
dpANS DIBOL
Language Reference Manual
Order Number: AA-KZ36A-TK

March 1988

Supersession Information:

Operating System:

Software Version:

digital equipment corporation
maynard, massachusetts

This is a new manual.

VAX/VMS Version 5.0 or later
RSTS/E DIBOL Version 9.5 or later

Applicable to all products containing
dpANS DIBOL.

March 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 DECtype LN03 Q-bus ULTRIX-32m
A-to-Z DECUS LVP16 Rainbow UNIBUS
COMPACTape DIBOL LQP02 RDB/VMS VAX
COS-310 DIBOL-11 LQP03 ReGIS VAX CDD
CTS-300 DIBOL-83 MASSBUS RMS-11 VAXcluster
DATASYSTEM DMS MicroPDP-11 RSTS VMS
DEC FMS Micro/RSTS RSTS/E VNX
DECdx FMS-11 Micro/RSX RSX VT100
DECFORM GOLD KEY MicroVAX RSX-11 VT125
DECgraph J-11 MicroVAX I RSX-11 M VT220
DECmail LA50 MicroVAX II RSX-11 M-PLUS VT240
DECmate LA100 MicroVMS RT-11 VT241
DECnet LA120 PDP-11 RX50 WPS
DECprinter LA210 P/OS TK50 WPS-8
DECspell Letterprinter Professional ULTRIX-11
DECsupport Letterwriter PRO/RT ULTRIX-32

Digital Accounting Series Professional Host Tool Kit mamaDmo™ Message Router Work Processor
PRO/Applications Starter Kit

Contents

PREFACE xi

CHAPTER 1 dpANS DIBOL LANGUAGE ELEMENTS 1-1

1.1 DIBOL CHARACTER SET 1-1

1.2 STATEMENT TYPES 1-2
1.2.1 Compiler Directives and Declarations 1-2
1.2.2 Data Specification Statements 1-4
1.2.3 Data Manipulation Statements 1-4
1.2.4 Control Statements 1-5
1.2.5 Intertask Communications Statements 1-6
1.2.6 Input/Output Statements 1-6

1.3 PROGRAM STRUCTURE 1-7

1.4 STATEMENT LINE SYNTAX 1-9

1.5 PROCEDURE DIVISION STATEMENT LABELS 1-12

1.6 LITERALS 1-13
1.6.1 Error Mnemonics 1-15

1.7 EXPRESSIONS 1-15
1.7.1 Alpha Expressions 1-15
1.7.2 Numeric Expressions 1-16

iii

CHAPTER 2 DATA DIVISION

2.1 RECORD STATEMENT

2.2 COMMON STATEMENT

2.3 FIELD DEFINITIONS

2.4 SUBROUTINE STATEMENT
2.4.1 Subroutine Argument Definition

CHAPTER 3 THE dpANS DIBOL PROCEDURE DIVISION

3.1 INTRODUCTION

3.2 VALUE ASSIGNMENT STATEMENTS
3.2.1 Moving Alpha Data
3.2.2 Moving Numeric Data
3.2.3 Alpha-to-Numeric Conversion
3.2.4 Numeric-to-Alpha Conversion
3.2.5 Formatting Data
3.2.6 Clearing Variables

3.3 ARRAY SUBSCRIPTING

3.4 SUBSTRINGS
3.4.1 Absolute Substring Specification
3.4.2 Relative Substring Specification

3.5 ACCEPT

3.6 BEGIN-END BLOCK

3.7 CALL

iv

2-1

2-2

2-5

2-8

2-12
2-13

3-1

3-1

3-2
3-3
3-4
3-5
3-7
3-9

3-12

3-14

3-17
3-17
3-19

3-21

3-23

3-25

3.8 CLEAR 3-26

3.9 CLOSE 3-28

3.10 DECR 3-30

3.11 DELETE 3-31

3.12 DETACH 3-33

3.13 DISPLAY 3-35

3.14 DO-UNTIL 3-37

3.15 EXIT 3-39

3.16 EXITLOOP 3-40

3.17 FOR 3-41

3.18 FORMS 3-44

3.19 GOTO 3-46

3.20 GOTO (COMPUTED) 3-47

3.21 IF 3-48

3.22 IF-THEN-ELSE 3-50

3.23 INCR 3-52

3.24 LOCASE 3-53

3.25 LPQUE 3-54

v

3.26 NEXTLOOP 3-56

3.27 OFFERROR 3-57

3.28 ON ERROR 3-58

3.29 OPEN 3-59

3.30 READ (INDEXED FILE) 3-67

3.31 READ (RELATIVE FILE) 3-70

3.32 READS 3-72

3.33 RECV 3-74

3.34 REPEAT 3-76

3.35 RETURN 3-77

3.36 SEND 3-79

3.37 SLEEP 3-81

3.38 STOP 3-82

3.39 STORE 3-84

3.40 UNLOCK 3-86

3.41 UPCASE 3-88

3.42 USING 3-90

vi

3.43 WHILE

3.44 WRITE (INDEXED FILE)

3.45 WRITE (RELATIVE FILE)

3.46 WRITES

3.47 XCALL

3.48 XRETURN

CHAPTER 4 THE dpANS DIBOL COMPILER DIRECTIVES

4.1 GENERAL INTRODUCTION

4.2 .END

4.3 .IFDEF-.ELSE-.ENDC

4.4 .IFNDEF-.ELSE-.ENDC

4.5 .INCLUDE

4.6 .LlST

4.7 .MAIN

4.8 .NOLIST

4.9 .PAGE

4.10 .PROC

3-93

3-94

3-96

3-98

3-100

3-104

4-1

4-1

4-2

4-3

4-5

4-7

4-9

4-11

4-12

4-13

4-15

vii

4.11 .SUBROUTINE

4.12 .TITLE

CHAPTER 5 EXTERNAL SUBROUTINES

5.1 ASCII

5.2 DATE

5.3 DECML

5.4 DELET

5.5 ERROR

5.6 FATAL

5.7 FILEC

5.8 FLAGS

5.9 INSTR

5.10 MONEY

5.11 RENAM

5.12 RSTAT

5.13 SIZE

5.14 TIME

viii

4-16

4-17

5-1

5-2

5-3

5-5

5-6

5-7

5-9

5-11

5-12

5-16

5-18

5-19

5-23

5-25

5-27

5.15 TTSTS

APPENDIX A dpANS DIBOL CHARACTER SET

APPENDIX B ERROR HANDLING

B.1 INTRODUCTION

B.2 ERROR NUMBERS

B.3 ERROR MNEMONICS

B.4 ERROR CONDITIONS

GLOSSARY

INDEX

FIGURES
1-1 dpANS DIBOL Program Structure

5-1 FLAGS Option Fields

5-2 RENAM Flowchart

TABLES
1-1 dpANS DIBOL Delimiters

1-2 Table of Operator Precedence

1-3 Unary Operator Table

1-4 Binary Operator Table

1-5 Truth Table

3-1 Format Control Characters

5-28

A-1

B-1

B-1

B-1

B-1

B-2

Glossary-1

1-8

5-13

5-21

1-9
1-19

1-19
1-20
1-20
3-10

ix

3-2 Shared File Access 3-63

3-3 Valid Combinations of Mode:Submode 3-64

5-1 FLAGS Argument Parameter Assignments 5-13

A-1 dpANS DIBOL Character Set A-2

B-1 dpANS Error Mnemonics B-2

x

AUDIENCE

Preface

The dpANS DIBOL Language Reference Manual contains reference
information on all aspects of the dpANS Proposed Standard for the
DIBOL Programming Language. It does not include information on any
particular operating systems or their specific effect on DIBOL.

This manual is written for:

The programmer who is new to DIBOL but is experienced in another
high-level language.

The experienced DIBOL programmer.

MANUAL ORGANIZATION

The manual is organized as follows:

This Preface orients the reader to the format used throughout the manual,
and to the terms and symbols used within the text.

Chapter 1 contains information related to the dpANS DIBOL language
elements such as the character set, statement types, program structure,
syntax, labels, literals, and expressions.

xi

Chapter 2 references all Data Division statements including the
COMMON, RECORD, and SUBROUTINE statements, and describes
field definitions.

Chapter 3 references all the Procedure Division statements, explains the
Value Assignment Statements, and array subscripting.

Chapter 4 contains information related to Compiler Directives such as
.END, .INCLUDE, .LIST, .MAIN, .PAGE, and others.

Chapter 5 references all dpANS DIBOL External Subroutines.

Appendix A contains the Character Set for the dpANS Proposed DIBOL
Standard.

Appendix B contains information on Error Handling.

The Glossary defines terms and phrases as used in this manual.

MANUAL FORMAT

xii

This manual provides the reader with fast information retrieval.

The majority of the pages contain five main sections:

The FUNCTION section briefly describes or defines the subject matter.

The FORMAT section describes the correct structure or makeup of a
statement, subroutine, etc., and explains each portion of the structure.

The RULES section provides guidelines, parameters, advice, and limi­
tations for the particular subject matter. The rules are not necessarily
presented in order of importance.

The ERROR CONDITIONS sections list compiler errors and run-time
errors. The run-time errors will also indicate their assigned error number
and whether they are Trappable (T) or Non-trappable (NT). All listed
errors are particular to the subject matter, statement, or subroutine being
discussed.

The EXAMPLES section illustrates the use of the particular subject matter.

DOCUMENT SYMBOLS

The symbols defined below are used throughout this manual.

Symbol

afield

aliteral

ch

nexp

nfield

nliteral

field

label

literal

lowercase (characters)

non-trappable error

record

subroutine

trappable error

UPPERCASE (characters)

{ }

[]

Definition

is the name of an alpha field.

is an alpha literal.

is a numeric expression that evaluates to an
input/output channel number.

is a numeric expression that can be any valid
combination of operands and operators. In
its simplest cases, nexp can be a nfield or a
nliteral.

is the name of a numeric field.

is a numeric literal.

is the name of either an alpha or a numeric
field.

is a Procedure Division statement label.

is either an alpha or a numeric literal.

mean elements of the language which are
supplied by the programmer.

is an error that causes program termination
and cannot be trapped.

is the name of a record.

is the name of a subroutine.

is an error that can cause program ter­
mination but may be trapped using the
ON ERROR statement.

mean elements of the language which must
be used exactly as shown.

represent braces and mean optional argu­
ments.

represent brackets and and mean a sin­
gle choice must be made from a list of
arguments.

xiii

Symbol

xiv

Definition

represent a horizontal ellipsis and mean the
preceding item can be repeated as indicated.

represents a vertical ellipsis and means
that not all of the statements in a figure or
example are shown.

Chapter 1

dpANS OIBOL Language Elements

This chapter contains information on the DIBOL Character Set, the various
DIBOL statement types, program structure, statement line syntax, labels,
literals, and expressions.

A DIBOL program is a sequence of statements that describes a method
for performing a task. These statements are translated by the DIBOL
compiler for subsequent execution by the DIBOL Run-Time System under
the control of the operating system.

1.1 DIBOL Character Set

A DIBOL program consists of symbolic characters that form the elements
of the language. A subset of the American Standard Code for Information
Exchange (ASCII) characters comprises this set of symbolic characters.
Characters used as data are also selected from this character set.

Appendix A lists the ASCII characters and their associated numeric codes.

dpANS DlBOL Language Elements 1-1

1.2 Statement Types

A statement is the basic unit of expression in the DIBOL language.

DIBOL statements fall into six functional groups:

Compiler Directives and Declarations
Data Specification Statements
Data Manipulation Statements
Control Statements
Intertask Communications Statements
Input/Output Statements

A statement has one or more elements. The first element is usually an
English language verb that characterizes or symbolizes an action to be
performed (such as READ, WRITE, SLEEP, OPEN, and CALL).

The other elements of a statement may be arguments, expressions, or
other statements. Arguments consist of symbolic data names, references
to statement labels, and expressions of data values or relationships.
Arguments specify the objects of the action being performed by the
statement.

1.2.1 Compiler Directives and Declarations

• Compiler Directives and Declarations are instructions that provide
information about the program to the compiler.

