being l inked together in a 
descending-order linked list. The list is intentionally 
ordered in this manner, so that tJ1e largest reservations 
are honored first and contiguous memory is not frag
mented with smaller requests. 

For entries with the ALLOC characteristic, an 
attempt is made to locate pages that will satisfy the 
largest granularity hint region that fits within the 
request. For example, reservation requests that are 
larger than 4 MB result in the first page al located to be 
aligned to meet the requirements of a 5 1 2-page gran
ularity hint region. 

The system's fluid page counter is reduced to 
account for the amount of reserved memory specified 
in each entry. This counter tracks the number of phys
ical pages that can be reclaimed from processes or the 
system through paging and swapping. Another system
defined value, minimum fluid page count, is calcu lated 
during system i rutialization and represents the 
absolute minimum number of fl uid pages the system 
needs to function. Deductions from the flu id page 
count are always checked against the minimum fluid 
page count to prevent the system from becoming 
starved for pages. 

Running AUTOGEN, the OpenVMS system tuning 
uti l i ty, after modifying the reserved memory registry 
allows for proper initialization of the fluid page 
counter, the mirumum fluid page count, and other sys
tem parameters, thereby accommodating the change 
in reserved memory. AUTOGEN considers entries in 
the reserved memory registry before selecting values 
for system parameters that are based on the system's 
memory size . Failing to retune the system can l ead to 
unbootable system configurations as well as poorly 
tuned systems. 

Page Tables Characteristic The page table reserved 
memory registry characteristic specifies that the 
reserved memory allotment for a particular entry 
should include enough pages for its page table 
requirements . The reserved memory registry reserves 
enough memory to account for lower-level page table 
pages, although the overall design can accommodate 
allotments for page tables at any level .  

The page table characteristic can be omitted if 
shared page tables are not desired for a particular 
memory-resident global section or if the reserved 
memory will be used for another purpose. For exam
ple, a privileged application such as a driver could call 
the kernel -mode reserved memory registry routines 
directJy to use its reservation from the registry. In tJ1is 
case, page tables are already provided by the operating 
system since the reserved pages vvi l l  be mapped in 
shared system address space. 

Using Reserved Memory Entries are used and 
returned to the reserved memory registry using a set 
of kernel-mode routines. These routines can be called 
by applications running in kernel mode such as the 
system service routines tJ1at create memory-resident 
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global sections. For an application to create a memory
resident global section and use reserved memory, the 
global section name must exactly match tl1e name of 
the reserved memory registry entry. 

After the system service routine has obtained the 
reserved memory for me memory-resident global sec
tion, i t  calls a reserved memory registry routine again 
for me associated shared page table global section . I f  
page tables were not specified for the entry, tl1e system 
service routine does not create a shared page table 
global section. 

A side benefit of using me ALLOC option for me 
memory-resident global section is tlut tl1e shared page 
tables can be mapped into page table space using gran
u larity hint regions as well. 

Returning Reserved Memory The memory used by 
a memory-resident global section and its associated 
shared page table global section is returned to the 
reserved memory registry ( by calling a kernel-mode 
routine) when the global section is deleted .  Reserved 
memory is only returned when a memory-resident 
global section has no more outstanding references. 
Preallocated pages are not returned to the system's 
free page l ist. 

Freeing Reserved Memory Preallocated reserved mem
ory that is unused or partially used can be freed to the 
system's  free page list and added to the system's flu id 
page count. Reserved fluid memory is returned to me 
system's fluid page count only. 

Once an entry's reserved memory has been freed, 
subsequent attempts to use reserved memory witl1 me 
same name may be able to use only tl1e FLUID option, 
because a preallocated set of pages is no longer set 
aside for the memory-resident global section. ( If the 
system's fl uid page count is large enough to accom
modate the request, i t  will be honored . )  

The abil ity to free unused o r  partially used reserved 
memory registry entries adds flexibi lity to tl1e manage
ment of the system.  I f  applications need more mem
ory, me registry can still be run wim the FLUID 
option u ntil the system can be rebooted with a larger 
amount of reserved memory. A pool of reserved mem
ory can be freed at system start-up so that multiple 
applications can use memory-resident global sections 
to a limit specified by the system manager in the 
reserved memory registry. 

Reserved M emory Registry and Other Appl ications 

Otl1er Open VMS system components and appucations 
may also be able to take advantage of the reserved 
memory registry. 

Applications that relied upon modifications to the 
PHYSICAL_MEMORY system parameter as a means 
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of gaining exclusive access to physical memory can 
enter kernel mode and call me reserved memory reg
istry kernel -mode routines directly as an alternative . 
Once a contiguous range of PFNs is obtained, the 
application can map the pages as before . 

Using and returning reserved memory registry 
entries requires kernel -mode access. This is not viewed 
as a problem because applications using the former 
method (of modifying me PHYSICAL_MEMORY 
system parameter) were already privi leged . Using the 
reserved memory registry solves the problems associ
ared witl1 me previous approach and requires few code 
changes. 

Performance Results 

In a paper describing me 64-bit option for me Oracle7 
Relational Database System, '  r.he aumor underscores 
the benefits realized on a VLM system running the 
DIGITAL UNIX operating system.  The test results 
described in that paper highlight the benefits of being 
able to cache large amounts of data instead of resort
ing to disk l/0.  Although the Open VMS design team 
was not able to execute s imilar kinds of prod uct tests, 
we expected to realize similar performance improve
ments for tl1e following reasons :  

• More of a VLM application's hot  data is kept resi
dent instead of paging between memory and sec
ondary storage. 

• Application start-up and shut-down times are sig
nificantly reduced since the page table structures 
for the large shared memory object are also shared.  
The result is tl13t many fewer page tables need to be 
managed and manipulated per process. 

• Reducing d1e amount of PTE manipulations results 
in reduced Jock contention when hundreds of 
processes map ilie large shared memory object. 

As an alternative to product testing, tl1e design ream 
devised experiments that simulate the simultaneous 
start-up of many database server processes. The exper
iments were specifically designed to measure the 
scaling effects of a VLM system during application 
starr-up, not during steady-state operation. 

vVe performed two basic tests. In the first, we used a 
7 . 5 -GB,  memory-resident global section to measure 
tl1e time required for an increasing number  of server 
processes to start up .  All server processes mapped to 
me same memory-resident global section using shared 
page tables. The resu l ts shown in Figure 8 indicate 
that the system easily accommodated 300 processes . 
Higher numbers of processes run simu ltaneously 
caused increasingly large amounts of system stress due 
to the paging of otl1er process data. 
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Server Starr-up Time versus Process Coun t  

In another test, we used 300 processes to measure 
the time required to map a memory-resident global 
section with and without shared page tables. In this 
test, the size of global section was varied. Note that the 
average time requ ired to start up the server processes 
rises at nearly a constant rate when not using shared 
page tables. When the global section sizes were 5 GB 
and greater, the side effect of paging activity caused 
the start-up times to rise more sharply as shown i n  
Figure 9 .  

The same was not true when using shared page 
tables. The time requ ired to map the increasing sec
tion sizes remained constant at j ust under three sec
onds. The same experiment on an AlphaServer 8400 
system with 28 GB of memory showed identical con
stant start-up times as the size of the memory-resident 
global section was increased to 27 GB.  
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Figure 9 
Server Starr-up Time on an 8 - G B  System 

Conclusion 

The OpenVMS Alpha VLM support avai l able i n ver
sion 7. 1 is a natural extension to the 64-bit virtual 
addressing support included in version 7.0. The 64-bit  
virtual addressing support removed the 4-GB virtual 
address space l imit and a l lowed appl ications to make 
the most of the address space provided by Alpha sys
tems. The VLM support enables database products or 
other applications that make significant demands on 
physical memory to make the most of large memory 
systems by allowing large caches to remain memory 
resident. The programming support provided as part 
of the VLM enhancements enables applications to take 
advantage of both 64-bit virtual addressing and very 
large memories in a modular fashion consistent with 
the Open VMS shared memory model .  This combina
tion enables applications to realize the fu l l  power of 
Alpha VLM systems. 

The Oracle7 Relational Database Management 
System for OpenVMS Alpha was modified by Oracle 
Corporation to exploit the VLM support described in 
this paper. The combination of memory-resident 
global sections, shared page tables, and the reserved 
memory registry has not only improved application 
start-up and run- time performance, but i t  has also 
simplified the management of Open VMS Alpha VLM 
systems. 
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PowerStorm 4DT: A H igh
performance Graphics 
Software Architecture 

The PowerStorm 4DT series of graphics devices 

established DIGITAL as the OpenGL performance 

leader for mid-range workstations, both on the 

DIGITAL U N IX and the Windows NT operating 

systems. Achieving this level of success required 

combining the speed of the Alpha microprocessor 

with the development of an advanced graphics 

su bsystem architecture focused on exceptional 

software performance. The PowerStorm 4DT 

series of g raphics adapters uses a modified 

direct-rendering technology and the Al pha CPU 

to perform geometry and lighting calculations. 
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The PowerStorm 4D40T, 4DSOT, and 4D60T mid
range graphics adapters from DIGITAL have exceeded 
the performance of all OpenGL graphics devices cost
ing as much as $25,000. In addition, these products 
achieved twice the price/performance ratio of com
peting systems at the time they were announced. 

The PowerStorm 4DT series of mid-range graphics 
devices was developed in 1 996 to replace the com
pany's ZLX series. In its search for a vendor to replace 
the graphics hardware, DIGITAL found Intergraph 
Systems Corporation. This company had been design
i ng three-dimensional ( 3 -D)  graphics boards for a 
few years and was then on its second-generation 
chip design. The schedule, cost, and performance of 
Intergraph's new design matched our project's target 
goals. Intet·graph was building software for the 
Windows NT operating system on its Intel processor
based workstations, but was not doing any work for 
the UNIX operating system or the AJpha p latform. 

The goals of the PowerStorm 4 DT project ·were to 
develop a mid-range graphics product powered by the 
AJpha microprocessor that would lead the industry in  
performance and price/performance. 

This paper describes the competitive environment 
in the graphics industry at the conception of the 
PowerStorm 4DT project. It discusses our design deci 
sions concerning the graphics subsystem architecture 
and performance strategy. The paper concludes with a 
performance summary and comparison in the industry. 

Competitive Analysis 

OveraJl performance oftoday's mid-range workstations 
is markedly better than that of just two years ago. This 
improvement is largely due to the dramatic increases in 
CPU speeds, both in the number of instructions exe
cuted per clock cycle and the number of clock cycles per 
second . Without trivializing the efforts of the CPU 
architects, such year-over-year increases in CPU perfor
mance have become the trend of the last decade, espe
cially with the AJpha microprocessor. 
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More astounding is the central role that the graphics 
component of the workstation is p laying in defining 
the overall performance of the workstation . \Ve are in 
the age of visual computing. Whether or not an appli
cation req uires 3 - D  graphics, even the most pri mitive 
applications often rely on a graphical user interface 
( G U I ) .  As such, the graph ical components of today's 
system -level benchmarks now carry significant weight. 

More i mportantly, a prospective buyer often looks 
at results from standard graphics benchmarks as a gen 
eral indication o f  a machine's overa l l  performance. In 
the com puter-aided design/computer-aided manu
facturing ( CAD/CAM ) market, a customer typical ly 
buys a workstation to run a set of applications that has 
a large 3-D component .  Performance is measured by 
how fast a workstation can create and manipulate 3 - D  
objects. For the most part, this performance i s  d eter
m ined wholly by the graphics su bsyste m .  The hard 
ware components of t h e  graph ics su bsystem, however, 
vary from vendor to vendor and may or may not 
incl ude the CPU . 

Performance Metrics 

Simply stated,  the primary goal of the PowerStorm 
4DT graphics device series was to provide the fastest 
mid - range OpenGL graphics performance while offer
ing the best price/performance ratio .  OpenGL is the 
i nd ustry-standard 3-D graphics application p rogram 
m ing i nterface (API) and associated l ibrary that pro
vides a platform -independent i nterface for rendering 
3 - D  graphics ] 

QuantifYing performance can be an elusive goal . 
Product managers in our Workstation Graphics G roup 
chose two mctrics to compare the performance of the 
PowcrStorm 4DT adapter to our competitors' p rod
ucts. The first metric was p erformance on the industry
standard OpenGL Viewperf benchmark, Conceptual 
Design and Rendering Software (CDRS ) . '  This bench
mark vvas chosen for its universal acceptance i n  the 
CAD/CAM and process control markets. vVben buyers 
compare graphics performance of two systems running 
OpenGL, the Viewpcrf scores are among the first 
measurements they seek. The secon d  measurement 
was performance on t he Pro/ENGINEER application 
t!·om Parametric Technology Corporation (PTC ) .  

The CDRS benchmark, a s  shown i n  Figure l ,  was 
established by the OpenGL Performance Characteri
zation ( OPC) organi zation as one of several Viewperf 
viewsets. I t  emulates the variety of operations a user 
typically executes when running a CAD /CAM applica
tion . Specifically, this bench mark uses a series of tests 
that rotate a 3-D model on the screen in a variety of  
modes, incl u d i ng wireframe vectors, smooth -shaded 
facets, texturing, and transparency. Performance is 
measured by how many frames per second can be 
generated. H igher frame rates equate to faster and 
smoother rotations of the model . Each test carries a 
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Figure 1 
CDRS ViewperfBenchmark ofOpenGL Performance 

weight determined to roughly correspond to h ow 
important that operation is in a real-world CAD /CAM 
package. The test resu lts arc geometrical ly averaged to 
produce a composite score. Th is single n u m ber is a 
representation of the graphics performance of any 
given system .  

