
CVAX-based Systems

Digital Technical Journal
Digital Equipment Corporation

umhcr 7

August I9R8

Cover Design

.S)'stems based un Digital's aduanced CMUS technology are

featured in Ibis issue. Tbe graphic on our COI'er includes the

lattice structure of the silicon nystal. a basic element of

this tecbnology. The expansion of the image expresses the

pe1j'ormance growth and the system e.Yiensibility of the new

CVAX-based systenH.

The COI'er was designed by Barbara Grzeslo and]acquie

Hockaday 1�[the Graphic Design Department.

Managing Editor
Richard W Beane

Editor
jane C. Blake

Production Staff
Produnion Editor- Helen L. Paucrson
Designer- Charlo!!<: Bell
Typographers- Jonathan !\·f. Uohy

Margart:t Burdine
lllustrawr- Dt:borah Keeley

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W McCredie
Mahendra R. Patel
F. Grant Saviers
William D. Strecker
Victor A. Vyssotsky

The Digital Tecbnical jnumal is published by
Digital Equipmt:nt Corporation. 77 Reed Road.
Hudson. Massachuscus 01749.

Changes of address should be sent to Digital
E quipment Corporation. aut:ntion: List Maintenance.
I 0 Forbes Road. Northboro. MA 0 15j2. Please includt:
the address label with changes marked.

Comments on the content of any paper are wclcomt:d.
Write to the editor at Mail Stop 1-lLOl-.�/Kil at the
published-by address. Comments can also be sent on
the ENET to RDV�'X::OIAKE or on the ARPANET to
BLA.K.E'X,RDVAX. DEC�)l)ECWRL.

Copyright © 1988 Digital Equipment Corporation.
Copying without fee is permiued providt:d that such
copies are made for use in t:duc:uional institmions by
faculty members and arc not distributed for commercial
advamage. Abstracting with credit of Digital Equipment
Corporation's authorship is pcrmiued. Requests for
other copies for a fee may be made 10 Digital Press of
Digital Equipmem Corporation. All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a com
miunem by Digital E quipment Corporation. Digital
Equipment Corporation assumt:s no responsibility for
any errors that may appear in this document.

lSSN 0898-90 1 X

Documentation Number EY-67•i2E-DI'

The following are trademarks of Digital Equipment
Corporation: ALL-IN- I. DEQNA. HSC70. J-1 l. MicroVAX,
MicroVAX 11, MicroVAX .�000. N•'-'11. NOTES. Q-bus,
Q22-bus, RA81. RA82, RD54. RQDX3. RX50. TK50.
UITRIX-.�2. VAX. VAX-11/780. VAX-11/782. VAX 6200.
VAX 6210, V�'(6220. V�'(62.10. VAX 6240. VAX 8200,
V�'(8300. VAX 8650. VAX flf!OO. VAX HH40. VAXlll,
VAXELN. V�'(MACRO, V�X SI'M. VAX/VMS. VMS.

Compu-Sharc is a trademark of Compu-Shart:. Inc.

GDS 11 is a trademark of Calma Corporation.

SPICE is a trademark of the University of California at
lkrkdey

Tektronix and DAS arc trademarks of Tt:ktronix. Inc.

!look production was done by Digital's Educnional
Services Media Communicnions Group in Bedford. \·lA.

Contents

8 Foreword
Robert M . Supn i k

1 0 An Overview of the VAX 6200 Family of Systems
Brian R . All ison

CV AX-based Systems

19 The Architectural Definition Process of the VAX 6200 Family
Brian R. A l l ison

28 Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus
Richard B . GiUett, Jr .

4 7 The Role of Computer-aided Engineering in the Design of the
VAX 6200 System
Jean H. Basma j i , G lenn P. Garvey, Masood Heydari , and Arthur L. S inger

57 VMS Symmetric Multiprocessing
Rodney N . Gamache and Kathleen D . Morse

64 Performance Evaluation of the VAX 6200 Systems
B hagyam Moses a nd Karen T. DeGregory

79 Overview of the MicroVAX 3500/3600 Processor Module
Gary P Lidi ngton

87 Design of the MicroVAX 3500/3600 Second-level Cache
Charles]. DeVane

95 The CVAX 78034 Chip, a 32-bit Second-generation VA X Microprocessor
Thomas F. Fox , Pau l E . Gronowski , Ani! K. Jai n , Burton M . Leary, a nd
Dan iel G . M iner

1 09 Development of the CVAX Floating Point Chip
Edward J . McLe l la n , G i l bert M . Wolrich, and Robert AJ Yodlowski

121 The System Support Chip, a Multifunction Chip for CVAX Systems
Jeff Winston

129 Development of the CVAX Q22-bus Interface Chip
Barry A. Maskas

139 The CVAX CMCTL -A CMOS Memory Controller Chip
David K. Morgan

Editor�s Introduction

Jane C. Blake

Editor

The second issue of the Digital Technical journal

(March I 986) fearured papers on the then

recently announced MicroVAX II system, a system

based on a single-chip VA.'{ implementation. In

this seventh issue, we present papers on the sec

ond generation of that chip set, CVA.'\, the two

new systems that take advantage of its increased

performance capabilities, and a new version of

the VAXfVMS operating system for symmetric

multiprocessing.

The new mid-range system based on the CVAX

chip set is the VAX 6200 family of compUlers,

which utilizes a multiprocessing architecture.

The first of rwo papers by Brian Allison is an

overview of this highly configurable, expandable

system. Brian's second paper offers insights into

the architectural definition process for the 6200.
One of the major decisions made by the 6200

engineers was to design a new interconnect to

support the multiprocessor system. Rick Gillett

presents an informative discussion of the com

plexities involved in interfacing a microprocessor

ro a high-speed, multiprocessing bus.

To ensure the availabiliry of first-pass func

tional parts, a design verification team of engi

neers worked in parallel with the 6200 module

designers. Jean Basmaji, Glenn Garvey, Masood

Heydari, and Art Singer discuss the computer

aided engineering and verification principles the

team instituted for the project.

Rod Gamache and Kathy Morse then describe

the major features of symmetric multiprocessing

in the VAXjVMS operating system. Of particular
interest is their description of a new synchroniza

tion method implemented in VAXjVMS version 5.0.

2

In the last paper related ro the VAX 6200 system,

Bhttgyam Moses and Karen DeGregory describe the

development of workloads to measure VAX 6240

performance. As part of their discussion, they

include performance measurements and analysis.

The second new system based on the CVAX

chip set is the low-end MicroVAX -�500/3600
system, which offers three times the performance

of irs predecessor, the MicroVAX II. In his over

view of the major sections of the processor mod

ule, Gary Lidington relates how schedule and

performance requirements influenced product

design decisions.

Charles DeVane then describes the MicroVAX

.3500/3600 system's rwo-level cache architecture,

with emphasis on the design of the second-level

cache. He also presents some cache performance

rest results.

The high performance of both the VAX 6200

family and the MicroVAX 3500/3600 system is

attributable in great measure tO the CMOS VAX

family of chips on which these systems are based.

Our five final papers address the design and

development of this chip set. Frank Fox, Paul

Gronowski, Ani! Jain, Mike Leary, and Dan Miner

begin the discussion with an explanation of how

designers achieved the performance goals for the

single-chip VAX CPU by reducing ticks per

instruction and machine cycle time.

A companion ro the CVAX CPU, the floating

point processor chip offers floating point perfor

mance equal ro that of the microprocessor for

integer operations. The approach taken tO attain

this goal and a description of the chip are pre

sented by Ed McLellan, Gil Wolrich, and Bob

Yodlowski.

Jeff Winston then discusses the development of

the system support chip, which provides a com

mon core of peripheral system functions.

Next, Barry Maskas relates the design effortS of

three groups, one in Japan and two in the U.S.,

that resulted in a single-chip interface between

the CVAX microprocessor and the Q22-bus l/0

subsystem.

ln our final paper, Dave Morgan describes the

CVAX memory controller chip, CMCTL, which is

optimized for Q-bus-based systems.

Biographies

Brian R. Allison Brian AJlison, a consultant engineer for mid-range VAX
systems, was the system architect responsible for the coordination of the VAX
6200 system definition and design. Prior tO this work, he served as system
architect for a project that yielded several products. including DEBNA,
DEBNK, and the KA800. As a member of the VAX-11 /750 design team, he
wrote various portions of the microcode for that product. Brian holds a
BS.E.E. and a B.S.C.S. from Worcester Polytechnic Institute (1977).

jean H. Basmaji jean Basmaji is the technical director of computer-aided
engineering and design-verification testing for the VAX 6200 project. A soft
ware consultant engineer, he has also been involved with CAE/DVT planning
and scheduling, and has served as CAE/DVT project leader for the VAX 6200
CPU module. jean joined Digital after receiving his B.S.E.E. from Lowell
Technological Institute in 1977.

Karen T. DeGregory A senior software engineer in the Systems Perfor
mance Analysis Group, Karen DeGregory is project leader of systems perfor
mance measurement for the VAX 8840 and VAX 6240 systems. In addition to
planning and implementing the measurements, she helped develop appro
priate workloads for these systems. Prior to this work, Karen was a senior
software specialist in the Software Services Backup Support Group. She

received her B.S. (1980) with honors and distinction and her M.S. (1981)
from Cornell University.

Charles J. DeVane Charles DeVane is a senior hardware engineer in the
MicroVAX Systems Development Group. For the MicroVA.-'(3500/3600 pro
ject, he designed the second-level cache on the KA650 CPU module and
guided the process of module system debug and introduction tO manufactur
ing. Before joining Digital in 1981, Charles received a B.S. E. E. from North
Carolina State University in Raleigh, North Carolina. He is a member of Eta

Kappa Nu and Tau Beta Pi engineering honor societies.

Biographies

4

Thomas F. Fox Fran k Fox . a principal engi neer in the Sem iconducror Engi·
ncering Group , worknl on rhc im ple mentation of the CVAX 780:14 CPU

ch ip . He is currently design ing a high-performance m icroprocessor and
cons u l ting with the Advanced Sem iconductOr Development Group on t he
deve lopment of a su bmicron CMOS process . Frank was educated in I re land
and rece ived a B . E . degree from University College Cork (1974) and a Ph .D .
degree from Tr in i ty Col lege Dublin (1978) . both i n electrical engi neering.
He has publ ished papers on ultrasonic i nstru mentation and magnetic reso
nant i maging (M RI) and has three patents pend ing .

Rodney N . Gamache A consu l t ing software engineer i n rhe VAXjVMS Soft ·
ware Development Grou p, Rod Gamache has been with Digi ta l for 1 1 years .
Shortly after receiving a B .S . i n mathemat ics and com puter science from the
Univers i ty of New Ham pshire , he joined Digi tal ro work on the development
of DECnet Phases I II and IV for both RSX- 1 1 M and VMS. For the last two
years . Rod has been project l eader for t he VMS symmetrical mul t iprocessing
project and has filed two pate nrs on VMS SMP. Rod also serves as a consu l tant
for the archi tectures of fu ture low-end VA.,'(processors.

Glenn P. Garvey G lenn Garvey is an e ng ineering supervisor presently
leading a team in the verification of a new VAX processor. He was t he project
leader for the system-level veri fication pe rformed on the VAX 6 2 00 system
and has been involved in model i ng and verification s ince coming to Digital i n
1 98 2 . Glenn was a co-op student a t Dig i tal i n I 980 and 1 98 1 . He holds a
B . S . E . E . from Rensselaer Polytechnic I nst i tute .

Richard B. Gillett, Jr. Rick Gil lett , a consu ltant engi neer, led the VAX
62 00 CPU module project . Prior ro his work on the 6 2 00, he served as one of
the arc hitects of the X M I bus and was a member of t he VAXBI bus project
ream . Relative ro his work on rhe VAX 6 2 00 design , he has recent ly filed
1 3 patent appl ications . Currently, he is system arch i tect for a new VAX
system . Rick jo ined Dig i tal after rece iving a B .S . E . E . (su m ma cum laude)
from rhe Univers i ty of New Hampshire in 1979 . He is a member of Tau Beta
Pi and Phi Kappa Phi .

Paul E. Gronowski Before receiving a B .S . E . E. from rhe University of
Cinc i nnati in 1 9 84 , Paul Gronowsk i was a co-op srudenr at Digita l work ing
on ch ips for rhe VAX 8200 and 8 5 0 0 systems. Current ly a senior engineer in
the SemiconductOr Engi neering Group , he has been a codesigner of the
E-box for t he CVAX 78034 CPU ch i p , designer of the bus interface uni t and
exponent section for a CMOS tloating poin t ch ip , and i s now doing advanced
deve lopment work for a new CMOS m icroprocessor. Pau l is a member of
Eta Kappa Nu .

Masood Heydari Masood Heydari is an engineering manager responsible
for the computer-aided design , ve ri fication, and test ing of m id- range VAX sys
tems . He is also managing the development of an I/0 subsystem for VAX
products. S ince jo in ing Dig ital i n 1 98 1 , he has deve loped the diagnostics for
a .36-bit system and has been respons ible for functional rest partern genera
tion for several products. Most recently, he was responsible for CAD/DVT on
the VAX 6200 project . Masood holds a B .S . and an M.S . in computer engineer
i ng from Boston Universi ry (1 980) . He i s a member of Tau Beta Pi .

Anil K. Jain Ani ! Jain rece ived an M . S . E . E . from the University of Cincin
nati (1980) and a B . S . E . E . from Pu njab Engineeri ng Col lege (1978) . Upon
joi n i ng Digita l in 1 980 , he worked on b ipolar and CMOS- 1 technology whi le
a member of the Device Mode l ing Grou p . A5 a senior engineer working on
the CVAX project, Ani ! designed the bus i nterface uni t for the CPU ch ip and
has a patent pend i ng for the bus i nterface protocol . He is current ly working
as a project leader on the float ing point ch ip project for vector appl ications .

Burton M. Leary M i ke Leary is a princi pal engi neer i n t he Semiconductor
Engineering Group/Advanced Deve lopment Memory Grou p and is currently
work ing on the design of advanced memory products . In previous work, he
partici pated in the design of the floating point ch ips for the MicroVAX and
82 00/8300 systems and the design of a CMOS seria l in terface control ler
c h i p . M i ke joined Digital after receiving a B . S .E .E . from the Unive rsity of Mas
sachusetts . He is a member of Tau Beta Phi .

Gary P. Lidington Cu rrently an engineeri ng manager i n the MicroVAX
Engi neering Grou p , Gary Lid i ngron has served as a system engi neer for the
MicroYAX 3 5 00/3600 system and as a mainta inabi l ity engineering project
manager for the MicroVAX II and si ngle-board computers with Q-bus mul t i
processi ng arch itectu res . Before coming to Dig i ta l i n 198 1 , Gary was a co-op
student and rest engineer on the L200 project at Teradyne , l nc . He holds a
B .S . E . E . (honors) from Tufts Un iversity and an M .S . i n com puter engineering
from the Un iversity of Massachusetts .

Barry A. Maskas Barry Maskas , a consult ing engineer with the Semicon
ductor Engineering Group , is the project leader for t he development of a cus
tom VLSI memory contro. l ler . Prior to his current work , he was the U S.
project leader and architect for the CVAX Q 2 2 -bus i nterface ch ip and co
designer of the Micro VAX IICPU and me mory boards. Barry came to Digi ta l i n
1 9 79 after receiv ing a B . S . E . E . from Pennsylvania State University

Biographies

Edward J. Mclellan Fd McLellan is a principal engineer in the Semicon·

ductor Engineering Group. He has worked on the design of several chips,
including the .J-1 I and the CVAX tloating point accelerator chips. He holds
one patent for previous work and has made application for two additional
patents based on work done for the CVAX tloating point chip. Ed joined

Digital in 1980 after receiving a B.S. in computer and systems engineering
from Rensselaer Polytechnic Institute. Currently he is project leader for a
tloating point chip for a new pro cessor.

Daniel G. Miner Dan Miner came to Digital after receiving a B.S. in com·
purer engineering from Rensselaer Polytechnic Institute in 198'5 A software
engineer in the Semiconductor Engineering Group. he wrote the debug and
diagnostic tests for the CVAX CPU chip. Dan co-authored and presented a
paper on the subject of resrahi I i ty strategy at the I 987 IEEE International Test
Conference.

David K. Morgan Dave Morgan is the engineering manager of Advanced
Peripheral Development in the Semiconductor Engineering Group For his
work on several engineering projects. Dave has three patents pending. Before
joining Digital in 197'5, he was a design engineer at the RCA Solid State
Division and holds five parents for his work on integrated circuit designs.
Dave receiwcl a B.S.E.E. (1969) from Western New England College, an
M.S.E.E. (1972) from Rutgers University. and has pursued doctoral work in
sol id·state physics.

Kathleen D. Morse A-; a consulting software engineer. Kathy Morse is
working on advanced development for the VA.X.jVMS Development Group.
She is one of the VMS SMP architects and consults on enhancements to vari·
ous parts of the VMS executive. Earlier, she implemented the VMS support
for the first MicroVA.t'{ systems, the first asymmetric multiprocessing VAX sys·
rem. and the i'v1A780 mulriporr memory. Kathy joined Digital in 1976 after
receiving her B.S.CS degree from Worcester Polytechnic Institute. where
she also earned her M.S.CS. degree in 1985. Kathy is a member of IEEE, the
Professional. Council, and ACM as well as Tau Beta Pi and Upsilon Phi Epsilon.

Bhagyam Moses Bhagyam Moses is the engineering manager of the Mid·
range Systems Performance Analysis Group, a group which she established
two and a half years ago Prior to her current work with the VAX 8000 and

VAX 6200 series of systems, she had been involved in the modeling and per·
formance measurement of the VAX 8600 and 8650 systems, PDP·l I systems,
OECSYSTEM-20. and earlier VAX systems. Bhagyam joined Digital in 1979.

She received a 13.S. degree (honors) in mathematics from Spicer Memorial
College and an M.S. in applied mathematics from Howard University.

Arthur L Singer Art Singer supervises t he computer-a idcd design , s imula
t ion , and t i m i ng ver i fication for a new ljO adapter prod uct . H is previous
work inc ludes supervision of the system s imulation and t im ing verification of
thc VA,'\. 6 200 system and microd iagnostie and release su pport for the VAX
8600 project . Before jo in ing Digita l i n I 984 , Art was employed by I PL Sys
tems as a design engi neer and manager of a m icrodiagnosric development
grou p Whi le at I PL, he rece ived a parent for the des ign of an i nstruct ion
un i t . Hc is a member of Tau Bcra Pi and Eta Kappa Nu .

Jeff Winston A mcmhcr of the Sem iconductor Engineeri ng Group , Jeff
Winston designed thc microsequencer for the VAX 8200 CPU ch ip and led
the design of two generations of the M icro VAX System Support Ch ip . He has
a lso contributed to the development of many CAD tools used in ch ip design .
Before jo in ing D ig i ta l in 1980 . Jeff rcce ived his B . S . (1 97 9) and M . S . (1 980)
in E l ectrica l Engi neeri ng from Corne l l Univers i ty . He is current ly leading thc
dcve lopment of the XMI int erface chip set for a new mid-range VAX CPU.

Gilbert M . Wolrich A consu l t ing engineer in t he Semiconductor Engineer
i ng Group/Archi tectu ra l ly Focused Logic, G i l partic ipated in the)- 1 1 con
trol ch ip design and was project leader for the CVAX CFPA and the J - 1 I FPA
ch ip projects. He holds a parent for an ALU wi th Carry Length Detection used
on the J-11 FPA. G i l received a B . S . E . E from Rensse laer Polytechnic I nst i tute
in 1 9 71 and an M . S . E . E . from Northeastern Un ivers i ty in 1 97 7 .

Robert AJ Yodlowski I3ob Yod lowski. a pri ncipa l engi neer. is the ch ip
imp l ementation project l eader and l<:ad c ircu i t designer for the CVAX
floating point acce lerator. For his work on th is project , Bob has three patents
pending. He was a lso sen ior c ircuit designer on the J - 1 1 float ing poin t ch ip
project . Re lative to th is project work. he i s a co-i nventor ancl patent holder
for AUJ with Carry Length Detection (1 987) . Before jo in ing Digi ta l in l 9 7 7 ,
Bob was a sen ior member of t h e technical staff at LFE Corporation in
Wa ltham , MA . He rece ived a I3 . S . i n engineering physics from Corne l l Un iver
sity (I 968) and an M .S . E. E . from Syracuse Un iversity (I 970) .

7

Foreword

Robert M. Supnik

Corporate Consultant,
VLSI Technology, and
Group Manager,
Semiconductor Engineering
Microprocessor Development

In May 1985, Digital i ntroduced the MicroVAX II
computer system . Based on the M icro VAX proces
sor ch ip set , the M icroVAX II system offered
unsurpassed price , performance. and re l iabi l ity
characteristics . In the three years si nce then,
Digital has sold more tha n 1 00 , 0 00 systems
based on the M icroVAX chip set . There are more
M icroVAX -based systems in the field than a l l
other types of VAX systems combined.

ln the same three years, t he practice of com
puter engineer ing has advanced considerably .
Faster processors, bigger memories, qu ieter pack
ages , and more complex software have appeared
in a steady stream . For Digital to remain com pe
t i t ive , we wou ld need, over t ime , a second gener
ation of VLSI-based VAX ch ips and systems . The
chips and systems that constitute the second
VLSI-based generation are described in this issue
of the D igita l Technical]ou rnal .

The p lanning for the second generat ion began
in 1983. That year , the LSI Group (now Sem icon
ductOr Operations) formu lated a mu ltiyear pro
gram for the deve lopment of both semiconductOr
process technology and lead ing-edge chip prod
ucts . The key characteristics of th is p rocess;
product plan were

• CMOS (complementary metal -oxide-sem icon
ductOr) p rocess technology (Previous Digita l
ch ips were based on NMOS technol ogy .)

8

• Mult iple process generations rel ated by opt i
ca l sca l i ng

• VAX microprocessors as the leadi n g edge chip
deve lopment projects

• Performance i mprovements targeted for greater
than 50 percen t per year

This program not only provided the LSI Group
with an overa l l structure for its process and ch ip
development projects ; i t a lso provided Digi tal's
system groups with a stable, long-term bas is for
planning system products.

The program was a lso a s ignificant leap of
fa i th . When it was formu lated, there was no
M icroVAX busi ness . The MicroVAX II system was
two years away from s h ipment. Almost a l l design
resources in the LSI Group and in t he low end sys
tem groups were busy with the MicroVAX chip
set and its re lated systems. Ma jor development
projects in technology, ch ip design, systems
design , and manufactur ing were req u i red to
bring the program vis ion to fru i t ion .

Work began with development of the u nder
lying semiconductOr technology . Start ing in
1983, a ream from Semiconductor Manufactur

i ng's Advanced Semiconductor Development
(ASD) defined , s imu lated, and rested CMOS-I ,
D igi tal's first CMOS process. When first defined,
CMOS-I 's key features - N-wel l base on a p- rype
epitaxial layer. rwo levels of meta l interconnect ,
2 . 0 micron feature size, d i rect sca labi l ity to
1 . 5 micron feature s izes - were controvers ia l
within an i ndustry that was sti l l debating NMOS
versus CMOS . Over ri me, t hese choices have been
vindicated , and CMOS-I has p roven ro be a main
stream , robust, h ighly manufacturable process .

Equa l ly i mportant was development of des ign
methods for larger and more complex chips. The
Sem iconductor Engineering Computer Aided
Design (CAD) Group continuously refined the
structured design process first deployed for
Micro VAX and V- 1 1 . The goals of this effort
were i mproved s imu lation coverage , faster
turnaround t ime , and more extensive automated
verification . One consequence of the i ncreased
use of CAD roots was a dramatic increase in the
amount of computing power requ i red . This gen
erat ion of ch ip development projects used fou r

ti mes as much comput ing power as the first VLSI
generat ion .

The Semiconductor Engineering Microproces
sor Group began archi tectural prework on the
second-generation ch ip set (cal led CVAX) in
mid-1984. The overarc hing goal was s imple :
three ti mes the performance of the MicroVAX
chip set i n less than t hree years - a compound
performance growth rate of more t han 50 per
cent per year The central processor design
starred from the MicroVA..'<: base but drew upon
ideas from other VAX implementations, notab ly
the 8700. The tloari ng poin t un i t design focused
on min imal execu t ion flows for the most common
instructions. Both chips rransir ioned to i mple
men tation in 1985 .

The origi nal concept for the CVAX chip set
had been to bu i ld ch ip- for-chip analogues of
MicroVAX - a central processor and a floating
point u n i t . However , as the flex ib i l i ty of the new
CMOS process, and the effic iency of the CAD
tools, were appreciated by designers , the chip set
concept expanded beyond the central processor
ro i nc lude key peri pherals. The i mplementation
of t hese peripheral functions i n VLSI ch ips made
systems faster. more re l iab le, and less expensive.
In add i t ion . it al lowed peripheral functions to be
standard ized across mult ip le system i mplementa
tions and add it ional fu nctions tO be added in
modu lar fas hion . The Sem iconductor Engineer
ing peripherals group (now Advanced Deve lop
ment) speci fied and imp lemented a memory con
trol ler, a memory driver, a console i nterface , and
a Q-bus in terface .

Mter the MicroVAX I I system sh ipped i n May
1985. the Low-end Systems Group and the Mid
range Systems Group became act ive ly involved
in the specification of the CVAX ch ips and in
the defi n i t ion of new systems u t i l i z ing the chip
set . I n the l ow end , the 35 00/3600 systems
were defined as evol ut ionary extensions of the
MicroVAX I I . Nonethe less, the performance
targcts for the new chips posed knotty design
problems for a system fami ly bounded by both
cost and packaging considerations.

In the mid - range , the system designers wished

to exploit the CVAX chip set's combination of
h igh performance and low cost by constructing

an extens ible mult iprocessor system . They
defined a new system int erconnect (supported by
u n ique ch ips) to provide un precedented flex i
b i l i ty and extensib i l i ty i n configu ring syst ems ,
and new system packagi ng ro su pport the con
cept . However, a genera l-purpose mult iprocessor
system was feas ib le only i f the VMS operat ing sys
tem cou ld rake advan tage of the incrementa I
power offered by addi t ional processors. This
requ irecl a major restructuring of VMS tO su pport
symmetric (al l processors equal) mul ti proces
s i ng. Thus, the defin i t ion and implementation of
the mid-range 6 2 00 system fami ly and of VMS
symmetric mu l t i process i ng su pport had to be
c lose ly l i nked .

As the engineeri ng development projects pro
gressed . manufacturing became heavi ly involved
in p lann i ng and execut ing the transi tion from
design to volume product . LSI Manufacturing i n
Hudson , Massachusetts, i ntroduced CMOS-I i nto
mu l t ip le fabrication units in order to produce
prototypes qu ickly and ro ramp up to high vol
ume production. System manufactur i ng groups
in Westfie ld (Massachusetts) . AJbuq uerque (New
Mexico). Puerto Rico, a net other s i res worked
c lose ly with rhe system designers to i ntroduce
rhe new manufactur i n g processes requi red for
system production .

The resu lts of these development programs is a
fami ly of VAX sysrems with exemplary price . per
formance. and rel iab i l i ty characterist ics . More
over, the programs leave as res iduals a set of
VlSI com ponents from which other products can
be bui l t , and base technology from which further
advances i n chip and sysrem design wi l l evolve .
The in i t ial program vis ion has been fu lfi l l ed,
even exceeded . Many people , i n reams and indi
vidual ly. worked together ro bri ng this abou t .
The exce l lence of the resul ts refl ects. i n fu l l
measun:. the exce l lence of the work that t hey
have done .

9

Brian R. Allison I

An Overview of the
VAX 6200 Family of Systems

Digital's VAX 6200 series is a high-performance, expandable family of

computer systems that combines low-cost microprocessors with high

performance memory and I/0 subsystems. Based on the CMOS VAX chip

set, the VAX 6200 CPU module performs at 2.8 times the VAX-11j780 system;

utilizing a multiprocessing architecture, system speeds are available up to

11 times the VAX-11/780 system. The memory subsystem utilizes a multi

controller architecture for up to 256MB of total system memory. The XMI

bus, the electrical interconnect for the system, supports the multiple pro

cessors, memory subsystems, and VAXBI channel adapters. The VAXBI is

used for all IjO devices.

The VAX 6200 fami ly of computer systems is thc
most reccnr audi t ion to Dig ital's ! inc of VA..'< com
purer systems The VA,'(6 200 systems. pr imari ly
based on CMOS technol ogy, are mid-range sys
tems which expl o i t mu l t iprocess i ng techn i ques.
The VA,'(6200 fam i ly current ly comprises four
systems, a l l bui l t from common subassembl ies.
Any VAX 6200 system may be upgraded to any
other VAX (1200 system simpl y by adding CPU

and me mory modu l es to rhe exist ing cabi net .
This paper provides an overview of the system
and therefore a conrexr for the five papers that
fol low i n th is issue . These papers descri be sev
eral of the components in detai l . the engi neering
design cfforr, rhe performance eval uation pro
cess, and some of the mult iprocess ing aspects of
the operat ing system .

In the pasr . CMOS- based m icroprocessor tech
nology has been used pri mari ly ro bu i ld low-cost
systems. Today , by using m u l t ip les of these l ow
cost m icroprocessors . we are presented a u nique
opportu ni ty ro produce a high -performance com
purer system when the microprocessors are cou
pl ed with h igh-performance memory and 1/0
subsystems. Al though this type of system archi

tect ure wi l l nor d i rect l y resu l t i n faster execut ion
of a si ngle task, it docs resu l t in greater system
throughput i n app l ications t hat have several
simu l taneously computabl e tasks. The architec

ture coup les the effectiveness of the VMS operat
ing system in mu l t i program med environ ments

1 0

wi th hardware opt i m ized for effic ient mul t i pro
cessor operat ion . The resu l t is a syste m that offers
s imi l ar performance for a large class of app l ica
t ions at a better price-performance rat io than that
offered by t rad i t ional s ingle-processor. h igh-per
formance computer systems.

A pri mary objective of the VAX 62 00 system
design is tO provide a h igh ly configurable and
expandab le computing environ ment . To ach ieve
this objective . designers chose a modu lar sub
asse mbly design for the totaJ system . This mod u
lar design provides for cost-effect ive bas ic sys
tems and a lso al lows for system expansion to
achieve h igher performance. Al l mem bers of the
VAX (>200 fami ly arc housed in the same cabi net
and usc the same bas ic su basse mbl ies . The on ly
d ifference is t he nu mber of p rocessors, amount of
memory . and num ber of 1/0 devices. Tab le I
clerai Is the configurations of the VAX 6210 ,
VAX (12 2 0 , VAX 6 2:)0, and VAX 6 2 4 0 systems.

System Architecture

Al l VAX 6 2 0 0 systems cons ist of CPU (s) , mem
ory . and 1/0 channel adapters con nected to a
common system i nterconnect known as the XMI .
The VAXB I is used as the i nterconnect to a l l I/0
devices in the system . 1 All memory and 1/0
devices are equal ly access i b l.c by al l CPUs in the
syste m. Figure I shows a b lock- level d iagram of
the VA,'(6 200 system.

Digital Technical jounwl
No. 7 A ugust 1988

Ta ble 1 VAX 6200 Family System Configurations

Number of processors

M ain memory

VAXBI channels

CPU cycle time
Cache size
(per CPU)

Free XMI slots

Performance
(times one
VAX-1 1 /780 system)

Maximum CPUs

Maximum memory

Maximum VAXBI
channels

VA X B I
C HA N N E L
ADAPTERS
(6 M AX I M U M)

VAX 6210 VAX 6220

1 2

32MB 64M B

2 2

80 ns 80 ns
1 KB 1 KB
256KB 256KB

1 0 8

2.8 5 .5

4 4

256MB 256MB

6 6

4 CPUs M A XIM U M
U P T O 1 1 X VAX- 1 1 /780

X M I 1 00 M B/SECOND

VAX 6230 VAX 6240

3 4

64M B 128MB

2 2

80 ns 80 ns

1 KB 1 KB
256KB 256KB

7 4

8.3 1 1 .0

4 4

256MB 256MB

6 6

UP TO 256MB

<
<
<

VA X B I 4 >
VAXBI 5 >

VA X B I 6 >
OPTIONAL VA X B I
EXPANDER CABINET

Figure 1 VAX 6200 System Block Diagram

Digital Technical journal I I No. 7 A11gus1 I'.JRS

CVAX-based
Systems

------ A n Overview of the VAX 6200 Family of Systems

The primary goa l of the VAX 6200 system is
to a l low higher l evels of system performance
through mult iprocessing . To s impl i fy software
design and to be consistent with previous mul t i
processor architecture , i t was essentia l to pro
vide a shared memory resource . All system mem
ory is a global resource accessible through the
same address space from each processor and from
a l l ljO devices. A sophist icated mu l t i l eve l cache
contai ned loca l ly i n each CPU m i n i m i zes mem
ory accesses on the X M I . Cache coherency is
mainta ined tota l ly by hardware .

Technology
The VA..'\ 6 2 00 systems are based on a nu mber of
d ifferent CMOS technologies . The VAX CPU ch ip
se t and the system interconnect transce ivers are
implemented ent irely in Dig i ta l 's fu l l custom
CMOS process featuring a s ize of 1 . 5 m icrons 2

The in terface between each modu le and the
system interconnect is implemented in channel
l ess 1 . 5 - micron CMOS gate arrays . The nu mber of
gates used in these arrays varies from 1 8K to 5 0 K
gates . The i nterface t O the VAXBI and the X M I
arbi trat ion system i s impl emented in 1 . 5 -m icron
channeled arrays . The on-board CPU caches are
i mp lemented wi th 4 5 -nanosecond (ns) 64 K-by-4
CMOS static random-access memories (SRAMs)
and ind ustry-standard CMOS cache tag ch ips .

Al l VAX 6 200 X M I and VAX BI modu les are
connectt.:d to their respective backplanes by a

300-p in zero insertion force (ZIF) connectOr Al l
mod u ks use 1 0 - layer controlled i mpedance
printed c i rcu i t boards. Al l cables from t he mod
u les art: connected through the backp lane to
improve rel iabi l i ty and tO m i nimize the task of
rep lacing modu les.

The VAX 6 2 00 X M I backpl ane is a 1 4 -layer
control led i mpedance pri nted circu i t board . Side
1 consists entirely of surface- mount contacts for
the Z IF connector. Side 2 consists of plated
through holes for power strips and 1/0 pins, and
surface-mount pads for resistors . These surface
mount rt.:sistors form the terminat ion network for
the X M I signal l ines .

VAX 6 200 XMI modu les use a pr inted c i rcu i t
board very s imi lar to t he VAXB I printed circu i t
board . XMI modu les have the same fi nger
pin design as the VAXB I , but the mod u le s i ze is
28 e rn (1 1 . 0 2 5 i nches) deep i nstead of
20 38 e m (8 . 0 2 5 inches) deep

The VAX 6 20 0 modules make use of advanced
modu le technology features to max imize both

1 2

the number of I jOs avai lable to VLSI ch ips and
the amount of logic that can be put on a modu le .
Surface-mounted componen ts are used exten
sively throughout t he system . Further, many pas
sive components and a l imi ted number of active
surface-moun ted components reside on side 2 of
the modules . Al l VAX 6 20 0 mod u les l im i t the use
of surface mount ro 5 0 - m i l l ead pitch compo
nents with vias on 1 00-m i l centers . Across the
modu les i n t he syste m , there is a m ixture of sma.l l
out l i ne i ntegrated c i rcui t (SOl C) , plastic leaded
ch ip carrier (PLCC) , and cerquad surface-mount
packages.

Al l VAX 6200 XMI mod u les i nterface to the
XMI throug h a set of eight semicustom pans.
These e ight ch ips a re p hysica l ly mounted on a
section of the module known as t he "XMJ cor
ner " This section of the module is approximately
1 2 . 7 em (5 i nches) by 3 em (1 . 2 i nc hes) and is
located by t he A, B , and C connectors of t he mod
u l e . (See Figu re 2 .) The X M I i nterface area is
ident ical on all modu les so that a common e lec
trical load is presented to a l l s lots on the XML
The X M I corner has four 4 4 -p i n cerquad pack
ages on side 1 of the modu l e and four 4 4 -pin
cerquad packages on s ide 2 . I n addi t ion , approxi
mately 1 00 surface-mounted-device (SMD) sig
nal termi nat ion resistors and bulk power capac i
tors are d ivided even ly across both sides of the
modu le i n the XMI corner.

Figure 2 is a photograph of the three VAX 6200
X M I modu les . Note tha t a l l t hree modu les have
the identical components i n t he lower right cor
ner and a s im i lar gate array d i rectly above the
XMl corner.

VAX 6200 CPU Module
As noted earl ier, t he VAX 6200 CPU (KA6 2A) is
based on the CMOS VAX chip known as the CVAX .
The KA6 2A is a s ingle modu le that i mplements
a fu l l CPU subsystem . I nc luded on the KA62A
mod u le are

• The CVAX ch ip , which includes a 1 k i lobyte
(KB) on-ch ip cache

• An external 2 5 6KB cache

• A floating point accelerator chip (CFPA)

• Console support hardware

• An i nterface to the X M I

F igure 3 shows a b lock d i agram of t he KA6 2A
modul e .

Digital Technical journal
No. 7 A ugust I <)88

CPU
CHIP r--

Figure 2 Three VAX 6200 Xll11 Modules

FPU CACHE 256K B
C H I P TAG CACHE

EEPROM
32KB

DIAGNOSTIC
ROM
1 28KB

CONSOLE
ROM

l K B CACHE 1 28 K B

CONSOLE
SUPPORT
C H I P

<

I I I I
COAL

CPU/XMI
GATE A R R AY

i J
R EAD WR ITE INVALI DATE DUPL ICATE
QUEUE BUFFER QUEUE CACHE TAG

I I

X M I
INTERFACE
C H I PS

X M I

Figure 3 VA X 6200 CPU Module (KA 62A) Block Diagram

Digital Technical journal 13
No . 7 AU[?USI I 'J88

CVAX-based
Systems

A n Oueruiew of the VA X 6200 Famill' of Svstems

Usi ng the CVAX processor wi th an HO-ns cyc le
t ime, the KA62A CPU mod u le performance is
approxi mately 2 . 8 t i mes that of the VAX- 1 1 /780
system . For a rota I system performance up to
I I t imes greater than the VAX- I l j7HO , up to four
KA(J2A CPU modules may be configured in a
VAX 6200 syste m .

The KA6 2A CPU modu le conta i ns a two- level
cache to reduce memory access t ime . The pri
mary cache is I KB i n s ize and resides inside the
CVAX chip . This cache conta ins on ly i nstruction
data to e l i m i nate the need to i nva l idate this data
as other processors write to cached data loca
tions . (The VAX arch itectu re provides strict ru les
for modificat ion of instruction type data .) The
secondary cache is 2 5 6KB in s ize a nd contains
data as we l l as i nstmct ions . The KA62A moni tors
write transact ions on t h<.: system i ntercon nect and
in va l idates any cached locations wri tten by
another CPU or 1/0 device.

8-B IT BAN K 4 8MB (64 B ITS x 1M WORDS) ECC

8-BIT BAN K 3 8MB (64 BITS x 1 M WORDS) ECC

8-B IT BANK 2 8MB (64 BITS x 1 M WORDS) ECC

8-BIT BAN K 1 8MB (64 BITS x 1 M ,WORDS) ECC

M EMORY CONTROLLER
GATE ARRAY

l l
1 6- ENTRY 8-ENTRY DATA
LOCK TABLE COMMAND QUEUE QUEUE

l J
X M I
INTER FACE
CHIPS

XMI

Figure 4 VAX 6200 Memory Module (M562A)
Hlock Diagram

14

Memory

The VAX 6200 me mory subsystem is made up of
memory control ler ;array modu les and is known
as the MS62A . The MS6 2A modu le , shown i n
Figure 4 , conta ins a memory cont rol ler ch ip a nd
� 2 megabytes (MB) of ! - megabit (Mb) dynamic
RAMs (D RAMs) . The MS62A maintains a 64 -bit
data path between the memory com rollcr ch ip
and the RAMs, and i mplements an 8-bit error-cor
recti ng code (ECC) for each 64-b i t word . The
MS6 2A con ta i ns hardware to i mplement up to 1 6
" l ockable" me mory locations per memory array .
These memory locks are used extensive ly by pro
cessors and I/0 devices to ensure s ingu lar access
to data structu res i n a shared-memory m u lt ipro
cessor system .

The greater memory bandwidth req u i red by
mul t ip le processors and I/0 channels is ach ieved
by memory i nterl eavi ng . The MS62A a llows in ter

leaving on 3 2 -bytc bou ndaries. As l ong as mem
ory add resses are randomly distributed across the
lower 6 address b i ts, the bandwidth of the total
memory su bsystem can be increased l inearly with
the addi t ion of i n terleaved memory controllers.

The MS62A memory modu les may be i n ter
l eaved two, fou r, or e ight ways . The i nterleave
factor is automat ica l l y determined by t he system
upon power-up or system i n i t ial i za tion . How
ever, designers have given the user the ab i l i ty to
manua l ly specify the i n terleave c haracterist ics of
the me mory subsyste m . Up to eight MS62A mem
ory modu les may be configured in a VAX 6200
systl' m .

IjO Channels
The VA,'\ 6 200 system uses t he VAXB I bus as the
i nterconnect for a l l 1/0 devices . The system
i nterface to the VAXB I is a rwo-modu le set cal led
the DWMBA. Figure 'S shows a b lock d i agram of
the DWMBA mod u l es. The DWMBA/A module i s
connected ro the XMl , and the DWMBA/B mod u le
is connected to the VAXBI . These two modu les
arc in terconnected with a 1 20-wire cable assem
bly which may be up ro 4 . 6 meters (I 5 feet)
long.

Thl' DWMBA a l lows VAXB I devices to read sys

tem memory at up to 'S . SMB per second and ro
wri tl' system memory a t up to 1 3 . 3 MB per sec
om! . Any VAXBI -compat ible device may be con
nected to the VAX 6 2 0 0 systems t hrough t he
DWM BA. Al l VAX 6200 systems conta i n a m i n i
m u m o f two VAXBI channels and m ay option a l ly
conta in up ro s ix VAXBI channels .

Digital Technical journal
No. 7 A ugust 1 988

System Interconnect, the XMI
The X M I . t h e p r i m a ry e l ectri c a l i nt erconnect i n

t h e VAX 6 2 0 0 fa m i l y o f computer systems.

en com passes

• The protocol obse rved hy a node on the X M I

• The e l ectrica l e n v i ronment o f t he XM l

• The bac k p l ane

• The logic used to i m p l e m e n t t h e protocol

The X M I can s u p port m u l t i p l e processors.

mu l t i p l e me mory s u bsyste m s . and m u l t i p l e 1 /0

c h a n n e l adapters .

X M l nodes may be c l assi fied as commanders o r

responders. depend i n g o n t h e i r r o l e i n a given

t ransact ion . A commander i s a node that is i n i t i a r

i ng an XM I r ransact ion . A responder is the node

that must act u pon the t ransaction . A processor

node usua lly acts as a com mander. (Howeve r. a

processor node may become a responder i f

anot her node reads a con t rol/status re gister on

the CPU .) Memory nodes. on the other hand. arc

a l wavs responders si nce t hey cannot i n i t iate an

Xl'vl l t ransact ion . 1 / 0 nodes may act as e i t her

com manders or responders. depend i n g on the

type of 1 /0 operation . The fu nctions of these

nodes arc furt her expla i ned in sec tions below .

Beca use the Xi\H is a pcnded i n terconnect . sev

e ra l tra nsact ions can be in progress s i m u l ta

neous l y . When an X M I com mander i ni t i a tes a

req u es t for a read or to sol i c i t an i nterrupt vector.

an ide n t i fi e r code is a l so transm i t ted to the

sc::l ccted responder. At t h i s po i nt . contro l of the

X l'vtl i s re l i n qu i s h e d . and ot her transact i ons arc

a l l owed to take p lace whi lc the responder fe tches

t he req uested read data or i nt e rrupt vccror. The

responder the n a rb i t rates for con trol of the XM I
and re t u rns the requested data or vector a l ong

w i t h t he ident i fier code . By mon i toring the

ident i fier codes. t he i n i t i a l commander is abk ro
receive t he correct data and conti n u e .

Arbi trat ion and data transfers occur s i mu l ta

neously over a m u l t ip l e xe d s e t of address a n d

d a t a l i nes. a n d a se pa rate s e t of a r b i t ra t i on l i nes.

The XM I s u p ports q u adword . octaword . and hex

word reads to memory. as we l l as quadworcl a nd

ocraword me mory writes. I n a d d i t i on . the XM I
su pports longword - l engrh read a nd w r i te opera

t ions ro l /0 spa c e . These l ong word operations

i m p l eme n t byte and word modes req u i red by cer

tain l/0 devices

Digital Technical journal
.\'o. - ,-J. ugus/ I '.IHH

The XMl has :)0 address h i ts . and t he s m a l l est

addressa b l e entity is a s i n g l e b)'l e . XM 1 address

space is d iv ided i n t O two h a l ves by b i t 29 of

t he address . When bit 29 e q u a l s zero . an address

is sai d to fa l l i n to memory space . W he n b i t

29 equals one . t he address is sa id to fa l l w i t h i n

l /0 space . T h i s arra ngement marches t he m a x i

mu m p hysica l address a s defined b y t he VAX
arc h itec t u re and a l l ows up to ') 1 2MB of p hysical

memory r o be addressed . The XM l a rc h i t ectu ra l l y

a l l ows up to 1 6 nodes, but is physica l l y a nd e lcc

tr ica l ly constra i ned ro 1 4 nodes.

VAX B I

B I IC

VAXBI VA XBI
MODULE INTERFACE

GATE ARRAY

I BUS
TRANSCEIVERS

� � B U S CABCE
U P TO 15 FEET IN LENGTH

I B U S
TRANSCEIVERS

XMI XMI
MODULE INTERFACE

GATE ARRAY

X M I
INTERFACE
C H I PS

X M I

Figure 5 VAX 6200 VAXRI Chan n el Adapter
Rlock Diagra m

I ')

CVAX-based
Systems

------ A n Overview of the VA X 6200 Fami�y of Systems

The XMI mult i plexes data and address i n forma

tion onto the 64 -bi r data pat h . Data transactions

arc i n i t i ated w i t h a " command and address"

cyc l e , fol l owed by mu l ti ple data cycles . The max

i mum length for an X M I tra nsact ion i s 3 2 bytes of
data . The X M I cycle r i me is 64 ns . The effective

band wid th of the X M I is a fu nction of the data

transfer size , as shown in Ta ble 2 .

The X M l arc hi tecture a l l ows for three d isti nct

c lasses of devices .

Processor Nodes

Each processor node conta i ns a C PU that e xe

cu tes i nstruc tions and m a n i p ulates data con

ra i ned in X M I me mory. The processor node can

execute any i nstruction set com pati ble with the

VAX-sry le byte address i ng and memory l oc k i ng

mechan isms . A processor node w i l l have a cache

t hat must force all written data back to main

memory. Any cached processor module must a lso

monitor write traffic on the XMI a nd i nval idate

any l ocation i n i ts own cache that is written i n to

main me mory. Processor nodes must a l so be

capable of responding to interrupt req uests gen

erated ei ther b y other processors o r b y ljO

nodes .

IjO Nodes

I jO nodes genera l l y respond ro I/0 space refer

ences e ither by mapping the data onro another

bus or by in terpret i ng data as a command . An

I/0 node can a l so become a commander on the

XMI and access global XMI memory. ljO nodes

may generate i n terrupt sequences d i rected

toward processor nodes. However, I jO nodes do
nor respond to com mands directed toward me m

ory space .

Memory Nodes

Memory nodes act only as responders on the X M I .

They respond to read and write req u ests d i rected
toward memory address space . These requests are

generated e i t her by processor or 1/0 nodes .

Data Integrity

The X M I contains a n u m ber of features to

en ha nce the i ntegrity and reliabi l i ty of the
intercon nect . Fi rst, a l l X M I i n formation transfer

l i nes arc parity protected, and X M I com mand

confirmation signals are ECC protected . The X M I

protocol i s suffic iently robust t O permi t detection

and recovery of all s i ngle-bit error cond i tions on
these signa ls . Add i t ional ly , the XMI defines t i me

1 6

Table 2 XMI Bandwidth Based on
Transaction Size

Transaction Interconnect
Size in Bandwidth
Bytes in MBjsecond

4 3 1 .25

8 62.50

1 6 83.33

32 1 00 . 00

our condi tions that may be used to detect and

d iagnose fai l ures .

VAX Console

The VAX 6 2 0 0 system i m p l e ments the standard

VAX console fu nction a l i ty by means of software

that condi tionall y exec utes on each of the KA6 2A

CPU modu l es . Each KA6 2A C PU module contains

a ser i a l - l i ne i n terface, 2 5 6MB of read-on l y mem

ory (ROM) , 3 2 MB of electronical ly erasable ROM

(EEROM) , and 5 1 2 bytes of RAM . Control is

passed to the console software upon any one of

the fol lowi ng occurrences:

• System power-up

• I n i ti a l i zation

• Receipt of a controi - P character from t he con

sole ter m i n a l

• Execution o f t h e HALT i nstru ction

• Some severe error condi tions

Each KA6 2A CPU has access to console term i
nal transmi t-and-receive l i nes carried o n the sys

tem backplane . Upon power-up, control of the

system console term inal is dyn a m icall y a l located
to one of the CPUs prese n t in t he syste m . This

CPU , known as the " boot" processor, provides
t he system i n terface ro t he console ter m i n a l as

we ll as ro the swi tches and l i ghts located on the

system control panel .

On receiving comm ands from the console ter

m i na l , t he boor processor may run d iagnostics or

boot an operating syste m . This processor commu

n icates w i t h other processors by means of a struc
ture m a i n tai ned in me mory known as the console
commu n ications area (CCA) .

Digital Technical journal
No. 7 August I <)88

Also considered as part of the console sub
system. a TK'50 tape dr ive i s incl uded in each
VAX 620 0 syste m . The tape drive is connected to
the system hy means of a TBK'50 control ler mod
uk located on a VAXBI l/0 channe l and is used
for the fol l ow ing pu rposes :

• Saving a l l vo lati l e parameters for the console
subsystem

• Loading t he VA,'(Diagnostic Su pervisor (VDS)
when no d isk is avai ! able or functiona l in the
system

• Distri buting operating system and layered soft
ware

The TK'50 tape drive is a lso ava i lable under oper
at ing system con trol as a genera l - purpose data
i n terc hange device .

Built-in Self-test
Extensive bu i l t - in sel f-test i s used by al l modu les

contained within the VAX 6 2 00 systems . Upon
power-up . a l l mod u les wi th in the system, with
the except ion of the DWMBA, perform a se l f-test
in para I l e t . After se lf-test is com plete, t he CPU
modules exa m i ne each other 's status; the one i n
t h e lowest s lot nu mber that passed self- test is
selected as r he boor processor. The boot proces
sor then cont inues to execute an addi t ional test
ro ensu re memory accessibi l i ty and fina l l y exe
cutes a tesr of the DWMBA.

Physical Packaging
Al l VAX (J 200 systems are housed i n the same
cabinet, which is 7R em (30 '5 inches) wide by
I 54 em (60 . "i inches) ta l l by 76 em (30 inches)
deep . The cabinet conta ins one 1 4 -s lot XMI back
plane , two (J -slot VAXBl backplanes , and all nec
essary power and cool ing to sustain a wide range
of configurat ions Figure 6 shows a VAX 6 2 4 0
with the front door removed.

The XMI i s physica l ly implemented in a
1 4 -s lot backp l ane assembly conta i n ing Z IF mod
u l e connectors. s igna l terminating networks , and
a centra l ized c lock and arbitrat ion system . Mod
u l es are located on 2 em (0 . 8 inch) centers . The
Xi\'1 1 bac kplane is supp l ied wi th + 5 volts (V) for
ge neral logic . a separate + 5 V supply for mem
ory. ± 1 2 V for t be console term inal l ine dr ivers,
and - '5 2 V 1 - 2 V for em it ter-coupled logic
(FC L) . Presen t l y none of the VAX 6200 XMI
modules ut i l izes the ECL voltages . but ECL is
incl uded for poten t ia l future usc .

Digilal Technical journal
No. 7 A ugust 1')88

Figure 6 VA X 624 0 System, Front Door
Removed

The VAX 6200 systems a l l contain two 6-s lot
VAX BI backplanes, which arc configured as i nde
pendent channe l s . The first s lot of each VAX BI
backplane is occupied by the DWMBA/B modu le ,
leavi ng '5 sl ors for standard VAXBI i ntcrfaces . Al l
systems conta in a DEBN K TK'50 tape control ler
and a DEfiNA Et hernet control ler as standard
equ i pment . The rwo VAX BI backplanes are sup
p l ied with + 5 V, ± 1 2 V, - '5 . 2 V, and - 2 V.

Summary
The VAX 6 2 00 fam i ly of systems merges the
CMOS VLSI VAX ch ip , which is used in a number
of Digi ta l 's prod ucts, with a very high perfor-

1 7

CVAX-based
Systems

------ A n Ot,ervieu• of the VAX 6200 Family of Svstems

mane<:: memory and 1/0 subsystem . Th is hard
ware . combined with the new fu l l y symmetric
mu l t i process i ng capabi l i t ies of VMS version 5 . 0 ,
a l lows very h igh system throughput prev iously
ach ievable on ly with ECL technology. Moreover.
the extensive usc of CMOS tec hnology resu l ts in
p hysica l ly smal ler systems. These sma l le r sys
tems consume less power and are more re l i able
due 10 the lower component cou nr and lower
power consu mpt ion .

1 8

References

I . P Wade. "The VAXB1 Bus - A Random ly
Configurable Design," Digital Technical
journal (February 1 987) : 8 1 -87 .

2 . T Fox . P . Gronows k i . A. Ja i n , B . Leary , and
D . Miner, "The CVAX 78034 Chip , a 3 2 -bi t
Second-genera t ion VAX Microprocessor , "
Digital Techn ical journal (August 1 9 88 .
th is issue) : 9 5 - 1 08 .

Digital Technical journal
No . 7 A ugust 1 988

Brian R. Alliso n I

The Architectural Definition Process
of the VAX 6200 Family

The architectural definition of Digital's VAX 6200 family was governed by a

twofold goal: to build a system with higher throughput than previous

CMOS, Q-bus-based systems at a cost lower than ECL-based systems. Deci

sions made during the definition process were influenced by firm schedule

guidelines. Further, the very nature of the multiple processor system

imposed its own requirements, particularly in the definition of the XMI

bus. This new 64-bit-wide interconnect is specifically designed to meet the

memory and I jO needs of the symmetric multiprocessor system. Through

out the architectural definition process, engineers continually evaluated

the interdependency of one design decision upon another and against the

project and schedule goals. By this process, the total definition of the sys

tem - the XMI bus, the processor module, memory module, console sub

system, and packaging - was achieved.

Defin i t ion of the VAX 62 00 fam i l y of systems
began in Marc h 1 98 '5 . The engineers' i n tent was
tO des ign a fol low-on p rod uct w the VAX 8 2 00/
8:) 0 0 fa mi l y of systems. st i l l in deve lopment at
that t i me . This paper d iscusses t he system arc h i
tectural de fi n i t ion process t hat took p lace dur ing
1 98 '5

Li ke t h e VAX 82 00/8 300 fam i ly before i t , t he
VAX 6200 fa m i ly provides a system environment
for a VLSI VAX c h i p set . This new fam i ly of sys
tems is a mid-range VAX i m plementation . In t h i s
context . a m id -range system i s defi ned as a pro
duct w i th more capabi l i ty t h a n t h e Q-bus-based
systems and less capab i l i ty than the e m itter-cou
pled logic (ECL) based systems.

Project Goals
The pri mary goa l of the VAX 6 2 0 0 program was
twofold: to b u i l d a system w i t h greater system
t hroughput t han the CMOS. Q-bus-based VAX sys
tems , and to ensure system cost was lower than
that of h igh-performance EC L- based systems.
Desi gners wou l d achieve this goa l by design ing a
system arc hi tecture t hat al lows a moderate num
ber of low cost CMOS VAX m icroprocessors to
share a com mon system env i ron men t . Such an
efficient m u l t i processor system env i ronment
wou ld offer h i gher throughput for a l arge num
ber of appl icat ions and a t a cost lower t han a
h i gh -performance single processor.

Digital Technical]om-r1al
No. 7 A ugust I 'J88

Once the decision tO bu i l d a m u l t iprocessor
was made . the next q uestion was how many
processors to i nc l ude. Several sma l l computer
manufacturers were bui l d i ng 8- to 3 2 -processor
systems at the t i me . Our bel ief was that t he mar
ket for systems w i t h n u merous processors was
fa i rly sma l l because few appl icat i ons wou l d run
effic iently on t hese syste ms. Therefore, we
dec ided ro design the VAX 6 2 00 as a 4 -processor
system . w i t h t he possib i l i ty of expansion to
8 processors . This arrangement wou ld a l l ow us to
sri 11 configure cost-effect ive 1 - ro 2 -processor sys
tems. If we found a s ign i ficant nu mber of appl ica
t ions cou ld benefit from the larger n u mber of
processors, we cou ld expand to 8 processors.

Bui l d i ng an efficient mu l t i processor system
wou ld necess i tate opt i m i zat ion of both hardware
and software funct iona l i ty . The VMS asym met ric
mu l t i processi ng code (VMS versions 2 through
-4) that supported t he VAX- I l j7 8 2 , VAX 8300,
and VAX 8800 systems worked we l l for compute
bound , dua l -processor systems. However, asym
metric operat ing system software wou ld not be
accepta ble for larger sca le mult i processors. In

the exist i n g VMS asymmetric mul t i processi ng

design . most operat ing system code was exe
cuted on t he processor designated as t he " pr i
mary" processor . Whenever a process needed to
perform ljO or i nvoke most of the VMS system
serv ices. the process wou l d have to be schedu led

1 9

------- The A rchitect ural Definitio n Process of the VA X 6200 Fa mily

on the pr imary processor. The task of mak ing
VMS more symmetric in i ts handl ing of !jO and
VMS system services was undertaken ro support
t he VAX 884 0 and the VAX 6 2 0 0 fam i l ies .

1

Discussion of how \ve chose to opt i mize the
VAX 6200 hardware begins i n the sect ion The
System I n terconnect .

Schedule

In March l l)H') the des ign of the CVAX c h i ps was
a l n:ady wel l u nder way . These chips wou ld be
del i vered in t ime to a.l low systems to sh ip in late
I 987 Based on the CVAX c h i p set schedu l e , we
esta b l ished the fol lowing schedu le for the devel
opment of the VAX 6200 system :

S ix mon ths of arch i tectura l defi n i t ion

Twelve months of des ignjsimulation

Three months to budd and test approxi mate ly
five fi rst-pass prototypes

Six mon ths to b u i l d approxi mately 70 second
pass protOtypes

Three months for final test i ng and manufactur
ing i n trod ucrion

This two and a ha lf year schedu l e s ign ificantly
i n fluenced the defi n i t ion of the system archi tec
tu r<.' as we l l as the se lection of i m plementation
technolog ies . (Actual i m p lememarion rook three
years . The design/simulat ion p hase took three
months longer rhan expected , a nd rhe fi rsr-pass
prototype phase rook three months longer than
expected)

The System Interconnect
The first order of business was to define a new sys
tem i nterconnect. This i nterconnect wou l d have
rhe bandwidth requ i red tO su pport the memory
ancl 1/0 needs of the mul t i p l e processors We
ou t l i ned three requ i rements that wou ld affect the
design of t he new system i n tercon nect.

• We esti mated that each CVAX processor wou ld
req u i re between 3 megabytes (M B) and 6 M l3
per second of dara tojfrom memory. This rare
wou l d depend on the c l ock rate of the pro

cessor, the selected cache arch i tecture , and
the cache " h i t " rate of t he program being
executed .

• We a lso est i mated that each processor cou ld
req u i re peaks of 1 MB ro 1 . 5MB per second of
l /0 bandwidth .

20

• To maint a i n predictable memory access t i me ,
we decided that the system bus shou ld not be
run over 7 '5 percent u t i l i zed .

Us i n g the worst-case amici pared bandwidth
needs , 80MB per second of peak bus bandwidth
would be req u i red to su pport 8 processors .

fkcause of t he t ight schedule and our aware
ness of the s ign i ficant a mou n t of t ime needed to
des ign a new system bus, we fi rst looked i nto the
feasi b i l i ty of us ing an existing bus . We consid
ered hut rejected the exist ing VAXB I bus, the
primary in tercon nect for the VAX 8 2 00/83 0 0
syste m , because o f i ts l i m i ted 1 3 3 MB p e r second
bandwidt h . We a lso rejected the N M I bus,
the VAX 8 '5 0 0j8700j8 800 fa m i ly i n terconnect ,
beca use t h is bus uses ECL techno logy. At one
point we even considered us ing the SBI from the

VAX - I 1 /780 system wi th a 6 4 - b i t data path
i nstead of i ts exist i ng 3 2 - b i t data path . After
extens ive ana lysis , however , we decided a new
system bus wou ld have w be engi neered for the
prod uct to meet i ts goal s .

A l though we wou ld have ro define a new bus
for processor-to- memory commu nications, the
sched u l e did not a l low us to design a fu l l com
p le rnenr of IjO i n te rfaces for the new bus . Si nce a

large n umber of !jO i n terfaces woul d be ava i l
able on t he VAXBI , the des ign team decided to
use the VAXBJ as the i nterconnect to a ll IjO
devices . The new system i n tercon nect , the X M I ,
woul d be used only t o connect processors, mem
ories, and VAXBI c hanne l adapters . Therefore ,

i n addi t ion to the req u i rements l isted above ,
the X M I archi tectu re wou l d a lso a l low mult ip le
VA.,'\ B I channe l adapters to opt i m ize 1/0 through
put where necessary for large systems. Use of the
VA.,'\BI for l/0 adapters a lso had the pos i t ive
effect of m i n i m i z i ng the n u m ber of e l ectr ical
i n terconnects tO the X M I ; the phys ica l length of
the X M I wou ld consequent ly be shorter and the
tOta l capaci tance lower . Further d iscussion of the
channel adapters is presented in the sect ion
VAXnt Channel Ad apters .

I n June 1 9 8'5 a team o f l l sen ior- level engi
neers was assembled ro prod uce the arch i tectu ra l

and e lectrical speci ficat ion for t h e X M I b u s and
the VAX 6 2 0 0 system . In addi t ion to arch i tectu ra l
a nd e lectrical experts, th is team i nc luded one
represe ntat ive from each of the ant ic ipated mod
u l e des ign reams. Almost a l l members had prev i
ously worked o n projects i nvolv ing the VAXBI
bus . I t was understood that the XMI woul d be

Digital Technical]oun�al
No. 7 A ugust 1 988

used solely for the VAX 6 2 0 0 fam i ly of systems,
un l i ke the VA.-'\131. which would be used across
many d ifferent appl ications. A strict adherence to
th is prem ise great ly he l ped the speci fication
team to put techn ical trade-offs in perspective .

XMI Electrical In terface Definitio n

Since most of the VAX 6200 system is CMOS and
transistOr-transistor logic (lTL) based, we i m me
diate ly decided th<: XMl could not be i mpl<:
mentecl i n ECL To mainta in a TIL- level bus and
to ach ieve the desi red bandw idth , the data path
c learly wou ld have to he 64 bits wide . Further. to
meet our goal of 80MB per second bandwidth ,
the XMf wou ld have to transfer 64 bits of infor
mat ion every 80 nanoseconds (ns) . (Th is transfer
rate assumes a protocol i n which address and data
arc mult i plexed . and up to 3 2 bytes of data can
he transferred per address cyc le .)

Several e lectrical a l ternat ives were considered
for t he X M I . A scheme using the com mercia l ly
ava i lable FumreBus components was seriously
cons idered . However . we rejected th is scheme
because a large nu mber of components wou ld be
necessary to implement the 64 -b i t data pat h .

The lack of commercia l ly ava i lable compo
nents to drive a 64 -h i t bus at the requ i red speed
tina l ly led us to a decision . We would design a
hit -s l iced custom CMOS bus interface chip set .
Each chip wou ld transce ive 1 1 J i nes, and seven
chips would be used for the entire data path .
Al though the "s l iced " bus in terface wou ld use
more module real estate than a l a rger ch ip , the
s l iced bus design greatly s impl ified the ch ip
packaging problems. Each chip wou ld fi t into a
standard 4 4 -p in cerguad package . A sl iced XMI
interface also a l lows each ch ip to dissipate under
0 . '5 watt (W) , which enhances re l iabil i ty and
rel ieves the need for heat s inks on the part . Wi th
out hear s inks . the XMI in terface parts can be
mounted on both sides of each mod u le . This
arrangement saves '50 percen t of the real estate
necessary to in terface to the X M I .

To si mpl ify rhe design of t he fu l l cusrom X M I
in terface parts, we wou ld keep the functional
requ i rements for rhe pans as si mple as poss ib le .
The XMI in terface chips have l i t t le knowledge of
the XMI protocol and serve only as the e lectrical
i nterface . Due to the divergent needs of pro
cessor, memory, and 1/0 interfaces, desi gners
a l ready knew that each module would need a
d ifferent VLSI ch ip for XMl i n terface funct ions .
We decided , therefore , that each modu le VLSI

Digital Technical journal
No . 7 A ugust I 'JRR

chip wou ld he requ i red to supply the logic ro
imp le ment r he bus- l evel protocol .