• Compiler Directives and Declarations are not executable at runtime.

• Most Compiler Directives may appear anywhere in the program.

• Declarations are limited to either the Data Division (SUBROUTINE) or
Procedure Division (BEGIN-END or PROC-END). They are discussed
in the chapters devoted to those respective program divisions.

• The Compiler Directives are:

1-2 dpANS DlSOl language Elements

.END

.IFDEF-.ELSE-.ENDC

.IFNDEF-.ELSE-.ENDC

.INCLUDE

. LIST

.MAIN

.NOLIST

.PAGE

.PROC

.sUBROUTINE

.TITLE

• The Declarations are:

BEGIN-END

PROC-END

SUBROUTINE

identifies the end of the Procedure
Division.

specifies conditional compilation based
on the presence of a preceding definition
of a named variable within the current
compilation.

specifies conditional compilation based
on the absence of a preceding definition
of a named variable within the current
compilation .

causes the compiler to open a specified
file and continue the compilation using
that file .

enables the compiler to list source code.

identifies the beginning of the Data
Division of the main program.

inhibits the listing of compiler source
code.

terminates the current listing page and
begins a new listing page.

identifies the beginning of the Procedure
Division.

identifies the beginning of a source
program that is an external subroutine.

causes a top-of-page command to occur
and a new title to be placed in the page
header.

indicates the start (BEGIN) or finish (END) of a
sequence of blocked statements. A BEGIN-END
sequence of statements may be used anywhere a
single statement may be used.

separates the Data Division statements from
Procedure Division statements (PROC) and indicates
the last statement in a program (END).

identifies a program as an external subrou-
tine. SUBROUTINE may be used instead of
.sUBROUTINE.

dpANS DlBOL Language Elements 1-3

1.2.2 Data Specification Statements

• Data Specification Statements identify and define the characteristics
(i.e., whether it is alpha or numeric decimal, its size, and its symbolic
name) of the data processed by a DIBOL program.

• The Data Specification Statements are:

COMMON

RECORD

field definition

1.2.3 Data Manipulation Statements

defines an area of memory where variable data
is stored. This area can be accessed by both
main program and external subroutines.

defines an area of memory where variable data
is stored. This area is accessible only by the
declaring program.

describes the name, array count, data type,
size, and initial value of a field in a RECORD
or COMMON area.

• Data Manipulation Statements perform conversion and value assign­
ment.

• The Data Manipulation Statements are:

CLEAR

DECR

INCR

LOCASE

UP CASE

value assignment statement

1-4 dpANS DIBOL Language Elements

sets a variable to zero or spaces.

decreases a variable by one.

increases a variable by one.

converts UPPERCASE letters to
lowercase.

converts lowercase letters to
UPPERCASE.

assigns the value in the source to
the destination.

1.2.4 Control Statements

• Control Statements modify the order of statement execution within a
program.

• The Control Statements are:

CALL

DETACH

DO-UNTIL

EXIT

EXITLOOP

FOR

GOTO

GOTO (computed)

IF

IF-THEN-ELSE

NEXTLOOP

OFFERROR

ON ERROR

REPEAT

RETURN

SLEEP

STOP

USING

calls a subroutine within the program.

provided for ANS compatibility. DETACH has
no effect in VAX DIBOL.

causes repetitive execution of a statement until a
condition is true.

terminates execution of a BEGIN-END block.

terminates execution within an iterative construct
(FOR, DO-UNTIL, REPEAT, or WHILE) and
transfers control to the statement immediately
following the construct.

causes repetitive execution of a statement.

transfers control to another statement.

conditionally transfers program control based on
the evaluation of an expression.

executes a statement if a condition is true.

allows conditional execution of one of two
statements.

terminates execution with an iterative construct
(DO-UNTIL, FOR, REPEAT, or WHILE) and
begins executing the next iteration, if any, of the
iterative construct.

disables trapping of run-time errors.

enables trapping of run-time errors.

repetitively executes a statement.

causes control to return from a subroutine.

suspends program operation for a specified time
interval.

terminates program execution.

executes one statement out of a list of state­
ments.

dpANS DlBOl language Elements 1-5

WHILE

XCALL

XRETURN

causes a statement to be executed repetitively
while a condition is true.

calls an external subroutine.

transfers program control to the statement
logically following the XCALL statement that
transferred control to the current external
subroutine.

1.2.5 Intertask Communications Statements

• Intertask Communications Statements allow communication between
programs.

• The Intertask Communications Statements are:

LPQUE

RECV

SEND

requests a file to be printed.

receives a message from another program.

transmits a message to another program.

1.2.6 Input/Output Statements

• Input/Output Statements control the transmission and reception of
data between memory and input/output devices.

• The Input/Output Statements are:

ACCEPT

CLOSE

DELETE

DISPLAY

FORMS

OPEN

READ (Indexed File)

READ (Relative File)

1-6 dpANS DlBOl language Elements

receives a character from a device.

terminates use of an input/output
channel and closes the associated file.

deletes a record from an indexed file.

sends a character string to a device.

sends special printer control codes.

initializes a file in preparation for input
/output operations.

reads a record from an indexed file.

reads a record from a relative file.

READS

STORE

UNLOCK

WRITE (Indexed File)

WRITE (Relative File)

WRITES

1.3 Program Structure

reads the next record in sequence from
a file.

adds a record to an indexed file.

releases a record for use by another
program.

writes a record to an indexed file.

writes a record to a relative file.

writes the next record in sequence to a
file.

A DIBOL program may contain two major parts: an optional Data
Division and a Procedure Division. The Data Division contains statements
that define and identify the data used by the program. The Procedure
Division contains statements that execute certain tasks. Figure 1-1 shows
a schematic drawing of a dpANS DIBOL program structure.

dpANS DlBOl language Elements t -7

Figure 1-1: dpANS DIBOL Program Structure

Main Program
RECORD statement

field definitions

RECORD statement n
field definitions

PROC

END

External Subroutine
SUBROUTINE statement

argument definitions

RECORD statement n
field definitions

PROC

END

1-8 dpANS DlBOL Language Elements

Data Division

Procedure Division

Procedure Division

MK-02719-00

1.4 Statement Line Syntax

General Rules

•
•

Each division of a DIBOL program has one or more logical lines.

A logical line consists of a physical line (data record) and can be
followed by one or more continuation lines.

• A logical line cannot exceed 1023 characters in length. A physical line
cannot exceed 255 characters in length.

•
•

A program may contain no more than one statement per logical line.

A statement can begin anywhere on a line.

Rules for Line Continuation

• The ampersand symbol (&) specifies line continuation. This allows
lengthy statements to be continued onto additional physical lines.

• The ampersand symbol must be placed at the first nonspacing charac­
ter position in the continuation line.

• A statement can be continued until it exceeds the limit of a logical
line (which can contain 1023 characters including ampersand symbols,
spaces, horizontal tabs, Carriage Return, and Line Feed characters).

• Comments cannot be continued by an ampersand. They must be
preceded by a semicolon on each physical line.

Rules for Delimiters

• Delimiters separate the elements of the language (keywords, labels,
symbols, literals).

• Delimiters are listed in Table 1-1.

Table 1-1: dpANS DIBOL Delimiters
Name Symbol Name Symbol

Addition + Percent %
Colon Period

Comma Pound #

Division / Right Parenthesis

Double Quotes /I Single Quote

dpANS DlBOL Language Elements 1-9

Table 1-1 (Cont.): dpANS DIBOL Delimiters
Name

Equal

Left Parenthesis

Multiplication

Boolean and

Boolean or

Boolean xor

Boolean not

Rules for Comments

Symbol Name

*
.AND.

.OR.

. XOR.

.NOT.

Space

Subtraction

Tabs

Relational equal

Relational not equal

Relational greater than

Relational greater than
or equal to

Relational less than

Relational less than or
equal to

• Comments are used to explain the source program.

• Comments are ignored by the compiler.

• Comments are preceded by a semicolon (;).

• Comments can follow a statement on a line.

Symbol

<TAB>

.EQ.

.NE.

.CT .

.CE.

.LT.

.LE.

• Comments can be placed on any statement line by preceding the
comment with a semicolon (;).

• Comments can be placed on a line by themselves (full line comments).

• Comments cannot be continued by an ampersand. They must be
preceded by a semicolon on each physical line.

Rules for Spacing Characters

• Spacing characters are spaces or horizontal tabs not contained in an
alpha literal.

• Adjacent spacing characters occupy one character of a logical line.

• Spacing characters at either the beginning or end of a physical line are
ignored and not considered part of a logical line.

1-10 dpANS DlBOL Language Elements

Rules for Blank Lines

• A blank line is a physical line that contains no compilation informa­
tion.

• Any number of blank lines may be placed between logical lines.

• A blank line cannot precede a continuation line.

Run-Time Error Conditions

None

Examples

The following examples illustrate comments. The first example shows a
commented statement and the second example shows a full line comment.

RECORD CUST ; Customer record

; This program prints the Accounts Past Due Report

Comments can be continued onto multiple lines by using a semicolon as
follows:

READS (1,CUST,EOF) ; Read the sequentially next
; ... customer master file

The basic elements of the language are separated by delimiters. In the
following example, the space used as a delimiter between the keyword
GaTa and the label TESTl is missing. This statement will generate a
compiler error.

GOTOTEST1

The following statement will also generate a compiler error because there
is an extra space in the middle of the label TESTl:

GOTO TE ST1

dpANS DlBOL Language Elements 1-11

1.5 Procedure Division Statement Labels

Definition

A statement label is a unique symbolic name that identifies a statement in
the Procedure Division of a DIBOL program.

Format

label,f statement}

label
is the statement label.

statement
is a DIBOL statement.

General Rules

• A label consists of up to 30 characters, the first of which must be
alphabetic. The remaining characters can be alphabetic, numeric,
dollar sign ("$"), or underscore (" _").

• A label may begin anywhere on a line as long as it immediately
precedes and is separated from its associated statement by a comma.

• A label can be on a line by itself.

• A label cannot be used to identify more than one statement.

• Compiler Directives and Declarations (except for BEGIN-END) cannot
have labels.

Run-Time Error Conditions

None

Examples

The following labels (LOOP6, X_RTN, and BAD$ are all legal:

LOOP6. IF I.GT.MAX GOTO DONE

X_RTN. RETURN

BAD$. WRITES eCHo 'Bad Input')

1-12 dpANS DlBOL Language Elements

The following label is legal but will be truncated to 30 characters
(Le., DO_PAYROLL_ON_THE_DAY_THAT_BEG):

The following labels (6X, _RTN, and $BAD) are not legal because they do
not begin with a letter:

6X. IF I.GT.MAX GO TO DONE

_RTN. RETURN

$BAD. WRITES eCHo 'Bad Input')

1.6 Literals

Definition

Literals are alpha or numeric values permanently defined in a program.

Rules

• A literal cannot be altered during program execution.

• Alpha literals are specified by enclosing a character string within a
pair of apostrophes (') or double quote (") characters.

• Double or single quotes can appear within literals following these
guidelines:

A single quote can appear in a literal that is enclosed in single
quotes by immediately following the quote character with a
second quote character CO"Hare') within the literal.

A single quote can appear in a literal that is enclosed in double
quotes ("O'Hare").

A double quote can appear in a literal that is enclosed in double
quotes by immediately following the double quote character with
a second double quote character within the literal ("""END
OF FILE""").

A double quote can appear in a literal that is enclosed in single
quotes C'END OF FILE'II).

• Literals cannot be subscripted.

dpANS DlBOL Language Elements 1-13

• Numeric literals can be any valid DIBOL number that does not exceed
18 digits.

• Literals can be used as passed arguments to subroutines but cannot be
altered by the subroutine.

Run-Time Error Conditions

None

Examples

The following numbers are all legal numeric literals:

-99234780113

+000431

10000000000

--1 (same as +1)

The following numbers are not legal decimal literals because they contain
characters other than the plus sign (+), the minus sign (-), and the
decimal digits (0 through 9).