Although standard benchmarks are good perfor
mance indicators, they cannot su bstitute for actual 
performance on an application . To ensure that the 
PowerStorm 4DT a d apter realized exceptional rea l 
world performance, t h e  second metric chosen was the 
CAD/CAM industry's market share leader, the Pro/ 
ENGINEER application .  PTC provides the industry 
with a set of p layback files called traiJ files. As s hown in 
Figure 2,  each ti le contains a recording of a session i n  
which a user has created a nd rotated a 3 - D  part.  The 
recordings typically have large wireframe and smooth 
shad i ng components and l itt le or no texture mapping. 
Performance is measured by how q u ickly a system can 
play back a tra i l  fi l e .  The C D RS benchmark stresses 
only the graphics subsystem, but the Pro/ENGINEER 
trail ri le stresses the CPU and the memory su bsystem 
as wel l .  

Graphics Hardware Standards 

In 1 996, Silicon Graphics Inc.  ( SGI ) captured the 
mid-range graphics workstation market with i ts 
I nd igo2 Maxi m um IMPACT grap hics su bsystem pow
ered by the M I PS RlOOOO microprocessor. D IGITAL, 
Sun Microsystems, and International  Business Machines 
(IBM ) Corporation had yet to produce a product with 
the performance SGI offered ; instead, they competed 
in  the low to lower mid -range graphics arena. 



Figure 2 
Screen Capture from the Pro/ENGINEER Trai l  File Used ro Stress the PowerStorm 4DT Series 

Hewlett- Packard was notably absent from either 
bracket due to its lack of a mid-range workstation with 
OpenGL graphics capabi l i ty. Mid-range workstations 
can be loosely classified as costing from $ 1 5 ,000 to 
$40,000. Graphics performance in this price range dif
fers, sometimes dramatically, from vendor to vendor. 

Considering only raw graphics hardware perfor
mance, a vendor had to offer a certain level of perfor
mance to be competitive with SGI. By 1 996 standards, 
a competitive device needed to be capable of achieving 
the fol lowing: 

• 1 mi l l ion Gouraud -shaded, 25 -pixe l ,  Z-buffered 
triangles per second 

• 2 m i l lion flat-shaded, antialiased, 1 0-pixel vectors 
per second 

• Tri l inear, mipmapped, texture fill rates of 30 mega-
pixels per second 

• 24-bit deep color buffer 

• 4-bit overlay buffer 

• 4-MB dedicated or unified texture memory 

• Dedicated hardware support for double buffering 
and Z-buffering 

• Screen resolution ofl ,280 by 1 ,024 pixels at 72 hertz 

I n  1 996, the PowerStorm 4D60T, the most 
advanced graphics adapter in the new series, was capa
ble of the following: 

• 1 . 1  mi l l ion Gouraud-shaded, 25 - to 50-pixel ,  
Z-buffered triangles per second 

• 2 . 5  million flat-shaded , antialiased, 10-pixel vectors 
per second 

• Trilinear, mipmapped, texture fill rates of greater 
than 30 megapixels per second 

• 32-bit deep color buffer 

• 8-bit overlay buffer 

• 0- to 64-MB dedicated texture memory 

• Dedicated hardware support for double buffering 
( includ ing overlay planes) and Z-buffering 

• Screen resolution up to 1 ,600 by 1 ,200 pixels at 76 
hertz 
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It is i mportant to understand that these are hard 
ware maximums. The interesting work is not in 
achieving these rates under the best of conditions, but 
i n  achieving these rates under most conditions. To 
reiterate, building hardware that can theoretically per
form well and building a system that performs well in 
benchmark applications are two d istinctly different 
goals. The latter requires the former, but the former in 
no way guarantees the latter. 

Different viewpoints on the best way to provide the 
highest level of performance have divided the industry 
into several camps. Workstation vendors must decide 
which approach best exploits the competitive advan
tages of their systems. I n  the mid-range workstation 
market, our graphics philosophy is decid edly di fferent 
from that of our competitors. For the most part, 
DIGITAL is alone in its choice of a CPU- based, direct
rendering graphics architecture. 

In the next section, we d iscuss the various graphics 
design architectures in the industry, focusing on the 
design of the PowerStorm series and comparing it 
with SGI's approach. 

Graphics Subsystem Architectures 

The two essential choices for graphics subsystem design 
are deciding between indirect and direct rendering and 
choosing whether the CPU or an application-specific 
integrated circuit (ASIC) performs the geometry and 
lighting calculations. In this section, we discuss the 
advantages and disadvantages of both rendering 
schemes and calculation devices and explore designers' 
decisions for graphics su bsystem architectures. 

By order of occurrence, 3-D graphics can be divided 
into three stages: ( l )  transferal ofOpenGL API caJ ls to 
the rendering li brary, (2 )  geometry and lighting, and 
( 3 )  rasterization. In the next section, we compare 
direct and indirect image rendering. 

Direct Versus Indirect Rendering 

Before the popularization of the Windows NT operat
ing system and the personal computer, almost all 
graphics workstations used the X Window System or 
a closely related derivative. The typical X Window 
System i mplementation is a standard client-server 
model . 3  An application that draws to the screen 
requests the X server to manage the graphics hardware 
on its behalf. 

The graphics API ,  either Xl i b  for two-dimensional 
(2 - D) applications or OpenGL for 3-D,  was the rime
tiona! breaking point. Tradi tionally, client applications 
would make graphics API calls to do drawing or 
another graphics-related operation . These calls would 
be encoded and buffered on the client side. At some 
point, either explicitJy by the client or implicitly by tl1e 
API l i brary, the encoded and buffered requests would 
be flushed to the X server. These commands would 

5 2  Digital Technical Journal Vol .  9 No. 4 1 997 

then be sent to tl1e X server over a transport such as 
me Transmission Control Protocol/Internet Protocol 
(TCP /IP ) ,  a local UNIX domain socket, or local 
shared m emory. 

\Vhen me requests arrived at the X server, it would 
decode and execute them in order. Many requests 
would then require the generation of commands to be 
sent to the hardware. This client-server model was 
named indirect rendering because of the indirect way 
in which clients interacted with the graphics hardware . 

Direct rendering is a newer method often empl oyed 
i n  the design of high-end graphics systems!·5 In this 
scheme, tl1e client OpenGL li brary is responsible for al I 
or most 3 - D  rendering. Instead of sending commands 
to the X server, the client itself processes the com
mands. The client also generates hardware command 
buffers and often communicates directJy with the 
graphics hardware . In this rendering scheme, the X 
server's role is greatly diminished for 3 - D  OpenGL 
requests but remains the same for 2 - D  Xlib requests. 

The designers chose to support direct rendering for 
the PowerStorm 4DT adapter. Direct rendering offers 
considerably better performance than indirect render
ing. Note, however, direct rendering does not pre
c l ude indirect rendering. All devices that support 
direct rendering under the X Window System also 
support indirect rendering. 

In the following subsections, we discuss tl1e advan
tages and disadvantages of direct and indirect render
ing. We also explain the impetus for making the 
PowerStorm 4DT adapter the first graphics device 
from DIGITAL capable of direct rendering. 

Indirect Rendering One advantage of indirect ren 
dering that should never be underestimated is its proven 
track record. This technology is widely accepted and 
understood. It offers network transparency, which 
means a client and server need not reside on the same 
machine. A c l ient can redirect its graphics to any 
machine running an X server as long as the two 
machines are connected on a TCP /IP network. This 
model worked well until faster CPUs and graphics 
devices were developed. The protocol encode, copy, 
and decode overhead associated witJ1 sending requests 
to the server became a bottJeneck. 

The i ncreased use of display l ists provided an inter
mediate solution to this problem. D isplay lists are a 
group ofOpenGL commands tlut can be sent to the X 
server once and executed m u ltiple times by referenc
ing the display l ist ID instead of sending all the data 
each time .  D isplay l ists d ramatical ly reduced commu
nication overhead and retu rned graphics to the point 
at whicl1 communication to tl1e X server was no longer 
the bottleneck. 

Unfortunately, display lists had significant disadvan
tages. Once defined, they could not be modified . To 
achieve performance using indirect rendering, al most 



all OpenGL commands had to be collected into dis 
play lists. This caused resource problems because 
display lists could be quite large and had to be stored 
in the X server until explicitly deleted by the client. 
Probably the greatest disadvantage was that display 
lists were generally awkward for appl ication programs 
to use. Application programmers prefer the more 
su·aightforward method of immediate-mode pro
gramming by which com mands are called individually. 
For these reasons, indirect rendering proved to be 
insufficient, even with the advent of display lists. 

Direct Rendering The PowerStorm 4DT project 
team was committed to designing a product with lead
ersrnp performance for both the display-list-mode and 
immediate-mode renderi ng. The designers realized 
early that they would have to adopt direct rendering to 
address the performance problems with immediate
mode indirect rendering. 

As mentioned earlier, the philosophy behind classi
cal direct rendering is that each client handles al l 
OpenGL processing, creates a buffer of hardware 
commands for the device , and then sends the com 
mands to the device without any X server interaction. 
This model has several drawbacks. First, access to the 
graphics hardware is difficult to synchronize between 
clients and the X server. Second, windows and their 
properties such as position and size have to be main
tained by the clients, which also req uires a complex 
synchronization design . SGI  used this model for its 
IMPACT series of graprncs devices. 

The PowerS tonn 4DT designers took a more con
servative approach, based largely on the same model. 
One fundamental difference is that each cl ient gener
ates hardware command buffers in shared memory. 
The client then sends requests to the X server te l ling it 
where to locate the hardware commands. The X server 
sets up the hardware to deal with window position and 
size and then initiates a direct memory access ( DMA) of 
the hardware command buffer to the graphics device. 
Essentially, the X server becomes an arbitrator of bard
ware buffers. This approach worked quite well ,  because 
the X server was the logical place for synchronization to 
occur and it already maintained window properties. We 
were able to have all the performance benefits of classi
cal direct rendering without the pitfalls. 

One implication of direct rendering is that the client 
and the server have to be on the same physical macrnne. 
When first evaluating direct rendering, designers were 
curious to determine how often our customers used 
this configuration; that is, did most users perform their 
work and display their graphics on the same computer? 
Our surveys showed that more than 95 percent of 
users did display th eir graphics locally. The remaining 
5 percent rarely cared about performance. Today, this 
may seem obvious; two years ago, it could not be 
assumed. 

Direct rendering offered a huge performance 
improvement to nearly a l l  our customers. The perfor
mance gains were two to four times the performance 
of indirect rendering. 

Direct-rendering 2-D Most graphics device imple
mentations use direct rendering only for OpenGL, 
because indirect rendering of immediate-mode 
OpenGL is protocol rich. As mentioned previously, 
the transferal of this protocol to tl1e X server can be 
quite expensive. One interesting aspect of our design 
is its support for direct rendering of2 - D  Xlib calls. 

Other graphics vendors consider 2- D performance 
important only for 2 - D  benchmarks. These bench
marks, which largely stress the graphics hardware's 
ability to draw 2-D primitives quickly, can generate a 
lot of work for the hardware with relatively few 
requests. Unlike 3-D,  these requests do not need 
much geometry processing before iliey can be sent to 
the hardware. This means mat very li ttle protocol is 
needed to saturate the hardware. As long as the proto
col generation does not produce a bottleneck, indi rect 
rendering performs as well as direct rendering. In 
addition, given that OpenGL benchmarks like CDRS 
have almost no 2 - D  component, it seems reasonable 
to conclude that indirect-rendered 2- D should suffice. 

Benchmarks often are not sufficiently represe ntative 
of real applications, especially when they isolate 2 -D 
and 3-D operations. CAD/CAM applications typically 
have a substantial 2 - D  GUI, which interacts closely 
with the 3-D components of the application. A bench
mark that exercises both 2-D and 3-D by emulating a 
user session on an application wi l l  provide results that 
more accurately reflect the performance witnessed by 
an end user. These benchmarks simply measure how 
long it takes to complete a session, so both 3-D and 
2 - D  performance impact the overall score. 

Our research showed that with a highly optimized 
OpenGL implementation, in many cases it was no 
longer the 3-D components that slowed down a 
benchmark, but the 2 - D  components. Further exam
ination revealed that it was the same protocol bottle
neck evident with indirect- rendered OpenGL. 
Applications were generating relatively small drawing 
operations with many drawing attri bute changes 
inte rmixed, such as draw line, change color, dra\v 
l ine,  change color, and so for th .  This type of request 
stream tends to generate tremendous amounts of 
protocol ,  unlike 2 - D  benchmarks that rarely change 
drawing attri butes. 

Accordingly, 2-D direct rendering presented itselfas 
the logical solution. With the direct-rendering infra
structure and design already in place, developers sim
ply needed to extend it  for 2 -D/Xl ib .  This required 
the development of two additional l i braries: the 
Vectored X library and the Direct X l ibrary (u nrelated 
to Microsoft's Direct.'\ API ) .  
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The Vectored X l ibrary replaced the preexisting Xlib .  
I t  aUows de,�ces that support direct rendering to vector, 
or redirect, X.li b  function calls  to d i rect-rendering rou 
tines instead of generating the X protocol and sending it 
to the X server. I f  a graphics device docs not support 
direct rendering, i t  defau lts to the generic protocol 
generating routines. I t  i s  i mportant to u nderstand that 
tiLis is a device-i ndependent l i brary responsible only for 
vectoring X.lib caUs to tl1e approptiate Library. 

The Direct X l i brary, on the other hand,  is a device
dependent l ibrary. It contains all the vectored fu nctions 
that the Vectored X l i brary cal ls when the device sup
ports d i rect renderi ng. This l i brary operates in  much 
the same way as the d i rect-rendering Ope n G L  l i brary. 
It processes the requests and places graphics hardware 
commands in a shared memory buffer. The X server 
later sends the buffer to the grapiLics device by DMA. 

