
Storage System Diagnostics
and Utility Protocol
AA-L620A-TK

A Part of UDA50 Programmer's
Doc. Kit
QP905-GZ

Copyright (c) 1982, Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or in whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Bedford, Massachusetts, 01730.

Digital Equipmemt Corporation makes no representation that the
interconnection of its products in a manner described herein will
not infringe existing or future patent rights, nor do the
descriptions contained herein imply the granting of licenses to
make, use, or sell equipment or software constructed or drafted
in accordance with the description.

The information in this document is for informational purposes
only and is subject to change without notice by Digital Equipment
Corporation.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this document.

The major trademarks of Digital Equipment Corporation are:

DEC
DECUS
DECMATE
DECnet
PDP
UNIBUS
VAX

VT
DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
EduSystem

and th e Dig ita 1 1 og 0 :

lAS
MASSBUS
WORKPROCESSOR
RSTS
RSX
VMS

I I I I I I I I
Idlilgliltlalll
I I I I I I I I

Table of Contents Page i

CHAPTER 1

1.1
1.2
1.3
1.4

CHAPTER 2

2.1

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3

CHAPTER 4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

CHAPTER 5

5.1
5.1. 1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

APPENDIX A

APPENDIX B

APPENDIX C

INTRODUCTION

Overview of MSCP Subsystem
Overview of DUP
Purpose •••
Scope ••• • •

TERMINOLOGY

· 1-1
• 1-2
• 1-3
• 1-3

Terminology 2-1

DUP HOST / CONTROLLER COMMUNICATIONS

DUP Host / Controller Communications . • .••. · 3-1
• 3-1
· 3-1

Communications Scheme ••••••••••••
Class Driver / DUP Server Communications.
Host Program / Remote Program Communcations • • 3-3

ALGORITHIMS AND USAGE RULES

Algorithms and Usage
DUP Server States
Command Categories
Class Driver / DUP
Class Driver Error
Command Timeouts •

Rules • • • • • • • • • . • . 4-1
. 4-1
and Execution Order • • • • • 4-3
Server Synchronization ••• 4-4
Recovery • • • • • • • • • • 4-5
. 4-5

GENERIC CONTROL MESSAGE FORMAT

Generic Control Message Format •••••••••• 5-1
Generic Control Message Format ••••••••• 5-1
Command Modifiers •••••• • •••••• 5-3
End Message Format • • • • •• •• • • • • • 5-4
Status Codes • • • • • • • • • • • • • • 5-4
ABORT PROGRAM Command / Response • • • • • • • • 5-6
GET DUST STATUS Command / Response • •••• 5-8
EXECUTE SUPPLIED PROGRAM Command / Response 5-10
EXECUTE LOCAL PROGRAM Command / Response • •• 5-12
SEND DATA and RECEIVE DATA Commands / Responses 5-14

MODIFIER CODES/RESPONSE STATUS CODES/OPCODES

REMOTE PROGRAM HEADER

THE DIRECT PROGRAM

CHAPTER 1

INTRODUCTION

1.1 Overview of MSCP Subsystem

Mass Storage Control Protocol (MSCP) is the protocol used by a family
of mass storage controllers and devices designed and built by Digital
Equipment Corporation. In a system that uses an MSCP mass storage
subsystem, the controller contains the intelligence to perform the
detailed I/O handling tasks. This arrangement allows the host to
simply send command messages (for example, requests for reads or
writes) to the controller and receive response messages back from the
controller. The host does not concern itself with details such as
device type, media geometry, media format, error recovery, etc.

The host uses two levels of software to communicate with the mass
storage subsystem. They are the class driver and the port driver.
The class driver is the higher level and is concerned with tasks being
performed. The class driver's concern with details is limited to the
general type of device (such as disk) and the capacity. The class
driver is not concerned with the communication link (I/O bus), type of
controller, or the exact model of device(s) being used.

The port driver is the lower level and is concerned only with
communication services such as passing messages on and off of the
communications link. The port driver is not concerned with the
meaning of the messages, nor is it concerned with the exact type of
controller or the exact model of storage unit(s). Thus each driver
has its own level of responsibilities and shields the other from
unnecessary details.

In the controller architecture, there are also two levels of software.
The lower of these two is also a port driver and, like the port driver
in the host, is concerned only with passing messages on and off of the
bus. The higher level of controller software is the MSCP Server. It
constitutes the intelligence of the controller and therefore defines
the functionality of the controller.

INTRODUCTION Page 1-2

1.2 Overview of DUP

While these mass storage subsystems use MSCP to perform normal data
transfer operations, they use Diagnostic/Utilities Protocol (DUP) to
load, start, and monitor diagnostics and utilities in the mass storage
controller. This protocol provides the method of communication
between the DUP class driver in the host and the DUP server in the
controller for such tasks. For example, the host program uses this
protocol to request that the controller load a diagnostic or utility
program (either supplied by the host or from media local to the
controller) and execute it. The host program may communicate with the
remote program while it is running, may make inquiries to the
controller about the progress of the program, and may terminate
execution of the program.

The architecture is illustrated in Figure 1-1.