$10

1,000,000

10.00

The following are legal alpha literals:

"PAYROLL NUMBER"

'Invalid customer number'

'$10'

"1,000,000"

The apostrophe character (') can be used in the literal by inserting two
apostrophes for each one desired, or by using the quote character (1/)
to start and end the literal. Both of the following literals puts a single
apostrophe character in O'Hare.

'0' 'Hare'

"O'Hare"

1-14 dpANS DIBOllanguage Elements

1.6.1 Error Mnemonics

Appendix B lists the dpANS standard error mnemonics for error condi­
tions. Error mnemonics are treated as symbolic representations of numeric
literals and can be used wherever a numeric literal is allowed.

1.7 Expressions

Definition

An expression is a construct composed of one operand and an optional
unary operator or two operands joined by a binary operator. The operands
of expressions may themselves be expressions.

General Rules

•

•

.
The result of a resolved numeric expression shall replace all compo­
nents of the expression and shall be treated as a single operand for
any remaining phases of the expression evaluation.

Expressions are typed after the data type of their value. Thus, there
are two classes of expressions: numeric and alpha.

1.7.1 Alpha Expressions

Definition

An alpha expression is either an alpha variable or an alpha literal.

General Rules

•

•

•

The value of an alpha expression is the character string defined by the
field or literal.

The truth value of an alpha expression is FALSE if all characters
contained in the expression are ASCII spaces.

The truth value of an alpha expression is TRUE if any of the characters
contained in the expression are not an ASCII space.

dpANS DlBOL Language Elements 1-15

1.7.2 Numeric Expressions

Definition

Numeric expressions are valid combinations of operands and operators.

General Rules

• If X and Yare operands, the following are numeric expressions:

•
•

•

•
•
•
•

•

•

•

•

•

X binary operator Y

unary operator X

(X)
A numeric operand is a numeric field, numeric literal, or expression.

The value of a numeric expression is the numeric result of the opera­
tions indicated by the operators specified within the expression.

Operators in a numeric expression represent various arithmetic,
relational, or Boolean functions of the dpANS DIBOL language.

Unary operators require one operand.

Binary operators require two operands.

Operators require operands to be the correct data type.

Numeric expressions are evaluated according to the order of prece­
dence. Operators with equal precedence are evaluated from left to
right in a decimal expression.

The order of expression evaluation can be altered by using paren­
theses. Expressions enclosed in parentheses are evaluated before
other elements of the numeric expression in which they appear.
Additional levels of precedence are achieved by nesting; the innermost
expressions are evaluated first.

A character within a numeric field that is a space shall be treated
exactly as if it were a zero by all operators acting on that field.

When the rightmost character of a numeric field contains a lowercase
'p' (the minus zero value), and all other characters are either zeroes or
spaces, the field shall be considered to have a value of zero.

The treatment of a character within a numeric field which is not a
numeric digit, a blank, or a lowercase "p" through lowercase "y" alpha
letter in the rightmost character position, is undefined.

The result of a numeric expression cannot be minus zero.

1-16 dpANS DIBOl language Elements

• The truth value of a numeric expression shall be FALSE if the actual
value of the expression is zero, and TRUE if the actual value of the
expression is non-zero.

• The maximum size of the resolved value of any numeric expression
shall be considered to be 18 digits for the purposes of subsequent
operations.

Rules for +, -, *, and /

• Numeric expressions deal with integers only. So output data can be
correctly formatted for printing, the position of an implied decimal
point in a numeric value must be determined by the program.

• Numeric expressions that produce intermediate results exceeding 18
digits generate the error Number too long.

• The unary plus (+) operator has no effect on a value since unsigned
values are assumed to be positive. This operator is useful only to
facilitate reading a program listing.

• The unary minus (-) operator is used to negate its operand.
Successive minuses are combined algebraically.

• The addition (+), subtraction (-), multiplication (*), and division (/)
operators perform standard signed integer arithmetic.

• Division by zero is illegal and results in error $ERR_DIVIDE
ATTEMPT TO DIVIDE BY ZERO.

• Any fraction resulting from division is truncated.

Rules for #

• The rounding number operator (#) specifies numeric rounding.

• The first operand specifies the numeric value to be rounded.

• The second operand is a numeric expression that evaluates to a
number between 0 and 15 which specifies the number of rightmost
digits to truncate after rounding takes place.

• The least significant digit of the truncated value is rounded upward by
one if the digit to its right is greater than or equal to five.

dpANS mBOL Language Elements 1-17

Rules for Relational Operators

• Relational operators are .EQ., .NE., .GT., .LT., .GE., and .LE.

• Relational expressions produce numeric results (either true [non-zero]
or false [zero]). These expressions can be used as operands with
Boolean operators.

• In comparisons using relational operators, only like data types are
allowed as operands, i.e., numeric/numeric or alpha/alpha.

• In an alpha relational comparison, the operand values are compared
on a character by character basis from left to right. The comparison is
limited to the size of the shortest operand.

Rules for Boolean Operators

• Boolean operators are .AND., .OR., and .XOR.

• The operands of binary Boolean operators are numeric expressions.

• The operand of the Boolean operator (.NOT.) may be an alpha or
numeric expression.

• Boolean operators guarantee left-to-right evaluation. If the result is
known from the evaluation of the left operand, the right operand will
not be evaluated.

Run-Time Error Conditions

$ERR_BIGNUM

$ERR_DIVIDE

1-18 dpANS OIBOL Language Elements

E

E

Arithmetic operand exceeds 18 digits

Attempt to divide by zero

Table 1-2: Table of Operator Precedence
(from highest to lowest)

Operator

()

+ and-

* and /

+ and-

.EQ .. NE .. CT .. LT .. CE .. LE.

.NOT.

.AND.

.OR. and .XOR.

Description

parentheses

unary plus and minus

rounding

multiplication and division

addition and subtraction

relational comparisons

unary Boolean operator which
changes true to false and
false to true

Boolean AND

Boolean OR and exclusive OR

The following table indicates the legal data type(s) which can be used as
an operand for a particular unary operator. The data type result is also
shown.

Table 1-3: Unary Operator Table

UNARY OPERA TORS

+ NOT

Operand Data Type D D DjA

Result Data Type D D D

MK-02737-00

dpANS DlBOL Language Elements 1-19

The following table indicates the valid data type(s) that can be used as
an operand for a particular unary operator. The data type result is also
shown.

Table 1-4: Binary Operator Table

Data
Types of: +

Operands

Result

D

D

BINARY OPERA TORS

I EO NE GT LT GE LE OR XOR AND

D D D D AID AID AID AID AID AID D D D

D D D D D D D D D D D D D

MK-02738-00

The following Truth Table illustrates how truth values are determined for
.OR., .AND., .XOR., and .NOT.:

Table 1-5: Truth Table

AND

exp .AND. exp

true true
true false
false true
false false

. OR. .XOR. .NOT .

Result exp .OR. exp Result exp . XOR. exp Result .NOT . exp Result

true true true true true true false true false
false true false true true false true false true
false false true true false true true
false false false false false false false

MK-02740-00

Examples

The following examples all assume that the Data Division contains the
following information:

1-20 dpANS DIBOL Language Elements

RECORD MONEY,
Y,

PROC

A,
B,
C,
D,
E,

D6, 127654
D3, -326
D1, 4
D2, 10
D2, 20
D1, 5
D5.3, 12.300

The following examples illustrate the use of arithmetic operators:

Expression

A+B-C
MD
C/D
B/A

Result

-6
20

4
2 (The remainder is discarded)

The order of evaluation of the sub expressions can be modified by using
parentheses, as in the following examples:

Expression

B+C/D*A
B+C/(D*A)
(B+C) / (D*A)
((B+C) /D) *A

Result

26
11

1 (The remainder is discarded)
24

The following examples illustrate the use of the rounding operator (#):

Expression Result

MONEY#A 13
Y#2 -3
Y#A 0
(MONEY+Y)#l 12733
Y#l -33

The Relational and Boolean operators produce true (non-zero) or false
(zero) results, These operators are most commonly used in the IF, IF­
THEN-ELSE, DO-UNTIL, and WHILE statements. They can be used
anywhere that a numeric expression is allowed. The following examples
illustrate the use of these operators:

Expression Result

A.EQ.4 1 (true)
A.NE.4 0 (false)
I ABC I • EQ . I DEF I 0 (false)
A.EQ.4.AND.B.EQ.10 1 (true)
A.AND.B 1 (true)
A.AND.O 0 (false)

dpANS DlBOL Language Elements 1-21

Chapter 2

Data Division

This chapter contains information on Data Division statements.

The Data Division is the first division of a dpANS DIBOL program. It con­
tains RECORD and COMMON statements and associated field definitions
that define all program variables. Variables used in the Procedure Division
of a program must be defined in the Data Division. The Data Division
also contains a SUBROUTINE statement and argument definitions if the
program is an external subroutine.

The Data Division in a main program begins with a .MAIN compiler
directive. The Data Division in an external subroutine begins with a
.sUBROUTINE compiler directive. The Data Division is terminated by a
.PROC compiler directive.

Data Division 2-1

2. 1 Record Statement

2-2 Data Division

Function

RECORD defines the areas of memory where variable data is stored.

Format

RECORD {namej(,XJ

name
is the record name.

X
is the redefinition indicator.

General Rules

• Storage is allocated contiguously in memory in the order the RECORD
statements appear in the main program.

• RECORD must be followed by at least one field definition.

• The total size of a record is the sum of the sizes of its fields.

• The total size of the fields within a named record cannot exceed
16,383 characters.

Rules for Record Name

• A record name consists of up to 30 characters, the first of which must
be alphabetic. Remaining characters can be alphabetic, numeric, $, or
_(underscore).

• A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

• If a record name is not specified, only named fields within that record
can be referenced.

Rules for Redefinition Indicator

•

•
•

•

•

•

•

•

•

•

The redefinition indicator permits redefinition of fields within the
record being redefined.

RECORD can redefine RECORD or COMMON.

When the redefinition indicator is used, the RECORD statement
redefines the memory area defined by the immediately preceding
RECORD or COMMON statement not having a redefinition indicator.

A redefining RECORD references the same memory area as the record
being redefined.

The new field definitions are specified following the redefining
RECORD statement.

The size of the redefining RECORD (the sum of the sizes of all its
fields) must not be greater than the size of the record being redefined.

In an external subroutine, the size of a RECORD redefining a
COMMON area may be greater than the size of the COMMON
being redefined.

If a COMMON in an external subroutine is redefined by a RECORD,
the COMMON has to be named.

If a named COMMON is redefined in an external subroutine by
a RECORD, the RECORD begins at the position of the redefined
COMMON's name in the main program.

Fields in a redefining RECORD cannot be assigned initial values.

Run-Time Error Conditions

None

Examples

The following record names (6X and _PAY) are not legal because they do
not begin with an alphabetic character:

RECORD 6X

RECORD PAY

Data Division 2-3

2-4 Data Division

The following example shows a record (OUTPUT) used to format printed
output data. The values for MN, DAY, and YR are obtained from
Procedure Division statements. The unnamed fields contain initial values
used for formatting the output record.

RECORD OUTPUT
AS. 'Date is ,

MN. D2 Month goes here
Al. '/ '

DAY. D2 Day goes here
Al. ' /'

YR. D2 Year goes here

In the following example, the record (OUTPUT) has been redefined so
that the date (in the format mm/ dd/yy) can be more easily accessed. A
statement that accesses the DATE field will receive the contents of the
MN, DAY, and YR fields separated by the slash character (/).

RECORD OUTPUT
AS. 'Date is ,

MN. D2 Month goes here
Al. ' /'

DAY. D2 Day goes here
Al. ' /'

YR. D2 Year goes here

RECORD .X
AS Redefines 'Date is '

DATE. AS Redefines MN / DAY / YR

2.2 Common Statement

Function

COMMON defines the areas in memory where variable data is stored.
This data is to be shared between the main program and external subrou­
tines.

Format

COMMON {name,X}

name
is the COMMON name.