As the electrical des ign of the XMI progressed ,
a bus cyc l<: as fast as 64 ns appeared feas ib le .
Al though not ent irely necessary ro su pport the
stared system pe rformance goa ls , the faster XMI
cycle t ime was strongly pursued to ga in extra
margi n in the system design . Furthermore , this
fast cycle t ime wou ld a l low the poss ib i l ity of sys
tem upgrades ro faster processors in rh<: future .
Consequently, 64 ns became the stared goal for
the X M l cycle t ime ; 80 ns was rhe fa l l back strat
egy if the des ign complexity of a 64 -ns cycle
r ime began ro place the overa l l project schedule
ar r isk .

Logic design across the ent ire system was done
assum ing a 64 -ns cyc le r ime . Eventua l l y 64 ns
became the actual speed of rhe bus as the CMOS
process was characterized and rhe fi rst parts were
sampled and found to conta in sufficient margi n to
support rhe faster cycl e t i me .

XMI Protocol Definition

XMI prorocol defi ni t ion took p lace in para l le l
wi th rhe electrica l defin i t ion of the bus . I t was
clear from the start that the bus wou ld cycle sev
eral t imes faster than the memory subsystem . This
d ifference in cyc le t i mes i mmediately led us to
the decision rhar the X M I wou ld ru n a " pended "
bus protocol . A pended bus protocol a l lows con
trol of the X M I tO be re l inquished between
a "read" com mand and the return of rhe data from
the memory su bsyste m . With mul t ip le processors
and mult iple memory control lers , seve ra l read
commands could be outstandi ng at a r ime .

To opti mize data traffic on the XMI bus ,
we needed ro defi ne data transfer com mands
of several l engths . S ince VAX instructions may
write as l i t t le as I byte of data, a 64 -bit write
command was defined . (There is a mask field
associ ated with the write command that a l lows
single bytes to be wri tten .) Si nce the VAXBI
bus a lready had commands to transfer 1 6 bytes
of clara per address , it was essentia l to a l low
s imi lar commands on the XMI bus to min i
mize the in terface complexi t ies ro the VAXB I .
Eventual ly we added a 3 2-byte read command
tO a l low processors ro prefetch larger amounts
of data upon cache misses. A _3 2 -byte wri te

command was not implemented, because i t
wou ld be roo great a bu rden for t he memory
controller ro buffer mult ip le 3 2 -byte write
commands .

2 1

CVAX-based
Systems

------- The A rchitectural Definition Process of the VAX 6200 Fami�y

I n many cases the protOcol of the XMI is s im i
l a r ro that of the VA,'{B J . In parr this sim i lar i ty
resul ted because the designers of the XMI were
very fam i l i ar with rhe VAX B I . The s im i l ari ty
between protocols was a lso de l i berately chosen
because it greatly reduced the complexi ty of
in terfacing the XM I to the VAXBI for l jO pur
poses .

The bus arbi trat ion scheme is one area where
designers had to deviate from the method used
by the VAXB I bus. The VAXBI uses the main
bus data path for arbitration , which requi res
extra bus cycles. This approach was nor feasible
for the XMI pencled prorocol , s ince two arbi
trat ions are necessary for each read transac
t ion . Further, the VAXBI arbi trat ion scheme a lso
requ i res a great deal of dupl icated logic in eveq'
modu le . Due to the large number of a l lowable
XJ\'1 1 nodes . i t was not feas ible to implement
an arbi tration mechanism located on an XMI
mod u l e . To impl ement arbi tration on any XMI
module wou ld have requ i red a great nu mber of
signal pins . The sol ution was to implement a cen
tra l i zed arb i ter . The XMI uses a modu le phys i
Gtl l y a ttached tO the rear of t he backplane as a
centra l i zed arbi ter as wel l as rhe source of the
master clock .

The subject of data i ntegrity on the XMI was of
great concern tO the designers . I n it ia l ly carrying
error-checking and correction (ECC) bits on the
bus was considered . However, th is scheme was
rejected because add i t iona l encodejdecode t im
ing wou ld have been requ i red, and because addi
t iona l b i ts would have to be carried on the bus .
Eventua l ly a robust prorocol was imp lemen ted
based on parity detection and hardwarejsoftware
retries when errors arc detected . Al l transient
s ingle-bit errors on rhe XMI are recoverable .

XMI Physical Definition
The physica l defin i t ion of the XMI was a d ifficu l t
task . There were a great nu mber of in terdepen
dent rrade -offs for mod u le s ize . module spac ing,
number of backplane s lots . and cabinet s ize

To min i mize design complexity , we had
decided at a very early stage that each module
wi th in the VAX 6 2 00 system wou ld impl ement a
single function . Thus the task of design ing each
modu l e was s impl i fied and rhe d iagnosabi l i ry of
the system enhanced . I n i ti a l ly , the s i ze of the
XMJ mod u le was large ly governed by the space
needs of the processor Ana lysis showed that a
processor based on the CVAX chip set cou ld fit on

2 2

a module the same s ize as the exist ing VAXBI
module 2 0 . 3 2 em (8 .0 i nches) by 2 3 3 3 em
(9 1 87 inches) . In addi tion . 3 2MB of memory
cou ld fit on the same s ize modu le .

System packaging was another factor to con
sider in selecting the module s ize . From the very
start of the VAX 6200 program , i t was not c lear
what type of system- l eve l packaging was opti mal .
Des igners knew, however , that the l arger systems
wou ld pri mari l y be p laced in computer- room
environments . For these appl ications , a standard
I 5 :) 67-cm (60 . 5 - i nch) tal l cabi net wou ld be
necessary. What was not clear was i f office-type
packaging or rack-mount-type packagi ng woul d
b e requ i red . S ince VAXBI formfactor pedesta l and
rack-mount box packages were both avai lab le ,
designers found i t very attract ive to use the same
formfacror modu le for the XMI to ease the deve l
opment o f these packages i f necessary. Based on
the functiona l i ty fir and the desi re ro potent i a l ly
reuse existi ng packaging, we decided to adopt
the VAXB I mod u l e s ize for the XMI .

Another advantage to using the VAXBI module
s ize was the opportun i ty to use the VAXBI zero
insertion force (ZIF) backplane connector. H is
torical ly . developing new backplane connector
technologies has proven d ifficu l t and t i me
consum i ng The VAXBI uses a five-segment ,
60-pin -per-segmenr connector. Of the 300 pins,
I 20 pins are assigned to the VAXB I signals and
1 80 p i ns to each modu le for ljO use . Since t he
XMl has 3 2 more data-path b i ts than the VA,'XBI ,
designers chose to a l lot an extra 60 pins for t he
XMI signals . This leaves I 20 pins for genera l
module use . Designers bel ieved the arrange
ment ro he acceptab le . s ince there are no I/0
modules for the XMI . The on ly use for the I/0
pins is to connect ro t he VAXBI card cages . The
1 2 0 ava i lable pins are more than adequate for
this function .

To meet the cyc le t i me goa l s for the XMI bus,
the length of the XMI woul d have to be l i mi ted to
about 0 :) meters (1 2 i nches) and the number of
loads l i m i ted ro approxi mately 1 6 . The XMI pro
tocol assu med a maximum of 1 6 devices wou l d
in terface r o the XMI bus. Eventua .l ly t he nu mber
of slots in an X M I backplane became 1 4 for two
d ifferent reasons . F i rst . 1 4 slots wou ld a l low a
system to have 8 processors, four memory arrays ,
and two VAXB I channels . Second, a 1 4 -s lot XMI
backplane would he very s imi lar i n size to the
pa ir of 6 -s lot VAXB!s that a l ready existed in the
VAXBI pedestal and rack-mount box packages .

Digital Technical journal
No. 7 A ugust 1 988

XMI mod u le spac ing of 2 . 0 3 em (0 . 8 inches)
is the same as that on the VAXBI bus . We chose
th is spac ing to a l low for heat-s ink components
on side I of the mod u l e . Enough height wou l d
remain to a l low non-hear -s ink . surface -mounted
components on side 2 .

About 1 8 months in to the program , rhe mod u l e
designs were complete , and both the pro
cessor modu le and memory modu le were experi
encing great difficu lty dur i ng pr inted c i rcu i t
board l ayout . Al though a ll componen ts cou ld
be placed wi th in the area ava i lable, the very
high pin-count gate arrays i n use (2 2 3 pi ns)
were causing considerable rout ing problems.
To lower rhe sched u l e risk to the program .
designers decided to lengthen the module by
7 . 6 2 em (3 inches) . The i mpact to the computer
room packaging was m i n i mal because a 7(J -cm
(30 - inch) cabi net depth cou ld accommodate
the change . However , the change in module
lengt h made impossible the adaptat ion of the
exist ing V�'\BI pedestal and rack-mount packag
ing to the XMI . Ar th is t i me the pedesta l-based
strategy for the MicroVAX 3 5 00/3600 systems
was c l ear. thus reducing the need to package
the VAX 6 2 00 fam i ly of systems for office use .
Furt her, extremely low sa l es of rack-mounted
V�'\ 8200/8300 systems led us to t he decision
that a rack-mou nt package was not i mmed iately
necessary.

XM/ lnterjace Technology
The decision to imp l e ment the X M I e lectrica l
in terface i n s imple fu l l custom CMOS parts d ic
tated that eac h mod u l e have addi t iona l logic to
complete t he XMI in terface and to supply mod
u le-specific logic. To s impl i fy both the design of
the X M I interface parts and the CAD tools. we
decided that a l l modu l e-ro-XMI in terfaces wou ld
be implemented in the same technology . G iven
the aggress ive design schedu le , we would need a
technology that was mature as wel l as easy to
design for .

We in i t i a l ly focused on a fam i ly of 2 - m icron
CMOS gate arrays avai lable from LSI Logic and
Toshiba . However. ir q u ickly became c lear that
array l i mitat ion of approxi mately I 0 , 000 gates
wou ld force us tO place mu l t ip le ch ips on each
modu le . The use of mu lt ip le ch ips was h ighly
u ndes irable from the perspective of design
resources , mod u l e rea l estate, and cost . A search
was started to locate a su i table a lternative . To get
the desired logic density, several semicustom

Digital Technical journal
No. 7 A ugusl 1 988

a l ternatives were explored but u l t imate ly
rejected because of the i m maturity of their CAD
too ls .

Discussions wi th LSI Logic Corporation led us
tO consider the i r new l y developed I . 5 - micron
"Sea of Gates" array , which offers up to 5 0 .000
routable gates Al t hough th is array did not give us
the mature technology we were seek ing . i t d id
appear to offer the fl ex i b i l i ty needed by a l l XMI
designs. We u l t imately chose t he LSI Logic
LL 1 0000 fam i ly of gate arrays because a I .J designs
cou ld use the same technology . Moreover. we
cou ld focus our CAD tool deve lopment on a
single technology

The 6 4 - bi r-wide X M I data path forced the p in
count of a s ing le in terface ch ip to be 200-p l us
pins . The LSI Logic LL I 0000 array was offered
in a 2 2 3 -p in pin-grid-array (PGA) package which
appeared su i tab le . Al though most of the logic
on each modu le was implemented in surface
moun ted components . we did not pursue a
2 2 3-p in . surface-mount package . We wanted to
avoid the manufacturi ng problems presented by
components with 2 5 - m i l p i tch l eads .

The Processor Module
The VAX 6 2 00 processor modu le uses the CVAX
chip set to i mplement t he VAX instruct ion set .
Due to an uncerta inty about t he fina l CVAX chip
speed . the CPU module was designed to operate
over a range of 70 ns to l 00 ns. The intent was to
use "b i nned " parts in the VAX 6200 system. and
to use the " nomina.! " parts i n the MicroVAX
3 5 00/3600 systems. (Chip manufacturing pro
cesses yield pans of d ifferent speeds; " binni ng"
refers to the process of test ing the chips over a
range of speeds .) For the CVAX chip set . the nom
i nal parts run at 90 ns, and the bi nned parts run
at 80 ns .

A major system-wide arch i tectura l issue . which
primari ly affected the processor module , was
whether the cache should be wri te-back or write·
through. Al though a wri te-back cache cou ld
potent ia l ly reduce the n um ber of processor
writes on the X M I by 5 0 percent , such a cache
was compl icated and had never before been
designed for a mu l t iprocessor VAX system . Our
final decision was based on the need ro reduce
overa l l risk to the program . Therefore . we woul d
implement the more straightforvvard write
through cache design and bu i ld the extra band
width i nto the X M I to handle the add i t ional write
traffic .

2 3

CVAX-based
Systems

------- The A rchitectural Definition Process of the VA X 6200 Family

Once the decis ion to i mplement a write
t hrough cache was made , the major archi tectura l
i ssue for the processor module became t he cache
organ izat ion . The CVAX chip contains an int e rnal
! - ki lobyte (KB) . two-way set associat ive cache
accessible to the i nternal m icro engine in one
cyc l e . Due to the long latency to main memory, a
second- level cache on the processor module was
i m perative . The s ize of the second- l eve l cache
was determ ined by the avai lable static random
access me mory (SRANI) technol ogy . The newly
avai lable high-speed 64 K-by-4 SRAMs wou ld
provide a 2 '5 6 KB cache with on l y eight parts .
Although no accurate s imulat ion was avai lable to
indicate t ilL effect of this large cache, the effects
were assumed to be posi t ive . Therefore we
decided that the h igher cost of the SRAJ\1s was a
worthwhi l e trade-off given the potent ia l gains in
system performance .

A th i rd major i ssue re lat ive to the caches on the
processor module was the inva l idation scheme .
I n the past . VAX processors have managed cache
inva l idat ion . s ince processors and 1/0 devices
have a lways shared a common memory subsys
tem . 'J'he issue of cac he inva l idation became
much more i mportant to our program because
of the mu l t i processor nature of the VAX 6200
system . This type of system cou ld cause large
amounts of sta le data as a process migrates from
processor to processor.

The J K.l3 cac he contained wi th in t he CVA.,'(
chip caused t he largest problem. I f it were
a l lowed to cache data that cou ld become sta le ,
every write to memory would potenti a l l y have
to be inva l idated with in the CVAX cache .
This meant choos ing one of two approaches:
(I) broadcast ing every write i n the system onto
the CDAL bus of every processor. or (2) fi nd ing a
way to maintain a dupl icate tag store of tags
wi th in the CVAX ch ip and only pass ing writes
known to reference cac hed data with in the CVAX
onto the COAL. Anot her a l ternat ive was to cache
only instruct ion-stream (! -stream) data wi th in
the i nternal cache . Th is a lleviates the need to
inva l idate . because !-stream clara is defi ned to be
read-on l y by the VAX arch i tectur e . We projected
th is al ternative cou ld cause a 3 to 5 percent
degradat ion in CPU performance .

Analysis of the cac he- inval idate prob lem
proved very d ifficul t . because we did not know
what percentage of data wou ld be shared in th is
class of mu l t iprocessor system. With the poten
t ia l for 8 processors, it was c lear that a l l wri tes

24

cou ld not be broadcast i nto each of the CVAX
chips . The poss ib i l i ty of mainta i n ing a dupl icate
externa l tag store proved to be very difficul t to
i m plement. Consequently , we chose the a l terna
t ive to store only I -stream data wi th in the internal
CVAX cache .

A s imi lar problem was knowing when to inva l i
date data i n the external cache . I n t h is case i t was
feas ib le to i mplement a duplicate tag store . The
second- l evel cache has two tag stores . One i s
located on t h e CDAL and i s used for cache look
up by t he CVA.,'{ ch ip . The second tag srore is
located wi th in the XMI in terface and is used to
determi ne if XMI wri tes h i t the second- level
cache . When h i ts are detected , a request is
queued to i nval idate the entry with in the second
leve l cache .

Another problem to be solved on the processor
modu le was the issue of combin ing wri tes i n to
larger b locks before issu i ng them to the XMI .
S ince the CDAL data path is only 3 2 b i ts wide , the
CVAX ch ip is i ncapable of generat ing a wri te
command any larger than :) 2 bits . The 64 -bi t data
path of the XMI woul d need larger writes to oper
ate efficiently . The sol u tion to th is problem was
to i mplement a " wri te buffer" in the XMI inter
face of the processor mod u l e . The write buffer
takes advantage of the fact that wri tes generated
by VAX processors are often sequentia l . The
write buffer wi l l buffer up to four sequent ia l
3 2 -b i t wri tes and combine them in to a s i ngle
XMI wri te transact ion 2

The Memory Module
The system design goal was to provide the capac
i ty for 1 '5 M B to 3 0 MB of memory per processor.
As ment ioned earl ier , the modu le s ize was par
t ia l ly governed by the need for 3 2 MB of memory
per memory module . The number of s l ots in t he
XMI backpl ane was a lso part i a l ly determi ned by
the des i red amount of system memory.

The wide range of poss ib le VAX 6200 con
figurat ions d ictated the need for an expandable
memory subsystem . S ince fu l l memory band
wid th wou ld on ly be necessary for very large
configurations , i t was decided to adopt a dis
tr ibuted memory arch i tecture. An i nd ividual
memory control l er cou l d be made simpler if i t
d id not have to supply fu l l XMI bandwidth . Fu l l
XMI bandwidth cou l d be ach ieved by i nter
leav ing mu l t ip le memory control l ers.

With the modu le s ize and number of slots
determined , t he fi rst arch i tectura l decision to be

Digital Technical journal
No. 7 A ugust 1 ')88

made for the me mory was inrernal organ izat ion of
the memory . The 64 -bit width of the XMI made i t
des i rable t o have a 64 -b i t data path in ternal ro
the memory modu le . The very r ight modu l e rea l
estate made i t very attract ive to consider imple
ment i ng a 64 -bit cl a r a path to reduce the number
of requ i red ECC check bits . A 64 - b i t-wide data
path was a lso a ttract ive given that the processor
mod uiL woul d issue a read for) 2 byres whenever
there was a cache miss .

The negative side of a 64 -bir in ternal memory
organizat ion was that any write of Jess than
64 bi ts in width wou ld resu l t in a read-mod ify
write operat ion ro calculate the proper ECC
code . An ana lysis of the expected write traffic
through t he processor's write bu ffer showed that
approxi mately 5 0 percen t of a l l wri tes wou ld be
a fu l l 64 bits in width . Further ana lys is showed
that as l ong as there was at l east one memory
control ler for every 2 processors. there woul d
be sufficient memory bandwidth for t h e system.
Given the performance characteristics of the
CVAX processor, i t seemed reasonable ro requ i re
a 3 2 MB memory array for every 2 processors . We
therefore dec ided to implement the 64 -b i t mem
ory interna l organ izat ion .

Si nce i t was very d i fficu l t to design the memory
module to accommodate the fu I I bandwid th of
the XMI . des igners used memory interleaving to
provide an aggregate memory bandwidth com
pat ible with the speed of the X M I bus . The i nter
leave s ize of 32 byres was determ ined by
the protocol of the XMI . which a l lows reads of
5 2 bytes per address cyc le .

The mult i process ing design of the system
made it possible for a s ingle memory conrrol ler
to be the object of several s imu l taneous req uests.
To avoid re jection of processor traffic . we
des igned the memory con tro l ler with an input
q ucue . This queue accepts me mory access
req uests and services them in a first - i n , first-our
(F I FO) order .

I n i t i a l ly the memory con trol ler was designed
with a fou r-command queue that would reject
new requests once the queue was fu l l . As the
design progressed, we rea l i zed that with our XM.l
arbi t ration scheme , a processor or VAX BI channe l
adapter might poss ibly be denied memory access .
A processor or channel adapter m ight be den ied
access for indetermi nate periods of t ime i f the
memory array was a l lowed to reject com mands
when its queue became fu l l . To avoid this prob
lem, the memory array was a l lowed to assert a

Digital Technical journal
No. 7 August I'J88

signal on rhe XMI that wou l d inh ib i t a l l new
commands from be ing issued on the XMI Unfor
tu nately. due to the p ipe l incd nature of the pro
cessor and the memory a rray. th ree add i t iona l
com mands coul d possibly be rece ived by the
memory control ler after i t had determi ned the
need to stop addi t ional requests S ince the depth
of the com mand queue was four . t h e memory
array wou ld need ro "sta l l " the bus after receiv
ing on ly a s ingle com mand . Si nce this effect ively
e l i m inated the command queue. we dec ided ro
lengthen the depth of the command queue to
eight entries .

The VAX arch i tecture forces the usc of a hard
ware-based memory lock to cont rol access tO
shared clara structures. The memory lock is used
by some inte l l igent IjO adapters as wel l as
processors .

Svsrem performance suffers when there is
contl icr over d ifferent lock variab les that acqu i re
a com mon hardware lock. G iven that D igital had
never bu i I r a ful ly symmetric mul t i processor sys
tem and that major changes were be ing made to
VMS, we d id not know what the lock traffic pat
tern wou ld look l i ke i n a large syste m . We did
know, however , that the exist ing VAXBJ 1/0
adapters and the CVAX processor cou ld not hold
more than a s ingle hardware lock at one t ime .
11ascd on th is . we designed the memory con
trol ler to have up ro 1 6 locked locations . This
number seemed more than adequate given a
maximum of 8 processors and on ly three exist i ng

VAX 131 1/0 adapters that usc memory locks
(Ethernet, C l , and TK 'iO) . The granu larity of
each Jock is) 2 byres to s imp l i fy the me mory con
tro l lers' hand l i ng of � 2 -byte read requests . Lock
congest ion is st i J I possible if mul t ip le lock vari
ables are a l l ocated wi th in the same � 2 -byre
region of memory. An exami nat ion of VMS code
shows lock congestion ro be very rare

VAXBI Channel Adapter
We had dec ided right from the starr ro design an
XM 1 -ro-VAXBI channel adapter to handle a l l IjO.
To meet the desi red maximum 1/0 rates of
l M.B ro l '5 M B per second for each processor, we
wou ld i nc lude mul t i p le XM !-to-VAXBI adapters .
Al though rwo VAX B l channels wou ld a l low
I .) i'vll3 per second per processor. it was dec ided

to a l low up to ei ght VAXI31 channels to be con
nected to the VAX 62 00 system . The design was
not made more complex by the change from two
to eight VAX BI channel adapters .

2 '5

CVAX-based
Systems

------ The A rchitectural Definition Process of the VAX 6200 Family

Designers wanted to optim i ze data transfer
from the VAXBI i n to XMI memory, si nce statisti
ca l ly more data is read from ljO devices chan is
wri tten . A double-buffered d i rect memory access
(DMA) data path from the VAXBI to the XMI
al lows transfers a t the ful l I 3 . 3MB per second
VA.'(BI data race .

For reads of XMI memory, i t was known t hat
fu l l bandwidth coul d not be main ta ined due to
the memory read latency t hrough the VAXBI
channel adapter and the XMJ memory subsystem .
S ince most IjO transfers are sequenti a l , we con
sidered bu i ld ing prefecch buffers i nto the VAXB I
channel adapter. Because transfers could b e i n
progress to several VAXBI nodes a t once , mu l t ip le

prcfetch buffers wou ld be needed . S ince prefetch
buffers can architecrura l ly be considered to be
sma l l caches, the VAXBI channel adapter woul d
also have t o mon itor a l l X M I traffic for potential
inval idate condi tions. Eventual ly the need for
large amounts of buffer srorage and the compl i
cation of XMI mon itoring decided us agai nst
bui !ding prefetch buffers . This decision was
influenced by other factors as wel l . No single
existing VAXBI I/0 adapter could read ac fu l l
bandwidth, and mult ip le r;o devices cou ld be
spread across several VAXBI channels co ach ieve a
higher aggregate XMI read bandwidth

To ease physical impl ementation, t he VAXBI
channel adapter was imp lemented on two mod
u les that were interconnected by fou r 60-pin
cables between the i r 1/0 pins . Un l i ke the
VAX 8500j8700j8800 VAXBI channel adapter,
the VAX 62 00 could not use a single XMJ module
co connect to mul t iple VAXB I buses . The 62 00 is
restricted by t he 1 2 0 IjO pins avai lable on an
XMJ module .

Console Subsystem
The console function in a VAX 6 2 00 system is
performed by code run on the CVAX CPUs. This
use of the main CPU-based console contrasts with
the more trad itional use of a dedicated front-end
processor, which has access co a l l system
resources . We chose to use a main CPU-based
console primarily because we had no way to

external ly access t he in ternal state of the CVAX
processor. Furthermore, we did not want to add
the cost of a dedicated console processor.

A side benefi t co a system design that employs
mu l t iple processors, memories and ljO adapters ,
is the opportuni ty w design in extra ava i lab i l i ty
by reconfigu ring the system i n the event of a s in

gle componen t fa i l u re . To accommodate for

26

reconfiguracion , al l processors wou ld have to be
a l lowed access to the physical console terminal
as we l l as the physical front control panel of the
syste m . This access i s accompl ished by busi ng
the signals that in terface to the console terminal
and front cont rol panel across the XMI. However ,
we needed a mechanism to ensu re that on ly one
of t he processors would actua l ly respond ro the
console terminal and front conrrol pane l . This
mec han ism is a protocol whereby t he processor
in the lowest XMI sloe that passes se lf- test
assu mes control of these external resources . The
processor that cakes control of the console termi
na l i s known as the " pr imary processor ." The pri
mary processor commun icates wi t h a l l ocher pro
cessors by means of a message passing protocol
through system memory .

I t is necessary for the console subsystem to
have access to a mass storage device. Such access
is needed for distribution of software and for
loading of diagnostics. The TK50 was se lected
because of its high density and t he avai labi l i ty of
a preex isting VAXBI i n terface (the DEBNK) . The
TK70 was not used because t here was no VAXBI
in rerface to it. The only other a l ternative was the
RX 5 0 , which has su perior access t ime but a data
capacity of only 4 0 0KB. The longer t ime ro run
d iagnostics from the TK50 was unimportant
si nce the system can be d iagnosed largely by
means of diagnostics contained in CPU read-on ly
memory (ROM) and by the bu i l t - i n se lf- test con
ta ined in a l l VAXBJ ljO adapters . Further , t he
TK50 makes an exce l lent software distribution
device and a l l ows VAX 6 200 systems to be
con figured without n ine- crack magtape drives .

In previous systems dependen t on ROM-based
console programs and ROM-based diagnostics,
code updates have been a problem . To al leviate
the need ro p hysical ly change the ROM, each
VAX 6 2 00 processor conta ins a 3 2 KB electron i
cal ly erasable ROM (EEROM) . Most console and
diagnostic code is accessed by means of an
address cable contained in the EEROM . In the
evenr that a code bug needs co be corrected , the
address table is rewritten to point to a repl ace
ment rout ine that is a lso written into the EEROM .
The console program implements a rout ine that
can patch the EEROM image from a database
distributed on TK5 0 cape .

Power and Packaging
As noted earlier, we projected that the VAX 6 2 00
system wou ld be used as a large system genera l ly
located i n computer-room env i ronments . An

Digital Technical journal
No. 7 A ugust I 988

i mportant goal was to design for a h igh degree of
flex ib i l i ty and configurab i l i ty in the system . The
decision ro use a 1 4 -slot XMI backplane had been
based on desired maximum configurations and
the size of existing pedestal and rack-mount
packages.

ln addi tion to housing the X M I backplane, the
computer- room package wou ld need to house
VAXBI backplanes to accommodate l jO adapters .
The VA..'<.I31 backplane i s manufactured i n cas
cadeable 6 -slot segments. I t seemed that two
6-slot VAXB I backplanes would provide adequate
l/0 adapters for most systems. To ensure that a l l
cusromers' I/0 requ i rements could be met , a
design was a lso in i t iated for a VAXB I expander
cabinet that could house four additional 6 -slot
VAXBI backplanes

To avoid developi ng a new power subsystem,
we looked into mod ifying an exist ing power sys
tem . Al though we cou ld fi nd no preexisting per
fect match , we d id locate a previously designed
5 volt (V) regu lator speci fied a t 1 00-ampere (A)
output . We respecified this design to 1 20 A by
using sl ightly h igher power components . The
VAXBI requ i res ± 1 2 V, - 5 . 2 V, and - 2 V i n
addit ion to the main + 5 V channe l . To accommo
date the VAXB I requ i rements, a new regulator
was designed. The X M I backplane is suppl ied
with two of the 5 V regu lators (one for main logic
and one for memory) . Al though not requi red by
any current designs, one of the ± 1 2 V, - 5 . 2 V,
and - 2 V regulators also suppl ies the XMI for
potent ia l future designs. The two VAXBI back
p lanes are suppl ied by one + 5 V regulator and
one of the ± 1 2 V, - 5 . 2 V, - 2 V regu la tors .

Conclusion
The design of a complex system l ike the
VA.'(6200 is much more than making wel l
informed engineering decisions based on hard
data . Engineers based the i ni t ia l system defini t ion
on thei r perceptions of t he needs for future com
puting systems. The defini tion was further
shaped by what was technica l ly feas ib le with a
defined degree of risk . Throughout the architec
wral specification phase , many trade-o.ffs were
made with only part ia l data and the in tu i t ive
i nsight of very experienced engineers .

The design process for the VAX 6200 system
was extremely smooth , and t he product was
designed within s ix months of the ini t ia l engi
neering goa ls . Due to the large degree of bu i l t - i n
configuration flexib i l i ty , t he product defin i tion
never changed enough to force a change in d i rec-

Digital Technical journal
No 7 A ugust 1 '.188

t ion during the des ign phase . Careful balanc i ng
of technical complexity with t he necessary
min imu m functiona l i ty yielded an architecture
that cou ld be i mplemented with a manageabJe
amoun t of risk in a bounded amount of t ime .

Acknowledgments
The in i t i a l VAX 6 2 00 system defin i t ion and arch i
tectura l group was made up of the fol lowi ng peo
p le : Brian Al lison , Charlie Barker , Frank Bomba ,
Darrel Donaldson , Rick G i l lett , Dave Hartwe l l ,
Dave I ves, J im Stegeman , Pat Su l l ivan , M ike
U h ler , and Doug W i l l iams.

References

1 . R . Gamache and K . Morse , "VMS Sym metric
M u l tiprocessing," Digital Technical jour

nal (August 1 988 , th is issue) : 5 7-63

2 . R . G i l l ett , " Interfacing a VAX M icroproces
sor to a H igh -speed Mult i processing Bus,"
Digital Technical journal (August I 988,
th is issue) : 28-4 6 .

2 7

CVAX-based
Systems

Richard B. Gillett, Jr. I

Interfacing a VAX Microprocessor
to a High-speed Multiprocessing Bus

The design decisions involved in interfacing a microprocessor (CVAX)

to a high-speed, shared-memory multiprocessing bus (XMI) are more

complex than those encountered in designing a single-processor sys
tem. Although the same basic interface architectures are used, the signifi

cantly different multiprocessing environment requires a much more
complex implementation. In particular, the performance of a multiproces
sor system is very dependent on the efficiency of its main memory inter
face. To achieve the desired system performance, appropriate compro

mises between design complexity and performance must be made. In the
case of the VAX 6200 system, performance simulations made early in the
project guided the complexity ;performance trade-o.ffs. Actual system
performance results have largely confirmed the validity of the design
trade-o.ffs.

The primary goa l of t he VAX 6200 design was to
provide a genera l -purpose , h igh-performance,
m id-range VAX computing system . Further, th is
system design wou ld cake advantage of D ig i ta l 's
proprietary CMOS technology and VMS version
5 . 0 symmetric mul tiprocess ing capabi l i ties . VMS
version 5 0 has dramatical ly changed the way we
approach mid-range system design; no longer do
we design a system to su pport just one or two
processors. With the abi l i ty to effectively ut i l i ze
the power of four or more processors within the
same system came the need to design s ignifi
cantly higher performance interconnects tO t ie
these processors together.

The VAX 6200 was to be Digi tal 's fi rst CMOS
mult iprocessor system . The designers were t here
fore strongly motivated to provide the best per
forming product t hey could within reasonable
t ime and comp lex i ty constra ints . Complexity was
of particu lar concern s ince the product schedu le
d id not a l low for the production of second-pass
parts prior to the first shipment to customers .
Complex mu lt iprocessor i nterfaces give ample
opportun i ties for the kinds of elusive design bugs
that can be very difficul t and t ime-consum ing
ro exercise and d iagnose . In addition , u n l i ke
other recent VAX systems, the VAX 6200 system
requ i red a major new release of VMS. (fn many
ways the new release represented a new operac-

28

ing system .) We expected i ts ava i labi l ity could
be the cri t ica l pa th tO product shipment .

The operat ing system software would probably
not stabi l ize i n t i me for us tO discover and fix
any major hardware problems and st i l l stay on
our orig inal schedule . Unfortunately, un t i l the
operat i ng system stabi l i zes , testing for complex
bugs is d ifficu l t . This concern about complexi ty
relat ive to the schedule affected several design
decisions .

On the VAX 6 200 CPU modu le , the design
challenge was to i nterface a custom CMOS VAX
microprocessor (cal led CVAX) to a high-speed
mu lt iprocessor bus (ca l led XMI) . The trade-otfs
made duri ng the design of a mul t iprocessor sys
tem are more complex than those made in
design i ng a single-processor system. For a s ingle
processor system , the performance trade-otfs are
re lat ive ly stra ightforward . The goal is to design
the h ighest performance s ingle-processor system
that is pract ical ly poss ib le . For a mult i processor
system , the goa l of max imum single-processor
performance must be tempered to obtain maxi
mum system t hroughput (i . e . , mu l t iprocessor
performance) .

The foundation of the CPU i nterface is the
cache subsystem , which reduces the effect ive
read access t i me to main memory. By reduc ing
the processor's need tO access main memory, a

Digital Technical journal
No. 7 A ugust 1 988

TO VAX B I 0

Figure 1 VA X 6200 System Architecture

cache improves both single -processor and mult i
processor system performance . This paper d is
cusses the complexities involved in choos ing the
opt ima l cache design and the s imulat ion tech
n iques used tO ensure in formed design decisions .

One of t he biggest problems in cache design i s
choosing the correct set of workloads to charac
terize the cache performance . Cache perfor
mance can vary tremendously with d ifferent
workloads . Therefore , we chose a set of work
loads that spanned a wide range of system activi
t ies . Toward t he end o f this paper, we present
actual cache performance resu l ts that l arge ly
confirm the legit imacy of our approach .

We a lso exa m i ne one of the more com plex
aspects of mul t iprocessor designs, which is
ensuring cache coherency across the ent ire sys
tem . Cache coherency refers to t he maintenance
of a sufficiently consistent memory state from the
perspect ive of a l l processors and 1/0 devices
with in the system.

The designers a lso went to great lengths to
ensure maximum system rel iabi l i ry. As part of
this effort, we generated a set of error-detection
and response rul es . These ru les ensure t hat the
operat ing system software can easily recover
from a l most al l transient cache or bus fai l u res.
These ru les are d iscussed .

The fol lowing section i s an overview of the
VAX 6200 system architecture. It provides a basis
for the subsequent discussions on t he cha l l enges
of mult i processor design , the VAX 6200 CPU
responses to those cha llenges, the performance
simulat ion environment , cache coherency and
error hand l ing , and fi na lly , real performance
results .

Digital Technical journal
No. 7 August 1 988

Summary of VAX 6200 System Architecture
The basic arch i tecture of the VAX 6 2 00 sys
tem shown i n F igure 1 is no d i fferent from
archi tectures used on recent VAX systems. 1 The
archi tecture most closely resembles that of t he
VAX 8800 series. Processors and memories reside
on a s ingle, high-speed in terconnect cal led
the XMI bus. Al l memory is shared and equal ly
access ible by a l l processors . Adapters to the
VAXBI bus a lso attach to the XMI . I/0 devices,
in turn , are attached to the VAXBI buses . The
XMI su pports a total of 1 4 s lots, which can
be populated with modu les to provide a wide
range of system configurations. These con
figurations can range from small s ingle-processor
systems with 3 2 megabytes (MB) of memory
and a s ingle IjO channel to a large mult ipro
cessor system with 2 5 6MB of memory and mul t i
p l e ljO channe ls . One o f the pri mary system
design goal s was to support up to eight pro
cessors wi th very good mult i processor perfor
mance . This goal gu ided the performance
decisions concern i ng the bus, memory, and pro
cessor designs.

The heart of the system, the XMI bus, i s largely
a hybrid of the VAX 8800 NMI and VAXBI buses.
The XMI is a synchronous bus that runs with a
64-nanosecond (ns) cycle time. The data path is
64 b i ts wide, and t he maximum transfer rate is
I OOMB per second . The protocol supports
" pended reads " (as does the SBI on t he

VAX- I I j780 system and t he N M I on t he 8800) .
In a pended read t ransaction, the CPU that wishes
to read a location requests use of the bus. When
the request is granted , the CPU transmi ts t he
address of t he des i red location . The appropriate

2 9

CVAX-based
Systems

------- lnleljacing a l/,.<IX Microprocessor to a H(�h-speed Multiprocessing Bus

PENDED PROTOCOL
(EXAM PLES N M I . SBI. XMI }

CYCLE 1 CYCLE N

CPU TRANSMITS
READ ADDR ESS
ON B U S

CYCLES 2 T O N -1
ARE AVA I LABLE FOR
OTH ER DEVICES

ME MORY RETURNS
REA::J DATA TO
CPU

NON PENDED PROTOCOL
(EXAMPLES: VA XBI . 0-B U S)

CYCLE 1 CYCLE N

CPU TRANSMITS
READ ADDRESS
ON BUS

CYCLES 2 TO N-1
ARE BUS STALLS
(NO OTHER ACTIVITY
CAN OCCUR}

MEMORY R E T U R N S
R E A D DATA TO
CPU

Figure 2 Pended uersus Nonpended Protocols

memory contro l ler latches the add ress inw an
i nput queue and begins a read access to the
spec i fied l ocation . I n the mean t ime , bus owner
ship is rel i n q u ished by the CPU. and t he bus
may be used by other devices . \V'hen the me morv
has completed the look-up and has the data . i t
makes a reques t for t he bus. \X!hen granted the
bus, the memory drives th<: req uested data on
the bus. which is l a tched by the C PU that
or i gi na l ly req uested the data . Pended protocols
are contrasted with non pended protocols i n
F igure 2 .

Pended protocols are a b i g advantage when the
bus cyc le t ime is s ignifican tly less than the mem
ory access r ime. As a case i n po i n t , a memory
read on the XMT bus req u i res about 5 0 0 ns
(rough ly 8 XMI cyc les) . Wi thout a pended proro
col . these 8 cycles on reads wou l d resu l t i n
wastefu l bus sta l ls . Another advantage o f pend<:d
protocols i s that t hey a l l ow multiple me mory
control lers to be used tO advantage . In the case of
t he VAX 6 2 0 0 , it was nor pract ical to bu i l d a s i n

g l e memory control ler tha t cou ld keep up w i t h a
sat u ra ted X M I bus . But it was re lat ive ly easy ro
const ruct a me mory cont rol ler that cou ld com
fortably run at about one t h i rd the bus max i mum .
With four in terleaved memory contro l lers on the
X M I . memory control ler bandwid t h is greater
than X M L bandwid t h .

:Hl

Challenges of Multiprocessor Design
The major cha l lenges faced by t he mu l t iproces
sor system desi gner res u l t primari l y from one
si mple system characteris t ic . The i n t imate i n ter
face between processor and memory that most
s ingle-processor systems enjoy must be broken ,
and ma i n memory must be shared among a .large
number of devices . This shar ing has several
effects:

• Main memory access r i me is s ign ifi cantly
i ncreased .

• Bandwidth to ma i n memory becomes a pre
c ious commodity that deter m ines overa l l sys·
rem performance.

• Complexi ty resu l ts from increased bus traffic
and para l lel act iv i t ies .

J n the fol lowi ng sections. we expand on each of
these effects in relat ion ro the VAX 6 2 00 system

Increased Main Memory Access Time

In a s i ngk- processor system, ma in me mory is
genera l ly c lose ly coup led to t he CPU. An exam

ple of this close ly coupled arc hi tecture i s shown
i n F igure :) Clear ly , th i s arc h itectu re provides
the poten t i a l for low- la te ncy and high-bandwidth
CPU-to- memory tra nsactions .

Digital Technical journal
/Vo. 7 A ug ust 1')88

'----,--
4 ·I MEMORY I

Figure 3 Typical Single-Processor
A rchitecture

I n rhe VAX 6200 mu l t i processor system , mem
ory must be shared by several devices and t here
fore cannot be c lose.ly coupled to a s ingle proces
sor . The resu l t is a s ignifican t i ncrease in main
memorv access t ime . S ince the MicroVAX 3600
and VAx 620 0 systems are both CVAX-based, a
comparison of the main memory access t imes for
the two systems i l lustrates th is point . Table 1
shows the access t ime i n processor cycles for
t he two-level cache subsystem and the ma in
memory.

Table 1 shows that the VAX 6 2 00 takes three
t imes as many processor cycles to access the first
l ongword i n memory as does t he MicroVAX 3600
syste m . The main reason for th is d ifference is t ha t
the M icroVAX 3 6 0 0 memory controller actua l ly
resides on the CPU modu le . Therefore , t he sys
tem architecture is optim ized ro provide m i n i
m u m access t i me for processor accesses r o m a i n
memory . O n the VAX 6200 , system memory is a
shared resource equal ly accessible by a l l CPUs
and 1/0 devices. The price of th is equal i ty i s
i ncreased latency on a l l memory references. Note
however t hat a l though l a tency has i ncreased, the
VAX 6200 can support a l most ten t imes more
memory bandwidth (the t ime requ i red per u n i t
of data transferred) .

As wil l be later presented, the VAX 6 2 0 0 sys
tem uses memory bandwidth to compensate for
i ncreased memory latency. Trading bandwidth
for la tency is one of the fundamental tools of the
mult i processor designer . Cache memory systems
essential ly convert increased memory b,andwidth
(manifested as a larger fi I I size) i nto lower aver
agc read l atency (due to t he decreased m iss
rate in the cache resu l t ing from the l arger fi l l
s ize) . Th is explanation is a n overs impl ification;
details of the trade-offs in cache design are pre-

Digital Technical journal
No. 7 A ugust 1')88

senred below i n the sect ion on the mult i proecs
sor environment .

Table 2 reinterprets the data i n Table 1 in
terms of bandwidth i nstead of l atency. For exam
ple , the M icroVAX 3600 system fetches 8 bytes
of data from memory on a cache m iss, which
rcqu i res 8 (90 ns) processor cycles. or 720 ns.
This corresponds w 8 bytes of data every 7 20 ns,
or 1 1 . 1 MB per second . I n comparison , t he
VAX 6200 system fetches 3 2 bytes of data on a
cache miss, which corresponds w 1 6 .7MB per
second (3 2 bytes of data every 1 9 2 0 ns) .

Table 1 Comparison of MicroVAX 3600
and VAX 6200 Memory Latency

VAX 3600 VAX 6200

Cache 1

(CVAX internal cache) 1 (90 ns) 1 (80 ns)

Cache 2

(Second- level cache) 2 (1 80 ns) 2 (1 60 ns)

Main Me mory

First longword 5 (450 ns) 1 4 (1 1 20 ns)

Second long�ord 8 (720 ns) 1 5 (1 200 ns)

Third longword na 1 9 (1 520 ns)

Fourth longword na 20 (1 600 ns)

Fifth longword na 21 (1 680 ns)

Sixth lon gword na 22 (1 760 ns)

Seventh longword na 23 (1 840 ns)

Eighth longword na 24 (1 920 ns)

Ta ble 2 Comparison of Processor Read

Bandwidths on MicroVAX 3600 and

VAX 6200 Systems (in MB per second)

MicroVAX 3600 VAX 6200

Cache 1

(CVAX internal cache) 40.0 50.0

Cache 2

(Second- level cache) 20.0 25.0

Main Me mory

Fi rst longword 8.8 3.6

Second longword 1 1 . 1 6.7

Third longword na 7.9

Fourth longword na 1 0.0

Fifth longword na 1 1 .9

Sixth longword na 1 3.6

Seventh longword na 1 5 .2

Eighth longword na 1 6 .7

3 1

CVAX-based
Systems

Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

L imited Bandwidth to Main Memory

In a s ingle-processor system such as the
MicroVAX 3600 , the performance is genera l ly
l i m i ted by the CPU i tself and not by the mai n
memory subsystem. The oppos i te is general ly the
case on large mult i processor systems where a
large nu mber of processors can create a boule
neck ro t he main memory subsystem . A major
goa l of the mult iprocessor desi gner is to min i
mize t he bandwidth requi red to support a given
level of CPU performance . In that way, t he main
memory bus can support more processors;
therefore , the system can atta in higher total
throughpu t . For example , assume a processor
requ i res an average of 20 percent of t he total
bandwidth ava i l able to mai n memory to ru n a
given workload. Based just on bus bandwidth
considerations, the total system performance
wou ld nor exceed five ti mes the s ingle- processor
performance i f the system is s imultaneously run
n ing that workload on all processors. For a num
ber of reasons . systems are rarely designed such
that the bus must be satura ted ro meet irs perfor
mance goa ls This same method of ca lcu lating
performance can be used to est imate perfor
mance at some lower level of bus u t i l i zation . A
bus ut i l izat ion level of 75 percent is often used;
in that case , the system performance wou ld be
l i mi ted to 5. 75 ti mes the s ingle-processor system .

This example reveals one of the main com
promises mult iprocessor system designers must
make : i ncreased bandwid th , which wou ld reduce
the main memory access t i me seen by a s ingle
processor, is traded off to reduce the total band
width consu med by a s ingle processor and
thereby increase tota l system throughput . Ba nd
width is rea l ly nor t he characteristic we are try ing
to m in im ize ; the rea l goal is ro reduce the
number of bus and memory cycles used to sus
ta in a given lcvc.:l of performance . As we wi l l
demonstra te, the efficiency of the transfer gen
eral ly increases as the transfer size increases.
Therefore the system can fetch twice as much
data from memory without using twice as
many bus and memory cycles . This characteristic
is important when eva luat ing various cache
al ternatives.

Aga i n looking at the MicroVAX 3600 design ,
the CPU actua l ly starts accessing main memory
once the fi rst- l eve l cache has determined a m iss
occu rred but before the look-up i n the second
Jevc l cache has compl eted . This overlap means
the memory con trol ler w i l l start a large nu mber

.1 2

of accesses that wi l l never resu l t i n data being
returned to the processor. (The second- level
cache wi l l probably " h i t" on more than 80 per
cent of these references .) Th is behavior is desir
able for many si ngle-processor systems but
would be inappropr iate for a mult i processor
design i n which ma in memory bandwidth i s
precious.

In the mu l t i processor system, main memory
bandwidth is shared by a l l processors and IjO
devices . Ta ble 3 compares the system bandwidth
in the MicroVAX 3600 and VAX 6 2 00 systems.
S ince the VAX 6 2 0 0 uses a pended bus that sup
ports I tO 8 memory control lers, we present two
sets of bandwidt h numbers for the VAX 6200
memory su bsystem: one for a s ingle memory con
trol ler and another for a four-way i nterleaved,
fou r- memory contro l ler subsystem.

The data makes a strong argu ment for large
transfer s izes tO ach ieve h igh bandwidths on the
VAX 6200 . A large cache fi l l s ize can be used to
assure h igh read bandwidth , and a wri te buffer
can be used to provide longer length write trans
actions. Note that longword writes are part icu
lar ly inefficient in the memory control ler; n ine
cycles are required for a longword write com
pared with only five cycles for a quadword write .
This i neffic iency res u l ts from the impl ementat ion
of the error-correcting code (ECC) across a quad
word on the VAX 6 2 00 memory. (VAX systems
have tradi t iona l ly i mplemented ECC across a
longword .) This i mplementat ion i mproved the
memory module capac i ty a t the cost of forc i ng
a l l longword wri tes to be a read-mod ify-write
sequence in the memory.

Increased System Bus Traffic
Another chal lenge ro the mul t iprocessor desi gner
is the increased memory traffic i n the system due
tO the i ncreased total system performance. For a
given workload , it is fa i rly accurate to assume
that the traffic to main memory increases l i nearly
with the tOtal performance system . Therefore , a
VA,'(6 2 4 0 (a four-processor 6200 system) wou ld
have roughly four t imes the mai n memory traffic
of the VAX 6 2 1 0 (a s ingle-processor 6 200 sys
tem) . Si nce processors must moni tor main mem
ory traffic tO main ta i n cache coherency, this
i ncrease i n main me mory traffic has tO be cons id
ered when look ing a t cache inva l idate implemen
tations. Aga in the s ingle-processor system has a
much less severe problem . The s ingle processor
has ro mon i tOr only the traffic from ljO devices,

Digital Technical journal
No. 7 A ug ust 1 988

Table 3 Mic roVAX 3600 and VAX 6200 Main Memory Bandw idth (in MB per second with

correspond ing nu mber of cycles in parentheses)

MicroVAX VAX 6200 VAX 6200
3600* XMI Bus Memory
(90-ns cycles) (64-ns cycles) (64-ns cycles)

Reads 1 M emory 4 M emories

Longword (48) 8 .8 (5) 3 1 . 2 (2) 1 0.4 (6) 4 1 .6

Quadword (88) 1 1 . 1 (8) 62.2 (2) 20.8 (6) 83.2

Octaword (1 68) na 83 . 3 (3) 3 1 .2 (8) 1 24 .8

Hexword (328) na 1 00.0 (5) 38.5 (1 3) 1 54 .0

Writes

Longword (48)

Full 1 1 . 1 (4) 3 1 . 2 (2) 6.9 (9) 27.6

Masked 6 . 3 (7) 3 1 .2 (2) 6.9 (9) 27.6

Quadword (88)

Fu l l na 62.2 (2) 25.0 (5) 1 00 .0

Masked na 62 .2 (2) 1 3 .9 (9) 55.6

Octaword (1 68)

Ful l na 83.3 (3) 3 1 .2 (8) 1 24 .8

Masked na 83.3 (3) 1 6 .7 (1 5) 66.8

· These numbers represent a CPU perspective. 1 /0 devices on the 0-bus can use longer transfer lengths.

which typica J I y generate abour one-tenth the
traffic generated by a s ingle CPU. Extending th is
argu men t , it appears 10 ind icate t hat a VAX 6 2 4 0
system must hand le i nva l idate look-ups at a rate
more than 30 t imes that of the MicroVAX 3600
system . (The VAX 6200 CPU has tO handle i nval i
dates from three other CPUs and for about fou r
t imes a s much l j O traffi c .)

The increased system bus traffic i s a symptom
of the la rge number of paralle l act ivi t ies that
characterize a mult iprocessor system . The abun
dance of queues in a mu lt iprocessor system
resu l ts in a more complex system . The section on
cache coherency i n th i s paper discusses several
manifestat ions of this increased complexity.

Ta b le 4 summarizes the major d ifferences
between the s ingle-processor and mult iprocessor
systems .

This discussion has de monstrated that the per
formance of a mult iprocessor system is very
dependent on the des igners making the r ight
decisions about the CPU i n terface. In the next
section , we discuss the basic archi tecture of the
VAX 6200 CPU and specific aspects of the mult i
process i ng envi ronment .

Digital Technical Journal
No . 7 August 1 ')88

VAX 6200 CPU Design Alternatives
This section presents an overview of the
VAX 6 2 00 CPU archi tecture , fol lowed by a dis
cussion of the various implementat ion a l terna
t ives that we considered dur ing the design pro·
cess . We conclude wi th a l ist of specific design
a lternatives and a discussion of ou r performance
s imu lat ion environment , which we used to exam
i ne these a l ternatives.

Table 4 Summary of Differences

between Single-processor

and Multiprocessor Systems

Single- Multi-
processor processor

Characteristic System System

Mem ory latency Low Medium

Performance CPU Memory
bottleneck bandwidth

I nval idate rate Low H igh

Level of paral le l Low High
activity

3 3

CVAX-based
Systems

------- Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

CVAX SECOND-LEVEL
WITH l KB H CLOCK � CFPA CACHE r--- SECOND-LEVEL

CACHE 256KB TAG STORE

I !
LATCH/BUFFER

t
CVAX COAL

DUP LICATE X M I
TAG ---- INTERFACE
STORE GATE A R RAY

XCI

I I

t !
sse

t

X M I

l t I ADDRESS : A<31 :00> 256K
EPROM

32K
EEPROM

CONSOLE S E R I A L L I N E

, -�- - � - - - l

I XCLOC K ·I XLATCH X 7 1 I
CORN E R

L _ _ __ _ _ _ _ _ r- _ _ j
X M I

Figure 4 VAX 6200 CPU Block Diagram

The VAX 6 2 00 CPU is a single-board VAX pro
cessor based on the CVAX chip set designed and
bu i l t by Dig i taL The 6200 CPU has a CVAX cyc le
t i me of 80 ns (as compared to the MicroVAX
3600 90-ns CVAX cyc le t ime) ; i ts nomina l per
formance is 2 . 8 t i mes the VAX- 1 1 /780 system
(sl ightly more than three ti mes the M icroVAX I I) .

A block d iagram of the module is shown i n
Figure 4 . Three major buses are associ ated with
the module . The CVAX processor ch i p set com
municates over the CVAX data and address bus
(COAL) . 2 5 The SSC ch ip connects to the COAL
bus and provides such fu nctions as read-on l y

memory (ROM) address decod ing, t ime-of-year
clock support, and console term ina l i nterface. "

The CVAX chip conta ins the fi rst - level cache . Also
connected to th is bus is the second- leve l cache
data store and tag srore logic . The path to the XMI
bus i s provided entirely by the XMI interface gate
array a nd the X M I corner . This gate array provides
a l l necessary synchronization between the CVAX
and XMI . Each CPU module has i ts own CVAX

34

clock source , and the X M I bus has a s ing le clock
source that provides synchronous c lock signals tO
a l l XMI nodes .

The XMI corner represents a standard set of
i nterface components and a p hysica l i ntercon
nect tha t ensure a l l XMI devices meet the t i m i ng
and electrical characterist ics requ i red by the XMI
specificat ion . The XMI corner components i nter
face to the rest of the logic on the module over
the XMI chip interconnect (XCI) . A dupl icate tag
stOre a lso attaches tO the XCI bus .

As out l ined in the p revious section , several
speci fic chal lenges must be addressed by the
mult i processor designer. At the CPU level the
design responses are as fol lows :

• I m plement an effect ive cache tO reduce the
effective access t i me and the tOtal traffic to
main memory

• I m plement a write buffer to decou ple and
reduce wri te traffic .

Digital Technical journal
No. 7 A ugust /')88

• I m p l ement a uup l ic;Hc rag store to reduce the
overhead and comp lexity of ma inta in ing
cache coherency .

Cache Su bsystem
\Xic w i l l first look at the issues assoc iated wi th
d<::s ign ing an <:fkcrive cache . The main character
ist ics of a cache arc s ize . assoc iat iv i ty. fi l l s ize .
and b lock s ize . S ize i s s i m ply the s ize i n byres of
t he data store section of the cac he. As the size of
the cache i ncreases . the effectiveness of t he cache
a lso increases . A-;sociar iv i ry refers ro the n u mber
of sets in the cache. A cache with a si ngle set can
store data with a part icular tag add ress i n on ly a
s ingle .l ocat ion . (A s ingle-set cache is often
referred to as a direct-map ped cache .) A two-set
cache has two locations capable of storing data
with a part icu lar rag address . A� associat iv i ty is
i ncreased . the l i ke l i hood of cache " t hrash i ng··
decreases . (Thrashing occurs when rwo pieces of
ua ta can not s imu l taneously be in t he cache due
to an i nsufficient nu mber of sets .) The l i ke l i hood
of thrashing a l so decreases as the cache s ize

i ncreases . Therefore i t fol lows i n most cases
t hat as t he cache s ize increases , the benefi ts of
i ncreased assoc ia t iv i ty decrease . Fi l l s ize defi nes
the amount of data that is fetched from main
memory on a cache m iss and l oaded i nto the
cache. Over the range of cache s izes of i n terest ,
the m iss rare decreases as t he cache fi l l s i ze
increases . B loc k size refers tO t he s ize of the data
block covered by a s ingle rag address . In a d i rect
mapped cac he . the b lock s ize i s equal to the
cache s ize divided by the n umber of tags. The fi l l
s ize i s equal t o or less t han t he b lock s ize .

A major issue fac ing the designer of any com
put ing system is the amou nt of variation in per
formance that can be accepted over a wide range
of workloads . S ince we were concerned abou t our
abi l i ty to accurate ly mode l the effect of large
caches. we wa nted to err on the side of conser
vat ism . Th is meant we wou ld choose t he largest
cache s ize practica l . The state -of- the-art tech
nol ogy stat ic random-access memories (SRAMs)
avai lable to the VAX 6 2 0 0 ream were expected to
be 2 %-k i lobir (Kb) pans with speeds down to
Y) ns. We determined that a pipe l ined cache
design with 3 '5 -ns SRAMs cou ld support CVAX
cycle t imes down tO 60 ns . This cyc le t ime was
comfortably beyond our product goa l , wh ich was
tO su pport a range of 70 ns to I 00 ns , depend ing
on the success we had speed -b inn ing CVAX pa rts .
\XIe tentatively dec ided to use 64 K-by-4 SRAMs
for the data store. large l y because the 64 K-by-4

Di?,ilal Technical journal
No. 7 August I ')88

con tigurar ion was expected to he t he most read
i ly ava i l ab le . Si nce the CVAX has a .1 2 -b i t data
pat h . e ight 64 K-by-4 parts wou ld natura l ly pro
vide a 2 ') (,KB d i rect -ma pped cache (four t i mes
the s ize of any previous VAX) . This configurat ion
a lso provided the opt i m a l one-output - load per
c lara l ine . We a lso exam ined configurations w i t h
increased assoc ia t iv i ty to confirm o u r be l ief that
the benefit of s<:: t sizes greater than one is sma l l
for caches i n the range of 2 ') (,KB

Having se lected a very large cac he . we next
considered block s i ze and fi l l s ize . The X M l bus
su pports on ly 8 (quadword) . 1 6 (octaword) . and
:) 2 (hexword) byt e transfers to memory . There
fore . the fi l l s i ze wou ld have to be one of t hese
three s izes . The block s i ze can be large r than t he
fi l l s ize if the design su pports what arc cal l ed
subblock va l id b i t s . Idea l ly t he ti l l s ize and block
size wou ld be the sa me . W i t h a very large cache.
however. prov id ing sufficient tag storage can be a
real problem. Aga in in an attempt to be conserva
t ive . we looked i n to stat<: -of-t he-art . tag- inte

grated c i rcu i ts . The best we found in t he
req u i red 2 '; - to 30-ns speed range was a 2 K-by-9
part . With two of t hese parts. we cou ld i mple
ment a 2 K tag srore subsyste m . A 2 ') 6KB data
store with 2K tags wou ld have a 1 28- byre fi l l s ize .
Subblock va l id b i ts wou ld be needed to ident ify
which subb locks are actua l ly va l id . \XIe decided i t
wou ld be practical to choose a larger tag store
s ize i n which fou r tag c h i ps wou ld be used to
i mplement a 4 K rag store subsystem .

Choosing t he idea l fi l l s i ze was expected to
involve an i nterest ing comprom ise between sev
era l c haracterist ics . As t he fi l l s ize is increased ,
severa l th i ngs happen .

• The cache m iss rare drops . Over reasonably
large ranges, the m iss rare can he reduced by

req u i ring that more data be fetched on a cache
m i ss . This is nor true when the l i kel ihood of
us ing t he new data is less than the l i ke l i hood
t ha t bringing in the add it iona l new ti l l data
wi l l force the tlus h i ng of other cache data
more l i ke ly to be used .

'i
This w i l l nor occur

wi th cache and h l l si zes in the range consid
ered for the VAX 6 2 0 0 .

• CPU sta l ls per m iss increase . In VAX 62 00
CPU arch itecture, as the second - l eve l cache is
be i n g fi l led , the CVAX can not access i t . On a
second - l eve l cache m iss. t he XMI i nterface
does return t he actua l requested data i tem to
t he CVAX first and t hen com pl etes t he remain
der of t he cache fi l l . Therefore. t he nu mber of

CVAX-based
Systems

------- Interfacing a VAX Microprocessor to a Higb-speed Multiprocessing Bus

cycles in which the CVAX is stalled wai t ing for
rhe second- level cache ro become ava i lable
aga in after a cac he miss i ncreases as r he fi l l
s ize increases . The CVAX in ternal cac he
remains accessible whi l e t he second - l eve l
cache is being fi l ied .

• The MIJ per second ro main memory requi red
ro support a given leve l of performance
i ncreases . If twice as much data is fetched on a
cache miss, the miss rate does not drop by a
factor of two.' Therefore , as fi l l s ize increases,
the MB per second req u i red to support a given
level of performance increases .

• The "avai lable MB per second" of the bus
increases . The efficiency of buses that do not
have separate address l i nes (such as rhe XMI)
i ncreases as the transfer s ize i ncreases . Bas i
Gl lly, rhe req u i red address cycle can be amor
ti zed over more data cyc les .

• The " ava i lable MB per second " of r he memory
control ler i ncreases . The memory con trollers
in the VAX 6200 can del iver more MB per sec
ond if more data is fetched for a given fetch
address .

Based on our sign ificant experience with VAX sys
tems , we knew that e i ther t he 1 6 -byte or 3 2 -byte
fetch wou ld be the right choice . The resu lts from
simu lation wou ld be used to select rhe final
va lue.

Another major cache design i ssue was the
configurat ion of the CVAX 1 KB imerna l cache .

Th is cache can be configured to run in a conven
t ional instruction and data stream wri te- through
mode. In th is mode , the cache must be i nva l i
dated when writes occur ro a srored b loc.k. Al ter
nat ively, the cache can be run i n ! -stream -only
mode in which the cache does nor have ro he
inva l idated on wri tes . Instead , the cache is auto
mat ica l l y tlushed on VAX Return from Except ion
or I nterru pt (REI) instruct ions . The methods we
used to ensure the success of this cache
coherency mechanism are d iscussed in the sec
t ion Mainta in ing Cache Coherency and Hand l i ng
Cache Error Cond it ions .

A-;suming a l l other th ings remain equal ,
there is a performance penal ty for choosing the
!-stream-on ly mode. If we select 1 -srream-on ly
mock, the fol lowi ng occurs:

• All D-stream references w i l l requ i re a m i n i
m u m of rwo cycles instead of one . Genera l l y ,
for VA.,'\ CPUs a n average o f 0 . 8 D-srream

56

references are made per insrruction6 and an
average i nstruct ion on the CVA.,"\ requ ires
between 9 and 1 0 cyc les . This wou ld seem ro
i nd icate that the performance penal ty would
be about 8 percent (0 . 8 references d ivided by
9 5 cycles) , assu ming the D-srream m iss rare
in the i n ternal cache is 0 percent . With an
expected more-typical 40 percent miss ra re ,
the penalty woul d be about 5 percen t .

• CVAX stal l s wi l l increase for references that
occur while the second- level cache fi l l for a
previous reference is s ti l l not complete . This
i ncrease results because the CVAX wi l l need to

access the second-level cache on all D-srream
references .

• Assuming a low frequency of REI instruct ions,
t he ! -stream miss rate should i mprove s ince
there wi l l be no contention for cache blocks
between rhe I and D streams. (REis wi l l cause
the 1 -srream-only cache to flush .)

• The module space needs wi l l be less because
there wi l l be no need for an extra dupl icate tag
to track the CVAX i nternal cache. S ince the
CVAX i nternal cache has two sets , i t cannot be
practical ly " fol lowed" by a s i m ple second
leve l , d i rect- mapped cache .

Looked at another way, we cou ld afford to
devore more logic to making the second- level
cac he more effective if we did nor support
CVAX 0-stream cac hing.

• The complexity lessens with one less cache ro
keep coherent with hardware . We a lso had
more flexibil i ty in i mplement i ng error-recov
ery mechanisms and wou ld nor have to i mple
ment a complex mechanism ro su ppress the
generation of XMI write transactions when the
i nval idate queue was at risk of overtlowing.

We planned to use the s imulat ion environment ro
quant ify rhe performance penal ty t hat results
from run n ing the CVAX cache i n ! -stream-only
mode .

Write-Buffer Subsystem

Convenriona I write-through caches greatly reduce
react traffic to main memory but do nor reduce
the write traffi c . Therefore, a l though the mix of
read and write references from the CPU i tself is
weighted heavi ly toward reads , the traffic down
stream of a write-through cac he is primari ly
writes. Other cache arc h itectures offer the pote n
tial ro reduce write traffi c . A write-back cache

Digital Technical journal
No. 7 A ugust 1')88

might be considered the obvious approach . By
caching writes as we l l as reads, a write -back
cache offers the potent ia l for the h ighest perfor
mance mult i processor system . Nevertheless, the
complexi ty is significantly h igher than a wri te
through des ign . I ndust ry experience is that very
few write-back caches work on first -pass , and
their bugs are very d ifficu l t to fix. Another risk
with write-back caches is i n the area of error
recovery . It is much more d ifficul t to recover
from transient cache errors with a write-back pro
tocol . To avoid the increased complexi ty and
resu l t ing schedule risk, we decided to pursue a
hybrid approach . We wou ld implement a wri te
through cache with a write buffer design very
s imi lar to t hat of the VAX 8800 cache 7

A write bu tler resides between a wri te-through
cache and the system bus . A wri te buffer is acru
a l ly a s imple , very effective form of a write-back
cache . A write buffer rakes advantage of the local
i ty o f write transactions t o reduce the number of
write references to main memory by combin ing
severa l sma l l write references i nto a s ingle larger
transaction to main memory. This behavior has
three main advantages . First , a l most a l l buses
(inc lud ing the XM I) increase in efficiency as the
transfer s ize is i ncreased . This effic iency resul ts
because every transfer general ly requ i res the
transmission of an address cyc le before the data .
This address cyc le is basica l ly fixed overhead that
can be more effective ly amorti zed as the transfer
s i ze is i ncreased . The transfer sizes and re lat ive
efficienc ies of the XMI bus are shown i n Tab le 3 .