The entire fu nctionality of tl1e X Library is nor imple
mented through direct rendering for several reasons. I n  
many cases, a shared resource resides i n  tl1c server (e .g . ,  
the  X server performs al l p ixmap rendering). I n other 
cases, the hardware is not directly addressable bv the 
c l ient (e .g . ,  the X server hand les al l ITa me bu fkr reads) .  
Often the c l ient  does not  have access to a l l  window 
i n formation tJ1at the server maintains ( e . g . ,  the X server 
handles all window-to-window copi es ) .  Fortu nately, 
these operations arc eimer not fi-equenrlv used, not 
expected to be fast, or easily saturate the hardware. 

Further deta i ls of the Vectored X l i brary and Direct 
X l i brary are beyond the scope of this paper. The con
cept of d i rect-rendered 2 - D ,  however, is sou nd.  It has 
helped D I GITAL ou tperform other vend ors on many 
appl ication benchmarks that were largely focused on 
OpenGL but had significant 2-D components. Our 
2 -D d i rect-rendering technology has also enh;mccd 
2 - D  performance and response t ime for the mJnv 
thousands of excl usively 2- D appl ications for the 
X Window Syste m .  

Geometry and Lighting 

The geometry and l ighting phase can be performed by 
the host CPU or by a specialized, high-speed ASIC , 
which is typical ly  located on the graphics device. 
Regardless of where these calculations take p l ace, the 
general idea is that the user's vertices arc transformed 
and l i t ,  men ted to the rasterizer. Since the rastcrizcr is 
on the graphics device, choosing me host to do the 
geometry and l i gh ting i m plies that the transformed 
and lit vertices are then sent across the bus to the ras
terizcr. The use of a specia l ized ASI C  impl ies that the 
user's vertices are sent across the bus, transformed and 
l i t  by the custom ASI C ,  and then ted d i rectly to the 
rasterizer. The in  formation transferred across the bus 
is  obviously d i tkrent, but in  terms of amount of dat:l 
per vertex,  it is approxi mately the same. Therefore , 
bus bandwidth does not become a deciding factor for 
either design . 
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Host CPU Geometry and Lighting T r :1 d i t i o n a l l y ,  
DIGITAL has chosen the host CPU t o  perform the 
geometry and l ighting calculations. The Po\\"erStorm 
project designers chose this approach because of the 
Alpha microprocessor's exceptionJI floati ng-point 
speed, and because a l most a l l  3-D ca lculations i nvolve 
Hoati ng- point values. At the ti me this project \\"as con
ceived , the o n l y  general -purpose , wide l y  Jvaibblc 
processor capable of reeding more than 1 m i l l ion 
transformed and l it vertices per second to the hard
ware was the Alp ha CPU. An additional benefit of 
having the Alpha CPU do the work was an overa l l  cost 
red uction of the grap h ics device. Custom AS ! Cs arc 
expensive to develop and manufacture. 

Another i m portant and related advantage is that our 
softwJre becomes proportiona l ly  Elster as c lock speeds 
rise on ava i lable Alpha microprocessors. This results 
in a neJr l inear performance i ncrease without any 
add itional en gineeri ng cost. For example, using th e 
same software, a 5 00-mcgahcrtz ( MHz) Alpha micro
processor is ab le  to prod uce 25 percent more vertices 

per second than a 400-MHz Al pha microprocessor. 
Because of this, de\ elopers can write optimized Alph a 
code once and reuse it for successive ge nerations of 
Al p ha CPUs, reaping performance i mprovements with 
virtually no fltrther i nvested e ffort. 

It  is obvious that rendering can proceed no bstcr 
than vertices cJn be generated . If the OpenGL l ibrary 
can transform and l ight only 75 0,000 vertices per sec
ond, and the graphics device can rasterize l m i l l ion,  
the etfective rendering rate wi l l  be 750,000.  I n  this  
example,  the OpenGL geometry and l ighting software 
stages are the bottleneck. However, if the nu mbers 
were reversed,  and the hardware cou ld  o n l y  rastcrize 
75 0,000 vertices while the OpcnGL software provided 
l mill ion, the rasterization hardware wou ld become 
the bottleneck. 

Thus far, we have discussed two potentia l  bottle

necks: the OpenG L i m plementation i tse lf  atKi the ras
teri zation hardware . The third and potcnti a l l v  most 
damagi ng bottleneck m av be the c l ie nt's Jb i l iry to reed 
vertices to the Open G L  l ibrary. I t  should be clc1r thJt 
this is  the top level of vertex processing. The OpcnGL 
l i brJry can render no faster than the rate at which the 
client appl ication feeds it  vertices. Conseq uently, the 
rJstcrizcr can render pr imitives no raster than the 
Open(J L l ibrary can produce them . Thus,  J bottleneck 
in  generating vertices for the OpenG L l i brary wi l l  slow 
the e ntire pipel ine .  I deal ly, we wou ld like eJch level to 
be able to produce at least as many vertices as the 
lower levels can consume.  

C lear ly, the performance of the appl ication , in terms 
of handing vertices to the Open(; L  li brJry, is J fu nc
tion of CPU speed . This is  o n lv an issue f(x Jppl ica
t ions that have large computation overhead before 
rend eri ng. Cu rrentlv, al most a l l  graph ics benchmarks 
have li ttle or no computation overhead in gett ing vcr-



rices to the OpenGL l ibrary. Most attri butes are pre
comp uted,  si nce they are trying to measure only the 
graphics performance and throughput .  For the most 
part, this holds true for t he trad itional CAD/CAL\1 
packages. However, some emergi ng scientific visual
ization appl ications as well as some high-end CAD 
applications require significant compute cycles to gen 
erate the vertices sent t o  the Open G L  l i brary. For 
these appl ications, on ly the DIG ITAL Al pha CPU
based workstations can produce the vertices fast 
enough tor interactive rates. 

There are some potential disadvantages to this 
design . Namely, the CPU is responsible tor both the 
application's and the graphics library's computations. If 
the application and the OpenGL i mplementation must 
contend tor compute cycles, overa l l  performance will 
sufter. Analysis of appl ications revealed that typical 3-D 
and 2-D graphics applications do internal calculations 
fol lowed by rendering. O nly under rare circu mstances 
do the two processes mix with a su bstantial ratio. If the 
applications should start mixing their own processing 
needs with those of the OpenGL li brary, the notion of 
host- based geometry would need to be revisited . 

Another potential d isadvantage is the rate at which 
Alpha CPU performance i ncreases versus the rate at 
which the rasterizer chip's performance i ncreases. The 
emerging generation of graphics devices is capable of 
rasterizing more than 4 mil l ion triangles per second . It  
is unknown whether future generations of the Alph a  
C P U  wi l l  b e  able t o  feed t h e  faster graphics hardware. 

ASIC-based Geometry and lighting Performing geom
eb)' and lighting calculations \\�th a custom ASI C  on the 
graphics device is often referred to as OpenGL in hard
ware because most of the OpenGL pipeline resides in the 
ASIC. The OpenGL li brary is l imited to handing the API 
calls to the hardware. SGI has adopted the ASIC- based 
approach for many generations of workstations and 
graphics devices. In this section , we discuss why this 
method works for them and its potential shortcomings. 

SGI workstations use either the R4400 or the RlOOOO 
CPU developed by MIPS Technologies. Although these 
CPUs have good integer performance, their floating
point performance cannot generate the number of ver
tices that the Alpha CPU can . As a consequence, SGI has 
to use the custom-graphics ASIC approach. One advan
tage to the custom ASIC is the decoupling of graphics 
from the CPU. S ince each can operate asynchronously, 
the application has full use ofthe CPU. 

Typically, custom geometry ASI Cs, a lso known 
as geometry engines, perform better than a general
purpose CPU tor several reasons. First, the custom 
ASI C  m ust perform only a wel l -u nderstood and l i m 
ited set o f  calculations. This al lows the ASIC designers 
to optimize their ch ip  tor these specific calculations, 
releasing them ti·om the burden and complexity of 
general-purpose CPU design . 

Second,  the graphics engine and the rasterizer can 
be tightly coupled ; i n  fact, they can be located o n  the 
same chip .  This a llows tor better pipel in ing and 
reduced com m unication latencies between the two 
components. Even if the geometry engine and raster
i zer are located on d i fferent chips,  which is not at all 
uncommon, a m uch stronger coupl i ng exists betvveen 
the geometry engine and the rasterizer than does 
between the host CPU and rasterizer. 

Third, geometry engines can yield high perfor
mance when executing certain d isplay l ists. The use of 
a display list al lows an object to be q uickly re- rendered 
from a d ifferent view by changing the orientation of 
the viewer and reexecuti ng the stored geometry. I f  the 
display list can fit with in  the geometry engine's cache, 
it can be executed loca l ly  without having to resend the 
d isplay l ist across the bus for each execution . This 
helps a l leviate the transportation overhead in getting 
the d isplay list data over the bus to the graphics device. 
It is  u nclear how often this really happens since rasteri
zation is  typically the bottleneck.  If the d isplay l ist is 
fil led with many small  area primitives, however, its use 
can resul t  in noticeable performance gains .  Geometry 
engines often have a l imited amount of cache. If an 
appl ication 's d isplay list exceeds the amount of cache 
memory, p erformance degrades significantly, often to 
below the performance attainable without a geometry 
accelerator. Our  research s hows that d isplay l ist s izes 
used by applications i ncrease every year; therefore , 
cache size m ust i ncrease at the same rate to maintain 
d isplay l ist performance advantages. 

The primary disadvantage of using custom ASI Cs to 
perform the geometry and l ighti n g  calculations is the 
expense associated with their design and manufacture. 
In addition, a certai n risk is i nvolved with their devel 
opment:  hardware bugs can seriously i mpact a p rod 
uct's viabi l ity. Fixing the bugs causes the schedule to 
sl ip  and the cost to rise . Hardware bugs d iscovered by 
customers can be devastating. ·with host-based geom
etry, a software fix in the OpenGL l i brary can easi ly be 
i ncorporated and d istributed to customers. 

A sometimes unrecognized d isadvantage of dedi
cated geometry engines is that they are bound to fixed 
clock rates, with l ittle room for scalabi l ity. Although 
this is true of most CPU designs, CPU vendors can j us
ti fY the engi neering effort req uired to move to a taster 
tech nology, because of competitive pressures and the 
larger volume of host CPU chips. 

Rasterization 

During the rasterization phase, pri mitives are shaded, 
blended , textured,  and Z-buffered . In the early years 
of raster- based comp u ter graphics, rasterization was 
done using software . As computer graphics became 
more prevalent,  graphics performance became an 
issue .  Because rasterization is highly computational 
and req u i res many accesses to frame buffer memory, 
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it quickly became the performance bottleneck. 
Specia lized hardware was needed to accelerate the 
rasterization part of graphics. Fortunately, bardware 
acceleration of rasterization is well understood and is 
now the de facto standard . Today, nearly every graph
ics device has rasterization hardware. Even low-priced 
commoctity products have advanced raster capabi l ities 
such as texture mapping and antialiasing. 

In the next section, we relate our strategy for 
obtaining optimal graphics software performance 
from an Alpha processor-based system. 

Performance Strategy 

The goals of the PowerStorm 4DT program were 
largely oriented toward performance. Our strategy 
consisted of having a generic code path and then tun
ing performance where necessary using Alpha assem
bly and integrated C code. 

Performance Architecture 

The designers optimized the sofu¥are performance 
of the PowerStorm 4DT series within the framework 
of a flexible performance architecture . This architec
ture provided complete functionality tlu·oughout the 
performance-tu ni ng process, as wel l  as the flexibi lity 
to enhance the performance of selected , performance
sensitive code paths. 

I n  this context, code paths refer to the vertex
handling routines that conduct each vertex tl1rough 
the geometry, l ighting, and output stages. Whereas 
most OpenGL API calls simply modify state condi
tions, these vertex routines perform the majority of 
computation. This makes them the most l ikely choices 
for optimization . 

The Generic Path A solid,  all-purpose code base 
written in C and named the generic path offers fu l l  
coverage of a l l  OpenGL code paths. The generic path 
incurs a signi ficant performance penalty because its 
universal capabilities require that it test for and handle 
every possible combination of state conditions. In fact, 
under certain conditions, the generic patl1 is incapable 
of driving the hardware at greater than 33 percent of 
its maximum rendering rate. The generic path assumes 
responsibility for the rare circumstances that are not 
deemed performance-sensitive and thus not wormy 
of optimization . It also acts as a safety net when high
performance paths realize m id-stride that mey are not 
equipped to handle new, unanticipated conditions. 

M u ltico m p i led S peed of Lig ht (SOL) Paths H i g h 
performance SOL paths provide greatly increased per
formance where such performance is necessary. Under 
prescribed conditions, SOL paths replace the genetic 
path, yielding equivalent functionality with perfor
mance many times mat of me generic patl1. SOL paths 
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were written for the combinations of state conditions 
exercised most frequently by the target appl ications 
and benchmarks. 

The developers responsible for performance tuning 
designed two classes of SOL paths . First, they gener
ated a large n umber of SOL patl1s by compil ing a C 
code template multiple times. Whereas the generic 
patl1 is composed of several routines, each correspond
ing to a single stage of the pipeline, a multicompiled 
SOL patl1 integrates these stages into a monolithic 
routine .  Each compilation turns on and off a ctifferent 
subset of state conditions, resulting in integrated pams 
for every combination of the available conditions. This 
multicompilation of integrated SOL paths yields me 
following benefits: 

• The C compi l er is a l lowed a broader overview of 
tl1e code and can more wisely schedule instructions. 
In contrast, the generic pam is composed of several 
individual stages. These relatively short routines do 
not provide the C compiler with enough space or 
enough scope to make informed and effective, 
insu·uction-ordering decisions. MulticompiJ ing tbe 
various stages into a series of monolithic, i ntegrated 
routines re l ieves each of these problems. 