X
is the redefinition indicator.

General Rules

• COMMON must be followed by at least one field definition.

• Storage is allocated contiguously in memory in the order the
COMMON statements appear in the main program.

• The size of the allocated memory area in the main program is the sum
of the sizes of all the fields that comprise the COMMON in the main
program.

• The total size of the fields within a named COMMON area cannot
exceed 16,383 characters.

• COMMON is similar to RECORD except that fields defined within a
COMMON area are available for use by the main program or by any
external subroutine.

• If COMMON appears in a main program, space is allocated in memory
just as it is done for a RECORD statement.

• If COMMON appears in an external subroutine, memory is not
allocated. All fields that appear in the subroutine's COMMON area
will reference the main program's COMMON area.

• Data cannot be shared between two external subroutines via the
COMMON statement unless the data is defined in the main program.

• COMMON and RECORD areas may be intermixed in the Data
Division.

Data Division 2-5

2-6 Data Division

•

•

•

•

•

When the main program is linked with its external subroutines, a
correlation is made between the field names defined in the COMMON
areas of the subroutine and those of the main program.

If a field is named in a COMMON area of an external subroutine but
there is no corresponding field name in the main program, an error
message is generated when the program is linked.

It is not necessary for the COMMON area of an external subroutine to
contain all the COMMON fields defined in the main program unless
all are needed. For those that are needed, it is necessary that fields
of the same types, names, and sizes be defined in the Data Division
of the main program and external subroutine. It is important that the
sizes and types correspond. Otherwise, the operation will be incorrect
and unpredictable problems may occur.

Fields in COMMON areas in subroutines cannot be assigned an initial
value.

The fields in the COMMON area of the subroutine do not need to be
defined in the same order as they are in the main program. The data
is stored according to the order of the main program's field definitions.

Rules for Common Names

• A COMMON name consists of up to 30 characters for VAX DIBOL, 5
for PDP-II DIBOL, the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or _{underscore}.

• A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

• If a COMMON name is not specified, only named fields within that
COMMON area can be referenced.

Rules for Redefinition Indicator

• The redefinition indicator permits redefinition of fields within the
record being redefined.

• When the redefinition indicator is used in a main program, the
COMMON statement redefines the memory area defined by the
immediately preceding RECORD or COMMON statement not having
a redefinition indicator.

• A redefining COMMON references the same memory area as the
record being redefined.

• The new field definitions are specified following the redefining
COMMON statement.

• The size of the redefining COMMON (the sum of the sizes of all its
fields) must not be greater than the size of the record being redefined.

•
•

In a main program, COMMON can redefine RECORD or COMMON.

In an external subroutine, the redefinition indicator on COMMON is
ignored.

• Fields in a redefining COMMON cannot be assigned initial values.

Run-Time Conditions

None

Examples

The following COMMON names (REC6, A_REC, and BAD$) are all legal:

COMMON REC6

COMMON A_REC

COMMON BAD$

The following example contains a main program which has two
COMMON areas and two external subroutines. One subroutine (XSUB2)
uses both COMMON areas, while the other subroutine (XSUBl) uses only
one. Neither of the two subroutines allocates memory storage area for the
COMMON areas; instead, the subroutines' COMMON areas point to the
main program's memory storage area.

Main Program

COMMON EM?
NAME. A20
SAL. D5

COMMON
DATE. D5

Subroutine XSUB1

COMMON
DATE. D5

Subroutine XSUB2

COMMON
DATE. D5

COMMON EM?
NAME. A20
SAL. D5

Employee record
Employee name
Salary

Current date

Current date

Current date
Employee record
Employee name
Salary

Data Division 2-7

2.3 Field Definitions

2-8 Data Division

Function

Field definitions define variables within a RECORD or COMMON area.

Format

[
{ mj [A] n {

{ name j, A *,~/it
D*,nlit

,alit, .. .
,nlit, .. .

name
is the field (or array) name.

m
is the array count.

A
declares the field to be alpha.

D
declares the field to be numeric decimal.

n
is the size of each element of the field.

*
is the automatic sizing indicator.

alit
is the initial value for the alpha field.

nlit
is the initial value for the numeric field.

General Rules

• Each field name must be unique within the set of variable names
used within the declaring program. The same field name may be used
within a program and an external subroutine called by that program.

Rules for Field Name

•

•

•

•

•

•

•

•

A field name in a RECORD consists of up to 30 characters, the first of
which must be alphabetic. Remaining characters can be alphabetic,
numeric, $, or _(underscore).

Only the first 30 characters of a field name in a RECORD are signifi­
cant; remaining characters are ignored.

A field name in a COMMON area consists of up to five characters (in
PDP-ll DIBOL; 30 characters in VAX DIBOL), the first of which must
be alphabetic. Remaining characters can be alphabetic, numeric, $, or
_(underscore).

Only the first five characters (in PDP-II DIBOL; 30 in VAX DIBOL) of
a field name in a COMMON area are significant; remaining characters
are ignored.

A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

COMMON fields in an external subroutine may be defined in a
different order than the COMMON fields in the main program.

There must be an identically named COMMON variable in the main
programs for the COMMON fields in an external subroutine.

If no name is used, the field can be accessed either as part of the entire
record by using the record name, or by subscripting down from a
previous record or field.

Rules for Array Count

• The array count may be any non-zero positive numeric value.

• The array count default is one (1) unless the array count is specified.

• Array data is referenced by using the array variable name with a
subscript.

• Fields defined with an array count of one are called simple variables.

• Fields defined with an array count of more than one are called arrays.

Rules for Field Size

• The minimum field size is one (1).

• The maximum field size for alpha fields is 16,383.

• The maximum field size for numeric fields is 18.

Data Division 2-9

2-10 Data Division

Rules for Automatic Sizing Indicator

• The initial value must be specified.

• The size of the field will be the length of either alit for alpha fields or
nlit for numeric fields.

• The auto size indicator cannot be used when an array count is speci­
fied.

Rules for Setting Initial Values

• The initial value of a field is set by inserting a literal after the type and
size specification.

• A comma must be used to separate the literal from the preceding type
and size specification.

• The literal must be the same data type and should contain the same
number of characters or digits as specified for the field.

• If the literal is longer than the field size, a warning is generated during
program compilation.

• If the literal is shorter than the field size, the initial value will be
left-justified (for alpha literals) or right-justified (for numeric literals).

• Leading signs (+ and -) in numeric literals, as well as delimiting
apostrophes or quotation marks in alpha literals, are not counted
when calculating the size of a literal.

• If no initial value is specified, the field is initialized to all spaces if it is
an alpha field, or to all zeros, if it is a numeric field.

• Initial values for COMMON fields are ignored in an external subrou­
tine.

• Fields within an array may be initialized by specifying a series of
initial values separated from each other by commas.

• It is unnecessary to initialize all fields of an array. Initialized array
fields will reside at the beginning of the array and will be contiguous.

• Trailing unary operators (+j-) may be specified on nUt. This feature
may be deleted from future standards.

Run-Time Error Conditions

None

Examples

The following field names (DATE, ER_l, and CTR$) are all legal:

RECORD
DATE. A11
ER_l. Dl
CTR$. D2

Date (dd-mmm-yyyy)
Error indicator
Counter

The following record contains both named and unnamed fields. The three
unnamed fields all have initial values (named fields can also have initial
values). The third field is a two character alpha field; however, the initial
value for the field contains only a single right parenthesis character ()).
The initial value will be left justified in the A2 field and the rightmost
character will be cleared to a space.

RECORD
Al. ' (,

AREA. D3 Area code
A2. ') ,

EXCH. D3 Telephone exchange
Al. ,- ,

NMBR. D4 Telephone number

The following example shows two decimal fields which have initial values.
The first field (LINE) is a two digit decimal field; however, the initial value
is only a single digit. The initial value will be right justified in LINE and
the leftmost digit in LINE will be cleared to a zero.

RECORD
LINE. D2. 1
COLUMN. D2. 80

; Line number
; Column number

The arrays (DAYS and MONTHS) in the following example have initial
values for all of their fields:

RECORD
DAYS. 12D2. 31.28.31.30.31.30.31.31.30.31.30.31
MONTHS. 12A3. 'Jan'. 'Feb'. 'Mar'. 'Apr'. 'May'. 'Jun'

& ' Jul '. 'Aug'. 'Sep'. 'Oct'. 'Nov'. 'Dec'

Data Division 2-11

2.4 SUBROUTINE Statement

2 -12 Data Division

Function

SUBROUTINE identifies a program as an external subroutine.

Format

SUBROUTINE name

name
is the subroutine name.

Rules

• SUBROUTINE is identical in function to .sUBROUTINE. SUBROUTINE
may be deleted from future standards.

• SUBROUTINE must be the first statement (excluding compiler direc­
tives and/or comments) in the Data Division of an external subroutine.

• SUBROUTINE is used to establish a logical connection between the
subroutine and the calling program.

• An external subroutine is a completely self-contained program that is
external to the calling program. An external subroutine is compiled
separately from the calling program.

• SUBROUTINE may be followed by one or more argument definitions.

Rules for Subroutine Name

• A subroutine name consists of up to 30 characters (VAX DIBOL; 6 for
PDP-11 DIBOL), the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or _(underscore).

• Only the first 30 characters (VAX DIBOL; 6 for PDP-ll DIBOL) of a
subroutine name are significant; remaining characters are ignored.

Run-Time Error Conditions

None

2.4.1 Subroutine Argument Definition

Function

Subroutine argument definitions specify the data linkages between an
external subroutine and the program that called the external subroutine.

Format

name, [~]

name
is the subroutine's internal name for the subroutine argument.

A
declares the field to be alpha.

o
declares the field to be numeric decimal.

Rules

• If a record is passed as an argument, references cannot be made to its
fields. The entire record can only be referred to in a subroutine as a
single alpha field.

• The size of the argument is the size of the data as specified in the
calling program.

• Argument definitions should correspond in data type with the argu­
ments specified in the XCALL statement in the calling program.

• The first argument definition specified refers to the data element
referenced in the first argument in the XCALL statement. The second
argument definition refers to the second XCALL argument, and so on.

• The number of subroutine arguments defined in the external sub­
routine must be equal to, or greater than, the number of arguments
defined in the corresponding XCALL in the calling routine.

• The size of a declared subroutine argument not passed by the XCALL
statement in the calling program is -1. The only valid reference
to a declared argument that does not have a corresponding passed
argument is a passed argument in a call to another external subroutine.

Data Division 2-13

2 -14 Data Division

• If the argument specified in the calling program is either a literal or a
numeric expression consisting of more than a single element, the data
shall be considered to be a literal. The field shall not be allowed to
be modified. Array access to the field with a value greater than one
is not allowed. Substring access outside the bounds of the field is not
allowed.

• Null arguments passed as parameters to a subroutine will be treated
as placeholders of those parameters. An argument missing ($ERR_
ARGMIS) error will be generated if the parameter is required by the
subroutine.

Rules for Subroutine Argument Name

• An argument name consists of up to six characters (PDP-11 DIBOL;
30 for VAX DIBOL), the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or _(underscore).

• Only the first six characters (PDP-11 DIBOL; 30 for VAX DIBOL) of
a subroutine argument name are significant; remaining characters are
ignored.

• A subroutine argument name must be unique within the set of variable
names used within the external subroutine. The name can be identical
to another routine name or statement label used within that program
or external subroutine.

Run-Time Error Conditions

None

Examples

In the following example, the main program calls the external subroutine
(CNVRT) to change the format of the date. It passes the arguments DATE
and XDATE. These arguments are represented in the subroutine as OLD
and NEW.

Main Program

RECORD

PROC

STOP

DATE. D6. 010750
X_DATE. All

XCALL CNVRT (DATE.X_DATE)
OPEN (1.0.' TT: ')
WRITES (l.X_DATE)
CLOSE 1

External Subroutine

SUBROUTINE CNVRT
OLD. D
NEW. A

RECORD ODATE
MM.
DD.
YY.

RECORD NDATE
DAY.

MONTH.