Host Mass Storage Controller
+ - - - - - - + + - - - - - - - - +
I +-----------+ I Data I +-----------+ I

I Host I)------------------) I Remote I
I Con trol I I Messages 1 1 Program 1
1 Program 1 <------------------< 1 1
+-----------+ I 1 +-----------+

v v
+-----------+ +-----------+
I Class 1 1 DUP I 1 DUP 1
1 Driver 1 <------------------) 1 Server 1
+-----------+ I Protocol I +-----------+

v V
+-----------+ 1 Communications 1 +-----------+
1 Port I <------------------) 1 Port 1
1 Dr iver I 1 Protocols 1 1 Dr iver 1
+-----------+ +-----------+

+ - - -. -1- - - - +
I

+ - - - -1- - - - +
I

v v
+--+
I Po r t I I Po r t 1
I + + 1
1 Communications Mechanism 1
I I
+--+

Figure 1-1 Example System

INTRODUCTION Page 1-3

1.3 Purpose

The host class driver and the controller server communicate via a set
of commands and responses. The commands and responses used by DUP are
explained in this manual to the detail needed by someone writing a
host DUP class driver.

1.4 Scope

The scope of this manual is limited to the details of those DUP
commands and responses. This manual does not include any information
on specific types of host processors or any specific operating
systems. It does not assume any particular bus, controller, device
type, host, or port driver implementation.

CHAPTER 2

TERMINOLOGY

2.1 Terminology

Controller Timeout Interval

The controller timeout interval is a time interval, measured
in seconds, implied by the DUP command being performed or
supplied by the DUP server in the GET DUST STATUS or the
EXECUTE LOCAL PROGRAM command's end message.

Nugatory

Of little or no consequence: Trifling, Inconsequential.

Remote Program

The remote program is the diagnostic/utility loaded or
invoked by the DUP server on behalf of the host.

Host Control Program

The host control program is the host process which loaded or
invoked the remote program and provides virtual terminal
services for the remote program.

Immediate Commands

Commands that DUP servers should execute immediately, without
waiting for any other commands to complete.

Sequential Commands

Commands that DUP servers execute in the exact order that
they were received from class drivers. Sequential commands
typically allow the transfer of data between the host and the
controller.

CHAPTER 3

DUP HOST / CONTROLLER COMMUNICATIONS

3.1 DUP Host / Controller Communications

3.1.1 Communications Scheme

DUP is comprised of two protocols: Class Driver/DUP Server and Host
Control Program/Remote Program protocols. The Class Driver/DUP Server
protocol forms the "primary" protocol; the Host Control
Program/Remote Program protocol is a subprotocol which is imbeded
within the SEND/RECEIVE DATA command. Both protocols use the
communication mechanism described below.

3.1.2 Class Driver / DUP Server Communications

DUP runs on a dedicated connection, in the Systems Communications
Architecture sense, between a host program (DUP Class Driver) and the
DUP server. Flow control and connection management are provided by
the underlying communications services. DUP is an asymmetric
master/slave protocol, with the DUP class driver as master; i.e. DUP
messages can be divided into commands and responses, where responses
are only issued in response to commands and only the class driver may
issue commands.

Host class drivers use the host port driver to communicpte with DUP
servers in controllers. DUP servers similarly use the controller port
driver to communicate with class drivers in hosts. This communication
takes place across a link called a connection.

The state of the connection is directly equivalent to the state of the
controller or DUP server with respect to the class driver. The
controller is "Controller-Online" if and only if the connection is
established and functioning. The controller is "Controller-Available"
if the connection is not established, but it is believed that it could
be established. The controller is "Controller-Offline" if the
connection is not established and it is believed that it cannot be
established.

DUP HOST / CONTROLLER COMMUNICATIONS Page 3-2

Two types of communications services are used across the connection
between the DUP class driver and the DUP server.

o A sequential message communications service, used for DUP
control messages, is used across the connection between a
class driver and a DUP server. This service guarantees
sequential, duplicate free delivery for all messages sent
across the same connection. This service must support
messages of at least 40 bytes in length.

o A block data communication service, used to move data between
the host and the controller. This service provides a method
of transferring the contents of a named buffer between the
host and the controller or transfering data from the
controller to a named buffer in the host. Buffers are
identified by buffer descriptors which are provided by the
host.

The communications mechanism or port drivers discard all messages
that, at the time a connection is terminated, have been sent or queued
to be sent via the message services but have not yet been delivered.

Besides using the sequential message communications service directly,
DUP uses the establishment of the connection itself to synchronize the
class driver and DUP servers. The class driver will terminate the
connection if it determines that it must re-synchronize with the DUP
server. The DUP server may terminate the connection or it may enter
the "Idle" state if re-synchronization with the class driver is
necessary. Events that require re-synchronization include certain
errors or loss of context by either process. The connection is also
terminated, by a port driver, if an unrecoverable communications error
occurs. Termination of the connection signals the processes that
re-synchronization is necessary. The re-synchronization is
accomplished by each process discarding all context regarding
outstanding commands or transactions, after which a new connection is
established.

Following re-synchronization, commands which were outstanding before
the re-synchronization was performed may have completed to an
indeterminate extent. Such commands may have never been started, may
have been partially completed, or may have been fully completed. The
only guarantee is that they are no longer outstanding, implying that
the controller is no longer performing work for them and that the
class driver will not receive an end message for them. The fact that
the controller is no longer performing work for them implies that no
state changes or modification of data will take place as a result of
such commands.

Especially critical to DUP is the concept of flow control and the flow
control based requirements that are imposed on DUP class drivers and
DUP servers. Flow control and the flow control requirements are
discussed in detail in the MSCP Specification, "Class Driver / MSCP
Server Communications".

DUP HOST / CONTROLLER COMMUNICATIONS Page 3-3

In general, flow control arises from the need to avoid the congestion
and/or deadlock which can occur if one process sends messages too
quickly to another process. The receiving process must have buffers
in which to place the incoming messages. When all such buffers are
full, additional messages cannot be handled.

