
l"i!
!=;

·�

�
�

Fi

F"'

p-

<:!:l

t"'
v

Digital
Technical
Journal

lillD 0 - -

��.!!. P1 � 77 - 1/ _'\._ .._;

s�r64_Q R.20 v

S1r64 L Rl.2v

I
FX!32 EMULATION AND TRANSLATION

VISUAL FORTRAN

MEMORY CHANNEL 2 INTERCONNECT

OBJECTBROKER SECURITY

STRONGARM MICROPROCESSOR

Volume 9 Number I
1997

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator

Production
Christa W. Jessica, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Donald Z. Harbert
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

Cover Design
The display of program code in the fore
ground and the background of our cover
represents one of the unique aspects of the
DIGITAL FX'32 software, the opening
topic in this issue. By emulating an appli
cation in the foreground and later translat
ing the execution profile into native Alpha
code in the background, FX!32 enables
32-bit applications that run on lntel-based
machines to also run on Alpha-based
machines. The combination of emulation
and binary translation provides Alpha users
with additional applications and good per
formance with transparent operation.

The cover design is by Lucinda O'Neill
of the DIGITAL Industrial and Graphic
Design Group.

The Digilal Tecbn.ical.foumalis a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AK02-3/B3, Acton, MA 01720-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates arc $40.00 (non-U.S. $60) for tour issues
and $75.00 (non-U.S. $!15) for eight issues.
University and college professors and Ph.D.
srudents in the electrical engineering and com
puter science fields receive complimentary sub
scriptions upon request. DIGITAL customers
may qualifY tor gifT subscriptions and arc encour
aged to contact their account representatives.

Electronic subscriptions arc available at
no charge by accessing URL
http://www.digital.com/infojsubscription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues c,m be ordered
by sending the requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each to the published-by address. Recent
issues arc also available on the lmernct at
http://www.digital.com/i nfo/dtj.

DIGITAL employees may order subscrip
tions through Readers Choice at U RL
http://wcb7-c.das.dcc.com or by entering
VfX PROFILE at the Open VMS system
prompt.

Inquiries, address changes, and compli
mentary subscription orders can be sent
to the Digital 'f'echnicaljourna!at the
published-by address or the electronic
mail address, drj@digital.com. Inquiries
can also be made by calling the.fourua!
office at 508-264-7549.

Comments on the content of any paper and
requests to contact authors Jrc welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright© 1997 Digital Equipment
Corporation. Copying without fcc is per
mitted provided that such copies arc made
for usc in educational institutions by fcKulry
members and arc not distributed for com
mercial advantage. Abstre1cting with credir
of Digital Equipment Corporation's author
ship is permitted.

The information in theJourualis subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compan
ies herein represented. Digital Equipment
Corporation assumes no responsibility tor
anv errors that may appear in the .fou rua!.

ISSN 0898-901 X

Documentation Number EC-N7963-18

Book production was done by Quantic
Communications, Inc.

The following arc trademarks of Digital
Equipment Corporation: AlphaServcr, DEC,
DIGITAL, the DIGITAL logo, DIGITAL
UNIX, Open VMS, and TruCiuster.

ARM and StrongAJ{J\11 arc registered trademarks
of Advanced RISC Machines Ltd.

BEA ObjectBroker is a registered trademark of
B EA Systems, Inc.

Bull is a registered trademark of Bull Worldwide
Information Systems.

Cray is a registered trademark of Cray Research,
Inc.

Encore is a registered trademark and MEMORY
CHANNEL is a trademark of Encore Computer
Corporation.

Gradient is a registered trademark of Gradient
Technologies, Inc.

HAL is a registered trademark of HAL Com purer
Systems, lnc.

Hitachi is a registered trademark of Hitachi, Ltd.

H P is a registered trademark of Hewlett-Packard
Company.

IBM and SP2 arc registered trademarks and
Power PC and Power PC 603 arc trademarks of
I ntcrnational Business Machines Corporation.

Intel and Pentium arc registered trademarks of
Intel Corporation.

Kcrbcros is a trademark of Massachusetts
Institute of Technology.

Lucellt Technologies is a trademark of Lucent
Technologies.

Microsoft, Visual Basic, Visual C++, Win32,
Windows, and Windows NT arc registered
trademarks and Active X and Visual J++ are
trademarks of Microsoft Corporation.

MOTIVE is a registered trademark of Quad
Design Technologies, Inc.

NCR is a registered trademark of NCR
Corporation.

NEC is a registered trademark of NEC
Corporation.

Object Managemem and OMG arc registered
trademarks and COREA is a trademark ofrhe
Object Management Group.

Olivetti is a registered trademark of In g. C.
Olivetti.

Oracle Parallel Server is a trademark of Oracle
Corporation.

PAL is a regisrercd trademark of Advanced Micro
Devices, 1 nc.

Photoshop is a trademark of Adobe Systems,
Incorporated.

POSIX is a registered trademark of the lnstirute
of Electrical and Electronics Engineers.

SCO is a registered trademark of The Santa Cruz
Operation, Inc.

Siemens Pyramid is a registered trademark of
Siemens P):ramid Information Sysrcms, Inc.

Stratus is a registered trademark of Stratus
Computer, Inc.
Synopsys is a registered trademark of Synopsys,
Inc.

Tandem is a registered trademark of Tandem
Computers Incorporated.

The Open Group is a trademark of rhc Open
Software Foundation, Inc. and X/Opcn
Company Ltd.

TPC-C is a registered trademark of the
Transaction Processing Performance Council.

Transarc is a registered trademark of Transarc
Corporation.

UNIX is a registered trademark in the United
States and other countries, licensed exclusively
through X/Open Companv Lrd.

Veri log is a registered trademark of Cadence
Design Systems, Inc.

Viewlogic is a registered trademark and VCS
is a trademark of Viewlogic Systems, Inc.

Contents

DIGITAL FX!32: Combining Emulation and ltwmond J. Hookw;ll' �nd JVI<lrk A. Her,kg

Binary Translation

Development of the Fortran Module Wizard Leo P. Trcggi,lri

within DIGITAL Visual Fortran

Architecture and Implementation of MEMORY CHANNEL 2 Marco fillo and Richard R. Cillcrr

Integrating ObjectBroker and DCE Security John H. p,,rodi ;md fred W. BurgiKt·

A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor);uncs Montan�ro , RichardT. Wirck,

Krishna Anne, Andrc11 J. Bbck, r.liz,lbcth M. Cooper,

Daniel W. Dobbeqm hl , !'�til M. Don.1hue, Jim Fno,

Crcgory \V. Hoeppner, Da1·id Kruckcnw<:r,

Thonus H. L<:c, Peter C. M. Lin, Li;H111Vladden,

Daniel Murray, Mark H. Pearce, Srib;llan S:mth;lll;1111,

Kathryn J. Snvder, R�1· Stephanv, and

Stephen C. Thicrauf

13

27

42

49

Digital Technical)ound Vol. 9 No. l 1997

2

Editor's
Introduction

No matter holl' powcrflli the under

lving lurdw�1re , most important to

users is how that power translates to
greater application perr(xmance �111d
availability. Among the di1·erse topics
in this issue of'thcjourna/ an: inno
vative ways engineers have devised
to meet application pert(mnance and

�wailability requiremcms, and new
rools f(Jr applications developers.

DIGITAL FX132 is a unique soft
ware product tiMt makes available
huudreds ofapplic1tions written
t()r Intel machines to users ofAlplu

111<Khines. Described bv Ray Hookll'<ll'

and tVLlrk Hcrdeg, FX132 combines
soft11·:�re crnuhtion and �1dvanccd
bin<lrl' tmnslation techniques to emble
32-bit applications that run on !mel
based nuchines ll'ith Windows NT
ro also run on 64-bit IUSC Alpha
based machines with VVindows NT
The design provides both the pertor
m:�nce benefits and the r.mnsp:�rency
ofoperJtion that the project engi

neering team sought t(Jr users.
/\lso designed for the Windoii'S

environment is DIGITAL Visu�11
Fortran,�� tool f(x Fonran dei'\:Jopcrs
that combines technologies ti·om
DIGITAl, and Microsotr Corpora
tion. Leo Treggiari reviell's the tool's

componen ts, which include the
Component Object Model (COM),

Fortran 90, and Microsoft Developer
Studio. 1:-le addresses the question of

whv developers need help accessing
dvnamic link libraries and servers

based on COM, and then f(xuses on
the newlv cre<lted tool that providt:s
this f11nctionalitv, the Fortran Module
Wizard.

Dig;ir�l Tcchnic1l Journal

DIGITAL's shared-memorv cluster
interW1111ect, MEt'vlORY CHANNEL

2, delivers the high levels oh:ompu
utionaJ pertonnance nccess�1rv ro
su1)porr the l<�rgest rechnic1l and
con1men:ial :�pplications. Marco Fillo

and Rick Cillcrt :�ssess experiences
ll'ith the first implemcnt�Hion of
MEMORY CHAJ\:1\:EI, tlw led to
such enhanccmcms as the cross-bar
design in this latest implememation.

They conclude ll'ith ped(>n11�11Ke
cbra that denmnstLite unp�1ralleled

perf(>nlHncc in terms ofl,ltency and
b�111d11·idth comp�H'Cll ll'ith traditional
inrm:onnccts. MEMORY CHA.'\JNEI,
2 provides latency of less than 2.2
microseconds and banclll'idrh of

1 ,000 megabytes per second in an
8-node duster.

n�,t�l sccurirv has long been impor
tant to svstem managers but nor easily
achieved in distributed heterogeneous

svsten1s. l) I G ITA L �md B EA Svstems - '
luve imegrated Object Broker middle

ll'are ll'ith the Distributed Computing
Environment's Genuic Sccuritv Service
Appl ic1tion Programming lnterbce
(CSS-APl), �1s described here bv John
Parodi and Fred Burgher. The authors
cx�1111ine rhe choice ofGSS-API f()r

OhjecrBrokcr �md future directions
in authentication sofiw�1re.

Design decisions made in rhe de,·el
opment of DIGITAL's StrongAR.i\1

microprocessor ll'ere driven by the

son1et.imcs opposing requirements
of high pcrf(mnancc and l011' poll'er

consumption. T1rgeted f(Jr usc in
h<llld held appliances usldlv powered
by wnvention�11 batteries, Strongf\RJ\11
otters signifiuntlv higher perf(mnance

Vol.') :-:o. I llJlJ7

rhan compar�1ble microprocessors: It

operates ar 160 Ml:-lz, dissipating less

than 450 millill'atrs. James Montanaro,
Rich Witek et al. step through the
decisions designers made to imple
ment the ARM V4 instruction set
ri·om Advanced !USC i\lbchines Ltd.

Upcoming in the next issue of

the Journal :11-c technical p3pers
about nell' Alta Vist:� software and
a new VVindOII'S NT personal work

stJtion basecl on an Alpha 64-bit

!USC processor. To view the results
ob recent survcv sent rojournal
Web subscribers, see http:/ jwww.
digital .comjinto/dtj .

Jane C. Blake
Ma J/(/ging hail or

DIGITAL FX!32:
Combining Emulation
and Binary Translation

The DIGITAL FX!32 software product u n iq uely

combi nes emulation and binary tra nslation

to enable any 32-bit appl ication that executes

on an Intel x86 m icroprocessor ru nning the

Windows NT 4.0 operati ng system to be i nstalled

and to execute on an Al pha m icroprocessor run

ning Windows NT 4.0. Benchmark tests ind icate

that after translation, x86 appl ications run as

fast on a 500-MHz A l pha system with DIGITAL

FX!32 software installed as on a 200-MHz Penti u m

Pro system. T h e emu lator and its associated run

time software provide tra nsparent execution

of applications written for x86-based p latforms.

The em ulator produces profile data that is used

by the translator and takes advantage of trans

lation results as they become avai lable. The

translator provides native Al pha code for the

portions of an x86 appl ication that have previ

ously been executed . A server manages the

translation process for the user, making the

process com pletely transparent.

I
Raymond J. Hook:way
Mat·k A. Herdeg

Three factors contribute to the success of a micro
processor: price, performance, and software availability.
The D I GITAL FX132 product add resses the third fac
tor, software availability, by making h u ndreds of new
applications ava i l able on Alpha-based platforms ru n
ning t h e Windows NT operating system. DIGITAL
FX132 software combines emulation and binary trans
lation to provide fast, transparent executi on of Intel
x86 applications on Alpha systems.

Since its introd uction in 1992, the Alpha micro
processor has been the f1stcst m icroprocessor
available . A l arge n u mber of native applications are
available on Alpha systems, particu larly those applica
tions that require a high-pertormance processor. With
the i ntroduction of DIGITAL t:X!32 software, 32-bit
programs that can be instal led and executed on x86
systems r u nning the Windows NT 4.0 operating sys
tem can also be installed and executed on Alpha sys
tems r u n ning Window NT 4.0. Except tor havi ng to
speci�' that a program is an x86 application, i nstal l ing
and run ning an appl ication is the same on an Alpha
system as on an x86 system . The performa nce of an
x86 application runn i ng on a h igh-end Alpha system is
similar to the performance of the same application
running on a high-end x86 system.

A number of systems have successfully used emu l a
tors t o r u n appl ications on platfC.>rms tor which tbe
appl ications were not in it ia l ly targeted.U The major
drawback has been poor pertormance.2 Several emu la
tors have used dynamic translation, translati ng smal l
segments o f a program a s it i s executed, to achieve better
pertormancc than that obtained by an inteqxcter
alone.'-' Dynamic translation involves a basic trade-off
between the amount of time spent translati ng and the
resulting benefit of the translation. I fan emul ator spends
too m uch time on the translation and related processing,
the executing program will be u nresponsive. This limits
the optimizations that can be performed by the e m u l a
tor using dynamic trans lation .

FX! 32 overcomes the performance problem by not
doing any translation whi le the application is execut
ing. Rather, FX132 captu res an execution profile that is
later used by a binary translator5 to translate into native
Alpha code those parts of the application that have
been executed . Since the translator r uns in the back-

Digital Technical Journal Vol. 9 No. I 1997 3

4

ground, it can use computationally intensive algo
rithms to improve the quality of the generated code.
To our knowledge, fX!32 is the first system to explore
this combination of emulation and binary translation.

In this paper, we describe how FXI 32 works. We begin
with an overview <H1d discuss each ofthe major compo
nents in more detail. \Ve then present some benchmark
test results and b1idly describe several limitations of the
current version ofDlGITAL FX132 somvare.

Overview

On Alpha systems, the Windows NT operating system
uses an cmul:1tor to run 16-bit x86 applications. These
applications can be installed and ru11 in the same way as
they are installed and run on x86 systems, but the exe
cution is slower. The emulator built into FX!32 pro
vides a similar capability for 32-bit x86 applications.

Unlike the emulation software in the 16-bit envi
ronment, t-:X132 provides a binary translator that
translates 32-bit x86 applications into native AJph:1
code. The translation is done in the b:1ckground and
requires no user interaction. Using background trans
lation allows the translator to pert(mn optimizations
that, in terms of computational resources, would be
too expensive to accomplish while an application is
running. An application translated by means oft-:X132
runs up to 10 times faster than the same application
running under the emulator.

DJ(;JTAL FX!32 software consists of the t()llowing
seven major components:

1. The transparency agent, which provides t(lr trans
parent launching of 32-bit x86 applications.

2. The runtime, 1vhich loads x86 images and sets up
the run-time environment to execute them. As part

of loading an image, the runtime component jack
ets imported application programming interrace
(API) routines. Jackets are small code fragments
that allow the x86 code to call Alpha Windows NT
API routines.

3. The emulator, which runs an x86 application mak
ing usc of translated code when it is available.

4. The translator, which produces a translated image
using profile inb·mation received ti.·om the emulator.

5. The lbtabase, which stores execution profiles pro
duced by the emulator and used by the translator.
Translated i mages arc ::�lso stored in the database,
along with configuration infi:m11ation.

6. The server, which maintains the database and runs
the transiJtor JS appropriate.

7. The manager, which allows the user to control
resources used by the DI G ITAL FX132 somvare.

figure l shows the relationships between these
major components, each of which is discussed in more
detail in the sections that t()IIOiv.

The Transparency Agent

The transparency agent provides t(>r transparent
launching of 32-bit x86 applications. LaunciJing an
:�pplication on the VVindows NT operating system
always results in a call to the Create Process API routine.
By hooking calls to this routine, the transparency agent
can examine every image as it is about to be executed.
If a call to Create Process specifies that an x86 image is
to be executed, the transparency agent invokes the run
time component to execute the image.

FX!32 inserts the transparency agent into the address
space of each process. A process that comains the trans-

TRANSPARENCY
AGENT

RUNTIME
AND
EMULATOR

TRANSLATED
IMAGES

EXECUTION
PROFILES

DATABASE
<REGISTRY>

SERVER

BINARY
TRANSLATOR

Figure 1
DIGITAL FX'32 Svstcm Components

Digital Tcdmical journc1l Vol. 9 No. l 1Y97

pan:ncy agent is said to be enabled. Once a process is
enabled, any attempt to execute an x86 image causes
the rumime to be invoked to execute the process. The
agent is propagated through the system because each
attempt to create a process to run an Alpha image
results in that created process being en�1bled.

By the rime a user is logged on, fX132 has enabled
all the top-level processes, and any attempt to execute
a 32-bit x86 application invokes the runtime compo
nent. The initial processes that are enabled are the
Windows shell (explorcr.exc), the service control man
ager (serviccs.exe), and the remote procedure call
server (rpcss.exe). When fX! 32 is installed, the
fx32strt.exe file is registered as the Windows shell.
When a user logs on, fx32srn.exe runs and enables the
real Windows shell, explorer.exe. The FX132 server
enables the service control manager when it starts,
usually when the system is booted. Currently, any ser
vice process that is started by the service control man
ager bdc)re the server is started is not enabled. (The
only exception is rpcss.cxe, which is explicitly enabled
by the server). \Ne hope to alleviate this limitation in a
future version of the DIGITAL FX!32 software.

Processes arc enabled using a technique described
by Jdhcy Richter in Chapter 16 of his book
Aduanced \Vinduu•s NT" to inject a copy of the trans
parency :�gent into the process' address space.

The Runtime

The transparency agent invokes the runtime whenever
an attempt is m:�de to execute an x86 image. The
runtime loads the image into memory, sets up the run
time environment required by the emulator, and then
calls the enur!Jtor ro execute the image.

The runtime replaces the Windows NT loader,
which can only load Alpha images; the Windows NT
loader returns :�n error reporting an image of the
wrong architecture if it is invoked to load an x86
image. The runtjmc duplicates the hmctionality of rhe
Windows NT IO<lder, which includes rcloc:Jting images
that arc not loaded at their preferred base address, set
ting up shared sections, and processing static thread
local storage sections.

The runtime registers each i mage it processes with
the Windows NT operating system by inserting point
ers to that inugc into v:�rious lists that are used inter
nally by the system. Maintaining these lists allows the
n:�tive \Vindmvs NT code to correctly implement API
routines, such as Load Resource and Gen\1odulcHandlc,
which require access ro images that have been loaded.
The registration also ensures that the DllJ\ilain tunc
tions of the loaded dynamic link libraries (DLLs) are
called as �1ppropriarc. (The entry points of x86 DLLs
�1rc jacketed b)' the runtime.)

Fortunately, the inuge lists that fX132 must modit)'
arc in the user's address space, and no modification of

the vVindows NT operating system was required to
register images with the system. Unr()rtunatcly, the
structure of these lists is not part of the dowmcnrcd
Win32 interface, and using them creates a dependency
on the Windows NT version that is being run. fX!32
has dependencies on a number of undocumented ka
turcs of the Windows NT operating system. Although
the DIGITAL FX!32 product is more dependent on a
particular version of t he opcr:�ting system than a typi
cal layered application is, it is rcmarbble rhar the
implementation of FX132 did not require :�ny changes
to the Windows NT opcrJting system.

The runtime also registers the image in the FX132
database. This database maintains inbrmarion about
x86 images that have been loaded, including the appli
cation that loaded the image, profile data that was pro
duced by the interpreter, and any translation of the
image. The runtime accesses the database with a
u nique image identifier (ID), which the runtime
obtains by hashing the image's header. Thercti:Jrc, the
image I D is determined by the content of the image,
nor by its location in the file system, and the inhmna
rion that FX132 associates with the image can be
accessed independently of rbc image's location on the
disk. For example, if an application is installed in one
directory and some of the images lo:�ded bv the appli
cation arc subsequently translated by FX!32, the trans
lated images will be located by FX132 even if the
application is later installed in a difkrenr directory.

When the runtime finds a rransi<Hcd image in the
dat:�base, it loads this image along with the corre
sponding x86 image. Translated images arc normal
DLLs, loaded by the n:�tivc Load Library APl routine.
Translated images contain additional sections that
store information required by the runtime to map x86
routines to the corresponding Alpha code.

The runr.ime duplicates the Windows NT loader
function of binding an image's imports, using sym
bolic inti:m11arion in the image to locate the address of
the imported routine or data. The runtime treats
imports that refer to entries in Alpha images speci:�Jiy,
however, by redirecting the imports to rekr to the
correct jacket enrrv in the fX! 32 D LL, jacket.dll.

The jacket routines in jackcr.dll enable an x86 user
program to call the native Alpha implementation of
the Win32 API. These jacket routines JIT extremely
important because they allow x86 applications to use
high-pcrt(xmance code that has been tuned to the
Alpha platti:mn. Some x86 applications run faster on
the Alpha plartcm11 than on the x86 platform, even
without being translated, because of the large amount
of time the applications spend in native DLLs.

Each jacket contains an illegal x86 instruction that
serves as a signal to the interpreter that <l change is to
be made to the Alpha environment. The interpreter
calls an Alpha jacket routine at a rixcd offset ti·orn the
illegal x86 instn1crion. The basic operation of most

Digir·.1l kclmic.1l)ourn;ll Vol. 9 No.1 1997 5

6

jacket routines is to move argu ments tt·om the x86
stack to the appropriate Alpha registers, as d i ctated by
the Alph a ca l l ing sta ndard . Some j acket routi nes pro
vide special semantics t() l" the native routine be in g
cal led, as required by F X ! 3 2 . For example, the jac ket
tor the GetSystcmDirectory routi ne returns the path
to the FX! 32 directory rather than the path to the true
system d i rectory so that x86 applications do not over
write native Alpha D L Ls.

For a n x86 application to run under F X 1 3 2 , every
image it loads m ust be either an x86 image or an Alpha
i mage t(Jr which jackets exisr. Therct(xe, f X 1 3 2 pro
vid es jackets tor a l l the DLLs that implement the
Wi n32 imertiKe and tor many redistri butable DLLs.
F X I 32 cu rrently provides j ackets tor more than 50
native Alpha DLLs, which has e nabled the FX ! 3 2 devel
opment team to run almost all the commercial appl ica
tions tested. Each new release of D I G ITAL F X 1 3 2
sofrware p rovides additional jackets, and t h e developers
i ntend to jacket new i nterbces as they are released .

The Emulator

The fu ndamenta l job of the emulator is to r u n x86
applications betore they arc translated . The tirst time
a n x86 image executes u nder FXI 32, the i mage is exe
cuted by the em u lator.

The e m u lator also serves as a backup for translated
cod e . B ecause it is not possible to statica l l y d etermine
a l l the code that can ever be execu ted by an app l ication
(especia l ly for appl ications that generate code on-rhe
tly) , the emu lator is always present to execu te such
untranslated x86 app l ication code . Previous binary
translators bui lt by DIGITAL also depended on the
presence of an emulator in this role . ' Emu lator per for
mance is more of an issue for F X ! 32 becHISC, u n li ke
those ear l ier bi n ary tra nslators, a l l appl ication code is
i n terpreted when the x86 app l i cation is first run.

The emulator is an Alpha assembly language program
that interprets the subset ofx86 instructions that can be
executed by a Win32 application . While an x86 applica
tion is run n ing, the x86 processor state is kept partial ly
i n Alpha registers and partial ly in a per-thread data
structure called the CONTEXT The x86 i n teger regis
ters arc permanently mapped to Al pha registers, and
Alpha registers store the stare of the x86 condition
codes. Whi.Je the emul ator is running, a dedicated Alpha
register poi n ts to the CONTEXT The CO NTEXT

stores the x86 per-thread processor context and any part
of the x86 processor state that m ust be maintain ed
across ca l ls to other parts of the system , f(n example,
calls to Alpha API routines.

Pipelined Dispatch

The structure of the emul ator is a c lassic fetch-and
eva! uat<:: loop . The emu lator d ispatches on the tirst
two byres of e�\Ch instruc6on , performing the lookup

DigirJI Tcchn ic1 l)ourn<1l Vol . 9 N o . 1 1 997

in a table of 64 K entries. Each entry contai ns rl1e
address of the routine to execute to i n terpret an
i nstruction and the length of the i nstruction .

The structure of the d ispatch loop has been care
tll l ly crafted to make eftlcient use of 64- b it Alpha reg
isters and to efficiently sched u l e the execution of code
in the loop . Software pipe l i ni ng is used to overlap the
retch and d ispJ tch table l ookup for the next i nstruc
tion with the execution of the c urrent i nstructi o n .
At t h e top o f t h e loop , a t least e igh t bytes, starting at
the add ress of the cu rrent i nstruction, are i n Alpha
registers. Length i n formation from the dispatch table
determines the tirst two bytes of the next i nstruction,
allowi ng the d ispatch table l ookup to be overlapped
with the execution of the cu rrent instruction . A tCtch
of additional bytes from the i nstruction streJm is also
i n itiated . F ina l ly, the loop d ispatches to the routine
whose address was obtained ti·om the table on the pre
vious iteration of the loop .

T h e individual rou tines have been factored by using
su broutines and coroutines to pertorm operations l i ke
operand fetching, making them as small as possi b le . As
a result , the e mulator code req u i red to execute the
most frequently executed x86 i nstructi ons fits i n the
tirst-level cache .

Condition Code Evaluation

Condit ion codes are generated by the execut ion of
many o f the x86 i nstructions. \tVe have observed that
cond i tion codes arc fi-cq u e ntly set a n d relat ively
i n frequ e ntly exami ned . The e m u lator takes advan
t<lge of this by eva l uat ing the cond i ti o n codes only
when they arc used, that is , by using a " l a zy eva l u a
t ion" te c hn iq u e . The execution of a typical i nstruc
tion saves only enough state to a l l o w the eva l ua tion
of condit ion codes, if req ui red , a t a l ater t ime . This
takes much l ess effort than i n itia l ly evaluati ng the
condition codes . T h e additiona l advantage i n d e fer
ring the eva luat ion is that only the cond i tion codes
that are used n eed ro be generate d . For exampl e , the
overflow condit ion code may n ever be comp u ted if
only the zero tlag is used .

Floating-point Instruction Emulation

The 8 0 - bit x86 tl oating-point registers arc modeled
by a stack of 64-bit memor y l ocations that contain
fl oati ng-poi nt values. The decision to use 64-bit inter
mediate val ues, rather than to fai thfully replicate the
8 0 - bi t model , was based on the need to ac hieve good
performance when executi ng x86 tloari ng-point code
on the Alpha processor. Th is d ecision was supported
by the bet that the vVi ndows NT operating system also
uses a 64- bi t fl oating-poi nt model . Alrl1ough this is ::tn
approximation, our experience to dare has shown that
th is was a good compromise. Very few appl ications
rely on the fu ll precision provided by the x86 floati ng
poin t u ni t's (1-'PU's) 8 0 - bi t registers.

The em ulator a lso im ple me nts a somewhat s impl i
fied model of the x 8 6 FPU's register fi le . Most i nstruc
tions use the x86 FPU register file as a trad itional
operand stack; however, several i nstructions can create
a register file state that is not strictly a stack by freei ng
registers in the middle of the stack, by moving the
stack poi nter without pushing or popping, or by i n i
tializi ng the register ti le i n a way t h a t breaks the stack
model . Model ing the ful l com plexity of the x 8 6 FPU
register file would be extremely expensive, and experi
ence l1as shown that a l most all programs use the regis
ter til e strictly as a stack. The current version of the
emulator takes advantage of t his . We are investigating
ways to model the floatjng-poi nt registers in a way that
maintains good performance but docs not depend on
their bei ng treated as a stack.

Generation of Profiles

While i t is i n terpreting a n x86 program, the emul ator
generates profile data tor use by the translator. The
profile data incl udes the following i n formatio n :

• Addresses that are t h e targets o f cal l instructions

• (Source address, target address) pairs tor ind irect
control transfers

• Addresses of i nstructions that make u nal igned ref
erences to memory

The translator uses this i n formation to generate
routines, that is, units of tra ns lation that approxi mate
a source code ro utine. The emu lator generates profile
data by inserting values in a hash table whenever a rel
evant i nstruction is i n terpreted . For example, as part of
inte rpreting the cal l i nstruction, the emulator makes
an entry i n a hash table that records the target of the
call . When an i mage is u nloaded (either as a result of a
ca l l on the FreeLibrary routine or when the applica
tion exits) , the ru ntime processes the hash table to
produce a p ro fi l e fi le for tbat i m age . This profi l e is
processed by the server and can result in the server
invokjng the tra nsl ator to create a new tra ns l ation of
the image .

To detect avai lable trans lated code, the emu lator
uses the same hash table that i t employs to gather the
profi l e data. The x 8 6 add resses for which there are
translated routi nes and the address of the correspo nd
ing translated code are entered i nto the hash table by
the runtime when i t loads an x86 i mage that has been
translated . When a cal l instruction is i n terpreted , the
emulator l ooks up the target add ress. I f a correspond
ing translated add ress ex ists, the emulator transfe rs
control to that address.

The Translator

The server in vokes the translator to translate x86
images tor which a profile exists in the d atabase. The
translator uses t he profile to prod uce a translated

i mage. On su bseq uent executions of the image, the
translated code is used, substantial ly speed i ng up the
application .

Structure and Order of Operations

The translator has eight major components (or phases) :
the regionizer, build , the register mangler, the comli
t ion code m angler, improve, the code sel ector, the
scheduler, and the asse mbler. (An additional phase
that performs various peephole opti mizations is dis
abled i n the DIG ITAL FX 1 32 Vl .O translator.) The
major components function as fol lows:

l . The Regionizer-The regionizer uses data i n the
profi le to divide the source image code i nto rou
tines, which are described i n the section Generation
of Profiles. Each cal l target in the profile i s used to
generate an entry to a routine . The regi onizer rep
resents rou ti nes as a col l ection of regio ns. Each
region is a range of contiguous add resses, which
contains i nstructions that can be reached from the
entry add ress of the routi ne . U n l i ke basic blocks,
regions can have multiple entry poi nts. The smal l
est col lection of regions t hat contain a l l the i nstru c
tions that can be reached from the routine entry is
used to represent the routine. Many routines have a
single regi on. This represen tation was chosen to
efficiently describe tl1e division of the source image
into units of translation.

The regionizer builds routines by fol lowi ng the
control flow of the source image. When an i n d irect
jump instruction is encou ntered whi le f()l l owing
the control fl ow, the possible targets of the i nstruc
tion are obtai ned ti·om the profil e . Without this
profil e i n formatio n, it would be very d i fficu lt to
rel iably identifY these targets, and indirect jumps
would have to be treated as returns from the ro u
tin e . The profi le i n formation makes it possible to
relia bly generate a more complete representation of
routines with correct control fl ow.

After the regionizer runs, each of the other major
components is run in sequence for each routine.

2. Bui ld-Bui ld reparscs the x86 i nstructions in the
routi n e to create an i nternal representation (l R) of
the routine tor use by the s u bsequent compon ents.
The I R is a graph of basic blocks and is similar to the
IR used by many optimizing compilers.

3 . The Register Mangl er-The i n itia l I R is a straight
fo rward representa tion of the source x86 cod e .
This representation ignores the overlap of the x86
registers; the I R treats each occ urrence of EAX,
AX , AH , and AL as a separate register. The register
mangler adds i nsert and extract operations as nec
essary to represent the actual semantics of the x86
registers.

Digital Technical joumal Vol . 9 No . .I 1 997 7

8

4. The Condition Code !Ylangler-The eftect of x86
instructions on condition codes is represented
impl icitly in the initial J R. The condition code man
gler adds instructions ro explicitly generate condi
tion codes . Since the cond ition code mangler
understands the control flow of the emire routine,
it knows when condition codes are live and only
adds code to generate condition codes when they
are used later in the routine .

5 . Improve-Improve performs severa l transforma
tions that produce code more s uited to the Alpha
architecture . In the initial IR, each push and pop
instr uction is explicitly represented as a decrement/
increment of the x86 stack pointer, accompanied by
a store/load. Improve col lects all the manipulation
of the x86 stack pointer into a single decrement at
the beginning of a basic block and a single incre
ment at the end of that block. Improve also uses
simple value numbering and analysis of memory
references to try to el iminate loads and stores to
both the x86 stack and the t-loating-point stack and
to perform constant f() lding . Although Improve
performs only relatively s imple optimizations on a
single basic block, we have fo und it to be qu ite
effective in improving the q uality of the code that is
generated .

6. The Code Selector-The code selector trans f(mm
the I R from a representation that contains mostl y
x86 instructions to one that contains only Alpha
instructions . This transformation is done instruction
by instr uction, with each x86 instruction being
replaced by a sequence of Alpha instructions that
produce the same effect. The implementation of the
code selector is based on the TWIG rode generator.'
Although the code selector is capable of dealing
with much more complicated patterns of instruc
tions, this capability is nor currently used .

7. The Scheduler-After the code selector is run , all
the instructions in the IR are Alpha instructions.
The sched uler reorders the instructions within a
basic block to minimize the cyc le co unt for the tar
get processor.

8 . The Assembler-The assembler builds the o utp ut
translated image.

Use of Profile Data

The regionizer is the only component of the current
translator that uses the control flow int(>rmation in the
protik . The regionizer uses the profile to determine
which parts of the source image arc translated . Futu re
versions of the rransbter wi l l usc the profi l e to perform
path-directed optimizations and ro place code so as to
red uce cache misses . Those changes wil l improve the
pert(mnance of translated code .

Digircll Technic.1l journal Vol . 9 No. I 1997

Rctranslation of an image is triggered by growth in
the size of the profile . Because profile data is generated
only when the emulator executes previously untrans
l ated parts of the source image, an increase in the size
of the pro fi le indicates that new parts of the program
have been executed. Retranslating with the new pro
ti le will cause these additional parts of the image to be
translated.

Alignment Issues

On an Alpha system, references to memory locations
that are not natura l ly aligned res u lt in exceptions that
arc hand led by the Windows NT kernel . Alignment
exceptions can be avoided by using unaligned code
sequences that usc the LDQ_U and STQ _U instruc
tions . Unaligned code sequences are slower than
a l igned seq uences for accessing locations that are nat
ural ly a l igned b ut much t:1ster for accessing locations
tlut are not natural ly a l igned . Native Alpha compilers
ahvays try to generate unaligned code sequences when
referencing unal igned data ro avoid the expense of
deal ing with alignment exceptions .

When generating the code for an instruction that
references memory, the code selector must determine
whether to usc an aligned sequence or an unaligned
sequence . To make the determination, the code selec
tor needs to know the aJ ignment of the address being
referenced . In general, this cannot be determined by
static analysis of the x86 code . To solve the problem,
the code selector uses information in the profi l e abour
the alignment of memory addresses . The profi le con
rains the address of every instruction that made an
unaligned reference to memory. The code selector
generates unaligned sequences for those instructions
and aligned sequences for al l other memory references.
Although this code generation process is eftcctive most
of the time, some programs exhibit different memory
rckrcncc behavior on s uccessive runs . For those pro
grams , a l ignment exceptions can sti l l occur.

Shadow Stack

Translating return instructions presented particular
problems t(Jr the translator. The translation of a cal l
instr uction saves the x86 return address on the x86
stack <l l1d then calls the translated code f(lr the routine.
After the translated cal l , the x86 return address is on
the x86 stack and the corresponding native return
;1(klress is in an Alpha register. This maintains the x86
stack in the expected x86 state . One way to translate a
retu rn instruction would be to use the x86 return
add ress to look up a corresponding Alpha add1·ess;
however, it is desirable to avoid the expense of a hash
t:-�ble lookup on every return . In the usual case , the
return address is not changed by the ro utine and the
trans lated code can pop the x86 stack and per form a
native return by using the native ret u rn address . Two

problems m ust be solved, though. First, some mecha
nism i s needed to determine i f rhe x86 return address
has been modified . Second, a location is needed to
save the native return address. Both problems are
solved by using the shadow stack.

The shadow stack resides at the top of the native
Al pha stack and is maintained by the translated code
(with help fi·om the emu lator) . A shadow stack fi·am e is
created for each call of a translated routine. When one
b·anslated routine calls another, the cal l ing routine saves
the x86 return address and the current x86 stack pointer
in its shadow stack frame. The called routine then saves
the native retu rn address i n the ca.l l ing routine's shadow
stack frame. On return, the called routine expects to
find the x86 return address and the current x86 stack
pointer in the call ing routine's shadow stack frame. In
this case, the cal led routi ne is returning to the environ
ment that the cal l ing routine expected and performs a
native return. I f the val ue of either the return add ress
or the stack pointer has changed from the val ue
expected by the calling routine, the cal led routine
retu rns to the emulator.

In a s imilar manner, the emu lator uses the infimna
tion in the shadow stack to determine when it can
retu rn to translated cod e . A num ber of conditions
can cause translated code to reenter the emu lator. For
example, the emul ator is entered if the target of a
translated ind irect jump instruction is not known at
translation time. Having the emulator return to trans
lated code on a n.:tu rn instruction minimizes the
amount of ti me that i s spent in the emul ator; however,
the emulator can only return to the translated code i fi t
knows t h a t i t h as a va lid return address. T h e shadow
stack provides a mechanism to perform that validation .

The Database

The database consists of rwo parts. As d escribed tor
the runtime, the first part of the database is a d irectory
tree th:tt cont:tins profile files, translator log fi les, and
translated i mages. The second part of the database is
kept in the registry and consists of i n formation about
x86 applications and i mages that the D I G ITAL FX!32

software has run on the syste m , together wi th config
uration information . The configuration i n formation
i nc ludes the max imum amount of d isk space that can
be used by F X ! 3 2 , the maxi m u m number of i m ages
that can be stored in the database, the default transla
tion options, the work list that the server uses to
sched ule translations, and the DatabaseDirectoryList.
The Data bascDirectoryList is a list of paths to ad d i
tional databases that arc t o b e searched tor image pro
ti les and translation results when the i mage is fi rst
exec uted . Directories on this l ist can be used to access
information about the image from other machi nes on
a network, making avai lable to a user translations per
f(xmcd on another, perhaps more powerfu l , machine.

The Server

The server is a \Vi ndows NT service that normally
starts whenever the system is rebooted. The server
automatically runs the translator when appropriate,
thus m aking the translation process completely trans
parent to the user. The server also maintains the data
base to control D I GITAL FX ! 32 resource usage .

The Manager

Usually the operation of DIG ITAL fX!32 software is
completely transparent to the user. Like any other pro
gram , though, FX 1 32 consumes system resources and a
user must be able to control that resource usage . One
ofthe roles of the manager is to provide a user interface
to the configu ration information kept in the data base.

Figure 2 shows the m anager window. The upper
pane contains i n formation about t he various appl ica
tions that have been run on the system : the total
amount of d isk space being used for profiles and trans
lations of images loaded by the applicatjon, the n u m
ber of times t h e application h as been run, t h e date
when it was l ast run, and the optimizer (translator)
status. The lower pane contains i n formation about
the i mages that have been loaded by the h ighlighted
appl ication in the upper pane: the total a mount of d isk
space used to store the profi le and translation of the
image, the n u m ber of times the image has been
loaded , the date on which it was last loaded, and the
status of the last translation of the image .

By interacting with the manager, the user can con
trol various aspects of f X ! 3 2 operation, such as the
maximum amount of disk space to use, which informa
tion to retain in the database, and when the translator
should run.

Results

The D I G ITAL f X ! 32 development team had two pri
mary goals for the sofuvare: (l) to achieve transparent
execution of 32-bit x86 applications and (2) to yield
approximately the same performance as a high-end
x86 p latform when running applications on a high
performance Alp ha system . The DIG ITAL FX1 32
product meets both goals.