YEAR.

RECORD

D2
D2
D2

A2
Al. ,-,
A3
Al. ,-,
D2

Convert the date
Open the terminal
Display the date
Close the terminal

Convert the date format
Date (mmddyy)
Date (dd-mmm-yy)

Old date format
Month
Day
Year

; New date format
Day

Month

Year

&

PROC

MNAME. 12A3. 'Jan'. 'Feb'. 'Mar'. 'Apr'. 'May'. 'Jun'
. 'Jul'. 'Aug'. 'Sep'. 'Oct'. 'Nov'. 'Dec'

RETURN

ODATE=OLD
DAY=DD
YEAR=YY
MONTH=MNAME(MM)
NEW=NDATE

Move day to new format
Move year to new format
Move month to new format
Return new date

Data Division 2-15

Chapter 3

The dpANS DIBOL Procedure Division

3.1 Introduction

This chapter contains information on value assignment statements, data
conversion, and data formatting. The Procedure Division statements are
arranged alphabetically for easy reference.

The dpANS DIBOL Procedure Division processes data and controls
program execution. It contains procedural statements, statement labels,
and compiler directives. It begins immediately following the .PROC
compiler directive and ends with the .END compiler directive.

The dpANS DIBOL Procedure Division 3-1

3.2 Value Assignment Statements

Function

Value Assignment statements:

• Move data.
• Store the results of arithmetic expressions.

• Convert and format data.

• Set destination values equal to explicit variables.

Format

destination = {source}

destination
is a record or field which contains the data to be stored.

source
is a record, field, literal, or expression which contains the data to be stored.

Rules

• The contents of the source are moved to the destination.
• The source data is not altered unless the destination location is one of

the source elements (for example, A=A+l).

• The destination is the field or record defined in a Data Division
statement and can be either alpha or numeric.

• The source data is always converted to the data type defined for the
destination.

• If the source is not specified, the alpha destination is set to spaces and
the numeric destination is set to zeros.

3-2 The dpANS DlBOL Procedure Oivision

3.2.1 Moving Alpha Data

Function

Value assignment statements move alpha data.

Format

[afield1 name,
aliteral

afield
is an alpha field or record which is the destination.

[aliteral]
afield 1

is an alpha field, alpha literal, or record which is the source.

Rules

• The source is moved to the destination and is left-justified.

• If the source is smaller than the destination, the unused rightmost
character positions in the destination are cleared to spaces.

• If the source data is larger than the destination, the rightmost charac­
ters that cause overflow are truncated.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

In the following example, NAME2, which contains 'Johnson', is moved
to NAMEl. Since NAMEI is only four characters long, only the first four
characters of 'Johnson' are moved. NAMEI will contain 'John' and the
entire record will contain 'JohnJohnson'.

RECORD

PROC

NAME1. A4. 'Fred'
NAME2. A7. 'Johnson'

NAME1=NAME2

The dpANS OIBOl Procedure Division 3-3

In the following example, B, which contains 'FGH', is moved to A. 'FGH'
will be left-justified in A and the rightmost characters in A will be cleared
to spaces. A will contain 'FGH 'and the entire record will contain
'FGH FGH'.

RECORD
A. A5. 'ABCDE'
B. A3. 'FGH'

PROC
A=B

3.2.2 Moving Numeric Data

Function

Value assignment statements move numeric data.

Format

nfield = nexp

nfield
is a numeric field which is the destination.

nexp
is a numeric expression which is the source.

Rules

• The sign of the source data is preserved in the destination field.

• The source is moved to the destination and is right-justified.

• If the source is smaller than the destination, the unused leftmost digit
positions in the destination are cleared to zeros.

• If the source is larger than the destination, the leftmost digits that
cause overflow are truncated.

Run-Time Error Conditions

F Attempt to store data in a literal

3-4 The dpANS DIBOL Procedure Division

Examples

In the following example, A, which contains 1234, is moved to B. Since
B is shorter than A, 1234 is right-justified in B and the digits that cause
overflow (12) are truncated. B will contain 34.

RECORD
A. D4. 1234
B. D2

PROC
B=A

In the following example, A, which contains 1234, is moved to C. Since
C is longer than A, 1234 is right-justified in C and the leftmost digits are
cleared to zero. C will contain 0000001234.

RECORD
A. D4. 1234
B. D2.
C. Dl0

PROC
C=A

In the following example, the result of A*B (1234*34=41956) is moved to
C. Since C is only four digits long, 41956 is right-justified in C and the
leftmost digit is truncated. C will contain 1956.

RECORD
A. D4. 1234
B. D2. 34
C. D4

PROC
C=A*B

3.2.3 Alpha-to-Numeric Conversion

Function

Value assignment statements convert alpha data to its numeric equivalent.

Format

nfield, [af~eld 1
altteral

The dpANS DlBDL Procedure Division 3-5

nfield
is a numeric field which is the destination.

[afield1]
aliteral

is an alpha field, alpha literal, or record which is the source.

Rules

• The source may contain up to 18 digits with any number of plus (+)
or minus (-) characters. Plus and minus characters are treated as
unary operators and are combined algebraically. No other characters
are allowed.

• Spaces in the source are ignored.

• The source is moved to the destination and is right-justified.

• If the source is smaller than the destination, the unused leftmost digit
positions in the destination are cleared to zeros.

• If more than 18 digits are moved, or if the source is larger than the
destination, the leftmost digits that cause overflow are truncated.

Run-Time Error Conditions

$ERR_DIGIT

$ERR_WRTLIT

Examples

E

F

Bad digit encountered

Attempt to store data in a literal

In the following example, A, which contains '910111213141', is moved to
B. Since B is shorter than A, '910111213141' is right-justified in B and the
digits that cause overflow (91) are truncated. B will contain 0111213141.

RECORD
A. A12.' 910111213141 '
B. D10

PROC
B=A

In the following example, A, which contains '65444321', is moved to C.
Since C is longer than A, '65444321' is right-justified in C and the leftmost
digits are cleared to zero. C will contain 0065444321.

3-6 The dpANS DlBOL Procedure Division

RECORD
A. AS. '65444321'
C. 010

PROC
C=A

In the following example, A, which contains '-0065432178', is moved
to C. C will contain 006543217x. The 'x' is the internal representation
for -8 (see Appendix A).

RECORD
A. All. '-0065432178'
C. 010

PROC
C=A

3.2.4 Numeric-to-Alpha Conversion

Function

Value assignment statements convert numeric data to its alpha equivalent.

Format

afield = nexp

afield
is an alpha field or record which is the destination.

nexp
is a numeric expression which is the source.

Rules

• The source is moved to the destination and is right-justified.

• If the source is negative, an additional character should be allocated in
the destination for the minus sign. A leading minus sign is inserted to
the left of the leftmost nonspace character in the destination.

• If the source is smaller than the destination, the unused leftmost
character positions in the destination are cleared to spaces.

• If the source is larger than the destination, the leftmost characters that
cause overflow are truncated.

The dpANS DIBOl Procedure Division 3-7

• Leading zeros are cleared to spaces.

• If the source is zero, a single right-justified zero is moved to the
destination; remaining character positions to the left are cleared to
spaces.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

In the following example, A, which contains 87654321, is moved to B.
Since B is shorter than A, 87654321 is right-justified in B and the digits
that cause overflow (8765) are truncated. B will contain '4321'.

RECORD
A. 08. 87654321
B. A4

PROC
B=A

In the following example, A, which contains 1234, is moved to C. Since
C is longer than A, 1234 is right-justified in C and the leftmost characters
are cleared to spaces. C will contain' 1234'.

RECORD
A. 04. 1234
C. A6

PROC
C=A

In the following example, A, which contains Ox (the internal representation
for -08 (see Appendix A», is moved to C. C will contain '-8'.

RECORD
A. 02. -08
C. A3

PROC
C=A

In the following example, A, which contains ODD, is moved to C. C will
contain' 0'.

RECORD
A. 03. 000
C. A3

PROC
C=A

3-8 The dpANS DlBOl Procedure Division

In the following example, A, which contains 123t (the internal representa­
tion for -1234 (see APPENDIX A», is moved to C. C will
contain '234'.

RECORD
A, D4, -1234
C, A3

PROC
C=A

If a numeric field can have a negative value, space must be made for
the sign in the alpha field. In the following example, A, which contains
-1234, is moved to C. C will contain '1234' with no minus sign.

RECORD

PROC

A,
C,

C=A

3.2.5 Formatting Data

Function

D4, -1234
A4

Value assignment statements permit numeric data to be converted to its
alpha equivalent and formatted.

Format

afield = nexp, formaLstring

afield
is an alpha field or record which is the destination.

nexp
is a numeric expression which is the source.

formaLstring
is an alpha field, alpha literal, or record which contains format control
characters.

The dpANS DlBOL Procedure Division 3-9

Rules

• The source is formatted according to the format-string and moved to
the destination.

• If the formatted data is smaller than the destination, the unused
leftmost character positions in the destination are cleared to spaces.

• If the formatted data is larger than the destination, the leftmost
characters that cause overflow are truncated.

• The format-string forms a picture or specification of what the con­
verted data is to look like. It is composed of one or more format
control characters (see Table 3-1).

• The format-string may also contain other dpANS DIBOL characters
(except for the format control characters themselves) that are to be
inserted in the formatted data. All non-format control characters are
moved to the corresponding position in afield.

• The format-string should be large enough to represent the entire
source, since only those digits that are specified by the format-string
are moved.

• If nexp is zero and the field is zero suppressed, all format control
characters except asterisk (*) are suppressed.

Table 3-1: Format Control Characters
Character Description

X Each X represents a digit position. An X causes a digit in
the source to be placed in the corresponding position in the
destination. If there are more Xs than source digits, a leading
zero is inserted for each additional X. Any Z or * format
character to the right of an X is considered to be an X.

Z Each Z represents a digit position. A Z suppresses a leading
zero in this character position if Z is to the left of the decimal
point (see below). When placed to the right of the decimal
point, zeros are suppressed only if all digits are zero.

* Each asterisk (*) represents a digit position. It replaces a
leading zero with an * symbol in this position.

3-10 The dpANS DlBOL Procedure Division

Table 3-1 (Cont.): Format Control Characters
Character Description

money sign Each money sign (for example, $) represents a digit position.
It replaces leading zeros beginning at this character position
with leading spaces and a single money sign. Non-money
characters to the left of the money sign are considered as
non-format control characters except for embedded commas.
Any character can be used for the money sign by calling the
MONEY external subroutine, although it is initially set to $.
Any character with an established format meaning should not
be used, for example, *,Z,X, -.

When used as the first or last character in a format string, the
minus sign (-) causes the sign of the number being formatted
to be placed in that position. If the number is negative, a
minus appears, otherwise a space is inserted. When used
elsewhere in a format string, this will cause a minus to be
placed in that position in the formatted data.

NOTE

The following descriptions on the decimal point (.) and
comma (,) are reversed when international data formatting is
selected via the FLAGS external subroutine.

Character Description

A decimal point (.) causes a decimal point to be inserted in
the corresponding position in the formatted data and causes
zeros to the right of it to become significant.

The comma (,) causes a comma to be inserted in the corre­
sponding position in the formatted data if there are significant
digits to the left.

If an asterisk precedes a comma and the position correspond­
ing to the asterisk is not filled with a significant digit, the
comma shall be considered an asterisk.

If a Z precedes a comma and the position corresponding to
the Z is not filled with a significant digit, the comma shall be
considered a Z.

If a money sign precedes a comma and the position corre­
sponding to the money sign is not filled with a significant
digit, the comma shall be considered to be a money sign.