The sequential message communications service does use flow control.
When a potential receiving process queues a buffer for receiving
messages on a connection, the presence of this buffer is communicated,
via the underlying communications service, to the potential sending
process at the other end of the connection. This message notifying
the potential sending process of the queued buffer grants the sending
process a credit, which is the priviledge to send a message.
Therefore messages will only be sent when the sending process knows
that the receiving process has queued a buffer into which the message
can be received, ensuring that the receiving process will be able to
handle the message.

Note that the DUP class driver may communicate with only one DUP
server per connection. However, the DUP class driver may be connected
to as many DUP servers, each on a different connection, as there are
DUP servers in the controller.

3.1.3 Host Program / Remote Program Communcations

The Host Program/Remote Program communications uses the block data
communication services for transfer of messages and data. The details
of the Host Program/Remote Program subprotocol are contained in the
description of the SEND/RECEIVE DATA command.

CHAPTER 4

ALGORITHIMS AND USAGE RULES

4.1 Algorithms and Usage Rules

4.1.1 DUP Server States

The DUP server may be in any of three states relative to the DUP class
driver. Each DUP server may be in a different major state relative to
the class driver. The states are listed below.

Offline

The DUP server is "Of fl ine" to the cl ass dr iver whenever it
is not available to that class driver and cannot perform any
operations on its behalf. Possible causes include
inoperative hardware or an operator disabling the controller.
A server is "Offl ine" when it is not possible to establ ish a
connection between the class driver and the server.

Available

A DUP server is "Available" to the class driver whenever it
could perform operations for that class driver but the driver
has not yet synchronized with the server. A server is
"Available" exactly when it would be possible to establish a
connection between the class driver and the server, but no
connection has yet been established.

Online

A DUP server is "Online" to the class driver whenever it can
both perform operations for that class driver and the driver
has synchronized with the server. A server is "Online"
exactly when a connection exists between the class driver and
the server; this is the state used for normal operation.

Additionally, a DUP server has two substates relative to its
class driver when it is "Online".

ALGORITHIMS AND USAGE RULES Pag e 4-2

IDLE

A DUP server is "Idle" when it is not monitoring the
operation of a remote diagnostic/utility.

ACTIVE

A DUP server is "Active" when a remote diagnostic/uility
is operating on behalf of the host.

The states described above actually exist between an individual DUP
class driver and an individual DUP server. A host will have only one
DUP driver and a subsystem may have several DUP servers. Note also
that the DUP server is distinct from the state of any units connected
to the controller.

A DUP server enters the "Controller-Offline" state relative to a host
whenever the DUP server ceases to function or otherwise becomes unable
to perform operations for the host. Possible causes are listed below.

1. Controller hardware, software, or power failure.

2. Controller initialization, either requested or spontaneous.

3. An operator (typically Field Service) disables all or part of
the controller.

4. Communications mechanism failures.

A DUP server enters the "Controller-Available" state relative to a
host class driver under the following conditions.

1. The controller or DUP server is "Controller-Offline", and all
causes'of it being "Controller-Offline" are removed.

2. The DUP server is "Controller-Onl ine", and the DUP server
cannot successfully send a control message (i.e., a DUP end
packet) to the host class driver.

3. The DUP server is "Controller-Online", and the host access
timeout expires (see Section "Host Access Timeouts").

4. The host class driver terminates the connection between the
class driver and the DUP server.

5. A port driver or the communications mechanism terminates the
connection between the class driver and the DUP server,
generally due to a communications error.

The port driver should inform the class driver whenever the DUP server
enters the "Controller-Available" state. How the port driver obtains
this information is communications mechanism dependent. Note that the
notification that the controller has become "Controller-Available" is
not necessarily prompt. In particular with some communications

ALGORITHIMS AND USAGE RULES Page 4-3

mechanisms, the notification may not occur until the next time the
class driver issues a command to the controller. Furthermore, the
port driver need not notify the class driver at all if a compound
(multiple) error is associated with the DUP server becoming
"Controller-Available". In such a case, the class driver will
ultimately become aware of the state change when its command timeout
expires.

Since no connection exists to a DUP server that is
"Controller-Offline" or "Controller-Available", the communications
mechanism will either reject or discard any messages (commands) that a
class driver attempts to send to it. An DUP server that becomes
"Controller-Offline" or "Controller-Available" may either abort
commands in progress or else continue processing the commands that it
has already received.

Typically, the DUP server will continue processing outstanding
commands until it "notices" that the connection to the class driver
has been terminated, at which point it will abort any commands still
outstand ing and enter the "Idle" state.

The DUP server enters the "Controller-Onl ine" state relative to a host
class driver upon successful synchronization with the class driver.
The class driver synchronizes with the DUP server by establishing a
connection with the DUP server. Note that the DUP server must
guarantee that there are no outstanding commands "leftover" from a
previous incarnation of the connection before it allows the new
incarnation of the connection to be established and enters the
"Controller-Online" state.

4.1.2 Command Categories and Execution Order

Most DUP commands are only legal in a particular state. The GET DUST
STATUS command is the only command legal in both IDLE and ACTIVE
states. Commands received while the DUP server is in an inappropriate
state will be returned with the generic response status of INVALID
COMMAND. The mechanism used to return the DUP server to IDLE state
from the host side is the ABORT command. The mechanism used from the
remote program is, implementation-dependent.