Transparency is provided by the transparency agent
and a run-time environment that can load and execute
a n x 8 6 application without a translation step. App l i
cations c a n be launched a n d executed on a n Alpha
system that is running FX! 32 just as they can on a n
x86 system . W e h ave performed extensive testi ng
of more than 75 applications that run using f X ! 3 2 ,
including major commercial applications s u c h as
M icrosoft Office 9 5 , Visual Basic 4 . 0 , Photoshop 4 . 0 ,
and Corel D RAW 6.0 .

Digital Technical Journ3l Vol . 9 No. I 1997 9

FX!32 M anage1 l!lliJEJ
file �dit Y:iew .Qptions !::!elp

A lication Name

M icrosoft® S chedule+ for Windows 95[TM . .
M icrosoft® Word for Windows® 95 7 0

l�llil!miB•I
Paradox for Windows 7 00

�

awt3230.dll
jit3230 dll
jrt3230 dll
M FC40. DLL
msvcirt.dll
msvcrt. dll
msvcrt40. dll
netscape. exe
pr3230 dll
uni3200. dll

For Help, press F1

Figure 2
The D I G ITA L F X ' 3 2 J'vLmagcr

D I G ITAL F X 1 32 software also met i ts pcrtixmancc
goa l . Figure 3 shows the r e l a tive performance o n
fl }7t· JI!Jap,azine's BYTEmark bench mark o f a 2 0 0 -

mega h e r tz (M H z) P e n t i u m P ro system and a 5 0 0 -

JV! H z AJ p h a system r u n n i n g F X ! 3 2 . F o r th is
benchmark, the A l p h a system p rovides a b o u t the
same perf()rmance as the 2 00 - Jv! H z Penti u m Pro
syste m . F igure 3 a lso shows that the A l p h a native

8

6

Last Run

1 2/1 7/96 08: 42:29 AM
1 2/1 6/96 1 0:54 1 4 AM
1 2/1 6/96 03 1 7: 02 PM
1 2/1 6/96 05 35: 1 5 PM

Last R un

1 1 /1 8/96 09:31 22 AM
1 1 /1 8/96 09: 31 : 22 AM
1 2/1 6/96 03 1 7 02 PM
1 2/1 6/96 03 1 7: 01 PM
1 2/1 6/96 03 1 7 01 PM
1 2/1 6/96 03: 1 7: 02 PM
1 2/1 6/96 03 1 7 02 PM
1 2/1 6/96 03: 1 7 02 PM
1 2/1 6/96 03: 1 7 02 PM
1 2/1 6/96 03: 1 7:02 PM

S uccess
S uccess
S uccess
S 1JCcess
S uccess
S uccess
S uccess
40% [06: 1 6 remaining)
S uccess
S uccess

version of the benc h m a rk runs tw i ce as bst as the
Pent i u m Pro version.

Of course, no singlt: bench mark characterizes the
performance of a system . Even so, when running
translated x86 appl ications, we have consistently mea
su red performance on a 500-M Hz AJpha system to be
in the range between that of a 200- M H z Penti u m sys
tem and that of a 2 0 0 - M H z Penti u m Pro svste m . For

-
,-----

4 ,.----
,--

,.---- ,---
2

0
200-MHZ P ENTIUM P RO 500-MHZ ALP HA 2 1 1 64A 500-MHZ ALPHA 2 1 1 64A

KEY

D IN TEGER

D FLOATING P OINT

Figure 3

RUNNING DIGI TAL FX'32 (NATIVE ONLY)

DIG ITAL fX 1 32 Pcrti>rmancc on the BYTE Benchmark)

1 0 Digi t,ll Tcclmiol Journal Vol . '! No. 1 1 997

some applie<nions, pertormance can exceed that of <1
Pentium Pro svsrem .

The in itial version o f the DIGITAL FX132 software
has some l imitations. FX1 32 executes only application
code; it does not execute d rivers . Consequently, native
drivers arc required for any peripheral that is insta l led
on an Al pha system . A lso, as described in the
Transparency Agent section , FX! 32 does not provide
complete support tor x86 services. Further, FX1 3 2
does not support tile Windows N T Debug AP1 .
Supporting that i nterface wou ld req u i re the capabi l ity
to rematerial ize the x86 state ati:er every x86 i nstruc
tion, thus severely l imiting optimizations that the
translator cou ld pert(mn . Optimizing compi lers make
a s imi lar trade -off by restricting optimization when
debugging information is required . S ince FX! 32 does
nor support the Debug intertace, appl ications that
require it do not run under FX 1 3 2 . Those applications
arc mosrly x86 development environments, and it
probably makes more sense to run them on an x86
system . The limitations described are not serious, and
most x86 appl ications that execute on an x86 proces
sor that is running the 'vVindows NT operating system
�1 lso execute on an Alpha system run ning Windows NT
and DIGITA L F X 1 32 soti:ware.

Summary

DI GITAL FX! 32 soti:ware provides bst, transparen t
execution of 32- bir x86 appl ications on Alpha systems
running the Windows NT operating system . This i s
accompl ished usi ng a unique combination of emula
t ion and bi nary translation . The emulator runs an
appl ication, interprets the code, and generates proti l e
i n formation . For su bsequent executions, the translator
uses the proti le data to produce translated images that
conta in optimized native Alpha code. An appl ication
translated by means of D I G ITAL FX !32 software runs
up to 10 ti mes taster than the same application run
n ing under the emu lator alone. Moreover, the transla
t ion takes p lace in the background and is therdore
rr:111sparenr ro rhe user.

Acknowledgments

Bu i ld ing the D I G ITAL rX !32 prod uct requi red some
extremely ta lented people to pertc>rm a lot ofd ifticult
work. The mem bers of tbe D IGITAL FX1 32 d evelop
ment team inc lude Jim C<lm pbcl l , Anton Chernoff,
George Darcy, Tom Evans, J im Givler, Charlie
Greenm:1n, Pippa Joll ie, Mark Herdeg, Ray Hookway,
Maurice Marks, Srin iv:1san J'vlurari, Brian Nelson ,
Scott Robinson, Norm Rubin, Sherry Scskavich, Joyce
Spencer, Tony Tye, and John Yates. Many of these
individuals contribu ted the ideas descri bed in this
paper.

References

I . B . C1se , " Rehosting B i nary Code tor Software Porta
b i l ity," M icroprocessor Report (Sebastopol , Cal if. :
Micro Design Resou rces , Janu ary 1 989) .

2 . T. HaHhill, "Em u l ation : !U SC's Secret Weapon ,"

8}T/:.' Magazine (April 1 994) .

3 . R . Red i..: hek, "Some Efti..:ient Ar..:h i recture S i m u l :nion
Techniques," /!SEN/X (Winter 1 990) .

4. L. Deu tsc h a n d A. Schitlin<ln, "Efficicnr Implementa
tion of the Smal lulk-80 System,'' Record uf the
t'/euenth A nnual A CH Symposiu m on Principles uj'
Pro,15rwnming Languaiw'· (1 98 3) .

5 . R . Sites , A . Chernoff, M. Kirk, lvl . Jvbrks, a n d S . Robi n
son, " B i nary Translation," D(v,ital Tedmical journal.
vo l . 4 , no. 4 (J\!Llynard , Mass . : Digital Equ ipmen t
Corporation, 1 992) .

6. J . Richter, Aduanced \'Kiirzdows NT chap. 1 6 (Red
mond, Wash . : M icrosoft Press, 1 994) .

7 . A. Aho, M . Ganapath i , a n d S . Tj i ang , "Code Generation
Using Tree Matc h i n g and Dvna m ic Progra m m i ng,"
A CJ\11 Transactions on Procr.:ramminct.: Languages and
.5)•stems, vol . I I , no. 4 (October 1 989) .

Biographies

Raymond J. Hookway
Ray Hookway led the DTCTTA I . FX 1 32 development ream
and \vas a key conrri buror to the bi nary translation compo
nent of tbc D l GJTA I . FX 132 software prod uct . He has been
a mem bn of the AMT group ofDJClTAL Semiconductor
since 1 993 . Ray joi ned DIG ITA L in 1989 and has worked
in the CAD and AD groups of DIGITAL Semicond uctor,
where he conrri bu ted to the first Al pha PC project . Prior
ro joining DIG ITAL , he was Director of Engi neeri ng ri:>r
Endot, I nc . , where he developed one of rhe first V H D L .
s i mu lation environments . H e was also a n Assistant Professor
ar Case Western Reserve University, where he d i d research
on program veri fic<Jr ion , and he was <l Visiting Professor <lt
the University of U psal la , Sweden. Ray rece ived i'vi .S . and
P h . D . degrees i n compu ter science ti·om Case vVestern
Reserve Un iversity and a B.S . i n engineeri ng fi·om C<lSe
Institu te ofTech nologv. He has app l ied for several parents
rehned to his D I G ITAL F X ! 3 2 work.

Digital Tcchnic.d joumal Vol . 'J No. I I 'J'J7 I I

1 2

Mark A . Herdeg
Mark Herdeg has been with DIG ITAL since 1985 . He is
cu rrently a principal software engineer in the A.tv!T group
o f D I G ITAL Semiconductor. Previouslv, he worked on con
sole software tor the Nauti l u s (VAX 8500) and Argonaut
projects. The Alpha s imulator developed tor the Argonaut
project, M ANNEQUIN, became the tirst Alpha system on
which the OpenVJv!S operating system successfu l l y booted .
Mark contributed ro a rel ated project that used the Alpha
s imulator and a d u a l-architecture-aware debugger ro a l low
developmeiJt and execution of applications with a m ix of
VAX and Alpha cod e . A fou nding member ofrhc Alpha
Migration Tools group, Mark worked on its tirst prod uct,
VEST, the Open VMS V�\-to--Alpha binar·y translator. He
then helped design and develop the DIGITAL FX 1 32 soft
ware product, with particu l a r focus on the runt ime compo
nent . Cu rrently, he i s the project leader tor the next release
ofDJGJTA L fX 1 32 software. J\i!Jrk has submitted several
patent applications tor work on the rnu l tip le-architecture
execution environment and for the D I G ITAL f X 1 32 design .

Dig;iral Technical journal Vol . 9 No. l 1 99 7

Development of the
Fortran Module Wizard
with in DIGITAL Visual
Fortran

The Fortran Mod ule Wizard i s one of the tools

i n DIGITAl Visual Fortran, a DIGITAl product for

the Fortran development environ ment. Visual

Fortran consists of the DIGITAl Fortran 90 compiler

and run-time l ibraries and the Microsoft Developer

Studio. Together, these technologies provide a

rich set of tools for the Fortran developer who

is using the Windows NT and Windows 95 sys

tems. The Fortran Module Wizard generates

complete Fortran source code, a l lowing Fortran

appl ications to i nvoke routi nes i n a dynam ic l i n k

l ibrary, methods o f an Automation object, and

member functions of a Component Object

Model (COM) object.

I
Leo P. Treggiari

D I G I TAL Visual Fortran is an integrated development
environment tor Fortran applications . ' It is supported on
the Wi ndows NT version 4.0 operati ng system on both
AJpha and I nteJ hardware and on the Windows 95 sys
tem . DIGITAL Visual Fortran is a combination of tech
nologies ti·om D I G ITAL and Microsott Corporatjon .
The DIG ITAL-supplied compiler and ru n-time l ibraries
support the D I G I TA L Fortran 90 Janguagc.' D I G ITAL
Fortran 90 conforms to American National Standard
Fortran 90 (ANSI X3 . 1 98- l 992) and provides many
extensions to the Fortran 90 standard . The Microsoft
suppl ied i ntegrated development environment is the
Microsott Developer Studio, which is also used by
!Yl.icrosoft Visual C++, Microsoft VisuaJ J++ (tor Java) ,
other Microsoft tools, a n d other companies' develop
ment tooJs . DeveJoper Studio i ncludes a text editor,
resomcc editors, project build facil ities, an incremental
l inker, a source code browser, an integrated debugger,
and a profiler. The operation of all these tools is con·
trol led ftom a single application. Figure l shows an
example of Microsoft Developer Studio fi-om which two
Fortran source fi les are being edited . D I G ITAL adds a
number of Fortran-specific tools to the environment,
one of which is the Fortran Module Wizard .

Design of the Fortran Module Wizard

D I G ITAL designed the Fortran Moduk Wizard to
help Fortran developers worki ng in the application-rich
Windows environ ment. The Fortran Module Wi zard
supports access to dynamic link l ibraries (D LLs) and
servers based upon Microsoft's Component Object
Model (COM) . This support allows Fortran developers
to usc the popu lar mechanisms t hat make functional ity
(services) avai lable to other software (clients) .

Trad itionaJ ly, Microsoft and others have provided
system i nterfaces and reusable l ibraries of code as
D LLs. A D LL is a file containing functions that can be
cal led by programs and other D LLs. The role of D LLs
on a Windows system is very s imiJar to that of share
able images on the Open VMS operating system and
shared Jibraries on the UNIX system. Today, DLLs are
sti l l the primary mechanism t(Jr accessing system inter
faces on Windows .

Digital Tcclmiol JournJI Vol. 9 No. I 1 997 13

1 4

• ppnpen Mocrosoft Oev.,luper Studoo 1!1!1 £i
ll fila �dit ::iiew Insert froject auild Ioots Window tielp

�Iii � j � P :... · • · • ro lll � 'A rlp-re_s_a-:nt-:at-:io_n_s _-o_p_an--OiJ--,• +- -+ O

1 \ 1" ... r:z, IEntire C<Jnte:i] M �· * ,.. * ... -+ 0 ,' � A I
��==���d�� �======================��================�

. Workspe.ce 'ppopen'· 1 project(•:
l- @'l ppopen Iiies

:...:l Source Files

IB POWERPOINTf90
[[J ppopen 190 I

....J Hee.der Files

Resource Files

.:1 '.:...:l Externe.l Dependencoes I
[lj POWERPOINTMOD

Figure 1

stotus • $App l l co t l o n_GetAppW l ndow (ppApp l l COt l o n . ppAppW1 ndow)
status • $App l i co t i o nW i n dow_SetVi s i b l e (ppAppWi ndow. I)

I 1p�n t b� p �c t f t �rl pr� � r lOh
status • $App l l cot i on_Ge tPresento t l on s (p pApp l l co t i on . ppPres en t a t i ons)
vTrue%VT • VT_BOOL
vTru e%VU%BOOL_VAL • VARI ANT_BOO L_TRUE
vfo l se%VT • VT_BOOL
vfa l se%VU%800L_VAL • VAR IANT_BOOL_FALSE
stotus • $Presen tat1 ons_Open (ppPresento t 1 ons , f i l ename , vTru e , vfa l s e . &

vfa l se . ppPres entat 1 o n)

1 Run t he s l l t l� sho J
status • $Presen t a t l on_GetS l i deShow (p pPresen t o t i o n . p pS l i d eShow)

$S l i deShow_Ru n (ppS! i deShow . I . ppRu n)

ItrrERFArE
IlTTEGER • 4 fUNC'TE•N

USE DFCOMTY
INTEGER• .; . ItTTDlT (I N)
I I>E•-'S A TI P. ! BIJIT: JALUE
ItiTWER• 1 . HTTE�TT (I N)

. . SOBJECT
s Of! 'E• 'T

. . f i l eName
I I>E·:-; ATIP!o:llirE.; J;..LUE t , ,..tf ,,..

B'IP

TYPE (VARIANT) . HITEtTT (IN) : : RaodOn l y I
I f•E '< ATrP.l Sl TTC VALUE Ht"orli"•ro l '

TYPE (VARIANT) , ItTTEtiT (I N) : : Unt 1 t l ed
I [IE :c_ .�TIP. I SlifE.: V . . LIJE IJ" t l t lo;d

riPE (VARI ANT) . I lTTEtiT (I N) : : Wi thW1 ndow
I I• E :;;, ,,,TI.Pl BIIT!:. · �.Ll E ,;1 t I l li<l ,.,
l tTTE1;EP.• 4 . HTTDIT (O Uf) . . l)pr;on I l l 1 p o t o h
I [oE•'S ATIP I BlJIT . . P.EfEREil•"E 'I""'

Ln

(Hp lOt•-' :. A r

Microsoft Developer Studio, Two Fortran Source Fi les Being Edited

J

When Mi crosoft introduced 0 LE version l , the
name OLE was an acronym for object l inking and
embedding. O LE version l enabled compound docu
ments by allowing a document to l ink to, or em bed
data from, another docu ment. In 1 993, Microsoft
introduced COM as the base architecture of OLE
version 2 .3 COM is an extensible architecture that pro
vides mechanisms for creating and using sofuvare com
ponents . A software component consists of reusable
pieces of code and data in bi nary form that can be
pl ugged into other software compo nents from other
vendors with relatively l i ttle effort.' Like DLLs, COM
al lows a software developer to provide a set of services
to m u l tiple cl ients. In addition, COM has the advan
tage of allowing the services to reside i n a nother
process and on another machine. (Distributed COM
[DCOM] allows objects ro be created and used on
remote machi nes.) COM also contains features that aid
in the deployment and evolution of the services.'
M icrosoft has extended i ts languages and tools to aid
software developers in the creation of cl ients and
servers based upon COM (hereafter referred to as
clients and servers in this paper).

Why does a Fortran developer need help accessing
services i n DLL.s and servers? Cal l ing code that is writ
ten in a nother programming language is, in genera l ,
d ifficult . There are complex issues around cal l i ng stan
d ards and data type representations. I f a m istake is
made i n manual ly translating a fu nction signature
from one language into another, today's program
ming environments arc of l i ttle hel p . The appl icatio n
c a n fai l a t a p o i n t i n the cod e, for example i n the rou
tine prolog, vvhich does little ro suggest the cause of
the proble m . O ften, solving these probl ems requires
understanding the i ntricacies of cal l i ng standards and
single stepping through assem bly code . Cal l ing the
components in a server also req uires understanding
and properly using a n um ber of CO M progra mming
interfaces.

Digital Technical Journal Vol . 9 No. l 1997

The Fortran Module Wizard deals with the difficul
ties. It reads a description of a service, which the ser
vice p rovider created , and ge nerates Fortran source
cod e . This automatical ly generated code makes ca l l ing
these services as easy as cal l ing another Fortran func
tion or subroutjne.

Enabl ing Technologies

Componmts of COM, Fortran 90, and the Microsoft
Developer Studio enable the fu nctionality ofrhc Fortran
Mod u l c \Vizard . This section gives an o\·crvicw of these
technologies.

COM Technologies

As mentioned earl ier, COM provides mcch<misms tor
creating reusable software components . This paper
:mcmpts ro explain only t hose parts of COM, �md some
tech nologies based on COM, necessary for the reader
to u nderstand the use of server fu nctionality ti·om
code generated by the Fortran Mod u le Wizard . CO M ,

O LE, and ActiveX, o f cou rse, contain many more
mechanisms." A n u m ber of the references l i sted ar the
end of this paper are good sou rces of h.mhcr read
ing.' ' M uch of the description ofCOJv\ i n the f(> l low
ing section is taken ti·om the Compon e nt O bject
Model Specification ."

COM Objects COM is an object- based programming
model designed to promote software intcroperabi l ity.
I n other words, COM al lows two or more applications
or components to c:asily cooperate with one another,
even if thcy were written by difftrent vmdors at d i fter
cnt rimes, i n d i ffere nt programming languages, or i f
rhcy arc running o n d i fferent machines runni ng d i ffer
em operating systems. COM defines a completely stan
thrdi zcd mechanism tor creating objects a n d t(x clients
:md objects to communicate. Unlike traditional object
oriented programming environments, these mecha
nisms arc independent of the appl icatjons rhar usc object
services and of the programming langu ages used to
create rhc objects. COM therefore defi nes a bi nary
intcropcrabi l i ry standard rather than a langu:�gc - bascd
intcropcrabi l i ty standard on any given operati ng sys
tem and hardware platform .

To support i ts interoperabil ity features, COM defi nes
and im plements mechanisms that allow components to
connect to each other as objects. The defi nition of :1 n
object i s a piece o f software that contains the funcrjons
thJt n:presenr what the object can do (its intel l igence)
and associated state intormarion t(x rhosc fu nctions
(d:�ta) . In other words, an objt:ct is some data structure
and some fu nctions to manipulate rhat data. In this
paper, wt: usc the term object ro mean an object
i nstance, as opposed to an object class. An objcn c l ass is
similar to a derived-type in Fortran 90 or a structure i n
C. I t specifics a bl ueprint for object instances that a
server will create upon a cl ient's request. An important
pri nciple of object-oriented programming is encapsu la
tjon, in which the exact implementation of rhose fu nc
tions and the exact tormat and l ayout of the data is only
of concern to rhc object i tse l f This inf<:m11arion is hid
den ti·om the clients of an object and can rhc:rdore be
c hanged \\'ithout affecti ng the client.

vVirh C O M , components i nteract with each other
and with the system through col lections of fu nction
calls, a lso known as methods or member fu nctions or
requests, cJIIed i n tcrtaccs. An interface is a semanti
cal ly related set of member fi.mcrions. The i nterface as
a whole represents J feature of an object. The member
fu nctions of an i n terface represen t the operations that
make up the feature.

For a quick look at a s imple example of a CO M
object, i magine a Calcubtor object that is wil l i ng to
provid e arithmetic services to any cl ient . It cou l d sup
port an i nterface named ! Calcu late . B y convention,
the letter I a lways prdixcs the name of an i nterface .
The I Calcu lare interface cou ld contain member func
t ions named Ad d , Su btran, M u ltiply, Divide, ere . J f a
c l ient wanted to usc t h e sen·ices o f the Calculator
object, ir would rt:qucst COM to create an object of
class Calcu lator and request the I Calculate in terrace . I t
could then cal l the member fu nctions o f the ! Ca l cu l ate
inter bces (Ad d , Su btract, etc .) .

With COM, :1 poi nter to a n object i s actual ly :1

poi n ter to a particular i n terface that the object sup
ports. Al l COM objects support the interface named
I u n known, which contains the member fu nctions
named Add Rd� Release, and Queryl ntertace. All COM

objects must implement these member fu nctions.
Add Ref and Release i mplement object rekrence
counting. Cl ients usc them to tell an object \\'hen they
are using it and when thcv are don e . O bjects del ete
themselves when thcv arc no longer being used by any
c l ient . Queryl n rertacc is the basis tor a process cal led
i nterrace negoti:nion, whereby a c l ient asks an object
what services it is t:apa blc of provid i n g . For exam pk,
if a c l ient had a pointer to the Calcu lator object's
! U n known i nterrace, i r cou l d get a pointer ro i ts
!Calcu late i nterface by cal l ing the ! U n known Query
I nterface member function. In general , an object can
support m u l tiple i nterbces and a client can use Query
I nterrace to get a poin ter to any of the m . Exam ples in
which Fortran cod e calls member functions in i nter
faces arc given i n the section Fortran Module vVi zard
Functionality. Microsoti: defi nes a n u m ber of uscfi.d
i nterfaces. Object c lass creators are free to use existing
i nter£1ces and define thei r O\\'ll .

Automation Objects One Microsoti:-detlncd i nterrace,
! D i spatch, is the basis tor Auro mation . Y Any object
that supports this i n terrace, also known as a d ispi nter
face, is an A u tomation object, and can be accessed by
a ny Au tomation cl ient . An Automation object exposes
methods and properties. M ethods are fu nctions that
perform an action on an object and are simi lar to the
mem ber fu n ctions of COM objects. Properties hold
information a bout the state of an object. A property
can be represented by a pair of methods; one for get
tin g the propcrrv's c u rrent va lue , and one tor setti ng
rhe property's ,·al u e .

D igital Tec h n ical)ournJI Vol . 9 No. I 1 997 1 s

1 6

The capabi l ities o f a n Auto mation object an: s imi lar
to those ot· :1 C01VI object. An Au tomation object is, i n
fact, a C O M object; t h a t i s , i t supports the J U n known
i n tert:Kc as well as the ! Dispatch intcrtace . However,
the mec i1Jnisms for usi ng the services of the two Jre
\'cry d i fkrent. Microsoft d esigned Automation based
on the needs of scripting or m:�cro l:�ngu :�ges (i . e . ,
Visual Basi c) . I t does not requi re underst:� ndi ng the
intricacies of ca l l ing conventions as docs COM . It su p
pons mechanisms more su itab le to the dynamic qucrv
i ng of :�n object's c1p �1 bi l it ies . This 111�1 kes A u tomation
more su ited to l ate binding of objects, th:�t is, i nvoking
methods of a previously u n known object �It run t ime.

An Au rom �nion c l ient accesses :� I I the methods and
proper ties of an Auto m ation object through J sing le
member fi.J nction of the ! Dispatch i n ted�Ke n�1med
I nvoke . The c l iem passes Invoke a n u m ber of argu
ments th:�t identiK'

• The method , its arguments, and a f� L1ce to rece ive
the retu rn val ue, or

• The property :md i ts new val ue, or

• The property and a p lace ro rccei\·e i ts cu rren t value

Tn bet, I nvoke could be described as the Swiss army
knik ofAu tomation progr3m m ing .

Most of the d i fkrences between Au tomation objects
and C O M objects are hidden bv the Fortran i n terfaces
tlut the Wizard generates.

Object Identification To enable the usc of COM objects
created by disparate groups of deve l ope rs, there must
be a method of u n iqu e l y identit),ing :1n object cl ass
regard l ess of i rs origin . COM uses globa l l y u n i q u e
identi fiers (GUTDs) r o do th is . A G U I D is a 1 6- byte
in teger value that is guaranteed Uor a l l practica l pur
poses) to be u n ique across space and rime. COM uses
GUIDs ro identit}' object c lasses, i nt ertaces, :tnd other
th i ngs that req ui re u nique identification . COM p ro
vides a rou tine named CoCreateGU I D, and M icrosoft
provides a u til ity named G U I D G EN , that a deve l oper
uses to generate a G U I D . Assigning 3 G U I D to an
objecr c lass or i nterface is the job of the c reator of t he
c lass or i nterface. To create 3n instance of an object,
the deve l oper needs to te l l COM the G U J D of the
object . Using 1 6- bytc integers fc>r identification is fi ne
for computers, bur it poses a cha l l enge fix t he typica l
deve loper. COM su pports the usc of a Jess precise , tex
tua l n a m e ca l led a progra m matic i denri tier (ProglD) .
A Prog! D rakes the torm :

a p p l i c a t i o n_n a m e . o b j e c t_n a m e . o b j e c t_v e r s i o n

For examp le , the name of the B3sic object of the
Microsoft Word appl ication is Word . B :1sic. l . S imilarlv,
i nterfaces are usua l l v d isc ussed usi ng rbeir I xxx name
(for e xam p le , ! U nknown) , b u t thei r G U I D u n iq uc lv
idenrities them. Prog! Ds :�rc not supp l ied for :� I I objects.

Vol. <J No. I ! 9<J7

They are norma l ly suppl ied onl y for Appl i cation
objects. An App l ication object is a top- level object that
becomes acrive when the app l ication starts. It provides
a starti ng poi nt f()r c lients to 3ccess a l l of an a ppl ica
rion 's su bord ina tc objects.

Type Information Type i n f(>rmation contains descrip
tions ofobjcct c l:1sses , i nrertaces, D LLs, cbta srn1ctu res,
a nd so fc>rth that :1re i ndepend en t of any p rogr:t m
m i ng language . A deve loper accesses type in tornution
th rough an i nrcrhce na med I Type l n fo . ' A c l ient can
get a pointer ro type in tcmnation fi·om

• A running Automation object

• A ru nn i ng COM object that su pports the
I ProvideCiass l n to intcrhcc

• A type l i br;try

A type l i br.1ry is a collection oftype i n f(xmarion f(>r
any n u m ber of object c lasses, interhccs, e re . A deve l
oper can sron: a type l i brary i n a separate ri le (usi ng <1
.TLB ex tension by convention) , or as part of ;morhcr
fi l e . For ex;tmp l e , the type l i brarv that describes rhe
type i n f(mll<Hion f(>r J D LL c:m be stored i n the . D LL
fi l e itse l f. Since the type i n fcm11ation is stored in :1 fi le, i t
i s avai lable reg<lrd lcss ohvhether or not rhe cl ient has a
pointer to the objecr(s) that the i n fcmnation describes.

The easiest w;ty to create a type l i brary is to write ;t

script in the M icrosoft l nrert:Kc Defi.nirion L111guagc
(J l) L) . The Microsoft IDL compi l er (MIDL) reads an
l D L script and creates a .TLB ti le . 1 0 An IDL script is simi lar
to a C++ header ti le with add itioml syntax for informa
tion requ i red by COM . An examp le of such in formation
is whether an argu ment to a member fi.tnction is an input,
an output, or an i nput/output argument.

To use the Fortran Module Wizard , rhe d eve loper
m ust know where to fi.nd type i n formation f(x the fi.mc
tiona l ity to be used . Some examples of rhis .:�re given in
the section Fortran Module Wizard Functional ity.

Fortran 90
This section describes featu res of the DIGITAL Fortran
90 langu<lge that rhc Fortran Mod u le 'Wi zard uses i n
t h e code rhat i r generates.

Modules FortrJn 90 docs not su pport obj ects , but it
does provide a new fc>rm of program unit cal led a
mod u le . A rortran m od u l e is a set of dec larations rh�1t
arc grouped together u nd e r a g loba l n a me and are
made avai bble to other program units by means of the
Fortran USE statement . These mod u les h<lVe simi lari
ties t o C i ncl ude ti les b u t are more powerfu l .

The Fortran Mod u l e Wi zard generates a source tile
conr�1 in ing one or more Fortran modu les and p l aces
the f(> l l owi ng types o f i n fc>rmarion in the mod uJcs :

• Derive d - type d efi n i tions-Fortran eq uiva lents of
datJ structu res that <lre found in rbe type infcm11ation .

• Procedure i n terrace ddinitions-Fortran interface
blocks that describe the proced ures tou n d i n the
type i n formation .

• Procedure ddiniti ons-Fortran fu nctions and sub
routi nes that are wrappers t()r the procedures tound
in the type i nformation . The wrappers make the
external proced ures easier to cal l from Fortran by
handl in g data conversion and low-level i nvocation
details.

The use of modu les al lows the Fortran Mod ulc Wizard
to encapsu l ate the data structures and procedu res
exposed by an object or DLL in a si ngle pl ace . T hese
defi nitions can be shared in multiple Fortran programs.

Attributes The DIG ITA L Fortran 90 language sup
ports a n u mber of cal l i n g convention attri bu tes that
a l low Fortran programs to cal l programs written in
ot her programming l a nguages. Some attri butes select
the call i n g conven tion (STDCALL, C, VARYING) .

Others dete rmine whether a n argu m e nt i s passed by
value or by rckrcncc (VALUE, REfERE lCE). Another
attribute defi nes the external name of the procedure
(ALIAS) .

Pointer To Proced ure The add ress of a COM mem ber
fu n ction is never known at program l i n k time . The
developer must get a poin ter to an object's i n terface at
run time, and the address of a particular member fu nc
tion is computed ti·om that. We have ex tended the
DIGITAL Fortran 90 l a ngu age to support a Poin ter
To procedure .

Microsoft Developer Studio

Microsoft Developer Studio provides a n u mber of
methods that allow software devel opers to extend its
environ ment." This section describes these methods.

Tools Menu Devel oper Studio contains a Customize
di a log box through which the developer can add uti l i
ties t o t h e Tools menu and t h e n run those ut i l i ties
ti-om within Developer Stu dio.

Gallery The Developer Studio Gal lery provides a
ce ntral repository tor al l reusable parts of projects. The
re usable parts can range ti-om something as simple as a
bitmap to something as complex as a DLL.

Developer Studio Object Model Developer Studio
provides a set of COM objects that give developers
progra m matic control of its fu nctional ity. Users can
create commands that perform specitlc tasks and add
them to a tool bar. The Developer Studio Object
Model is programmed in three ways: (1) by creating
macros in the Visual Basi c Scri pting Edition Language

(V BScript) ; (2) by creati n g a Developer Studio D LL
Ad d - i n , which is a server i m plemented as a D LL; and
(3) by creating a separate Automa tion c l ient that con
nects to the Devel oper Studio objects.

Wizards A wi zard is code that creates t he starter
ti les for a new app l i cati on or adds a feature to an
existi ng appl ication . Wizards that add fe atures arc
stored in the Developer Studio Gall e ry. Wi zards that
create starter ti le s tor a new appl ication are ca l led
A ppWi zards. W h e n the devel oper requests the cre
ation of a new project, Deve l oper Studio presents a
l ist of t h e types of project that can be created (for
example , a console appl ication or a D LL) . In addi
tion , i t l i sts the i n s tal l ed App'vVi zards that can gen
erate compl ete applications . Often they contain
options that <l i i O\\' the developer to choose the fea
tu res of a generated appl ication .

Microsoft Visual C++ provides a n u m ber of
AppWizards; most of them can create typical C++
appl.icati ons. In add i tio n , to aid developers in extend
ing Developer Studio, one AppWizard creates the
starter ti les tor a mstom AppWi zard , and another
creates the starter ti les for a DLL Add- i n . The Fortran
Mod u le Wizard is currently i m plemented as an appl i
ca tion that runs from the Developer Studio Tools
men u . In the ti.1 tu re, it may be a Devel oper Studio
AppWizard .

Fortran Module Wizard Functionality

Th is section describes the user inte rrace of the Forrr:m
Module Wizard and presents some samples of the code
generated by the Wi zard . It a lso shows exa mples of
ca l l ing the generated code ti-om Fortra n .

User Interface

Upon opening the Fortran Module Wi zard fi·om the
Tools me n u , the user i s presented with a series of
dia log boxes. From these, the user selects the type
information for the fi.1 11ctional i ry needed .

Figure 2 shows the tlrst d ialog box . lt requests the
user to choose the sou rce of the type i n tcmnation that
describts the req uired fu nction a l ity. The developer
m u st consult the documen tation to determine what
type of object (or DLL) the ti.mction a l i ty is imple
mented as, and where to fi nd i ts associated type i n ror
mation . The c hoices are the tdl owi ng:

• AutOmation object

• Type li brary contain ing automation i n formation

• Type l ibrary contain ing COM intcrt;Ke i n formation

• Type l i brary contai n ing DLL i n formation

• D LL containing type i nformation

Digit:ll Tec hnical Journal Vol . 9 No. 1 l997 l 7

1 8

ti. Fortmn Mo dule Wizard £I

Select source of OLE type information -----------,

r Automation Object

r Type Library containing Automation information

r Type Library containing COM interface information

r DLL containing type information

L__ ____ ��------

P" Generate procedures to convert between Fortran end C strings

.Module Name:

Next

Figure 2
�ortran Mod ule Wizard Dialog Box

Automation Object Microsoft recom mends that servers
provide a type l i brary. Some applications, tor example
Microsoft Word version 7 .0, d o not, but they do
provide type information dynamically when running.
When this option is selected, Developer Studio d is
plays the dia log box shown in Figure 3. The user then
enters the name of the application , the name of the
object, and optional ly the version num ber. Note that
this method works only tor objects that provide a
Prog l D . Prog!Ds are entered into the system registry
and identi f)1, among other th ings, the executable pro
gram that is the object's server.

Alter the user enters the i n formation and presses the
"Ge nerate button , " the Fortran Mod ule Wizard asks
COM to create an i nstance of the object identified by
the Progl D that the Wizard constructs ti·om the user
supplied information . COM starts the object's serve r if
it needs to do so . The Wizard then asks the object t(x
its type information and ge nerates a ti le cont:.1ining
Fortran modu les.

Other Options If the user c hooses one of the remain
ing options, thJt is, any of the type l ibraries or the DLL
(see Figu re 2) , Developer Studio d isp lays the dialog
box shown in Figure 4 . From this dialog box, th e user
chooses the type library (or fi le contai ning the type
li brary) and, optionally, the specific com ponents of the
type l i brary.

Digiral Tcdmic1l Jou rn<ll Vol. 9 No. I 1 997

Exit

At the top of the d i a l og box, a "combo box" l i sts all
the type l ibraries that have been registered with the
syste m. Their ti le names have a number of different tile
extensions, tor example, . OLB (object l i braries) and
.OCX (ActiveX controls) . The user either selects a type
l i brary hom the l ist or presses the " Browse button " to
ri nd the tile using the standard " Open d ia log box . "
After selecting a type l ibr<\ry, the user presses the
"Show button" to l ist the interlaces described in the
type l ibrary. Dy default, the Foru·an Module Wizard
uses a l l the interfaces; however, the developer can select
the ones desired ti·om the Jist.

After the user enters t he i n formation and presses the
" Generate bu tton," the Fortran Module \Vi zard asks
COlvl to ope n the type l i brary and generates a ti le con
taining Fortran modu les.

Generated Code

The Fortran Mod ule Wizard generates difterent code,
depending upon the type of object or D LL desoi bed by
the type information. Note that the generated code is a
static representation of an object's type i n formation. If
the type intonnation should change i n a future release
of the object, the Wizard wou ld need tO be run agai n .

Fortran Run-time Su pport DIG ITAL Visual Fortran
provides a set of run -time routines that present to the
Fortran programmer a higher- level abstraction of the

Application Object £I

Application Name:

Object Name:

Object Version:

Generate Cancel

Figure 3
Mi crosoft Dcn:loper S w d i o Dialog Box for ApplicJtion Object Selecti on

Figure 4

Type Information File Name --·-----

IC \MSOFFICE\POWERPf\JT\p owerpnUib (PowerPo mt 7 .0 Obje 3

r lnterface(s)

Appl ication
Applicat1 onWi ndow
Bitmap
B itmap Button
Bui ldEffects
Bul l etFormat
CharFormat
CheckBox

Genero.te Cancel

M icrosoft Den: Ioper Studio Dia log Box for Tvpc Li bran· Selection

Digiral T..:dm icJI)ound

Browse .. .

Select All

Vol . 9 No. l l 997 1 9

20

! Dispatch member ti.mctjons and other COM hHlCtions .
The routines arc used in the code that the Wizard gen
erates. They allow the programmer to perform the fol
lowing tasks:

• I nit ial ize the COM l ibrary.
- COM Initial ize i nitial izes the COJ\i! l i brary.
- COM Unin i tia l ize uniniti al izcs the COM l ibrarv.

• Get :m interface pointer of an object.
- COJv!CreatcObjccr passes a progr<ltnmatic idcnti

tier or c lass identifier , and it creates an instance of
a n object and returns a pointer to one of the object's
in terraces.

- COMGetActiveObject passes a programmatic
ident i fier or cl ass identifier, and it returns a
pointer to an i nterface of a cu rrently active object.

- COMGctFi lcObjcct passes a tile n:u11e, and i t
returns a pointer to the !Dispatch interface o f an
Automation object that can manipu late the ti l e .

- COMC:LS IDFromPROClD passes a program-
matic id entifier, and it returns the corresponding
c l ass identifier.

- COMCLS I D homString passes a c lass identi fier
stri ng, and it returns the correspondi ng class
i dm tificr.

• Get or set the \'a]ue of a property oLm Automation
object.
- A UTOSetProperty passes the name or idcnri tier

of the property and a va lue, and it sets the val ue of
the Automation object's property.

- AUTOGetProperty passes the name or identifier
of the property, and it gets tbc va lue of the
Au tomation object's property.

• I m·oke a method of an Automation object.
- A UTOAIIocate invokeArgs a l l ocates an argument

l i st data structure that holds the arguments that
the user wi l l pass to A UTO I nvoke.

- A U TOAddArg passes an argumen t name and
val ue , and it adds the argu ment to the argument
l ist data structure .

- AUTOlnvoke passes the name or identifier o hm
object's method and an argu ment Jist data struc
ture, and it i nvokes the method wi th the passed
argu ments.

- A UTODeallocatdnvokcArgs dcal locates an argu
ment Jist data structure .

- AUTOGetException fnfo retrieves the exception
information when a method bas retu rned an
exception status.

• PerfOrm IUnknown interface member fu nctions.
- COMAddObjectReterence adds a reference to an

object's i nterface.
- COMRclcaseObjeet indic1tes that the program is

done with a reference to an object's interrace.
- COM Query Interface passes an intcrtace idcnritier,

and it returns a pointer to an object's imcrbce.

Digital Tcchn iL�I jound Vol . 9 :-.Jo. l 1 997

DIGITAL Visual Fortran provides th ree Fortran
modu les that define basic COM information :

• DFCO MTY defines basic COM types.

• l)j-:COM ddines the i n terfaces to the DIG ITAL
Visual Fortran COM routines and to some COM
system rounncs.