• The multicompilation assumes a fixed set of concti
tions for each generated path. This el iminates the 
need for run-ti me testing of these conditions dur
ing each execution of the path. Instead, such test
ing is necessary only when state conctitions change. 
Validation, as this testing is called, determines 
which new path to employ, based on the new state 
conctitions. Wim tl1e great n umber and complexity 
of state conditions influencing mis decision, vaJjda
tion can be an expensive process . Performing vali 
dation only in response to state changes, rather 
tl1an for every vertex, results in significant perfor
mance gains. 

• The SOL path coverage at least doubles every time 
that support for a new state condition is added to 
the template. Each new condition increases the 
number of combinations of conctitions being multi
compiled into SOL paths by a factor of two or 
more. An adverse side effect of this strategy is that 
me compi le time and resulting l ibrary size wi ll 
increase at me same rate as the SOL path coverage. 

Assembly Lang uage SOL Paths Hand-coded Alpha 
assembly language paths constitute the other class of 
high-performance SOL paths. These paths, designed 
specifically for extremely performance-sensitive concti
tions, require much more time and attention to pro
d uce. Taking advantage of the many features of me 
Alpha microprocessor transforms assembly language 
coding from a science into an art form.6 The Alpha 
assembly coders kept the fol lowing issues foremost in 
tl1eir minds: 



• The 2 1 1 64 and subsequent Alpha microprocessors 
are capable of quad- issuing instructions, which 
means that as many as four instructions can be i niti
ated during each cycle. The combination of instruc
tions that may be issued, however, depends on the 
computational pipelines and other resources 
employed by each i nstruction. Coders must care
fu l ly order instructions to gain the maximum bene
fit from the multiple- issue capabi lity. 

• As a consequence of the above restrictions, inte
ger and floating-point operations must be sched 
uled in  paral l e l .  With few exceptions, only two 
floating-point a nd two integer instructions can 
be issued per cycle .  Efficiency in  this case requ ires 
not only local instruction-order tweaking but also 
global changes at the algorithmic l evel . Integer 
and floating-point operations must  be balanced 
throughout each assembly routine.  If a particu lar 
computation can be easily performed using either 
integer math or floating-point math, the choi ce is 
made according to which pipel ine has more free  
cycles to  use . 

• Register supply is another factor that affects the 
design of an assembly language routine.  Although 
the Alpha m icroprocessor has a generous number 
of registers ( 32 i nteger and 32 floating-point), they 
are still considered a scarce resource. The coder 
must organize the routine such that some calcula
tions complete early, freeing registers for reuse by 
subsequent calculations. 

• The crucial performance aspect of assembly coding 
is transporting the data where and when it is 
needed . The latency of loading data from main 
memory or even from cache into a register can eas
i ly become any routine's botdeneck. To minimize 
such latencies, load instructions must be issued well 
in advance of a register's use; otherwise, the 
pipeline will stall u ntil the data is available. In an 
ideal architecture with an infinite quantity of regis
ters, all loads could be performed well in advance. 
Unfortunately, due to the scarce amount of free 
registers, the number of cycles available between 
loading a register and its use is frequently l im ited .  

Each o f  these assembly language programming con
siderations requires intense attention but yields 
unmatched performance . 

Performance Tuning 

After reviewing benchmark compa.tisons and recom
mendations rrom independent software vendors, we 
determined which areas required performance improve
ment. We approached performance tuning rrom two 
directions: either by increasing SOL path coverage or 
improving the existing SOL code. 

Increasing SOL path coverage was the more straight
forward but the more time-consuming approach. If an  
SOL path d id  not exist for a specific condition, a new 
one would have to be written. Adding a new option to 
the multicompilation template required a significant 
effort in some cases. I mplementing a new assembly 
language SOL path always required significant effort. 

I mproving the performance of an existing SOL 
path required an iterative process of profi l ing and 
recoding. We employed the DIGITAL Continuous 
Profiling Infrastructure ( DCPI ) tools to analyze and 
profile the performance of our code .7 DCPI indicated 
where bottlenecks occurred and whether they were 
due to data cache misses, instruction slotting, or 
branch misprediction.  This information provided the 
basis for obtaining the maximum performance from 
every l ine of code.  

Development of 3-D Graphics on Windows NT 

At the start of the PowerStorm 4DT project, the 
Windows NT operating system was an emerging tech
nology. The DIGITAL UNIX platform held the larger 
workstation market share, whi le Windows NT 
accounted for only a small percentage of customers. 
For that reason, designers targeted performance for 
applications running on DIGITAL UNIX and devel
oped 3 -D code entirely u nder that operating system.  

Nevertheless, we recognized the potential gains of 
developing 3-D graphics for d1e vVindows NT system .  
One of the company's goals was to b e  among m e  first 
vendors to provide accelerated OpenGL hardware and 
software for Windows NT. 

Wid1 a concerted effort and a few compromises, me 
team developed the PowerStorm 4DT into the fastest 
OpenGL device for Windows NT, a title that was held 
for more than 18 months.  To achieve this capabil ity, 
the designers made the following key decisions: 

• To write code that was portable between the 
DIGITAL UNIX and Windows NT systems. 

• To dedicate two people to the integration of the 
DIGITAL U NIX-based code into tl1e Windows NT 
environment. Most OpenGL code was operating
system independent, but supporting infrastructure 
needed to be developed for Windows NT. 

• To use Intergraph 's preexisting 2- D code and to 
avoid writing our own. I ntergraph provided us with 
a stable 2-D code base for Windows NT. This code 
base had room for optimization, but further opti
mization of the 3-D code took precedence. 

• To ship the graphics drivers for DIGITAL UNIX 
first, and the graphics drivers for Windows NT 
three months later. I n  this way, we allowed the 
DIGITAL UNIX development phase to advance 
unimpeded by the efforts to port Windows NT. 
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Results and Conclusion 

In August of 1 996, the PowerStorm 4 D60T graphics 
adapter was best in its price category with a CDRS per
formance number of 49 .01  using a 500-J\rlHz Alpha 
processor. It yielded a new price/performance record 
of $ 3 2 1  per frame per second . At the same time, SGI 
attained a CDRS number of on ly 48 .63 on a system 
costing nearly three tjmes as much. 

Figure 3 shows the relative performance of the 
PowerStorm 4D60T for four  of the major Viewperf 
benchmarks . The viewsets are based on the fo llowing 
applications: CDRS, a computer-ajded industrial design 
package tfom PTC; Data Explorer ( DX), a scientific 
visualization package from IBM; DesignReview ( D RV), 
a model review package from Into·graph ;  Advanced 
Visualizer, a 3 -D animation system from Alias/ 
Wavefront (AWadvs) .  
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Figure 3 

The PowerStorm 4D60T mid-range graphics adapter 
easily outperformed the Indigo2 High IMPACT system 
from SGI by a wide margin and even surpassed SGI's 
more expensive graphics card ,  the Ind igo2 Maxi
mum IMPACT, by a factor of more than 2 : 1  in price/ 
performance on these benchmarks. Figure 4 shows 
that the PowerStorm 4D60T was the performance 
l eader in three of the four benchmarks. SGI has yet to 
produce a graphics product in this price range that 
outpertonns the PowerStorm 4D60T. 
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DART: Fast Application
level Networking via 
Data-copy Avoidance 

The goa l of DART is to effectively del iver high

bandwidth performa nce to the appl ication, 

without a change to the operating system cal l  

sema ntics. The DART project was started soon 

after the fi rst DART switch was completed, and 

also soon after l ine-rate commun ication over 

DART was achieved. In looking forward to giga

bit class networks as the next hurdle to conquer, 

we foresaw a need for an i ntegrated ha rdware

software project that addressed fundamenta l  

memory bandwidth bottleneck issues through 

a system-level perspective. 

© 1 997 IEEE. Reprinted, with permissio n, from IEEE Network, 
Ju ly/August 1997, pages 28-3 8 .  
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Robert J. Walsh 

The Ethernet supported large 1 00-node networks in 
1 976 . '  By 1 9 8 5 ,  10 Mb/s Ethernet had been avai lable 
for a while, even for PCs. However, high-performance 
hardware and software lagged, due to system bottle
necks above the physical layer. The premier i mplemen
tations for UNIX were achieving only 800 kb/s ( 8 % of 
10 Mb/s) in benchmark scenarios on common system 
platforms of the day.2 

The deployment of lOO Mb/s fi ber distributed data 
interface (FDDI) provided an order of magnitude 
bandwidth increase i n  the link speed around 1987. 
However, the end system could not saturate the l ink 
on generally available machi nes and operating systems 
u nti l  1 993! when Transmission Control Protocol 
(TCP ) improvements and a CPU capable of 400 mil
l ion operations per second became avai lable :' Once 
agai n ,  high-performance hardware and software 
lagged the potential provided by the p hysical layer. 

The current technological approach is switching. 
Gigabit-class l inks and adapters, such as 622 Mb/s 
asynchronous transfer mode (ATM ),  are becoming 
available. Since ATM links are dedicated point-to
point connections, the use of 622 Mb/s in switch-to
switch l inks and at  the periphery impl ies that one 
ought to be able to move data at gigabit rates. 

Switched capacity promises a lot to servers; how
ever, mainstream systems are not currently capable of 
effectively using the bandwidth. The DART project 
attempts to avoid tl1e Ethernet and FDDI scenarios 
where end-system performance lags physical-layer 
potential . 

One of the early goals was to go beyond simple 
bench mark scenarios where line rate com munication 
connects a phony bit source to a phony bit sink, with 
the CPU saturated.  The context for the work was to 
connect two applications at high speed, leavi ng CPU 

'The TCP improvements included a small architectural update, 
the window scaling extension, to abstractly support the advertise
ment of more than 64 kbytes of receive bu!kri ng. The rest of the 
improvements derived from implementation efforts to increase 
the actual buffering allocated to advertised TCP windows, and to 
improve the segmentation of the TCP byte stream into packets. 
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resources avai l able to execute the app l ications. In the 
past, the CPU had been saturated in Ethernet and 
FDDI q uests for line rate communication.  

Layering 

The motivation for DART arises from the speci fic lay
ering and abstraction used i n  BSD-derived UNIX sys
tems, but the context is  sufficiently general that the 
problem and sol ution have wide appl icabil ity. S ince 
various layers with i n  system software wi l l  be refer
enced repeatedly, we introd uce them using Figure l .  

The application generates and consu mes data . It  
te l ls the operating system which data to commu nicate 
when, by using read and write system cal l s .  

The socket layer moves data between the operating 
system and the appJication . It a lso synchronizes the 
application with the networki ng protocols based on 
data and buffer availabi l ity. 

The !rampart protocol layer provides a connection 
to the remote peer. In the case ofTCP, the connection 
is a rel iable byte stream . TCP takes on the responsibil
ity of retransmitting lost or corrupted data, and of 
ignoring reception of retransmitted data that was pre
viousJy received . 

The network protocol layer provides an abstract 
address and path to the remote host. It h ides the vari
ous hardware-specific addresses used by the various 
media in  existence. In the case of I P, fragmentation 
al lows messages to traverse media which have different 
frame sizes. 

A conventional driver layer moves data betvveen the 
network and tl1e system.  It uses bu ffers and data stru c
tures whose representation percolates throughout a l l  
the operating system n etworking layers. 

The DART Concept 

DART i ncreases network throughput and decreases 
system overheads, while preserving current system call 
semantics. T he core approach is data copy avoidance, 
to better uti l ize memory bandwidth. 

APPLICATION 

SOCKET 

TRANSPORT PROTOCOL 
OPERATING (TCP, UDP) 
SYSTEM 

NETWORK PROTOCOL 
( IP) 

DRIVER 

Fig u re 1 
Software Layering 
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Memory bandwidth is a scarce resource that mu st 
not be sq uandered . I n  DIG ITAL's transition from 
MIPS processor systems to AJpha processor systems, 
CPU performance increased more rapidly than main 
memory bandwidth . It took approximately 340 f.LS to 
move 4500 bytes on the MI PS- based D ECstation 
5000/2 00, and approximately 200 f.LS on the AJpha
based DEC 3000/500.  In the same time, the fixed 
per-packet costs were reduced by a tactor of three or 
more. ( General trends are also stated i n  Reference 4 . )  

O n e  breakdown o f  networking costs i s  reported in 
Reference 5 .  The variable per-byte costs reported 
there are all associated with memory bandwidth, 
which is improvi n g  slowly. The fixed per-packet costs 
in the driver, protocol, and operati ng system overhead 
are aJ I general ly associated with the CPU , which is 
i mproving rapidly. Thus, we focus on the per- byte 
memory bandwidth issues as those most need ing 
architectural improvement. 

A trad itional system fol lows the networki ng subsys
tem model implemented within the BSD releases of 
U N I X, shown in Figure 2 .  An app l ication uses the 
CPU to create data ( 1 ), the socket portion of the sys
tem ca l l  interface copies the data in to operating system 
buffers (2 and 3 ), the network transport protocol 
checksums the data for error detection pu rposes ( 4 ) ,  
and the device driver uses programmed input/output 
(1/0) or direct memory access ( DMA) to move the 
data to the network ( 5 ). Graphs showing the domi
nant costs of checksumming and kernel buffer copies 
are presented i n  Reterence 6 .  

These five memory operations are a profligate waste 
of memory bandwidth. A system with a 300 M byte/s 
memory system would achieve at most 300*8/5 = 
480 Mb/s I/0 rates. The system wou ld be saturated . 