Second. as previously mentioned. the VAX 6 20 0
memory does nor efficiently process Iongword
wri te transact ions . The write buffer converts
sign i ficant numbers of longword write transac
t ions into fu l l quadword and octaword transac
t ions that are processed with many t imes greater
efficiency.

F inal ly , the buffer helps to reduce the fre
quency of processor " write sta l ls , " that i s , pro
cessor cycle s l ips due to wri tes to ma in memory
that back up . The buffer large ly decouples the
processor from the main memory write t im ing;
the processor perceives that most writes are com
pleted in min imum t ime .

The VAX 6 200 wr i te buffer accumulates wri te
data umi l a memory write address falls outside
the address range of the current block . When th is
occurs , an al ternare octaword buffer begins
fi l l i ng . The first buffer is emptied e i ther wi th an
octaword XMJ transact ion (i f the buffer con ta i ns
more than an al igned quadword) or wi th a quad-

Digital Technical journal
No 7 A ugust 1 988

word XMI transact ion (i f the buffer conta ins no
more than an a l i gned quadword) . CVAX CPU
reads (un less in terlocked or made to 1/0 space)
are a l lowed to bypass t he write buffers after first
being checked for an address match with the
write buffer .

E it her a read address comparison match or an
i nterlocked or 1/0 space transact ion forces the
write buffer to be purged . There are severa l other
condi t ions under which t he write-buffer must be
flushed . These condi t ions are d iscussed i n the
sect ion Maintain i ng Cache Coherency and Han
d l i ng Error Cond i t ions .

We bel ieved the write buller cou ld provide
about half the bandwidth benefit of t he wri te
back cache but with l i t t le more comp lexity than
a s imple write-through design . As an added
benefit , the buffer arch i tecture was a lready
i mplemented and runn i ng wi th very good perfor
mance resu lts i n a VAX mult i processor (VAX 8800
fam i ly) . We planned to use performance simula
t ions to confirm that the write buffer was ade
quate to meet our performance goa ls .

Duplicate Tag Store
As noted earl ier, a mu l t i processor environment
puts s ign ificant stra in on t he cache coherency
logic . The rates at which write addresses on the
system bus must be checked aga i nst the addresses
stored in the cache require that a d ifferent arch i
tecture be used for servicing i nvalidates.

The 2K-by-9 tag ch ips used to imp lement the
main tag store are a lso used to implement a
dupl icate tag store . The dupl icate rag store runs
synchronously wi th the XMI bus and permits
fi ltering of inval idates . so the CPU wou ld sta l l
only o n an XMI write h i t . I t is nor uncommon 1 0
have rat ios of 1 00 1 0 1 0 ,000 t o I between dup l i
cate tag misses and dupl icate tag hits .

The operation of the dup l icate tag store is dis
cussed i n the section Mainta in ing Cache Coher
ency and Handl i ng Error Condi t ions .

We have now defined the basic archi tectural
issues t hat needed to be resolved and have i nd i
cated the a l ternat ives we would l i ke to pursue . ln
the next sect ion we present t he resu l ts of our per
formance s imulat ions .

The fol lowi ng l ist summarizes what we exam
i ned in our s imulation envi ronment:

• Determi ne the loss in performance that wou ld
resu l t from running t he CVAX in ternal cache
in ! -stream-only mode instead of combined
I- and D-stream mode .

3 7

CVAX-based
Systems

------- Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

• I nvestigate octaword (1 6 -byte) versus hex
word (3 2 -byte) fi l l sizes for both I -stream and
D-stream . Further, examine the relative miss
rates, MBs per u n i t of performance , bus cycles
per u n i t of performance, memory cycles per
uni t of performance, and absolute perfor
mance . Look at a large mu l t i processor system 's
sensit ivity to main memory access time .

• Determine t he effectiveness of a wri te-through
with write-buffer cache archi tecture . In other
words, can the writes be reduced sufficiently
to avo id write-back in the chosen archi tecture .

• Exa m i ne the benefi ts of a two-way, set-associa
t ive cache over a s impler d i rect-mapped
design .

Perfonnance Simulation
The basis of the s imu lation environment was a
high- level performance model of the CVAX chip .
Wri tten in PASCAL, th is mode l was i n terfaced to a
configurable second -level cac he , write buffer,
and memory subsystem . The model accepted
instruction traces for input . At the t ime the per
formance model ing was done , seven standard
benchmarks were ava ilable : D I RECTORY, EDT,
FORTRAN, LINKER , MAIL, RUNOFF, and SORT
All instruction traces were captured from a
YAX- 1 1 /780 system . S ince each trace was for a
single process, one of the major issues was deter
m ining how to correctly model the effect of
ti mesharing on cac he performance .

The very natu re of t i mesharing has a negative
effect on cache performance as compared with
si nglc process runs. Idea l ly , the cache wou ld be
dedicated ent i re ly to holding i nstructions and
data associated only with a s ingle process. I n
t i meshare systems, processes are not in i t iated and
th<.:n run nonstop to completion; instead the CPU
is constantly swi tching from process to process .
This swi tch ing requ i res t he cache resou rces to be
d istributed across a nu mber of processes and
therefore reduces the effectiveness of the cache .
A VA.t'<- 1 1 /780 studl i ndicates t ha t the average
nu mber of i nstruct ions between context switc hes
on a VAt'(system is abou t 5 . 000 i nstruct ions . A

trad i t ional and very conservative approach to
simu lating the effect of context switches is 10
flush the ent ire cache every 5 , 000 i nstructions.
F l ushi ng the cache every 5, 000 instructions
was not a big penal ty for smal l caches that
could qu ickly refi l l themse lves after a tlush ;
however . the advan tage of larger caches (that

we know actua l ly exists) cou l d not be de mon
strated when the model ran with a flush every
5 ,000 instructions .

To more accurately mode l the benefits of large
caches , internal stud ies of complex t imeshare
loads were undertaken . Mu l t iuser program traces
were run aga inst a cache model , subject ing the
cache model to the context-switch behavior of a
rea l syste m . The cache performance res u l ts of
that run were compared with single jobs run
aga inst a cache model that was flushed after vari
ous numbers of instrucrions had been executed .

The resul ts indicated that s i m i lar cache perfor
mance resu l ts could be obtained i n s imu lation by
using a single job trace and complete cache
fl ush ing every 3 5 .000 i nstructions. The number
3 5 ,000 appl ies only to a 2 56 KB cache ; smal ler
caches woul d have a smaller context-switch
i nterva l . We decided to s imulate the VAX 6200
with the 2 5 6KB cache flushed every 3 5 ,000
instructions; the I KB CVAX i nternal cache wou ld
be flushed a t the more tradi tional 5 , 000 i nstruc

tion rate . All s imu l ations wou l d represent a s in
gl e-processor system; main memory access t i mes
would be m i n i mu m . The performance resu lts
woul d genera l ly be presented as a set of relat ive
numbers comparing the al ternatives .

Table 5 summari zes al l the cache characteris
tics we wou ld simulate .

CVAX Internal Cache Co nfiguration

The first aspect examined was the CVAX cache
configuration . As s hown in Table 6, the 1 - and
D-strea m design offered an average increase in
performance of 5 percent over the ! -stream-only
cache . We concluded 5 percent average perfor
mance cou ld be sacrificed in return for the
reduced complexity of the l-stream-only design.

Table 5 Cache Cha racteristics Sim ulated

Associativity

Configu ration

Size

Block size

Fi l l size

Tags

Simulated
context
switch rate

Second-level
CVAX Cache Cache

2-way

I & D/1 only

1 K B

88

88

1 K

5 , 000
instructions

Di rect-mapped/2-way

I & D

256 K B

648

1 6Bj32B

4 K

35,000
in structions

Digital Technical journal
No. 7 A ugust I 'J88

Table 6 CVAX 1-stream and 1- and D-stream
Relative Performa nce

!-stream 1- & 0-stream

Average 1 .00 1 .05

M inimum 1 .00 1 .03

Maximum 1 .00 1 .07

Table 7 Octaword versus Hexword Fill Size Results

Relative
Fill Size

Octaword

Al l

Hexword

Average

Min imum

Maximum

Fil l Size

Octaword

Al l

Hexword

Average

M in imum

Maximum

Fi l l Size

Octaword

Al l

Hexword

Average
Min imum

Maximum

Fil l Size

Octaword

Al l

Hex word

Average
Minimum

M aximum

Performance

1 .00

1 .01

1 .01

1 .02

Relative Miss Rates

!-stream 0-stream

1 .00 1 .00

.56 .84

.54 .8 1

.57 .87

Percent XMI

!-stream 0-stream

1 .00 1 .00

.93 1 .40

.90 1 .34

.96 1 .45

Relative Relative
Percent Percent
XMI Memory
Utilized Utilized

1 .00 1 .00

1 .08 1 .04
1 .06 1 .03
1 .09 1 .07

Digital Technical journal
No. 7 A ug ust 1 988

All Reads

1 .00

.71

.68

.76

All Reads

1 .00

1 . 1 8
1 . 1 6
1 .27

Octaword versus Hexword Fill Size

Choosing an octaword or a hexword fi l l size was
the next and probably the most complex major
issue . The resul ts are shown in Table 7 . In a l l
cases , re lative numbers are used with the charac
terist ics of the octaword mac hine as the refer
ence .

Relative MB/sec

!-stream 0-stream All Reads

1 .00 1 .00 1 .00

1 . 1 2 1 .68 1 .42

1 .08 1 .6 1 1 .36
1 . 1 4 1 .74 1 .52

Percent Memory

!-stream 0-stream All Reads

1 .00 1 .00 1 .00

.91 1 .36 1 . 1 5

.88 1 .31 1 . 1 3

.95 1 .4 1 1 .27

3 9

CVAX-based
Systems

------ Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

A summary of the resu l ts in Table 7 follows :

• The fi l l s ize has a negl igible effect on perfor
mance (less than 1 percen t d i fference) . The
hexword al ternative delivered an average of
I percent better performance.

I t i s i mportant to keep in m ind that the s imu la
tion was performed assuming the m in imum
delay from ma in memory. I n a mul t iprocessor
system, the a l ternative with the lower miss
rate i ncreases i n performance relative to the
other alternatives as the main memory access
t ime i ncreases .

• Hexword fetches dropped the overal l m iss rate
by al most 30 percent . (As expected , the
! -stream miss rate i mprovement was much
h igher - almost 5 0 percent .)

• The megabytes per second requ i red to main
ta in a given performance level i ncreased by
about 4 0 percent overal l for the hexword
fetch .

• As mentioned earl ier, we were not as con
cerned about megabytes per second as much as
the percentage of the bus and memory con
troller cycles per second . I n t h is l ight the hex
word alternat ive req u i red about 1 8 percent

Table 8 Write Buffer Effectiveness

Average

Min imum
Maximum

Ratio With Write Buffer;
Without Write Buffer*

Write Buffer XMI Memory
Miss Rate Utilization Utilization

47. 1 %

40.4%
54.9%

.55

.50

.64

.49

.42

.58

• T h e util ization numbers are expressed as ratios between the
util ization with a write buffer and the ut i l ization without the write
buffer.

Table 9 XMI Bus Util ization per CPU

!-stream D-stream
Reads Reads Writes Total*

Average .89% 1 .39% 4 .4 1 % 6.27%

Min imum .24% 1 .26% 3 .57% 5 .27%

Maximum 1 .65% 2 . 1 0% 5 .97% 7.25%

• The numbers in this column are averages of the total X M I bus
util ization across the seven workloads. These numbers are not
sums of the individual util ization percentages in each column.

4 0

more bus cycles and 1 6 percent more memory
cycles to support read traffic to ma in memory .
E igh teen percent and 1 6 percent may seem
l i ke a b ig i ncrease , but it i s important to look
at overa l l bus bandwidt h . On a write-through
i nterconnect , the writes generally domi nate
the traffic .

• The overal l bus traffic (taking i n to account
wri tes) i ncreased by only about 9 percent .
Overa l l memory control ler cycles i ncreased by
even less - only about 4 percent . The low
increase resul ted because the rat io of write
cycles to read cycles is h igher in t he memory
control ler t han on the XMI bus.

Based on th is data , we chose the hexword
fi l l a l ternat i ve . We fel t the potential for
s igni ficantly more consistent performance in
large mult iprocessor configurat ions (due to
decreased cache miss rate) was wort h the esti
mated 9 percent i ncrease in bus u t i l izat ion .

Write Buffer Effectiveness and Overall
Bus Utilization
We were pleased to find that the write buffer was
about as effective as we had predicted . The data
i n Table 8 compares the XMI wri te traffic gener
ated with and wi t hout a write buffer . The data
i s qu i te consistent . On average , the write buffer
reduced the number of write cycles on the bus by
sl ightly less than half (4 5 percent) and reduced
the memory control ler cycles by slightly more
than half (5 1 percent) .

Table 9 shows the bus u t i l i zation by the
VAX 6200 CPU running t he test benchmarks.
Using t he average bus u t i l i zation number of
6 . 2 7 percent s t i l l yie lds only 50 percen t for a fu l l
eight-processor system ; the 7 . 2 5 percent maxi
m u m value yields 5 8 percent u t i l i zation . These
figures are wel l wi th in our 7 5 percent u t i l i zat ion
design goa l , and we decided to i mplement the
wri te-buffer i nstead of the write-back design .

Another more conservat ive way to look at the
data is to assume that we may not have the worst
case environment covered i n any s ingle bench
mark. Therefore we should look at the "sum of
maxi mums" to determi ne whether the design
goal is met . Usi ng t he sum of maximums
approach , we requ i re 9 . 7 2 percen t of t he XMI
per processor, or about 78 percent for e ight pro
cessors. This figure is suffic ient ly close tO our
design goa l of 75 percent max i mu m u t i l i zation
to be acceptable .

Digital Technical journal
No. 7 A ug ust 1 988

Effect of Associativity
We next explored t he benefits of associat ivit ies
greater than one . Implementation of a cache
other than a d i rect-mapped cache was probably
not practical . However, we wanted to examine
t he performance resul ts .

The resu l ts given i n Tab le I 0 i nd icate t hat a
two-way, set-associat ive cache could reduce the
overa l l miss rate by I 3 percent , whereas the per
formance gai n was negl ig ible (1 percent) . This
improvement in m iss rate i s fai rly s ignificant ;
but we determined i t was not practical from a
module real estate and e lectrical t im ing perspec
t ive to implement other than a d i rect-mapped
scheme . To implement a fast two-way cache , two
separate RAM arrays must be supported . This
i mplementation requ i res roughly twice t he mod
u l e area of a d i rected-mapped approach . A two
way cache can be implemented wi th a s ingle
RAM array (cannot start t he RAM look-up u n t i l
t h e proper s e t has been identified) , b u t th is
woul d force the access t ime to i ncrease by a
cycle . I ncreasing the access t ime to the second
level cache wou ld be particularly u ndesi rable to
the VAX 6 2 00 designers s ince we had a lready
dec ided to configure t he CVAX cache in ! -stream
only mode . (Wi t h an additional cycle , a l l
D-stream references wou ld then requ ire a m i n i
m u m of t hree cycles .) Board area constrai nts and
i ncreased cache access t i me are the two most
common reasons for rejecting t he m iss reductions
of the mul t iway cache in favor of the s implicity
and the practical , fast access t ime of the d i rect
mapped cache .

Maintaining Cache Coherency and
Handling Cache Error Conditions
As mentioned i n the i ntroduction , a major chal
lenge to a mult iprocessor desi gner is to i mple
ment a rel iable scheme for cache coherency.
Coherency is a term somewhat d ifficu l t to define.
In th is section , we give some i nsight i nto the

1 KB 256 K B

Table 1 0 Direct-mapped versus Two-way

Cache Performance

All Reads
Relative Relative
Miss Rates Performance

Direct- Two- Direct- Two-
mapped way mapped way

Average 1 .00 . 87 1 .00 1 .01

M in imum 1 .00 .74 1 .00 1 .00

Maximum 1 .00 .95 1 .00 1 .02

meaning of coherency and the methods employed
by the VAX 6 2 00 project engineers to ensure
coherency. We also descr ibe our techn iques for
support ing recovery from a l l s ingle-bit t ransient
cache errors .

For t his d iscussion , we d ivide t he cache sub
system of the VAX 6 2 00 i nto three sections. Fig
ure 5 shows t he t hree major subsystems in t he
VAX 6 2 00 cache :

• The CVAX i nternal I -stream-only cache

• The 2 56KB l-and 0-stream cache

• The 1 6 -byte write buffer (a form of write-back
cache)

C VAX /-stream-only Cache
The fi rst cache, contained wi th in the CVAX chip
i tsel f, i s configured for ! -stream-on ly opera tion .
In that mode , the CVAX flushes the ent ire con
tents of the cache whenever a VAX REI i nstruc
tion i s executed . Motivated original ly by the
potent ia l problems with i nstruction prefetch
buffers, the VAX archi tecture defines ru les for
software to assure t hat writes tO l -stream data
produce predictable resu l ts 8 In a l l cases , if the
rules are not fol lowed, stal e data m ay be read
from the cache and cause u npredictabl e resu lts .

1 68
C P U r-- I-STREAM 1- A N D D-STREAM 1--- WRITE r-- TO MAIN M E MORY

CAC H E CAC H E B U FFER

Figure 5 VAX 6200 Cache Subsystems

Digital Technical journal 4 I
No. 7 August 1 988

CVAX-based
Systems

Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

Second-level !- and D-stream
256KB Cache

The second-level cache is arch i tectura l ly s imi lar
to caches used on most VAX systems . With a
write-through design , t he cache srores both
I- and 0-stream data . Coherency is maintained by
mon i toring all wri tes from other devices to main
memory and inva l idating cached locations that
correspond ro any of the mon i tored writes. The
processor does not generate i nva lidates for i ts
own writes to main memory s ince the cache is
wri te-through; a write by the processor i tself that
h i ts in the cache immediately u pdates the appro
priate location .

The VAX 6 200 second-level cache coherency
logic is shown in Figure 6. A dupl icate tag store is
located on the mult ip lexed XCI bus . This store
contains a dupl icate copy of the 4 ,096 cache tag
entries, which are in the second- level cache
located on the COAL The dupl icate tag store
t racks the primary tag store on a l locates by moni
tOring XMI read transact ions. Whenever an XMI
memory space read is i n i t iated, the CPU al locates
the cache block that corresponds to the read
address .

The dupl icate tag store a lso moni tors ail XMI
write transactions and performs a dupl icate tag
store look-up . I f a h i t occurs and the write was
not from th is CPU, t hen the dupl icate tag location
is i nval idated . The address is then loaded i nto an
eight-entry i nval idate queue i mplemented in the
XMI i nterface gate a rray. Cache inval idates are
not performed in response to an ind ividual CPU's
own wri tes since the write-through second - leve l
cache always contai ns the most recent data .

When an entry has been loaded i n to the inva l i
date queue , the COAL in terface logic arbi trates
for the COAL and i nval idates the fu l l 64 -byte
b lock in which t he write address was located .
The use of a dupl icate tag store reduces COAt
traffic to only necessary inva l idate transactions .
After performing an inva l idate , the X M I interface
gate array checks for any addi t ional inva l idates
that may have accu mu lated wh i le the previous
inval idate was bei ng serviced . If another inva l i
date request exists , then i t i s serviced prior to
re lease of the COAL. This procedure ensures that
inval idates are serviced as qu ickly as poss ible .
The CVAX bus in terface ensures that the inva l i
date logic i s given an opportuni ty to use the
COAL between every CVAX bus operat ion .

Though occurring very infrequently, the XMI
bus coul d issue wri tes q u ick ly enough to over-

4 2

TAG DATA
STORE STORE

I I
COAL B U S

X M I I N T E R FACE
GATE A R R AY

D U P L ICATE " H IT" E I G H T- ENTRY
TAG � I NVALI DATE
STORE QU E U E

XCI B U S

X M I COR N E R

X M I B U S

Figure 6 Second-level Cache Coherency Logic

flow the CPU's inval idate queue. Instead of
adding significant complexity to the inval idate
contro.l ler to suppress t he generation of XMI
wri te commands when the i nva lidate queue is a t
risk of overflowing, the overflow condi tion is han
d led as an exception condi tion . (This subject is
d iscussed in the section Hand l ing Second- leve l
Cache E rror Condi tions .) For th is a l ternative to
be practica l , we had to ensure that inval idate
queue overflows wou ld be very rare ; we fel t this
was ensured by the depth of the invalidate queue
(eight entries) and the opt i mized design of the
inva l idate controll er .

The Write Buffer
A write buffer design offers the designer oppor
tuni t ies to break cache coherency ru les . The
VAJ(6 200 CPU fol lows severa l ru les to maintain
coherency . The VAX 6 2 00 hardware automat i
cal ly flushes the write buffer under the fol lowing
cond i t ions:

• In response to a write t hat m isses the currently
active wri te buffer . The current write buffer is

Digital Technical journal
No. 7 A ugust 1 988

fl ushed wh i le the new write is accepted by
the al ternate bu ffer , thus write ordering i s
mai nta ined .

• Before an X M I r;o space read or write refer
ence is performed . 1 /0 references cou ld resu l t
i n the in i t iat ion of an 1/0 operation that may
requ i re the data from the write buffer .

• Before a n i nterlock read or un lock write refer
ence is performed . Interlock sequences are
the primary means for synchroni zation
between processors and must always force a l l
outstand i ng writes to ma in memory.

• Before an in terprocessor in terrupt is per
formed . As with inrerlocks, interprocessor
in terru pts arc used for synchron i zat ion be
tween processors and must always force a l l
outstand ing wri tes to ma in memory .

• Before issu ing an XMI read to a locat ion that
i ncludes the data conta i ned in the write
buffer . The write buffer contents are flushed to
main memory and then the XMI read is issued.
Reads that m iss the write buffer do not force a
write buffer tl ush (" write buffer bypass") .

• Fol low ing the assertion of the CVAJ(clear
write-buffer p in , the CPU fl ushes the write
buffer to main memory. This form of write
buffer fl ush ing is primari ly used ro assoc iate
fa i led wri tes with a given process. If no associ
at ion cou ld be made , then the operat ing sys
tem wou ld a lways have to crash the ent i re sys
tem on every fa i led write transaction .

Handling Second-level Cache Error
Conditions
One of the major goals of the VAX 6 200 des ign
was to provide i mproved system re l iab i l i ty . One
method we used was hardware-enforced soft
fa i lover i n response to many error condi t ions,
combined wi th effic ient software recovery proce
dures . This method was used extensively when
deal i ng with al l types of second- level cache
errors .

I n genera l , t he i nd ividual processors have the
responsibi l i ty to recover from potent ia l cache
coherency fa i l ures. When errors occur that
may leave the second- leve l cache incoherent , the
VAX 6200 processor hardware amomatica l ly d is
ables the cache . Disabl ing the cache ensures that
the system can cont inue to run "safely," albei t at
reduced performance . The processor then posts a
"soft" error interrupt . The i n terrupt service rou -

Digital Technical journal
No. 7 A ugust l 'J88

t ine responds by logging the error and then
tl ushing and reenabl ing the cache .

The fol lowing error cond i t ions cause the XCP
hardware to d isable the second-level cache . The
errors are of two forms . The first two are error
condi t ions that potent ia l ly resu lt in a missed
cache update on a write-through ; the last three
deal wi th condi t ions u nder which an inval idate is
potent ial ly missed :

• Subblock val id bi t par i ty errors - The
VAX 6 2 00 CPU supports a doubly-redundant set
of subblock va lid bits . On a cache look-up,
i f the two corresponding val id bi ts do not match ,
then the hardware reports a parity error and
forces a cache miss . If th is error occurs on a
write - through t hat shou ld have h i t i n the cache,
then the cache state i s no longer consistent .

• Cache tag pari ty errors - The tag ch ips used
on the VAX 6200 CPU support par i ty on the
fu l l tag address . As with va l id bit errors, a tag
pari ty error can resul t i n a m issed write
through .

• XMI i nconsistent pari ty error - If the CPU
detects an XMI cycle t hat has bad par i ty and
that cycle is acknowledged by another proces
sor , then the worst-case assumpt ion is that the
duplicate tag logic just missed a write transac
t ion that shou ld have resu lted in an inva l idate .

• Dupl icate tag store parity error - As with the
previous error , the processor has tO assume the
pari ty error resul ted i n a m issed i nva l idate .

• I nva lidate queue overflow - Aga i n , th is con
d i t ion is s imi lar to the one above except t hat
this condi tion does not requ i re a transient
error in the system . Instead , an inva l idate
queue overflow is the resu l t of a very rare com
bination of XMI writes that resu l t in a queue
backup a nd the potential loss of inval idates.
The system responds to this condit ion just as it
would for all other cache errors .

Actual System Performance Results
We were very interested in determin ing how wel l
our s imu lat ion resu l ts marched real -world opera
t ion . We decided to focus on seve ra l key aspects
of t he system to bound the task of correlat ing s im
u lat ion with the rea l world . Speci fica l ly , we
planned to

• Confirm that the VAX 6 200 CPU performs as
expected relative to t he MicroVAX 3600 sys
tems . If the cache subsystem behaves as

CVAX- based
Systems

------- Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

expected , then the VAX 6200 performance
shou ld exceed that of the MicroVAX 3600
systems by the clock rare i mprovement m inus
the pena l ty for running the CVfu'{ cache i n
1 -stream-only mode.

• Confirm that the s imu lation traces adequately
"stress" the memory i nterface such that extra
polation ro real workload performance is
val id . The percentage of the XMI bus con
sumed wou ld be the basis for th is comparison .
This characteristic i ncludes a l l the effects of
references per instruction and miss rates and
u l t i mately determines the performance of a
mult iprocessor mach ine .

• Confirm that t he cache subsystem supports
very effective u t i l i zat ion of mu lt iple proces
sors . VAX 6 2 00 mult istream throughput mea
surements form t he basis of th is verification .

• Compare the resul ts from the s imulat ion tests
with s im i Jar workloads run on rea l mach ines .

Comparing VAX 6200 and
Micro VAX 3 600 Systems
Due to the simi lari t ies between the two systems,
our first approach was to compare the perfor
mance of the VAX 6200 ro the MicroVAX 3600
systems by running a set of I 00 compute- in ten
s ive benchmarks . The VAX 6200 has a 1 2 percent
cyc le t i me advantage (90 ns to 80 ns) , but i t is
somewhat hand icapped by the ! -stream-only l i m i
tat ion placed on the i nternal cache . Reca l l that
our performance s imulation i ndicated th is
penalty wou ld average about 5 percent . (See
Table 6 .) On average then, we expected the
VAX 6200 CPU to be about 7 percent faster than
the MicroVAX 3600 CPU . The compute- intens ive
benchmarks basica l ly confirmed t h is number;
VAX 6200 performance averaged 6 percent faster
than the MicroVAX 3600 CPU.

Multzprocessor Bus Bandwidth
Utilization - Real and Simulated
Workloads
We have run several forms of mult iuser t i me
sharing workloads on the VAX 6 2 00 system .
These workloads i nc lude Digi ta l 's standard
ALL- I N - I workload , an order processing bench
mark (Compu -Share) , an e lectrical CAD work
load, and a software development work load 9 I n
a l. l cases , t he average percentage of the XMl used
per processor ranged from 3 75 ro 5 . 0 . Recal l

4 4

that our s imulat ion ind icated that the percentage
XMI consumed wou ld be 6 . 2 7 percent . (See
Table 9 .)

Multistream Performance on Compute
intensive Benchmarks
I t is beyond the scope of t h is paper ro present t he
mult iprocessor s imu lat ion data that was gener
ated prior to design . That data i nd icated that the
VAX 6200 system performance on compute
intensive benchmarks wou ld be nearly l i near
when running from one to eight processors.

Tests to date have confirmed our h igh expecta
t ions . On compute - intensive workloads , a four
processor system consistently provides better
t han 3 . 9 5 t imes the throughput of the si ngle
processor system (less than 2 percent degrada
tion) . L imited configuration testi ng on systems
w i th up to eight processors indicates that
compute - in tensive workloads cont inue ro per
form very wel l . An eight-processor system per
formed at 7 . 7 5 t i mes the single-processor (l ess
than 5 percent degradat ion) .

Fully Characterized Workloads
We a lso instrumented a VAX 6 200 system ro mea
sure a number of processor characteristics,
i nc lud ing bus u t i l i zation We wanted ro deter
m i ne how much the real workload runs varied
from the s imu lated runs. The test methodology
was qu i te s impl e .

• Command fi les were created that executed a
s ingle benchmark . These i nd ividual bench
marks were designed to correspond with the
s imulation traces l isted at t he beginn ing of the
Performance S imulat ion sect ion .

• The Digi ta l Command Language (DCL) com
mand fi les were of the fol lowi ng form :

$
$ @ f l u s h c a c h e ! i n i t i a l l y f l u s h t h e

c a c h e

$ @ S t a r t h a r d w a r e s a m p 1 e ! s t a r t t h e

m e a s u r e m e n t h a r d w a r e

$ @ g e t c p u t i m e ! g e t t h e i n i t i a l C P U t i m e

$
$ r u n b e n c hm a r k

$
$ @ g e t c p u t i me ! g e t t h e f i n a l C P U t i m e

$ @ S t o p h a r d w a r e s am p l e ! s t o p t h e

$
m e a s u r e m e n t h a r d w a r e

Digital Technical journal
No. 7 A ug ust 1 988

• The measurement hardware cons isted of two
Tektroni x DAS 9200 Logi c Analyzers; one mon
itored the processor bus, and the other was
attached to the XMI . The start-measuremenr
command fi le s imply referenced a specific
XMI 1/0 space address on which t he DAS 9200
analyzers wou ld trigger and start tak ing mea
surcmenrs Simi lar ly , t he stop-measurement
command fi le wou ld reference another XMI
1/0 space add ress that would cause the logic
analyzers to stop acqui ring data .

This technique made the measurement process
s i mple and repeatable. The overhead of the com
mand fi le was measured by running the command
fi le with the " run benchmark" l ine removed . This
overhead was then subtracted from the resu lts
obtai ned from benchmark runs. Run-to-ru n con
s istency was better than ± 1 0 percent .

The logic analyzers captured the data neces
sary to determine the total number of XMI read
and write references that occurred during the
execution of the command fi l e . This data was
used to calcu late the total number of XMI cycles
used by the processor. To derive t he percentage
of the XMI u t i l i zed. the tOtal XMI cycles were
reduced by the com mand file overhead , and the
resu lt was divided by the benchmark CPU t ime .
This method ensures that t h e X M I percentage i s
not art ificia l ly low d u e t o the i nclusion of n u l l
t ime e lapsed whi le t h e processor i s wai t ing for
1/0 activit ies associated with the benchmark to
complete . The resu l ts are s hown i n Table 1 1 .

The data i nd icates that the s imu lation traces
required sign ificantly more XMI read bandwidth
(on average more than dou ble) than the s imi lar
actual benchmarks . This resul t is not unexpec
ted , s i nce the s imulation runs were designed tO
s imu late a worst-case t i meshare workload . (This
goal influenced the choice of 3 5 ,000 i nstruc
tions for the cache flush interva l .) The real
workloads were run on standalone systems, and
therefore the cache performance was expected to
be higher. We are currently studying the effect of
heavy t imesharing in mu lt iprocessor systems on
cache performance . In i t ia l resu l ts ind icate that
ou r s imulat ion ru ns are sti l l conservative .

The resu lts for writes, which are u naffected by
context swi tch rates, matched the actua l bench
marks qu ite c losely . The actual benchmarks
required about 4 percent to 8 percent more
bandwidth than the equi va lent s imulat ion trace .
Combined read and wri te bandwidth requi re -

Digital Technical journal
No . 7 A ugust 1 988

Table 1 1 Simulated versus Actual XMI Bus

Util ization

Simulated/
Simulated Actual Actual
!-stream ! -stream Ratio

Average 0.84% 0 .32% 2.6

M i n i m u m 0.24% 0 . 1 7% 1 .4

Maximum 1 .65% 0 .52% 3.2

Simulated/
Simulated Actual Actual
D-stream D-stream Ratio

Average 1 . 63% 0.74% 2.2

M in imum 1 .26% 0.26% 4 . 8

M a x i m u m 2. 1 0% 1 . 1 0% 1 .9

Simulated/
Simulated Actual Actual
Writes Writes Ratio

Average 4 .46% 4 . 86% 0 .92

M in imum 3 .57% 3.84% 0.93

Maximum 5 .97% 5 .75% 1 .04

Simulated/
Simulated Actual Actual
Overall Overall Ratio

Average 6.09% 4 . 86% 1 .25

M in imum 5.27% 3.84% 1 .37

Maximum 7 .25% 5 .75% 1 .26

ments i nd icated that the s imu lated traces used
2 5 percent more bandwidth than the actual
work loads.

Conclusions and Future Work
The VAX 6200 design experience has demon
strated that trace-driven s imulat ion is a power
fu l tool i n the design of a mul t iprocessor bus
i n terface . Because the desi gners were able to
make i n formed trade-off decisions, the design
met or exceeded a l l performance goa ls ; and the
reduced design complexity helped bring t he
system to market on schedu l e . It is a tribute to
the team's appropr iate control of complexity and
to the r igorous verification process 10 that t he
first-pass VAX 6200 CPU printed c i rcui t design
and XMI in terface gate array are currently ship
p i ng in VAX 6200 systems. At Dig i tal , this l evel
of success is unprecedented for a mach ine of t h is
complexity .

4 5

CVAX-based
Systems

______ Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus

The cont inu ing trend toward mul tiprocess i ng
and faster processors w i ll force i ncreasing depen
dence on complex cache subsystems to del iver
the desired system performance . It fol lows that
minimizing the complexi ty of the cache sub
system wi l l help support ever decreasi ng t ime
to-market schedules. Accurate cache s imulat ion
techniques w i l l be requ i red to select the imple
men tation that meets the performance goals and
is min imal ly complex.

Acknowledgments
The author wou ld l i ke to acknowledge the
work of the fol lowing ind ividuals who con
tributed s ign ificantly to the VAX 6200 CPU arch i
tecture and design : Br ian Al l i son , Giao Dau ,
Ron Desharnais , G lenn Herdeg, Dave lves,
Bimal Sarecn , S i mon Stee ly, a nd Doug Wi l l iams.

References

1 . B . Al l ison , "The Archi tectura l Defini t ion
Process of t he VAX 6 2 00 Family," D igital

Technical journal (August 1 988, t h is
issue) : 1 9- 2 7 .

2 . T. Fox , P . Gronowski , A . Jai n , B . Leary, and
D . M iner, "The CVAX 78034 Chip, a 3 2 -b i t
Second-generation VAX M icroprocessor. "
Digital Technical joumal (August 1 988 ,
this issue) : 9 5 - 1 08 .

3 . E . McLel lan , G . Wolr ich, and R . Yodlowski ,
"Developmen t of the CVAX Floating Poi n t

4 6

C h i p , " Digital Technical journal (August
1 988) : 1 09- 1 2 0 .

4 .) . Winston , "The System Support Chip , a
Mul t i fu nction Chip for CVAX Systems,"
Digital Technical journal (August 1 988 ,
t his issue) : 1 2 1 - 1 28 .

5 . A . Sm i t h , " Li ne (block) S i ze Choices for
CPU Cache Memories , " IEEE Transactions

on Computers, vol . C-3 6 , no . 9 (September
1 987) : 1 06 3 - 1 07 5 .

6 . D . Clark and J . E mer, " A Characterization of
Processor Performance in the VAX- 1 1 /780,"
Proceedings of the l i th A nn ual Sympo
sium on Computer A rchitecture Qune
1 984) .

7 .) . Fu ,) . Ke l ler , and K. Haduch , "Aspects of
VAX 8800 C-Box Design ," Digital Technical

journal (February 1 987) : 4 1 - 5 1 .

8 . T. Leonard , ed . , VAX A rchitecture Refer

ence Man ual (Bedford : D ig i ta l Press, Order
No . EY- 3 4 5 9E-DP, 1 987) .

9 . B . Moses and K . DeGregory, " Performance
Eva luation of the VAX 6 200 Systems,"
D igital Technical journal (August 1 988 ,
this issue) : 6 4 -78.

1 0 .) . Basmaj i , G . Garvey, M. Heydari , and
A . S inger, "The Role of Computer-aided
Engineering in t he Design of the VAX 6 2 00
System," Digital Technicaljournal (August
1 988 , this issue) : 4 7- 5 6 .

Digital Technical journal
No. 7 A u!?,ust 1 988

jean H. Basmaji
Glenn P. Garvey

Masood Heydari
Arthur L. Singer

The Role of Computer-aided
Engineering in the Design of the
VAX 6200 System

The success of the VAX 6200 design is partly attributable to the development
and implementation of a total verification plan. The goal of this plan was
to shorten the total system design cycle; the approach was to perform suffi

cient verification to ensure that first-pass parts would boot and run VMS at
speed. The team responsible for achieving the goal began implementing

the verification process on availability of the first design specification. The
team 's efforts continued concurrent with those of the module design team.
Milestones for the process reflect the verification team 's top-down func
tional approach, proceedingfrom architectural-level verification through
logic, timing, and system verification, and concluding with vector genera

tion. Review and reporting methods established for the project ensured all
functions were tested and verified.

'fhis paper presents an overview of t he computer
a ided engineeri ng (CAE) and CAE-based des ign
verification test (DVT) a pproach to the develop
ment of the VAX 6200 system . Our i n tent is not
to give a step-by-step dcscri ption ; therefore , few
deta i ls of the i mplementat ion are given . The
CAEjDVT Group developers bel ieve that project
spec ific problems arc genera l ly best solved by
project-specific sol utions . I nstead , we offer a
broad overview of CAE which i nc ludes the engi
neering pri nciples establ ished for t he VAX 6 200
project and which we be l ieve wi l l be of use to
those planning a task of s im i lar scope .

A Brief VAX 6200 System Overview
No discussion of CAE or DVT methodologies can
take p lace wi thou t a description of the task to
which these methods are applied. For our pur
poses. the overa l l task was to engineer, proto
type , debug, and release for manufacture the
VAX 6 200 mid-range computer system .

The VAX 6 2 00 mult iprocessor arch i tecture
is implemen ted wi th CMOS technology 1 . 2 The
system is housed in a I 56 by 79 by 76 em cabi
net . which con ta ins a system bus backplane, two
6-s lot VAXBI backplanes, a TK50 tape drive ,
space for future rack-mou nt devices, power sup
plies , and blowers .

Digital Technical journal
Nn. 7 A ugust 1 ')88

The heart of the system is a new i nterconnect
cal led the XMI . This i nterconnect was specifi
caUy designed to serve as the processor-to
memory i nt erconnect in t he VAX 6 2 00 system
and i ts derivat ives . Opti m izations of and trade
off's in the design of the XMI were made wi th that
function foremost in m i nd . The key features of
t he i n terconnect are as fol l ows .

• The pended bus design a l lows mul t ip le trans
act ions to be in progress at the same t i me ; thus
waste of bandwidth i s m i n i mi zed, for i nstance ,
during memory read accesses .

• The XM I i m p lements the concept of comman
der nodes and responder nodes. A commander
node i n i t iates a bus transaction tO which a
responder node must respond .

• The XMI is a centra l i zed arbitrat ion i ntercon
nec t . Arbitrat ion logic, resident on the back
p lane , grants bus mastersh ip according to a
mod ifi ed round-robin sc heme . There is a
h igher priority responder round-rob in queue
and a lower priority commander round -robi n
queue .

• Bus width is 64 birs .

4 7

The Role of Computer-aided Engineering in the Design of the VAX 6200 System

• Cycle t i me is 64 ns .

• The XMl supports reads of quadword , acta
word , and hexword l ength , and writes of quad
word and octaword length .

• Raw bandwidth i s 1 2 5 megabytes (MB) per
second .

The XMI supports three module types in the
VAX 6200 system : the CPU mod u le (KA62A) , a
3 2 MB memory array (MS6 2A) , and an XMI - to
VAXBI adapter module set (DWMBA) .

The CPU module is based on the CMOS VAX
(CVAX) ch ip set, which inc ludes a M icroVA,'{
archi tecture m icroprocessor (CVAX) , a float ing
poi nt accelerator (CFPA) ch ip , a nd a system sup
port ch ip (SSC) . The module supports fu l l VAX
capabi l i t ies, except ing only PDP- 1 1 compat ib i l
i ty mode. In add i t ion to a two-way associat ive
! -stream cache in the CVAX ch ip , the module
contains a 256 k i lobyte (KB) d i rect-mapped
cache . Performance is approxi mately 2 . 8 t i mes
that of a VAX- 1 1 /780 processor.

The MS6 2A is a 3 2 MB memory array mod u le
with an on-board control ler. Modu les may he
i nterleaved up to e ight ways to decrease laten
cies . Each module has an e ight-deep command
queue . The arrays are fu l ly error-correction code
(ECC) protected .

The DWMBA i s an adapter module set which
a l lows the 6200 system ro access ljO devices on
t he VAXB I bus. The DWMBA/A module , which
resides in a s ingle XMI s lot , is connected by cable
to the DWMBA/B module , which resides i n a s in
gle VAXBI s lot The DWMBA can support up to
fu l l VAXBI bandwidth of 1 3 . 3 MB per second on
write transact ions and approxi mately 5 . 5MB per
second on read transact ions .

Figu re I i l l ustrates how these system e lements
in terconnect i n a two-processor system with two
VAX BI channels .

Because the VAX 6 2 00 system backplane has
1 4 slots, many system configurations are poss ib le
with d iffering numbers of processors , memory
modu les, and 1/0 channels .

In the sections fol lowing, we descri be the engi
neering process empl oyed in the design of these
logic elements .

CAE Verification Challenges
and Organizational Structure
The overrid ing goal of any CAE effort is a lways
the same : ro shorten the development t i me

4 8

Figure 1 XMI Module Connections on a

VAX 6220 System

needed to bring a product to market . The defin i
tion of CAE and the way e ngineers use CAE to
accomplish this goal d iffers from project to pro
ject and even wi th in a s ingle project . Neverthe
less, two principles are preem i nent .

1 . CAE shou ld provide the tools, the methods,
and perhaps most i m portantly, t he d isci p l ine
that together enhance a n engineer's product iv
i ty wi thout unduly restricti ng h is or her cre
at ivi ty.

2 . CAE shou ld provide a cont inua l check to
ensure that the engineer's product meets the
needs of the project in terms of both funct ion
a nd qua l i ty .

The role of the CAEjDYT Group on the
VAX 6200 project was d i fferent from the trad i
t ional CAE role i n one sign i ficant respect . The
group's primary responsib i l i ty wou l d not be the
development of CAE tools and processes. I nstead ,
i ts responsib i l i ty was the del ivery of fi rst-pass
hardware t hat was functional at speed . Expl ic i t ly,
our goal was ro ensure that the system wou l d
boot t h e operat ing system (VMS) and r u n soft
ware the first t i me the system was powered u p .
The on ly tools and processes developed were
those specifica l ly necessary to fu lfi l l that goa l .

The project ream fel t that object ive s imu la
t ion and verificat ion of the hardware and irs
performance by t he CAEjDYT Group wou ld
(1) enhance the chances of first-pass functional
i ty, and (2) reduce t he overa l l design cycle by
para l lel ing the CAE and the design efforts . Con
sequent ly, the CAE engi neers were active con
tributors ro the archi tecture and part ic ipated in

Digilal Technical journal
No. 7 A uQus/ 1988

choosing a lternat ives. effect ing comprom ises,
and i m p lementing detai ls of the design . The CAE
Group was respons ible for the correctness and
qua l i ty of the designs and not just for the del ivery
of tools to accompl ish that correctness. To
ach ieve th i s goa l , tasks trad i t iona l ly performed
using DVT methods would be accompl ished
using CAE methodology.

CAE Tasks
G iven the charter described above, t he CAEjDVT
Group outl ined the following tasks:

• Select a rool su i te

• Create a process for the CAE effort

• Maintain the databases

• Construct a CAE envi ronment (models and
computes)

• Generate test cases to ru n aga inst the environ
ment

• Isolate and report bugs

• Verify the hardware

• Generate test vectors for outside vendors

• Generate test vectors for manufactu ri ng

• Fau l t grade t he test vectors

• Define exit criteria for committa l of design tO
hardware

• Enforce compliance with exi t cr iteria

Though the l ist i s l ong and has some i nterest ing
tasks, two i tems const i tuted t he largest portion of
the work: generation of test cases to ru n
against the environment , and verification of
the hardware.

The generation of test cases is the most t ime
consum i ng, l east glamorous, a n d most often over
looked task ; yet the test cases are the single most
i mportant piece of a superior CAE effort . A suc
cessfu l speci ficat ion of the test cases (the DVT
specification) ro be run agains t a CAE environ
ment requi res a lengthy period of deve l opment .
The development t i me for t he KA62A, MS6 2A,
and DWMBA DVT speci ficat ions was approxi
mately 6 man - months each. Moreover, the speci
ficat ion is not stat ic and must be kept current
with the evolving design .

Digital Technical journal
No. 7 August I ')88

The DVT speci ficat ion must begin as early
as specificat ion of the hardware functiona l ity
begi ns . Working the two specifications in para lle l
ensures functional verification of the system . Fur
ther, the DVT specificat ion shou ld be treated
with the same forma l iry as the hardware specifi
cation; that is , i t shoul d be reviewed , and a l l
reviewers must agree u pon i ts completeness . By
formal iz ing t he specification review, project
members are in effect establishing i ts va lue tO t he
project . The DVT specificat ion defi nes what is tO
be s imu lated; therefore , su perior des ign tools
and model i ng cannot subst i tute for the assurance
of design accuracy that the specification affords.

As tO the verification of the hardware , the
responsi b i l i ty of the CAE team was to ensure bug
free and operable component, module , and sys
tem designs . Tea m members ran the s imu lations,
isolated the bugs , and ensu red des igns were cor
rected by t he design tea m . S imu lat ions were not
done exclusively by the CAE tea m, however. The
environ ment was avai lable equa l ly to a l l design
team members . To the extent that each team felt
was appropriate , designers i n i t i a l ly debugged
the i r designs before pass ing them to the CAE
team for more formal debug. I n th i s way, obvious
bugs were found more q u ickly. Design deve lop
ers did exce l lent work i n th is regard and greatly
eased the burden on the CAE tea m .

Further discussion o f the VAX 6200 hardware
ver ificat ion is presented i n the sect ion Verifica
tion Mi lestones.

Modeling Approach

Hardware verification done in software is by
natu re a slow process. The major factor con
tr ibut ing tO the slowness of t he ver ification is the
s i ze of the design . The s i ze is not si mply the num
ber of logic elements in t he design, but the col
lective size of the models of each of the e l ements
in the logic network .

We used two types of mode ls for the VAX 6200
project, behavioral and structural (or gate leve l) .
Behavioral models, i n genera l , were more
abstract a nd efficient in terms of i ncreas ing
overa l l s imula t ion performance as compared tO
detai led structura l models .

Behavioral models of many of the components
used in the system were generated early in the
design cyc le . As the design progressed a nd
deta i led logic schemat ics became ava i lable , how
ever , the behavioral models , i n most cases , gave
way ro deta i led structura l models . The except ion

4 9

CVAX-based
Systems

------- The Role of Computer-aided Engineering in the Design of the VAX 6200 System

was the behavioral models of the CVAX chip set .
These detailed models were used throughout the
verification process. Given the s ize and complex
ity of these components, s imulat ion with struc
tural models , for all practical purposes, was
i mposs ible .

I n general , our objective throughout the
verification process was to ensure accuracy and
not speed. The slow speed of the more accura te
models was addressed by applying more compu te
power to the task at hand .

CAE Staffing and Resources

The CAE group was d ivided in to smal l reams,
each responsible for the verifi cat ion of a VAX
6200 subsyste m . The s ize of the teams varied.
The KA62A gate array a nd module team had four
CAE engi neers . Four CAE engineers worked on
the DWMBA gate arrays and modules . The MS62A
gate array and module was assigned one CAE engi
neer . As it turned out , t hese nu mbers represented
nearly a one tO one rat io with the hardware
desi gners. As senior, experienced engi neers,
ream project leaders were responsible for the
overal l coherence of the DVT plan and i ts qua l i ty,
and were responsible as well for t racking and
resolving problems.

Each team i nc luded a d iagnostic engi neer who
was also working on design ver ification test. This
arrangement provided the diagnostic engi neers
early tra in ing and also faci l i tated testing . More
over, d iagnostic engineers were in a position to
eas i ly evolve some of the DVT tests i ntO se l f-tests
and ROM-based d iagnostics for the VAX 6 200
product .

The educational background of the CAE team
was a mix of electrica l engi neers, computer engi
neers, and software engineers . The ir levels of
experience varied from new col lege h i res ro
those wi th 1 0 or 1 5 years of work experience .
The level of re levant hardware experience i n this
group is i nd icative of the group's tasks, as com
pared with other CAE groups that are more
involved in rools generation .

Our computer resources consisted of a c luster
of eight CPUs, i ncluding one VAX 8800 system ,
one VAX 8 6 5 0 system , and s ix VAX- 1 1 /780 sys
tems. Al l fou r modu les (KA62A, DWMBAjA,
DWMBAjB, and MS62A) and the i r associated
gate arrays were verified throughout most of
the project on th i s cluster. During final regres
sion testing of each module , in which the fu l l
set of DVT tests was r u n aga inst the design ,

5 0

an addi t ion a l c luster of eight VAX 8800 systems
was used .

Verification Milestones
Key mi lestones were establ i shed for the verifica
tion team throughout the VAX 6 2 00 design
verification process. I n December 1 98 5 , we
began with the first XMI i n terconnect verifica
tion ; we proceeded to performance evaluation ,
logic verificat ion , t i m ing ver ification, system
ver ification , and vector generat ion .

These mi l estones were derived as part of
our fu nctional top-down ver ification approach .
We selected this approach based on our deter
mi nation that if a function works correctly, then
aU of i ts component logic must be working
correctly .

We therefore chose to model our d ifferent
design objects in the largest reasonable forms and
t hen functional ly test these models . Every step
natural ly l ead into the next task of the system
design . This approach was later extended to the
system as a whole; the syste m s imulat ion com
b ined the logic and ran code to exerc ise the
ent ire syste m .

Architectural Verification

At the archi tectural level , the s imulations focused
on the verificat ion of t he new system i ntercon
nect , t he X M I . As noted earl ier , th is i n terconnect ,
specifical ly developed for the VAX 6200 sys te m ,
i s a memory i n terconnect b u s w i t h a new arbitra
t ion scheme and a defined bus i nterface protocol .
Both the arbitration and the protocol are i mple
mented i n CMOS semicustom technology.

Once the design for the bus protocol and arb i
tration was establ ished i n a specification form , we
i m mediately transformed t he speci fication i nto
high- leve l behavioral models: the arbiter chip
model , and an XMI commander transactor mode l .
The behavioral arbiter model represented a
generic, rou nd-robin arbitration scheme; t he
commander model represented a generic X M I
commander design . The commander model con
ta ined a flexible user i nterface to a l low the
specificat ion of any desired we l l - or i l l -formed
transaction to be generated on the bus. Further,
the commander transactor model was designed to
selective ly self-check for any protocol violat ions.

The two mode ls were the basis for a l l XMI
design verification . This fi rst level of verification
provided feedback ro the architecture team
quickly and answered questions about the i nter-

Digital Technical journal
No. 7 A ugust 1 988

face prorocol and arb i tration scheme. A� a resu l t ,
the arbi trat ion was enhanced and the protocol
was refined to satisfy the design goals . Specifi
ca l ly . a few new signals were added , and the arb i
tration was changed from true round-rob in tO a
modified round- robi n .

At the next level of architectural verification ,
we modeled an XMI responder node and incorpo
rated th is model i nto t he s imu lat ion environ
ment . The ream deve loped a behavioral X M I
memory model and com pleted a h igh- level sys
tem mode l . 'T'his model was sti l l tota l ly behav
iora l and represented a system with generic X M I
commanders and responders .

Two pieces of test code were generated a nd
verified on that model . The environment mod
eled a fu l l y loaded XMI i n terconnect . The first
piece of test code was structured in such a way
that every node on the X M I generated its own
traffic . Comma nders generated a l l poss ib le com
mander sequences, and responders generated a l l
possible responder sequences . The goa l o f t his
first test code was to ensure that the protocol was
sound . By protocol soundness , we mean t hat
commanders and responders can coexist on t he
XMI and can generate traffic sequences without
loss of data . 'T'he resu lts of th is verification gave
the team sufficient confidence i n the protOcol to
a l low t he design of the X M I interface compo
nents to proceed .

The second p iece of rest code was verified on
the same environment . Every commander gener
a ted the same sequence of t raffic on the X M I . The
goal of th is rest was to verify arbi tration fa i rness
and to guarantee that a l l X M I nodes got the i r fa i r
share of t he XM I . The absence of phenomena
such as lockouts was also verified .

This arch i tectura l verification proved to be a
tremendously va luable exerc ise . F irst , feedback
to the archi tectu re ream was accompl ished
qu ickly . Second . thi s arch i tectural ver ification
for the VAX 6200 project establ ished design
ver i ficat ion tools that can be used for a I I future
XMI des igns .

In t i me , the be havioral mode l of the arbiter was
replaced wi th a structural model derived from
the ch ip design database . We enhanced t he accu
racy of the behav ioral models of the XMI com
mander and memory by incorporat ing structura l
models of the XM l in terface components once
their gate- l eve l cksigns were complete . These
tools are now in use throughout the corporation
by numerous XM I design teams .

Digital Technical journal
No. -, A ugust J 'JRR

Clearly, an archi tectural verification that con
centrates on a new bus leaves out many orher
areas of architectura l in terest . A severe restrict ion
of the scope of the VAX 6 2 00 system's archi tec·
rural verification was deemed necessary because
of t he lack of schedule t i me and because of the
i m maturi ty of the art. Nevertheless, architectural
verification is a key area where much work shou ld
be done for the development of the next system .

Performance Evaluation
The next verification task was performance evalu
at ion . Aga in , work was concentrated i nto two
wel l -defined areas, that is , the bandwidth perfor
mance of the X M. l , a nd the processor perfor
mance in t he mul t ip rocessing environment .

A model of the CVAX processor was obtai ned
from the Semiconductor Engineering Group
design tea m . We enhanced this model to i nclude
an XMI interface with a memory port . The st imu
lus for th is model proved d ifficul t to generate
because mu l t iprocessing benchmark traces were
not avai !able . The traffic patterns had to be
deduced from s ingle-stream benchmark traces
and extrapolated for VAX 6200 symmetric mult i
process ing.

We ran several benchmarks . We then used the
resu lts ro make decis ions about the appropriate
trade-offs in the area of the processor cache and
write buffer a lgori thms . These trade-offs dea l t
speci fica l ly w i t h cache and write buffer depth
versus performance ga ined .

Other tools were created to decompose XMI
traffic i nro h istograms and ro generate reports on
bus bandwidth for the d i fferent types of traffic .
Eventua l ly , X M I memory design latency targets
were incorporated in to the X M I behaviora l mem
ory mode l . These system performance s imula
t ions were used to establ ish such design criteria
as the memory controller i nput command queue
depth and the com mand queue processing
algori thm .

Logic Verification
The next major task was logic verificat ion . The
main objenive of modu le verificat ion was to
ensure that the i mp lementation conformed to al l
design goals documented in the system specifica
t ion . In other words. the goal was not to verify
what the design was, but what the design was
supposed to be .

Members of the CAE team were assigned to
each design object; each member wou ld work in

'5 1

CVAX-based
Systems

The Role of Computer-aided Engineering in the Design of the VAX 6200 System

a team with the designers . The ver ification teams
n:quired compl ete and coherem speci fications
for each design object . These specifications had
to be sufficiently comp lete to support both
design i mplementat ion and l ogic verificat ion .
Moreover, ail fu nctions had ro be docu mented i n
a spcc ificar ion . This docu mentation served two
pu rposes : (I) ro ensure that the fu nction
rece ived the proper attent ion during the verifica
t ion phase . and (2) ro give t he responsible CAE
engineer the i n formation needed ro understand
the fu nctions without referring to logic schemat
ics or meeting with the designer .

Wi th the functional speci fication as the founda
t ion , ream members generated a verificat ion
work ing document for every design object . This
DVT specification , as mentioned earl ier, gu ided
the verification work and const ituted the primary
hardware -subm i ttal exi t cri teri a .

The logic verification was grouped i n to three
categories:

• Basic fu nctional ver ifica tion . Basic fu nctional
tests exercised each function as a standalone
piece of the design . This rest ing isolated obvi
ous bugs .

• Interaction sens i t iv i t ies . In teraction sensi t iv i ty
exercised the dcsign as a whole, making sure
that funct ions could i n teract wi th each other
and cou ld occur in series without cumulat ive
fau l t mechanisms . Testi ng of function i n terac
t ion i ncluded any boundary cond itions , margin
rest ing, and back-pressure on d i fferent key
poin ts i n the design .

• Error hand l ing . Error hand l i ng verificat ion
rested that portion of the design created spec i
fica l ly for error detect ion and recovery mecha
nisms.

Timing Verification

Timing verification was performed separately
upon a l l key components in the VAX 6 2 0 0 sys
tem . Al l of this work was performed by applying
functional patterns to t im ing models for each of
the module gate arrays and the XMI arbi ter logi c .
Th is work was done using AUTODLY, a n i n ternal
Digi tal roo! .

The XMI components were rested fi rst . Test ing
consisted of applying a l l poss ible XMI bus cyc les
against this logic whi le a l lowing the t i m i ng
verifier tO analyze the logic for any t im ing paths

5 2

with problems. A nu mber of problems were
found and resolved as a resu l t of th is test ing .

The r i ming verification of the module gate
arrays was performed in a s imi lar fash ion . Pat
terns of fu nctions were extracted from logic
ver ifica tion and then appl ied to the standa lone
ch ip t iming models . As each pattern was appl ied,
the r iming verifier wou ld ru n a com plete check
of the gate array and generate a list of violations.
These v iolations wou ld then be checked by t he
designer. If t hey were val i d , logic changes wou ld
be made . The reason that just the gate arrays were
veri fied, and not thei r complete modu les , was
that eac h module con ta ined some logic for which
no stru ctural model existed (for example , the
CVAX chip set on t he KA6 2A modu le) The lack
of a complete module-level t i m i ng ver ificat ion
model was recti fi ed by req u i ring the modu le
design ream to thoroughly ana lyze its modu le .
Th is approach was poss ib le only because of the
h ighly bus structured nature of our technology .

System Verification
Once every design object met i rs exi t criteria and
satisfied the speci fied testing , the next m i lestone
was the start of system si mulat ion . Our task was
ro verify the actual design in a system environ
men r . \Ve constructed a model consist ing of mu l
t iple processors, memories , and I/0 modules .
Thi s model contained structural representations
of the actual designs wherever possib l e . Where
there were mul t iples of a design object in t he sys
tem s i mu lat ion envi ronment , one i nstant iated
copy of the model would be t he deta i led (and
slow to s imula te) structural mode l ; the other
i nstant iat ions were the faster yet l ess accurate
behaviora l models .

In add i t ion ro actual design objects i n th is sys
tem model , we i ncl uded d i fferent types of trans
actOr and traffic generators on both the XMI and
the VAXBI buses .

The st imulus for th is environment had to be
specific enough ro ensure that every type of traffic
pattern was generated duri ng s imu l at ion . The
st imulus attempted to sti mu late every node and
fu nction concurrent ly . ln a system simu lat ion in
which t he s imulat ion rate i s so slow, as much as
possi ble must be achieved i n every single s imu
la ted c lock t ick .

Key tO making a system s imu lation successful
is to start the s imu lat ion on ly after the constituent
p ieces of the system have been very t horoughly

Digital Technical journal
No. 7 A ugust 1 988

verified i n isolation G iven the complexi ty of the
system model and i ts s low ru nn ing ra re , find ing
s imple design bugs at th is stage is a waste of
schedule r ime . I nstead . the model shou ld iden
t ify the system i n teract ion problems and assure
deve lopers that the base logic verification was
t horough.

Severa l logic problems were found d ur ing our
system si mulation dea l ing wirh complex in terac
tions. some after a few m icroseconds of s imu la
tion . I f undetected . these prob.lems would have
seriously impeded progress toward our goa.! of
provid ing functional first-pass hardware .

Vector Generation
The start of system s imulation rakes place. by
defin i t ion . near the end of the logic verificat ion
process . At about that t ime . we began to prepare
for subm i tta l of the designs for fabricat ion .
Therefore. i n para l l e l with system s imu lation .
test pattern generation was started .

Test vectors were needed at th is t ime . primari ly
to test ch ips com ing off r he fabrication l ine .
Therefore we generated tesr vectors for the very
large channel - Jess arrays con ra ined o n each of our
moduks. The basic criterion for approva l was
auainment of 99 percent i n ternal node toggle
coverage of the gate array logic . In add i t ion to rhe
99 percent i nterna l node wggle criteria , we a lso
i ncluded the much more stri ngent criteria of
9 5 percent stuck-at coverage as measured by a
fau l t grad i ng mechan ism . The methods used ro
determine coverage are discussed in the sect ion
Prob lem Report ing and Resolut ion .

The vectors were extracted from a strategic sub
set of our fu nctiona l DVT s imulation and graded
on a hardware accel eratorjfau l t eva luaror.

We set a goa l that the vecror counr shou ld not
exceed the ch ip 's gate cou nr ; that is , a chip wi th
2 5 K gates shou ld have no more than 2 5 K vectors
w exerc ise i ts logic . The vectori ng process ,
i ncl uding extraction , grad i ng, and complement
i ng . took an average of one month per gate array.

A-; is true of arch i tectural ver ifica t ion . vector
generat ion is an area where work remains ro be
done . If we had been able ro include some testa
b i l i ty feat ures in these very dense ch ips , we
could have saved th is month of sched ule t ime .

Follow- through
Even beyond the prototypi ng phase . the s imula
t ion database was mainta ined and u pdated tO

Digital Technical jounwl
No. 7 r'o ug ust I <J88

reflect any changes in rhe des ign as a resu lt of
hardware debug. The pu rpose of th is on - l i ne sofl
representat ion of rhe des ign was twofol d . F i rst ,
t he representation wou ld a id i n the isolat ion of
any problems d iscovered i n the lab. Second, the
database could be used ro investigate any susp i
cious problem areas that cou ld not eas i ly be trig
gered in rhe hardware .

Review and Reporting Methods
Throughout the design veri fication process, a
means ro ensure coverage was estab l i shed for
each p hase At t he project outset . DVT speci
hcation coverage of functions was assured by
several leve ls of team review. As the s imu la
t ions progressed . the project leaders were given
rhe responsibi l i ty of ensur ing bugs were consis
tently reported and corrected . Vector extract ion
and grad ing of ou r gate arrays provided a strong
measure of the completeness of the veri fica
t ion of these ch ips . Add i t iona l l y , t he in terna l
control lers to the gate arrays were measu red for
com p lere stare and product term coverage .
Last ly . before be i ng released for manufac
ture , the design was checked against our own
exit criteria to ensure t hat r he verificat ion
wa, complete .

This sect ion presents deta i ls of these methods
and tools for ensuring a l l functions were tested
and veri fied .

Functional Coverage
The VAX 6 2 00 project team chose the functional
verification approach ro verify all VAX 6200
des igns . One problem wi th th is approach is that
there is no method of measur ing functiona l cover
age . S ince a l l ver ificat ion is based u pon the DVT
specification , funct ional coverage wi l l be a
reflection of the completeness of th is document .
Therefore . the DVT specificat ion becomes the
ve h icle hy whic h the functional coverage of rhe
veri ficat ion is to be measured . This spec i ficat ion
must be made as comprehensive as poss ib le .
Therefore , the spec ificat ion underwent many l ev
els of review by a wide audie nce, inc l uding rhe
ent ire design team

Problem Reporting and Resolution
Anot her means used to ensure coverage was the
prob lem-resolution and bug-reponi ng mecha
n i sm . Every design verificat ion ream project
leader was respons ible for track ing bugs in

CVAX-based
Systems

------- The Role of Computer-aided Engineering in the Design of the VAX 6200 System

t he designs and ensuring t hese bugs were cor
rected and the correction was verified. Communi
cation for th i s tracking was t hrough VAX NOTES
conferences.

For each des ign ver ification team, two confer
ences were created . The fi rst was for bug report
ing and bug-fix resolut ion . Only verification team
members cou ld write notes in the bug confer
ence . Every entry ind icated the dare, model revi
s ion leve ls , test case number , fa i lu re symptOm,
and any assessment of t he problem . Repl ies tO
each entry were entered , e ither by t he project
leader or the CAE team member responsible for
the fa i l i ng test , tO i nd icate when the bug was
verified as bei ng fixed and the model revision l ev
els at the t ime of ver ification . If the problem
remained u nresolved , t he reply wou ld ind icate
any action taken or patches made .

The NOTES conference review ensured that
a l l bugs were given t he proper attention and
visibi l i ty .