• DFAUTO defi nes the i nterfaces to the DIG ITAL
Visual Fortran Automation routines.

Automation Objects Figure 5 contains code gener
ated by the Fortran Module Wizard for the Word . Basic
object of M icrosott Word version 7.0 . \Vord . Basic is an
Automation object with al most l ,000 methods. These
methods rep resent the fu nctional ity of the Word Basic
l anguage, which is the programming interface to
Microsoft Word . The Microsott Word , Word Basic
documentation contains i ntonnation on the methods
and their argu ments . ' 2 We d iscuss some of the meth
ods here i n a s imple example of Fortran code automat
ing Word B asic to pert(xm the task of replacing all the
occu rrences of a word in a document with another
word.. The Word .Basic methods of interest for this
example arc the fol l owing:

• AppShow m akes the M ierosott Word appl ication
visible.

• FileOpcn opens a document.

• Ed itRcp l ace rep laces a string with another string.

• Fi leSaveAs saves a document.

Figure 5 contains code from the Fortran subroutine
generated for rhc V/ord B asic File Open method . I r
is representative of the code generated for a l l
Au tomation method s. The l ines arc annotated on the
left s ide with num bers that arc not part of the source
code but correspond to the list below. Note that the
na ming convemion used tor the generated wrappers is
objectuame_methodname. Any periods in the name
arc replaced by underscores .

1 . If the type int(Jrmation provides a comment that
describes the method, the comment I S placed
bd(Jre the beginning of the proced ure .

2 . The first argu ment to the proced ure IS always
$OBJECT . I r is a pointer to an Automation object's
!Dispatch inrnrace . The last argu ment to the proce
dure is always $STATUS. This optional argument can
be specified i f the Fortran programmer wishes to
examine the return status of the method . The
! Dispatch Invoke member nmction returns a status of
type HRES ULT, which is a 32- bit value . HRESULT
bas the same structme as a vVi n32 error code. In
between the $0BJ ECT and $STATUS arguments
arc the method arguments' names determi ned from
the type in t(mnation. When the type information
docs not provide a name tor an argument, the
Fortran Module \Vizard creates a $AR.Gn name.

1 - ! O p e n s a n e x i s t i n g d o c u m e n t o r t e m p l a t e
2 - S U B R O U T I N E W o r d _ B a s i c _ F i L e 0 p e n ($ 0 B J E C T , N a m e , C o n f i r m C o n v e r s i o n s ,

R e a d O n l y , L i n k T o S o u r c e , A d d T o M r u , P a s s w o r d D o c , P a s s w o r d D o t ,
R e v e r t , W r i t e P a s s w o r d D o c , W r i t e P a s s w o r d D o t , C o n n e c t i o n ,
S Q L S t a t e m e n t , S Q L S t a t e m e n t 1 , $ S T A T U S)

! D E C $ A T T R I B U T E S D L L E X P O R T W o r d _ B a s i c _ F i l e O p e n
I M P L I C I T N O N E
I N T E G E R * 4 , I N T E N T (I N) $ O B J E C T O b j e c t P o i n t e r

3 - 1 D E C $ A T T R I B U T E S V A L U E $ O B J E C T
4 - C H A R A C T E R * (*) , I N T E N T (I N) , O P T I O N A L : : N a m e B S T R

1 D E C $ A T T R I B U T E S R E F E R E N C E : : N a m e

I N T E G E R * 4 , I N T E N T (O U T) , O P T I O N A L : : $ S T A T U S M e t h o d s t a t u s
! D E C $ A T T R I B U T E S R E F E R E N C E : : $ S T A T U S
I N T E G E R * 4 $ $ S T A T U S
I N T E G E R * 4 i n v o k e a r g s

5 - i n v o k e a r g s = A U T O A L L O C A T E I N V O K E A R G S ()
6 - I F (P R E S E N T (N a m e)) C A L L A U T O A D D A R G (i n v o k e a r g s , ' N a m e ' , N a m e ,

. F A L S E . , V T _ B S T R)

7 - $ $ S T A T U S = A U T O I N V O K E ($ 0 B J E C T , ' F i l e O p e n ' , i n v o k e a r g s)
8 - I F (P R E S E N T ($ S T A T U S)) $ S T A T U S = $ $ S T A T U S
9 - C A L L A U T O D E A L L O C A T E I N V O K E A R G S (i n v o k e a r g s)

E N D S U B R O U T I N E W o r d _ B a s i c _ F i L e O p e n

Figure 5
Rcpresentatin: Code Ccneratcd fi:1r Au tomat ion (v1cthoch

3. This is an ex:�mp le of an attri bute st;ltement used to
specify the c1l l i ng convention oLm ::�rgument .

4. Methods can t::�ke optional arguments that must t() l
low a l l the req u i red argu ments. I n th is method ,
there :tiT no requ i red :�rgu mcnt s . The Fortran
Mod u l e \Vi z•1rd generates sou rce l ines tor each
argu ment us ing the data t\'pc and ca l l ing com·e n
tions tcJund in the rvpe inti:mnation .

5 . AUTOAI Iocatc lnvokeArgs a l loc::ttes a data structure
that is used to co l lect the argu ments that the pro
grammer passes to the method . AUTOAddA.rg ::tdds
an argu ment to this data structu re .

6 . For e:1ch optional argumem, the Fortcm PRESENT
functjon is used to determine i f the c11 ler su ppl ied
the argu ment . I f so, the argu ment is add ed to the
argument l ist .

7 . ACTOJn, oke invokes the nJmed method passi ng
the argu ment l ist . This returns :1 status resu l t.

R . If the ca l ler su pplied a status ;ugument, the code
copies the status resu l t to it .

9 . A UTODeall ocJtc l nvokeArgs dea l locates the mem
orv used b v the argument l ist d :ttJ stmcture.

F igure 6 sho\\'s code ti·om a user-\\'ritten Fortran
program that i nn)kes Microsoft Word to rep lace a l l
the occurrences of a \\'Ord in a document with another
\\'Ord . The cx:1 mple code is annoLlted \\' ith n u mbers
th::tt correspond to the fol lowing l ist .

l . COMC:reateObject requests C :OM to crclte an
object \\'ith the Pro g f D Word . lhsic . A pointer
to the Wor d . Basic object's I Dispatch imerbce is
returned i n "wordapp." The I Dispatch i ntcrbce
is retu rned with a rckrence cou m of l .

2 . The code checks to ensu re that ;1 11 ! Dispatch poimer
\\'JS returned . If not, i t d ispLl\'s �111 error message and
ex i ts . The programmer c111 ex �1mine the status \'�lr i
able t()l· the specific starus return code .

3. The code Cl l ls vVord . Basic methods to sho\\' the
M icrosoft \Vord window, open the docu ment,
replace the string, ;md Scl\ e the mod i fied documcm.

4. CO!'vl lZe lcaseO bject re l eJses the single rctcrence to
the object's ! Disp::�tch interbce so that M icrosoft
Word c:1n terminate.

COM Objects The Microsoft 1\)\\ erPoint 'crsion 7.0
tvpe l ibrarv contains :1 description of:� number ofCOiVI
objects and i nterr�Kes th;lt make up the programm�1h lc
i n terface to the Microsoft PowerPoint appl icnion .
Figures 7 �1 11d 8 cont:� in code gener,lted bv the fortr;m
Mod u le Wizard fi·om the Microsoft PowerPoim \'ersion
7 .0 ()'PC l i brJrv. Un l ike Microsoft Word , \\·hich prm·ides
a single object that presents ;ti l ofWord 's programmable
fu nctiona l itl', Pcl\\'Cl'Point prm·ides �1 h ienrch\· of
objects. The top-b·el object, Application, is identi fied lw
the Progl D PowerPoint.Application.7. The Appl ication
object contains member functions thJt return a pointer
to su bord inJte obj ects, inc lud ing the Presentations

\'ol. 9 :\o I 1 99 7 2 1

22

F igure 6

C r e a t e a W o r d o b j e c t a n d m a k e i t v i s i b l e
1 - C A L L C O M C R E A T E O B J E C T (" W o r d . B a s i c , " w o r d a p p , s t a t u s)
2 - I F (w o r d a p p = = 0) T H E N

W R I T E (* ,
' (" U n a b l e t o c r e a t e M i c r o s o f t W o r d o b j e c t ; A b o r t i n g ") ')

C A L L E X I T (- 1)
E N D I F

3 - C A L L W o r d_B a s i c _ A p p S h o w (w o r d a p p , $ S T A T U S = s t a t u s)

! O p e n t h e d o c u m e n t
C A L L W o r d_ B a s i c _ F i l e O p e n (w o r d a p p , f i l e n a m e , $ S T A T U S = s t a t u s)

! R e p l a c e a l l o c c u r r e n c e s o f t h e s t r i n g
C A L L W o r d _ B a s i c _ E d i t R e p l a c e (w o r d a p p , f i n d s t r i n g , r e p l a c e s t r i n g ,

R e p l a c e A l l = . T R U E . , $ S T A T U S = s t a t u s)

! S a v e t h e f i l e
C A L L W o r d_ B a s i c _ F i l e S a v e A s (w o r d a p p , f i l e n a m e , $ S T A T U S = s t a t u s)

! R e l e a s e t h e W o r d . B a s i c o b j e c t s i n c e w e a r e d o n e
4 - s t a t u s = C O M R E L E A S E O B J E C T (w o r d a p p)

Code from a User-written Forrran Progt';\111 Th;lt ln,·okcs Microsofr Word

ob ject. The Presentations object consists of a co l lection
of Presentation objects. A Present:�tion contains a mem
ber function that returns a pointer to i ts Sl idcShow
object, and so on. Bv navig;Hing this hicrardw, thc devel
oper em select a pointer to a particu lar object's interbn: .
A code ex<lmple in which \\'e usc some of the Po\\'erPoint
objects ;md interfaces ro run a s l ide prcscnt:�tion fi·om
Po\\'crPoint is given later in tl1is scctjon.

l . The tlrst argu ment to the procedure is a lways
$OBJ ECT. I t is a pointer to the object 's i n terface .
The rem :� i n i ng argument names are determined
ti·om the tvpc intcm1ution .

2 . A BSTR i s a length-prefixed string data rvpe primar
i l v tor usc bv Auto mation objects . The wrappers
generated tc>r COM mem ber functions convert

ti·om Fortran stri ngs to I3STRs and vice versa.
Figure 7 contains the imert:lcc dcscription of the

Presentations object's member fimctjon 1umcd Open. It
is representative of the i nterbccs generated t(>r all COJ\11
member fimctions. The procedure mming convention
is ohjC'ctncnne_memherfwu.:tiuurwme. 'f'IH.: Open fiuK
tion opens an existing Power Poi nt presentation .

3. A VARTA.NT is :1 cbta structu re that can contain JIW
rvpe of Autom:�tion data. It conta ins a field th:�t
identi ties the type of data and a u nion that holds the
data value. The usc of a VAIUAJ'\JT argumen t al lows
the cJI Icr to usc any data type that can be converted
in to the data type expected by the member fi.tnction .

F igure 7

I N T E R F A C E
1 - I N T E G E R * 4 F U N C T I O N P r e s e n t a t i o n s _O p e n ($ 0 B J E C T , f i l e N a m e ,

R e a d O n l y , U n t i t l e d , W i t h W i n d o w , O p e n)
U S E D F C O M T Y
I N T E G E R * 4 , I N T E N T (I N) : : $ O B J E C T O b j e c t P o i n t e r
1 D E C $ A T T R I B U T E S V A L U E $ O B J E C T

2 - I N T E G E R * 4 , I N T E N T (I N) : : f i L e N a m e B S T R
! D E C $ A T T R I B U T E S V A L U E f i l e N a m e

3 - T Y P E < V A R I A N T) , I N T E N T (I N) , : : R e a d O n l y (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E : : R e a d O n l y
T Y P E (V A R I A N T) , I N T E N T (I N) , : : U n t i t l e d (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E : : U n t i t l e d
T Y P E (V A R I A N T) , I N T E N T (I N) , : : W i t h W i n d o w (O p t i o n a l A r g)
! D E C $ A T T R I B U T E S V A L U E W i t h W i n d o w

4 - I N T E G E R * 4 , I N T E N T (O U T) O p e n
! D E C $ A T T R I B U T E S R E F E R E N C E : : O p e n

! D E C $ A T T R I B U T E S S T D C A L L P r e s e n t a t i o n s _O p e n
E N D F U N C T I O N P r e s e n t a t i o n s _O p e n

E N D I N T E R F A C E
5 - P O I N T E R (P r e s e n t a t i o n s _O p e n _ P T R , P r e s e n t a t i o n s _O p e n)

Code Gcn cr:ncci bv forrr�111 Moduk \Vi; :mi ti·om Minosofr Po"·erPoim, l nrcrt:lcc Dcscriprion of Open Funcrion

Disiral Technict l Journal Vul . \1 "" I 1 997

4. Nearly every COM member fi.mction returns a status of
type HR.ESULT. Therdclre if a COM member fi.mc
tion produces output, it uses output arguments to
return the values. In this example, the Open argument
returns a pointer to a PowerPoint Presentation object.

2 . M e m ber fu ncti on argume nts of type BSTR are of
type CHARACTER* (*) i n the wrapper.

3 . The wrapper com putes the add ress of the mcm ber
function ti·om the interface poi nter and an onset
fo und in the interface's type inft)l'l11 ation . In imple
mentation terms, the seq uence is the fol lowing: an
i n terface pointer to a pointer to an Jrray offu ncrjon
pointers cal led an I n terface Fu nction Ta ble (see
Figure 9) .

5 . The interface o f a C O M member fi.mction l ooks
similar to the intert:Ke tor a DLL fi.mction with one
major exception. Unlike a DLL function, the address
of a COM member timction is never known at pro
gram link time. To compute the address of a particular
member fimction, the developer must get a pointer to
an object's intertace at run time. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedme. Figure 8 shows an example of its use .

4 . The wrapper decl a res a local variable to bold the
BSTR to be passed to the member fi.mction. The next
line docs the conversion.

5. Optional VARIANT argu ments of a COM member
fu nction arc represented by J VAIUA.J'JT with (iisti n
guished values . OPTIONAL_ VAIUANT i s de fined
in the DFCOJ\t!TY mod ule with rhe d i stinguished
val ues.

Figure 8 contains the wrapper ge nerated by the
Fortran Mod u l e Wizard for the Open function . The
name of a wrapper is the same as the name of the cor
responding member fu nction , prefixed with a $. The
numbers inserted at the left m argin of the code exam
ple correspond to the fol l owing l ist .

6 . The offset of the Open member function i s 60. The
code assigns the co mputed add ress to the fu nction
pointer Presentations_Open_PTR, which was
declared in Figure 7, and then cal ls the fu nction. l . The wrapper t<lkes the same argument names as the

member fimction in terface .

Figure 8

1 - I N T E G E R * 4 F U N C T I O N $ P r e s e n t a t i o n s _O p e n ($ 0 B J E C T , f i l e N a m e ,
R e a d O n l y , U n t i t l e d , W i t h W i n d o w , O p e n)

! D E C $ A T T R I B U T E S D L L E X P O R T $ P r e s e n t a t i o n s _O p e n
I M P L I C I T N O N E
I N T E G E R * 4 , I N T E N T C I N) $ O B J E C T O b j e c t P o i n t e r
! D E C $ A T T R I B U T E S V A L U E $ O B J E C T

2 - C H A R A C T E R * (*) , I N T E N T (I N) f i l e N a m e B S T R
' D E C $ A T T R I B U T E S R E F E R E N C E f i l e N a m e
T Y P E (V A R I A N T) , I N T E N T (I N) , O P T I O N A L : : R e a d O n l y
! D E C $ A T T R I B U T E S R E F E R E N C E : : R e a d O n l y

T Y P E (V A R I A N T) , I N T E N T (I N) , O P T I O N A L : : U n t i t l e d
! D E C $ A T T R I B U T E S R E F E R E N C E : : U n t i t l e d
T Y P E (V A R I A N T) , I N T E N T (I N) , O P T I O N A L : : W i t h W i n d o w
' D E C $ A T T R I B U T E S R E F E R E N C E W i t h W i n d o w
I N T E G E R * 4 , I N T E N T (O U T) : : O p e n ! D i s p a t c h
! D E C $ A T T R I B U T E S R E F E R E N C E : : O p e n
I N T E G E R * 4 $ R E T U R N

3 - I N T E G E R * 4 $ V T B L ! I n t e r f a c e F u n c t i o n T a b l e
P O I N T E R ($ V P T R , $ V T B L)
T Y P E (V A R I A N T) , : : $ V A R _ R e a d O n l y
T Y P E (V A R I A N T) , : : $ V A R _ U n t i t l e d
T Y P E (V A R I A N T) , : : $ V A R _W i t h W i n d o w

4 - I N T E G E R * 4 $ B S T R _ f i l e N a m e ! B S T R
$ B S T R _ f i l e N a m e = C o n v e r t S t r i n g T o B S T R (f i l e N a m e)

5 - I F (P R E S E N T (R e a d O n l y)) T H E N

6 -

$ V A R _ R e a d 0 n l y = R e a d O n l y
E L S E

$ V A R _ R e a d 0 n l y = O P T I O N A L _ V A R I A N T
P r e s e n t a t i o n s _O p e n _P T R = $ V T B L
E N D I F

$ V P T R = $ O B J E C T
$ V P T R = $ V T B L + 6 0
P r e s e n t a t i o n s _O p e n _P T R $ V T B L

I n t e r f a c e F u n c t i o n T a b l e
A d d r o u t i n e t a b l e o f f s e t

$ R E T U R N = P r e s e n t a t i o n s _ O p e n ($ 0 B J E C T , $ B S T R _ f i l e N a m e ,
R e a d O n l y , U n t i t l e d , W i t h W i n d o w , O p e n)

$ P r e s e n t a t i o n s _O p e n = $ R E T U R N
E N D F U N C T I O N $ P r e s e n t a t i o n s _ O p e n

Code CencrJted bv fortran Mod u l e \!\lizard fi·om M icrosoft Powerl'oinr, vVrappe r for Open hmcrion

Digital Technical)oum�l Vol . 9 No. I 1997 23

24

Figure 9

IN TE RFACE
FUNCTION
TABLE

FUNCTION 1

FUNC TION 2

F U N C TION 3

l nrerEKc Pointer to an Arr;l\' of Fu nction Poin ters

In bet, Power Point prm·ides d u <ll i nterfaces. /\ d ual
interbce is a com bination of an ! Dispatch int e r t:lce
and COM member functions . The I Dispatch i n ter
face ohhe dual i nterbce can be used by A u to mation
c l ie nts, and the C :OJ\tl m e m be r fu nnions can be used
bv COM cl ients . This means that �()r Po11n Poi nt, and
any sen·cr that pr01· ides d ual i n terbces, the fortr: m
developer can choose t o generate a Fortran mod u l e
for the Autom�ltion i nterhces or the C O M interbces.
The fortran i nter bces generated lw the Wiz:mi l i keh
will not be m u c h d i fferent . C O M i nt erf:Kes typica l lv
pr01· ide better pe rforma nce s ince there is less O\'er
head i n in\·ok i ng C :OM mem ber fu nctions th :-�n
d isp ime rbce methods through the ! D ispatch I nvoke
member function .

Figu re 10 shoii'S code ti·om a user-written Fortran
prognm that i m·okes PowerPoim to run a sl ide pre
sentat ion. The code e\a m p l e is a n notated with n u m
bers that correspond to t h e fol lo1\· ing l ist .

l . COMCLS []) fro m P ROGID :md COM CreateOhject
req u est COM co create an o bject with the Prog i D
t>owerPoint .Applicnion . 7, and to retu rn a poi nter
ro the object's IApp l i cnion i nterface.

2. The code gets the AppWindo\\' object from the
Application object : md c ;� l l s i ts Vis ib le member
timction to make Power Poi nt vis ib le .

3 . T he code gets the Presentations object ti·om the
Applicat ion object and calls its Open m e m ber
fu nction to open a Presentatio n . Note that three
of the a rg u m e nts to Ope n �1re of the VARI ANT

d a ta type . The cod e s e ts t h e m to the val ues true
and �alse .

4. The code gets the SJideShow object �i:om the
Prese ntation object :md calls its Run member fi.l nc
tion to run the s l ide show.

DLLs When the Fortran Mod u k Wizard reads the
t\'pe i n fclrm�nion describing a D LL, i t generates an
interhce d escription �<>r each fl 1 11 ction i n the D LL . I t
a lso generates Fortra n - de rived types tell· d ata struc
tU ITS defined i n the D L L tvpe i ntormatio n . ·rh is
re l ie1·es the fmtran d e1·eJoper �i·om manu�1 l. l y tr:ms lat
i ng hoder �i l c descriptions to fortran descripti ons.
The Wi zard a l so provides the option of generati ng
" Llppers that com·err ri·om the Fortran represenr:ltion
of strings to the C representation of stri ngs and 1 · ice
vers�l . This option can be se lected rrom the Wizard 's
initi: tl d ia log bo\ (see figure 2) .

C r e a t e a P o w e r P o i n t A p p l i c a t i o n o b j e c t
a n d m a k e t h e A p p W i n d o w v i s i b l e

Figure 1 0

1 - C A L L C O M C L S I D F R O M P R O G I D (" P o w e r P o i n t . A p p l i c a t i o n . 7 , "
c l s i d , s t a t u s)

C A L L C O M C R E A T E O B J E C T (c l s i d , C L S C T X _ S E R V E R , I I D _ A p p l i c a t i o n ,
p p A p p l i c a t i o n , s t a t u s)

I F (p p A p p l i c a t i o n = = 0) T H E N
W R I T E (* , ' (" U n a b l e t o c r e a t e P o w e r P o i n t o b j e c t ; A b o r t i n g ") ')
C A L L E X I T (- 1)

E N D I F
2 - s t a t u s = $ A p p l i c a t i o n _ G e t A p p W i n d o w (p p A p p l i c a t i o n , p p A p p W i n d o w)

s t a t u s = $ A p p l i c a t i o n W i n d o w _ S e t V i s i b l e (p p A p p W i n d o w , 1)

! O p e n t h e s p e c i f i e d p r e s e n t a t i o n
3 - s t a t u s = $ A p p l i c a t i o n _G e t P r e s e n t a t i o n s (p p A p p l i c a t i o n ,

p p P r e s e n t a t i o n s)
v T r u e % V T = V T _ B O O L
v T r u e % V U % B O O L _V A L = V A R I A N T B O O L T R U E
v F a l s e % V T = V T_ B O O L
v F a l s e % V U % B O O L V A L = V A R I A N T B O O L F A L S E

s t a t u s = $ P r e s e n t a t i o n s _O p e n (p p P r e s e n t a t i o n s , f i l e n a m e ,
v T r u e , v F a l s e , v T r u e , p p P r e s e n t a t i o n)

R u n t h e s l i d e s h o w
4 - s t a t u s $ P r e s e n t a t i o n _ G e t S l i d e S h o w (p p P r e s e n t a t i o n , p p S l i d e S h o w)

s t a t u s = $ S l i d e S h o w _ R u n (p p S l i d e S h o w , 1 , p p R u n)

FortrJ il Progra111 to l n,·okc 1\l\\ ·crPoi nr to Run Sl ide Prc>l' l ltJtion

Dig:ir:tl Tcdmic:tl)ourn;l l Vol . 9 \:o. I 1 9') 7

Com parison of the Wizard to the Capabilities of
Other Languages

Visual C++ ,·crsion 5 .0 , Visual] ++ ,·crsion 1. 1 , and
Visual Basic wrsion 5.0 al l have \\'izards that c111 rcJd a
t vpc l i brar\' <md a l low applicJtions to usc COM
and/or Automation objects.

The Visual C++ C lassWizard can read a type l i brJry
and create a cbss with all the fu nctions of the
! Dispatch i ntcrtace described in the l ibrary. Visual C++
version 5 .0 Jlso adds a preprocessor d i rective,
#import . The #i mport d i rective re<Jds a type library
and generates two header files that contain the ddi n i
tions of t h e C O M objects defined i n t h e type l i brar\' L'

The Ja,·a Type Li brary Wi z<Jrd \\' i th in Visual J + +
i m·okcs t h e]a\'aTLB ut i l i ty t o con,·crt the i n t(mnation
in a t\'pc l i brary i nto J ava .d 1ss fi l es . A] <1\'J . c l ass ti l e is
the bi nan· t(mTl of a J a,·a c lass or i ntcrt:Kc . ' ·'

To usc an o bject defi ned in a tvpc l i br:1ry ti·om
VisuJI Basic, the developer must add J rckrencc to the
object using the Projen menu , References wmmand.
The References d iJ log box <� ! l ows the user to select
ti·om the l ist of registered type l ibraries in a manner
s imi lar to the Fortran Module Wizard ';

The fortran Module Wi zard is unique i n the tell
lowing wJvs. The fortran 90 p rogramming languJgc
docs not i n herently support objects. The Fortran
M od u l e Wi zard emp lovs a combi nation of langu age
and run -ti mt: su pport to prm·ide this capab i l ity. The
supporti ng bnguage features arc modu les <l l1d proce
d u re poi nters. The s u pporti ng ru n - ti m e modu les arc
DI-'C:OMTY, D f C O M , and D fAUTO . The fortra n
Module WizJrd provides su pport t(Jr tvpc l i b rarit:s
cont<l in ing the descri ptions of D LL rou tines.

Fortran Module Wizard Architecture

The architectu re of the Fortran Mod ule Wiz:�rd is tJirly
s imple . The she l l of the Wizard was generated by the
Custom AppWi zard with in Visua l C++. Tht: i n ner
\\'orkings of the Wiz:1 rd consist of th ree m �1jor pieces:

• T\'pe in t(mnation rt:adcr

• T\·pc S\'mbol table

• �ortr:�n code gt:nerator

hgurc 1 1 shows a h igh-b·c l data tlow of tbe
forrr:m J\tl od u l c Wi zard . The type i n formation re:�der

traverses the data structu res in the type i n ti.)rnution
and creates the t\'pe symbol tab le . The Win32 S D K

provides a s:1mple J ppl iGHion named B ROWSE O LE
sample thJt is an cx :11nple of tra\·crsing the i n formJtion
i n a type l i b rary. The tvpe svm bol table is a svm bol
table s imi lar to those used lw compilers. I t maps tvpc
n ames to tht: descriptions of types. For s impl ic ity, the
i n tormation is stored us ing the same data structures
used by the type in f(xmation. The Fortran code gen
erator traverses the symbol tab le and generates a
Fortran mod u l e .

The usc of a symbol tJbk a l lows tor a complete
separation of the fi.11Ktional itv of the type i n tormation
reader trom tht: FortrJn code generator. A code gener
ator for another progra m m i n g l anguage could be
easi ly su bstituted , JS could another source of rvpc
i n formation (t(>r example, a C header ti le) .

Future Di rections

There arc a n u m ber ofpossi bi l itics tor fu ture work that
would add to the Clp<lb i l i tics provided by the Fortran
M odule Wizard .

• Fortran s u pport t(lr ActivcX controls . An ActivcX
control is J n Auto nution object. It is a reusable
component that nonnal lv pro\' ides a user i nterrace
and is used in dia log boxes and other windows. The
Fortran Mod u l e \Vizard can genera te a mod u l e
t h a t \\'Ou ld a l low J Fortran developer t o usc the
methods and properties of an Acti\ e X contro l .
Howt\'tr, Jdditional tu ncrionalitv \\'Ou ld b e needed
i n the Fortr.m r u n - t ime l ibr:1rics to make comro ls
usJble tl·om a fortr:�n Jppliution . A control h <1S
to be p l aced i n J special type of win d ow cal led a

Control Cont:1i ncr. The Fortran r u n -t ime l ibraries
do not c u rrently contJi n support tor a Control
Container. In addition to mt:thods and properti es,
a control can defi ne events. An evt:nt a l lows a con
trol to notit\· its container when something of inter
est happens to the control. For example, a " B u tton
control" could d e fi ne a " C l icked n-cnt ."

• Fortran \Vindows App l ication Wizard . This Wi z.ml
could generate stJrtcr ti les t()r J Fortran WindO\\ s
app l ication . This wou ld be espec i a l ly usefu l i f \\ c
were to i m plement the Fortr:1n support hr Active X
controls .

TYPE TYPE
TYPE SYMBOL

FORTRAN
FORTRAN r--- INFORMATION -- r--- CODE INFORMATION

READER TA BLE

Figure 1 1
Datcl flm, of rhc Fortran Module \Vizard

--
GENERATOR

Digita l Tc·chllical)oumJI

MODULE

Vol . 9 �o. 1 1 997 2 S

26

• Fortran mod u les trom C: heackr ti les . Bv replac ing
the type int(mlution reader descri bed i n the previ
ous section with a C p�1rscr, \\'C cou ld generate
fortran modu les d i rectlv ti-om .h tiks . This wou l d
expand t h e set of services that :1re easi l �· :J\'a i l: tl1 l e to
Fortran developers.

• Fortran Se rver Wizard . This Wi zard \\'Ou ld take a
Fortran module provided by a Fortran developer
and package i t as a COM object. I t \\'Ou ld : tlso gen
erate a type l i brary that d escribes the o bject. This
object could then be used by anv COM c l ient, t(lr
example, Visu�1l Basic, Visual C++, and Visua l] + +

�lppl ications.

References and Notes

1 . /)i{;ita/ hJrtnll l lJooks Online (NLl\'nard , M<1Ss . : Digit<11
.Equipment Corporation , 1 997) .

2 . /)1�t; ital hJr/JWI 9 0 Languoge Re/i'rence , \fmuwl
(1\'hvnard, Mass . : Digital Equipment Corpor<1tion, 1 997) .

3 . for a period of t ime, /vl icrosott used the name O LE ro
cncompJss <111 of its componcm i n tegration te<.:hnologv,
i n c l u d i n g C :Oi\11 . No\\' OLE is <1pplied o n l\· to com
pound document tcchnologv.

4. K. Rrockschmidt, lnsid(;' ou:, Second Edition (Redmond,
Wash . : Microsoft Press, 1 99 5) .

5 . K. Brockschmidt, " H ow O LE <tnd COM Soln: t h e
Problems of Componcnr Sott\\'arc Desi gn," Jticrosuji
5).:<./ems.Juunwl, ,·o l . 1 1 , no. 5 (M•w 1 996) : 63-80.

6. D. Cluppd l , Uuderstmuliug ActireX and OL/; (Red
mond , W<Jsh . : Microsotr Press, 1 99 6) .

7 . ou· 2 Pm,!!, ram mer �'> Neference. \ 'ol1 1 111e T11 ·o (Red
mond , Was h . : Microsoft Press, 1 994) .

8 . Thr! 0Jmponenl Ohiect Model 5j>ecijiwtion () C)
(Redmond, vVJsh . : M icrosoft Corporation , 1 99S) .

9 . Au tOlll<ltion was originallv called O L E Auromation .

10. Bet<>re !DL <llld M l DL, M i crosoft prm id ed the O bJeCt
Description Llllgu<lgc (ODL) and <1 compiln n<llncd
lvl KTYPJ . I B .

1 1 . Det doper . '>tuc/io h-ll t 'irOJ / 11/e/ / t C:<.er\ Guicle (Red
mond, vV,tsh . : Micmsoft C:orporcHion, 1 997) .

1 2 . Microsoft Otticc 97 i n c l udes a new Oftice object model
th<1t ofkrs another set of inrerf1ces ro Word scn·ices.

1 3 . G. Shepherd , "Visual C++ Simpl ifies the l)roccss t(>r
DeYclopi ng <l!Jd U s i n g COM O bject� ," .llicmsuji

Srstems joun/(/1, ,·ol . 1 2 , no. S (M<1,. 1 997) : 3 7-4 8 .

1 4 . C . Eddon a n d H . h1d o n , " U nd erst<1 nd i n g t h e)<1\'a/
COM l megrarion Model ," J licrosoji luleroc/ ir·e

/)(;'t.'l!foper, \'O i . 2 , no. 4 (April l997) : 56-68.

1 5 . . Hicrosr!fi Visuol IJasic 5. 0 !Juohs Online (Redmond ,
Wash. : M icrosotr Corporation, 1 99 7) .

Digit,ll Tcdnli(al Journal Vol . '! No. I I '197

Biography

Leo P. Treggiari
Leo Treggi;1ri is a consu l t ing sotrwarc engineer in the Core
Technology Group. He "'�1s responsible tor dC\·cloping the
Mod u l e Wiz<lrd in the D I G ITAL Visual Fortran product
tor the:: Fortr.111 progr;1mmcr working i n a M icrosotr
W i ndows cm·iro n m c n t . Pro·ious to this "·ork , he \\'as
project k;1dcr t()r the deve lopment ofse,·eral program m ing
roots , i nc l u d ing the Motif roo] kit. Leo came to D I G ITAL
in 1 9 79 ti·om W;lllg Llbor<ltories. He holds a n . S . (1 97 5 ,
�umma Clllll lat �dc) i n chemistrv ti·om Boston Col l ege :md
is <1 member ofAC M .

Architecture and
Implementation of
M EMORY CHANNEL 2

The MEMORY CHANNEL network is a ded icated

cluster interconnect that provides virtual shared

memory among nodes by means of i nternodal

add ress space mapping. The i nterconnect imple

ments d i rect user-level messaging and guaran

tees strict message ordering u nder all conditions,

including transmission errors. These character

istics a l low industry-standard communication

i nterfaces and paral lel programm ing parad igms

to achieve much higher efficiency than on con

ventional networks. This paper presents an

overview of the MEMORY CHANNEL network

arch itecture and descri bes DIGITAL's crossbar

based implementation of the second-generation

MEMORY CHANNEL network, MEMORY CHANNEL 2.
This network provides bisection bandwidths

of 1 ,000 to 2,000 mega bytes per second and a

susta ined p rocess-to-process bandwidth of

88 mega bytes per second. One-way, process

to-process message latency is less than 2.2
microseconds.

I
Marco Fillo
Richard B. Gillett

In comp u ting, a cluster is loosely defi ned as a parallel
system comprising a collection of stand -alone comput
ers (each cal led a nod e) connected by a network. Each
node runs its own copy of the operating system, and
cluster software coorctinating the entire parallel system
attempts to provide users with a unitled system view.
Since each node in the c luster is an off-the-shelf
computer system , clusters offer several advantages
over traditional massively parallel processors (MPPs)
and large-scale symmetric m u l tiprocessors (SMPs) .
Specifically, clusters provide1

• Much better price/performance ratios, opening a
wide range of computing possi bi l ities for users who
could not otherwise afford a single large system .

• M uch better availability. With appropriate software
support, cl usters can su rvive node fai lures, whereas
SMP and MPP systems generally do not.

• Impressive scaling (h u ndreds of processors) , when
the inctividual nodes are medium -scale SMP systems.

• Easy a nd economical upgrading and tec hnology
migration . Users can simply attach the latest
generation node to the existing cluster network.

Despite their advantages and their i mpressive peak
computational power, clusters have been u nable to
displace trad itional paral lel systems in the marketplace
because their effective performance on many real
world parallel applications has often been disappoint
ing. Clusters' lack of computational efticiency can be
attri buted to their traditional ly poor comm unication,
which is a result of the usc of standard networking
technology as a cluster interconnect. The develop
ment of the MEMORY CHAN N EL network as a cluster
i nterconnect was motivated by the realization that the
gap in e ffective performance between clusters and
SMPs can be bridged by designing a comm unication
network to deliver low latency and high bandwidth all
the way to the user applications.

Over the years, many researchers have recogn.ized
that the performance of the m ajority of real-world par
allel applications is affected by the latency and band
width available for communication.2-5 In particu lar,
it has been showd·6.7 that the efficiency of paral lel
scientific applications is strongly i n flu enced by the

Digital Technical Journal Vol . 9 No. I 1 997 27

28

system's a rc h i tectural balance as qu antified by i rs
commu nication-to-compu tation ra tio, which is so me
times cal led the q-rario 2 The q - rario i s dc tined �1s
the ratio between the t ime it takes to send an 8 - Lwte
floating- point result from one process to an other
(commu nication) and the time it takes to perform a
fl oati ng-point operation (comp utJtion) . I n a system
wirh a q - ratio equal to 1 , i r takes rhc same rime for �1
node to compu te a result as i t docs to r the node to
com m u n icate rhe result to another node in the system.
Thus, rhe higher rhe q - rario, rhe more d i fficu l t i t i s ro
program a paral le l system ro achieve a given level of
performance. Q-rarios close to unity have been
obtained only in experimental machines, such as
iWarp' a n d the M - Machin e," by employing d irect
register-based commu nication .

Table l shows actua l q - ratios ti:>r several commercial
syste ms. 1 1 1 · 1 1 These q -ratios vary fi-om about 100 ti:>r a
D J G J TAL AJphaServcr 4 1 00 SM P system using shared
memory to 30,000 f(>r a c luster of these SMP svstems
i ntercon nected over a ti ber distri but..:d data inrcr bcc
(F D D I) network using tbe transm ission control
protocol/internet protocol (TCP/I P). An M I> J>
syste m, such as the I R M SP2 , us ing the Message
Passing I n terface (M l' l) has a q - ratio of 5 ,7 14 . The
M EMORY CHAN N E L network developed bv Digi t�ll
Equipment Corporation red uces the q-ratio of an
AlphaServer-based c l uster by a factor of 38 to 82 to be
within the range of 367 ro 1 ,067 . Q- ratios in this
range permit c lusters to efficiently tackle a large ci:lSS
of paral lel technical and co mm er..:ial problems.

The benefits of low-l atency, h igh-bandwidth
networks arc wel l understood . ' 2 · ' ; As shown by mJny
studies, 14 ·" high co m m u n ication latency over tradi
t iona l ncrworks is the result of the opera ting svstcm
overhead i nvoh'Cd in transmitting a n d recci\' ing mes
sages. The MEMORY CHAN N E L network el iminJtcs
this latency by supporting d irect process-to-process
com munication that bypasses the operating syste m .

Table 1

The M EM O RY CHANNEL net:\vork su pports this type
of com m u n ication by i m p l em e nt ing a natural exten
sion of the v irtua l mcm or�' spJcc, whic h provid..:s
direct, but protected , auxss ro rhe memor�· resid ing in
other nodes.

Ihs..:d on this approac h , D I G ITA L d eveloped
its first-generation M EM O RY CHA N N EL net:\vork
(MEMORY CH.AJ'\J N EL l), 1 '' which has been shipping
in production since April 1 996. The net:\\'ork docs not
require an�· fl.mction::d it:\' beyond th..: pni pheral com
ponent int e rconnect (PCI) bus and theretore can be
used on any system with a PCI l/0 slot. D IGITAL

cu rrent ly su pports produ ction M E MORY C H A N N E L

cl usters as l arge as 8 nodes by 1 2 pro..:cssors per node
(a total of 96 processors) . One of these c lusters was
presented at Su percomputing '95 and rJn cl usterwide
applicuions using High Pertormancc Fortran (H P f) ,·1

Para l le l Virtual Mac h i ne (PVM), 17 and M PI" i n
DiGITAL's Paral lel Soltware En\' iron mcnt (PS E) . This
96-proccssor svstem ll3s a q - rario of SOO to l ,000,

depend i ng on the commu nication inrcrtace. A 4-node
M E M O RY C HA N N E L c l uster running DIGITA L
Tru Ci uster sofnvare 1" and rhe Oracle Para l le l Serv..:r
has held the c l uster performance world record on the
Tl'C - C benchmark2''-the indusrrv st:lllcbrd in on - l i ne
transaction processing-since April 1 99 6 .

We n e x t prese nt :1 11 overview of t h e generic
1\tl E M O RY C HAN N E L nct\vork to j ustit)' the design
goals of the second-generation MElvlORY CHAl'\J N E L

nwmrk (M EMORY CHANNEL 2) Followi ng this
o,·en·iew, \\'e describe in derail the arc h i tecture of
the t\\'O components that make up the M EM O RY
CHAN NEL 2 network: the hub and the adapter. Last,
we present hardware- measured pcrti:>rm ance data.

