
Digital
Technical
Journal

I
DIGITAL UNIX CLUSTERS

OBJECT MODIFICATION TOOLS

EXCURSION FOR WINDOWS
OPERATING SYSTEMS

NETWORK DIRECTORY SERVICES

Volume 8 Number 1
1996

Editorial
jane C. Blake, Managing Editor
Helen L. Patterson, Ediror
Kathleen M. Srcrson, Editor

Circulation
Catherine M. Phillips, Adrninisrraror
Dororhea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
AnneS. Karzcff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R . Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Pauline A. Nist
Robert M. Supnik

Cover Design
The "bot" colors on our cover retlecr rhe
kind of performance delivered by 64-bir
Digital UNIX TruCiuster systems . A four
node cluster made up of AlphaServer 8400
5/350 systems interconnected with the
high-speed MEMORY CHANNEL and
running the Oracle Universal Server with
Oracle Parallel Server recently achieved
record TPC-C performance of 30,390
tprnC. The design of the Digital UNIX

TruCiuster system is the opening topic
in this issue.

The cover was designed by Lucinda O'Neill
of Digital's Design Group.

The Digital Technical(ournal is a rekreed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
L)02/D 10, Lirrleron, !'vlassachusetts 01460.

Subscriptions ro thejounw/ are $40.00
(non-U.S. $60) for tour issues and $75.00
(non-U.S. S 115) for eight issues and must
be prepaid in U.S. funds. University and
colkge professors and Ph.D. students in
the electrical engineering and computer
science tields receive complimentary sub
scriptions upon request. Orders, inquiries,
and address changes should be scm to the
Oigita/ Tecbnical(ournal at rhe published
by address. Inqui(ies can also be sent elec
rronically ro dtj@digital.com. Single copies
and b<Kk issues are available tor $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent issues of the

journal arc also available on the Internet
at http:/ jwww.digital.com/into/dtj.
Complete Digirallnternet listings can
be obtained by sending an electronic mail
message to into@digiral.com.

Digital employees may order subscriptions
through Readers Choice by entering VIX
PROFILE at the sysrem prompt.

Comments on rbe content of any paper
are wdcomed and may be sent to the
managing editor at the published-by or
nerwork address.

Copyright© 1996 Digital Equipment
Corporation. Copying without fee is per
mitted provided that such copies are made
for use in educational institut.ions by f

.
1ctlity

members and are nor distributed for com
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's author
ship is perm i ned.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the journal.

ISSN 0898-901X

Documenration Number EY-U025E-TJ

Book production was done by Quanric
Communications, Inc.

The following are trademarks ofDigit:d
Equipment Cmpmarion: AlphaSen·er,
DECnet, DECsafe, Digital, the DIGITAL
logo, eXcursion, l'vlanagcWORKS, J'v!SCP,
Open VMS, PATHWORKS, Tn1Ciuster,
and VAXcluster.

Adobe is a registered trademark of Adobe
Systems Incorporated.

DCE, OSF, and Motif ate registered
trademarks and Open Sofi.ware
Foundation is a trademark of Open

Software Foundation, Inc.

Hewlerr-Packacd is a n-adernark of
Hewlett-PKkard Company.

Himala)'a and Tandem c\rc rcgisteccd
trademarks of Tandem Computers, Inc.

Inrd is a trademark of Intel Corporation.

MEMORY CHANNEL is a trademark of
Encore Compmer Corporation.

Microsoft, Visual C++, vVin32, and
Windows 95 are registered trademarks
and Windows, Windows tor Workgroups,
and Windows NT are tradem<lrks of
Microsoft Corporation.

NetWare and Novell are registered
trademarks of Novell, Inc.

POSIX is a cegistered trademark of The
Institute of Electrical and Electronics
Engineers, Inc.

Oracle? is a trademark of Oracle
Corporation.

S3 is a registered trademark of S3
I ncorporared.

Sequent is a trademark of Sequent
Computer Systems, Inc.

SPEC is a registered trademark of the
Standard Performance Evaluation
Corporation.

StreetTalk is a tcadernark of Banyan
Systems, Inc.

Sun Microsystems is a registered trade
mark of Sun Microsysrems, Inc.

TPC-C is a trademark of the Transaction
Processing Performance Council.

UNIX is a registered trademark in the
United Stares and other countries, licensed
exclusively through X/Opcn Company Ltd.

X vVindow System is a trademark of the
Massachusetts Institute ofTechnology.

http:/ jwww_digital.com/info/dtj

Contents

Foreword

DIG ITAL UNIX CLUSTERS

Design of the TruCiuster Multicomputer System for

the Digital UNIX Environment

OBJECT MODIFICATION TOOLS

Delivering Binary Object Modification Tools for

Program Analysis and O ptimization

EXCURS ION FOR WIN DOWS OPERATING SYSTEMS

Design of eXcu rsion Version 2 for Windows,

Windows NT, and Windows 95

N ETWORK DIRECTORY S E RVICES

Integrating Multiple Directory Services

Design of the Common Directory Interface

for DECnet/OSI

Don Harbert

Wayne M. Cardoza, FrederickS. Glover, and

William E. Snaman., Jr.

Linda S. Wilson, Cr;1igA. Ncth, and

Michael]. Rickabaugh

John T. Freitas, James G. Peterson, Scot A. Aurenz,

Charles P. Guldenschuh, and r�uil J . Ranauro

Margaret Olson, Laur;l E. Holly, <lnd Colin Srrurr

Richard L. Rosenbaum <llld Stanley l. Goldf1rb

3

5

1 8

32

46

59

Digiral Technical)ou,·nJI Vol. 8 'o. l 1996

2

Editor's
Introduction

Digital recently announced record

breaking 30,390 tpmC performance

on a Digital UNIX cluster of64-bit

RlSC AlphaServer systems. In rl1is

issue, engineers from the UNIX team

describe the key technologies that

enable these near supercomputer

performance levels as well as provide

the cluster characteristics of high

availability and scalability. Also pre

sented in this issue are advanced

UNIX programming tools for maxi

mizing performance, X server soft

ware that supports the Microsoft

f:1mily of operating systems, and new

network directory services that sim

pli�r management.

First defined by DigitaJ in the early

1980s, clusters are highly available,

scalable multicomputer systems built

with standard parts and oftering tJ1e

advantages of single-computer systems.

Wayne Cardoza, Fred Glover, and

Sandy Snaman compare clusters with

other types of multicomputer config

urations and describe the major com

ponents of Digital's newest cluster

implementation, TruCiuster systems,
for the 64-bit UNIX environment.

The cluster interconnect, called

MEMORY CHANNEL, is critical to

the cluster's outstanding performance.

MEMORY CHANNEL implements

clusterwide virtual shared memory

and reduces overhead and latency by

two to three orders of magnitude

over conventional interconnects.

Also developed for the DigitaJ

UNIX environment (version 4.0) are

two program analysis and optimiza

tion tools-OM and Atom. The tool

technology originated in Digital's

Western Research L1boratory, where

Digital Technical Journal

researchers focused on providing

performance diagnosis and improve

ments tor large customer applications.

Software developers Linda Wilson,

Craig Neth, and Mike Rickabaugh

from ilie UNIX Development Envi

ronment Group describe the object

modification tools and tl1e flexibility

they provide over traditional tools

that are implemented in the reaJm of

compilers. In addition to demonstrat

ing practical application of the tools,

the authors examine the process of

transferring technology from research

to development.

For mixed operating system

environments, Digital developed

Windows-based X server software,

caJied eXcursion, to allow the win

dows of a remote host running UNIX

or Open VMS to display on a desk

top running the Microsoft Windows

operating system. The latest version

of eXcursion, described here by John

Freitas, Jim Peterson, Scot Aurenz,

Chuck Guldenschuh, and Paul

Ranauro, is whoJJy rewritten to maxi

mize graphics pertormance and to

support the nil I range ofWindows

plattonns: Windows, Windows 95,

and Windows NT. Tbis new version

is based on the X Window System

version 11, release 6 protocol from

the X Consortium.

Two network directory services

that reduce complexity and increase

choices tor network managers are the

subjects of our next papers. The first

is designed for multiple networked

environments; Integrated Directory

Services (IDS) software integrates

multiple services into one directory

service-independent system. Margaret

Vol. 8 No. l 1996

Olson, Laura Holly, and Colin Strutt

outline the problems that have lim

ited the use of directory services and

the different design approaches the

team considered to simplit)r directory

services use and make it more attrac

tive. They then describe the IDS

extensible, object-based framework,

which comprises an application

programming interface and a ser

vice provider interface. Next, Rich

Rosenbaum and Stan Goldfarb

present the Common Directory

Interface (CD!) for DECnet/OSI.

Implemented as shared libraries in

the DigitaJ UNIX and Open VMS

operating systems, COl is designed

to give network managers a choice

of directory services. The autl10rs

describe the libraries and the registra

tion tool set of management opera

tions that is layered on a specialized

API.

Coming up in the}ourna/are

papers about a new log-structured

clusterwide file system caJJed SpiraJog,

the 64-bit Open VMS operating

system, speech recognition software,

and the UNIX clusters message

passing system and its use for pro

gram parallelization.

Jane C. Blake

Managing Editor

Foreword

Don Harbert
\lice President. UNIX IJusiness

Digital not only invented dusters bur
continues to set rhe standard by
which all other cluster systems are
measured. The VAXcluster success
and that of Digital's latest UNIX clus
ter systems derive ri·om superb engi
neering that builds on the system
definition put forth in the early 1980s
by the VAX engineering team: an
available, extensible, h.igh-pertormanu:
multicomputer system built fi-om
standard processors and a general
purpose operating system, with char
acteristics of borh loosely and tightly
coupled systems.'

We in the UNIX community arc
proud of our VAXcluster heritage
and have engineered our products
ro provide the same kinds of benefits
to customers that V AXcluster systems
provide.1 In the opening paper for
this issue of the journal, members
oftbe Digital UNIX engineering
ream describe the multicomputer
system for the Digital UNIX environ
ment, called TruCiuster, wh.ich, like
the VAXcluster system, is designed
for high availability, scalability, and
pertormance.

The technology, of course, is dif
ferent, and the environment is open.
The fundamental concepts are never
theless the same. The TruCiuster
system is a loosely coupled, general
purpose system connected by a
high-performance interco!Ulect. It
maintains a single security domain
and is managed as a single system.

• Nancv P. Kronenberg, Hcmv lVI. Lew,
and William D. Strecker, "VAXclusn:rs:

A Closely-Coupled Distributed System,"

11011 Trausactions ou Oimputer.\)·ste/1/s,
vol.4,.no. 2 (l'vby 1986): 130-146.

t Digital has renamed VAXclustcr svstcms

to OpcnV,viS Clustn svsrems.

Cluster services remain available even
when other members are unavaiL!ble.
Like VAXcluster systems, TruCiuster
systems implement a distributed lock
manager, which provides synchro
nization tor a highly parallelized
distributed database system. The
teclmology for the lock manager,
however, is newly implemented tor
the UNIX environment. Also com
pletely new is the interconnect tech
nology tor TruCiuster systems.
MEMORY CHANNEL is a reliable,
high-speed interconnect based on
a design by Digital partner Encore
Computer Corporation. MEMOR.Y

CHAN EL addresses the unique
needs of clusters by implementing
clusterwide virrual shared memory;
the interconnect reduces overhead
and latency by two to three orders
of magnitude.1 Because MEMORY

CHANNEL uses the industry
standard PCI, designers can imple
ment the network at very low cost.
We believe this interconnect tech
nology puts Digital years ahead of
the competition.

The TruCiuster system is rhe latest
example of Digital's intent to remain
a technology leader in the UNIX
market. We began by developing
the first high-perf()rmance, 64-bit
general-purpose operating system,
DEC OSF /l, shipping in March
1993. The first Digital UNIX cluster
release, DEC:sak Available Server
Environment, followed soon there
after in April 1994. The announce
ment in April 1996 ofTruCiustcr
systems with MEMORY CHA 1 EL

:j: Richal'cl B. Gilkrr, "Memory ChJtlllcl
Network f(>r PC: I," 1/:l:F :llicro
(february l':I<J6): 12-IR.

Digital Technical)ound Vol. R No. I 19':16 3

4

ag:tin places Digit:�! E1r ahead of the

competition technologicallv. The

pcrti:m11:tnce of these :waibble cluster
systems now approaches that of very

expensive supercomputers. System
pcrti:m1unce has b..:en me:tsured at

the record-breaking: rare of 30,390
tpmC 011 tour Alph:tScrver 8400
systems running Digital UNIX and

th<.: Oracle Univns:tl Snver with
Or�Kie Parallel Server. The previous

perti:>rmance record, 20,918 rpmC,
was held by the proprietary Tandem
Him:tbya K10000-!12; Digital's

open system cluster pertormance
1·ecord is 1.5 rimes the Tandem
perfi:mnance record at one-third

the svsrem cost.

ror Digital, clusters of high
perti:mnance 64-bir systems are

to ;1 great extent at the heart of irs
commercial and technic:tl server
smtet,'V. Digital UNIX has been
de tined and engineered tor the ser

ver business, specitically, tor the high
perti:mll:tnce commerci:tl and large

probkm/scientitic e11\'ironmcnr. To

be successful in the open svstem m:tr
ker, however, a company must reach
outside itself to jointly engineer prod
ucts with leading sortw;ll"C suppliers
th:tt have rhe sofuv:tre customers
need ro be comperiti\·c. Therefore,
the tirst TruCiusrer implementation

is designed with Digit:�l's partners

m:ljor sottware comp<mics-to meet

the requirements ti:>r high pcrtormance
and tl111ctionalirv in the commerci:�l

chrab:1se server marker.
The competitive challenge now is

ro m:�inrain Digital's signitic:�nt lead

in pro\·iding outstanding cluster per

ti:mlwKe, a\·ail:�bilirv, and ;lft(xcbbil
iry. hom :1 rechnologiul perspective,
the imm<.:diate and achicv:�ble goal

Dig;iral Tcchnictl)ound

is to increase the number of cluster

nodes J-i-om 4 to 10 or 20 nodes.
Within this r:�ng<.:, Digital maintains
a simple cluster system model that

otters the perf(mnance advJ!lt;lges
of c.lustcring and :�voids the disadvan
t:�ges, such :ts the ma.nagcmellt l�rob
lems and qualiticarion healbches, of
more compkx topologies. Further,
the Digital UNIX organization will

fOCllS Oil a new cJ LISter ti Je S\'Stem,
configuration tloibilirv, man:1gement

tools, and J cluster :�lias that :�I lows
a single-system view tor clients and
peers. The overall goal of this work
is to e\·olvc row:�rd J more general

computing ell\·ironment.
The kinds of tools rh:n both sim

pli�' and enha1Ke pertormance arc
exemplitied by the program ;l!Jalysis

and optimization tools prcscmcd
in this issue. Built on Digit:� I UNIX
l'ersion 4.0 :tnd announced in April,
these tools help software developers
cxtr:tct maximum perti:.mnancc ti·om
the system. The story of the tools

dcvelopmcm is <lll excellent c:omple
ofrhe direct application of research
to products. The power ofrhc OM
object moditicttion tool <lnd the analy
sis tool with object modification
(Atom) \\\lS recognized bv d..:velopcrs
e\·en :�s resc:trch progressed; in t:Kr,
semiconductor designers developed

Atom tools to evaluate new Alpha
chip implementations. The result

of this close cooperation between
research and dewlopmenr is ,llkmced

programming tools tor customers.
These efti:>rts in the UNIX org:�ni

z:�tion arc manitestarions of Digital's
commitment to open system�. Other
areas of engineering where this com
mirmem is app:trenr are also repre
sented in this issue. For example,

V"l. 8 No. I 1996

eXcursion sottware is kcv ro integra
tion between Microsoft's Windows
t:11nilv of products :�nd Digit:�l's
UNIX <llld OpcnViVIS products.
This whollv revised version both

adds new fimction;llirv and conserves
system resources. Another major area

of strength tor Digital is irs networks
products. Networks engineers
describe two cxampks of network

services that incre:�sc users' choices

and extend system tl1ncrionaJirl',
i.e., the Imegratcd Directory Scn·iccs
(IDS) and the Common Directory
Interbce.

DigitJI's srr:�regv is to continue to
engineer products th:tr pro\·ide out

stJnding performance and pric..:/
pcrti:mlla!Ke in open environments.
In all areas of engineering-systems,
services, networking-our goal i�
to set the standard lw which all others
:�rc measured.

Design of the TruCiuster
Multicomputer System
for the Digital UNIX
Envi ronment

The TruCiuster product from Dig ital provides

an ava i lable and scalable mu lticomputer sys

tem for the UNIX environ ment. A lthough it was

designed for genera l-pu rpose computing, the

first i mplementation is di rected at the needs

of large database applications. Services such

as distri buted locking, fai lover ma nagement,

and remote storage access a re layered on a

high-speed cl uster i nterconnect. The i n it ia l

implementation uses the M E MO RY CHANNEL,

an extre mely rel ia ble, hig h-pe rformance i nter

connect specia l ly desig ned by Dig ital for the

cl uster system .

I
Wayne M. Cardoza

FrederickS. Glover

William E. Snaman, Jr.

The primary goal for the first release of the TruClustcr
system for the Digital UNIX operating svsn.:m was to
develop J high- pertorm;�nce commen:ial database
server environment running on a cluster of several
nodes. Database applications oti:en require computing
power and I/0 connectivity and bandwidth greater
than that provided b�· most single systems. In addi
tion, Jvaibbilitv is a kev requirement tor enterprises
that are dependent on datJbase services for norma l
operations. These req uireme nts led us to implement a
cluster of computers tllJt cooperate to provide services
but fail independently. Thus, both performance and
Jvailability are addressed.

We chose an industry-st:mdard benchm;�rk to gauge
our success in meeting pert(>rmance goals . The
Transaction Processing Performance Council TPC-C
benchmark is a widely accepted measurement of the
capabi l it:v of large servers. Our goal was to achieve
industry-leading numbers in excess of 30,000 transac
tions per minute (tpmC) with a four-node TruCluster
system.

The TruCiuster versi on 1.0 product provides
reliable, shared access to large amounts of storage,
distributed synchroniz�uion k>r applications, efticient
cluster communication, and application f:1ilover. The
focus on database servers docs not mean that the
TruCJuster system is not suitable for other applica
tions, but that the inC\·itJble design decisions and
trade-offs tor tbe first product were made with this
goal in mind . Although other aspects of providing
a single-system view of'' cluster are important, they
are secondary objectives and will be phased into the
product over time.

This paper begins wirh a brief comparison of com
puter systems and presents the advantages of clustered
computing. Next, it introduces the TruCiuster prod
uct and describes the design of its key software compo
nents and their relationship to database applications.
The paper then discusses the design of the MEMORY

CHANNEL interconnect for cluster systems, along
with the design of the low-level software toundation
for cluster synchronization and communication.
Finally, it addresses application tailover and hardware
configurations .

Digital Tcdmic�l journal Vol. 8 No. I 1996 5

6

Brief Comparison of Computing Systems

Contemporary computing systems evolved ti·om
centralized, single-node time-sharing systems imo sev
eral distinct styles of multinode computer systems.
Single-node systems provided uniform accessibility
to resources and services and a single-management
donuin. They were limited with respect to scalability,
however, and system tailures usuaUy resulted in a com
plete loss of service to clients of the system.

Multinode computer systems include symmetric
multiprocessing (SMP) systems and massively parallel
processors (MPPs). They also include network-based
computing systems such as the Open Software
Foundation Distributed Computing Environment
(OSF DCE), Sun Microsystems Inc.'s Open Network
Computing (ONC), and workstation brrnsu Each of
these systems addresses one or more of the bendits
associated with clustered computing.

SMP configurcltions provide for tightly coupled,
high-performance resource sharing. In their effective
range, SMP S)'Stems provide the highest-performance
single-system product for shared-resource applicJ
tions. Outside that range, however, both hc1rdware
and software costs increase rapidly as more processors
are added to an SMP system. In addition, SMP avail
ability characteristics are more closely associated with
those ofsingle systems because an SMP svstem, by dd�
inition, is composed of multiple processors but not
multiple memories or I/0 subsystems.

MPP systems such as the Intel Paragon series were
developed to support complex, high-performance
parallel applications using systems designed with hun
dreds of processors. The indi,·idual processors of an
M PP system were typically assigned to specific t:tsks,
resulting in fairly special-purpose machines.

The DCE and ONC technologies provide support
for common naming and :tccess capabilities, user
account management, authentication, and the replica
tion of certain services tor improved availability.
Workstation farms such as the Warson Research Cen
tral Computer Cluster deliver support for the parallel
execution of applications within multiple computer
environments typicallv constructed using offthe-shelf
software and hardware.' ONC, DCE, and f:mns pro
vide their services and tools in support of heteroge
neous, multivendor computing environments with
hundreds of nodes. They are, however, much further
away from realizing the benefits of a single-system view
associated with clustered computing.

In the continuum of multi node computer systems,
the advantage of the cluster system is its �1bility to
provide the single-svstcm ,·iew and ease of manage
ment associated with SMP systems and at the same
time supply the E1ilure isolation and sca!Jbility of dis
tributed systems.

Di�;iral Technical)ollrnal Vol. 8 No. I 1096

Cluster systems have clear advantages over large
scale parallel systems on one side and heterogeneous
distributed systems on the other side. Cluster systems
provide many cost and availability advantages over
large parallel systems. They are built of standard build
ing blocks with no unusual packaging or interconnect
requirernenrs. Their I/0 bandwidth and storage con
nectivity scJic well with standard components. They
are inherently more tolerant of Eli lures due to looser
coupling. Parallel or multiprocessor systems should be
thought of as cluster components, nor as cluster
replacements.

Cluster systems have a different set of advantages
over distributed systems. First they are homogeneous
in nature and more limited in size. Cluster systems can
be more efficient when operating in more constrained
environments. Data formats arc known; there is a
single-security dom:1in; failure detection is certain; and
topologies are constrained. Cluster systems also are
likely to have interconnect pertorm:1ncc advantages.
Protocols are more specialized; interconnect charac
teristics are more uniform; and high performance can
be guaranteed. finally, the vendor-specific nature of
cluster systems Jllows them to evolve Elster than het
erogeneous distributed systems cllld will probably
always allow them to have advJntJges.

There ln.: numerous examples of general-purpose
clusters supplied by most computer vendors, including
AT&T, Digital, Hewlett-Packard, Imcrnational Busi
ness 1\tbchines Corporation, Sequent Computer Sys
tems, Sun Microsysrems, and Tandem Computers.
DigitJJ's Open VMS cluster system is generally accepted
as the most complete cluster product oftering in the
industrv, and it lchieves many of the single-svsrem
m:magemcnt Jttributes' Much of the functionality of
the OpenVMS cluster system is retained in Digital's
TruCiuster product offerings.

Structure of the TruCiuster System

Digital's TruCluster multicomputer system is :1 highly
avJiL1ble and scal<lble structure of UNIX servers that
preserves mJny of the benefits of a centralized, single
computer system. The TruCluster product is a collec
tion of looselv coupled, general-purpose computer
systems connected by a high-perfornlJnce intercon
nect. It maintains J single security domain Jnd is ma.n
<lged as a single system. Each cluster node may be
a uniprocessor or a multiprocessor system executing
the Digital UNIX operating system. figure l shows
a typical cluster configuration.

Each cluster member is isolated fi·om sofrware and
hardware bults occurring on other cluster members.
Thus, the TruCluster system does not hcwe the tightly
coupled, "bil together" characteristics of multiproces
sor systems. Cluster services remain availab.le even
"vben individual cluster members are temporarily

DISKS

Figure 1
Contiguration of a four- node Cluster System

unavai lable . Other im portant avai labi l ity objectives of
the TruCluster server include q u ick detection of com
ponent and member fai l u res, on- l ine reconfigurarions
to accommod ate the loss of a fai led component, and
cont inued service while sate operation is possible .

The TruCiusrer prod uct supports large, highly
ava i lable database systems through several of its key
components . First, the distri buted remote d isk (D RD)
facil ity provides rel iable, transparent remote access to
a l l c luster storage from any cl uster node. Next, the d is
tri buted lock manager (DLM) ena bles the e lements of
a d istributed database system to synchron ize activity
on i nd ependent c luster nodes. Final ly, e lements of
Digi ta l 's D ECsafe Avai lable Server Environ ment
(AS E) provide appl ication tai lover.5 In support of a l l
these components is t h e connection manaaer which b '
controls cluster mem bership and the transition of
nodes in and out of the cl uster. Figure 2 is a block dia
gram showing the relationships between components.

Each major component is described in the remain
der of th is paper. I n addi tion, we descri be the high
performance MEMORY CHANNEL intercon nect
that was designed specifical ly tor the needs of c luster
systems.

Distributed Remote Disk Su bsystem

The distributed remote d isk (DRD) su bsystem was
developed to su pport database appUcations by present
ing a cl usterwide view of disks accessed through the
character or raw device i nterface . The Oracle Paral le l
Server (OPS) , which is a parallelized version of the
Oracle database technology, uses the DRD subsystem .

The D RD su bsystem provides a cl usterwide name
space and access mechanism tor both physical and loa
ical (l ogical storage manager or LSM) �olu mes. Tl�e
LSM logical device may be a concatenated, a striped ,

or a mi rrored volume. D RD devices arc Jccessible
ti-om any cl uster member using the DRD device name.
This location ind ependence al lows d atabJse software
to treat storage as a u n i formly accessible duster
resource and to easily load balance or tai l over activity
between cl uster nodes.

Cluster Storage Background

Disk devices on UNIX systems are commonlv accessed
through the U N I X tile system and an associ�ted block
device special ti l e . A d isk device mav a lso be accessed
through a character device special ti le or r:1w device
that provides a d irect, u nstructured interface to the
device and bypasses the block buffer cache .

Database mJnagement systems :1nd some other
high-performance U N I X appl ications Jre often
designed to tJke advantage of the character device spe
cial file interbces to improve pertorm:1nce by avoiding
additional code path length associated with the ti le svs
tem cache -'' ' The I/0 profi l e of these systems is ch�r
acterized by large fi les, random acce�s to records,
private datJ caches, and concu rrent read -write sharing.

Overall Design of the DRD

The DRD su bsystem consists of four primary compo
nents . The remote raw d isk (RRD) pseudo-d river red i
rects D IU) Jccess req uests to the cl uster member
serving the storage device. The server is identified by
i n formation maintained in the DRD device data base
(RRDB) . Req uests to Jccess local DRD devices are
passed through to local device d rivers. The block ship
ping client (BSC) sends requests for :1cccss to remote
DRD devices to the appropriate D IU) server and
retu rns responses to the cal ler. The block shipping
server (BSS) accepts requests ti·om BSC cl ients, passes
them to i ts locJI driver tor service, :1nd returns the
resu l ts to the cal l ing ESC client. Figure 3 shows the
components of the DRD su bsyste m .

The D RD management component supports D RD
device naming, device creation a n d de letion, d evice
relocation , and device status req uests. During the
DRD device creation process, the special device file
designating the DRD device is created on each cl uster
mem ber. In Jdd i tion , the DRD device num ber, its cor
responding physicJl device nu mber, the network
address of the servi ng duster mem ber, and other con
figuration parameters are passed to the D RD driver,
which upd:1tes i ts local data base Jnd com mun icates
the i n formation to other cl uster members . The D RD
driver may b e queried for device status and D RD d ata
base i n formation .

Clusterwide Disk Access Model

D uring the design of the DRD su bsvstem we consid
ered both shared (multiported) and s�rved �iisk models.
A mu ltiported d isk configuration provides good fai lure
recovery and load balancing characteristics. On the

Digital Technical }ournal Vol . 8 No. 1 1 996 7

8

r - - - - - - - - - - - - - - - - - - l
NODE A

, - - - - - - - - - - - - - - - - - - 1
I NODE B I I DATABASE INSTANCE I I I

I I
I DATABASE INSTANCE I I

r----....t.......... t--:-t ----.

I RAW DISK I I LOCK I INTERFACE MANAGER
INTERFACE

I I
I I
I I
1 0 1
I II I

I LOCK
MANAGER
I NTERFACE

r-----------t---+--+·1 DECSAFE ASE AVAILABILITY SERVICES

CONFIGURATION DISTRI BUTED LOCK MANAGER

I RAW DISK I INTERFACE

t
. ' ACTIVE I CONFIGU RATION

MANAGER I STANDBY I MANAGER I DISTRIBUTED DIRECTORY SERVICE I I CONNECTION I I CONNECTION MANAGER �����ER I RESOURCE MANAGER I I RESOURCE MANAGER I AGENT

I AVAILABI LITY I t'-------t----11-----+-1 COM�U N ICATION S E!VICES 1------11---+---..Jl I + I MANAGER L---�====;:::;:�====�--_j AVAILABILITY
MANAGER I I

I ORO 1/0
REDI RECTION

t

DISTRIB UTED REMOTE DEVICE

ORO BLOCK I I ORO BLOCK
SHIPPING I I SHIPPING
SERVER DATA CLI E NT

I MOVER I ORO BLOCK ORO BLOCK
S H I PPING SHI PPING
CLIENT I I SERVER

DAD 1 /0 I
REDI RECTION J

I
I
I
I
I
I
I
I

I LOCAC '"'cc cmvms I I MCMORV CHANNeL 1 : I I : r MCMORV CHANNEL I I LOCAL ""cE C R ' " Rs I
SERVICES f=Tl � SERVICES

- - -l- - - - - - -��-�" ;;;;���,"��- - - - - -r - - - J

I
Fig ure 2

II MEMORY CHANNEL BUS ll
NODE C NODE 0

Software Componen ts

, - - - - - - - - - - - - - - , I ORO CLI ENT

I
I
I
I
I
I
I
I
I
I DEVIC E DRIVER

I

I

L - - - - - - - - - - - - - - - L - - - - - - - - - - -

F igure 3
D istri buted Remote D isk S u bsystem

Vol. 8 No. 1 1 996

other hand, !jO bus contention and hardware q ueuing
delays from fu l ly connected, sh:1red disk configurations
can l i m i t sca labi l ity. In addition, prese nt standard I/0
bus technologies l i mit configuration dist:mces.s As 3
consequence, we selected a served disk model for the
DIU) implementati on . With this model , software
qu euing ;1l leviates the bus contention ;md bus queuing
delays. This approJch provides improved scalabi ljty Jnd
fau l t isolation ;JS wel l as flexible storage configura
tions 9·10 Full connectivity is not required, and extended
machine room c l uster configurations can be con
structed usi ng standard networks ;1nd !jO buses.

The D lU) im plementation supports cl usterwide
access to D RD devices usi n g a software- based emula
tion of a fu l ly con nected disk configuration . Each
device is assigned to a si ngle cl uster mem ber at a time .
The member registers the device into the cluster
wide n amespacc and serves the device data to other
cl uster members. �J i lure recoverv and load-balancing
support are inc luded with the DlU) device i mpJemcn
tJtion. The bi lure of a node or con trol ler is transpar
ently masked when another node connected to the
shared bus tJkcs over servi ng the d isk . As an option,
au tomatic lo3d bJiancing can move service of the d isk
ro the node generating the most requests.

In the Tr u Ci ustcr version 1 .0 prod uct, data is
transferred between req u esting and servi ng c l uster
mem bers using the high - bandwidth, low- latency
MEMORY C H A N N E L i nt e rconnect, which a lso sup
ports d irect me mory access (D M A) between the !jO

ad3pter of the serving node and the m;lin memory of
the req uesting nod e . The overa l l c luster design , how
ever, is not dependent on the MEtVIO R.Y CHAN N E L

in tercon nect, :md a l ternative cl uster i nterconnects wi l l
be supported in fu ture software rcle:�scs.

DRD Naming

The D igitJI U N I X operatjng system presently supports
character device special fi le names f(>r both physical disk
devices and LSM logical vo lumes and maintains a sepa
rate device namespace for eac h . An important D lU)
design objective was to develop a c l usterwide naming
scheme integrating the physical and logical devices
within the D lill mmespace . We considered defin ing
J new, single mmespace to support a l l c l uster d isk
devices. Our research, however, revealed plans to intro
duce significant cha nges i n to the physic:1l device nam
ing scheme i n a fu ture base system release and the
compl ications of l icensing the logical disk technology
ti-om a third parrv that maintains control over the logi
cal volume namespace. These issues res u l ted i n deter
ring a true cl usrerwide device namespace .

As an interim approach , we chose ro create a sepa
rate, c lusterwide DRD device namespace layered on
the existing physical and logical device naming

schemes. TrJnslations from D IU) device names i nto
the underlying p hysical and logical devices are main
tained by the D RD device mappi ng database on each
cluster node . DRD device "services" are created by
the cluster ad m i n istrator using the service registL1-
tion faci l ity. 1 1 E:1ch "add Service'' mamgement oper3-
tion ge nerates a unique service n u m ber that is
used in constructing the Dlill device special file name.
This operation also creates the new D RD device
specia l ti le on each d uster member. A trad itional
UNI X-device -n a m i ng conve ntion resu lts i n the ere
arion of D RD special device fi le n;J mes in the form of
/dev/drd/d rd (service n u m ber f . ' 2

DRD Relocation and Failover

ASE fai lover (see the discussion in the section
Application Fai lover) is used to support DRD bilover
and is fu l l y i ntegrated within the cl uster prod uct. The
device relocation policv defi ned d u ring the creation of
a D RD device indi cates whether the device may be
reassigned to 3norher c l uster member as a res u l t of
a node or control ler fai l ure or a load - balancin g opera
tio n . In the even t of a cl uster member fai l u re , D RD
devices exported b y t h e fa i led member arc reassigned
to an a lternate server attached to the same shared ljO

bus. D u ring reassign ment, the DRD device databases
are updated on all c l uster mem bers and DRD ljO

operations J re resumed. Cl uster device services may
also be reassigned d u ring a pl :mned relocation, such
as for load babncing or mem ber remova l . Any D RD
operation in progress d u ring a re location triggered by
a fai l u re wi l l be retried based upon rhc registered D RD
retry pol icy. The retry mechanism must reva l i da te rhe
database trJnslation map for the target D RD device
because the server binding may have been mod ified .
Fai lover is thus transparent to database appl ications
and a l lows them to ignore configu ration changes.

Several chal lenges result ti·om the support of
m u ltiported disk configurations u nder various fai l u re
scenarios. One of the more d i fficult problems is disti n
guishing a fji lcd mem ber from a busy me m be r or a
com munication bult . The ASE failover mechanism was
designed to maintain data i nr egriry d uring service
tai lover, and to ensure that subsequent disk oper;Jtions
are not honored ti-om a member that has been declared
"down " by rhe remai ning cluster members. This ASE

mechanism, which makes usc of smal l computer sys
tems interface (SCS I) target mode and device reserva
tion, was integrated into the Tru Ci uster version 1 . 0
product and supports the DRD service guarantees.

Other cha l l e n ges relate to preserving seria l i zation
guarantees i n the case of c l uster member fai lure .
Consider a para l le l application that uses locks to serial
ize access to shared DRD devices. Suppose the applica
tion is hol d ing a wri te lock for 3 given data block and

Digir31 T<:chn ical Journal Vol . 8 No. J 1 996 9

1 0

issues an update for that block. Before the u pdate
operation is acknowledged, however, the local mem
ber fai ls . The distri buted lock manager, which wi l l
have been notified o f the member fa i lure, then rakes
action to release the lock. A second coope rati ng appl i
cation execu ting on a nother c luster member now
acq u ires the write J oc k for that same data block and
issues an update tor that block. If the fai l ure had not
occurred, the second appl ication would have had to
wait to acq uire a write lock for the data block unt i l the
first application released the lock, presu mably after its
write request h ad completed. This same seria l ization
must be m ai ntained during fai lure cond itions. Thus, it
is imperative that the write issued by the first (now
fai le d) application partner not be appl ied after the
write issued by the second application, eve n i n the
presence of a ti ming or net\vork retransmission Jnom
a ly that delays this first write.

To avoid the reordering scenari o just d escribed,
we employed a solution cal led a sequence barrier in
which the connection manager increments a sequence
number each rime it completes a recovery tra nsition
rlut results i n rcle:1sed locks. The seq uence n u m ber
is com m u ni cated to each D RD server, which uses
the sequence n u mber as a barrier to prevent apply
ing stale writes. This is si milar to the im mediate com
mand feature of the M ass Storage Control Protocol
(MSCP) used by Open VMS cluster systems to provide
s imi lar guarantees. Note that no appl ication changes
arc req ui red .

As another example, cl ient retra nsmissions of
DRD protocol requ ests that are nor id empotent em

cause serious consistency problems. Req uest transac
tion IDs and DRD server dupl icate transaction caches
are employed to :woid undesirable efkcrs of cl ient
generated retransmissions . " '

Cluster member fa i lu res are mostly transparent to
appl ications executing on cl ient member syste ms.
Nondistributed appl ications may fai l , but they can be
Jutomatiea l ly restarted by ASE faci l it ies. DlU) devices
exported by a serving member become unavai lable for
�1 smal l amou nt of rime when the member tai l s . C luster
f::� i lover activities that must occur before the DRD

service is aga i n avail able include detecti ng and veri �'
i ng the membe r fai l ure, purging the disk device SCSI
hardware rese rvation, assigni ng an a l rern::�re server,
establ ishing the new reservation, and bringing the
device back on - l i ne . A database appl ication servi ng
data from the DRD device at the ti me of the fai l ure
may also have registered to have a restart script with
a recovery phase executed prior to the restart of the
database appl ication. A possi ble lack of transp:�rency
may resul t if some cl ient applications are not designed
to accommodate this period of inaccessi ble DRD ser
vice. The DRD retry request poli cy is configurable
to accommodate applications i n teracting directly with
a D RD device.

Digital Tcdm ical)ourn01 l Vol . S No. 1 1 996

Distri buted Lock Manager

The distributed lock manager (D LM) provides syn
chronization services appropriate for a highly parai
J.el ized distri bu ted data base system . Databases can use
locks to control access to d istribu ted copies of data
buffers (caches) or to l i mit concurrent access to shared
disk devices such as those provided bv the DRD sub
system. Locks can a lso be used tor control l ing applica
tion i nstance start- up and for detecting application
i nstance fa i l u res. In addition, appl ications can use the
locking services for the ir other synch ronization needs.

Even though this i s a comp letely new implementa
tion , the lock manager borrows from the original
design and concepts i ntroduced i n 1984 with the
VAXcl uster d istributed lock manager. ' ' These concepts
were used in several recen t lock man:1.ger implementa
tions for UNIX by othe r vend ors . In add ition , the
Oracle P::tral le l Server uses a locking :1ppl ication pro
gra m m i ng i merface (API) that i s conceptually s imilar
to that oHcred here.

Usage of the DLM

The lock manager provides an API for request
ing, releasing, and a l tering locks. "· ' " These locks are
requested on abstract names chosen by the applica
tion . The names represent resources and may be orga
n ized in a hierarchy. When a process requests a lock on
a resource, that request is either granted or denied
based on examinati on of Jocks al ready gra n ted on the
resource. Cooperating components of an appl ication
use this service to achieve m u tual ly exc l usive resource
usage . In addition, a mode associated with each lock
request a l lows trad i tional levels of sharing such as mul
tiple readers excl uding aU writers .

The API provides optional asynchronous req uest
completion to allow qu euing requ ests or overlapping
mu ltiple operations for i ncreased performance.
Que u i ng prevents retry delays, elimin:�tes pol l ing
ove rhead , and provid es a first in, first our (FI FO) fair
ness mechanism . In addition, asyn c h ronous requ ests
can be used as the basis of a signal ing mechanism to
detect component fai lures in a distri buted system . One
com ponent acquires an exclusive lock on a n amed
resource. Other components queue incomparjble
requests with asynchronous completion specifi e d . If
the lock holder fai ls or otherwise releases its Jock, the
w:�iring req uests are gra nted . This usage is sometimes
referred to as a "dead man" lock. 1 7

A process can request noti fication when a lock it
holds is blocking another request. This al lows elimina
ti on of many lock ca.lls by effectively cac h ing Jocks.
When resource conte n tion is low, a lock is acq u i red
and held u mil :lllother process is blocked by that lock .
Upon receiving blocking noti fication, the lock can be
released . When resou rce conten tion is h igh , the lock
is acq uired and released immediately. I n addition, this

noti fication mechanism can be used as the basis of a
ge neral signaling mec hanism . O ne compon ent of the
3pplication acq u i res an excl usive lock on a named
resource with blocking noti fication specified . Other
components then acquire incompatible locks on that
resource, thus triggeri ng the blocking notificatio n .
This usage is known a s a "doorbe l l " lock . ' 7

The D LM is often used to coordi nJte access t o
resources such a s 3 distributed cache o f database
blocks. M ultiple copies of the data are held under
compati ble l ocks to perm i t re:.1d but not write access.
When :.1 writer wants an incompatible lock, readers are
notified to downgrade their locks and the writer i s
granted the lock . The writer modifies the data before
downgrad ing i ts lock. The reader's lock requ ests are
again granted, and the reader tetches the latest copy of
the data . A value block can also be associated with each
resou rce. I ts value is obtained when a lock is gran ted
and can be changed when cerrain locks are released .
The value block can be used to communicate any use
ti.d information, i nduct ing the latest version n u mber of
cached data protected by the resource .

Design Goals of the DLM

The overall design goa l of the lock manager was to
provide services tor highly scalable database systems.
Thus correctness, robustness, scJ i ing, a nd speed were
the overrid i ng su bgoals of the project.

Cardi.1l attention to design detai ls , rigorous testing,
i n ternal consistency checking, and years of experience
working with the VMS distri buted lock manager h ave
�11 1 contributed to ensuring the correctness of the
implementation for the Digital U NIX syste m . Because
the lock manager provides guarantees about the state
of :1 l l locks when either a lock holder or the node upon
which it is runn ing fai ls, it em ensure the i nternal lock
state is consiste nt as far as survivi ng lock h ol d e rs are
concern ed. This robustness permits the design of
applications that can continue operation when a c lus
ter node f:1i ls or is removed �or scheduled service . The
choice of a kerne l -based service :.1nd the use of a mes
sage protocol also contri bute to robustness as dis
cussed bel ow.