A DUP server enters the ACTIVE from the IDLE state as a result of
successfully performing either an EXECUTE SUPPLIED PROGRAM or EXECUTE
LOCAL PROGRAM command. Returning to the IDLE state from the ACTIVE
state is a result executing an ABORT PROGRAM command or as a result of
remote program termination. Because the termination notification is
sent only to the host control program as part of the SEND/RECEIVE DATA
subprotocol, the class driver must poll the DUP server to determine if
the server has returned to the IDLE state. The class driver must also
determine the state of the DUP server when it receives a request from
the host control program to execute a remote program as the server may
have made an undetected transition to the IDLE state. Additionally,
if the class driver notices that the remote program's progress
indicator is not being updated, the class driver must look at the DUP

~LGORITHIMS AND USAGE RULES Pag e 4-4

server's state indicator before deciding that the server is no longer
sane.

4.1.3 Class Driver / DUP Server Synchronization

Synchronization of a class driver with a DUP server is accomplished by
establishing or re-establishing the connection between the class
driver and the DUP server. When the connection is established or
re-established, the DUP server aborts or otherwise terminates all
commands that are outstanding from that class driver. This forces the
dialogue between the class driver and DUP server to a known
synchronized state, namely that of having no outstanding commands.
After establishing the connection, the class driver can issue commands
without worrying about duplicating command reference numbers or other
unfortunate side effects. Note that synchronizing with the DUP
server, if successful, causes the DUP server to become
"Controller-Online".

As stated above, the main purpose of synchronization is to guarantee
that there are no outstanding commands, thus forcing the dialogue
between the class driver and DUP server to a known state. DUP servers
must ensure that this guarantee is met before they allow
synchron i za t ion to compl ete (i. e. , befo re they become
"Controller-Online"). In particular, DUP servers must guarantee that
no end messages will be sent and their state or context changed for
any commands that were issued on an earlier incarnation of the
connection between the class driver and DUP server.

Class drivers must synchronize with the DUP server whenever the host
boots, recovers from a power failure, loses context, or is recovering
from certain errors. After synchronizing with a DUP server, the class
driver should issue a GET DUST STATUS command to establish the
characteristics of the DUP server.

4.1.4 Class Driver Error Recovery

The principle method of error recovery used by class drivers is to
re-synchronize with the DUP server, as described in the preceeding
section. All communications mechanism failures and many controller
failures are reported by terminating the connection between the class
driver and DUP server, in response to which the class driver should
attempt to re-synchronize with the DUP server. If the class driver
decides that the controller is insane, either because the class driver
received an invalid message or because a command timed out, it should
recover by re-synchronizing with the DUP server. Similarly, if the
DUP server decides that the class driver is insane, it enters the
"Idle" state and may terminate the connection to the class driver. If
the class driver is in fact actually sane, it will re-synchronize with
the DUP server after the port driver notifies it that the circuit has
been term ina ted.

ALGORITHIMS AND USAGE RULES Page 4-5

4.1.5 Command Timeouts

Whenever
receipt
interval
command.
30 second
SEND DATA

a host issues a DUP command packet, it should time out the
of the corresponding response. The appropriate timeout
for each DUP command is given in the description of the

The DUP server may timeout receipt of host commands with a
timeout and the remote program may time out the reception of
and RECEIVE DATA commands if they desire.

Host class drivers use command timeouts to guarantee that all
controller or communications mechanism failures will be detected. The
failures detected by command timeouts include partially sane or
deadlocked controllers, which may continue to process new commands
even though one or more old commands have been lost and will never
complete.

The DUP server is sane if and only if the utility or diagnostic which
was initiated will ultimately complete. For practical purposes, the
term "ultimately" must be replaced with the phrase "within reasonable
time". What constitutes a "reasonable time" varies with the
complexity of the requested diagnostic/utility. The difficulty of the
host DUP class driver having to derive this "reasonable time" can be
eliminated by re-stating the definition of a sane DUP server as
follows: The server is sane if and only if the progress indicator is
being incremented within some reasonable time. This definition allows
setting "reasonable time" to some fixed value and varies the units in
which we measure "useful work" according to the complexity of the
diagnostic/utility. Command timeouts are based on this second
definition.

A class driver implements the command timeout mechanism as follows.
For each DUP server to which it is "Controller-Online", the class
driver monitors the progress indicator to insure that it is changing.

The class driver must never use a time interval that is shorter than
the controller specified controller timeout interval for its command
timeout determination, although the class driver may use a time
interval that is longer than the one specified by the controller. The
controller timeout interval specified by the DUP server must not be
larger than 4 minutes and 15 seconds (i.e., 255 seconds).

CHAPTER 5

GENERIC CONTROL MESSAGE FORMAT

5.1 Generic Control Message Format

5.1.1 Generic Control Message Format

All DUP control messages consist of a 12 byte header and a 28 byte or
shorter parameter area. Multi-byte numbers are stored least
significant byte first (i.e., using the standard VAX number formats).
Messages are laid out as follows:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I unused I
+---------------+-------+-------+
I modfrs/status I rsvd I opcodel
+-----------------------+-------+
I I
/ parameters /
/ /
I I
+-------------------------------+

The length of the parameter area varies depending upon the opcode.

The communications mechanism conveys both the text of a message and
its length. The receiver of a message uses its length to verify that
all required parameters are in fact present. The communications
mechanism may restrict the allowable message lengths. For example, it
might require that all messages have a fixed length 48 bytes or that
the length be an even multiple of 4 bytes. For this reason the
message lengths defined by DUP are minimum lengths. Senders may pad
messages as necessary to meet communications mechanism length
restrictions. The contents of the padding is reserved and must follow
~he rules for reserved fields defined in the followi~ paragraphs.