The second conference was i n formationa l .
Using th is conference, engineers cou l d l earn
about key aspects of the design as the verification
progressed . Fore exam pie , t hey cou ld obta in
information on u ndocumented features on which
certa in verification tests were based .

Fault Grading
Another process, which was i mplemented tO
measure functional coverage of the component
patterns, was the fau lt-grading mechanism. In
th is approach , all component patterns for t he
large compacted arrays were generated at t he
functiona l leve l . The s imu lation environment for
pattern capture was the same one used for func
t iona l verification . The stimu lus generated was
driven by high- level functions . The test patterns
were captured a t the ch ip 's boundaries whi le t he
chip was being exercised on t he modu l e .

Tradi tional ly , component patterns are gen
erated by s imu lat ing the ch ip standalone and
driving hand-crafted st imu lus through the ch ip
s imu lat ion . Due tO test overlap, the approach
taken by the VAX 6 2 00 team did not ensure t he
opt i mu m number of patterns for t he maximum
stuck-at coverage . However, the approach proved
tO be very beneficial . Ranging from 20K to SOK
patterns for each gate array, rhe patterns were
generated in t he very short t ime of approxi mately
one month . In reach ing our goal of 95 percent
fau l t coverage wi th t hese test patterns, addi tional

54

areas of logic were fou nd t hat had nor previously
been tested . This add i t ional logic yielded addi
t ional bugs.

The faul t grad ing process a lso provided an
addit ional degree of confidence in t he coverage
of the functional ver ification test cases . The
95 percent fau l t coverage goa l was ach ieved with
panerns derived from a subset of those test cases .
I t should be mentioned that the hardware faul t
eva l uatOr was used extensively dur ing th is phase
of the project and proved to be an i rreplaceable
tOOl .

State Machine Coverage
Tools were deve loped that wou ld ana lyze traces
generated from t he i n ternal gate-array control lers
and sequencers. Traces were col lected whi le the
functional tests were being s imu lated and
verified . Al l traces were l ater ana lyzed , and cover
age was ensured for every state and product term .
This mechanism was put i n place and automated ,
so that after each regression , coverage could be
rechecked .

After every regression run of a l l test cases , the
resul ts were ana lyzed to ensure that no product
terms or states were missed as a resul t of test
modification or bug fix . Addi t ional test cases were
generated to find specific and hard -to-activate
condi tions.

Exit Criteria
Before a design is sent to manufacturing, the
design must meet the exit criteria . These criteria
are as fol lows :

• All the specified test cases have been gener
a ted and have run bug-free aga inst the la test
design .

• The system s imu lation has run bug-free for two
continuous weeks .

ln other words, i f bugs sti l l exist i n the design ,
the design is not yet ready for manufacture .

As judged by the nearly bug-free condi tion
of t he i mplemented hardware , these design
completion cr i teria and coverage metrics were
appropriate for t he VAX 6 200 development
effort .

The VAX 6 2 00 project's tremendous success
has establ ished t he process for future systems
verification and for engineering qua l i ry measure
ment .

Digital Technical Journal
No. 7 A ugust 1988

Results Attained
The deve lopment cycle for rhe VAX 6200 system
was qui te short . and therefore the need to pro
duce fu nuiona l first-pass hardware was very
strong. The first XMI specification was released i n
December 1 98 '5 . E ight months later, al l of t he
XMI parts had been designed and s imu lated and
were being manufactured . Two mont hs later, the
parts were up and running .

During this t i me , spec ifications were re leased
for the KA6 2A. MS62A, and DWMBA, and logic
design was begu n . Concurrent ly , test speci fi ca
t ion and rest generation a lso bega n . fn the late
summer of 1 986 . a l l logic design was completed .
and verification began . Two ro three months after
design completion . ver ificat ion was com p leted
for each module . With a complete and verified
des ign . one mont h was used to generate all gate
array rest vectors and t hen submit the gate arrays
for manufacture .

In February 1 987 - 1 4 months after t he fi rst
complete XMI spec i ficat ion - the DWMBA was
manufactured . powered on . and run w i t h fi rst
pass hardware . One month l ater. t he KA6 2A was
powered on and running . 1\vo weeks later, with
function a l MS6 2As , the first VAX: 6200 system was
powered on . Two weeks after that , on Apr i l 1 , the
first VAX 62 I 0 system booted VMS wi th al I first
pass functional parts .

Al though a few bugs were later ro be found and
fixed , the goal of using s imulation to generate
hardware that works at speed the first t i me was
atta ined . I n fact , many of those original parts are
be ing sh i pped wi th the VAX 6200 systems today.

Opportunities for Improvement
Although our verification process proved to be
qu i te successfu l , we plan to make a few changes
in th is process for future projects.

Arch i tectura l verifica tion , in so far as that
means an effort to d iscover system- level i nade
q uac ies or bott lenecks . is i n i ts infancy. We con
sider this a wide open area where muc h can be
accompl ished .

As mod u l e designs cal l for i ncreases i n speed ,
r iming verification and signa l i ntegrity veri fica
tion wi ll make a much larger contr ibution to the
rota! verification effort . Al though the XMI i n ter
connect was veri fied ro a l l c i rcu i t , signa l , and
r i m i ng spec ifications. signal in tegri ty was not
emphasi zed ro t he same degree in t he mod u l es
t he mse lves. Al though no signi ficant problems

Digital Tech,ical jourr�al
No. 7 A ugusl I 'J88

arose , we became strongly aware that future
generat ions of hardware w i l l be much more
dependent on the type of verificat ion used for
rhe XM I . Although t i m ing ver ification was
performed on a l l gate arrays on t he VAX 6200
syste m , th is veri fication . I n the future, we fee l i t
is i m portant to perform t iming verification on t he
design during early development . Thus we can
ident ify and solve the t i m i ng problems before
t hey become roo entrenched in the design ro be
fixed eas i ly .

S ince the wire delays for gate arrays can only be
est i mated unt i l gate layout has taken place , a l l
verifi cation must be repeated once t h e actua l t i m
i ng numbers a re returned . Add it iona l ly , floor
plan n i ng of t he gate array can have a s ignificant
effect on the performance and spec ific wire
de lays . On the VAX 6 2 00 project , the layout and
final wire de lay calculat ions were performed by
our gate array vendor and then sent back to us for
reverification . These steps can take qu i te a long
t i me in the design cycle of a gate array. To reduce
the wai t for real wire delays , we plan to perform
a l l floor plann ing and pre l i m i nary layout opera
t ions at the design site . Add i t iona l ly , t h is wi l l
a l low u s m u c h more i nput t o t h e floor p l a n and
layout .

Summary
The success of the VAX 6 200 verification effort
can be attri buted main ly to the decis ion to begi n
ver ificat ion at t h e same t i me a s t h e desi gn a n d ro
cont inue verificat ion and design as para I l e i
efforts . T h i s dec is ion was i mplemented b y assem
bl ing veri ficat ion teams a t the same t i me design
teams were be ing bu i l t .

Ver ification was performed during each stage
of development - from i n i t i a l concept tO system
integration . The arc h i tectura l verification con
firmed the XMI arc h i tecture and arbi tration
a lgori thms . Performance verificat ion helped
define the processor and memory arc h itectures
and ensured that t hese arc h itectures cou ld take
fu l l advantage of the new XMI The logic of a l l
XMI modu les , their gate arrays, and t he XMI arb i
tration logic was verified aga i nst t he ir spec i
ficat ions, nor aga i nst t h e designs t hemselves .
Lastly. the ent ire VAX 6 2 0 0 system was s imulated
in a mult i processi ng environme n t . proving that
the d ifferent component modu l es cou l d function
together as a system . Verificat ion from system
arc h i tecture ro gate arrays , modu les , and then

'5 '5

CVAX-based
Systems

The Role of Computer-aided Engineering in the Design of the VAX 6200 System

back to a complete system aga in , throughout the
l i fe of t he project was the only way to assure the
main verification goal - first-pass , functional
hardware .

During logic verification , attempts were made
tO perform ver ification using the smal lest detai I ,

while sti l l keep ing the scope of the l ogic under
test large enough ro a ! Jow system-level test ing.
By performi ng a l l testi ng a t these much h igher
levels , a greater n umber of functions and more
global functions can be tested at one t i me . The
only drawback tO test i ng at t h is l evel is s i mu la
t ion speed . The trade-off of speed for accuracy is
a good one , for wi thout accuracy the costly a lter
native is tO design and manufacture mul t iple
passes of hardware .

I n conclusion . the most i m portant outcome of
our verification effort was a management philoso
phy that , i n rhe end , verification is as i mportant as
logic design . Wi th th is u nderstanding, verifica
t ion cri teria now determine when a nd whether

5 6

designs are t O b e re leased for manufacture . To
make th is work successfu l ly, the necessary
resources must be a l located for t he verification
effort . Furthermore , project teams must develop
and fol low through with complete verification
strategies. These strategies focus on ver i fication
as a part of the rota! design process rather than as
a process that takes place after designs are com
plete. The VAX 6200 project was proof that th is
phi losophy can be made to work.

References

I . B . All ison , "An Overview of the VAX 6 200
Fam i ly of Systems," Digital Technical

journal (August 1 988, th is issue) : 1 0- 1 8 .

2 . T. Fox , P. Gronowski , A. Ja i n , B. Leary, and
D . M i ner, "The CVAX 78034 Chip , a 3 2 -bit
Second-generation VAX Microprocessor ,"
Digital Technical journal (August 1 988,
th is i ssue) : 9 5 - 1 08

Digital Technical Journal
No. 7 A ugust 1988

Rodney N. Gamache I Kathleen D. Morse

VMS Symmetric Multiprocessing

The symmetric multiprocessing features of VMS version 5. 0 effectively

utilize the greater computing power of Digital's multiple CPU systems.

Key to the SMP design is an innovative mechanism, called a spinlock, that

provides a high degree of parallelism for kernel-mode code. Where for

merly VMS software used interrupt priority levels (JPLs) to synchronize
processes, VMS now uses spinlocks. Because each VMS resource can be

protected by a spinlock, this design provides more synchronization

levels than could IPLs alone. Spinlock granularity directly affects system

perfomrance.

This paper describes the major fea tures of sym
metrical mul t iprocessing (SMP) i n the VA.XjVMS
operat ing syste m . These enhancements are
i ncluded i n VA.XjVMS version '5 . 0 . Al though i t is
impossib le to present deta i l s of every aspect of
t he SMP design in these few pages, th is paper
provides an overview of the key mechanisms
deve loped for VMS SMP.

Technology Developments
Over the last severa l ycars advances i n computer
technology . espec ia l ly in VLS I . have yielded
greater computing power in i ncreas ingly sma l ler
packages. Vl.Sl CPU chips have made possible
mu l t i -CPU. s ingle -board com puters . These multi
p le CPU systems arc having an increasing i mpact
on the genera l -purpose computing envi ronment .
The net result is that recent technology trends
have red irected the chal lenge of bui ld ing mul t i
processing sys[(:ms from the hardware engi neers
to the systems software engi neers . Systems soft
warc engineers must now design effective ways to
ut i l i ze systems with s ix , e ight . or even more
CPUs .

VAX Hardware Features Required by

the VMS Operating System
The VMS SMP design req u i res that certa in fu n
damental features be imple mented i n VAX mul t i
processing hardware . These feawres are as
fol lows:

• The abil ity w share common memory among
a l l CPUs in the system

This shared memory a l l ows a l l CPUs to execute
a single copy of the operat ing system and to

Digital Technical]ounwl
No. � A IIJ!.IISI I 'JRH

share state information that provides load ba l
anc i ng capabi l i t ies .

• An i nr erprocessor i nterru pt capabi l i ty that
enables one CPU to in terrupt all other CPUs or
a single CPU

• The set of i n terlocked instruct ions (BBSSI .
BBCCJ , ADAWI . lNSQ x i . and REMQxl) . which
are part of the VAX arch i tecture and t hus
prese nt in every VAX system

• Cache coherency maimai ned by t he hardware .
wi thout software ass istance

• One CPU, known as the pri mary CPU. that
must have access ro a l l ljO. console sub
system. and t i mekeeping hardware

With these hardware features. VMS can provide
sym metric mu ltiprocess ing su pport for any VAX
syste m . Al l code execu t ing i n user, supervisor. or
execut ive mode can execute on any CPU without
restriction . Most (i f not a l l) kerne l - mode code
can execu te on any CPU wi thout rest rict ion . The
only restricted code is that sma l l amount of
kerne l- mode code that req u i res access to the
t ime-of-day i nternal processor register or to the
console termina l and the console block storage
device .

The SMP design has no requ irement regarding
the system topology or i nterconnect joi ning t he
mu l t ip le processors. It su pports systems i mple
mented by means of a single bus archi tectu re .
such as the VAX BI bus. as eas i l y as systems that
use a cross-bar connect ion .

Therefore . the VMS SM P design is flex ible
enough tO support cu rrent VA,'{ systems and

5 7

VMS Symmetric Multiprocessing

VAX
6200
CPU

l
XMI

I
iD iD
X MAIN X
� <(

M E MORY >

KEY

X M I - SYSTEM-TO-MEMORY INTERCONNECT

VAXBI - BAC KPLANE IN TERCONN ECT (FOR 1 /0)

VAX
6200
CPU

I

Figure 1 VAX 6200 System Block D iagram

futur e VAX systems that take advantage of advanc
i ng technologies and arch i tectures .

New Multiprocessing Hardware

The design of recent VAX systems. such as the
VAX 8800 and the VAX 6200 series of computers .
offers a n e legantly si mple , symmetric hardware
configurat ion . Centra l tO the des ign of these sys
tems are two new bus archi tectures - the X M I
bus and the VAX B I bus (Figure I) . The VAXBI
archi tecture provides a protOcol that a l l ows (1)
mult iple processors to issue device re(j uests, and
(2) operating system software tO spec i fy which
processors a device controller w i l l i nterrupt .

The symmetry of these ljO subsystems pre
sented a new chal lenge to the VMS SMP design
ers : tO provide an IjO database design that wou ld
make poss ib le s imul taneous execution of i n ter
rupt handlers , thus taking advantage of these new
hardware features .

The Development of VMS SMP
Cri t ical to SMP was a new method , used through
out the VMS kernel , to synchron ize mu lt i ple pro
cessors. One possible SMP design wou ld have
been to create a s ingle lock for kerne l- mode
operations and a l low any processor to acqu i re
that lock . However , the VMS engineers bel ieved
that such a design woul d not h ave provided
sufficient para l l e l ism to achieve good system
throughput for systems with more than a few pro
cessors . This s ingle- loc k method wou ld have

58

been a nonscalable sol ution ; if more CPUs were
added to the system , system performa nce wou ld
not increase d u e tO blocking for the single Jock.

A more ambitious yet cost ly design was to
provide a h igh degn:e of para l l el ism for kerne l
mode code. With th i s kind of para l le l i sm, many
processors are a l lowed to execute different
portions of the executive a t the same t ime . For
example . a process adding a system-wide logical
name shou ld be able ro execute on one CPU
whi le anot her CPU hand les a device interrupt for
comp letion of a disk 1/0 req uest, etc . This design
woul d req u i re creation of numerous locks and
careful design of the interact ions between
the crit ical regions that use those locks . Thi s
design approach was the one fi n a l l y chosen by
the VMS engi neers. and is discussed in the fol low
ing sections.

Synchronization in VMS:

Raising IPL, Mutexes, and Spinlocks

'T'he original VMS vers ion I 0 design used two
types of sync hroni zation : (I) ra is ing in terru pt
priority l eve l (I PL) and (2) mutua l exclusion
semaphores (mu texes) . The VAX arch i tecture
provides .) l I PLs; I through 1 5 are ded icated
for usc by sohware, and I G through 3 I are
reserved for hardware . (I PL 0 is not rea l ly an
l PL but ra ther the leve l at which user. su pervisor ,
and execut ive mode progra ms exec ute .) VMS
blocked d ifferent types of system events by
raising IPL tO or above the leve l at which
that event occu rred . For exa mple , process
resc hedu l i ng was done by means of an I PL 3
software i nterru pt . Code th reads that mod ified a
process 's context a lways executed at IPL 3 (or
h igher) to prevent a resched u l e . Anot her exa m
ple is the manipulat ion of device contro l ler reg is
ters . These registers were al ways manipulated at
the device 's hardware i n terrupt level ; thus other
system activ i ty of a lesser importance was
blocked out whi le the t i me-crit ical code path
was executed .

The second synch ronization met hod , mutexes,
was used to lock purely software constructs, such
as g loba l section descriptOrs . Mu texes provided a
mec hanism for defining many locks wi thout
assign ing a un ique software I PL to each lock. A
murex was acquired by the operat ing system on
beha l f of a process and was considered "owned"
by that process. Resched u l ing cou ld occur whi le
a process "owned " a mutex; however, process
de l etion cou ld not occur . Lock requests made by

Digital Technical journal
No. 7 A ugust 1 ')88

a p rocess of h i gher priority for an a l ready owned

mutcx were handled by placing the request ing

process i n to a wa i t state , t hus avoiding dead
l ocks .

In a m u l t i process i n g system , eac h VAX CPU

has i rs own i n terrupt priori ty l eve l . i ndependent

of the ot hers . Thus ra is ing TPL wou l d synchron i ze
on a s i ngle C PU bur nor across t he e n t i re system .

I P b , r he n , cou ld not be used tO sync h roni ze a l l

CPLJ s . Neither were mu rexes a viable sol u t ion .

s i nce rhey cou l d o n l y be used w i t h i n process

comcxr and ar low ! Pls Therefore . the SMP ream
created a new VMS mec han ism that they te rmed a

" s p i n l ock . " Anywhere VMS code had previously

sync hron i zed by ra is ing I PL , the code wou ld now

acq u i re a s p i n loc k ; wherever VMS code had l ow

ered ! PL. i r wou l d now re lease a s p i n l oc k . Use of

mutexes re mained uncha nged save that t he code

to acq u i re and rckase mutexes was protected by

a s p i n l ock

The design for spin locks i nc l ude d a n u m ber of

cr i tica l concepts. F i rst. a spin lock i s "owned" by

a CPU . nor by a process (as murexes a re) . Second ,

each s p i n lock is acq u i red and released a t a par

ticu lar l P L that is associ ated with the sp i n l oc k .

Ra i s i n g I PL w h e n a s p i n lock is acq u i red prevents

orhn act i v i t ies from i nterru p t i n g t ime-crit ical

code . Th i rd . C PLJs " s p i n- wa i t " wh<.:n blocked

from obta i n ing a s p i n lock resource held by

another CPU, s i nce s p i n locks a rc on l y assigned ro
r i me -crit ical resources that can not be locked for

long periods of t i m e . Lastly. t he design of spin

locks i n c l u des a mecha n i s m for deadlock preven

t ion or detection s i nce the debugging of " h ung"

systems is roo cost l y . l'herefore, each s p i n lock

is ass i gned a ra n k . Because s p i n l ocks must be

acq u i red in order of ra n k . dea d l oc ks are thus pre

vented . Further. a debugg i n g aid was bui l t i n to

the s p i n lock design . A parr of each s p i n loc k data

struct u re is set aside tO hold the l ast e i g h t pro

gram coun ters (PCs) that acq u i red or released
each s p i n l oc k . When enabled . th<.:se consistency

checks proved inva l uable i n determ i n i n g i n terac

t ions between d i fferent compone n ts in t he VMS

execut ive , such as me mory man agement and

sched u l i n g .
The V M S engineers i m p lemented rou t i nes for

ac q u i rin g and re leasi ng s p i n locks rather t ha n

scatter i n - l i ne code t h rough t he V M S kerne l . The

fi rst step in acq u i ri n g a s p i n lock is tO synchron i ze

th<.: local processor by rai s i n g to the I P L of the

s p i n l ock, j ust as i f i t were a u n i p rocessor system .

The actual locki n g of a s p i n lock is accompl ished

Digital TecbtJical]om-.wl
No . -, August 1 ')88

w i t h an i nterlocked rest-and-set me mory opera

t io n . the 13BSSI (Branch on B i t Set and S<.:t I nter

locked) i nstruct ion . The s p i n l ock i n terlock b i t is

conta i ned in a separate byte wit h i n t he s p i n lock

structure. Unlocking a s p i n lock is done with t he

i nverse BBCCI (Branc h on B i t C lear and C l ear

I nt e rlocke d) i nstruction . These i nter locked oper

ations arc aromic memory t ransact ions across a l l

processors i n a VAX m u l t i processor con figu ra

t ion . Furt hermore , s i nce me mory is common to

a l l processors, the i n t e r l oc ked me mory rest-and

set operat ions provide a sufficient method of

e xtend i n g sync hroni zat ion to a l l processors

wit h i n a mu l t i processor syst e m .

The usc of m u l t i p l e I P L'i as a synch ron ization

met hod in VMS provides t he capa bi l i t y ro sched

ule events in a prior i t i zed fashion . The i nc l us ion

of I PLs i n the sp i n l ock srn.t cture a l lows the SMP

synch ron i zat ion mecha n i sm to appear as an

added d i mension to I Pb . Moreove r, t h is SMP

me chan ism preserves the abi I ity ro sched u l e

events i n a prior i t i zed manner.

For u n i p rocessor syst ems, the S M P d<.:sign also

i nc l udes t h e abi l i ty to opti m i ze the rou t i nes that

acq u i re a nd re lease sp i n locks . For exam p l e , on a

single CPU syste m . the spin lock acq u i re-and

rel ease rou t i nes a re never ca l led . I nstead , on l y a

move - to - processor registe r (MTPR) i n st ruct ion i s

executed . rhus r a i s i n g I P L Syste m performance

of a sin g l e C PU has been measu red as on ly a t i ny

percen tage l ess t han VMS version 4 performance .

M u tex synchron i zat ion is s t i l l the second syn

chron i zat ion method used i n V M S . I n the S M P

des i gn . mu rexes a r e used for locks t hat a r c hel d

for lon g periods o f t i me a n d for s i tuat ions i n

which the I PL has t o b e lowere d . Mutexes a re s t i l l

owned by processes . not by C PLJs . u nder t he S M P
des i g n .

Spinlock Gran ularity, Devicelocks

O ne aspect of the S M P design that d i rectly affects
system performance is the granu lar i ty of t he s p i n

l ocks. A coarse gran u la r i ty (fewer s p i n l ocks) is

easy ro i m p lement and debug; however . a coarse

gran u la r i t y provides fewer sync h ron i zation

poi n ts , and thus processors are blocked for

longer periods . A finer granu larity (more spin

locks) provides more para l l el ism and t hus

shorter block i ng t imes; howeve r . a ti ne gra n u lar

i t y is much more com p l icated to design and

i m p l ement , and req u i res more sync hron ization

points . An i m portant concept to reme mber is

that . wh i l e t he syste m is i n a nonconrend i n g

59

CVAX-based
Systems

VMS Symmetric Multiprocessing

si tuation , a synchroni zation poin t only adds un
necessary overhead . That i s , i f there i s never any
possibi l i ty of processors contending for the same
resource . then synchronizat ion i s not requ i red .
Therefore , the SMP team decided that a manage
able number of spi nlocks for the i ni tia l design
was no more than 3 2 . The SMP design provides
designers the abi l i ty to create a fi ner granular i ty
of locks in future releases of VMS as performance
measurements identify t ime-crit ica l resources .

As the SMP deve lopment evolved, i t became
c lear that a finer granu larity of spin locks for
the ljO subsystem woul d be easy to i mplement .
With mult iple VA.XB I buses, mult ip le CPUs cou l d
handl e d ifferent device i n terrupts s imu l ta
neously. This further i mproved the para l l el ism of
t he system and resu l ted i n a new c haracterist ic
for spinlocks: dynamic versus static spi nloc ks . A
stat ic sp inlock protects t hose resources common
to a l l VA.XjVMS systems. Therefore , static spin
locks are assembled i nto the VMS source code .
Dynamic sp in locks synchronize device-spec ific
code and so are created at boot t i me , dependi ng
u pan the r;o configuration of the part icular
VAX system . Thus the number of dynamic spi n
locks varies from system to system , whereas the
number of static spin locks is consistent across
a l l systems. The dynamic spin locks used to l ock
particul a r devices were named "device l ocks" to
d ifferent iate them from static spin locks . A
device loc k is used wherever device-specific code
previously ra ised I PL to a device's I PL to block
i nterrupts.

Identifying Resources Requiring
Spinlocks
One of the first SMP development tasks was to
ident ify each VMS resource that needed syn
chroni zation and then determine the proper lock
i ng mechanism - spinlock, mutex , i nterlocked
queue, etc. Once this work was complete , the
added d imension provided by spin locks a l lowed
mult iple resources to be protected by a s i ng le
I PL . For exam pie , I PL 8 (SYNCH) had protected
the fol low i ng resources: memory m anagement ,
schedul ing, the I/0 database , the file system, and
t he t i mer queue. By adding a new d i mens ion ,
namely sp in locks, each of these resources cou ld
be protected by a d ifferent spin lock but share the
same I PL . Therefore, i n a mul t iprocessor configu
ration , i t was now possible to run more than one
processor at the same I PL . However , t he proces
sors must be execut ing different critical regions

60

of code . The spin lock design , therefore , has the
advantage of provid ing more synchronization l ev
e ls than could be provided by I PLs a lone . Hence,
the granu lar i ty of spin locks can be much finer
than that a l lowed by software IPLs a lone . This
finer granular i ty i n turn provides more concur
rency of execut ion in the VMS kernel .

For example , I PL SYNCH had protected a l arge
number of resources and thus wou l d be a good
candidate for a finer granulari ty of spin locks .
Where VMS code had previously raised I PL to
SYNCH . t he SMP team had to determine which
spin loc ks had to be acquired and t hen perform
the conversion .

I n summary , IPL SYNCH became the fol lowing
spin locks :

F ILSYS F i le system structures (such as
fi le contro l b locks)

IOLOCK8 Fork . I PL 8 (map registers, data
paths and System Communication
Services resources)

TIMER Timer queue

MMG

J IB

SCH E D

Memory management , page de
script ion database , swapper, and
mod i fied page wri ter

Portions of t he job information
block

Process control b locks, schedu l
i ng database, acquisit ion/release
of mutexes

Per- CPU Con text A reas and
Interrupt Stacks
Another development task was to ident ify t he
context that had to be m a i n ta ined for each pro
cessor - i ndependent of the genera l system
structures. This " per-CPU" context area had to
include such i tems as ident ification of t he current
process, a un ique CPU identification fie ld , and
CPU-specific work queues. In addi t ion , design
requ i rements specified that a processor be able
to l ocate i ts private CPU context area with min i
mal overhead .

The easiest solut ion woul d have been to
include an i n ternal processor register (IPR) in to
which software could load the v i rtual address of
the context area . Since I PRs are part of t he pro
cessor hardware , eac h CPU cou l d have poin ted to
i ts own context area without confusion . How
ever, such a processor register did not exist i n the

Digital Tecb11ical jour11al
No. 7 A ugust 1988

VAX arch itecture . Therefore another sol u t ion was
needed in order for SMP ro execute on existing
VAX systems.

A creat ive alternative ro inventing a new I PR
was to find a met hod 10 use an existi ng I PR
for mult iple purposes . The VAX archi tecture
inc l udes an in terrupt stack pointer (ISP) which
software loads with the virrual address of the
in terrupt stac k . S ince each processor must have
its own stack for hand l ing i nt errupts, th is area
was a l ready CPU-speci fi c . Under the SMP design,
the interrupt stack area and the CPU context area
are treated as one virtua l ly contiguous context
block . When the virtual address of th is new con
text area is rounded to an appropriate power of
rwo, a si mple clearing of the low order bi ts of the
virtual address of the ISP yie lds the base address
of the private CPU context area .

This sol ut ion provided two s imi lar ways to find
rhe private CPU context area :

MFPR # PR 5_\SP, Rx
BICL -" mask . Rx

or

B ICL5 ... mask .SP ,R;x (when runn ing on the
interrupt stack)

Both met hods return the virtua l address of the
private CPU conrexr area . However. the latter
case provides the faster mechan ism .

Translation Buffer Invalidation -

A Form of Cache Coherency
As was already memioned . the VMS SMP design
requ ired that cache coherency be mainta ined in
the hardware . However, rhe VAX archi tecture
includes one hardware cache that is maint a i ned
by software . the translat ion buffer. The transla
t ion buffer caches page table entries (PTEs) ro
speed up address translation from v i rtual to phys
ica l memory addresses .

Software moni toring of the translation buffer i s
appropriate for two reasons . S ince page tab le
pages arc on ly "virtua l ly cont iguous" and not
" physical l y cont iguous" portions of VAX main
memory, mon i toring changes to the PTEs would
be d i fficu l t for hardware . Also . s ince modification
of page table contents is usua l ly an infrequent
event . th is cache is more su i tably mai ntained by
the software .

Therefore , as parr of i ts mon i toring function ,
the operat ing system software must not i fy the
processor whenever i t changes the contents of a

Digital Technical journal
i\'o. � A ugust J 'J8R

PTE . i n case the PTE is cached in the translat ion
buffer. This not i fication is ca l led a translat ion
buffer inval idat ion request and is accompl ished
by a write to an I PR S ince PTEs can be cached on
any processor i n a mul t iprocessor system , one
possible implementat ion wou ld be for all CPUs
to perform a translat ion buffer invalidat ion
request when any PTE is changed . S ince transla
t ion buffer inva l idat ion must be carefu l ly coord i
nated among a l l CPUs, however, th i s si mple
approach would have s ign i ficantly affected sys
tem performance if left unmodified .

Two other features of VAXjVMS memory man
agement p lay sign ificant roles in the design for
translation buffer inval idat ion i n the SMP envi
ronmenr . F irst , a user-process address space can
nor be execut ing on mul t ip le processors s imu lta
neously. Second , the cached user-process PTEs
are i nval idated when a LDPCTX (load process
context) i nstruction is executed as part of pro
cess reschedu l ing .

Us ing these features , engineers opt i mized the
design to req u i re system-wide t ranslation buffer
i nval idation only for system address space and
not for user address space . S i nce system addresses
change less freq uently than user space addresses ,
th is new design a l lowed for a major reduct ion in
the i nterprocessor communication traffic .

Process Affinity
Certain operat ions in a mult i processor system
must execute on part icular CPT..Js . The VMS SMP
designers termed the bind i ng of a process to a
part icu lar CPU as " process affin i ty . " Affin i ty for a
process is imp lemented by means of a 5 2 -bit
mask (one bit per CPU) in the process control
block (PCB) . Once a process is assigned affi n ity.
t he process may only execute on CPUs for which
i t has affin i ty . Process affi n i ty is enforced by the
VMS scheduler during a reschedu le event . (Note
that only for rea l - r ime priority processes does
VMS SMP guarantee to run the N-h ighest priori ty
processes on an N-processor system .)

The VMS SMP design currently implements two
l evels of process affi n i ty: hard affin i ty and capa
b i l it ies. Hard affin i ty forces selection of a single
CPU in the affini ty mask . This leve l of affin i ty is
used when a process must be guaranteed execu
t ion on a part icu lar CPU . which is spec i fied
by the CPU ident i fi cat ion field in the PCB .
Specifica l ly . hard affi n i ty i s used ro implement
CPU d iagnostics and to halt a CPU. When hard
affin i ty is being enforced . the process a ffin i ty

6 1

CVAX-based
Systems

VMS S) •nunetric Multiprocessing

mask is reduced to a s ingle b i t . which represents
the one C PU on which the process may execute.
The select ion of hard affin i ty is a very stat ic opera
t ion The selection of which CPU to run on is
determi ned prior ro schedu l ing the process . ancl
the sel ect ion remai ns enforced u nt i l. otherwise
req uestecl

Capabi l i t ies prov ide a logical mapping of pro
cesses to serv ices . These services may only be
ava i l able on certa in C PUs i n the SMP envi ron
ment ; for example , primariness is a logical capa
b i l i ty A capabi l i ty may be serviced by one or
more CPUs in the SMP envi ronment . For exam
p le . pri mariness i s a capabi l i ty that is on ly
offered by at most one CPU in the SMP envi ron
ment .

When a process requ ires capabi l i t ies . the pro
cess indicates t h e desi red capabi lit ies i n a _<, 2 -b i t
mask in the PCB . W hen the process i s scheduled.
a compari son i s made of the current requested
capabi l i t ies and the capab i l i t ies offered by the
CPU be ing resc hedu led . I f the CPU has rhc
req u i red capabi l i t ies. t hen t he process is exe
cuted : otherwise. t he process is ignored a nd
another process is c hosen for execut ion . Any
active CPU offering a part icular capabi l i ty may
service any process req u i ring that capabi l i ty
Once th<: capabi l i ty is no longer requ i red by a
process. the capabi l ity b i t i n the PCB is c lean�d
and the proc<:ss can c:xecute on any CPU in the
mu lt i processi ng system . Thus, capabi l i t ies offer a
much more dynam ic load - leve l i ng of processes
across the CPUs in the system t han does hard
affin i ty .

Device Ajjini�y
The VMS SMP design req u i res that t he pri marY
CPU have access to all l/0 devices on the system
Due to hardware asymmetry for certa i n devices in
som<: exist ing mu l t i process i ng systems. t he VMS
SMP desi gn a l so had to i nc lude prov isions for
device affin i ty . for example. usua l ly both devic<:s
in the console subsystem - the console term ina l
and t he console block storage device - can on ly
be accessed by the primary C PU . This is espe
c ia l ly evident on 8300 systems, where a physica l
backplane cable connection from one of the
VA.,'\131 slots (usua l ly s lot 2, which conta i ns the
pri mary CPU) l i m i ts access tO the conso le sub
system to the pri mary CPU.

Device affi n i ty models t he hardware asym metry
by a l lowi ng only a subset of the processors 10
access these 1/0 devices . Only the port ions of

6 2

VMS software that access the hardware itse l f
(such as device driver rout ines tha t a l ter control
and status registers) must execute on one of the
C :PUs in the device affini ty set for that device . For
exampl e . most of the i n i t i a l process ing of a SQIO
request can execute on any CPU The dr iver code
actual ly starts the 1/0 transfer by control l i ng the
device by means of t he control and status regis
ters . Only th is port ion of the dr iver code must
execute on a member of t hat device 's a ffi n i ty set .

Under the SMP design , a l l forki ng and postpro
cess ing occur on the same C PU that rece ived
the dev ice i n terrupt . The device a ffi n i ty imple
mentat ion uses a " tr ickle down " method t hat
req u i res no a ffi n i ty c hecks for any of the queues
Instea d . fork t hreads are queued to r.he appropri
a t e CPU i n t h e fi rst place. The S M P i mplementa
t ion queues t he fork threads by repl icat i ng the
1/0 postprocess ing queue and t he fork queues
for each CPU i n the per-CPU context area . Thus
each CPU can process i ts own fork and 1/0 post
process ing queue wi t hout acq u i ri ng t he various
spin locks that wou ld be req u i red for system -wide
queues. Further. u nder th is des ign , t he set of
c rus tO which a particular device i s bound under
device affinity i s a proper subset of t he C PUs t hat
can service i n terru pts for that device .

The a ffi n i ty field for a device is stored as a b i t
mask in t h e u n i t control block (i n t h e field
l JCI3 H_ AFFINilY) . This bit mask represents
t hose C PUs that are a l lowed tO access t he
spec i fied device . The defa u l t va lue for
UCB S L_ AFFIN ITY is - I , a l lowing access from
any CPU tO the device . As a l ready mentione d ,
the console su bsystem devices are access ible
on ly from the primary CPU; t herefore . the
l JC13 S L_ AffiNITY mask for these devices i s i n i
t ia l i zed r o t he pr imary C P U on ly .

'l'he affin i ty fie ld for a device i s checked on
cnrry to only two of the seven dr iver entry poi nts :

• S'lARTI O

• ACT _STARTIO

J f t h<.: affin i ty check fa i ls , t he 1/0 request packet
(lR P) i s queued as a fork block tO another CPU
from which access is a l lowed . The fork block in
the C DRP portion of the I RP i s used to fork t he
request to a nother CPU. The fork block is queued
to a work request queue in t he selected CPU's
per-C PU context area . An i nterprocessor i nter
rupt i s then del ivered to not ify the CPU that work
is now present in i ts work request queue .

Digital Technical jout"nal
No. 7 A ugusl 1 988

Al l o ther entry points i nro device d rivers are
serv iced by rhe primary C P U , which musr be
guaranrcecl access ro a l l devices . These enrry
poi nts arc norma l ly cal led on l y dur ing device i n i
t i a l i zat ion a n d inc l u de the fol lowing cn rry
po in ts :

• TIM EOUT

• U N I T ! N IT

• CONTROLLER ! N IT

• CLON E D UCI3

• U N I T D E L I V E RY

Process affin i ty is used ro provide the device
affin i ty req u i rements for the S CANCEL system
service . When the S CANCEL req uest is serv iced ,
the UCfl S L _ AF F I N ITY fie ld may nor a l low access
from the CPU on which the request was i n i t iated .
I f access is nor a l lowed . then the process affin i ty

is changed to force rhe process to execute on a
CPU com patible wi th the affi n ity req u i re ments of
the device.

Some VMS rout i nes are a lways called when
1/0 completes on r he same processor rhar ser
viced t he device and fork level i n terru pt d is
patch ing . Therefore , device affin i ty is i mp lic i t for
these rout ines . and no affini ty checks are made
prior to ca l l ing t he rou t ines REGISTER DUMP

and MOUNT V E R I F ICAT I O N .

Future Investigations
The i n i t i al VMS SMP design is fin ished , bur many
i n terest i ng areas i nv i te fu rther i nvest igation .
These inc lucie

• Performance i m provements, perhaps finer

granu lar ity spi n locks

• Enhancements for para l le l processing

• Provis ions for h igher ava i la b i l i ty

The key to the VMS S M P design is the new syn
chron i zat ion pri m i t ives, that is. spi nlocks . The
flexi b i l i ty of the spi n lock design wi l l be i m por
tant in future enhancements to S M P, as a l ready
proven in rhe evolut ion from sta t ic to dvnamic
sp in locks.

G ranu la ri ty is another i mporranr anri bure of
spi n l ocks. which arc synchron i zat ion poi n ts . Al l
sync hron izat ion points must be factored i n ro rhe
design of any m u l t iprocessor syste m . Each spin
l ock represen ts ar most a s i ngle thread of execu-

Digital Technical journal
No. 7 A up,ust I 'JHH

t ion . Therefore , each sect ion of code protected
by a spin lock can be executed by on l y one pro
cessor at a r ime . If rwo processors attempt to
access t he same section of code (termed a cr i t ica l
region) . then on ly one processor wi l l proceed
whi le rhe ot her(s) sp in -wa its . To restate
Amda h l 's Law : You can not get more than one
CPU 's worth of work out of any synchron i zation
poi n t .

The abi l i ty t o increase t he number o f s p i n locks
shou l d prove i nva l uable i n fut u re enhancements

to S M P. as performance measurements i nd icate
which spin locks need tO c ha nge the ir granu larity.

CVAX-based
Systems

Bhagyam Moses I
Karen DeGregory

Performance Evaluation of the
VAX 6200 Systems

Performance evaluation is an essential element in the development of a

computer system. An effort was made to accurately evaluate the perfor

mance of the VAX 6200 system under workloads that represent real

customer environments. Workloads were developed to represent three

major target markets - Engineering/Scientific, Commercial, and Gen

eral Timesharing. These workloads were used to drive the VAX 6200 sys

tems and thus to evaluate system performance in these environments.

Performance measurement results indicate that the VAX 6200 system is a

well-balanced multiprocessor system and that the multiprocessor perfor

mance is fairly linear across these workloads.

Introduction
The VAX 6 2 4 0 system is a r ightly cou pled mul t i
processor syst<:m based on the CVAX micro
processor. Th<: system cons ists of fou r processors
sharing memory through a s ingle. h igh-speed
bus. This paper descri bes the process by which
performance of t he VAX 6240 system was eval u
ated under various workloads that represent
target markers . The method used to develop and
verify these workloads is d isc ussed al ong with
t he evaluat ion of system performance . We use
the mul t iprocessor effic iency measure . defi ned
as the re lat ive throughput obta ined by the add i
tion o f each processor, to characteri ze mu lt i
processor performance . Measurement of the
VAX 6 2 4 0 system ind icates that the multi proces
sor ethc iency measu re is d i rectly dependent on
the content ion for shared resources generated by
a work load .

Workload Development
One of the major issues in evaluat ing the perfor
mance of a compurer system has been in the
work load area . In the cont ext of th is paper.
workloads arc software roots used to create i n ter
actiw mul t i user envi ronments i n which the
im eract ivc t hroughput and responsiveness of the
system are tht' key performance metrics . Con
versely. benchma rks are ei ther si ngle or mu lt ip le
copies of progra ms run in batch mode; the
amount of t i me to comple te execution of these
progra ms is the performance metric . The ques-

64

tion cont inual ly debated is how we l l the benc h
marks and workloads represent cu rrent user envi
ronments. S ince there are many d i fferent k i nds of
computing environ ments and both the applica
tions and computing styles are continua l ly chang·
i ng. it is very d i fficul t to develop representative
workloads accurately. The approach taken here
was tO first survey the current customer popu la·
t ion and ident i fy a few major target markets .
Table 1 consi sts of t hree su rveys ohtai ned from
d i fferent sources , wi th n being the sample s ize.

Table 1 Survey of Customer Environments

Environment Survey 1 Survey 2
n = 1 1 0 n = 200

Engi neering/ 46% 50%
Scientif ic

Com mercial 40% 23%

Education 8% 1 5%

Software 6% 1 2%
Development

M iscel laneous

Ta ble 2 Distribution of Customer

Environments

Eng1neer ingjScientif ic

Commercial

General Timesharing

Survey 3
n = 55K

3 1 %

35%

8%

4%

1 1 %

40%

40%

20%

Digital Technical journal
No. 7 A ugust 1988

PROCESSOR 1 PROCESSOR 2 PROCESSOR 3 PROCESSOR 4

B B B B
STREAMS R U N N I NG S I M U LTANEOUSLY ON THE PROC ESSORS

TH ROUGHPUT = N UMBER OF JOBS COMPLETED WITH M U LTIPLE PROCESSORS

AS COMPARED TO ONE

Figure 1 Execu tion of Multiple Programs Ru n in Parallel

Clearly, Engineering/Scient ific and Commer
c ia l environments dominate the market , with
Ed ucat ion . Software Deve lopment , and General
Timesharing app l icat ions accounting for the rest .
Further examinat ion of the Sofrware Deve lop
ment and the Educat ion environments showed
much s i m i larity i n function, except that Software
Development is sl ightly more compute i ntensive .
Thus we fu rther s impl i fied the app l ica t ion cate
gories. as shown in Table 2 .

We ident i fied typ ical environments i n each of
these categories by eval uat ing system resource
consu mpt ion in these envi ronments rather than
by eval uating what an end user does on the sys
tem . Thus we cou ld s impl i fy the nu mber of
parameters ro CPU, memory. and 1/0 resource
ut i l i zat ions . Having ident ified these typical envi
ron ments, we col lected or developed bench
marks and workloads ro represent t he m .

Single Stream

Acq uiring s ingle stream bench marks was nor as
d ifficu l t as developing mu l t i user workloads. Most
of Digita l 's cusromers have benchmarks that
represent their envi ron ments . Therefore, we
acq u i red a col lect ion of benchmarks to represent
Enginccri ngjSc ient ific . Commerc i a l . and General
T i mesharing from various custOmer s i res. These
benchmarks arc used ro eva luate the s i ngle
processor speed .

Multistream Batch jobs

A strea m of wel l -known benchmarks was se lected
that represented each of the above- ment ioned
Engineeri ng/Sc ientific , Com merc ia l , and General
Timeshari ng markers.

• The engineering stream cons ists of typical
programs used in e lectrical c ircu i t s imu lation ,

Digital Technical journal
No. 7 A ugust I 'J88

oil reservoir s imulat ion , fl ight s imulation . and
l i near equation solvers.

• The sc ient ific stream conta ins s i mu lat ion
programs that use Monte Carlo techniq ues
to track part ic le movement, along with
com monly used rout ines from nat ional labora
tories.

• The commerc ial stream contains the activit ies
done by a personnel department ro support
salary planning

• The general ti mesharing stream represents the
activ i t ies done in a software deve lopment or
education environ men t .

Mu l t ip le copies of t h i s stream were run s imul ta
neously to take advantage of mult i processor com
pure resources (F igure 1) . To capture the maxi
mum throughput , we ensured that a l l of the
processors were 1 00 percent busy whi le the mul
t ip le streams were ru nning on the system .

Multiuser Workload Development
The overa l l process of workload development is
shown in Figure 2 . Our goa l was to represent typ
ica l t imesharing environments for the d i fferenr
ta rget markets . The ent ire strategy consisted of

• Ident ifying typical real s i tes

• Col lect ing data on resource u t i l i zat ion and
i mage usage patterns

• Deriving a packaged workload ro represent the
rea l s i te environ ment

• Va lida t ing the workl oads by comparing the
resource u t i l i zat ion of the workload aga inst
the resource u t i l i zation at various cusromer
s i res and modifyi ng the workloads as req u i red

65

CVAX-based
Systems

------ Performance Evaluation of the VAX 6200 .�)'stems

R EAL
SYSTEM

R ESOU R C E UTIL I ZATION
DATA

l
R ESOURCE UTIL I ZATION
DATA

-TER M I NAL ACTIVITY
-USER CHARACTER ISTICS
-USER M I X

1
-VAXRTE SCRI PTS
- U S E R CHA RACT E R I STICS
-USER MIX

STANDALONE
SYSTEM

Figure 2 Interactive Multiuser Workload Development

In the fol lowing sections, we describe how we
used th is strategy to develop two mul t i user
work loads: the engineeri ng workload , which rep·
resents an E lectronic Computer-Aided Engineer
i ng environment (ECAE) ; and the Software Deve l
opment Environment Workload (SDEW) .

Data Collection

Two Digital si res were chosen to represen t the
ECAE and SDEW environments . I n ternal s i tes
were chosen in i t i a l ly to fac i l i tate the data col lec
t ion process. Both s i res had c lustered environ
ments that consisted of a variety of VAX systems
along with some workstations .

We col lected information on these c lustered
systems to capture thei r behavior u nder the load
generated by the environment over a period of
one week . VAX SPM software was used to col lect
resource ut i l i zation data (CPU, 1/0. and memory
uti l i zat ion) on a l l the systems at both user leve l
and system leve l . VMS I mage Account ing was
used to obtai n resource u t i l i za tion data on an
i mage basis . Using the SET HOST/LOG Digita l
Command Language (DCL) command , we col
lected log fi les of user sessions to study user
habi ts . Other user characteristics, such as th ink
t ime and type rates, were obtai ned through inter
views and observa tions .

Data A nalysis

The performance team studied the c luster-wide
resource ut i l i zation profi l es in order ro select the
t i me when the i n teractive activit ies were pre
dom i nant . We compared resource u t i l i zation
profi les of i nd ividual systems aga i nst rhe c luster-

66

w ide average over a week's accumu lat ion of data .
Based on t h is comparison , we se lected a typica l
day and a typical syste m . O ne hour was c hosen
from the typica l system on a typical day duri ng
the period of peak i nteractive use to c haracterize
t he system at fu l l load .

Further, based on the user profiles , we
c lassified users according to computer usage ,
that i s , heavy or l ight computing (for ECAE
workload) and heavy, med iu m , or l ight comput·
ing (for SDEW workload) . We then used the
i mage account ing data and user log files to c las
s i fy users according to the type of activity they
performed .

Once several user c lasses were ident ified, the
number of users in each c lass, or user m ix , was
determi ned . We defined the user m i x by looki ng
at (1) the number of users i n each c lass at the

Table 3 ECAE and SDEW User Mix

Type of User

Eng ineer: Heavy

Eng ineer: Light

Type of User

ECAE User Mix

SDEW User Mix

Heavy software development

Light software development
Secretary

Technical writer

No. of Users

3
3

No. of Users

1

3

Digital Technical journal
No. 7 A u/lust 1 988

one-hour peak , and (2) the organization struc
ture at t he rea l sites. Tab le 3 shows the user mix
for ECAE and SDEW workloads . In addit ion to
interactive users, t hese work loads a lso have batch
jobs runn i ng in the background.

Developing the Workload

Having ident ified the user c lasses and activit ies ,
we then deve l oped an imermediate workload
using DCL command procedures. This i nter
mediate step a l lowed easier translation to the
fina l workload , which was based on VAXRTE
(VAXfVMS Remote Terminal E mu lator) scripts.
I ndividual user scripts were developed and va l i
dated . We then packaged t h e ent ire workload by
i ntegrat ing a l l of the user scripts and the batch
jobs . Once development was complete, the
workload was val idated a t both system a nd user
levels aga inst the rea l i nterna l s i te . Further va l i
dation was done at the user l evel agai nst Digi ta l 's
customer si tes.

Workload Validation

This section describes the workload val idation
process using the ECAE work load as an example
of t he val idation methodology.

Val idat ion aga inst " real " i n terna l site - The
workload was tested us ing the same hardware
configuration as t he rea l system . For the ECAE
workload , a VAX- 1 1 /780 system with 3 2 mega
bytes (MB) of memory, RA8 1 disks, a nd six inter
active users was rested . The purpose of th is test
was to compare the resource u ti l i zat ion of the
workload in an hour- long experi ment to the
resource ut i l i zation of the real system during the
typical hour . System- and process- level resource
ut i l i zat ion data of severa l d ifferent resources
were compared .

User- l eve l val idat ion - To va l idate t he work
load at the user leve l , we compared the average
CPU and d i rect 1/0 (DIO) ut i l i za tions computed
for 1 hour for the d ifferent user c lasses . The
resu l ts are shown in Table 4 .

CPU u t i l iza tion for a l l three user c lasses val i
dated to with in approxi mately I 0 percent ,
which was considered tO be wel l wi th in accept
able l i m i ts . Va l idation of the 010 rare was made
somewhat d ifficu l t because (1) the 010 rare on a
per-user basis was very low (0 . 3 010 per second
for the heavy user) , a nd (2) measurement of the
010 rate is only accurate to 0 . 1 010 per second .
For a l l three user c lasses , the workload came to

Digital Technical journal
No. 7 A ug ust I YBB

Table 4 User Resource Utilization for Real

Internal System and ECAE Workload

CPU
minutes/hour DIOfsecond

User Class Real ECAE Real ECAE

Heavy 1 .6 1 .5 0.3 0.4

Light 0.5 0.5 0.2 0 . 1

Batch 42.8 48.5 0.0 0 . 1

with in 0 . 1 0 10 per second of t he va lues mea
sured from the real s i te .

System- leve l val idation - For system- level val
idation , we compared t h e system- level usage of
CPU, d isk 1/0. and memory for t he 1 -hour ECAE
test experiment to the peak hour of t he real
system . Figu re 3 shows that t he CPU was used
1 00 percent of t he t ime on the real system dur ing
the I hour ; whereas t he CPU u t i l i za tion i n the
workload tended tO vary s l ight ly more , but was
a lways between 90 percent and 1 00 percent sat
urated . The average CPU u t i l izat ions of t he real
system and the ECAE work load are very c lose at
1 00 percent and 9 3 percent , respectively .

The DJO ut i l ization over a 1 -hour period for
the rwo systems is compared i n Figure 4 . For borh
systems there is s ignificant variabi l i ty i n the 010
rare over the 1 hour period . The ECAE workload
was s l ight ly more bursty, but t he average DIO
rates for the rea l system a nd t he ECAE workload
were very c lose a t 3 . 3 and 3 . 0 010 operations per
second, respectively .

Memory u t i l ization on the two systems d id not
vary substantia l ly over the 1 -hour period . How
ever, total average memory usage wi th the
work load , 2 3 MB, was less than on the rea l sys
tem , 29MB , as depicted i n Figure 5 .

Al though the workload val idated very wel l for
CPU and 010 resource u t i l izat ion , t he workload
used 20 percent l ess memory than was used at
the real s i te . This was in parr due to the fact that
dur ing the development of the workload t he CPU
and d isk 1/0 u t i l i za t ion of subprocesses was
added tO the resource u t i l i zation of t he parent
process. Al though the workload represents the
work done by t hose subprocesses and the load
p laced on CPU and disk 1/0 resources, the
workload does not represent the addi t ional mem
ory requ i red by those subprocesses . As wi l l be
described in subsequent sections, the lower
memory u t i l i za tion of the workload d id not con
st i tute a problem.

67

CVAX-based
Systems

1 00%

90%

80%

70%

60%

50%

40%

30%

20%

1 0%

u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
U U U U U U E U U U U U
U U U U U U E U U U U U
U U U U U S E U U U U U
U U U S U S E U U U U U
U U U S U E E U U U U U
E U U E U E K U S U U U
E U S E U K K U E S U U
K U E E U K K U E E E U
K U E K U K K U K E E U
K U K K E K K U K K K U
K S K K K K K S K K K U
K S K K K K K E K K K U
K E K K K K K K K K K U
K K K K K K I K K K K U
I K K K K I I K K I K S
I K I I I I I I I I I E
I I I I I I I I I I I K
I I I I I I I I I I I I

1 0 1 4 1 0 39 1 1 04

REAL SYSTEM
CPU UTILIZATION (P E R C E NT)
VERSUS TIME OF DAY

FROM 6-NOV- 1 986 1 0 1 4 : 06.45
TO 6-NOV-1 986 1 1 1 4 39.91

EACH COLU M N � 300 SECONDS
(5 M I N UTES)

CPU I DLE

TOTAL PAGE SWAP PAGE & SWAP
I D L E WAIT WAIT WAIT
0 . 1 % 0.0% 0.0% 0.0%

CPU BUSY

INTER
STACK
6.4%

EXECUTIVE
4.0%

USER
76.6%

SYSTEM
2 1 .5%

KEY:

I - I NT E R R U PT

E - EXECUTIVE

U - USER

K - K E R N EL

S - S U PERVISOR

K E R N E L
1 1 .2 %

S U P E RVISOR
1 .9%

COMPAT I B I L ITY
0 . 0%

TASK
78.4%

1 00% u u u u
u u u u u u
u u u u u u u
u u u u u u u
u u u u u u u

90% u u u u u u u
u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

80% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

70% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

W% U U U U U U U U U U U U U
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

50% u u u u u u u u u u u u u
u u u u u u u u u u u u u
U U U E U U U U U U U U U
U U U E U U U U U U U U U
U U U E U U U U E U U U U

40% U U U E U U U U E U U U U
U U U K U U U U E U U U U
U U U K U U U U E U U U U
U U U K U U U U E U U U U
U U U K U U U U K U U U U

30% U U U K U U U U K U U U U
U U U K U U U U K U U U U
U E U K U U U U K U U U E
U E U K U U U U K U U U E
U K U K U U U U K U U U K

20% U K U K U U U U K U U U K
U K U K U E U U K U E U K
U K U K U K U E K U K U K
U K E K U K E K K K K U K
U K E K U K K K K K K E K

1 0% K K K K K K K K I K K K K
K K K I K K K K I K K K K
K K K I K K K K I K K K K
K l I I K K K K I K K K K
K I I I K I I I I K I K I

21 26 2 1 5 1 22: 1 6

ECAE
C P U UTILI ZATION (P E R C E N T)
V E R S U S T I M E OF DAY

FROM: 2-FEB-1 987 2 1 :26 1 3 08
TO: 2-FEB-1 987 22:30: 1 3 07

EACH COLU M N = 300 SECONDS
(5 M I N UTES)

C P U IDLE

TOTAL PAGE SWAP PAGE & SWAP
I DLE WAIT WAIT WAIT
6.7% 6.5% 0.0% 6.5%

CPU B U SY

INTER
STACK
2.8%

EXECUTIVE
2 .8%

U S E R
73.2%

SYSTEM
20.0%

KEY:

I - I NT E R R U PT

E - EXECUTIVE

U - U S E R

K - K E R N E L

S - SUPERVISOR

K E R N E L
1 4 .4%

SU P E RVISOR
0. 1 %

COMPAT I B I LITY
0.0%

TASK
73.3%

Figure 3 CPU Utilization for Real Internal System and ECAE Workload for 1 Hour

��
� � 25.0

� � 0<> "'
:: 0" "' ::: - �. "' 22.5 :; �
gg'C' ::

�
;:, 20.0 ...

1 7 . 5

CfJ 1 5 . 0 z
Q <{ a: w D..
0 1 2 . 5
lL
0
a: w co
:;;: ::> 1 0.0 z

7 . 5

5 . 0

2 . 5

*
*
* * *
* * * *

* * * * *
* * * * *
* * * * * *
* * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * * *

1 0 : 1 4 1 0 39 1 1 04

REAL SYSTEM

DI R ECT 1/0s (RATE/SECOND)
V E R S U S TIME OF DAY

FROM 6 - N OV- 1 986 1 0: 1 4 : 06.45
TO 6 - N OV- 1 986 1 1 : 1 4 :39.91

EACH COL U M N � 300 SECONDS
(5 M I N UTES)

1/0 RATES (PER SECOND)

D I R ECT 1 B U FF E R E D I M A I LBOX
1/0s I(Os W R I TES

3.3 8.5 0.6

KEY

M A I LBOX
R E ADS
0.6

* � DI R ECT 1/0

1 LOGICAL NAME
TRANSLAT IONS
4.4

CfJ z
Q
� a: w D..
0
lL
0
a: w co
:;;: ::> z

25.0

22.5

20.0

1 7 .5

1 5 .0

1 2 .5

1 0.0

7.5

5.0

2 .5

*
*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* * * *
* * * * *
* * * * * * *
* * * * * * * * *

* * * * * * * * * * * * *
* * * * * * * * * * * * *

2 1 26 2 1 51 22 1 6

ECAE
D I R ECT I(Os (RATE/SECOND)
VERSUS TIME O F DAY

FROM: 2 - F E B - 1 987 21 :26 1 3.08
TO: 2- F E B - 1 987 22:30 : 1 3.07

EACH COL U M N � 300 SECONDS
(5 M I N UTES)

1/0 RATES (PER SECOND)

D I R ECT I B U F F E R E D I M A I LBOX

1/0s I(Os WRITES

3 . 0 4 . 5 0 . 3

K E Y :

M A I L BOX
R EADS
0.3

* � DI R ECT 1/0

I LOGICAL NAME
TRAN SLATIONS
3.6

Figure 4 DIO Utilization for Real Internal System and ECAE Workload for 1 Hour

1 00%

M M M M M
u u u u u U M U

90% u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

80°•o u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

70% u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

60% u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

50% u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

40% u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

30% u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u

20% u u u u u u u u u u u u
u u u u u u u u u u u u
s s s s s s s s s s s s

t:) N N N N N N N N N N N N

� N N N N N N N N N N N N

� � 1 0�1o N N N N N N N N N N N N
N N N N N N N N N N N N 0 � N N N N N N N N N N N N

" "" N N N N N N N N N N N N
� N N N N N N N N N N N N

� :s -. ;:: "" 1 0: 1 4 1 0:39 1 1 :04 � �
�'o'
-.... :::
'C �
� �

Figure 5

REAL SYSTEM

ME MORY UTIL IZATION (PERC ENT)
VERSUS TIME OF DAY

FROM 6-NOV - 1 986 1 0 1 4:06.45
TO: 6-NOV- 1 986 1 1 1 4:39.91

EACH COL U M N 300 S ECONDS
(5 M I N UTES)

MEMORY UTILI ZATION

TOTAL PAGED U S E R
92. 1 % 90.9% 90.6%

KEY:

N - NON-PAGED

U - USER WOR K I NG SET

S - SYSTEM WOR K I NG SET

M - MODIF IED

MODIFY
1 . 1 %

1 00%

90%

80%
M M

M U U U U U
u u u u u u u
U U U M U U U U

70% U U M U U U M U U M U
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u
u u u u u u u u u u u u u

60% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

�% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

�% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

30% u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u
u u u u u u u u u u u u u

�% u u u u u u u u u u u u u
u u u u u u u u u u u u u
s s s s s s s s s s s s s
N N N N N N N N N N N N N
N N N N N N N N N N N N N

1 0% N N N N N N N N N N N N N
N N N N N N N N N N N N N
N N N N N N N N N N N N N
N N N N N N N N N N N N N
N N N N N N N N N N N N N

2 1 :26 2 1 : 5 1 22: 1 6

ECAE

MEMORY U T I L IZATION (PERCENT)
V E R S U S T I M E OF DAY

FROM 2-FEB- 1 987 21 :26 1 3 .08
TO 2-FEB-1 987 22 30: 1 3 07

EAC H COLU M N = 300 SECONDS
(5 M I N UTES)

M EMORY UTILIZATION

TOTAL PAGED USER
73 . 1 % 68.9% 67 .9%

KEY:

N - NON-PAGED

U - U S E R WOR KING SET

S - SYSTEM WOR KING SET

M - MODIFIED

Memory Utilizatio n for Real Internal System and ECAE Workload for 1 Hour

A summary of the comparisons of t he average
resource uti l i zations for the real system and the
workload is presented i n Table 5 .

Val idation against customer s i tes - This va l i
dation of the workload aga i nst the i n terna l system
was fol l owed by va l i da tion agai nst customer
systems. The goal of th is add i t ional val idation
was to determ ine i f the workload was representa
t ive of the load p laced on systems by Digita l 's
customers .

Two semiconductor manufacturers i n Ca l i for
n ia were used as va l idat ion sites for t he ECAE
workload . I n i t i a l ly, it was determ ined that t here
were sign i ficant d ifferences between t he work
performed at these customer s i tes and the work
performed at the in terna l Digita l s i te . The Digita l
internal VAX systems were used for logic design
of gate arrays , c i rcu i t boards, and systems;
whereas at the external s i tes , t he VAX systems
were used for the design of i ntegrated c ircui ts .
Specifica l ly , the work d iffered i n the fol lowing
ways:

• DECSI M is used extensive ly wi th in Dig i ta l ,
whereas SPICE i s t he predom i nant s imulat ion
software used by externa l sem iconductor
deve lopers . DECSIM s imulat ions requ i re very
large amounts of memory as compared to the
SPICE s imula tions done by customers .

• Design rule checking is both a t ime-cri t ical
and disk I/O- in te nsive task done by sem icon
ductor designers. Design rule checking and
the load i t p laces on the I/0 subsystem were
not executed at the i nternal Digi ta l s i te at the
t ime resource ut i l i zat ion data was col l ected .

As a resu l t , we mod ified the ECAE workload to
i ncl ude the load p laced on the system by design
rul e checking and rep laced t he use of D ECS!M
wi th SPICE .

System resource uti l i zation data was col l ected
on VAX 8800 systems for one week at these cus
tomer sites. In a manner very s imi lar to the pro
cess used for the i n i t i a l development of the
workload , the data from t hese s i tes was reduced
to a typica l peak period . Table 6 presen ts the
comparison of resource u t i l i za tion on a per-user
basis in the workload and at customer sites .

The ECAE workload fa l ls with i n the range of
ut i l i zat ions observed at these customer s i tes for
both disk and memory u t i l i zat ions . The work load
is sl ightly (approxi mately I 0 percent) more CPU
intensive on a per-user basis than was observed at

Digital Technical Journal
No. 7 A ugust 1 <)88

Table 5 System-Level Resource Utilization

for Real Interna l System and

ECAE Workload

Resource ECAE Real System

C P U busy

DIOjsecond

Memory

93%

3.0

23M B

1 00%

3.3

29MB

Table 6 Comparison of Resource Utilization

on Customer System and

in ECAE Workload

Resource Utilization Customer ECAE
per Hour Sites Workload

CPU (minutes/hour) 3 .8-4.5 5 .0

DIO operations/second 1 .4-2.3 1 .8

Memory (MB) 0.7-0.8 0.8

customer sites. This workload wi l l put a 1 0 per
cent heavier l oad on the system , making the per
formance numbers s l ightly conservative for the
computer-a ided e lectrical engineering market .

Performance Measurement and
Analysis
This sect ion discusses the performance of the sys
tems i n three major appl ications : Engineering/
Scient ific , Commercia l , and Genera l Time
sharing . In each of t he environments , s i ngle
stream, mu l t istream , batch , and mu l t iuser work
loads were tested .

Single-Stream Performance
The first step i n eval uat i ng the performance of a
mu l t iprocessor system is to establ ish the base
l evel performance of the un iprocessor re lative to
a we l l - known system such as the VAX- 1 1 /780 . A
large number of s ingle-user benchmarks were
used to establ ish t his base leve l .

Single- User Performance

Single-user performance was eva l uated by using
trad i tiona l synthetic benchmarks, wel l -known
i ndustry standards , and real appl ication programs
from engineering, scient ific , commercia l , and
general t imesharing environments . Most of the
synthetic benchmarks are in FORTRAN; i ndustry
standards are Whetstones , Dhrystones , Linpack,
and others . The real appl ications, as ment ioned,
represen t four environments .

7 1

CVAX-based
Systems

------- Performance Evaluation of the VAX o 200 Svstl!rns

35

(j) 30 ::.: a: <(
� 25
I
(.) z 20 LlJ a:J
u. 1 5 0
a: w 1 0 a:J
� ::J 5 z

0
1 . 6 - 1 .9 1 . 9-2.2 2 2-2.5 2 .5-2 .8 2 .8-3 1 3.1 -3.4 3 .4-3.7 3 7-4 .0 4.0-4 3

VAX 6200 PERFORM A N C E R ELATIVE TO VAX- 1 1 /780
(VAX- 1 1 /780 SYSTEM = 1)

Figure 6 Frequency Distribution ofthe VAX 62 1 0 Performance
on the Single- User lknchmark Set

These lwnchmarks were used ro eva luate
uniprocessor speed compared to a VAX- J J j7HO
system . A frequency distri bution of the speed u p
factors on a l l these benchmarks was plotted . and
the centra l tendency was exa mined . (Sec Fig
ure 6 .) A h igh percentage of the benc hmarks fe l l
between 2 . 2 and 2 . 8 .