The dpANS DlBOL Procedure Division 3-11

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

The following examples assume that the Data Division contains the
following fields:

RECORD
F. A8

The following examples illustrate data formatting:

Statement Result

F= 123, 'xxxxxxxx' '00000123'

F= 123, 'ZZZZZZZZ' 123'

F= 123, '********' '*****123'

F= 123, '$$$$$$$$' $123'

F= -1123, '-XXX,XXX' '-001,123'

F= 123, '$$$$$.XX' $1.23'

F= -123, '$***.**-' '$**1.23-'

F= 12345678,'X,XXX.XX' '3,456.78'

F= 1234, '$,$$$.XX' , $12.34'

F= 1234, 'X,XXX.X' '***12.34'

F= 1234, 'Z,ZZZ.XX' , 12.34'

3.2.6 Clearing Variables

Function

Value assignment statements clear variables.

Format

field =

3-12 The dpANS DlBOL Procedure Division

field
is an alpha field, numeric field, or record which is to be cleared

Rules

• If the destination is an alpha field, it is cleared to spaces.

• If the destination is a numeric field, it is cleared to zeros.

• If the destination is a record containing numeric fields, the entire
record, including the numeric fields, is cleared to spaces.

• If the equal sign (=) is followed by anything on the same line (other
than a comment), it is treated as an assignment statement.

NOTE

Whenever possible, use the CLEAR statement to clear fields.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

When clearing a field, the equal sign (=) cannot be followed by anything
on the same line (other than a comment). If anything follows the equal
sign, then the statement is interpreted as a value assignment statement.
In the following example, the statement is not legal. It is interpreted as
A=ELSE.

IF A.EQ.B THEN A= ELSE STOP

See CLEAR for examples on clearing fields. Whenever possible, use the
CLEAR statement to clear fields.

The dpANS DlBOl Procedure Division 3-13

3.3 Array Subscripting

Definition

Array subscripting references a specific variable within an array of vari­
ables.

Format

array (subscript)

array
is an alpha array, numeric array, or a record being referenced.

subscript
is a numeric expression that refers to a field (element) in an array.

Rules

• Array subscripting can be used in any Procedure Division statement
where a data field of the same type is allowed.

• subscript indicates the specific field to be referenced within the array.

• subscript should be between one and the number of fields in the array
as specified in the Data Division.

• If subscript exceeds the number of fields within the array, portions
of other fields may be referenced. A Subscript error occurs when
subscript specifies a field which is outside the Data Division.

• If subscript is a subroutine argument that is either a literal or an
expression within the calling program, the only subscript value allowed
is one.

• A reference to an array without subscript accesses the first field in the
array.

Run-Time Error Conditions

$ERR_SUBSCR E Invalid subscript specified

3-14 The dpANS DlBOl Procedure Division

Examples

The following examples all assume that the Data Division contains the
following information:

RECORD
NAME. 4A3. 'LAS'. 'FIR'. 'MID'. 'ADD'
CODE. 4D4. 0617. 1739. 5173. 2480

PROC

Using an array name without a subscript will access the first element of
the array as shown in the following examples:

Field

NAME

CODE

Data Accessed

LAS

0617

The following examples illustrate the use of subscripts with array names:

Field Data Accessed

NAME(1) LAS

NAME(3) MID

NAME(4) ADD

CODE(1) 0617

CODE(4) 2480

Data beyond the end of the array can also be accessed as in the following
examples:

Field

NAME(5)

NAME(6)

Data Accessed

061

717

The dpANS DlBOL Procedure Division 3-15

If the data to be accessed is beyond the end of the Data Division, a
subscript error will occur. For example:

Field

CODE(S)

NAME(lO)

Data Accessed

Subscript error

Subscript error

3-16 The dpANS DIBOL Procedure Division

3.4 Substrings

Definition

Substrings reference a portion of a variable.

Rules

• Substrings can be specified in any Procedure Division statement where
a data field of the same type is allowed.

• The substring type must be the same as the reference variable.

3.4.1 Absolute Substring Specification

Definition

An absolute substring references a portion of a variable specified by a
starting and ending position.

Format

field (start, end)

field
is an alpha field, numeric field, or record being referenced.

start
is a numeric expression that specifies the position of the first character of
the substring.

end
is a numeric expression that specifies the position of the last character of
the substring.

Rules

• The starting position must be greater than or equal to one.

• The starting position must be less than or equal to the ending position.

• If the ending position exceeds the field size, portions of other fields
may be referenced. A Subscript error occurs when a subscript speci­
fies data which is outside the Data Division.

The dpANS DlBOL Procedure Division 3-17

• If field is a subroutine argument that is a literal or an expression in the
calling program, end cannot be greater than the length of field.

Run-Time Error Conditions

$ERR_BIGNUM

$ERR_SUBSCR

Examples

E

E

Arithmetic operand exceeds 18 digits

Invalid subscript specified

All of the following examples assume that the Data Division contains the
following information:

RECORD REC
AM. A13. 'abcdefghijklm'
NZ. A13. 'nopqrstuvwxyz'
NUM. Dl0. 1234567890

PROC

The following examples illustrate the use of absolute substrings:

Field Data Accessed

AM(2,3) bc

AM(4A) d

AM(10,13) jklm

REC(UO) abcdefghij

REC(27,28) 12

NUM(4,8) 478

NUM(10,lO) 0

NZ(12,13) yz

Any data that is beyond the end of the named field can be accessed as
illustrated in the following examples:

Field

AM(12,IS)

NZ(13,lS)

3-18 The dpANS DlBDL Procedure Division

Data Accessed

Imno

z12

If the data to be accessed is beyond the end of the Data Division, a
subscript error will occur. For example:

Field

NUM(lO,ll)

NZ(30,30)

Data Accessed

Subscript error

Subscript error

3.4.2 Relative Substring Specification

Definition

A relative substring references a portion of a variable specified by a
starting position and a length.

Format

field(pos:length)

field
is an alpha field, numeric field, or record being referenced.

pos
is a numeric expression that specifies the first or last character of the
substring.

length
is a numeric expression that specifies the substring.

Rules

• length cannot equal zero.

• pos must be a positive integer.

• pos must be greater than or equal to one.

• If the value of length is positive, the substring begins at pos and is
length (absolute value) characters in length.

• If the value of length is negative, the substring ends at pos and is
length (absolute value) characters in length.

• If the relative specification exceeds the declared size of field, portions
of adjacent fields may be referenced. A Subscript error occurs when
memory outside the Data Division that defines name is referenced.

The dpANS DlBOl Procedure Division 3-19

• If field is a subroutine argument that is a literal or an expression in the
calling program, the specification cannot refer to memory that is not
defined by field.

Examples

All of the following examples assume that the Data Division contains the
following information:

RECORD REC
AM. A13. 'abcdefghijklm'
NZ. A13. 'nopqrstuvwxyz'
NUM. Dl0. 1234567890

The following examples illustrate the use of relative substrings:

Field

AM(2:2)
AM(4: 1)
AM (13 : -4)
REC(1:10)
REC(28: -2)
NUM(4:5)
NUM(10: -1)
NZ(12:2)
AM(NUM(5.1) :5)

Data Accessed

bc
d
jklm
abcdefghij
12
45678
o
yz
efghi

Any data that is beyond the end of the named field can be accessed as
illustrated in the following examples:

Field

AM(12:4)
NZ(13:3)

Data Accessed

lmno
z12

If the data to be accessed is beyond the end of the Data Division, a
Subscript error will occur. For example:

Field

NUM(10: 2)
NZ(30: -4)

Data Accessed

Subscript error
Subscript error

3-20 The dpANS DlBOL Procedure Division

3.5 ACCEPT

Function

ACCEPT inputs a character from a terminal.

Format

ACCEPT (ch,field{,label})

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

field
is an alpha field, numeric field, or record which will contain the character
input from the terminal.

label
is a statement label where control is to be transferred when a CTRL/Z is
detected.

General Rules

• Each character is received individually using the ACCEPT statement.
The program can receive either the actual ASCII character or the
decimal equivalent of that character.

• ACCEPT is used in I or 0 mode with a character-oriented device.

• If the RETURN key on a terminal is used, a carriage return character
and line feed character are generated.

Rules for Accepting into an Alpha Field or Record

• The character is moved to the leftmost character position of the field
according to the rules for moving alpha data.

• If a CTRL/Z is detected, it is interpreted as a logical end-of-file and no
character is input.

The dpANS D1BOL Procedure Division 3-21

Rules for Accepting into a Numeric Field

• field should be a three digit field.

• The decimal character code is moved to field according to the rules for
moving decimal data.

• All characters are input. CTRL/Z is input like other characters and
does not terminate input.

Run-Time Error Conditions

$ERR-EOF E End of file encountered

$ERR-ILLCHN F Illegal channel number specified

$ERR_IOMODE E Bad mode specified

$ERR.-NOOPEN F Channel has not been opened

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following examples assume that the Data Division contains the
following fields:

RECORD
ACHR. A1
DCHR. D3

In the following example, ACCEPT reads a character into ACHR. When a
CTRL/Z is detected, control is transferred to the statement labeled END.
If 'N is typed at the terminal, ACHR will contain 'N.

ACCEPT (3.ACHR.END)

In the next example, ACCEPT puts the decimal character code for the next
character into DCHR. When accepting into a numeric field, CTRL/Z is
treated the same as all other characters. If' N is typed at the terminal,
DCHR will contain 065 which is the decimal character code for 'N.

ACCEPT (3.DCHR)

3-22 The dpANS D1BOL Procedure Division

3.6 BEGIN-END Block

Function

The BEGIN-END block is a sequence of statements preceded by BEGIN
and followed by END.

BEGIN
{statement

.j
END

statement
is a DIBOL Procedure Division statement.

Rules

• The BEGIN-END block may be used wherever a single executable
statement is valid.

• Control can be transferred from inside a BEGIN-END block to outside
the BEGIN-END block.

• BEGIN may begin on a new line.

• END may begin on a new line.
• BEGIN and END cannot be followed on the same line by any state­

ment.

• The label on BEGIN, if present, is outside the block.

• The label on END, if present, is inside the block.

Run-Time Error Conditions

None

Examples

The BEGIN-END block is particularly useful with the IF, IF-THEN-ELSE,
DO-UNTIL, FOR, USING, and WHILE statements. In the following
example, all the statements within the BEGIN-END block will be executed
if LNECTR is greater than MAXCTR.

The dpANS DlBOl Procedure Division 3-23

IF LNECTR.GT.MAXCTR
BEGIN
FORMS (6.0)
INCR PAGE
WRITES (6. TITLE)
CLEAR LNECTR
END

Time for a new page?
Yes--
Output a form feed
Increment the page number
Output title
Reset line counter

In the following example, the statements within the BEGIN-END block
(the READS and the IF) will be repetitively executed until CUSNAM
equals SPACES. The IF statement also contains a BEGIN-END block. The
statements within this inner BEGIN-END block will be executed if the
BALANC is greater than 100.

DO
BEGIN
READS (l.CUST.EOF)
IF BALANC.GT.100

END

BEGIN
NAME=CUSNAM
AMT=BALANC
WRITES (6.PLINE)
END

UNTIL CUSNAM.EQ.SPACES

3-24 The dpANS DlBOl Procedure Division

Read a customer record
Owe more than $100?
Yes--
Save customer name
Save the balance
Print name and balance

3.7 CALL

Function

CALL transfers program control to an internal subroutine.

Format

CALL label

label
is the statement label of the first statement in the subroutine.

Rules

•
•

Each CALL statement must be matched by a RETURN statement.

The matching RETURN statement causes control to return to the
statement logically following the CALL.

• label must be defined within the current program.

Run-Time Error Conditions

F System error

Examples

This example shows how program control branches from one subroutine
to the next and returns. The solid lines show the control path upon
execution of RETURN statements.

CALL PROFIT
WRITES (6,PROFIT)
CLOSE 6
STOP

; Subroutine to calculate profit

PROFIT, PBT=PRICE-COST
CALL TAX
PAT=PBT-TAX
RETURN

TAX,

Subroutine to calculate tax

TAX=PBT*8
IF TAX.GT.MAX TAX=MAX
RETURN

Output the profit
Close the file

Compute pre-tax profit
Get the tax
Compute post-tax profit

Compute the tax

The dpANS DlBOl Procedure Division 3-25

3.8 CLEAR

Function

CLEAR sets variables to zeros or spaces.