Class drivers must supply the value zero in the reserved fields of all
messages (commands) that they send to a controller and must also
ignore the contents of reserved fields in all the messages (end
messages and attention messages) that they receive from an DUP server.

GENERIC CONTROL MESSAGE FORMAT Page 5-2

DUP servers must supply the value zero in the reserved fields of all
end messages that they send to class drivers. DUP servers must either
ignore the contents of reserved fields in the messages (commands) that
they receive from class drivers or verify that the contents are zero.
The command is treated as invalid if the contents are non-zero.

Whether or not a DUP server verifies that reserved fields are zero is
controller dependent and need not be consistent for all reserved
fields.

Note that the above two cases are the only allowable controller
behavior for reserved fields with non-zero values. That is, if a
controller may possibly respond differently depending on whether or
not a reserved field is zero, then it must treat the command as
invalid if the reserved field is non-zero. The only exception is
reserved command message fields that correspond to end message fields
in which the controller should return zeros. For such fields, the
controller may merely echo the corresponding reserved fields from the
command message, trusting the host to have zeroed them rather than
checking and/or explicitly zeroing the fields.

A field, as used in the above discussion, may have any length. In
particular, it may be an individual bit of a flag word or byte as well
as an entire byte, word, or whatever. The fields in the message
header are interpreted as follows shown below.

command reference number

A 32 bit, unique, non-zero number used to identify host
commands. Class drivers should supply a unique reference
number in each command that they send to a DUP server. A
class driver may supply a zero reference number if it does
not need to associate a command with its end message.

Command reference numbers must be unique across all commands
that are outstanding on the same connection. That is, they
must be unique across all outstanding commands issued by a
single class driver (host) to a single DUP server. The class
driver may re-use a command's reference number when the
command is no longer outstanding -- i.e., after receiving the
command',s end message or after re-synchronizing with the DUP
server. Command reference numbers need not be unique for
commands issued by different class drivers -- i.e., commands
issued by different hosts or commands for different DUP
servers from the same host. Therefore, controllers must
internally use the combination of a command reference number
and the connection on which the command was received as the
unique identifier of an outstanding command.

GENERIC CONTROL MESSAGE FORMAT Pag e 5-3

opcode

Identifies the meaning or purpose of the message. In
messages sent from a class driver to a DUP server, this field
specifies the operation or command to be performed. In
messages sent from the controller to the class driver, this
field specifies whether this is an end message or an
attention message. The opcode of an end message also
identifies the type (opcode) of the command to which the end
message corresponds. A message's opcode implicitly specifies
the length and format of the message, including the
interpretation of any parameters that are present.

modifiers or status

This field has different formats in command messages and end
messages. In command messages this field has the following
format:

31 16 15 8 7
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+

The "modifiers" field contains bit flags that modify the
operation identified by "opcode" or zero if no modifiers are
specified. In end messages, this field has the following
fo rmat:

31 16 15 8 7
+---------------+-------+-------+
I sta tus I rsvd I endcode I
+---------------+-------+-------+

The "status" field identifies the completion status of the
command. The "flags" field contains bit flags, called end
flags, that report certain conditions that are disjoint from
normal completion status of a command. These fields are
further described in Section 5.3.

5.1.2 Command Modifiers

The allowable modifiers on a command are command (opcode) dependent.
The individual command descriptions list the allowable modifiers for
each command. All modifiers that are not explicitly allowed for a
command are reserved and must be treated in accordance with the
requirements for reserved fields described in Section 5.1. Modifiers
that are only allowed on one command are described in that command's
desc r ipt ion.

GENERIC CONTROL MESSAGE FORMAT Page 5-4

5.1.3 End Message Format

A DUP server sends
completion of a
follows:

an end
command.

message to a
The generic

class driver to report
end message format is as

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+---------------+-------+-------+

The command reference number is copied from the command message. The
remaining fields are as follows shown below.

end code

The endcode identifies this message as an end message and the
type of command (opcode) that this is an end message for.
This field implicitly specifies the format and interpretation
of the parameters.

status

The modifiers field is used for a completion status code.
The status code indicates whether the operation was
successfully completed or, if it wasn't successful, what type
of error occurred.

5.1.4 Status Codes

The "status code" field is a l6-bit field as follows:

15
+---------------------------+
I status I
+---------------------------+

The status codes that may be returned in end message "status code"
fields are listed below along with the general use made of these
codes. The actual codes used are listed in Appendix B. The codes are
also listed in the descriptions of the commands that may return them.

GENERIC CONTROL MESSAGE FORMAT Pag e 5-5

Success

The command was successfully completed.

The status code value associated with "Success" is, by
definition, zero.

Invalid Command

Used to report conditions such as the state of the DUP server
being incorrect for the command issued (e.g., Abort Program
command issued to a server in the IDLE state) or that the
command is inappropriate for the particular DUP server (eg,
Execute Local Program command issued to a DUP server which
does not support this feature).