ME MORY CHAN N E L Overview

The M EM O RY C H A N N E L network is a dedicated
cl uster i nterconnection net\vo rk, based on E n core's

Comparison of Communicat i o n and Computation Perfo rma nce (q-ratio) for Va rious Pa ra l le l Syste ms

Communication
Performance
Latency

System (Microseconds)

Al pha Server 4 1 00 Model 300 config urations
SMP us ing shared m emory messa g i n g 0 . 6

SMP us ing MPI 3 .4

FDDI cl uster using TCP/I P 1 80.0

M EMORY CHAN N E L cluster using
native messaging 2 . 2

M E M O RY CHAN N E L c luster u s i n g M P I 6.4

IBM SP2 using MPI 40.0

Digiral T.:c hn icJI Journal Vol . 9 No. I ! <)97

Computation Communication-
Performance Based on to-computation
UNPACK 1 00 X 1 00 Ratio
(Microseconds/FLOP) (q-ratio)

0.006 1 00

0.006 567

0.006 30, 000

0.006 367

0.006 1 , 067

0_006 5,7 1 4

M E M O RY C H A N N E L technology, that supports
virtual shared memory space by means of internodal
memory add ress space mapping, s imilar to that used
in the S H RI M P system 2 ' The 1V! E M O RY C H AN N E L

su bstrate i s a Hat, fu l ly interconnected network
that provides push-on ly message - based comm u nica
tion. "' 2' Unl ike traditional networks, the M E MORY

C H A N N E L network provides low- latency com m u n i
cation b y supporti ng direct user access to t h e network.
As in Scalable Coherent I nterrace (SCI)23 and Myri net24
networks, connections between nodes are established
by mapping part of the nodes' virtual address space to
the M EM O RY C H AN N E L interf1ce.

A M E M O RY CHAN N E L connection can be opened
as either an outgoing connection (i n which case an
add ress-to-destination node mapping m ust be pro
vided) or an i ncom ing connection. Before a pair of
nodes can communicate bv means of the M EM O RY

C H A N N E L network, they must consent to share part
of their add ress space-one side as outgoi ng and the
other as incoming. The MEM ORY CHANNEL net
work has no storage of i ts own . The granularity of the
mapping is the same as the operating system page size.

MEMORY CHANNEL A ddress Space Mapping

M apping is accompl ished through manipulation of
page tables. Each node that maps a page as incoming
al locates a si ngle page of physical memory and makes
it avai lable to be shared by the duster. The page is
always resident and is shared by a l l processes in the
nod e that map the page . Tbe fi rst map of the page
causes the memory al location, and subsequent

GLOBAL

reads/maps point to tl1e same page . No memory is
al l ocated for pages mapped as outgoing. The mapper
simply assigns the page table entry to a portion of the
MEMORY CHANNEL hardware transmit window and
defines the desti nation node for that transmit sub
space . Thus, the amount of p hysical memory con
sumed for the clusterwide network is the prod uct of
the operating system page size and the total number
of pages mapped as i ncoming on each node .

After mapping, MEMORY CHANNEL accesses are
accomplished by si mple load a nd store instructions, as
for any other portion of virtual memory, without any
operati ng system or r u n - time l i brary calls . A store
i nstruction to a M EM O RY C H A NN E L outgoing
address resu lts in d ata being transterred across the
M EM O RY CHANN E L network to the memory al lo
cated on the destination node. A load i nstruction from
a M EM O RY C H AN N EL incoming channel address
space results in a read from the local physical memory
i nitialized as a M EM O RY CHAN N E L i ncoming chan
ne l . The overhead (in CPU cycles) i n establishing a
MEMORY CHANNEL connection is m uch h igher than
that of using the connection. Because of the memory
mapped nature of the interface, the transmit or receive
overhead is s imilar to an access to local main memory.
This mechanism is the fundamental reason tor the low
MEMORY CHANN E L latency. Figure I i l l u strates a n
example o f MEMORY C HANNEL add ress mapping.

The figure shows two sets of i ndependent connec
tions. Node I h as established an outgoing channel to
node 3 and node 4 and a lso an i ncoming channel
to i tself. Node 4 has an outgoi ng channel to node 2 .

MEMORY CHANNEL
A DDRESS SPACE

NODE 1

NODE 2

F igure 1

NODE 1 TO
NODES 3 A N D 4

NODE 4 TO
NODE 2

JV!EMORY C HANNEL Mapp i ng of a Portion of the Clusterwide Add ress Space

Digital Technical Journal

NODE 3

NODE 4

Vol . 9 No. I 1 997 29

30

All connections are unidirectional, either outgoing
or i ncoming. To map a channel as both o utgoing and
i ncoming to the same shared add ress space, node l
maps the channel two ti mes into a s ingle p rocess' vir
tual address space. The mappi ng example in Figure l
req uires a total of four pages of physical memory, one
for each of the four arrows poi nted toward the nodes'
virtual address spaces.

M EMORY CHANNEL mappings reside in two page
control tables (PCTs) located on the MEMORY
CHANNEL i n terface, one on the sender side and one
on the receiver side. As shown in Figure 2, each page
entry in the PCT h as a set of attri butes that speci�'
the MEMORY CHAN N E L behavior tor that page .

The page attri butes on the sender side are

• Transmit enabled, which must be set to al low trans
mission from store instructions to a specific page

• Local copy on transmi t, which d irects an ordered
copy of the transmitted packet to the local memory

• Acknowledge request, which is used to request
acknowledgments fi·om the receiver node

• Transmit enabled under error, which is used in
e rror recovery commu nication

• Broadcast or point-to-point, which defines th e
type of packet to a l l nodes or to a si ngle node
i n the duster

• Request acknowledge, which requests a reception
acknowledgment from the receiver

The page attributes on the receiver side are

• Receive enabled , which must be set to allow recep
tion of messages addressed to a specific virtual page

• Interrupt on receive, which generates an interrupt
on reception of a packet

• Receive enabled under error, which is asserted for
error recovery com munication pages

• Remote read , which identifies a l l packets that arrive
at a page as requests for a remote read operation

• Conditional write, which identifies all packets that
arrive at a page as conditional write packets

SENDER

TRANSMIT PCT

TRANSMIT ENABLED

MEMORY
CHANNEL
PACKET

MEMORY CHANNEL Ordering Rules

The MEMORY C HANNEL communication paradigm
is based on three fundamental ordering rules:

1 . Single-sender Ru le : All destination nodes wil l
receive packets in t h e order in which they were ge n
erated by the sender.

2 . Multisender Rul e : Packets fi:om mu ltip le sender
nodes wi U be received in the same order at all desti
nation nodes.

3. Orderi ng-under-errors Rul e : Rules 1 and 2 must
apply even when an error occurs in the network.

Let Pj," ·x be the jth poin t-to-point packet from
a se nder node M to a destination node X, and let Bf,,
be the jth broadcast packet from node M to all other
nodes . If node M sends the tol lowi ng sequence of
packets,

P2."_,, P l ,,1 . • r , B l ,., P l �1-x,
(last) (first)

Rule l dictates that nodes X and Y wil l receive the
packets in the fol lowi ng order:

at node X, P2," .,, B l "' , P l ,,., . • ,
(last) (first)

at node Y, P l "' .r, B 1 ," .
(last) (first)

If a node N i s also sending a sequence of packets, in
the fol lowing order,

P3,.; .. ,, P2�_,, B2;-;, P2� .. r, B l :-: , P 1 " .r, P 1 "-''
(last) (first)

there is a ti.nite set of val id reception orders at destina
tion nodes X a nd Y, depending on the actual arrival
time of the requ ests to the point of global ordering.
Ru l e 1 d ictates that al l packets from node M (or N) to
node X (or Y) must arrive at node X (or Y) i n the order
in which they were transmitted . Ru le 2 dictates that,
regardless of the relative order among the senders,
messages desti ned to both receivers must be received
in the same order. For example, if X receives B2", B l "',
and B 1 " ' then Y should receive these packets in the

RECEIVER

RECEIVE PCT

R E C EIVE ENABLED
INTERRUPT ON RECEIVE

SENDER
STORE

TO 1/0
LOCAL COPY ON TRANSMIT
ACKNOWLEDGE REQU EST
TRANSMIT ENABLED UNDER ERROR
BROADCAST OR POINT-TO-POINT
REQUEST ACKNOWLEDGE

- - - - - - - ·
RECEIVE ENABLED UNDER E R RO R
REMOTE READ

RECEIVER
LOAD f-.- FROM
MEMORY
SPACE

SPACE

Figure 2
MEMORY C HAN NEL Page Control Attributes

Digital Technical)oumal Vol . 9 No. I 1997

CONDITIONAL WRITE

same order. One arrival order congruent with both of
these rules is the fol lowi ng:

at node X,
P3 � .,, P2" .,, P2" ., , B2,, B l , �> B 1:-�, P l , .,, P l ," .,
(l ast) (first)

at node Y,
B2s, P2, .. " P l ,,l-) , B l ." , B l ", P l , ·r·

These rules are independent of a parrjcular intercon
nection topology or implementation and must be
obeyed in all generations of the M EM O RY CHANNEL
network.

On the lvl E M O RY CHANNEL network, error han
d l ing is a shared responsibi l ity of the hardware and the
c l uster management software. The hardware provides
real -time precise error hand l ing and strict packet
ordering by discarding a l l packets in a particular path
that fo l low an erroneous one . The software is respon
si ble f(>r recovering the network fi·om the fau l ty state
back to i ts normal state a n d for retransmitting the lost
packets.

Additional MEMORY CHANNEL Network Features

Three additional features of the MEMORY CHANNEL
network make it ideal f(>r cl uster interconnection:

l . A hardware- based barrier acknowledge that sweeps
tbe nenvork and a l l its buffers

2. A fast, hardware-supported lock primitive

3. Node failure detection and isolation

Because of the three ordering rules, the M E M O RY
CHAN N E L nenvork acknowledge packets are imple
mented with l ittle variation over ordinary packets. To
request acknowled gment of packet reception, a node
sends an ord inary packet marked with the request
acknowledge attri bute. The packet is used to sweep
clean the network q ueues in the se nder destination
path and to ensure that all previously transmitted pack
ets have reached the desti nation . ln response to the
reception of a M EMORY CHANNEL acknowledge
request, the destination node transmits a M EM O RY
CHANN EL acknowledgment back to the originator.
The arrival of the acknowledgment at the originating
node signals that all preceding packets on that path
have been successfu l ly received .

M E M O RY CHANNEL locks are implemented using
a lock-acquire software data structure mapped as both
incom ing and outgoing by all nodes in the c luster.
That is, each node wi l l have a local copy of the page
kept coherent by the mapping. To acq uire a l ock, a
node writes to the shared data structure at an offset
corresponding tO its node identi fier. !vl EM O RY
CHAN N E L ordering ruJes guarantee that the write
order to the data structure-including the upd ate of

the copy local to the node that is setting the Jock
is the same for all nodes. The node can t hen determine
if it was the only bidder for the l ock, in which case
the node has won the lock. If the node sees mul tiple
bidders for the same lock, i t resorts to an operating
system-specific back-offand -retry a lgorithm . Thanks
to the M EMORY CHANNEL !:,'llaranteed packet order
ing, even under error the above mechanism ensures
that at most one node in the c l u ster perceives that
it was the fi rst to write the lock data structure . To
guarantee that data structures are never locked indefi
ni tely by a node that is removed from a c l uster, the
c l uster ma nager software also monitors lock acq uisi
tion and release .

The M EM O RY CHANN E L network supports a
strong-consistency shared -me mory mod el due to its
strict packet ordering. In add ition, the 1/0 operations
used to access the M EMO RY CHANN EL arc fu l l y
integrated within the node's cache coherency sche me.
Besides greatly simpl it)1ing the programming model ,
such consistency a l lows tor an impl ementation of
spin locks that does not saturate t he memory system .
For i nstance, whi l e a receiver is pol l i ng tor a tlag
that signals the arriva l of data ti·om the MEMO RY
CHANNEL net\vork, the node processor accesses only
the loca l ly cached copy of the flag, which wi l l be
u pd ated whenever the correspo nding main memory
location is written by a M EMORY CHANNEL packet.

U n l i ke other networks, the MEMORY CHANN E L
hardware maintains i n formation on which nodes are
currently part of the cluster. Through a collection of
timeouts, the MEMORY CH ANN EL hardware con
tinuously monitors a l l nodes in the c l uster tor i l legal
behavior. When a tai l ure is detected , the node is iso
lated from the c l uster and recovery software is
invoked . A MEMORY CHANNEL cluster is eq u ipped
with software capable of reconfiguration when a node
is added or removed ti-om the cl uster. The node is
simply brought on-line or off- l i ne, the event is broad
cast to al l other nodes, and operation continues. To
provide tolerance to net\vork fa i lu res, the c l uster can
be equipped with a pair of topological l y identical
MEMORY C HANNEL nenvorks, one f()l' normal oper
ation and the other for tai lover. That is, when
a nonrecoverable error is detected on the active
M EMO RY CHANNEL nenvork, the sofuvare switches
over to the stand by nenvork, in a man ner transparent
to the appl ication . ' "

The First-generation MEM ORY CHAN NEL Network

The first generation of the J\II EMORY CHANNEL
ncnvork consists of a node i nterrace card and a co n
centrator or hub. The interface card , ca l led an adapter,
plugs into the 1/0 PCl. To send a packer, the C P U

Digi r<1l TcdlJJi(<ll journal Vol . 9 No. I 1 997 3 1

32

writes to the portion of ljO space mapped to the PC!
bus. The store- to-memory is hand led by the node's
PC! interface device , which in i ti a tes a PC! transfer tar
geting the M EM ORY C H AN N E L adapter transmit
window. When a message i s received, the MEMORY

CHAN N E L adapter i niti a tes a PCI transkr to write to
the node's CPU memory, targeting the node's PC!
i nterflce, which then accesses the node's main memory.

B esides writing to the node's CPU, an I/0 device
on the PC! bus can transmit d i rectly to a MEM ORY
C H AN N E L adapter. This a l lows , for example, a d isk
contro l ler to transfer data d i rectlv ti·om the disk to a
remote node's memorv. The d at a transfer docs not
affect the host syste m 's memory bus . The d esign
choice of i nterfacing M E M O RY C HA N N E L to the
PC! bus instead of d i rectly to the node CPU bus is
not a n arc hi tectur a l one, b u t rather one of practical
i t y and u n iversa l i ty. T h e P C ! i s avai l ab le o n most o f
today's systems of varying performance a n d size and
i s , therefore , a n ideal i n terface point that a l lows
hybrid c lusters to be bu i l t . The obvious d isadvan
tages of a periphera l i n terface b us are the addit ional
l a tency i ncurred because of the extra C P U - to - PCI
hop and a poss ib le l im i tation on the avai l ab l e bus
bandwi d t h .

The M EM O RY C H A N N E L l h u b i s a broadcast
only shared bus capable of interconnecting up to
eight nodes. The M E M O RY Channe l 1 adapters and
the hub are i nterconnected in a star topology v ia
37-bit-wide (32 b its of data p lus sideband signals)
halfduplex channels . The cables can be up to 4 meters
long, and the signa l ing level is 5 -volt TTL. A two
node c luster can be formed without employing a h u b,
by d irect node- to-node i n terconnection. This config
uration is also known as virtual hub configurat ion.

The current release of the ME MO RY C HANNE L 1
hardware achieves a sustained point- to-point band
width of66 megabytes per second (M B/s) (from user
process to user process) . Maximum sustained b road
cast bandwidth is a lso 66 M B/s (from a user process
to many user processes) . The cross-section MErv! ORY
CHANN E L 1 h u b bandwidth is 77 MB/s . Smal l
message l atency is 2 . 9 microseconds (f-LS) (from a
sender process STO RE instruction to a message
LOAD by a receiver process) . The processor overhead
is less than 1 50 nanoseconds (ns) for a 32-byte packet
(which is also the l argest packet s ize) .

As demonstrated in the l i terature, standard message
passing application p rogramming i n terfaces (A Pis)
benefi t greatly from these M E MO RY C H A N N E L

communication capabi lities . 1 2 · 1 ' 2 ' MPI , PVM, and HPF
on M EM O RY CHAN N E L 1 all have one-way message
l atencies of l ess than 1 0 f-LS. These la tency n umbers
are more than a factor of five lower than those tor
traditional M P P architectures (5 2 to 1 90 J-LS) . u

Digiral Technical Joumal Vol . 9 No. I 1997

Communication performance i mprovements of this
magnitude trans late i nto cluster performance gains
of2 5 to 500 percent. "

MEMORY CHANNEL 2 Architecture

Based on the experience with the first-generation
product, the design goals tor MEMORY CHAN N E L 2
were twofo ld : (l) yield a significant ped(xmance
improvement over M E M O RY C H A N N E L 1, and (2)
provide fu nctional enha ncements to extend hardware
support to new operating systems a n d programming
parad igms.

The MEMORY C H A N N E L 2 perf-ormance/bard
ware en hancement goals were

• Network bisection bandwidth sca lab le with the
n umber of nodes: l ,000 M B/s for an 8 - node cl us
ter and 2 ,000 M B/s for a 1 6- nodc cluster

• Improved point-to-point bandwidth , exploiting
the maximum capabil ity of the 32-b i t PC! bus:
97 MB/s for 32-byte packets and 1 27 M B/s
for 256-byte packets

• Ful l -duplex channels to al low simu ltaneous b idirec
tional transfers

• Maximu m copper cable length of 1 0 meters
(increased fi·om 4 meters on M EMORY CHANN EL
l) and fi ber support up to 3 kilometers

• A link l ayer communication protocol compatib le
with future gen erations of M EMORY CHAN N EL
hardware a nd optical ti ber interconnections

• Enhanced degree of error detection

The M EMORY C H A N N E L 2 functiona l/software
enhancement goals were

• Software cornpatible with the ti rst-gencration
MEMORY CHANNEL hardware

• Receive-side add ress remapping and variab le page
size to better support new operating systems, such
as Windows NT, and non-AJ pha microprocessors

• Remote read capabi l i ties

• Global time synchronization mechanism

• Conditional \\Tite access to support a taster recover
able messaging

These two sets of requirements tra nslate i nto archi
tectural and tech no logical constra ints that defi ne the
M EMORY C HA N N EL 2 design space. To increase the
bisection bandwidth, the hub had to implement an
architecture that su pported concurrent transfers. On
ME MORY CH ANNEL l, all senders must arbitrate
for the same h u b resou rce (the bus) on every d ata
transfer. Everv data transmission occupies the ent ire
ME MORY CHANNE L l h u b tor the durat ion of i ts

transfer, �md �1 1 1 message ti I teri ng is pcrt()rmed by the
rcccil ·crs. Su bstant ia l network traffi c causes conges
tion because a l l sender n odes ti ght t()r the same
resource . This congestion resu l ts i n a decrease i n the
com m u nication speed and thus an i n crease i n the
eftCcti1·e q - ratio as seen by the app l ications.

On M E1v! O RY C H A N N E L 2 , the hub has been
des igned as an N- by-;V non blocking ful l -d uplex cross
bar with broadcast capa bi l it ies, with N = 8 or N = l o.
Such an arch i tectu re prm · id es a bisection bandwidth
that scales with the n u mber of nodes and thus remains
matched to the point-to-point bandwidth of the i nd i
v idual channels w h i l e avoid in g congesti on among
i nd epcnd cm commu n i cation paths. Therefore , an
increase in network tra ffi.c wil l h a1·e l i ttle e ffect on tbe
e frectivc q - rati o .

The M E!v! O RY C H A N N E L ordering ru les a r c easi ly
met on a crossbar of this type , as t() l lows :

l . The single-sender ordering r u l e is natura l l y obeyed
Lw the bet that the arc h i tecture provides a single
path ti·om any source to any desti nation .

2 . The m u l riscnder ord ering ru le i s ent(xced by taking
over al l the crossbar rout in g resources d uring
broad cast. A l though less effic ient than broadcast
by packer repl ic:nion, this technique ensu res a strict
common orderi ng t()r al l desti nations.

final ly, crossbar swi tc hes are practica l to impl emen t
t()r a modest n u m ber of n odes (8 t o 3 2) , but give n
t h e aYa i lab i l ity of medi u m -size Si'd P s , they provide a
sarisfKtory degree of sca l ing for the great major i ty of
practical c l uste ring applications. For i nstance, c l uster
tech nol ogy can easi l y prm · id e a l ,000- proccssor
system s im plv by connecting 32 nodes, eac h one a
32 -way SM I ' .

The req u i rement for a h igher point-to-poi nt band
wid th ca l led t()r a s h i ft from h a l fd uplex to ful l -d u plex
l i n ks . A longer cable l ength i m posed the choice o f a
signa l ing tech n ique other th�m the TTL employed i n
the M E l'd O RY C H AN N E L l network. The design

team adopted l ow-1·oltage ditkre n rial s igna l i n g
(LVDS) 2" as the signa l i ng tec hnique for t h e second and
futu re generations of the MEMORY CHAN N EL

network on copper. One or· the m ajor decisions that
tJced the team was whether to mainta in the para l le l
channel of M EM O RY CHAN N E L I or to adopt a ser
ial channel to m i n i mize skew transmission problems
t()r l arge com m unication d ist:mces. The band wid t h
d e mands of future c l uster nodes i n d icated that serial
l i n ks wou l d not p rcwi d e s u Hi.cient bandwidth ex pan
s ion capa bi l i ties �lt reasonable cost . Thus, the cha nnel
data path width was c hosen to be 16 b i ts , a suitable
compromise that wou l d o ffe r a man ageable chann e l
to-channel skew w h i l e provi d i ng t h e req u i red band
wid t h . Figure 3 i l l ustrates the distinctions between the
first- and second -generation MEM ORY CHAt"' N E L

architectu res .

MEMORY CHANNEL 2 Link Protocol

The M EJVlO RY C HA N N E L 2 comm tmication proto
col was engi neered wi rh the goal of ensu 1·i ng compati
b i l i ty with optical ti ber's u n i d i rectional med i u m . The
intercon nection su bstratc consists of a p :1 i r of unidirec
tional channels , one i n coming �md one ou tgoi ng.
Each chan nel consists of a 1 6- b ir d ata path, a ti·aming

sign a l , :1 11d a c lock . The channe l carries two tvpes of
packers: d ata and control . Data packets l'<lrl' i n s ize and
carry appl icat ion d at<l . Contro l packers are used to
exchange tlow comro l , port state, and global dock
information . Control packers ra ke prior i t1· o1·er d ata
packe ts . Thev are i nserted i m mcdiarclv when tlo11·
control state change is needed and , otherwi se , arc
generated on a regu lar i nt e n al (mi l l isecon d) to update
l ess t i m e - c rit ic1l state. The M EM O RY Cf-I ANN l-: L 2
d ata packet tor m a r is shown i n figu re 4a. The header
of t l1e d ata p::tckct conta ins a packet tl'pe (TP) , a
dest ination ident i fier (DN I D) , a remote command
(C M D) , a n d a sender i d en ti fier (S I D) . The data pay
load starts with the desti nat ion add ress and can 1 ·arv
in l e ngth from 4 to 2 56 bvtts (tii 'O to one h u n d red
twentv-e ight 1 6-b i r cvclcs) . lr is t(J l l oll·cd by tii'O
1 6- bit cycles of Reed -Solomon error d etect ion cod e .

The control packet t(mnat i s shown i n Figure 4 b .
T h e packet i s identified b v a d ist inct Tl' a n d ca rries
network a n d flo\\' control i n form ation such as port
status (PSTAT) , contlgurarion (C : t:G) , DNlD, h u b
status, a n d gl obal status .

Si m i lar ro M E i\1lO RY C:HAl'\'NEL l , M EM O RY

CHANN E L 2 uses a c lock-forward i n g tech n ique i n
\\'h i c h the transmit clock is sent a l on g 11· i th the d ata
and is used at the recei1'Cr ro rccm·cr the d ata. Data i s
transmi ned o n both edges of the for11 ardcd c lock, :md
a no,·el dvnamic reti m i ng technique is used ro svn
chronizc the i ncom i ng packets to the node's l c;cal
c lock. The reti min g circ u i t locks onto a good sample
of the incoming data at the starr of Cl'e l"\' packet a n d
ensures accurate synchroni zation t()r the packer d ur ::�
tion, a s long a s prede fined con d i tions on m a x i m u m
packet s ize a n d c l o c k d rifts :� re m a i nt a i ned .

The M E M O RY C HANNE L 2 l ink p ro tocol h as
an e m bedded a u toconfiguration mechanism that i s
i m·okcd whenn·er a node goes o n - l i n e . The h u b port
and the :1daprer usc t h is au tocontigur�1tion mechanism
to negotiate the mode of operation (l i nk frequency,
d ata path wid t h , ere .) . The same mec hcmism a lloll's a
tii'O-node h u b less system (a v i rtua l h u b configu,·:�r ion)
to consistemly assign node id enti tiers 11 i thout a m'
operator interl'ention or mod u le j u mpers .

MEMORY CHANNEL 2 Enhanced Software Support

M EM O RY CHANNEL 2 prm ides t<.n 1r major ad d i
tions to appl ication and operati ng svstcm suppmt:
(l) receive-s i de add ress remapping, (2) remote read s ,
(3) a global c l o c k sl'!1chroni zarion mechanism, and
(4) cond i ti ona l writes.

\'ol . 9 No. I l 997

34

(a) lv! EMORY C H A N N EL l Network (b) MEMORY C H ANNEL 2 Network

Characteristics

Channel data path width

Channel co m m u n i cat ion

E lect rical s i g n a l i n g

Opt ica l f i b e r com patib l e

L ink operat ing freq uency

Pea k raw data tra nsfer rate

Susta i ned poi nt-to-point bandwidth

Max i m u m packet s ize

Remote read support

Packet error d etection

Add ress space rem a p p i n g

Supported p a g e si zes

H u b a rch itecture

Netwo rk bi section bandwidth

Figure 3

M E M ORY CHANNEL 1

37 b its

H a l f d u p l ex

TIL

No

33 M H z

1 3 3 M B/s

66 M B/s

32 bytes

N o

Horizonta l and vert i c a l pa rity

N o n e

8 K B

Shared bus

77 M B/s

Com parison of first- and Second- generation M EMORY CHANNEL Architectures

DNID I TP

CMD I SID

ADDRESS - - - - - - - - - -
ADDRESS

DATA
(4 TO 256 BYTES)

ERROR - - - - - - - - - -
DETECTION

(a) Data Packet

Figu re 4

HEADER

PAY LOAD

E R RO R
DETECTION
CODE

!YlEMORY CHANN E L 2 Packer Format

Digit;ll Tc(hnical)omnal Vol . 9 No. I 1 997

PST AT I TP

CFG l DNID

H U B - - - - - - - - - -
STATUS

GLOBAL - - - - - - - - - -
STATUS

E R ROR - - - - - - - - - -
DETECTION

(b) Control Packet

M E MORY CHAN N E L 2

1 6 bits

F u l l d u p l ex

LVDS

Yes

66 M H z

1 33 + 1 33 M B/s

1 00 M B/s

256 bytes

Yes

32-b it Reed-Solomon

Receive

4 K B a n d 8 KB

Cross bar

800 to 1 , 600 M B/s

HEADER

CONTROL
I N FOR MATION

ERROR
DETECTION
CODE

On M E M O RY C H A N N E L l c l usters, the network
add ress is mapped to a local page of p hysical memory
us ing remapping resources contained in tbe syste m 's
PCI -to- host memory bri dge . Al l A l p haScrvcr systems
implement rh.:sc 1-cm apping resources . Other sys
tems, partic u l arly those with 3 2 - bi t add resses, do nor
i m plement this PCI - to - h os t memory re mapping
resource . On M EM O RY C H A N N E L 2 , software has
the option to enable remapping in the receiver s ide
of the MEMORY CHANNEL 2 adapter on a per
net\vork- page basis . When configured tor remapping,
a section of the PCT is used to store the upper a d dress
b i ts needed ro map any network page to any 3 2 - bi r
add ress on t h e P C I b u s . S u c h e n h anced mapping
capabil ity wi l l a lso be used to su pport remote access
to P C ! periphera ls across the MEMORY CHAN N E L
ne twork .

A s imple remote read pri m i tive was added to
MEMORY C H A N N E L 2 to su pport research i nto
software- assisted s lurcd memory. The prim itive
a l lows a node ro complete a re:1d request to another
node without software intervention. It i s i m p le
me nted by a new remote read-on-write attribute in
the receive page con tro l ta ble . The req uesti ng node
generates a write with the appropriate remote add ress
(a rc::�d - n.:q ucst write) . When the packet arrives at the
receiver, irs add ress maps in the PCT to a page marked
as rem ote read . After remapping (i f enabled) , the
address i s converted to :1 PCT read command . The
read data is retu rn ed as a M E M O RY CHANN E L wri te
to the s:1me address as the origi nal read - request write.
Since read access to a page of me mory in a remote
node is p rovided by a unique network address, pri v i
leges t o write or read d uster memory remain com
pletely in dependent.

A glo b<1l clock mechanism has been i ntrod uced ro
provide support [()r c l usterwidc synch ronization .
Gl obal clocks, which arc hi ghly accurate, arc extre mely
usefu l in many distri b u ted applications, such as p<u·a l le l
databases or d istri buted de buggi ng. The M E M O RY
CHANN EL 2 h u b i m pl ements this globa l clock by
pcriod i c1 l l y sen ding synchron ization packets to a l l
nodes in the cluster. The reception o f s u c h a p u lse
can be nLld e to trigger an interrupt or, on future
MEMO RY CHAN N E L-to-CPU d i rect - inte r race sys
tems, may be used to update a local cou nter. The
i nterrupt service software updates the ofrser bet\vcen
t he local time :�nd the global ti me . This sync hmniza
tion mechanism a l lows a u nique c l usterwidc time to
be maintained with an accuracy equal to twice the
rJnge (m ax - m i n) of rbe 1'vi E M O RY CHAN N EL net
work latency, p l us the interrupt service routi ne t ime.

Con d i tional write transactions have been i ntro
duced i n MEi\1\.0RY CHANNE L 2 to improve the speed
of a recoverable messaging svste m . On M E M O RY

CHANNEL l , the s implest implementation of general
purpose recoverable IllCSS<lging requires J round -trip
acknowledge delay to validate the message tra nsfer,
which adds to the communication latency. The
!\'\ EMORY CHAN N E L 2 's newly introd uced con di
tional write transaction prm·id cs a more efficient
i mpleme ntation that requi res a single acknowledge
packer, thus practically red ucing the associated latency
by more than a factor of t\vo .

Memory Channe/ 2 Hardware

As suggested in the previous archi tectura l description,
M E M O RY CH A N N E L 2 ha rdware components arc
s i m i l a r to t hose in M El'vl O RY CHAN N E L 1 , namely
a PC I adap ter card (one per node) , a cable, a n d a
cen tral h u b .

The MEMORY CHANNEL 2 PCI Adapter Card T h e PC!

ad apter card i s th�: hardware i n terface of a node ro the
M E M O RY CHANNEL n wvork. A b lock d iagram of
the adapter is shown in Fi gure 5 . The adapter card is
functional l y partitioned into t\I'O subsystems: the PCl
i ntert:Ke and the l i n k interf:1cc. F irst in, fi rst out (fifO)
queues arc placed bet�,·een the t\vo su bsystems. The
PCI in terrace commun icates with the host syste m ,
feeds r h e l i nk intcrflCe wirh data packers ro be sent, and
torwards received packets on to the PCI bus. The l i n k
i nterface man ages the l i n k protocol and data tlow: I t
f(xmats data p<Kkets, generates control packers, and
hand l es error code generation and detection. It also
multiplexes the data path fiom the PC! format (32 bits
at 33 megahertz [M H z]) to the l i n k protocol (1 6 bits
at 66 M H z) . In addi tion , rhc l ink interface implements
the conversion to and ti·om LVDS signal ing.

The tra nsmit (TX) and receive (�'\) data paths,
both heavi ly p ipelined, arc kept com pl etely separate
from each other, Jnd there is no resource contlict
other than the PCf bus access. A special case occurs
when a pac ket i s received with the acknowJedge
requ est bit or the loopback bit set: the paths in both
d i rections arc coord i n ated to transmit back the
response packet while sti l l receivi ng the origi nal one
(e mployi ng the gray path in Figu re 5) . Duri ng a nor
mal MEMORY CHANNEL 2 transaction, the tra nsmit
pipel ine processes a t ransmit request from the PC!
bus. The transmit PCT is addressed with a su bset of
rhc PCI add ress bits and is used to d etermine rhe
i ntended destin ation of the packet and irs attribmcs.
The transmit p ipel ine te�:ds the l i nk imcrbce with d <lta
packets a n d appropriate commands through the trans
mit F I FO queue. The l i n k intert:Kc formats the pack
ets and sends them on the l i n k cable. Ar the receiver,
the l i n k i n terface d i sasse m bl es rhe packet in an inter
mediate format and stores ir i nto the receive FTJ-:0
queu e . The PCI i n tcrbcc performs a lookup in the

Digital Tcc hni c,\l jou rn,ll Vol . 9 :--:v . l I ')97 35

F igure 5
B l ock Di,1;;r,1m of a MEl\ lORY CHA:-J :--i EL 2 Alhptcr

rcccil 'l:r PCT to ensure that the page has hccn enabled
r(>r reception and to determin e the loc1l destination
add ress .

I n the s i m p lest i m p lememarion, J1<1ckcr� ;nc subject
to tin> store -and- t(.>t-wJrd dclavs-onc on the rr;:msm ir
path <l lld one on the reccin: path. lkc;Juse oF the
;Homic in oF p:1.ckcrs, the trJnsmit p<Hh m u st ,,·a i r ten
the 1:-�st dac1 11-ord to be couccrll · t;J kcn in ti-om the
PU hus before tor11·ard i n g the JXld::ct w the l i nk inrer
t:Ke . The rccci1·e path ex perien ces a dcL11· hcc1llsc the
error d e tection protocol req u i res the check ing of the
IJst c1·cle bctorc the p<lcket c1n be d ccbrcd error- Fre e .
A s e t o f control/status 1VI EMO RY CHAN N E l . 2 regis
ters, add rcss<l b le t hrough the l1Cl , i s used to set ,.Jr i
ous modes oF operation :�nd to read loca l status of t he
l i n k Jllli gl obJI cluster status.

The MEMORY CHAN N E L 2 H u b The hub is the cen
tr;ll resou rce that i nterconnects <1 1 1 nodes to form
a c luster. F igure 6 i s <1 block d i agr;Jlll of <1 1 1 8 - h1 · - 8
M FM O RY C !-T.A;'\ :-\ F L 2 h u b . The h u b i m J1 Iemcnrs
;J non hlocking 8 - l)\'-8 crossb<lr <l l ld i mc r hccs w eight
! 6- b i r-11 ide fu l l -dup lex l i nks b1 · mcu1s of ;J i i nk i mer
bcc si 1 1 1 i l a r to that used in the <llhprcr. The <lCtual
crossbar Ius e ight i nput ports and eight output ports,
,1 1 ! I (> bits 11· idc . Each outpu t port h<ls an 8-ro- l mu lt i
plexer, which is able to choose ti·om one oF e ight input
ports. E:tch m u ltiplexer is contro l led bv a loc1l :�rb itc r,
ll' h ich is fed decoded destination req u ests ti·om the
eight i n pur f10rts. The port arbi n-.nion is b;Jscd on a

h\cd-prioritl·, request-sampl i ng :�l gori r h m . All req u ests
that •• n·i1 c 1\ · ith i n J sampl i n g i mc n·;JJ a1·c consid ered of
cqu<l l ;1gc <lllli Jre sen·iced bd(>rc anv nell' requests.
This <ligori thm, 11·h i l e nor ent(m.:i ng .1 bsol u te <llTi,·a l
tilllC mdering ;1 n10ng p<lckers scllt ti·om d i th: rcnr

\'oi . <J �'o . l] <)<)7

LINK
CABLE

nodes, :�ssu rcs no SLlJ'I'<lt ion and a bir agc-d riVl:n prior
ity Jc ross s:�mpl ing imcn·als.

vVben a broad c.1st rcqut:sr arrives at the hub, tht:
orhcrll'ise i n depe n d e n t arbiters synch ron i ze the m
selves to rra nskr the bro:Jdcast packet . The arbiters
11·a i r t(>r the com p letion of the packet c u rre nt l y being
transferred , d is<lb le poi n r-to - poi n t arbitration , signal
that tht:l ' :Jre rCllh' r(>r bro:Jd cast, and then ll'a i t r(>r a l i
o t h e r �1orrs w :t rri1-c at t h e s a m e svnchronizarion
point. O nce al l outp u t pons arc readv tor broadcast,
port 0 pmcecds to read from the appropriate i n p u t
port, a n d a l l othn ports (i nc l u d i n g port 0) sel ect the
s:�mc i n p u t source . The maxim u m synchron i zation
11·air tim e , ass u m i ng no outp u t q u eue blocking, is equJI
to the t ime i r t<l kcs to transfer the largest size packers
(2 5 6 lwres) , about 4 f.-LS, and is i ndependent of the
n u m ber of ports. As i n J IW cross bar arch itecture ll'i th
J si n gle poim of u>hcrenc1·, such broadcast operation
is mme cosrlv rhan a poi nt - to - point rranskr. Our
experie nce hJs been th<lt some cri tic:ll but rebtivcll ·
lo11 - rin.jucnn opcrJti ons (primari il' fast locks) exploit
the broadcast c i rc u i t .

MEMORY CHANNEL 2 Design Process and Physical

Implementation

Figure 7 i l l ustn rcs the mai n J'v! EMORY CHA N N E L

physical components. As shown in Figure 7 a , t\I'O-nod e
d u sters can be constru cted by d i rectly con necti ng two
M EMO RY C H A N N E L PCJ ad apters and a cable. This
contlgu rarion i� c:1 l led the 1·i r rual h u b contlguration.
Fi gure 7b sholl's c l u sters i nterconne cted b1 · means of
a hub .

T h e M E 1\!l O RY CHAN!'-ll--:1. adap ter i s i m plemented
:ts a s i ngle PC! c;mi . The h u b consists of a mother-

POR T 0
IN/O U T LINK I

_____. IN TERFACE 0
IN 0

POR T 1 IN/O U T LINK I _____. INTERFACE 1 I IN 1

PORT 7 - IN/OU T LINK I IN 7
IN TERFACE 7

Figure 6
Rlock Diagr;1m ofan l\-lw-1\ M EM O RY CHANNEL 2 Hub

bo:1rd that holds rhc S\\ ' itch and a set of l i nccards, one
per port, th:H p n)\· idcs the i ntcrhcc to the l i n k cable .

The :1d .1ptcr and h u b i m p l e me ntat ions usc a com
bi nation of progr: unmablc logic d C\·iccs :1 11d off-the
she l f components . Th is design 11 as prefe rred to a n
applic:nion-spcci ric i ntcgr:ncd c i rc u i t (AS I C) i mpk
mcn ution becau se of the short t ime-to-market

(a) VirtuJI huh mode: d i recr node- ro-noJe
intcrconnenion of tH"o P C : I J(bprcr cards

Figure 7
M I-: M O RY C : H A N N E J . I b rd\\':1 1'l' C :olll f'Oill'nts

1 6

1 6

1 6

I ARBITER 0 I
I : :=:�1

- - - 1 6 - - -

=F-1 - - -- - - 1 6 - - -

I A<C,L I

= = = ==F-- - - -- -1
- - - - - 1 6
_ _ _ _ _._......

i I I ARBITER 7 1

rcq u ircmcms. I n :1d d i tion, some of thc nc,,· fu nct ion
a l i t\' \\'i l l CH>ivc :1s softw:1 rc i s m o d i fied to t�1ke :1d 1· :1 n
tagc o f the ne\\' k:nu rcs . ·rhc M E,\1\ 0 il.Y C : H A N � I-: 1 . 2
design \\':15 de1·e loped c m i rc h- i n Vni l og :l t the regis
ter rra ns k r I C\·c l (ll.T I.) . I t \\':1S s i m u l :ncd u s i 1 1 g the
Viell' logic VC:S c1·c m - d ri1cn s i m u l :uor :1 1 1d Sl' ll t h c
s i zcd 11·i r h the S1·nops1·s too l . T h e re s u l ti n g n c t l ist

(b) Using the M E M O it\' C H A � N E I . h u h
to create c l usters of u p to 1 6 nodes

Disit .d Tcch 1 1 i c.li Jomn.1l \d . <.J :--;" · I I ')<.J7

ll'as ted t h rough the app ropri�lte 1 e n d or tools t(n
p!Jc ing a n d m u ti n g to the speci tic d e1·i ces . O nce the
J e,· ice 11·as rou ted , the 1·c ndor too ls f� ro1· idcd :1 gate
[c,TI Vui log ne t l i sr 11· ith tim i ng i n r(mnar ion, 11· h i ch
was then sim u l ated to \Tr i r\· the correcm ess o F t h e
synthes ized des i gn . B oardll ' ide SLlt ic ri m i n g �• n �1 l vs i s
11':.15 r u n u s i n g the Viewlogic JV!O'l' I V I-. too l . The l i n k
i n tcrbce was fitted t o a single Lucent Tec h nologies
O p ti m i zed Recon.ti gura b l e Cel l Array (0 RCA) Series
fi e l d - progra m m a b l e gate a rray (1-: PCA) de1· ice. The
l 'Cf i n te rrace was i mp l e m e nted ll' i t h one O RCA

r l'GA de\'ice and Sel·e ral h igh - s peed t\M D progra m
m a b le arrav l ogic del ' ices (PA Ls) . T h a n ks r o t h e i n
svstem progra m m a b i l i n· o F P;-\ l .s a n d 1- I'C;As , the
M EMO R.Y C H A N � F L 2 acbp rcr hoard i s d esi gned
to be com plete !\· reprogram m ah\c i n the ri c l d from
the s1·ste m console throu g h the I'CI i n tcrbce .