The DART model is shown in Figure 3 .  The DART 
model is that data is created ( l )  and sent ( 2  ). Two 
me mory operations make efficient use of the memory 
bandwidth . 
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Figu re 2 
BSD Copy-based Arch itecture 

Figure 3 
DART Zero-copy Architecture 



Squanderi ng of memory bandwidth is avoided. A 
system with a 300-Mbyte/s memory system would 
encounter the larger bound of 300 *8/2 = 1 200 Mb/s 
for I/0 rates. Resources are available for the applica
tion even when running at line rate.b 

To support the DART concept, we need a system 
perspective that integrates the hardware and software 
changes i mplied by the DART model .  Hardware is 
responsib le  for checksu mming instead of software. 
Hardware is solely responsible for data movement, 
instead of redundant actions by both hardware and 
software . These hardware changes are bounded and 
generic. 

Operating system software retains the application 
interface and general coding of the BSD UNIX imple
mentatjon.  Extensive changes are unnecessary, since 
the focus is the core J i nes that represent data move
ment consumption of memory bandwidth . Extensive 
changes are also undesirable, since there is  a large base 
of software written to the current properties of the 
BSD networking su bsystem.  

The DART Hardware 

The first implementation of the DART concept is a 
high -performance 622-Mb/s ATM network adapter 
for the PCI bus cal led DART. DART's design reflects 
an awareness of the i nteractions of the components of 
the syste m in which it  is placed . The PCI bus, main 
memory, cache, and system software can all be used 
efficien tJ y. 

Store-and-Forward Buffering and DMA 

DART is  an adapter that connects a gigabit-class net
work to a gigabit-class I/0 bus, and is appropriate for 
systems with gigabit-class memory systems . DART is 
focused on tl1e server market where a s l ight increase i n  
adapter cost can b e  acceptable if  the system perfor
mance is significantly improved , since main memory 
and other costs dominate the cost of the DART 
adapter. 

DART al leviates main memory bottlenecks through 
a store-and-forward design , as s hown in Figure 4. 
Traditional networkjng software subsystems and appli
cations perform at least five memory operations to cre
ate, copy, checksum, and com municate data . DART's 
exposed buffering a l l ows data to be created and com
mun icated with j ust two main memory operations. 

lThc 1 200-Mb/s tigure i ncludes the cost of having the application 
write tJ1e data to memory. Some memory bandwidth might be 
consumed to fi l l  the CPU's cache in order to execute the applica
tion and opet·ating system .  ln this scenario, if  non-network band
width is greater rhan 300*8 - 2* 1 000 � 400 Mb/s, data 
production would be rhc bottleneck and the network would 

run at Jess than line rate. This is beneficial;  the bottleneck has 
been moved to the appl ication . 

The adapter memory is a resource that can be better 
uti l ized by exposing it  to the operating system, and 
better performance results as weJ I .  Tills is  simi lar to the 
exposure of the CPU-internal mechanism i n  tl1e CISC
RISC ( complex to reduced instruction set) transition.  

DART contains a number of features to make the 

store-ctnd:forward design effective. DART's bus mas
ter and receiver summarize network transport proto
col checksums for software. DART's bus master 
provides byte- level scatter-gather data movement to 
support commu nication out of application bu ffers, 
not j ust operating system buffers. DART provides 
packet headers for software to parse so that software 
can direct the bus master to place received data i n  the 
appl ication's buffers when the application desires, 
without operating system copy overhead . 

Buffering Design An ATM segmentation and reassem
bly ( SAR) chip accesses virtual circuit state for each 
cell, and operates on 48-byte cel l  payloads. The pay
load naturally corresponds to a burst-mode operation, 
leading to the use of synchronous dynamic DRAM 
(SDRAM ) to bu ffer cells .  The circuit state is generally 
smaller and randomly accessed, leading to the use of 
static RAM (SRAM ) for control i nformation. Dividing 
the data storage architecture into two parts all ows the 
i nterface designs to be tailored to the characteristics of 
the data type in question. 

The DART prototype uses 1 6  Mbytes of SDR.AM 
for the data memory. The prototype uses 1 M byte of 
SRAM for tl1e control memory. The SDRAM supports 
hardware-generated transmissions, aggregation of 
data for efficient PCI and host memory interactions; 
and buffering for received data u n61 the application 
i ndicates the proper destination for it. The SRAM con
tains the SAR intermediate state; with a large number 
of virtual circuits and ATM's interleaving of packet 
contents, there is  too much state to be recorded on
crup at this time. 

Packet Summarization for Software The receiver parses 
the cells for the various packets which are interleaved 
on tl1e network connection, and reassembles the cells 
i n to packets. Once all the cells composing a packet 
have been received, a packet descriptor is prepended 
to the packet. The descriptor contains length, circuit 
number, checksu m, and all other information that the 
driver may need to parse and process the packet. 

Upon packet reassembly, a hardware-initi ated DMA 
operation moves software-configured amounts of 
descriptor and packet contents to host memory. When 

'Some adapters segment (or reassemble) from host memory, 
leading to 48-byte pa)'load transactions with host memory. 
Transaction size should be an integraJ multiple of the cache 
block size, and should be aligned , in order to avoid wasting 
system bandwidth. 
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Figure 4 
DART Bl ock Diagram 

properly configured, the hardware provides the net
work and transport headers, aJiowing software to 
determine where to place the packet data. Software 
data copies are avoided by allowing software to initiate 
a DMA operation to move the data to its final application
desired location, rather than to some expedient, but 
inefficient, operating system buffer. 

Receive Buffering DART's store-and-forward receive 
bu ffers are divided i nto t\vo classes. The per-circuit 
class guarantees each circuit  forward progress. Each 
circuit is individually allocated some bu ffers in which 
to store cells . No other circuit can prevent data from 
passing through such buffers. The shared class is pref 
erentially used, and avoids resource fragmentation 
problems. Any circuit can consume a shared buffer for 
an incoming cell .  

Since software specifies when and where to store 
packet data ,  adapter bu ffers are recycled when soft
ware decides to do so, and not i ndependently by hard
ware . Part of a packet may be stored in  application 
bu ffers at one time,  and other parts of the same packet 
may be stored in application buffers at later ti mes. 
Hardware cannot assume a one-to-one correspon
dence bet\Veen receive DMA and complete packet 
consumption. 

Flow control occurs in the socket layer based on 
transmit buffer avai labi l ity, in tl1e transport layer based 
on remote receive bu ffer availability, in the driver 
based on adapter resource availabil ity, and in the ATM 
layer based on cell buffer availability within the net
work. Credit-based fl ow-control protocols fo r ATM 
are based on the source of a cell stream on a l ink 
decreasing a counter ( q uota ) when a cel l i s  sent, and 
increasi ng a counter when a credit is received 7 The 
decrement represents bu ffer consumption at the next 
hop. The credit advertises buffer availability to the 
source; the next hop has forwarded a cell and thus 
freed a bu ffer." 

JForwarding the ccU is required for (per-circuit) butTers of which 
d1e rransmitter on the Link was made aware du1ing link initialization. 

The receiver on d1e Link can generate crcdirs immediately for (slured ) 
bu ffers hidden from the rransmitter during Link initialization. 
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With FLOWmaster, the credit is conveyed across the 
l ink to the source of the cel l stream by overlaying the 
virtual path identifier (VP I )  field with me circuit to 
cred it. This is a nonstandard optional use of the ATM 
cell header. Quantu m Flow Control is a credit- based 
flow-control protocol for ATM tlut batches the credits 
into cells instead of overlayi ng the VPI field. 

Since credit- based flow-control is based on buffer 
avai labil ity, credits advertising free buffers can poten
tially be held up by software actions. The shared class 
allows immediate credit advertisement, and best 
enables line rate comm unication.  The per-circuit class 
involves software packet processing in the credit 
advertisement latency. To advertise a credit for a cir
cuit whose per-circuit quota is exhausted , either the 
circuit must recycle an adapter-buffered packet, or any 
circuit must recycle a shared-class, adapter- buffered 
packet. 

A minimal memory that constantly ran out of per
circuit buffers and flow-controlled the source would 
exhibit poor performance .  DART uses a large data 
memory. Advertising ( shared) buffers via credits keeps 
the data flowing through the overall net\vork and sys
tems with high performance. 

Transmit Buffering Software performs all transmit 
bu ffer management.  Software creates a free buffer list 
of its own design, al locates buffers from the list to hold 
packet data, and recycles bu ffers after observing packet 
completion events. Software makes the trade-off 
between large efficient bu ffe rs which may be incom
plete ly fil led, and small bu ffers which waste less stor
age but incur increased allocation, free, DMA 
speci fication, and transmit description overheads. 

Peer-to-Peer VO 

DART avoids system resource consumption in server 
designs by supporting peer-to-peer I/0. A traditional 
server would consu me PCI bus and main memory 
bandwidth t\Vice by using main memory as tl1e store
and- forward resource bet\Veen t\vo I/0 devices, as 
shown in Figure 5. The PCI bus is consumed duri ng 
steps 2 and 5 .  The main memory is consu med during 



Figure 5 
Traditional Server Architecture 

steps 3 and 4. On some systems, 1/0 operations com
pete for cache cycles during steps 3 and 4, whether 
the cache is external to or internal to the CPU. Such 
resource consumption can cause the CPU to staJ I even 
though the CPU will never examine such data. 

DART a l lows a single PCI bus transaction to move 
the data, as shown in Figure 6. This also avoids any 
main memory bandwidth consumption when a bridge 
isolates the PCI I/0 bus from the main system bus. 
The cache is not consumed with nuisance coherence 
loads for data the CPU will never examine, and the 
CPU does not have to contend with I/0 for cache or 
main memory cycles. 

For peer-to-peer I/0 over DART, the CPU is only 
involved in initiating packet transmission. This is a rel
atively smaJ l burden, since only a l ittle bit of control 
information needs to be computed and communi
cated to tl1e adapter. 

To enable efficient peer-to-peer I/0, DART 
includes a bus slave as we l l  as a bus master. The bus 

slave makes the internal resources of the adapter visi

ble on the PC! bus through DART's PCI configuration 
space base address registers. Therefore, on the PCI 
bus, the data memory looks l ike a l inear contiguous 
region of memory, just as main memory does. The bus 
slave supports both read and write operations for these 
typically internaJ resources. 

Figu re 6 
DART Server Architecture 

DART provides efficient hand ling of small packets. 
Typically, describing a number of smaJI packets for 
transmission is onerous for software, l imiting the peak 
packet rate. DART's transmitter can automatically 
subdivide a large amount of data into sma.l l packets, 
eliminating a lot of per-packet overhead. This feature 
is appropriate for a video server, whose software can
not possibly fill the network pipe if it must operate on 
8-ce l l  packets. 

PC/ Interface 

DART supports both 64- and 32-bi t  variants of the 
PC£ bus. The network interface and DART memories 
provide prodigious bandwidtl1 . To fully take advan
tage of them, a 64- bit PCI bus is recommended, but 
DART will also operate on a 32-bit PCI bus. 

Bus Reads and Writes The DART archi tecture sup
ports memory write-and-invalidate hints to tl1e bridge 
between the system bus and the PCI I/0 bus. Such a 
h.int informs the bridge that the I/0 device is only 
writing complete cache blocks. There is no need for 
read-modify-write operations on main memory cache 
blocks in such circumstances. 

Write operations within a system are general. ly  
buffered . A path from the origin of the write to the 
finaJ destination can be viewed as a sequence of seg
ments. As data flows tl1rough each segment, each 
recipient accepts data witl1 the promise of completing 
me operation, allowing each source to free resources 
and proceed to new operations. Thus, write paths are 
generally not performance-limiting as long as there is 
sufficient buffering to accept burst operations. In the 
DART context, me bridge between the system bus and 
the PCI I/0 bus accepts DART's writes and provides 
buffering for h igh throughput. 

However, read operations are more problematic. 
When memory locations are shared between CPUs, 
caches may or may not be kept coherent by hardware. 
Here, me memory locations are shared between tl1e CPU 
and I/0 device, and mere is no coherence support. Each 
DART read suffers a round-trip time tlu·ough me bridge 
to access tl1e main memory. DART addresses this latency 
tlu-ough large read transactions (up to 5 1 2  bytes). 

As an example, consider a simplified 64-bit bus 
where 540 Mb/s of data are written in 64-byte bursts, 
reads suffer 1 5  stall cycles unti l the data starts to 
stream,  and writes require a staJl cycle for the target 
to recognize i ts address. Address and data are time
multiplexed at 33 MHz. Then writes consume 540 * 
( l  + l + 8 )/ 8 = 675 Mb/s of bus bandwidth . Reads 
have 33 * 8 * 8 - 675 = 1 437 M b/s of bus band
width into which they must fit .  Thus, the minimum 
burst length L required is 540 * ( 1 + 1 5  + L) = L $ 1 437. 
The burst must be at least 9 cycles, 72 bytes, i n  the 
ideal case . DART's large read burst size compensates 
for overheads like large read latencies. 
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Importance of Bus Slave Interface The bus master inter
face is appropriate tor sofuvare-generated transmis
sions. A packet created by an application in main 
memory can be moved via DMA to the network. 

The bus slave interface is appropriate for hardware
generated transmissions. Another IjO device which is 
designed to always be bus master, l ike a d isk i n terface, 
can move data directly to the DART without interme
diate staging in  a memory. Peer-to-peer I/0, however, 
was a by-product of other concerns. 