I n terms of performance and sca l ing, the lock man
Jger is designed for minimal overhead to its users. The
kernel- based service design provides h igh perfor
mance by e limin ati ng the context switch overhead
JssociJted with server daemons. The lock manager
uses the kernel - locking features of the Digital UNIX

operat ing system for good sca l in g on SMP systems. A
kernel- based service as opposed to a l i brary also all ows
the Jock man ager to make strong guarantees about the
internal consistency state of locks when a lock-holding
process fai ls .

The message protocol contributes to cl uster sca l in g
and performance through a sca l ing property that
mai ntains a constant cost as nodes are added to the

d uster. ' < The message protocol also provides suffi
c iently loose coupling to allow the lock manager to
maintain i n ternal lock state when a node fai l s . The use
of messages controls the amou nt of i nternal state visi
ble to other nodes and provides natura l checkpoints,
which l i m i t the damage result ing ti·om the fai l ure of
J cluster node.

DLM Communication Services

The D LM session service is a commun ication layer
that takes advantage of M EMO RY CHANNEL fea
tures such as guaranteed ordering, low error rate, and
low latency. These features allow the protocol to be
very simple with a n associated reduction in CPU over
head . The service provides connection establ ishment,
del ivery and order guarantees, and bufter manage
ment. The connection manager uses the com muni
cation service to establ ish a c lunnel for the lock
manager. The Jock manager uses the com m u ni cation
services to com mu n i cate between nod es. Because tl1c
service h ides the details of the communication mecha
n ism, J lternative intercon nects can be used without
changes to the lock manager's core ro utjnes.

The use of the MEMORY CHANNEL i n terconnect
provides a very low latency com munication path for
small messages. This is ideal fo r the lock manager since
lock messages tend to be very smal l and the users of
the lock manage r are sensi tive to l atency since they
wai t for the lock to be granted betore proceeding.
Small messages are sent by s imply writ ing them into
the receiving node's memory space. No other com
municat ion setup needs to be performed . Many net
work adapters and commu nication protocols are
biased toward provid ing high throughput only when
relatively l arge packets are used . This means that the
perform ance drops off as the packet size decreases.
Thus, the MEMORY CHANNEL interconnect pro
vides a better a lternative for com municati ng smal l ,
latency-sensi tive packets.

Connection Manager

The con nection manager deti n es an operating envi
ronment for the Jock manager. The design allows gen
eral ization to other cl ients; b u t in the TruCluster
version 1 . 0 product, the lock manager is the only con
sumer of the connection man ager services. The envi
ron ment h ides the detai ls of dynamically changing
con tlgurations. From the perspective of the lock man
ager, the connection man ager ma nages the addi tion
:tn d removal of nodes and maint ains a communication
path between each node . These services a l l owed us to
simpl i�' the lock manager desig n .

T h e connection manager treats each node a s a mem
ber of a set of cooperating distribu ted components.
I t maintains the consistency of the set by admitting
and removing members u nder controlled cond itions.

Dig;ir,ll Technical Journal VoU! No. l 1 996 1 1

1 2

The connecrion , . l:m ager prm·id es contlgu r:.Hion
rclatcd event notification and other support services
to each mem ber of a set. It provides notification when
members are added and removed. It �1 iso maimains J
list of current members. The connection manager J !so
provides notification to clients when unsafe operation
is possible as a resu lt of partitioning. Partiti oning exists
when a member of a set is un JwJrc of the existence of
a disjoint set ofsimibr clients.

The connection m�w :-�gcr can be extended in
clicnt-spccitic wavs to tJcilitatc hJndling of mem
bersh i p change n·ents. Extensions are integral, well
synchronized parts of the membership ch ange
mechanism. The lock mJnagcr uses :1n extension to
distribute a globally consistent directory database :111d
to coordinate Jock dat:tb:-�se rebuilds.

The connection manager nui ntains a fully con
nected web of communication clunnels between
members of t he set. Jv1embe rship in the set is comin
gcnt upon being able to comm u nicJte with J l l other
me mbers of that set. The usc of the communication
channels is ent i relv und er the comrol of the lock m:Jn
agcr or :tny other client that may usc the connection
manager in the futu re. 'When a client requests :-�dmis
sion ro a set, the connection tn:-�Juger esta blishes a
communication cha nnel between the new client :1nd
:1 1 ! existing clients . It monitors these connections to
ensure they remain fi.mcriona l . A connection hils
when a comm unication ch:1nncl is unus:tble between
a p:1ir of clients or when a client �1t either end of the
channel tails. The connection lll<l llJgcr detects these
cond itions and reconfigu res the set to contain onlv
fully connected members.

The combination of ::1 h ighly ;w�1ibblc communi
cation channel, together wirh set membership :tnd
synch ronized me mbership chJnge responses, a l lows
optimiz::Jtions in the lock manager's message protocol.
The lock manager can send a mcss�1ge ro another node
and know that either the mess:tgc will be delivered or
th:Jt the configuration wi I I be altered so that it d oes
not matter.

MEMORY
CHANNEL
TRANSFER

NORMAL
MEMORY
WRITE

PAGE 1--

The use of the connection manager greath· sim
pli tics the design and implementation of t h e J ock
manager. The connection m<lll<lgcr allows most of
the logic tor hand ling contigur:ttion changes and com
munication errors to be moved away from main code
p�Hhs. This increases mainl ine per�(mnance and simpli
fies the logic, al lowing mon: emphasis on correct and
efticicn t operation.

Memory Channel I nterconnect

Cluster performance is cri ticallv dependent on the
cluster interconnect. This is due both to the high
bandwidth require ments of bulk data transport tor
DRD and to the low l a tency required tor DLM opera
tions. Although the cluster architecture allows for any
high-speed interconnect, the initial imple mentation
supports onlv the new M EM O RY CH ANNEL inter
connect designed specitic:t l l y tiJr the needs of clus ter
svstems. This verv reliable , high-speed interconnect is
based on a prn·ious interconnect d esigned bv Encore
Computer Corporation '' I t has been signitic:mtly
enhanced bv Digital to impro1·c d�Ha integrity :tnd
provide �iJr higher perh>rmance i n the future.

EJch cluster node has a 1VI EM O RY C H ANNEL
intcrbcc card that connects to a hub. The hub can be
thought of as a switch that provides either broadcast or
point-to-point connections berwcen nodes. It also
provides ord ering guarantees �md docs a portion of
the error detection. The current i m plementation is an
eight-node h u b , but brger hubs arc planned.

The MEMORY C HANN EL interconnect pro
,·i des a 1 00-megabvte-per-sccond , memor y-mapped
connection to other cluster m embe rs . As shown in
figure 4, cluster members mav map transkrs fi·om th e
M E M ORY CHANNEL interconnect d i rectlv into
their memory. The efkct is of �1 write-only wi ndow
into the memory of other cluster systems. Transkrs
�1re done with standard me mory �Kccss instructions
r�nhcr than special I/0 instructions or device access

MEMORY PAGE

In
CHANNEL I TRAN SFER

PAGE

NODE 0
ADDRESS SPACE

MEMORY CHANNEL
BUS ADDRESS SPACE

NODE 1 MEMORY

Figure 4
Tr:lllskrs Performed lw the M E M O RY CHAN NEL I nterconnect

D i g i t a l Tcchnid journal Vol . 8 :-.io. I 1 996

protocols to �woid the overhe:�d usu�1 l l v prese nt with
rh c..:se techniq ues. The usc of mc..:morv store instruc
tions resu l ts in extremely low I J t<..:�Ky (two m icrosec
onds) :�nd low overhead f(x J rranster of any length .

The MEMORY CHANNEL i n terconnect guaran
tees essentia l ly no undetectc..:d c..:rrors (:1pproximately
the same und etected error r;ne as Cl'Us or memory) ,
Jl iowing t h e e l imination of c..:h c..:cksums a nd other
mc..:c iJJ llisrns that detect software.: errors . The detected
error r:Jte is a lso extremely low (on rhe order of one
nror per year per connec..:rion) . Si nce recovery cod e
oecutes ve rv infreq uen tly, we.: Jre assured that rel a
rivclv s imple, brute-forc..:c recovery fi·om software
e rrors is adequate . Using hardware error i nsertion, we
have rested recovery code at error rates of many per
second . Thus we are confident there :1re no problems
at the :1cru al rates.

Low-level MEMORY CHANNEL Software

Low-level sofuvare interfaces :1rc provided ro insul ate
the next bver of sofuvare (e .g. , lock man ager and dis
tributed di sks) trom the dctJi ls of rhe MEMORY

CHANNEL i mplementation . We have taken the
:1ppro:1ch of providing a verv th in l :1yer to impact per
f(xmance as l i ttle as possible and :Jilow direct use of the
M EMO RY C HANN EL inrerconncc t . H igher- l evel
sofrw�m: rhen isolates its use of M EMO RY CHAN N E L

in : 1 rcmsport layer that can I :Jter be modi fied for addi
tional <.: luster i n terconnects.

The.: writc-onlv nature ofrhc..: MEMORY CHA.l'\JNEL

inrnconnect le:1ds r.o some cha l lenges in design i ng
:111d i m p lementing software. The onlv wa�' to see a
copv of d ata written to the MEJ\,I ORY CHANNEL

interconnect is to m �1p MEMORY CHANNEL trans
fers to :1 norher region of memory on rhe same nod e .
This le:1d s t o two very visi ble programming con
stra ints . hrsr, data is read and written rrom d i fferent
addresses. This is not �1 natural programming style, and
code must be written to treat a location as two vari
:1 blcs, one t()l' read and one t('Jr write . Second , the
ctkct of a write is delayed by the transkr latency. At

t\vo mi croseconds, this is sh ort but is enough ti me to
execute h u ndreds of instructions. Hardware teatures
Jrc provided ro sta l l u nti l d:tta h:1s been looped back,
bur \'CI')' c:�refi.d design is necessary to m i n i mize t hese
sr::d ls and place them correctly. \tVe have had several
subtle problems when an a lgorith m d id not include a
sta l l a nd proceeded to read sta le dar�1 that was soon
overwritten by data in transi t . f inding these problems
is espec ia l ly di fficu lt because mu ch evidence is gone by
the time the problem is observed . for example, con
sider �1 l i n ked l ist that is i m p l emented in a region of
memory mapped to a l l d u ste r nodes through the
J\II EMORY CHANNEL interconnect . l f t\vo demems
are inserted on the l ist without in serting proper waits

tor rhe loop back delav, the efkct of the first insert w i l l
n o t b e visible w h e n t h e second insert i s d o n e . This
resu l ts in corru pting the l ist .

The d ifficulties just descri bed <1rc most obvious
when de:1 l ing with d i stri b u ted sh ared memory. Low
level software i ntended to support appl ications is
instead oriented toward a message - passing model .
This is especial ly appare nt in the tcaturcs provided for
error detection. The pri mary mechani sms a l low either
the receivi ng or the send i ng node to check for anv
errors over a bou nded period of r ime. This error c heck
requires a specia l hardware transaction with each node
and involves a loopback delay. I f �111 error occurs,
the sender must retransmit a l l messages and the
receiver must not use any data received in that ti me.
This mechanism works wel l with the expected error
rates. H owever, a shared munory m odel makes i t
ex tremely d i ftic u l t to bou nd the data affected by an
error, un less each modification of a data e lement
is separately checked for errors. Sin ce this i nvolves
J l oopbJck d e lav, man�' of the perceived efficiencies
of sh ared memory may di sa ppear. This is not to say
that a shared memory model cannot be used . It is just
that error detection and con trol of concurre nt Jccess
must be wel l - integrated, Jnd node ta i l ures requ ire
carefu l recovery. I n add i tion, the wri te-only nature of
MEMORY CHAN N E L mappi ngs is more su ited to
messJge passing than sh ared memory due to the
extremely carefu l programmin g necessary to hand l e
de laved loopback at a separate ad dress .

A P!s :tre provided pri marily to mJ nage resources,
con trol memorv mappings, and provide sync hroniza
ti on. MEMORY CHA.NNEL A Pis perti.)rn1 the fol low
i n g tasks:

• A l locJtion and mapping
- Al locate or dea l locate the M EM O RY

CHANNEL address space .
- Map the M E M O RY CHAN N E L int erconnect

for receive or transmit .
- Unmap the M E M O RY CHANNEL

i nterconnect.

• Spin l ock synchronization
- Create and del ete spin lock regions.
- Acquire and release spinlocks.

• Other synchroni zation
- Create :1nd de lete write :1cknowledgment

regions.
- Request write acknowledgment.
- Cre:Jte and delete sofuvare notification channels.
- Send noti fication.
- W:t it f(x notification.

• Error detection and recovery
- Get cu rrent error coum.
- Check tor errors.
- Register for cal l back on error.

Vol . 8 No. 1 1 996 1 3

1 4

Higher l ayers o f software are responsi ble for transfer
r ing data, checking for errors, retrying transfers, and
synchronizing their use of M EMORY CHA!'\JN EL

address space after it is a l located .

Synchronization

Efficient synch ron ization mechan isms are essentia l
for h igh -performance protocols over a c l uster in ter
connect. M E M O RY CHA!'\JN E L hardware provides
two i mportant synchronization mechanisms: first, an
ordering guarantee that all writes arc seen in the same
order on al l nodes, including the looped - back write on
the originating node; second , an acknowl edgment
request that returns the current error state of al l other
nodes. Once the acknowledgment operation is com
pl ete, a l l previous writes are guaranteed either to have
been received by other nodes or reported as a transmit
or receive e rror on some node. We have implemented
cl usterwide software spinlocks based on these guaran
tees. Spinlocks are used for many purposes, i ncl uding
i n ternode synchronization of other com ponen ts and
concurrency control for the c l usterwide sha red -mem
ory data structu res used by the low- level 1YI E M O RY

CHAN N E L software .
A spin lock is structured as a n array with one clement

for each node. To acqui re the spi n lock, a node first
bids for it by writi ng a value to the node's array e le
ment. A node wins by seeing its bid looped back by the
M EM O RY CHAN N EL i nterconnect without seei ng
a bid from any other node. The orderi ng guarantees of
the M E M ORY CHANN E L ensure that no other node
could have concu rrently bid and bel ieved i t had won .
Multiple nodes can rea l ize they have lost, but more
than one node can not wi n . In case of a con fl i ct, many
different back- off techniqu es can be used . The win
n ing nod e then cha nges i ts b id va lue to an own va lue .
This last step is n o t necessary for correctness, b u t it
does help with resolving conten tion and with various
fai l u re recovery a lgorithms. AJI higher- l evel sy nchro
nization is bu i l t o n com binations of spi n l ocks, order
ing guarantees, and error acknowledgments.

Error Recovery and Node Failures

Most of the diffi cult problems i n the low- level soft
ware relate to error recovery and node tai l u res . I n spire
of its rel iabi l ity, errors wi l l occur in the M E M O RY

C HAN N E L i nterconnect, and they must be hand led
as transparently as possible . Transparency is key to sim
pl ifYing the com munication model seen by h igher
level software. In addi tion, node fa i l ures from
hardware or software fa u l ts are more freq uent than
M E MO RY CHANNEL errors and must be dealt with
even in the most inconven ient portions of the low
level code. The M EM O RY CHAN N E L interconnect
is managed through a coll ection of distri buted data

Digital Tt:chn ictl)ound Vol . 8 No. I 19')6

structures th at must be kept consistent. Software locks
arc used to synchronize access to these structu res, but
errors may l eave them in an in consistent state .
Guaranteed error detection before the release of a lock
a l l ows operations to be redone in case of an e rror.
Thus, a l l sequences of M EM ORY CHAN N E L writes
must be idempotent to take advantage of rhis straight
forward error-recovery techn ique .

If a node fail ure occurs, a su rviving node must make
a l l data structu res consistent before it rekases locks
held by the fai led node. To keep this a manageable
task, we have written careful ly structured a lgorithms
to handJe each i nconsistent state . I n genera l , struc
tures arc changed such that a single atom ic write com
mits a change. f f a node fai ls before this lasr write, no
recovery is necessary. As an example, consider a data
structure that is completely i n i tial i zed before being
added to a l ist. A single write i s used to accomplish the
l ist addition . I f a node tai ls, the last write was either
done or not and, in either case, the l ist is consistent .
Compl ications arise when another node has ;1 receive
error on the l ast write done by a fai l ing node. In this
case, the fai led node cJ.nnot retry after detecti ng the
error, so the node with the receive error has a d i fre renr
view of the l ist than a l l other surviving nodes. To
resolve this eve nt, one node must propagate its view of
the l ist to a l l other nodes before it rel eases the l ock
held b�, the ta iled node. Any node can do this because
each has a sel rconsistcnt view of r he list. If the node
with the receive error propagates i ts view, the last e le
ment added by the fai led node is lost. This si tuation is
no d ifferent, however, from having the node fai l a few
in structions earl ier. The chal lenge is to design recov
ery for all these cases and maintain our sanity by m i n i
mi zing the number o f suc h cases.

Another interesting problem is mainta in ing a con
sistent cou nt of errors across a l l nodes. This count
is key to the error protocols of both the low-level
M EM ORY CHA N N E L software and higher layers
since comparisons of a saved and a cur rent value
bou nd the period over w hich data is suspect. The
cou nt may be read on one node, tran sferred with
a message, and com pared to a cu rrent va lue on
another n ode . Thus, a consistent value on all nodes
is c ritical and must be mai ntained in the presence of
arbi trary com bi nations of receive and transmit errors .
(Although errors arc very infrequent, they may be cor
related; so algorithms must work well tor error bursts .)
T h e write acknowledgment, described earl ier, guaran
tees that other nodes have received a write without
error. It is used both to imp.lement a Jock protec ting
the error cou nt and to guaran tee that a l l nodes have
seen an updated cou nt. Updating the count is a s lo\\'
operatio n due ro multiple round -trip del ays and long
error ri me-outs, bur i t is performed very infreq uently.

Future Enhancements to MEMORY CHANNEL

Software

Ful ly su pported MEMORY CHAN NEL AP!s are
cu rrently avai lable only to other layers in the UNIX
kernel tor two important reasons : First, M EMORY
C HANNEL is a new type of interconnect and we want
to better u nderstand i ts uses and advan tages before
commi tti ng to a ful l y fu nctional API for genera l use.
Second, many d ifficult issues of secu rity and resource
l i mits wi l l affect the fina l i nterface. To he lp Digital
and i ts customers gain the necessary experience, a l im
ited functional ity version of a user-level M EMORY
CHANNEL API has been impl emen ted i n the version
1 .0 product. This interface su pports al location and
mapping of MEMORY CHANN E L space a long with
spin lock synchron ization . It is oriented toward sup
port of paral lel comp utation in a c l uster, but we a l so
expect it w i l l serve the needs of m a ny commercial
appl ications. Once we have a better u nderstanding of
how high- level appl ications wil l use the M EMORY
CHA.t'\I N EL intercon nect, we wil l extend the design
and provide add itional AP!s oriented toward both
commercial appl ications and tech nical computing.

Application Fa ilover

Digita l 's TruCi uster multicomputer system is a logical
evolution of the DECsafe Avai lable Server Envi
ronment (ASE) . An ASE system is a m u l tin ode con
figuration w i t h a l l nodes a n d a l l h igh l y available
storage connected to shared SCSI storage buses.
Figure 5 shmvs an ASE configu ration. Software on
each node monitors the status of a l l nodes and of
shared storage. In case of a fai l ur e , the storage and
associated applications are tai led over to surviving sys
tems. P lanned application fa i lover is accomplished by
stopping the appl ication on one node and restarti ng
the application on a s u rviving node with access to any
storage associated with the appl ication. Appl ication
specific scripts control tai lover and usual ly do not
req ui re appl ication changes.

Figure 5
Typical ASE Con tiguration

In addition to supporting the appl ication fai l over
mechan isms from ASE, the TruCl uster system sup
ports paral lel appl ications running on m u l tip le clu ster
nodes. In case of a fai l ure, the appl ication is not
stopped and restarted . I nstead , it may continue to exe
cute and transparently retain access to storage through
a d istri buted disk server. I n addition, more general
hardware topologies are supported .

Hardware Configurations

The TruCi uster version 1 . 0 prod uct supports a maxi
m u m of tour nodes connected by a h igh- speed
MEMORY CHAN N EL interco n nect. The nodes may
be any Digital U N I X system with a peripheral compo
nent i nterconnect (PCI) that supports storage and the
MEMORY CHAN N E L interconnect. Highly available
storage is on shared SCSI buses connected to at l east
two nodes. Thus, a c luster looks l i ke m u l tip le AS E
systems joi ned by a cl uster interconnect.

Although tl1e l imitation to four nodes is temporary,
we do not intend to support large numbers of nodes.
Ten to twen ty nodes on a high-speed interconnect is
a reasonable target. A cluster is a component of a dis
tribu ted system , not a replacement for one. If very
large n u m bers of nodes are desired, a d istri buted
system is bu i l t with c l uster nodes as servers and other
nodes as cl ients. This a l lows maintain in g a simple
model of a c luster system without havi ng to al low for
many com p lex topologies. Aside from simpl icity, there
are performance advantages from targeting a lgoritllms
for rel atively sma l l and simple cl uster systems.
Although the nu mber of nodes is intended to be sma l l ,
t h e i ndividual nodes can b e high-end mu ltiprocessor
systems. Th us, the overal l computing power and the
f/0 bandwidth of a cluster are extremely large.

Conclusions

With the comp letion of the fi rst release of Digita l 's
TruCluster prod uct, we be lieve vve have met our goal
of provid in g an envi ronment tor high- performance
com mercial database servers. Both the d istri buted l ock
manager and the remote d isk services are meeting
expectations and providing rel iable, high-performance
services for para l lel ized appl ications. The M EM O RY
CHAN N EL i ntercon nect is proving to be a n excel lent
c luster i n terconnect: I ts synchroni zation and fai l ur e
detection are especial ly compatible with many cl uster
aware components, which are enhanced by its low
l atencies and simpl i fied by i ts e l imination of compJex
error hand l i ng. The error rates have also proven to be
as pred icted . With over 100 units i n use over the last
year, we have observed only a very smal l nu mber of
errors other than those attri butable to de bugging new
versions of the hardware.

Digital Tedmical j ou rna l Vol . 8 No. 1 1996 I S

1 6

Detailed component performance measurements
are stil l i n progress, but rough comparisons of D RD
against local I/O have shown no signitlcant penalty in
latency or throughput. There is of course addi tional
CPU cost, but it has n ot proven to be significant for
real appl ications. DLM costs are comparable to VMS
and thus meet our goals. Audited TPC-C results with
t11e Oracle database also val idated both our design
approach and the implementation details by showing
that database performance and scaling with add i tional
cluster nodes meet our expectations.

The previous best reported TPC-C num bers were
20,9 1 8 tpmC on Tandem Computers' H imalaya
Kl0000- 1 12 system with the proprietary NonStop
SQL/MP database software. The best reported num
bers with open database software were 1 1 ,456 tpmC
on the Digital AlphaServer 8400 5/350 with Oracle7
version 7 .3 . A four-node AlphaServer 8400 5/350
cluster with Oracle Paral lel Server was recentJy audited
at 30,390 tpmC. This represents i ndustry- leadersh ip
performance wi th nonproprietary database software.

Future Developments

We will continue to evolve the TruCiuster prod uct
toward a more scalable, more general computing envi
ronment . In particu lar, we wi l l emphasize distributed
fi le systems, configuration flexibi l ity, management
tools, and a single-system view tor both in ternal and
cl ient applications. Work is u nder way tor a c luster fi le
system wiili local node semantics across the cluster sys
tem. The new cluster fi le system wi l l not replace D RD
but wi l l complement it , giving applications the choice
of raw access through D RD or ti.tiJ, local -file-system
semantics. We are also l ifting the four-node l imitation
and al lowing more flexibi l ity in cluster in terconnect
and storage configurations. A single network add ress
for tl1e c luster system is a priority. Final ly, fu rther steps
in managing a mu lti node system as a single system will
become even more important as the scale of cluster
systems i ncreases.

F urther in the future is a true single-system view of
cluster systems that wi l l transparently extend all

process control, communication, and synchronization
mechanisms across the entire c luster. An implicit trans
parency requirement is pertormance.

Acknowledgments

In addition to the au thors, the fol lowing i nd ivid uals
contribu ted d irectly to the cl uster components
described in th is paper: Tim B urke, Charlie Briggs,
Dave Cherkus, and Maria Vella for D RD; Joe Amato
and M itch Condylis for DLM; and Ali Rafieymehr for
MEMORY CHANNEL. Hai H uang, Jane Lawler, and

Digital Technical Journal Vol. 8 No. I 1 996

especial ly project leader Brian Stevens made many
direct and indirect contributions to the project.
Thanks also to Dick B uttlar for his editing assistance.

References and Notes

1 . "Introduction ro DCE," OSF DCE Documentation Set
(Cambridge, Mass . : Open Soltware Foundation, 1 9 9 1).

2. Internet RFCs 1 0 1 4, 1057, and 1094 describe ONC
X D R, RPC, and NFS protocols, respectively.

3. G . Pfister, ln Searcb of Clusters (U pper Saddle River,
N.J . : Prentice- HaJ J , Inc., 1 99 5) : 1 9 -26.

4 . N. Kronenberg, H. Levy, and W. Strecker, "VAXclusters:
A Closely-Coupled Distributed System," ACil1 Trans
actions on Computer S)stems, vol. 4, no. 2 (May
1 98 6) : 1 30-146.

5. L. Cohen and]. Wi lliams, "Techn ical Description of
the DECsatC Available Server Environment," Digital

Tecbnical.fournal, vol. 7, no. 4 (1 99 5) : 89-100.

6 . TPC performance numbers tor U N IX systems are typi
cally reported for databases using the character device
interface.

7. The rile system inrerfaces on the Digital UNI X operat
ing system arc bei ng extended to support di rect ljO,
which results in bypassing the block bu ffer cache and
reduci ng code path length for those appl ications that
do nor benefit from use of the cache.

8. A fast wide differential (FVV D) SCSI bus i s limited to
a maximum distance of a bout 2 5 meters tor example .

9. M. Devarakonda cr al . , " Evaluation of Design Alterna
tives for a Cluster File System," USENTX Conference
Proceedings, USEN I X Association, Berkeley, Calif.
(J anuary 1 99 5).

1 0 . J . Gray and A. Reuter, Transaction Processin[;
Concepts and Techniques (San Mateo, Calif. :
Morgan Ka utinan Publi shers, 1 993) .

1 1 . This mechanism i s inherited fi·om the DECsafe Avail
a ble Server management faci.lity, including rhe asemgr
inrertace.

1 2. As an example, if the first DRD service created for a
cluster is 1 , the D lW device special fr le name is
/dev/drd/drd I and irs minor device number is also 1 .

1 3 . C. Juszczak, " Improving the Performance and Cor
rectness of an NFS Server," USL�·.VJx Conference Pro
ceedings, USENJX Association, San Diego, Calif.
(Winter 1 98 9) .

1 4. W. Snaman, Jr. a n d D . Thiel, "The VAX/VMS Di strib
uted Lock Manager," Digital Technical journal,
vol. 1, no. 5 (September 1 98 7) : 29-44 .

1 5 . R . Golden berg, L. Kenah, and D. Dumas, VAX/VMS
Internals and Data Structures (BecHard, Mass. :
Digital Press, 1 99 1) .

1 6 . TruC/uster AfJj>!icatinn Pmgrc.nnm ing inter/aces
Gu ide (M�wncml , 1'vlass . : D ig it� l Eq uipment Corpora
tion, Order No. AA-QL8 PA-TE, 1 996) .

1 7 . T. Rengclr<l)'ln, P. Spi ro, and W. Wri ght, " H igh Avai l
clb i l itY MedwJisms o f VAX D B M S Software," Digital
Techuica/ .fou rna!. vo l . 1 , no. 8 (l:;ebruarv 1 989) :

88-98.

1 8 . f:'ncnre 91 Series Tech nical St1 1 111nary (Fort La ud
erdale , r h1 . : Encore Compu ter Corporation, 1 99 1) .

Biographies

Wayne M . Cardoza
Wavnc Ca rdozc1 is c1 senior consult ing e n gineer in the
U N I X Engi neering Group. He joined DigitJI i n 1 9 79
Jnd con tri buted to v�rious areas ofrhc VMS kernel prior
to joi n ing rhe U N I X C roup ro work on rhe U N I X cl uster
producr. W:1ync was a l so one: of the arc h i tects of P IU S M ,
Jn e<Jr ly Digita l RISC : arc h i tecru n: ; he holds several patems
t()r this work. More recently, he participated in the design
ofthe A l p lu AX I ' architecture and the Open VMS port to
Al ph<L Be tore coming to DigitJI, Wc1vne wc1s employed bv
Bdl Laboratories. He rece ived a B .S . E. E . trom Southeastern
Massac h use tts Uni1·crsit\· and an M .S . E . E. trom M IT.

Frederick S. Glover
Fred Glover is '' soft:wc1n: consult ing engi neer <l nd the rech
nicll di rector of the D i gita l U�J X Bc1se Operating System
Croup. Since jo in ing the Digi ta l U N I X Group in 1 9 8 5 ,
!-'red has contributed to the developm e nt of networking
services, local c1nd remote ti le systems, <1nd c l uster tech nol
ogy. He has served as the cha ir of the I 1:-:TI-' /lS IG Trusted
NFS Worki n g Croup, :JS the chc1 i r ofrhe OS!-' Distribu ted
Fi le Svsrem Working Group, :m d as Digita l 's representative
to the I E F.F. POS I X 1 003 .8 Transparem hie Access ·work
ing Group. P1·ior to Jo in i ng D ig i ta l , Fred was e mployed bv
l\T&T Bel l Laboratories, where h i s contri butions i ncluded
co-development of the R.I\1AS network communication
subsystem. He ren: ived B .S . and M . S . degrees in computer
science trom Ohio State Uni versity cmd con ducted h i s
thesis resc:u·ch i n t h e areas oftault - tolcrant d istributed
computing and data flow arcbi tecru n: .

Wil l iam E. Snaman, Jr.
Sandy Snaman joined Digital in 1 980. H e is cu rrenrlv a

consult ing sotn1-are engineer in Digi ta l 's U N I X Sott\\'Jre
Group, where he contri bu ted ro the TruCiusrc:r architec
run: and design . H e and members of his group designed
and im plemented c luster eomponems such as the con
nection mcmager, lock manager, cmd various aspects of
cluster commun ications. Previously, in the VMS Engi neer
ing Group, he was the projec t leader �(>r the port of the
VMSclustcr svstcm ro the AJpha p l att(>rm and the technica l
supervisor a n d project kad er tor rhe VAXcluster cxcc uri,·e
area . Sandy also reaches MS Windows programm ing and
C++ at D<1niel Webste r Col lege. H e has a B.S. in compu ter
science and an M.S. in intormarion systems trom the
Uni versity of Lowe l l .

Digital TechnicJI /oum<ll Vol . 8 No. 1 1 996 1 7

Delivering Binary Object
Modification Tool s for
Program Analysis and
Optimization

Digital has developed two binary obj ect

modification tools for program a na lysis and

optim ization on the Digital UNIX version 4.0

operating system for the Alpha platform. The

tech nology origi nated from research performed

at Digital's Western Research Laboratory. The

OM object modification tool is a transforma

tion tool that focuses on postl ink optimizations.

OM can apply powerful intermodule and inter

la nguage optimizations, even to routines in sys

tem l i braries. Atom, an ana lysis tool with object

modification, provides a flexible framework for

customizing the transformation process to ana

lyze a prog ram. With Atom, compi lation system

changes a re not needed to create both si mple

and sophisticated tools to directly diagnose or

debug appl ication-specific performance prob

lems. The l i n ker and loader are enhanced to sup

port Atom. The optim izations OM performs can

be driven from performance data generated

with the Atom-based pixie tool . Applying OM

and Atom to commercia l appl ications provided

performance improvements of up to 1 5 percent.

1 8 Digite1l TcchnicJI journal Vol . 8 No. I 1 996

I
Linda S. Wilson
Craig A. Neth
NUchaei J. FUckabaugh

H istorical ly on UNIX systems, optimization and pro
gram ana lysis tools have been implemented primarily
in the real m of compi lers and r u n - time l i braries. Such
impleme ntations have several d rawbacks, however.
For example , a l though the opti mizations performed
by compilers are effective, typical l�', they are l imited to
those that can be performed withi n the scope of a sin
gJe source fi l e . At best, the compiler can opti mize the
set of files presented d u ri ng one compilation run .
Even the most sophisticated systems that save i nterme
diate representations usually can not perform opti
mi zations of ca l l s to routines in system l ibraries or
other l ibraries for which no sou rce or intermediate
forms arc available . 1

The trad itional UNIX performance analvsis tools,
prof and gprof, req uire compi ler support for inserting
calls to pred efined ru n-time l i brary rou tines at the
entry to each proced ure. The mon itor rou tines a l l ow
more user control over prof and gprof profi l ing capa
bil ities, but their usage req uires modifications to the
appl ication source code . Because these capabi l i ties are
implemented as compilation options, users of the tools
must recompile or, in the case of the mon itor rou tines,
actua l ly mod i fy their appl ications. For a l a rge applica
tion, this can be a n onerous requ i remen t . Fu rther, if
the appl ication uses l i braries for w hich the source is
u navai lab le, many of the analysis capabi l ities are lost or
severely i mpaired .

By comparison, object modification tools can per
form arbitrary transformations on the executable
progra m . The OM object modi fication tool is a trans
formation tool that focuses on postl i nk opti m i zations.
By pertcxm ing transformations after the l ink step, OM
can apply powerful i ntermod u le and i nter language
optimizations, even to routines in system libraries.

O bject transformations al so have benefits in the area
of program analysis. Atom, an an alysis tool wirh object
modification, provides a fl exible framework tor cus
tom izing the tran sformation process to analyze a pro
gram. With Atom, compilation system changes are not
needed to develop specia l ized types of debuggi ng or
performance analysis tools. Appl ication developers can
create both simple and sop histicated tools to d i rectly
d iagnose or debug appl ication -specific performance
problems.

The OM and Atom tec h nologies origi nated ti·om
research performed at Digita l 's Western Research
Lab (WRL) in Palo Al to, Cal iforn ia.' The software
was developed into products by the Digi ta l U N I X
Development Environment (DUDE) group a t
Digi ta l 's UNIX engi neeri ng site i n Nashua, New
Hampshire. Both technol ogies are cu rre n tly shipping
as supported products on D igital UNIX version 4.0
tor the Alpha platform :'

This paper fi rst provides tech nica l overviews tor
both OM and Atom. An example Atom tool is
presented to demonstrate how to use the Atom appli
cation programming i nterface (API) to deve lop a cus
tomized program analysis tool . Because OM and
Atom can be used together to en hance the e tkctive
ness of optjmi zations to :1pplication programs, the
paper inc l udes an overview regard i ng the benefits of
profi ling-directed optj m i zations.

Subsequent sections d iscuss the product develop
ment and tech nology transfer process for OM and
Atom and several design decisions that were made.
The paper describes the working relationship between
W l�L a nd DUDE, the u ti l ization of the technol ogy on
Independent Software Vendor (ISV) appl ications, and
the factors that d rove the separate development strate
gies for the two products. The paper concludes with
a discussion about areas tor fu rther investigation and
plans for future en hancements.

Technology Origins

Researchers at WRL i nvestigating postl ink opti miza
tion tech niques created O M i n 1992 ' Unlike compi le
t ime optirnizers , which operate on a single fil e, post l ink
opti mizers can operate on the entj re e xecutabk pro
gram. For i nstance, OM can remove procedures that
were l i n ked into the executable but were never ca l l ed,
thereby red ucing the text spJce required by the pro
gram and potentia l l y improving i ts paging behavior.;

Using the OM technol ogy, the researchers fu rther
d iscovered that the same bin ary code mod i fic ation
tech niques needed for opti mizations cou ld also be
appl ied to the area of program instrumentation . I n
tact, the processes o f instrumenti ng a n existi ng pro
gram and generati ng a new execu table cou l d be
encapsu l ated and a programmable interface provided
to d rive the instr u me n tation and ana lysis processes.
Atom evolved from this work -"·7

In 1 993 , WRL researchers Amitabh Srivastava and
Al an Eustace begJn planning with DUDE engineers
to provide OM and Atom JS supported p roducts on
the Digi tal UNIX operating syste m . Different prod uct
development and technol ogy transfer strategies were
used f(>r delivering the two tech nologies. The sec
tion Prod uct Development Considerations discusses
the methods used and the f()rces that i n fl uen ced
the strategies.

Tech n ical Overview of OM

OM performs transformations in three phases. It pro
duces an i nte rmediate representation , perf()rms opti
m izations on thJt representation, and prod uces an
execu table i mage .

Intermediate Representation

In the fi rst phase, OM read s a specia l l y l i n ked input
ti l e that is produced by the l i n ker, parses the object
cod e, Jnd prod uces an i nrermed iJte representation
of the i n structions in the progra m . The flow i n forma
tion and the program structure are maintained i n
this representation.

Optimization

ln tl1e optimization phase, OM performs various trans
formations on the i n termediate representation created
in the first phase. These transformations inc lude

• Tex t s ize reductions

• Data size redu ctions

• I nstruction and data reorga n i zation to Improve
cache behavior

• I nstruction sched u l ing and peephole opti m i zation

• User- d i rected procedure in l in ing

Text Size Reductions One type of text s ize red uction
is the el imination of un used routi nes. Starting at the
entry poi nt of the image , OM exJm ines the i nstruction
stream for transfer-of-control i n structions. OM fol
lows each transter of control u n til i t finds al l reachJble
routines i n the image . The re maining routines are
potentiaUy unreachable and a re candid ates tor removal.
Before removing them, OM checks JJI candidates tor
any add ress references. (Such references wi l l show up
in the relocation entries for the sym bol s .) If no refer
ences ex ist, OM em sJfdy remove the routine . A sec
ond type of text size reduction is the e l imination of
most GP register rel oad i n g seq uences .'·''

Data Size Reductions Because it operates on the entire
program , OM performs opti m izations that compi lers
are n ot able ro perform . One instance is with the
addressJ bi l iry of globJl data. The general instruction
seq uence for accessing global data req uires the usc of
a table of add ress constants (the . l i tJ section) and code
necessary tor maintaining the cu rrent position in t.he
ta ble. Each en try in the add ress constant ta ble is relo
cated by the l in ker. Because OM knows the l ocation of
Jll global data, it c111 potentia l ly re move the add ress
entry whi le i nserting and removing code to more effi
cie n tly reference the datJ d irectly. Removing Js many
of the . lira entries Js possible l eaves more room in the
data cache (0 - cache) for the appl icJtion 's global data.

Dig;ira.l TcclllliGli J o urml Vo l . R No. I 1 ':196 1 9

20

This opt im ization i s nor possib le :1t l i nk time, bcc1 usc
the l inker c:tn neither i nsert nor remove code .

Reorgan ization of the Image B v d eElll l t, O M reorga

nizes :1 n i m ;1gc b1· reord ering the routines in rhc i m ;1ge
as determined by a depth -ti rst search of the rout ine
order, starring at the main cnrrv poi n t . I n the absence
of profi l ing i n f ormation , this orderi ng is usual ly better
than the l inker's ordering.

In the presence of profi l ing kedback, OM performs
two more instruction- stream reorckri ngs: (1) reorde r
ing of rout i nes based on b;1sic block cou ms ;md
(2) rourine ordering based on execution ti-cquencl'.
OM fi rst reorg;mizcs rou tines based on the basic block
information co.l lected by a previous run of the i m age
instru mented with the Atom- b:tsed pixie tool. ON! L1ys
rhe basic bl ocks to match the program's l i ke l y fl o II' of
control . Branches are al igned to match the h ;Hdll'are
pred iction mechanism. As :1 resu l t, OM packs together
the most com mo1llv executed blocks. After b:tsic block
reorganization, OM then reorders the routines in the
image based on the cumul :ttivc basic b l ock counts f()r
each rou ti ne . The reorganized image i s ordered i n
a '''av s imi lar t o the wav the prof tool d isp!Jvs necu rion
statistics. The reordering perr(mncd b1· OM is superior
to that per formed by cord, because cord docs 110t
reorder basic blocks. cord is a UNIX profi l i ng-d irected
opti mization uti l ity that reord ers proced ures in an exe
cutable progrJm to improve c1chc performance. The
cord(1) re fe re nce page on Digic1 l UNIX 1nsion 4.0
describes the operation of this u ri l i r�· in more derai l .

Ela psed-time Performance The optim i zations t l lat
OM perf(>nm without pro fi l i n g tCcd back can provid e
el apsed -r ime pedormancc i mproveme nts o f u p ro
5 percent . The teedback-d i rccred optim izations can
often pnwidc :1 1 1 <1dd i tioml i m provem ent of ti·om 5 ro
lO percent in e l apsed t ime, t(lr a total i mprmTmcnr
of up to 1 5 perce nt over an i m age not processed
by OM. Seve ra l commercial dJtabase progr;1 ms h :tve
realized c l:tpscd- ti me perfonnJnce im proveme nts
rangi ng h·om 9 to l l percem with ked back.

Executable Image

Fi nally, i n the th i rd phase, O lvl rc1ssembles the tr;ms
formed i ntermediate represcnc1rion into an exccu t;lh le
image . ft pcrt(lrms relocation process i ng to reflect Jny
changes in data layout or program organization .

Technical Overview of Atom

The Atom tool ki t consists ofJ d ril 'er, an i nstrunKt 1 ta
rion engine, J n d a n a nal ysis run- time syste m . The
Atom engine performs transform ations on an c :x c

cu tablc program, converting it to an i ntermed iate
torm. The e ng i ne then anno tates r h c i n termcdi :ttc
form and generates a nell', in stru mcmed program .