M EMORY CHAN N E L 2 Performa nce

This section presen ts NI FM O RY C H t\N N I-. L 2 pedor
mance data configured in v inua l h u b mode (d i rect
nod e - to - node connection) . 'vVhere1 e r possi b l e �Ktua l
m easu red resLllts are presented . A tll'o- node
AlphaSenn 4 1 00 5/300 cluster 11 �1s used t(Jr al l hard-
11'�1 re mc1surements.

Network Throughput

The MEMORY CHA0:�H. 2 net11 ork h :�s �l r�111 d ata
rate of2 b\'tes e1 en· 1 5 ns or 1 3 3 . 3 M B/s. i\'kssages :11-c
packerized by the inrerf:1ce i nto one or more MEMORY

C : HANN FL pac kets. Packers 11· irh thta p;ll' loads of4 to
2 56 bvtcs arc supported . Figu re K con1 p;1!'CS, rt ll' \'arious

1 40

0 1 20
z

I O I- u 1 00 o w
- (f)
;s: a: o w 80
� Q_ (]J (f) fa � 60
� in
<(<(1-- (9 <fJ w
� �

MEMORY CHANNEL 2 NETWORK
SUS TAINABLE BANDWIDTH

\

ALPHASERVER 4 1 00
MEMORY CHANNEL 2 CLUSTER

PROCESS-TO-PROC SS BANDWIDTH

0 4L_--�8----�1 6�---3�2�---6�4�--�1�28�--725�6
MESSAGE SIZE (BY TES)

Figure 8
;\1! 1-: M O KY C HA\l 0/ EL 2 Poi m - ro -poi nr l)a n d 11 idr i 1
.1s , 1 h1 1Krion of P,Kkcr Size, Com pa1·i 11!-'- \lc r 11 urk
Thcmcric�l ! .i m i r and S ustai ned l'rocc.\S- Lu - f't·occss
Mc�s u rcd l'cTturlll ,1 t lCe

\ 'o l . 'J :-\o I 1 9'!7

packer si zes, the m�l\: i mum b;md 11·id rh the M EM 0 I� Y

CH/\N 01 EL 2 netll'ork is cap:1ble ofsustai ning 11·i rh the
efrecti,·e process-to-process band11id r h achie1·ed using a
pai r o f AJph:1Sen er 4 1 00 S\'Stems. With 2 5 6-bl'te p:lck
ets, M EM O RY CHAN N EL 2 achi n·es 1 2 7 iVlB/s or
about 96 percem of the rail' ll'ire bandll'idth .

For PC! IITites of less than or equa l to 2 56 bvtes, the
MEMORY CHANNEL 2 i n terface simply converts the
PCI write to a si m i l a r-size iVIEMORY CHAN N E L

packet. The current d esign does not aggregate mu lt i
p l e PC ! wri te tra nsactions i mo a s ingle M E MORY

CHAN N E L packet �md a u tomatical ly breaks PC! writes
larger tlun 2 5 6 l)l'tes i nto a seq u e n ce of 2 5 6 - l)l'te
packets .

As Figure 8 sho11 s , the bandll'i d t h capabi l itl' of the
NlFMORY C :HA:\'0:FL 2 ner11 ork exceeds the susta i n
able d ata rare of the A I p h aSe n cr 4 1 00 SI'Ste m . T h e
Alp haScnn s1·sre m is capJblc of generat ing 3 2 - bl'te
packets to the M E1VI O RY C H.Al"lNEL 2 intcrbcc �1 r
88 MB/s or about J O perce nt less than the maxim u m

net11'ork bandll'idrh at a 3 2 - byre packet s ize . This rep
resen ts a 3 3 percen t bandwid th i mprovem e nt over the
previous-ge neration M EM ORY C H A N N E L, whose
effecti1·e band11 i d r h ll'as 66 M B/s . An ideal PCJ host

i n terf�1ce ll'n u l d achin·c tht ful l 9 7 M l3/s, b u t the
current A lph�1Sen·e r 4 1 00 des ign i nserts a n cxtr:J PCI

sta l l c1·cl e on su st�1 i n ed 32 - Lwre IITitcs to the l ' C I . The
3 2 - bnc packet s ize is a l i mitation of the Alph:.1 2 1 1 64
microprocessor; i 'u tu re 1 ·ers ions of the Alp h a m icro
processor 11·i l l be ab le to genera te larger 11ri tes to the
PC! bus.

Latency

Figu re 9 s hows the l:t tency comributions :-t long �1
poi nt-to-poi n t path from a se n d i n g process on node
1 to :1 recei1· i n g p rocess on node 2 . Using a s imple
8 - Lwre p i ng-pong rest, we d e termined that the one
ll'ay latencv ohhis path is 2 . 1 7 f..LS . In the test, a user
process on node 1 sends :11) 8- Lwre message to node 2 .
Node 2 is pol l i n g i ts m e mor1· \\'a i r ing tor the mess;1gc .
A fter node 2 sees the mess�1ge, it sends a s imi lar mcs
sage h.1ck to node J . (�ode 1 sL1 rted pol l ing i ts me m
on .1fi:er it s c m rhc pre1· ious message .) One -11 �11
lateiK\' is cal c u LHed lw d i1·i d i ng [)I' til o the rime it u kcs
to complcre a p i ng-pong c .;cha nge . Apprcl\ i m�lte h-
3 3 0 ns e L1pse ri-om the ri me a sending processor issues
a store i nstruction umil the store propagates to the
sender's l'Cl bus . The L1tency fi-om the sender's PC! to
the recei1·e r's PCI over rhe MEMORY CHAN N EL 2
network is abour I . l f..LS . 'vVrir ing the main memmv on
the rece i1n nock L1k.es �1 n :td d it iona l 3 30 ns . F inalh',
the pol l loop L1 kcs :1 1 1 ;1\·eragc of about 400 ns to rc.1d
the rJ:tg \ a luc fi·om me mOl'\'.

T:tblc 2 shc lll s tllC process-to - p rocess one-11·a1'
message L1te11c1' r(Jr d i fkrem tl'fXS of com m u n i cations

, - - - - - - - - - - - - - -,
NODE 1 (SEN DER)

PROCESSOR

MAIN

I
WRITE

I ME MORY
BUFFER

<'=== > � I I CPU BUS

330 ns

HOST
BRIDGE
TO PCI

PCI BUS ' II
·· · · · · · · · · · · · · · · · 1·1

I
. 1

ME MORY

�
CHANNEL
ADAPTER

L - - - - - - - 1(- - - - - _j

CABLE

F igure 9

, - - - - - - - - - - - - - -,
I NODE 2 (RECEIVER) I
I
I
I PROCESSOR

I
I A

I s I
I <
I CPU BUS I I
I
I HOST

I BRIDGE

I
TO PCI

I
I I I
I II . A
I
I
I

M EMORY
CHANNEL

I ADAPTER

I

MAIN
M EMORY

A

�

I
I
I
I
I
I
I
I

s: 330 ns

PCI BUS

I
I
I
I
I
I
I
I
I
I

L - - - - -Jr - - - - - - - _j

Ln�nc1· Conrri b u r ions � long rhc Parb �-mm �1 Sender ro �� Recei1·er

at a fixed 8 - bytc mcss�1gc s ize . The first row contains
the resu lt of the ping-pong experi ment previously
descri bed . For compariso n , the previous generation
of ME!YlORY C HAN N E L had a ping-po ng latency of
2 .60 IJ.S. The second row represents the latencv t(Jr the
si mplest impl e mentation of ,·ariable- length messaging.
The l atencies ofstanlhrd com m u nication intertdccs arc
sho\\'n in the last two rows, namely, High Pcrtcmnancc
Fortran and Message Passi n g I nt erface . The results
shown i n this ta ble arc only between two and three
times slower than the l atencies measured t()r the same
commu nication inrc rt:Kcs over the SMP bus of the
AlphaServer 4 1 00 svstcm.

Table 2
M E M O RY CHAN N E L 2 On e-way Message Latency
in V i rt u a l H u b Mode for D i fferent Com m u n ication
I nterfaces

Communication Type
One-way Message Latency

(M icroseconds)

Pin g-pong 8-byte messa g e 2 . 1 7

8-byte messa g e p l u s 8-byte f lag 2 .60

H P F 8-byte message 5 . 1 0

M PI 8-byte messa g e 6 .40

The l atency of the M E M ORY C H AN N E L 2 network
i n creases with the si ze of the message because of the
presence of sror c- and - torward del a�'S in the path . As
discussed in the previ ous h<1rd w�1rc descr i ption, a l l
packets arc su bject to two store -<lnd - tCJrward delavs,
one on the outgoi ng butkr and one on the incom ing
buffer (required tor error checki n g) . These delays also
p lay a role in the effective bandwidth of a stream of
packets . O n the one hand, smaller packets arc less etli
cient than larger ones in term of overhead . On t he
other hand, smalkr packets incur a shorter store -and
forward d e lay per p;�cket, which Gin then be over
lapped with the transfer of previous pJckcts on t he
l ink, making the O\'era l l transter more c Hic i en r . The
h u b performs cut-through packet routi ng with an
add itional d e l av or' about 0.5 IJ.S .

Summary a n d Future Work

This paper prese nts an overview of the second
generation MEM ORY CHAl'\JNEL network, MEM ORY
C H A N N E L 2 . The rationa le behind the major design
decisions arc discussed in l i ght of the c :;pcri ence
gained from M E1\IIORY C HAN N E l. l . A de scri ption
of the M EMO RY C HANNEL 2 hat-dware components
Jed to the presentation of measured pcrfcmnancc resu lts.

Digital Tcchnic.1l }ou rn.�l Vol . 9 No. l 1 997 39

40

Co mp:� red to other more trad it ion;\! i nrercon nccrion
net11 mks , M E ,\!ORY C:HA� � E L l pn ll id es u n p;lr<l i
l c l c d lle d(m JL\ncc i n terms o f h tenn ;md b;md ll · id rh .

;\H- :J\'\ O RY C H :\� � E L 2 fi.1nhn en iJ ,\ I JCes pert(x
JJ1;\ 1Ke b1· 11ro1 iding poi nt-tO-Ilo inr h;md11· id rh of 97
M B/s per second t(Jr 3 2 - lwtc p;lc k.e ts , ;\1\ ;Jilpl icJt ion
ro-appJ i carion htcnC\' of less th;J I J 2 .2 m icroseco nds ,
,\ IJd ;J cross-section band11 idrb of l ,000 J'v\ B/s tor 8
nod es :�nd 2 ,000 M B/s t(Jr 1 6 nodes. I r al so provides
en ha nced so ftwJrc support to impro1·e the perl(mn an ce
of tiK most common opeLJ ti ons i n ;\ c l u ster em· i ron
menr, e . g . , globJl S\'nchmnizarion , a mi red u ces rhe

col\\ ll lc.\ itl' or· the so m1 ·a re l :n-c r lw pm1 · id i 11 g ;J mme

tl nih lc ;Jdd ress nJJppi ng. In ;Jd d i r io n , the i\ \ E i\ ·t O KY
CH .\�� 1�] . 2 net�,·ork Ius been d es igned to he borh
I J :Jrdii':Jre ;\1 \d soml are compatib le ll'i th future ge ne r;J
rions on ei ther copper or ti be r-op ti c comm u n i uri on UJl
to ;J d istance of 3 ki lometers . future gener;J tions of rhc
M r-.,\ \ 0 RY CHA))))EL arcll ltcdure 11·i l l hmdir hom rile
M l-}vl OKY C H A N :\T F I . 2 c.\ 11ericncc ;J i ld 11·i l l comi n u e
to prm · idc e n h;mcemcnts r o com m u n ic :Jt ion pedor
m ;J n cc ;md to fu rther rdi ne those meciLm isms i n tro
d u ced ro s u pport par;J I I c l c luste r soft\\';Jre .

Acknowledgm ents

iYLl il\' th;J n ks to Ed Benson t(J r JlrOI id 1 ng the d ct;J i lcd
me ssage - p ;Jssi ng pcrt()l'lll<\ 1 \Ce d ;Jt ;\ conuined i n this
11 apcr . D I C IT.\ l . 's ,\ \ f.,\ I O RY C H A � � r l . 2 tl'<l i\J
d es 1gncd ;J n d i m Jl leme ntcd th e scco i 1 d - i-'-c ncr;Hiol 1
,\ \ 1 . .\ \ 0 RY C H :\\: :\ U . s\·stcm d csui hcd . \Va,·nc
Bmrm a n , Ko ben Dickso n , 1\b rco 1-'i l lo , Ri ch;l rd
(; i l lcrr, John G rooms, Michae l McN am;Jr�\ ,) o n :J t l 1 :Jn
Moorv, ,md DaH' P i m m ll'erc the 1VI E M O R.Y

C H A N N E L 2 designers. Dale Ked., .Ed\\ ;Jrd Tu l l oc h ,
a n d Ron C:am ll'ere respons i b l e t(Jr t h e desi gn 1nitic1-
ti o n . Bri�J n 1\ikQuain was respo nsi b le t(> r the pri med
circ u i t ho�1rd Lll'o u ts . Ste1·e C1 lll flhc l l 11'�1'> the mcch:J n
ic ;1 1 e ngi neer 0 11 the h u b e n c losu re . Spcci ;1 1 rh;m ks go
to j o h n (;roo m s a n d Michael ,\il c:"<1 11 1 ;1r:J t(> r t h e i r
consr r u c ri' e comments ;1nd t(Jr prooti·c1 d i n g the
m ;J n u scri pr . The aut hors a l so t h a n k r i le a nom · mo us
rc tc rcc<, ti >r their com m e n ts ;md su f:',gcs ti o ns , " h i c h
consi dc r<1bk impro1cd t h i s p;1per.

References and Notes

I . C. J' l isrcr, In Si'!ii 'C/J uj' Oush'IS 'flw Cu111il l,!!, !3nllle
in /.011 '/) ' !'am/lei Computinp, (l ·. 1 1g_lcll'ood C l i ft<
� J : l 'n: n ri n: l U I , \ 99 :1) .

2 ,\ \ h l l o , ",\rc h i tectu i·JI S up[)OIT h>r Scil' I H i lic :\pp l ic;\
r io i \ S 011 ,\ J u l r icom p utns ," Series in . 1 / ic rucleel ruu
ics. 1 ·o l . 27 (Konsr.1 n 1. , l;l'l'lll<1111 · r b n u n g · Cl)n·e

\ 'nl .l!-L, 1 9lJ j 1 .

3 . D . l�c' l 't,ek:ls cmd J . Tsits ik l i s , ! 'om/lei 1111tf f)isrn'IJ
" led < . i ' " '; m 111 I ion . . \ 1 1 1 /WI'ic'U I . l !cl l •uds 1 L 1 1 g; l c11 ood
C l i fl' . � 1 . l'rcmicc H .1 1 i , 1 9 1\l))

\ ol . lJ � < > . 1] l)')7

4.) . H<lrr is e r � 1 . , " Com p i l i ng H i gh Pcr t(mn<lnce Forrr�1 1 1
li>r Disrr ibu red - m c m o 1'1' S 1 srems," D�gita/ 7ccll l l leo/
Jonrnol. 1 o l . 7, 1 1 0 . 3 (1 99 5) : 5-2 3 .

::> . R. K:w ti\1:\ 1 1 ! \ �l l ld T l{.cddin, " D i g1 t� l ' s Cl us\crs :1 11d
Scicmiti c l ' :u·:1 l l c l Apl1 l icui ons," Pruceedin;.;s u/
CO.l //'CO\' ·%. S a n jose, C1l i f (Fcbru an· 1 99 6) .

6 . ;'v[All 1 L1r;uo n c , C: l'oiJ\ IJlt:r c l l , �llld R . Rueh l , " l nr c r
pron:ssm C :on1n1 u n icui o 11 Speed �md Perfom1�1 1 1 e c i n
Di srri burcd · Mcn 10 r 1' P�1 1·�1 1 ! c l Processors," l'mcccd
inps o/ tbe I (Jt/! f!llc 'I 'I ICfliul lol S) •mposiu m on CiJIII
jmlcr ;l rc/Jileclu rc.'. Je ru sal em , Israel (M �1· 1 9 8 9) .

7 . C. t'onL lllLTC I I , i\ \ . :\ n n ;1r:nont, ;1 11d \V. Fichmer, "A Sn
of �c11 ,\ L1p11 i ng �lllll Coloring H c u 1·istics h.JI' Disrr·i b
u tcd 1\ \ c nL o n t'c11·�1 1 ic l l'mce;,sors , " .'>1/JJJ .fr!II I ' IWI r m
Scicnlijic Cl/ 1(/ Slulisliurl Co111pulin:,; \ J�Lnu cu·l 1 992) .

8 . S . Borkc1r c r :1 1 . , " S u p11mLi ng S1·swlic a n d ,\lemon
Con1 1 n u nicHion i n i \Vaq>," fJmccediup,s oftlw I 7!/!
I 11 lerno I ion({ I SJ!II fiusiu 1 1 1 on ())Il l fm fer /1 rch itec
ture. Sc.mlc , W�1sh (,VL\1· 1 990) .

9 . 1\'\ . Fi l l o c r .1 l . , "The M - M a c h i nc M u l ricompurcr,"
Pmet'ediug,· o/ the '(\ \ '11 Srmposi11 111 0 1 1 Jficm
arch itecru n ·. A n n Arho1·, M i c h . (1 995) .

1 0 .) . Dong:uT�1 , " 1\:rl(mn:mcc ofV:Jrious Computers Using
St�uJd.mi Line.1r 1 -:qu :nion Sortii'JI·e," Tcchnic.1l Report
C:S-89 - S :=i (KilO.\I i l l c , k n n . l ' n 11·crsitY of Tl'llncssec ,
Com puter Science I)q>.u-rmcnr, Dece m ber 1 9 , 1 996) .

1 l . H . C.LsS,\ 1 \m c1 , j . DongJtTJ, and \V. J i .mg, "The l'cr
t(mn:H1Cc o t. l'\ ' ,\ 1 o n .\ \ 1'1' S1·src 1m," Tec l m i c1l Re port
L' I - C : S - 9 S :1 0 1 I K 1H l\ 1 i l l c , Te n n . : U n i 1crsin· ot Tcl 1 -
n l·s scc , C :Oin p u rcr SciciKC])ep c1 1'tlllC nt, 1 99 5) .

12 . K . C i l lc rr :1 1 1 d 1\ . K:1L1 f111 a 1 1 1 1 , " t.\ pcrit:ncc U s i n g rhc
.Fir, l l;t:�1lT:ll'ion Mc rnor1 Ch<1 11lld for PCJ �c t11 ork,"
l'rocccdill,!!,.\ u/ llw 1th Hut fnterco ! l l /ects Cun(creucc
(1996) 20 S-2 1 4 .

1 3 . K. M:nri n er :1 1 . , " I:'Jkcrs of C :on1 111 1 1 1 1 icuion Larcn cl',

(), crl1c1d , J n d B�l n d ,,· idrh i 1 1 c1 Cl uster Architect u re , "
f'mceecliuy,s o/ lhe l "ilh fnlernofiouu/ 5)'11/fJusil l l l l
0 1 1 c . ! 11 llfJII lei ' ! I rclulec/ 1 1 re I ,\,I a 1 · 1 997) : 8 5-9 7 .

1 4 . T. \ Oil Ficken. D. C u l l e r, S . C o ldstc in, •l nd K. Scha uscr,

" Acri 1 c ,\'\cs\:lgcs: :\ ,\'\cch.mism for I nrcgratcd C:o m
l l l ll l l i Otion J n d C :o m puurion," Pruceedii i,!!,S clj the
1 9th fulenwtiouo/ S i 'l l lfiusilrnl on Gmlputer/J rcbi

lecture. C o l d C : o�1sr, ;\ u stnl i3 (i'v \ :\1· 1 992) : 2 5 6-2 6(>

1 5 1(. Ke cron , T A1Hkrso n , ,1 1 1d D . P�1trcrson, " Log l'
Q u •1 1 l t i ti c d : TllC C1sc t(n Lo11 - ()1-nheJd Loc :1l A1·c1
Nc r11 orks," l'mceerlinj!,s oj' Hut fnterconuec ts Ill. ,1
SJ 'III/!<Js il l l / 1 1 1 1 1 I fr,!!,/1 f'eljrJI'/1 /0I /ce lnterco u nects.
S o n t(mi, C 1 l i f. (Au g u s t 1 99 5) . Also �11 a i l :1blc c1r
l1 rtp :/ jl 1 rrp .cs . l>l·rke lc1·. cd 1 1/-kkceton/ l'Jpersjpc1pcr.
h rm l .

\ 6 . 1 C Ci l krr. " ,\ \ c 1 n on· ChJnnel �ctwork for P C! , " /1:1:/:

.l /icr(J (I · e b r u :m i Y<J6) : 1 2- 1 8 .

1 7] . Bro s 1 1 :1 1 1 ,) . I . J\\ ton, :md T. Rc d d i 11 , "r\ H i g h
l'ntorm:1ncc I'\ ' .\ I t(n :\l 1)h.1 Cl u s tc' l's ," Secu nd l:·um
fJcrru 1' 1 . 1 ! (. (,u;i·rcucc (I Y9S) .

1 8 . W. Cropp and E. Lusk, "The M Pl Co m m u n ication
Li br�r\' : Irs Design and �' Port�1blc l mplcme nration,"
h ttp :/ jii'II'W. !llCs . a n l .govj Papers/Lusk/ m ississi pp i/

papcr. hnnl (A rgonne, I l l . : Mathematics and Com puter
Scie nce Div ision, Argonne N :ttioml Labor,ltorv) .

19. W. C1rdo v , F. G l mcr, and W. Sn a man , Jr. , "Design of
the TruC i uster M ulticompu te r System for rhe Digi tal
L]\IJX E1wi ron mcnr," Dig ital Fech nical]ournal, vol.
8 , no. I (1 996) : 5-1 7 .

20 . I n r(mn ation about t h e Transaction Processing Perfor
mance Council (TPC) is a,·a i l a b l e at htrp :/ jwww.
tpc .org.

2 1 . 1\tl . Blumri c h cr a l . , "Virtual Memorv Mapped 1 e r
work fnrcrt:.Jce for rhe S H RI M P Mu lricompurcr,"
Proceedings of the 2 1st IJZ!ernationu/ Symposium
011 Computer A rch itecture (Apri l 1 994) : 1 42- 1 5 3 .

22 . R . Gi l lett, M . Col l ins , a n d D . Pimm, "Overview o f

Network Memorv Channel t(Jr PCI ," Proceedinp,s ol
CO:l I PCON 96. s�m Jose, Ca I i f. (I 996).

23. l n form�Jtion about the s,alablc Coherent [n re rface is
:wai lab le :tt Imp : / /II'II'W.SCl zzL.com.

24.

26

�. Boden cr a l . , "Mvrinet-A Gigabit-per-Second
Loc:tl Area Nerwor· k ," TEJ::L :vlicro, vol . 1 5 , no. 1
(h bruarv 1 995) : 29-36.

J . LmTon cr a l . , "Bui lding �� High Performance Message
P:1ss ing Svsrcm f(Jr Memorv Channel Cl usters," Digital
T('chn iwl.frmrmtf. vol . 8 , no. 2 (1 99 6) : 96-1 1 6 .

I EEE Draft Srand:mi t(x Low Voltage Difrercnrial Sig
nals (LVDS) f(Jr Sellable Coherent J nrertace (S CI) .
Draft IEEE P 1 5 96 . 3 - 1995 .

Biographies

Marco Fillo
M:�rco h l l o i s a pri ncipal engi neer on the MEMORY
C H A N :-.J E L 2 team i n the A1phaServer Engineering
Group He is responsible for the design of the MEMORY
CHA :-.JN E L 2 l i n k protocol and h u b . Be fo re jo in ing
D I C ITA L in Septe m ber 1 99 5 , M :1rco he ld a position as
researrh associ:nc at M .l .T. i n the Arriticial l nrel l igencc
L1bor<Horv, "' hc r·c he \\'aS one of the arc h i tects of the
,VI -Mach i ne , a n e xperi men ta l multithreaded paral lel com
puter. Marco obt�lined �� Ph . D . in electrical engi neering
h·om the Sll'iss I nstitute ofTech nologv, Zurich, i n 1 993 .
He i s a member o f t h e 1 FEE and ACM , and his research
in terests JtT p:�r:t l lcl com �)uter archirccn11·es and i nter
processor comm un icni on networks .

Richard B. Gillett
l'l..ick Gi l lett is �� corporate consult ing engineer in Digita l
EL] U ipm ent Corporation's A lp haScrver En gin eering
G ro up , where he designs �1n d de,·elops custom VLSI ch ips ,
1/0 svsrcms, and SMP svstcms . As D I GITAL's par:1 l lc l
duster arch itect, he ddined and led the M EMORY
C H A N N EL project. He holds 1 7 parents on i m·enrions i n
S M P arc hi rcctmes and h i gh - pedorn1<1ncc co m m u ni cnion
and has parents pend i n g on the MEMORY CHAN N E L
for P C f network. H i s pri marv i nterests a r-e hi gh-spe ed local
�nd di stri buted shared - m emory architectures. Rick bas J
B .S . i n electrical engineerin g ti·om the Univcrsirv of New
H a rnpshire . He is a member of the J F E E and the IEEE
Computer Socierv.

Vol . 9 No. 1 1997 41

42

Integrating ObjectBroker
and DCE Secu rity

The i ntegration of the ObjectBroker software

product with the Distributed Computing

Environment (DCE) Security Service ma kes

ObjectBroker the most secure object request

broker (ORB) in the industry. ObjectBroker and

DCE Security together a l low client-to-server,

server-to-client, and mutual authentication.

The i nteg rated software provides these security

functions, as wel l as message i ntegrity protec

tion, tra nsparently to the appl ications. I ntegra

tion has been accompl ished in a way that a l lows

plug-in replacement of the ObjectBroker security

subsystem by DCE Security, Kerberos, or any third

pa rty software security product that su pports

the DCE's Generic Security Service Appl ication

Progra m m i ng I nterface (GSS-API). This approach

supports future GSS-API-com pliant third-party

security products based on Kerberos and also prod

ucts that may address other security technologies

such as biometrics and smart cards. In addition,

the approach places responsibi l ity for compl iance

with I nternational Traffic in Arms Reg u lations i n

t h e hands o f t h e purveyors and owners o f G S S

l i braries rather than with the O R B vendor. Note

that the ObjectBroker product is middleware

jointly developed and distributed by DIGITAL and

BEA Systems, who have formed a worldwide tech

nology and distribution partnership.

Diginl Tcchn iul journa l Vol 9 No. l 1 997

I
John H. Parodi
Fred W. Burgher

An object request broker (0 RB) is a d istri buted soft
\\.�l re l ayer that trans lates abstract service requ ests
from a cl ient appl ication i n to req u ests for speci fic

servers, regardless of whe re those servers actua l l y
reside on the network . ' In th i s way, O RB s provide
:1 m i d d le tier in muJti tiered c lient-server systems . The
O bjectB roker software , deve loped and d istri buted
bv strategic partners D I G ITAL and B FA Svstems , i s
:�n i m plementation of the Common Objec t Request
Brok.e r Archi tecture (C:OlU3 A) speci fied bv the Object
1VLm:�gement Group (O M G) . '

Secu ri t\' i s �l growi ng concern r()r those who manage
d istributed compu ting svstems, and the security options
avai lab le to the COJU) A com m u n i ty have been qu i te
l i m i ted u nti l recently. I n the p:1st year, OMG has
adopted a specification for :1 CORBA Security Servi ce ,
<l l though few commerci :� l l y ava i l a b l e imp lementati ons
ex ist at the t ime of this writing.

O utside the C:ORBA commu nit\', one \\idely accepted
st�l lld a rd tor secu r i tv i n d istri bu ted , heterogeneous
S\'Stcms is the Generic Secmit\' Sen·ice App l icat ion
Progra m m i ng Interface (GSS-API) , ' ·' as specified bv
The Open Group (which was r(Jrmeci bv the merger
of the Open Software foundation and X/Open
Company Ltd .) . ; The GSS - A P I provides the abi l ity tor
sofuv:�rc entities in a d istri b u ted appl ication to authen
ticltc one another and to protect ongoing comm u ni
cation between the m . The Distri buted Computing
Environment (DCE) Securitv Scn· ice prov ides an
implementation of the GSS - A P I as one wa\' to access
i ts sccu ritv SCI'\'ices.

P lans �l i'C u nder 11·a\' to i mplement the COIU3A
Sec u ri tv Sen· ice i n the ObjcctBroker software, but
the i mplementation speciticnions were not complete
when O bjectB roker version 2 . 6 was designed . At
present, by i n tegrati ng su pport f(Jr GSS-API irnpl c

lnentations, the ObjectB roker software provides i ts
customers state-ofthe-art d istribu ted system secur i tv
with the widest choice of securi rv tec hnologies and
prod ucts . The first com merc i a l �\ ' ava i l able GSS-API
im p lementation \\'as the Kcrbcros-based DCE Securitv
Scn·icc i tself� but other i m plementations, \\'hieh usc
a \'�1 1 · ietv of securi t\' tec hnologies and arc produced Lw
\·arious independent sofTware \'cndors, arc expected to
fe l l low soon .

Secu rity

Ens uri ng secure com m u n iution a mong e ntit ies in a
d istri bu ted computer S\'Stc m is a cha l l engi ng task .. The
term sccur itv norm a l l v i nc l udes t h ree bro::td cl asses
of svsrc m rcq u ircmcms : ''

l . Sccrecv/pril'ac\·-thc a bi l i n· to protect information

ti·om u nau thori zed access

2 . I megrin·-rhc ab i l i tv to protect i n tcm11ati o n from
u n authorized a l teration or destruction

3 . A1·ai l ab i l irv-rhe ab i l i tl ' to ensure that l ::t ! i d access to . .
i n tcmnarion c::tn be �1Ccomp l i shcd in a rime l v man ner

Ent(Jrcc ment ob sccuritl' po l icv is accomp l ished by
wav ofrh c t(J I !owing sccu ri n· fu nctions :

• Authentication-the vcri ticnion of the i d c nt itv of a
sccu ri t\1 pri nci p�1 l

• Au thori zation-the determination of wh ich pri nc i
p:� ls can pcrh.mn wh ich actions

• Access contro l-the c n torccment of the sec uri ty

po l icy, b�1scd on au t he ntication :md a u thorization
i n t(mn ar ion , to determ i n e whethe r to a l low or dis
a l l ow :1 parricu L1 r �1ction

The Distributed Computing Environ ment

The O pe n C ro u p's D istrib u ted Computing Environ
mcm i s Jn i ntegrated , stand ard set of tech no logies ,
tools, �md scn·iccs that enables the dc, ·c l opme n t and

d c p i OI' lllcm o f d istrib u ted �1pp l iur ions i n a hete roge
neous, m u lti1 ·cmior com p u t i ng c n1 ·i ron mcnt . - Tvp ic
J I II , S\'Stem 1 cndors i mp l e me nt the DC :E on thei r 011·n
pia tt(mm . 'fhc DC:E hJs been endorsed lw 1· irtua lh· JIJ

S\'Stc m 1 cndors, i nc lud i ng l li ,v1 , H P, D I (; J TAL, N C R,
Srr�nus, C:Lll , H A l . , H i tach i , Sicmms .:\l i x dort� ?\'EC,
D Jta Ccnc ra l , B u l l , Tandem, Trans�1rc, SC:O, GrJd ient,

S i e mens PITa m i d , �1 11d O l i1-crti .
The l)C : t-: prm id cs the td l owing six tech nologv

com pone n rs :

l . Remote Proccd mc C1 l l (Rl'C :) , 11 ·h ic h bci l i tates

d istri buted com m u n i c1t ion

2 . Di rccton• Scn· icc , wh i ch p rov id es a s i ng le n a m i n g
mode l rhmugh ou r the d istri bu ted e nv iron me nt

::\ . Scc u ri rv Scn·icc , which provi des rel iable a u thcnt i
Glt i on , au thori zJtion, <ln d da t<1 protection

4. D istri bu ted Ti me Service , which sync hronizes the

network system clocks

5. Distri buted F i l e Service , whi ch prov ides access to
ncrworkwidc ti l es

6 . Thrc1ds Scn· i cc (Th e DCE uses POS IX threads
where �1\'�l i l a b l e ; on operating S\'Stc ms where POSIX

is not J\'ai lab le , the net-: suppl ies a thrcJds package
that prm ides the S<llllc in tcr bcc <1S !'OS I X threads .)

D C E users can be c haracte rized bv thei r need to
d eploy and/or i n tegrate large -sca l e app l ications on
m ultip l e heterogeneous platt(Jrms . The most common

reasons given t(x choosi ng the DCE arc i ts secu ri ty
features, its scalabi l i tlt, and i ts robusmess.

DCE Securitl' p rovides the td lowi ng services:

• The DCE Authentication Service al lows users and
resources to prove their identi tl' to each other. This

service is currentk based on Kcrbcros, which requires
that al l users and resources possess a secret kcv.

• The DCE Authorization Service \'Crifics operations
that users may pertonn on resou rces . A DCE Rcgistn·
contains a list ohalid users. An access control l ist asso

ciated with eac h resource determines valid users and
the types of operations a user ma\' pcrfimn .

• The D CE Data l ntegri tv Service protects nct\vork
data ti·om tamperi ng . Autom::�ticallv generated
cryptograph ic checksu ms arc appended to nctlvork
tra nsm issions, a l l owi ng the D C E to determine i f
d:�ta has been corrupted i n tr::�ns it . The e ncrypted

c hecks u m is a message a u t h e ntication code (MAC)

based on the Data Encryption Standard (D ES) .

O bj ectBrokcr uses the D C E Authentication a n d Data
I ntegrity services.

ObjectBroker Security

Al though DCE Sec u r ity prm'ides three b<lsic l evels
of protection (None, DatJ I mcgri ty, and Priv:�cy) ,
O bjectBroker uses only the D atJ I n tegrity l n·e l .
This level provides a mechanism that computes an
encrypted , time -stamped checks u m and attKhcs i t
t o t h e message s o t h a t an\' atte mpt t o c hange or

rep lav the i n formation can be detected . I n addit ion,
ObjectBroker uses np l i ci t cal ls to the DC:E Sec u ri tl'

l i brarv's GSS-API to acco mpl i sh amhentiution bur

ma i n ta i ns its o w n access control l ists and authorization
database and mediates access control i tse lf.'

Note that within J DC:E ce l l , it is possi b l e to usc the
DCE RPC with the DCE Sccu ri n· Service to protect
com m u n ication �lt the wire protoco l l eve l . However,
because O bjcct B rokcr docs not usc the D C E RPC
w i re protoco l , i ts usc of the D C !-: Scc ur i tv Service
is accomp l ished by means of e x p l i c i t ca l ls by
O bj ectB roker to the GSS - A P I imp lementation .

O bj ectB roker's usc of the DC:E Secu ri ty Service

provides data i ntegri ty protection , a u thentication of
c l ie n ts to servers and servers to cl ients , and protection
::�gainst rep lay and sequencing a ttacks. A l thou gh

e ncryption is used to creJtc the d igita l s ignatu res
that provide these protections at the network Data
I n tegrity l evel , Objcct Brokcr docs not d irect ly s u p
port t h e capab i l ity to encrvpt data, e v e n o n nodes that
have Privacy- level DCE Sccuri tv Service su pport.
O bjcctB rokcr prov ides no protect ion trom den ia l of
service attacks e ither.

Dig;ir;1l Tccilniul)ot trnel! Vol . 9 0!o I 1 997 43

44

O f cou rse , a customer's use of D C : E Secu ri tY is
c nr irc l 1· optiona l , a n d the sec u rirv mechan ism used i n
previous \Trsions o f the O bject B roker so ttl\ �1rC i s sti l l
su pported . \Vith this mechan ism , ca l l ed trusted sccu
ri tv, the nodejusername assoc iated with �1 req uest
ti·om ;1 remote node is accepted ro be ;1s c L 1i mcd . For
trusted scc ur itv, O bjectB roker uses ;1 proxy approach
in which the node/usernamc associ;ltcd with a remote
request is mapped to a proxy iden ti ty on the se rver's

svste m . A n access control d ecision is t h u s based on
the a u t horizati on i n formation f(Jr the pro x y iden t ity.
The proxv :1pproac h to the trusted sccu ritv mcc h;m ism

\\';1S nccessarv because there w:1s no concept of g loh:tl
i dcmin· f(:>r �1 user, that i s , ;l !l id e n r i tv knom1 to :1 ! 1
compu ter nodes i n a distri buted S\'Stc m .

To i mplemenr D C E Securin· on a p;1rric u l ;1r plat
t(mll, a Sccu rit\' I ntegration Arch i tectu re ;Kcompl ishes

the mapping of a global lv understood username (e .g . , a
user or a secu rity pri ncipal defi ned wi th i n ;1 DCE ce l l or
;1 Kcrbcros rea l m) to a login oLl loc1l user on ;1 p�1rticu

l a r syste m . Some implementations ot. l) C E Secu rity .md
some systems (for example , t he OpcnVMS operating
system) usc the notion of i ntegrated or globa l logi n , i n
which a loc1 l user logi n also causes a globa l user logi n

ro be pcd(mne d . For the Open VMS svstcm , the glob;ll
rea l m is the cluster. For the impleme ntat ion of DCE
Sccur i n· on the D I G ITA L U N I X s\·ste m , rhe globa l
rea lm is the DCE ce l l .

Because an ObjcctR roker con fi gu ration c111 i n c l u d e
pbrt(mm t h a t ha1·e no i m plementation of t h e DC: E ,

�md bec:1 use t h e Securit\' I ntegration A rc h i tecture i s
d i ffe re nt on everv DCE p l atform , there ll'as no com
mon mechanism for O bjcctBrokcr to usc to i mp l e
ment an i n tegrated global login across al l supported

p latt(mns . Thus, O bjectBroker i s l i m i ted by the i nte

grated logi n ca pabi l it ies avai lable on oth er p l :1 ttcnms'

i mplcrncntations o f th e DCE.
For this reason , ObjectBrokcr reta ins �1 proxv mech

a nism, n·c n for usc bv nodes that support the D C E .
F o r a uthe nt i cation bet\vecn such nodes, a generic
remote host d efi n i tion (cal led Sec G i o b a i N �1 m e) is
mapped to a loca l user on the loca l s\·stC I 1 1 . Should a
scr1·cr recci,·c a req uest that re4 u i rcs a u th c n riurion

ti·om :t c l ient node, the server uses SccCloba l N :tme to
attempt to matc h the correspond i ng glob:d princip;1 [
name to �1 loc<tl u ser name.

I n other words, because there is no common g l oba l
ident i ty mechanism, ObjectBroker's proxy i m plemen
tation m aps either a trusted remote user or a g loba l
user idcn t it\' to a loca l system i de ntitv ro ;Kcom p l ish
a gener ic 1 1 1appi ng bct\vee n globa l and l oc1 l u sers.
l\.;1thcr th<m map m ultip l e h ost/usc rn �l ll lc pa irs to the
loul prox\', the O bjccrBrokcr sort\\';1rc m ;1ps a s i ngle
SecGloba l-:\l:tmc, kn011 ·n to a ll nodes i n the DCE cel l ,
to th;H proxy 11·hcncl'cr possi b le .