Format

CLEAR field{, ... }

field
is an alpha field, numeric field, or record to be cleared.

Rules

• If field is an alpha field, it is cleared to spaces.
• If field is a numeric field, it is cleared to zeros.

• If field is a record containing numeric fields, the entire record, includ­
ing the numeric fields, is cleared to spaces.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

The following examples assume that the Data Division contains the
following fields:

RECORD REC
AFLD. A10
DFLD. D5

The following statement will clear AFLD to all spaces:

CLEAR AFLD

The following statement will clear DFLD to all zeros:

CLEAR DFLD

The following statement will clear AFLD to all spaces and will clear DFLD
to all zeros:

CLEAR AFLD.DFLD

3-26 The dpANS D1BOl Procedure Division

When a record is cleared, all fields, including numeric fields within the
record, are cleared to spaces. The following statement will clear AFLD and
DFLD to spaces:

CLEAR REC

The dpANS DlBOL Procedure Division 3-27

3.9 CLOSE

Function

CLOSE terminates the use of a channel by closing the associated file and
releasing both the I/O channel and the file buffer.

Format

CLOSE ch

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

Rules

• CLOSE is necessary for channels opened in 0 and V modes to assure
that records remaining in the I/O buffer are output to the file.

• If the channel is open in 0 mode, CLOSE writes records remaining in
the I/O buffer into the file. The end-of-file mark is placed after the
last record in the file.

• If the channel is open in V, CLOSE writes records remaining in the
I/O buffer into the file. The records are automatically unlocked.

• No error is generated if the channel is not opened.

Run-Time Error Conditions

$ERR_FILFUL

$ERR_ILLCHN

$ERR_IOFAIL

$ERR_LOCKED

Examples

E

F

E

E

Output file is full

Illegal channel number specified

Bad data encountered during I/O operation

Record is locked

There are three parts to the following example. First, a new file is created
and a single record is written into it. Second, the newly created file is
opened for input and the record is read. Finally, the record that was read
is displayed on the screen. All I/O operations use the same channel. The
channel number can be reused following the CLOSE statement.

3-28 The dpANS OIBOL Procedure Division

RECORD
OAT. A80

PROC

Create a new file (TEST.DDF)

OPEN (3.0. 'TEST.DDF')
WRITES (3. 'This is a test')
CLOSE 3

Create file
Output a record
Close TEST.DDF

Read the record written into newly created file

OPEN (3.I. 'TEST.DDF')
READS (3.DAT)
CLOSE 3

Display the record that was read

OPEN (3.0.' TT: ')
WRITES (3.DAT)
CLOSE 3
STOP

Open TEST.DDF for input
Read a record
Close the input file

Open the terminal
Display the data
Close the terminal

The dpANS DlBOL Procedure Division 3-29

3.10 DECR

Function

DEeR decreases a numeric field by one.

Format

DECR nvar

nvar
is the field to be decreased.

Rules

• DEeR is functionally equivalent to nvar-nvar - 1 but will not cause an
overflow error if the value exceeds 18 digits.

• Underflow will result in nvar being set to minus zero.

• The field to be decreased can contain positive or negative numbers.

• If the size of the resulting value is larger than nvar, the leftmost digits
causing overflow are truncated.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following DEeR statements are all valid (assuming that the fields
being decreased are all numeric).

DECR CNTR

DECR A(3)

DECR C(H.6)

IF LNECTR.GT.MINTR DECR LINECTR

3-30 The dpANS DlBOL Procedure Division

3.11 DELETE

Function

DELETE eliminates a record from an indexed file.

Format

DELETE (ch,{keyfldj)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

keyfld
is ignored.

Rules

• DELETE is used in U:I mode.

• The record to be deleted is the record most recently read on the
specified channel and must still be locked.

• DELETE clears any lock on the specified channel.

• DELETE serves as a signal to the file system that the record is no
longer valid. The action taken is system dependent.

Run-Time Error Conditions

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_KEYNOT E Key not same

$ERR_LOCKED E Record is locked

$ERR_NOCURR E No current record

$ERR_NOOPEN F Channel has not been opened

The dpANS D1BOL Procedure Division 3-31

Examples

In the following example, all the customer records in the indexed file are
read. When a customer with a balance of less than $20 is found, that
customer's record is deleted.

RECORD REC
NAME.
BAL,

PROC

A10
D6

OPEN (l,U:I, 'CUSBAL,ISM')
LOOP, READS (l,REC,OUT)

IF BAL. LT, 20
DELETE 0, NAME)

GOTO LOOP
OUT, CLOSE 1

STOP

3-32 The dpANS DIBOL Procedure Division

Customer name
Customer balance

Open the indexed file
Read the next record
Balance less than $20?
YES--Delete the record

Close the file

3.12 DETACH

Function

DETACH disconnects the program from its associated terminal.

Format

DETACH

Rules for PDP

• When DETACH is executed, the message DETACHING is displayed at
the terminal and the program continues its execution.

• Attempting to perform I/O to the terminal suspends the program's
execution until a terminal is reassigned to the detached program.

• DETACH has no effect on a program executing in a non-multi-tasking
or detached environment.

• The terminal number associated with a detached program is -I,
regardless of the number of the terminal from which the program
detaches.

Rules for VAX

• DETACH is non-operative.

Run-Time Error Conditions

None

Examples

The following program allows the operator to enter the name of a file to
print. Once the file name is entered, the terminal is no longer required by
the program. Therefore, the DETACH statement is used so that another
program may be run at the terminal.

The dpANS DlBOL Procedure Division J-JJ

RECORD

PROC

FILE, A20
LINE, A132

OPEN 0, I, 'TT: ')
WRITES (1, 'Enter file name')
READS 0, FILE)
CLOSE 1
DETACH

The remainder of the program runs detached

OPEN 0, I ,FILE)
OPEN (6,0: P, 'LP: ')

LOOP, READS (l,LINE,EOF)
WRITES (6,LINE)
GOTO LOOP

EOF, CLOSE 1
CLOSE 6
STOP

3-34 The dpANS DlBOL Procedure Division

File name to print
Line to print

Open the terminal
Display prompt
Accept the file name
Close the terminal
Release the terminal

Open the print file
Open the printer
Read the next line
Print the line

Close the print line
Close the printer

3. 13 DISPLAY

Function

DISPLAY outputs (8-bit ASCII) characters to a device or file.

Format

DISPLA V (ch, [:~:~~I 1 (, ... j)
nexp

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

[
afield 1
aliteral
nexp

is an alpha field, alpha literal, or numeric expression which contains
characters to be output.

Rules

• DISPLAY is used in O:P mode with a sequential file in I and 0 modes
with a printer or character-oriented device.

• DISPLAY uses the numeric ASCII character code (see APPENDIX A).

• If the data is alpha, the characters are output to the device as pre­
sented.

• If the data is numeric, it is evaluated modulo 256 and the number
is treated as a single ASCII character code. A number that exceeds
the character code range (0 through 255) is converted by dividing the
number by 256 and taking the remainder as a character code (e.g., 257
is interpreted as 001).

• A negative number produces unpredictable results.

The dpANS DlBOL Procedure Division 3-35

Run-Time Error Conditions

$ERR_ILLCHN

$ERR_IOMODE

$ERR_NOOPEN

$ERR_OUTRNG

Examples

F

E

F

F

Illegal chain number specified

Bad mode specified

Channel has not been opened

Value out of range

The following example outputs the message HELLO followed by a carriage
return (numeric character code 13) and a Line Feed (numeric character
code 10):

DISPLAY (1. 'HELLO' .13.10)

DISPLAY is especially useful for outputting terminal control sequences.
The terminal user guide lists control code sequences for cursor positioning,
dearing the screen, and many other operations. Assuming that channel 1
is associated with a VT100 terminal, the following example will position
the cursor to line 3, column 5:

DISPLAY (1.27.' [3;5H')

3-36 The dpANS DlBOl Procedure Division

(

3.14 DO-UNTIL

Function

DO-UNTIL repetitively executes a statement until a condition is true.

Format

DO statement UNTIL condition

statement
is a DIBOL Procedure Division statement.

condition
is a numeric expression.

Rules

• statement is always executed at least once.

• The condition is evaluated following each execution of the statement.

• The condition is either true (non-zero) or false (zero).

• If the condition is false, the statement is executed again.

• UNTIL may be on a separate line.

• statement may be on a separate line.

Run-Time Error Conditions

None

Examples

In the following example, customer records (CUST) will be read until one
is found with a balance (BAL) less than $20:

DO
READS (l,CUST,EOF)

UNTIL BAL.LT.20

The dpANS DlBOL Procedure Division 3-37

The following program segment reads customer records (CUST) and
creates a list of those customers with a balance over $100:

DO
BEGIN
READS (l.CUST.EOF)
IF BALANC.GT.100

END

BEGIN
NAME=CUSNAM
AMT=BALANC
WRITES (6.PLINE)
END

UNTIL CUSNAM.EQ.SPACES

3-38 The dpANS DIBOL Procedure Division

Read a customer record
Owe more than $100?
Yes--
Save customer name
Save the balance
Print name and balance

3.15 EXIT

Function

EXIT terminates the execution of a BEGIN-END block.

Format

EXIT

Rules

• EXIT is specified within a BEGIN-END block.

• Control is transferred to the END statement of the current BEGIN­
END block.

Examples

The following program segment reads customer records (CUST) and
creates a list of customers with a balance over $1000. No entry is made in
the list if the customer is allowed an extended line of credit (CREDIT).

DO
BEGIN
READS (l,CUST,EOF)
IF BALANC .GT. 1000

END

BEGIN
IF CUSTYP .EQ. 'CREDIT' EXIT
NAME = CUSNAM
AMT = BALANC
WRITES (6,PLINE)
END

UNTIL CUSNAM .EQ. SPACES

The dpANS DlBOL Procedure Division 3-39

3.16 EXITLOOP

Function

EXITLOOP terminates execution within an iterative construct (FOR,
DO-UNTIL, REPEAT, or WHILE) and transfers program control to the
statement immediately following the iterative construct.

Format

EXITLOOP

Rules

• EXITLOOP must be physically contained within an iterative construct.

Examples

The following program segment totals month to date sales (MDTSLS). The
loop is exited if sales for any month are negative.

CLEAR YTDSLS
FOR MONTH FROM 1 THRU 12

BEGIN
IF MTDSLS (MONTH) .LT. 0
THEN EXITLOOP
ELSE YTDSLS = YTDSLS + MTDSLS

3-40 The dpANS DlBOl Procedure Division

3.11 FOR

Function

FOR repetitively executes a statement.

Format

FOR nfield FROM initial THRU final (BY step) statement

nfield
is a numeric field to be altered.

initial
is a numeric expression which specifies the initial value to be assigned to
nfield.

final
is a numeric expression which specifies the final value for nfield.

step
is a numeric expression which specifies the value to add to nfield each time
through the loop.

statement
is a DIBOL Procedure Division statement.

Rules

• FOR generates internal temporary fields to hold step (t~tep) and final
(Lfinal).

• t_final is a temporary field set to the final value, and t~tep is a
temporary field set to the step value, prior to executing the loop.

• If no step value is specified, it is assumed to be one.

• Prior to entering the loop, the sign of t~tep is checked to insure that
the step direction is correct. For the step direction to be correct, nfield
must be less than, or equal to, t_final if t~tep is positive; and nfield
must be greater than or equal to t_final if t~tep is negative. If the
step direction is incorrect, the loop is not entered.

• Prior to each execution of statement, nfield is tested to determine if it
has reached its limit. If nfield has not reached its limit, statement is
executed.

The dpANS DlBOl Procedure Division 3-41

• If nfield is not large enough to hold final plus the step value without
truncation, an infinite loop may occur.

• L..step is added to nfield following each statement execution.

• If the loop is not executed, nfie/d is equal to the initial value.

• If the loop is exited normally, nfield will equal the previous value of
nfield plus step.

• Modifying the initial value, final value, or step value in the FOR loop
has no effect on the execution of the FOR loop.

• The statement may be on a separate line.