Vol . 8 :-.i<> I I Y96

The Atom engine is program mJb l e . Atom accep ts
as i np u t ;1 11 instru m e ntat ion ri le a nd an :m al ysis ti l e .
The i nstrumen tation fi le ddines the poi nts at which
the progrJm is to be instru mented and w lut an;1 l ysis
routine is to be called ;1 t uch instrumentJtion point.
The an;1 h·sis ti le (ddincci b ttr in this section) defi n es
the anal ysis routines. Atom <1 1 iOII'S i nstru men t;Hion of
a program at a very fi ne level of granu l arity. It supports
instru mcnt:<tion before and after

• Program execution

• Shared l ibrarv loading

• Proced u res

• B:1sic blocks

• I nd iv id ual i nstructions

Support ing instru mcntJtion at these poi nts a l loll's
the development of a ll"ide \";1r iety of tools, a l l 11·i rh in
the Atom ti·ame\\'ork. Ex:�rnplcs o f' these tools are Gtche
s imulators, me mory c hecking tools, and performance
measu rcmenr tools . The h·amcwork supports the cre
ation of customi zed tools a n d can decrease costs by
s impl i�1 ing rhe development of single- use tool s .

The i nstrumentation ti le is a C l angu age program
that conrains c a l l s to the Atom A P I . The i nstrumcnt;1 -

tion ti le dcti nes anv arguments to be passed ro the
ana lvsis rout ine . Argu ments can be register l'a l ues,
in struction fie lds , symbol names, addresses, ere . The
instru mcntJtion fi l e is comp i led and then l i n ked with
the Atom i nstru ment:tr ion engine to create J tool to
pertonn the instrume ntation on ;1 target progr:1 m .

The ;malvsis fi le conta ins definitions ofrhc routines
that arc ca l led from the instru m e n tation po ints in rhe
target program . The analysis rou tines record evenrs or
process rbc arguments that arc passed from rhc i nstru
mentation poi nts .

Bv com·enrion , the in stru me ntation and an:1 l vsis
tiles arc n:< 1ncd \Yi th the s u ffi xes inst .c and ana l . c ,
respect ivel v. Atom is i m·oked ;1s follows to crc:nc an
i nstrument e d executable :

% a t o m p r o g r a m t o o l . i n s t . c t o o l . a n a l . c

The atom com mJnd i s a d ri, ·er that invokes the
compi ler :t n d l i n ker to gencL1te the instr u m e n ted
progra m . The rive steps of this process are

I . Com p i le rhe instru mentJtion code .

2 . Lin k the in strumen tJtion code with t h e Atom
i nsrr u m cn t;ltion engi nc ro create an i nsrru men ta
tion rool .

3. Compi le the a na lys is code.

4. Lin k the :1 11:1lvsis cod e with the Atom Jnah·sis run
ti me syste m , using the UNIX ld too l with the -r
opt ion so the object may be used as inp u t to
another l ink .

5 . Execute the i nstr u m e n tation tool on the target
program, provi d i n g rhe l i n ked ana lysis cock as an
argumen t .

An Example Atom Tool for Memory Debugging

The followi ng d iscussion of an example Atom tool
demonstrates how to usc the Atom API to d evelop a
customized program ana lysis too l .

T h e fina l step prod ucts an i nstrumented program
l i n ked with th<:: a n a l ysis cod e . Figure l shows th<::
chang<::s i n memory l ayou t between the original pro
gra m and the instru ment<::d program.

A common d evelopme n t problem is locati ng the
sou rce of a memory overwrite. Figure 2 shows a con
trived example program i n which the loop to i n i t i �1 l ize
an array exceeds the array boundarv and overwri tes a

F igure 1

LOW
M E MORY

HIGH
M E MORY

STACK

READ-ONLY DATA
EXCEPTION DATA

PROGRAM TEXT

PROGRAM DATA
INITIALIZED

PROGRAM DATA
U N I N ITIALIZE D

HEAP

:

U N I NSTRUM ENTED
PROGRAM LAYOUT

- TEXT START

N E W DATA
START -----........__

ANALYSIS gp -...__

OLD DATA / START �
-- PROGRAM gp -

:
STACK

READ-ONLY DATA
EXCEPTION DATA

ANALYSIS TEXT

INSTRUMENTED
PROGRAM TEXT

ANALYSIS DATA
IN IT IALIZED

ANALYSIS DATA
UNINITIALIZED
(SET TO 0)

PROGRAM DATA
I N ITIALIZED

PROGRAM DATA
U N I N ITIALIZED

HEAP

:

I NSTRUMENTED
PROGRAM LAYOUT

PROGRAM
TEXT
ADDRESSES
CHANGED

PROGRAM
DATA
ADDRESSES
UNCHANGED

Source · A. S rivastava and A. Eustace, '"ATOM: A System lor Building Customized Program Analysis Tools,'"
Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,
Orlando, Fla. (June 1 994). This paper is also available as Digital's Western Research Laboratory
(WRL) Research Report 94/2.

tvk mon· Lavout of I nstru m e n ted Progra ms

F igure 2

1 l o n g n u m b e r s [8 J = { Q } ;
2 l o n g * p t r = n u m b e r s ;
3
4 m a i n ()
5 {
6 i n t i ;
7
8 f o r C i = O ; i < Z S ; i + +)
9 n u m b e r s [i) = i ;

1 0 }

ExJtnplc Progmm ll' ith Memory Overwrite

I * T h i s p o i n t e r i s o v e r w r i t t e n * I

I * b y t h i s a r r a y i n i t i a l i z a t i o n . * I

Di�irJ[Ted111 ical Journal Vol . � No. l 1 996 2 1

22

poi nter v;1riabJe. I n this cJse, the in it ia l ization o f the
rzum hers array detl.ned i n l ine I overwrites the con
tents of the variab le ptr ddined in l i ne 2. This type of
problem is often d i fti c u l r :md rime-consu ming to
locate with traditional debugging tools.

Atom can be used to develop a simple tool to l oGlte
the source of the overwrite . The tool wou l d instr u
ment each store i nstruction in the progra m a n d p:1ss
the effective add ress of the store i nstru ction and the
va lue being stored to an Jnalysis routi ne . The ::m :: d ysis
routine wou ld determine if the effective address is the
address being traced a n d , if so, generJte a di Jgnosri c .

The i nstru mentati on :m d ;m a h'sis fi l es f o r the
mem_debug tool Jre shown l ll Figure 3 .
I nstr ument! nit() registers the analysis routines with
the Atom i nstrumentation engine a nd specifies rh::�t
cal ls to the get_Jrgs() and open_ log() routines be
i nserted before the progrJm begins executing. A cal l
ro t he c l ose_log() rou ti ne is dicr;ned when the pro
"Tam tnmi n:tres execution . The Atom i nstnlll1C11tao
tion engine ca l ls I nstru ment I nit() exactly once.

The Atom i nsu·umenrarion engine c1 l ls the
I nstrument() ro utjne once tar each executable objccr
i n the progr:l ln. The routine i nstru ments e::�ch store
instruction that is not a stack opcrarjon wirl1 a c:tl l to the
analvsis rou tine mem_srore() . E;Kh call to the routine
prO\;ides the address ofrh e store i nstruction, the target
address of the store i nstruction, the value to be srorcd,
and the file name, procedure n:�mc, and l ine n u mber.

The open_log() a nd c l ose_Jog() analysis routines ::�rc
selfex planatory. The messages cou ld hJve been wrirren
to the standard output, bccJ usc, in this exJmple , they
would not have interfered with the program output .

The ger_:�rgs() ro utine re;Hi s the va l u e of the
MEM Df:JJI JG ;I NGS environ ment variable to obt:� in the
datJ -;ddress�o be traced . The tool cou l d luve been
written to accept arguments from the command l i n e
using the -too largs swi tc h . The i n strum en tJtion code
wou ld then JXISS the argu ments to the analysis rou tine.
In the GlSe of this tool , using the environment v:�ri;1 bk
to pass the argu ments is bcneticia l because the pro
gram does not have to be reinsrrumented to trace J

new :tddress.
The mem_srore () routi ne is c1l led from each store

instruction s i re that was i nstrum en ted . If the tJrgct
address of the store operation docs not march the
trace add ress, the routine s imp ly returns. If there is a
matc h , J diagnostic is logged that gives i n fimnJtion
about the location of the store.

To demonstrate how this tool would be use d , sup
pose one has dete rmined b�, deb ugging that the vari
able ptr is being overwritte n . The nm comma nd IS

used to determine the add ress ofptr as fol lows :

% n m - B p r o g r a m I g r e p p t r
O x 0 0 0 0 0 1 4 0 0 0 0 0 c 0 G p t r

I nstrument the program with the mem_debug tool .

Digit�! Tcchnicll)oum�l Vol . 8 No. l 1 996

% a t o m p r o g r a m m e m_d e b u g . i n s t . c
m e m_d e b u g _ a n a l . c

Set the iv!Uv!_DtBUG_A NCS environ ment v:�riable with
the address to trace .

% s e t e n v M E M _D E B U G _A R G S 1 4 0 0 0 0 0 c 0

Run the instrumented program ,

% p r o g r a m - a t o m

and view the log file .

% m o r e p r o g r a m . m e m_d e b u g . L o g

T r a c i n g a d d r e s s O x 1 4 0 0 0 0 0 c 0

A d d r e s s O x 1 4 0 0 0 0 0 c 0 m o d i f i e d w i t h \
v a l u e O x 1 6 :

a t : O x 1 2 0 0 0 1 1 c 4 P r o c e d u r e : m a i n \
F i l e : p r o g r a m _ c L i n e : 9

Using this si mple Atom too l , the location of a mem
orv overwrite can be detected q u ickly. The i nstr u
m�n ted program executes a t nearly n ormal speed.
Tr:�d itional deb ugging methods to detect such errors
are much more ti me-consu ming.

Other Tools

An Jrca i n which Atom capabil i ties have proven particu
larly powcrfi.d is for hardware modeling and s imulation .
Atom has been used as :t te:�chi ng tool in university
courses to tra i n srudenrs on h:�rdware and operating sys
tem design. Moreover, Digiol hardware designers have
de\'eloped sophisticated Atom tools to evaluate designs
tor ne\\' i m plementations of tbe Alpha cl�p.

The A tom tool ht conta ins 1 0 example tools that
demonstrate the capa bi l ities of this technology. The
examples i nc lude a branch pred iction too l , which is
usefu l t(lr compiler designers, :t proced u re tr:�c ing tool,
which can be useful i n fol lowi ng th e How of un bm i l i:� r
code , and J simple cache s imul ation too l .

Atom Tool Environments

A.tu lysis of certain types of programs can req ui re use of
speci:� l ly designed Atom tools. for i nstance, to analyze
a program thJt uses POSI X threads, an Atom too l to
hand le thre:�ds must a lso be designed , bec1use the
analysis rou tines wil l be cal led from the th reads i n the
appl

.
ic:�rion progra m . Therd(>re, the analysis rou ti nes

need to be reentrant. They may a lso need to synchro
nize access to data that is shared among t h e threads o r
ma nage cb ta for i ndividua l threJds. T h e thre:�d m :t n
agemenr in t h e analysis routines adds overhead t o the
execution time of the instrumented progr:� m; th1s
overhead is not necessary for a non th readed progr:� m .
To e ffectivel y su pport both threaded a n d nonr hreaded
programs, tWO rustinct versions of the same Atom tool

. need to coexist. Designers developed tbe concept ot
tool environ ments to add ress the issues of provid ing
m u l tiple versions of an Atom tool .

I *
* m e m_d e b u g _ i n s t . c - I n s t r u m e n t a t i o n f o r m e m o r y d e b u g g i n g t o o l

*
* T h i s t o o l i n s t r u m e n t s e v e r y s t o r e o p e r a t i o n i n a n a p p l i c a t i o n a n d
* r e p o r t s w h e n t h e a p p l i c a t i o n w r i t e s t o a u s e r - s p e c i f i e d a d d r e s s .
* T h e a d d r e s s s h o u l d b e a n a d d r e s s i n t h e d a t a s e g m e n t , n o t a

* s t a c k a d d r e s s .
*
* U s a g e : a t o m p r o g r a m m e m_d e b u g . i n s t . c m e m_d e b u g . a n a l . c
*
* I

i n c l u d e < s t r i n g . h >
i n c l u d e < c m p l r s l a t o m . i n s t . h >

I *
* I n i t i a l i z a t i o n s :
*
*
*

r e g i s t e r a n a l y s i s r o u t i n e s
d e f i n e t h e a n a l y s i s r o u t i n e s t o c a l l b e f o r e a n d a f t e r
p r o g r a m e x e c u t i o n

* g e t _ a r g s () - r e a d s e n v i r o n m e n t v a r i a b l e M E M D E B U G A R G S f o r a d d r e s s t o t r a c e
* o p e n_ L o g () - o p e n s t h e L o g f i L e t o r e c o r d o v e r w r i t e s t o t h e s p e c i f i e d a d d r e s s
* c l o s e_ L o g () - c l o s e s t h e L o g f i l e a t p r o g r a m t e r m i n a t i o n
* m e m s t o r e () - c h e c k s i f a s t o r e i n s t r u c t i o n w r i t e s t o t h e s p e c i f i e d a d d r e s s
* I

v o i d I n s t r u m e n t i n i t C i n t a r g c , c h a r * * a r g v)
{

}

A d d C a L L P r o t o (" g e t _a r g s () ") ;
A d d C a L L P r o t o (" o p e n_ L o g (c o n s t c h a r *) ") ;
A d d C a L L P r o t o C " c L o s e_ L o g () ") ;
A d d C a L L P r o t o C " m e m_ s t o r e C V A L U E , R E G V , L o n g , c o n s t c h a r * , c o n s t c h a r * , i n t) ") ;

A d d C a L L P r o g r a m C P r o g r a m B e f o r e , " g e t _a r g s ") ;
A d d C a L L P r o g r a m (P r o g r a m B e f o r e , " o p e n_ L o g " ,

b a s e n a m e C C c h a r *) G e t O b j N a m e C G e t F i r s t O b j ()))) ;
A d d C a L L P r o g r a m C P r o g r a m A f t e r , " c l o s e_ l o g ") ;

I *
* I n s t r u m e n t e a c h o b j e c t .
* I

I n s t r u m e n t (i n t a r g c , c h a r * a r g v [J , O b j * o b j)
{

P r o c
B l o c k
I n s t
i n t

I *

* p r o c ;
* b l o c k ;
* i n s t ;
b a s e ; I * b a s e r e g i s t e r o f m e m o r y r e f e r e n c e * I

* S e a r c h f o r a l l o f t h e s t o r e i n s t r u c t i o n s i n t o t h e d a t a a r e a .
* I

f o r (p r o c = G e t F i r s t O b j P r o c C o b j) ; p r o c ; p r o c = G e t N e x t P r o c (p r o c)) {

Fig u re 3

f o r (b l o c k = G e t F i r s t B L o c k (p r o c) ; b l o c k ; b l o c k = G e t N e x t B l o c k C b l o c k)) {
f o r (i n s t = G e t F i r s t i n s t C b l o c k) ; i n s t ; i n s t = G e t N e x t l n s t (i n s t)) {

I *
* I n s t r u m e n t m e m o r y r e f e r e n c e s . S k i p $ s p b a s e d r e f e r e n c e s
* b e c a u s e t h e y r e f e r e n c e t h e s t a c k , n o t t h e d a t a a r e a .
* M e m o r y r e f e r e n c e s a r e i n s t r u m e n t e d w i t h a c a l l t o t h e
* m e m_ s t o r e a n a l y s i s r o u t i n e . T h e a r g u m e n t s p a s s e d a r e
* t h e t a r g e t a d d r e s s o f t h e s t o r e i n s t r u c t i o n ,
* t h e v a l u e t o b e s t o r e d a t t h e t a r g e t a d d r e s s ,
* t h e P C a d d r e s s o f t h e s t o r e i n s t r u c t i o n i n t h e p r o g r a m ,
* t h e p r o c e d u r e n a m e , f i l e n a m e , a n d s o u r c e L i n e f o r t h e
* P C a d d r e s s .
* I

Instru mentation and Ana l ysis Code tor the mem_d e bug Tool

Digital Technical Journal Vol . 8 No. I 1 996 23

24

}
}

}

i f (l s 1 n s t T y p e (i n s t , I n s t T y p e S t o r e l l {
b a s e = G e t l n s t l n f o (i n s t , I n s t R B l ;
i f (b a s e ! = R E G S P l {

}
}

A d d C a l l l n s t (i n s t , I n s t B e f o r e , " m e m_ s t o r e " ,
E f f A d d r V a l u e ,
G e t l n s t R e g E n u m (i n s t , I n s t R A l ,
I n s t P C (i n s t l ,
P r o c N a m e (p r o c l ,
P r o c F i l e N a m e (p r o c l ,
(i n t l l n s t l i n e N o (i n s t l l ;

}

I *
* m e m_d e b u g . a n a l . c - a n a l y s i s r o u t i n e s f o r m e m o r y d e b u g g i n g t o o l
*
* U s a g e : s e t e n v M E M D E B U G A R G S h e x a d d r e s s b e f o r e r u n n i n g
* t h e p r o g r a m .
* D i a g n o s t i c o u t p u t i s w r i t t e n t o p r o g r a m . m e m_ d e b u g . l o g
* I

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b . h >
i n c l u d e < s t r i n g . h >
i n c l u d e < s y s l t y p e s . h >

s t a t i c F I L E * l o g_ f i l e ;

s t a t i c c a d d r t t r a c e _a d d r ;

I *
* C r e a t e L o g f i l e f o r d i a g n o s t i c s .
* I

v o i d
o p e n_ l o g (c o n s t c h a r * p r o g n a m e l
{

c h a r n a m e [2 Q O J ;

I * O u t p u t f i l e f o r d i a g n o s t i c s * I

I * A d d r e s s t o m o n i t o r * I

s p r i n t f (n a m e , " % s . m e m_d e b u g . L o g " , p r o g n a m e l ;
l o g_ f i l e = f o p e n (n a m e , " w " l ;

i f < ! l o g _ f i l e l {
f p r i n t f (s t d e r r , " m e m_d e b u g : C a n ' t c r e a t e % s \ n " , n a m e) ;
f f l u s h (s t d e r r l ;
e x i t (1 l ;

}

f p r i n t f (l o g_ f i l e , " T r a c i n g a d d r e s s O x % p \ n \ n " , t r a c e _a d d r l ;
f f l u s h (l o g_ f i l e l ;

}

I *
* C l o s e t h e L o g f i l e .
* I

v o i d
c l o s e_ l o g (v o i d l
{

f c l o s e < l o g_ f i l e l ;
}

I *
* G e t a d d r e s s t o t r a c e f r o m t h e e n v i r o n m e n t .
* I

v o i d
g e t _a r g s (v o i d l

F igure 3 (cont inued)

Dig:inl Tcchniul journal Vol . ll No. J 1 996

{
c h a r * a d d r ;
i f (l (a d d r = g e t e n v (" M E M _D E B U G_ A R G S "))) {

f p r i n t f (s t d e r r , " m e m_d e b u g : s e t M E M D E B U G A R G S t o h e x a d d r e s s \ n ") ;
f f l u s h (s t d e r r) ;

e x i t (1) ;
}
t r a c e a d d r (c a d d r t) s t r t o u l (a d d r , 0 , 1 6) ;

}

I *
* T h e t a r g e t a d d r e s s i s a b o u t t o b e m o d i f i e d w i t h t h e g i v e n v a l u e .
* I f t h i s i s t h e a d d r e s s b e i n g t r a c e d , r e p o r t t h e m o d i f i c a t i o n .

* I
v o i d
m e m s t o r e (

{

c a d d r t
u n s i g n e d L o n g
c a d d r t
c o n s t c h a r
c o n s t c h a r
u n s i g n e d

t a r g e t _ a d d r ,
v a l u e ,
p c ,
* p r o c ,
* f i l e ,
L i n e)

i f (t a r g e t _a d d r t r a c e _a d d r) {

I * A d d r e s s b e i n g s t o r e d i n t o * I
I * V a l u e b e i n g s t o r e d a t t a r g e t _ a d d r * I
I * P C o f t h i s s t o r e i n s t r u c t i o n * I
I * P r o c e d u r e n a m e * I
I * F i L e n a m e * I
I * L i n e n u m b e r * I

f p r i n t f (L o g _ f i l e , " A d d r e s s O x % p m o d i f i e d w i t h v a l u e O x % L x : \ n " ,
t a r g e t _a d d r , v a l u e) ;

f p r i n t f (L o g _ f i l e , " \ t a t : O x % p " , p c) ;
i f (p r o c ! = N U L L) {

f p r i n t f (L o g _ f i l e , " P r o c e d u r e : % s p r o c > ;
i f (f i l e ! = N U L L)

f p r i n t f (L o g_ f i l e , " F i l e : % s L i n e : % d " , f i l e , L i n e) ;

}
}

}
f p r i n t f (L o g _ f i l e , " \ n ") ;
f f L u s h (L o g_ f i L e) ;

Figure 3 (continued)

Tool environments accommodate seamless i ntegra
tion of special ized versions of tools into the Atom tool
kit. They pro\'ide a means fo r extending the Atom ki t.
This f:tc i l ity a l lows the addition of special ized Atom
tools bv D igital 's l ayered product groups or by cus
tomers, w h i l e mainta in ing a consistent user i n te r face.

The versions of the Atom tools hi prof, pix ie, Jnd
Third Degree that suppo rt POS I X threads are pro
vided as a separate environ ment. hiprof is a perfor
mance ana lvsis tool that collects data similar ro but
with more precision than g p rof. p ix ie is a basic block
profi l ing tool . Third Degree is a memory leak detec
tion tool .

The fol lowing command invokes tbe Atom- based
pixie tool for use on a nonthreaded program:

% a t o m p r o g r a m - t o o l p i x i e

The fOll owing comm:111d i nvokes the version of the
pixie roo] that supports threaded programs:

% a t o m p r o g r a m - t o o l p i x i e - e n v t h r e a d s

Tools for orber special ized environments can be
provided by defining a new environment name. For
example, Atom tools written to work with a language
specific run- time environment can be added to the

Atom tool kit by selecting an e nvironment name for
the category of tools. S imi larly, tools designed to work
on the kernel could be col lected i n to Jn envi ronment.

The environ ment name i s used i n the names of rhe
too l 's i nstrumentation, ana lysis, and description fi les .
The desc ription fi le for a tool provides the names
of the instrumentation Jnd analysis fi les, as wel l as spe
cial i nstructions for compiling and l i n ki n g the tool .
For exa mple, the pixie description ti le tor threaded
programs is named p ix ie . threads.dcsc. lt identifies
the th readed versions of the pixie instru mentation and
analysis ti les. The Atom d river bui lds rhe name of
the description fi le from the argu ments to the -tool and
-env switches on the command l i n e . The contents
of the description ti l e then d rive the subseq uent steps
of the bui ld process.

Tool environments can be added without modifica
tion ro the base Atom tech nology, thereby providing
extensibi l i ty to the tool kit while maintaining a consis
tent i nterface.

Compact Relocations

Atom i nserts code into the text of the program , thus
changing the location of routines. Atom req u ires
that relocation intormatjon be retained i n the

Digital Tedl llicll)oumJI Vol . S No. l 1996 2 5

26

executable image created bv the l i n ke r. This a l lows
Atom to properly perform r

-
elocations on the insrr u

men ted executable.
Duri ng the normal process of l i n king, the relocation

en tries stored in object fi les are c l i min;ltcd once thcv
have been resolve d . Because it effec rivdv rel i n ks th�
executable, Atom m ust have access to r l;e relocation
information .

Consider, tor example, an appli c1tion that in vokes a
fu nction through a statical l y initialized fi.mction pointer
vJriablc, as shown in the fol lowi ng code segment:

v o i d f o o (i n t a , i n t b)
{

}
v o i d (* p t r _ f o o) (i n t , i n t) f o o ;

v o i d b a r ()
{

(* p t r_ f o o) (1 , 2) ;
}

The Jdd ress of fu nction foo is stored i n rhc mem ory
location referenced by the ptr_foo variable . When
Atom instruments this appl icatio n, the add ress of
ji.;o will change, and Atom needs to know to update
the contents of the memorv location referenced bv
prr_jbo. This is possible only irhere is J relocation n:cor�i
pointing at this memory location. Addjng compact relo
cations to the executable file solves this problem .

Compact relocations are sma l ler rh:m rcgu L\l· re lo
cations tor two reasons. First, the Atom system docs
not req u i re all the i n formation in the regu lar reloca
tion records in order to instrument Jn exec utable .
Atom changes only the layout of the te xt segment,
so relocation records that describe the data segments
are not needed . Second, the remJining relocations
can often be predicted by analyzing other p:u·ts of
the cxecutJble fil e . This property is used to store a
compact to rm of the remai n ing relocui on records.
Since compact re location records arc represented in J
d ifrerent fo rm tban regu lar relocations, thev are stored
in the .comment section of the object ti le

.
rather than

i n rhc normal relocation area.

Profi l ing-directed Opti mization

OM and the Atom- based pix ie too l can i n teroperate
usi ng profi l in g-d i rected optim i zation . The Atom
based p i x i e too] is a basic block protilcr th;lt provi des
execu tion cou nts for each basic block when rhe pro
gra m is r u n . The execution cou nts a re then used as
input to OM for performing optimi zations on the exe
cutJble that are d ri ven from actual r u n -time pert()r
mancc data .

As an example, the fol l o\\' ing steps wou l d be
perkm11ed to ut i l ize p rofi l i ng-directed optimi zations
wi th OM :

Digit:ll TedlJlical)ourn:ll Vol . 8 No. I 1 9\!6

l . % c c - n o n _ s h a r e d - o p r o g r a m * . o

2 . % a t o m - t o o l p i x i e p r o g r a m

3. % p r o g r a m . p i x i e

4. % c c - n o n _ s h a r e d - o m

- W L , - o m_i r e o r g_ f e e d b a c k , p r o g r a m * . o

I n step l , a nonsharcd version of the program
is bu i l t . In step 2, the Atom- based pixie tool i nstru
ments the p rogra m . Step 2 p rodu ces progra m . p ixie
and program .Addrs files . Step 3 resu l ts in the exe
cution of the instrumented program to generate a
progra m . Counr s fi le . Th is ti le contains an execution
cou nt for each basic bl ock in the progra m . The last
step provides the basic block profi le as input to O M .
O M rearranges the text segment o f t h e program s u c h
that r h c most freq uently executed basic blocks a n d
proced ures are placed in proximity to each other, rhus
improving the instruction cache (I -cache) hit rate .

Product Development Considerations

Bringing the OJ\11 and Atom tec hnologies from the lab
oratory i nto use on cu rrent Digi ta l UNIX prod uction
systems req uired lrcquem com munication a nd coord i
nation between WRL and DUDE engineers working
on opposite coJsts of the U . S . The success of both proj
ects depended upon establ ish i ng and mJintaining a n
atmosphere o f cooperation among the engineers a t the
two locations. Common goals and criteria for bringing
tJ1e tec hnology to prod uct supported the teams d uring
de,·elopment and planning work.

Among the product development consid erations
tor OM and Atom were

l . The prod ucts must Jdd ress a busi ness or customer
requ i rement.

2 . The p roducts must meet customer expectations of
features, usabi l ity, q u a l i ty, and pertormance .

3. Engineering, qu;� l ity assura nce, and documentJtion
resou rces must be ide nti fied to ensure that the
products could be enh;1tlced , u pdated to operate
on ne\1' pl atform rclcJses, and su pported throu g h
o u t their l i fe cycles.

4. The prod ucts must be released at the appropriate
ti mes. Releasing J p rod uct too early could resu lt i n

high support costs, perhaps at t h e expense of n e w
devel opment. Re leJsi ng a prod uct too late could
comprom ise Digita l ' s ab i l i ty to leverage the new
tec h nology most effective ly.

Product Development and Technology Transfer

Process for OM

As part of their research and development et!orts,
WR.L engineers appl ied OM to large appl ications.
Researchers and Digital engi neers Jt ISV porti ng bbo
ratories worked together to share intormation and to
d iagnose the performance problems of programs i n

use on actu a l prod uction systems, such as relational
da tabase and CAD applications. This cooperative
eftort helped engineers determ ine the types of opti
mizations that would beneti t the broadest r:1nge of
applications. In addition , the engineers were a ble to
identity those opti mi zations that would be usefu l
to specitic classes of applications and nlJke them
switch-selectable through the OM i nterbce . The per
to rmann: im provements achieved on ISV :1ppl ications
en:1bled OM to meet the criteria for :1ddressing cus
tomer needs.

AJ though WRL researchers also :1pplied O M to the
SPEC bench mark suite to me:1sure pedo rmance
im provements, the primary tocus of the OM tech
nology development was to provide perf(xmance
im prove ments for appl ications curre ntly in widespread
use by the Digital U N I X customer bJSt:. With the
focus of performance i mprove ments on l arge cus
tomer appl ications, OM satisfied a prominent Digi tal
busi ness need tor incl usion in the D igital U N I X deve l
opmellt environment.

Engineers d iscussed the l im itation that OM did not
support shared libraries and the programs that used
them . In this respect, the technology would not meet
the expectations of al l customers . Many ISV :1ppl ica
tions and other performance- sensitive programs, how
ever, are bui lt nonsh ared to improve execution times.
Engi neers determined that the bendits tor th is c lass
of appl ication outweighed this l imitation of O M ,
and, theref(xe, the l imitation did n o t prevent movi ng
fo rward to develop the prototype in to J prod uct.
Developers recognized the risks and su pport costs
associJted with shipping the prototyp e , yet again
decided that the proven benefits to existing appl ica
tions outweighed these factors.

Beca use of the pressing business and customer
needs tor this technol ogy, DUDE and WRL engineer
ing concurred that OM should be provided as a fu l ly
su pported component i n Digital U N I X version 3 .0 .
Full prod uct development comm itme nrs from D U DE
engineering, documentation , and qual i ty assurance
could not be made tor that release, however. Nte r
discussion, WRL provided technical support :1 n d
extensions to OM t o add ress this need . D U D E engi
neering agreed to provide consu l ting su pport to WRL
researchers on object ti le and sym bol table f(xmats and
on eval uations of text and data opti mizations.

The next issue the engineers faced was how to i nte
grate OM i nto the existing development environ ment.
They eva luated three approaches.

The first approach was to make OM a separate tool
d i rectly accessible to users as /usr/bi n/om . Thus, an
application developer could uti l ize OM as a separate
step during the bui ld process. This approac h ottered
two advantages. First, it was s imi lar to the approach
used to achieve the present internal use of OM and

would req u i re kw ad ditional mod ificatjons to the
Digital U N I X develop ment environment. The second
advantage was that Atom and OM cou l d be more
easily me rged i nto one tool s i nce their usage would be
simi lar. This merging would provide the potential
efficiencies of a single stream of sou rces for the object
modification technology.

A major d isadva ntage of this approach was that it
put additional burden on the application developer.
OM req u i res a specia l ly l i n ked input file p rod uced by
the l inker. This intermed iate i n p u t file is not a com
plete executable nor is i t a p ure OMAGIC fi le . 1 0 This
approach wo uld requ ire c ustomers to add and debug
additional bui l d steps to usc OM o n their applications.
The WRL and D U D E e n gi neers agreed that the user
complexity of this approach would be a significant bar
rier to user acceptance of O M .

T h e second approach was t o change the com piler
driver to i nvoke OM for l i n king an executa ble. With
this approach, a switch would be added to the com
piJer d river. If this switch was given , the driver wou ld
cal l /usr/l ibjcmpl rs/cc/om instead of the system
l inker to do the tina! l i nk .

This approach had the advantage of reducing the
complexity of the user interface for bui lding an applica
tion with OM. A developer cou ld specifY one switch to
the compiler driver, and the driver would automaticaJiy
i nvoke OM. This would al low a developer to introduce
feed back-directed optimi zations into the program by
si mply rel i nking with the profi l ing i n formation , thus
making OM easier to use and less error-prone.

The disadvantage of this second approach was that
the complex symbol reso l u tion process i n the l inker
wou l d need to be added to O M . The process of per
form ing symbo l resolution on Digital UNIX operating
systems i s nontrivial . There are special r u l es, boundary
conditions, and constraints that the l i nker m ust u nder
stand. OM was designed to mod i fY an already resolved
executable, and any problems i n troduced from adding
l i n ker semantics wou l d discourage its use. Also, dupl i
cating l i n ker capabi lities in OM wou l d req u i re addi
ti onal overhead in mai ntai ning both components.

The advantages and disadvantages of the second
approach motivated the development of a third
approach . The compiler drive r coul d be changed to
invoke OM d u ring a postl i n k optimization step . As
in the second approach , a switch from the developer
wou ld trigger the invocation of OM; however, OM
would be r u n atter the l inker had performed sym bol
and l i brary resol u tion.

The third approach is the one currently used . This
method maintains separation between the l i n ki ng and
optimization phases. When d irected by the -om switch,
ld prod u ces a specia l ly l inked object that wi l l be used as
input to O M . The compiler driver suppl ies this object
as input to OM when the l i nking is completed .

Digiral Tc::d111ic�l)ou rn.1l Vol . 8 No. l 1 996 27

2K

The WRL : md D U D E engi neers to und rh:n this
fu nctional scpar�1tion a l so i mproved the cfricic nc1· of
the development cfr(>rrs between WRL and DUi) E .
The separation perm i tted concurrent Wl\L deve lop
ment on O M and D U D E development on ld, with
min imal inrerkrcncc. This approach J l lowcd more
development ti me ro be dedicated to rec l m ic1 l issues
rather than de:- d i n g ll' i th sou rce manJgemcnt :111d i n te
gration issues.

D U D E engine ers :t ddcd the OJ'vl sou rces i n to the
Digi tal U N I X development poo l and i n tcgLncd
upd ates ti-om WRL. WRL assu med responsi b i l ity t()r
testing OM prior to prov i d i ng source up(btes. As pre
viously outl ined, D U D E e nginee rs i ntegrated su pport
tc) r OM into the existi ng de1·e lop me n r Cill ' iron menr
tools tor the i nit ia l release.

Because of pro1·en pcrt()rmance impro1·uncnrs on
I SV appl i cat ions, committed engineering cth>rts lw
WRL, and testi ng �1Cti1· iries a t both Dil!ital s ites enui

·
-.._ .__, ' b

nccrs judged the technologv mature enough tc>r re le�1sc
on prod u ction systems. Efficient development str:ltc
gies enabled Di gital to rapidly turn this leadi ng-edge
tec hnology i nto a prod uct that bendits an im port:mt
segment of the Digital U N I X cu stomer b�1se .

W R.L com in ued engineeri ng support tc>r 0Jvl
through the Di gital U_:"\! I X 1-ersion 3.0 :md 3 . 2 releases.
Respons ib i l i t1· t(>r the teclmol ot,'\' gr:1 d u :� l lv shifted
ti·om WRL to D U D E m·er the course of these re leJscs .
Cu rrently, D DE fu l lv supports �m d en h�1 11ces O M
whi le WlU. comi nues to provide consultation o n the
tech nology :tnd input for ti. 1ture improvemcms .

Product Development and Technology Transfer

Process for Atom

W IU_ dep loved c1r lv 1crsions of the Atom tool kit J t
i nterna l D igit:t l s ites, I S V port i ng laboc1tor ies , and
u n i,·ersir ies, thus :� ! l owing de1·cl opers to cxper i m e m
with a nd evaluJte t h e Atom API . T h e c J r l v JV<l i Ll biJitl'
of the tool ki t prom oted use of the Atom

'
tec hno log)

.
'·

User feed back :m d requests for katu res he lped the
engi neers to more qu icklv and etketil'elv de1·e lop J
robust technologv fi'Oill the prorotl·pe .

Engineers thmug hout Digital recogn i zed Atom JS a
u n i q ue and use fu l tec h nol ogv. Atom 's A P I , "·ith
in strume nt:ttion <1 11d �l ll<l lysis eapJb i l i ties doll'n to the
in struction leve l , increased the power Jnd d ivers i ty of
tools that cou ld be nc::�red for soti:w;,rc :tnd h:lrdwJre
development. Hardware development tc1 ms used
Atom to s im u l ate the pertonnance of new A l p h a
i mpleme ntations . Software developers crc:�ted a nd
sh:1red Atom tools t(>r d e bugging ;,nd mosuring pro
gr�1111 ped(mn�lncc . The ,·:� l ue of the Ato m tec hnologv
in so il - ing appl icnion de,·elopment problems prm·ided
the busi ness j usti ficat ion t(>r d evelopi ng the tcc l m o l
ogy into a prod uct.

Vol . � �o. I 1 996

The prototl-pc version of Atom had se1-erJl
I i m i ta r ions.

• Like O M , the prototype version of Atom worked
on ly on nonsh:1red appl icatio ns . A prod uctio n
version of Atom would requ ire support tor cJI I
sh�lred programs and s i1Jred l i braries, s ince, bv
d eb u l r , programs arc bui lt as c d l -sh arcd program� .
A 1 · iab lc Atom prod uct ofkri n g needed to sup
port these npes o f progr::�ms, i n �1d d i r ion to non
shared programs.

• Progr::uns needed to be rel i n ked to rctJ in relocatjon
i n f(mn :ttion bd(> J'C Atom cou ld be used . This add i
rionJI bui ld step im paired the usJbi l i tl' ofAro m .

• T h e Atom prototvpe performed poor ly because i t
consu med a l�1rgc amoull t of me morv. 1VI uc h of the
d ar:� co l lected about an e xcc u t:� ble t()r opti m i zation
purposes 11·.1s not needed [()r progr:t1n :tna ll·sis
rr�l nst(mn <l rions .

• The Atom API req u i red e x te nsive desi gn :md de,·e l
opmenr ro support cJl l -sh:-�rcd progr:� ms and
s h:t red l i br�1 rics .

The e ngineers decided to aile)\\· the O M and Atom
te ch no logies to d il'erge so that the d i fkring requ i re
mellts t()r opti m i zat ion and progra m Jn:�ll·sis co u l d be
more etkctil 'l·l l· :tdd rcssed in eac h compone nt .

Bec:�usc the cost of supporti ng :-� rcJuse ofrhe Atom
prototype 1\'0uld have been high , W IU , a11d D U D E
engi neer i n g developed a str:�tcgy tclr s i m u l taneously
releasi ng the Atom prototype whi le tC>C using engineer
i ng efforts on developing the prod uction versio n . An
A rom Ad 1·�mccd Dc1T iopmenr Ki t (A D K) II 'JS released
ll'irh Digit�1l U N I X 1·ersion 3 . 0 as the i n i tia l step of the
stra reg1·. The A D K prOI'ided cu stomer <lCcess to the
technologv 11 ith l i m i ted su ppon. E n gineers 1 ic 11ni
the lack ofsuppmt for s h a red cxecur:.�blc objects as J n
::�ccept�1blc l imir�nion tor rhe Atom A D K bur u n::�ccept
ablc f(>r the tim I product.

In addition to <11 1 owing WRL Jnd D U D E engineers
ro t(xus 011 f1roducr development, this ti rst str�ucgic step
permim.:d the engineeri ng te::Jms more time and flexi
b i l i tl· to incremenullv add support f(>r Atom in to otl1er
prod uction components, such as the l inker ::�nd the
lo:�der. for usabi l i tl' p u rposes, m inor extensions ll'ere
made to the loader to a l loll' i t ro auronutic:tllv load
i nstrume nted sh�1red l i b raries prod u ced by Atom too ls .

The second step of the strategy W<lS to provide
updJtcd Atom kits to users JS d e1·cl opment of the soft
ware progressed . These kits i ncluded the source code
to r nample tool s , m:.�nuals , and refe rence pages. The
upd ate kits pnt<mncd t11·o fu nctions; ti1CI' su pported
users and thel' pro1· ided feed back to the de 1·e lopment
te ams. D U D 1-'. and 'vVRL enginee rs posted i n formation
i n rern::� l l v ll' i th in DigitJ I II hen kits ll'erc <li' �J i l a b le and
de1-eloped ;1 m�1 i l ing l ist of Atom users. The Ato m user

com nHmitY gre,,· to i nc l u d e u n iversities <l!Ki se,·eral
otem:t l customers .

Once the Atom ADK :tnd u pd <lte str:ttegv were
est:tb l ished , D U D E en gi neeri ng beg:� 11 to implement
support t(>r Atom in the l i n ker. As mentioned earl ier,
Atom i nserts te xt i nto J progr:un and req u ires re loca
tion i n tonnation to cre:tte a correctly in stru mented
execu ta b l e . The Atom prototype req u i red a program
to be l i n ked to reta in the re l oc:ttion i n t(mnation , and
this re q u i rement presented J US<lb i l itY problem tor
users . l d eal lv, Atom wou ld be able to i nstrument the
ot:cutab les a nd shared l ibr,lries prod uced l1\' defa u l t
b v the l i nker.

Mod ifying the l inker to retJ in a l l trad itional reloca
tion i n t(mnation by debult W<lS not acceptab le s ince
the size i ncrease in the executable wou l d have been
prohibitive . [n some cases, 40 pncent of the object fi l e
consists of relootion records. Eng i neers d i d n o t view
<l ll increase of that magn itude a s <l viable so l u tion. [n
:tddi tion , this solu tion con flicted with the goal of
D i gi ta l U N I X versi on 3.0 to rt:d u ce obj ect fi le size .
As a com prom ise, D U D E engi neeri ng i m p lemented
comp<Kt re location support in the l in ker. Compact
relocJtions prm·ided an acu.:prabk sol ution since they
rt:qu irt:d t:1 r less space th<m n:.:gul:tr re l oution records,
typica l ly less than 0 . 1 percent of the total ti le size .

Another side effect of using comp:tct relocations as a
solu tion wJs that i t in trod uct:d a depend ency between
Arom :tnd l d . Al l exe c u t:t ble objects ro be processed by
Atom needed to have been gt:ne ratt:d with the l i n ker
that cont<l ined compact reloc:nion support. There
t(>re , to support Atom, l:tve rt:d product l i b r:tries and
third -par r\' l i braries needt:d to be rt: l i nked with the
comp:1ct relocation support.