Vol . 9 No. 1 l 997

Mechanism for Global Authentication

The DCE Sccurit\' Sen icc pr01·id es the mechan ism
tor globa l i d emin·. The mechan ism is bJsed on
Kcrbcros c ncn·pt io n , ll'h ic l 1 i s ;1 pri l'ate or symmetric
kev scheme (as opposed to a pub l ic or asymmetric kc\'
sc heme) . A priv�1 re kev sch e me requi res some tr usted
th i rd -part\' node to ;lCt as a distri bution center t(>r
encryption kcvs or cred en t ia ls . Each node or user has ;1
key that is known only to the user and the d istri bu t ion
cen ter. In D C : h Secu r i ty, the distri bution center is
known as a priv i lege sen ·cr. ''

The t(J i l owi ng is a si mp l i tied description of the
e ncrvpti on kev f1rotocol bct\l'een t h e pri vi lege sen cr
a n d a c l ic m . The ;1ctu�1 l kcv excha nge protocol , ll' h i c h
uses three c:xdl<l ll gcs �1 1 1d coJwersion kevs, res u l ts i n :1

Pri,·ilcgcd Access Ccrtit(c;1 tc (PAC:) in the possession
ofa client . The PAC, 11·hich is appended to each request,
con ta i ns the au thor i ;.�nion i n f(>rmation to be com
pared w i t h the ;lCccss comrol i n formation stored \\' ith
the app l i cation server.

vVhen a c l ien t wishes ro com m u n icate with ;1 sen'Cr,
eac h m u st :�cq u i rc ;1 ti me-stam ped sess ion key t(Jr
secure commu nic:ttio n . The session kev is protected in
sever:tl wa\'S. The r ime stam p means that the kev is
o n l v v:� l id r(Jr ;1 l i m i ted t ime (th e amount o f t ime i s
conti gurablc) , ll'h ich protects aga in st brut c - t(Jrcc
atte mpts to brc1 k the kcv and reuse it. Also, e:�ch kev is
h ost-Sf1Cci ti c and C;1n onlv be used ti-om the node f(Jr
11 hich it is iss ued . F ina l l 1·, the session kcv is ne,·er sent
O\'Cr the nct11·ork i n u ncncrl 'ptcd form .

For a user to i n it i �ltC :1 nu - :_logi n , the c l ient m ust
enter i ts DC E_ Iogin [1aSSII'ord . To register as an i n i tia
tor a nd acceptor of sec uri tv comexts , a se rver uses :1

SERVTA B kev ti l e . Th is ti le conuins an cncrvpted key
tha t permits th e server ro obta i n a set of credent ia ls
s imi lar to those given ro a user. These credentia ls al low
the sen-cr to accept sec u ri t\' contexts from c l ients or to
i n i tiate req u ests (that is , become a cl ient) to other
servers . The reason t(Jr ha1· in g se rvers acqu i re c red e n
tia ls th rough the 5 1-: RVTA L.\ mech a n i sm is that sen·crs
m a\' be started on d cm:tnd Lw t he Ob jectBrokc r Agem
(th e com poncm thJt locates the appropri ate sen·er
to s::ttisf\· a c l ient request) or lw s1·src m a d m i n istrators

who do nor \\'an t to be b u rdened bv h a1 i n g to kn o1\·

a sen·er password .
I n e ither c1sc , the c l i c nr or the sen·er speci fics rhc

principal JDJ1lC to be ;nnhcn t icued . The node sends
the speci fied pri nc ip: d 's n:1mc to the pr ivi l ege scn·er.

Th e priv i l.cge se n·n rcru ms a session kc)' that is
cncrvpted us ing the pri nc i pa l 's p:lSS\\ 'Ord or S ERVTAB
kev. The D C E r u n - ti me so 11-w;1 1'C ru nn i ng on the loc1l
S\'Stem d ecrvpts the session ke\ ' us i ng th e pass11 ·ord or

S E RVIA .. B kn·. O nce rhc c l i e nt a n d the scn cr h J\'C
decn-ptcd session kc\'s, thc1· ca n usc the ke1·s to i n i tiarc
secure commun icnion ,,· ith e:tch other.

Thus, if a server is configured to requ ire authentica
tion, then bd(Jre invoking a method on that server,
a c l itnr must successfu l ly perform a DCE_login and
obtain tht credentials needed to establ ish a secu rity
context with that server. A cl i ent may also requ i re
authentication ti·om the server to ensure that some
mal icious software is not masquerading as a real server.

Note that the operations f()r acquiring credentials
are accomplished outside the server executable . The
operations arc pcrf<.Jrmed by the ObjectBroker run
time software, based on con riguration setti ngs in the
ObjcctBroker Secu rity Registry. The goal is to avoid
burdening app l ications with the knowledge of security
mechanisms.

Au thentication requirements can apply to the
ObjcctBroker Agen t as wel l as to c l icnrs and servers.
Tht: Agent is in fact a separat<:: security principa l ,
and one can requ i re c l ient-to-Agent, Agent- to-diem,
Agent-to-server, and server-to-Agent authentication
in an ObjectBrokcr configuration-in addition to
authentication between the c l ient and the server. The
cl ient or the server can independently set these modes,
or the ObjectBroker system can requ i re that modes
be set nodcwidc .

Security Design Issues for ObjeetBroker

The securi ty issues associated with the design of
O bjt:ctBrokcr versions 2 .6, 2 .7, and 3.0 wac primar
i ly those of increJs ing the secu rity capab i l i ties and
preserving u pward compatib i l ity with prev1ous
O bjectBroker versions. While compatib i l ity is a lways
a concern when u pgrad ing sofhvare, O bjectBroker's
requ i rements in this area arc particu larly stringent
because customers h ave mission-critical appl ications
running i n very l arge confi gur a tions. In some cases, i t
i s d ifficult o r impossible t o u pgrade a l l O bject Broker
nodes at one time, so i t m ust be possi ble to do a
rol li ng u pgrade that minimizes the d istu rbance to the
configu ration and <ll Jows uninterrupted operatio n
o f applications .

The need fc>r dynamic, p lug- in replaceabi l ity of
the security su bsystem was an important issue for two
reasons. first, to providt: standards- based solu tions to
computing problems, the ObjectBrokcr design had to
a l low the integration of any security product that
implements the GSS-API . The second reason has to do
with export controls.

United States government export regu lations spccif)r
that hardware, software, and documentation for cryp
tographic products may be exported by license only.
Specifical ly, the Department of State's International
Traffic in Arms Regulations (22 Code of Federal
Regulations Su bchapter M) require that an export
l icense be obtained fi·om the d epartment before any
cryptographic hardware, software, or documentation is

exported from tbc United States. An ObjectBroker
design goal was not to encumber tbe product with
export restrictions. Therefore, Object Broker itself docs
not i nclud<:: any cryptographic security mech,mism. An
ObjectBroker customer must provide an appropriate
GSS l i brary; whatever package is available on the system
is the one Object B roker wi l l use.

ObjeetBroker Security Features

The security tearures that have been succcssndly imple
mented in the ObjectBrokcr software i ncl ude

• Client-to-server, server- to-cl ient, and mutual
authentication

• Prot<::ction tl·om replay and sequencing attacks and
imegrity protection

• Fine-grain control over the authentication m<::cha
nism (per-host, per-server, or per-method)

• Abi l ity to demand a new securitv context for an
invocation

• Abil ity to apply new secu rity featu res to applica
tions without rebuild ing them

• Dynamica l lv l oadable security l i braries

Usage

One of the most i mportant characteristics of a secure
ORB is that appli cations (cl ients and servers) need not
be aware of security operations undertaken on th<::i r
behalf. For ORBs, as wel l a s for other support soft
ware, the goal is to avoid burdening appl ications with
the need to deal with the complexities of a d istributed
system so that they can concentrate on the appl ication
problem at hand .

Therefore, most of Object Broker's security-relevant
operations are invisible to applications. ObjectBroker's
management uti l i ties are used to specif)' the rules tor
authenticating clients and servers. These rules are
stored in the ObjcctBrokn Security R.egistrv, and the
requirt:d authentications are performed automatical ly.

There are two exceptions to the general ru le of
keeping security operations invisible to the applica
tion. The first is that a client or a server (when acting as
a cl ient) can explicit ly mak<:: a cal l to an ObjectBroker
API to toggle m utual authentication on or off. This
operation is a l lowed as long as it docs not diminish the
security level specified tor the ObjectBroker node as a
whole. fn other words, a client can demand mutual
authentjcation on a node that d oes nor require such
au thentication but cannot d isable murual au thentica
tion if the node does require i t . This feature was imple
mented to make i t possible tor cl ients to enabl e m u tua l
authentication for specific operations that have secu
rity releva nce .

Disira l Technical Journal Vol . 9 No. I 1 997 45

46

The second exception is th;lt J sen'Cr can demand
t h e creJtion of a new securirv context �(>r :1 11 i m·oct
tion , wh ic h immed iately rests the J u thenr i carion o f
the pri ncipal making t h e req u est . This is impona n t

because the GSS-API allo\\'S t h e i n i tiJtion o r' a securi tY
con text that has no exp i ration . Clcarlv, i f a sccu ritv
context exists for a l ong enough period , thc 1'C ma\' be
a con cern that it is no longer valid. For example, when
a user's Jcco u n t is revoked ti-om the D C : l-� Sec u rity
Registry, it is possi b le that th e user's cred e n tials Jrc sti l l
val id in some ex isti ng security context . Esta blish i n g a
new security context forces the DCE ru n-rime sutiwarc

to go back to the security server Jnd vcr it\ · the v�1 l idin·
of the pri ncipaL

Figu re l i l l ustrates the i n teraction of O bj ectB ro ku
a mi the DCE Securi t\• Sen· ice components in rhe

esta b l ishment of a securi n· context . O nce the sccur in•
context is estab l ished , it is used i n the 1crification of
MAC-sealed messages benveen the sen c r and th e
c l i e n t . fn this i l l ustrat ion, access to the DCE secu ritv
su bsyste m is depicted as a loca l ca l l , though JCccssing
these services could also be done remorely.

The sequence of operati ons i n F igu re l is as ti> l lows:

l . A method invocation (a c l ient req uest �(>r a remote
operati on) resu lts in a ca l l to ObjectB roker's secu

rin· su bsystem .

2 . The O bjectRroker securitv su bwstem in turn
i nvokes a GSS rou ti ne in the D C E Secu rin· l i b ran·.
This cal l determi nes w hether J ne11· sccu ri t\' con
text needs to be established, ll"h ich can happen for
one of nvo reasons : e ither it i s the first invocation

of this server from this client or the context rcti·esh
rate has been specified as per-i nvocati o n .

3 . The DCE Secu rity library execu tes t h e ca l l , wh ich
sets up the secu rity context . (Note that the p rocess
of de leti ng an existi ng secu ri ty context is 110t
shown .)

F igure 1

CLIENT

INVOCATION
LAY ER

SECURI TY
SUBSYS TEM

DCE
SECURITY

FsLJb l i sb llJ.ent of a Secmir1· Comcxt

Digi r� l Tcchn icJ] Journc1l

TRANSP ORT

Vol ') No. 1 1 ')')7

4 . The secu rm· su bs1·srcm checks the retu rn status of
the CSS rou ti ne to determine 11 ·h ether the resu l t
ing token is ro be p�1ssed to the i m·ocation Ll\'er.

5, If so, the token i s p �1ssed to the transport 1 �1\"Cr �(>r
marsh:d ing .

6 . The c l iem com1nunicarcs 11 i t h the sen·cr nod e
through t i le nomd O bjecrR roker channel.

7. Th e tr:msport layn i n th e rece ivi ng node u n mal ·

shals the mc.<>s�1ge , oami nes the transport message
h eader, and passes comrol ro a dispatcher in the
i n1·oc1tion l :tvcr,

8 . De pe nd i ng on rhe mcss:tgc t1·pe, the message mav
th e n be p�1ssed to �� spec ia l d ispatcher, in this Gl�e
t he secu rin· d i sp�Hc hcr in the securin· su bsvstem .

9 . The sccur i tl' su bsvstem determines that the mes
sage shou ld be hmdled lw the GSS imp lcm en ra
rion and p�1sscs the mc�'agc thei'C.

1 0 . The D C : E Sec u ri t\ ' l ::we r checks the recc i1·ed token
and if it is ,.�l l i d , �lCcepts the scc u ri tl' con tex r . The

rou t i ne gcne r�t tes a context establishment token
to be passed to rhe cl ient. The cal l also retu rns the

server's conro r h�1 n d l c �(>r the sccurirv context the
server shares ll" ith the c l i e nt .

1 1 . The secu rin· la1·n p�1sses the token to the i m oc a

tion b\·er r<n lll�lrs ld i ng.

1 2 . The i m ocnion b1·cr J l 1 �1 rsh<l ls the i nh:mnati on and

se nds i t as a n :� q; u m e l l t ro the]o\\' - ln-cl tr�msport
rou tine c:t l l .

1 3 . This mess�1ge is s c m ro tht c l ient .

1 4 . The d:tta is u n m�1rsh,1 kd,

1 5 . The message is sent to the security su bsystem .

1 6 . The token is passed to r l1 c GSS i mp l ementation
to i n i tia l ize the secmi rv con text, wi th the server
su pp l i ed token :ts a n argument. The rou tine
returns the cl ient's context h:mdle , IVhi c h i s used
ro sign subseq uem messages,

TRANSPORT

SERVER

INVOCATION
LAYER

DCE SECURITY

Performance Considerations

The bcncti ts of a secu re O R B arc not hcc . I f au thenti
cation is req u i red when a c l i e n t and server esta b l ish a
connection through a b inding, part of that b inding
i m-olvcs the esta b l ishment or· a secu rity context .
Establ ish m e n t of �1 sec ur itv context requ i res a rou n d
trip o n the network, d u ri n g which a token ti·om the
c l ient is passed to the scn·er, and a token is retu rned
from the server to the c l ie n t i n the mutua l a u the ntica
tion case .

Once esta b l is hed , the sccur itv context is used i n
su bseq uent req u ests (provided that the configuration
d oes not req u i re sccu ritv context d e l etion a fter C\'ery
me thod i m·oc1tion) . If tiK same sccur i tv context is
reused , the only a d d i tiona l overhead considerations
arc (1) the s igning and ver i fication of req u ests and
responses i n the c l ient and scncr, and (2) the sec uri tv
context handle (32 additional bytes of i n tcm11ation)
appe nded to each message p<1Sscd betwee n the c l ient
and the server.

The sign i n g �md vcri ti cation of <1 s ignature on a
req uest or response is d i frc rcnt ri·om the veriti cation
of t he p rivi leges used when the securi ty context is ti rst
set u p , i n rhat vcri tiCJt ion of a s ignature d ocs not
req u i re a network rou n d -tri p . In contrast, when you
ti rst set u p a scc ur itv context, a network rou n d -trip to
the privi l ege se rver is req u i re d , and i ts overhead is
s ign i ti ci il tly more costly than that of the vcritication
and signatu re operations .

Note that when a cl ient h::ts m u ltip le object references
to a s ingle method i mp l e me ntation in a server, a single
sccu ritv context em sti l l be used . For example, a derived
object rctcrcncc docs not req u i re J new sccurit\' con
text . This is both an optimi zation and a functional
req u i rcmem, since on lv one scc uritv context i s allowed
between a c l ient process and a scn·cr implementatio n .

Futu re Work

The Oi\!I C specifics a nu mber of object services in addi
t ion to the CO RBA specification i tsel f One of the most
importanr specifications is t(x the C O REA Securi ty
Service . O bject Broker's i ntegration with D C E Secu rity
was designed and i mp l emcmcd bdcxe t he OMG's
C:O RBA Sccu rit\1 Service spec i fication was complete.
Thus, even though ObjcctBro kcr is the most secure
OIU� avai lab le today, i t is reasonable to ask when <1L1d
how its secu rity rc.uurcs wi l l be made compl iant with
the latest specifications ti·om the OMG.

Given su fficient resou rces, O bjectBroker engineer
ing could investigate s u pporting C :ORBA2 i nter
opera bi l i ty by im plementi ng the OMG's General
I nter- O RB Protocol (C l OP) . The G l OP architecture
su pports both the I nternet I n ter-ORB Protocol (! l O P)
:md rhc D C L b:�scd Com mon I n ter- ORB Protocol

(DCE-C!OP) . Today, O bjcctBroker uses �1 wire proto
col based on the CO RJ\A version 1 . 2 spccitie1tio n .

Securi ty tor the I I OP is governed b v the Secure I nter
O RB Protocol (SECIOP) spcciticuion "', J l though kw
commercial ly avai lable implementations o f t he SEC!O P
are avai lable at the time of this writ ing. Also, �1s men
tioned previouslv, sec u ri t v fc>r the DCE-Cl 0 ! ' i s accom
p l ished by protecting the RPC: con nections �H the wire
p rotoco l b·e l . For the DCE RJ' C : , the DCE docs its
own authentication t(>r RPC: sessions; here the Rl'C:
connection bct\1·een the c l ient <md the sc n-cr, rather
than the c l i ent and the scn-cr thcmschcs, is a u thcnr i
cate d . This approac h prm·idcs the same potcnr ia l tc>r
secu ritv management in the O RB contigurati o n ; i t
s i m p l y accompl ishes t h e sccurit\· fu nctions at a l evel i n
the p rotocol stack that docs not req u i re the usc of the
GSS-APL Bv b u i l d in g in su pport t(>r the C l O P,
O bjectBrokcr gai ns the capabi l it\1 to provide the secu
ri ty features fc)r both the J J O P a n d the D C : E - C J O P

p rotocols i n fut u re releases.
The SECIOP and the D C E - C! O l' both t(> l low the

u sage mode l o f mi n i m i zi ng the need t()r appl ications
to be aware of secu rity. I n the S EC ! O l', the O M C

has speci tied APis tc)r security fu nctions, and these
fu nctions are e n ti re ly separ:�tc fro m any mechanism
that i m p le ments the m . O RB vend ors wi l l be ti-cc to
provide securi ty rcaturcs in m u ch tbc same way that
O bj ectBro k.cr provides secur ity todav, i .e . , bv working
from secu rity -re lated i n tc>rmation kept bv the O RB .
The S E C I O P a l so provides tc>r a d m i n i strati\·c objects
and operations that perform sccu r i t\' m:1n�1gcmcnt
fu nctions lw means of A Pis .

Conclusion

Obj ectB roker prm·idcs statc-ofthc -<1rt d istri buted
system secur i t\' todav. I ts sec ur it\' featu res prm·idc
upward compati b i l i t\·, as well as the least poss i b l e d is
tu rbance to ex ist ing O bjcctBrokcr appl ications ::tnd
confi gurations . I n ad d i t ion, ObjcctBrokcr's i m ple
m entation of sccu rit\' bv 111C1 11S of the neE's Generic
Securi tv Service Appl ication Progra m m i n g I n terrace
provides the greatest poss ib le choice among scc u ri t\'
mechanisms and sccurit\' i mplementation prm·iders.

References and Notes

1 . R. Otte, P. Par.r ick, and JV! . Rov, I !uden'lrt udi I I,<.<
CONJJA (U ppe r Saddle River, N .) . : Prentice I-Ll ! I ,
1 996) .

2 . Information ::tbout t h e Object Manage m e n t Croup is
avai lable at http:/ /II'WW.Oill f!;.org.

3.) . Li n n , Generic Securi/ J ' Sen 'ice /ljJjJ!iutliun Pm
gram JnleljCtCI', I nternet RFC 1 50R, ! 99 3 .

Digit::tl Tcchn.ic1l joumal \ 'ol. <) :-Jo I I '!97 47

-t.) . \Vr:11·, Generic .�<·curil l Sen ·ice ,1 T'l Ocerl 'iel l · ond
C-IJindings. lnrcrncr RI-'C 1 :> 09, 1 99 3 .

::> . lntomlJt ion <l bou r The Open Group i s a, · ,l i i .Jblc ;l t
h ttp:/ /11 II II'.Opcngr< H l p . org.

6. 1Y! . Gasser·, Bu ildin.� o Secure• 0Jmpu!er SJ 'Sicm
(Nell' York, N . Y. : V.m Nostr;md Reinhol d , 1 9 8 8) .

7 . .\!Open DCf:> A ulhcn/ic({/ fuu ({//(/ Secu ril l ' Scrciccs.

X/Open P rTi i m i n:m Spcc i riclt ion P 3 1 S , !SBJ\
l - 8 5 9 1 2 -0 1 3 - X , c l cctro r 1 i c 1 crsion (Rc.1 d i n g , U . K. :
X/Open Comp.1rw Li mited, 1 9%) .

8 . O!JwctBrok<'r- Ocsti!. l l i l l,� m!il nu ildin,� Applico

liuns. Part �o. Ar\-(JX 1 LA-TK (.\hq1;1rd , Mass . :
Digital Equiprncnr Corpor:ltion , 1 996) .

9 . S . M i l le r, B � c u m a n , } . Sch t l k r, :111d J S:1 l tzcr, !\cr

i?cms A uthe!llicctlirJ I I 01 ! (/ /\ ui/.!orizotiun .�l'Sicll!
(Ca m br id ge , Mass . : M assaclw,nrs I nst i tu te of Tech
nologv, Project Athencl , 1 98 7) .

1 0 . CORDA Secu l'lty. Docu rn e m � u mber 9 5 - 1 2 - 0 1 (}Ll lll
i rlgham , Mass . : O bject M an;1gc rnc nr Grou p , l99S) .

The (),\·IG members 11 h o comri b u tcd to the clocumel l t
ll'<:: rc r\T&T Glob.l l l n r(mll c1ti o t 1 So l u tions C o . , Dig i r.1 l

Equ i pment Corpor.ni o n , r.�pcrsoli: Co rporation ,
(;roupe Bull, Hl'ldctt- Pxk.:ml CompJrll·, fnrenurional
Bmi rH:ss Mach i nes Corpor;Hion (i n coi!Jboration
11 irh Ta l i gcnr Inc .) , I n te rn :nio ll :l l Com p u ters Lim i ted ,
Nm el l I nc , Siemens Ni xdorf 1 n t(mn<Hionssvsteme A C ,
Sunsofr Inc . , Tmdem Corn�1utcr l ncorpor.1tcd (i n col
l a bor·arion with Od l'sse1· Rcsc.1rch Assoc i <ltes Inc .) , and
Ti1 o l i S1·stems I nc .

Biographies

Jo h n H. Parodi
john Parodi is a consulting tc ch n i c· .l l IITitcr in the
t'l'!u l tipi :Hrorm Engineering grout'· His priman· II'Ork
i n q > l l'es u1stomcr conJmun ir.nions Jnd e,·,mgclism
t(>r object tcc hnologv. In e.1rl icr ll 'ork, John pro1 · i d cd
tn: h n ic:�l wri t ing su ppor t rc> 1· the Compound Docu mcm
Archi tectme group ;md Architcct m;J I Engineering ot'
S1·stcms :md Sofrii';Jr<: Teclmicd Office . Joh n joined
J) J (; JT,\L in 1 9 79 <l ftcr 11 orki ng i n cornpu tcr operations
;l t Hend ri x E l ectro n ics ;lnd Jt the U ni1 nsm o f :\ c11·
H :1 n1 psh i rc . He has rccci1 cd til o all':mls ri·om the Soc i c t1
t(n Tec lmiul Comrn u n icuion :1 1 1d l 1 :1s more rlun 30 pu hl i
car iorls 011 1·:1r ious comp u te r sc· i c·ncc ropic· > , incl u d i n g com
pou nd douun e n rs , object rcc· lmolog1·, corn1'utn sccurm ·,
<l lld !\AS IC

Fred W . Burgher
Pri n c i t'JI engi neer fred R u rghcr is e m plol'cd bl' flEA
Sl'stcms as a member ofthe Object Broker Engi neeri ng
tc1 m . He is c u rren t!�' i n l'o l vcd in O bjcctBrokcr ! l O P
de·, c l opmc nt . Prc1· iouslv, h·ed 11 orked at D 1 G !TA l . on
i nr egr·<l t ing DCE Securitl' :1 11d l\::1 r n i n g tc >r rhc Opcn\'MS
Of1tTJt in� s1·sre m . Ear l ier in his c.1ren, he 11 . 1s e mp l oq:d
Js :1 p ri nc ipa l e n g i n eer at \V.1 1 1g 1 .:1hor;1tories, 11 here he
11 orked i tl the lnugi ng Eng i tJCe ri ng C ro u p . hcd stu d i ed
compu ter sc ience :n Roston l: n i 1 ersit1 .

Dig iL>l Techn ical Jnun1.1l VoL 9 !'-:n 1 I \)<)7

A 1 60-M Hz, 32-b,
0.5-W CMOS RISC
Microprocessor

This paper descri bes a 1 60 MHz 500 mW

StrongARM microprocessor designed for low

power, low-cost applications. The chip i m ple

ments the ARM V4 i nstruction set' and is bus

compatible with ea rl ier implementations.

The pin interface runs at 3.3 V but the internal

power suppl ies can vary from 1 . 5 to 2.2 V, pro

viding va rious options to ba lance performance

and power dissipation. At 1 60 MHz internal clock

speed with a nominal Vdd of 1 . 65 V, it del ivers

1 8 5 Dh rysto ne 2 . 1 M I PS while d i ssi pating less

than 450 mW. The range of operati ng poi nts

runs from 1 00 MHz at 1 . 65 V d iss ipating less

than 300 mW to 200 MHz at 2.0 V for less than

900 mW. An on-ch i p PLL provides the i nternal

c lock based on a 3 .68 MHz clock input. The chip

contains 2.5 m i l l ion transistors, 90% of which

are i n the two 16 k B caches. It is fabricated

in a 0.35-f.Lm three-metal CMOS process with

0.35 V thresholds and 0.25 fLm effective channel

lengths. The ch i p measures 7.8 mm x 6.4 mm

and is packaged i n a 1 44-pin plastic thin quad

flat pack (TQFP) package.

© 1 996 l EE E . ll..cprintnl, \\'ith l'trl11ission, ti·nm 11:'/;J; jouma/ <�/

S(J/id-Sia/r: Circu its, n>lu1 1JC 3 1 , n u m be r 1 1 , N<)\'e tnbcr 1 996,

pages 1 703-1 714.

I
James Montanaro

Richard T. Witek

Krishna Anne
Andrew J. Black

Elizabeth M. Cooper
Daniel W. Dobberpuhl
Paul M. Donahue
Jim Eno

Gregory W. Hoeppner
David Kruckemyer

Introduction

Thornas H. Lee
Peter C. M. Lin

Liam Madden
Daniel Murray
Mark H. Pearce
Sribalan Sa.nthanam
Katlu-yn J. Snyder
Ray Stephany

Stephen C. Thierauf

As personal d igital assistants (PDA's) mo\ 'e i n ro rhe
next generati on, rbere is <1 1 1 obvi ous need t(Jr add i
tional processing powe r to e nab le nc \1' ap p l ications
and improve cxis6ng ones. Whi le enhanced ti.l nction
ality such a s imprmni h a n d \\'riting recogni tio n , \'oicc
recognition, and speech synt hesi s arc dcs ir<1 h k , the
size and weight l i m ir:uions of P DA's requ i re rbat
m icroprocessors del i ,·er th is ped(mn a ncc \\'ithout
cons u m i n g <1d d i tional po\\'er. The microprocessor
described in this papcr-rbe Digital Eq uipment
Corporation SA- 1 10 , rhe ti rst microprocessor in r i le
StrongAR.tVl tam i ly-dircctlv addresses this need bv
del iveri ng 1 8 5 D b rystonc 2 . 1 M T PS while d issipa t ing
less than 450 mW. This re prese n ts a si gn irica nt lv
higher perform a nce than is currently <1\'a i lab le ar this
power leve l .

CMOS Process Technology

The ch ip is fabricated in a 0.3S f.L111 rhrcc - mcra l CMOS
process with 0 . 3 5 V thresholds and 0 . 2 5 �un dkcti,·e
c hannel l engths . Process characteristics arc sho\\'n
in Ta ble 1 . The process is rhc resu l t of several gen era
tions of devel opment eff(>ns d irected tO\\'ard h i gh
perr(mn<mcc microprocessors. It is identical to the one
used in Di gital Eq u i pment Corpor;\tion 's cu rrent
generation of Alpha ch ips� except t(Jr the rcmm·al of
the fourth layer of metal and rbe add ition of a ti na!
n itride passivation req u i red t(>r p lastic packagi ng.

The factors wh ich drive process devc lopme m tor
low-power design arc s i m i l a r to those \\'h ich dri\T rhc
process t(lf pure high-pert(mll ance although the mmi
varion sometimes d i tkrs . For c.\amplc, \\'h i lc both
types of designs bcnctir ti·om ma.\imiz ing ldsat of the
transistors at the lowest accepta b l e Vdd, t he motiva
tion tor a p u re high -pc rt(mn an cc desi gn i s red uci n g
power d istri bution and thermal pmb lc ms rather than
exte nd ing battery l i te . Similar <lrgu m c nrs appl v ro
m in im iz ing transistor J cabge and on -c h i p \ 'ariarion of
transistor parameters. This com·crgcncc of goals h as
been essential ro o u r abi l i ty to d c,-clop one process
to saris!\• the req uireme nts of borh l ow -po\\'er and
high-pert(mnancc ta mil ics .

Digi t<ll Tc dmic�l jou rn;d \'ol . 9 � o . 1 1 997 49

50

Table 1
Process Features

Feature s ize

Channel l ength

Gate oxide

Vtn/Vtp

Power su pply

Su bstrate

S a l i cide

Meta l 1

Meta l 2

Meta1 3

RAM c e l l

0 .35 � m

0.25 �m

6.0 n m

0 . 3 5 V/-0.35 V

2.0 V (nom i n a l)

P-epi with n-well

Coba lt-dis i l ic ide in d iffusions and gates

0.7 �m AICu, 1 . 2 2 5 � m pitch (contacted)

0 . 7 � m AICu, 1 . 2 2 5 � m pitch (contacted)

1 4 � m AICu, 2.8 � m pitch (contacted)

6 transistor, 2 5 . 5 � m'

Power Dissipation Tradeoffs

R I SC microprocessors opcr:H i ng a r 1 60 M H z ::�re birlv
common using current C JviOS process tec h nology.
The llOI'cl JSpec t or' th is design is the ab i l il'\' to �Kh iC\ c
th i s operating ti·eq ucnC\ ' �1t f)O\I'er IC\·cls 11·h ich are lo11·
en ough tor band held �1ppl i cui ons. Se1·er:1l d esign
rr;1 deofts were made ro :1ch i e1 c rhc d esired po,,·cr
d issipat io n . In order to i l l ustrJtc their effect on the
design, ir is i n te resting to i m agine applying th ese
trJdcoffs to an e arlier d esign whose power d issipation
occu pies the op posite end of the power spectr u m ,
the ri rst reporte d A l p h :1 microprocessor -' This Alp h :-t
chip 11 as fa bricated i n a 0 . 7 5 - f.llll C :MOS process Jnd
opcr�ucd at 200 M H z dissip:1r ing 26 \V at 3 .45 \1. The
i m pacr of these tradeofts is sum 11 1J 1·i zed in Ta ble 2 .

The rirsr decisi on is to n: d u cc the imernal pO\\'Cr
supplv to 1 . 5 \1. This ch�1ngc c u rs the pm1 -c r Lw a racror
of 5 . 3 . While rl1is h:1s rhc desired cfrcct, it has i m p l i u
r ions t(>r the cyc le t ime which <lrc considered in t he
section Circuit Im plementa tion .

The next step is to red u ce rhe r[l llctionaliry. As com
p<�red ro the early AJ[)ha c h i p , rhe most obvious sec
t ions missing in this design Jrc the rlo ,lti ng poim u n i t
a n d t h e branch histor\' ta ble . Floati n g poi nt is nor
rcq u i r�d in the target appl iCJtions Jnd the loll' branch
l �uency of this design c l i mimtcs the need t(>r rhc

Table 2
Power D issipation Tradeoffs

Start with Al p h a 2 1 064: 200 MHz @ 3.45 V.
Power d issi pation = 26W

Vdd red uct ion: Power reduction = 5 .3x :;> 4.9 W

Reduce functions: Power reduction =

Sca le process: Power reduct ion =

Reduce clock load: Power reduction =

Reduce clock rate: Power reduction =

Digit;d Tcch n i (a l)oum;ll

3x

2x

1 .3x

1 . 25x

=<> 1 .6 W

=*> 0.8 w

-=7> 0 .6 W

..:> 0.5 W

Vol . 9 :--i(> . I I 'J':>7

bLulch h isrorv rabk . Less ob1· ious, bur I C L'I' i mpm
LliH, is red u ced co nrw l comp l n i n ·. This is �1 si mpl e
mxhinc and we h :11·e worked h:-�rd ro keep it so. We
esti mated that the red uced fu nctio n a l i tv wou l d c u t
poll'er l)\' a E1ctor o f three .

Process sca l i ng reduces node CJ)XKitances and rhere
r(>rc chip power. Note thJt :-� l rhough tl1e area compo
ne nrs of rbc capaci tance w i l l dccrc1se as the squ a re
of the scale factor, the roul c:-�px i ra ncc change ll'it h
sc�1 l i n� ll' i l l be Jess d r.lmJtic p ri mari h- d u e m rhe efkcr
of per i p h e n· capacit<lncc . We estimate that sca l ing
ti·om 0 . 75 f-.Lill of the Cl rh- .\l])hJ c h i p to our curren t
0 . 3 5 J.Lill process resu l ts i n �1 po\\'cr red uction o f about
�1 r:1eror of tii'O, a l i ncJr red u ction 11· ith scale bcror.
Once :1gai n, coupled ll'i th rhis positil'e efkct of process
sc1 l ing are a host of other issues. Some of those issues
arc considered in the section Power Down Modes.

Ne x t, consider the dock power. The clock power of
the A lp ha c h ips i s b i rlv Llrgc �1 nd w h i l e that c lock i n g
straregv works w�l l r(>r A lp ha 1mchines, i t is not <1 ppro
priJte t()r a lo11 -p0\\'<.:1' chip . Our c locki ng str <.ltC10' Jnd
our latch circ u i ts arc described i n some detai l later.
One nujor c hange ti·om the Alpha d es ign \\'as ro reject
the pa i r of transparcm IJtches per c1·c lc used on the
Al ph �1 design . Instc.1d, 0 1 1 th is d es ign , 11·c switched ro a
s ingle edge- triggered larch per cyc l e to reduce clock
load and latch del ay. Our csri m<lte is that rhe c h a nges
in the c lock ing reduced the c lock power by a factor of
t\\ 'o . Si nce the clock power \\'�ls about 65% of the total
power on rhe fi rst Alph�1 c h i)) , this resu l ts in a red u c
tion of about 1 . 3 .

h n J I I I', the reduction i n clock h·c q uenc\' from
200 1\II H z to 1 60 1\I H z d rops the poll'cr b1· 1 .2 5 .

Clcar lv, thi s analvsis is nor rigorous, b u r i r suggests
that i r is reasonab le ro b u i l d a 1 60 M Hz processor c h i p
tiLlt d issipates around ha lf a watt. A si mi l ar anaksis was
pcrt(mned ar the begi n n i ng or' the project to select the
power su p p ly voltage and op nat ing fi·equ cncy and to
determine whether s igni ficant chang<.:s i n design
me thod would be req u i red ro meet the pedormance
�m d poll'cr goal s . Ir is i n rcrcsring to note that ,,· ith the
cxcq)rion ofrhe c l ock i ng ch,mgcs, the d esign methods
�md ph ilosoph1· used on rhis design ,,·ere ,·en· si m i lar
to rh�1r used on the Al ph�1 c h i ps .

I nstruction Set

The mi croprocessor i m plcmc ms the AR.M V4'
i nstr uc tion set. The arc hitec tu re d di n cs thirty 3 2 - b

ge neral pu rpose registers and .1 program counter (PC) .

Re gisters Jrc specified bv a 4 - b tie l d wh ere registers
() ro 1 4 arc ge neral purpose rq;isrers (C PR) �md regis
ter l 5 is the PC. The current l)rocessor St<ltUS re giste r
contains a eu r rcnr mode ri c ld 11·h ich selects <.: i thcr an
un pri1·i lcged user mode or one oi'si \ pri, ·i l eged modes.
The cu rrent mode selects ll'b i c h scr ofC.i P R's is 1·isi b l c .

I n :tddition to basic RISC katu rcs of fixed l ength
in structions and si mpl e load/store �1rc h itecture, the

arch i tecture i m p l e me nted i n cludes several tCatures to
im prove code densi ty. 'T"hese include conditional execu
tion of a l l i nstructions, l oad and store mu l ripk instruc
tions, auto - i ncrement :md a u to-d ecrement tor loads
:�nd stores, �md :1 sh i ti: of one opera nd in e\·cry ALU

ope r:nion . The an:hitccturc supports loads and stores of
8- , 1 6 -, and 32-h <.hL1 ,·a l ucs. In addition to the stan
dard 3 2 - b com 11urarions, there is :1 3 2 -b X 32-b multi
p l y �\Ccu mulatc with :1 64-b prod uct a n d accumu lator.

Chi p Mi croarchitecture

As sho\\'n in figure l , rile chip is fil llctiomllv parti
tioned into the td lowi n g major sections: the i nstruction
u nit (! BOX) , integer execution u n it (!--:B O X) , i nteger
m u l tip l ier (M U L), memory man agement unit tor data
(DMM U) , me mory manJge ment u n i t t(H· instructions
(I M M U), write butler (WB) , bus inter t:Kc u ni t (B l U),
phase locked loop (PLL), and caches t(>r datJ (Dcache)
:md i nstructions (luche). To m i n imize pin power and
su pport the h i gh -speed i n ternal core, one ha lf of the
chip area is dcH>tcd to rhc rwo 16 K caches. The pad
ring occu pies one-third of the chip :u·c:t :md the proces
sor core ti l ls the rc m::1in ing one-sixth of the chip area.

The processor is a si ngl e issue design with a classic
live- stage pipe l i ne-Fetc h, Issue, Execute , B u fkr, and
Register file vVritc (Fi gure 2) . A l l a rith metic logic u n i t

(ALU) resu l ts <.:< 1 1 1 b e t(>n,·arded t o t h e A I .U i n p u t and
there i s a OIK -cvc l e bubb le t(>r dcpcndc nr lo�1tk

For example, the pipe l i n<:: d i agram in Figure 2
shows a SU BTRA C T t(> l l owcd by a dependent LOAD.

Note that at the e nd of cycle 3, we bypass the resu lt
from the S U BTRACT back i n to the ALU to compute
the load address in cyc le 4 \\' i thout st�1 l l i n g t he pipe.

F igure 1
C : h i p Photo 11·i rh Ovcrlav

100:
SUBS R1

: 104
LOR

2

F I
pc <-100 Read
lb <- SUBS Rm,Rn

F
pc <-104

R2, [R1,cl]! lb <- LOR

108:
ADD •.R2,y

F igure 2
B�sic Pipe l i ne Diagr;Hn

3

E
w <- rn-rm
cc <-alu.cc

I
Read
Rm, Rn

F
pc <·108
lb <-ADD

4 5 6

B w

w' <- w R 1 <-w'

E B w
w <- d+R1 L<-mem(la R2 <- L
Ia <- d+R1 w' <- w R1 <-W'

I I E

Road Read
Rm, Rn Rm, Rn w .c-R2+y

The t hi rd instruction is �1 1 1 A D D \\ 'h ich u ses the res u l t
of t h e pre,·i ous LOA D. T h e A D D i s h e l d i n t h e I ssue
stage t(>r one <ld d i tion:J I cyc le u n ti l the LOA D da tJ is
av�1 ibble at the end of cvcle 5 .

The lROX can rcsol \'c cond i tional br:mc hcs in the
Issue stage e\'Cll when the condition codes a rc being
upd:Jtcd in the currcnr E\cc ute cvclc . Bv prm i d i ng
this opti m ized path, the !BOX i n curs onlv a one -cvclc
pcn:Jity fo r branches taken, so the ch ip d ocs nor
rcq u i n.: branch p redict ion hardware. for example , in
the pa i r of i nstr unions shown in Figu re 3 , the
B RA N CH and LI N K instruction at the (progLl ll1
counte r) PC of 1 04 de pends on the cond i tion codes
which are being gcnuatcd lw the S U BTRACT in the
prnious i nstruction. The cond ition codes ti·o m r he
E\ccute stage of the S U BTRACT arc avaiL1ble at the
end of cyele 3 , in t ime to S\\' i ng the PC m u l tip lner in
the ! BOX to poi nt at the branch target PC during the
next Fetch cycle .