The status codes that may be returned for a specific command are
command (opcode) dependent. The status codes that may be returned for
each command and any special meaning that they have specific to the
command are listed in the command descriptions. Note that the format
of a command's end message is solely determined by its opcode. The
status code returned in the end message does not affect the end
message's format.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

5.1.5 ABORT PROGRAM Command / Response

Command Category:

Immediate

Command message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+-------+-------+-------+-------+

Allowable modifiers:

none

Command Opcode: 6

End message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+---------------+-------+-------+

Status codes:

Success
Invalid Command (server is not in ACTIVE state)

Description:

Page 5-6

The ABORT PROGRAM command is used to terminate the execution of a
remote program in an orderly fashion. When a SUCCESSFUL response
is received to this command the remote program has stopped
executing and the server is in IDLE state. Note that the sending
of this command does not preclude further SEND DATA or RECEIVE
DATA exchanges. On the contrary, the remote program may be
designed to send out termination status and possibly even ask
questions during its forced-exit sequence. The timeout for this
command is a fixed 10 seconds, and if a response is not received

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

Pag e 5-7

by then, the connection to the DUST should be terminated. This
command is only legal if the DUST is in ACTIVE state.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

5.1.6 GET DUST STATUS Command / Response

Command Category:

Immediate

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I unused I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+-----------------------+-------+

Allowable modifiers:

none

Command opcode: 1

End message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+-------+-------+-------+-------+
I flags I program extension I
+-------+-----------------------+
I progress indicator I
+---------------+---------------+

I timeout value I
+---------------+

program extention

Page 5-8

Extension (in ASCII) for down-line loadable programs (see
appendix B).

flags

Bit 0 Set if any program execution under this server disables
the operation of all other servers in the same
controller.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

Page 5-9

Bit 1 Set if this controller has a local load media for
loading diagnostics and utilities.

Bit 2 Set if this server will not accept the EXECUTE SUPPLIED
PROGRAM Command.

Bit 3 Set if this server is currently in ACTIVE state.

progress indicator

Progress indicator for the currently running remote program;
see description of the SEND DATA and RECEIVE DATA commands.

timeout

Timeout to use for the EXECUTE LOCAL PROGRAM command, in
seconds; only pertinent if bit 1 of the 'flag' byte is set.

Status Codes:

Success

Description:

This command alows the host program to interrogate the DUP server
to determine its characteristics, its state and the state of the
program currently running, if any. It is legal in either IDLE or
ACTIVE state and does not affect the state of server. It has a
fixed timeout interval of 3 seconds. If the response times out,
the host should break the connection.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

5.1.7 EXECUTE SUPPLIED PROGRAM Command / Response

Command Category:

Immed iate

Command message format:

byte count

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I mod i fiers I rsvd I opcode I
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I
+--- descr ipto r ---+
I I
+-------------------------------+
I I
+---
I
+---
I

overlay
buffer

descr ipto r

---+
I

---+
I

+-------------------------------+

Page 5-10

Byte count for initial transfer (from bytes 0-3 of the program
header)

buffer descriptor

Buffer D~scriptor for initial load. This field contains the
address of byte (2J of the program header.

overlay buffer descriptor

Buffer Descriptor for overlays, if required.
contains the address of byte 0 of the overlay.

Allowable modifiers:

none

Command Opcode: 2

This field

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

End message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+---------------+-------+-------+

Status codes:

Success
Invalid command (Server is not in IDLE state)
No region available
No region sutable

Page 5-11

Host buffer access error (Unibus error or invalid byte count)

The format of the Buffer Descriptors shown here is dependent upon the
underlying communications mechanism.

Receipt of a SUCCESSFUL response to this command means that the host
may retire the buffer specified by the initial load Buffer Descriptor.
The overlay buffer MUST stay assigned until execution of the remote
program has terminated. Receipt of any response other than SUCCESSFUL
means that both buffers may be retired.

DUP servers which do not support EXECUTE SUPPLIED PROGRAM may always
return a response of INVALID COMMAND to this command.

Description:

This command causes the server to transfer the program from host
memory to an area in the controller and start its execution. The
host supplies the address and length (in bytes) of a buffer
containing the program header (see Appendix B) and initial load.
The starting address of the program, its memory requirements, and
any relocation information needed to run under the server are in
the program header in a format which is none of the host's
business. This command is only legal when the server is in the
IDLE state and return of a SUCCESSFUL end packet puts the server
into the ACTIVE state.

The timeout for this command is 30 seconds.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

5.1.8 EXECUTE LOCAL PROGRAM Command / Response

Command Category:

Immediate

Command message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I program I
+---------------+-- name --+

I I
+---------------+

Program name

Page 5-12

Name of local program, in ASCII, space-filled on right

Allowable modifiers are shown below.

Allow standalone - If not set, programs which have the
STANDALONE characteristic will not be executed.

Command Opcode: 3

End message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+-------+-------+-------+-------+
I flags Itimeoutlprogram versionl
+-------+-------+---------------+

program version

Program Version number (16 bits, binary)

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

timeout

Pag e 5-13

Timeout value for SEND DATA and RECEIVE DATA commands in
seconds. If 0, these commands are not timed out.

flags

Flags byte of program characteristics (see appendix B)

Status codes:

Success
Invalid command (server is not in IDLE state)
No region available
No region suitable
Program not known (no such program on media)
Load failure (input error while loading program)
Standalone (STANDALONE modifier not specified for a standalone

prog ram)

** Note: servers which indicate that they do not support local
programs al ways return ,a response of INVALID COMMAND to EXECUTE
LOCAL PROGRAM commands.

Description:

Receipt of this command causes the controller to search its local
media for the named program, load it and execute it. Receipt of a
SUCCESSFUL response by the host means that the program is
executing and the server is in the ACTIVE state. This command is
only legal when the server is in the IDLE state. The timeout
value for this command is specified in the GET DUST STATUS
response.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

5.1.9 SEND DATA and RECEIVE DATA Commands / Responses

Command Category:

Sequential

Command message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I
+--- descr ipto r ---+
I I
+-------------------------------+

byte count

byte count for transfer

buffer descriptor

Page 5-14

Buffer Descriptor for initial load. This field contains the
address of byte 0 of the program header.