In Digital U N I X version 3 .0 , ld w:ts rnod i ned to
genuart: compact re loc:nion int(mnarion in exe
cu t:tbl c objects . This a l lowed Atom to i nstru ment the
d e b u l t output of ld . Engi ncus viewed this capabi l i ty
;1s critica l ro the usabi l ity and u l tim:tre su ccess of the
A rom tt:chnology. The com p�lct re location support i n
l d \\':tS rdint:d ;md e xtended m·er the cou rse of se,·e ra l
Digit:�! U N I X releases ;1S de, ·c l opmen r work \\ ' ith
Atom progressed .

Concurrently, the WRL rese::t rch teJm ex panded
JIH.l heg;m dn-elopment of tht: Atom Third Degree
;1 1 1d hi prof tools . WRL engi nt:ers a lso conr i n u ed with
:tddi tions and i m prove ments to a s u i te of exa m p k
Atom tools .

After rhe re l e::tse of D igi ta l U N I X version 3 .0 ,
D U D E began design and deve l opment o f the prod uc
tion ,·ersion of the core Atom rechnologv and the API .
D U D E engineers mod i tied :tnd ex tended the Atom
API as tool developmen t progressed at WRL D uri n g
peak development periods, eng inee rs discussed design
issues dai il· by te lep hone Jnd e l ectronic ma i l .

Tht: original Atom AD K inc l uded the source code
t(>r a n u m ber of example Atom rools. Bec:tuse some
of these tools contained h::trdware imp lementation
dependenc ies, they would rt:quire ongoing and long
tt:nn support to rem::tin operarion;1 1 on c hanging
implementations of the Alpha <1rchitt:ctu re . For the sec;
ond shipment of the Atom A DK in Digit:� I U N I X ver
sion 3 .2 , rhese h i gh -maintcnJIKe tools \\TIT remO\·ed
:tnd m:�de :t\·a i l:tb le through u nsupporrt:d c lunnels.

Bet\\'een rel eases of the AD I<. 011 the D ig i t<J I U N I X
operating S\'Stem, the en gi nee rin g tt:<Jms cont in ued to
d e l iver upd<Jte kits. Engineers schedu led de l ivery of
tht: upd ate kits to coinc ide with key m i l estones in the
so ftw;HT development process . This srrategv ga,·e
the m more contro l over tht: devel opmen t sc hed u l e
;1nd m i nim ized risk. The upd ate kits provided immed i
Jtc fie ld test exposure to r t h e evo lving Atom software .
The design , development, :tnd kit process was prac
ticed i re r:ttivel y over a year to deve lop the or ig ina l
idc1s i n to J fu l l product . T h e Atom update kits were
provided tor D ig ita l U N I X ve rsion 3 . 0 :t nd later S\'S
rt: ms, since most users did nor ha\'t: access to earlv \'er
sions of Digita l U N IX 'usion 4 .0 . Providing Atom
kits t(>r use on pre-version 4 .0 svste ms :t l l owed the
so trware ro be exercised i n the ric ld on acnwl applica
tions prior to i ts i niti:tl release as a supported p rod uct.
A l though support for earlier operating system versions
added overhead and comp k xiry to the process of pro
v id ing tht: upd ate kits, tht: t:ngineni n g reams val ued
the abu nd:�nce of user kedback that the process
\' iekkd . The ben efi ts of usn i n p u t to the software
dn·dopment process mmve ighed the on:rhc:td costs.

During Digital UNIX ,·ersion 4.0 development ,
W R I . engi neers fi n a l i zed the i m pkm ent:ttions of the
hi prof and Third Degree tools :t nd tr:tnskrred the tool
SOIII"C(S to D U DE tor fu rther d eve lop ment . The vVRL
developers l1:1d added su pport tor thrcJded appl ica
tions on pre-versi on 4.0 D ig ita l U N I X systems.
Because the i mp l ementation of threads c hanged i n
\nsion 4.0 , D U D E e ngin eers needed ro u p date the
Atom tools :teeordinglv.

D U D E engineers also developed an Atom- based
pixie roo ! "·irh su pport tor threackd <l ppl ications. In
EKt, the Ato m - based p i x i e tool rcpl act:d the origi nal
version of pixie i n Digiul U N I X \'ersion 4.0 . The
Ato m - based pixie a l l owed new katures such as su p
port t(>r shared li braries :t nd rh re:tds to be more
efticientl y added i nto the prod ucr ofkri ng. The devel
opment o f :tn A tom - bJscd pixie tool solved the exte n
s ib i l ity problems t h a t wert: being bced w i t h the
original \'ersion of pix ie .

WRL. engineers a lso began to use Atom tor i nstru
menting prt:-\ ersion 4.0 D igit:t l U N I X kernels, de,·e l
op ing spec i :t l too l s for co l l ecr ing kernel statistics.
Atom w:ts ex tended by D U D E engi neeri ng as needed
to support instrument:�tion :tnd anal vsis of the ker n e l .

Di�iral Tcd m i o l J ourn�l Vol . il No. I 1996 29

The Atom roo! kit and example tools were sh ipped
With D 1gnal UNIX version 4 .0 . The pixie, h i p rof, and
Third Degree tools were shi pped with the Software
Development Environment subset of Digital UNIX

version 4.0. Research regarding usc of Atom for kernel
instrumentation and analysis continues.

WRL continues to share ideas and consults
with D UDE on the future directions for the Atom
technology.

Conclusions

Developing OM into a prod uct d i rectly tl·om research
proved to be chall enging. Problems and issues that
needed to be addressed hrl.d to be hand led within the
schedule constraints and pressures of a commi tted
release plan .

In contrast, the ADK method used to del iver the
Atom product al lowed the Atom developers to spend
more time on prod uct development issues in an envi
ronment relatively free from the pressures associated

with dai ly schedules. The ADK mechanism, however,
probably l im ited the exposu re of Atom technology at
some customer sites.

The close cooperation of engineers from both
research and deve lopment was necessary to accom
pl ish the goals of the two projects. We believe that a
col l a borative development parad igm was key to suc
cessful ly bringi ng research to product .

Future Directions

This paper describes the evo lution of the OM and
Atom technologies through the release of the D igita l
UNIX version 4.0 operating system. Digital plans ro
investigate many new and improved capabi l ities, some
intended for fi.J ture product releases. Plans are under
way to

• Provide support i n OM t(x cal l -shared programs
and shared l ibraries.

• Support the use of Atom tools on programs opti
mized with OM.

• I nvestigate provid ing an API to al low program
mable, customized optimi zations to be del ivered
through O M .

• Investigate reuse of instrumented shared libraries
by mul tiple call -shared programs that have been
instrumented with the same Atom too l .

• Research support for Atom tools that provide sys
temwide and per-process analysis of shared l i braries.

• Extend Atom to improve ke rnel analysis.

• Simpl ify the use of the profi l ing-directed optimiza
tion Facil ities of Atom and OM through an
improved interface.

30 Digital Tcchnictl Journal Vol . 8 No. 1 1996

• Extend the Atom tool kit to provide development
support for thread-s:�fc program ana lysis tools.

In addition to enhancements to the Atom product,
ongmal Atom- based tools are expected to become avail
able through the development activities of students and
educators at universities. I nternal Digital developers wiU
con tinue to develop and share tools as wel l .

Acknowledgments

M:�ny people contributed to the development of the
OM and Atom products. The tol lowing l ist gives
recognition to those most actively involved . Amitabh
Srivastava led the research and development work at
WRL on OM and Atom and mediated manv of the
design d iscussions on the Atom design . Greg Lueck of
D U DE designed and implemented the production
version of Atom , compact relocations, and the Atom
b:�sed p i x ie too l . Alan Eustace developed Atom exam
ple tools, created the f-Irst Atom ADK, worked
d i l igently with users, developed kernel tools, provided
training and documentation on using Atom, and dis
played eternal optimism. Russe l l Kao at WRL con
tributed the hi prof tool with thread support . Jeremy
D1on and Louis Monier a t WRL developed Third
Degree and an Atom-based code coverage tool cal led
tracker. John WiJ l iams and Chris Clark of DUDE com
pleted the process of tu rning the h i p rof, pixie and
Third Degree tools into prod ucts. Dick Butrlar pro
VH.lcd documentation on every component . Last but
nor least, the authors wish to extend a fi nal thanks to
J l l the users who contributed feedback to the OM and
Atom development teJms.

References

I . F Ch ow, M. Himelst.: in, E. Ki l l i a n , and L. Weber,
"Engi neeri ng a lU SC Com pi ler System," Proceedini.!,S
of' COJV/PCON San Francisco, Calif. (M arch 1 9 86) :
1 32 -1 37.

2. VVestcrn Research Laborarory, locned on the Web at
http :/ jw-ww. research .digital .�om/wrl .

�. R. Sites and R. Witek, Alpha AXPA rcbilec/ure Rcfer
enu' !Vfa nual, 2d ed . (N ewron, Mass . : Digital Press,
1 99 S) .

4. A. Srivastava and D . Wa l l , "A Practic<ll System ror
! n rcrmod ule Code Optimiz.ation at Link-r ime," jour
nal of' Progra m m inl� languages. vol . 1 (1 99 3) :
1 - 1 8 . Also ava i lable <lS WRL Research Report 9 2/6
(December 1992) .

S . A. Srj\'aStJ\':1\ '< U n rcach:�blc Proced ures in ()bjccr
onenre d Progra m m i ng," ACM f. OPf.AS. \'O l . I , no. 4
(Decem ber 1 99 2) : 355 -364. Also ava i l ab le �s W RL
Research Report 93/4 (A u gust 1 993) .

6. A. Eustace and A. Sri,·astc\\ ·a, "ATO M : A floibk
I nterface �o r Bu i ld ing High Performance Pmgr<\111
Analysis Tools," l'mceedin,f.4S of the Wlinter 1 995
CW:::YIX Conference. New Orleans, La . (January
J 995) . AJso ava i l ,lbk as WRL Techn ical Note T N - 44

(Ju ly 1 994) .

7. A. Srivastava and A . Eustace, "ATO M : A System for
Bu ild ing Customized Program Analysis Tools ," Pro
ceedi118S of tbe SIG'I'LA N 94 Conference un Pro
p,ra m rn ing Lanp,uap,r: Oes(r<n and !mplemr:ntation.
Orlando, F la . (J unc 1 994). AJso ava ilabl e as WRL

Research Report 94/2 (March 1 994).

8 . A. Srivastava and D. Wal l , "Link-Time Optimization of
Address Calcu lation on ;J 64-bit Architecture," Pro
ceedings of the S!G'PLA N 94 Conference on f'ro
wwnm ing Languagr: /Jesip,n and !mplemr:ntation.
Orlando, fla. (J une 1 994) . AJso avai lable as WRL

Research Reporr 94/ 1 (1-'ebruarv 1 994).

9 . Digital U;VIX Ca//in/1, Standard for Alpha 5)•slems.
Order No. AA - PY8AC- TE, Digital UNIX version 4 . 0

or higher (Maynard , Mass . : Digital Equ ipment Corpo
ration, 1 996) .

1 0 . Di{!,ital UNIX Assem hlv Ictnguap,e Program mer s
Guide, Order No. AA- PS3 1 C-TE, Digital U N I X ver
sion 4.0 or h igher (!VL!ynard , l'vlass . : Digital Equ ip
ment Corporation, 1 996) .

General Reference

} . Larus and E. Sch narr, " E EL: Mach ine- Independent Exe
cutable Editing," S!CI'LAN Conference on Programm inp,
La nguage Design and Implementation (June 1 995) .

Biographies

Linda S. Wilson
As a principal software engineer in the Digi tal U N I X
Development Environment group, Linda Wilson leads
the development of program analysis tools for the Digital
U N I X operating system. In prior positions, she was respon
sible f()r the del ivery oforhcr development environment
components, inc luding DEC : FUSE, the dbx debugger,
and run -r ime J ibraries on the U I .TRJ X and Digital U N I X
oper;Hing systems. Linda rccei,·ed <l B .S . i n computer sci
wee from the Uni \'ersirv of Nebraska-Lincoln . Before
joining Digital in 1 989, Linda he ld software e ngineering
positions at Masscomp in Westford , Massachusetts, and
Texas Instruments in Austi n , Texas.

Craig A. Neth
Craig eth is <\ princi pc1 l software engi neer in the Digital
UNIX Development Environment group, where he is the
technical leader of l ink-t ime tools. In prior positions at
Digital , Craig has worked on the OM object modi �ication
tool and the VAX and DEC COB O L compi lers, and led
the de,·elopmenr of D EC COBOL ''ersions l and 2 . Craig
received a B . S . in computer science from Purdue University
in 1 984 and an M .S . in (()mputer science �rom the
UniversitY of I l l i nois i n 1986.

M ichael J. Rickabaugh
Michael Rickabaugh is a principal sofuvare engi neer in
the Digital U N I X Devel opment Environmenr group.
He started his D igital career in 1 986 in the SEG/CAD
Engineering group as a software engineer on the DECSIM
logic s imu l ation project. I n 1 99 1 , Michael transitioned
to the DEC OSF I l AXP project ;�nd was a member of
the original team responsi ble for del ive1·i ng the U N I X
development environment on the DEC O S !-' I 1 AJpha
platform . He has si nce been a technica l contributor ro
a l l aspects ofrhe Digital U IX l ink- rime tech nology
as well as the creator of the ASA)\P assembler f()r the
Windows NT operating system . Michael received a B.S.
i n elecrrical and computer engineering �l·om Carnegie
Mellon University in 1986.

Digital T\:chni(:tl /ournal Vol . 8 No. I 1996 3 1

Design of eXcursion
Version 2 for Windows,
Windows NT, and
Windows 95

Version 2 of the eXcursion product i s a complete

rewrite of the successfu l Windows-based X

server software package. Based on release 6

of the X Window System version 1 1 protocol,

the new product runs on M i crosoft's Wi ndows,

Wi ndows NT, and Windows 95 operating sys

tems. The X server is one of several components

that com pose this package. The other com po

nents a re X Image Extension, the control panel

(which constitutes the user i nterface for product

config uration), the error logger, the appl ication

lau ncher, and the setup program. An interprocess

communication facility enables the eXcursion

components to communicate in a un iform fash

ion under all three operating systems. A u n iq ue

server design using object-oriented prog ram

ming techn iques i ntegrates the X graphics con

text with the Windows device context i nto a

combined state ma nagement faci l ity. The result

ing implementation maxim ized graph ics perfor

ma nce whi le conserving Windows resources,

which are in l i m ited supply under the 1 6-bit

version of the Windows operating system. The

control panel was coded completely in the C++

programming language, thus making ful l use

of the Microsoft Foundation Class l i brary to

m i n i m ize development time and to ensure

consistency with the Windows user i nterface

parad igm.

3 2 Digit� I Tec h n ic:1l j ournal Vol . S No. I 1996

I
Jolm T. Freitas
James G. Peterson
Scot A. Aurenz
Charles P. Gu..ldenschuh
Paul J. Ranauro

Digita l d eveloped the eXcursion fami ly of d isplay
server prod ucts to provide i n teropcra bi l ity between
desktop person:� I computers (res) running the
Mi crosoft Wi ndows operating svstcm and remote
hosts running the X \iVi ndow System operating system
u nder the UNIX or Open VMS oper:ning svste ms. The
fi rst version of the eXcursion X server was a 1 6-bit
appl ication written specifical l y tor Microsoft W i ndO\vs
versions 3 . 0 :�nd 3 . 1 . As the pop u l a rity of W i ndows
increased :tnd desktop systems were connected to cor
porate networks, the market tor X i n tcropcrabi l ity
grew q u ickly. The 1 6 - bi t eXcursion cod e , much of
which h:�d been ported fro m 3 2 - bi t U N I X cod e , was
:�ga in ported-this time ro Microsoft's Win32 appl i
cation progr:unrning interface (API) to support the
Wi ndows NT operating syste m . When release 6 of
the X W i ndow System version l l protocol (X l l R6)
appeared and J new sample i mplemc nt:-ttion source
kit bcome :�v;� i l ab le ti·om the X Consort ium, the
eXcursion t�.:am decided that it was ri me for a complete
rewrite of the eXcu rsion so thva rc. M i crosoft had
establ ished the Win32 API as J u niform cod ing in te r
face tor a l l its Wi ndows- based oper:�ting systems. Si nce
developrncllt tools such as 32-bit compilers and
debuggers of s u fficient qual ity and robustness had
become :w;� ibble , i t was now possible to i mplement a
high- qua l ity, 3 2 - bir product. Th is prod uct would sup
port the en tire range of W i n dows-based p latforms,
from note book PCs running the Wind ows operating
system to h i gh-end Alph;� syste ms r u n ning the
\rVind O\vs NT operating svste m .

Terminology

This paper incorporates certain convemions to c lar ify
the d istinction between the two window systems
u n der consideration . X window rekrs to rbe co l lection
of data structures, concepts, and oper:�tions that con
stiture a \Vind ow, as defined in the X vVind ow System
envi ron ment. \\lin32 tcindut.t ' refers to :1 windO\\.

JS

detined in tvlicrosoft's Win3 2 API .
\Vhe n referri n g to a wi ndow system ::�s opposed to

a particubr wi ndow instance, X I'Vindou• System
is sometimes abbreviated to X. \l(linduws de notes
the Microsoft Windows operating syste m .

lore that the word bitmap has more th•m one
meaning. In the X environment, a bitmap is a two
dime nsional <1rray of bits, and a j>ixnwj> is <1 two
di mensional array of pixels, where each p i x e l may
consist of one or more bits. Under the Win32 API , the
term bitmap is used excl usive ly ; that is, no distinction
is made between an array of depth I and •m array of
(k pth n . ln this paper, the term pix map is used i n
its general sense to refer to X pixel arrays, and the
term bitmap rdcrs to the Win32 concept.

Another common poi n t of conf"l1sion when dis
cussing the X Win dow System environment is the use
of the terms seruer and client. To one fa mil iar with ti l e
and pri n t servers, t h e meani ngs o f these rwo terms i n
t h e X e nvironment mav seem t o b e reversed . I n the X
em·iron ment, the server is a disp l av server, and the
cl ients arc rhc appl ications reque ring d isplay services.
The X server and the X c l ient appl ications may reside
on the S<1mc PC, but rl1e power of the eXcursion soft
ware is in i ts abi lity to bridge the gap between the
Win dows desktop and the trad itionJI X 1 1 UNIX and
Open VMS workstations.

eXcursion Version 2 Product Goals

The design of eXcursion version 2 was d riven pri marily
by the fol lowing prod uct goals:

• Su pport X Wi ndow System version l l , release 6 .

• Support t h e Microsoh Wi ndows, Windows NT,
Jnd Wind ows 95 operating systems.

• Code the single source pool to Microsoh's Win32
API .

• Exceed graphics performance of eXc ursion version
1 as mcasured with the standard bench mark tests
X l l pcrf:md X bench.

• Preserve mai n ta i na bility by usi n g mod u l a r coding
:1 11d l imi ting changes of the sample i mplementation
ti·om the X Consorti u m .

• J\t L n i m i 7.e re l iab i l irv by performing e x tended error
checking and resource management .

• Correct known protocol contonnance deticiencies
in version 1. For example, in version I , plane mask
su pport wJs i mplemented fo r only a fe w grap hics
operations. Version 2 would provide pbne mask
support tor al l graphics operJtions.

Components of eXcursion Version 2

In eXcursion version 1 , most of the hmctions p rovided
by the prod uct were combi ned in ;1 single executable .
To conserve resources and to partition the code for
easier maintenance, version 2 is divided i nto several
scpJratc components or mod u les. Some of these run
JS ind ividual processes, and some arc b u i l t as dynamic
l i n k l ibraries (D LLs) . A DLL is a sh ared memory

l i bra ry modu l e that is l inked to the call i ng program at
run timc.

eXcursion \'Crsion 2 is partitioned i n to the toll owing
major components:

• X server. The X server is the primary compon ent of
eXcursion version 2 . The X server process is respon
si ble tor displaying wind ows and graph ics on the
Windows desktop Jnd tor sending keyboard ,
mouse, and other evcnts to the c l ient application .

• X I m age Extension . X extensions are addit ions to
the server that su pport t"lmcrion al iry not add ressed
by the core X l l protocol, such as disp l aving shaped
(n onrectangu lar) win dows, handling large requests,
testing/record ing, and im agi ng. Al l extensions
except the X l m :1ge Extension (XJ E) are i m p l e
mented i n terna l l y in t h e X server. Because o f i ts
size, X I E is implemented as J pair of DLLs, one tor
XIE version 3 and one tor X I E version 5 .

• Control pa n e l . As the primary user i ntertJ.ce , the
con trol panel provides the user with access to the
many con tiguration setti ngs. It is an i ndependent
Win32 appl ication i mplemen ted using M icrosoti:
Visual C++ and the Microsoft Foundation Class
(M FC) l i brary.

• l nt erprocess com mu nication l i brary. The inter
process com m unication (! PC) l ibrary is an operat
ing system-independcnt l i brary used by cooperati ng
processes or tasks to com municate configuration
and status i n formation .

• Error l ogger. The error logger is a s imple Win32
application that records error and status intorma
tion from other eXcursion components in a wi n
dow, a fi le , or the Windows NT event log.

• Application launcher. The appl ication launcher is a
Wi n32 appl ication that starts X c l ient appl ications
at the request of the X server or the control pane l .
The appl ication launcher is i nvisi ble to the user.

• Registry interface . The registry i nterface is an
ope rJti ng system-i ndepende nt i nterface to the
eXc ursion configu ration proti k . The registry i nter
face is implemented as a Win32 D LL.

X Server

The core of the eXcursion product is the X server, a
W i n 3 2 appl i cation that accepts X requests from cl ient
applications and transforms them i nto graphics on the
Windows desktop. The device-independent portion of
the server code is ported from the sample implementa
tion provided by thc X Consorti u m . The device
dependent portion treats the Wi n32 API as the de,·ice
inte rface through which c l i ent requests are materia l
ized on the screen . The eXcursion X server i s i l lus
trated in Figure I .

Digiral T.::chn ical)ou rn.1 l Vol. 8 No. 1 1996 33

INTERNAL WINDOW MANAG ER

� i
X REQUESTS

X EVENTS
NETWORK DEVICE- INDEPENDENT DEVICE-DEPENDENT r--- WI N32 FUNCTION CALLS

WI N32 MESSAGES TRANSPORT CODE

Figure 1
The e Xcursion X Scrl'cr

T he scrl'cr can operate in one o�- tii'O modes: s i ng lc
windoll' mode or mult iwindoll' mod e . I n s i ng lc
ll'i ndow mode, the sen-er creates one \rVin32 ll' ind oll',
11·h ich n:prcsenrs rbe X root 11· indm1·. Al l desce mbn r

ll' indows :md their contents arc d L111·n i mo the roo t
ll'i nd ow us i ng Win32 fi. tnction cal ls . In multi ll' indoll'
mod e , the root windo11· is a l'i rru�1 l ll'i nd oll ' ; that is, it is
ne1·e r drawn on the screen . E:1ch top- l eve l c h i l d of the
root w in dmv has a correspond ing \rVin32 window,
which is created when the X wi nd ow is mapped . A l l

dcsn:mb n ts o f a top- leve l window arc d r�1wn i ns i de
the Wi n 3 2 window with Win32 cal l s . M u l tiwindow
mode rhcre bv creates a desktop eill ' ironmcm i n which
X app l ica ti ons �1re peers of other Win32 �1ppl ic:nions.

Sing le-11 in dow mode is usehi l h:J r e mu l ati ng a c o m

p l ete II'Orkstation e 1wi ronmen t i ncl ud in g the ll' ind oll'
nnn:1gcr �md the session or desktop manJgcr. I n mu lt i
windml· mode, drall'i ng to :1nd getti ng in pu t t-i·om the
root w i ndow is restricted b\' rbc X sen ·cr to pl"CI'ellt
contl ic ts with the M icrosoft \rVi ndo11·s S\'Stnn 's use
of the desktop 1\'i n dow. Desp i te this n:srricrion , the
m u l t iw ind ow mode, when used w ith the nati ve ll' in
doll' manager, p rov ides the c leanest i megr:1t ion of rhc
X ;md \rV i ndows env i ronmenrs .

Resource Management and Performance

Both the X and \Vi n32 S\'Ste ms h.11·c b u i l t - i n no ti on s

of grap h ics sr.lte and resource a l loution. The se man
tics a n d us:1ge of the concept, ho11 e1 ·cr, �1 rc q u ire d i f
fe rent in the t11 0 ll'i ndoll' S\'Stems .

I n X , graphics St<lte is m:� in ra incd i n �1 da r:� structure
knoll'n as a graph ics context (G C) . A GC h�1s an i n d e
pe nd ent existence a n d m a v b e crcJted , dcs troved ,
upd :ned , que ried , and cop ied ar wi l l lw the X J ppl i ca

rion . Duri n g grap h i cs operations, �1 c_; c is �1ssoc iarcd
with t he X ''d rawable" (w i nd ow or p ix m �1 p) be i n g
d rawn i nto, and in fornutio n in t h e GC i s used to fu l l y
ddlnc the operati on . For e xa mple , rhe GC may specit\r
f(J regrou nd or backgrou nd colors, l i n e Sf)' ICS, 01" �(mt

in tcmn�1 tion .
T h e Win 3 2 API has a con ce pt oi led �1 dn icc c o n

te\t (DC) , ll' hich a l so coma i ns state i n tcmnarion bur
ll'hosc pu rpose i s more c loselv related r o prm · id i ng
dc 1·icc i ndepen de n ce . Conscq ucn r lv, t\I'O d i ffe ren t
tvpes of DC:s are req u irt:d u n der the Wi n 3 2 API ,

Vnl. K '-.'o. I 1 996

CODE -

de pendi ng on ll'b cthcr rhc gra ph ics operation is d r�111 -
i ng to a 11· i n d m1· or to :1 b i tmap . Fu r thermore , a II i n
doll ' DC mal ' b e a l l ocned e ither perma nent! � - or ti·om
a cache, de pe nd ing on its opecred l ifeti me . Am· d rall '
ing operat ion the rdcll'c requ ires that both the GC

used in the X gL1p hi cs req uest Jnd the DC used in the
u l ti mate Win 3 2 cal l be propcr lv set up and synchro
nize d . The m;l l 1ncr in ll' hich this is done has a s ign i ti
cant etkcr on the gr:1 ph ics pc r rcmna nce of the ser ver.

.Before an X gr�1 ph ics opecn ion cJn be star ted , rhe
GC must be va l id �1rcd . Va l ida tion is a process of
pre pari ng the o utput d ev ice to ren der the gr�1ph ics
properlv. I n the c1sc of the eXcursion server, the out
put dc1 i cc is : � W i n 3 2 DC. For e1u�· graph i cs com
m:�nd , the CC must be checked for changes :llld the
appropri ate Wi n 32 obj ects .m d stare 1 ·a lues must be
se lected into the DC This process can be ,.c r,· t ime
consu m i ng . The kc\' ro max im izing pertormance i s to
recogn ize th:�r most opc Lnions :trc repetit ive . A tl-p ical
stream of X requests ten ds ro contain 111:111\' comm�mds
d i rected ar the same wind ow with the sJme G C .
Therefore, the way to red uce G C/DC va l idat ion r ime
is ro c:1c hc rhc most recent G C/DC pa i r so that su bse
q u e nt com mands th�1 t use rhe same co mbin ation need
not tr igger a \'�l l i darion step . In some cases, graphics
operations ll' i l l togg le between t\I'O or more GCs. (for
examp le, the C:opvArca ope rat ion takes a source and a
dest inati on .) The pcdcmi1J I1cc in these cases can be
im prol'ed Lw s imp h- cach in g more than o n e rcccnr
GCjDC p:�i r. Tu n i n g c\pcri ments on the se n·cr
re1·ealed rhar '' c1che size bct\l'ccn 2 and 4 ,,·as s u ffi
cient to max i m i ze pcd(mn:JIJCe . U nder the vVi nd OI\ S
and \rVi nd ows 95 opcr;1ti ng S\'stems, whe re resources
are l i m i ted , �' c1ehe si ze of 2 is use d . Under the
W ind ows NT oper�n i ng systcl]] , the cKhe size is 4 .

In t h e eXcursion server, the notion of J cached
GC/DC pai r i s cnc1psu la ted in a C++ c lass called a
WXDC. The W X D C : re me mbers the Win 3 2 obj ec ts th�1t
have been selected i mo the DC and the last GC that w�1s
used ll'ith it. As l ong �1s these clements d o nor change
from one graph ics opcLH ion to the next, no I'J i i d :� rion

is neccssar\'. If the c l i ent �1 ppl ication ch an ges the con
rents of the (; c, Jll\' �1 ftecred obj ects in the DC �11-c
tagged an d the not graph ics operation on that WX DC

wi l l req u i re ne11 o hju:rs to be se lected into the DC.

E,·cnts i n the wi ndo\\ ' S\'stcm em also c1use WXDC

c l e me n ts to become inv:1l id . t:or example , if the win

dow is moved on the screen bv the wi ndow man:wn

irs cl ip J ist may hJve ch �1nged . . This causes the WX�C ;
ro in vJlidJtc the dip reg ion in i ts DC. (Cl ip list and
region arc ddined in the t(J I I ow i ng section .) The next

graph ics operation on th�lt wi ndow wil l requ i re the

c l ip reg ion to be rec1 l cuLued and rc lo:1ded .

Clipping in Single-window Mode

I n the X Windo\\' System environment, a l l desccn
da l l ts of the root window have .1 c l ip l ist, whic h is a l is t
of rectangles thJt ddi nes the visible are�1 of the w i n
dow. The c l i p l is t is equa l to the area of t h e c h i l d
window minus Jny �1 1-c�1s tb�1r arc occluded lw other
X "·i nd o\\'S . Bdore dr�1,, · i ng i n to a descend:1 ;1t w in
dow, the server m ust comnt the dip l i s t in to �1 Win32
region . In the Win32 API , a region i s a polygonal �1rca,
110t necessari ly recrangu br, rlut can be se lected i n to
a DC tor c l ipp ing . Bdcm.: in i tiJting a graph ics our

put operJtion, the tJrget WXDC chccks to sce i f rhe
cur renr reg ion for the window is vJ l id . If i t is not, the
X cl ip l ist is converted to :1 Win32 reg ion Jnd com
bined with the diem-supplied cl ip l ist in the CC, if
�l ll \'. The resu lt i s selected i n ro the output DC.

Clipping in Multiwindow Mode

I n m u l tiwi ndow mode , the root wi ndow is invis ib le .
E:1ch top - b·el X wi ndow (tirsr- generation chi l d of rhe
root) corresponds to :1 Win32 w ind ow on the desktop.
No cl i pping is necess�1ry tc>r rhese windows, because

W in 32 does this au t<Hll�1tic:1 l ly. for windows below
rhe rirst generation , cl i pping is �Kcomp lished in :1 man
ner s imi lar to rh�u uscd in singlc-window mode, o:ccpt
th�lt thc offset of the c l ip region must be ad justcd to be
re l �ni ,·e to the top- IC\ 'c l windo\\' instead of reLni' e to
the root \\'indow.

Graphics Rendering

C r�1ph ics rendering is ar the hc1rr of the X scrvcr. Two
of the core go�1ls for the c Xcursion version 2 pmjcct
werc to signi ticantlv improve server pertorm�1nce m·er
rh �lt of rhe eX curs ion vcrsion l sen·er and to i l llf1l'O\'e
scrvcr com pl i:1ncc to the X protoco l specific:1rion .
hgure 2 comp::trcs t h c pcrt(mnance o f the eXcursion
\'CI'sion 2 sen·er \\ ' ith th�n of thc \"Crsion I sen·er. The
st�1 1 1Lbrd bench mark rests X L 1 pu·f and X bench were
run over <1 local arc ::t network to eXcursion ru nn ing
on :1 66-meg<1herrz Pe ntium processor with ;1 n S3
v idco cJrd .

The s:Imple X sen'Cr U f10n \\'h ich the eXcurs ion X
sc r\'L' I' is bJsed pro,· idcs �1 m�1c h inc - independcnr byer
th�lt is c:1pablc of re nder ing :1 l l X graphics th rough �1
sm:1ll set of devicc-dcpendcnt fu nctions. I n tbc
eXcurs ion X sen·er, rhc Win32 limcrions provide rhe
v i rru �1 l hardware in tcrt:lce . For nux i m u m pcd(>r
m:Jncc, X gr::tphics requ ests �1re p �1ssed to the Win32

1 00
r-90

f- 80 z
w

I
.--

:2 70
w .--
>
0 60
a: � r-
0.. 50 � r-
f- 40
z r-
w 30 u
a:
w 20 0..

1 0 I
0

(f) (f) (f) (f) (f) (f) (f) �
w w w w w w w a:
z z z z z z z <{

0 0 0 0 0 0 0 :2
f- f- f- f- f- f- f- X
(f) (f) (f) (f) (f) (f) (f)
w _j f- u f- X X
z _j :::J a: X w

:::J u: en <{ w _j
f- 0..

:2
0
u

P E R FORMANCE BENCHMARK

Performance eXcursion eXcursion
Benchmark Version 1 Version 2 Improvement

X Bench
l i neStones 1 3 5, 735 239, 740 7 6 . 6 %

f i l l S tones 38,083 74, 3 3 1 9 5 . 2 %

bl itStones 59, 743 88, 3 2 0 47.8 %
a rcS tones 2 , 1 72 ,720 3, 662,770 68. 6 %

textS tones 1 56, 1 90 2 1 4, 7 62 3 7 . 5 %

complexStones 7 1 , 633 7 1 , 699 0. 1 %

XStones 80, 057 1 26,408 5 7 . 9 %

X 1 1 perf
Xmark 1 . 6495 2 . 5805 56.4%

Notes:
The test machine was a DECpc XL 566.
Si nce eXcursion version 1 did not support 16-bit fonts, the version 2
numbers were substituted to obta i n the X mark number.

Figure 2
Comparison of c Xcursion Version l �u1d Vc rsion 2
Pntorm�1nce

API JS C;lr ly as poss i ble without comprom is ing the
requested rendering. Many X graph ics req u csts map
nearly into Win32 c1 l ls with l i ttle or no datJ ma n ipu
lation. Some complex gr:1phics requests, ho\\'e,·er,
can not be pr<Ktica l l v m:1pped in to h igh- level vVin32
cal ls and ac h ic,·c proper pixel ization. I n such uses, the
machine- i ndcpcmk n r funct ions Jrc c;1 l led ;1S he lper
fu nctions to bre:1k the request do\\'n i nto s impler
gr::tphics requests.

GDI Context Switch ing To reduce context swirch ing,

Windows batc hes graph ics device i n rerEKe (G D I)
c:1 J i s . The debult G D J batch size i s 20 , b u t this l imit
c:1n be adj usted per thread . Test ing with �1 m i x ofa l l X
requests si Jo,,-cd rh �1t Jn m·era l l pedorm:1nce in crease
ofabou r 9 percent cou l d be achieved by increasi ng the
G D I bJtch l imi t to 30. At this b·d, thcrc is 1 10 mea
surable l atency, and, ti1 1·thennore, i ncre:1si ng rhc batch
s ize beyond this poi nt had no measurable bcndit .

Vol . H No. I l \196 35

36

Some compet ing X scn·er produ cts set the b:nc h si ze
very h igh (10 0) at the beginning of cvcry req uest and
rl ush the queue :lt the end . Th is approac h has no rnca
surable benefit ove r our si mp ler method , pro bably
because the Wind ows operating system a lrc:1dy pcr
rorms timer- based fl ush i ng to prevent d r:1wing latency.

S i m i l arly, wh en ever possi ble , Win32 graph ics ca l l s
are combi ned to red uce the overhead of conte xt
swi tch i ng . For examp le , :111 X PolvLi ne reque st cou l d
b e rendered with a series o f Win32 L i ncTo c:1 l ls ,
but i t is much more e ffic i ent to re nder the Pol yLi ne
request with a s i ng l e Win 32 PolyLine calL S i m ilar ly, a
Poly Rectang le X req uest is best rendered with a s ingle
Poly PolyLine ca lL

Solid F i l l s Many difkrent Wi n 3 2 resources such as
pens, brushes, ron rs , and dip regions 111:1\' be req u i red
for anv given graph ics rtq uest. The resources needed
::tre determ intd by the gr::tph ics operation i tsel f:md the
start of the X GC As norcd earl ier, these rtsou rces arc
created as n eeded and managtd by the WX DC objects,
removi ng si gn ificant complexity and nearly red u ndam
code from rhe actual graph ics d rawi ng rou tines .

Wi ndows Pen stru ctures provid e color and Lbsh
pattern when drawi ng l i ne objects . for d ra\\ ' i ng l ines,
segments, and arcs, the X ser \'e r creates :md u�es Pens
that correspond to the GC state . I n some cases, ho ll'
ever, exact pixcl izarion can nor be achie1·ed whe n us i ng
Win dows Pens . Ex:�mples of this are dr:�1ving wide
l ines with r:�ste r ope r:uions other than CXcopy or
with l ong , dash patterns. In these cases, 111<1ch i ne
i ndepend enr ti. t tKtions J rc used to red uce the request
to a set of spans (s i ng le - wid th hori zonta l l i nes) to be
ri l led . The use of Pens is :� lso ab:�ndontd i n spec i a l
cases when t h e h igh ly opt im ized G D I pattern b l ock
transfer (Pa tB i t) fu nction c J n be used . P:uRlr ri l l s ITC
tangular re gions with speciricd colors or partnns. I r i s
r:1ster, fo r ex:� m pl c , to usc the ParRit fu nction to d rJW
verrjcal or horizont:tl l i nes than to use the \tV i ndows

trad i tiona l l i ne- drawing fu nctions.
Windows B r u s h structu res prov ide color :md pat

tern \\'hen drawing ri l lcd recta n gles, ri l led poil'gons,
:m d fi l led arcs. Aga i n , ror pertormance rtasons, the
Pa tB l t fu nction is often used even \\'hen there i s a
h i gher- leve l fu nction th:�t seems to be a closer m•nch .
For examp l e , Pa tRit can perform the X Po l y Po i nt
req u est a bout 10 perce nt raster than SetPi xe lV, the
Windows st:�ndard cal l f(>r sett ing s ing le p ixel vJ i ues.
Simi larly, PatB it can perrorm the X Po ly fi l l Rect
req u est about 1 4 perce nt faster than th e Win dows
Fi i i Rectangle d l .

Tile and Sti pple Fi l ls An X p i x map c:�n be spcci tied as a
pattern to be used when pe rform i ng ti l l ope r:n ions .
·w hen the pixnup is created , it is rea l i zed :�s a Wi n 32
bi tmap . When the pix m:1p has a depth greater than 1 ,
i t i s used as a co lor r i le that wi l l be used r(x the ri l L If

l)igit .1 1 T.:chn ic.11)<>L1 1 1 1J I Vo i . S No. I 1 996

the pix map h:1s a depth of 1 , it c111 be used JS e i ther a
transp:�rcnt or an opaq ue stippl e . An opaque sti pple
d raws both the GC's roregrou nd and backgro u nd col
ors, where the stipple is 1 and 0 respectively. A trans
pare n t stipple is sim i lar except that i t leaves the
destin ation u ntou ched wh ere the stippl e i s 0 .

When rht ri l e or opaque stipple i s 8 b�' 8 o r smal ler,
a Win 3 2 color b rush is created a n d cached t()r the
dr:nvi ng . On the Wind ows �T syste m , brushes b rger
th an 8 b\' 8 c:m be created , but our experience has
shown ir to be s l ower ro d raw wir!J them than i t is to
pe rti:mn a series of bit block rranskr (B itB l t) opera
tions h·om the tik/stipple bitmap ro the dest i n at ion .

Transparent Sti pple F i l l s There is a Wi n 3 2 functjon,
Mask B lt , rh:H seems i deal l y su ited r(Jr pedo rm in g
trJnsp:�rcnt stipple ri l l s . This fu nction , howe,·er, was
not fu l ly implement e d on a l l plarri:m11s :H the t ime 11·e
designed tht eXcursion vers ion 2 sortware prod uct.
W ith out this fu ncrjon , there is no osy way in the
vVi n 3 2 environ ment to p erform the transpJren t stip
p le operations. When rhe foreground color is either
0 or Ox ft: F F , the raster operation can be remapped
to get the proper effect. General recta ngu l ar fi l ls th:�t
do nor meet the req u i rements ofrhc spec ial case previ
ous]\' ment ioned m ust be accompl ished by fi rst con
,·ert ing the sti ppl e bi tmap to the depth of the
destin ati on :1 nd then re mappi ng the r:�srer operat ion .

In ge ner:1 l Clses that are nor rccta ngubr ri l ls , mach i ne
i nde pe nde nt fu nctions :1re cal led to brtak down the
request into spans .

Image Requests The Getlmage :md Putl mage
requ ests are other exam ples of X gra phics req u ests
that do not map ll'el l i nto t h e Win32 AP I . The o n l y
wav in the \tV i n 3 2 environment to p u r i m age data o n
rbe screen i s to ri rst create a W i n 3 2 bi tmap a n d i n i tia l
ize i t wi th the innge d ata, and then u l l the B i rBlr
fu nc tion to copy the bi tmap to the sc reen . X i mage
data a l ways J isrs the top scan Jines fi rst, whe reas the
bottom scan l i nes are listed fi rst in Wind ows b itmap
data . Thcrd()tT , bdore the bitmap is in iti a l i zed , the
X i mage da ta m ust be scan- l ine H ipped . Si m i l arl y,
the X Get I mage req u es t req u i res the usc of an inter
med iate bitmap and a lso req u i res the scm - line tl ip .