The opti m i zJtion of the brJnch path rcprescnrs a
power versus performance tLldeoff in which pcrt(>r-

2 3

F I E
100: pc <-100 Read W<- rn-rm
SUBS R 1 lb <- SUBS Rm,Rn cc<-alu.cc

1 04 : F I \
BL.NE
[Target pc Target pc
= 200) pc <-104 <· 200

108: pc.:�
lUJ(lb <· XXX

200:
yyy

Figure 3
Pipeline: Diagram or· a B r:mch

4

B

E

w <· pe · 4

l\
I

\\F
pc<· 200
lb <- yyy

5 6

w

B w

w' <· W R 1 4 <· w'

E B

I E

\'o l . 9 :\o I ['N7 5 1

S2

l ll ,lnce 11on . I n our ct"tt H"t ru hold the one c1·c le branch
pen:tl t\·, we i ncl uded J dediured adder in the T BOX to
c1 lcu la tc thc br�1 n c h tJrge t �1dd ress and consumed
addit ional powe r in the EBOX add er to meet the cri t i
cJ I speed path to control the I) C : m u l t iplexer. Due to
crir ic1l path constc1i n ts, the �1dder i n th e ! B OX must
r u n every cycl e, cven if the instruction is not a hranc h .

I n the early stage o f t h e des ign , one o f o ur concerns
11 ·:-ts whether the decision to p u rsue t his opti m ized
b ranch path 1\"0t i ld i n cre�1Se our cvcle ri me. As the
design turned out , our best c tl(J rts in t h is ALU p:1th
.m d in the cache ;Kcess path res u l ted in nearil' id enti cal
d e l .ll s tor these t\1 o l o ng�·st critic.1 l speed p :.nhs .

DatJ tor i meger operJ t ions comes t!·o1n a 3 1 - e nt n ·
rcgistcr ti l e with thrce rud J. n d two write pons.
S i \tcen of the registers .1re 1 · is i hle at any rime with
I 5 �1d d i r i onal shadow regis rns spec i tied by the archi
tecture to m i n i m i ze the m·eri1G1d <Jssocia ted with i n it i
at ing exceptions . The FBOX co nta i ns ;ll1 J\ LU with J
fu l l 3 2 - b b i d i rectio 1 Ll i s h i ti:er on one of the i n pu t
0 11eLmds. I t incl udes h1·p;1ss i ng c ircu irn· to tOI"I\'<l rd
the data ti·om the Dochc or th e A LU output to am
of the rud ports. hgure 4 s h oii'S the c i rcu i t b l oc ks
i m oh ed i n the br.mch p;H h . The p;H h St<1rts at a Lltch
J n the lwpassers and, 1 1 1 a s i n gle cvc l e , incl udes J
O - ro 32 - b s h i ft, '' 32-b ALU oper;Hion, and J. cond i
tion code computJtion to sw i n g the PC: m u l t ip lexer
t(Jr the next cvc lc . The re gisters to hold the cond ition
codes were i mp l e m e nt e d in th e FBOX so that this
path cou l d be locallv opt i m ized . Anah·sis of code
trxes i n d i cated that most r\ I . LJ oper<L tio ns inc l uded J
s hiti: of zero, so t(lr this c:1se , the sh i fter is disabled :-�nd
\)\'passed to red u ce pm1·er.

The E B O X also contJi m a 3 2 - b m u l t i �lhjaccu m u
l atc u n i t . The m u lt ipl i er consists o f <1 1 2 - l1\' 3 2 - h
CHTI'-SJI'e mu lt ip l ier ;\ rra\' which is u sed t(x one to
th rec cvc les depend ing on the 1';1 1 ue of mu l ti p l i cmd
;md a 3 2 - b fina l ad d c r to red u ce the carry-sa1·e resu lt .

<' ·
:::.:::
0
()
0

Register File
w

' 0 !).) Q_

Mu ltiply/Accu mulate
0 !).)
@'

F igure 4
1:-. B O X Block Die1gr.un

I li:;ir .d Techn ic-•[}<HII I l .d Vol . 9 No. 1 1 997

!-"or m u lt ipll' acc u m u l :-t tc operat ions, the accunwl ate
1 :1 l u e is i nser ted into the array so t l 1 <lt an ad d i tiona l
cvcle is nor required hx the M u l t i p l ies with
Accu m u l ate . Nlu lt ip h· Lo ng instructions req u i re
one Jddi tional cvc l c . Tb is resu l ts i n a M U LTIPLY or

M U l TI PLY/AC C U M U LATE in two to tour cycles
;1nd J\t! U L LONG or M U L I .ONl;/ACC U M U LATE

in rh ree to tl\'e cvclcs .
The vV:�I Iace tree i m p l e m e n r;nion \\'<IS chosen to

mi nimize the del::tv t h ro u gh the J. IT<LV. Thi s impl e m e n
LLt ion requi red carefu l tloor pLm n i n g ;md cu stom lal'
out to keep the 11·iring under con tro l . The decision to
pn t(mn 12 b ot' m u l tiph· per c\'c le was hased on wiri ng
rr;1deoffs m�1de d u ri n g the plll'si c1 l p l a n n i ng p h ase o f
the d es ign rarhn t h a n critica l pa th concerns. vVh e n the
m u lt ip l ier is not in usc, a l l clocks to the section stop
and the i n p u t opera nds do not toggl e .

The c h i p katurcs separate 1 6 k Byte, 3 2 -way set
associat i ,·c ,·i nual caches t(Jr i nstructions and data.
bch Gle b e i s implemented as 16 fu l l\' associati1·e
b l ocks. Each cache is ::�ccessed in �l s i n gle cvc le t(Jr both
re:-tds �1 1 1d \Hites, prol'id i n g <1 t\l·o -C\'Cie la tency for
re r u m lb tJ to the regis te r ti l e . On·. e i g hth or· e::�ch
cac he i s e nabled tor a cac he Jccess.

The Dcache is ll'ri teb:-�c k 11· i t h no \\'rite a l l ocation .
The block s ize i s 32 \)l'tes wi th d i rty bits providcd t(Jr
cK h [J ;1 I f b l oc k to m i n i mize the lbta wh ich needs to be
C:lsto u t i n the C\'Cn t ot· J di rty victi m . The physical
add ress is srored with the d:-ttJ to avoid address tra nsla
tion d u ri n g c1stou ts .

(; i , en the s ize of the c:-�ches :md the lo11· p011'Cr
L1 rger t(>r the c h i p , it 11·as i m porLmt t h a t 1\'C hJ\'C tin e
granubrm· o f bank selection . I n <1 ddition, II'C req u i red
assoc i .tt i , · i t\' o f at los t t(Hi r-w�1\' t(Jr uche efticienc\ '
�md i t \\'JS i mportant to per t(nm ;mce th::�t \\'C mainta in
J s i ngle cvdc access. VVe conside red Se\'eral so l u tions
ro th is p roblem, i n c l uding tr;1d ir ion ;1 l t(Hi r-way set
assoc iative caches, and dec id ed that the s implest
apprmch which saristied <1 1 1 the req u irements was to
i m pleme nt the caches as smal ler, bank- addressed, fu l ly
associatil'e cac hes . This resu lted in 32 -ll'ay associatil i t\'
hut t h i s Jcye] of assoc i ati1 " it\' \\ '�1s J side effect of th e
i m ple mentation use d , n or the res u l t of a goal to get
;1SSOC i::L til·ity signihC3!1(]\' abo1·e f(ll!r-\\'a\·.

The c h i p inc lu des scp�1 rate me morv man::�gemcnt
un i ts (M M U) tclr instructions :1nd ch ta . Each Mlv1 U

conta i ns a 32 -enrrv ti. t l l y associ�1ti 1·c transl::�t ion look
<Ls idc butkr (TLB) w i t h e ntries which em map either
4 kB, 64 kB, or 1 MB pages. TLB ti l l s Jre i mplemented
in h ;�rdll'arc . In addit ion to the stJ I1lbrd mernorv
! 1Ll!1 <1gc ment protectio n mechan isms, the AR.lv\ arc h i
tectu re ddines :111 or thogon:-� 1 memor\' protect ion
sc he me to a l l011· the operati ng S\'S tem easv access to
L1rge sections of mem or\' "· i thour manipu lati ng t he
p;1ge tab les . This fu nction Ji i n· req u i res ::1 se t of ad d i -

t iona I checks which must he perf(mJled �' fter t i le T LB

lookup . The resu l t i ng; cr ir ic: d p:�th Wc\S suffic ient ly
l ong t int 11 ·e se lf r imed the RAM access in rhe TLB to
a l low us ro pert(mn the lookup and com f1 1c \ protec
t ion checks in �1 s ingle c\'c l e .

A wri te bufkr w i th e igh t 1 6 - bne en rries h a ndles
stores �md castouts ti·om rhe Dc:tche . The wri te buffer
i nc ludes a s inglc-enrn merge btch ro p:�ck up sequen
t i : � l stores to the same e11 trl'.

Dur ing nornJ;l l oper�Hions, an e\terna l load request
t<1kes prior it\' m·er stores on the pin bus. H 01n:l'cr, i n
t he eYe n t oF :1 lo::td wh i ch h i ts i n t h e IITi te buFkr, the
chip oecu res .1 ser ies of prior i t\ ' stores ,,·h ich raises the
pr ior in· oF the Wri te B u frcr on the e\ tern:�l bus above
th<l t oF <I l l \' l oads . Exrenul stores occu r :1 nd the write
bufkr empties u mi l rhe store 11 h i ch 11':\S pend ing J t
the load address completes . At th i s po i nr , top priori tv
re,·errs b�JCk ro loads .

Power Down Modes

· �·here <l l'C twl l power down modes su pported by the
ch i p-I d le and Sleep.

I d l e mode i s i n tended t< >r shmr period s of i n act ivity
: m d is :!p11ropria re f(>r s i tu <Hions in which r:�pid
resumption of process i n g is requ i red . I n I d l e mode ,
the on-ch ip P U , comi nues to run b u t the i nternal
clock grid and the bus clock srop toggl i ng. "I'h is e l im i
nates most �Kri,·i tv i n rhe ch ip and t h e power d i ss ipa
t ion drops ti·om 4 5 0 mW ro 2 0 mW. Return ti·om Id le
to norma l mode is <Kcomp! i sh ed with esscnria l lv no
de la\' bv si m 11 l\ · rc·;t:� l·r ing rhe bus c lock .

Sleep mode is ' ksigncd t(>r extended periods ofinac
r i, · i t\· 11 h i ch requ i re the lo11·est po11-cr consumpt ion .

The cmrem i n Sleep mode is SO f.lA which is ach iC\ni
L1\' tuming otlthe i n tcm:�l power ro the ch ip . The 3 . 3 V
1/0 circui tn· rem:�ins]1o11 ·e red �md the ch i ll i s wel l
beha,ni on rhc bus, 111J i l l t:1 i n i ng speci fied b·cls if
req u i red l1\' the dri \ e e n ;lb le i npu ts . Return fi·om S leep
to norm�1 1 opera tion takes �lppnni lll<ltd\· 1 4 0 f.LS.

As was n oted orl i cr , a low 1 ·ol tage process i s kev
to the des ign of a m icroprocessor which wi l l run at
l (JO M H z whi le d iss ip;lti ng Jess tlun 450 rn W.

Howc1 -c r, the S<1me lo\\· de,·ice thresholds which al low
the red uction of Vdd a lso resu l t in s ignificant d C\·ice

lobgc . W h i le th is l e a kage i s not I Jrge enough to
c1usc ;1 prob le n1 t(>r nonn;l l operat ion , i t docs pose
prob lems �< >r st�md hy current , espec i a l l y if the pro
cess skews tow:�rd shorr c 1L1 1 1 11C I dev ices. Our i n i ti a l
an ;l lysis ind ic:�ted rh �1t rhc ch i 11 wou ld d issip::tte over
1 00 mW in Id le mode with the clocks stopped . To
1·ed ucc th is le:�bge, we lengthened dev ices i n the
cache �l l·r:�ys, the pad d rivers, �md cert::t i n other areas.
This brought the lc1bge p<mn to with i n the requ ired
l':t l ue of 20 mW i n the bstest process corner. As a
bJckup, 11-c re l �1\ed o u r d esign r u les to a l low the

rema ining gate regions, wh ich ;liT dr;lll'll with �� scm
dard 0 . 3 5 f.ll11 gate l ength , ro be bi ::tsed l l]1 a l gori th m i
cal ly 11 i thout v io l :�r ing design ni les i n c1se i r ll';ls
necessarv to meet the l c1kage rcq u i rcmems.

The req u i rement for sund lw po11 n i n S lcq1 i s more
than t\1 o orders of magni tude lm,·er than thl· I d l e
power. To meet the power l im i t i n S leep, 1 1 e consid
ered a , ·arie tv of opt ions i n c l u d i n g; i n tegLHed pm1·er
su ppl \· switches and s u bstLltC h i .1s i n g schemes bd(>re
choosi ng the sim pic <1p11roach of ru rni ng off the i n ter

na l suppl \'. This appro<Kh is reason�1b le t(>r rh i .'> genna
tion of parts since the\· h .we <1 dcd icncd lo11· 1'01 0ge

supp lv. As more parts of the S\'ste m sl1 i fr to t i le low
1 ·o l tagc supph', this 111<\\' no longer be �1CCC]1tabk . The
con t1icting requ i rements of h igh ped(mn <l ll C e a r 1 <)\\
vo l tage and lo11· stand l1\' cu rrcm promise to crcne
i n teresti ng c ldlcnges i n rtl ture de�igns.

The power switch to rurn off the i mern: ll 11m1 cr

su ppl v d uri ng Sl eep is imp lemented off-ch ip <lS 11a rt
of the powrr supply circ u i t �(>r the low \'Oi t<lge suppk
No state is stored i nrern �1 l l�' d u ri ng S leep since in
typ ica l PDA S\'Stems, rhe Sleq1 st;lte corresponds to
the user turn i ng the svstcm orr Theref<>re the r ime
assoc iated with re load i ng the uche upon rerum �i·om
Sleep is acceptab le .

The requ iremems i n I d l e :111d Sleep compl ic:�red the
design of the bus i nrerbce circu i ts . This sec tion
i nc l udes the b·c l - s h i fi:i n g i nrntacc het11·een rhe i n ter
nal low mi rage (1 . 5 ro 2 . 2 V) sign ;1 ls <lnd rhe 3 . 3 V
external p i n bus . The bus i n tnbce c ircu i ts must d ri,·e

and recei1 'C signals which �l l'C h ighn H>l Llge th �1n those
nomin a l] \' su pported b\' the 0 . 3 5 - f.lll l fll'OCess 11 i thout
using circ u i ts which wou l d C.Hlsc us ro l'.\L·eed rhc cur
rent l i mit specitied by the Id l e spec . f n �1dd i r ion , du r
ing S leep the pads must be �1hlc to susL1 i n rhe \ �1 1ue
on the output p i ns despite t l 1e loss of i mnn�1 l Vdd
(Vdd i) ti·om the low , ·o l t .lge SU]1 11k \\· h ich is powered
otT b\' the S\'Stcm. The c ircu i rn· used to i mp lement this
fu nction is sh01\ll i n l-'igure 5 .

S ince Vdd i w i l l h e dr i 1 e n ro zno h \ rhe S\'Stc nl
during S leep, i t i s used not onh- ��s �� 11o11·cr su [lf1h'
but a l so as a log ic signa l . A l l c i rcu i rn· wh ich must
be Jcti ,·e in S l eq1 i s d ri\ ·e n ti·om the e x rcnL1 1 , 3 . 3 V
supp h· (Vdch) which has been d ropped th rough d iode
connected PMOS de 1 · ices to red uce the stress on the
ox ide of these dev ices . lkt(>re s ign �1 l i n g rhc chip to
enter Sleep, rhe system :�sserrs the n l\F.S ET pin (�Kti,·e
low) \\'h ich d rives <I l l e n a b led ou tpu ts w �1 speci tied
state-d isJblcd f(>r comrol s ign:� l s :�nd ;.c ro t(>r
ad d resses ;1 nJ d �tta . I r then asserts n PW RS l.P (acri 1 ·e
l ow) whi ch i s Al\' Ded \\' i t h the �1 11pmpriate o u t p u t
en:�b le control ro ru rn on sm;l l l lc :� ker d C\· ices ll' h ich
wi l l ho ld the outpu t pin i n the :�ppropri�He sLtte d u ri n g
S leep . I n the circu i r shown i n Figure 5 , r l 1 e ou tpu t i s
a n add ress. Thcrd(>re, t h e add ress bus en �1b l c (A B E)
p i n is t he control pi n on the lower � M OS leaker �md �1

\ 'o l . <J �" I I <J<J7

S+

nAESET ABE VDDX nPWASLP

Internal Chip Circuitry

F igure 5
l)c1d Circu i rrv

bu fre red version of n J>W H.SLL) controls the top device.
f ina l ly, the Vddi pins arc ;Ktivdy d riven ro /.em by t l1e
syste m. This c1cti on dis:1bles the ou tpu t st:Jge of the
pad d ri1·cr c i rc u i t b1· ru rn i n g off the trans istors c losest
to the pad-th e N M OS d i rccrlv and the l)!YI OS 1·ia rhe
bias nen1·ork whose ourput goes to Vdd x 11 hen i rs
path to Vss is c u r off ;\lore that t(Jr am· input 11·hose
1·a lue is n:q u i rni d ur i n g Sleep (ABE ;md n P W RSLP i n
tbc oamplc described) , <1 separate p;lral lc l i n p u t
receiver m ust b e implemented s ince t h e n o n n a l i np u t
receiver rcq u i res Vdd i .

Circuit I m plementation

The circuit implemetlt;1 tion is pseu d ost:Jtic :m d a l l o11·s
the internal c lock to be stopped i n d c tin i te i l' in e it l 1er
sr.ne. Usc of circ u i ts which m i gh t l i m i t low 1·ol tage
011eration W<1S stri cti\ - co ntrol led and the design 1\'<lS

\ 'o l . 9 No. I 1 9':i7

Pad Driver 1 - - -

UJ (/) <l) 0 0 ·:;; :::;: <l) a. Cl
._ UJ <l) -I .Y. Ill ns <l) <J z

UJ

NOT RESET

ADDRESS[n]

A[n]

Level Shifter
and Pre-driver

(/)
0
::!:
z

VDDI

- - -,

s i m u l a ted to e n s u re opcr:1tion s ign i ti cmrly bel ow
the nomi n;J] J .S V le vel of the low vo]LJge su pply. The
values of rhe internal s u p pl v and oper;uing ti·eq ucncy
were opti mized to cK hie1·c mJxi m u m pcr t(mnance for
less rhcl ll h a l f :� 11·:�rr.

The ,.,1St m :� jori n · of the design is 11 u re l v st:Jt ic ,
composed of e i t her compleme nL1n· CMOS gates or
st::ttic d i fkrcnt ia l logi c . In ccrt:� in s i tu a tions, IYi d e
N O R fu nctions were req u i red :�nd these wnc i m ple
mented i n J pse u d ostati c fashion us ing e i ther static
weak tced b<lck c i rc u i ts or sclt�timcd c irc u i ts to l a tch
the outp u t lh t<l and return the dvn:unic node to i ts
predurged st:nc.

The register ti le (IU:) uses the sci t� r imed approach
ro return the bit l ines to the prech <1 rgcd state J tter an
access (Fi g u re 6) . Tn this c i rcu i t , :t n extra s e l F- r i m i n g
col u m n of bir c e l l s 11· irh a dvn a m i c b i t l i n e was imple
me nted to m imic the t iming of the ch u bit l ines .

Figure 6 s hows one ce l l ri·om a col u m n of register ri l e
d �1 u h i t ce l l s and o n e ce l l ti·om rhc nrr�1 s c l f ri m i n g
col u m n (o n i l" one read port i s s h own) . T h e b i t c e l l s
i 11 r h i s cx tLl col u m n a r c �1 1 1 t ied off s o rh�H the
S F I .E _B I T LI N E signal ll'i ! l <l l\1'�1\'s d i schJrgc ,,·hen
the RI-:A D_WO R.DLI N E goes h i g h . \tVhcn the
S F I . 1-._ B I T U N E ta i ls , it w i l l ser a n RS Lnch uusing rhe
S F I .F_ENAB LI-: sign:tl ro ta l l . This wi l l d isa b le the
REA D_WO R D LI N E :-�nd cause the bit l i nes ro be
prec h;lrgcd h i gh when the read access is complete.
Since the DATA_ B I TLI N E's :1rc n:ccivcd bv l ow sensi
t ive RS l �nc hcs, the ouq:JL1 t cbt:J ll' i l l be he ld when the
b i t l i ne is prcchargcci h i gh . The scl t�ti m i n g RS b rc h i s
c le :1rcd ,,· hen C LOCK_L goes l m1·. This causes the
S E I . 1-_El'\f\ B L E s igm l to go h i g h , cn�1 b l i n g the rc1d
porr t(Jr the :1cccss i n the not clock n·ck . ;\ separate
S F LF_B I T LI N E s igna l i s i m pleme nted t(Jr each of the
three register ri le pons so that r l1e c l ocks rclr rhc three
ports em be enabled i ndepcndcn tlv.

The tLl l l .'> isro r l e�1 kage �1ssoci �ucd with the loll'
threshol d l'oi tages is problcm�Hic t(Jr t hese pse u do
static circuits. I f a weak ked back circu i t is u sed in a

UJ
z
� CD f5.1
<(0

NOR str ucture w h i c h is prcchargcd h i g h , ncessin:
l ea kage i n the pa r<l l le l NMOS p u l ldmms 110 u l d
req u i re that t h e rcCLi baclz b e tJirJ\· Strong, \\ h ich in tu rn
wou ld red uce the speed of the c i rc u i t . In the l i m i t o t'
ver\' ll'i de N O R' s , 1 t 111�1\' not be possi bk to s ize a
PMOS l c1ker so that i t em supplv the lc1bge ot' �1 1 1 the

off N M OS p u l l d mms ll'i thout m a k i n g the lcaker roo
large to be ove rpowered lw :1 s ingle acti1 ·c p u l ld om1 .
Jn the cJsc o f J sc l ��r i med :1ppro:1ch , a s i m i lar prohlcm
exists bur i t usu;1 1 i y is manitl:sred as a vanish ingly small
rim ing ma rgin �(Jr the scl�� ti mcd circuit to tire bd(H-c
the d�l ta on the dvn�1 111 ic node dccavs a11·av. I n either
case , we Jddrcsscd th is issue lw req u iring the length of
p u l l doll'ns on dvn::�mic nodes to be s l i ght lv 1 �1rgcr th:�n
m i ni m u m . Tra nsistor lc1bge cu rrent is �� s rmng func
t ion of c hanne l l e n gth so �� 1 2% i ncrease i n de�·icc
l en gth res u l ts in a ic :J kagc red u ction i n the II"Orsr case
of a bo u t a bcror of 2 0 . The resu lt ing J c a bgc m a kes
i m plcmcm:1 tion of e i ther II'C:Jk kedback or �� se l f
rimed appro:�ch I'Cl'\' rcaso n :1 b k .

T h e operat ing �rcq u cncv �u 1 . 5 V c a n lx rou g h l v
d e ri ved by SLl rt ing w i t h the ti·cqucncy of t h e A l p h <l

w
z
::::; t: CD .._I
...J UJ C/) Bit Cell Dummy Bit Cell for Self-timing r - - - - - - - - - - - - - - - - - -

VDD VDD

VDO

F igure 6
Scl l � t i 1 1 1 c d 1\.F l'rcc i JJ I·gc

r -

D

READ_ WORDLINE

I I I I I I I I ' -
VDD

PRECHARGE L

Digiul Tcc l l l l i u l]ourn.l l

WRTTE_WOROLII'£

CLOCK_L

\'ol . 9 :--J < l . l 1 9'!7

p rocessor i n tlw same prou:ss rcch nolog1 · ·' �1 nd scal i n g
t(>r t h e use o L 1 longer rick m odel and then Vdd . Since
r ile long tick d es ign n:q u i res the chip ro pcrt(mn a fi.1 l l
S H i fT a n d �1 fu l l A I) () i n �� s ingle cvcle , this �1 [1proxi
m arc ly doubles the c�'c le rime req u i red . The dh:cr of
Vdd scal i n g is rou g h l v l i near h>r this ra n ge of V d d .
Com bin ing these efkcrs resu l ts i n an opcr�ning
ti-equenc1· ,n I . 5 V gi 1 en ill'

433 MHz * 0 5 * (15 \ '/2 . 0 V) = 1 62 ,\J H z .

This pair o f 1·ol uge �md ti·eq u e ncv n l u es ag1-ecs ll'c l l
ll'ith the power estim ate Ol1t l incd in the section Powe r
D issipation Tr:1dcofts. Note th<lt for poll'cr s u p p l v
l'ol tagcs m u c h l own rlLUl 1 . 5 V , the oper;ni ng ti-e
q u e nn· d e cre::tscs 11 i th 1 ·ol t:1ge in a ll1 <1 n ner which is
s ign i tlumll stmnger rh�m l i nor. This bcr sers �1 11LK
ricll loll'<.:r l i m i t on rhe power s upph· 1 o l tage in most
appl ications.

Po11·er esti mates made e<lrh· in the design �1rc prone ro

errors in e i ther d irectio n . ln rhe case of this design , rhe

power d issipated �H I .S V \\'JS lower th:tn rhe 4SO mW

r�1rgct, so 11·e sh ifiui the nomi na l i n ternal Vdd ro 1 .6S V
to increase rhe vicki i n the] (10 M f-Jz bi n .

Clock Generation

An o n - c h i p PI J . ' genn�ltes the i ntcmal c lock �1t 01 1<.: of
1 6 h-c q u cncics rJllt?,i ng ti·om RR ro 2 8 7 M H; h�1sed on
.1 tl\ed 3 . 68 M H z i n p u t clock. Due to i n tc m a l
resou rce cons rra i n rs �u 1d o u r l i m i ted c \ periencc 11 · i th
low-power a n alog c i rc u i ts , \\'C colltLKted with Ccmre
Su isse d ' E iectm n i q u c cr de M.icrorcc h n i q u e (C :S E M)

ti-om N e u c h :l.re l , S11·i rzcrl .1 n d , to design the I' L L �m d
C llg�1gcd Prokssm T r .ec ri·om St:�nt(Jrd �1S �1 cons u l
t�l i lt on the p roject O u r i n i t i a l tC,1 si b i l i t1 11 ork resu l ted
in sc1·cral design rr�1deot'ts

First, 11·h i l c rherc 11 �1s �� S\'Stcm req u i rement r lur the
c h i [1 return qu ickh· ti-om the Id le state to n ormal opcr
Jtion, there II'JS no such co!lStr<l inr on rcru m i ng ti·om
the Sleep stare . B ased on rhis d e tcr m i n �Hion �111d our
2 0 mW power b u d get i n Idle, 11·e concl uded that i f we
could keep the I' L L po11 n bel o,,· 2 m\V, II'C could
le �11 c the I' LL r u n n i n g in ld lc .1 1 1d rcmo1·c the req u ire
ments on the l'LI . lock ri 111c . Thus, the need f c > r �� 1 er1
l m1 power I'Ll . i s d i ct .Hcd lJI' the poll'cr bu d get 1 1 1
I d l e , 1 10t i n ncmn.1l Ofll' L1ti o n .

>-Jot, \\'C h ad specitied :1 L1rgc flTq u cnc\ · m u l r i p l ic:t
rion flctor to a i i Cll\' the U SC o r·.1 COilllllOn and c heap J cm
ri'l'q uCJ1C\' CJ'\'St�11 c lock SOU I'CC for COllSUmer pmdu cts .
Larh· i n1·estig<1t ions i n d i c<1 tcd rh�1t th is would m�1kc
l i gh t phase loc k i n g d i tli c u l r . Ho11 c1n, 11 ·hc n 11 c
loo ked :1t urger sl·stc' l l l '- , 11·c t(> u nd no press i n g need t(>r
f1h .1sc l ocking. Con seq u c m h·, 11 c rcmm·cd f1h �1sc lock
i ng �1s �\ design cri tcri �t �md concenrr-.1rcd our c ft(>rts �tnd
design tradeofts on m i n i m i z ing phase comprc·ss i o n .

\' nl . 9 :\o I 1 '.1')7

F i n a l h·, 11 bi le the PLL ll'as designed to h�md le the
n oise npccred o n the c h i p po11 cr su ppl ies, '' e d iscm·
ncd row�1rd the e nd of the des ign that the I'LL \\'aS
under i rs area budget and there was :tddirional space
Jvai i J ble in the vici n ity. VVe took ad vantage of th is
opporru n i tv to provide c leaner power to the PLL bv
RC ti l ter in g our i me rn a l supplv and \\'l' ded icated 1 nF
o f cl l l -ch ip decoupl i n g cap to this pu rpos e .

CS I-: ;VI pnhmned t i l e c i r c u i t and 1 �11'o u t design
and 11·e phced r ile completed block i n to the 11J icro
processor. S i n ce 11 e anticipated that the characreriza
tion o f the I'LL i n regrated in the chi p w o u l d prese n t
some d i ftl c u l rics , w e reserved o n e o f the s i \ d ie sites
on o u r tirsr p�1ss retic l e set for a rest ch i p which con
ra i ned se\"CLll var ia n ts o f the fu l l I 'LL and i mcresr ing
s u b - blocks. These c irc u i ts a l l owed access to �1 1·arictv o f
nodes i n t h e P l . ! . "'i thout compromisi ng t h e des ign o f
the PLL i nst�l l l t i �ncd i n t h e c h i p . T h e res u l ts o f the
PI .f . ch ;1 1·acrc rizar ion are reponed 1 11 Rdcrence 4.

Clock Distribution

The chip operates ti-om tlvo clocks as shown in figure 7 .

A n i ntem�1l clock, cal led DCLK, i s usuJI Iv ge nerJted
bv the P L L. The second c lock is a bus c lock, known as
M C L K " ·h i ch operates u p to 66 M l-l z . M C L K can be
suppl ied h1· �1 n exte rnal :tS\'JJc hronous source or lw the
c h i p based 01 1 a d i1 ision of the P l . L clock s ign : d .

There �1 re ti1'C c lock regi mes i n t h e ch i p . T h e tl rst
two regi mes arc so urced bv M C L K and consist of the
pad ring 1\ 'h ic l l recci 1·es MC:l . K d i recr l� · �md the bus
interbce uni r (B I U) and parr of the wri re bu ffcr which
recci1·c M C I .K thro u gh cond i tional clock b u ffers . Th e
last th ree regimes arc sourced lw the i memal DC:LK
dock tree :llld conr�1 i n the Dcache, the] cache, and the

F igure 7
Clock R<:�i 1 1 1 r s

cor e . I n th is case, the core inc l u d es the I BO X , r: B O X ,

t\ l U L , I M i\JI U , D M M U , and part o f t h e IITitc bu ffe r.
Both M C: L K and D C I .K arc d i str i buted bv bufkrcd

f-1 -trccs to cond i tiona l clock b u ffers in the 1·ar ious sec
tions of the c h i p . The b u fkrs in the H - trec a l l ow the
usc of smal ler l i nes f·(>r d i stri bution and res u l t i n lower
c l oc k poll"cr. Although th e th ree i ntend clock
reg i mes a rc J l l sourced b1· the same H - tree, the topo l
ogv of t h e ch i p d i d not a l l o11· corresponding sections
o r· the H - tree to be rou ted in the same mcr-1 1 . T h is
res u l ted i n an i n crc1sc i n the c:-: pcctcd skew bct\\·ccn

the caches and the core . I n ad d i tion, 11·c d iscm·crcd
that \\'C could squeeze a bit more ped(mn ancc ti·om
the ch ip i f we i n tcntiona l lv orhct the clock i n the
c:t c hcs relative to the c lock i n the core . Conseq u e n tly,
we used the clock bu tkrs in the H - tree to tunc the
clock so that the Dc.1ehe rcccii'CS a c l oc k which is one
gate d e la1· c:tr l icr than the core and the ! cache rccci1·cs
a clock 11 h i c h is one gate deL\\' later than the core .

figure 8 sho11 s the pl11 'sica l muting of t he intcmal
c lock tree . The bu fk r st�1gcs �1re not sho\\"11 but they
exist i n the cen ter of tiJc c h i p and in t(lur sym m etric
locations-two in the ce nter of the I and D caches a nd
two i n locations at the cac he/core i n terface. The final
leg of the H -trcc is t ied to con d i tional c lock b u fkrs i n
the caches a n d the core . The problems associ�1tcd with
clock skc11 with in the caches arc reduced lw the t;Kt
th,n o nh· a s ing le b �1 n k i n cKh cache is enab led . This
l i m i ts the plwsical d ist�1 11cc O\'Cr w h ich tightlv con
trol led clocks need to be dcl i1ncd in the cache regions .

The clocks i n the co t"C present a more i nterest ing
proble m . The ti na I l e g or' the clock tree i n the core
stretches the fu l l height of the ch i p and tight con trol of
skew a l ong this node i s req u ired f(Jr speed and rti i1C
t ion a l i tv. I t is i m p le mented as a I"Crt i c a l , meta l 2 l i ne

Fig ure 8
Pl11 'sical Rout ing of Clock Tree

8 0 0 0
-(/J 6 0 0 0 c:
0 ... 4 0 0 0 .!::!
E 2 0 0 0 -
Cl) -
ca 0 c:

"C
- 2 0 0 0 ...

0
0 ... u - 4 0 0 0

>
- 6 0 0 0

0 1 0 2 0 3 0 4 0 5 0

Relative Skew (pS)

Figure 9
Clock A.rri 1 a l Time i n rhe Core

d riven ti·01n r(> u r nomi n a l l y eq u id istant poi n ts . The
dock b u fkrs arc stand ard ce l ls of varving d rive
strength b u i l t d i rectly u nder th is M2 l i ne to m i n i mize
local variation in de lay.

Circ u i t si m u lat ions of the H - trec 11 crc pcrfixmcd

using S P I C E to d eterm ine the skew between clock
regions <1 11d with i n each of the c l ock regions. The
nodes in the grid were extracted from Ll\'out and con
tained more than 30,000 R and C c l e m c ms. F igu re 9
shows the rcl atii'C doc k arriv::tl time 1·crsus the Y coor
dinate f(x each cond i tional clock b u ftl:r 011 rhc l'ertical
leg of the clock tree in the core. The fi > u r arrows on
the graph i ndicate the points from wh ich the ti na ! leg
is d rive n . The d a ta poims arc the rc l atii'C arr i1 ·a l ti mes

of the c lock i n pu t to the conditiotd clock b u ffers
sourced bv the clock tree . The tota l s i m u l ated s kc11· ts
4 1 pS :tssu m i ng maxi m u m metal resista nce.

Clock Switching

One add i tional complication rel ated to the i mcrnal
clock tree i s that i t i s n ot a lways d riven bv the c lock
from the PI ,L, known as CCLI<.. D u ring cache fi l ls, the
c lock sou rce rc>r the in terna l sections or" the chip
switches Ol'er to MCLK so that the " hole chip is r u n
n i ng sm ch ronous to t h e b u s (Figu re 1 0) . T h i s s i m p l i
fies ti l l s and i t red u ces po11·cr si nce t h e b u s c l o c k i s
s igniticamly s lower than CCLK. Note th:n si nce th is
m a c h i n e has �� b l ocki ng cac he , not m uch happe ns
w h i le wait ing tclr a cache ti l l . Thcrdc>rc , r u n n i n g on
the sl ower bus clock d uri n g ti l l s has essentia l ly no
performance i m pact.

Since M C LK and C CLI<. might be Jsvnc h ronous,
switc h i n g the J ri1u of DCLK q u icklv bcmccn the two
c lock sou rces is d i ffi c u l t . Ca reht l attcmion must be
paid to the synch ronizatjon of the M u x control s ignals
to prevent gl i tch p ul ses on the clock d u ri n g the trans i
tion between the dock sou rces .

Digital Tccl l l l icll]ounl:\1 Voi . <J Nu. l 1 997 S7

PLL

F i g u re 1 0

MCLK
Divider

CCLK

DCLK

Clock S\1 i tch ing Circ u i t

Enable

>---i MCLK

Cloc k swi tch i n g i s on ly us<.:d d ur i ng ti l l s . Stores
w h i c h miss in th<.: each<.: and casrouts ar<.: wri tte n to
m<.: mory through the write bu fkr w i thout switc h i ng
th<.: i n ternal c lock over to M C LK. The write bu ftcr
rccciv<.:s borh D C L I<. and MC:LK :1 nd t1:1sses the d ata
f(>r e x te rna l stores across the D C L K/ I'v\ C : LK i n te r

bee ll 'ith propn attention t o S\' n c h ro n i zation issues
bet\\ cen the t\\'0 c l ock regi m<.:s . On<.: i mcrcsti ng c h ar
actnistic of c l ock S\\'itcb ing is th �1 t i t g i, ·cs the S\'stem
Lksigncr another option to Sa\ e power in s i tu�Hions r(Jr
ll 'hi ch the fu l l pertormanu.: of the c h ip i s not r<.:quircd .
Bv d isa b l i ng c l ock Sll'itchi ng on th<.: rlv, vou can con fig

u ;·c the c h ip to r u n otl th e bus c l ock. There is no l i m i t
on �1svmmcrry or maxi m u m pu lse width of th e b u s
c l ock, s o the c

.
h ip can b e operated at very l oll' h-cqttcn

c ics i f d <.:s i rcd .

Conditional Clock Buffers

Conditional c lock buffers are simpk l\: AN D/i nvcrr
structures ll' i th a n i ntegral l arch on the condi tion
inpu t . The bu ftl:rs must be marched to their lo�1d
to m i n i m i ze skell'. S i nce add i ng d u m 1m· c lock loads
i s con tran· to the]oll ' - pO\\ 'C r design p hi losop h\·, \\'C
created scaled clock b u ftc rs "·h i c h \\'Otdd prod u ce
matched c l ocks for a ,,·ide rang<.: or· l o<ld s and o n l \·
IKetkd to add d u m nw c l ock l oads for �1 sma l l n u m bn
o f vcrv l igh t lv loaded � lock nmks . Th<.: t�1sk ol . match
i n cr rh� c�JCk

.
bu Hers to the load was !-';rcnlv s i mp l i fi <.:d b � .

by the bet the c lock load pres<.:n t<.:d by o u r scmdard
latches is largely d ata - in dependent .

Whik the usc o f condit ional c l oc k bufkrs is central
to the des ign method used on the ch i p , i t shou ld Lx
noted that �he critical paths to gen erate the cond i t i on
i n pu t to rhcsc b u fkrs repres<.: n t some ofrhc most d i Hi
c u l r cks ign prob lems i n t h e c h i p . I n this G1Se , \\ C

DigiLl l . kchnic�l Tou rnai Vol . <.) No. 1) <.)<.)7

decided t ha t th<.: power S<W i ng associated ll'i th the con
dit iona l c loc king ,, ·::�s ,, ·orrh rhc add i tional design
e ftorr a nd poss ib le pnt()rmancc red uction .

Latch Circuits

Th<.: st:mcLmi l atc hes us<.:d 1 11 the design are d i ftl:renti a l
edge - triggered l ::� rches (F igure 1 1) . The c ircuit struc
ture i s a prcc hargcd d i ftl:rential sense amp tol l owcd lw

a pa i r of cross -coupkd N AN D gates. The sense amp
need not b<.: pa rt ic u la r ly we l l ba lanced because the

inputs to the larch <1l"C fu l l Gv! OS levels . The NMOS

s horting d cvic<.: bctll'<.:c n n odes L3 and L4 prm·id cs :1

de path to gro u n d r(Jr !cC� kag<.: c u rrents on nodes L l

and L 2 i n case the i nputs to t h <.: brch Sll'i tc h after th<.:
l atch c\·a l u�Jtcs . A t norn1:1l operating t[·eq uencics, th i s
d n·ice is not parr i c u l a 1· l ,· i m portant but it is req u i red
tor the larch to be sta r ic . Note that s i nce the de c u rrcm
tlo,,'i ng is d ue on h· to d C \'icc k1 kage, t he magn i tud<.:
of the cu rrent is i ns i gn i ri ca n t to the poll'<.:r i n norma l
operation .