Allowable modifiers:

none

Command Opcod e: 4 SEND DATA
Command Opcode: 5 RECEIVE DATA

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

End message format:

31
+-------------------------------+
I command reference number I
+-------------------------------+
I unused I
+---------------+-------+-------+
I status I rsvd lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+

byte count

Number of bytes actually transfered

Status codes:

Success
Invalid Command (server is not in ACTIVE state)

Description:

Page 5-15

These commands are used to communicate between the initiating host
program and the remote program. Both commands specify a host
buffer descriptor and a byte count. In the case of SEND DATA, the
information in the buffer is read by the remote program and a SEND
DATA response sent back to the host to acknowledge receipt. In
the case of RECEIVE DATA, the remote program writes data into the
buffer up to the amount specified by the byte count and then sends
a RECEIVE DATA response to the host to notify it of the
transmission.

The SEND DATA and RECEIVE DATA commands are only legal when the
server is in the ACTIVE state. If the remote program terminates
abnormally, putting the server back in the IDLE state, outstanding
SEND DATA and RECEIVE DATA commands may be lost. In the event
that the specified timeout interval is exceeded, the host program
should issue a GET DUST STATUS command to see if the remote
program is still running (ie, the DUP server is active). If it
is, the Progress Indicator should be remembered and the timeout
interval should be re-instated. If the second timeout expires
without a response and a second GET DUST STATUS shows the remote
program having made no progress in the interim (i.e. the Progress
Indicator has not increased), the program should be considered
broken and should be aborted.

The SEND DATA and RECEIVE DATA commands provide a general,
full-duplex mechanism for communication between the host control
program and a remote program under the DUP server, with the host
program controlling the data flow (under the constraints of the
underlying flow control mechanism). In many cases, however, it is

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

Page 5-16

the remote program which wants to be "in control" of the
conversation since it is where the work is being done. In
addition, in any system which has at least one local terminal, the
diagnostic and utility programs for that system have an existing
command interface to that terminal. This generally consists of
the printing of a set of prompt strings which elicit the accepting
of a set of corresponding input parameters, followed by the output
of the program's results and/or progress indicators. The DUP
protocol provides an optional sub-protocol embedded within the
SEND DATA and RECEIVE DATA messages which provides the features
shown below.

1. Remote programs written to interface to a terminal can be run
transparently over a DUP connection.

2. The existence of a single Dialog Driver on the host side gives
terminal users on that host access to all remote utilities and
diagnostics utilizing the Standard DUP Dialog.

3. Host programs running without supervision by a user on a
terminal need not analyze strings of ASCII text in order to
hold up their end of the dialog if they are familiar with the
remote program's input requirements.

The DUP Dialog is record-oriented and driven by the remote
program. In order to embed this in the DUP protocol, the sequence
of commands which the host program may issue must be restricted.
The host program must issue a RECEIVE DATA with a byte count)= 80
upon receipt of the response to the command which initiated
execution of the remote program. When the response to that
RECEIVE DATA is received, the host program examines a type field
in the received data and, depending on the value of the field,
issues either another RECEIVE DATA or a SEND DATA followed by a
RECEIVE DATA.

The format of messages
program, which appear
commands, is as follows:

15 12 11

from the remote prog ram to the host
in the buffer specified in RECEIVE DATA

+-------+------------------------+
I type I message number I
+-------+------------------------+
I I
/ ASCII /
/ text /
I I
+--------------------------------+

The ASCII text from the remote program to the host may include
printable characters, including space, and the carriage
return-line feed combination ONLY. No non-printable characters,
escape sequences, or control characters are allowed.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

Page 5-17

Where Type is one of the following codes:

TYPE

I QUESTION - The ASCII text is a prompt for information. The
host program must issue a SEND DATA with the answer to the
question in a form that the remote program understands. The
message number uniquely identifies the question and the
content and format of the answer to host programs which know
the characteristics of the remote program. The host response
must be in ASCII.

2 DEFAULT QUESTION - The DEFAULT QUESTION message is identical
to the QUESTION message except that a null (zero-length) SEND
DATA is taken to be a default answer to the question. If the
host program is answering questions via message number and
does not recognize the message number of a DEFAULT QUESTION
message, it should respond with a null SEND DATA as its
answer. This message type allows remote programs to add new
capabilities requiring new user input parameters and still
communicate with host programs which know only about an old
version. The host response must be in ASCII.

3 INFORMATION - The ASCII text is an informative message. The
message number uniquely identifies the type of information
being transmitted. The INFORMATION message has its own
message number space. The host program should issue another
RECEIVE DATA command.

4 TERMINATION - The ASCII text is a normal termination message.
The message number uniquely identifies the type of information
being transmitted. The TERMINATION message has its own
message number space. No further SEND DATA or RECEIVE DATA
command~ should be issued. Message number I is reserved to
mean "simple termination" and does not have any ASCII text.
Minimal-memory remote programs may omit the ASCII text on all
TERMINATION messages.

5 FATAL ERROR - The ASCII text is a fatal error message. The
FATAL ERROR message has its own message number space. No
further SEND DATA or RECEIVE DATA commands should be issued.
Minimal-memory remote programs may omit the ASCII text on all
ERROR messages.