Plane Mask Support Any graphics operatio n in X can
be mod itied by setti ng a plane mask in the GC The
plane mask specifics which bits of the destination pixel
arc a ll owed ro be changed . Without a p l :me mask, an
X grap hi cs operat ion may be ddi ned JS

dst <- src 0 dst,

where 0 is one of the 1 6 b inary raster operat ions
(e . g . , OR, A N D , a nd XOR). When a plane mask is
given, the r(J I I owing ass ignme nt ddines the destina
t ion pi xe l :

dst <--- ((src @ dst) & pm) I (dsr & -pm)

Most video hardw�u-e de,·iccs support plane masking,
:md those rl1at do not su pport it general ly provide E1st
access to video random -access memory (l\AM) . The
Win32 API, however, provides neither plane lll<lsking
nor d i rect video 1\AM �1eccss . To understand why, vou
must real ize that Wi ndows h:-ts virtu:-t l ized the color
hand l ing i n :m attempt ro mediate contlicts bcrwcen
:-tppl ications th:.lt would otherwise \\·ant to moddY the
co lormap (the pixc l-to-u>l or m:1ppi ng tab le) . In tillS
,· irrual color environmem, the concept of pbnc 111�1sks
has no meanin g because Win32 applications need nor
know the pLxel value th:-tt corresponds to :1 particular
color. See the section Color Resource Managemellt tor
an explanation of how the e Xcursion software m:-tnages
ro :�ssign speciflc p ixel val ues to colors .

_
I n the general plane mask c:1se, it is necess�lr\' tor the

X server � first sa,·e the contents of the destination i n
;1 bitmap . The gr:.�phics can then b e temporari ly dr:J\\'11
ll ' ithout regard to the pLme mask. Those bitS 111 the
destination that �1re spcc iticd by the p lane mask
;ls being unaffected em rhcn be restored ti·om the s�wc�l
bitm:-tp. This process wi l l work in ever�' case but IS Ind
fi cicnt s ince it involves SCI'e r:-tl graphics opcr:ltlons
bd(>rc achie,·ing the tin:� I resu lt . M:�n\' specia l cases un
be reduced to one or t\\'O simple steps b,· modit':ing the
sou rce color and raster opcc1tion. Ta ble l ShOll'S how
rhc source color Jnd raster operation c1n be set to
:�chin·e the plane mask dkcr. The eXcursion X server
uses these optim izations t()r many gr:�phics opcLltions
when the source til l is :1 solid color.

Internal Window Manager

I n the absence of �1 windoll' m: 111 ager, the eXcursion
servt:r creates :1 1 1 \\·indows as pop-up ll'i ndows. A l l \\' in
doll'S, inc luding rop- Jc, c J windoll's in m u lti\l'indow
mode, <11-e undecorated . Thev h�1,·e no \"'i n32 borders,
ririe bars or svsrem menus . To move, size, rn i n i m i 7.c,
maximiz�, or � lose windows, the user must run a win
dow m:�nager.

An eXcursion user �l lw;ws b:�s the option of u sing
one of rhe m a n v X-b:1sed wi ndow managers al'a ibblc ,
such JS the Mo

-
tif Windo"· Man;1ger. Holl'ever, lllJll\'

users \\· i l l W<l ll t a ll' indo\1' manager par:� di gm that is
consistent with vVi ndows so that a l l ll'indO\I'S Oil the
desktop have the same user in tertace . To accom plish

_ th is , a b u i lt- in window manager is provided as parr ot
the eXcursion server. This internal window manager
is operative on lv in m u l riwi ndow mode .

. .
The internal window m:-tnager, although l inked w1th

the scnu, is function:� l l y isol :�ted tl-om the rest o f rhe
code so that it can easilv be dis:-tb led . This a l lo\\·s e xter
nal \l'indow ma nagers

.
to be used and a lso hci l i rarcs

d e b u gging by a l lowi ng problems to be isolated . The
ll' indow manager cre:1tes a "hook" into the server's
window procedure, so that all vVin32 messages arc tirst

CX<lminecl bv the "·indow managcL This gi,·es the
window m:1 ;1agcr the opportun i ty to act on ll'i ndo\1'
managemem-�ebted messages such as those that i nd i
cate a

�
change i n the window's contigur:1tion o r state.

I f the window manager decides to handle a message, it
is removed ti·om the queue, and the server never sees
ir. If rbe window manager is not interested, the mes
sage is passed on to the normal ll'indo\1' procedu re .

. The purpose of the in ternal ll' indo\1' manager Is
to ai\·e X wind oll's the same appear:-t ncc and beha\'JOr
as YVin32 ll'indows th::Jt arc created bv t\• pical desk
top appl ic1tions, such as word processors a 1�d
spreadsheets. When an X window is m:�pped

.
tor

tbe first time, the internal wi ndow manager receives
a Win32 WM_C: REATE message . Bct()re the window
becomes visi b le on the screen, the window man
ager a lters the st\·lc of the Win32 windo"' to
vVS OV E RLAPI'EDW I N DOW. Win32 windows \\'Ith
this- st\·lc ;liT auromaric1l lv managed lw Windows,
ll 'hicb

,
h:-tnd lcs mol ' ing, res iz ing, icon i f), ing, maximiz

i ng , and c losi ng the wi ndows. Eac h of these :tcrions
c auses a corresponding message to be sent to the
server's window proced ure . The i n tcrn:tl window
ma nager interce pts the messages and dispatches them
to the appropriate internal ti.1ncrion.

The ro le of the internal \\'i ndo\\' m:1nagcr comple
ments the ro le of the sen·er. The sen·er processes cl ient
req uests on X \\'inclows �md translates them into opera
tions on Win32 windows. The i nte rnal window man
ager hand les Windows messages that ind icate changes
to a vVin32 window :�nd translates them mro corre
spond ina changes to me u nderlying X window. For
example� the most important message rh:1t the window
manager h<lnd lcs is WM_Wl N DOWPOSC HANGING.

Th.is message is scm just bdore anv change in the win
do"''s position, size, stacking order, or l'isibi l iry. If this
message i ndicates that the window size changed , the
window manager changes the size of the correspond
ing X window :�nd sends a Con6gureNorif)' event to
the cl ient. Simi brly, the window man:tger translates
other user-d irected

.
events such :-ts tocus change, win

dow stacking, and iconification into changes to the
u nderlying X data structures. I n most c:1ses, the win
dow manager docs this bv ca l l ing into the de\'ICe
independent l aver, thus s imulating an X request that
wou ld occur trom an extern:�! window manager.

Mouse, Keyboard, and Input Focus

Mouse actions ;md keystrokes :�re received by the
eXcursion server as Win32 messages . Each message
comains i n f(mll;ltion about the window th:1r received
the input and the rime of rhe i n put. For mouse moves
�md cl icks , the scn·er u ses the \\'indo\\' intorm�uion to
locate the correspon d i n g X wi ndow and forwards an
X el'e nt ro th:lt winclo\1'. Keyboard input is t(xwarded
to the window th:-tt curre ntly has X foc us .

Digir.1l Technic.ll)ou n1:11 Vol. � �<>. I 1 9 96 37

3:-l

Table 1
Plane Mask Opt i m izat ions

Requested X Raster src 0 0 1 Modified Source Color and
Operation dst 0 1 0 Notes Raster Operations

GXclear 0 0 0 0 4 src <--- - p m, rop <--- a nd

GXand 0 0 0 1 1 src <--- src I - p m

GXand Reverse 0 0 0 6 src <--- src I -pm
src <--- - p m, rop <--- xor

GXcopy 0 0 8 src <--- - p m, rop <--- a nd
src <--- src & pm, rop <--- or

GXcopy 0 0 8 src <--- pm, rop <--- or
(src & pm) = pm

GXcopy 0 0 8 src <- src I -pm, rop <--- a n d
(src & pm) = 0

GXandl nverted 0 0 0 2 src <--- src & pm

GXnoo p 0 0 1 1 0

GXxor 0 1 0 2 s rc <--- src & pm

GXor 0 1 1 1 2 s rc <--- src & pm

GXnor 0 0 0 7 src src & pm
src <--- - p m, rop <--- xor

GXeq u i v 0 0 1 src <- src I - p m

G X i n vert 0 0 5 src <- pm, rop <--- xor

GXorReverse 0 7 src <--- src & pm
src <--- -pm, rop <--- xor

GXcopyl nverted 0 0 9 src <--- - pm, rop <--- a nd
src <--- -src & pm, rop <--- or

GXorlnverted 0 1 src <--- src I - p m

GXnand 0 6 src <--- src I -pm
src <--- - pm, rop <--- xor

GXset 3 src <--- pm, rop <--- or

Notes:

1 . dst is uncha nged when src equals 1 for these raster operat ions. Th erefore, to preserve the va l u e of dst when
pm eq u a l s 0, set src equal to 1 .

2. dst is u n cha nged when src eq uals 0 for th ese raster operat ions. The refore, to p reserve the va l u e of dst when
pm equals 0, set src equal to 0.

3 . This operation sets al l dst b its to 1 except where the p lane mask equals 0. This can be done s i m ply by O R i ng
pm i nto dst.

4. T h i s operation clea rs a l l dst bits except where the plane mask equa l s 0 . This ca n be done s i mply by A N D i n g
pm i nto dst.

5. X O R i n g with 1 has the effect of i nvert i n g . To invert only where pm eq uals 1, XOR pm with dst.

6. These operati o n s a re performed in two steps. Note t h at dst is i nverted when src equals 1 . F i rst perform the
operat ion with src set to 1 where pm e q u a l s 0 . dst is now correct except that it i s i n verted where pm equals 0.
The second operation of X O R i n g with the i nvert of pm cor rects th is .

7. Th ese operati ons a re perfo rmed in two steps. Note that dst i s i nverted when src equals 0. Fi rst perform the
operation with src set to 0 where pm equals 0 . dst is now correct except that it is i nverted where pm equals 0.
The second operation of XORing with the i nvert of pm corrects t h i s .

8 . T h i s operation is performed i n two steps. Fi rst d s t is set to 0 whenever pm e q u a l s 1 . Then dst is set t o 1 when
ever both pm and src eq u a l 1 . The two spec i a l cases can be redu ced to operations that use G Xset and GXcl ear.

9. T h i s operation is performed in two steps. F i rst dst is set to 0 whenever pm eq u a ls 1 . Then dst is set to 1 when
ever pm equals 1 a n d src equals 0.

1 0 . dst is unchanged ; therefore, n o operation is req u i red .

i) i �ir;11 Tn:hnical Journal Vol . 8 No. I 1 996

The X serve r is a s ingle J pp l ication in the vVi n 3 2
cn\·iron ment rh�H "owns" a l l r i l e X windO\\'S i t crcltcs.
from rhe user's perspective, thou gh, there 111�1y appear
to be more than one X Jppl ica rio n runn ing, each with
its own col lection of win dows. The user ex pects to
be a b le to shift the kevbo:1rd t(>eus tl·om one win dow
to a nother i n rhe s:1me tlsh ion that focus is sh i trcd
bct\\'ccn other :1pp l ications. \t\fben an ex te rna l \\' indo\\'
m:1nager is i n usc, focus comrol is straightt(xward .
The \\'i ndow manJger, usi ng \\'harever sem : m ric it
\\·as des igned tor, mon i tors mouse eve n ts Jnd sh ifts
t(>eus ac cordingly. H owever, the semantic model for
this may or may n ot be consistent with t he W i n 3 2
mod e l . l n either case , t h e window decorations, e .g . ,
borders, t i t le bars, and m e n u s , arc al most guara n teed
to be di ffere n t . A user who wants a consistcnr user
in tcrhce model across J l ! app l i ca tio ns must emplov
the i n terna l \\' indo\\' m:.n:1ger.

Ar Jll\' given r ime, one wind o\\' on the screen Ius
Win32 focus and one X window has X focus . The two
windows are not necessa ri l y the same. Since the X
se rver cre:Jtcs and owns J l l the X windows in use, the
server receives key bo Jrd input when any one of irs
wi ndmvs has \t\fi n 32 t(xus . The keystrokes are nor
necessari lv sent to r he undcrlving X win dow, however.
Thcv arc sent to rhe window that has X tocus . The
internal \\' ind o\\' 111<1ll:tgcr Jssigns X tocus to the X \\'i n
dow rhat receives W i n 3 2 toCLis. The cl ient receives
noti tication of th is event :tnd may decide to :tssign X
t(xus to some other window, pe rh aps a ch i ld wi nd ow.

The ser ve r m ust t he rctore keep track of both the
X win d ow rhat cu rrcm ly has focus and the stare of
Win32 foc us . When t he server loses Win32 focus, the
X rixus is ass i gned ro the root wi ndow. ·when the
Ser\·cr rcee i \·es Win32 focus , X tocus is assigned to the
X wi ndow that prev ious!\· hJd it. \Nhen eve r X tixus is
ch �m gcd bv :tn appl icati on or Lw the wi ndow ma nager,
the cu rrent X focus state is c:tchcd so that i t c a n be
restored later, if necessary.

Font Management

fonts and text fu nction�1 l ity make up a si gni fican t por
tion of anv graphics <1 rchitccture . Both the X and the
Win32 S\'Stcms d c ti n c :1 rich set of te xt - rendering
opc rJtions and can process sc\ ·er:t l tont tormats.

X and Win32 Fonts The X tont ma nagement l ibr:t ry is
:1 mod u lar arch itectu re th:tt d e ti nes an A P I t(x read in g
and writing i n d ivid u•1 l rcmt tormats . The mod u le that

i mple ments the API for :1 given font format is czt l led a
ren derer. This approac h al lows X to support seve ral
tc> l l t tormats : tl1e l i brarv's renderer mod u l es com·ert

externa l formats to J s ingle, i n ternal bitmap format,
which i s u sed tor al l d r:twi ng oper:ttions . The term
X./ollt refers to ton t data in this interna l tormat.

The font ma nagement l ibrary supports bot h b itmap
and sca lable out l ine tonrs. Bitmap t()llt glyphs arc si m
p ly retorm atted :md used . Sca l able tcm11:1ts, such as
Adobe Type 1 , J I-e rasterized on demand i n to the X
fon t tormat.

For max imum perform ance, th e server d rJws text
with native Win32 toms using the W i n 3 2 A P I . Win32
fonts are b itmap fonts in the FON f(mnat. Win32
fu nctional irv covers the great majori ty of text -d rawi ng
opera tions, but there are a tew cases i n which it is
either not possible or not efficient to usc Win32 toms .

The server can also d r:tw d i rectly with the X tonts to
provide fu l l X t()llt support and comp le te text -d rawi ng
fu nction a l i ty. This method uses Win32 Bit Bit () opera
ti ons to copv the ch�1racter g l yp hs to t he d isplay as
b itmaps. Drawi ng speed with this method is :tccepr
able b u t not maxim u m .

Therefore, both X J nd Wi n 3 2 fonts :tre used . The
Win32 fo nts nuy be thought of as opti on a l acce lera
tors: the server u ses th em wh enever possib le and falls
back to the X t(mts when necessJry. The decision to

fal l back can be made on a va riety of cond i tions . This
technique has al so proved usefu l in worki ng around
problems such as text-drawing bugs i n i n d ividual
video drivers .

S ince sca lab le tont out l i nes arc rJstc ri zed into
bitmaps at r u n time, th ey are genera l l y d rawn d irec tly
with the i n ternJ! X fo nt format. The extrJ work of
co mp i li ng a comp:1nion vVin 3 2 tont at run rime gener
ally outweighs its val ue as an accel erator.

X bitmap tonts are most com mon l y d i stributed in
the B itmap Distri bu tion Format (BDl-"), an ASC I I text
sou rce fi l e . The eXcu rsion team wrote a t(m t compi l er
tool that generates native Win32 (FON t(xm at) fon ts
fl·om the B Df sources. The fonts created can be used
by any Win32 ap pl ication .

The compi l er can ge nerate either the com mon ly
used version 2 t(mnat or the extended version 3 tor
mat, which is ncccssJry tor large tcm ts that requi re
more than 64 k i l obytes (K B) of glyph storage. figure 3
i l l ustrates the process of generat i ng equivalent X and
Win32 f(>nts ti·om �1 com mon source.

The X fon t to nn:1t con tains ex tra i n tormJti on (e . g . ,
metrics a n d properties) t h a r cannot b e derived from

BDF FONT

Figure 3
Font Conversion

Digi r,ll T�(hnical journ.1l

X FONT

WINDOWS (FON)
FONT

Vol . 8 No. I 1 996 39

40

rhe vVi n32 font . Therdon:, the X and Wi n 3 2 to nts arc
used rogether; the X i n t(mnation comes tl·om the
X fo nt and the Wi n 32 r(mt is used Lw the W i n 3 2 API .

Real izing Win32 and X Fonts When the X server fi rst
opens a font, it invokes the function Real izeFont() .
This ti.mction gives the server a n opportun ity to in itia l
ize d:.1ta struc tu res �1nd ped(mn any format-specific
opera tions necessarv to make the ti. lnt <l\'a i lab l c .

To make a Wi n 32 t(mt <1\":l i i :J b l e tor dr,m · i ng ,

the server retrie,·es the ti lc n: une of the fo nt from t he
scnu's l ook- up ta b l e �md registers it " · ith the Wi n 3 2
A P I using the function Add Font Resource() . A h:mdlc
ro the fon t is obtained from CrcatcFontl ndircct() , �1 11d
the reafter the handle is se l ec ted i nto the desired DC

f(x d rawing operations. H " the Win32 rea l i zati on hils
t(Jr any reason , the code simply re1li zcs the X fon t
instead . Failing to re:1l ize a VVi n 3 2 fon t docs not neces
sar i l y imply an error cond i ti o n . Such ta i l ure happens in
any case i n which the sen'Cr decides that i t is best to
use the X font d i rectJ v.

The int ernal X tonr ti.m1ut is <1 set ofLhta structures.
The glyphs are stored in coll\'Cntioml arra\'S in user
memory. To i mp rove per ti.mn <1nc c, the server rea l i zes
:.1n X font by writing a l l gln1hs ro a Win32 b itmap in
off-screen memory. Crcatc B i tmap() returns a lund l c
f(ll· l a ter reference, a n d t h e glyphs i n the bitmap arc
indexed tor use i n d rawi ng operat ions.

Drawing with Win32 and X Fonts The glyphs in X text
strings are often kerned, that is, mn lapped tor best
rvpogr<1p hic appearance. To d raw with Wi n 32 fon ts ,

the SCITer emu lates the way X d raws text by using

Ex rTextOut() , wh ic h uses an interch<1racter spac i ng
vector to p lace the in divid u a l glyphs. The font 's X met
rics are used d i rect ly to ca l c u l ate th is vector.

G l yphs tl·om X tonts arc dr:.1wn by perfor m i ng
BitBits tl-om the Win32 bi tmap to the t:trget window
or bitmap . The server p laces the glyphs using the r(mt's
X metrics as d escribed in the previous paragrap h .

Color Resource Management

A l t hough some X Window Svstem concepts and struc
tures 111:1p fairlv c lose ly to those i n the \�Ti n 3 2 S\'Ste m,
co lor resou rce management i s handled ,·c rv d i ffer
en t ly. The d i fference is most evidem when dea l i n g
with pseud ocolor video systems. Conseq uently, t h i s
paper d escribes only t h i s case .

The X Wi ndow Syste m environment shares 2 5 6 col

ornnp cells among :t i l appl i cations that use the defa u l t
col ormap (i . e . , those th<H do not have a pr i ,·a re col
onll<1 p) . Appl icat i ons can a l l ocate cel ls i n the defau lt
co l ormap to protect them tt·om modi fication Lw other
appl ications. In con trast, the W i n 3 2 S\'Stem a l lows
each app l ication comp l ete access to the S\'Stem palette
whi le the appli cation has t(Kus and maps the palettes
of the wind ows without t(Kus as best it can .

Digir,11 T<:(hni(a])oum.d Vol . 8 No. I 1 9')6

In the X vVindow Svstem CIWi ronment, when a n
appl iu tion n:serves a co lormap ce l l , it references the
ce l l wi th a pixel \·a l u e . Th i s va l u e is an index into the
colonnap a n d is used to look up th e val ue that wi l l
<1ctu<1 i ly be stored in scree n memory when that pixe l
va lue is used i n a d rawing opnation .

In the vVin32 system, color rnan<1gemcnt is handled
by the pale tte manager through a p a lette stru cture.
E�1c l1 appl ication has a logica l pa l ette , and a s i ngl e S\'S
tcm palette contai ns the colors c ur renr lv mapped to
the hardware colormap . App l i cations reference col ors
rel ati ,·c to th ei r l ogical p<1lette, :m d the p:.1 l ette man
.1gcr hand l es the mappin g be tween the logical pale tte
and t he svstem palette . When J.n appl icat ion is given
t(>eu s, the p <llette man;1ger maps J l l the col ors from the
l ogical palette into the system pa l ette . If the system
pa l ette d oes n ot h ave enough empty ce l ls, the pal ette
m�1 11<1gcr frees ce l ls al locned to other app l ications. If
this occurs, the palette m: m agcr wi l l attempt to remap
the other app l i cations' co l ors into a nv remai n i n g tree
ce l ls i n the svstem colorma p . If not enough ce l ls are
ti-ce , a n\' re mainin g u n mapped colors are mapped to
the svstcm palette colors that m ost closclv matc h .

Beuusc of t h is \\"a\' o f hand l i ng color resource man
agement, an app l i cation d ocs nor know what value i s
being stored i n screen memory r()f a n y particular co lor
and the val u e stored f(Jr any co lor can change over the
l i ktimc of the a pp l icat io n . This siruation presents sig
n i ficant d i ffi c u l ties tor X operations that req ui re exac t

know led ge of the pixel val u es i n screen memory, such
as th e (; ctl m age operat ion and operations i n,·o lYi ng
pLmc 111 <1sks. The sen-cr works arou nd the d i fficu lties
b\ creating nm W i n 3 2 logical pa l ettes .

The ti rst pa lette, i . e . , the working pa l ette, corre
sponds exactl y to the X d e b u l t co lonnap and does not
a l l ow shar ing of the pa lette by W i n 3 2 applications .
\Nhcnever an X window has focus, the working palette
is in usc . This causes the Win32 pale tte manager to set
up the system pa l e tte such that i t d i rectly corresponds
to the X co l orrnap, and operations th ar arc pixel based
"urk properh-.

The other palette, i . e . , the idenrin· p a l ette, is set u p
ro cmrespond exacrlv t o r h e system p�1 lette . T h e i d e n
ti n· p:: tlctte i s used whenever no X wind ow h a s too1s .

Bcu use of the correspondence, no translation i s
i nvo l ved benveen the identi ty palette and the system
pa lette, which allows the X server to know what pixel
va lue is stored i n screen me mory.

The X Window System environment al lows t(Jr pri
V<ltc colormaps, which �1 1-c created and used by a sin gle
<1ppl i ution . The server creates :.1 working palette tor
C\U\' colormap created . When the col ormap is instal led
(n orma l ly Lw the wind o\\· ma mger \\'hen the X appl ica
tion is gi, e n tocus), the e Xcursion software installs the
" orking pa l ette associated \\' i t h the pri,·ate colornup .

The eXc ursion X se rver c u rre mly supports the
Psc u do Color visual cl ass and the StaticG ray de pth 1

visuJI class, w h i c h is main l y used tor bitmaps.
eXcursion version I also supported �l StaticColor visua l
c bss for 1 6 -color video graphics :may (VGA) d isplays.
eXcursion version 2 treats VGA devices identic1 l ly to
Pseud oC:olor de,·iccs and al lows the Windows palette
m�Huger to gencrJte d ithering pam.:rns tor the
una,·a i lab le col ors .

Network Interface

With the rele:tse of X I I R6 , the X Consorti um com
bined a l l transport-specific code into a single p!Jce
in the sou rce tree, the X transport i n terface. The
eXcursion te:nn extended the X transport inte rtace to
inc lude N e twork Computing Device 's (N CD's)
Xremote seri:� l l ine transport. Com bined with the
transmission control protocol/internet protocol
(TCP/IP) and D ECnet transports, the eXcursion
product CliJ now e xec u te X sessions over Jnv of these
tr:�nsports si m u l raneouslv. The c Xcu rsi o n prod uct
supports anv TC:P /IP stack th�H com plies with the
Wi nsock \'ersion 1 . 1 i m p lementation, PATHWO RKS
D ECnet protocol , and NCD's Xremote p rotocol tor
serial l ine .

The X transport interface prm· idcs fu nctions that
are common ro al l transports, such as parsing an
add ress int o a host and port number. The i nt e r [Jce
docs not provide an abstraction t(>r the se l ect() cai J ,
because ir assu mes that this ca l l is rr:msport indepen

dent. Unt()rtu nately, the X remote protocol requ ires
�1n independent select() mech:mism, and, thus, it
was necessarv to i mplemen t a select() �t bstraction to
com bine the transport-independent select() \\ith the
Xrcm ote sel ect() . Although somewhat comprom ised
Lw this add i tion, per tormance was a problem only
when the Xrcmote protocol was used in combi nation
with either the TCP /IP or the D ECnet protocol.

X Image Extension

e Xc u rsion \'c rs ion 2 provides ,·ersions 3 and 5 of the
X I mage Extension to support a wick range of i maging
appl ications . Because i t is a large body of code, X I E
i s im ple mented as a pair of Win32 D LLs to consen·e
memorv on systems tha t wil l nor be running app l ica
tions that usc X I E .

Norma l ly, �lCccss ro a DLL i s one-\\·:ty. App lic:trions
can load and make fu n ction cal ls i nto a D LL, but
because ir is l inked dynamica l l y �lt run time, the D LL
code cannot mJkc fu nction cal ls back i nto the cal l ing
appl ication . X I E , however, must ctl l into the device
dependent l aver of the sen'Cr to perrcmn any req ui red
d ra\\ ' in g after process ing i ts i m aging req uests. To per
mit this, J n addition to tbe i n terbce w<Js designed .
When the X I E D LL is i nit ia l ized , the ca l ler suppl ies a
J ist of pointers ro the functions needed by the X I E.

The DLL ri l l s an <llT�lV with these poi nters and then
calls back i nd irec t l y th rough the Jrray. On the
\1\Tindows operating system, this design cou ld crea te a
problem because u nd er Win32 AP!s , g lobal data in a
DLL is not instanced; that is, the code is not reenrr�1nt.
The approach \\Orks i n this case bec<Juse there is onlv
one copy of rhe D LL loaded . If another appJ icnion
was shar ing the DLL, the pointers wou l d be overwrit
ten by the second in i tia l ization .

Control Panel

The eXc ursion control pane l is the prim ary interbcc
through which the user con tigurcs �1 11d controls the
product. Some other compone nts create s imple wi n
dows or icons, but these fu nctions <Jre l imited . The
control panel co nstitutes 90 percent of the user inter
bee tor the e X c u rsion app l ication. This ract makes rhe
control pane l an idea l c<Jndidate tor the ra pid appl ica
tion de\'e lopmc n t features of the M icrosoft VisuJI
C++ e m· iron ment. The control pJ ncl is a vVin32 appl i
cation cod ed J l most entirely i n C++ and linked with
the Microsoft Foundation Class l ibrary.

The main purpose of the control pane l is to pre
sent a mJ nagc�Jble interf:tcc through which the user
can view and mod i fv the eXcu rsion con figuration pro
ti le. To do this in a manner consistent \\'ith the ne\\
Windows 95 she l l , the Property Sheet M�C object
w<Js chosen . Property Sheets arc tabbed dialog boxes
that have the <Jdvant:�ge of organiz ing large amoums
of data setti ngs in a compact space . The�· arc used
cxte nsi,·e l \' b\' the Wind O\\'S 9 5 operating svstem and
bv the most recent \'Crsions of Microsoft appl icnions.

The Propcrt\' Sheet object is �l su bclass of the
Windows object and is essentia l ly a container tor the
tabbed p:tgcs. E:tc h tab, when cl ic ked by the user, dis
plays a d i a log box that is subcbssed ti·om the M�C
Propem· Page object . The individual pages can be
,·isua l ly configured and revised usi ng rhe class wizard
teature of Mic rosoft VisuJ I C++ . The designer simplv
selects dialog box controls such as buttons, d rop l ists,
or edi t tie l d s :md positions them on the d ia log box .
T h e code to hand le u s e r actions i s rhen fi l led i n .

The eXc u rsion control panel i s shown in hgure 4.
We constructed an in itial prororvpe of the comrol
pane l Jp pl icuion \\' ith about 60 pe rcen t of the tin�1l
fu nction:tlitv i n l ess than one month.

lnterprocess Com mun ication Library

eXcursion ,·crsion 2 consists of sc, ·era l cooperat ing
processes thJt must com munic:�te :md S\'IKhronizc
with one Jnother. When a remote X appl ication is
started by the server or the con trol pan e l , the applica
tion la u ncher signals when the operation is complete.

Digit,11 Tc..:l1 11ic:d journal Vul . R ;-\o. I I \J9(l 4 1

42

eXcursion Control Pa nel

><DM CP E xtensions
..... , .,
! Info ! Accounts
· ,; Applications D isplay Fonts

Communications I
Keyboard Mouse I

M odem I
Logging Access l

eXcursion Control Panel

Copyright €> 1 995
Digital Equipment Corporation

Computer N ame:

R egistered to:

Serial Number:

Installed Path:

Version:

S N O O T S

S N O O T S

21 309
C:\XCU R S I O N \x86\

V2. 1 . 309

X Server--,

Server N umber:

Number of Links in U se:

N umber of Errors Logged:

O K J I�_=C=an=ce=l =='� I� H e�lp
_�J

Figure 4
The eXc u rsion Control l\1 1 1C I

Error and status information is sent to the error logge r
by the other com pon ents . W h e n the user ch anges
a contigurarion setti ng thro u gh the conrrol panel , the
change must be com mu ni cated tO the X sen·cr, if it is
r u n n ing . I n some uses, the cha nge c1n t:� ke effect
i m mediate ly; i n other cases, the server unnot imple
ment the change witl1out restarting. The control panel
and the server must engage i n a di:dog so th<lt the user
can be i n t(>rmed as to wh:J.t action m ust be take n, ifan v.
The ! PC l ibrar�' is Jn opcrJ.ti ng system-i ndependent
APJ th�H perm its eXc u rsion compone nts to determine
which other com pone nts :tre present and to exchange
comm: 111ds and configuration information .

The Wi ndows NT operating system provides severa l
bu i l t - in ! PC mecha nisms, but most arc nor �wailablc
on the Wi ndows or \Nindo\\'S 95 syste ms. The onh'
mcch:1 1 1 ism that is u n i\ 'crsal to the th ree operating
systems is the messa ge -pass ing inr e r hce in the Win32
API. This mechanism, w h i l e nor the most dlicicnt, is
relatively straighttorward to implement. Si nce the per
torm:l l lec demands on the I PC l i brarl' were deter
min ed ro be verv light, this mech�1 11ism \\'JS chose n .

Vol . K No. I I ')<)(,

0
8

0

I R estart S erver�

The d isadv:�mage of the W i n 3 2 message -passing
i nterface is that i t is \Vindow based , not process b�1sed.
Mess:�ges �1 1-c received by a c : d l back proced u re that
musr be :1ssociated \\'ith a \\'indo\\' before am· com m u
nication can t:�ke place. If <ln application has n o t vet
cre:�red a \\'i ndow, or never creates a w i ndow, as is the
c1sc with the :tppl ication launcher, no com m u nication
i s poss i b l e . To remedy this, the J. PC l i brary creates its
own win dow when the ca l l ing process initia l i zes . The
T PC \\'indm\· is ne\·er mapped to the screen, so it is nor
\ · is ible to the user. All i nterproccss com m u n icuion
passes through the ! PC wind ow.

The lPC li brary consists of a col l ection of u n ique
messages and a n A P I . The messages arc registered
with the Win32 fu nction Re giste rWindowMcss:�gc.
This e ns u res that the messages u sed l)\ ' the eXcursion
:�ppl ication do nor conflict with system messages or
messages used by other appl ications. The eXcu rsion
! PC messages arc

• ipcCompon cnrSrarted Msg, which the I PC posts to
a l l compone nts \\'hen a component i nit ia l izes .

• ipcRestartServerMsg, which the J PC sends to the
server to te l l i t to restart.

• ipeRestartServerStatusMsg, which the J PC posts
with the status of the restart request.

• ipclnq uireMsg, which the !PC sends to retrieve a
data i tem from a component.

• ipeProfi l eChanged Msg, which the control panel
sends when the registry profi le changes.

• ipc La unchOneCompleteMsg, which the app l ica
tion launcher sends to noti�' the server of lau nch
com pletion.

• ipcLaunchAJ I CompleteMsg, which the application
lau ncher sends to noti�' the server of launch com
pletion .

• ipcH ideAI IWindowsMsg, which the server sends to
a l l components to tell them to hide a l l their w in
dows . The e Xcu rsion appl ication uses this message
to execute the pause/resume Feature .

• ipcShowAI JWindowsMsg, which the server sends
to al l components to tell them to show all their win
do•vs. The eXcursion appl ication uses this message
to execute the pause/resume featu re .

I n addition to sending and receiving messages,
eXcursion processes can use the I PC l i brary to deter
mine which other components arc running . The I PC

in i tia l ization proced ure creates a window with a
unique name that identities the cal l ing component. To
determine whether a speci fic component is present
in the system, the ! PC searches a l l windows on the
system unti l i t finds one with the correct name.

Error logger

The error logger is a Win32 application that receives
nror and informationa l messages from other compo
neJJts and either d isplays them in a window or logs
them to a ti le . On the vVindows NT operating system,
in formation that may help system managers or users
d iagnose problems may additional ly be recorded in
rhe Windows NT evellt log.

Application launcher

The application lau ncher is a Win32 app l ication that
hand les requests from the control panel or server to
start X cl ient applications. The cl ient may reside on
a remote host or on the same machine.

When the user req uests the server or control panel
to start an X client application, it starts the eXcursion
appl ication launcher in a separate process. The applica
tion command, host name, account information , net
work transport, and command she l l are passed to the
lau ncher in its command l ine arguments. The lau ncher
makes the connection to the remote system, in itiates

the command using the selected protocol (rexec, rsh ,
DECnct object, or local com mand), and sends an IPC

message to the server indicating that a new appl ication
is starting.

Registry I nterface

The Windows NT operating system introd uced a new
concept cal led the registry. This is a protected database
mai ntai ned by the operating syste m, wherein Win32
appl ications may store configuration and state infor
mation . The registry has a wel l -ddined A P I and
a mainten:mce uti l itv progr�u11 that i s shipped with
the Windows NT operating system . Under the
Windows operating system, configuration information
is kept in simple text fi les, which are vu l nerable to
accidental or mal icious tampering. At the time the
design of eXcursion version 2 was under way, it was
unknown which, if either, ofthese two metl1ods wou ld
be ava i lable under the Windows 9 5 operating system.
Nevertheless, a l l th ree of these operating systems had
to be su pported .

We designed an API for accessing the configuration
intcm11ation in a manner i ndependent of the operating
system . Knowledge of the oper:tting system and its reg
istry access method is encapsulated in the li brary. Since
several independent processes must access the informa
tion, the l ibrary is bui l t as a DLL to conserve memorv.
The in terface basically resembles that of the Windm;,s
NT registry API but e l imi n::ttes some of the complexity.

I f the eXcursion software has nor bee n configured
when the registry interface ti rst accesses the profi le ,
defau lt values for al l settings arc selected to a l low the
software to function normal lv.

Summary

With computer systems based on the Microsoft
Windows operating system i ncreJsing i n power and
decrc:tsing in price, Windows- based systems are appear
ing on desktops that once held workstations running
the U N I X or OpenVMS operati ng systems. Windows
systems must be able ro access applications on remote
ti le and compute servers running in the X vVindow
System environment. Version 2 of rhe eXcursion prod
uct provides desktop integration of X cl ient applications
with n�uive Win32 appl ications. Mod ul::tr cod ing tech
niq ues, object-oriented progr:tmming, and selective use
of the Microsoft Foundation Class l i brary helped
reduce development ti me, and improve performance,
mai ntainability, and re l iabi l ity.

General References

D . Ci obs and A. Leskowi rz , "eXcursion t()r Windows:
l nr cgr;Hing Two W i ndowi n g Systems," Oip,ilal Technical

.Jou rnal. vol. 4, no. I (Winrcr 1 99 2) : 56-67.

Dig;ital Tcdmi�al Jou rnal Vol . 8 No. 1 1 <)96 43

44

X Window System

S. Angc: br;l ll nd t cr a l . , Dejlnition o/the l'urfillJ.!. !.are1jin·
the X t · f I Sa111ple Sener (C:11nbrid ge , M<lSs . : X Consor
t i u m , I nc . , 1 994) .

j . hdron , The X Fon t Serricl! l'mtoco/. I ·en-ion 2.0.
X \ ('ISion I ! . Release 6 (C:unbridge, M�ss . : X Consor

t ium, I nc . , 1 994) .

E . I srae l Jnd E . Fortu ne , '/he X \l?indo u • ,)·J ,S/e/11 Serl 'el;
X \ i.•J:..; iou I I . Release 5 (VVoburn, !Ybss . : Digit� ! Press ,
1 99 3) .

0. J o nes, lntmduction t o the X I.Fiudotl' .):) •stem (Engle

wood Cl i rlS, N . J . : Prentice-H<l l i , I n c . , 1 91\ 9) .

K . !';Jcbrd ;Jnd D . Lemke, 'lbe X Fon t !.ihrwy (Ca m
bri dge, ;V!Jss . : X Consort i u m , I n c , I 995) .

D. Roscmh.1 l , lnfr?r-Ciient Conlll l l l l t icotion Omt ·eutions
. 1 /muw/. \ C'l:,foll 2. 0 (Ca m bri dge, Mass . : X C :onsorri u m ,
I n c . , 1 994) .

R .. Scilcitkr, X Windou· Svste111 Pmtocol. X I (•J:..;ion I I .
Ne/e(fS(' 6 (C:�mb rid ge , M ass . : X Commt i u m , I n c . , 1 994) .

R. Scil e i tl e r and J . Gerrys, X Windou• S)'s/ellt (Bed t(mi ,
M ass . : D igita l Press, 1992) .

Networks

M . H a l l e t a l . , "Wind o11·s Sod�crs: An Open J n tertJce [()['
�l'tll 'ork l'rogr;unming u n der Microsolr Windows, V ersion
l . J " (I 99 3) .

K . Pacbrd, X f)j_,jJia) ' . \ lanager Contml l'w wl. I ('1:-;io n
1 . 0. X I (>n;fon . 1 1 . Release 5 (Cm1lxidge, M�ss . : ,\·! I T
X Consorti um , 1 989) .

W . S te1 ·ens , UNIX Netn·ork Progrmnmin,t; (Engic ll'ood
Cli Hs , N) . : Prentice - H a l l , Inc., 1 990) .

X '/i'anspou Jntcrj(?C!! (Dayton , Ohio : N C R C:o rpor<ltiOll ,

1 99 3) .

Windows Operating Systems

R. Hhke, Of!limizii i,Q Windou�,· .\T Will!lrJit 'S Y!Nesoune
/\it. 1·ol . 3 (Redmond, W,1sh . : M icroso rr Press, 1 99 :1) .

H . Cu srn, Tusicle \'V-iudotn ,\T (Red rn onJ, W;1 sh . :
M i crosoft Press, 1 99 3) .

A . King, Tnside IFiudou �-; 95 (Rcdrnond , Wash : M icrosoft

Press, 1 994) .

\Viu.-).2 l'm�ram mer \ Reference, l'o ls . 1 - S (Redmond ,
W:1sh . : Microsoft- Press, 1 99 5) .

Windows Programming

K. Ch risti J n , J Z1e ,\1ic msoji Gu ide to C+ + l 'mgrwnm ing
(Redmond , \V;Jsh . : M i crosoft Press, 1 992) .

I'.]) i L1sci;1, Windotr s++: \.\// '/!il l,!.; Neusohle Wi urfoll 'S
Code in C++ (Read in g, M <lSS . : Add ison- \Vesb· Publ ish i ng

C :ornf1,1111·, I 992) .

V"l i-i No. I 1 996

'fbe G{ 'I Gu ide. lutemutionol Tem l iuolof{J'./(Jr the 1\:iu
dou s fnlel/ace (Red mo nd , Wash . : Microsoft Press, 1 993) .

S. McConn..: I I , Code O.>ll ijJ/ete: A Practical flandh<HJIJ o(
Sojill'a re Co ns/ met io11 (R.:ci mond , Was h . : M ic roso tr
Press, 1 993) .

C. Petzol d , l'rr��nl lll l l li l lg Window�. 2 d ed . (RcJrnond,
Wash . : Microsoft Press, 1 990) .

13 . Strous tnr p , 'the C+ + l'mgr(fiJim ing Languap,e (Kcad
ing, Mass . : Add ison -Wes l ey P u b l ish i n g Company, 1 9 8 6) .

Biographies

John T. Freitas
Prcse nrk <1 sofrw.1re eng ineer at Atri<1 Software, john
l:'rcit�s 11 orked ;lt Digi t;11 for I 5 l'e<lr·s. !:'or the last fe11
\'e;Jrs, he ll'as <lssoci.ned 11 irh D igi ta l 's c Xcursion pmd uct
<1S Jn in d i 1· id u;1 l contributor, <1n architect, <Hld :1 d cs ign L:r.
Pre1· iouslv, he 1\·:1s i n the Worksution gro u p . J o h n recein:d
J B . S . E . I:'. . ti'om N orrh c;Jstcrn l ' n i ,·ersi n· i n 1 967 . Wh ile
in col lege, h e ll ll l'ked ;Js < 1 co-op student on the A pol l o
Project at ,'v\ JT's Draper L1 boratorv. Duri n g the 1 9 70s,
he worked l(>r HJ n-;1rd Unil'crsitv de1·clopi ng and rna i rl
t<l in ing rned iul com puti ng fac i l i ties <lt lvl assac hu serts
C cncral Hosp i t<1 l .