Table 7 sum marizes the performance o f the
VAX 62 1 0 in the single-user environment relative
ro a VAX- I 1 /780 system The performance aver
age of the VAX 6 2 1 0 system , across a l l these
benc hmarks, is 2 . 8 t i mes the performance of a
VAX- l l /780 system

Decomposed Single- user Perfo rmance

VAX 6200 performa nce on decomposed pro
grams was eva l uated through t he usc of manua l
and d i rected decomposi t ion techn iques. To
begin with . a program is eva luated to see i f some

Table 7 Performance of the VAX 621 0 in the

Sing le-User Environment

Synthetic Benchmark Set:

Singl e-user set

Industry-standard Benchmarks:

Whet-s & -d

Linpack-s

Linpack-d

Dhrystone

Real Application Benchmark Set:

Eng ineering set

Scientific set

7 2

2 . 5

2 . 3
2 .7
3 .2
2 .8

2 .8
2 .6

segments can be separated i n to para l t e l threads
that can be run i ndependent ly . Then the program
is decomposed and run . e i ther manua l ly or
through directives. The program is i n i t i ated as a
s ingle job; t hen the segments of the program that
lend themselves to decomposi t ion arc d ivided
into subprocesses a nd executed in para l l e l on
d i fferent processors. I n the manual decomposi
t ion method . the optimal number of subpro
cesses for various levels of mu lti processor sys
tems is eva luated by varying the nu mber of
subprocesses and calculat ing the speedup fac
tors In the di rective decomposi t ion met hod, the
com pi ler takes care of various opti m i zation fac
tors . These programs were run standa lone with
no i nterference from any othe r programs on the
system. Figure 7 i l lustrates the decomposition
process.

The benc hmark description is as fol lows . To
eval uate the maximum speedup facrors that can
be ach ieved through decomposi tion , code seg
ment's were selected . Such segme n ts as matri x
mu l r ip l l...:a t ion and convolution are widely used
in cngineeringjscient i tic applicat ions. D ifferent
array si zes (from t O O ro 1 0 00) were used with
various arithmetic data types such as i n teger, and
single and double precision .

An i mage processi ng program and the Lin
pack I OOOD program were used to represent real
appl ication programs, where only certa in seg
ments can be decomposed .

The performance results are as fol l ows. The
mult iprocessor effic iency measure , defi ned as the
relative speed up obtai ned by the addit ion of each
processor, is the key metric used here to eva luate

Digital Technical jounu:d
No. 7 A ugust 1988

ONE PROGRAM DECOMPOSED I NTO PARALLEL CODE

R U N N I NG ON:

PROCESSOR I

SUBPROCESS I

SPEED � TIME TAKEN TO
COMPLETE THE JOB

PROCESSOR 2

S U BPROCESS 2

PROCESSOR 3 PROCESSOR 4

SU BPROCESS 3 S U BPROCESS 4

Figure 7 Program Decomposition Process

performanu: . As seen in F igure R , t he m u l t i pro
cessor effic iency measu re on the program kernel s
i s fair ly l inear. Mu l t i processor synchron ization i s
m in imal in this comput ing environment . The
performance was very cl ose to the theoretical
max i mu m . A speedup of 3 . 9 t i mes the un i proces
sor performance was ach ieved on the four
processor 6 24 0 system . The performance on the
i mage proe<.:ssing program is s l ightly lower than
what was observed on the program kernels . Thus
performance ga ined by decom posi t ion depends
d i rectly on the a mount of code that can be run i n
para l l e l . (Note : On the Lin pack I 0 0 0 0 program,
d i rected decompos i t ion was used; whereas on
the other progra ms, manual decompos i t ion was
used .)

Multistream Batch Performance

Measurement and Analysis

The mul tistream jobs were used to measure the
syste m- level batch performance on the mul t ipro
cessor systems. As shown i n Figure I , these mu l t i
p l e streams were ru n in para l le l t o a l low concur
rency in the execu tion of these streams .
Maxi mu m concurrency is achieved s ince each of
these strea ms is identica l . No s ingle stream runs
any faster; however, t he nu mber of jobs com
pleted increases a l most l i nearly wi th the add i t ion
of processors . Adequate memory was a l located to
t he jobs 10 avo id unnecessary pagi ng and swap
ping. In add i t ion , sufficient I/0 resources were
present on the system to prec l ude r;o bott le
necks. The e lapsed t i me to com plete these jobs

Digital Technical journal
No � August t 'JR8

was recorded and used to eva luate the mul t i pro
cessor batch throughpu t performance . It is
important that a l l the streams run s imultaneously
and share resources equally . Large differences in
the complet ion t i mes of streams wou ld i mply that
maximu m concu rrency was not achieved because
of some bott leneck i n the syste m .

i'vlu l tiprocessor performance on mult istream
batch jobs was very c lose to l i near across a l l envi
ronments. Resu l ts for the commercia l stream,
represent ing personnel ad m i n istrat ion , were on ly

w a:
:::> (/) <
w
�
>-u z w
Q "-"-
w

4 . 5 0

4 .00

3 .50

3 .00

2.50

2.00

1 .50

1 .00

0 .50

0
VAX 6220 VAX 6230

KEY :

0 IMAGE PROCESSING

t::. MATRIX M U LTIPLICATION

0 CONVOLUTION

X LINPACK

VAX 6240

Figure 8 Multiprocessor Efficiency through
Parallel Processing

7)

CVAX-based
Systems

------- Performance Evaluation of the VAX 6200 Systems

sl ight ly lower - probably because of the h igher
amoum of ljO on this stream . (See figu re 9 .)

Interactive Multiuser Performance

Measurement and A nalysis

In the in teranive mul t iuser environment , t he
system must su pport the activit ies of a substan
t ia l l y higher nu mber of users and the ir frequent
interact ion with t he system . The number of users
on the system i ncreases the amount of context
swi tching, and the contention for shared
resources is a lso much h igher in th is environ
ment .

The test methodology incl uded t he use of a
remote term inal emula tor, VAXRTE , ro create t he
in teract ive mu l t iuser environment. The VAXRTE
generated the i nput for the system u nder test and
rece ived consequent outpu t . The VAXRTE also
logged and t i me-stamped a l l i nteractions and
mai ntai ned the job mix throughout t he experi ·
ment . To run a mu l tiuser experiment, the system
under test and the VAXRTE system were booted
and run ni ng . Using scri pts, every few seconds the
VAXRTE l ogged a user on to the system u nder
test . After a l l logins were comp leted, sufficient
t ime was a l lowed for t he system tO reach a steady
state . The experiment was then run long enough
ro execute the longest script cycl e for the
specific work load . Whi l e t he experi ment was
ru nn ing , VMS moni tOr and other mon i toring too ls
were used to capture the resource ut i l i zation
data . When the experiment was completed . data
was reduced and ana lyzed .

Workload descript ion - Three i nteract ive
mul t i user workloads were used tO evaluate the
mul t i processor performance in the three major
envi ronments : Engineering, Commercia l , and
Genera l T imesharing.

The Engineering environment was represented
by an ECAE wor.k load. This workload consists of
the types of tasks done by design engineers deve l
oping e lectronic c ircu i ts : c i rc u i t si mulat ion ,
design rule c hecking, schematic fi l e transfers
from workstations, and tasks supported by VMS
ut i l i t ies .

The mu lt iuser Commerc i a l (Compu-Share)
workl oad is based on the Compu-Share Order
Processing software package . This workload con
sists of three major types of transact ions: order
entry, order inqu iry, and accoun ts receivable
reporting .

The Genera l Timesharing SDEW represents the
types of tasks done by software eng ineers . The

74

major tasks executed in this workload are com
pi le- l i n k-execute-debug cycle using FORTRAN ,
BLISS, and MACRO ; u t i l i ties used incl ude CMS,
RUNOFF, and text edi tors .

Hardwarejsoftware setup - Table 8 summa
r izes the hardware and software configurations.

4.50

w 4.00
a:
::> (j') 3.50

<>: 3.00 w
�

2.50 >-
u 2.00 z w

1 . 50 u u:: 1 . 00 u. w
0 .50

0
VAX 6220 VAX 6230 VAX 6240

KEY:

o GENERAL TIMESHARE

!'. COM M ERCIAL

D SCIENTIFIC

X ENGINEERING

Figure 9 Multistream Efficiency Measures

Table 8 Summary of Hardware and Software

Configurations

Hardware Configuration

Processor

Mem ory

VAX 6240

1 28 M B

2 HS C70 D i s k controller

D isks (Disk configurations d i ffered for
each workload; see below.)

Number of RA82 Disks per Workload

Dedicated
Use

System

Pagejswap

Library

I nteractive

Batch

Database

ECAE

2

3

Compu-
Share SDEW

2

6

4

2

Note: Where necessary, software was d istributed
over mu ltiple disks to avoid disk bottlenecks.

Software Configuration

VMS V5.0 - FT2. 1 (A sing le-processor system was
run with mult iprocess i n g turned off.)

Digital Technical Journal
No . 7 A ugust 1988

Performance metric - The mult iprocessor effi
ciency measure is defined to be the relative mult i
processor i nteracti ve throughput compared to
the uni processor throughput.

Also cons idered in this metric is system respon
siveness . based on acceptable service cri teria for
l ight, med ium, and heavy tasks . This metric i s
used to eva luate the number of users supported
at peak throughput whi le the system mainta ins
the service t i me criter ia . System resources
required to support each appl ication are a lso
identi fied .

Performance resu lts - The mult iprocessor
efficiency measure is very close to l inear i n both
t he ECAE and SDEW envi ronments (Figure I 0) .
This resu l t shows that even in the m u l t i user i n ter
active environments near- l i near performance can
be expected if the system is wel l balanced i n
terms o f processor speed and t h e memory-tO-pro
cessor bus speed . It also indicates the efficiency
of the VMS SMP software . In the Compu-Share
environment , the performance was s l ightly !ower
because of the high a mount of disk and termi na l
l/0 generated by t his workload . The perfor
mance of the mult iprocessor systems under sym
metric mu l t i processing (SMP) depends directly
on the amount of 1/0. It is important to note t hat
even with h igh amounts of IjO, the mult i proces
sor efficiency measure is wel l over three for the
four-processor syste m .

4

UJ
� 3
(j) 4: UJ
�
>- 2 u z w
(3
u: u. UJ

KEY:

VAX 62 1 0 VAX 6220 VAX 6230 VAX 6240

0 ECAE

0 COMPU-SHARE

t> SDEW

Figure 1 0 Multiprocessor Efficiency Measure
for All Multiuser Workloads

At t he peak throughput levels , response t i me
criteria were mainta ined i n each workload.
Table 9 compares users supported and resources
used by each of these wor kloads . The max i mum
number of users supported on the VAX 6240 are
38 , 1 20 , and 1 2 6 users for ECAE , Compu-Share ,
and SDEW , respectively .

In terms of resource u t i l i zation , i t should be
noted that the mult iprocessor synchronization

Table 9 Summary of Workload Resource Utilizations

Multiuser

N u mber of users su pported at the peak

Resource utilization

Nu mber of users

CPU - 6240

Percent ut i l ized

I nterrupt

Kernel

Executive

M P synch

User

1/0

Disk 1/0 profile

Average d i s k 1/0 per second

Average buffered 1/0 per second

Memory

Maximum used (M B)

Digital Technical journal
No. 7 August 1 ')88

ECAE

1 0 , 20, 28, 38

38

1 00%

2%

1 2%

3%

1 %

82%

Bu rsty

24

82

32

Compu-Share SDEW

30, 60, -, 1 20 36, 66, 90, 1 26

1 20 1 26

1 00% 1 00%

6% 4%

29% 20%

7% 7%

7% 2%

5 1 % 67%

Uniform Bursty

1 1 3 68

1 1 2 76

60 57

7 5

CVAX-based
Systems

------ Performance Evaluation of the VAX 6200 Systems

under SMP is hand led by spin locks . A spin lock is
a bit in shared memory that is access ib le by
means of interlocked instructions by a l l p ro
cesses through mutual agreement . Mutual agree
ment i mpl ies that a process can set the b i t and
ga in access ro the scheduler database i f no other
process has access ro it . I f a process tries to set
the bi t and the bi t is al ready set , then the process
conti nues ro "spin" using a sequence of instruc
t ions to cont inue checking to see i f the bit is
c lear. MP synch is the amount of CPU t ime spent
wai t ing to change the bit or acqu i re the spinlock
and thus ga in access to the schedu ler database .
MP synch is I percent for ECAE. 7 percent for the
Com pu-Share workload . and 2 percent for the
SDEW work load . S ince MP synch is the CPU r ime
spent wai t ing tO acqui re spinlocks and ind icates
rhe amount of spi nlock col l i s ions, it shows t he
l evel of content ion for shared resources experi
enced by SMP under each workload . For the
Compu-Share workload , this leve l is significantly
higher. The Compu-Share workload generates the
most d isk l/0 compared to the other workloads,
which may be the reason for a h igher amount of
t i me spent by this work load in MP synch .

'fhe fol lowing three graphs, Figures I I , 1 2 ,
l :1 , present the CPU modes usage profi les. The

z
Q f-<(N
::; _ - (j) f- a: => w
:::> C/J a._ ::>
O co f- !2 z w
(_) a: w a._

400

350

300

250

200

1 50

1 00

so

TIME OF EXPE R I M ENT IN M I N UTES

KEY

USER

c::::J K E R N E L

c=J EXECUTIVE

c:=:J I N T E R R U PT

c:=:J MP SYNCH

Figure I I CPU Utilization over Time

ECAE Workload

400 r---------------------�---.�---n

6 350
� N 300
::; i= � 250 :::> w
� � 200
(_) 0
f- � 1 50 z -
� 1 00
a:
� 50

1 0 20 30 40 so
T I M E OF EXPE R I M E N T IN M I N UTES

KEY

IDLE

c=J USER

c::::J K E R N E L

c:=:J EXECUTIVE

c::::J M P SYNCH

c=J I NTERRUPT

Figure 12 CPU Utilization over Time

Compu-Share Workload

z 0
350

� 300
N
;:::! (iJ 250 f- C: :::> w
� � 200
(_) (!)
f- � I SO z w
(_) 1 00 a: w a._ 50

1 0 20 30 40 50
TIME OF E X PE R I M E N T I N M I N UTES

KEY

CPU I D L E

c::J USER

c::J KERNEL

c:=:J EXECUTIVE

c::::J I N TERRUPT

c=J MP SYNCH

Figure 13 CPU Utilization o ver Time -

SDEW Workload

60

60

Digital Technical journal
No. 7 A ugust 1 988

Compu -Share workload shows h igher bur more
un i form interrupt and kerne l mode act ivi t ies .
Compu -Sharc 's usc of databases, which generates
heavy 1/0 and loc a .l locking, is man i fested i n the
heavy kernel and interrupt mode activi ty . SDEW
does a fa ir a mount of fi l e man ipu l at ion . ECAE has
much lower ljO activity than both Com pu-Sharc
and SDEW.

The ne xt three graphs in Figures 1 4 , 1 5 , and
16 compare the ljO profiles . The d isk I/0 on
ECAE and SDEW is ve ry bursty, and it is in terest
ing ro note that t he ir re lat ive CPl.J mode profi les
corre late we l l , showing a re lat ionsh ip between
the two. The 1/0 on Compu-S hare is high but not
as bursty .

Com par i ng the disk ljO generated by the
workloads and rhe effect i t has on CPl.J u t i l i za
tion. Compu-Share puts the heaviest load on the
mult iprocessor system . However, even with a l l
the synchronizat ion necessary on th is work load ,
the mult iprocessor effic iency measure is fa irly
high (_-1, . _-)) . 'fhe ECAE and SDEW workloads show
high mult i processor efficiency measures of 3. 8
and :1 . 9 . respect ive ly . Th is leve l of ga i n i n the

70

60

w 50 1-<{ -
a: (/)

40 a:
o w - <Jl
:::; ::::J 30
<{ <X> 1- <'>

20 o -1-
1 0

Figure 1 4

1 80

1 60

w 1 4 0 1- -<{ (/) 1 20 a: a:
o w 1 00 - (/) - ::::J 80J o <{ N 60 1- �
o -

40 1-
20

0
0

Figure 1 5

T I M E OF EXPERIMENT IN M I NUTES

Disk ljO Utilization over Time
ECA E Workload

10 20 30 40 50 60

TIME OF EXPER IM ENT IN MI NUTES

Disk ljO Utilizatio n o ver Time
Compu-Share Workload

Digital Technical journal
No . 7 A ugust t 'J88

1 20

1 00
w 1- -<{ (/) 80 a: a:
o w -(/) 60 - ::::J
....J (!) <{ N 40 1- �
o -1-

20

0
0 1 0 20 30 40 50 60

T I M E OF EXPER I M ENT IN MIN UTES

Figure 1 6 Disk ljO Utilization over Time
SDEW Workload

mu l t i user environment on the m u l t iprocessor
systems shows that VMS SMP is work ing effi
ciently and that the VAX 6240 system is a wel l
ba lanced system in terms of the processor and
bus speeds.

Application Characteristics Affecting
Multiprocessor Performance
This section discusses some of the characterist ics
in appl icat ions that d i rectly affect mu lt iprocessor
performance .

Memory- to- Processor Traffic

Since these mult i processor systems share me m
ory, content ion to access me mory cou ld be a
factor that affects mult i processor effic iency.
Therefore appl ications that generate lower mem
ory- to-processor traffic do perform better , assu m
ing there arc no other bottlenecks i n the system .
One way to reduce this traffic is to organize the
data to i m prove loca l i ty of reference . Data that is
accessed together shou ld be placed together.

Disk ljO Operations

With the symmetric mult i process i ng software ,
1/0 operat ions can be handled by each of the
processors. A!5 a resu l t , the I/O-i ntensive appl i
cat ions perform much better on the symmetric
mul t iprocessor systems as com pared ro t he asym
metric mult i process i ng systems. However, t he
ljO device interru pts are st i l l hand led by t he pri ·
mary processor, even under SMP. By reducing the
rate a t which device i nterru pts are made, any
contention for the pri mary processor can be
reduced. To reduce the nu mber of IjO inter

rupts, larger block transfers may be better in I/O
in tensive appl icat ions . Thus , an appl icat ion that
will lend i tse lf to mak ing l arger block transfers

77

CVAX-based
Systems

------ Overview of the Micro VAX 3500/3 600 Processor Module

With m inimum bus cycle t ime down by more
than a factor of two and dynamic random-access
memory (RAM) access t ime remain ing relatively
constant, the opportuni ty arose to i ncrease per
formance by using static RAl\1 to add a cache.
Static RAMs with 3 5 -ns access t imes and 64 -k i lo
bit (Kb) densities could be used for th is purpose
at reasonable cost .

Design Partitioning and
Functionality
To fac i l i tate i m p lementation of the processor
module using custom VLSI , t he design was parti
t ioned i nto seven major parts: the centra l process
ing uni t with first- level cache, the float ing point
un i t , the second- level cache, the memory con
trol ler , the Q 2 2-bus i nterface, t he system sup
port functions, and the clock c i rcuitry . Each of
these part i t ions was i mplemented by a single
chip, with the exception of the second- level
cache. This cache was i m plemented by pro
grammable array logic (PAL) anol stat ic RAMs.
Five of t he parts are connected d i rectly to a
3 2 -b i t mul tiplexed addressjdata (COAL) bus:
the central processing unit with fi rst- l evel cache
(CVAX) , floating point un i t (CFPA) , second
level cache, memory control ler (CMCTL) , and
Q2 2 -bus interface (CQBIC) . To reduce loading,
the chip contai ning the system su pport functions
(SSC) connects to a buffered version of this bus,
the BCDAL. The clock circuitry (CCLK) was sepa
rated from the processor chip to conserve p ins as
we l l as to a l low designers more flexib i l i ty i n
choosi ng a clock rate .

To maxi mize performance, the CVA.X, CFPA,
second-l evel cache, and CMCTL operate synchro
nously from a four-phase clock generated by the
CCLK. The SSC and CQBIC operate asynchronous[y
on a 4 0 -MHz osci l la tor. The processor modu l e
was designed t o a l low the CCLK t o be fed either
from the 4 0-MHz osc i l la tor or from a separate
osci l lator. The separate osc i l la tor a l lowed t he
central processor and memory subsystems to be
sped up when it was determ ined that the CVAX ,
CFPA, and CMCTL chips were capable of running
ten percent faster than origi nally projected .

Each of the major parts of the processor
module is described in fo l lowing sect ions .

The Central Processing Unit and
First-level Cache
The CVAX chip is a m icrocoded 3 2 -b i t VAX CPU.
To implement the entire VAX archi tecture using a

80

single ch ip , the CVAX designers selected a subset
of the fu l l VAX i nstruction set and data types.
The implementat ion incl udes 1 7 5 i nstructions
and s ix data types (also implemented by t he
M icroVAX I I system) , p l us 6 addi tional string
instructions: CMPC 3 , CMPC 5 , LOCC, SCANC,
SPANC and SKPC. The CVA.X also provides micro
code support for emulat ion of 5 3 add i t ional
i nstructions (six less than the MicroVAX I I) and
five data types . When any of these i nstructions is
decoded, an emula ted instruction exception is
generated. This exception causes a set of i nstruc
t ion-specific parameters ro be pushed on the
stack and control to be passed to operat ing sys
tem emulat ion rout ines by the emulated i nstruc
tion vecror in the system control block. As in the
MicroVA.X I I , the remain ing 70 i nstructions and
three data types are handled by the CFPA chip .

The CVA.X i mplements the fol lowi ng registers:

• Sixteen , 3 2 -bit , general -purpose registers

• Twelve VAX standard i n ternal processor regis
ters ro su pport memory management , process
control , interrupts and system identifica tion
(SBR, SLR, MAP EN, TBIA, TBIS, TBCHK, PCBB,
SCBB, I PL , S IRR, SISR, and S ID) 1

• Five in terna l processor registers specific to t he
CVAX to su pport the interval clock, first level
cache, error reporting and console emulation
(ICCS, CADR, MSER , SAVPC, and SAVPSL) 2

The CVAX also provides a means for access ing six
add it ional VAX standard i n ternal processor regis
ters to support t he t i me-of-year clock, console
serial l i ne , and 1/0 bus (TOOR, RXCS, RX OB,
TXCS, TXOB, and IORESET) . 1 These registers are
implemented in the sse .

The registers i n the SSC are referred to as
"external " in ternal processor registers and are
accessed by software i n the same manner as other
internal processor registers, that is, by means of
MTPR and MFPR instructions . However, the CVAX
chip generates a specia l cyc le on the COAL bus
wi th the register nu mber as an address . The SSC
responds tO these cyc les by e i ther supplying t he

CVAX with the register contents (MFPR) or per
formi ng the register u pdate (MTPR) . Accesses to
other u n implemented VAX interna l processor
registers wi I I also cause these cycles to be gener
ated, but the cycles wi l l terminate with an error
condi tion . (The cycles are t imed out after four
microseconds by a COAL bus t i mer in the SSC .)
When a register write is made to an u n i m ple-

Digital Technical Journal
No. 7 A ugust 1 988

mented i nternal processor register, the CVAX
ignores the error signa l ; t he resu lt is a long
no-operar ion . When a regist<:r read of an u n imple
mented i nrerna l processor register i s attempted.
the resu lts are undefined .

Also l i ke the MicroVAX I I system, the CVAX
processor i mp lements a memory management
un i t . The unit supports fu l l VAX demand-paged
virtual memory , wi th s i ngle- level page tables for
system space addresses and double-level page
tables for process space addresses. In add i t ion,
four l <:ve I s of access protect ion are su pported by
the me mory management u n i t . A 2 8-entry, fu l ly
assoc iative address translation buffer is provided
for sroring rece nt virtual - to- physical address
translat ion (as opposed to an 8-entry translat ion
buffer i n the MicroVAX I J) .

U n l i ke the MicroVAX I I system , the CVAX in
cl udes an on-c hip (first- leve l) , physical i nstruc
tion and data cache . Because ch ip area was a t a
prem i u m . a 1 KJ3, two-way set assoc iat ive orga n i
zation was chosen . I n contrast t o the second- l eve l
cache , this organ ization achieves a high h i t rate
for the avai lable chip area through increased con
trol logic complexity i nstead of i ncreased srorage
array s ize . The extra cont rol logic complexi ty of
the fi rst- l evel cache is more efficiently i m p le
mented in custom VLS I , whereas the large storage
arrays of the second- leve l cache are more effi
ciently im plemented wi th off- the-she lf parts .
S ince the first- level cache orga n i za tion yields a
set s ize equal ro the me mory page s ize , cache
look-up and v i rtual - to-physical address transla
t ion can be overlapped . Thus a cache cyc le t ime
equal ro the processor microcycle t ime i s
achieved .

The first- level cache i s look-through; tha t i s ,
cache h i ts on read cycles resu lt i n no activ i ty on
the COAl. bus, thus preserving i ts bandwidth for
OIVlA transfers . The block size is one quadword so
t hat cache misses on cacheable read cycles cause
the CVAX ro generate a quadword transfer on the
COAL bus . This transfer resu l ts in two longwords
of data be ing remrned i n response to a si ngle
address . The min i mum transfer t i me is two
microcyc les for the first longword and one for the
second , which increases the effect ive COAL bus
bandwidth . Further, the first- l evel cache is write
through . However. to improve performance, the
CVA..,'<: also conta ins a longword write buffer
which al lows the CPU execute ou t of the fi rst
level cache wh i le the write operation is being
completed . ·

1

Digital Technical jow-nal
No 7 A ugust / '}88

The Floating Point Accelerator
The CFPA ch ip works i n con junct ion with the
CVAX chip to process float ing poin t i nstruct ions

and to accelerate the execut ion of some in teger
i nstructions (MULL, OIVL, and EMUL) . The CVAX
decodes the i nstructions and sends the CFPA
control and opcode information by means of a
ded icated e igh t - l i ne control bus. The CFPA gets
i ts operands from the COAL bus . Unl i ke the
MicroVAX I I , a l l operands do not have to come
from the CPU . Operands come from the CVAX
only i f t hey reside i n the genera l -pu rpose regis
ters or fi rst - level cache . If the operands res ide
in the second- leve l cache or main memory, the
CFPA takes them d i rectly off the COAL bus . When
the CFPA has completed the operation , it returns
cond i t ion codes and exception status by means of
the control bus, and the unal igned resu l t by the
COAL bus. One , two, or three longword t ransfers
may be required to transfer the resu l t , depend ing
on t he type of operat ion . The CVAX a ligns and
sends the result ro i ts u l t imate dest inat ion . To
i mprove OMA latency, the CVAX wi l l grant the
COAL bus requests whi le wa i t i ng for the CFPA to
return the resu l t .

'

The Second-level Cache
The second- level cache s i ts d i rectly on the COAL
bus and bridges the 4 - microcycle gap in access
t ime between t he first-level cache and main
memory. The project goa l for the second - level
cache was to maxim ize system performance
wi thout p l ac ing t he schedule at risk . Conse
quent ly, designers chose to use large storage
arrays to ach ieve the desi red leve l of performance
(h i t rate) rather than complex control l ogic . By
keeping the control logic s imple , the cache
cou ld be i mpleme n ted in PAls rather than cus
rom VLS I . Thus the chance of design errors was
reduced as wel l as the t ime needed tO correct any
errors found during design qua l i fication .

The large stOrage arrays were eas i ly i mple
mented using off-the-shelf static RAMs . The
resul t ing design was a 6 4 KB , d i rect-mapped ,
physical i nstruction and data cache with write
through . The i mplementat ion cal led for six PAls
for control log ic , e ight 1 6 K- by-4 static RAMs and
four 1 6K-by- l static RAMs for t he data store , and
three 1 6K-by-4 static RAMs for the tag store .

I n keepi ng with the ph i losophy of si mple con
trol logic, the second- leve l cache is look-aside;
that is, address decodi ng occurs in para l le l i n
the cache control ler and the memory control ler.

8 1

CVAX-based
Systems

------- Oueruiew of the Micro VA X J 500j3 600 Processor Module

Therefore , the cache does not have to regenerate

COAL bus cycl es in the evcm of a cache miss . The

second- level cache control l ogic s i m p l y

• Wa tches the C OAL b u s cyc les

• Ret u rn s data to the CV�'(on cacheab l c n:ad

cycks that mi ss the first - l eve l cache bur hit the

secon d - l eve l cache

• Al locates a block on cacheable quadword

CV�'(react cyc les that miss both cac hes

• Updates an entry on CV�'(write cycles that h i t

the second- leve l cache

• In va l ida tes a block on OMA write cyc les that

h i t the second - level cache

• I gnores OMA read cyc les

Because the second- l eve l cache srores ; he same

types of references as the fi rs t - l evel cache, ve ry

l i tt l e con trol logic is req u i red to determ i ne

which CVAX references arc cacheable . The CVAX

wi l l on l y generate q uadword C OAL bus cyc les on

cacheablc CPU references that m iss the first - l eve l

cac h e . Therefore , t he second - l evel cache con trol

logic on ly considers qu adword reacl cyc l es
cacheablc .

To respond within the mi n i mu m CVAX bus

cyc l e t i me (one m icrocyc le for the second l ong

word of a qu adword cycl e) , the second - l eve l

cac he control logic uses an overlap scheme. The

second- leve l cache overlaps the address genera
tion and the tag l ook- u p for the second longword

portion of the cycle with the data access for the

first l ongword portion of th<: cyc l e .
'

The Memory Controller

The CMCTL c h i p is the in terface between the

C OAL bus and the memory array. The c h i p is a
fu l l :) 2 - b i t . s i ngle -ported , synchronous me mory

con rro l. l e r with 7 - b i t error-correcting code
(ECC) and su pports up to fou r me mory array
modu les (two more than the MicroVAX I I) .

Th<: CMCTL l ongword write buffer m i n i m izes
the effect of write operations on C PU pe rfor

mance . (!3oth caches are wri t e - through) The

CM CTL al so su pports m u l t i word transfers on the

C OAL bus. On these transfers, the CMCTL u t i l i zes

page mode in the dynamic RAMs to achieve the

performance of an e i g ht-way i nterl eaved memory

subsystem withou t the usc of addition a l banks or

in terconnect complex i ty . The size of t he transfer

is encoded i n bits 3 1 through .� 0 of t he physica l
address (u p to four longwords) . Thus with on ly a

s ing le address , the memory control l e r can fe tch

8 2

seq uenr ial longwords i n less t i m e . Bot h the CVAX

and the CQBIC u t i l i ze this fea ture tO i m prove

pe rformanc e . The CVAX generates q uadword

transfers ro ti l l cache b l ocks on a cache m i ss; and

the CQI3IC generates qua dword , hexaword, or

octaword tra nsfers on b l ock-mode OMA by

devices on the Q 2 2-bus . The com bina tion of mu l

t i word transfers and the look-t hrough fi rst- l eve l

cache made t he added complexity of d u a l ports

(as used in the MicroVA.X I I) un necessary. To
work e ffective ly w i t h t he look-aside second - l eve l

cache , the CMCTL must m<m i tor the C OAL bus
after starting a me mory operation . If the second

leve l cache responds with the data first, the

CMCTL a borts i ts operat ion before com plet ion .

To su pport a range of CVAX m icrocyc le ti mes

and a lso mai nta i n the performance advan tage of

sync hronous opera tion , the CMCTL i ncl u des a

progra m mable wait-state bit . This b i t controls the

n u mber of C PU mic rocyc l es used to access the

RNI'I array. Moreover this bit a Uows the same

array mod ules to be used for processors with

d i fferent microcyc le t i mes
6

The memory control ler was not designed tO

su pport battery bac k - u p because of t he added
design com p l e x i ty and cost . For t h ose appl ica

tions that req u i re su pport d u ri n g power ou tages ,
standby u n i n terru p table power su ppl ies are a
better sol ut ion and are avai I a b l e for s ma l l systems

at low cos t .

The Q22-bus Interface

The CQ I31C interfaces the C OAL bus to the

Q 2 2 - bus. This c h i p provides address transla
ti on between the 26-bit COAL bus and 2 2 -bit

Q 2 2 - bus In add i t ion , CQBIC h a n d l es data

buffering between t he 3 2 -b i t sync hronousjasyn

chronous C OAL bus and the 1 6-bit asynch ronous

Q 2 2-bus. Q 2 2 -bus addresses are t rans l ated tO
C OA L b us addresses by a program ma b l e mapping
fu nction (scatter-gather map) , which is software

compatible w i t h the M icroVAX I I syste m . This
fu nct ion gives the CPU the capabi l i ty to map any
page of the 4 megabyte (MB) Q 2 2 -bus address

space to any page of the m a i n memory address

space . Thus Q 2 2 - bus O MA devices can transfer

d i rectly to or from d i sconr iguous pages of main

memory. COAL bus add resses are trans lated i n to

Q 2 2 - bus add resses by a direct mapp i ng function .

T h is fu nct ion maps t he 4 MB Q 2 2-bus memory
space and the 8KB Q 2 2-bus ljO space i n to t he
VAX ljO space. Thus the CPU can d i rectly access

Q 2 2 - bus me mory or device registers by means of
two ra nges of l/0 page addresses .

Digital Technical journal
No. 7 August I ')88

OMA write references are buffered i n two natu
ral ly a l igned ocraword buffers and transferred
to main memory by the most efficient combina
t ion of mult iword transfers . The two octaword
buffcrs al low an ent i re block-mode transfer (u p
t o ! 6 words) r o be buffered by the CQBIC. After
the fi rst buffer has been ti l led by the Q 2 2 -bus
device , i t is emptied i nto mai n memory whi le the
Q 2 2-bus device ti l l s the second buffer. S ince the
COAL bus is faster than t he Q 2 2-bus. t he first
buffer is emptied and ready for in put from the
Q2 2 -bus device before the second buffer has been
fil led . This arrangement a l lows t he i n terface to
provide susta ined throughput a t maximum
Q2 2 -bus transfer rates with no add it iona l latency.

Q 2 2-bus block-mode OMA read references are
translated i n to quadword transfers on the COAL
bus . The four words are buffered i n a s ingle quad
word buffe r and suppl ied to the OMA device on
demand. Before the buffer is emptied, the next
quadword is prefetc hed . This prefetch e l i m i
nates addit ional latency on a l l b u t t h e firs t trans
fer . To keep the la tency of the first transfer at a
m i n i mu m , the CQBIC responds to the OMA
device after receiving t he first longword of a
q uadword COAL bus cyc le , rather than wai t ing
for the ent i re quadword transfer ro complete .

To ti t the ent ire Q 2 2 -bus i nterface i n a s ingle
chip, some changes had to be made to the bus
i nterface archi tectu re of the Micro VAX I I system .
O n the MicroVAX I I , the scatter-gather map was
stored i n a dedicated 3 2 KB static RAM array
wi th in the bus i nterface. On the CQBIC, not
enough space was ava i lable ro implement th is
storage array i nternal ro the chip . Moreover, not
enough p ins were avai lable to provide a dedi
cated bus ro an external stat ic RAM array . The
sol ut ion was to srore the scatter-gather map i n a
3 2KB block of main memory and to i mplement a
1 6 -ent ry fu l ly associat ive cache for map entries
i n the CQBIC. The cache functions i n the same
manner as an address translat ion buffer . When
translat ing a Q 2 2-bus address , the cache is
checked for the appropriate map entry. If the
entry i s found, the translation takes place at maxi
mum speed . I f the entry is not found , then there
is a delay whi le the entry is fetched from main
memory . The translation is then performed . This
de lay i s e l i minated on OMA transfers that cross a
page boundary, because the entry that maps the
next page i s prefetched when the OMA operation
reaches a page bou ndary. On most OMA transfers ,
this delay is negl ig ib le because i t i s amorti zed
over a la rge number of Q 2 2 -bus transfers . The

Digital Technical journal
No. 7 A ugust 1!)88

design ensu res that t he operat ing system does
not attempt tO use the block of memory where
the scatter-gather map res ides. The on-board
firmware does not i ncl ude these pages in a l ist of
good memory pages that is passed ro the operat
i ng system at boot t ime . An i n terest ing side effect
of put t ing the scatter-gather map in main memory

was that the relat ively long la tency on some
Q2 2 -bus OMA cycles u ncovered latent design
bugs i n seve ra l Q2 2-bus OMA devices. The
designs of these devices had been verified by
empirical test ing with exist ing processors rather
than by test i ng to the Q 2 2- bus spec ification .

To mainta in software compat ib i l i ty with the
Micro VAX II system , the scatter-gather map is ref
erenced through a 3 2 KB block of ljO space
addresses . The CQBIC responds tO wri tes in this
address range by buffering the data so t he CVAX
cycle can comp lete , u pdati ng the cache i f t here
is a h i t , req uesting the COAL bus, and upda t i ng
the entry in mai n memory. I f any OMA operations
are pendi ng , they are completed before CQBIC
gives up the CDAL bus. This prevents mul t ip le
success ive map updates by the CPU from locking
out OMA activity long enough to cause Q 2 2 -bus
devices to t ime out (i n I 0 microseconds) .

O n reads to this add ress range that m iss t he
cache , the CQBIC has ro latch the address and
force the CVAX to retry the cycle . In th is way,
CQBIC can acq u i re the COAL bus to fetch the
entry from main memory . When the CQBIC re l in
qu ishes the COAL bus, the CVA.X retries t he cycle ,
and the CQBIC provides the processor with t he
requested map entry. This retry mechanism is
a lso used to i mpl ement the i nterl ocked i nstruc
t ions in the VAX i nstruction set .

On a l l i n terlocked i nstructions, the CVAX gen
erates one or more sequences of a read-lock cycle
fol lowed immediately by a write u nlock cycle .
The CVAX ident ifies these specia l locked cycles
by placi ng a u n ique code on the parity l i nes at
address t ime . The CQBIC recogn izes t he read
lock code and forces the CVAX to retry unt i l t he
CQBIC can become master of the Q 2 2-bus. Once
the CQBIC has mastership of the Q 2 2- bus, mem
ory is effective ly locked and the cyc le proceeds .
The CQBIC releases the Q 2 2 -bus (un locking
memory) on the next CVAX bus transact ion even
if it is not a write u n lock cyc le . This release pre
vents me mory from stay ing locked if the CVAX
has to abort t he i nstruction due ro an error en
cou ntered on the read- lock cyc le .

Li ke the MicroVAX I I Q 2 2-bus in terface , the
CQBIC gives the CPU the h ighest rather than the

83

CVAX-based
Systems

------ Overview of the Micro VAX 3500!3 600 Processor Module

lowest priority when arbitrat i ng the Q 2 2-bus.
This priori ty assignment reduces in terrupt
latency, s ince the processor is delayed for a m ax i
mum of one O MA transaction before being
granted the bus to acknowledge the i n terrupt .
Because the CPU accesses memory over a dedi
cared i nterconnect rather than through the
Q 2 2 -bus, CPU references ro the Q 2 2- bus are very
infrequent . Therefore th is prior i ty scheme does
not have a negat ive impact on OMA performance .

To support a range of CVAX m icrocycle t i mes
and fixed Q2 2-bus t iming , the CQBIC was
designed to run at a fixed clock rate , asynchro
nously to the CPU/memory su bsystem. This design
made it easier for engineers to opt i m i ze perfor
mance of the slower asynchronous Q 2 2 -bus
(where bandwidth is a t a prem i u m) . These opti
mizations are made a t the expense of lower per
formance on the faster COAL bus (where there is
extra bandwidth) due ro synchron izat ion dcl ays 7

System Support Functions
The SSC conta ins a l l those fu nctions requ i red to
support the on -board firmware , the t i me-of-year
clock . a nd the console serial l i ne . The ch ip pro
vides the logic necessary tO i n terface the two
6 4 KB read -only memories (ROMs) conta i n i ng the
firmware with the BC OAL bus. S ince the ROMs are
organ ized as a 64 K by 1 6 -bit array, the SSC must
generate two ROM cycles to satisfy each 3 2 -bi t
COAL bus cycle . This ROM unpacking funct ion
saves board space as we l l as the costs re lated tO a
32 -b i t -wide ROM array.

The SSC assists i n the firmware emulation of a
VAX console processor by provid i ng two address
spaces through w h ich the ROM may be
accessed - the halt- mode ROM space , and the
run-mode ROM space . Any I -stream read from the
halt -mode ROM space protects the processor
from externa l hal t condi t ions and extingu ishes
the front panel run l ight . Any I -srream read out
side the ha l t -mode ROM space . inc lud ing reads
from the run-mode ROM space, enables externa l
halt condi tions . Under th is cond i tion , the front
pane l ru n l ight is i l l umi nated . The firmware i s
organ i zed so that console emu l ation code is exe
cuted from the ha l t -mode ROM space , and di ag
nostics and boot code are executed our of the
run-mode ROM space . The SSC also provides the
fi rmware wi th I KJ3 of bat tery-backed up RAM for
storage of data structu res and stack space , and a
register for control l ing four d iagnostic LEOs .

The SSC also conta ins a VAX standard conso l e
ser ia l l i ne and a VAX standard battery backed u p

8 4

t ime-of-year clock. (The VAX standard ser ia l l i ne
rep laces the ser ia l l i ne chip used as t he console
on the M icroVAX I I . The c lock replaces the
off- the-shel f c lock c h i p .) Si nce the console con
troljsta tus registers (RXCS and TXCS) , console
data buffers (RXOB and TXDB) , and the t i me-of
year clock (TOOR) a re VAX i nternal processor
registers, they are accessed by means of specia l
COAL bus cyc les as described i n the section The
Central Processi ng U n i t and F irst -Leve l Cache. 1

To save board space and cost, the SSC provides

two programmable address strobes for decoding
add itional board- level registers . These address
strobes decode the second- level cache control
register (CACR) and the M icroVAX 1 1 -com patible
boot and diagnostic register (BOR) 2

To prevent the processor from " hanging" on
unanswered COAL bus cycles the SSC provides a
programmable watchdog t imer for the COAL
bus . The t i mer starts at the beg inn ing of a
COAL bus cyc l e . If the t imer expi res before the
cycle completes , the sse asserts the error l ine ,
causing the CQBIC or CVAX to abort the cycle .
Th is t i mer cou ld not be used for a l l COAL bus
cycles . To do so, the t imer wou ld have to be set to
a va lue greater than the Q 2 2 -bus t i meout value
(10 m icroseconds) so that CPU accesses ro the
Q 2 2 -bus wou ld not be t i med our premature ly.
Moreover, the t i mer would have to be set to a
va lue much less than the Q 2 2 -bus t i meout value
so tha t una nswered COAL bus cyc les woul d not
cause Q 2 2 -bus t i meours duri ng OMA. S ince
the CQBIC conta ins a 1 0 -m icrosecond Q 2 2 -bus
watchdog t i mer , the COAL bus t i mer was set tO
2 microseconds (greater than the l ongest COAL
bus cycle) and d isabled on a l l Q 2 2 -bus refer
ences .

To su pport a range of CVAX microcycle t i mes,
the sse was des igned to ru n at a fixed c lock rate '
asynchronously tO the CPUjmemory su bsystem .
Si nce the performance of the functions i n the SSC
was not crit ica l . the performance i mpact was not

fl
a concern .

Hardware Interrupts
The i n terrupt logic is spread among t hree chips:
CVAX, SSC, and CQBIC. The CVAX p rovides four
i nterrupt request p ins that correspond to stan
dard VAX hardware i nterru pt request levels
I 4 through 1 7 . The CVAX does not p rovide an
i n te rrupt-acknowledge p i n . The CVAX acknowl
edges i nterrupts when the processor's prior i ty
level is below the i nterrupt l evel by generat ing
an i n terrupt acknowledge cyc l e on the COAL bus .

Digital Technical journal
No. 7 A ugust I 'J88

The " address" used is the l evel of the i merrupt
request be ing serviced . The data read is the offset
of the vector wi th in the system comrol block.

The SSC comains the interrupt-acknowledge
p i n . The SSC responds to i merrupt-acknowledge
cyc les whenever it has an i n terrupt pend i ng at
the l eve l be ing acknowledged . If t he SSC does not
have an i nterrupt pend i ng at that leve l , it asserts
the i nterrupt-acknowledge signa l . The CQBIC
passes i merru pt-acknowledge cycles on to the
Q 2 2-bus on ly when the sse asserts the i merrupt
acknowledge signa l . This i merrupt-acknowledge
scheme saves a CVAX p in , a t the expense of
requiri ng the devices in the sse to have the
h ighest i nterru pt priority a t their l evel (I RQ 1 4) .

The CQBIC uses a l l four CVAX i nterrupt
req uest l ines to su pport the four Q 2 2 -bus i mer
rupt request leve ls . (BR4 through BR7 are con
nected to the pins corresponding to I RQ leve ls
1 4 through I 7 .) S ince the Q 2 2 -bus has onl y
one in terrupt-acknowledge l i ne , i t i s poss ib le
for a l evel 7 (I 7) device ro stea l an i merrupt
acknowledge cycle i ntended for a level 4 (1 4)
device . (This "stea l " can occur i f the leve l 7
device is c loser to the processor and posts an
i nterrupt after the level 4 in terrupt was acknow l
edged but before the acknowledgment reached
i t .) To prevent this s i tuat ion from caus ing a level
7 (I 7) device driver from run n i ng a t a lower I PL,
the CQBIC sets a b i t that is returned a long wit h
the vector offset . This bit causes the CVAX t o set
the processor lPL to 1 7 before pass ing control to
the driver. If the b i t is not set , the processor I PL is
set tO the level at which the i nterrupt request
was received . The CQBIC a lso adds an offset of
200 (hex) tO the vector returned by the Q 2 2 -bus
device so there is no confl ict wi th existing VAX
system control block entries .

Performance Relative to the
Micro VAX II Processor Module
The reduction in gate delays due to rhe new ch ip
technology a l lowed the processor m ic roeycl e
t ime t o b e reduced to 90 n s (versus 2 0 0 n s for
MicroVAX I I) and t he m i n i mum bus cycle t ime
to be reduced to 1 80 ns (versus 4 00 ns for
M icro VAX I I) . The i ncrease i n t he n umber of tran
sistors made ava i lable by the new technology
a i .Jowed the fol lowi ng arch i tectural mechan isms
to be used to i ncrease performance :

• A larger prcfetch buffer (1 2 versus 8 bytes)

• A larger translat ion buffer (2 8 versus 8 entries)

Digital Technical journal
No. 7 A ugust 1988

• A l KB, 90 -ns . first - level cache

• A 64KB, 1 80-ns , second - level cache (i nstead
of 1 MJJ of memory)

• Mu l t iword transfers (longword , quadword ,
hexaword , and octaword versus longword)

• CPU write b u ffers (one longword) i n the CPU,
memory controller and Q 2 2-bus i nterface

• Larger DMA buffers (1 6 words versus 2 words
for wri tes , 4 words versus 2 words for reads)

• A 1 6-cntry scatter-gather map cache

The combi nation of reduced cyc le t imes and
arch i tectura l mechanisms produced a CPU per
formance 3 . 2 t i mes that of the MicroVAX II (as
measured by the mean of the d istribut ion of
resu lts from over 1 5 0 CPU benchmarks) . Add i
tiona l ly , a s l ight i ncrease i n maximum I/0 band
width was achieved (as measured by s imulat ion
with an ideal Q-bus master) .

Reliability
Both the MicroVAX li design and the M icroVAX
3 5 00/3600 design were subjected to extensive
thermal ana l ysis . Th is analysis comri buted to a
board layout a nd ch ip packaging scheme that
woul d m i n i mize junction temperatures , t hereby
i mproving re l iab i l i ty . Both designs a lso ensure a
h igh l evel of rel iabi l i ty by usi ng precondit ioned
components that have passed a rigorous qua l i
ficat ion program .

Because of i ts i ncreased complexity, the
M icroVAX 3 5 00/3600 was designed to be more
rolerant of i ntermittent and transient fa i lure
mechanisms. ECC rather than parity is used to
protect mai n memory, and the data path between
the CPU and main memory (i nc luding both
caches) is protected by byte parity. There are
a lso four t i mers (t hree for the Q 2 2-bus and one
for the CDAL bus) to detect unanswered bus
cycles . The CVAX can detect four types of CFPA
errors. four types of memory management un i t
errors, one type of in terrupt error and one type of
m icrocode error. Errors that are detected syn
chronous ro CPU execution are reported by
means of a mach ine check on the same cycle on
which the errors are detected . (Comparat ive ly,
the MicroVAX I I reports the errors on the subse
quent cyc le .) Unique machine c heck frames or
hardware error flags are provided so t hat the
proper error recovery rout i ne can be invoked .
The recovery rout ines typical ly log the error,
c lear the error cond it ion , retry the operation a

85

CVAX-based
Systems

------- O veruiez.u of the Micro VAX 3 500!3600 Processor Module

speci fied nu mber of r i mes. and cont inue if suc
cessfu l . l f the rou t i ne is unsuccessfu l and the
fau l ty hardware can be d isabled. the system runs
in a degraded mode unt i l repa i red . Otherwise ,
the system wi l l crash . E rrors detected asyn
chronously ro C PU execution arc reponed by a
high priori ty int erru pt and arc logged, hut i n
most cases arc nonrecoverable . Errors that arc
corrected by hardware are reported via a lower
priority i merrupt , so they can be logged .

Data from re l iab i l i ty qua l i ficat ion test ing
verified that the predom inant fa i l ure mode was
in termi ttent . suggest ing that the error recovery
capabil i ties bu i l t into the system would sign i fi
cant ly increase t h e upt ime of t he system .

Testability
Most of the archi tectura l mechanisms used
to i ncrease the speed of computer systems (such
as caches and spec ia l pu rpose buffers) present
testab i l i ty problems. These mechanisms an:
a lmost a lways designed to be software traospar
t:n t . which makes them invisible to d iagnostic
software . To solve t h is problem, spec ia l d iagnos
tic modes are provided for the both the first- and
second- level caches . The first- level cache d iag
nostic mode provides a way for the CP tO expl ic
i t ly write the rag store and clear the val id bits by
using se lected instruct ions . The second- level
cac he d iagnostic mode provides exp l ic i t access
to both the rag and data stores through two
blocks of r;o add resses (the cache d iagnost ic
space and the cache tag d iagnostic space) .
Through the cache d iagnostic space, the data
store can be read or written, the tag store can
be written and the va l id b i ts can be cl eared .
When not i n di agnostic mode, cache appears in
th is space as h igh speed R.At'vl . During power-up
self- test . d iagnostic code is transferred from ROM
to th is RAM to a l low fast execut ion of the code
without requ i ring that main memory be fu nc
t iona l . Through the cache tag d iagnostic space .
the stare of the cache tag b i ts . parity b i ts . va l id
bits . and several po ints wi th in the cac he control
logic can be read .

The M icroVAX .)' 5 00/)600 processor modu le
design a lso provides a d iagnostic mode for main
memory and a means of wri t ing to main memory
through the Q 2 2-bus i nterface . The main mem
ory d iagnostic mode a l lows memory test t i mes to
be significant l y reduced . Further, wri t ing to main
memory through the Q22 -bus interface a J J ows
the scatter-gather map functiona l i ty tO be tested

wi thout the ass istance of another device on the
Q 2 2 -bus z

Summary
Having met performance goals , MicroVAX 3 5 00/
�600 systems were sh ipp ing in volume wi th in
three years of the first shi pments of M icroVAX I I .
At rhar t i me , rwo system packages, over twenty
mass storage and commun ications opt ions , three
operat ing systems, and over 2 0 0 software prod
ucts (for VMS a lone) had been qua l i fied and were
ava i lable from Digi ta l . Scores of hardware and
software products were a lso ava i lable from th i rd
party vendors. This offering wou ld never have
been poss ible wi thout the level of compat ib i l i ty
that resu l ts from strict ad herence ro exist ing CPU
(VAX) and l jO bus (Q 2 2-bus) speci ficat ions .

References

I . T. Leonard, ed . , VA X A rchitecture Refer

ence Man ual (Bedford : D igita l Press, Order
No. EY-34 5 9E- D P. 1 987)

2. KA 650-AA CPU Module Reference Manual

(Maynard: Digi ta l Eq u i pment Corporat ion ,
Order No. EYKA6 50 -UG, 1 9R 7) .

.') . T Fox , P. Gronowski , A. Ja i n , D. Leary ,
and D . M i ner , "The CVAX 7R034 Ch ip ,
a .1 2-b i t Second-generation VAX M icro
processor," Digital Technical journal

(August 1 988, th is issue) : 9 5 - 1 08 .

4 . E Mcle l lan , G . Wol rich , and R . Yodlowsk i ,
" Deve lopment of t h e CVAX Float ing Point
Ch ip , " Digital Technical journal (August
1 9H8 , this issue) : I 09- 1 20

5 . C. DeVane, " Design of t he MicroVAX 3 5 0 0/
3600 Second- level Cache , " Digital Techni
cal journal (August 1 9 8H, th is issue) :
H7-94

6 . D Morgan , "The CVAX CMCTL - A C MOS
Memory Control ler Ch ip , " Digital Techni

cal journal (August 1 988, th is issue) :
1 :)9- 1 4 3 .

7 . !3 . Maskas, " Deve l opment of the CVAX
Q 2 2-bus I nt erface Ch ip , " Digital Techni

cal journal (August 1 988. this issue) :
1 29 - 1 3 8

8 . J Wi nston , ' 'The System Su pport Ch ip ,
a Mu l t i fu nct ion Ch ip for CVAX Systems, ''
Digital Technical journal (August 1 988 ,
th is issue) : I 2 1 - 1 28 .

DigitaJ Technical journaJ
No. 7 A ugust 1 988

Charles]. DeVane I

Design of the Micro VAX 3500/3600
Second-level Cache

The MicroVAX 3500/3600 processor module, the KA650, is a CVAX-based
uniprocessor that incorporates an unusual cache architecture: a two-level
cache. The first level is a small fast cache on the CPU chip, and the second
level is a large, somewhat slower cache on the processor module. Along
with high quality and high performance, time-to-market was a crucial goal
for this third-generation Micro VAX system product. Consequently, project
engineers adhered to a philosophy of design simplicity for the second-level
cache. Cache performance measurements support their design decisions.

The Micro VAX 3500/3600 Project
The primary goa l of rhe M icroVA.X 3 5 00/:)600

pro ject was s imple . The ch ip designers in rhc
Sem iconductor Engi neering G roup (SEG) were
work ing on a new si ngle-chip VAX . CVA.X . 1 The
ch ip wou ld have i ts own on-c h ip cache and was
pro jected to achieve a performance leve l three
r imes the origina l M icroVAX ch ip used in rhe
MicroVA.X II system . The MicroVA.X Deve lopment
Gro u p wou ld work in concen with the SEG effort .
Our goa l was ro sh ip a h igh-qua l i ty, h igh-perfor
manu: CVA.X-based un i processor , which wou l d
be u pward compat ib le w i t h Micro VAX I I systems.

Th is new product must be ava i lable as soon as
CVA.X ch ips cou ld be produced in vol u me .

G iven rhe object ives of high qual i ty and
MicroV�'(II system com pati b i l i ty , the remain ing
design goa ls were carefu l ly priori t i zed as l isted
be low :

I . Time ro marker

2 . Raw computational performance

:) . Memory expans ion

4 . D i ree 1 -memory access (OMA)jrea l - t ime per

formance

5 . Sysre 111 cost and price

6. Addi tiona l fu nct iona l i ty

The i mportance of qu ick ly del ivering the
MicroVA.X 3 5 00/YlOO to market led to a c l ose
worki ng relationsh i p between the eng i neers i n
SEG and MicroVAX Deve l opment . We designed
and bu i l t the MicroVAX CPU a nd memory mod-

Di�ital Technic:al journal
,Vo . ., A ugust J 'JHH

u lcs in para l le l with the CVAX pro ject . a process
t hat re l ied heavi ly on s imula t ion . I n turn, rhe
MicroVA.X project team provided t he i n i t ia l
debug testbed for CVAX : CVAX first booted VMS
in a M icroVAX y ; oo;.1600 system .

Overview of the
KA 650 Processor Module
The system fu nctional part i t ion (Figure I) shows
how the KA6 5 0 processor modu le fits imo the
en t i re computer system . The processor modu le
com mun icates to mass storage, commun icat ion ,

and other 1/0 devices ovcr t he Q 2 2-bus. Main
memory con nects ro rhe processor on a private
memory bus which uses both t he backp lane and
"over- the - top" ri bbon cable . t\ console panel car
ries bit rare and configurat ion swi tches, a si ngle

digit hexadec i ma l d isp lay , a connector for the

conso le ser ia l l i ne . and a N i Cd battery for the
processor 's r ime-of-year (TOY) clock .

The module funct ional part i t ion i n Figure 2

shows the basic parts of the KA6 5 0 processor
mod u l e . Al l memory traffic tlows over the COAL
bus (CVA.X datajaddress l i nes) . Only ljO space
registers reside on the 13CDAL bus (buffered
CVA.X data/address l ines) .

The: memory control ler subsystem and the
Q 2 2-bus in terface subsystem are each s i ngle
c h i ps : the C MCTL (CVA.X memory control ler)
and CQBIC (CVA.X Q 2 2-bus interface ch ip) 21
Most of the system support funct ions arc con
ta incd in another ch ip , the: sse (system su pport
ch ip) . ' Each of these was dcsigned in para l le l
w i th CVA.X . as part of a compl ete CVA.X chip set .

87

------ Design of the Micro VAX 3500j3 MJO Second- level Cache

CONSOLE
S E R I A L L I N E

!
CONSOLE PA N E L

BAU D RATE A N D
CONFIGU RATION
SWITC H E S

1 DIGIT H E X D I S P LAY

TOY CLOCK BATTE R Y

KA650 PROCESSOR

C P U WITH TWO-LEVEL CAC H E

M EMORY DATA

MS650 M E M O R Y

1 M I N I M U M
4 M A X I M U M

M E MORY A D D R E S S A N D CONTROL

Figure 1 Micro VAX 3500/3 600 System Fun ctional Partition

The primary problem left to the KA6 '5 0 mod
u l e designers was to ba lance two key goa ls : to
design the board- level cache for the h ighest per
formance poss ib le and to do so wi thout endan
gering the project's t i me-to-market goa l .

Two-level Cache Architecture
Description
The KA6'50 is D ig i ta l 's first commerc ia l ly ava i l
able processor t o incorporate a two- leve l cache .
The first leve l is a sma l l cache on the CPU
ch ip with a cyc le t i me of one microcycle , or
90 nanoseconds (ns) . 'T'he second leve l i s a large
cache on t he processor modu le wi th a cyc le time
of two microcyc les , or 1 80 ns . In comparison ,
the cyc l e t i me of main memory system is five
microcycles , or 4 '5 0 ns .

The goal of each l evel of cache is to reduce
effect ive memory access t i me on processor read
cyc l es . At the c h i p leve l . the CVAX processor
wou ld prefer to use just one m icrocyc le to access
memory. However, the CVAX bus i nterface uni t
(BIU) req u i res two m icrocycl es to access mem
ory off the ch ip . To compensate for th is gap , the

88

CVAX des igners included an on-ch ip cache that
cou ld be accessed in one m icrocyc le , and made
the cache as l arge as practica l . From the modu le
perspective , CVAX can run a bus cycle as qu ickly
as two m icrocycles . However , the memory system
req u i res five m icrocycl es to access ma in memory.
To com pensate for th is second gap , t he mod u le
designers i nc luded a modu le leve l cache that
cou ld be accessed in two microcyc les , and made
the cache as large as pract ical.

First- level Cache
The first - leve l cache is a 1 k i lobyte (KB) , two-way
set assoc ia tive cache with a quadword b lock s ize .
The cache is organized as 64 rows, each row con
ta in ing two sets, and eac h set contai n i ng 8 bytes .

Two b i ts i n the cache disable register (CADR)
select w hether the first- level cache stores
! -stream only, 0-stream on ly (ord i nar i ly used
only for d iagnostics) . or bot h ! -stream and
D-stream references. The cache a l locates a b lock
whenever a cacheabl e read reference misses t he
cache . The CVAX BIU then generates a quadword
read cyc le to fi l l the a l located block.

Digital Technical journal
No. 7 A ugust 1988

.-L J-.

CPU A N D FPA

�

...
/

A<3 1 :2>
I ADDRESS LATCH J

CDAL<3 1 :0>

) �
7

M A I N MEMORY
CONTROLLER

� �
M A I N M EMORY
INTERCONN ECT

A < 1 6:2>

SECOND-
LEVEL
CAC H E

L

...,__

I

..... _
BCDAL<3 1 : 0>

)

)

� 1
SYSTEM
S U P PORT
SUBSYSTEM

......._ CONS OLE
L ..,....- PAN E

6. \7 j BCDAL TRANSCEIVERS L � I) I �...,__ �
022-BUS
INTERFACE 022-BUS

�

Figure 2 Micro VAX 35 00/3 600 Module Functional Partition

The CVAX Bill wai ts to determi ne whether a
read reference h i ts i n the cache before start ing
the bus cycle to access memory. This wai t helps
free the processor bus for use by DMA devices , but
req u i res faster RAMs i n the second- level cache .

The processor writes d i rectly t hrough the
cache ro memory. Therefore , when a cache block
is a l located , the block be i ng replaced need not
be written back to memory. The CVAX Bill a lso
i ncorporates a write buffer to su pport dump

and-ru n writes by t he processor. I f the COAL bus
is busy when CVAX needs to write, the Bill wi l l
buffer one wri te cyc le . The buffering a l lows the
processor to cont inue execut ion , read ing from
the first- level cache . Thus, some write cycles
requ i re on ly one microcycle .

When DMA devices write to main memory, the
cache must be updated to reflect the change i n
main memory. Cache data that i s n o longer con
sistent with the contents of main memory is
ca l l ed stale data . To prevent stale data from accu
mulat ing in the cache when DMA devices write to
memory, the cache w i l l check a nd i nva l idate one
or two blocks as necessary. I nva l idation ties up

Digital Technical journal
No. 7 A ugust 1 <)88

the fi rst - level cache for three m icrocycles per
quadword block and six m icrocycles for an acta
word . However , these delays sta l l CPU execution
only i f the CPU requ i res access to the cache dur
ing those microcycles.

Second- level Cache
The second- l eve l cache is a 64KB d i rect-mapped
cache, which l i ke the fi rst leve l , a l so has a quad
word block size. This cache is organized as
8K rows , each row conta i n i ng one set of 8 bytes.

The second - leve l cache a l locates a q uadword
b lock whenever CVAX reads a q uadword that
misses t he second- l eve l cache . (Quadword reads
are ord inari ly the result of a l locat ion in the first
leve l cache . Unusual bit settings in t he CADR,
however, can cause the CVAX Bill to generate
quadword cyc les on reads without actua l ly
enabl ing the first- leve l cache .) Thus, the second
level cache w i l l i nc lude the same kind of data as
the fi rst - level cache : 1 -stream on ly, 0-stream
only, or 1- and 0-stream references .

I nstead of wai t i ng to determ i ne whether a read
reference h i ts i n the cache , the memory con-

89

CVAX-based
Systems

. ------ Design of the Micro VAX 3500/3 600 Second- le/lel Cuche

trol ler begins access i ng memory in para l le l with
the tag look-up i n the second- level cache . I f the
reference h i ts in t he cache, t he memory con
trol ler wi l l aborr i ts response to CVA.X (a l though
t he control cyc le to the memory mod ules com
pletes normal ly) .

Li ke t he first - leve l cache , the second- level
cache also writes d irectly through ro memory .
The memory control ler w i l l perform a du mp-and
run wri te if the write is an u n masked Jongword .
Therefore many write cyc l es can complete in two
microcycles . This complet ion t i me assumes the
memory modu les arc not busy complet i ng a pre
vious du mp-and-run wri te . aborted read cyc le . or
refresh cycle

During DMA the second- leve l cache wi l l a lso
check and inval idate one or two blocks as neces
sary. These checks prevent stale data from accu
mulating during DMA write cyc les to memory.

Design of the
KA 650 Second-level Cache
The importance of m i nimiz ing t i me taken to
del iver t he product to market made s i m p l ic ity a
h igh priority. For most major design decis ions .
we c hose t he s implest i mp lementation .

Cache Speed
The cache speed was determi ned by the fastest
CVA.X bus cyc le . CVAX can read or write a s ingle
!ongword i n two m icrocyc l es (1 80 ns) and read a
natura l l y a l igned quadword in three m icrocycles
(2 7 0 ns) . Each added wai t state costs another
microcycle (90 ns) For example , a typical quad
word read from main memory requ i res five
microcyc les for the fi rst longword and three
microcycles for the seconcl longword - a total of
7 2 0 ns . Therefore the goal of the second- level
cache was to a l low CVAX ro execme from mem
ory with no wai t states Pre l i m i nary t iming dia
grams determi ned that ro keep up wi th a I 00-ns
CVA.X the cache wou ld req u i re 4 '5 -ns static RANts .
When later in t he project KA6 '5 0 modu le design
ers changed the clock speed from I 00 ns to
90 ns, t hey also replaced the 4 '5 -ns cache RAMs
with 3 '5 -ns RAMs .