Data transfer with in TCP is based on a stream of 
large data packets flmving i n  one d irection, and a 
stream of sma l l  acknowledgments flowing i n  the 
opposite d i rection.  Traffic analysis studies often find a 
mix of sma l l er and larger packets . One of tbe early 
concerns for the DART project was to make transport 
protocol generation of acknowledgmen ts inexpensive 
by avoiding DMA. A smal l  packet, constructed enti rely 
by the CPU anyway, cou l d  be moved to the I/0 
device instead of to main memor y. This is fu ndamen
ta l l y  a short sequence of write operations that could 
easi ly be butTered, a l lowing the CPU to proceed i n  par
a l le l  on other work. 

DMA from an application buffer to a device inter
face is genera l ly specified to hardware by stating the 
physical addresses of the application buffer in  main 
memory. DMA requires a guarantee that the data is at 
the speci fied locations .  If the virtual memory system 
were to migrate the data to disk and recycle the physi
cal memory for some other use, the paral lel DMA 
activity would move the wrong data. Therefore, DMA 
operations are surrounded by page lock and un lock 
cal ls to the virtual memory system, to i n form it  tlut 
certain memory locations shou ld not be migrated . 

Additional concerns that led to i ncorporation of the 
bus slave interface were related to the cost of page 
locking, and the cost of acquiring and releasin g  DMA 
resources (e .g . ,  in the bridge ) .  An acknowledgment 
might be constructed in  nonpaged kerne l  memory, 
but a smal l  application packet wou ld l i kely be con
structed in appl ication memory subject to paging.  
Even i f  page locks were cached for temporal locality, it 
might be cheaper to simply move the data via pro
grammed I/0. 

The break-even poin t  betwee n  DMA and pro
grammed I/0 is system-dependent, but can be mea
sured at boot time in order to learn an  appropriate 
threshold to use tor such a decision . Demands on the 
main memory system from i ts various c l ients wi l l  
change over time, a n d  a s ingle measurement is  only 
optimal for the sample's conditions. The suggestion 
here is to enable a qu ick judgment in the software . The 
intent is to make l arge gai ns and avoid egregious per
formance errors. 'vVe suspect that fine-tuni ng the deci
sion is l ess important, and requires the coJ i ection of 
excessive information during the n ormal operation of 
the system.' 
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Interrupt Strategy As noted above, on-chip access 
rates tor the CPU increase more quickly tlun off-chip 
access rates. Interrupt processing and context switching 
are fiwdamentally off-chip actions; new register values 
m ust be loaded into the CPU, and t11e cache must be 
ptimed with data. Thus, t11e general system trend is  that 
i nterrupt processing and context switching improve 
more slowly than raw processing performance. 

DART provides a programmable in terrupt holdoff 
mechan ism . B y  delaying in terrupts, events can be 
batched to red uce various system overheads. I f  the 
batching mechanism were not present, an interrupt per 
packet wou ld swamp system software at  gigabit rates. 

S ince the interrupt delay in terval is  programmable,  
sofuvare may use adaptive a lgorithms to decrease 
in terrupt latency if the system is idle,  or to i ncrease the 
amoun t  of batchi ng if the system is busy. The delay 
timer starts decrementi ng as soon as i t  is writte n .  
Typical ly, the timer w i l l  b e  written at t h e  e n d  of the 
interrupt service rou tine.  

In terrupts can be d ivided i nto two cl asses bv 
software. Each class has its own de lay interval , i n  
case sofuvare assigns d istinct importance o r  latency 
requ i rements to the classes. 

The Dart Software 

DART provides increased performance with the same 
system calls, and with the ex isting system call seman
tics. The on ly  change is to  the  underlying implementa
tion of the existing system call  semantics. 

Unmodified existing applications can consume giga
bit network bandwidth . The appl ication can assist the 
system software by using large contiguous data buffers, 
but it is not required . System software can specify byte
level scatterjgat11er operations to t11e DART adapter in 
order to access arbitrary appl ication buffers. 

Changes to the system sofuvare are confined to a 
few locations above the d river layer, a n d  are generic .  
Successive high-bandwidth adapters tor other media 
can be supported by just wri ting d rivers; no changes 
will be needed above the driver l ayer. The shared set of 
upper- l ayer software changes are on ly  needed to take 
maximum advantage of a DART -style adapter; a tradi 
tiona! copy- based i mplementation i s  supported b y  the 
hardware . 

··Given the parallel nature of the environment (other 1/0, cache 
operations, and multiprocessor CPUs), a software system could 
only estimate non- DART memory loads. Queued DMA operations 
may stan bter than expected, or finish before their completion has 

been noticed. CPU cache activity is dependent on the program 
cxccur.ing ,lt that moment; tine-tun.ing is problematic. The focus of 

DART has been me large gains, like avoiding copies, or allowing 
either DMA or programmed ljO to be used . The focus has been 
on rhc structure of me svstem. 



We developed a prototype UNIX driver to test the 
upper-layer changes, and executed a modified kernel 
against a user-level behavioral model of a DART-style 
adapter. The code was subjected to constant back
ground testing on a workstation relied on for daily use . 
The prototype driver supports buffer descriptors refer
encing either kernel buffers or adapter buffers. The 
implementation effort to support kernel -buffered 
packets was minimal , and enables mu ltiple protocol 
famil ies to be layered above the driver. 

The software changes modify the existing upper
level software, rather than bypassing it via a collapsed 
socket, transport, network, and driver implementa
tion.  The current UNIX net\vorking subsystem pro
vides a rich set of features that needs to be comp.letely 
supported for backward compatibil ity. 

Transmit Overview 

A comparison of traditi onal transmission with DART 
transmission is shown in Table l .  For a traditional 
adapter, the system cal l layer copies application data to 
operating system buffe rs. With a DART adapter, the 
data is copied to the adapter. Uiomove is the copy 
function typically used within UNIX.  The DART 
mechanism is to use an indirect function cal l through a 
pointer, rather than a direct function call to an address 
specified by the compiler's l i nker. H igh-performance 
copy functions are associated with the device driver. 
The driver's copy function is free to use DMA or pro
grammed I/0, depending on the length of the copy. 

For a trad itional adapter, software wastes machine 
resources computi ng checksums. With a DART 
adapter, the checksum is comp uted by hardware as the 
data flows into the adapter. The adapter can patch the 
checksum into the packet header. The adapter can also 
move checksum summ aries back to host memory so 
that they are avai la ble for retransmission algorithms. 

For a traditional adapter, the driver instigates add i
tional memory references to copy the data to the 
adapter for transmission . With a DART adapter, the 
data is already on the adapter, ready to be sent! Much 
of the data copy avoidance work is throughput-related. 
In this instance, we also create the potential for a 
latency advantage for the DART model, since the data 
copy overlapped work in the system cal l ,  transport, net
work, and driver layers of the operating system .  

Table 1 
Tra nsmit Overview 

Traditional 

U iomove user buffer to kernel buffer 

Receive Overview 

In many ways, d1e receive path for net\vorking is usu
ally considered more complicated than the transmit 
path, since the various demultiplexing and lookup 
steps are based on fields that historically have been 
considered too large to use simple table indexing oper
ations. Also, the receive path requires a rendezvous 
bet\�'een the transport protocol and the application ( to 
unblock the application process upon data arrival ) .  So 
it should come as a pleasant surprise that the DART
style changes for packet reception can be as simple and 
localized as two conditionals in the socket layer and 
one in the network transport layer. 

Table 2 is a comparison of traditional receive pro
cessing with DART receive processing. It is almost 
identical to the packet transmission comparison. The 
distinction is which portion of the DART adapter 
computes the checksum on behalf of the software 
( receiver i nstead of DMA engine) .  

Interrupts 

Transmit completion interrupts do not need to be 
eagerly processed . Software can piggyback processing 
to reclaim transm it buffers upon depletion of transmit 
buffer resources, upon unrelated packet reception 
events (e .g . ,  User Datagram Protocol, UDP), and 
upon related packet reception events (e .g . ,  TCP 
acknowledgment) .  The transmit completion events 
can be masked, or the hardware interrupt holdoff 
mechanism can be used to give them a longer latency. 

Receive interrupts are batched to reduce overheads. 
Short packets are fully contained in the initial  packet 
summary which would be deposited in a kernel buffer. 
Adapter buffers for short packets can be recycled 
i m mediately by system software. Long packets are not 
fully contained in tl1e initial packet summary provided 
software for parsing and dispatch. The summary is 
noticed duri ng one interrupt, and scatter/gather I/0 
completion into application buffers is noticed during 
another interrupt if  performed asynchronously. 

The side-effect of the decision to create a store-and
forward adapter is tlut a received packet is related to 
t\vo interrupts. The intent is not to burden a system 
and cause multiple interrupts per packet. The d istinc
tion between relation and causality is i mportant. 

When the system is under load , there is a steady 
stream of packets, and tl1us a steady stream of batched 

DART 

System cal l  layer 

Protocol layer 

Driver layer 

For al l  buffers for a l l  bytes, update checksu m  

Progra mmed 1/0 o r  DMA 

* U i omove user buffer to adapter buffer 

For all buffers, update checksum 

Data i s  a l ready on the adapter ! 
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Table 2 
Receive Overview 

Traditional DART 

Program med 1/0 or DMA Data stays on adapter! Driver layer 

Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver 
hardware as packet was reassembled 

System cal l  layer U iomove kernel buffer to user buffer 

i nterrupts. If  3 M bytes were transferred using a burst 
of l - kbyte packets, there wou ld be 3000 packets. 
Batching 20 packets/interrupt, there wou ld be 1 50 
interrupts to report packet arrivals. The first interrupt 
is  just for packet arrival events, to allow header parsing. 
The intent is for the next 1 49 i nterrupts to report 20 
new arrivals and the DMA completion for 20 previous 
arrivals. A final i nterrupt would take care of the fi na l  
DMA requests. In this case, the additional i nterrupt 
load for a DART adapter is minor: one interrupt for 
3000 packets. The interrupt load is not doubled ( even 
if one chooses to move received data asynchronously) .  

Store-and-forward latency is incurred because of 
the memory write and read on tJ1e adapter ( to store 
data from the network and to later move it  to the 
application's buffers) .  DART adapter memory oper
ates at a high rate, over 4 Gb/s, to minimi ze this.  Due 
to me intervening software decision concerning where 
to place DART data for large packets, the data may be 
placed at its initial location in host memory later than 
for a tradi tional adapter which fills kernel bu ffers. 
H owever, store-and-forward reduces main memory 
bandwidth consumption , and quickly places the data 
at its final l ocation within the application buffers in 
host memory. The correct metric is latency to data 
availability to the application, not data latency to first 
reaching tJ1e system bus. 

CSR Operations 

Control and status registers ( CSRs) are used within 
hardware implementations to al low software to con
trol the action of hardware, and for hardware to pre
sent information to software. For example, a CSR can 
inform a device of me device's address on a bus. In mis 
case, the CSR's definition is generic in the context of 
the bus definition. Alternatively, a CSR can be used to 
in itial ize a state machine within the hardware imple
mentation. I n  mat case, me CSR's definition is specifi c  
to that version o f  the device. 

CSR reads are very expensive. Generally, a single CSR 
read is required for DART interrupt processing, and 
mat CSR is placed in the PCI clock domain of DART in 
order to avoid operation retries on me PCI bus. 

Most packet processing information is  written to 
host memory by the adapter for quick and easy CPU 
access. For example, packet summaries are placed in 
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Uiomove adapter buffer to user buffer 

one or more arrays i n  host memory, and software can 
use an ownership bit in each array element to termi
nate processing of such an array. 

CSR writes are buffered; nevertheless, they can be 
minimized . The packet summaries in host memory are 
managed with a single-producer, single-consu mer 
model. When tJ1e consumer and producer indices into 
an array are equal, the array is empty. When hardware's 
producer index is greater, mere are entries to be 
processed by software. ( Redundant information i n  
array element ownership bits means that soft\vare does 
not actually need to read tJ1e DART adapter to perform 
the prod ucer-consumer comparison . )  When the hard
ware's producer index reaches the sofnva.re's consumer 
index minus one, the array is fu lly utilized . When soft
ware has processed a n umber of packet summa.ties, the 
hardware ca.t1 be informed that they can be recycled by 
a single write of the consumer index to the adapter. 

The DMA engine processes a Jist of "copy this from 
h ere to there" commands. By supporting a l ist of 
operations i nstead of a single operation, software can 
quickly queue an operation and move along to its next 
action without a lot of overhead. The copy commands 
reside in  a.tl array witJ1in host memory, witJ1 a software
specified base and a software-specified length. 

DMA comma.t1ds also fol low the producer-consumer 
model . However, since i nstructions are only read by 
DART, there are no ownership-bit optimizations. To 
compensate for this, software can allocate a large array 
and cache a pessimistic value for the hardware's con 
sumer index in order t o  avoid CSR reads. Alternatively, 
the DMA engine could petiodically be given instruc
tions to DMA such information to host memory. 

A typical DART interrupt involves one CSR read and 
tJ1ree CSR writes, yielding an efficient interface . One 
read determines interrupt cause. One write informs the 
DMA engine of new copy commands for newly received 
data. AnotJ1er write informs the DMA engine that the 
CPU processed a number of me packet summaries 
DART placed in main memory. A tJlird write initializes 
tJ1e interrupt delay register to batch future events. 

Occasionally, an interrupt also involves an extra CSR 
read. The read discovers a large num ber of commands 
processed by tJ1e DMA engine, a!Jowing software to 
recycle entries i n  the command queue and thereby 
issue more commands . 



Driver 

The driver classifies received packets, and decides 
whether to continue to use adapter buffers for them, 
or to copy the data into kernel buffers. For the proto
type, adapter- buffered packets are : 

• Long enough to contain maxi mal - length IP and 
transport protocol headers. 

• Version 4 IP packets ( b uffering assumptions perco
late throughout the layers of the syste m, so a proto
col family must be updated and tested to support 
adapter- buffered packets) .  