] ames G. Peterson
) ames Pert:rson is cmrc ntly a sotrware e n gineer at
DeLorme M app i ng . As ;1 member of D igita l 's Wind oil's
NT gro uf1 , James led the release� ofthc eXc u rs io n sotr
ll'arc ti·om ve rs ion 1 . 1 th rough l'crsion 2 . 1 . 1n <ldd itio n ,
he worked as ;J rc h i tect <1nd in divid ual contributor on
the e Xcmsion project, concc ntrclting on graph ics <l l1d
perform ance l-:;1r l icr, he 11orkcd in the PATHWOR KS
<Hld R:1 i nb011 groups. hmes 11'<1S e mpl ovcd b1' Com p ion
Corporation bd(>re jo m i ng Digital i n 1 9 84. He rccc i 1'ed
a B .A . (1 9 79) i n J 1 l <lthcnnties ti-orn fnd i<l n a U n i 1·crsin·
and an M . S . (1 98 1) in m�thernatics .1nd a n ,\\ .5 . (1 984)
in coll l p u ter sc ie nce , both li'om the Uni 1'crsm· o f ! l l i n ois .

Scot A . Aurenz
Scot Aurc n z is a �rinci f'�l softwJr<.: eng i neer in the
Win dows NT group where l 1c ll'ork� on the develop111c11t
of the e Xcursion PC X server. Scor h<1S contributed ro nunv
projects ; H Digita l , inc lud ing the L� ngu;�ge Sensitive Edito r
(D EC :ser LS E) <1nd rile S U VA X 11·orkstJtion . Scot c;1111e to
D i g;i t;1 1 in 1 979 JS J P u rd u e U n i ,us it\' co-op srudenr ;1nd
b..:c·.1 1 1 1e a fu l l - rinJC cmplmu· .l i ter recci,· ing his B.S . E . E .
in 1 9X 2 . H e recei\'(:d ;1n M . S . F . t-: . from rhe Uni, crsitl' of
I l l i nois in 1 986.

.

Charles P. Guldensc h u h
C :h;1rlcs G u ldensc h u h is J princ ipa l softwJre engi neer i n
D ig;i t;1 l 's Windoll's NT group . H e i s responsible till· color
su pport and sofr11·Jre in sta i iJt ion of rl1e eXc u rsion prod uct.
Prc,·ioush', he II'Ot'kcd in the Rea l -Time Sofr11·;m:,
l'roh:ssion;l l 300 Sofn, Jrc t-:nginceri n g, �nd RT- 1 1
Engit1l'l'r ing gro ups. Ch;Hics joined Digital afrcr rccc i, i n g
his B . S . in i nfonm1tion ;1nd c<> 111flU t<.:r science ti·om rhe
Ccorg;i;1 1 nsr iru re ofTcch nolog\' in 1 9 76.

Paul J . �1 nauro
Paul Ranau ro joi ned D igi tJ I in 1 987 and is a pri nc ipa l
sofrware eng i neer in the \Vindows NT group. He is
respon s ib le ti lr ;1pplication t;t i lover t()r the Di gir;1 l Clusters
t()l' vVi ndows NT product . In t:<1rl ier II'Ork, he partici pated
in the dc,·clop m e n r ofrhc eXcursion softll';1r<.: Jnd the
ACMS x � tr;ms;tcrion l'roc css ing moni tor, spcc i tic1 l h·,
in rhe implcmcnr;1tion of rhe RTI protocol . He ;t lso p;1r
ri,ipared in the i m pkmcnt<ltion o f r he M a n u hcruri n g
Messa ging Sen·icc 0 - , appl ica tio n la\'l:r proro,o l t(Jr rlK
D l:::Comni prod uct ami ;\ ne n,·ork pertormJncc anail·zer.
Prior ro comi ng ro D i g i ta l , he "·as a (Onsu l tJ nr ;1t In dex
Systems and <l senior software engineer a t M icom - [nreri J n .
Paul h ol ds a B . A . i n h istory ti·om the U n iversitv of
1Ybssachuserrs ;lt Boston .

Digital Technical Journ;�l Vol . � No. I l<J96 45

Integrati ng Multiple
Di rectory Services

The Integ rated Directory Services (IDS) i nfra

structure i m plements a di rectory-service

in dependent i nterface. The IDS i nfrastructure

is used by appl ications that store and retrieve

i nformation a bout resou rces in environ ments

with e ither m ulti ple d i rectory services or one

of several di rectory services. The I DS interface

isolates users and appl ication writers from

the u n ique req u i rements of d ifferent d irectory

services by providing a view of a s ingle, logi

cal d i rectory service through a simple federa

tion mechanism. To retrieve resou rces from

the logical d i rectory, IDS determ i nes its phys

ical location and converts the resource from

a directory-specific to a canonical format.

Extensible schema tables represent the canon

ical format for each resou rce and a l low I DS to

represent resources created using both the I DS

i nterfaces and the directory-specific interfaces.

46 Digital Ted1nid jound Vul. 8 No. 1 1 996

I
Margaret Olson

Laura E. Holly

Colin Strutt

Digital has developed the Integrated Di rectory
Services (IDS) tec h nology ro provide a mechanism for
i ntegratjng m u l tiple d irectory services into a single sys
te m . In this paper, we examine the development of the
I DS i n fi·astructure . We begin by ruscussing the prob
lems faced by network directory appl ications . Next we
describe our design goals, the IDS i n frastructure, and
our in itia l implemen tation on the I'AT HWO lU(S

prod uct. We conc l u de with a brief d i scussion of plans
br future deve lopment.

Di rectory Support in Multiple Environments

Al though rurectory services are a powerfu l mechan ism
t(Jr distributing and accessing certain kjnds of infonna
tion, re latively tew Jppl ications choose to use them .
D igita l 's PATHWORKS application was in need of a

di rectory for pri nters :md fi le shares. PATH WORKS is
�1 net\vork operating system (NOS) integration product
that gives users access to both M icrosoft's LA.!'\l
Manager and Nove l l 's NetWare file and print shares. As
we studied how to i n corporate directory support i n to
PATHWOIU(S , we came to a better understanding of
the problems faced by d irectory applications in general .

Networks are growing rap i d l y, as are the amount
and kj ncf of information that can be accessed through
the ne t\vork. We were certa in that fu tu re network
appl ication prod ucts wou ld have an even greater need
tor a d i rectory, and there fore a general sol ution was
needed. We then set out to design a system that wo u l d
remove t h e barriers to di rectory service <�ppl ication
usage and depl oyment . We resolved the tension
be t\veen the product dead line and the time req u i red
ro i m pl e ment rhe ge neral solution by design i n g a
complete solution and i m p lementi ng what was neces
sary to prove the design and to meet the i m medi<�te
needs of the PATHWO RKS product.

Existing Directory Services

There are a n u m ber of gene ra l -purpose directory ser
vices. Some of the more frl m i liar include X.500,
Nove l l 's NetWare Di rectory Service (NOS) , the Cel l
Directory Service (C DS) , a n d Banyan Systems'

Strl:l:tT�1 lk . 1 -1 l n the past, d i rl:ctorv sl:n·icl:s Wl:IT in rl: l
ati\T iv l i m i ted usc because most d i rl:ctorv sn,·iccs
wnl: til:d to l: ithcr an operating S\'Stcm or a transport
or bot h . I n add ition, d irector\' services \\'ere con
tKctl:d to a m u l titude of application p rogramming
in terbcl:s (APis) that were i ncom p<Hible and d i fticu lt
to usc More rece nt ly, d i rectory services h;we been tied
to network operating systems or applications, rather
than to host opeL1ting systems or transports . If any
thing, the n u mber of "standard " A Pis Ius grown.

I n L1rge networks, this com plex i ty has resu l ted in
the proliferation of d i rectories, often contJ i n i ng over
lappi n g i n �{ >nllatio n . This ma kes the network man
ager's job d i fticu l r , which in w rn creates tTsistancc to
d i rector\' appl ications_ At the sanK r ime, network and
NOS tcc h nolog-v hJs developed to a poi nt whne :111

l:ver- incrctsing :1mounr of i n formation is bei ng shared
01 1 diffe rent machi nes. To give a simple example ,
�1 lmosr every server :1t Digita l 's Littleton site hJs a con
nection to the h i gh -volume printer i n thl: copy center,
with a d i ffnent name on every server. A d i rectory
wou ld s impl ify users' access to this single physicJ I
resou rce by presenting a single name �()r the pri nter,
i f o n l v the application writer could �igurc out which
d i rccton· sen·ice to use Jnd how to use it .

Other Approaches

As discussed later i n the Design of the I DS hJmework
�l l ld Service Providers section, I DS defi nes both an APJ
and �1 service provider i nter��lCe . Support tc>r �1ny d irec
tory scn·ice Clll be provided by wri ting a service
prm·ider module . lYl icrosoft's OLE Direcrory Su·vices
(OLE DS) takes J similar approach to I DS, with a more
l imited in itiJ I implementation .' A l though the cu rrent
I DS im plementation runs under M icrosoft Wi ndows, it
w:Js designed to port to other systems. OLE DS depends
on tCJtures of the vVi ndows operati ng systems.

The X/Open federated Naming (XFN) specificJtion
was not complete at the tim e we were designing I DS,

�l lld i t did not inc lude e i ther : 1 service provider interbce
or :1 rdcrence implementJtion 6 We did ex<1mine the
XFN d ra ft and designed the I DS i n terfJce to be com
p�niblc with XFN , with a view toward su pport i n g the
XfN API in the fu ture. Supporti ng the XFN i n terbces
on top of I DS wou ld be a rehtivelv srraigh trc>rw:Jrd
task, �md we llJve considered doing this_

The PATH WORKS Application

I n rhe NOS environment, each NOS h�1s irs own
directon· or pseudo-d irectory_ NetW:Jre ve rsion 3
i m plcmnns the Binderv; NervVare 4 imple ments
N DS .7 TIK \'Jrious implementations of Microsott's
LAN Manager protocols provide a ''irtual d i rectory
b�1sed on i n tcm11ation mai ntained bv i rs dom:1 i n con
tro l lers . I n :1 mu ltiple NOS eil\' ironme nt, the user is

presented with m u l tip le i n �(mn:Jtion sources ti·om the
m u lt iple d i rector ies . E\'Cil worse, the user mav be
taced with m u l tiple i n �cm11ation sources even in a si n
g l e NOS environment, since there m a\' be m u ltiple
NetWare Bi nderies or LAN Manager domains.

Multiple N OS environments do not, i n and of them
selves, cause com p l e x ity and confusion . Problems arise
when people within �1 single environment want to sh<ll'C
resources across m u l tiple environ ments. For example,
consider a common local area network (LA N) configu
ration where NetW:Jrl: is i nst:J ikd on the c l ients : 111d
servers tor one departmellt and Microsoft's LAN
Manager (contained within products such as
1'v1icrosott's Windows t(>r Workgroups, Wi ndows 9 5 ,
a n d Wi ndows N'T' ope rati ng systems, or the LAN
Server prod uct ti·om l nternation:J I Busi ness JV!Jchines
Corporation) is insr:: d lcd on the c l ie nts and ser vers tor
another depart m e n t. I f each department's resources,
users, and administration personnel Jre kept d istinct,
there is no problem . However, :111)' d esire to a l low
users to share resources between departments, or to
have com mon �ld min istrJtion over the departments
i ntrod uces administrative and user proble ms. I f a
printer is to be shared by the two departments, it must
be admi nistered twice : once in the NetWare environ
ment and once in the LAN M anager environ ment.
Users i n the two dcp:1rrments use d i fferent nJmcs t(H·
the same p ri mer. LJter NOS i mplementations, such as
DigitJI 's PATHWORKS ,·ersion 5 . 0 or the networki ng
sofuv:1re b u i l t i n to Microso�i:'s Wi ndows 9 5 that pro
vides su pport tor m u ltiple NOS p rotocols, do nothing
to manage the mu l tipl icity of names for the same net
work resource .

As we were contemp lat ing t h e set of capabi l i ties

we needed to design tc>r the next generation of
PATHWOlU<.S c l ient products, we reJi ized that solv

ing the connectivity probl e m i m pl ied i n a m u l tip le
NOS environ ment w:1s not enough . User access and
administrJtor con trol of NOS resources needed to be
consid era b l v s impler.

As we looked Jt the problems i n l arger networks,
we saw the need t(>r the ab i l i tv to provide more sophis
ticated means to locJte N OS resources. TypicJ I I v,
NOS c l ient sott\\'are provides the m eans to bro\\ se
the network to locate a resou rce . Hown·er, browsing
requires the user ro know the location of the resource,
specifical ly the name of the server, and to be able to
choose the resource on rhc server by recognizing
something about thl: resou rce n:1mc or J resource
description provided by the :1d mi nistrator. What w:1s
needed was a design thJt a l lows a user to search, Js
we l l as bro\\'SC, t(>r �l resource bJsed on \'Jrious attri b
utes describing t h e resource .

Fin:11 Jv, ex isti ng NOS ell\' i ron ments have a fair ly l i m
ited ,·ie\\' of the s e t of resources t llJt can b e referenced .

Digir,,[Tcdmid J uu nnl Vol . 8 No. 1 1 990 47

48

Both NetVVMe and 1·arious LAN J'vLm�1ger i m plemen
t:nions pro1·ide s u pport f< >r p ri mers and ti l e sh�1res .
We wamed to be ab le to extend the t\'pes of resou rces
th�1t could be refe re nced and lll<1 1 1Jged f[·om the new
d i rectory capabi l ity that we were design ing.

Thus we em barked on a d esign r()r the fac i l i ty we
i n i ti a l l y cal. led I DS, for lntegr.ned Directory Serl'iccs.
The PA'rJ-fWOR.KS version 6.0 i m p l e m e n tation was
cventl l �< l l v cal led Di rectory Assista nt . We refer to this
rcclmology <1S I DS throughout this paper.

Design Goals

As we looked at the rcq u ircmcms of the PATHVVO RKS
product, we fou n d rh:n m :1nv of those req u iremenrs
could tec hnicallv be mer with :1 11\' di rccrorv service thJt . .

wJs integrated into the PATHWORKS applications and
tool sets. PATHWORKS req u i red the :1b i l ity to

• Gi1'C a si ngle name to resources thJt em be accessed
lw means of m u l tip le sen'Crs or protocols

• l ns u !J te end users ti·om c h :mges in the w�1\'
resou rces are a l l ocJted :1mong the servers

• M:111:1ge resources in an N OS-i ndepe ndent man ner

\'Ve cou l d not simply pick :1 d irectory service and
i ntegrate it i nto PATHVVO RKS, becl llse we cou ld not
req u i re that al l c ustomers dcp lov J parricubr d i recton·
scn·ice Jt the i r s ite . The PATI:-IWO !\KS p roduct is
both NOS- a n d tra nsport - i ndependent ; i n trod u c i n g
s u c h :1 dependence was u n:Jcccpt:< b l c . We q llickh· rc:� l
ized t h J t these were the req ui reme nrs t h a t kept ma 111'
other :1pp l ications from using d i n:ctot'l' sen ices.

Our assu mption \\'JS that 111 J I W nct\\'Ork appl ica
t ions wou ld usc d i recton· scn·ices i f thev could, bur
that kw o f them could assun1c or req u i re a p:1rtic u lJr
d i rectory service . Working fi·om that assu mpti o n , we
selected the fol lowi ng design req u irements for I DS :

• D i rectory service independence

• Abi l itv to access ex isti n g d ,m
• Abi l i rv to jo in d i sp:�r:Hc namesp:�ces i nt o a s ingle ,

logical namespace

• Rcmm·:�l of barriers to successfu l dcplovmem of
:1 wide a rea network (WAN) d i recton·

• Abi l ity to h ide d i rectory nJme syntax

• Support of search

• Su pport of application-specific d i rectory entries

Directory Service Independence

Customers m u st be :�b le to c hoose the d irccton· sen icc
i n which the1· store resource i n formation . Some cus
tomers ha1 c a p rekrred d i rector\' scn·ice, \\'hich the\'
11·:m t to cont i n u e to usc. Other customers, who arc not
us ing a particu !Jr d i rectorv sen ice, prefer that Digital

Vol . H No. 1 1 9\1(>

pn>�·ides the d i rectorv sen·icc . I n :1 k11· cases , a cus
tome r m ight wish or even need to store intonnation
about d i tkrem resources in different d irectory sen·ices.

Ability to Access Existing Data

A great deal of i n f(mn�nion currently exists 1 11

�lppl ication -specific d i rectorv se rvices a n d in NOS

speci fic d i rectory scn·ices. A relarivelv large n u m ber
of applications a lso usc the native i n te r bces to store
i n f(m11Jt ion in the NOS d irectories . Al lo\\ ' ing users
to :Kccss this i n form:�tion d irect !\' through IDS \\'JS
critica l . We expressh· II'Jnted to :woid the need to
d upl iutc d i recron· i n torm�1tion in separate , i n comp:�t
i blc svsrems.

Ability to Join Disparate Namespaces into a Single,

Logical Namespace

Manv directory ser\'ices arc aimed Jt a specific appl ica
tion or J set of app l ic:nions. for example , c u rrent
X . SOO dcplovme nt s contai n mostll' people i n form:J
rion such as names, p hone n u m bers, and e lectronic
mai l :�dd resses. (Note: X . S OO i s an exrrcmclv fle x i bl e
d i recrorv sen·ice t h a t cJn be used t o store a l most an1·
k ind of' i n f(mnarion, bur f(>r h istor i c a l reasons most
deployments cont a i n people i n f(m11ation .) NOS d i rec
tories contain i n t(xnl :ltion :� bou t NOS resou rces such
:1s printers. Conseq uently, many user env ironments
hJI'e m u ltip le d irectory sen·ices, c1e h of which con
rains critical bu siness i n tonn:nio n . To access this e x ist
ing d:na and present i t to the user i n J meani ngfu l 11·:11',
these m u l tiple d i recron· n:: unespaces must be joined
i nto a s ingle, logic:�l n a mespace .

Removal of Barriers to Successful Deployment of

a WAN Directory

H ier:1 rc hicJ I d i rectory services gener:� l l \' req u i re thJt
the naming h ierarchy be designed berclrc the d i rectory
is deployed . Si nce t he hic r:1rc hy consists of names,
and names are sensitii'C and pol iriul ent ities, th is em

be an e x tremely d i fficu l t task. Oq:�a n i zations also
change m·er time, fu rther complicJti ng the problem of
design i n g a name h ierarclw.'

O rg:�ni zations that successfu l l y deploy d i rectorv ser
vices do so fi·om the bottom u p . The NOS d i rectories
:1 rc deployed precisely beca u se thev :woid the prob
lems i n herent in a n :�me hie r�1 rc lll'. A n a d m i n istrator
c1n set up a Novell 3 .x B i ndery t(lr a local organization
without worrvi ng about how the name o f one group
re l:�tes to the names of a l l the other group s . The
downside to the NOS d irecto ries is that they have
,, l i m i ted :1 bi l i t1· to scale be10nd a LAN . With I DS, II'C
\\':J i l ted to pro1·id e '' fr:� mework rh:1t wou l d gro\\· \\'ith
the user's em·ironmenr. A user cou ld stJrt ll'ith a loc1l
d i rccrorv b u r i ncorporate th:tt d i rcctorv i mo Jn enter
prise or global d i rectory "'hen the time \\'JS appropri
Jte, without affecti n g the end users or the applications.

Ability to Hide Directory Name Syntax

The sy ntax of the nJmcs in hicrJrchical di rectory ser
vices varies nor only fi·om one d i rectory service to
another, bur in some c1ses fi·om one implementation
of a single di recrorv service to another. The syntax for
Domain Name Svsrem names is ordered the same as a
postal mai l address, thJt is, fi·om the most-specific
componcnt. "·111 For example, a machine at Digital
might be bigAiplu. d igi t�1l . com. The X . SOO name
order is usu:� l ly (d epend ing on the impleme ntation)
the reve rse . The corresponding X . SOO name might
be : c = us;o= Digital ;cn = bigA i p ha. Particularh' in the
X . 500 case, difkrent svstems �md �1ppl ic:�tions a lso
accept difrcrent sep:-trJtor cluracters .

Together, the l OS designers hJve m uc h ex perience
with a nu m ber of d i rectorv services and their n:�me
synt:�xes. Users and appl ications deve lopers a l i ke have
been qu ick to poi 1H out the problems with d i rectory
Jumcs. These names :�rc cumbersome, conh1si ng, or
just plain i ncon venienr to type . The separator charac
ters within :-� d i rectory n:�me may have special mean
in gs on some operating systems.

Because of these l im i tations, we decided that a name
syntax spec i fic to I DS wou ld detract fi·om the va lue of
the so lut ion. An applicnion using I DS may choose to
prescnr its own syntax, one that is su i table to i rs partic
u lar environmenr Jnd prekrences. The AP I takes the
object name and the context, as described in the
Contex ts section . The service provider mod u l e uses
these ro construct the n:1me in the native name syn ta x .

Support o f Search

Users need to locate resources in a n u mber of ways.
The most ta mil i:�r met hod is to locate resources
b\' knoll' ing the ir n:�mc; this is often reterred to as
a white pages loo kup, n�1med :�Iter the printed U . S.
te le phone d irecrory of �1 lph:1betica l l v ordered names.
Searching for resources b:�scd upon i n formation about
the resources is referred to :�s �l vel low pages looku p,
named after the printed U.S. telephone directory
organ i zed bv business category. To support vel low
pages lookup, resources mu st be retrieva ble from the
di rectory service based on their attri b u tes. For a
printer, this might inc lude the type of printer, the loca
tion of the pri nter, whether it su pports color or not,
who is responsi ble f(.>r mainta in ing the prin ter, and
other i n form:�tion . IDS needed to support both yellow
pages and white p:1ges lookups.

Support of Application-specific Directory Entries

We saw a need to su pport two kinds of extensibi l i ty:
the abi l i ty f(>r �111 appl ication to crc:�te new kinds of
d i rectory en tries, :�nd the :�bility for a customer ro add
attri bu tes or other descri ptive i n f(xmation to the
d i rectorv en tries created bv PATHWOR.KS or other

appl ications. By providing appl iorions with the capa
bi l i ty to create new kinds of d irectory en tries, the I DS
designers al lowed IDS to be used by any appl ication,
regardless of i ts requ irements. By a l lowing the ad d i
tion of attributes to existing d i rectory e n tries, we
a l lowed c ustomers to easi ly :�dd i n formation that is
speci fic to their organiz:�tion to appl ication obj ects.
For example, a customer might add J speci fic cod e,
such as an asset identification tag, to all printer direc
tory entries.

Design of the IDS Fra mework and Service
Providers

I DS is an object- based system th:�t consists of a fra me
work and a set of service providers . For c larity, we fi.Jr
ther divided the ti-amework in to an A PI and a service
provider interface (S P T) . The API consists of a su bset
of the framework's objects and their publ ic v irtual
methods. The S P I i s a ge nera l ized, di rectory-service
independent i ntertace (descri bed in deta i l l ater in this
section) . The SPI objects define the abstract interface
to the d i rectory service . We use the term service
prouiderto reter to any directory service that provides
I DS storage. The service providers in teract with the
fra mework through the SPI .

Framework

The fi·a mework performs three major fu nctions:

• It specities the IDS di rectory- independent opera
tions.

• It dispatches oper:�t ions to d i rectory-specifi c mod
u les for execution.

• It verifies that a l l I D S objects and operations do
not violate the I DS sche ma.

F ig u re l i l l ustrates the structu re of I D S . When an
app�cation makes an API cal l , the fra mework exam ines
tbe name information and cal ls the appropriate service
provider. The service provider then ma kes the call to
the appropriate native d i rectory service client. When
the d i rectory c l ient returns the results , the service
provider converts the resu l ts i nto the I DS canonical
form. The design supports ju nctions fl·om one d irec
tory service to another, in that the result re tu rned
to the framework by the service provider may be only
a reference to an object in another di rectory service.

The abstract i n terbce to the d irectory service
ensures that I DS provides applica6ons with a consistent
level of functiona�ty without regard to which directory
service a customer has in his or her environ ment.

Because the words "object" and "object c lass" are
overloaded and overused in the i ndustry, we define the
words "resource" and "resou rce cl ass" to denote
objects represented in I OS. A resource is J di rectory

Digiral Teclmi(al Jou rnal Vol . 8 No. I 1996 49

50

IDS

APPL ICATION PROGRAMMING INTER FACE

FRAMEWORK

SERVICE PROVIDER INTERFACE

'-- I-
SERVICE SERVICE SERVICE

PROVIDER PROV IDER PROVIDER

NATIVE NATIVE NATIVE

D I R ECTORY DIR ECTORY DIRECTORY

CLI ENT CLIENT CLIENT

� � �
I I I

NATIVE NATIVE NATIVE

DIR ECTORY DIRECTORY D I RECTORY

SERVER SERVER SERVER

Figure 1
Structure of the I ntegrated Directory Services

e n try; it is a directory service object that represents
some network object. A resource class is the defi nition
of that type of d i rectory entry. For example, the d i rec
tory entr y that describes a specific pri nter is an I DS
resource, and the I DS class that describes every pri nter
en try is a resource class.

The framework provides extensib i l ity by defining
C++ object classes that allow for the creation and
mani pulation of resources, attributes, and attribute
val ues i n a type - independent manner. The type i nde
pendence al lows both appl ications and t he ti·amework
itsel f to manipulate I D S attributes and attri bute values
without knowing their types. As long as the new types
are bui l t on top of existing I DS system types, appl ica
tion writers may ddine new IDS types without mod i
fYi n g the service providers.

The fi·amework d ispatches d i rectory operations to
the appropriate service provider and maintains overall
system state and i ntegrity. Tt mai ntains a l ist of the
service providers that are currently avai lab le a nd
shows the errors encountered in any fai led loads .
This allows t h e svstem to continue to operate, a lbeit
i n a degraded st�te, even though one of the service
providers may be malfun ctioning.

Before we d iscuss the design of the SPI, we describe
tl1e fra mework's objects.

IDS Entry The fun damental IDS object is the canon i
c a l representation o f a d i rectory entry, t h e I D S en try.

Digiral Tc-dmical Jounul Vol . 8 No. I 1996

The I DS entry is a n abstract object . To create a
resource cl ass, appl ications define a resource type and
derive it from the IDS entry. IDS entr y objects are cre
ated and manipul ated through the API and translated
into the appropriate native d irectory format by the ser
vice providers. Derivatives of the IDS entry may define
J.d d i tional methods, but they may not override the
I DS entr y methods. The IDS entry methods are part
of the framework .

The I DS entry methods tall i n to one of two
otegories: those wh.ich manipu late the attributes and
va l u es contai ned in the I DS entry in a type- indepen
dent manner, a nd those which perform operations on
the directorv. Each I D S entry, each attribute, and each
attri bute val�1 e contains a type. For convenience, deriv
atives of the I DS entry may define additional methods
that manipu late certain attributes or values di rectly.
For example, a derivation tl1at defines a prin ter might
define a method to set rhe description attribute. The
implementation of this method would cal l the general
I DS entry a ttri bute and value manipu lation method
to set the value of the appropriate attrib u te .

As shown i n Figure 2, t h e IDS e ntry contains identi
f),ing information and the attri butes and attribute
val ues that describe the resource. T he context i d e nti
fies the service provider that performs directory opera
tions on th is entry and the location within that
di rectory service in vvhich this entry i s stored . The
resource type detines the kind of resource that this
entry represe nts. The reso urce name is the name by
wh ich applications and users refer to the entry.

The attributes of the entry are contained in a set.
Eac h attri bute in turn contains the vJiue or list of va l
ues associated witll the attribute.

Contexts The context is an object that uniquely iden
tif-ies a particular location in a partic ular namespace .
The I DS context i s very s imilar i n concept to the XFl'i
con text." All contexts contain the type i de ntifier for
the directory service and an in ternal name. The type
identi fi er is used by the fDS framework to dispatch
operations to the appropriate service provider. The
i n ternal name is the location wi thin the director y ser
vice described by this conre xr . The i n ternal name is
represented i n the native syntax of the u n derlyi ng
di rectory service. The service provider is responsible
tor setting and maintaining this in ternal name. (See
Figure 2 .)

Attributes and Attribute Val ues The type of an
::mribute defi nes the data type of i ts va lue or values.
The attribute value object is a canonical representation
of an acmal attri bute va lue . The attribute val ue object
de f-ines a set of methods tor accessi ng and manipu lat
ing val ues. For each data type supported in I DS, there
is a corresponding attribu te va lue derivation in the

I RESOURCE TYPE IDS_PRINTER

CONTEXT SERVICE PROVIDER TYPE: LDAP
LOCATION WITHIN SP: o=dec;ou=lkg

I RESOURCE NAME I NIST GROUP PRINTER

ATTRIBUTE SET

ATTRIBUTE N I
ATTRIBUTE 2 J

ATTRIBUTE 1

I ATTRIBUTE TYPE I IDS-ATTR-MAINTAINER

ATTRIBUTE VALUE LIST I
I ATTRIBUTE VALUE DATA TYPE l iDS-TYPE -STRING

E I ATTRIBUTE VALUE I JANE DO

t
I ATTRIBUTE VALUE DATA TYPE I
I ATTRIBUTE VALUE I

t
I ATTRIBUTE VALUE DATA TYPE I

F igure 2
IDS Entry

I ATTRIBUTE VALUE

IDS framework . This a l lows applications, and the I DS
framework itse l f, to manipul ate attribute values with
out knowing their types. The service providers, on the
other hand , use the type information ro translate from
the I DS data formats to their native data tonnats .

Types To al low customers and third parties to identi�'
their own IDS resources, the I DS type mechanism
must un iquely identi�' objects. The two identifiers we
considered using were un iversJI unique identifiers
(UU IDs) as defi ned by the Open Sofuvare Foundation
D istributed Computi ng Environment (OSF DCE) and
object identi tlers (OIDs) JS defi ned by the open sys
tems i nterconnection (OS I) standards. " · ' 2 Some direc
tory services identity attri butes with OIOs, wh i le others
use U U IDs . For appl ications defin ing new resources,
we wanted to avoid the necessity to obtain both an
OlD and a U U ID . It is possible to encode a U U I D in
an o r o , but the reverse is not true.

We cou ld encode a UUID in an O l D by registering
an OlD prefi x . The prefix would indicate that the

I

seq u ence after the prefix was a U U I D . U U I Ds are
fixed- length structu res generated from time sta mps
and Ethernet addresses, and therefore arbi trary infor
mation such as :111 OlD cannot be encoded in them.
UUIDs are also e::tsier tor appl ication writers to gener
ate because nu merous systems ship with tools to
generate them.

Certain d i rectory services, for example X . SOO, have
externa l type defin itions tor the d i rectory entries. lt
is possible to define a generic entry and then map
arbi trary values inro that entry, but I DS entries would
not be meani ngfltl when viewed with the native di rec
tory management tools. We fel t that this was u nac
ceptable, because i t wou ld make the management of
I DS entries in the namespace much more d ifficu l t .
Some systems use U U ! Ds to represent the type infor
mation. We chose to use U U !Ds si nce they are both
easy to generate and can be used in both U U I O and
OlD c lass definition systems. The use of OIDs wou ld
require U U I Ds to be generated for U U I D -based
systems and mappings to be maintai ned .

Digital TcchniL·al Journal V(ll 8 Nu. 1 l996 5 1

52

Com m unities An I DS com nH1 1 1 irv i s both an a d m i nis
n·ativc grou p i ng mechanism and ,1 logic:� ! loc1tion for
IDS resou rces . When people imcr�K r wirh the I DS svs
rem, rhev sec a com m u n i rv as the org�mizing principle .
The �1dmin isrraror contro l s r l 1e bou nda ries �1 11d mem
bersh ip of : 1 1 1 I DS comi11UI1 in·. T1·pic1 l lv, <1 com mun in·
represents either a p�1 r tic u L 1 r locnion such as a b u i l d
i ng or a hmcrional grou pi ng such a s :1 \\ Ork group.

I n i ri�1 l ly, \\'C consid ered :1 su pcrco nrnt ro jo i n m u l ti
ple d irectories i n ro :1 s i ngle logi ol d i rcctorv. This
supercontnt wou ld ha1 ·c cont�1 incd mu l t ip le contexts ,
one r(n c�1eh n•pc of resource su pported bv I DS . We
e1·enru a l lv subsu med the supcrconrot i mo a comrn u
n i n• :1 11d o i l ed it a resource COI1tor l ist. An I D S com

m u n in• is ston:d as �1 special object in rhe d i rectorv.
F.ach comm u ni ty's resource comexr l ist describes rhc
directories that 111�1kc up the com m u n i rv. The resource
context list is rhc kdcr:�rion mechanism by wh ich I DS
determi nes where resources of each type :�re stored .
Each e ntry in the resource context l i s t is �1 pa ir of
resource type :� nd conte x t . As users and app l ica tions
oper:�rc on entries in :1 com munity, rhe I DS ti·amework

COMMUN ITY

(th rough IDS enrry and comm unit\' methods) i nspects
the resource type and the com lnu ni n· to dercnn i ne the
context. Figure 3 i l l ustrates an IDS comnu1 11 i n•.

One of the p ro b l ems we anticipated w�1s th �H la rge
orga n i za tions ll'o uld na t u ra l l v re nd to h an: 111 anv I D S
com m u ni ties: How wou ld r h c user idemi t-\· these; We
cons idered J n addi tionJI h icr:�rchv in 11 h ich com m u
ni ties ll'ou ld be mem bers o f other co m m u n it ies . Our
usabi l i n· consultants cmpb ;1si zed that u sers should n or
have to broll'se a h i crJ rcll\' ro �Kcess resources . I n
response, we developed the concepts of t h e l oca l ami
the home com m u n i n·. The loc:�l com m u n i n· is �1ssoci-. .
atcd \\' i th rhe mach i ne J user is curremlv u sing- i t
represents a p lwsical location . The home com m u 11 i t)'

is the one with which the user is Jssoc iatcd or belongs .

vVe envi sioned rh:�t the home com m u n i ty wou ld be
the s:1me as the loca l co m m u n i tv �1 r the use r's normal
p l ace of work, b u t thet-c is t 10 req u i remen t i n h e rent in
the desi gn th:Jt thi ngs be orgJ n i zcd this W�1y. ror
example , if a user is associ:ncd with the com m u n i rv at
her work site and the nuc hinc she uses is :1 l so Joc1tcd
at that 1vork site, both her Joc1l communi ty and

DEFAULT
CONTEXT --------

Svc Provider Type = F7801 DB7-F675-1 1 CD-ABC2-08002B1 87D1 A (ODBC)
External Name = IDS_Group Community
lnlernal Name = E \\tuxedo\idsodbc\idsdbdir .mdb
Svc Provider Private = NULL

RESOURCE CONTEXT LIST
RESOURCE
CONTEXT

CONTEXT

OBJECT
TYPE

KEY:

c::::=J COMMUNITY

c::::=J RESOURCE CONTEXT LIST

- RESOURCE CONTEXT

c=J OBJECT TYPE

CONTEXT

Figure 3
l DS Com m u n i tv

Svc Provider Type = EFF4B840-EC52-1 1 CD-9E5E-08002BBA95CA (CDS)
External Name = ids_cell .lkg.dec.com
Internal Name = ids_cel l . lkg.dec.com
Svc Provider Private = NULL

Svc Provider Type = C723E850-A 1 A6-1 OAB-A699-08002B361 FC1 (LDAP)
External Name = c=us:o=dec;ou=IDS_Group Community
Internal Name = c=us:o=dec;ou=IDS_Group Community
Svc Provider Privale = YUMMY, 386. TCP/IP

\'ol. X :--:o I 1 996

her home comnHmiry rqm:senr this \\'Ork sire . If this
user works at another work site and uses a d ifferent
m:1.chine, her home community remains the s:1me, but
her loc;1l comtnun i ty rdlecrs the community wlH.:re
the new m:1chine resides. The concepts of local and
home communities do nor red uce the nu mber of
com munit ies, but they do prov ide a d irect method bv
\\' h i ch users can access the comm u nities that contain
the resources the\ ' most hTquentlv use . The local :md
home commu nities are a con,·en ience; users and :lppl i
cnions are in no wav restricted to those communi ties .

Search Support Search ing is handled by the search
object. The search object contains a commu nity (or
l ist of communit ies) , :1 resource tvpe, and Jn attribute
ti ltcr. The attri bute ti l tcr supports both equal irv and
comp:1rison match ing of attribute val ues and a l lows
c:1 l l crs to construct complex requests by conc:�ten;Hing
comparisons together in a series of Boole:�n opera
tions. For example, a cal ler cou ld construct a ti l rcr
tlut returned a l l pri mer objects that (((a re locJtcd
on F loor2) OR (are located on Floor3)) A N D (sup
port color printing)) . Combi ned with the lou I :md
home commu nity supporr, ti l tcrs al low applications
:md users to express ideas such JS "print this at the
c losest printer that supports color, t\\'o-sided pri nting,
:�nd then transmit i t to ;l n\' bcsi mi le machine in 111\'
home conHnu nirv. ''

The carch object's ddiult ti l tcr returns all objects of
the resource type in the locJI community. The search
object resolves the commun ity to a context :md passes
it to the service provider. The service provider con
structs a l ist of matching I I)5 cntrv objects to return to
the user. In I DS, the search object supports browsing.

The search object has mctl 10ds that d ispl:�y a diJ iog
and construct ti l rers bJsed on user input . vVhcn
design ing the S\'Stem , we dcb:Jted whether i t was bet
ter f()r the se:1rc h object to cont<l in both the fi l ter and
rhe search d ia logs or whether the fi l ter constru ction
belonged in the IDS en try. We chose to keep the
search dialogs separate h·om the I DS entry. Experience
with i mplementing resources derived ti·orn the I DS
enrn· h:�s shown this to be an error. Currently it is ncc
css;ll'\' to derive ti·om two objects , I DS entrv and the
sc1rch object, to implement a resource that has a
resource-specific search dia log. We wi l l be modirving
the search and I DS entry objects so that the construc
tion of the ti l ters and the di:� log that constructs the
ti l tcrs are I DS e ntry methods.

Schema The ser\ ' icc prm· idcrs transbte between the
n:�ti,·e d i rectorv object and the I DS en tn·. I n genera l ,
directory sen·ice entries arc n o t self- d escribing. I n
existing di rectory services, e i ther J schema or the
appl ic:�tion is expected to know the d i rectory-spccitic
f(mnat of the data . The btter i s more common than

the former, ,md in Jll\' case the schema methodologies
Jre unique to uch d i rectOr\' service .

From the poinr of \'iew of the native d i rcctorv ser
vice, IDS is the appl ic:� tion . To properly convert the
data, the se rvice providers must knmv what it is. The
service pro\'idcrs usc the schema to determine the cor
rect attribute <1 1ld \'J iue types to use when constructing
the I DS entrv of ;1 particu lar t\'pc .

The schema describes resource tvpcs, Jttri bu te
tvpes, and attri bute \'a lue data types. Logic:�l l v, the
schema is a set of t:�b lcs, one for each service provider,
which maps the native nJme or type to the I DS name
or type . These tab les are read by the I DS schema com
ponent when I DS is initia l ized. Bee:� use these tables
are external to the system , thev can be modi fied by
users or appl icJtions.

There is one l i m i tation on the exte nsion of the
schema : Ne\\' Jttribute and resou rce rvpcs can be
ddined, but thev must be composed fi'om the prede
fi ned IDS :l ttri bute \'alue types that the scr\'ice
providers can support. The service prov iders wou ld
have to be mod i ticd to su pport Jddition�l attribu te
va lue data types. This l im itation is not as severe JS i t
:lt fi rst appears. A rich set of data types is ddined in
the ex isti ng d i rccrorv sen·ices, and a re larivclv sm:\11 set
is in common us:1gc. Bv defin ing the I DS data types ro
encompass the set of Lhta rvpes ddined lw ex isting
di rectory services, we have reduced this l i mir:� rion to
J theoretical ra ther than a practical prob lem .

As a conseq uence of the use of schem:1, appl ications
must specit)' rile resource type tor Jny I DS operation .
This is a l imitation that in principle docs not exist in
other di rectory svsrems. After some consideration, we
concl uded that kw usefu l operations can be performed
on an object whose type is un known . To perfcm11 an
operation on objects of all rvpes, the schema c:�n be
i nterrogated t()J' the l ist of a l l supporred I DS object
types, and the opcr:�rion is then iterated over each type.

The System O bject The system object lo�1ds and
in it ia l izes the service p roviders. On in iti :� l izarion, the
svstem object constr ucts a l i st of the avai i:Jble service
providers ti·om those ddined in a local configurJtion
fi le .

The svstem object constructs and maint:1ins the l ist
of known communities . The system object obtains this
l ist using the fol lowing mechanisms:

• Inspect a wel l - known location (i f one exists) to see
i f i t cont:� i ns a cache of known comm unit ies.

• For c:�ch sen·ice prm·ider, call the d iscmn method
to ask the scn·icc provid er tor i ts l ist of known
communi tics.

• I f the system object is init ia l iz ing for the tirsr r ime,
prompt the user to create a community.

Digir.1l T<:dmiul)ourn;l l Vol . X No. I 1 996 5 3

54

Application Programming Interface

As me ntioned previously, we d ivided the fra mework
i nto an API and a service provider i n terface (SPI) . The
APT consists of the search object methods, the IDS
entry methods, the attri bute object :� nd value object
methods, and the system object methods necess:�ry to
access communities .

Service Provider Interface

The SPI speci fies the interface be t\veen the I DS frame
work and the n ative d irectory services. I r d efi nes the
semantics for aU operations that may be performed on
I DS i n f-ormation regardless of which d i rectory service
stores the i n f-ormation . The SPI effectively insu lates
both the I DS framework and the I DS appl ications
from the unique syntax and req u i rements of d i fferent
di rectory services.

A directory-specific modu le, cal led J seruice prouider
lihrary, provides a directory-service-specific i m plemen
tation of al l SPI operations and translates resource infor
mation back and forth between the I DS entry and
the service-provider-specific format. A service provider
l ibrary must be implemented for each d i rectory service
to be su pported by I DS. Any directory service or infor
mation reposi tory system that Gln provide the I DS SPI
semantics may be an IDS service provider.