Testability

The c h i p supf10rts I E E E 1 1 49 . 1 boundary scan tlJr
conrinu itv rcsn ng. In �HJd i tio n , i t has nvo hard war<.:
katures to a i d i n man u bcturing testi ng. The fi rst is �1
bypass to a l lm, · CCLI<. ro be d ri\'C n f[-om a p i n svnchro
nous to M C LK. Th is : tl lo\\'s the tester to con trol the
r i m i n cr bcn,·e<.:n C :C I . K :1nd 1YI C :LK to make the asvn
ch ron�lllS sections :1ppc1r to be ckterministic . The sec
ond test katurc pro, · id cs : 1 l i n<.:ar f<.:<.:d bac k sh ift register
(LrSR) that can b<.: lo�1ded \\' i t h i nstruc tion data ti·om
the Icache. Load i n g the LrS R can be condit ioned
based on the ,.�1 luc of <!dd ress b i t 2 and the I cache h i t
s igna l . The LfS R is lmdcd after t h e Fetch stage to
al low the i nstruction tol lowing <1 branch to be read
from the leac h<.: �md l oaded i nro the LrSR. This ka
tu n: a l l ows a n v L1 !1d om 11�1ttern to be loaded i nt o th<.:

F i g u re 1 1
Larch C : i rc u ir

OUT L

OUT H

l cKhc :md then read o u t bv alternating branch
i nstruc tions with d ata patterns words.

Power Dissipation Results

Measured Results

Power d issipation data was col lected on an eval u ation
bo;ml r u nning Dhrystone 2 . 1 wit h the bus c lock
ru n n i n g at one-third o f the PLL clock frequency.
D hrystonc ti ts e nt irely i n the i nternal caches so, after
the ti rst pass through the loop, pin activity is l i mited.
This is the highest power case because cache misses
c:1usc the i n ternal c locks to r u n at the bus speed and
resu l t in a lower total power. For both sets of rncasure
m c l l tS, e xternal Vdd is fi xed at 3 . 3 V. for an i nternal
Vdd of 1 . 5 V, t he total power is 2 . 1 mW/JV\ Hz. I f
the i mcrn:tl supply i s set to 2 .0 V, the total power is
3 . 3 mW/M H z . Note that the ratio of the power at
1 . 5 a nd 2 .0 V d oes not track Vdd2 because i t contains

;1 component of externa l power and the external V dd

is ti xcd .

Simulated Power Dissipation by Section

An <lnalysis of node transi tions based on s imul ation
was pcrf(>rmed to esti mate the power d issipation asso
ci ;Hed with the various major sections of the c hip
(Table 3) . Toggle i n t(xmation was col lected based on
J 60,000 cvclcs of Dhrvstonc :md com bi ned with
cxn·acted node cap:�.c itanccs to estimate power d issipa
tion lw node : �.nd this data was ti.1rther grou ped by sec
ti on . The clock power l isted i n Table 3 is d u e only to
the gl o ba l c lock circu i ts .

A kw poi nts arc worth noti ng.

• First , the power is d o m i n a ted by the c:�cbcs as
you m i g h t ex pect given t h e i r s ize . T h i s is d esp i te
o u r e fforts to red uce t h e i r power t h rough bank
se lecti o n and other m e a n s . T h e I cache b u rns
m ore power t h a n the Dcachc beca u se i t r u ns
even' cvc l e .

Ta ble 3
S i m u l ated Power D iss ipation by Sect ion

I CAC H E 2 7 %
I BOX 1 8 %
DCACH E 1 6 %
CLOCK 1 0 %
I M M U 9 %
EBOX 8%
D M M U 8 %
Write b u ffer 2 %
B u s i nterface u n it 2 %
PLL < 1 %

• Next, the PLL power is i nsignificant in normal oper
ati o n . As was noted earl ier, its low power c haracter
istics are only i m port:lll t i n Id le .

• Fi na l l y, si nce reduction i n cloc k power was one of
our expl ic it goa ls , i t is i n teresti ng to consider the
total c lock power. 1 f you extract the local clock
power ti·om the nonclock sections and s u m i t , you
get a total c lock power, inc lud ing the globa l clock
trees, the local clock buffers and t l1e local c lock
loads. This power is 25% of the total chip power,
sign ificantly less th:�.n the 65% consumed by the
c locks i n the A l ph:�. microprocessor used in our i n i
tial feasi bi l i ty studies.

Conditional c locking was an integral part of the
d esign method , so i t is d i ffi c u l t to d etermine the
power s:�ving Jssociated with it . H owever, the power
associated with d ri\·i ng the conditional c locks is 1 5%

of the chip power and i f the condi tions on a l l the
condit ional clock bufkrs were a lways true , this power
wou l d q uadru ple. This docs not acco u n t tc)r the
additional power savi ngs that has been achieved by
bl ocking spu rious dara transitions.

CAD Tools

The CAD tools used on this chip were large l v the same
as those used on o u r Alpha d esigns . 5 This is not sur
prisin g since the pert(mn:�nce target of the chip
rou g h l y pa r.1 l l e ls th:tt of the Al pha fa m i lv as noted
i n the section Circuit I m plementati o n . The most sig
nificmt dcp<lrtu re w:�.s i n the area of static t i m ing
veritication and rae<: analysis where the adoption of
edge -triggered latching required significant mod i fica
tions to the tools used i n the A lpha designs.

Project Organization

O n e of the cha l l engin g :�.spccts of this project was
geograp h ica l . The detai led d esi gn was pe rt()rmcd at
fou r sites across a n i ne hour t ime zone range . The i n i
t i a l feasi b i l i ty work and architectu ral defini t i on was
done at Digital Semicon d u ctor's design center i n
Aust in with o n -site partici pation by pe rsonne l ti·om
Ad \'anced RISC: Mac h i nes L i mited (A RM) . The
implementation was more widely d istribu ted \Vith the
caches, M M U 's, write b u ftl:r, and bus i nterface u n i t at
Digital Semicondu c tor's d esign center i n Palo A l to,
the instruction u n it , exec u tion u n it, and c locks i n
Austi n , the pad d ri ver and ESD pro tection circuits at
Digital Semiconductor's main fac i l ity i n H udson,
MA, a n d the P L L at the CS EM design center i n
Neucha te l , Switzerland . I n addit ion, we consu l ted
with H udson for CA I) and process issues, with ARM
i n Cambridge, Engl and, tor al l manner of architev

Digital Tcc h n ic1l Jourml Vo1 . 9 No. I ! 9'J7 59

rura l issues and i mplementation tradeofts associated
with A RM designs and \\'i th T. Lee ti-om St�mtord on
the P LL. The implementation phase of the project
took l ess than nine months with about 20 design
en gmeers .

Conclusion

The microprocessor descri kd uses trad ir ion::tl h igh
pcrfPrmance c ustom c i rc u i ·, design , an i n tentional lv
s imple architectural d esign , a n d ad,·anced C M OS

process technology ro prod uce a 1 60 M l-I z micro
processor which d issip :nes less than 450 mW. The
in ternal supp l i es G \ 1 1 vary hom 1 . 5 to 2.2 Y whi le the
pin i nterface runs at 3 . 3 Y. The chip implements the

A R.M V4 instruction set and de l i vers 1 8 5 Dhrvstone
2 . 1 M I PS at 1 60 M H z . The chip contains 2 . 5 mi l l ion
transistors and is fabricated i n a 0 3 5 - f,Lm three-metal
CMOS process. It measu res 7.8 mm X 6.4 m m a n d is
pacbged in a 1 44-pin plastic th in qu <ld rl at pac k
(TQ f P) package.

Acknowledg ments

The authors would l i ke ro Kknoll'ledge the contribu
tions of the fol lo\\ ing people :

F . Aires, M . Bazor, G . CIL nev, K . Ch u i , M . Cu lbert ,
T. Daum, K . Field ing, J . Gee, J . Grodste in , L. Hal l ,
J . H:uKock, H . Horovi tz, C. Houghton, L . H owarth ,
D . Jaggar, G . Joe, R. Kaye ,] . Kapp, I . Ki m, Y. Lou ,
S . Lum, D . Noorlag, L. O'Donnel l , K. PJtton ,
J . Reinschmidt, S . Roberts, A . Si lveria, P. Skerry,
D . Souyadalay, E . Supnet, L . Tra n , D . Zoehrcr, and
the PLL design team Jt CS EM.

The support \\'h ich thev recci,·ed on manv aspects of
the design fiom the peop le at Ach'anced IUSC Nbchin :s,

Ltd . \\'as very importam and kecnlv appreciated .

Referen(es

ARJl'[A rch itecture Re/�'rellce (Ca m b t· id ge , EngL1 n d :
Advanced !USC !Ybcbi • H:s, Lrd . , 1 99 5) .

2 . 1'. G rono\\'ski er � 1 . , " A 4 3 3 M H z 64 b Qu�d- bsue
RISC M icroprocessor," !SSCC D(ges/ u{ 7 i'cbuiwl
Papers (Februarl', 1 996): 22 2-2 2 3 .

3 . D . Dobbe rp uhl er <1 1 . , "/\ 2 0 0 M H z 64b D u ;l l - bsue
C M OS Microprocessor," Jl:.'t-'l::.}ou rna! uj'Solid-Stole
Circu its, ,·o l . 27, 110 . I I (1 992) .

4 . V . \'011 Kae11el er a l . , "A 32C MHz, 1 . 5 mW CMOS P L L
f(>r M icroprocessor Clock (;cncratiot\" !SSCC IJ(t;esl o/
iechnica/ PajJel� (f'e bruJrl', 1 996) : 1 32-1 3 3 .

::> . T . fo,, ''The Design of H igh- Pcrtormancc t\1icroprou:s

sors at D igit<l l ," ,) lsi A ()\1/ff:.l:.E Des(t;n A IIIUII/(t/iull
Conference, s,m D iego, Cal i f. (June 1 994): 586-59 1 .

Dig;iral Tcchnic1 l jou rn;tl Vol . 9 No. J 1 997

Biographies

James Montanaro
James JV!onr;m;ll·o t·ect: i l'cd rhe B . S . E. E. <l lld M . S . E . E.
degree from r l 1e Massachusetts Instit u te uf'J'echnology,
Cam brid ge , 1v!A, i n 1 98 0 . He joined Digit<ll Equ i pment
CorporJrion in 1 98 2 and \\'Orked <ls a c i rcu i t des igner on
sel'cral RISC: m icropmcessor ch ips inc l ud i ng rhe ti t·st t\\'U
Alpha designs. I n 1 99 2 , he JO i n ed A pp le Com pu ter <lS a
c i rc u i r des igner on rhc Pm,·erPC: 603 ch i p . I n 1 99 3 , h e
returned t'.l D igi t;l l , \\'Ork i n g i n the Aus t i n RcseJrch Jnd
Design Ccnrcr 011 rbc design of rhe tirsr StTon�;�:\ 1<..,\ l m icro
processor ch i p .

Richard T. Witek
Rich Wirck t·ccc i,·ed a 13 .5 . in compu ter scietKe ti·om Au rora
Col lege, A u rorJ, I I ., i n 1 976. He is rhe l c1d archi recr on
the Strong.A RM m icrop mcessors ar Digit<l l ' s Ausri n design
center. He ,,·as co-;lrchi recr of rh c D ig i ra l A lph :l <l t·ch itec
rure <l lld lc1d ;l rchirecr on rhe first A l pha m icrop i'Ocessor.
Rich ,, ·as one of the lc1d design ers on rhc M icroV.AX I I
m icroprocessor, the fi rst single chip VAX . Ar Digira l , Rich
a lso \\'Oi'kcd on Phase 2 and Phase 3 D 1-'.C :ncr ;lrcb i recture
and i mp l. eme n rar ion a long with orher I' D I' I I a nd VAX
soh-ware projects. Rich was p:u-r of rhe App l e Power PC:
:1rchitect11rc rc1 n1 ar Somerset in A usti n . His current pro
tessional i nrcresrs inc lude processor architecrure and i mple
menratiom. Rich ILlS n u mero us parcnrs <l l ld tech nical
pub l ic;Jt ions 011 m inoprocessors and c.ll'i lcs .

Krishna Anne
Krishna Anne recei ,nl rhe B . E . degree i n e lccrmn i cs engi
neeri ng i n 1 99 1 ti·om A n dh ra U n ivers i ty, Vi z;lg, I ndia ,
and rhc M .S . F . E . degree fi·om ri 1c U n i ,crsirv ofToas at
Ar l i ngton in J 9 9 3 . /\frcr a b ri cf srav ar Tens l cep D es ign ,
I n c . , Ausr i n , T.\, i n 1 994, he joi ned Austi n Researc h and
Design Cen rer of Digiral Equipment Corpor;lrion as a
design engineer responsible tor rhe ht l l -cusrotn design and
de,·e lopmenr of h i gh -pertorm;mce lo'' -po" cr processors.
He \\ 'Orkcd on the des i gn and implemcnr;uion of rhe m u lr i
pl ie t· on rhe Srrong,A I\tvl projecr and is cum:mh· '' ork i ng
on another lo\\'-po\\'cr chip .

And rew J . Black
And\' B l ack rccei \ ed <l B . S . E . E . from P e t l l lS\· I , an i a Srarc
U n i; ersin· and an M . S . E . E . from rhe U n i ' c

.
rsin· of

Sour l1e rn . Cal i f(nn i <l . He jo i ned D igi r;1 l i n 1 99 2 <lfrer
,,·orking t\H· I nte rn;triona l Sol:�r E l ectric Tec hno l o g\·.
H e \\'JS .1 senior h:1rd,,·,1re engineer in Digita l 's Pa lo AJ ro
Des i gn Ccnrer, \\ 'hen: he led the bu s i n t nhn: u n i r des ign
rot· the Stro n gA RM SA- 1 1 0 m i croprocessor c h i p . D uri ng
his work on rhe A l ph a 2 1 1 64 cr t · , he '''as a m e m ber of
the des i gn ream t(Jr rhc mc morv lll J t Llgc m e n r u n i r <lnd
con rri bu rcd to rhe c hi p's clock des i gn . H e i s c u rrenr l l'
,, ·irh S i l ico n C rap h ics I n c . as a m e m be r o f rh e tech n i ca l
stati in rhc ,\ I l l'S Tee l l l lol ogv Di, · is ion ,,.IJ<:t-c he is ,,·ork
i n g on h i gh - pert(m n ;J n c e consu mn-oriemcd p md u crs .
And\' is ;\ m e m be r of I . E . E. E . , Tau f>ct<1 lli , ;md ELl
Kappa � u .

Elizabeth M. Cooper
E l i zabnh Cooper recei1ul the B . S . degrees (sunl 111J c u m
laude) in clecrric1l e ngi neeri ng Jnd computer science fi·om
Wash i ngton U n iversity in St. Lou is in 1 98 5 . Sh e n:ceived
the M .S . degree in computer sc ience ri-om Stanford
Uni1-crsm i n 1 99 5 . She joi ned D igi ta l Equi pment
CorporJtion i n 1 98 5 . Her pre,· iot ts respons ib i l it ies i nc l ud e
design comri h u t ions ro se1-eral C 1\ I OS Vr\\ and Alph a
C PUs. S l 1 e 11·,1s respons i b le for t h e design of t h e m emorv
managcmcnr u n i t on the SA- l l O Stro n g.A..J\JVI c h i p . She is
c u tTenrh' emp loyed ,u S i l icon Grap h ics M I PS ·rech no l ogy
D ivision .

Daniel W. Dobberpuhl
Daniel Dobhcrpt th l recein::d the l� . S . E . E . degree ti·om
the U n i q: rs i n· of I l l i n o i s in 1 96 7 . He jo ined Digi t,1 1
Eq ui pmenr C� > t ·porcuion in 1 976 ,md h a s been responsi b le
for five gcnnarions of micropmccssor designs i nc l u d i n g
t h e i n i riJ I A l piL1 C : I' Us . Most recenrlv h e h as been the
Tech nicJI D i t-cctm o f the Loll' Power IV! icroprocessor
C roup 11·irh Digi t,1 1 's Palo A l ro Design Center. He is the
co -au th or of '! he Ocslii " a11d /l ! lo/) 'sis of I IS! Circu its
(Addison-\Ves lc1 , 1 98 5) .

Paul M . Donahue
Paul Donahue recein:d r h e R.S. degree i n compu ter sci
ence ti·om Cornel l Uni1·ersi n·, I rhaca , �Y, in 1 994. Upon
;rad uarion he Joi ned Dig itJ (Semiconducrm's PJ i o A l to
Design Ce n re r .md \Hlt·ked on the SA- 1 1 0 . H e is c u tTenrlv
11 ot -king on r i le m icroarc h i tecrure and 1-critication of '1
Strong.A.. I\JVI ,·ariant .

Jim Eno
Jim Eno recei,·cd riH: 13 . S . E . E degree from North C1rol i na
State U n i1crsi n·, I\:! le igh, i n 1 98 9 . H e i s e mpl01•ed as '1
senim engineer '1t Digital Eq u ipmem Corporation's Ausrin
Rese<lrch ,llld Des ign Cenrer in Austin , T\, 11·orking most
recemlv on the micro,1rchitecru re of rhe SA- 1 1 0 StrongA I\J\1
microprocessor. lktorc his e rnp loymem wi rh Digita l , he w'1s
ll' ith the Somerset Design Cen ter i n A usti n , worki ng 011 the
microarchitecture a nd design of rhe Poll'eri'C 603 micro
processor. Pre,·ious to th.is, Jim 11·as i l l \ oil-ed in ,"-.S I C design
suppon ,md roo! dc1·elopmem 'lt Compaq Com purer
Corporation . H is research i mercsts i n c l u d e loll ' · p011·er
microprocessor des ign and rhc prop,1g,nion of acoustic
ll'a,·es i n vario�ts matct·ia ls , en hanced bv i nteraction ll' i th
selected organic compounds .

Gregory W. Hoeppner
GregorY H o..:ppm:r graduated ll'ith distinction ti·om Purd u e
U ni,·ersin·, 'Nest Lat:m:tte, I "! , i n 1 979 . I n 1 980 he \l Ot-ked
a� Cencr,;l Tel q)hon� and Electronics Research Labor,1rory,
W,J Jrham, Mr\, per t(mn i ng basic pmperries research on
GaAs. From 1 98 1 ro 1 992 he h e l d a n u mber of pos itions
ll'ith Digirc1l Eq ui pment Corpor,1tion, H udson, tVIA , i n c l u d
i n g CMOS 1)roeess de, ·e lopment, de,· ice characrcri Z<ltion
and mod e l ing, c irc u i t design, ch ip i m p le mentation , ,md
f-i na l I I - co- led r i l l' 2 J 064 Al p ha c hip impleme n tation tcllll .
J n J 992 he 1oi ned I R1VI 's Ad,·anccd Workstation Division
before t·etu rn ing to D i git,! I Eq uipmcm Corpor<� tion in
1 993 ro co-t(>Llnd the i r Austin Research and Design C :emer,
Austi n , TX. H ere he contri b u ted ro the microarchitcerurc,
i mp le menr,1tion :111d verification of D igita l 's fi rst
Srron g.A.. tz,V\ processor.

David Kruckemyer
Da,·id Kruckenwer recei1·ed the B . S . degree in com pu ter
engi neeri ng ri·om the U n ive t·sity of I l l i nois at U rbana
Cham pa igt l in 1 993 and received the M . S . degree fi·om
Sta n tord U n ivcrsitv in l 99S . A fter gr:�d uation , h e joi ned
Digital Eq u ipmen L Corporation's Palo A l to Design Cenrn
to 11 ork on rhe implementation o f the I nstruction Mcmon·
Management U n i t f(x the SA- 1 1 0 , the f-i rst StrongA I\J\'1
microprocessor. He is cu rrenr l 1· i t l l'oi l-cd i n the m i croarc h i
tecture a nd i m p lementation of:� next- generation
StrongA RM v:�riant .

Thomas H. Lee
Thomas Lee rece ived the S . B . , S . M . , and Sc. D . degrees i n
e lecn·ical engi neeri ng, a l l trorn rhe /vlassach usens I nsrirute
ofTechno lo� , Cam bridge, Mi\, in 1 98 3 , 1 98 5 , '1nd 1 990,
respectively. He joi ned Atu l og i)e,·ices i n Wi l mi n gton ,
MA , i n 1 990 ll' here h e 1vas pri m ari l v e ngaged i n the des ign
of high -speed c loc k recovery devices. In 1 99 2 , he joined
Rambus, I nc . in M o u n tain View, Cr\, ll'here he dl'\·elopcd
high -speed ana log ci rcuim· tor SOO megabvte/s D l\JA..Ms .
Since 1 994 , he has been an Assistam Professor of E lcctriul
E ngi neeri ng : n Stan ford U ni1-crsin· where his research
i merests arc in l o\\·- power, h igh -speed analog circuits and
systems, ll'ith a focus on gigah e rtz -speed wi reless i n n:
grated circu i ts b u i lt i n conven tiona l si l icon tec h no logies ,
particu l arly CMOS. He has rwice received the " Ourstanding
Paper" ,1\vard at the I nternationa l Sol id-State Circ u i ts
Conference .

Peter C. M. Lin
Peter Li n was born i n Ta ic hu ng, Tai ll'a n , on M a rch 1 7,
1 960. H e received the B . S . F. E. degree from Fcng Chi'1
U n ive rs ity, Taich u n g, Ta iw ,1n , in 1 98 2 and the M . E. 'md
E . E . degrees tr0m U ni ,·ersin· of U tah , Salt Lake C :in·,
in 1 98 7 and 1 989, respecri, eh-. from l 990 to 1 99 3
h e designed 2 M VRA.M :1nd 8 M \V R.AM for Samsu ng
Semicon d uctor, San Jose, CA. From 1 994 to 1 99 5 he
worked for D igita l Equipment Corporation , Palo Alto, Cr\,
where he contri bu ted to the design of low power Alpha
and StrongA I\JVI mJCroprocessors. H e is currently working
for C - Cu bc Microsystems, M i l p i tas , CA. He holds one
patent i n output buffer d es ign .

Liam Madden
Li,1m Madden received the B . F. degree ti·om U n i1·ersm·
Co l lege , D u b l i n , Ireland , in 1 979 a nd the M.E . degree
from Cornell U n iversity, I thaca, NY, in 1 990. Over the
past 1 5 years he has designed CMOS ClSC and RfSC m icro
processors, :ncl u d i n g the 2 1 064 Alpin processm. He led
the d esign rea m in Palo A l to which de l i 1·cred the c1ches,
\\ Tire bu ffer, me mon· management, a nd bus i n rer bcc I] n i ts
tor the SA- l I 0 StrongA R,VI m icroprocessor. H e is cu rrentk
e mp loyed at S i l icon Graphi ·:s, M o u main Viell', Cr\, whnc
he is D i rector of Circ u i t Des ign and Technol ogy.

Danid Murray
Daniel M u rrav rccei,·ed the B .S . degree in e lectrica l
engi neeri ng in 1 994 from the U n 1 1-ersin· ofC:al ir(mJi,J,
Berke ley. In 1 994, h e joined D igi ta l Semiconductor's lm1·
po\\'er microprocessor group in Palo Alto , Ci\. He con
tributed as a circuit des igner on the ti rst SrrongA R.M C P U
and is cu rrently i nvolved in rhe i mplementation o f' a norhcr
high-put(:>rmancc, l ow -power m icroprocessor .

Digital Tcc lmicl i Journal Vol . 9 �o. I ! ')97 6 1

62

Mark H. P earce
Mark Pearce was born i n Gene,·a, s,,·itzerland, on J une 1 2 ,
1 969. H e recei\'ed the B . S . E . E . degree fi-orn U n i ,-crs i LY
of Pennsylvania, Philadelphia, i n 1 992 , and the lvl .S . E . E.
degree from Stanford Un iversity, Stanford , CA, in 1 994.
I n 1 994 he joined Digital Equipment Corporation, ;H the i r
Palo Alto Design Center, work i ng initia l ly on a lm,· power
Alpha processor prototype. He designed the write buffer
on SA- 1 10, the StrongARM processo1·. He is cu rremlv work
ing on another h igh -pertonnance , low-po\\'cr processor.

Sriba lan Santhanam
Sri balan Santhanam received the M .S . E. deg1·ee in compu ter
science and engineeri ng from the Un iversitY of Michiga n ,
Ann Arbor, i n 1 989. H e joined Digital Eq u ipment Corp
oration, in H udson , MA, where he worked on the design of
the floati ng-point unit of the 2 1 064 CPU and subseq uentl y
on the design of the cache control unit of the A lpha 2 1 1 64
CPU. He then moved to Digital's Palo Alto Design Center
where he was responsi ble tor the design of the caches t(lr the
SA- 1 10 StrongAfu'vl microprocessor. He is currenth· .1 pri nci
pa l hard\\'are engineer \\'Orki ng on the i mplementation of ;1
fo l l o\\' ·On StrongARM miuoprocessor.

Kathryn J. Snyder
Knbryn Snyder (former ly Hoover) rece i ved the B . S . and
M .S . degrees from the University of Michigan, Ann Arbor,
in 1990 and 1 9 9 2 , respective ly. She is a circuit des igner
with D ig i ta l Eq u i pment Corporation work i n g on low
power m icroprocessor designs in Austin, TX. She designed
a varierv of custom c i rc u i ts tor the SA- 1 1 0 Stro n gA RM
m i croprocessor. Prior to cm p l ovrne nt \\'ith Dig i ta l , she
\\'Orked for IBM i n Aust in , doing custom a rra1· design t(>l '
l'owerPC m icroprocessors.

Ray Stephany
Ray Stephany received the B . S . E .E. ti:om R.ense i L �e 1·
Polvtech n ic Institute, TrO\', NY, and a n 1VL B . A . from
Wo;·cester Polytechnic l nsti

.
rutc, Worcester, MA. He joi ned

Digital 's Austin Research and Design Center in ju ly, 1 993 .
S ince that time, he has been one of the project leads o n the
StrongAfu'vl l ine of microprocessors . He has contributed to
the de,·e lopment of low po\\'er circuit design tec h n iques,
CA D too ls , veri fication , and overal l methodolog\'. H e is
current ly leadi ng the i m p l emen tation of a next- generation
SrrongARM CPU and looking at SOl as a potent i a l lower
power process for future generations of m icroprocessors .

Stephen C. Thierauf
Stephen Thierau fis a consu l ting hardware engineer at
Digital Equi pment Corporation 's D igital Semicondunor
Cmup, located in H udson , ,\1A, and is responsi b l e tor 1 /0
circuit design, on- and offchip signal integrit\', and l/0
model ing for Alpha microprocessors, PC! peripher<1 1s, and
other U LSijVLSI de,·iccs. His pre\'ious \\'Ork incl udes wsrem
b·e l signal i ntegri tv analysis, micropackaging an;1 1ysis <1nd
micropackaging design f·(Jr n u merous high-pertorm;mce
m icroprocessors and perip hera ls .

Dif(il'.l l Technical)ou rn;ll Vol . 9 No. I I \N7

Referees, February 1 995
to February 1 997

The ed i tors Jcknowlcdgc and than k the rckrccs
11· l w hJ\T p�lrt icipated in a peer rC\'icw of the papers
submirtcd ti1r pub l ication in the O(v. ito/ ' Fechu icol

Juumo/. The rckrecs' detailed reports hJ\'C he lped
ensure thJt papers publ ished i n thc. jotmwl otkr
rc b·ant �md i n fi:m11ative d iscussions of computer
technologies and products. The rctCrccs arc computer
science Jnd engineering prokssion a l s fi·om academia
�md ind ustry, i nc l ud ing D I GITAL consu lt ing engi
neers. Affi l iations reflect referee status at the t i me
of review. Note that independcnt consul tants and
D I G I TA L employees a r e l i stcd without company
affi l iJtion .

M;lrk l\. . Abbon, Orc�'../011 SIC/te f.·nit ·crsil) '
C : h ,Jdcs \! . Abcm..:r lw

)Jckic A l brec ht, .\ lrJi t itor Compm t) '
Bri ;ln R . Al l i son

D i n 1 i rri A . Anro n i 3dis, .llassochl lsetls /uslilllle
1 if' 'f ('ch 1 wlogl '

Wil l iam Atkins, Scm iconchtclo1 · Research Corpora/ion
Kbus) . lhrh m ;l n n , Norlb Caroliuo SW!c: Uu it 'etsil r
1:-:Jward 1:-:. lhlkovich

l'rith,·i re11 BJnerjee, Uniuersil)' (!/llliuois a/ 1/rhmw-
Ch am pm�r:, n

l\1trick lhude! a i 1·e

Cad J . Beckmann , Dm1mou1b Colle,r:,e
1\ohert J . lk l l

WJiter Bender, ,vi/TMedia Luhora/(JI') '

Anrlwn\' \! . Be rem
Kenneth l'. B i rm3n, Cornell l u it 'C!ISil l '
Ven: l l I) Bo,1el1
Vbd i m i r BolkhO\'sky
) L;� 11 C. i�l l l 1 1 1e\·
V. M ichae l B<n·e, . 1 1/T . \fediu Luhom/ol1 '
\Vi l l i c1 1 1 1 J . Bowh i l l
ScotT 0 . l�radncr, Hurrurd Uuit 'el�'iil) '

1\rb rk B r:u n hal l
Col i n E . Brench

K;u-cn B roui l lett<.:
M;lrc H . Brm\'11
Stu,·,,rt �. B n·,,m
J),, , i d R . B u ten lwf
Fred C : . Cm tcr
l .uccl Cardc l l i
\\',1\' l l l: M . C1rdoza

Don;lld R. Ch.md , /](:'n/ley Colk�'..!e

J lkltkb· C he n , Hart'(//d ['nit 'elsil) '

I

Peter M. Chen, Uuit ·em·/ 1 ' o/Mich i,!.!CI It
Wai - Mee Ching, TI Wotson Nesecn·ch Cen ter
J ames 1-: . Ch u ng, ,\1assochusells fnslitute o/Technolug \ '
M arrht:,,. J . Cotl\\ ;1\', I ·u it n-sil l ' 0/ 1 'il;f!,il l ia

W. Bruce Crofr, { n icersil \ ' o('. \Jossachuse/ls A nzhenl
C hristopher L. Cromer, .\'JS' f
L'-1lark E . CrO\ clla, LJos/on (·uit 'l!l\il l '

Zarka c,·ctcmo,·ic

David Cvgansk i , Worcesler l 'ol)'!ecbn ic lnslitute
Nathanie l J . Davis I V, \ il;!!, i l l ict Tech
John DeTrevi l lc

David J . DeWi tt, Unit •l'lxil) ' o/ Wisconsin

John C. Eck

John C . Egolf
Stephen G. Eick, A7<-::T/Jell Lubora!ories
John E l len berger

Da\·id C . El l is

J oel S . !:-:mer

�icholas Emer1

Wi l l iam E . FarrL· I I , Science Application lntenwlionctl
Corpuml ion

W. Burns fisher
Jose A . B . Fortes, 1'1 1 rdue I ;nit •ersily
Tr)•ggve l'ossum
Michael J . Fran k l i n , I lnit.•enily o/Mmy/and
Ko Fuj i mu ra , NTT!njimnalion and Commun ications

Lahoralories
Bruce Citron , Monlerev Ba 1 · Aquarium Research

institute
Michae l G lantz, Rani< .Ycmx Research Centre, Grenoble
Wil l i am Goldenrlul
Paul M. Good,,·in
James F. Grochm:�l
G reg) . G r u b

D i rk G r u m' ;l i d , ('n it 'el�·ify o/'Colomdo
J onathJn H J tTis
Jet"trcv R. H�rro\\'
Pc1Ld K. H;Htcr

Mark D . H ayter
Denise Hea�;erry, O:NN
George T. Heineman, Colu mbia llniueJ:'iii l '
Daniel Herr, Sem icrmdttC/IJI' Research Cu1poratimt

F. S. (S <mdy) H i l l , I ln it rJsil J ' (!f',HossachttSells A mber•if
Stephen R. H o ftimn
Ti motlw A. Hm,·es, (iuit 'el:,'if \ ' ojJfichi,Q,ct l l
H en ry G .) J k i c i J
Allan L. J en n i ngs
ChristOpher F Joerg

Digital Tcchnic1 l Journal Vol . 9 No. I 1 997 63

64

l)ouglas \V. Jones, Cnicenii) ' o/lou·cl
Rich.1 r·d S. Ka u tillclnn
James \V . Kee l e\

Ke ith A. 1\.J rn b a l l
James) ell' Ki stler
vVi l ti-cd L Kl i ng
Chc1rlcs Koc l bc l , Rice Uniceni!y

Vi j cl\';1 K. Konangi , Clet .•e/mzd Stole (/nii 'C'i\'il) '

Thorn;ls E. Kopec
Nancy P. Kronen berg, A 1•id Technolog) '. !uc
ChJrlcs D. Kukla
l'i1 ; l I .;ldk in
W i l \ i ;lnl A . Ll i ng
Ric l l ;mi r. L11·1
ivlark E. l .a11, Cn it 'l!i\'i / J ' oj'f!orido
Ah i n R . l .ebcck, {)u/.:e / ·u it 'eJ:,'f i J ·
r\:l i c ! J ae l Lee, Open L'np, ineering Juc
Yan n - Hang Lee, / ·n it ·crsitr o/floridu
Roherr D. I .e rnbrce
W i l l i a m H . I xn harrh, Cn it.'CI\it) ' o(\.e u · / /({)l l(!sh ire
:\Jorherr Leser, The Open Group
DorL1 l d M . Lcski 11, Svracuse / !nit 'I!J\ii) '
ll..m· L evin
Mich;1e\ Le1· i n e , Pittshtnp,h SujJCI'UJinputing Cenln :

(.{n·n���ie .'\1cllon Unit ·ersity
TlwrnJs \) . Lirr le , Boston Unit •eJsity
\)a, · id B . Lomct, Micmsoji Cmpomlion

P.l l l h Long
1'. Ceofti-c1 Lo\\·nc,· . .
M ;1 1·k W. M;licr, Cnicersi/ J ' of/J./((/J({ II/0 in I !unlsnlle
rr;ln<, ois r\-L lrtL\oft� .\J')T
BcliT\' A. M c1sbs
,-\lclll L M arthe11s, Trececc((,\'ctz((rene Colle,�.<C
Rob e rr :--: . ;'v!J,·o
Pa u l R. McJoncs

W i l l i clrll M . M c Keeman
John M c l l or-C:ru m mcv, Rice Un il 'cn·if J '
Cuisc ppe Menga, Politccn ico d i Torino. f)ijxutimento di

ll utumcllica e Tnjbrmatica
Scott .F. M i d kift� I 'irginia Tech
Tom M i l l e r, Micmsojt Corpomtion
) c friTI C:. Mogel
Charles Robert Morg;1n
r:rh cl l l V. M unso n , L 'l l ll 'i!!Sil) ' oj' WiSC(}l/Sl/1
Andre I . :\J;Jsr
Charles (;rcgorl' �c lson

Al;l r l c; . �cmcth

\Vi l l i .lnl c;. :\Jicbols
:\J i gc l �orris
W i l l i a lll \) . Novcc
D;11 id R. Oran
Rid.1· S. Pal mer
Sharon E . Perl
Mark Pesce, L:nte1prise Integration 'l'echnu/ug ics
Russe l l W. Quong, Pu rdue Unit ·cr\il) '
M usta�izur R;lb!ll a n
T . V . lbrlLlll
Satish I . . ll..cge
Sre1cn K. Rei n h ardt, Cn icersit) ' u/ 1\' 'isuJIISin

Stc ,·c n P. Reiss, Bmil'il Cn it'l!l:.;;if) '

LL111th J'd . Rich;1 r·dson
!'au \ \ . R u h i n fc ld

Vol . '! No. I I 'il)7

Alexander I . Ru d n i ck1 ·, CCt n !epic . lfc//c)} 1 l ·u it ·er\il) ·
Joel H . S;l \ tz, (u i! 'l'l\'i/ J ' ojJ fmylmzd
D cmic l Scales
C h ristopher· Sch m :1ndr , . \ /TT. I !ec/i({ Lohoratory
M ichael D. Sch roeder
\Va\'lle Schroedn, So n f)h�c,o Supercomjm!er C'eu!cr
Robcn W. Se ide l , Chmks fJ({/Jho,�.<e Institute

Margo Sc l tzcr, I Jan w d Ul l l l 'CI\il) '
I . M ichael C : . Sh.md
john S h c n , Cal'lll;t< ie Jic/lr!n Uuit •ersi/J '
Adatn S hcpcLl
W i l l H . Shen\Ood
] ie h - H II';l S h n r , . llillij!IJU' (.'r))jJnmlion
Roben J . Simcoe
A l lc r 1 K. Simons
M ic hael D . S1 1 1 i th , I lon ·c1rd l u ii '! 'J :'ity
ThomJs 1\ . S m i t ll I l l
Robert J . Sou z;l
A m i ta b h Sr · il clst;ll a
S imon C. Stech·
Brian rVl . StCI ens
l'ich :1rd \:-, . Stocktb lc
A lan L. Suss111a n , / 'n it 'CI \'il) ' uj';\1mylrll7d
Mark S\\·:1rro u t
Thomas A . Sll'ccncv

M a de. 'vV. Sv lor
Dcmic l T;1 b:1k, Gcmge 1 /osul/ I 'nit 'I!I'Sily

0\\cn H . Tll \ m ;l l l
C harles P . Th.1ckn
Kurt M Tln l lcr
Chc1 n d r.1 m ohan r\ . Thekbrh
Da1·id \\ ' . Th ie l
C1rl V. Tho111pso n , l loss({ch usclls lnslilule

< { l(·ch nolog) ·

Leo l'. Trcggi;n·i
] oncltlun S. Tmnn, \l'(!shin,<..; IOII l'7 1 1 1 'l'J�\il) '
Re h ;l M . U zsm·, f'urduc Unit 'CI:.;;il) '

Edll'ard F. Vogel
Theodore V. Vorburgcr, NTST
Rich;lrd F. Wc1 l ters, I i l l il 'cl 'isi/ J ' o/Co!iji;rnia. !Ja!'is
Kci th Waters
Wil ! iJm We i h l
Thomas i\ l . \Vcn ncrs
Sunl c\· J. W h i tlock
john C : . S . Whnock, !3:lc.'>F.\A Ud
Kc becc1 W i l l
Douglas D. \ V i l \ i a r n s
D;11 id ,-\ . \Vood, l u ii 'CI\'il) ' n/ II 'isconsin

Call for Papers
Programming Languages, Tools ,

and Technologies

The Digital Technical journal seeks technical papers in all areas o f programming
languages and tools for an issue to be published in the fal l of 1 99 8 . DIGITAL

engineers and industry partners i nterested in participating in the special issue

should send topics and brief absu·acts (100 words) by December 1 2 , 1 99 7, to

Jane Blake, Managing Editor

Digital Technical journal
Digital Equipment Corporation
50 Nagog Park, AK02 - 3/B3
Acton, MA 0 1 720 -9843
Email : jane.blake@digital .com
Tel : 5 08 -264-7552

Notice of the topics accepted will be sent to a l l authors by January 9, 1 997.
The manuscript-submission date for accepted topics is March 2 , 1 998 .

For information on topics p ublished in the journal, the audience, writing guide·
l ines, and the peer-review process, see http:/ /vvw\v.digital .com/info/dtj/
dtj-guide . htm or contact the managing editor at jane .blake@digital .com .

ISSN 0898-901X

\' r D � �.\.�• rr i- -i- r rr. rr \ - '- � il'O-- - ..J .o.J,/_

1 1Jl�fNl

M�fM 1 - -- -

� r rr OY � .-r � � _/_ - - - '-1 --

,... r '"f 0 \1 ,... . r '"f !.-·r ·- ;l r_riP, I t,_:;,_ 'I �r -1 .:i. _ J'_ iJ -

Printed in U.S.A. EC-N7963-1 8/97 08 14 27.5 Copyright © Digit quipment Corporation

	Front cover
	Contents
	Editor's Introduction
	DIGITAL FX!32: Combining Emulation and Binary Translation
	Development of the Fortran Module Wizard within DIGITAL Visual Fortran
	Architecture and Implementation of Memory Channel 2
	Integrating Object Broker and DCE Security
	A 160-MHz, 32-b, 0.5-W CMOS RlSC Microprocessor
	Referees, February 1995 to February 1997
	Call for Papers Programming Languages, Tools, and Technologies
	Back cover