• TCP or UDP protocol packets. Other protocols lay
ered over IP do not use adapter buffers, to make the 
scope of the effort manageable by handling just the 
common case. 

The operating system uses a single mbufto describe 
a single set of contiguous bytes in  a buffer which may 
be within or external to the mbuf structure. Mbufs can 
be placed in l ists to form packets from a number of 
noncontiguous buffers. 

Received adapter-buffered packets are two m bufs 
long. The first mbuf contains the initial contents of the 
packet DMAed into memory by the adapter, that is the 
protocol headers and summary information from the 
adapter. 

The second mbuf refers to the packet in adapter 
memory. For ATM, the received packet is  stored in a 
linked list of bu ffers on the adapter. Programmed I/0 
access to the buffers requires software to traverse the 
li nks, but this would not be done in practice since the 
CPU read path to the I/0 device is u n buffered and 
high-latency. The DART DMA hardware would be 
used , and it wou ld traverse the links as-needed . The 
DMA hardware al lows the software to pretend the 
packet is contiguous. 

F ields of the second mbuf are used in specific ways. 
The length of the second mbuf does not contain the 
initial portion of the packet copied into the first mbuf, 
even though the adapter memory buffers tbe entire 
packet. The initial portion is replicated, but only the 
copy local to the CPU is accessed . The pointers of the 
second mbuf point to bogus virtual addresses, even 
though the adapter looks l ike an extension of main 
memory. This speeds software debugging by trapping 
inefftcient accesses to the adapter. Adjusting the 
length and pointer fields is still allowed in order to 
drop data from the front or back of the mbuf. The 
m_ext fields record the location and amount of 
adapter buffering used to hold the packet. They also 
point to a driver-specific buffer reclamation routine. 

For TCP, or for UDP packets with nonzero check
sums, the driver makes incremental modifications to 
the DART receive hardware's checksum. The hard
ware compu tes the 1 's complement checksum over all 
the cell payloads except for the final ATM trailer bytes. 

As a result, the driver modifies the hardware checksum 
to account for: 

• Contributions made by IP options 

• Construction of the pseudo-header which is not 
transmitted on the network 

• The transport layer checksum, which was zero 
when the checksum was computed but may be 
nonzero on the network 

To transmit a packet, the transport and nenvork lay
ers operate on protocol headers in main memory. The 
driver moves the headers to the adapter as part of 
transmitting a packet whose encapsulated data is in 
adapter buffers. 

The ifnet structure is the interface between the pro
tocol layers and the driver. It contains, for example, 
fields expressing the maximum packet size on the 
directly connected network, the nenvork-layer address 
of the i nterface, and function poi nters used to enter 
the driver. 

We add an (*if_ uiomove)() field to be associated 
with buffe rs as described below. It represents a driver 
entry to copy data to or from the adapter. We also add 
an (*if_ xmtbufalloc)() field to be used within the 
mbuf allocation loop of the transmit portion of the 
socket layer. This allows the socket layer to give prece
dence to allocating (large ) adapter bu ffers over main 
memory buffers. 

The driver always retains some transmit adapter 
buffers for its own use. When the system is busy, there 
will be TCP packets consuming adapter buffers. The 
packets are associated with the socket send queue. 
There wiJJ also be packets on the interface send queue, 
which may or may not use adapter buffe rs.  If tbe fi rst 
item on the interface queue uses just kernel buffers, 
then the driver must have reserved adapter buffe rs in 
order to complete the transmission and avoid transm it 
deadlock. At least one packet of adapter buffering 
must be reserved for the driver output routine. 

UDP 

UDP motivates many of the changes without getting 
involved in the complexity of retransmission and relia
bi l ity. Many of these changes are generic to UDP and 
TCP: augmenting the buffer and interface descrip
tions, discovering the availability of  efficient buffers 
for a connection, and allocating and filling the efficient 
buffers. 

One portion of the mbu f is the stntctpkthdr, which 
is used only in the first mbuf of a packet. It  summarizes 
interesting information about the packet, l ike i ts total 
length. 

We add a protocolSum field to the pkthdr of the 
mbufso that the driver can com municate the received 
transport-layer checksum to the upper layers. The 
transport-layer checksum is not ignored, as it would 
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be if checksums were negotiated away or cavalierly 
disregarded . The checksum is veri fied by the trans
port layer as usual, but without accessing all the bytes 
of the packet. The protocolSum field is valid if an  
J\ll_PR07DCOL_SUM bi t  i s  set in the mbuf m_flags field . 

Another portion of the mbuf is the struct m_ext, 

which is used to describe data buffers external to the 
m buf structure. We add an (*uiomove_ j)() field so 
that the driver can communicate a buffer- or driver
specific copy routine to the socket layer. Socket layer 
usage of the standard pre-existing uiomove routine 
assumes that the received data is  in the address space 
and should be moved by CPU byte-copying. The indi
rection al lows the data to be moved by programmed 
IjO or D MA .  The uiomove_f field is val id if an 
M_UIOMOVE bit is set in the mbuf m_flags field.  
Parameters to the uiomove_f function are an mbuf� an 
offset into the packet at which to start copying bytes, a 
number of bytes to copy, and the standard uio s truc
ture that describes where the application wants the 
data. 

The UDP input routine performs protocol process
ing on received UDP packets. Before the pseudo
header is constructed for checksum verification ,  the 
M_PROTOCOL_SUM bit is tested in order to skip 
CPU-based checksumming. 

i f  ( m->m_f l a g s  & M_PROTOCOL_SU M )  { 
N E T I O_COUNT ( rch_hw_sum ) ;  
a s se rt ( m->m_f l a g s  & M_PKTHD R ) ;  
i f  ( u i ->u i_sum 1 =  m->m_p k t hd r . p rotoco L Sum ) { 

N E T I O_COUNT ( r ch_hw_sum_bad ) ;  
goto badsum; 

} 
goto ok;  

} 

Error processing ca.n be based on packets reformat
ted into kernel buffers. The UDP output routine per
forms protocol processing on transmitted UDP 
packets. 

Checksum overhead avoidance is similar to the receive 
path; but instead of testing the M_PROTOCOL_SUM 
bit, the mbuf checksum field is assumed to be valid for 
all transmit mbufs referencing adapter buffers ( they 
have the M_UIOMOVE bit set ) .  We assume that no 
adapter which saves the operating system the effort of 
data copying would forget to save the operating sys
tem the etTort of checksumming. It does not make 
sense to eliminate some, but not all ,  of the per-byte 
overhead operations. 

For UDP transmission, software recycles ( adapter) 
buffering after the packet has been transmitted .  

Changes l ike checksum avoidance are based on 
adding a conditional to the existing code paths. For a 
DART adapter, the test and branch penalty are small 
relative to the gain .  For large external buffers, there 
are one or two M_PROTOCOL_ SUM tests per 
packet, depending on packet l ength and buffer size. 
This could be viewed as a constant-time overhead . 
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The gain is avoiding the linear-time access of each byte 
within each packet. 

For a traditional adapter, the test and branch repre
sent overhead tor each packet. The cost of the added 
conditionals occurs in the context of a large code base 
between the system call interface and the driver, and 
that networking code provides a rich feature set 
through the use of condjtionals. If the added condi
tionals are viewed as sigruficant, consider the approach 
of generating two binary files from a single source 
module. To avoid penal izing systems populated solely 
with traditional adapters, operating system software 
configuration procedures can choose not to incorpo
rate the DART-conditionalized version of the code. A 
DART adapter installed at a later date would still oper
ate under such a software configuration, but would not 
reach its peal< performance until the software is recon
figured to use the DART-conrutionalized version. 

TCP 

The TCP input routine performs protocol processing 
on received TCP packets. Before the pseudo-header is 
constructed for checksum verification, the M_PRO
TOCOL_SUM bit is tested in order to skip CPU-based 
checksumming. The only differences with the UDP 
input processing change are the names of the TCP 
header structure and TCP header checksum field. 

Al l  the adapter resources represented by the second 
mbuf of a received packet are consumed until  the final 
reference to the packet is  freed. If large packets are 
exchanged and the application is doing small reads, 
not until the final read is  any storage reclaimed. Trus 
space consumption is represented on the socket 
receive queue, and therefore affects the advertised 
TCP window. 

The TCP output routine performs protocol pro
cessing on transmitted TCP packets . The checksum 
overhead avoidance is simi lar to that done for UDP. 
Checksum computations for transport-layer retrans
missions are simplified by the association of checksum 
contributions with mbufs, rather than an association 
of checksums witl1 packets. The association with 
buffers instead of packets also s implifies handling of 
packets using a mix of kernel and adapter buffers. 

For TCP transmission, software recycles (adapter) 
buffering after the packet has been acknowledged by 
the remote end of the connection.  Between transmis
sion and acknowledgment, the data is held on the 
socket's send queue . Previously, the socket code 
copied data from one mbuf into another whenever 
both mbufs' contents fit into one, trading increased 
CPU load for space efficiency. For DART adapters, the 
copy decision is cut short. 

We add a hytesSummed field to the mbuf so that 
when a packet is transmitted or retransmitted by the 
transport layer, code can double-check that all the data 
the checksum is supposed to cover is still present in the 



buffer. For example,  a TCP acknowledgment of part of 
an original packet generally leads to the sender delet
ing its copy of the acknowledged data retransmitting 
the rest. The software implementation handles the 
generality of acknowledgments which are not com
plete transmit mbufs, the unit covered by the 
protocolSum field . A retransmission must not send a 
packet with an improper transport-layer checksum ,  
even if  it means using a n  algorithm linear in the num
ber of bytes remaining in the buffer to recompute the 
checksum. 

The transmitter's socket layer buffers data in seg
ments convenient for both the network-layer protocol 
and the driver. Checksum contributions remembered 
for retransmission are recorded at a similar level of 
granularity. The transmitter is l iberal in  what the 
receiver can acknowledge; the receiver's implementa
tion affects efficiency, but not correctness. 

Socket Data Movement 

The copy from the network buffers to the application 
data space occurs in the soreceive routine,  which uses 
information left in the mbu f by the device driver. The 
cal l (s)  to uiomove become conditionalized as fol lows: 

i f  (m->m_f lags & M_U I OMOVE) { 
asse r t ( m->m_f lags & M_EXT ) ;  
error = ( *m->m_ext . ui omove_f ) (m, mof f ,  Len, u i o ) ;  

} e l se 
error = u i omov e ( mtod ( m, caddr_t ) + mof f ,  Len, u i o ) ;  

The reverse copy in  sosend i s  similar. 
The standard u iomove fu nction makes the opti

mistic assumption that the addresses of user buffers 
provided by the appl ication are valid .  I f  addresses are 
not valid , a trap occurs and situation-specific code is 
cal led. 

To support drivers that use programmed l/0 
movements with the application's buffer, an additional 
code point is added to the error processing so that an 
EFAULT error is returned to the application. 

Note that the changes are generic, and can be used 
with existing devices. The uiomove_f function can per
form both copies to kernel buffers and protocol check
summing for transmission over traditional adapters. 

In the transmit portion of the socket layer, the appli
cation data is moved to kernel buffers or to adapter 
buffers by sosend .  In order to take advantage of DART 
adapters, sosend needs to know: 

• That the protocol layers between the socket and 
driver support DART-style buffering 

• That the driver supports DART-style buffering 

In general, formatting data efficiently for transmis
sion can require knovving the amount of headers that 
will be prepended by the various layers below the 
socket layer, so device al ignment restrictions can be 
met. Due to protocol options and to the variety of 

media in existence, the amount prepended may vary 
from socket to socket. Given a socket, we introduced a 
function that computes: 

• A function pointer for al locating adapter-based 
buffers 

• A function pointer for moving data from user 
buffers to adapter buffers 

• The number of bytes required to prepend all headers 

To simplif)r the prototype implementation effort, 
the fu nction disallows the use of adapter bufters for IP 
multicast packets . 

When allocating adapter buffers, sosend uses the 
if_xmtbufalloc entry to allocate adapter buffers. Each 
time it does so, it passes a maximum number of bytes 
of buffering that attempts to allocate a buffer for the 
entire ( remaining portion of the )  packet. The driver 
indicates the actual amount of buffering allocated; 
sosend loops until all the necessary buffering is allo
cated. The driver may decline to a l locate an adapter 
buffer if  the requested amount of buffering is smal l .  At 
that time the driver can best decide if CPU-based byte 
copying from user buffers to kernel buffers, and also 
copying kernel buffers to the adapter, is preferable to 
programmed IjO or DMA from user buffers. 

Once an adapter buffer aJlocation fails, no further 
allocations are attempted within a segment that will be 
passed to the lower layers. This ensures that drivers will 
see, at worst, an ( internal ) mbuf containing headers, 
one or many adapter buffers containing data, and 
potentially one or many kernel buffers containing the 
rest of the packet. This simpl ifies the driver, and 
ensures that alignment restrictions are met without 
shuffling data around on the adapter. It also simplifies 
transport-layer checksum computation algorithms. 

There is an unusual boundary case in which a long 
segment of transmit data may not immediately be 
copied to adapter buffers, even though the driver 
would prefer to do so. If the driver has many free 
transmit adapter buffers when the socket code starts to 
prepare a segment, it may not have any free buffers 
when the segment nears completion . This is because 
the socket layer runs at a lower interrupt priority level 
than the device driver, and buffers are al located indi
vidually. A device interrupt can lead to servicing the 
device output queue, consuming adapter buffers in  
order to transmit traditional kernel -buffered packets. 
Rather than block and wait for transmit adapter buffer 
availability, the prototype software uses kernel buffers. 