SPI Semantics The I DS SPI defi nes the tc>l lowi n g
main operati ons: create, read, search, modi �', discover,
and delete . All SPI operations spec i t)' the name of the
IDS com m u n ity upon which to operate . Each I DS
comm un i ty mai n tains a l ist of contexts rh:�t specify
in which service provider IDS resources of a parti cular
type arc stored and in what location within the service
p rovid er. The SPI uses this comm u n i ty name to
retrieve rhe context i n formation that di rects the oper
ation to the correct service provider l ibrary. \Vith the
exception of the del ete operation, which req u i res an
expl icit ly set context (to be sure that an expl ic it ly
located object is sel ected for de letio n) , i f the cal ler
does not set the commu n i ty name, the local com m u
n ity is assu med .

The create, de lete, mod ify, and read fu nctions all
operate on a s ingle I DS resource ar a r ime. Each,
therefore, provides an I DS entry object to idcnr it)'
an d/or describe the resource .

The create operarjon creates a new l DS resource i n
the d irectory. The create operation specifics the type of
IDS resource to be created, the resource's name, and
the I DS attri butes and va l ues associ:�ted with the
resource. On a successfld create oper:�rion , rhc service
provider constructs a unique directory-specific 1wme fi>r
the new I DS resource and stores this name in the
object's I DS entry. The service provi der su bseq uen tly
may use this name to find the object more qu icklv rather
than constructi ng it fi-om the name, resource type, a n d
context information contained i n rhc I DS entry.

Digital Tcc hniul journal Vo l . H No. I 1 996

Before constru cti ng the resource in the d irectory,
rhe operation val icbres the I DS entry against rhe
schema to ensure that it does not violate the sc hema .
For ex:�mple, attem pti ng to create a resource without
a requ i red attri bute va lue pair viol ates the sch ema and
is flagged as an error. Conversely, the delete operation
removes the I DS resource from the d i rectory.

The mod i fY operation updates the attri b u te :�nd
val ues associated with the resource in the d i rectory.
The mod i �' operation su pports the fol lowing u pdate
d irectives:

• Add a new attr ibute and value .

• Add a new va l u e to :�n exist ing attri bute.

• Re place a val ue of :�n existing attri bute.

• Del ete an :�ttri butc and its associated values.

• Del ete a va lue frorn an existing attri bute.

Each mod i f)r d i rective is veri ried against the schema
before being applied to the d irectory.

A read operation retrieves a u n i quely speci fied
I DS resource fi·orn the d i rectory, translates i t i n to
IDS entry format, and returns the I DS entry to
the call er. The read fu nction is typicaUy used to com
pare the di rectory format of an I DS resource to one
maintai ned in memory by an appl icati o n , or to process
I DS resources returned tl·om a search operation one
at a rime.

The search fi.I JKtion identities and retu rns IDS
resou rces that match the characteristics specified by
rhe ca l l er. To bound the scope of the search, the ca l ler
specifies the fol lowing search characteristics: resource
type, commu ni ty n:�me or na mes to be searc hed , and
a fil ter conta i n i n g attri butes and associated values or
value ranges .

The d iscover operation is cal led by the I DS system
object ro fi nd a l l comm unities known to a given ser
vice provider. Service provi ders for d i rectory services
that support a server sol icitation a n d advertisement
network protocol i mplement a discover function . In
th ese d i rectories, servers advertise the ir presence i n
response r o network sol icitation requ ests. T h e dis
cover method uses the d irectory's native sol i citation
and advertisement protocol to discover local d i rectory
servers and then issues the appropriate operati ons to
the server to determine if it has defined any I DS com
mu nities. Service providers that do not have a soli cita
tion and advertisement protocol can i mplement an
alternative discovery mechanism such as retrieving the
com m u n i ty i n formation from a fi le or provide no dis
covery mechanis m .

Construction o f t h e System : Di rectory, Session, and

IDS Entry Objects The SPI is constructed of three
framework objects: the di rectory object, the session
object, and the di rectory operation methods of the
I DS entrv object. The directory object is responsible

for service provider in i ti�1 l ization and terminat ion,
mai nte nance of session objects, and com munity dis
covery. Each service provider exports one d irectory
object to the I DS framework. The session object
impleme nts all the d i rectorv operations on a serv ice
prm·ider. Session objects are obtained fl·om the service
provider by means of the di rectory object. The fDS
entry d i rectorv operation methods determine the con
text if i t has not been set, obtain a session object from
the proper d irccrory, and d ispatch the operation to the
Jssociated service provider through the session object .
For eHicie ncy, session objects may be cached by the
service providers.

Implementation Considerations

Once we bad establ ished our basic approach , we
turned our attention to implementation decisions.

Client versus Server

Our first consider:�tion was whether to implement this
technologv as sofTware executing on a server system or
as soft\V�l i"C execu ting on a c l ient system . The server
solution had a n u m ber of attractive qua l it ies: it wou l d
110t be necess:Jn' to have a l l the native d i rectory c l ient s
o n :� I I the desktops, Jnd potentia l ly complex pro
cessi ng wou ld occur on :� n :�ppropriate plat form .
However, we identified two prob lems with the server
so lution . The tirst concerned secur ity. To access rhc
d i rectory service on bei1J lf of a particubr user, we
would have to imperson:�te that cl ient user on the
server machine . Although this c:1n be done without
ex posing securi ty holes, doing so adds :�nother layer of
complexity ro the problem. The second problem with
rhc server solution w3s thJ.t it requ ired the customer
to find a machine tc>r :1nd depl ov :1 server prior to get
ring started with the system . One of the design goals
WJS to remove lnrriers to d i rectory deplovmcnt, and
II'C were concerned that a server solution would add
a barrier. \V<.: s�l\\' :1 need tor both cl ient- and sen·er
based solutions, and since the client solution was sim
pler to implement, we chose to stJrt there.

Security

The I DS intcrbccs leav<.: secur i ty to the underly ing
directory services; we did not attempt to abstract :1

genera l -pu rpose, �Kccss control or authcntic3tion
interbce. The primary reason for th is was a conviction
that the V<lSt m:�jority of current d i rectory information
is world 1-c:ld, and therefore a complex access control
i n terbce wJs nor necess:�ry. An access control :�nd
Juthen ticarion l:!yer th:�t was d i rectory-service
independent would have :�d ded s ignificantly to the
complexity of the project, and we chose to postpone
this prob l e m .] DS docs pass requests d i rectly to the
native d irenorv-sen· icc c l ient; IDS does not a l ter
or im personate the user's ident ity. In that sense , i t

pertecrly p reserves the security inheren t i n the under
lying directory services.

Filter Implementation

The imp lementation of the I DS attribute fi l ter is based
on the string fi l ter as defined i n RFC 1 777 - '' The
Lightweight Directory Access Protocol (LDAP) string
ti l ter provided :1 convenient internal representation ,
and we wou ld be J.ble to reuse the LDAP parsing a nd
processing code that we had developed as part of an
e:�rl ier prod uct . We considered using SQL to construct
I DS attri bute fi l ters, but chose not to do this for imple
mentation convenience.

Service Provider Considerations

In i tia l ly, we though t that developing a directory
service -independent interface wou ld not be d ifficult .
Most of the required oper:�tions such as read and write
are straigh ttorward :�nd obvious. The implementation
of such an i nterface, however, proved to be d i fficu l t
because the underlying directory services have , in some
cases, verv d ifferent native capabi l i ties and sen1:1 ntics .
We chose to implement service provider l ibraries t(x
the t(JI Iowing th ree types of service providers :

• Open D:�tab:�se Connect (ODRC)-compl i :�nt
dat:�b:�se

• X . 500-based d i rectory using the LDAP

• DCE CDS

These service p roviders are representative of the types
of directories th:Jt exist today. Table 1 high l igh ts some
of the d i fferences :�mong the three d i rectories. As
this table i l l ustrates, not a l l d irectories can nJtivcly
su pport the semantics described by the I DS S P I .
I n these situations, we have fol lowed three J ! terna
tives: (l) the service provider l ibr:�ry implements the
fu nctional i ty, (2) the IDS framework implements
the fi.1 nctiona l itv, or (3) in a smal l number of cases, the
service provider c:�nnot imp lement the fu nctiona l i ty
and remJins less functiona l .

Some operations c:�nnor be supported natively by
on ly one or J sma l l handfu l of d i rectory services. For
these operations, we requ i re the service provider deve l
opers to implement (or emu late as best they can) rhe
fu nctional ity in the specific service provider l ibrary for
that d irectory. For fu nctions that a number of service
providers cannot su pport or that arc suHicient ly d ifti
cult to implement, we provide a common implementa
tion or emulation in the IDS framework that service
provider l i braries c:�n cal l . For example, CDS does not
natively su pport an attribute-based search mechanism .
Rather than :�ttempt to implement :1 CDS search capa
bi l i !J', we chose to provide an IDS ti·:�mework "prune"
fu nction thJt :�pplies an I DS filter to :1 l ist of I DS entries
�md returns onlv those entries that s:�tish' all cond itions
of the filte r. Service providers such as CDS can then

Vol . 8 1'\o. 1 1 996 55

56

Ta ble 1
Differences among the ODBC, X.SOO, a n d CDS Di rectories

Functional ity

Distributed di rectory service

H ierarchica l organ izati on of d i rectory in formation

Attrib ute-based sea rch

Attr ibute val ue-based search

Native schema su pport

User can extend IDS schema

Tra nsact ional sema ntics

Tol erant of interm ittent conn ectivity

Provides secur ity mecha nism on connections

emu l ate the I DS search fu nction by enumerating a l l
resources of a particu lar type and then ca l l rhe prune
fu nction to pare down the l ist of resources.

The IDS schema impleme ntation is another exJmple
of a common capabi l ity we have provided tor a l l service
providers to use. Not all service providers su pport
object, schema and, of those that do, fewer sti l l can sup
port user extension of the schema. We chose to a l low
user extensi bility and i mplemented a service- provider
independent schema interface and mechanism .

In a tew instances, we determined that ir wou ld be
too expensive i n terms of i mplementation time ro pro
vide a service -provider-specific or a n 1 DS-ti-::llnework
implemen tation of an SPI -mandated fu nction . I n
these cases, w e al lowed the service provider to remain
noncompliant . For example, a cal l to i ni tiate a session
to a service provider spec i fies user name ;�nd p�1ssword
argu ments. For those d i rectories that su pport user
name and password security mechanisms, we preserve
that functiona l ity. For d irectories such as the O D B C
service provider that do n o t support these securitv
mechan.isms, however, we provide no add i tional sec u
rity measures. T h e cost to i mplement a n d deploy such
a sec u ri ty mechanism outweighs the gain of h::wing the
add i tional features.

In addit ion, we fou n d that nor al l d irectories pro
vide the same semantics tor a particular opcr::1tion . for
example, when updating a resource, service prm·idcrs
han dle existence chec king of resource a ttri butes d i fkr
en tly. If req uested to add an attri bute va l u e to an
attri bute that d oes not yet exist, one service provider
re turns an error, while another impl icit ly creates the
attri bute. We worked around problems of this type by
carefu l ly specifying the semantics and error cond itions
of a l l SPI operatiom. Service providers that do not
natively support th ese srr seman tics mu sr i m plement
whatever add i tional fu nctional ity is req uired ro do
so. For exam ple, the CDS service provider req ui red
additional fu nctions that determined and fl agged
whether or not a p::1rri cu lar attribute existe d .

Diftiral Technic3l jou rn.\1 Vol . S No. I 1 996

ODBC x. soo CDS

No Yes Yes

N o Yes Yes

Yes Yes N o

Yes Yes No

Yes Yes No

No Yes N o

Yes N o N o

N o Yes Yes

N o Yes Yes

I n ad d i tion to a l l errors that are specific to sen·ice
providers, '''e retu rn an error rhat is ind ependent
of any IDS ti·a mework se rvice pro1·id er. Th is adds
another l evel of consistency ac ross our sen·,ce
provider impl ementations.

Current Applications

As with any fou n dation technology, the proof of its
viabi litv l ies with the applications that employ i t . In the
PATHWO RKS prod uct, we curre ntlv han� three appli
cations th::tt usc I DS:

• Network Connect

• I DS Administration

• Resource S)'nch ron izer

The Ne twork Con nect appl icJtion fi nds and con
nects users' printers and ti le shares . I t prm·i des a user
i n te rface that a l l ows users to browse or search tor ti le
shares or pri ntns . Through Network Con nect, users
can refer to resources by their l ogical name or their
attri butes. A single physical pri n ter, with queues on
several machi nes or several NOS syste ms, is presented
to users as a single prin ter. Network Connect uses the
I DS API to access the IDS search capabi l i t ies and
to transl ate a pri mer or fi le sh;lrc's I DS name to its
network-speci fic IUllle to con nect to the resource.
Network Con nect mav be accessed through the
Windows version 3.1 Print M<ulJgcr Jnd rile Manager
ut i l it ies and th rough the PATHWO RKS Network
Con nect ut i l ity.

The IDS Administration utility (I DS Ad m in) a l lows
a network admin i strator to m�111;1ge I DS resources
and com m u n ities. I DS Admin is int egrated into the
Digi tal ManagcWORKS Workgrou p Ad ministrator
for \.Yindows software producr . 1 ·' Ad m i n creates, mod
i fies, �md de l etes resources and communities. It
a lso a l lows users to browse I DS resources and com mu
nities in the Man ageWORKS hi erarchy and to sea rch
for I DS resources.

An ad mi nistrator c111 manage IDS resources manu
a l l v through the Man ageWORKS user i n ter bce or can
rely on information provided th rough the semi<lllto
matic resou rce col l ection uti l i ties ca l led the Resource
Gatherer an d Resource Synchroni zer. The Resource
Gatherer periodica l ly collects i n formation about
network LAN M an ager :m d NctWare pri nters and ri l e
shares. T h e Resource Svnchronizer ut i l i t\' processes
the ga thered i n torn1 ati on , u pdating the d i recton'. I t

�1 lso e l iminates d u p l ic.Hc entries a n d d iscards i n forma
tion the administrator wishes to ignore. The ga therer
and synchron izer a l low the d i rectory to be ke pt up-to
d� ne , even if resources arc added or removed throu gh
the native NOS in terfaces.

Future Work

In the fu wre, we plan to improve the JDS extens ib i l i tv

mechanisms. Cu rrent ly, a l oca l cop�· of the schema
ex ists on every cl ient . Propaga ting the changes to each
c l ient wil l become a problem as users and applications
extend the sc hema. \Vc arc cons idering stori ng either
the schema or a poi nter ro the schema in the di rectory.

The current I DS i m pleme ntation run s on both
the Windows versi on 3 . 1 and version 3 . 1 1 operating
S\'Stcms. We are c u rrentlv porti ng i t to Wind o\\'s 95
�1 11<.l in vestigati ng ports to other operati ng svstc ms,
such as U N I X .

T h e implementation docs n o r su pport t h e e n ti re
I DS desi gn : Although resource con text l i sts arc i mple
mented , there is no rcason:1bk way tor a user or
adminis trator to crc::nc them. The user in tcrf.1cc work
ti:lr these katu res in the I DS Ad m i n application has not
vct been com pleted .

Summary

I DS provides a mcc h:mism tor integrating m u l tiple
d irectory serv ices i nto �1 si n gle syste m . It is predicated
011 the ab i l ity ro define :.1 common et of directory opc r
::�tions and on rhe type information . The implcme nr::�
tion of three verv d i fkrent serv ice providers - C DS,
X . 5 00, and O D BC - i nci ic::�tes that we su cceeded i n
dctin ing t h e dirccton· oper:-�ti ons . The usc ofiDS i n the
PAT HWO RKS prod uct shows that it does add ress the
practical aspects of the problem of integrati ng mu l ti pk
directories i n to a single , logical directory service.

Acknowledgments

We II'Ould l ike to rhan k rhe manv past a nd present
l l lcm bcrs of the I DS tc1 m ll'ho contributed to the
design and i mplementation of the prod uct. Specia l
thanks to Konst�lnti nos Baryiames, Anthony
H i n x man, David Magi d , Tracy Teng, and Ta mar

\Vexler. vVe wou l d a l so l ike ro thank the mem bers of
the Directon· Task Force , Dah Ming Ch i u , Dennis
Giokas, and W i l l i am Nichols.

References

l . CC!Tr Necr! li!lilel ldation X 50 1 (1 992) and
!nj'omwtion Technology - Ope11 S)'stenls lnter
WIII' Iectio n - Fhe DirectOl l ': ,1,;Jodels. !SO/I EC
9594 · 2 : 1 992 (Gcnn-;1: Intern�rio n�1l Orga n i zation
tor Sr;�ntbrdization/l n ternational Ekcrrotec hn ica l
Commission, 1 992) .

2. " Naming Concepts" i n Using Net \!Vare Serl 'ices for
NI.Ms (Provo, Ut;l h : Nove l l , Inc . , 1 99 3) .

3 . AE'S!Distrihutecl Comput inJ!,- Oirector)' Serl'ices
(C1111 b1· idge, lV!ass . : Open Softw;ll·e fou ndation,
1 99 3) .

4 . "S tn:erTa l k N;l m i n g Ser� icc" in E.\S Adll l i l l istrotor �\·
Plan11i11g Cu ide (Westborough, lvbss. : Bam·an
Systems, f n c . , 1 992) .

5 . " M icrosoft Oi n.:crory Services Str�H<.:g)'," � \\' h i tc
p•lper from the l� usi ness Systems Tcch nology Scries
(Redmond, W<lsh . : M i crosoft Corpor� tion, 1 99 5) .

6 .)<J0j)(?l! Crl l:' .vJrxi/i'cation. Federated Atll l l ing· The
xr-:v Specijlwtion (Read i ng, U . K. : X/Open Com
pan\' Ltd . , 1 995) .

7 . " B i nden· Scn·iccs" i n Net Ware S)'stelll lnterjctce:
Techuical Orerl 'ieu· (Provo, Uta h : Nove l l , l n c . ,
1 99 0) .

8 . S . RJd ic a ti , " I m ple menting t h e DIT" i n X. 500 /)irec
IOJy Sen 'ic<'S: Technulop,y and f)ep!o vment (New
York : Van Nosn·;md Rei nhold, 1994) .

9 . P. Mockapctris, " Dom<J in NJmcs- Conu.:prs �nd
Faci l i ties," l nrcrnet Engi n eeri ng T1sk Fmcc, R.l'C:
1034 (Ncl\'cmbcr 1 9 8 7) .

10 . P. Moc bpctri s, " Domain Names- 1 mp l c mcntation
and Spcciticat ion," l mernet Engineering "L1sk force,
RfC 1 03 5 (Novcmber 1 98 7) .

1 1 . Al-.'5/JJistrihuted Computinp,- Nenwte l'mcedure
Call. AppenchY A (C:�mbridgc, M:�ss . : Of)t:n SoFtware
Fou n dation, 1 993) .

1 2 . CC!7T f?eco/11 lllc>I1 Ciat ion 208 (1992) ;l nd lnj(mna
t ion Techuolo,L!..)'-Upen S)'stems lnh·rconl lect ioii
Abstmct S)'ntox Notation One (/iS;V. ! J JSO/I EC:
8824- 2 : 1 992 (Ccn e\·<1 : 1 n tern<ltional Org:�nizarion t(x
Stantilrd i z;Hi on/l nrcnutional Elcctrorcch n ic1l Com
m issi on, 1 992).

1 3 . W. Yco ng, T. H m,·cs, ;lnd S . HardclStlc - Ki l l e , "X.500

Lightweight Di rccton' Access Protocol ," I n ternet
Engincc:ri ng T.1sk Fon.:e, RFC 1 777 (M�11·ch 1 995) .

1 4 . D. Giobs � nd) . Rok i c k i , "The Design of ,\r!Jn �lge
WORKS: A l ' scr I nred>1cc: hamcwork," f)<� ita/ 'f('ch-
11 ica/fou mal. l'o l . 6, no. 4 (F:\11 1 994): 63-74.

Di!o\iral Tcd1 11ical jou rnal Vol. 1\ :\o l 1 996 5 7

58

Biographies

Margaret Olson
lv!ar-garet Olson is a consu l ting software e ngineer in the
Network Software Group. She was the project and tec h
nica l leJder ror th e IDS development project. for the l ast
s ix years, she has had tec hnica l leadership roles in Digital's
Di n:ctorv Services Group. Before jo ining Digi tal in 1 989,
she worked in the networking and distributed. compu ting
areas at Apol lo Computer. S h e received a B .A. (Sigma X i)
h·om Wel lesley College i n 1 98 1 . S h e published a paper on
network l icensing in 1 988 .

Laura E. Holly
I .aura Holly is a pri ncipal engineer with the Network
SoFtw<lre Group. She was a key technical contri buro r ro
the I I)S development ef lort. Laura has previously con
tributed to the areas of DCE, distri buted system, and
knowledge- based system deve l opment. She joined Digital
in 1 9 1\S ,,Iter receivi ng an A . B . (h igh honors) from S m i th
College. Lama holds a patent and has pub l ished se,·eral
papers in the area of kn owledge- based systems.

Dig;ir01l Technica l Journal Vol . 8 , o. I 1 996

Colin Strutt
Col i n Strutt is a consu l ring software engi neer and tech n ical
d i rector ror Teaming Software in rhe Network Software
Group, where he is helping to defi ne new PC- based soft
ware prod ucts. Previously, he has held technica l leadership
ro l es i n d i rectories, ncrwork management, and term i nal
server development, and before rhat l ed product d evelop
menrs in F.t llerner servers and DECnet. He joined Digital
in 1 9 80 fi-om British Ai rways i n the U .K. He received a
B .A. (honours) in ! 972 and a P h . D . in 1978, both in com
puter science fi·om the U niversity of Essex, U .K. He is a
member of BCS and ACM. H e has two parents issued and
several patents pending and has pu blished extensively, par
ticu l arly on ma nagement techno logy.

Design of the Common
Directory Interface for
DECnet/051

Dig ital has developed the Common Directory

Interface (CDI) as the means by which DECnet/

OSI can now access and manage node name and

add ress i nfo rmation i n multiple directory ser

vices. CDI com prises l ibraries fo r node name-to

address tra nslation and a tool set fo r managing

and migrating node information among differ

ent d irectory services. The Common Directory

Registration API is layered on top of a set of

di rectory service wrapper routines to provide a n

extensible mechanism for adding new directory

services. CDI g ives customers g reater flexibi l ity

in choosing a d irectory service and s u pports the

new mult iprotocol ca pabil ities in D ECnet/051,

which support the open syste ms i nterconnec

tion (OSI) standards.

I
Richard L. Rosenbatm1
Stanley I. Goldfarb

The Common Directory In terface (C D I) provides the
abi l ity to store and retrieve DECnet node information
from a variety of d irectory services. It consists of the
CD! Ebrary, which enables m u l tiple d irectory access,
and the COl registration tool scr, which creates and
mai ntains node/add ressing inf(xmation in m ul t iple
directory services. CDT was developed for the DECnet/
OSI for OpenVMS operating system version 6.0 and
for the DECnet/OSJ for Digital UNIX operating sys
tem version 3.0 .

This paper begi ns by prese nting the prod uct goals
and the background of the COl design. It then dis
cusses the structure of the CD! components, the CD!
l i brary, and the CDI registra tion tool set.

Design Goals

As the i nterface to DECnct node i n f(Jrmation from
m u l tip le directory services, CD! was designed to meet
the following goals :

• Give DECnct network admin istrators and users
a choice of d irectory services.

• Provide system adm i n istrators with an easy- to- usc
node registration roo l .

• Enable easy a n d flexible configuration o f d irectory
choices.

• Provide d evelopers of the DECnct protocol soft
ware with a simple i nrernal interface that h ides the
complexities and ditkrences between the various
d irectory services .

• Provid e a common design to r both DEC net/OS I
platforms: the OpcnVMS and the Digital UNIX
operating systems.

• I nteroperate with o ld er, non-COT systems.

Background

In 1 99 1 , Digita l updated i ts DE Cnet networki ng
products to i nclude the use of the DECdns distri buted
d irectory scrvicc . 1 D ECd ns provided a highly scalable,
d istri bu ted i n formation sou rce for transl ating node
names to add resses and add resses to node names.

Digital Tcdmic1l)uurn;d Vol . 8 No. I l9Y6 59

60

In i ti: d lv, customer accepta nce of this name service ll'as
low ror a n u m ber of reasons:

• Adoption of this new tech nology req uired a s ign i f-i
cant learning curve.

• Sign i f-i cant p lann ing was required before rhe
DECdns service cou l d be d e ployed .

• Users ofsm�l l l netll'orks d id not need the featu res of
a d istributed naming sen·ice - r he costs our
weighed the be nefits . These customers req uested
a namin g service based on local files s imi lar to
the Phase JV D ECnet prod uct.

• Cu stomers were dep loying a nu mber of other
di rectory se rvices- in particu l:�r the Donuin
Name System- for stori ng host i n rorm:nion for
transmission control protocol/internet protocol
(TCP/ I P) networks . 2

• A ne\\' comprehens i\T sen·ice, X.SOO, h:�d t h e
adqntage or' bei ng an in ternational stancbrd . '

These reasons, together with the need to d irectly sup
port TCP / I P host n:1mes and ad dresses, prompted
Digi ta l to i ncorporate new di rectory service choices
in a new rel ease of D ECnet/OSJ softw:� re .

CDI: Basic Design

Supporting m u lt iple name sen·ices requ i red decisions
ro be made concerning naming synt<l \ , m u l tiple
�1dd ress formats, �md loca l ri l e su pport. These decisions
aft-Cered the design of both the CD! l i brarv and the
CDI registration tool set.

Client-based versus Server-based Design

The earliest <lnd most h.l lldamental design decision \\'�ls

choosing between a cl i t:m- based or a sen·cr-based sol u
tio n . With a c l i e nr- b�1scd design, su ppmt for the \ a ri
ous d i rectory services wou ld be accomplished through
;j variety or' c l ie l l t- b�lSt:d programmin g l ibrarit:s. With
a server-based desi gn, a s ingle client l i brary wou ld
com mtmicate with a new "mu lti headt:d '' server that
wou l d fan out to tht: di rt:ctor\' servers.

Ta ble 1
N a m i n g Syntax

Di rectory Service Example Name

Si nce c l ients outn u m ber servers, a c l ient-based
approach a ft-Ccrs more systems during the upgrade
process. In spite of this d rawback, we chose a c l ient
based sol u tion for the followi ng reasons:

• Implementation of the c l ient- bJscd design wou ld
be less compln than the server dt:sign .

• A c lient-based d esign d i d nor have t h e syntax and
protocol transbrion issues of <1 sen·er-based d esign.

• 'vVith a sen'Cr-based solution, c l i e nt cha nges " ould
sti l l be req u i red to support new native naming
syn ta n�s .

• For sm�1ll i nsta l l ations, no servn wou ld b e needed
if node i n rc>rmation was stored in a local t-i l e : local
ri le su pport was nor possi b le with a snver-only
appro�u: h .

Naming Syntax

One of the most visi ble complications when su pport·
ing mu lt ip le naming services is the nt:ed to recognize
d i tkrt: n t nanK synta\es. Table 1 givt:s the d i fferent
syn uxes t< >r th ret: widely used d i rectory services.

A fu rther compl ication of supporting d i fkrent name
S\'IH:l\t:S was the usc of an internal D ECdns name
fo rmat bv netm>rk management. On<.: of the goals of
the C D ! dt:sign II'JS to a l low ma nagement requests
to be exchanged \\'i th older, non - C D I systems.

For the i n i ti a l i m p lemenution , C D ! conti nues to
su pport the internal DECdns format, r�nher than use
a newer, non -D ECd ns specif-ic forma r alongside
rhe ex isting one. As a resu l t, C D ! is req u i rt:d to map
non - D ECd ns names onto the DECdns format . For
e\amplc ' the name bq.XI 'Z COl l i ri·om the Domain
Name Svste m maps omo the D ECdns name
DO. I fc1 1.\: bq .nz.wm (actuJI Iv onto the i n ternal
DECd ns fcm11 of this name) .

Multiple Address Support

AJ ong with the in trod uction of C D ! , a major inn o
vation in this re kase of D ECnerjOS I was d i rect sup
port rc>r TCP/ I P transports in :�d d i tion to the ex isting

DECdns

Domain Name System

X. SOO

XYZ : . h q .sales .system 1

system 1 . sa les . h q . xyz.com

/c= U 5/0=XYZ/ou =hq/o u=sa les/a p=syste m 1 /ae=D E Cn et

Notes:

The X. 500 service is not supported by the first release of C D ! .

T h e syntax shown for X. 500 is commonly u s e d but is not part o f a standard.

\'o l . X ;\lo. J l lJ96

support r(lr D ECnet Phase IV <l lld 051 . To s impl it-\· the
in iti J I implementation, IP add resses JIT rcrriC\Td on l \'
ri·om the Domain N:� me Sys tem (n ot from DECd n s) .
However, r h c design of CDI a l l ows t he rctrie,·:�l of
both k i nds of add resses ti·om an\' su pported di rcctorv;
f(> r example, OS! add resses can be obt:� in cd from the
Domai n Name System .'_;

Support of m u l tiple protocols crc:�tcd :� norher nam
i ng issue. Many customers a lready have a Domain
Name System in place in thei r networks. Otten DEC:net
systems arc ;\[so ru nning TCP /IP protocols •md ;u·c reg
istered i n the Doma i n Name System, vet these systems
arc nor running D ECnet software m-er TCP/IP . for
example, a SI'Stcm registered as hq.\\'Z.com ma\' be
di rect!\' n.::�chJble with TCP/TP bur nor 11 ith DECnct
o1·er TCP/ IP . In this case, i t is possible rhar C D ! nuy
rctrie1·c a vJl id lP add ress tor a remote SI'Stcm that is
unreachable by the D ECnet protocol .

for these rc:�so ns, when C D ! de termines rh:�r both
the Donuin Name System and the D EC:dns naming
service (or a local fi l e) are spec i ri ed in th e seJrch pJth,
i r docs not stop processin g rhe se;m:h path u nr i l both
the I I' add ress and the OSI add ress l uvc been
obr:� ined, or u mil rhe end of the l ist has been re;Khed .
ln this way, if the desired remote system is not ru nnin g
D ECnct oYer TCP/ IP, an Jtte mpt to connect w i l l be
m;ldc throug h the DE Cnet protocol , using 3 conncc

rion lcss n e twork ser\' i ce (CLNS) OS! <ld d ress .

Local File Support

Early versions of the DECner networking prod uct
ofkn:d onlv '' local fi le to r node -to-Jdd ress i n forma
ti o n . The first rel ease of DECnet/OS I replaced the

! NETWORK I MANAGEMENT
DECN ET/OSI
APPLICATION

local ri le with the DECdns n a m mg serv ice . U n ror
tunatelv, admin istrators of sm a l l - and medium -sized
networks fou n d th :n the be ndits of D ECdns (sca l in g
and centra l i zed m;mage mcnt) were ou twei ghed lw i ts
add i tion.:d complcxitv.

A subsequent version or· D ECnet/OSI i ntroduced
the Local Naming Option. T h is a l lowed approxi
mately 1 5 0 nodes to be stored in a locJl ti le, but many
cu stome rs fo und this number to be too sma l l .

C D I su pports a very brge local fil e : t h e supported
l imit is 100,000 nodes, b u t there is no ti xed i n te rn al
l imit . In addition, throu gh the use of the se.1rch
p:1rh, customers em con figure the local fi le e i ther as
a backup to a d istributed service, or as a way to provide
greater per formance. Note that both of these qual iti es
are a lso provided in '' more au tomated wav by the CDI

cache (see rhe CDI Li br;m· Cac he sect ion for more
i n tormarion) .

Security Considerations

cor relies upon the secu rity provided by the underlying
directory services (or in the case of the locJI fi le , the file

system). Security of i ts remote management teaturcs
depends on the network manage ment security svste m.

CDI Libraries: Basic Design

C D I is i m p l ememed as sha red libraries on both the
Digital U N I X and the OpcnVJv!S oper:ning svstems.
At the highest lei e l , the design is identical on both sys
te ms, as shown i n F igu re l . Narne-to-Jdd ress transl a
tion req uests from th e session control layer are passed
through J single entry point in each CDI l i brary.

DECNET/OSI
APPLICATION

I I

Figure 1

f----------1: SESSION CONTROL LAYER I
r - - - - - - - - - - - -� - - - - - - - - - - -
1 COl SHARED LIBRARY I I

L-t---------11 COMMON DIR ECTORY I I I I I NTERFACE LIBRARY I

: I I I I :
I LOCAL FI LE DOMAIN NAME DECDNS FUTU RE I I INTERFACE �\�Ti

F
�

CE
INTERFACE INTERFAC E . . . I � - -i- - - - - 1- - - - - 7 - - - - - - - -

r J DOMAIN NAME
SYSTEM
SERVER

DE CONS
SERVER

B loc k Diagr.m1 of the CDI Libran·

Vol . 8 No. 1 1 996 6 1

62

Depending u pon the search path (descri bed bdow),
the CD! libraries translate and for ward the requ est to
one or more di rectory services (or they look up the
i n formation i n a local fi l e) .

The CD! i m plementation was considerably more
complex on the Open VMS operating system (han on
the Digital UNIX operating system due to the dif
fering design of D ECnct/OS I on each syste m . O n
the D i gital U N I X operati ng system, the DECnet/OS I
session control l ayer consists of a shared l ibr:1rv that
is l i nked with each network application . i-hmc
resol u tion requ ests arc processed synchronously. On
the Open VMS operating system, session comrol is a
component of the N ET$ACP process. Since a l l name
resolution requests are channeled through this s ingle
process, operations must be asynchronous (requests
must block concurrent operations) . I n add it ion , since
m u l tiple requ ests mav lx si m u l taneously outstandi ng,
the l ib rary is multi threaded . Asynchronous, mu l ti
threaded oper:nions o n the OpenVMS operating
system are impl emented using the asynchronous sys
te m trap (AST) mechanis m . For these reasons, the
CD! implementation on OpenVMS was much brger
and more complex.

CD/ Search Path

Another goal was to permit flex ib i l i ty i n determin ing
a configu ration of d i rectory services. The CDI design
achieves this goal i n rwo ways. F irst, i t a llovvs admin
istrators to se lect their service(s) of c hoice :md to use
them in any order. The search path is norm:�l ly cre<lted
during network con figuration and can be su bse
quently managed either loc:� l ly or remotely. Second, it
gives network users the ab i l i ty to use short, :� blm::vi
:ned names i nstead o f potentia l ly cum bersome ful l
n:�mes. For example, they can use "system l " i nstead of
"system l . sales .hq . xyz.com . "

A single mechan ism i n t h e C D I l i brary-the C D I
search path-provides these rwo capabi l i ties. The
search path consists of J series of d i rector}'
service/name temp late pairs , as shown in Figu re 2 a .
W h e n the CDI l i brary is given a n a m e to process, i t
scans the search path , rep!Jci ng t h e " * " in the name
te mplate with the suppl ied name. For example, if the
l i brary was searc h i ng for the name frodo. i t would use
the directory services ident ified from the n:�mes gener
ated shown in Figure 2 b .

D uring network configuration, a def
.
1tl lt search

path is automatica l ly confi gu red based u pon the local
node name and the admin istrator-specified dircctorv
services. This searc h path behavior is s imi lar to a
nu mber of existing TC:P j l P host na me/address
lookup implementations .

CD/ Library Cache

Occasionally, name service lookups can take a long
t ime to complete (f(x example, if req uests �lre travers-

Disit,1 1 Technic�! journ,11 Vol . � �" I 1 996

DECdns
DECdns XYZ .hq.sales.'

DECdns XYZ: . DNA_Node_synonym. ·

Domain
Domain · . sales.hq .xyz.com

(a) Direnory Service/Name Tempbte Pairs

frodo
XYZ:.hq.sales .frodo
XYZ: . DNA_Node_synonym. frodo
fro do
frodo.sales.hq.xyz.com

(DECdns)
(DECdns)
(DECdns)
(Domain)
(Domain)

(b) Address I .ookup tor N<HlK ji·odo

Figure 2
Using the CD! Search Path

ing a s low network l i nk, a lookup could take several
seconds) . To i mprove performance, the CDI l i brary
incorporates J single cache thJt :�cc umu !Jtes node
inform ation ti·om all the d irectory services. Usual ly,
the cache is consu lted before sen d i n g a req uest to
a remote service. However, i f session control deter
mines th::Jt cached i n form ation is sta le-t<.>r example,
if con nection to a node at a cached add ress reaches
a node with J. different name-it wi l l reissue the call ,
requesti ng that the cache be bypassed .

EJ.ch entry in the cache has a creation time stored
with i t . The c1che i tself has a " time -to-l ive" va lue that
can be modified by the admi nistrator. I f a cache
lookup fi nds :�n entry whose l i fetime (ti m e since it was
created) is greater tl1a n the time-to-l ive val ue, the
c:1che entry is purged .

To prevent a period of low performance i mmed i
ately after system start-up, the c a c h e i s preserved
across system reboots by period ical ly ch eckpoi nting
it to a disk ti l e . The c hec kpoint i nterval is adjustable
by the <ld min istrJtor.

CD! Reg istration Tool : Basic Design

The CD! registratjon tool provides fu nctions to create,
modifv, rerume, display, and delete node name and
:�dd ress i n formation in any of the supported d irecton'
services. It runs on tl1e major D ECnet/OSI platforms,
tl1e Open VMS and the Digital U N I X operating systems.

The basic req ui rements fo r the CDI registration
tool were the same as those for tbe CD! l i brary. These
three req u i rements were the need to:

• Support d ifferent d i rectory services tor storing
node intormJtion

• Access each d irectory service using the appropriate
application progrJ. mming i n terfaces (AP!s)

• Store data i n each d irectory service using the
:1.ppropriate data types

I n addition, the tollowing requ irements were spe
cific to the CDI registration tool:

• Both a forms and console user in terface bad to
be provided . These had to work i dentical ly on a l l
DECnet/OSI operating S�'stem platforms.

• Fu nctions to transfer node intonnation between
the various d i rectory services had to be provided .

• Other applications such as the DECnet/OSI
network control language (NCL) uti l ity and other
namespace management tools had to be Jble to
access node name n1Jnagement fu nctions.

The d irectory services su pported by the CDI regis
trJ.tion tool are s l ightly different from those supported
by the CDJ l i brary. The CDI registration tool supports
the DECdns, the l ocal ti le , and the D ECnet Phase IV
database services.

The DECnet Ph:tse J V da tabase is supported by the
C D ! registration tool to al low administrators to use
old Phase IV node i n tormation when popu lating
the node na mes and addresses tor DECnet/OS I . The
Phase IV d atabase i s not supported for node name-to
add ress lookup by the CD! l ibrary.

Due to its l ack of a remote update capabi l ity, the
Domain Name System is not supported by the CDI
registration tool. Node n:tme- to -address information
in the Domain Name System is managed using its
native too ls. Dynamic updating of the Domain Name
System servers is cu rrently under study by the I nternet
Engineering Task Force (I ETF) Domain Name
System Working Grou p.

Application Design

The design of the CDI registration tool uses a cl ient
based , multi l ayer approac h . It is l ayered on top of a
specia l ized API , cal led the Common Directory
Registration (C D R) API . The CDR API d i ffers from
the API provided by the CD! l ibrary in that it presents
a fu l l set of ma nagem ent operations, rather than just
the lookup operations req ui red by DECnet/OS I .

I n this design , the CDI registration tool provides
r()fmS and console user i nterfaces for node i n forma
tion managemen t. It a lso provides functions beyond
the basic ones provided by the CDR API, such as
exporting from and importing to a di rectory service .
The function of the CDR API is to perform al l u nder
lying node name management operations i n a stan
dardi zed manner. This layered approach was adopted
to make node name management fu nctions avai lable
to appl ications other than the CDI registration tool .

The CDR API defi nes a node defin ition object. This
contains a l l the intonnation that is exchanged between
the CDR API and the application and is a canon ical ,

d i rectory-service - i ndepen dent data representation of
al l information needed by the CDR API to manage
node names and addresses.

To provide an extensible mecha nisrn tor adding new
d irectory services, the CDR AP I is layered on top of
a set of d irectory service wrapper routines, one per
supported d irectory service. Access to these wrapper
rou ti nes is provided by a set of entry poi nt ta bles that
can be extended to support new d irectory services.
The CDR API is responsible for accepting appl ication
requests and d ispatching them to the correct directory
service by means of the appropriate wr:tpper rou tine.
The CDR API wrapper routines are descr i bed l ater in
this section .

Figure 3 shows the design of the CD! registration
tool and the CDR API .

CD/ Registration Tool User Interface

The fo rms and the consol e user i nterbccs had to
present exactly the same characteristics on both the
OpenVMS and the Digi tal U N I X operating systems.
Because no high- level software pac kages at the time
could provide this level of user i nte rface porta bi l ity, we
developed them for this application.

The console user i nterrace parses commands and
dispatches them to the appropriate user req uest pro
cessing routine, using a portable com mand p:�rser.

The forms user in terface obtains input from task
specific forms and dispatches the fu nction or ti.mctions
associ ated with the form to the appropriate user
request processing routine . The fo rms processor
was written specifical ly for this appl ication because
no ex isting l i braries cou l d provide the requi red level
ofportabi l ity.

CD/ Registration Tool User Request Processing

Each user request maps into a specific request process
i ng fu nction as fol lows:

• Register. Create a new node name entry in the
directory service.

• Add address . Add address in tormation ro a node
name en try.

• Remove address. Remove add ress information
tfom a node name entry.

• Mod i f)' address. Replace the address information in
a node name en try.

• Update add ress. Replace the add ress information in
one or more node name entries, us ing information
obtai ned from the nodes themselves (i f possi bl e) .