Cache Size
Increasi ng a cache's s ize a l ways i mproves i ts
performance . S ince h igh performance was a
major pr iori ty . c hoosing the cache size was s i m
p l y a matter o f finding t h e l a rgest RAM that wou ld
run fast enough, fit on the board , and not risk the

90

sched u l e . At the begi nning of the project , we
doubted that 2 '5 6- k i lobi t (Kb) static RAlvls wi th

4 '5 -ns access t i me wou ld be ava i lable soon
enough . However, we expected 6 4 Kb RAMs to be
mature when Manufacturing wou ld need produc
tion volumes of the pans for the M icro VA,'\ 3 '5 00/
3600 system.

The 6 4 Kb RAMs were ava i lable i n three orga n i
zations : 64 K b y l , 1 6K by 4 , and 8 K b y 8 . We
cou ld have arranged t hese to form a 2 5 6KB cache
(us ing 32 64 K-by- I RAMS) , a 64 KB cache (using
8 I 6K-by-4 RAMs) or a 3 2 KB cache (us ing 4 SK
by-8 RAMs) . The 2 5 6 KB cache wou l d not have
even tit on the module . and so was not consid
ered The 64 KB cache wou ld fi t (req uiring only
s l ight ly more module space than the 3 2 KB
cache) and was actua l ly c heaper than the 3 2 KB
cache . So natura l ly we chose the 64 KB cache . We
then added four I 6K-by- l RAMs for byte parity.

Cache Organ ization

We qu ickly ru led out organ iz ing the cache with
more than one set . More than one set woul d
ei ther requ ire too much logic o r run too slowly .
To get data fast enough from t he correct set on
a read h i t would requ ire a mult ip lexer and a
separate set of RAMs for each set . This addi tional
logic wou ld take more space than we had ava i l
a b l e Another possibi l i ty was t o use a "select set "
s ignal generated from the tag-srore match signals
as an address bit in to t he data store RAJvts . This
organ ization , however, wou l d run roo slowly .

The cache performance s imulat ion data ava i l
ab le r o u s assumed t h e cache was flushed on
every context switch . We fe l t this assu mpt ion
might be overly pess imistic for caches as large as
64 KI3. Furthermore , we expected that more rea l
ist ic data wou l d not show a large performance
advantage for a two-way set assoc iat ive cache
over a d i rect-mapped cache . We therefore c hose
the si mpler d i rect-mapped organ izat ion .

Block Size
When choosing the block size for the second
level cache. we aga in decided in favor of si mpl ic
i ty . We c hose to make the second- leve l cache use
t he same size block as the first- leve l , which was
a lready set at a quadword . At quadword block
s ize , the second- l eve l cache can a l locate a b lock
simul taneously with the fi rst- level cache . The
second - leve l cache s imply capwres the data from
the quadword read as i t comes from memory over
the COAL bus .

Digital Technical Journal
No. 7 A ugust 1988

We had severa l add i t ional reasons for not
c hoosing e i ther a longword block s ize or a s ize
larger than a quadword . Use of a longword block
s ize i n the second- leve l cache compl icates the
control logic and potent ia l ly degrades perfor
mance . To respond to a CVAX quadword read, the
cache wou ld req u i re two separate tag look-ups. If
the first look-up h i t but t he second look-up
missed , the cache wou ld have to retry the bus
cyc le . The retry wou ld i nva l idate the block in the
fi rst- level cache and waste bus bandwi dt h . On the
other hand . use of a block s ize larger than a quad
word wou ld requ i re extra data pat h and control
to perform block fi l l operations .

Tag Store Organ ization
Once we knew the data store s ize (6 4 KB) , orga
n izat ion (d i rect-mapped) , and block s i ze (quad
word) , we cou ld determi ne t he organ izat ion of
the tag store .

The tag store req u i res one row for each of the
8 . 1 9 2 quadword bloc ks of the data store . Of the
CVA..-'< 3 0 b i t physical address . 1 3 address b i ts
(b i ts I ') through 3) are used to select the quad
word block and associated tag store row . Each tag
row must store a par i ty b i t , a va l id b i t , and
enough of the memory address to spec i fy where
i n ma in memory the quadword block of data
came from . Since the KA6 5 0 wou l d arc h i tec
tura l ly su pport no more than 64 MB, address
b i ts 29 through 2 6 wou ld a lways be zero to
access ma in memory. This l eft 1 0 address b i ts
(b i ts 2 ') through 1 6) to be stored i n the tag
row. Therefore the tag store wou ld req u i re
8 , 1 9 2 words of RAM , each word cons ist ing of
1 0 tag b i ts plus a val id b i t and a par i ty b i t .

To make th is SK-by- I 2 array, w e used t hree of
the same 1 6K-by-4 RAMs used i n the data store .

We did exa m i ne the specia l 2 K-by-9 tag-store
RAMs be ing developed by some memory vendors.
We conc luded that these RAMs were too sma l l
and their ava i labi l i ty too risky for the KA6 5 0 .

Look-aside A rchitecture
The design of the fi rst- leve l cache keeps most
of the processor memory traffic off the COAL
bus . I nstead of th is " look-through " design, t he
second-leve l cache uses a " look-aside" arc h i tec
ture which s impl ifies the bus data path and con
trol and i mproves performance on cache m isses .

I n the look-aside architecture, both the
second- leve l cache and the memory control ler
reside on the same bus . When CVA..-'(starts a read

Digital Technical journal
No. 7 A ugust / '}88

cyc l e . the memory control ler begi ns access ing
ma in memory i n para l l e l w i th t he tag c heck i n
the second- level cache . I f the cycle misses the
cache , then main memory is prepared to respond
as quickly as poss ib le . If the cycle h i ts t he cache ,
the memory control ler senses t he h i t and aborts
i ts response to the bus cyc le . A drawback of th is
scheme is t hat t he memory controller must st i l l
complete the control cyc le to the dynam ic RAMs
of ma i n memory. Consequently, the control ler
cannot respond as q u ickly as it had i n it i a l ly
i f the cache h i t is i m mediately foll owed by a
cache miss . We expected th is pena l ty to be
i ns igni ficant .

The a l ternat ive to a look-aside arc h i tecture
wou ld be to place the memory control ler on a
separate bus. The bus cyc le wou ld pass to the
controll er on ly after the cyc l e m issed the second
l evel cache . This design wou l d have i mproved
the effic iency of ma in memory usage . However ,
th is design requ i res addi t ional data path and con
trol to create the separate memory bus , and
reduces processor performance by addi ng at least
one add i t ional m i crocyc le to the pena lty for a
cache m iss.

Handling of Write Cycles
We c hose a s imple wr i te-through design for the
second- level cache i nstead of a more complex
write-back des ign . The penalty of not us ing
write-back is reduced by the CMCTL dump
and-run write feature . When CVAX wri tes an
u n masked longword to ma in memory , the CMCTL
latc hes the add ress and data and termi nates the
bus cycle before the write to ma in memory is
actual ly completed . If write cycles occur back to
back (which is common for VAX processors) ,
then the second write wi l l be del ayed w h i le
the first one completes . However , many write
cycles can sti l l com plete in the m i n i mu m two
m icrocycles .

DMA Access to the Cache
To mainta in design s impl ic i ty , we decided not to
a l low DMA to read or wri te the second- level
cache . This section d iscusses several of the
poss ib i l i t ies we cons idered and rejected . These
i nc lude OMA reads, OMA write-through . and a
cache w i t hout val id b its .

F i rst , we considered a l l owing t he CQBIC
(which is the only DMA device on the COAL bus)
to read from the second-l evel cac he . However,
the cache control logic is synchronous with the

9 1

CVAX-based
Systems

�------ Design of the Micro VA X 3500/3 600 Second-level Cache

CVAX clocks . The control logic design wou ld
have been significantly comp l icated i f that logic
had to respond to the CQBIC , which runs asyn
chronous to the CVAX c locks .

Second . the cache must recognize Dl'vlA wri tes
to memory to prevent stale data from accumulat
ing i n the cache . We considered lett ing Dl'vlA
write cyc les write through the cache , but aga in
concluded the t im ing was too complex to be
practica l . (Bus pari ty was a lso a concern , which
is d iscussed in the section Cache Par i ty .) I nstead ,
the second- l evel cac he l a tches the address and
s imply inva l idates one or two blocks if the
address h i ts in the cache.

Finally. while considering Dl'vlA write-through,
we thought about designing the cache without
any val id bits . Power-up rout ines in the read-on ly
memory (ROM) code cou ld i n i t ia l ize the cache
to match ma in memory . The cache woul d then
remain cons istent with memory u nless an u ncor
rcctable ECC (error correct ing code) error was
encountered i n main memory. When that error
occurred, the cache wou ld s imply d isable read
h i ts unt i l the operat ing system cou l d restore con
s istency with main memory by writ ing the quad
word bloc k conta in ing the error. Of course once
we decided against Dl'vlA wri te-through , we had
to i nclude valid bits .

Cache Parity
To i mprove the in tegri ty of the second- leve l
cache , both the data store and the tag store of the
second- level cache are protected by pari ty.

Data Store Par i ty - Data store pari ty was s im
pl ified by taking advantage of the COAL bus par
i ty supported by CVAX and CMCTL. The data
store s imply stores and returns parity captured
off t he bus, and asserts COPE (CVAX data parity
enable) to have CVAX check the parity.

This parity checking scheme was another rea
son we rejected DMA wri te-through , since CQBIC
nei ther generates nor checks COAL bus pari ty .

One drawback to th is s impl e scheme is that the
processor cannot eas i ly determine the source of a
COAL bus pari ty error . A COAL bus pari ty error
can be caused by a cache fa i lure , a CMCTL fai l
ure . o r an actual bus fau l t (such a s open etch) .
This lack of isolation makes error diagnosis
d i fficul t or i mpossib le when CVAX detects a
COAL bus pari ty error.

One usefu l fea tu re we d id not th ink to inc lude
was a control register b i t to disable the assertion
of COPE and the subsequent parity checking by

9 2

CVA..,'<. . Such a b i t wou l d a l low a machine check
handler to isolate a fai l i ng bit i n t he data store .
Without t h is control register b i t , software can at
best determi ne in which byte the error resides; i f
mul t ip le bytes have errors, on l y one byte can be
ident ified .

Tag Store Parity - The tag store parity must be
generated and checked by t he tag store itse l f
Two separate pari ty trees arc used :

• The predictive parity tree

• The error-checking tree

The predictive pari ty tree generates the parity
of the tag fi e ld of the address . This tree predicts
what the parity stored i n the RAM must be for the
bus cyc le to h i t in the cache . Predictive parity is
fast because the parity is ca lculated whi le the tag
RAMs are looking up the tag. This scheme does
not delay the tag comparison a nd is sufficient to
guarantee that bad par i ty stored i n the tag RAMs
w i l l force a cache miss. However, it is not
sufficient to determi ne whether the parity in the
RAMs is actua l ly bad . Thus, a second parity tree,
the error-check ing tree, is needed .

The error-checking tree ident ifies bad parity i n
the cache tag RAMs. The output of th is second
tree is checked after t he h i tjmiss decision is
made , to determi ne whether a m iss was caused
by bad pari ty. If bad parity is detected , the cache
control register error bit is set , the cache-enable
bi t is c leared , a nd an i n terrupt is posted to the
processor. S i nce t he bad pari ty forced a m iss, no
state is corrupted , and a process or system crash
is averted .

Second-level cache tag pari ty covers both the
1 0 tag b its and the va l id b i t to protect aga i nst
erroneously set val id b i ts .

Cache Diagnostic Space
Early in the project we recognized the va lue
of be i ng able to d i rectly access the cache as
6 4 KB of fast RAM . Thus we created " cache d iag
nostic space" in the 6 4 M B address range from
1 000 0000 to 1 3 FF FFFF. I n cache d iagnostic
space , the cache RAM appears as 1 ,0 2 4 copies of
t he 64KB of cache. The cache responds to a l l
CVAX read a nd wri te cyc les in t h i s address range ,
effect ive ly forcing a cache h i t . For s impl ic i ty ,
DMA access t o cache d iagnostic space i s not per
m i tted .

During power-up se l f-test , some d iagnostics
are re located from t he boot/diagnostic ROM
to cache d iagnostic space for faster execut ion .

Digital Technical journal
No. 7 A ugust 1 988

Cache diagnost ic space was also usefu l at i n i t i a l
debug of the CVAX chip set . We were able to
down l i ne- load d iagnostic programs t hrough the
console ser ia l l i ne and execute them from the
cac he d iagnostic space . With t he d iagnostic pro
grams in th is cache space , we cou ld cont inue
debug work on t he mod u le without relying on
ei ther main memory or the Q-bus in terface .

Wri t ing to cache diagnostic space cou ld cor
rupt norma l cache operation by creat ing sta le
data i n t he cac he. To prevent th is , write cycles to
cache d iagnostic space normal ly i nva l idate the
tag for that address . Th is i nva lidation a lso pro
vides a s imple means for fl ushing a l l or part of the
cache . To s impl ify d iagnosis of cache fau l ts , a
d iagnostic mode bit in the cache control register
can be set to cause wri tes to cache d iagnostic
space to set the va l id bit instead of c learing i t .
Set t ing t h e d iagnost ic mode b i t a lso c lears the
cache enable bit . Thus normal a l l ocat ion and
DiVtA i nval idat ion are p revented from acciden
ta l ly upsett ing a d iagnostic pattern be i ng written
into t he cache . These features s impl i fy t he task of
putt ing t he cache in a specific state for d iagnostic
purposes .

Performance Measurements
Measurements of second- level cache perfor
mance bear out that the fundamental arch i tec
tura l decisions were sound .

The measurements were performed on a sma l l
system consist ing of a KA6 5 0 CPU w i t h 1 6MB of
main memory , an RQDX 3 disk control ler wi th an
R D 'J 4 hard disk, and a DEQNA E thernet i nterface .
The C PU module was modified wi t h addit iona l
circu i try to detect various k inds of cacheable bus
cycles . The system ran VMS version 4 . 7 A. To heav
i l y load the system with reasonably rea l istic
workloads, we used varying combinations of
three basic tasks:

• Assembl ing and l i n k ing a large program writ
ten i n VAX iVtACRO

• Runn ing a CAD program t hat compares t he
topology of two large net l i sts

• Copying large fi les (greater than 8 , 000
b l ocks) across t he network

four I G-bi t counters and a l ogic ana lyzer were
used to log the occu rrence of particu lar bus
cycles . For each measurement , the cache perfor
mance was mon i tored continuously for 5 to 30
minmcs (depend ing on rhe work l oad a nd type of

Digital Technical journal
No. 7 A ugust 1 ')88

bus cycle) to col lect a total of 268 m i l l ion
sequential bus cyc les of i n terest . For example , to
study the read h i t rate, the fou r counters s imu lta
neously col l ected :

• The tota l nu mber of cacheable quadword read
cycles

• The nu mber of cacheable quadword read
cycles that hit in the second- leve l cache

• The number of cacheable quadword read
cycles that missed the second- l eve l cache
(Cou n ting borh the cache h i ts and misses pro
vides a usefu l error c heck .)

• The number o f cacheable quadword read
cyc les that hit in the cache, or that wou ld have
h i t if t he val id b i t had been set

S ince CVAX gives no external i nd ication when
a memory read is satisfied by the internal cache ,
on ly reads that m iss t he fi rst- l evel cache (and
t herefore generate a bus cyc le) can be d i rectly
measured . Thus, i t is very i mportant to note that
the read h i t rate of the second - level cache a lone is
not t he same as the read hit rate of both caches
taken together as a single whole (which is beyond
the scope of t h is paper) . This is not a problem for
write cycles because the fi rst - leve l cache is write
through .

Test Results
For t he work loads tested , t he read h i t rate was
typica l l y 8 5 percent and ranged between 82 per
cent and 9 1 percent . This is what we intu i t ively
expected : the large size of the cache wou l d keep
the h i t rate h igh , even t hough t he fi rst- leve l cache
tends to stri p off much of t he memory access
loca l i ty .

We measured the read hit rate of the second
l eve l cache with t he first - level cache turned off,
just to get an idea of how wel l a s imple but large
cache can perform . The memory read hit rate
ranged between 96 percent and 99 percent when
the fi rst - level cache was turned off. This demon
strates t hat even a s imple d i rect-mapped cache
performs we l l if it is l arge enough . However, note
that turn ing on the fi rst- l evel cache tends to rad i
ca l ly a l ter t he bus t raffic seen by t he second - level
cache . Therefore a d irect comparison between
h i t rates with and without t he fi rst - leve l cache
can be m is leading

The "wou l d have" h i t rate is a measure of what
the read hit rate wou l d have been i f DiVtA write

CVAX-based
Systems

------- Design ol the Micro VA X 3 500!3 600 Second- leuel Cache

cycles wrote through the cache i nstead of i nva l i
dat ing the cache . The mod i ficat ions r o the CPU
modu le inc l uded an extra tag comparator that
ignores t he valid bi t . Once the cache has i n i t i a l l y
ti l l e d . val id b i ts are c l eared on l y by D MA i nva l i
dates. I f the tag matches but the val id b i t is
c leared , then the cache m iss was caused by a
DMA inva l idate and wou l d have been a h i t i f the
DMA cyc le had written through.

The "wou ld have" h i t rate showed the benefit
of DMA write t hrough wou l d have been neg l ig i
b l e . The i ncrementa l i mprovement i n h i t rare was
typica l ly 0 . L percent , though i n one case i t rose
to abour l . :) percent (copying large fi les over the
network . w i t h no ot her computationa l rasks) .
This i mprovement i s l ost i n the noise when com
pared to the norma l task-to-task variat ion in h i t
ra re . Aga i n . th is is what we in tu i t ive ly expected :
DIVtA tends not to wri te i nto memory cu rren t ly i n
use b y the processor. C l early w e made the right
decision to avoid the added complex i ty of DMA
wrire through .

Memory write cycles were a l so measured for
the sa me tasks as memory reads. However, i nstead
of measuring the "wou l d have" h i t ra te. we
counred the number of cycles that took l onger
than two m icrocycles to complete . This gives us
some measure of the cffccrivcness of the CMCTL
dum p-and-run write buffer.

The memory write hit rate ranged between
77 percent and 89 percent . Of a l l memOt)' write
cyc l es , 4 6 percent to 6 3 percent took l onger than
two m icrocycles (the m i n i mu m write cyc le
t i me) : and 57 percent to 44 percem took l onger
than rwo m icrocycles and h i t in the cache .

We had hoped more cyc les cou l d rake advan
tage of the dump and run wri te buffer i n the
CMCTL However, this performance i s st i l l good
for t he re lat ive s i m p l ic i ty of the CMCTL write
buffer . Also remember that the CV.AX i n ternal
write: bu ffer he l ps sh ie l d CPU performance from
the de lays of many write cyc l es . The compl exi ty
and schedu le r isk of addi ng another write buffer
or designing the cache for wri te-back operation
woul d nor have been just ifiable .

To exa m i ne t h e relat ive i mpact of the two- leve l
cache on processor performance, we ran bench
marks with both caches enab led , each cache
a lone . and both caches turned off. Table 1 shows
some typ ica l resu l ts norma l i zed to the perfor
mane<: of the KA650 wi th both caches turned on .
Performance of the M icroVAX I I is shown for
comparison .

94

Ta ble 1 Comparison of Benchmark Results

for First- and Second-level Caches

Second- First-
level level

Bench- Neither Cache Cache Both MicroVAX I I

mark Cache Only Only Caches

HANOI 0.45 0 .70 1 .00 1 .00 0.42

P R I M E 0.68 0 . 8 1 0 . 9 7 1 .00 0.24

FFT45 0.52 0 . 69 0 . 9 1 1 .00 0.28

JACOBI 0.47 0 . 65 0.93 1 .00 0.27

CAE2 0 . 5 1 0.69 0 95 1 .00 0 . 3 1

Each cache provides a s ign ificant performance
boost , bur performance with the first - leve l cache
a lone is better than performance with the second
l eve l cache a lone. The faster cycle t ime and
two-way assoc iat ivity of the fi rst- l evel cache our
weighs the large s ize of the second- l eve l cache .
An extreme exam p l e of th is is the Towers of
Hanoi benchmark, where the performance of
both caches rogether is no better than that of the
first- leve l cache a lone .

Conclusions
At t he project c lose , we had mer our fundamental
goa ls . The MicroVAX 3 5 00/3600 CPU is compat
i b l e w i th the MicroVAX II but de l i vers t hree
r i mes the performance - perform ance attribut
able i n parr ro the two- leve l cache . And because
we ad hered ro a s imple design approach , the new
system was ready to sh ip as soon as CVAX ch ip
sets were ava i lable i n production vol umes .

References

1 . T. Fox . P. Gronowski . A. Ja i n , B . Leary, and
D . M iner , " The CVAX 78054 C h i p , a .1 2 -b i t
Second-generation VAX M icroprocessor,"
Digital Technical journal (August I 988,
th is issue) : 9 5 - 1 08

2 . D Morgan , "The CV.AX CMCTL - A CMOS
Memory Control ler Ch ip , " Digital Techni

cal journal (August 1 988 , t h is issue) :
1 5 9- 1 4 3

:) . f3 . Maskas, " Deve lopment of the CVAX
Q 2 2 -bus Interface Ch ip , " Digital Technical

journal (August 1 988 . th is issue) 1 29- 1 38 .

4 . J Wi nsron , "The System Support C h i p , a
M u l t i function Chip for CVAX Systems,"
Digital Technical journal (August 1 988 ,
th is issue) : 1 2 1 - 1 28 .

Digital Technical journal
No 7 A ugust 1 ')88

Thomas F. Fox
Paul E. Gronowski

Anil K.]ain
Burton M. Leary
Daniel G. Miner

The CVAX 78034 Chip,
a 32-bit Second-generation
VAX Microprocessor

The Micro VAX 78034 chip - also known as CVAX - is a second-genera

tion single-chip VAX microprocessor. A primary project goal was to

develop a chip with three times the performance of the first single-chip VAX

processor, the Micro VAX 78032. Therefore, architecture and circuit design

efforts were directed toward decreasing ticks per instruction (TPI) and

machine cycle time. The designers reduced the TPI by 27 percent and

achieved a 90-nanosecond (ns) cycle - a significant improvement

over the 200-ns cycle time of the first-generation chip. Implemented in a

2-micron CMOS process, the chip comprises six major functional units.

These include the instruction queue, execution unit, memory management

unit, bus interface unit, microsequencer and control store, and a unique

on-chip cache.

The CVAX 7 H 0 5 4 CPU ch ip i s a second -genera
t ion , s i ngle-ch ip VAX m icroprocessor. This ch ip
is the CPU of the M icroYAX 5 5 00 and 5 6 0 0 com
purer systems, wh ich have approx i mately three
r i mes the performance of the M icroVA.,'<. I I com
puter system . 1 · 2 The VAX 6 2 0 0 fam i ly of systems
uses s l i ght ly faster 80-ns (speed-b i nned) CVAX
C:Pt : ch ips i n a mu l t iprocessor configurat ion . In
th i s paper. we describe the CVAX chip and
expla in how the increase i n performance was
ach ieved.

Project Goals
The pri mary project goa I was ro deve lop a s i ngl<:
ch ip CPU that i m p lemented the VAX arch itecture
and de l ivered three t i mes the performance of the
J'vl ic roYAX 7 H 0 .) 2 CPU c h i p used in the M icroVAX
I I com puter syste ms . Of the several c lements in
th i s goa l . performance presented t he greatest
de- i gn cha l l enge .

The performance of a CPU i s inverse ly propor
tiona l to the product of t ic ks per i nstruction
(' l 'P I)1 and rhe mach i ne cyc le t i me . TPI depends
on t he performance of the system arch i tecture .
The m i n i mu m mach ine cyc le r i me depends on
c i rc u i t speecl and on how the arch i tecture is

Di�ital Technical journal
No. � A ugust t 'JH8

i mpl emented . I n t he CVAX ch ip , both the TPI
and the mac h i ne cyc le t i me were i mproved to

meet the performance goa l .
M u c h effort wen t i nto reduc ing t he TPI . By

way of compari son , the MicroVAX II system,
which is based u pon the MicroVAX 7 8 0 3 2 ch ip ,
performs a r approx i mately l l . 5 TPI ; whereas
rhe MicroVAX .)600 syste m , which uses the
CVAX 7 8 0 3 4 ch ip , pe rforms at approxi mately
8 . 4 TPI . The TPl was lowered ma in ly by reduc ing
t he average n u mber of cyc l es req u i red to access
memory . This reduct ion in the nu mber of cyc les
was ach ieved by t he inclus ion of t he fol l owing
a rc h i tectura l features i n t he syste m :

• A ! - k i lobyte (KI3) , on -ch ip i nstruction and
data stream cache , which is capable of a long
word read each cyc l e

• A 64 KB. second - l eve l cache o n t he boa rd ,
which is capable of a longword read or write
i n rwo cycles and a quadword read in three
cycles

• A 2 8-entry translat ion buffer (TB) . which
ach ieves a h igh hit rare for v i rtua l -to-physica l
address trans lat ion

9 5

The CVAX 78034 Chip, a 3 2- bit Second-generation VAX Microprocessor

Table 1 CVAX Instruction Set Architecture

I nstruction Type Number

Implemented Fully by CPU

I nteger /log ical 89
Address 8
Bit field 7
Control 39
Procedure call 3
M iscellaneous 1 0
Queue 6
System support 1 1

Character stri ng 8
Subtotal 1 81

Implemented by Floating Point Chip

F floating 24
D floating 23
G floating 23

Subtotal 70

Implemented Partially by CPU

Character string 3
Decimal 1 6
Edit

CRC 1

Subtotal 2 1

Implemented Fully in Macrocode

H floating 28

Octaword 4
Subtotal 32

Total 304

Other factors i ntl uencing the lower TPI are as
fol l ows :

• More efficient m icrocode was implemented for
some i nstructions. I n genera l , most com plex
instructions , such as CALLx, RET, PUSHR ,
POPR, and I NSV, were coded for speed rather
tha n for space.

• Six additional i nstructions were i mplemented
in m icrocode. These i nstructions are CMPC 3 ,
CMPC S , LOCC, SKPC , SCANC, and SPANC .

• The instmction decode section decodes a l l
specifiers i nstead of relying on the microcode
ro decode some specifiers.

The machine cycle t i me reduction was deter
mined in part by the technology chosen for fabri-

96

cation . The first-generation ch ip , the MicroVAX
780 3 2 CPU, has a 200-ns cycle t ime and was
i mp lemented i n a 3 - micron NMOS process. I n
comparison , the CVAX 78034 CPU chip had a
goal of a 90-ns cycle t i me and was i mplemented
in a 2 -m icron CMOS process . However , only
60 percen t of t he i mprovement i n the CVAX
cycl e t ime resu l ts from t he fabrication process.
The remainder resu l ts from arc h i tectura l and c i r
cu it innovations, which are described i n the sec
tion Internal Organization .

The sect ion fol lowing presents an overview of
t he CVAX arc h itecture .

CV AX Architecture
The CVAX 78034 CPU chip i mplements the VAX
architecture , which has 1 6 general -purpose reg
isters , the processor status longword , and 1 8 mis
cel laneous privi leged registers . All 304 VAX
i nstructions are supported by the system .4 The
chip fu l l y executes 1 8 1 i nstruct ions and pro
vides microcode operand pars ing for 2 1 i nstruc
tions that are emulated with macrocode . The
chip passes 70 F, D, and G floating point i nstruc
tions to a companion floating point ch ip . The
remaining 32 i nstructions are fu l ly emulated i n
macrocode . Table 1 summarizes t he i nstruction
set archi tecture .

The ch ip memory management hardware and
m icrocode provide a demand-paged v irtua l mem
ory environment . The virtual memory size i s
4 gigabytes, and the physical address space is
1 gigabyt e .

External interface
The CVAX bus provides a flexible in terconnect
protocol between a l l CVAX fam i ly members. The
primary data bus is 3 2 b i ts wide and is t i me mul
t iplexed t o s hare addresses and data . U p to four
l ongwords can be transferred with each address .
Strobes provide t iming i nformat ion for syn
chronous a nd asynch ronous devices . Direct mem
ory access (DMA) request and grant signals are
used to control arbi tration of t he data and address
l i ne (DAL) bus between the CPU and perip heral
ch ips .

Shown i n Figure 1 , t h e CVAX 78034 C P U ch ip
i s a synchronous device on the CVAX bus . In addi
t ion to support i ng the CVAX bus protocol , eight
dedicated p i ns support a float ing poi nt coproces
sor interface. These p i ns are time mult ip lexed
between the CPU chip and t he coprocessor ch ip
to transfer control and status information .

Digital Technical journal
No. 7 August 1 988

I NTERRU PT
CONTROL

DMA {
CONTROL

CAC H E M E M ORY
AND WRITE BUFFER {
CONTROL

-

-

-

-

-
-

-

-

-

-

-

-

-

-
HALT DS

DS

--
AS

AS
PWR F L

C R D B M < 3 : 0 >
BYTE MASK BM < 3 : 0 >

M E M E RR LATC H
�

I N TI I M

I R0 < 3 : 0 >

CONTROL STATUS CS < 2 : 0 >

LATCH
CVAX 78034
C E NTRAL PROCESSOR
U N IT

PARITY D P < 3 : 0 >
C S D P < 3 : 0 > TRANSC E I V E RS

f-- WRITE 1 T -

WR
LATCH WR

1 r -- D B E
D B E l � DMR

DMG

�� � �0 < 3 1 :00> DAL < 3 1 : 00>
DATA
TRANSC EIVER S

-

�
ADDRESS
LATCH BA< 3 1 : 00 >

CCTL - AS

CWB � DAL < 3 1 : 00 >

CPSTA < 1 : 0 > C PSTA < 1 : 0 >

CPDAT < 5 : 0 > CPDAT < 5 : 0>

DMG - DMG ROY f--
C L KA - C L KA E R R 1-
C L K B - CLKB CVAX 7 8 1 34

RESET- - R ES ET
FLOATI NG-POI NT
ACCE L E RATO R

C L KA R5Y
ROY C L K B

E R R
RESET E R R

M R 1 0B6· 1 1 5 9

Figure 1 CVA X 78034 External interface

Digital Technical journal 9 7
No. 7 A ugust 1988

CVAX-based
Systems

The C VAX 78034 Chip, a 32- hit Second-generation VAX Microp rocessor

A c lock ch i p generates pairs of 1 80 -degree
phase-shifted c lock signals that are d istr ibuted to
a l l synchronous MOS components i n t he system .
The clock also generates auxi I iary pairs of clocks
that can be used by any non -MOS components in
the external i nterface . Separat ion of the clock ing
for MOS and non -MOS el ements provides better
skew control for t he cri t ical MOS clock signals .

Microarchitecture

The CVAX 780 34 CPU chip has some pipe l in ing
and i s microprogrammed. The chip comprises s ix
major functional un its : 5·6 ·7

• Instruction decode and prefetch queue
(! - Box)

• Execut ion un i t (E -Box)

• Memory management un i t (M-Box)

• Bus in terface u n i t (BIU)

• Cache

• Microsequencer and control store

The photom icrograph in Figure 2 and the block
diagram in Figure 3 i l l ustrate a l l fu nct iona l un i ts
on the ch ip .

Internal Organization
Th is sect ion describes the s ix major fu nctional
u n i ts of the ch ip . As noted earlier, the emphasis
here i s on t hose aspects of the design t hat en
hanced the machi ne 's performance . In addition ,

Figure 2 Photomicrograph of the CVAX CPU Chip

98 Digital Technical Journal
I I

r-:::"ox- - - -

IN'TER Al DATA AND AOORlSS BUS I l t::H

CACHE

CBUS

Figure 3

MBOX

I

T J
I
I
J.- - -
1
I

I
I
I

CONTROL STORE

�--, - - - - --,
1
I
I
I
I
I
I

,----, 1 EXTERNAL DATA AND

ADDRESS BUS STATE

MACHINE I
INTERNAL DATA AND

ADDRESS BUS STAT E
�·1AC HINE

I
I
I
I
I

C VAX CPU Block Diagram

TO ASYNCHRONOUS
I NTE R RU PT PINS

I
I
I
I
I
I

_ _j

------ The C VAX 78034 Chtp, a 32- bit Second-generation VAX Microprocessm·

at the end of th is section we discuss the design
approach taken tO build in chip testabi l i ry.

The flow of in formation berween all fu nctional
un i ts on the chip is synchronized by fou r on -chip
clock phases of nom ina l ly equal duration . All c i r
cu i ts were designed to function with the partia l
phase overlap or underlap t hat can resu lt from
externa l cl ock skew and variations in the fabrica
t ion process.

Instruction Decode and

Prefetch Queue

The instruction decode and prefetch queue, the
1 - Box, con trols macroi nstruct ion sequencing and
instruction stream prefetch ing 8 Dur ing a m icro
cycle , the !-Box determines what the next m icro
code d ispatch wi l l be , based on the instruction
stream data and the current processor state .

The CVAX I -Box i s designed to generate the
microcode d ispatch add ress for every specifier
flow. This design d iffers from the M icroVAX CPU
7803 2 chip design; there , the 1 -Box provides the
d ispatch address for just the first rwo specifiers of
a macroinstruction and rel ies upon the micro
code to generate t he d ispatch address for addi
t ional speci fier flows at a performance cost of one
microcycle per speci fier.

Primary su bsections of the CVAX 780 3 2 1 -Box
incl ude the i nstruction decode read-only memory
(ROM) , the d ispatch program mable logic array
(PLA) , and the prefetch queue.

The instruction decode ROM (! ROM) conta i ns
the in format ion about VAX macroinstructions
that is req u i red to parse the instruction strea m .
The I ROM determi nes the number o f specifiers
for an i nstruction , the s izes of i ts operands, and a
partia l microaddress for the execut ion m icro
code of t he instruct ion .

The d ispatch PLA cxamines ! -Box state, i nstruc
t ion stream data , and other m icroprocessor states
to predict the next hardware-supplied microad
dress for the m icrosequencer. Thi s PLA is self
t imed and evaluates in sl ightly under one clock
phase .

The J-Box instruction prefetch queue operates
in para l l e l wi th the instruct ion execut ion hard
ware on the ch ip . Whenever a longword i n the
i nstruction prefetch queue i s empty , the 1 - Box
i ssues a request to the M-Box to read the next
a l igned longword i n the i nstruction stream If the
M-Box and BIU are not do ing some other read or
write operat ion , they w i l l fetch the requested

1 00

Jongword and send it to t he instruction prefetch
queue.

When a microi nstruction that loads the pro
gram counter register is detected , for example ,
dur ing a branch i nstruction , the prefetch queue
is flushed . A new instruction must then be
fetched before the processor can proceed .

Up to three prefetched longwords of i nstruc
t ion stream data can be queued by the prefetch
queue. In addi t ion , the prefetch queue rotates
the instruct ions to bring the opcode to the front
and extracts in - l i ne i nstruction stream data for
use by the E-Box .

Execution Unit (E-Box)

The main fu nctional blocks i n the execut ion un i t ,
the E-Box, are the register fi le , program cou nter
(PC) , constant generator, shi fter, and ar i thmetic
and logica l u n i t (ALU) . The data path has rwo
precharged 3 2 -b i t read buses , cal led the A and B
buses, and a static write bus, cal led the W bus.
The funct ions performed by the E -Box duri ng a
cycle are determi ned by the current m icroin
struct ion and i nternal state . Fol lowing are
descriptions of each of t he main functiona l
blocks .

The register fi le conta ins 3 1 s ingle- read-port/
s ingle-write-port registers and 8 dua l - read-port/
s ingle-write-port registers. The register fi le is
used in the data path where compact layout is
espec ia l ly important . Therefore , to save chip area
the register fi le cel l was designed using an NMOS
pass gate rather than a fu l l transmission gate .

The .1 2 -b i t PC is located i n the data path a long
with the program counter adder. This adder i s
used to i ncrement the PC as macroinstruct ions
are parsed .

L i terals can be i n troduced i n to t he data path by
condi t ional ly d ischarging the precharged A or B
bus l i nes .

The sh i fter function i s implemented as a data
extractor rather than a ful l sh i fter, which wou ld
requ i re more hardware . The extractor can extract
32 cont iguous b i ts from a 64 -bit fie ld . When t he
val ues on the i nput buses are identica l , t he h igh
order b i ts appear to wrap a round to the low-order
posit ions, thus mi micking a fu i J sh i fter.

The sh ifter has the two 3 2 -bi t precharged read
buses (the A a nd B buses) as i nputs and a 3 2 -bit
ou tput . The sh ifter is implemented using NMOS
transistors . The control d i agona ls are run in
polys i l icon strapped by metal a t both ends.

Digital Technical journal
No. 7 A ugust 1 988

Because the RC delay i n assert ing the control
l i nes is long, t he control l i nes are driven before
the i npu t data is val id . The inputs are then cond i
t ional ly pul led low, d ischargi ng the outputs.

The ALU in the data path is capable of addition ,
su btraction , and a variety of logic operat ions. The
ALU also i nc ludes a 1 -b i t left/right shifter and
add i t iona l logic to support mult ip ly and d ivide
operat ions . The ALU is impl emented using a
carry-lookahead scheme with propagate and gen
erate logic .

The abil i ty to read the register fi le , do an ALU
or shift operation , and write the resu l t back i nto
the reg ister file all i n one cycle is important to
the machine's performance . This crit ical path
was al leviated by part ia l ly overlapping the regis
ter file write wi th the next register fi l e read . The
partial overlap in t roduces a race between the
wri te and the read, but the c i rcu i t delay i n assert
ing the read se lect l i ne is sufficient to ensure that
the race is always won without extend ing the
cycle t ime .

Memory Management Un it

When memory management is enabled, the M-Box
uses a fu lly associat ive translation look-aside
buffer (TB) to trans late v i rtua l add resses to physi
cal memory addresses . The major des ign goal for
the M-Box was to ach ieve a TB m iss rate that was
one th ird that of the MicroYA.X 7803 2 CPU chip .
Consequently, we increased the size of the TB
from 8 to 28 page table entries (PTEs) . Further
more , we used a more efficient microcode rout ine
10 reduce the number of cycles requ i red to fetch
a PTE on a TB m iss. A PTE is composed of the
higher order bits of the physical address , the
access protection fie l d , and other memory man
agement i nformat ion . In the MicroYA.X 7 8 0 3 2
CPU c h i p . a least-recently-used a lgorithm was
employed to repl ace the PTE on a TB m iss. How
ever , the impl ementation of this a lgorithm
requ i res comp lex c ircu i ts and a large amou nt of
chip area as the TB size is increased . For th is rea
son, we i mplemented a s impler bm a lmost
equally efficient nor- last-used a lgori thm i n the
CYA.X 78034 CPU chip .

To rea l ize a single-cycle cache read operation ,
both a virtual - to-physical address translat ion and
a check of the access protection field of the
PTE must occur in just two clock phases. How
ever, there is not enough t ime to check the
access protection fie ld after the translat ion has

Digital Technical journal
No. 7 August 1 988

occurred . Therefore , a l l access protection fields
in the TB are s imu l taneously compared to t he
curren t access type whi le the translation i s i n
progress . This scheme requ i res tha t the access
protection field be ful ly decoded before it is
stored i n the TB.

In addi tion to i n teract ing with the cache , t he
M-Box i n terfaces wi th the BIU and the 1 -Box.
The M-Box con ta ins t hree registers: t he virtual
address (VA) register, t he virtual address prime
(YAP) register, and t he v i rtual i nstruct ion buffer
address (VIBA) register. After a data read or
write us ing VA or YAP, YAP is loaded with t he
most recently used address p lus four . I n t his way,
YAP can qu ickly generate sequentia l longword
add resses. During a memory operation , t he
M-Box sends the address to the cache and BIU.
The M-Box wi l l forward data from the E-Box
during the next cycle if the operation is a write,
or capture data for the E -Box if the operation is
a read .

Whenever there i s space ava i lable for a long
word in the 1 - Box prefetch queue, the 1 -Box
requests instruction stream data . I f the M-Box
does not decode a memory read or wri te request
from the current m icroinstruction , it services t he
instruct ion stream read request using the virtual
address stored in the YIBA register. After a
prefetch reference succeeds, the YIBA register is
i ncrememed by fou r i n preparat ion for the next
prefetch .

Bus Interface Unit

The bus imerface u n i t , t he BIU , controls external
chip operations, i n ternal cache access and
refresh , and a rbitrat ion for the i n ternal data a nd
address bus. The BIU contai ns two state
machines .

• The internal state machine controls the arbi
t ration for the i n terna l data and address bus
(I DALs) .

• The external state mach i ne , controls the arbi
tration for the external p ins and DAis .

The design goal was to ach ieve a si ngle -cycle
read operation for h i ts to the in ternal cache and a
two-cycle wri te operation for an ideal memory
subsystem . In addit ion , better system re l iabil i ty
is ach ieved by providing pari ty protection on a l l
the external data transfers and internal cache
rcadjwrite operations.

1 0 1

CVAX-based
Systems

The C VAX 78034 Chip, a 32- bit Second-generation VAX Microprocessor

To accomplish a s i ngle-cycle read operation,

the two state machines were i m p l e mented as self

t i med PlAs t hat require just one phase to eva l u

ate . The separation o f control operations between

the two state machi nes a l l owed the PlAs to oper

ate i n different p hases . Readjwri te-re lated . i nter

nal t i me-critica l signals are generated by the

i nternal state machine . This stare mach i ne eva l u

ates first, sta l l s t h e CPU i f necessary, conrrols t h e

cache, a n d sets states for the externa l state

machine . Time-critical external strobes are con

trol led by the external state mac hine. The exter

nal state mac h i ne operates next , controls the ter

min ation of external operations, cl ears the

interna l stare mach i ne flags, and grants control of

external buses and strobes to external devices .

On a cache m iss, the external state machine

uncond i t iona l ly drives t he external read data to

t he M-Box or the 1-Box, and a phase l ater the state

machine val idates the data . This scheme made it

possible to service the next microinstruction

while the previous one was completing.

The B I U also controls al l me mory transactions.

A me mory read operation i s pe rformed i n one

cyc l e if t here is a h i t i n the in ternal cache and no

cache parity error is detected . However, when a

cache miss occurs during a read operation , a rwo

longword block i n t he cache is al located to store

the data , which must now be read from memory.

The B I U stalls t he CPU u n t i l the first longword of

data is received . The B I U i n i tia tes the external

read cycle, send i ng t he address of the first long

word to the external memory system . When the

first Jongword of data is received , the B I U sends it

to the cache and E -Box or 1 - Box, and u ns ta l ls the

CPU. The fetch of t he second l ongword is over

lapped with othe r c h i p activi ty to m i n i m ize the

effective me mory access t ime. The second long

word of data is written i nto t he a l ternate long

word in t he a l l ocated quadword (two longword)

cache block . The cache block is va l idated only i f

both longwords i n t he block are fe tched success

ful ly .

The B I U contains a longword write buffer

wh ich supports a dum p-and-run wri te mecha

nism . Chip activi ty, includ ing cache reads, can

proceed in para l l e l while t he BIU is wai t i n g for

the com pletion of a write operation . The B I U may

have up to t hree d i fferent operations in progress

at once : a write to memory, a read from me mory,

and an i nternal cache entry inval idation . Descrip·

t ions of t hese operations in the BIU fol l ow.

Wh i l e a write to memory is await ing com ple·

tion . the internal state machine can service read

1 0 2

requests . If the read reference m i sses t he cache,

it is queued and serviced only after the write

operation com pletes. This overlapping of read

and write operations reduces the n u m ber of

memory s ta l l cyc l es , resu l t i n g i n a l ower TPI .

To fac i l i tate support for mult i processor a p p l i

cations a n d D MA activity, the B I U provides a pro

tOcol for i n ternal cache coherency. To activate

this fu nction , an external device first gains own

e rship of t he external address and data bus by

means of the DMA request and grant protOcols.

The device t hen presents an address, qua l ified by

certa in strobes, to the processor. The processor

l arches t he address and t hen performs a cache

l ook-up If a cache h i t occurs , t he marching

cache en try wi l l be inval idate d .

E i g h t p i ns are dedicated t o the floa t i ng poi n t

i nterface . To opti m i ze the operand transfer rate

between t h e CVA.X 78034 CPU and i ts floating

poi n t processor, bot h c h i ps read the floati ng

poi n t operands from memory s i mul taneously.

Cache

The goals for the design of the i nternal cache

were twofold: tO reduce the me mory access t i me

to one microcyc lc for data that is resident in the

cache; and tO m i n i m i ze t he n u mber of cache ref

erences that m i ss the cache .

To achieve the one - m icrocycle access t i me , the

internal cache is designed to pe rform the cache

l ook- u p i n para l l el w i t h the translat ion buffer

look-up. This scheme uses the 9 virtual address

bits that do not change d u r i ng t he address transla

tion process to i ndex i nto the array. Because the

cache look-up and translation buffer l ook-up are

performed in paral l e l , t he data for the selected

cache e ntry is ready when the translated address

is being latched intO t he tag comparator. The

cache tag is t he n compared to the translated

address . I f a match occurs, the data i s driven onto

the I DAL before t he end of the cyc l e .

To achieve o u r second goa l - m i n i m i za t ion of

t he number of cache misses - we used a rwo

way set assoc iat ive cache with a b lock size of

8 bytes . This two-way set associative cache was

designed to meet both performance and c h i p size

require menr s . First , a random replacement algo

rit h m was selected tO reduce c i rc u i t com plexity

with a m i n i m a l i mpact on cache performance .

W i t h reference to c h i p size, we deter m i ned that

a cache size of 1 KB was the largest that could be

used . I n addi t ion , t he cache is designed so t hat

it can be configured by sofrware tO act as an

instruction -only cache or as an i nstruct ion and

Digital Technical journal
No. 7 August 1988

dara cache . The i nstruction-on ly opt ion was pro
vided to s impl i fy hardware in mult iprocessor
systems where the designers do not want to deal
with DMA inval idates.

The ce l l chosen to i m plement the cache array
is a one-transistor (l T) dynam ic RAM . The I T
ce l l , i l lustrated i n Figure 4 , was chosen because
of i ts sma l l area . A comparable array design with
e i ther a four-transistor dynam ic RAM or a s ix-tran
s istor static RAM cell wou ld have req u i red 2 . 4 ro
:) t i mes as much area . The storage capacita nce of
the I T cel l is I I 0 femtofarads, resu l t i ng in a bit
l i ne tO cel l -capaci tance ratio of 8 to 1 . With a
folded bit - l i ne structure and the use of a dummy
ce l l (which stores half the charge of t he storage
ce l l) , a voltage d i fferent ia l of 200 m i l l ivolts was
rea l i zed at the sense ampl i fiers . Because of the
dynamic nature of the I T ce l l , a refresh counter,
composed of l i near feedback sh i ft registers, was
designed tO control which row is refreshed dur
ing id le cache cycles .

We des igned byte pari ty in to the cache to
detect data corruption resu l ti ng from e i ther soft
or hard errors . A study was done to determ i ne t he
soft error rate of the cel l . The soft error rate for
the cache array was found to be 1 0 FITs , where
I FIT is equal to I fa i lure in one tri l l ion operat
ing hours . To protect aga i nst data corruption due
to m i nority carrier in jection, the array is sur
rounded by a deep N-type i mplant ri ng .

The CVA.X CPU chip is the first m icroprocessor
in the industry to i nc lude an on-chip dynamic
1 T cel l cache .

Control Store and Microsequencer
The operations and i nteractions of the five func
tional blocks described so far are a l l control led
by m icrocode in t he control store . The m icro
sequencer suppl ies the m icroaddress to the
control store . The control stare contains
I .600 words of read-on ly memory. Each 4 1 -bit
word is d ivided into a 2 8 -bit fie ld , which controls
the execution sections of the ch ip , and a 1 3 -b i t
fie l d , which controls t he m icrosequencer. Con
trol store access is achieved in less than three
c l ock phases .

The control stOre is organ ized i nto 2 0 0 rows of
8 words each . H -shaped cel ls , 7 by 8 m icrons in
s ize , are used to i m plement the array .

A microaddn:ss is suppl ied to the control store
by the m icroseq uencer by means of the 1 1 -b i t
microaddress bus (b i ts l 0 through 0) . E ight of
these bi ts , I 0 through 4 and 0 , select one of the

Digital Technical journal
No. 7 A ugus/ I 'JR8

2 0 0 rows. Selection of a row causes a l l e ight
words to be drive n onto the precharged bit l ines
wh ich form the i nputs of an 8 to l mult i plexer.
The three rema i n i ng m icroaddress bits, 3
through l , choose one of these e ight m icrowords
ro be driven onto the m icroinstruction bus . The
fina l value of b i ts 3 through l can be modified by
va lues on the m icrotest bus. This 3 -b i t bus con
veys state information from other sections of the
chip w t he m icrosequencer. In this way, various
processor states m ay be pol l ed ro enable up to an
eight-way m icrocode branc h .

The pri mary function o f the m icrosequencer i s
to supply m icroaddresses t O the control store .
The m icrosequencer selects a m icroaddress
based on microcode control and external control
from the testabi l i ty logic . In addit ion to generat
i ng microaddresses , the m icrosequencer rece ives
except ion request l ines from other sections, pri
ori t i zes these requests, and generates base
addresses for m icrocode exception service rou
t ines . These base addresses can be modi fied by
the section signa l i ng the exception by means of
the m icrotest bus .

The m icrosequencer conta i ns a l ast- in -first-out
(LIFO) queue of e ight m icroaddress entries
ca l led the m icrostack . A latched copy of t he
m icroaddress bus is stored on t he microstack
when a m icrocode except ion occurs . Once the
exception has been serviced , th is latched copy
a l lows reexecution of the microi nstruction that
caused the except ion . In the case of a m icrocode
subrout ine cal l , the current m icroaddress i s
i ncremented and stored o n t he m icrostack . This
forms the address when returning from the sub
rout ine .

Testability Issues

As a complex m icroprocessor ch ip , the CVAX
78034 CPU chip has some d ifficul t testabi l i ty
issues . A large number of i nternal state bits and
buses arc not norma l ly vis ible at the pins of the
c h i p . Early in the design process , techniques
such as leve l -sens i t ive scan design (LSSD) and
bui l t - in self-test were e l i mi nated as poss ib le
testab i I i ty strategies. Both of these strategies
wou ld have had a sign i ficant i m pact on chip area
and performance . I nstea d , an ad hoc met hod of
design for testab i I i ty was developed 9

The des ign for testab i l i ty strategy has two main
themes: (l) make max i mu m use of exist i ng hard
ware for test observabi l i ty and control lab i l i ty ,
and (2) add spec ial test hardware t o those areas

1 0 3

CVAX-based
Systems

Tbe C VAX 78034 Chip, a 32- bit Second-generation VAX Microprocessor

POLY WORD
LINE <N+ 1 >

METAL 2
WORD <N+ 1 >
LINE STRAP

BIT LINE <M>
(METAL 1)

I I I I I I I I I
EACH DIVISION = 1 .0�m

KEY

� N+ SOURCE/DRAIN DIFFU SION

c:=J METAL 1

c::J METAL 2

� POLYSILICON

� M ETAL 1 CONTACT

ACCESS
DEVICE

I I I

BIT L INE <M+ 1 >

Figure 4 Cacbe I T Dynamic RAM Cell (Four Cell Sbown)

WORD L I N E <N+ 1 >

VDD
(POLY PLATE)

WORD LINE <N>

WORD LINE < N - 1 >

VDD

WORD LINE <N-2>

I 04 Digital Technical journal
No. 7 A ugust 1 988

of the ch ip where observabi l i ty or control labi l i ty
wou ld not otherwise be poss ib le .

The ch ip a l ready had some i mportant features
that cou ld be exploited .

• The ch ip is contro l led by the microcode con
ta ined i n t he control store . Thus, i t is an obvi
ous cand idate for control l i ng t he ch ip when i n
test mode.

• Many of the i nternal registers are readable and
writable from the in ternal buses. By transfer
ring th is read and write data to t he main bus
t hat connects to the p ins (the DAL'i) , much of
the i nternal state can be observed and
mod ified .

• The interface for the tloating poi n t coproces
sor ch ip contains a mode that broadcasts a
va lue from t he in terna l cache or register fi le to
the pins . This mode is a lso used during test for
cache and register fi le observabihty .

These features a lone were not enough , however,
and some speci a l ized test hardware had to be
added .

• To make use of the ch ip m icrocode in test
mode, it is necessary to be able to external l y
c hoose t he addresses of t h e microword t o be
executed . Thus , a test mode was added to the
microsequencer. I n th is mode , the m icro
sequencer ignores i ts norma l c hoice for the
microaddress and uses the va lue from a group
of pins .

• The cache is d ifficu l t to test in i ts normal oper
ating mode. To overcome th is , a special cache
d iagnostics mode was developed .

• Some special test m icrocode was added to
a l low more efficient testing of some areas .

• A few major interna l buses were not observ
abl e . Dual mode l inear feedback shift registers
(LFSRs) were added to t hese buses: t he output
of the I -Box i nstruct ion decode ROM , the
m icroinstruct ion bus, and the m icrotest bus.

The cache refresh address cou nter is a lso
implemented as an LFSR .

The d u a l mode LFSRs a l low t he data bus t o be
captured a nd scanned out seria l ly . Al ternatively ,
t he clara can be compressed every cyc le using t he
l i near feedback technique . The outputs of the
LFSRs are inputs to another LFSR that combines

Digital Technical journal
No. 7 A ugust 1 988

the data to a s ingle-bit output stream . I n t his
manner, a I I of the LFSRs may be observed a t once.
In addition , a l l of the LFSR outputs are fed into a
mult ip lexer that a l lows any one of the registers to
be observed .

The test logic requ ires only one dedicated test
p in to select test mode and uses less than 2 per
cent of t he ch ip area. Moreover , inclusion of th is
logic does not affect ch ip performance. When in
rest mode, 3 to 1 5 other p ins are redefined for
test functions. A 4 -b i t test -mode configurat ion
register selects which of the LFSRs is to be
observed , whether the LFSRs w i l l be in scan or
compress mode , a nd whether or not test broad
cast mode is enabled.

The Role of Simulation and Modeling
Com plexi ty was managed and deta i led c i rcui t
behavior was predicted through the use of mod
els and simu lation . During t he design , t he ch ip
was modeled a t five leve ls of abstract ion . As the
design progressed from concepts to i mplementa
t ion , the leve l of abstract ion was refined to reflect
the i ncreas ing detai I of the design .

Choosing the Microarchitecture
The performance model was the earl iest a nd he
most abstract of a l l the mode ls . The performance
model was used to predict the mach ine 's perfor
mance and to quant ify t he speed advantage of the
various m icroarch i rectura l options u nder consid
erat ion . Written i n PLji , t he performance model
was driven by trace fi les . These fi les consisted of
streams of opcodes and operand specifiers
derived by running typical VAX appl ications pro
grams. The psuedo-m icrocode contained in t he
model approximately modeled memory request
patterns ancl m icroi nstruction counts for each
type of VAX i nstruct ion . As we hac! planned, the
performance mode l did i ndeed help predict the
machine 's TPI . Moreover, the model a lso helped
identify performance bott lenecks in t he micro
archi tecture .

As noted i n the section Project Goals , perfor
mance is inversely proportional to t he product of
the TPI and cycle t i me . Specifical ly , t he cycle
t ime depends on the delay through t he crit ical
speed c ircu i ts . Therefore , to ident ify the crit ical
c i rcu i ts and determi ne t he propagation delays
t hrough t he c ircu its , we carried out cycle t i me
feasib i l i ty studies. SPICE, a c ircui t - level s imula
tor, was used i n these studies. Wi th t he ch ip die

1 0 5

CVAX-based
Systems

The C VAX 78034 Chip, a 32- bit Second-generation VAX Microprocessor

size as a give n requirement , we determi ned the
microarchi tecrure of the machine by select i ng
those features that m in im i ze the product of TPI
a nd the cyc le t i me .

Verification of the Microarchitecture
Once t he m icroarc h itecture was defined , a
deta i led specification was wri tten for each sec
t ion of the ch ip . Next , an abstract behavioral
model was written to verify that the specificat ion
descri bed a VAX CPU. Much more detai l ed than
the performance mode l , this model was con
trolled by m icrocode , ran rea l VAX code, and
closely modeled the major ch ip buses, global
signa ls , and clocks . The model was written i n
Digita l 's DECSIM behavioral model ing language .
Many m icrocode and m icroarchi tecture bugs
were identified and fixed as a resu lt of this be hav
ioral model test i ng.

Logic and Circuit Design
The deta i led logic and c i rcu i t design began whi le
the abstract behavioral model was be i ng wri tte n .
During this phase of t h e design , SPICE s imu la
tions were used extensive ly tO predict c i rcu i t
be havior . Because SPICE simulates transistor
behavior in deta i l , it requires a l a rge a mount of
computer resources . Consequently onl y critical
c ircu i ts were s imulated and these were often s im
pl i fied to conta i n on ly the essential e lements .
Circui t s imulat ions typica l ly involve tens of tran
sistors rather than h undreds or thousands .

Verification of Logic - Gate Level
The abstract behavioral model had been used to
verify the specification . Now i t was necessary to
ver ify the implementat ion of the specification . To
make th is verification, we wrote a schematic- level
behavioral model t hat captured the l ogica l and
t iming characteristics of every schematic. Almost
every node was modeled exp l ic i t ly . This essen
t i a l ly gate-leve l model was a lso written in the
DECSI M l anguage . The model idenri.fi.ed many
logic and t im ing bugs , especial ly between sche
matics designed by d ifferent engineers .

The schematic- leve l behav ioral model was sub
jected to in tensive verification because it offered
a good compromise between implementation
deta i l and s imu lation efficiency. This model of
the CVAX 780 3 4 CPU chip was used by the sys
tem designers in other design teams to model the
interaction of the CPU with other chips i n board
designs .

1 06

Verification of L ogic - Transistor
Level
The DECS I M s imu lation tool a lso supports MOS
transisror- level model i ng . We used t h is roo! as a
swi tch- leve l s imulator, that is , we modeled tran
sistors as open or closed switches . The model was
autOmat ical ly generated from the schematic data
base .

This leve l of mode l i ng reflected t he true behav
ior of the schematics with greater subtlety than
the schematic- leve l behavior model . However ,
th is model was not nearly as com putationally
efficient as the behavioral model .

DECSIM MOS modeling ident ified sequencing
errors, c harge sharing probl ems, sneak paths, and
race condit ions that the more abstract model s had
fai l ed to detect .

Physical Technology
The CVAX 780 3 4 CPU chip is imple mented i n a
P-EPI , N -wel l CMOS (com plementary meta l
oxide-semiconductor) process developed i n
house. The process h a s two layers o f a luminum
inrerconnect and a s ingle layer of polys i l icon .
The critica l process d imensions and ch ip c harac
teristics are summarized in Table 2 .

The chip contains 1 80 , 000 transistor s i tes
wi th 1 34 ,000 actu a l transistors , and measures
9 . 7 mm by 9 . 4 mm on a side . (See Figu re 2 .) It
is packaged in an 84-p in surface-mountable
ceram ic chip carrier with 50 -mi l leads, uses a
s ingle + 5 volt supply, and has a worst-case
power d issipation of 1 . 5 watts .

Ta ble 2 CVAX Chip Process

Fabrication Process

Fabrication process
Gate oxide
Substrate
Device types

CMOS

300 A
N-well in P-EPI
N-channel enhancement
MOSFET;

P-channel enhancement

M OSFET

Interconnect Pitches (Linejspace Drawn)

Polysil icon
Metal 1

Metal 2

Contacts

2 m icron/2 m icron
4 micronj2 m icron

5 micronj2 m icron
2 micronj2 micron

Digital Technical journal
No. 7 A ugust 1988

25

20

1 5

(f) z
Q
!;{ LL U 0 -' Q_ a: a_ W <{ 1 0 en �

::;; �
=> a: Z <{

::;;
I
u z w CD

5

P E R FORMANCE RATIO
M icroVAX 3500/3600 to M icroVAX II

Figure 5 Micro VAX 3500/3600 and Micro VAX 11 System Benchmark Comparison

Summary
The CVAX 78034 CPU ch ip met the project
design goa ls . Depend i ng on t he benchmark or
appl ication program being run , the performance
of t he MicroVAX 3 500/3600 systems is 2 . 6 to
4 . I t i mes that of the Micro VAX II computer .
(Refer to Figure 5 .) This performance increase
was ach ieved by reducing both the TPI and the
machine cyc le t i me .

The main factors i n fl uenc ing TPI are the
l K.B , on-chip cache ; t he 6 4 KB on-board cache ;
and the 2 8-entry virtua l - to-physical address trans
lat ion buffer. The cyc le t i me was reduced as a
resu lt of the advanced process technology c hosen
and the arch i tectura l and c ircu i t i nnovations
made by the design team .

Digital Technical journal
No. 7 A ugust 1 988

Acknowledgments
The authors wish to acknowledge the technical
contribur ions of D. Archer, D . B havsar, W . Bider
mann , S . Carrol l , D. Devere l l ,) . Keefe , S . Mart i n ,
A . O lesin , S . Persel s ,) . Rei nschmidt , L. Rozek ,
P . Rubi nfe ld , M . Schenstrom , D . Schumacher,
B. Supni k ,) . St . Laurent , T. Thrush , and
B. Worster.

Notes and References

l . D . Dobberpuh l , e t a ! . , "The MicroVAX
7 80 3 2 Chip , A 3 2 -B i t Microprocessor , "
Digital Technical journal (March 1 986) :
1 2- 2 3 .

1 07

CVAX-based
Systems

------- The C VAX 78034 Chip, a 3 2- bit Second-generation VAX Microprocessor

2 .) . Beck , et a! . , "A 3 2 -Bit Microprocessor wi th
On-Chip Virtual Memory Management ,"
IEEE International Solid- State Circuits
Co nference Digest of Technical Papers
(1 984) : 1 78- 1 79

3 . To compute cl ock ticks per i nstruction
(TPI) , typica l appl ication programs and
benchmarks are fi rst run . Then t he number
of clock cycles requ i red to execute these
programs is d i vided by the tota l number of
instruct ions execu ted . The resul t of the
computation is the TPI .

4 . VAX A rchitecture Handbook (Maynard:
D igital Equipment Corporation , Order No.
EB- 1 9 580 , 1 98 1) .

5 . D . Archer, et a l , " A 3 2-B i t Microprocessor
with On-Chip Instruction and Data Cach ing
and Memory Management ," IEEE Inter
national Solid-State Circuits Conference
Digest of Technical Papers (February
1 9 87) : 3 2 - 3 3 . 3 2 9 .

1 08

6 . P. Rubinfe ld , et al , "The CVAX CPU, A
CMOS VAX Microprocessor Chip ," Proceed
ings of the 1987 IEEE International
Conference on Computer Design: VLSI in
Computers and Processor (October 1 987) :
1 4 8- 1 5 2 .

7 . D . Archer, e t a l , " A CMOS VAX Microproces
sor with On-Chip Cache and Memory Man
agement ," IEEE journal of Solid State
Circuits, vol . SC-2 2 , no . 5 (October 1 987) :
849-8 5 2 .

8 . D . Archer, "The I nstruction Pars ing M icro
architecture of the CVAX Microprocessor,"
Proceedings of the 20th Ann ual Workshop
o n Microprogram ming (December 1 987) :
1 4 7- 1 5 3 .

9 . D . Bhavsar and D . M i ner, "Testabi l i ty Strat
egy for a Second Generation VAX Micro
processor Chip," International Test Con
ference (September 1 987) : 8 1 8-82 5 .

Digital Technical Journal
No. 7 A ugus/ 1 988

Development of the

Edward]. Mclellan
Gilbert M. Wolrich

Robert A] Yodlowski

CVAX Floating Point Chip

The CVAXfloating point accelerator (CFPA) chip is a CMOS floating point
coprocessor for the CVAX system. The purpose of the CFPA project was to
provide gains in floating point perfonnance equal to those of the CVAX
CPU for integer perjonnance. Combined with an aggressive schedule, the
primary goals required the CFPA chip to perfonn at three times the level of
the previous generation Micro VAX floating point unit (FPU) and to be
complete two years after delivery of the Micro VAX II system. Designers
obtained a perfonnance gain of only 25 percent through base technology
improvements. Consequently, most gains are achieved through the use of a
multiplier array, improved arithmetic algorithms, and a fast and efficient
interface with the CPU.

Functional Overview
The CFPA YLSI ch ip is the companion float ing
point processor for the CYAX CPU . The ch ip 's
hardware structures and algori thms provide high
overa l l system performance . I n a l l , the ch ip exe
cutes 76 instructions.

The CFPA supports

• Three VAX floating poi nt data types:
F_floating, O_ floating, and G_float ing

• F loat i ng point ca lculations, which include a
polynomial eva luation i nstruct ion

• I n teger mult ip ly and d ivide i nstructions

• Conversion between integer and floating point
data types

• Complete detection of a l l exception condi
tions

The CFPA operates synchronously with the
CPU at speeds of 80 and 90 nanoseconds (ns) per
cycle . Opcode, control , and status information is
communicated between t he coprocessor and the
CVAX by means of a dedicated 8-bi t b id i rectional
coprocessor bus.

Table 1 l ists the CFPA physical characteristics .