Both the socket and network protocol (TCP) layers 
contain segmentation algorithms. In the socket layer, 
the segmentation process is confused with the (cluster 
mbuf) buffer choice decision procedure. As part of 
eliminating that confusion, we introduce an if_bujlen 
field to the ifnet structure. 
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If the socket layer creates segments longer than the 
device frame size, excess work occurs in the lower lay
ers ( e .g . ,  TCP segmentation or IP fragmentation) .  If 
the socket layer creates segments shorter than the 
device frame size, the system foregoes large packet 
efficiencies. A large 8 -kbyte write that leads to eight 1 -
kbyte cluster mbufs being i ndividually processed by 
the lower layers might benefit from overlapped IjO of 
the first segment with computation of the last, but the 
CPU would be wasted for a benefit that is only rele
vant when a large number of such poorly chosen seg
ments arc constructed. Such a write could go out as a 
single packet over an ATM network. 

Socket Buffering and Flow Control 

A number of papers have commented on the require
ment for a reasonable amount of socket buffering to 
enable applications to "fi l l  the pipe" with a " band
width times delay" amount of data . 1  Delay includes 
the l ink distance, device interrupt latency, software 
processing, and I/0 queuing delays. It also includes 
interrupt delays that aggregate events for efficient soft
ware processing. 

The requirement for sufficient socket buffering is a 
lesson learned over and over again.  Traditional solu 
tions include marginal increases in systemwide 
defaults,  and application modification to request more 
buffering than the default .  Faci l ities l ike rsh imply that 
anything can become a network application, unbe
knownst to the application author; so changes to 
applications arc a poor solution . Also, applications are 
insulated from the network by the network protocol 
and socket abstractions; no application should need to 
know the buffering requirements for high throughput 
for the media du jour. 

We introduce an (*if sockhuj)() entry that al lows 
the driver to increase socket buffering. When local 
network- layer addresses are bound to socket connec
tions, an interface is associated with the connection, and 
the driver is allowed to adjust the socket buffer quota. 

For TCP server connections, the server may not be 
restricting incoming connections to a particular inter
face. Overriding the default buffering value must be 
done on the socket created when the incoming SYN 
arrives, not on the placeholder server socket. The 
buffer al location needs to be determined as soon as 
possible, because the initial SYN packet also triggers 
the determination of the proper window scaling value.  

UDP docs not queue packets on the socket send 
queue.  Although calls to if_sockhuf from the socket 
layer arc independent ofthc protocol, the buffer quota 
only affects the maximum UDP packet size sent, not 
the number ofUDP packets that can be in fl ight at the 
same time. The socket is not charged for UDP packets 
queued on the driver output q ueue or UDP packets i n  
the hardware transmit queues. 
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The adapter buffer resources are disti nct from main 
memory mbuf and cluster resources. The socket data 
structure and support routines support consumption 
and quota numbers for adapter buffering that are dis
tinct from the current main memory consumption 
and quota numbers. For example,  a connection re
directed from a DART adapter to a traditional adapter 
is quickly flow-control led in the socket layer as a result. 
The large adapter buffer al location does not enable it 
to hog main memory buffers and adversely affect 
other connections. 

IP 

The prototype software contains conditionals to 
enable or disable the use of adapter buffers for mes
sages undergoing IP fragmentation.  This only affects 
UDP, since the socket layer segments appropriately for 
the TCP and driver layers. Software computes the 
amount of header space for the first fragment, and also 
the amount of header space for the fo l lowing frag
ments (which wi l l  not contain transport protocol 
headers ) .  This information is used during the socket 
layer's movement of application data to kernel or 
adapter buffers. U D P  and IP receive the segments as a 
single message; the I P  fragmentation code uses the 
fragment boundaries precomputed in the socket l ayer. 

IP reassembly of received adapter-buffered packets 
was i mplemented in the prototype code to keep up 
with a transmitter using adapter buffers for IP frag
mentation. The driver adjusts the hardware-computed 
checksum to ignore the contribution to the hardware 
sum caused by the successive JP fragment headers, 
which arc not presented to the transport layer. 

Resource Exhaustion 

The h ardware provides a scalable data memory. The 
memory holds received data unti l  the application 
accepts it, and transmits data unti l the acknowledg
ment arrives. The prototype provides 16 M bytcs, 
which was considered a significant q uantity after 
examining network s ubsystem buffering at centralized 
servers for several large "campus" sites. 

When adapter memory is scarce, i t  should be allo
cated to connections whose current data flows arc 
high-bandwidth flows. Low-bandwidth connections, 
connections blocked by a closed remote window, and 
connections over extremely Joss-prone paths wil l  not 
be significantly impacted by the copying overhead 
associated with the use of kernel butTers. 

Data Relocation 

Reformatting data from adapter buffers to kernel 
buffers al lows existing code to be ignorant of adapter
butTered data. Socket-based TCP communication can 
use adapter buffers for high throughput, and other 



protocol environments can simultaneously use the 
familiar kernel buffers. DART support can be phased 
in by protecting legacy code with a conditional reloca
tion call before entering or queuing data to the legacy 
code. Cache fil l  operations should be targeted to main 
memory, not adapter memory, for best performance in 
legacy code.  

Relocation is also appropriate for error handling 
and other rarely executed code paths. For example, 
a multi-homed host may lose TCP connectivity 
through the fi rst-hop router associated with a DART 
l ink, and be forced to send packets over another l ink.  
The new communication path could use any net\vork 
interface, DART or otherwise . The soft\vare needs 
to be able to handle the scenario where the new 
adapter, or some system resource, has a constraint 
preventing it from transmitting packets located in 
DART memory. 

We selected a lazy evaluation solution which 
assumes that data sent over an old route will be deliv
ered and acknowledged. An eager solution would 
incur a large burst of data relocation when the new 
route takes precedence, with the d isadvantages that 
the work would be wasted for data which is acknowl
edged, and the burst of activity consumes resources 
and incurs increased latency for other activities. 

For TCP connections marked as using adapter 
buffers, a driver entry through (*if_ pktok)() al lows 
the driver to comment on each outgoing packet. This 
implies that the driver also comments on TCP retrans
mission packets. The driver has a chance to dou ble
check constraints and trigger data relocation, if 
necessary. Drivers not supporting if_pktok always trig
ger data relocation, and also lead to unmarking the 
TCP connection . 

Comparison to Other Methods 

Traditional adapters contain minimal onboard mem
ory and hide their buffering from tl1e CPU. Unable to 
manage a traditional adapter's buffers, a copy of data 
must be kept in host memory until it is acknowledged 
in case it needs to be retransmitted. 

We felt copy-on-write approaches to using a trad i 
tional adapter would be i nadequate due to book
keeping overheads experienced by other projects. 
Also, the application may commonly reuse the same 
application buffer before the transport protocol 
semantics al low. For an unmodified application, this 
wou ld lead to blocking the application, or i ncurring 
both copy-on-write and data copy overheads. Al l 
applications are network- based when one considers 
net\Vorked file systems and pipes to remote program 
invocations; architectures that require appl ications to 
be recoded to interact with page mapping schemes 
( e .g . ,  8 )  are inadequate. Another objection is  that 
copy-on-write focuses on packet transmission, ignor
ing packet reception.  

When a write is  performed by an application using 
DART, the application blocks only long enough to 
buffer the data, as for a traditional adapter. The copy 
of the application's data on DART enables retransmis
sion for rel iable communication.  The application is 
free to immediately dirty its write buffer, and no per
formance impact is associated with that action. 

Van Jacobson's W1TLES paper design uses the CPU 
to copy data to and from the adapter via progran1med 
I/0.9 Reading the adapter is an expensive operation, and 
in practice would provide worse receive performance 
than even a traditional adapter. The Medusa design is a 
W1TLES variant that uses programmed I/0 transmis
sion and addresses the receive penalry vvith system block
move resources for reception . 1 0  The Afterburner design 
used the same approach, achieving 200 Mb/s.' The 
W1TLES approach keeps tl1e packet in adapter memory 
until it is copied to the application buffer. 

To minimize resource consumption, the checksum 
and copy loop are combined. This means that the TCP 
acknowledgment is deferred until the application con
sumes the data, which might be much later than nec
essary. Appl ications read data at a rate of their own 
choosing. Care must be taken that this deferral does 
not lead to TCP messages to the data source that cause 
unnecessary data retransmission. 

Unlike W1TLES, DART supports DMA to and from 
the adapter. Software can use DMA where appropriate, 
intel l igently balancing the costs of programmed I/0 
and DMA. 

S ince DART provides the IP checksum with the 
packet, the TCP acknowledgment can be sent as soon 
as the packet is reassembled and reported to the CPU. 
The acknowledgment contents and transmission time 
are tradi tional BSD UNIX; it  states that the data has 
been received, and the offered window reflects buffer 
consumption until the application receives the data at 
its leisure . 

Adapters have been built that offload protocol pro
cessing. 1  However, the cost ofTCP processing is low, 
and such an architecture introduces message-passing 
overheads that counterbalance the offloaded protocol 
processing efficiencies. CPU execution rates are scal
ing well .  The issue to address is the main memory 
bandwidth bottl eneck. Also, it is expensive and diffi
cult to create, maintain, and augment the firmware for 
such an adapter. The firmware is tied to a single 
adapter, and replicates work done within tl1e operating 
system that can be shared by a number of adapters. 

DART provides assist via checksumming methods. 
It does not attempt to offload network- or protocol
l ayer processing. 

Performance 

The simulation environment used to debug and test 
the chip design was also used to extract performance 
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information. The chip model used to fabricate the part 
is connected to a PCI bus simulation, some generic 
bus master devices, and some generic bus slave 
devices. The simulation environment is connected to 
and controlled by a TCL-based environment. 

Within the TCL environment, the hardware design
ers wrote a device driver. With this driver, DART 
copied packets from host memory, looped packets on 
an external interface, reported packet summaries, and 
copied packets into host memory. Both 64- and 32-bit 
PCI buses were exercised. Target read latency of host 
memory was incorporated into the simulation ( the 
data presented in Figure 7 is based on a 1 6- cycle 
latency) .  Credit-based flow-control operations were 
enabled since they consume additional control mem
ory bandwidth, and therefore represent worst-case
scenario operation, Similarly, a large number of virtual 
circuits were used to loop data, to prevent the use of 
on-chip, cached circuit state. 

Because the TCL driver was written by hardware 
designers, and they were focused on designing and 
testing the chip, performance numbers extracted from 
their work suffer from a lot of CSR accesses. A real 
driver wou ld reduce the CSR operations and have 
i ncreased batching of interrupts and other actions. 

CSR reads are costly, since tl1ey involve a round-trip 
time within the chip which crosses clock boundaries, 
in addition to the round-trip time between the CPU 
and the pins on the device .  Crossing clock boundaries 
means that there are internal first-in first-out (FIFO) 
delays involved to deal with synchronization and 
meta-stabi l ity issues. To meet PCI latency specifica
tions, the bus master is told to retry such operations, 
freeing the PCI bus for other use during the internal 
round-trip time.  CSR writes are efficient, since they 
are buffered throughout the levels of the system.  

The dip i n  Figure 7 is near the 5 12-byte burst size 
used to read from host memory. Packet transmissions 
no longer fit in a single DMA burst, and incur tl1e extra 
cost of an additional short fetch . This incurs additional 
overhead cycles to place the address on the bus and for 
tl1e target to start to respond with the first bytes. 

For each simu lation we extract numerous detailed 
statistics . Table 3 contains a few for 32- cell packets 
( 1 5 36 bytes) on a 32-bit PCI bus. These particular fig
u res are for the TCL driver, and include time intervals 
to initialize the adapter, to transmit before the first 
packets are received, and to receive after the last packet 
was transmitted. 

DART 4 OR MORE VC, B ID I RECTIONAL, 
FLOW-CONTROLLED PERFORMANCE 

Figure 7 
DART Performance 

74 Digital Technical Journal 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

1 0% 

0 

KEY: 

1 0  20 30 40 50 

PACKET LENGTH IN CELLS 

-+-- PERCENT OF LINE RATE (64·BIT BUS) 

-\}- PERCENT OF L INE RATE (32-BIT BUS) 

Vol .  9 No. 4 1 99 7  

60 70 



Table 3 
Exa m p l es of Additional Statistics 

Control memory idle 
Data memory idle 
PCI busy (frame or i rdy asserted) 
PCI transferri ng data (irdy and trdy asserted) 
CSR operations share of bus operations 

Future Work 

79% 
48% 
75% 
60% 
41 % 

Due to the large amount of on board buffering, we do 
not expect DART to encounter resource exhaustion 
issues. However, some work will be appropriate to 
determine the best sol u tion shou ld buffering require
ments exceed the electrical capabilities of the high
speed SAR-SDRAM interface. Is it efficient to move 
unacknowledged data off the adapter so that new 
transmit data can be moved from user space to the 
adapter in the socket layer? Is it efficient to block in  the 
socket layer, waiting for adapter buffers to be freed by 
a future, or arrived but unprocessed, acknowledg
ment? Is it efficient to use conventional kernel buffers 
to transmit  when the space allocated to DART-style 
transmissions is exhausted? 

DART structures the system software so that the 
operating system does not examine the application's 
data, which should be private to the application any
way. This separation of control operations (on head 
ers) from data operations ( primarily movement) is a 
common theme i n  embedded system design for 
bridges and routers. DART provides a generic struc
ture that enables high-performance networking in a 
variety of systems. 

With features l ike peer-to-peer I/0, one can con 
ceive of a system with multiple gigabit l inl<s, where the 
bottlenecks have shifted from the system sofuvare to 
the application or service . We think DART-style 
adapters wil l  enable and accomplish the delivery of 
high- bandwidth service to the application. 
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I 

The fo l lowing patents were recently issued to Digital Equipment Corporation.  Tit les and names supplied by the 
U.S.  Patent and Trademark Office are reproduced as they appear on the original published patent. 
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