• Modit)' synony m . Replace the node svnonym i n a
node name entry.

• Rename. Change the name of a node n:�me emry.

• Show. Display the information contained in one or
more node name en tries.

Di giral Tcchnictl journ.tl Vol . 8 No. 1 1996 63

64

g
I

CDI REGI STRATION TOOL
r - 1
I

FORMS USER INTERFACE I I CO�SOLE USER I NTERFACE
FORMS DEFINITIONS COMMAND TABLES

REQUEST DISPATCHER

SHOW REGISTER DELETE
PROCESSING PROCESSING PROCESSING

. . .

C D R API CALLS CDR API CALLS CDR API CALLS CDR API CALLS
I I I I

r - - - - - - - - - - 1
CDR API I � - - - - - - - - - - - � - - - - - - - - - - J

I
I I
I I

ENTRY POINT

SHOW
PROC ESSING

WRAPPER CALLS

I

ENTRY POINT

REGISTER
PROCESSING

WRAPPER CALLS

I

ENTRY POINT ENTRY POINT

DELETE . . .
PROCESSING

WRAPPER CALLS WRAPPER CALLS

DIRECTORY SERVICE WRAPPER ROUTINE DISPATCHER

DECDNS I WRAPPER ROUTINES I LOCAL FILE I WRAPPER ROUTINES I PHASE IV DATABASE
WRAPPER ROUTINES

I� I

I I

DECDNS LOCAL FILE DECNET PHASE
IV DATABASE

Figure 3
Blo..:k Diagram of the CDI Registr:�tion Tool ;md the C D R API

• Dcregister. De lete one or more n ode name en tries
by n:�me , synonym, or address.

• Re pa ir. Fix any detected probl em s or i n..:onsistc n
..:ics i n the d i rectory service tor one or more node
name en tries.

• Export. Copy the information r(Jr one or more node
I U I Tle e ntries fl'Oill the d irCCtoJ'\' scn·i..:c into a teXt fl J e
th;H can be copied between svsrcms, edi ted i f neccs
san·, and i mported i nto am· other di rector\' scn·ice .

• I m port. Usc Jn export text ti.Je to register, mod i !'\·, or
dc rcgistcr node name en tries in a d i rccton' servi ce .

The request processi ng routines perr(mn ;1 1w req u i red
l' :t l i d :ttion of the user req uest and tr:t nsLue those
requests to cal ls into the CDR API. Eac h request may
map i nto one or more CDR API calls, dependi ng on the
complexity of the request. For example, reg ister and
dcreg istcr requests both map i nto si ngle CDR A PT c:tlls,
and e xport and i mport req uests m:�p i nr o several ca l ls .

i\1{ost req u ests are straightrc)fll':trd i n their pro
cess i ng rcqu i remcllts . For e x a m p l e , :1 reg iste r req u est
s im ph· cal ls the C D R A P I regi ste r enr r v po in t . The
C D R API t:t kes care oL:uw complic :ttions in processi ng
the req uest.

Vul . R No. 1 1996

Some requests can operate over m u l tjple node n�une
e ntri es . For cx::un pl e, the show req uest en u me rates
the node na me e n tries, retrieves the i n rormation con
tai ned in each node name e ntry, and displays the i n for

mation ro the user.
An e x port req uest is s i m i la r to a show request,

except that the resu l ti ng i n ri:m11:1tion i s written ro a
tex t file i n a stand :ml rom1<1t i nstead of being d isph1\ 'ed
to the ustr. The i mport request, however, is more
co mpl i cated . This req uest must e n umerate and show
the conte nts of the d i recron• service, and then com
pare the res u lts with the conrenrs of the tex t fiJe . Based
on the spec i tlc form of the im port request, i t mav then
reg ister new node n:�nK en tries, update the i n r(>rma
tion in ex ist i ng node name entries, or deregister l isted
node name emries.

The export and i mport requ ests make use of a text
file to provide maxi mu m tl c.x ibi l i ry. The use of a text
ri le a l l ows the i n form:�tion to be copied between dis
similar plartcmm such as the OpenVMS and the
D i gita l UNIX opera ti ng svstems, and all ows the i n r(>r
mati on to be manipu lated usi ng s tandard tools such as
batch ri les, grep, awk, �1 11d text ed itors . This is parricu
larlv usdi.d when applv ing a ch,mge to all node entr ies .

For example, the contents of a d irectory service cou l d
be ex ported to a text fi le , the add resses i n the te xt file
ch:1 1 1ged to rdl ect a new routing area, and the res u l ts
i mported back in to the di rectory to update the exist
ing information .

The repai r fu nction pertorms a show operation on
a l l speci fied node na mes to determine if any consis
tency errors arc found. This type of error can occur i n
di rectory services that keep mu ltiple physical records
tor each logical node name entry. D ECdns is one
e x:1mple of this ki nd of d i rectory service, because i t
uses soft: l inks to map node synonyms and add resses
b;Kk to their respective node name entries. If this type
of error is found, the repair fu nction re - registers the
node S\'nonvm and add ress i n formation to correct
these in consistencies.

The most complicated req uest is the update request.
This perfcmllS a show request tor the specitied node
na mes <l lld attempts to use the cu rrent add ressi ng
int(xmation contained in the node name entry to make
a network management connection to the node i tsel f.
For each node name entry, it steps through the com
pl ete set of registered addresses and tries each add ress
in tu rn , using both a D ECnet Phase IV connect and a
D ECnetjOSI connect. I f a connect attempt is success
fu l , it uses the appropriate network management
requests to read the true addressing data. It then com
pares this <Kid ressing data to what it found in the direc
tor\' service and makes an�r necessary corrections to the
node n:�me entrv. The update operation does not oper
ate on I P :�dd resses due to the lack of dynamic u pdate
c:tpabil ities in the Domain Name System servers.

Bdore m:tking the CDR API caJ is , al l request process
ing routines convert the user request dat:t into a node
ckfinition object, which is discussed in the next section.

CDR API Node Definition Object

The node defi n ition object is the only input data pro
vided to any of the CDR API entry poi nts. It stores the
neccss<lrv data for any di rectory service operation,
using a canonical representation . The node defin ition
object contains the fol lowi ng:

l . Type of directory service to access

2. N:tme of the node entry to access (depending on the
ope r:�rjon being pertormed , it nuy aJiow a fu l ly qual
ified mme, J synonym , an address, or wildcards)

3. Synonym name (f(x DECnet Phase IV Jccess)

4. D ECnet l'h:tse IV network service access point
(NSAP) prefix (tor use when a Phase IV add ress is
specitied)

5 . Add ress information

6. Di rectory na mes used tor reve rse mapping of
wnonym names and addresses back to the tli l l y
qua l i fied node name

The CDR API controls al l access to elements within the
node defin ition object, which fu rther isolates the cal l
i ng appl ication from the lower- level data structures.

CDR API Entry Points

Each CDR API entry poin t provides one logical fimc
tion to the cal l i ng appl ication . Each user requ est can
translate i nto one or more C D R API fu nctions. The
functions are

• Register. Create a new node name entry in the
directory service.

• Add address. Add address i n formation to a node
name entry.

• Remove address . Remove address information
from a node name entry.

• Mod i f)r address. Replace the add ress information i n
a node name en try.

• Modify synonym . Replace the node synonym in a
node name entry.

• Rena m e . Change the name of a node name entry.

• Show. Return the information conta i ned in one or
more node name entries.

• Deregister. Del ete one or more node name entries
by name, synonym, or address.

• Enumerate . Re turn a series of node name entries,
one at a ti me, based on a wil dcard specification .

A l l node i n formation passed ro a n d from the CDR
API is in the torm of a node defin ition object, as
described previously. The CDR API functions val idate
the canon ical information contained i n the node defi
nition object and dispatch a d irectory-service- specitic
function to handle the req uest.

CDR API Directory Service Wrapper Routines

Each directory service su pported by the CDR API has
an associated set of d i rectory service manage ment
wrapper routi nes. These routines provide entry points
that are fu nction al ly identical to those provided by
the CDR API . The CDR API does the i nitial i nput
argu ment vali dation, and the di rectory service wrap
per routines perform the data manipul ation in the
u nderlying directory service.

The CDR API dispatches the appropriate directory
service wrapper routine using a set of entry point tables.
This provides a means to easily extend the CDR API to
include additional directory services in future versions.

CDR API Wrapper Routines for DECdns

In the DECdns name ser vice, each node name entry
contains all the i n formation required to translate a
node name to a synon vm or a set of node addresses.
However, no search mechan ism ex ists to al low a

Digiral Tech nical)ou m;\l Vol . 8 No. I 1 996 65

66

lookup of the node name entry based on the synonym
or on an address . For this reaso n, all fu nctions that cre
ate, modi!}', and delete node name entries (register,
modi !}' addresses, modifY synon y m , re name, and
deregister) m ust also create, modi f)', and delete reverse
mapping entries.

Reverse mapping entries are based on a node's syn
onym and add resses; they contain poi nters to the true
node name entry. These entries are used by the CDI
l ibrary lookup fu nctions and by the C D R A P I d isplay
fu nctions (show and enu merate) to Jccess the node
name entry when given a synonym or address.

The use of reverse mapping entries req u i res that
m u l tip le d irectory service entries be created tor each
registered nod e . These must be synchronized by prop
erly ordering the creati o n and deletion of the vari ous
en tries when registe ring, modit),ing, or dcregisteri ng
a node name. For example, when registering, the node
name entry is created and its synonym and �1dd ress val
ues arc set bdore the reverse mapping e ntries are cre
ated and set. S imi larly, when deregistering, the reverse
mapping entries are deleted bdore the node name
entry is del eted . This prevents orphaned reverse map
ping en tries from bei ng created , because they can
a lways be fo und by starring from the intornurion con
tained in the node name entr y.

The repair ri.mction is provided i n case a register or
deregister operation tai ls before complet ion. The
repair rtiiKtion corrects the reverse mapping entries by
re-registering a l l node name entries that show errors.
The CDI registration tool (nor the C D R AP I) provides
this h igher- level function .

CDR API Wrapper Routines for the Local Node File

Under the Open VMS operating system , the l ocal node
name ti l e is i m plemented using a record management
system (1Uv1S) -i ndexed fi l e . Under the Digital UNIX
operating syste m, a DBM-indexed ti le is used . On
both systems, the file conten t is esse ntia l ly the same.

The local node name ti le contains J series of logical
records, one for each node name e ntry i n the d i rectory
service . Together, these records ddine each node's
fu l ly qual i �ied name, i ts synonym, and irs add resses.
This logical record may be looked up usi ng the fu l l
name, the synonym, or any o f the node's add resses.

Each logical record consists of (1) a node definition
p hysical record , which contains al l i n formation re lated
to the node, and (2) zero or more reverse mapping
physical records, wh ich con tain a l ternate keys for look
ing up the node definition. Each reverse mapping
record contains only the node name key i n i ts record
data. All the data used to describe the node is con
rained i n the n ode defin i tion record .

Because m u ltiple records compose a node name
entry, operations that fail to complete can resu lt in

Vol . 8 No. J ! 996

inconsistencies in the local node file . Fortunately,
these i n consistencies can be resolved usi ng the same
synchronization algorithms as used for DECd ns.

CDR API Wrapper Routines for the DECnet Phase IV

Node Database

Access to the DECnet P hase IV node database is pro
vided primarily to hel p users migrate their Phase IV
node n:� m e d ata to DECnet/OSI . No access is pro
vided to this database by the CD! l i brary for
D ECnet/OSI applications. Because this database con
sists of a si mple fi l e , with one record per node name
en try, none of the m u l ti ple record synchronization
problems exist.

Conclusion

The Common Directory I n terface, consisti ng of
the CDI registration tool set and the CD! l ibrary, pro
vides flexible and extensible d irectory service access
for DECnet/OSI . I n i tial customer acceptance of these
new capabi l it ies has been high and fu tu re en hance
ments are being studied .

Acknowledgments

The design and development of the Common
D i rectory In terface involved the contri butions of the
enti re d irectory services and DECnet engi neering
teams. vVe extend our th an ks to a l l the team members,
as well as to prod uct and e ngineering management tor
supporting this proj ect.

References

I . S. Marri n, J . J'v!cCann, and D. Oran, " Developmenr of
the VA.'<. Distributed Name Service," Digital Techn ical

Journal. vol . l , no. 9 (J u ne 1 989) : 9-1 5 .

2 . P. Mockaperris, "Doma in Names-Impl ementation and
Spec i r!cation," RFC 1 0 35, Internet Docu ment (Novem

ber 1 987) .

3 . CC ITT Sixth Plenary Assembly, "The D irectory
Ove rview of Concepts, Models and Services," Recom

mendation X.500 and ISO 9 '>94- 7 . Data

Com rn u n icarions Networks Direct01y. Recommen

dations X.500 to X. .52 7, CCITr Blue Book, vol . x i i i . R
(Geneva: l ntemationaJ Telecommu nications U n ion ,
1 989) .

4 . R. Rosenbaum, " Using the Domain N a me System to
Store Arbitrary String Attributes," RFC 1 464, I nternet
Documenr (M av 1 993) .

5 . B . Manning and R. Cole l la , "The Dom.ain Name System
NSAP Resource Records," RFC 1 706, I n ternet Docu
ment (October 1994).

Biographies

Richard L. Rosenbaum
Rich Rosm boum is a software engineering consultant in
the l mnnet Software Busi ness Unit , where he is tocusing
on the appl ic�tion of indexi ng and collaboration tt:chnolo
gies to the World Wide Web. In his 1 7 ye<lrs with Digita l ,
he has worked o n networking products oper<�ting on
Digital 's 1 6- , 32- , 36-, and 64-bit plartorrns. He is the
<:o-�uthor of several pare n rs on network software . Rich
obtai ned ;.� B.S. ti·orn the State U n iversity of New York
<lt Stony Brook.

Stanley I. Goldfarb
Sr;m Gold brb is a princi pal software engineer with the
I nrnncr Software Bu siness Unit. Since joining Digital
in 1 976, he has contri buted to several network and ncr
work ma1L1gement projects, i n c l u d i n g DECnet/RSX,
DECnct- PRO , DECner- DOS, DECmcc, DECnct/OSl ,
and PATH WORKS, and he has co-authored several parenrs
on nt·rwork managemenr softwar e . He is cu rrently work
ing on a Workgroup Web Foru m application to provide
elccrmnic mail su bscription and disrri bmion services.
Sr�n holds B.S . �nd M.S. degrees in com purer science
ti·om Worcester Polytech n ic Institute and an M . S . i n
managemenr ti-om Lesley CoUcge.

Digital Technical Journal Vol . 8 No. 1 1996 67

68

Recent Dig ital
U.S. Patents

The td lowi ng patents were rece ntly issued to Digital
Eq u i pment Corporatjon. Titles :md names supplied
to us by the U . S . Parent and Trademark Oftice ;l re

reprod uced exactly as thev appe:1r on the origi n a l
publ ished patent.

1)336,08 1

))336,082

D336,290

1)336,636

1)337,76 1

1)338 ,00 1

()338,653

D:l39, .325

1)340 ,035

()342 ,523

D344,7 1 0

1!346 ,370

D347,624

1)341\,448

1!341\ ,672

1)350,34 1

5 ,209,389

5 ,2 1 0,795

5 ,2 1 2 ,776

5 ,2 1 4 ,963

5 ,2 1 5 ,608

5 ,2 1 6 ,655

5 ,2 1 6,672

5 ,2 1 8 ,5 1 3

5 ,220,271

5 , 223 ,7 1 0

5 ,223 ,806

5,2 2 3 ,996

5 ,224,235

S. K. 1Yi organ and M . L. H crticld
S. K. Morg<ln ;l nd M . L. Hc rti c ld
S . K. M organ and i'vl. L. Herti e l d
R . Ve no, K. Pal umbo, l'. R.o;K h, P. B;HTon ,
and M . Freeman
S . K. Morgan and M. l.. Hertic ld
M . Fal kner, M. Good, ;md M . \Viesenh;l h n
S . K . M organ :md M . L . He rtic ld
L. Spencer and C: . Dcrsikas
R. 1-'aranda
S. K. Morgan and M. L. Hc rti e ld
S. K . Mo1·gan <lnd M . L. H e t!i e l d
M . L. Herticld and S . K. 1'vl org;;m
W. McCarrby, R. H c l l m:g, R. i\t!Jsters,
M. Freeman , C. Wil l i:uns, C : . B rench,
K . Palumbo, D . Snow, an d 1'. Barron
C. E. Vai lbnr, } . D. Read, ,md G .) . Norqw1y
M. J . �a\ kner and M. W. Klcem;l ll
C . Landry
K. Su l l ivan Jnd P. C1ine
S. Lip ne r, M. Gasser, ;md B. W. Lampson
M. Kinden'ater ;md �. Zomdveld

D. Widder
R.. Strou d and K. Von bra nd t

P. Hearn , A. Pren t;lk i s, W. Le\\ ' is, and
F. Zayas
P. M . Goodwin, D. W. Smelser, and
D. A. Tatosian
D. Brown

J. P;l\czynski
R. Pavlak

R . Curt i s a nd D. Skcndzic

C. E. Va i \ L � nr and) . D. Rod

P. L ison and W. !h ines

Dig;i t;l l Techn ical Journal Vol . 8 No. I 1 996

I

Electronic Device Moduk

Electron ic Device Mod u l e
Enclosure f(>r Electronic Mod ule

Power S u pply Door

Electronic Devi<:<: Module
Positioning Device
Power Supplv Mod u l e
Face P i <lt<:
Ce n tral Processing U n i t Enclosure
Cover f()r VVd ll -mounted Elccrmnic Equipment
Electroni c Device Module
Network M u l ti pkxm tc >r an Ofticc Em·i ronment
CJrd Cage Enc losu re

Removable Rigid Disk Drive
Desktop Audio Enc losure
Display Monitor
Solder Pump Rushing ScJI
Secure User Aurhenricarion ti-om Personal Comp uter
Computn System Compris in g a Main Bus and an
Add it ional ComnHI I J icuion Means Directlv Connected
between Proccssm ;lnd Main Memory
M erhod and App<lLltliS tc>r Testing I n ner Lead Bonds
Co mpos it ion �l lld M e thod tell' B ond i ng Electr ica l

Components
Method and Appar.1 ru s t(>r Surbce Real locarion for
Improved M;lnu!:Kturing Pmccss Margin
Parallel Diagnost ic Mode t<>r Testi ng Compu ter Mcmorv

Ple n u m tor Air-impi ngement Cool in g of Electroni c
Components
Cross Regu btor t(>r J M u ltiple Output Power Supply
Optical Angular Posit ion Sensing System for Use with
J G a lvanometer
Method ;md Appar;ltus t(>r Re d uc ing Elecrrom<lgneric
l nrertCrence and Emission Associated w it h Comp uter
Ne twork lntert:lCcs
Com bi ned Shock Mount F1·a mc and Seal for a Ri gid
Disk Drive
Electron ic Componen t Cleani n g Apparatus

5 ,224,263
5 ,225,790

5,22 6,092
5 ,227,04 1
5 ,227,582

5 ,2 2 7,604

5 , 2 2 8 ,066

5 ,2 29,90 1
5 ,229,9 1 4

5,2 29,926
5, 2 3 1 ,246

5 ,232 ,570

5 , 2 3 5 ,6 1 7
5 ,2 3 5 ,642

5 , 2 39,260

5 ,2 39,2 74

5,240,549
5,24 1 ,632

5 ,24 1 ,639

5,243,308

5 ,243,495

5 ,243,756
5 ,247,426

5 ,248,2 5 3
5 ,2 5 1 ,3 1 6

5 , 2 54,930

5 , 2 5 5 ,2 R7

5,255,375

5 ,2 56,060

5 ,256 ,9 75

5,260,864

5 ,260,928

5 ,260,945

5 ,2 60,999
5 ,26 1 ,002

5 ,2 6 3 ,030

5 ,263,032

5 ,2 6 5 ,2 1 2

5,265,2 1 6

5 ,266,] 56

W. H;tmburgen
R . Noguchi ,) . Ri naldis, and P. Es1 ing
K . Chen
B. Brogden, L. Brown , and S . H usain

D .) . Vel:tsco,). P. Cope b n d , D. C. Robinson,
and R . L. t:niLtnd..:z
C. l:'reedman

C: . Del'ane

1\1! . ,\'LJII:t r v
D . B3i ln·
D. D. Donaldson ;md D. Wissell
) . Benson, D. A lcss3 ndri n i , Jnd W. Rerr
'vV. H aines, R . Ray mond, C. Bvu n, E. J oh ns,

D. R3"ip3ti, Q . Ng, 3nd G . Rauch
W. tvbll:trd

E. Wo bber, M. Abad i , A. Birre l l , and
B. W. Lampson

D. Widder and D. Ringleb
K. Chi

W. Ha mburgcn 3nd) . F itc h
T. Creed on, D. Smirl1, and A . O'Connell
r:. h:Jd bru gge

R . Curris 3nd B. Sh usterman

C. E . Va i lbnr,) . D. Rea d , 3nd G. Norq uay
W. Ha m bu rge n and) . Fitch
W Hamhu1·gcn and) . Fitch

A. Ph i l i j)Ossian and E. Cut in·
P. Anick ;\IH.i R.. Hynn

j . A . D;l iV

D . C : . Dal'ies, D. G . Von atb , and R . A. Curr is
N . Crook, P. B ruce, ;t nd R. Cal uszb

A . Phi l ipossi;l ll and E. Cu l lev
R . Mel l i tz and E. Stearns

j. Simone l l i 3nd Z. Arbanas
A. J a i n , N . Lee, and E. Keppclcr
T. I .. Rodehdh: r

R . Wyman
R .) . Perl man ;l !H.I C : . W. K:.1Li fi11an

P. S. Rotkcr, ;md E. W. Ertd

B. Porter, C : . A. Meg3, 3nd R. L. Myers

B . E. Wil l iam

C. P. Murph y, T. Creedon, and C. D. Cremin
A. Nasr

Gentle Package Ex tract ion Tool ;t nd M ethod
Tu nable Wideband Active Fi lter
M ethod and Apparatus for Learning in ;1 Neura l Nerwork
Drv Con tact Electroplating Appar;Hus
Video Amp l ifier Asse mblv Mounr

Atmospheric Pressure G3scous-rl u x -assisted L1sc r
Rcflo"' So lderi ng
System and Method ror Measuring Computer Svste m
Time lnren·a!s
Sid e-bv-Side Readj\Vri tc Heads with RoLlrv Positioner
Cool ing Device that Cre;Hcs Longitudinal Vortices
Power Supplv Interlock for Distri buted Power Svstems
Appa ratus fo1· Sec u rin g S h ielding or the Like
Nitrogen-contain in g M ate rials for We;Jr Protection and
friction Redu ction
Transm ission Media Dri\· ing System
Access Control S u bsystem and Method f(>r Distri buted
Com puter System Usi ng Loca l ly Cached Authen ticnion
Credentials
Semiconductor Probe and A l i gnmem System
Vol tage -controlled Ring Osc i l l a tor Using Complementary
D i ffe rential Bu ffers tor Generati n g Mult iple Phase S i gna ls
Fixture and Method for Attaching Compo nents
Programmab l e Pr iority Arbi ter
Method ror Updating Mod i fied Data ti·om a Cache
Add ress Location ro lvbin Memory and M3int3ining
the Cache Add ress in Regi strat ion M e mory
Combined Di fferentia l - mode 3nd Com mon - mode
Noise Fi lter
Removable Enclosure Housing ;1 Ri g id Disk Drive
I n tegrated Circ u i t Protection by Liq uid Encaps u lation
Semiconductor H eat Remm·al A pparatus with
Non - un irorm Condu ct<mcc
Thermal Processing furnace with I mproved Plug How
Met hod and Apparatus ror I ntegratin g 3 Dvnamic Lexicon
into a F u l l - text I nformation Rctriel'al Svstcm
Fault Detector tor a Pl u rJ i i rv or

.
lhm:ries in Barren'

Backup Svstems
Transcei\"CI" Appara tus and Methods
H i gh Performance I nrerbcc between an Asvnchronous
Bus and One or More Processors or the Li ke
Red ucing Gas Recircu lation in Thcrn1<11 Processing Furmce
M<�nu a l ly Opnated Conti n u i ty/Shons Test Probe rc >r Bare
1 nrerconncction Pac kages
Conrigur<t ble In verter ror 1 20 VAC or 240 VAC Output
Apparatus and Method r(x FJbricati ng a Lens/Mirror Tower
I nterm ittent Component F<l i l ure MJnager and M ethod f(>r
M i n i mizing Disruption of Distributed Compu ter System
Fi lters in License Man;1gement System
Method of lssua ncc and Revoc3tion o f Ce rr i ricues
of Authenticity Used in P u b l ic Key Networks 3nd
Other Systems
Method and Apparatus for Encoding D3ra r(>r Storage
on Magnetic Tape

Computer System Operation with Corrected Read
Data Fu nction
Shar i ng of Bus Access 3mong M u l t iple Stare Machines with
Mi nimal Wait Time <l nd Priori tization of Like Cycle Types
High-performance Asynchronous Bus 1 merrace
Methods oft:orming a Loc:tl [merconnccr ;md 3 High
Resistor Polvsi licon L.oad Iw Reacting Cob;Jit with Polysil icon

DigitJI Tcdmic.1l journal Vol . ll No. I 1 996 69

70

5 ,267, 1 1 2

5 ,267, 1 99

5 ,267,235
5 ,267,237
5 ,267,867
5 ,268,837
5 ,268,962

5 ,269 ,0 1 3

5 ,272 ,390

5 ,272 ,445
5 ,273,455
5 ,274,2 10
5 ,274,509

5 ,274,628
5 ,276,569
5 ,276,872

5 ,278,703

5 ,278,783

5 ,279, 865
5 ,280,437

5 ,280,608

5 ,28 1 ,869
5 ,283,560

5 ,285,007

5 ,286,9 1 9
5,287,263
5 ,287,359
5 ,2 87,500

5 ,287,50 1

5 ,287,5 1 7
5 ,289,046

5 ,289,328

5 ,289,347

5 ,29 1 ,529
5 ,293,486
5 ,293,487

5 ,294,842

S. Batra, S. Ramaswamy, and M . Mal lary

R. J. Galuszka, A .]. Walton, and C. Choi

C. P. Thacker

A . T. Townley
F. AghadeJ and C. W. Ho
M. Saylor

M. Abadi, M . Burrows, and 13. W. Lampson

K . D. Abramson, H. B. B u tts, and
D . A . Orbits
H . A. Col l i ns , R . B. vVatson, and R . l kn <lian

S . G. Lloyd and H. Partovi
L. MacLel lan

G . Freed m::w , P. Elmgren , and M. Brodeur
B . D. Buch

N . D Godiwala and K. M. Thaller
W. F. Even
D. B. Lomet and B. J. Salzberg

B . Ru b,) . E. Deroo, S . B. Skralv, A. SoJ i i ,
and R. Frame

] . Edmondson

R . P. Chebi and S. Mitral
D. A. Corliss

A.) . Beverson, T. E. H u nr, and
G . P. Lid ington
]. R . Lundberg
J. F. Barr lett

A. E. Deluca, j. M. Lewis, C . L. Leo,
T.) . Orr, D. T. Symmes, and R . A. Barker
]. W. Benson and D. T. Staffiere

1\tl . Shi lo
W. Engelse
P. Stoppani

D. B. Lomet

B . A. Maskas, J . A. Metzger, and G.] . Harris
). A. Daly,] . M . Gregorich, and G .]. Br<lnd

G . Saliba

W. F. McCarthy, D. M. Snow, and
C. E. Brench

N. A. Crook, P. L. Bruce, and R. I. Gal uszka

M . A. Jord an and D.]. Don nelly

A. P. Russo, S. L. Rege, M. F. Kempf, <lnd
E. T. S u l l ivan

R. 1 k.naian and R. B . Watson

Digital Technical Journal Vol . 8 No. l 1 996

Thin Film Read/Write Head for Min im izing Erase
fri nging and Method of Making the Same
Apparatus for Simu l taneous Write Access to a Single
Bit Memory

Method and Apparatus tor Resource Arbitration

Collision Detection and Signal ing Circuit
Package for Mu ltiple Removable I ntegrated Circu its
Robotics Workstation
Computer Network with Modi tied Host-to- Host
Encryption Keys
Adaptive Memory Mano1gemenr Method for Coupled
!\'\emory M u l tiprocessor Systems
Method and Apparatus for Clock Skew Reduction through

Abso lute Delay Regu lation
Resistance Tester Uti l iz ing Regu lator Circuits

Torsion Bar Connecto r
L aser Bonding H ighly Rctb:tive Surtaces
On -thc-tl y Spl i tting of Disk Data 13 1ocks Usi ng Timed

Sampling of a Data Position I nd icator

Multisignal Synchroni zer with Shared Last Stage
Spind lc Contro l ler with Startup Correction of Disk Position
Concu rrency and Rcco,·crv for I ndex Trees with Nodal
Updates Using Mu ltip le Atomic Actions bv Which

the Trees l n tegri tv is Preserved during Undesired
System I ntcrruptions
Embedded Servo Banded Format t(>r Magnetic Disks f(ll·
Usc with a D::tta Processing Svstem
Fast Arc;J - Efficicnr Multi - b it Bi nary Adder with Loll'
h111-our Signals

High Throughput I nrerlcvel Dielectric Cap Fi l l ing Process

Structure ;md Method tc>r Direct Cali bration o r·

Regisn·at ion Mcasmemem Systems to Actual
Semiconductor- Wafer Process Topographv
Program mable Sta l l Cycles

Reduced Voltage N M OS Output Driver
Computer System and Method ti:Jr Displaying I m ages with

Superimposed Parri: d lv Tra nsparent Menus
System tor Red ucing the Emission of High 1-"rcquency
Electromagnetic Waves from Computer Systems

Computer Cable Management System
I nrush C :urreilr Control Circuit
Syn chronous Decoder tor Self-clocking Signals
System for Al locating Storage Spaces R::tsed upon Required

and Optional Service Attributes Having Assigned Priorities
Multi level Transaction Recovery in a Database System
Which Loss Parent Transaction Undo Operation upon
Commit of Chi ld Transaction
Se lf-compensating Voltage Level Shifting Circuit
Power Converter with Control ler tor Switch ing between
Primary ;m d Battery Power Sources
Method and Apparanrs l·(>r V;lriable Density R..ead -after
writing on Magnetic Tape

Enclosure t(>r E lectronic Modules

Synch ronization Scheme
Dctcr rninistic Method for Allocation of;1 Shared Resource
Network Ad;lpter with H igh Tlmlllghput Data Tra nsfer
Circu it to Optimize Network Data Tr;msrcrs, with Host
Receive Ring Resource Monitoring ;md Reporting

PVT Update Synchronizer

5 ,294,994

5 ,297, 107

5 ,297,29 1

5 ,297,992
5 ,299,206

5,30 I , 1 8 6
5,30 1 ,283

5,30 1 ,320

5 ,3 0 1 ,325

5 ,302,960
5 ,303,302

5 , 30 3,347

5,304,939
5,305, 1 85

5 ,305 ,354
5 ,305,389

5,306,994

5 ,307,2 1 7

5 ,307,256

5 ,307,336

5,3 07,345

5 , 307,492

5 , 308,429

5,309,035

5,309,294

5 ,309,45 1

5 ,309 ,569
5 ,3 1 1 ,08 1

5,3 1 3,369

5 , 3 1 3,50 l
5,3 1 3,577

5,3 1 3 ,595
5,3 1 5 ,597

D. C. Robinson,) P. Copeland, D . } . Velasco,
R. L. Fernandez, and S. D. Vendirri
J. A. Metzger and P. j. Gr�lffam

D. L. M u rphy

D. Bai ley, P. Martino, and B. Arsenau l t
A . Bcwcrson and C. J . Devane

R. Galuszk<l, A . vValron, and S. Bryant
C : . P. Thacker and D. Ha rtwel l

P. J . Cerqua, S . M. Kennedy, J . D . McAtee,
and P.J . Piccolomin i
T R. Benson

P. Roers
M. Bu rrows

S. L. Rege and D. A. Gagne

D. C. Davies
V Samarov,). DeCarolis, R.. Patel, G. Piche,
G. Skurr, and S. Norris
N. D. Godiwala and K . M. Thaller
M. L. Palmer

L. Supino

G . A. Sa l i b''

R . Si lverstein

N. K. Lee , A. Ja in, E. Kcppeler, and
M. Bouchard
S . -T Ben-Michael :mel P. Lozowick

T. R . Benson

S. j . Brad lcy

H. Col l i ns, R. . Warson , and R . I knaian

D. Cahalan

E. S . Noya, M. N. R.osich, and R. . M. Arnott

N. A. W�1rchol
D. D . Donaldson , R. A. Dame, and
R . E. Nikel

M . Lewis, L. Trescel er, R . Marri nez, anel
R . 'T'usler
C. P. Thacker
K. J'vlei ncrth, C. Case, R. Gamache,
B . fann ing, and C. Frankl in
M. Lewis :mel R. ltwey
W. C. Mal lard and H . S. Yang

l nregrated Computer Asse mbly

lnrerconnect Arrange ment tor Electronic Components
D isposed on a Ci rcu i t Board
System for Linking Program Unirs by Binding Symbol
Vecror I ndex in rhe Symbol Table inro Cal l ing I mage
to Obtain Cu rrent Va lue of the Target I mage
Method and Apparatus for Liquid Spi l l Contain menr
A General Process for Finding Patterns in Large Logic
Traces (or Other Large Bi nary Am1ys) Using Mu ltip l e
Concurrent Finite Automata with Cross-communication
H igh Speed Transmission Line I n terlace
Dynamic Arbitration for System Bus C:onrrol i n
M u lr.iprocessor Data Processing System
Workflow Man agement and Conrrol System

Use ofSrack Depth to Identi fy Arch itecture and Ca l l ing
Standard Dependencies in Machine Code
Mu lti -element Suscepti bi l i ty Room
Network Packet Receiver with Bu ffer Logic fo r
Reassembling Interleaved Data Packers
Attribute Based M ultiple Data Structu res in Hosr tor
Network Received Traftic
Tracking Peak Detector
Coplanar Heats ink and Electronics Assem bly

Aborting Synchronizer
Predictive Cache fo r I m proved Pedornunce in Retri eving
Cached Data
Automatic P hase Margi n Compensation Control Circuit
and Method tor Disk Drives
M agnetic Head for Very High Track Density Magnetic
Recording
Trickle Charge Circu i t fo r an Off- l ine Switching
Power Supply
"'lulti -disk Optical Storage System

Method and Apparatus tor Cur-th rough D<Ha Packer
Transkr in a B ridge Device
Mapping Assembly Language Argu ment List Rdcrcnces
in Translating Code for Difterent Machine Archi tectures
System for Bonding a H eats ink to a Se miconductor
Chip Package
Method and Apparatus tor Clock Skew Reduction through
Absol ute Delay Regulation
Method and Circu itry ro Provide True Voltage Rias to
a M agneroresistive H ead
Dara and Parity Prefetching for Red uncLmr Arrays of
Disk Drives
Sel f-con figuring Bus Termination Component
Data Bus Using Open Drain Drivers and DiHcrential
Receivers Together with Disrributed Termi n�uion
I mpedances
Red uced Tolerance Interconnect System

Method and Apparatus tor Deskewing D igital Da t�l
Tra nshltion of Vi rtual Addressing in a Computer
G raphics System
Automatic Signal Te rmi 1ution System tor '' Computer Bus
Method and Means for Auromarica l ly Detecting and
Correcting a Polarity Error in Twisted-p<l i r Media

Digital Technical Journal Vol . 8 No. I 1 996 7 1

72

5,3 1 5,602

5,3 1 5,696

5 ,3 1 5 ,698

5,3 1 5 ,707
5,3 1 6,642
5 , 3 1 6,965

5 ,3 1 7,527

5 ,3 1 7,693

5,3 1 9,385
5 , 3 1 9,678
5,3 1 9 ,743

5,3 1 9 ,760

5 , 3 1 9,766

5,3 1 9,785

5 ,32 1 ,373

5 ,32 1 ,693

5 ,32 1 ,703
5,32 1 ,806

5,32 1 ,8 10

5 ,325,495
5,325,528

5,327,4 1 6
5 ,327,424
5,327,43 5

5 ,329,426
5,330,920

5 ,33 1 ,496

5,332,487
5,3 33 ,097
5,333,098

5,333 ,260
5,3 3 3,262

5 , 3 3 3,3 1 5

5,333,744

5 ,334,043
5 , 3 3 5 ,2 2 6

5,335,235

R. M. Arnott, E. S . Noya, and M . N . Rosich

K. Mei nerth, C. Case, B. Fanni ng,
and J. I rwin
K. Meinerth, C . Case,] . I rwin,
and B . Fanning
S . Bryant and M. Seaman
D. Young, S . Randa l l , S. Shaw, and A. Wylde
A. Phi l ipossian , H . Soleimani , and B. Doyle

S. B ritton, R. A l lmon, and S. Samudrala

] . -C. E . Cuenod , and P. A. S ichel

F. Fernando
S . H o and N . Darcy
S . Duna, A . Roy, and N. Rao

A. H. Mason, P. T. Robinson, R. Witek,
and]. S . Hall
B. A. Maskas,]. A. Metzger, N . D . Godiwala ,
and K. M. Thal ler
K. M . Thaller

R . Curtis and B. S husterman

R . Perlman

L.-J. Weng
K. l'vleinerth, C. Case,]. I rwin, A. Masucci ,
S. Krishnaswami, and A. Moezzi
K . Meinerth, C. Case, J. Irwin, and
B. Fanning
E. McLel lan
). Klein

L . Nevi l le, A. Jain, and A. L . Gutierrez
R. Perlman
N. Warchol

A. Vil lani
A. Phi l ipossian, B. Doyle, and H . Soleimani

S . Batra and A . Wu

D. Young, S. Ra ndall, S. Shaw, and A. Wylde
G . Ch ristensen and J . Marceca
A. E. Deluca, S . W. Stefanick, C. L. Leo,
T.]. Orr, D. T. Symmes, and H . Wright
R. U lichney
R. Ul ichney

P. Sroppani and C. Saether

R . -A. Locicero, S. Morgan, M. Romm,
E. Mangan, and M . Banrly
G. Dvorak and L. Wolfe
R . A. Wi l l iams

R . M. Arnott

Digital Technical journal Vol . 8 No. 1 1 996

Optimized Stripe Detection for Red undant Arrays of
Disk Drives
Graphics Command Processing Nlethod in a Computer
Graphics System
Method and Apparatus for Varying Com mand Length
in a Computer Graphics System
Multiprocessor Buffer System
Osc i l lation Device for Plat ing System
Nlethod of Decreasing the Field Oxide Etch Rate in
I solation Technology
Leading One/Zero Bit Detector for Floating Point
Operation
Computer Peripheral Device Network with Peripheral
Address Resetting Capabi l ities
Quad rant-based Binding of Poi nt.er Device Bu ttons
Clocking System for Asynchronous Operations
lntel l igenr and Compact Bucketing Method for Region
Queries in Two-di mensional Space
Translation Buffer tor Virtua l Machi nes with Address
Space Matc h
Dupl icate Tag Store without Val id Ind icator

Polling of ljO Device Status Comparison Performed
in the Polled l/0 Device
Combined Difrerentia l -mode and Common-mode
Noise F ilter
Mu l ticast Ad dress in a Local Area Network Where
the Local Area Network has Inadequate Mu lti cast
Addressing Capabi l ity
Data Recovery after Error Correction Fai lure
Residue Bufter tor Graphics System

Address 1'vlethod tor Computer G raphics System

Red ucing Branch Delay in Pipel ined Compu ter System
Distri buted Computation Recovery Management System
and Method
Surface Selection .i'vlcchanism for Optical Storage System
Automatica l ly Contiguring Para l le l Bridge Num bers
Method tor Testing a Processor Mod ule in a Com purer
System
Clip-on H eat Sink
Method of Control l ing Gate Oxide Thickness in the
Fabrication of Semiconductor Devices
Thin Film Magnetic Transducer with a Mu l titude of
Magnetic Flux In teractions
Method and Plating Apparatus
Disk Drive Holder and I n terconnection System
Apparatus tor Storing Storage Devices

I m aging System with Mu ltilevel Di thering Using Bit Shifter
imaging System with Mu ltilevel Dithering Using Two
Memories
Data Storage System and Method with Device
I ndependent Fi le Directories
Modular Equipment Support System

Test Fixture for Electronic Components
Communications System with Re liable Col lision Detection
Method and Apparatus
FIFO: Based Parity Generator (FBPG)

Call for Authors
from Digital Press

Digi tal Press is an imprint of Butterworth- Heinemann, a major international pub
l isher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized p ublisher for Digital Equipment Corporation : The two
companies are working i n partnership to identifY and publ ish new books under the
Digital Press imprin t and create opportu nities for authors to publish their work.

Digital Press is com mitted to publishing high-qua l ity books on a wide variety
of su bjects. We would l ike to hear from you if you are writing or thinking about
writing a book .

Contact: Mike Cash , Digital Press Manager, or
Liz McCarthy, Assistant Edi tor

DIGITAL PRESS
3 1 3 Washington Street
Newton, MA 02 1 5 8- 1 626
U .S.A.
Tel : (6 1 7) 928-2649, Fax: (6 1 7) 928-2640
E-mai l : Mike.Cash@BHein .rel .co .uk or
LizMc@world .std .com

ISSN 0898-901X

Printed i n U .S.A. EY- U02SE·T)/96 6 14 20.7 Copvright � Digital Equipment Corporation

	Front cover
	Contents
	Editor's introduction
	Foreword
	Design of the TruCluster Multicomputer System for the Digital UNIX Environment
	Delivering Binary Object Modification Tools for Program Analysis and Optimization
	Design of eXcursion Version 2 for Windows, Windows NT, and Windows 95
	Integrating Multiple Directory Services
	Design of the Common Directory lnterface for DECnet/OSI
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