CFPA Project Goals
The two main goals of the CFPA chip design pro
ject were (1) to provide t he CYAX system with an
i mprovement i n float i ng poi n t performance to

Digital Technical journal
No. 7 A ugust 1 988

Table 1 CFPA Physical Characteristics

Number of transistors 65 ,000

Package 68-pin surface-mountable
chip carrier with 50-mil lead
spacing and heat s ink

Die s ize 7.3 mm x 9.1 mm

Power d issipation 1 W

Fabrication process 2 micron drawn, N-well,
dual aluminum CMOS

equal the central processor ch ip 's expected per
formance l evel for integer operat ions , and (2) ro
adhere to the same deve lopment schedule set for
the CVAX CPU ch ip . Specifica l ly . these goals
required i nstruction execution t i mes to be t hree
t i mes faster than t he MicroYAX FPU on average .
Furt her , the schedu le a l lowed l i t t le t ime to
ach ieve these significant performance ga i ns ; the
design wou ld have to be completed on ly two
years after the M icroVAX I I system design .

I n order to improve computer performance,
the clock frequency andjor the amount of work
completed in a cycle must be i ncreased . The
CYAX CPU uses the i mproved speed characteris
t ics and greater density of t he CMOS process to
reduce the c loc k cycle t i me from 200 ns in the
MicroVAX I I design to 80 or 9 0 ns . A p ipe l i ned
arch i tectural approach was necessary to achieve

1 09

------- Development of the C VAX Floating Point Chip

this reduction . I n particu lar , wh i le the ar i thmetic
a nd logic unit (ALU) operates on one m icroin
struction , the register fi l e is free ro access data
for the next m icroinstruction . This i mprovement
a l lows more work to be completed in each micro
cycle and offers a reduction in t he cycle t i me as
wel l .

The previous generation float ing point design,
used in the)- 1 1 FPA as wel l as the M icroVAX I I
and VAX 8 2 00j83 0 0 systems, a l ready pipe l i ned
register fi le access with ALU ope rations . This
pipe l i n ing was necessary ro a l l ow a I 00-ns cycle
t ime - twice the frequency of the companion
CPUs - in t he ZMOS process tech nology. S ince
the p i pe l i ned registerjALU operation was a l ready
ach ieved, the i mprovement in cycle t ime for
the CFPA is l i m i ted by the speed of the ALU and
does not benefit from addi tiona l pipe l i n i ng . The
improved technology a l lowed for an ALU i mple
mentation that provides a 20 percent decrease
in cyc l e t ime, matching the CVAX m icrocyc l e .
Therefore , t h e necessary performance i ncreases
for the CFPA wou ld not be created by sca l i ng the
cycle t ime. I nstead , CFPA designers wou ld make
i mprovements in the amount of work done per
m icrocyclc and in the in terface between the pro
cessor and the floating point c h ip . This i nterface
is described in the fol l owing section .

An overview of t he ch ip 's overa l l performance
is presented in the section CFPA Performance at
the end of this paper.

Processor-to-bus Interface
I n addit ion to the CVA.X system bus used to trans
fer float ing point data , a ded icated 8-bi t bidirec
tional coprocessor bus is used to communicate
between the CVAX and the CFPA . An example ofthe
CFPA system configuration is s hown in Figure l .
The CFPA normal ly mon itors t he coprocessor bus
for opcode and operand information unti l it is
ready to drive a resul t back to t he CVAX . After
decoding an opcode , the CFPA monitors control
signals on the bus that i nd icate the presence of a n
operand Operands may come from a C P U genera l
register, i nterna l cache l ocation , or from the
memory system . When operands arc transferred
from CPU general registers or i nterna l cache
locations, the data is transm itted directly
between the CVA.X and the CFPA. Operands from
external memory or cache locations are i nd icated
on the coprocessor bus at the start of the externa l
memory access . The CFPA then mon i tors the
CVA.X system bus a nd l atches the returning data
wi thom CVA.X intervention .

1 1 0

�---C-P
�
U----���----F

�
P
�
U----�

t t
CVAX B U S

t
SECON D-LEVEL
CAC H E RAM
64KB

Figure 1 CFPA Example System
Configuration

After supplying operands to the CFPA, the
CVA.X rel inquishes control of the coprocessor bus
to rece ive the resul t status of the floating point
operation . Control of the coprocessor bus, how
ever , does not i mply control of the CVAX system
bus . The CFPA ensures ava i l abi l i ty of the CVAX
system bus by moni toring the d i rect memory
access (DMA) gran t signal from the CVAX. lf a
DMA has been granted, t he floating point resu l t
status wi l l b e retransmi tted unt i l the D MA opera
tion is complete . Receipt of t he float ing point
status whi l e the DMA grant s ignal is deasserted
guarantees ava i lab i l i ty of t he CVA.X system bus
for the next cyc le . Control of t he coprocessor bus
is returned to the CVAX after successfu l ly driving
float i ng point status . The CFPA d rives t he resu l t
data o n t h e CVAX system b u s one cycle later,
complet ing the operation .

Floating poin t i nstruction l atency comprises
overhead devoted to opcode , operand and resul t
transfer , and actual computation , or execution
t ime. Due sole ly to i mprovement in CVAX cycle
t ime - from 200 ns i n MicroVA.X systems to
80 or 90 ns in CVA.X systems - overhead t imes
are improved by facrors of 2 . 5 or 2 . 2 , respec
t ive ly . Designers ach ieved addit iona l improve
ments i n the interface by reduc ing the actual
n umber of cyc les req u i red for these overhead
transfe rs . As compared to the M icroVAX II sys
tem, the CVAX system requires fewer cycl es to
access and transmit register and i nternal cache
operands located on the c h i p . Moreover , external
cache and memory operands are i nput d i rectly
from the CVAX system bus as opposed to be ing
fetched by the CPU and later retransmitted to the
FPU as i n the MicroVAX I I system . The resu l t ing
interface improves performance by a factOr of
approxi mately 2 . 5 (90-ns cyc le) ro 2 . 8 (80-ns
cycle) over the Micro VAX II system .

Digital Technical journal
No. 7 A ugust 1 988

Despite t hese i mprovements , more t han half
the cycles requ ired to execute a float ing point
instruct ion in the CVAX system can sti l l be
attributed to overhead costs. The possibi l i ty of
p ipe l i n i ng macroi nstructions - overlapping the
operand fetches of the next instruction with exe
cution of the current i nstruction - as wel l as
operand forward ing was studied. In such a system
the effective instruction t i me is determi ned by
t he l onger of t he operand transfers or the actual
floating point execut ion t ime . I nstruction t i me is
not determ ined by t he add i t ive effect of the inter
face and execution . The one- i nstruction macro
pipe l i ne in terface was rejected due to the risk
and complexity of the design . Moreover, perfor
mance goals had a l ready been met and deve lop
ment t ime was at a premi u m .

Algorithms
Although the i nterface figures prominently i n the
ach ievement of overa l l performance targets , most
of our design efforts were focused on the actual
execution u n i t . To mainta in a nd even increase
the benefits ga i ned by the i nterface design
improvements , we needed an equal or greater
i mprovement in execution t i mes. S ince the most
important i nstructions for a float ing poi n t u n i t
are addi tionjsubtract ion , mult ip l ication , and t o a
lesser extent division , designers set about opti
m iz i ng t hese instructions . The remainder of
instructions implemented by the CFPA a lso
benefit from the sh ift , mu l t i ply, and d ivide opt i
m izations and demonstrate performance gai ns
re lative to t he MicroVAX I I FPU as we l l . F i na l ly ,
a l l instruct ions gai n from m icrocode i mprove
ments in a typica l case hand l ing and from faster
code entry and exi t techn iques.

Multiplication
Float ing point mu l t ip l ication consists of mul t ip l i
cat ion of the fract ional , or mantissa , portions of
the operands and the summation of the corre
sponding exponents . Many mul t i p l ication tech
n iques have been developed and i mplemented to
increase the speed of th is frequent ly executed
instruction . Perhaps the best techn iqu e for VLSI
implementation at th is t i me is the mul t ip l ier
array. The array is particu larly wel l su i ted for
VLSI i mplementation due to t he array's regu lar i ty
of circui t connections which a l low for a very
compact a nd repeatabl e cel l design.

The process of mul t ip l ication i nvolves a series
of add it ions . It is possible to delay the carry prop
agation necessary to complete t hese add i t ions

Digital Technical journal
No. 7 A ug ust 1 ')88

unt i l the final sum is formed t hrough t he use of
carry save adders . Mul t ip l ier arrays consist of
rows of carry save adders which add i n a new mu l
t ip le of t h e mu l t ip l icand at each row. The carry
save adders produce a resu l t , or partia l product ,
cons isting of two outputs, the carry and the sum ;
i f added , t he two outputs represent a single num
ber equivalent to t he part ia l product at t hat
step obta ined us ing fu l l propagation addition . By
deferring t he fi na l summat ion of the sum and
carry words, the comparative ly t i me-consu m i ng
carry propagat ion addit ion need be performed
on ly once to produce the resu l t .

The o n l y drawback t o t h e mu l t i p l ier array i s
t h e large percentage of ch ip area devoted t o th is
one operat ion . Nevert he l ess, the magnitude of
performance ga i n warrants the use of an array i n
any high-performance computat ion u n i t .

Another common method used t o i mprove t he
processing of mult ip l ications i nvolves mu l tiple
b i t Booth encodi ng . This method , which requ ires
significantly less hardware , is a i med at reducing
the nu mber of part ia l products needed to be
formed . The mult ip l ier operand is encoded - or
recoded - as a control pattern used to deter
m i ne a sequence of sh ift and add or subtract oper
ations on the mul t i p l icand . Mul t ip le b i ts of the
mul t ip l ier can t hen be ret ired in a s ingle opera
t ion . This method of reducing the number of
mu l t ip l ication steps can be employed e ither with
or wi thout an array structure .

The previous generation M icroVAX FPU exe
cutes mul t ip l ication using a fixed , 3 -bi t -per-cycle
Boot h a lgor i thm without the use of a mult ip l ier
array . Single-precision mu l t ip l ication req u i res 8
cycles to compute 2 5 product bits; o_floating
a nd G_floating double-precision formats requ i re
1 9 and 1 8 cycles to produce t he necessary 5 7 or
5 4 product bits . Add itional cycles are needed to
set up the mu l t i p ly loop, calcu late t he in i t ia l par
t ia l product based upon t he mul t ip l ier least
significant bit (LSB) , and round and normal i ze
the final product .

The CFPA mul tip ly a lgori thm takes advantage
of the greater density and transistor count
afforded by t he CMOS process . The CFPA i mple
ments a mul t ip l ier array , w h ic h consists of four
rows of 6 5 carry save adders. The mult ip l icand
select logic associated w i t h each row of the array
as wel l as t he i nterconnect berween the rows is
configured to implement a 2 -bi t Booth encodi ng.
As a resu l t of this configuration , 8 product b i ts
are completed per pass through the array. Single
precis ion mu l t ip l ication req u i res t hree passes

1 1 1

CVAX-based
Systems

------ Development of the C VAX Floating Point Chip

through the array , and double-precision requ ires
seven passes to complete .

The array can be evaluated twice per cyc le .
Therefore, s ingle-precision m u l tipl ication re
qu i res one and one-half cycles, and double-prec i
sion D_ Roati ng and G_ftoating formats requ i re
three and one-ha lf cycles of process ing i n the
array. Before running the array, one- half cyc le is
needed for set up and in i t ia l product calculat ion .
After the mul tip l ier array completes, a cycle is
used to comp lete the fu l l carry propagate add,
which combines the final carry and sum outputs
of the array. This cycle i s fol l owed by a normal
ization cyc le dur ing which valid status i s
returned to t he CVAX .

When we compare the MicroVAX I I system to
the CFPA, the nu mber of cycles requi red to com
plete a MULF i nstruction has been reduced from
1 4 to 4 (a ratio of 3 . 9 to 1 at 90 ns, 4 4 to 1 at 80
ns) ; to complete MULD or M ULG instructions,
t he reduction is from 26 to 6 (4 .8 to 1 a t 90 ns,
5 . 4 to 1 at 80 ns) . If we i nclude operand transfers
and count each i n terface cycle of the M icro VAX I I
system as equivalent to two CVA.X cycles, how
ever, the reduction i n the total number of cycles
for MULF is from 27 to 9 (3 . 3 to 1 at 90 ns, 3 . 8 to
1 at 80 ns) ; and for MULD, from 4 3 to 1 4 (3 . 4 to
1 at 90 ns, 3 . 8 to I at 80 ns) for register-mode
instructions. When operands are read from or
wr i tten to memory, the overhead su pport per
centage becomes an even greater factor; and the
i mpact of the actual CFPA mu l t ip l ication speed i s
reduced .

To fu rther increase performance , we consid
ered an array of sufficient s i ze to complete s ingle
precision mult ipl icat ion i n a s ingle pass and
double-precision mul t i p l ication i n two passes.
However, such an a rray wou ld requ i re three
t i mes the ch ip area for a 2 -bit a lgori thm . A 3 -b i r
per- row mul t iply wou ld requ ire 8 rows to com
plete s ingle-precision mul t ip l ication in one pass
and 9 or I 0 rows to complete double- precis ion
mu l ti pl ication in two passes, as wel l as an adder
to calcu late the mult ip licand facror of 3 E i ther of
these al ternatives, if feasi ble , wou ld save only
one cycle in single-precision (a reduction from 9
to 8, or 1 1 percent) and two cyc les i n dou ble
precision mul t ip l icat ion (I 4 to 1 2 , or I 4 per
cent) . ln addit ion to the area requ i rements , the
c i rcui t design d ifficulty and risk i n volved to
impl ement a l a rger array were deemed much too
great for the l im i ted ga ins . We therefore chose w
trade off these smaUer gai ns i n favor of a part ia l

l I 2

array of 4 rows of 2 -b i t-per-row reti rement re
quiring only 1 .3 mm of ch ip height . The resu lt is
a three and one-ha lf to four t i mes gai n in the over
a l l performance of mult ip l ication .

A ddition/Subtraction
Floati ng poin t addit ion i nvolves a series of steps.

1 . The exponents are subtracted to determi ne
the shift a moun t necessary to a l ign t he frac
t ions .

2 . The fraction operand wi th t he smaller
exponent is sh ifted into a l ignment and
added or subtracted .

3 . The resul t i s sh ifted back t o the normal ized
form (� resul t < 1 . 0) . Normal i zat ion
sh ift ing is accompanied by exponent adjust
ment .

4 . The resu l t is rounded and checked for
overflow or underflow condi tions.

Typica l ly , t he sh ift ing operat ions and their con
trol consume large a moun ts of ch ip area and
potentia l ly a large portion of the total calcu lat ion
t ime . An analysis of t hese operations was used to
gu ide trade-offs in the design of t he CFPA . 1 It was
noted that a l though large sh ifts are somet i mes
necessary to compute the final resu l t , the i r fre
quency of occurrence is very smal l . Furthermore,
a sma l l sh ifter, capable of covering the vast
majority of cases in a s ingle operation provides
the benefit of a sma l l control c ircu i t that can be
more easi ly opt i mized for speed . It was decided
that the speed and area advantages gained by
ctesigni ng for the most frequently occurring cases
provided the best solution under project con
stra in ts .

Speci fica l ly , a sma l l sh ifter that is capable of
left-four ro right-seven b i t sh ifts proved ro have
adequate range for most a l i gn ment and norma l
i za tion shifts . I n up ro 80 percent of the cases,
addit ional cyc les arc not needed for a l ign ment
sh ift ing Larger a l ignment sh i ft ing u t i l izes the
multi p i ier array for a sh i ft capabi l i ty of 1 6 b i ts
per cycle . The array m i n i m i zes the worst-case
shift t i me wi thout requir ing a large sh ifter.
Although it rarely req u i res addi tional cyc les , nor
mal ization sh ift i ng may cause a l onger latency.
Addit ional cycles, however , are nor necessary for
normal i zation in 93 percent of the cases .

To reduce the sh ifter control complexity, a
mod i fied ALU ca.lcu l ates the absol ute value of the

Digilal Technical]ouriUII
No. 7 A ugust 1 988

exponent d i fference . The mod ified ALU docs not
req uire addi t iona l cal culat ion r i me to accom
pl ish th is calcu lation . The absolu te va lue resu l t
s impl ifies control logic to enable rhe a l ignment
sh ifter tO complete in the next c lock phase . Only
one addit ional generate term is needed to enable
two carry chains execut ing s imu l taneously ; one
calcu lates A m i nus B. the other B minus A. The
most s ign i ficant bi t (MSI3) of the fi rst carry c ha i n
determines the sign of the operat ion . To produce
t he absolute va l ue or pos i t ive resu l t . t he MSB of
the first carry cha in is used to select the fina l out
put from the two carry chains. In addi t ion , the
MSI3 is used to se lect the fraction requ iri ng
a l ignment .

'T'he CFPA completes addi tion o r subtraction
operations in t hree cyc les for most cases. This
m in imum execut ion t i me i s exceeded for on ly
2'5 percent of a l l add i t ion or subtraction opera
t ions , a l most a l l of which req u i re on ly one addi
tiona l cyc le .

The major improvement over the MicroVA.X I I
FPlJ i n the addit ion/su btract ion a lgori thm is the
e l im ina t ion of no-operation cycles necessary for
control eva luat ion preced i ng the a l ignment and
normal i zat ion steps. The resu l tant reduction as
compared tO the MicroVA.X I I FPU is from e ight
cyc les to three for both single- and double-prec i
sion addit ions/subtractions in the actual float ing
poin t unit ca lcu lat ions (3 to 1 at 90 ns, 3 . :) to
1 at 80 ns) .

The overa l l performance gai n i n equivalent
cyc les is 20 to 8 for si ngle-precision (2 . 8 to 1 at
90 ns, 3 . 1 to 1 at 80 ns) and 26 to 1 1 for double
precision add i t ion/subtraction (2 . 6 to 1 at 90 ns ,

.) 0 to 1 at 80 ns) .

Division
Float ing point d ivision consists of d ivision of
t he fraction or mant issa and subtraction of the
exponen ts . Division presents a more intractable
problem than mu l t ip l icat ion when design i ng for
h igh -speed performance . The d i fficu l ty arises
due to t he fact that the part ia l remainder at each
step must be examined before the next operation
can be determined . Various a lgorithms have been
proposed to reduce the nu mber of ar i thmetic
steps-. but no single sol ut ion seems tO opt i m i ze
both performance and s i ze constra i nts .

The CFPA uses a method of d ivision t hat offers
an i mprovement over s ingle-b i t d ivision a lgo
r i thms. wh ich perform an arith metic operation
to produce a s ingle quotient bit per step . The

Digital Technical journal
No. 7 A ugust I 'J88

method cal ls for sh ift ing over, or normal iz ing,
mult iple l eading b i ts w hen the part i a l remainder
is sma l l . A part i a l remai nder with mul t ip le lead
ing ones ind icates a sma l l negat ive remainder,
whereas lead i ng zeros ind icate a sma l l pos i t ive
remainder. Mu l t iple quotient b i ts can be deter
m i ned for cyc les i n which the magnitude of the
part i a l remainder is smal l . Sh i ft operations
replace ari thmetic operat ions on unnormal i zed
remainders , reduc ing the number of ALU cycles
needed to develop the final quotient . This
method of d ivision i s cal led normal i z i ng, non
restoring d ivis ion and is a lso used in the
MicroVA.X FPU . The d i fference between t he two
impl ementations is i n the norma l iza tion sh i ft
range provided for partia l remainder and quo
t ient development .

Of course , t h i s a lgori thm is q u i te data sens i
t ive . A d ivision t hat resu l ts i n a part i a l remain
der of a l l ones or a l l zeros can be completed
in a m in imum a mount of t i me ; whereas , i f a
stri ng of a l ternat ing ones and zeros is produced
at each ALU operation , the process degener
ates to a one-bit -per-cyc le pace. The observed
average rate for an a lgorithm that a l l ows
u n l i m i ted sh ift range is 2 . 66 bits per cyc l e .
Unfortunately , t h e shi ft range c hosen impl ies a
control structure d i rectly between the sh ift
and ALU operations. The t i me between t hese
operations is cr i t ical ly important to t he over
a l l cyc le of the ch ip . We c hose 4 b i ts as t he
left sh i ft range for the CFPA to reap the max i
mum benefit from the technique without intro
ducing i nord i nately di fficu l t control paths
between the sh i ft and ALU operat ions . This
amounts to an i ncrease of 2 bits of sh ift range
over the MicroVA.X FPU . Correspondingly , t he
average number of q uot ient b i ts developed
each cycle increased from 1 . 5 to 2 . 4 . Expand
ing the sh ifter beyond a range of 4 for t his
method provides a d i m i n ish ing i mprovement, as
shown in Table 2 .

Table 2 Average Quotient Bits per Cycle

Shifter Range

2
4

6

8
Unlimited

Average Speed

1 .5
2.39
2.54

2 .64

2 .66

1 1 3

CVAX-based
Systems

------- Development of the CVAX Floating Point Chip

I ncreas ing the number of quotient bits deve l
oped per cycle from I . 5 to 2 . 4 resu l ts i n
increased speeds i n the CFPA d ivide loop re lat ive
tO the MicroVAX FPU: 1 . 8 t imes greater for
90-ns cycles, and 2 . 0 ti mes greater for 80-ns
cyc les. The overhead cycles involved in sett i ng
up the divide sequence and norma l i z i ng the quo
tient arc reduced from 7 tO 2. As a resu l t , t he
CFPA rea l i zes a performance greater than t he
M icroVA.X l i FPU in terms of nu mber of cycles
reduced for d ivision . I nclud ing the processor-ro
FPU in terface cycles , the number of cycks for
s ing le-precis ion d iv ision i s reduced from 3 7 to
1 8 cycles (2 . 3 a t 90 ns, 2 . 6 at 80 ns) ; for
D_floating dou ble-precision d i vis ion , 6 1 tO 3 5
(I .94 a t 9 0 ns , 2 . 2 a t 80 ns) .

Comparatively, th is method of division is very
effic ient , especia1ly when we cons ider the sma l l
amou n t of control c ircui try and data path area
requ i red. Designers can increase performance
addi tiona l ly by using algorithms that employ
mult i ples of t he divisor, or by implement ing a
divider array structure . The use of mul t ip les of
the divisor requ ires both addi tional registers to
hol d the mu l t i ples (3/4 , 1 , 5/2) and further
expansion of the l eft shift capabi l i ty to rake
advantage of the longer normal i zations created by
this approach (3 . 6 bits per cycle with left sh ift
range expanded tO 6) . In add i t ion, the control
logic requ i red to support the selection of the
proper mult ip le is more complex and wou ld be
much more d ifficul t to i mplement in the con
strai ned cycle t ime. The other a l ternat ive of exe
cut ing the d ivide step in an array structure for
performance capable of 3 to 4 quotien t b i ts per
cycle involves an even greater cost in hardware
and is nor cons istent with the project goals .

I nteger d ivi sion docs nor au tomat ical ly bene
ti t from hardware devoted to float ing po int d iv i
sion . S ince floating point d ivision rel ies on
the norma l ization of t he operands, i n teger d iv i
sion must ei ther convert operands to the normal
i zed form o r accept a s lower one-bi t-per-cycle
algorithm . The CFPA design for i n teger division
normal i zes both the d ivisor and dividend i n
order t o use the 2 . 4 -bi t-per-cycle d i vide algo
ri thm . Norma l i zation of the divisor and d ividend
proceeds at 5 b i ts per cyc le . The number
of quotient b i ts needed to complete the i nteger
di vision operation is determi ned by the d iffe r
ence between the normal izat ion shift amounts
of the div isor and dividend. Consequently ,
in teger d iv ides arc typica l ly executed at

I 1 4

2 . 5 b i ts per cycle as compared to I bit per cycle
on the MicroVA.X FPU .

Microcode Co ntrol Structure

The control structure for the CFPA is infl uenced
by two opposing constra in ts . The compl icated
requirements of instructions such as extended
mu l t ip ly and i n tegerize (EMOD) and polynom ia l
eva luat ion (POLY) requ i re the flexibi l i ty offered
by a m icrocoded approach . Performance goal s ,
however. requ i re the speed o f hardwired control
structu res to avoid costly delays i ncurred duri ng
m icrocode branch hand ling . The final imple
mentation combi nes a smal l control Pl.A (pro
grammable logic array) to provide the fl exib i l i ty
of m icrocode control with hardware control
structures for speed cr i t ical paths. These control
structures are enabled through the m icrocode to
emu late complete hardwired control for impor
tant instructions. The structures provide su pport
for a l ignment , normal i zat ion , mul t ip l ication and
d iv ision steps. Standard m icrocode control sup
ports t he less crit ical i nstruct ions.

Fu nctions are performed under more stra ight
forward m icrocode control when t he code does
not pena l i ze the i nstruction performance . This
trade-off s impl ifies cr i t ical circui try in some
i nstances . The on ly exception to th is ru le is i n
the handl i ng of exception cond itions. I f an
except ion cond i t ion can be isol a ted from the nor
mal i nstruction flow, it is a l so processed i n
m icrocode rather t han through the more expen
sive hardware control .

The usc of hardware structures reduces
t he total nu mber of m icrocode terms needed
to impl ement the instruction set . This red uc
t ion is important to ensu re that the m icrocode
Pl.A can be impl emented with an access t ime
of one ha lf cycle . I nstructions genera l ly use
one code tl ow for a l l data types. I n add i t ion ,
s im i lar i nstmctions merge sect ions of flows to
further m i n i mize terms. For example, the add
compare-and-branch (ACB) instruct ion , which is
one of the more compl icated i nstructions i mp le
mented by the chip, required on ly three add i ·
t ional terms beyond the add i t ion and compare
i nstruct ion flows . Despi te th is effort, a l most
one th i rd of the code was devoted exclusively
to two instruction types, EMOD and POLY.
By spl i tt ing , or " fold i ng , " the Pl.A i nto two
half- height interleaved arrays, the target speed
was met wi th a pena l ty of on ly a few dupl i
cated terms. I n rota ! , 76 VAX float ing point

Digital Technical journal
No. 7 A ugust 1 988

as wel l as int eger mu l t i ply and d ivide instruc
t ions are i mplemented in the CFPA. In compari
son to the MicroYAX FPU , the total number of
microcode states was reduced by 20 percent , to
on ly I 5 9

Microprogramming
As ment ioned earl ier, the use of hardware
support contri butes to improved performance
for most i nstructions. However, s ince the CFPA
cyc le t ime during execution is very s im i lar to
that of the MicroYAX FPU (80 or 9 0 ns versus
I 00 ns) . we needed further i mprovement to meet
the project goa ls . Algori thmic i mprovement i n
the convcrt - tloat ing-to- in teger (CYTFI) and
EMOD instructions provides between three a nd
fou r t i mes the performance of the M icro VAX FPU
for the same instructions. But these ga ins wou ld
hard ly translate to i mproved overall performance
when cons idering the frequency of use for
these instruct ions. Therefore , to reduce cycles
for a l l instructions, we exam i ned trans i t ions
during code entry and exi t wi th in terna l proces
s ing . S ince the CFPA always receives the opcode
i n advance of the operands , it is possi ble to
reduce the execut ion t ime for a l l i nstructions
by performing the first step of each operation
repeatedly in anticipation of rece ivi ng the last
operand . In this way, as soon as the i nterface
recogn izc that the operand is va lid and the
comrol sequencer is able to act on that informa
tion . the first step of the instruct ion is a l ready
com p lete .

I n the CVAX system , as i n the M icroVAX II sys
tem . tloat ing point status must be returned before
data can be received . One reason for th is return
of status is that i t prepares the wri te pat h back to
the genera l -purpose register fi le located on the
CPU ch ip . Status condi t ions must be checked
before the resu l t register is written ; t he register
update can thus be inh ib i ted in the case of an
error or except ion cond i t ion . Latency was
reduced on a l most a l l i nstruct ions by transmit
t ing the resu lt status back to the CYAX CPU in the
same cyc le as the l ast step of execut ion . This is
accompl ished by check ing t he resul t prior to the
l ast normal i zation or round operation in order to
determ ine if the possi bi l i ty of an exception con
dit ion ex ists . Si nce F_ tloat ing and O_floati ng
formats usc an exponent with a range of 2 5 6 va l
ues. and G_ tloating format increases that range
to 2 , 04 8 poss ib le vaJues , the exponent is i n
range for most resul ts , and a no exception status

Digital Technical journal
No. 7 A ug us/ I ')88

can be returned prior to determi nation of the
final resu l t .

CFPA Implementation
After deciding on a set of basic algori thms that
appeared to meet the project goals , the develop
ment effort proceeded to actual i mplementation .
Individual a lgor i t hms can somet imes resu lt in a
proposed hardware solut ion that requ ires modifi
cations to e it her the hardware or to t he aJgor i thm
i n order ro be imp lemented wi th in design con
stra in ts . Merging the requ i rements of several
a lgorithms can create i m p lementat ion confl icts
throughout the p hysical design . Care must be
taken to consider the opposi ng requ irements
w h i l e incorporat ing the necessary features in a
s i ngle design . The a lgorithms for the CFPA were
c hosen with a s ingle hardware microarchi tecture
in m ind . That arch i tecture evolved as the design
progressed , but the archi tecture maintai ned the
basic structure that was used as a framework for
early c i rcu i t design and feasibi l i ty study. The fol
lowing section out l i nes the overa l l hardware
m icroarch i tecrure for the CFPA. This sect ion is
fol lowed by explanations of the more i n teresti ng
c ircu it design issues.

Microarchitecture
The CFPA contains rwo main funct iona l un i ts :

• The execution un i t , wh ich performs a l l ar i th
metic ca lculat ions

• The bus interface un i t (Bill) , which controls
a l l 1 /0 operations

A block d iagram of these un i ts is shown i n
Figure 2 .

The execut ion un i t consists of two main data
paths and the i r associated control logic . The
6 5 -b i t fract ion data path conta ins an integral
mul t i p l ier array and a l so processes i nteger data .
Also inc luded i n the fract ion data path are a smal l
4 -b i r left t o 7-bit r ight sh i fter, a general -purpose
ALU , scratch register, ROM constants, and quo
t ient register and shifter . The second data path ,
the exponent data pat h , i s 1 3 bi ts wide and con
ta ins a mod ified ALU design used tO calcu late
absolute va lues needed in tloating point addit ion .
The exponent clara path operates in para l lel with
the fraction clara path a nd may be control led i nde
pendent ly or cond i t ionalJy based upon resu l ts
from the fract ion data pat h . A 1 60-term PrA,

1 l 5

CVAX-based
Systems

------- Oeuf!lopment of the CVAX Float in� Point Chip

CPSTAT- 10.,
CPDAT,S :O -

AS
ROY BIU B IU SEQU ENCER MULTIPL IER MULTIPL IER
- CONTROL 80 X 22 DECODE REG ISTERS ERR

DMG

I
T-ST..c2 � 0

+ t I
32-BIT I N PUT BUS

I �
INPUT MUX

:.--- EXPONENT � DATA PATH

MULT IPLY AR RAY
EXPONENT � CONTROL r- - - - - - -

/1
DAL· 3 1 0() SIGN FRACTION

PROCESSOR CONTROLS

STATUS LOGIC

EXECUTION U N IT
SEQU ENCER
1 60 X 44

KEY
B IU - BUS INTERFAC E U N IT
DAL - DATA/ADDR ESS L I N ES

-

t--

r--
FRACTION ALU

El=m'
CLKB

RESET

�
32-BIT 1/0 BUS

Fig ure 2 CFPA Block Dia�ram

which accesses a si ngle 4 4 - h i t microword each
cycle . conrrols the execut ion u n i r

The BI U conrrols t he i n terface between the
CPU and memory system . A 7 0 - rerm PLA in the
un i t controls a l l 1/0 transactions between the
CYAX and CFPA. The BllJ also conrrols the test
mode logic to aLlow visi bi l i ty to the data paths
and execution u n i t PLA dur ing operation .

Figure 3 i l lustrates t he phys ica l layout of these
structures on t he CFPA die .

Circuit Design

Clocking

The CFPA chip employs a fou r-phase overlapp i ng
clocking scheme wh ich prov ides t i m ing resol u
t ion . Much of the control c i rc u i try design ca l ls
for combi nat ional c i rcu i ts that operate between

latc hes clocked on nonconsec ut ive phases, which
are nonoverlapping .

Multiplier

As noted in the sect ion Mu l t i p l ication . i t was rec
ogn i zed early i n the ch ip des ign that the mul t i
p l ier array wou ld he key to meet ing the desi red
performance The CFPA i mplements mu l t i p l ica
tion by us ing an array of carry save adders wi th
part i a l product wraparound. The wraparound
enables the array tO be cycled as many t i mes as
necessary . The fi na l carry and sum add i t ion is
executed in the fraction ALU . A static i mp lemen
tat ion of the carry save adders i s necessary s ince
data propagates through mult iple rows of t he
array .

To b u i l d the carry save adders, we used a four
transi stor XOR. This approach a l l owed for m i n i -

Digital Technical journal
No. 7 A ugust 1988

Figure j CFPA Physical Layout

mum delay and req u i red rhe lcasr amounr of c h i p
area . As a resu l r of SPICE s i mu la t ion . we found
t hat doub l ing the min i mu m s i ze of rhe rransisrors
in the mu l t i p l ier array cou ld prov ide a 20 per
cent speed increase . Si nce the ce l l area was con
stra i ned by rhe necessary i merconnect in the
mcral layers . rhc device s i zes were i ncrcascd
without affecting the ce l l s i ze Further dcvice
s ize incrcascs, however , wou l d have forced us to
i ncrease the ce l l s i ze and wou ld not have
i mproved speed appreciably due ro increased
se l f- l oad ing W i t h t he approach we chose . SPI.CE
s i mu lat ion showed a worst -case de lay of (l ') ns
per row and a typ ica l delay of 4 . '5 ns .

To obta i n rhc dcs i red m u l t i p l icat ion pcrfor
mancc and m i n i m i zc t he a rea neccssary for the
mu l t i p l in array . wc used a technique i n which
t hc array i s cycl cd rwice per microcyc l c . For

Digital Technical journal
No. 7 A ufi /1.<1 1 988

worst-case deviccs . a half cyc le takes 4 '5 ns . An
array s ize of fou r rows takes 26 ns to propagate
t h rough t he array , a l l owing 1 9 ns for latching,
return of part i a l products , and control switching .
For typ ica l dev ices four rows com plete in 1 8 ns,
a l l owing 22 ns in an 80-ns cyc le for the
wraparound pat h .

Con trol PLA

We a lso recogn i zed the fract ion shift control PLA
as a po�s ib le speed l i m i ta t ion . The shift comrol
PLA was the largest PLA i n t he control sect ion and
had to eva l uate in a s ing l e c lock phase . Because
no c l ock s ignals were avai l ab le ro com rol eva lua
t ion of t he PLA, we used a " d u m my" A.i\1 0 array
term to start eval uat ion of the OR array . A
"dummy" OR l i ne conrrols out pu t clocki ng. mak
i ng the PIA se l f- t i med . Because th i s PLA cou l d be

1 1 7

CVAX-based
Systems

-----�- Development of the C VAX Floating Point Chip

eva luated i n a si ngle clock phase, bot h a l ignment
and normal i zat ion operat ions were able ro e l im i
nate an unnecessary wai t cycle present on the
MicroVAX FPU . We were a lso able to expand the
di vide a lgori thm to 4 bit sh ifts per cycle .

A-; we had suspected , the l i m i t ing factor in the
fina l chip cycle t i me was t he mu l t ip l ier array.
The Al..Us and the large control P U\s in bath the
m icrocode control section and the BIU eas i ly met
speed requ i rements i n the CMOS I process.

Design Methodology
As VLSI technology improves, both ch ip area and
density i ncrease , a l lowing much larger and more
compl icated designs ro be attempted . Cri t ical to
any large project, the ab i l i ty to predict and adjust
the design accordi ng to the most current i n for
mation p lays an i mportant role in achieving a suc
cessful project outcome in a m i n i mu m of t ime.

This section describes the various phases and
feed back paths of the design process for the CFPA
and some of the un ique aspects of VLSJ design .

I n the fi rst phase of design , we defined the
major sections and the necessary globa l signals
communicat ing between the m . The major out
puts of this phase were hand-drawn sets of notes
on the necessary functions of each section and
pre l i m inary sketches of poss i ble i m pl ementa
t ions . Early in the design , we recognized that cer
tain subsections wou ld be cri t ica l to meeti ng the
desi red performance goals . These particu larly
cri t ical sections were

• The mu l t ip l ier array

• The exponent input path

• The fraction shifter controls

We therefore generated more detai led pre l im i
nary des igns for a l l o f t hese sections. Moreover
we tested the i r feas ib i l i ty with SPICE c i rcu i t s im
ul ations . The MSB and L"B logic i n the mult ipl ier
was also verified with an APL l anguage s i mulat ion
of the mu l t ip l ier array.

One of t he hazards in the early stages of a pro
ject is the tendency ro spend roo much effort per
fecting one sma l l p iece of the design . If the origi
nal requ i rements are mod ified at a later dare ,
much t i me is wasted . The des ign tea m , therefore ,
made a conscious effort to keep a l l parts of the
design a t s im i lar leve ls of deta i l at al l t imes
throughout the project .

For purposes of design checki ng and chip
i m plementation, we d iv ided the CFPA i nto seven
major sect ions: fract ion data path , fraction data

1 1 8

path controls, exponent data path , exponent data
path controls , m icrosequencer, bus in terface
un i t , and c lock generator. Cons istent divisions
and g lobal signals between these major sections
were maintai ned in both t he behaviora l and tran
s istor mode l i ng levels as wel l as in t he final mask
artwork . This approach a l l ows maxi mum possi
b l e checki ng to be carried out on each sect ion ,
i ndependent of the state of other sections of
the ch ip .

Upon completion of the i n i t ia l desi gn concep
tion , a behavioral model was written in t he
DECSl M s imulation language . This model helped
us to refine the a lgori thms and further define the
data path and control structures. We rewrote the
mode l several t i mes to i mprove deta i l and i ncor
porate design changes . From early in the develop
menr , the behaviora l model was merged wi th
the CVA.X CPU chip model and a sma l l system envi
ron ment to provide a p latform for more extensive
test ing . Exist ing d iagnost ic programs were there
fore able to be ru n on the mode l to provide early
checks on the design i ntegr i ty . Addi t ional tests
were written to verify specific features of the
CFPA implementation before we began t he
deta i led c i rcu i t design for cri t ical sections .
Throughout the development phase, we used the
VAX Arch itectural Exerciser (AXE) extensively
to test instruction compat ibi l i ty with existing
VAX implementations . Despite a degradation of
approx imately 1 M 1 whi le using the s imu lator
ro run test code, wel l over 5 00,000 test cases
were run on the behavioral model before the
design was considered ready for fabrication .

Us i ng t he DECSIM MOS device s imu lat ion sys
tem , we created a transistor- leve l model from
final schemat ics as they were com pl eted . By col
lect ing test patterns from the appropri ate signals
in t he behavioral model , t he team cou ld begin to
debug the schematic in comp lete sections as
other sections were sti l l be i ng designed . To do
this efficienrly , t he DECSIM group modified the ir
s imul ator to al low designers tO write a b inary
state file and re load the fi l e for exa m i nat ion . This
faci l i ty gave logic designers a very efficient means
to debug the transistOr- leve l logic. Designers
cou ld run the i r s imulat ions in batch mode over
n ight, exam i ne the resul t i ng patterns for m is
matches with t he behavioral model results, and
then "back up" to the area before the fai lu re test
poi nt to find the underly ing cause. They cou ld
perform a l l these steps without reru n n i ng t he
ent ire s imu lation each t ime they wanted tO go
back i n t ime tO look at another signa l .

Digital Technical journal
No. 7 A ugust 1 988

A-> each section of the transistor- level sche
matic was developed to a satisfactory leve l of
accuracy, the th i rd phase of the design
creation of the physical layout artwork - began
on that sect ion . To create the artwork, a Ca lma
G DS interactive edi t ing system was used . Over
the course of the project, t hree layout designers
were employed fu l l t ime . Toward t he end of the
layout p hase , up to four addi t iona l desi gners
were worki ng on various parts of the ch ip . Each
section was checked wi th the in terconnect
verification (IV) wi re l ist extract ion tool and a
design ru le c hecker (DRC) program .

A" a l l t h e sections were drawn and globa l i nter
connect wir ing was added tO the ch ip layout , the
fourth phase of the design - rhe back end
checks - began . The IV program was used to
extract actua l capaci tance va lues for a l l nodes on
the ch ip . We used these capaci tance va lues in
two ways to check the design . F i rst , t hey were
compi led in to the DECSIM MOS transistor- leve l
s imu lator. The t i m i ng feature of th is tOol was
used to qu ickly check for gross t im ing problems
over rhe ent i re chip operat ing as a whole . Once
we identified an area as hav ing a poss ible t i ming
problem and for those areas where we bel ieved
the DECS!M MOS s imu lat ion was inaccurate . we
created and ran SPICE c i rcu i t s imulat ions . In a
second usc of the extracted capaci tance va lues, a
program cal led PATH was wri tten i n the SCAN
compi ler generator language . PAT'H a l l owed the
c i rcu i t designers ro eas i ly and accurately create
wire l i srs represent ing crit ica l paths for subm is
sion to SPICE The program extracts a c i rcu i t
pa th description from the much larger wire l ists
generated from e i ther the IV tool or the ch ip
wide schemat ics. Wire l i sts created by the IV pro
gram i nc lude in terconnect and capac i ta nce infor
mat ion d irectly from layout artwork .

Al though the ch ip design process appears i n
th is discussion to be a neat progression , the
various aspects of the actual project quickly over
lapped one another . Almost a l l phases were rak
ing place s imul taneously on the various sect ions
of the ch i p . ·ro keep track of a11 these activi t ies
and cont inua l ly update the project complet ion
date. we used a spread-sheet program as a track
ing root .

'f'he design ream of l l peop le completed t he
project i n 2 1 months, i nc lud i ng 6 months for
product conception and I 5 months for i m p le
mentat ion . Due to the extensive model i ng and
s imu !ar ion prior to device fabrication , i n i t ia l
parts were functiona l at speed .

Di?,ilal Tecb11ica/ Journal
No. 7 A ug ust I 'J88

Test Features
To aid the debugging process and provide more
complete test coverage , the B IU conta ins test
logic . This logic a l lows visi b i l i ty to bot h data
paths or to the main PLA. A s imple test load
sequence a l lows one of 1 6 possible test modes to
be selected . Various groups of i nternal data path
and control b i ts and two test-drive t im ing opt ions
arc a l lowed. The test mode can be enabled or dis
abled at any t i me by asserti ng a single test p in .
Certa in test modes are ava i lable whi te operat i ng
a t fu l l speed in a system configuration .

CFPA Performance
Although there is no absolute measure of perfor
mance i n computer system design, t he float ing
poi nt performance of the CVAX system is com
pared at approxi mately three t i mes the perfor
mance of the MicroVAX I I system . Using some of
the more wide ly publ ic ized benchmarks of
tloat ing poin t system performance , the CVAX sys
tem with CFPA runn ing at 2 5 MHz shows better
than t hree t i mes the speed of the MicroVAX I I
with FPU . The system calcu lates 3 , l 0 5 K single
prec is ion Whetstone i nstruct ions per second and
l , 996K double-precision Whetstone instruct ions
per second . Linpack performance of 0 . 6 8 Mflops
s ingle-precision and 0 . 4 5 Mflops double-prec i
sion demonstrate over four t i mes t he perfor
mance of the previous generat ion MicroVAX
implementat ion .

Table 3 1 ists the typ ical cycle counts for regis
ter-to - register execution of floating point addi
t ion , subtraction , mu lt ip l ication , and d ivision .

Table 3 CFPA Cycle Counts for Optimized

Instructions

Opcodet
CFPA Operand Total

Instruction Cycles Transfers Cycles

ADDF/SU B F 3 5 8
M U LF 4 5 9
DIVF 1 3 5 1 8

ADDD/S U B D 4 7 1 1
M U LD 6 7 1 3
D IVD 27 7 34

ADDG/S U BG 4 8 1 2
M U LG 6 8 1 4
DtVG 26 8 34

1 1 9

CVAX-based
Systems

------ Development of the C VAX Floating Point Chip

Acknowledgments

I n addition to the authors, members of t he CFPA
team were Roy Badeau , John Kowalesk i , Omar
Mal ik , and John E l l is who contributed ro the logic
and c ircui t design as wel l as Katie Alexandrowicz ,
Mike Benoi t , Larry Commodore , Sharon Crafts ,
Bob H icks, Dennis Hodges , E l len Kagan , Marc
Schenstrom, Tim Thrush , and Peter Wi lcox who
created the layout for the ch ip . Test , product
engineering, and addi t ional technica l contribu
tions were made by D i l i p Bhavsar, Sh lomo
Daniely, Larry Harada, Charl ie H i l man , Vinod
Ra i , and N ige l Scott .

Reference

l . D . Sweeney, "An Ana lysis of Floating Point
Addi t ion ," IBM Systems journal, vol . 4
(1 96'5) : _) 1 -4 2 .

Genera/ References

T. Fox , P. Gronowski , A. Ja in , B . Leary, and
D . M i ner, "The CVAX 780 3 4 Chip , a 3 2 -bit Sec
ond-generation VAX Microprocessor, " D igital

1 2 0

Technical journal (August 1 988 , th is issue) :
9 '5 - 1 08 .

E McLe l lan , G . Wolrich, et a l . "The CVAX F P U , A
CMOS VAX Float ing Point Unit , " ICCD Proceed

ings (October 1 987) : 1 5 3- 1 '56

P Rubinfeld , et a l . , "The CVAX CPU, A CMOS
VAX Microprocessor Ch ip , " ICCD Proceedings

(Ocrober 1 987) : 1 4 8- 1 5 2 .

W . Bidermann, e r a l . , "The MicroVAX 78 1 3 2
Floating Point Chip , " Digital Technical journal
(March 1 986) : 2 4 - 3 6

G . Wolrich , et a.l . , "A H i g h Performance F loating
Point Coprocessor," IEEE journal of Solid-State

Circuits, vol . SC- 1 9 , no. 5 (October 1 984) :
690-696.

T . Leonard. ed . , VAX A rchitecture Reference

Manual (Bedford : Digita l Press, Order No .
EY 3 4 '5 9E- DP, 1 987) .

0. L. MacSor ley, " High-speed Ari thmetic in
B inary Computers ," Proceedings of the IRE, voi .
4 9 (I 96 1) : 67-9 1 .

Digital Technical journal
No. 7 August 1 988

jeff Winston I

The System Support Chip,
a Multifunction Chip for
CVAX Systems

Developed as a general-purpose companion to the new CMOS VAX VLSI
chips, the System Support Chip (SSC) contains a common core of periph
eral system junctions which are required to support a MicroVAX system
environment. These junctions include timers, VAX console support, and
standby RAM. In addition, the SSC provides system designers with "hooks"
to other system junctions. With these peripheral junctions integrated on a
single chip, system designers can substantially reduce the number of com
ponents on a module and add features previously not considered cost

effective. Primarily used with the CVAX CPU chip, the sse is also compat
ible with the NMOS Micro VAX CPU chip.

Background and Goals
I n 1 9 8 4 , as the VAX 8200 and Micro VA.'< I I ch ip
sets entered prod uction , Digita l 's Sem iconductOr
Engineering Group (SEG) d i rected i ts a ttent ion
toward defini ng the next generation of Micro VAX
systems . 1 This paper describes the project
hisrory and functiona l i ty of one of th is new gener
ation 's peri phera l ch ips , the M icroVAX System
Support Ch ip (SSC) . Deve loped over a period of
1 8 months beginn ing in late 1 98 4 , the sse was
designed as a genera l -purpose compan ion to the
CVAX CPU. As such , the chip is used i n the VAX
6200 fam i l y and in the M icroVAX 3000 fami ly . 25

As pan of the defin i t ion of the new CMOS VAX
fa m i ly of VLS I ch ips, SEG looked at the periph
era I functions t hat surrounded the exist i ng
MicroVAX I I CPU . We observed that , to bu i ld a
marketable product , each system group had
added a col lect ion of t i mers , decoders, and other
low- and mid-complexity funct ions to their
respect ive modu les . A high level of s imi larity
from modu le ro module was apparent in the
makeup of these funct ions .

I n addit ion ro examin ing these ex isti ng mod
u l<:s, we ta l ked with the system designers tO learn
what addit iona l functions shou l d be included on
the next generation of systems. Aga i n , we found
that the various systems under development
wou ld have a sign i ficant number of overlapping
functional requ i rements .

Digital Technical journal
No 7 A ugust J 'J88

We decided a ch ip that provided the common
core of these peri pheral functions would be a
strategic componem for Digital products. This
s ingle chip wou ld i ntegrate many of the periph
eral functions usua l ly requ i red on MicroVAX CPU
modu les . Consequent ly , a system designer cou ld
substant ia l ly reduce the nu mber of components
on a CPU modu le and add features that previ
ous l y would not have been cost effective . More
over, the ch ip would a l l ow h im to add features
without lengthen ing the project schedu le or
requ ir ing extra resources. As a res u l t , the system
designer cou ld produce a more compet i t ive
Digi ta l product at l i t t le addi t iona l cost .

From the system designer's viewpoint , the chip
would

• Fu l ly implement many functions used ident i
cal l y across d ifferent MicroVAX systems, such
as r imers, ROM su pport, and standby RAM

• Provide the " hooks" to su pport other func
t ions that wou ld be i m plemented d ifferently in
t he d i fferent system envi ronments

Thus each system group wou ld no longer need tO
design , imp lement , and debug these important
peri pheral funct ions from scratch . I nstead , they
cou ld use a read i l y ava i l ab le part that had been
debugged a nd qual i fied . Further, s ince the SSC
wou ld usc custom CMOS VLS I , th is ch ip wou ld
contain some addit ional usefu l functions , such as

1 2 1

------ The System Support Chip, a Multifunction Chip for C VAX Systems

general -purpose t imers, that are expensive to
implement in off- the-shelf or gate array tech
nology .

With these goa ls out l i ned , we began develop
ment of the SSC . The fol lowing sect ion presents
an overview of the ch ip . I n the balance of the
paper, we describe the chip functions in deta i l
and d iscuss the trade-offs made and problems
encountered during development .

SSC Overview

The SSC incorporates onto a s ingle ch ip a com
mon core of functions requ i red to support the
VAX system environment. Table 1 l ists the essen
t i a l physical characteristics of the ch ip . F igure 1 ,
a photograph of t he chip , shows the major sec
tions . Grouped in to three main categories , t hese
sections are

• Support for power-up boot ing a nd the VAX
consol e

• C lock and t im ing functions

• Features requ i red by the VMS operat ing system
and those commonly requ i red on a VAX CPU
module .

We begin our deta i l ed discussions of t he ch ip
functions wi th the sse console and boot code
support .

Console and Boot Code Support
The periphera l support described i n th is section
incl udes ROM packing, halt -protection, the
UARTs, and standby RAL\1.

ROM Packing
When a MicroVAX CPU is powered up , it begins
execut ing code from read-on l y memory (ROM) .
To proper ly communicate wi th an off-the
shelf ROM , the microprocessor requ i res addi
tional i n terfac ing l ogic . The SSC provides th is
logic by generat ing the signal s needed for the
ROM-to-microprocessor in terface . The SSC a lso
provides the packing support for data-width
compatib i l i ty between the ROM and the micro
processor.

At project outset , SSC designers assu med the
module designers would use four ROMs i n para l
le l to provide a 3 2 -b it-wide ROM word to the
CPU. However, with ROMs becom i ng denser
every year, it is now poss ible to put a l l boot , con
sole , and d iagnostic code in one or two 8-bit -wide
ROMs. System designers therefore c hose to use
fewer ROMs, decreasi ng the number of compo-

1 2 2

Table 1 SSC Physical Characteristics

Total device count

Die s ize

Power dissipation

Packaging

Clock

84,000 (approx .)

8.0 mm x 7.5 mm

Less than 1 .0 W, worst case

84-pin surface mount

40 M H z external ; 20 M H z
internal ; 2 5 . 6 k H z f o r t ime
of-year clock

nents on the modu le and thus t he product cost .
The MicroVAX 3000 uses two 64 k i lobit (Kb)
ROMs in para l l e l , forming a 1 6 -bit ROM word .
The VAX 6200 system uses two 6 4 Kb ROMs i n
series.

To provide data-width compatib i l i ty between
the 3 2 -bit-wide CVAX bus and t he narrower ROMs,
the sse i nc ludes packing support for 1 6-b i t
word-wide or 8-bit byte-wide external ROM .
Wi th packing support , the SSC performs mul t ip le
reads of t he n arrow ROM word , assembles a
3 2 -bi t longword, and sends the l ongword back to
the microprocessor. The SSC performs th is func
tion by d i rectly driving the output enable and
address l i nes 1 a nd 0 of the ROM . (See Figu re 2 .)
The ROM's other address p i ns are driven by an
external address latch, and the data l i nes of the
ROM drive t he CVAX bus d i rectly.

To pack a ROM , t he SSC asserts output enab le ,
drives t he appropriate combinations of ROM
address p ins 1 and 0 , and receives t he narrow
data across the CVAX bus i n consecutive ROM
acess cycles (unbeknownst to the microproces
sor) . The SSC then deasserts output enabl e , puts
t he packed longword on the CVAX bus, and com
pletes t he read transact ion .

CPU Halt-request Protection
System designers requested that the SSC help
prevent a n undesired condi tion in the hal t logic .
When t he hal t p i n is asserted on the m icro
processor, it executes a specia l trap to console
code stored i n the ROM. A second assertion of
t he CPU's h a l t p i n (typical l y generated when
someone repeated l y presses t he hal t button on
the system front pane l) causes a second such
trap , overwri t ing the poin ter needed to retu rn
to program code u pon leaving consol e mode .
Without t h is pointer, norma l operation o f t he
machi ne cannot be resu med wi thout booting.
Obvious ly system designers wan ted to prevent
this cond it ion .

Digital Technical journal
No. 7 August 1 988

Figure 1 SSC Photograph Showing Major Sections

Figure 2 SSC ROM Packing Connection

Diagram

Digital Technical journal
No. 7 August 1988

The SSC prevents the second call by moni toring
the addresses of all i nstruct ion reads and by inter
cepting a l l external hal t requests made to the
CPU . Dur ing normal CPU operat ion , t he SSC
passes an in i t ia l ha l t request to the m icroproces
sor. The m icroprocessor i m mediately begins to
execute from hal t -protected space, wh ic h is a
specia l address space programmed in to the sse
by t he user at boot t ime .

When the CPU reads t he first i nstruction from
console code, t he sse detects this console code
address and masks further ha l t requests. These

1 2 3

CVAX-based
Systems

------ The System Support Chtp, a Multifu nction Chip for C VAX Systems

requests are masked as long as the m icroproces
sor is execut ing ROM console code . The console
code can then run un i nterru pted by hal ts .
During console code execution , the sse con
t i nues to moni tor a l l i nstruction addresses. When
an address outside halt -protected space is
detected , the sse re-enables halt requests to
the CPU .

Before dec id ing on the design descr ibed above ,
we considered implementing a software-con
tro l led bi t that wou ld enable and d i sable hal ts .
This scheme wou ld requ i re the software to set
the bit upon enter ing hal t-protected space and to
clear the bi t upon re-entering norma l operation .
AJthough apparently s impler, this scheme proved
to be flawed because two condi t ions m ight occur
that woul d prevent the user from ha l c ing the sys
tem : (1) the b i t coul d be accidenta l ly set by non
boot code, or (2) a software error in the boot
code cou ld cause the m icroprocessor to start exe
cut ing nonsystem code .

With the plan we chose , control is automat i
cal ly returned to the user as soon as the software
com pl etes execution of the assu mably bugfree
halt- protected boot code . The system designer
can , however, provide software control of the
bah -enable fu nction by al ias ing the boot ROM
i nro rwo adjacent spaces , where on ly one copy is
hal t protected . The software can then control
halts by jumping between copies of the code.
(This method is used on the MicroVAX I I and
MicroYAX 3 5 00/3600 systems .)

UARTs
Although i t was clear from t he begi n n i ng that the
SSC shou ld provide UARTs , the best choice for
nu mber and design was not i m mediately clear .
We had rwo choices a t the t ime the ch i p was
defined :

• Dou ble-buffered DEC DLARTs (DC-3 1 9) ,
which were i n wide use, a l though a few
problems with this design had recently
su rfaced

• Si lo designs, which were becom i ng popu lar ,
though l arge in size

To conserve chip area , the sse team sett led on
a design very s i m i lar to the DEC DLART des ign ,
making a few i mprovemenrs i n response tO user
requests . To keep from unduly compl icating the
design, we also decided to l imi t t he number of
UARTs to two (the nu mber supported as console

1 24

ports wi th in the VAX archirecture) .
4 As a fu rther

s impl ification , we l i m ited the number of baud
rates ro eight power-of-two choices (300 tO
:) 8 , 4 00 baud) .

Our most signi ficant improvement t O t he
DLART design was the add i t ion of hardware
control -P break-detect ion . Controi -P entered on a
VAX console is i nterpreted as a ha l t request .
Thus, the UART must pick ou t this specia l
keystroke from the normal character stream and
then signal the CPU to take appropriate action .
Formerly, th is function was performed by cum
bersome firmware . However, the SSC hardware
cont i nuously watches for this character and,
when i t senses control -P, automatica l ly s ignals
the microprocessor .

The console code may configu re the SSC
such that a break is defined as a controi-P or as
20 spaces ; the la tter is a defi n i t ion st i l l used in
some console appl ications . At one point , we had
p lanned to use the chip t imebase tO define a
break as a space lasting a fixed number of m i l
l i seconds i nstead o f 20 spaces . However, users
advised us that th is new idea, a l though more
e legant , wou ld make the UART more confusing
to use .

Other i mprovements i nc lude better nOt ifica
t ion of overru n and framing errors, and secure
console support . Consol e secur i ty is effected by a
p i n . When grounded , t he pin prevents a break
from ha l t ing the CPU. This p in is typ ica l ly con
nected to a key switch on the computer's front
pane l . Using the swi tch , the user can lock out
console-induced ha i rs .

Further, t he SSC allows the CPU to direct ly
access the UARTs , t ime-of-year c lock , a nd bus
reset register by means of the VAX externa l pro
cessor register protOcol . Using this protocol , the
m icroprocessor can address system regi sters
located outside t he m icroprocessor by register
number rat her than by comp lete address . The
sse understands this protOcol and is capable of
decod ing the register number and generating
the desi red response . Previously , VAX modu le
designers using off-the-she lf UARTs had to imple
ment a substant ia l amount of externa l logic tO
decode the register addresses and enable the
UARTs to respond to th is protocol .

Finally , t he UARTs su pport break transmit and
loopback, and properly respond to VAX in ter
rupts . ln prod ucts conta ining the SSC, one UART
is used as the system console; t he other is used
for aux i l iary fu nctions, such as remote diagnos
t ics. or is d isabled .

Digital Technical journal
No. 7 A ugust 1 988

Standby RAM
When a VAX system is powered off, the operat ing
system must store some information in non
volar i le memory unt i I the system is powered up
aga in . Th i s stored informat ion describes the sys
tem configuration and conta ins pointers to restart
data stored on the d isk . On the MicroVAX l l CPU
modu le . a watch ch ip provided 50 bytes of sror
age for th is purpose . System designers i nd icated
this amount was inadequate; 5 00 ro I 000 bytes
was des i rab le .

To meet t h is standby StOrage need, the sse pro
vides I k i l obyte (KB) of battery backed-up ran
dom-access memory (RAM) , organ ized as 2 5 6 by
:1 2 bi ts . Th is RAM is a lso used as a system
"scratch pad " during power-up test .

Add i r iona l stand by su ppon features are de
scribed in t he section Standby Features .

Timers
The SSC t i mers serve tO i mprove system rel i ab i l
i ty . meet arch i tecture requ i rements, and save
modu le space. These r i mers i nc lude t he pro
grammable bus t i meout , the i nterva l t i mer, gen
eral -purpose t i mers, and t he t i me-of-year c lock
d iscussed in th is sect ion .

Bus Timeout
Since the CVAX bus i s a handshake bus, i ncom
plete bus t ransactions can hang t he system . Some
older VAX systems permi t th is condi t ion ; w hen
those systems were designed, the high cost of
im plementing a t i meout in external logic coul d
nor be just i fied in relat ion to t h e rar i ty o f th is
event . However . the SSC i m proves system re l i
abi l i ty by provid ing a programmable bus t i meout
at no add i t iona l system cost .

I f a transact ion lasts longer than a user
programmed interva l , the ch ip

• Signa ls the m icroprocessor that a bus error has
occu rred

• Term i narcs t he transact ion

• Sets certa in interna l status tlags based on rhe
type of transact ion t hat t i med out

The status flags d ifferent iate the two types of
ti meouts : (1) unexpected ri meours of read or
wri te transactions . and (2) perm iss ib le r i meouts
caused by some unimplemented external proces
sor registers or by certa in interrupt-acknowledge
transact ions. After the t i med-out transact ion is

Digital Technical journal
No. 7 A ugust I 'J88

terminated, error-hand l ing code reads the sse
i nternal status flags and takes the appropriate
act ion .

The t i meout i merval may be program med i n
! -m icrosecond increments up t o 1 6 seconds.
The larger va lues are used to t i me out system
sel f- tesr .

In terval Timer
The VAX arc h itecture specifies a complete i nter
val c lock which t he operat ing system uses to
schedu le t i me-cri t ical system functions at regular
in terva ls . On MicroVAX CPUs, logic for the clock
is s impl ified to reduce the amount of c i rcu i t ry on
t he m icroprocessor ch ip . On these m icroproces
sors, on ly an i nterrupt-enable b i t is i mple
mented . The t i mer source is generated externa l ly
and is driven onto an input p in of t he m icropro
cessor ch ip . When the i nterrupt-enable b i t is set,
an i nterrupt request i s generated on t he fal l i ng
edge of the t i mer source , which is a l 00-Hz s ig
nal on Micro VAX systems.

The SSC e l i mi nates the need for the modu le
designer to p lace another osci Uaror on t he CPU
modu l e by provid ing a 1 00-Hz output su i table
for driving t he interval t i mer i nput to t he
m icroprocessor ch ip .

General-purpose Timers
Early in the SSC deve lopment , many potenti a l
users voiced a need for genera l -purpose t imers on
future M icroVAX modu les . However, no one had
specific recommendat ions on how such function
a l i ry shou ld be i mplemented . Some users
req uested four t i mers ; whereas others reasoned
that one t i mer supported with software could do
the work of four or e ight t imers.

After some design a ttempts, we decided to
copy, bit for b i t , t he VAX standard i nterval
c lock . We reasoned that it was prudent to se l ect
a des ign that was a l ready wel l thought out and
in genera l use . We d id add one control bit to
provide a one-shot capab i l i ry . Our decision to
i nc lude two t imers was based on t he amount
of ava i lable chip area and a des i re for some
redundancy.

Each t i mer provides schedu led interrupts
with ! -m icrosecond resol u t ion . The max imum
interval berween i nterrupts is 1 . 2 hours . In one
shot mode , t he t imer stops u pon generat ing
its first interrupt . I n si ngle-step mode , a count
can be caused on ly by writ ing to a spec ific
control b i t . The in terrupt vector is user-pro
grammable .

1 2 5

CVAX-based
Systems

------- The ,�ystem Support Chip, a Multifunction Chip for C VAX Systems

These t imers are not used by the CPU module ,
but are ava i lable to the end user. We expect them
to be very helpfu l to users designing embedded ,
t i me-sensi t ive applications.

Time- ofyear Clock

The VAX archi tecture requi res a battery-backed
up t ime-of-year clock with a resolution of
I 0 m i l l iseconds (ms) . When the M icro VAX li
CPU module was designed , the best method for
providing t his feature i nvolved the use of a BCD
watch chip , approxi mately one-half gate array of
logic to i nterface the c hi p to the MicroVAX bus ,
and some specia l ly written operat ing system
code. Even then the clock provided a resolut ion
of only 1 second in standby mode .

The SSC provides a much more desirable solu
tion . I ts 3 2 -bit VAX-standard t ime-of-year clock ,
driven by an external 2 5 .6 ki lohertz (KHz) osc i l
lator, i ncrements every 1 0 ms . As wi th a l l sse
i n ternal registers, the m icroprocessor can access
the t ime-of-year c lock without using any external
logic .

To further m in imize cost and modu le space
usage in systems w here battery-backed-up clock
operation is not requ ired , the user may s imply
ground the 2 5 . 6 KHz input pin on the sse
During normal operation , the t ime-of-year clock
wi l l automatica l ly derive i ts t i mebase from the
ch ip 's UART t imebase , removing the need for the
2 5 . 6 KHz osc i l l ator on the module .

Other Support Features

Programmable A ddress Strobes
As noted in the section Background and Goa ls ,
the sse is designed to provide system designers
with " hooks" to other system functions . One of
these hooks is the sse programmable address
decode strobe function , which adds user
flexibi l ity a nd also saves module space.

Virtua l ly every CPU modu le needs logic that
watches the bus for part icular addresses and
asserts signals when these addresses are sensed
This function is typica l ly embedded in gate array
logic or in dedicated programmable array logic
(PAL) chips .

The SSC has two programmable address decode
strobes. The user may program each strobe for a
particu lar address of I s , Os, or " don' t cares . " The
user can also program selectively for read or
write transact ions . When a strobe channel is
enabled , the corresponding output p in w i l l assert
during any bus transaction for which the pro-

1 26

gram med address and transaction type are
matched .

The strobes can be program med e ither to
provide a hook for external logic or to complete a
transaction after a delay . When the sse is pro
gram med to provide a hook, the strobe m ight
be used to drive an external address decoder or to
enable another ch ip . After assert i ng the output
strobe , the sse takes no further action, permit
t ing another device to complete the bus trans
act ion .