6 SPECIAL - This type is used when only a host program could
respond. The message number indicates the type of special
message. The data field is type dependent and not necessarily
ASCII text.

Note that use of this message type is program dependent.
Reference the remote program's functional specification. This
message type should ONLY be used in cases where ONLY a program
could respond.

GENERIC CONTROL MESSAGE FORMAT
DUP Commands

Types ~ and 7-15 are reserved.

Page 5-18

Message numbers are unique within type for a given program. Other
programs may have the same message numbers.

The format of messages from
program, which are placed
commands, is as follows:

15

the host program to the remote
in the buffer specified in SEND DATA

+--------------------------------+
I I
/ ASCII /
/ text /
I I
+--------------------------------+

APPENDIX A

MODIFIER CODES/RESPONSE STATUS CODES/OPCODES

The following are the opcodes for DUP commands:

GET DUST STATUS
EXECUTE SUPPLIED PROGRAM
EXECUTE LOCAL PROGRAM
SEND DATA
RECEIVE DATA
ABORT PROGRAM

1
2
3
4
5
6

The following are the modifier codes for DUP commands:

ALLOW STANDALONE I (bit 0)

The following are the status codes for DUP responses:

SUCCESSFUL
INVALID COMMAND
NO REGION AVAILABLE
NO REGION SUITABLE
PROGRAM NOT KNOWN
LOAD FAILURE
STANDALONE
HOST BUFFER ACCESS ERROR

o
I
2
3
4
5
6
9

The response codes returned by the controller have a value of 200
octal plus the value of the opcode in the originating command. The
only exception is that the response to an invalid command may have a
value of 200 octal instead of 200 plus the originating command opcode.
This is controller dependent.

APPENDIX B

REMOTE PROGRAM HEADER

Remote program images may reside either in the host or on media local
to the controller. The host program may obtain certain of the
characteristics of these programs in order to aid it in starting their
execution and communicating with them when they are running. In the
case of controller-local programs some of these characteristics are
passed to the host in the response to the EXECUTE LOCAL PROGRAM
command. In the case of host-resident program images, the program
image starts with a fixed set of bytes, the program header, which
gives the program's characteristics as follows. This header is added
to the program via a host-dependent mechanism. The information in
this header is used by the host to issue the EXECUTE SUPPLIED PROGRAM
command.

15
+--------------------------------+
I I
+--­
I

byte count ---+
I

+--------------------------------+
I I
+--­
I

overlay byte count ---+
I

+--------------------------------+
I I
+--­
I
+---
I

program name
---+

I
---+

I
+--------------------------------+
I version number I
+---------------+----------------+
I timeout I flags I
+---------------+----------------+
I I
/ reserved /
/ /
I I
+--------------------------------+

REMOTE PROGRAM HEADER Page B-2

byte count

Number of bytes in initial load plus the program header. The
initial load image immediately follows the program header in
the program image. The initial load image may contain an
extended header with DUP-specific information.

overlay byte count

Number of
immediately
image.

program name

bytes in
follows

overlay area. The overlay area
the initial load image in the program

Program name (ASCII), space-filled on right

version number

Program version number, binary

flags

Bit ~ Set if this program is standalone.

Bit I If this bit is set, the program needs overlays from
host memory during execution. The host must pass a
second Buffer Descriptor describing the overlay buffer
as part of the EXECUTE SUPPLIED PROGRAM packet.

Bit 2 If this bit is set, the overlay buffer should be
writeable as well as readable from the controller.

Bit 3 Set if this program uses the standard DUP dialogue
embedded within the SEND/RECEIVE DATA messages to
communicate with the host. (see Section 5.~)

Bits 4-7 Reserved

timeout

Timeout value for SEND DATA and RECEIVE DATA commands in
seconds. If~, these commands are not timed out.

reserved

Reserved. These bytes are reserved for future use.

The EXECUTE SUPPLIED PROGRAM feature of DUP is provided to load
utilities and diagnostics from the host into controllers which do not
have enough local media to store them. Remote programs should be kept
in a fixed directory within the host system. The extension of those
down-line load files which will run on a given controller is specified

REMOTE PROGRAM HEADER Page B-3

in the GET DUST STATUS Response.

APPENDIX C

THE DIRECT PROGRAM

DUP servers which desire to provide host programs with a directory of
local programs should do so using a local program named DIRECT which
uses the standard DUP Dialogue to report the directory. The directory
is reported as a series of INFORMATION messages, all with a message
number of 1 of the following form:

program name

15
+--------------------------------+
I I
+--­
I
+---
I

prog r am name
---+

I
---+

I
+--------------------------------+
I I
+--- vers ion numbe r ---+
I I
+---------------+ +
I a sc i i • spa c e • I I
+---------------+----------------+
I dialogue ind I mode indicator I
+---------------+----------------+
I I
/ DUP dependent /
/ text /
I I
+--------------------------------+

program name (in ascii), right-filled with spaces

version number

Program version number (in ascii), left-filled with spaces

Space

ASCII blank

THE DIRECT PROGRAM Page C-2

mode indicator

ASCII'S' if program is STANDALONE, otherwise and ASCII space

dialogue indicator

ASCII 'D' if program uses standard DUP Dialogue, else'

DUP dependent text

Extra DUP-dependent informative text.

These INFORMATION messages may have other INFORMATION messages
interspersed with them as long as those other messages have a message
number other than 1. The stream of messages should end with a
TERMINATION message with a message number of 1.

	0001
	0002
	001
	1-01
	1-02
	1-03
	2-01
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02