Alternat ive ly , a strobe can be program med to
complete the transaction after a delay that per
m i ts an external device several hundred nanosec
onds to respond . When configured in th is way,
the strobe is usua l ly program med to respond to
reads of a s ingle longword address . The strobe is
then wired to enable three-state drivers which
drive modu le data onto the CVAX bus. This data is
often made up of external registers, or of dua l in
l i ne package switches that i nd icate baud rate
se lection and other module-specific information .

Output Port
Fou r p i ns on the ch ip function as an output port .
The port is written as a register and is capable of
driving s imple output devices . This output port
is anot her genera l -purpose feature that system
designers need to i mplement various module
speci fic functions . Some designers use the port
p i ns to drive LEOs, which are then fl ashed i n a
particular sequence to i nd icate progress of se lf
test . I n other appl ications, system designers have
used these signals to control external mult iplex
ers and to provide s imple modem control .

Bus Reset
The VA,'(archi tecture requ ires a reset of the I/0
system when the CPU issues a write to a part icu
lar external processor register. This specification
req u i res support from both decodi ng l ogic and
r;o system reset logic. In the past, each modu le
designer had to i mplement both logic b locks i n
external hardware . sse designers saw another
opportuni ty to s impl i fy the CPU module by p l ac
i ng some of the consistently requ i red logic on
the sse

Although the IjO system reset logic varies
a mong systems, the decoding l ogic is the same i n
each MicroVAX syste m . The SSC provides this
core logic, taking three actions . First, the chip
decodes the external processor register number.
Then it asserts an output p in in response to the
external processor register write . F ina l ly , i t

Digital Technical journal
No. 7 A ugust 1988

de lays the com pletion of the wri te t ransaction for
severa l hundred nanoseconds, so that modu le
specific logic, tr iggered by the p i n assertion , may
proceed tO take the proper act ion to complete
the 1/0 system reset .

Standby Mode: Power- sensing Features

When powered down, VAX systems are req u i red
tO mainta i n a runn ing rea l - t ime clock for at least
1 0 0 hours . Retent ion of some memory is a lso
desirable . A5 noted i n the section Standby RAM ,

the sse satisfies these req u i rements by providing
a standby operating mode . In th is mode, the
power supp ly to the mod u le and to the chip pad
drivers is turned off and most i n ternal logic i s d is
abled . However, the SSC RAM and t ime-of-year
clock are powered by t hree N iCad batteries sup
plying berween + 3 . l V and + 4 . 5 V at approxi
mately 1 S O microa mperes. The batteries a lso
power the 2 5 . 6- kHz externa l low-power CMOS
osc i l lator, which provides the t i me-of-yea r clock
t imebase . With in t he SSC , spec ial logic guaran
tees smooth trans i t ions from norma l operation to
standby mode.

As part of providing standby operation , the sse
must re l i ably report at boor t ime whether standby
power was cont inuously maintained during the
standby period . The task of determi n ing whether
batrcry power had remained stable dur ing the
standby period was a d ifficul t chal lenge for the
SSC desi gners . There are two ways power can be
lost dur ing standby: The batteries may run clown,
or someone may replace the batteries. In e i ther
case , the sse detects Joss of power and reports
such loss to the CPU during the next boor .
Except for externa l logic used for voltage mea
surement , this ent i re function is i mplemented
within the sse as fol lows.

When the batteries ru n down , the unaccept
ably low voltage can be detected during boor .
However , our CMOS process is nor opt imized for
the design of logic that can accurately measure
in termediate vol tages. Thus, external circu i ts
are used to detect whether battery vol tage is
currently bel ow a m in imum leveL If vol t.age i s
be low min imum, these c i rcu i ts assert an sse
input pin dedicated to th is fu nction . However ,
these external c i rcu i ts cannot detect temporary
power losses that occur during standby mode, for
example , when the batteries are replaced . To
provide for these cases, a speci a l latch on the
ch ip , which powers up in a preferred sta te ,
detects the in terrupt ion of battery power during
standby or i n it i a l power-u p. Th is power-up

Digital Technical]our"al
No. 7 A ugust 1 988

detector l atch w i l l operate for arbi trar i ly s low
supply transit ions. In add i t ion , the latch's reset
i nput i nc ludes i n ternal fi l tering for protection
agains t fast supply trans i t ions or power-up noise .

I f e i ther the external c i rcu i ts assert the sse
i nput p in or the spec ia l power-up latch ind icates
a loss of power , the sse sets an in ternal flag b i t at
boot t ime . The bit , which i nd icates that t he clock
and RAM are not val id , is read by the m icropro
cessor dur ing boor .

System rel iabi l i ty is i m proved by the SSC's abi l
i ty to determi ne the i n tegri ty of i t s standby logic
and to noti fy the CPU in a software-accessible
fash ion . Moreover, th is feature saves design t ime,
si nce desi gners need not individual ly create this
tricky but necessary logic .

Flexible Addressing

The desi gners of the SSC determi ned that the ch ip
shou ld fi t i n to any VAX system environ ment wi th
a m i n i mum of external address decodi ng or sys
tem incompatibi l i ty . As a resu l t , the sse control
and status registers and i nternal RAM are a l l s i tu
ated with in a re locatable 2 KB address space . This
arrangement e l im ina tes the need for an external
chi p-enable p in and t he external decoding logic
that woul d be needed to properly assert such a
p i n . The power-up boot code programs the base
address of t he registers by wri t ing a 2 KB-al igned

va lue tO the SSC base address register .
The SSC base address register is located a t a s in

g le fixed address , chosen in cooperation with our
major users . The SSC RAM and registers can then
be addressed by add i ng their speci fied offsets to

the va lue in the base address register. A system
designer can therefore s ituate the sse registers
and RAM (tOgether) anywhere i n a system's 1/0
space map.

Initialization

To make the sse especia l l y easy to use, most of
the sse configurat ion bi ts are grouped i n a single
register. These bits i nclude setup for the UARTs ,
programmable address strobes, ROM packing,
and hal t-protection features . Thus, during system
in i t ia l ization , most sse featu res can be config
u red with a single write .

Micro VAX and Multi- speed

Compatibility

Al though targeted pri mari ly as a compan ion to
the CMOS VAX CPU, the SSC is a lso compatible
with the older NMOS MicroVAX CPU used i n t he

1 2 7

CVAX-based
Systems

The System Support Chip, a Multifunction Chip for C VAX Systems

MicroVAX I I . Thus, new low cost or low perfor
mance designs us ing t he older m icroprocessor
ch ip can a lso take advantage of the h igh integra
t ion and extra functiona l i ty provided by the sse .

The SSC is a lso com pat ible with modu les that
have e i ther high or low cyc le t i mes. Origina l ly
designed for a I 00-ns m icrocycle , the CVAX
microprocessor runs at 90 ns i n the MicroVAX
3000 system and at 80 ns i n the VAX 6 2 00
system . Early i n the development of the CVAX
ch ip set, we decided that ch ips that were not
performance-crit ica l , l ike the sse, wou ld run at
just one speed (1 00 ns) , but wou ld be capable of
in terfacing to a faster-runn ing microprocessor.
Speed conformabi l i ty wou ld s impl i fy develop
ment , manufacturing, and field support because
one SSC cou ld be used across a l l MicroVAX
systems .

Accord ingly , the SSC bus interface, runn ing at a
I 00-ns microcycle , accommodates m icroproces

sors runn ing at m icrocycles from I 00 ns to 60 ns.

Summary
The SSC project yiel ded a CVAX microprocessor
companion ch ip that provides a h igh degree of
fu nctiona li ty , flexibi l i ty , and integrat ion . Com
prisi ng console sup port, t imers , decoders , and
other programmable features on a s ingle ch ip ,
the sse permits system designers to deve lop
smal ler, more integrated modu les at lower cost .
Moreover, improvements made to the genera l i zed
features, such as halt protection and break detec
t ion , contribute to i ncreased system re l iabi l i ty
without reducing system des ign flex ibi l i ty .

The u t i l i ty of the SSC i s evidenced by plans to
inc lude the ch ip in over a dozen d ifferent D igi ta l
products, such as the M icroVAX 3000 systems,
the VAX 6200 systems, many XMI adapter
hoards, and various control ler products .

Acknowledgments
The author wishes to acknowledge Brian R .
Al l ison , Barry Maskas, Robert McNamara, Jay T.
N ichols, M ichael H . Phipps, and Robert M . Sup
nik, who contributed to the development of the
sse functional specification .

Further, the aut hor acknowledges t he consider
able efforts of the sse design and manufacturing
team : Robert A. Anse lmo, Nannette M . Fi tzgera ld ,
Robert) . F lanagan , James D . Gorr, Dennis E .
Hodges , Kei t h D . Johnston , Bal a krishna Joshi ,
Joseph R . Manros, John W . May, Michael J .
Saldana , and N icholas D . Wade .

1 28

References

1 . T. Fox, P. Gronowski , A. Jain , B . Leary, and
D. M iner, "The CVAX 78034 Chip , a 3 2 -b i t
Second-generation VAX M icroprocessor, "
Digital Technical journal (August 1 988 ,
t his issue) : 9 5- 1 08 .

2 . B . Al l ison , "An Overview o f t h e VAX 6 20 0
Fam i l y o f Systems," Digital Technical

journal (August 1 988, th is issue) : I 0- I 8 .

3 . G . Lid ington , " Overview of the MicroVAX
3 5 00/3600 Processor Modu le , " Digital

Technical journal (August 1 988 , this
issue) : 79-86.

4 . T . Leonard , ed . , VAX A rchitecture Refer

ence Man ual (Bedford : Digita l Press , Order
No . EY- 34 5 9 E-DP, 1 987) .

Digital Technical journal
No. 7 A ugust 1 988

Barry A. Maskas I

Development of the
CVAX Q22-bus Interface Chip

The CVAX Q22-bus interface chip (CQBIC) is a highly integrated, single

chip that serves as the interface between the CVAX microprocessor and the
Q22-bus 1/0 subsystem. The CQBIC VLSI design is the first produced by

Digital's japan Research and Development Center in coordination with

teams in the U.S. Before implementing the interface design, team members

built a test chip to ensure the feasibility of a CMOS Q22-bus transceiver and

to test various design alternatives. Also as part of their research effort,

they examined alternative designs for several junctions, including the

scatter-gather map cache and the data buffering functions. Project
designers then implemented the CQBIC using a mix of full custom and

semicustom design databases. A description of the five major functional

sections is presented in this paper.

The CVAX Q 2 2-hus In terface Chip (CQ B IC) i s an
evolutionary step in funct iona l i ty and integration
from the MicroVAX I I CPU modu le 's Q 22-bus

i nterface design . The MicroVAX II CPU modu le's
Q 2 2 - bus in terface comprises 1 8 d iscrete ch ips
and a gate array; the modu le design employs
l i nked sequent ia l con trol lers . 1 The advanced
CQBIC design integrates these contro l lers and a l l
other i nterface fu nctiona l i ty i n a s ingle c h i p and
reta ins the l in ked cont rol ler design .

Speci fica l l y , the CQBIC provides the e lectrical
and functional in terface between t he 3 2 -b i t CVAX
microprocessor and t he 1 6-b i t Q 2 2 - bus IjO sub
system . I n tegrated on the ch ip are the complete
Q 2 2-bus i nterface , data buffering, the CVAX
bus, 2 d irect me mory access (DMA) i nterface , a
scat ter-gather (SjG) map cache , and complex
control l ogic . Table I l ists the ch ip 's physical
characteristics .

Begu n in February 1 98 5 , the two-year CQBIC
project was a joint venture for three of Digi ta l 's
groups: Japan Research and Development Center,
Large Scale I ntegrat ion (JRDCjLS I) ; Semi
conductOr Engineering Advanced Peripherals
Development (SEGjAP D) ; and M icro Systems

'I
Development (MSD) . -

Project Goals and Organization
A h ighly i ntegrated , s ingle-chi p , CVAX bus to
Q 2 2 -hus adapter was a desirable prod uct for sev-

Digital Technical journal
No 7 August 1 ')88

Ta ble 1 CQBIC Physical Cha racteristics

Process 2-m icron drawn , N-well ,
dual aluminum CMOS

Nu mber of transistors 40, 900 (approx .)

Die s ize 9 .2 m m x 9.4 mm

1 .5 W Power consumption

Packaging

Power supply

1 32-pin su rface-mou ntable
chip carrier with 25-mi l
lead spacing and heat s i n k

+5 V

era! reasons . Primar i ly , such a ch ip wou ld red uce
component costs and system module s ize , and
increase system rel iabi l i ry as compared with the
MicroVAX I I CPU modu le 's Q2 2-bus i nterface.

Therefore , the primary goa l of the CQBIC pro
ject was to develop a h ighly i ntegrated chip as an
i n terface between the CVAX m icroprocessor and
the Q 2 2 -bus . This ch ip wou ld ease the task of
Dig i ta l 's system desi gners by standard iz ing the
in terfacing to the Q 2 2 -bus and by provid ing the
same or im proved I/0 bandwidth performance as
the MicroVAX I I CPU mod u l e Q 2 2 -bus interface .

Ach ievement of th is performance goa l was
compli cated by the s ingle-port memory arch i tec
tu re of the fi rst p lanned CPU module and i ts twO·
level i nstruction and data , d i rect -mapped cache
scheme. I n comparison , t he MicroVAX I I CPU

1 2 9

------- Development of the C VAX Q22- bus Interface Chip

module has a dual -ported memory arch i tecture
wi th no caching . However, the DMA single-port
arch i tecture was requ i red for t he new two-level
cache arch i tecture ; wi th a si ngle-port organ iza
tion . DMA addresses can be viewed by the caches
so that the caches can i nval idate va l id entries dur
ing I/O-to-memory write transactions. Conse
quently , to both accommodate this archi tecture
and meet i ts performance goals , CQI3IC had to
be designed to consume l i tt le CVAX bus band
width whi .le performing DMA transactions . Such
a design wou ld not greatly degrade CVAX
microprocessor performance .

A second important project goal was ro pre
serve 1/0 performance and operat ing system
software compati b i l i ty .4 Therefore, CQBIC
wou ld provide the same Q 2 2 -bus virtual to CPU
physical memory address transl at ion as contained
on the Micro VAX I I C PU .

I n addi t ion to meeting these goals , t he CQBIC
project wou ld a lso serve to demonstrate the feas i
bi I i t y of a remote VLSI design center for the SEG
organ i zat ion . Moreover, through this project the
)ROC/LSI Group wou ld have an opportun i ty to
demonstrate i ts VL'i l design capabi l i t ies.

Further compl icat i ng the chal lenges presented
by the design goa ls , the d istance between the
work ing groups , the cul tural and work style
d ifferences , and the language barrier was the
newness of the JRDC team . Many of the JRDC
team members cou ld read and wri te English, but
had some d ifficu l ty speaki ng and l i sten ing to
English Also. t he Japanese language was com
pletely foreign ro MSD and SEG. Wrirten Engl ish
served as the primary form of com munication
t hroughout the project. Further, the JRDC ream
members had to learn not on ly about Dig i ta l 's
products and arch i tectures , but a lso the Q 2 2 -bus,
the ot her five ch ip specifications under develop
ment , the SEG semicuswm and custom ch ip
des ign rool su ites , and Digita l 's CMOS technol
ogy. To help with this steep learn i ng curve ,
experts from each of these areas faci l i ra ted the
tra in ing and information flow. These experts
provided answers to specific questions and
helped to solve specific problems as fol l ow-up to
formal tra i ni ng sessions .

Based on the M icroVAX I I CPU design experi
ence in SEG a nd MSD, SEG provided leadersh ip for
both the ch ip specificat ion development and the
project . This role involved conveying to the JRDC
team the chip functional defin i t ion and deta i led
behavior specifications . This informat ion had ro

1 3 0

be presented in the context of t he five other VLS I
ch ips be ing designed b y t h e S E G groups w i t h a
focus on the CPU mod ule prod uct . The U . S .
based project leadersh ip h a d t o provide budget,
schedu le , and task coord ina tion for)ROC, MSD,
and for other organizat ions wi th in SEG .

A-; the i n i t ia l cusromer, MSD performed three
major speci fication reviews . This group cont inu
a l ly provided d irection concern i ng design
trade-offs , a nd requested specific functional i ty
revis ions to ta i l or CQBIC more to their CPU
appl ication .

Digi ta l 's E ngi neeri ng Network was the primary
means of transferring written commun ications
between groups. We a lso exchanged information
by sendi ng facs imi le copy and by mai l ing mag
netic tapes and docu ments . Ar t i mes te lephone
discussions and personal vis i ts were necessary.

Specification deve lopment began with a two
wee k vis i t to rhe)ROC faci l i ty i n Tokyo . At that
t i me , we wrote the first draft with key members
of the)ROC tea m . This draft specificat ion laid
the foundation for subsequent architecture and
functiona l i ty research , and served as a communi
cation med i u m . The draft spec ifica t ion was then
mainta ined by the)ROC team and SEG and was
frequently revised and reviewed .

The fol lowing section presents the project
research conducted to ensure the feas ib i l ity of
project goa ls and to resolve major questions
ra ised by t he draft specification .

Project Research
Project research focused on two areas. F i rst , we
wanted to eval uate the r isks invol ved in the
i mp lementat ion of a CMOS Q 2 2 -bus transce iver .
For th is purpose, SEG team mem bers implemen
ted a rest ch ip . Second, we wanted to determine
the best means to ach ieve our stated performance
goa ls. The tests and studies which we conducted
and their resu l ts are described below .

Q22- bus Transceiver Test Chip
To determine whether or not a CMOS Q 2 2 -bus
transceiver cou ld be i mplemented , several stud
ies were performed by SEG c ircu i t designers
responsible for the ce l l l i brary. These studies
showed feas ib i l i ty , wi th two major implementa
t ion risks:

• The proposed d ifferential comparator to be
used as t he rece iver requ ired a stable vo l tage
reference .

Digital Technical journal
No. 7 August 1 ')88

• The :;:-; 1 00 -m i l l iampere (mA) peak , 70 -mA
steady-state s ink current Q 2 2 -bus transce ivers
were to be on the same substrate as complex
control c i rcu itry . Three problems cou ld
resu l t :

CMOS larch-up d u e to charge i nject ion from
i n put signal overshoot

Excessive noise due to substrate curren t
transients

Excess ive loca l ized power d issi pation

With severa l design a l ternatives ava i lable ro us ,
we needed more experi mental data to determine
the better alternatives . To obta in th is data , a
Q 2 2 -bus octal transceiver test ch ip was designed ,
fabricated , and packaged by SEG c i rcu i t design
ers . Avai lable after seven months , this packaged
octal transce iver rest ch ip was tested i n a
MicroVAX I I CPU modu le and performed wel l
under system condi t ions.

The test ch ip experimen ts showed that CMOS
latch-up due to worst-case overshoots below
ground d id nor occur . These resu l ts matched our
expectations . We were nor concerned wi th over
shoots above the + 5 volts (V) bias because of the
Q 2 2 -bus termi nat ion vol tage of 3 . 4 V. Tests a lso
showed that spec ia l care wou ld be requ i red i n
the a l location of dedicated ground p i ns for the
Q 2 2 -bus transce ivers to avoid noise coupl i ng
from substrate bou nce and package power-l ead
inductance . Also, in the ch ip layout , we woul d
have t o use many para lt e l traces o f metal i nter
connect to prevent metal m i gration when s ink ing
1 00 mA of peak current . Fina l l y , due to low
channel resistance of the Q 2 2 -bus driver output
pu l l -down device, the power d iss ipat ion of the
test ch ip was shown ro be wi th in re l iable opera
tion l i m i ts . Therefore , CQBIC power d issipation
was not a concern in terms of thermal characteris
t ics of the planned packagi ng.

The tesr chip resu l ts d id lead to a compromise
concern ing the stable voltage reference . Because
of l arge variat ions i n CMOS process materia ls , a
precision off-chip or externa l res istor wou ld bet
ter serve ro establ ish the requi red voltage than
wou ld some risky process-desens i t ized structure
in CMOS.

Prior to these tests, we designed CQBIC to
fac i l i tate the usc of e i ther i n tegral transceivers or
off-chip transce ivers . Fortunately, the rest data
demonstrated the feas ib i l i ty of a single ch ip with
integra l Q 2 2 -bus transcei vers, and t he project

Digital Technical journal
No. 7 A ugust / ')f/8

proceeded under a p lan t hat i nc luded i ntegra l
transce ivers .

A rchitecture and Performan ce Studies
As the octa l transcei ver test ch ip was being deve l
oped , MSD, JRDC and SEG conducted archi tec
ture and performance studies . These studies
wou ld answer questions about the organ ization of
t he SjG mapping function, the data buffering
requ i red to meet t he performance goa ls , and the
seq uent ia l control l ers part i t ion i ng and clocking
to manage the two asynchronous buses and t he
i n ternal functions .

SjG Mapping

A RAM structure was first proposed to implement
t he SjG mapping functional i ty . The MicroVAX I I
CPU design had used such a structure, with two
8K-by-8 static RAMs . This proposa l , however , was
rejected s i nce not a l l of t he RAM woul d tit on a
si ngle chip with a l l the other requ i red c ircu i try .
I ncreasing t he ch ip size was not an option . The
ch ip s i ze was l im i ted for cost reasons as wel l as
packaging cavity s ize reasons. The ch ip 's cost is
d i rectly proportionate ro i ts s ize , and t he design
of a new package was outside t he scope of t he
project . Moreover, implementat ion of a portion
of the RAM wou ld have i ntroduced a system soft
ware i ncompatib i l ity with MicroVAX I I and
woul d have reduced t he p lanned performance .

As the problem of SjG mapping functional i ty
was stud ied, i t became c lear that system memory
was adequate. rurther, CQBlC cou ld not imp le
men t the fu l l 8 1 9 2 -entry RAM on a ch ip size that
cou ld be fabricated with reasonable y ie ld . Also, a
capabi l i ty to prefetch S/G map entries based on
expectation was considered necessary to susta in
peak, as opposed to average, performance . We
looked to t he Q 2 2 - bus DMA devices which per
form transactions wi th i ncrement ing addresses .
I n part icu lar , Q 2 2 -bus devices are designed to
u t i l ize the Q 2 2 -bus block-mode data transfer
protocol . This protocol transfers data packers of
eight-word b locks . With th is protocol ava i lable ,
we could design t he CQBlC tO cache the SjG map
entries from system memory on demand and on
expectation .

The next two problems were how to i mple
ment the cache and how many entries to i nc lude
in the cache . A 1 6-entry cache provided t he bal
ance we sought between several factors : appro
pria te chip area, implementation complexi ty ,
design risk, and DMA 1/0 performance impact .

1 3 1

CVAX-based
Systems

------- Development of the CVAX Q22- hus Interface Chip

Data Buffering

CVAX bus cyc le t i mes were targeted to be four or
more t i mes greater than typical Q 2 2 -hus cyc le
t imes . Abo. the CVAX bus was being designed ro
support DMA mult idata transfers . This design was
consistent wi th the Q 2 2 -bus block-mode data
transfer prorocol . To bridge the bandwidth gap
between the two buses and ro m in i mize the use
of CVAX bus bandwidth , data bufferi ng tech
niq ues were i nvestigated to opt i mi ze for Q 2 2 -bus
block -mode throughput for read and wri te t rans
actions . These investigations resu.l ted not on ly i n
the determi nation of buffer s izes but al so in a
decis ion on how to control the: buffers to opt i
mize sustai ned throughput and min i m ize in i t ial
l atency .

The MicroVAX l l CPU is capable of supplying
read data to the Q 2 2 -bus with a very cons istent
access t i me because memory arbi trat ion is nor
requ i red . To ach ieve MicroVAX I I average read
performance , read data prefetching was consid
ered necessary to compensate for the memory
arbi trat ion t ime . For CQBIC. the first read of a
Q 2 2-bus transaction would be t i me delayed by
the DMA request and grant t i me , to obta in master
ship of the CVAX bus . a nd by rhe subsequent sys
tem memory access r ime The de: lay wou ld a lways
he longer than M icroVAX I I read l atency. which
had on ly memory access t ime read latency ro
consider. We determi ned that rwo quadword read
buffers wou ld be sufficient to sustain the
n:q u i recl throughput because read data is
prcfetched based on expectations of the Q 2 2 bus
block-mode protocol . Low latency was achieved
by provid i ng a response to the Q 2 2 - bus as the
first longword of the quadword read data was
obta i ned from system memory .

Pipe l in ing the buffered wri te data cou ld be
ach ieved with two buffers . each eight words
deep . An ocraword block is the packet s ize of the
Q 2 2 -bus block-mode protocol and is rhe max i
mum mult i transfer block size of the CVAX bus .
The conrrol logic wou ld be designed to al low one
buffer ro be unloaded ro system memory whi le
t he other was be ing h l led . The latency wou ld be
better than that of the M icro VAX I I CPU mod u l e ,
s ince the CQBIC data was packed i nto fast octa
word buffers . The average throughput wou ld be
sustained by t he four t i mes or greater bandwidth
of the CVAX bus, as compared to the Q 2 2 -bus, by
t he use of pipe l i ned data buffers.

The CQBIC buffering and transact ion opt i m i za
t ions in conju nct ion wirh the CVAX CPU internal

U 2

cache h i t rate resul t in an i nsigni ficant DMA ljO
impact on CVAX CPU performance . G iven the
buffering and control organ ization and opt im i za
t ions described above , performance d ifference
between the s ingle-port and the dual -port mem
ory designs cannot be detected by a Q 2 2 -bus
device. The resu l t is i mprovement in Q 2 2 -bus
read and wri te t hroughput over the M icroVAX I I
CPU. The CQBIC maximizes Q 2 2 -bus perfor
mance and mi n im i zes CVA,'(bus usage . Moreover ,
CQBIC can sustai n Q 2 2 -bus block-mode transfer
write data rates of 3 .1 megabytes (MB) per sec
ond and read data rates of 2 . 5 MB per second

Fi na l ly , ro opt i m i ze t he CVAX ljO write perfor
mance . a du mp-and - run buffer was ro be i mple
mented in CQBIC This buffer is used ro avoid
tying up the CVAX bus while the slower Q 2 2 -bus
transaction completes and whi l e dead lock s i tua
t ions are resolved .

Controller Partition

G iven these buffering functions, the control of
the data pat h and of the two major bus interfaces
was natu rall y part i t ioned in to five l inked con
trol l ers and a prior i t i zat ion fu nct ion . Each bus
interface was parti t ioned in to a master and a s lave
control ler . The S/G map cache a lso requ i red a
control ler . Then ro assist i n coord ination of con
t rol tlow dec isions, a prior i ty resolver funct ion
was needed .

This part i t ion a l lows the Q 2 2 -bus and the
CVAX bus to operate in para l lel whi le a l l dead
lock condi t ions arc resolved . Fortunate ly the
CVAX chi p team i mp le mented a bus transact ion
ret ry capabi l i ty . This retry capabi l i ty proved
essent i a l to our part i t ion and i mplementat ion of
CQBIC control functional i ty .

Clocking

Two primary factors led us to select a 5 0-nano
second (ns) two-p hase nonoverlapped internal
c lock scheme . F irst , the MicroVAX I I CPU mod
u l e 's '5 0 -ns s ingle-phase c locki ng sc heme was
a proven approach and mapped we l l to the fi xed
Q 2 2 -bus m i ni mum asynchronous t i m i ng spec ifi
cations. Second , we ex pected synchronous CVAX
bus cyc l e t imi ng to vary with CMOS technology
i m provements . The variab le CVAX cycle t i me and
four-phase overlapped c lock ing scheme cou ld
not be used to generate the fixed Q 2 2 - bus t im
ing . Also . havi ng two clocking sc hemes i n one
ch ip was determ ined tO be a design too complex
ro manage .

Digital Technical journal
No. 7 A ugust 1 ')88

The i mpl icat ion of the sc lccrccJ CQBIC clock
ing scheme was that . with reference tO a l l in ter
nal cont rol l ers . the CVAX bus and the Q 2 2-bus
were asynchronous.

Research Results Su m mary
The resu l t of the research was a si ngle ch ip
design that wou l d achieve the stated project goa ls
by provid ing

• Int egra l Q 2 2-bus transce ivers

• A 1 6-cntry map cac he . wi th preferc h ing

• Two octaword Q 2 2 -bus write buffers

• Two quadword Q 2 2 - bus read buffers . with
prefetch ing

• A longword CVAX write buffer

• Transaction part i t ioned sequent ial control l ers .
which are opt im ized for Look-ahead data
bulfcring cont rol and for u t i l i za tion of mul t i
ple - transfer transactions to m i n i mi ze CVA.X
bus and Q 2 2-bus usage

The research n.:su lts were docu mented in the
form of a revised ch ip spec i ficat ion and a be hav
ioral mode l . The ch ip was i m pl emented from the
revised spec ificat ion with a process which was
un ique and unproven

Implementation Process
CQ131C was implememed using a m i x of standard
l i brary ce l l s . custom l ibrary ce l ls , and fu l l cus
rom layout sections . At the t ime . SEG cou l d not
offer a formal design tool su i te to deal wi th such
a mix of fu l l custom a nd semicustom design <lata
bases . So the J RDC ream standard i zed by se lect
ing the methods of the semicustom tool su i te for
logic and c i rcu i t design . The semicusrom sche
matic edi ror and wire l ister were used to design
a l l the logic . This wire lister fac i I ita red i nterfac
ing to SPICE and other checking tools and most
importantly to the layout rools . For l ayout , no
automation of floor planning and ce l l placement
and romi ng cou l d he employed . This l ayout was
a l l done by hand , as were the fu l l custom designs .
Interconnect ver i ficat ion and design rule c heck
i ng were completed using the tools from the cus
tOm design sui te .

A fu l l cusrom layout sect ion was req u i red to
i mplement the SjG map cac he because of the
chip-size and latency constra ints . A parr of rhe
latency is due ro rhe Q 2 2-bus add ress look-up in
the cache . The SjG latency had ro be sma l l to com-

Digital Technical journal
No. � A ugust t '.JRR

pcnsate for the long l atency that cou ld occur, for
examp le , when the look-up misses t he cache and
requ i res an SjG map memory read access.

The standard ce l l l ibrary was rejected because
it d id not offer a content addressable memory
(CAM) . which is the structure requ i red to fac i l i
tate fast address look-ups . I n addit ion , the use of
standard l i brary cel l latches and exclus ive OR
gates was est i mated tO a l most double the desi red
look-u p r ime on the L 6 cached entries .

Agai n to conta in ch ip s i ze and a lso w meer con
trol performance , cusrom programmable logic
array (Pl.A) sect ions were requ i red . The PLA
structu res offered by the standard ce l l l i brary
were roo s low and req u i red a c locking scheme
di fferent from the CQBIC two-phase c locking
scheme . This decision to i mplement custom PLA
structu res is cred i ted as the reason performance
goals were ach ieved . In fact , performance goals
cou l d not have been ach ieved wi thout custom
PLA structures .

At the t i me logic and c i rcu i t design began , t he
standard l ibrary ce l ls ava i lable for th is design
were found ro be i nadequate. Many necessary
funct ions were miss ing or were not tai lored for
the specific appl icat ion . Also. in many cases the
performance of l i brary cells d id not match t he
performance req u i red by the rwo-phase c l ocking
scheme . Hence the .JRDC team developed i rs own
extensions tO the standard ce l l l ibrary. The com
mon l ogic structures such as NAND , NOR, fl i p
flop , and latch were used from the standard ce l l
l ibrary as much as possible . s ince these struc
tu res reduced the risk of c i rcu i t prob lems. Cus
tom structures , such as counters, mu l t i plexers,
latched pad transceivers , synchroni zers, PLA AND
plane drivers , and PLA OR plane receivers , were
designed and made avai lable ro the l ibrary .

The JRDC ream accurately modeled the ch ip
based on the speci fication at t he behavioral and
the MOS leve ls of abstraction using Digi t a l 's
DECSIM s imu lator.

I n i t i a l ly . the JRDC team developed a behav
iora l system environ ment model based on their
understanding of the CVAX bus and t he Q 2 2 -bus
specificat ion . This envi ronment model was
layered around the CQBIC behaviora l model to
verify the design . As the design progressed, a
more accurate behaviora l ch ip model rep laced
the in i t i a l mode l after corre l at ion .

Further, as other CVA...'< behaviora l , structura l ,
o r MOS c h i p mode ls matured , M S D i ncorporated
them into the CPU system model . This model was

1 3 3

CVAX-based
Systems

______ Development of the CVAX Q22-bus Interface Chip

then used ro rest t he CQBIC further i n the con
text of the applicat ion system . System simu lat ion
proved that a l l CVAX bus speci fications which
were com mun icated were understood and imple
mented correctly . The system s imulat ion served
as an i ndependent test of the CQBIC design .
Al though no CQBIC prob lems were found by
MSD during system simulation , the testing d id
prove that the system wou ld operate . We later
learned that several bugs could have been fou nd
had more t ime-varied events been sched uled
with rhe system s imulat ion rest cases.

When completed , the CQ BIC MOS mode l was
correlated to r he behavioral ch ip mode l . The
MOS ch ip model was then pl aced i n the MSD sys
tem model for regression test ing.

When we were confident that the CQBIC
design was complete, that is, when no new bugs
were fou nd afrer thorough test ing , the ch ip
was released to SEG for a fina l desi gn review and
submi tta l for fabricat ion . The database was
copied over the Engineering Network from t he
JRDC fac i l i ty i n Tokyo to rhe Hudson, Massachu
setts, p lant . After complet ing a final des ign
review and subsequent problem fixes, the chip
was submitted for fabrication . E ight weeks l ater
fi rst-pass parts were probed and found to be func
tional . Packaged parts were run in the MSD CPU
module . This test ing revealed several t i m i ng bugs
re lated to events from both buses occurring at
the same t ime . After extensive test ing, the bugs
were fixed, a nd a second revision was released for
fabrication . When the second pass part was tested
in the CPU module , another t i m i ng prob lem
related to coincident tra nsactions from both
in terfaces surfaced . This part icular bug was
obfuscated by a pass 2 bug. A th i rd revision was
prepared and fabricated . This th ird pass was
avai lable i n t i me for the first customer sh ipments.
The final chip functiona l i ty i s briefly descri bed
below .

The CQBIC Functional Organization
CQBIC is an asynchronous CVAX bus device and
requ ires a fixed 4 0-megahertz osci l lator i n p u t to
derive Q 2 2-bus r im ing. The osc i l lator i nput is
used ro generate a two-phase, nonoverlapped
clock which is distributed ro all chip sections.
The CVAX bus interface was designed to accom
modate transaction cycle t imes from I 00 ns to
60 ns . This design ant icipated a CVAX CPU tech
nology change and subsequent performance
improvement .

1 3 4

CQBIC provides the power-up, i ni t i a l ization ,
power-fa i l , and power-down protOcols ro the
system and performs Q 2 2-bus and CVAX bus
address decod i ng. Further, the chip performs
t he page add ress SjG mapping fu nction for DMA
devices by us ing i ts 1 6-entry SjG address map
cache .

Th is cache contai ns a copy of rhe most recently
used SjG poi nters, which are located in system
memory . The cached poi nters are used to map
2 2 -b i t Q 2 2-bus v i rtua l ro 2 9 -bi r CVAX bus physi
cal addresses. CVAX bus and Q 2 2 -bus transac
t ions are opt im ized by usi ng a CPU du mp-and-run
wri te buffer , two p ipeli ned Q 2 2-bus octaword
write buffers, and two p ipe l i ned Q 22 -bus quad
word read buffers . The ch ip performs transparent
address and data a l i gnments, and packing and
u n packing of in ternal buffers.

CQBIC is composed of five globa l control sec
t ions. A block d iagram of the ch ip control sec
t ions is shown i n F igure I .

Each section contains an independent sequen
t ia l controller :

• The Q 2 2 -bus arb iter

• The SjG map

• The Q 2 2 -bus master

• The Q 2 2 -bus slave and CVAX bus master

• The Q 2 2-bus electrical i nterface.

A photom icrograph showing rhe floor plan of
the conrrol sections is shown i n Figure 2 .

Each section shown in the Figure 1 block
diagram i s descr ibed next .

Q22- bus A rbiter Section
As a Q 2 2-bus a rb iter, the CQBIC i s the defau l t
Q 2 2-bus master and the highest prior i ty
requester. The arbiter accepts requests from
Q 2 2 - bus DMA devices a nd from the master sec
t ion , and grants mastersh ip with first priority tO
rhe master section . In response to a master
request , the arbiter exercises a demand master
sh ip protocol to Q 2 2-bus devices ro ensure
low-l atency i nterrupt vectOr or data reads. In
response to in terrupt req uests from t he
Q2 2-bus, the arbiter receives the requests and
passes them to the CPU. When t he CPU acknowl
edges the request, CQBIC reads a vecror from
the Q 2 2 -bus device and suppl ies an acknowledge
signa l .

Digital Technical journal
No. 7 A ugust 1')88

� <
�

022-BUS
MASTER CONTROL

0 0 0
v (/) v :::>

(]]
X <(> 0

SCATTER A N D GATHER
MAP CONTROL

r----

K=
SLAVE
CVAX BUS
CONTROL

r
KEY

==> ADDRESS A N D DATA PATHS

CONTROL PATHS

- PR IORITIZE

)
ARBITER A N D
I N ITIALIZATION
CONTROL

(/) :::>
(]] N N 0

---=> <=> SLAVE
022-BUS
CONTROL

{j

Figure 1 Control Section Block Diagram

When mu l tiple CQBIC c hi ps are connected to
the Q 2 2 -bus, t hey take on d ifferent functions .
The first ch ip operates as Q 2 2 -bus arbiter; the
others operate i n auxi l iary mode . As an auxi l iary
mode device, a CQBIC ch ip does not perform
Q 2 2 -bus arbitration . I nstead , the ch ip behaves as
a typical Q 2 2 -bus DMA device that is a defaul t
Q 2 2-bus slave . Therefore , when the CPU i n it ia tes
a Q2 2-bustransact ion , i ts CQBICrequests Q 2 2 -bus
mastersh ip . The arbiter CQBIC serves as Q 2 2-bus
arbiter and gran ts the bus accordingly to auxi l
iary mode CQBICs and other D MA devices .

Digital Technical journal
No. 7 A ugust 1 988

E i ther as arbi ter or as an auxi l iary device , t he
arbiter function performs the system power
up , i n i ti a l ization , power-fa i l , and power-down
sequences .

SjG Map Section
The SjG map consists of 8 , 1 9 2 longwords a l lo
cated from system memory . Each map entry con
s ists of a 2 0-b i t page poin ter , a 3 -b i t descriptor
which CQBIC ignores, and a val i d b i t . The low
9 b i ts of a Q 2 2 -bus address pass through as an
in terpage offset; the upper 1 3 b i ts select the con-

1 3 5

CVAX-based
Systems

------ Development of the C VAX Q22- bus Interface Chip

t t 1 • • ' t I I • • - 1 � I •

t t hct.r.:��������� :
- ' '�!! .u �r �'I' t' �t. t • • • •

: : I ts r. •.P" ! t

Iii �!a . 8 i .. ' [' ' ' . '

.

Figure 2 Photomicrograph of CQB!C

rents of one of the 8 , 1 9 2 SjG map locations. The
CPU informs the CQBIC of the SjG map location
by writ ing a base address in to the CQBJC map
base register. This write flushes the va l id b i ts of
rhe cached map entries.

To avoid map cache coherency problems, the
CPU accesses the SjG map through a VAX l/0
address range decoded by the CQBIC master sec
t ion . The slave sect ion then performs the SjG
map memory transaction . This ind i rect approach
prevents the CPU from d i rectly modifying t he
SjG map memory independent of t he 1 6 cached
pointers . A CPU to SjG map write i nva l idates the
cached map entry as the s lave section performs
the memory wri te . CPU to SjG map reads return
the cached copy i f it was cached or return rhe
SjG pointer from system memory.

As noted in t he section Project Research , we
selected a map cache s i ze of 1 6 entries . The re
search of Q 2 2 -bus DMA device transfer s izes and
the number of devices act ive i n a dynamic system
showed that 1 6 entries were sufficient tO avoid
thrashing on entries. The effects of t he Q 2 2 -bus
fa i r arb itrat ion scheme were used to show that
the s imple first - in -first-out (F IFO) replacement
a lgori thm selected did not waste performance
and was consistent with i ncrement ing DMA
device add resses. As a DMA device transfer
address i ncremented tO a page boundary, the next
map entry would be prefetched, and t he previous
map entry was nor used unless the current 1/0
request completed a nd another was requested .
We found that t he operat ing system's a l l ocated
map entries for I/0 requests ro Q 2 2 -bus DMA

Digital Technical journal
No. 7 A ugust 1988

devices from a free pool l ist mainta i ned in a last
dea l located , first-al located manner . The overhead
of one exrra read for a map entry per page was
fou nd tO be i ns ign i ficant .

Q22- bus Master Section
The master sect ion conta i ns two configuration
registers and three status-and-error report ing reg
isters in add i t ion tO a l l the conrrol c i rcu i try .

The master sect ion 's function is ro decode a l l
the CVAX bus add resses and cycle status codes.
This decod ing determi nes which of two types of
act ions is requ i red :

• A transact ion to an i nternal register, the S/G
map, or the Q 2 2 -bus

• Q 2 2-bus mastersh ip prior to completion of the
transact ion

Each of these act ions is descri bed in the text
below .

I f a decoded add ress requ i res n o CQBIC
response , a s ignal pin is asserted to external logic
for control of buffers and t i meout counters .

Transaction t o an Internal Register

When the master section detects a CVAX bus
address for one of the two control or three
address registers in CQBIC. i t returns or writes
the data . The master section also faci l i ta tes a
memory lock for the CPU to perform a read- lock
and wri te-un lock operation. F i rst , t he master
detects a CVAX bus i nterlocked transaction and
then performs a retry un t i l Q 2 2 -bus mastersh ip i s
obtai ned . Q 2 2 -bus mastersh ip is hel d unt i l an
un lock transaction or an except ion occu rs . A<;
long as other Q 2 2 -bus devices fol low t his proto
col , memory that is mapped to the Q 2 2 -bus can
be shared .

Transaction to SjC Map

A� noted in the S/G Map sect ion . SjG map trans
act ions arc control led by the master section . The
master requests the s lave a nd map cache sect ions
to complete the memory and cache t ra nsact ions .
To construct t he memory address for the s lave and
map cache , the master uses the s ignificant low
1 .1 bi ts of SjG map 1 /0 address as an offset from
the map base register .

Transaction to Q22-bus

To avoid deadlocks , the master u t i l i zes the CVAX
CPU retry transact ion . (CVAX CPU re l i nqu ishes
CVAX bus control to the CQBIC s lave section . The

Digital Technical journal
No. 7 A ugust 1 988

CPU th<.:n retries the same transact ion when bus
control is returned .) S/G map transactions have a
h igher priori ty than Q 2 2 - bus slave transact ions
The slave section therefore performs S/G map
transact ions i n paral lel with Q 2 2 -bus sl ave trans
act ions . When the master tr ies tO access the
Q 2 2 -bus and i t is busy. the arbiter attempts to
gai n mastersh ip . Unt i l mastersh ip is obta ined,
the slave can perform a retry to sat isfy the
Q 2 2 -bus transact ions .

Q22- hus Mastership

When the master acqu i res Q 2 2 - bus mastersh ip . i t
sequences the transaction . A special case of the
sequence occurs when the 1 /0 me mory segment
acldr<.:ss maps back to system memory through the
s lave and map cache . In th is case a retry is used .
a nd the s lave gives the data to the master .

The CPU wri tes to the Q 2 2 -bus arc accepted
by the master in a du mp-and-run manner ro
i mprove performance .

Q22- bus Slave Section
The slave sect ion design i mplemented the two
quadword read buffers and the two octaword
write buffers . This sect ion was the key tO rea l iz
ing the performance goa ls cstabl ished for the
chi p . The slave has ro resrond ro all Q 2 2 -bus
transact ions by checking the address in the S/G
map and then sequencing the CVAX bus to put or
get data . The slave must coord i nate i ts i n tentions
with all other chip sections to avoid deadlock
cond i t ions. This coord i nation is rea l ized in a pri
ori t i zat ion c i rc u i t which receives state i nputs
from all sections of the ch ip and outputs status
codes ro the slave and master sect ions to trigger
actions .

The slave watches for master or Q 2 2 -bus trans
action requests . When the sl ave rece ives Q 2 2 - bus
addresses. it passes these ro the map cache for
validat ion . I f the S/G entry is not cached , the map
cache s ignals the s lave to acq u i re a new SjG map
poi nter from system memory. The map cache
wi l l cache th is new entry i f the valid bit is set . I f
t he va l id b i t is c leared , then an exception i s
take n . When the address i s va l idated , the slave
proceeds to sequence the transaction to or from a
buffer and system memory . During slave writes ro
the system memory, the CVAX is signaled ro
i nval idate i ts i nternal cache.

The s lave mainta ins rwo octaword write buffers
ro opti mize Q 2 2 -bus octaword block-mode trans
act ions . By using a CVAX bus mu lt i transfer burst ,

1 3 7

CVAX-based
Systems

______ Development of the C VAX Q22- bus Interface Chip

the slave can u n load one buffer tO memory whi le
fi l l ing the other octaword buffer .

For each new Q 2 2-bus read request, the s lave
prefetches fou r words from memory . This p re
fetch is done in anticipation of block-mode trans
actions . These four words are buffered and sent to
the Q 2 2 -bus master . As the third word is
un loaded , the s lave prefetches four more words.

As either a Q 2 2 -bus block-mode read or write
transaction nears a page address boundary, the
slave performs an SjG map entry prefetch of the
next entry. The slave then passes the prefetched
entry tO the map cache .

An additional function of the s lave section is a
Q 2 2 -bus addressable interprocessor doorbel l
register. This register accommodates arb i ter and
auxi l i ary mode operation by supplying to the
CPU a memory access semaphore, an in terrupt
request , and a vecror address.

Q22- bus Electrical Interface Section
The Q 2 2 -bus is a 1 20-ohm transmission l i ne
with near- and far-end para l lel termi nation . The
length of the Q 2 2 -bus can vary from 2 5 to 60 cen
ti meters and i s subject to refl ect ion and crossta lk
noise . CQBIC contains 33 transceivers and
9 receivers which connect d i rectly to the
Q 2 2-bus.

The open-drain outputs and fi ltered i n puts
were designed to operate reli ably in the
Q 2 2 -bus envi ronment .

The input fi l ter rejects crosstal k and reflect ion
noise by stagi ng a low pass RC fil ter . The fi lter is
constructed with an n-diffusion resistor and
p-type field effect transistor (PFET) capacitor
with a differential ampl ifier receiver which main
tains a narrow noise i mmun ity region .

The open-drain output dr iver controls the edge
rates . This control min imizes transmission - l ine
retlections and crossta lk for ac load variation
from 30 to 3 3 0 p icofarads, a nd de terminat ion
variation of 24 0 ro 60 ohms at 3 . 6 volts. To satisfy
the l 00 mA s ink current possible on each of
33 outputs without excessive heati ng, low i nter
nal power d issipation was ach ieved by low
steady-state "on " resistance .

A d isable control a l lows the output to power
down without affecting t he Q 2 2 -bus .

Conclusion
A si ngle chip Q 2 2 -bus i nterface was real i zed a nd
is being shipped i n Digita l 's systems as the resu l t
of the successfu l venture for JRDC, SEG, and MSD .

We learned how to manage efforts from a d istance
and to coordi nate and communicate complex
techn ical information around t he g lobe.

Acknowledgments
The author wishes to acknowledge the techn ical
contributions of S . Kyu , S. Akanuma , A. Abe ,
H . Hayash i , M . Hasegawa , M . Tai j i , S . I ida ,
M . Kikuta n i , K . Koga , L . Wal ker , D . G ronda lsk i .
) . Lipcon , and R . McNa mara .

References

1 . B . Maskas, " Deve loping the MicroVAX I I
CPU Board ," Digital Technical journal

(March 1 986) : 3 7-4 7 .

2 . P. Rubinfe ld , e t a ! . , "The CVAX CPU, a
CMOS VAX Microprocessor Chip ," ICCD

Proceedings (October 1 987) : 1 4 8- 1 5 2 .

3 . G . Lid ington , "Overview of the M icroVAX
3 5 00/3600 Processor Module , " Digital

Technical journal (August 1 988, this
issue) : 79-86

4 . T. Leonard , ed . , VAX Architecture Refer

ence Man ual (Bedford : D i gita l Press,
Order No . EY- 3 4 5 9 E- DP, 1 987) .

Digital Technical journal
No. 7 A ugust 1 988

David K. Morgan I

The CVAX CMCTL -
A CMOS Memory Controller Chip

The CMCTL - part of the CVAXfamily of chips - is a high-performance

ECC memory controller for single-processor systems. Implemented in

Digital's CMOS technology, the CMCTL is optimized to satisfy Q-bus-based

system requirements. The CMCTL operates as either a synchronous or an

asynchronous interface between the CVAX bus at cycles from 60 to 100

nanoseconds and the private memory interconnect. For memory read or

write operations, the CMCTL supports the CVAX multiple-transfer proto

col. Data parity and memory error checking is implemented for all data

transfers. The chip's high performance is achieved in part by a high-speed,

page-mode access protocol.

'T'he decision to design a CVAX memory contro l ler
(CMCTL) was made in july 1 9 84 . The pri mary
goal of the CVAX CMCTL project was to design a
high-performance, s ingle-chip , error-correcting
code (ECC) memory control ler for a s ingle
processor syste m . This chip wou ld be part of a
CVAX fam i ly of core peripheral functions .

Severa l systems being developed at that t i me
u t i l i zed the ;VIicroVAX I I CPU chip , the predeces
sor tO the CVAX CPU ch ip . Because company rev
enue for Q-bus-hased systems such as the
MicroVAX I I is s ignificant and a performance
benefit cou ld be gained from a custom chip
design, the memory control ler design goals were
focused to sati sfy the requ irements of a Q-bus
based syste m . The in i t i a l system requ i rements for
the CMCTL were determined by studying the
memory control ler spec i ficat ions and by d is
cussing requ irements with key members of the
project team for the exist ing MicroVAX II system .
l n addit ion , the Electronic Storage Development
(ESD) G roup was consul ted on the requi rements
of a memory control ler.

Let us now examine the key aspects of the
CVAX CPU ch i p that in fluenced the system
requ i rements for t he CMCTL. F i rst , the CMCTL

A shorter version of t h i s paper first appeared in the Proceed
in[/S of the I 'J87 ICCD: VLSI Computers and Processors.
Ocrober 1 9 87 e n t i t l e d "The CVAX CMCTL. A CMOS Memory
Control ler C h i p" by D. Morgan . K. Ch u i , J C l ouser,
S . Nadkarn i . and R. Strou b l e . Copyright 1 98 7 , The In s t i t u t e
o f E l e ctrical a n d El ectronic Engineering, I n c .

Digilal Technical journal
No . 7 A ugust 1 988

had to i nterface d i rectly to the CVAX bus and
hand l e the me mory transactions originating from
the CVAX CPU chip . Located in the CVAX CPU
ch ip is an i ntegral pri mary write-through 1 -k i lo
byte (KB) cache . The s ize of this cache can be
optional ly expanded with a second- level cache
function on the CVAX bus. Consequent ly , the
CMCTL-to-CVAX bus i nterface had to work with
or wi thout the optiona l second- level cache . Fur
thermore, the primary cache and the optional
second- l eve l cache use byte parity for memory
error detection . Therefore , t he CMCTL bus i nter
face was requ ired both tO generate and to check
byte par i ty . For CVAX-based systems operating at
1 00-nanosecond (ns) and 60 -ns CVA.'(bus cycles
a nd i mplementing a second- l evel cache , the per
formance goa ls were respect ively 2 . 5 and
4 . 0 t i mes the performance of t he M icro VAX II sys
tem. These goals governed the CMCTL bus mem
ory performance, or memory cycle t ime, requ i re
ments described later in t his paper. Since
memory s ize requi rements are proport iona l to
CPU chip performance , the CMCTL had to sup
port a memory s ize larger t han that of t he
MicroVAX I I . The M icroVAX I I CPU memory sys
tems have a byte- parity, memory error-detection
scheme. To meet the re l iabi l i ry requ irements for
larger memory systems, the CMCTL was designed
pri mari ly as an ECC memory contro l ler .

S ince a d i rect memory access (DMA) fu nction
can a lso become t he bus master on the CVAX bus,
the system requ irements for the CMCTL were

1 39

The CVA X CM CTJ, - A Cil105 MemOIJ' Co ntroller Chip

i n tl uenced by these functions a l so . Because the
CVAX CPU ch ip performs on l y sync hronous trans

act ions and a DMA funct ion cou ld be e ither syn
chronous or asynchronous . the CMCTL is designed
to run as a synchronous or asynchronous sl ave on
the CVAX bus . Further. the CVAX CPU ch ip can
handl e on ly two of t he possi b le four types of data
transfer l engths on the CVAX bus . However, a
Q- bus 0 1'v1A fu nction (CQBIC) needed to gener
ate a l l four possi ble data transfer lengths in order
to efficient ly hand le data transfers between the
Q-bus and the CVAX bus which have data widths
of 1 6 b i ts and 3 2 bits , respective l y . The requ i re
ment to work with t he Q-bus DMA funct ion meant
that t he CMCTL needed to handle a l l four data
transfer lengths I n addit ion . since a D 1v1A func
t ion cou ld optiona l ly generate and check pari ty.
t he CMCTL had ro be flex i ble i n th is regard as
wel l . F ina l ly . thl' CVAX CPU ch ip executes in ter
locked i nstructions which must have the effect of
" l ock ing" or " u n locking" the memory from
Di'viA read -modify-write transactions . I n terl ocked
memory transact ions are not defined in t he Q-bus
protOcoL Therefore , i nterlocked memory trans
act ions arc hand kd with a bus i nt erlock scheme .
I n this scheme, t he CQB IC sta l ls . i e . RETRY.
the CVAX CPU chip memory read lock bus trans
act ion on the CVAX bus unt i l it becomes the
Q-bus master first - locking out 1/0 to mem
ory - before t he CVA.-"\ can pe rform i nterlocked
i nstructions . RETRY is a slave response to a bus
master on the CVA.-"\ bus tha t te l ls i t to retry the
bus cyc le because i t cannot compl ete the
req uested operat ion _ The CQBIC releases the
Q-bus after i t sees a CVAX CPU ch ip memorv

CVAX BUS

write transaction on the CVA.-'(bus that s i gnals the
term i nat ion of the i nterlock i nstruct ion .

Certa in base technology constra i n ts i n fl uenced
the CMCTL spec i ficat ion . First . the h igh perfor
ma nce requ i rements for memory in a system t ha t
docs not i m plement a second - l evel cac he deter
m ined that the CMCTL be i mpl emented i n a s i n
g le custom ch ip . At t h e t i m e , i t was not possib le
tO imp lement a me mory con trol l er with the
req u i red speed in a commerc ia l ly ava i l able gate
a rray that woul d run sync hronous w i t h t he CVAX
CPU c h i p . Furthermore . i n a Q-bus-based system .
memory expansion occurs i n the Q-bus back
p lane Therefore. a s ing le memory control ler that
resides on the CPU module and controls t he
memory by means of s igna ls on the backplane i s
t he s im plest and most q u ick ly i m p lemented sys
tem sol u t ion . Another factor t hat i n fluenced the
s ingle-c h ip alternative sol ution was the l i m i ted
space ava i lable on the C PU mod ule that i m ple
ments a second- leve l cache . Ta ken rogether, these
factors ru led out t he poss ib i l i ty of des ign ing a
slower memory cont rol ler usi ng com merc ia l ly
ava i !able memory control ler components for sys
tems that i m p lement a second- l eve l cache . The
avai lab i l i ty of CMOS- I technology i n D ig i ta l 's
Hudson . Massachusetts. fac i l i ty i n 1 984 d rove
t he design technology choice .

System Overview
The CVA.-"\ CMCTL i s the core control function of
a s i ngle CVAX CPU memory system. This ch ip
serves as the i n terface between devices on the
CVAX bus and a CMOS private me mory in tercon
nect (PMl) F i gure I shows t he major i nterfaces

PMI

Fig ure 1 Major In terface Co nnections oj tbe CMC TL Chip

I 4 () Digital Technical journal
No. 7 A ugust 1988

' ' , ' · ' · ' · · · · · .. •
·- - · · . • . - ·

u.:�

Figure 2 Photomicrograph ofCMCTL Showing Major Sections

of the CMCTL in a CVAX system , and Figure 2
shows the major sections of the ch ip . Table 1 l ists
the physical c haracteristics of t he ch ip .

This section presents a brief overview of
the CMCTL chip 's two major i nterfaces, data
transfer support, and error-checking and notifica
t ion features .

CMCTL Major Interfaces
As i nterface to the CVAX bus, the CMCTL responds
as e i ther a synchronous or an asynchronous s lave
device . When the CVAX CPU chip is bus master,
the CMCTL responses are synchronous . When a
DMA device is bus master, a bus-mode signa l
determines whether t he ch ip responds as a syn
chronous or asynchronous device .

Digital Technical journal
No. 7 A ugust 1 988

The CMCTL connects d i rectly to i ts other major
i nterface, t he PMI . The PMI consists of control ,
address , and data s ignals which interconnect the
CMCTL and t he memory array modu les . Through

Table 1 CMCTL Summary Characteristics

Process

Number of
transistors

Die s ize

Power diss ipation

Packaging

Power supply

2-micron drawn, N-wel l , dual
a luminum CMOS process

20,000

7 .6 mm x 8.0 mm

1 .5 W worst case

1 32-pin surface-mountable chip
carrier with 25-mil lead spacing
+5 V

1 4 1

CVAX-based
Systems

The C VAX CMCTL - A CMOS Memory Controller Chip

these interconnections, the chip controls up to
four memory modules, each contain i ng one, two,
or four banks of dynamic random-access memory
(DRAM) . Each memory module is required to
buffer all the PM! signals.

Data Transfer

The CMCTL fu l ly supports the CVAX bus mu lti
ple-transfer protOcol and can perform one to four
data transfers on a memory read or write opera
tion . Each data transfer can have up to four bytes
of data . S ince ECC is generated across four bytes,
write data with less than four val id bytes wil l
cause the CMCTL tO do the actual memory write
on the PMI as a read-modify-write cycle . Other
wise , the wri te data goes directly to memory.

Error Checks and Notification
The CMCTL performs two error-checking func
tions:

• CVAX bus data parity error checks

• Memory error checks

To assist with the error checking of data transfers
on the CVAX bus, the CMCTL checks data parity
on memory writes. The chip generates parity
wit h the data on memory reads.

For data transfers on the PMI , the CMCTL has
two memory error-checking modes: 7-bit ECC,
and single- bit parity . In ECC memory error mode,
the CMCTL detects double-bit u ncorrectable

memory errors and detects and corrects single-bit
memory errors . In parity memory error mode, the
CMCTL can detect single-bit memory errors .

The CMCTL uses four outputs to notify the
CVAX bus master of four error cond itions. These
error-condition notices are as fol lows:

• The bus transaction was successful and com
pleted with no errors .

• The memory data transfer resul ted in an u ncor
reccable ECC or pari ty error.

• The memory data transfer resulted in a cor
rectable memory error.

• The CVAX CPU chip- i n i tiated memory write

had a parity error.

In addi tion tO these fou r outputs, the CMCTL pro
vides an output that indicates when the CMCTL is
not going to respond to ei ther a memory or an
1/0 operation . This output reduces the nu mber
of external components required to detect
addresses not i mplemented in a system .

1 4 2

CMCTL Performance
The CMCTL achieves i ts performance in part by
using a h igh-speed , page-mode RAM access pro
tocol on the PMI . DRAMs that run in page mode
can perform data transfers in approximately one
half the cycle t ime of those run in non page mode.

The CMCTL responds to CVAX single-transfer
memory write or read operations within two or
four CVAX bus cycles, respectively. During a
memory read operation , the CMCTL starts a mem
ory read access in paral lel with an optional cache
tO increase memory read performance . If the
memory read address hits in the external cache ,
the CMCTL aborts the read operation . The
CMCTL performs memory write transactions as
dump-and -ru n .

Table 2 l ists the memory operations and the
correspondi ng performance for synchronous data
transfers with 4 bytes of data . Two numbers are
shown for multiple-transfer memory operations.
The first is the t ime in CVAX CPU bus cycles to
complete the first transfer; the second , the t i me
to complete subsequent transfers. In order to
tune the memory performance across d i fferent
CVAX bus speeds, the CMCTL provides a pro
grammable mechanism for varying PMI transac
t ion timing. For CVAX bus cycle t i mes less than
1 0 0 ns, the CMCTL can be programmed to add
s l ip cycles to memory read operations in i ncre
ments of the CVAX bus cycle time . The asyn
chronous performance of the CMCTL can be
estimated by adding one bus cycle to the syn
chronous data transfer numbers in Table 2 .

The CMCTL memory read access time is very
important for systems that do not have a second
level cache . For exampl e , a 90-ns CVAX bus cycle
with a 5/3 CMCTL memory read access with a
second-level cache resu l ts in CPU performance
3 . 0 t imes that of the MicroVAX I I . Without the
second - level cac he , the CPU performance is

Table 2 CVAX CMCTL Read and Write Perfor

mance (in Numbers of Bus Cycles)

Memory Operation

(4 Bytes of Data)

Single read
M u lt iple read

CPU single write
D M A single write

M u lt iple write

CVAX Bus Cycles

1 00 ns 90 ns 60 ns

4 5 6

4/2 5/3 6/3
2 2 2

3 3 3

3/2 3/2 3/2

Digital Technical journal
No. 7 A ugust 1 988

reduced by 1 5 percent, or tO 2 . 5 t imes the
Micro VAX I I . If the CMCTL memory read access
was fixed at 6/3 without the second- l evel cache ,
the CPU performance wou ld be reduced another
1 0 percent, or to 2 . 0 t i mes the MicroVAX I I , at a
90-ns CVAX bus cycle . Therefore , the abil i ty to
program the CMCTL memory read access t i me as
an integral mu ltiple of the CPU bus cycle is a very
important feature that helps maxim i ze the CPU
performance .

CMCTL Functions
The CMCTL was designed to integrate both the
control and data path fu nctions required to con
trol the data flow to and from memory.

Registers

The CMCTL contains two registers:

• A status register

• A control register

How each fu nctions within the CMCTL and the
system is described below.

The status register is loaded with important
information when t he CMCTL detects an error.
The system error-hand l i ng software uses this
information to log the error. The CMCTL has a
memory error status register that captures the
fa iled memory address along with the type of
memory error (bus parity error or memory error)
and error syndrome .

In ECC mode, the error syndrome is a 7-bit
encoded nu mber. For correctable errors, this
nu mber indicates which data bit was corrected.
I n parity mode , the error syndrome has no useful
meaning.

The chip's control register serves several func
tions. First, the control register regulates a diag
nostic test mode . Second, this register controls
the PMI cycle tuning. Third , memory error detec
tion and correction can be turned on or off to
fac i l i tate the testing of the CMCTL error-check
ing functions and memory modu le RAMs by mem
ory diagnostic software . Finally, a refresh opera
tion can be forced for h igh-speed refresh testi ng.

Data Path

In ECC error detection mode , t he data path uses a

modi fied Hamming code to detect double-bit

errors and to detect and correct single-bit errors .

The PMI interface has 39 signals; 3 2 are used for
the memory data , and 7 are the memory check
bits. In parity error detection mode , the data path

Digital Technical journal
No. 7 August 1988

uses single-bit parity to detect memory errors .
The data path transport delay for a memory read
or write is one-half the cycle t i me of the CVAX
bus. This performance measure includes module
level interconnect delay.

Memory Control
The PMI i nterface provides 2 0 signals. These sig
nals comprise a l l the control strobes and memory
address signals needed to control DRAMs. A fast
memory access t i me is achieved by detecting a
val id memory address and starting a memory
access wi thin 2 5 percent of a CVAX bus cycle
t ime .

The CMCTL has a n integral refresh counter for
refresh i ng memory.

Summary
The CVAX CMCTL is the core control function of a
complete memory su bsyste m . The chip provides
the control for a flexible memory subsystem that
functions at CVAX bus cyc les from 60 to 1 00 ns.

Acknowledgments
The author wishes to acknowledge the technical
contributions of F. Aires, M. Benoit , K. Chu i ,
) . Clouser, N. Fitzgerald,) . Gerde, B . Griswold,
N. Murthy, S . Nadkarni , J . Siege l , R . Strou ble,
K. Steward, and K. TenHu isen .

1 4 3

CVAX-based
Systems

ISSN 0898-90 L X

	Front cover
	Contents
	Editor's introduction
	Biographies
	Foreword
	An Overview of the VAX 6200 Family of Systems
	The Architectural Definition Process of the VAX 6200 Family
	Interfacing a VAX Microprocessor to a High-speed Multiprocessing Bus
	The Role of Computer-aided Engineering in the Design of the VAX 6200 System
	VMS Symmetric Multiprocessing
	Performance Evaluation of the VAX 6200 Systems
	Design of the MicroVAX 3500/3600 Second-level Cache
	The CVAX 78034 Chip, a 32- bit Second-generation VAX Microprocessor
	Development of the CVAX Floating Point Chip
	The System Support Chip, a Multifunction Chip for CVAX Systems
	Development of the CVAX Q22-bus Interface Chip
	The CVAX CMCTL - A CMOS Memory Controller Chip
	Back cover