Run-Time Error Conditions

$ERR.....ARGMIS

$ERR_BIGNUM

E

E

Argument missing

Arithmetic operand exceeds 18 digits

Examples

In the following example, customer records 100 through 200 (inclusive)
will be read and displayed:

FOR RECNO FROM 100 THRU 200
BEGIN
READ (l,CUST,RECNO)
WRITES (8,CUST)
END

Read customer record
Display the record

The FOR in the following program segment trims trailing spaces from a
print line:

NEXT, READS (l,LINE)
FOR I FROM 132 THRU 1 BY -1

IF LINE(I,I) .NE.SPACE
GOT a FOUND

FORMS (6,1)
GaTa NEXT

FOUND, WRITES (6,LINE(l,I»
GOTO NEXT

3-42 The dpANS DlBOL Procedure Division

Read line to print

Is this a space?
No--found last character
Completely blank line

Output the line

In the following example, the index field (I) is not large enough to hold
the limit value plus the step (limit (99) + step (1) = 100). When the index
reaches 99, it will be incremented to 100, but since the index field is only
a two digit field, 00 will be stored in 1. Therefore, the FOR statement will
loop continuously.

RECORD WORK

PROC
I, D2

OPEN (1, 0 , I TT: ')
FOR I FROM 1 THRU 99

WRITES 0, WORK)
STOP

Loop index

Open terminal

Display index

The dpANS DlBOL Procedure Division 3-43

3.18 FORMS

Function

FORMS outputs device-dependent codes to effect forms control. These
codes are normally used by printers.

Format

FORMS (ch,nexp)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

nexp
is a numeric expression that results in a printer control code.

Rules

• FORMS is used in 0 mode with a sequential file, in I and 0 modes
with a character-oriented device, and in 0 mode with a printer.

• Acceptable control code values are:

o Transmits a Form Feed character (ASCII code 12).

1-255 Sends this many Line Feed characters (ASCII code 10) preceded
by a carriage return character (ASCII code 13).

-1 Transmits a Vertical Tab character (ASCII code 11).

-3 Transmits a carriage return (ASCII code 13).

Run-Time Error Conditions

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_OUTRNG F Value out of range

$ERR_NOOPEN F Channel has not been opened

3-44 The dpANS DIBOl Procedure Division

Examples

The following FORMS statement will skip 3 lines:

FORMS (6.3)

The following FORMS statement will cause the printer to start a new page:

FORMS (6.0)

The dpANS DlBOL Procedure Division 3-45

3.19 GOlD

Function

An unconditional GOTO transfers program control.

Format

GOTO (label)

label
is the statement label where control is to be transferred.

Rules

• The statement may be written as GOTO or GO TO.

Run-Time Error Conditions

None

Examples

In the following example, the GOTO will transfer control to the label
NEXT:

NEXT, READS (l,CUST,EOF)
NAME=CUSNAM
AMT=BALANC
WRITES (6,PLINE)
GOTO NEXT

Read a customer record
Save customer name
Save the balanc
Print name and balance

3-46 The dpANS DlBOL Procedure Division

3.20 GOlD (Computed)

Function

A computed GOTO transfers program control based on the evaluation of
an expression.

Format

GOTO (Iabel{, ... }),nexp

label
is one or more statement labels where control is to be transferred.

nexp
is a numeric expression which determines to which statement label control
is transferred.

Rules

• The statement may be written as GOTO or GO TO.

• Control is transferred to the statement identified by the first label if
nexp is one, to the statement identified by the second label if nexp is
two, and so on.

• If nexp is negative, zero, or greater than the number of labels, control
is transferred to the next logical statement in sequence.

Run-Time Error Conditions

None

Examples

In the following statement, control will be transferred to the label LOOP if
the value of KEY is one; to the label LIST if the value of KEY is two; and
to the label TOTAL if the value of KEY is three. If the value of KEY is less
than one or greater than three, control will be transferred to the statement
following the GOTO.

GOTO (LOOP. LIST. TOTAL) , KEY

The dpANS DlBOl Procedure Division 3-47

3.21 IF

Function

IF executes a statement if a condition is true.

Format

I F condition statement

condition
is an expression which determines whether or not the statement is exe­
cuted.

statement
is a DIBOL Procedure Division statement.

Rules

• The condition is either true (non-zero) or false (zero).

• If the condition is true, statement is executed.

• If the condition is false, statement is not executed.

• statement may be on a separate line.

Run-Time Error Conditions

None

Examples

In an alpha comparison, the operands are compared on a character basis
from left to right according to the value of their character codes (see
Appendix A). The comparison is limited to the size of the shorter alpha
field. For example, the following statement compares a three character
alpha field to a five character alpha field. Since only the first three
characters are compared, the result of the following statement is true:

IF 'ABC' .EQ. 'ABCDE' STOP

3-48 The dpANS DlBOl Procedure Division

The following IF statements are all valid:

IF A.EQ.B GOTO LABEL3

IF (SLOT.NE.202) READS (CH.RECNAM.EOF)

IF SALES.LT.PROFIT+TAX-RENT
STOP

IF DONE STOP

IF LNECTR.GE.MAXCTR
BEGIN
FORMS (6.0)
WRITES (6. TITLE)
CLEAR LNECTR
END

The dpANS DlBOl Procedure Division 3-49

3.22 IF-THEN-ELSE

Function

IF-THEN-ELSE executes one of two statements based on a condition.

Format

IF condition THEN statement 1 ELSE statement2

condition
is an expression that determines which statement is executed.

statement1
is a DIBOL Procedure Division statement.

statement2
is a DIBOL Procedure Division statement.

Rules

• The condition is either true (non-zero) or false (zero).

• If the condition is true, statementl is executed.

• If the condition is false, statement2 is executed.

• THEN may be on a separate line.

• ELSE may be on a separate line.

• statementl may be on a separate line.

• statement2 may be on a separate line.

Run-Time Error Conditions

None

Examples

In the following statement, the cost of an item is calculated differently,
depending upon whether it is discountable:

IF DISCNT.EQ.'Y'
THEN

COST=PRICE-DIS+TAX
ELSE

COST=PRICE+TAX

3-50 The dpANS DlBOL Procedure Division

Is item discountable?
Yes--
Get cost wi discount

Get cost wlo discount

The following example performs the same type of operation except the
TAX and DIS calculations are performed within the IF statement:

IF DISCNT. EQ. 'Y'
THEN

BEGIN
DIS=PRICE/10
TAX=(PRICE-DIS) *5/100
COST=PRICE-DIS+TAX
END

ELSE
BEGIN
TAX=PRICE*5/100
COST=PRICE+TAX
END

Is item discountable?
Yes--

Calculate the discount
Calculate the tax
Get cost w/ discount

Calculate the tax
Get cost w/o the discount

The dpANS D1BOL Procedure Division 3-51

3.23 INCR

Function

INCR increases a numeric field by 1.

Format

INCR nfield

nfield
is a numeric field to be incremented.

Rules

• The field to be incremented (dfield) can contain positive numbers,
negative numbers, and spaces.

• Spaces are treated as zeros.

• If the size of the resulting value is larger than nfield, the leftmost digits
that cause overflow are truncated.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

The following INCR statements are all valid (assuming that the fields
being incremented are all numeric).

INCR CNTR

INCR A(3)

INCR C(H.6)

IF LNECTR.LT.MAXCTR INCR LNECTR

3-52 The dpANS DlBOl Procedure Division

3.24 LOCASE

Function

LOCASE converts uppercase characters to corresponding lowercase char­
acters.

Format

LOCASE afield

afield
is an alpha field or record that contains the characters to be converted.

Rules

• LOCASE will convert each byte encountered in afield from an upper­
case character to a corresponding lowercase character if the numeric
ASCII value of the byte is between 65 and 90, inclusive. These
characters represent the English uppercase alphabetic characters.

• LOCASE will convert each byte encountered in afield from an upper­
case character to a corresponding lowercase character if the numeric
ASCII value of the byte is between 192 and 222, inclusive. These
characters represent the Multinational uppercase alphabetic characters.

• Other non-alphabetic characters are unaffected.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

In the following example, the first LOCASE statement changes the charac­
ters 'THIS IS A TEST' to lowercase. After the first LOCASE statement is
executed, the contents of REC are 'This is a test [OF LOCASE],. After the
second LOCASE statement is executed, the contents of REC are 'this is a
test [of locase]'.

RECORD REC

PROC

A. A14. 'THIS IS A TEST'
B. A12.' [OF LOCASE]'

LOCASE A(2.14)
LOCASE REC
STOP

The dpANS DlBOL Procedure Division 3-53

3.25 LPQUE

Function

LPQUE queues a file to be printed by the printer spooler.

Format

LPQUE (filespec{,LPNUM:dexpj {,COPIES:dexpj

(,FORM: [af~eld] J{,DELETE{:nexpJJ)
altteral

filespec
is an alpha field, alpha literal, or record which contains the file specifica­
tion of the file to be printed.

LPNUM:nexp
is a numeric expression that specifies the printer.

COPIES:nexp
is a numeric expression which specifies the number of copies to print.

FORM: [a~eld]
allteral

is an alpha field, alpha literal, or record which specifies the type or name
of the form to be inserted into the printer before the file is printed.

DELETE{:nexpj
is the deletion indicator and is a numeric expression which specifies
whether or not the file is to be deleted.

Rules

• Optional qualifiers prefaced by a keyword can occur in any order.

• LPQUE sends a request to the printer spooler to print the file.

• Multiple LPQUE statements cause the print requests to be queued.

• If no printer identification is specified, the system's default printer(s) is
(are) used.

• If the deletion indicator is zero, the file is deleted.

• If the deletion indicator is non-zero, the file is not deleted.

• If the deletion indicator is not specified, the file is deleted.

3-54 The dpANS DlBOL Procedure Division

• If no copy count is specified, or if it is less than one, it is assumed to
be 1.

• If a form is specified, a system specific forms request is issued.

Run-Time Error Conditions

$ERR_FNF

$ERR_ILLCHN

$ERR_NOOPEN

$ERR_SYSTEM

Examples

E

F

F

F

File not found

Illegal channel number was specified

Channel has not been opened

System error

In the following example, the LPQUE statement requests the printing of
one copy (NBR=l) of the file CHECK.LIS. Before printing begins, the form
CHECKS should be placed in the printer.

RECORD

PROC

NBR. D2. 01
FILE. A9. 'CHECK. LIS'

LPQUE (FILE.COPIES:NBR.FORM: 'CHECKS')
STOP

The dpANS DlBOl Procedure Oivision 3-55

3.26 NEXTLOOP

Function

NEXTLOOP terminates execution within an iterative construct and begins
executing the next iteration, if any, of the iterative construct.

Format

NEXTlOOP

Rules

• NEXTLOOP must be physically contained within a FOR loop, DO­
UNTIL loop, WHILE loop, or REPEAT loop.

• NEXTLOOP transfers control to the test condition of the immediate
iterative construct with a test condition.

• For a REPEAT iterative construct, control will be passed to the state­
ment to be repeated.

Examples

In the following example, if a character cannot be printed, NEXTLOOP
terminates the loop prior to processing the character.

FOR COUNTER FROM 1 THRU STR_LENGTH
BEGIN
ACCEPT (1, IN_CHAR)
IF (IN_CHAR .LT. ") .OR. (IN_CHAR .GT. ,-,) NEXTLOOP
INCR O_CTR
OUT_FILE (O_OCTR,O_CTR) = IN_CHAR
END

3-56 The dpANS DlBOl Procedure Division

3.27 OFFERROR

Function

OFFERROR disables trapping of run-time errors.

Format

OFF ERROR

Rules

• This statement may be written as OFFERROR or OFF ERROR.

• When OFFERROR is executed, run-time errors normally detected by
the ONERROR statement are treated as non-trappable.

• OFFERROR affects only an active ONERROR.

Run-Time Error Conditions

None

Examples

In the following example, the ONERROR statement is used to trap the
Attempt to divide by 0 error and the OFFERROR is used to disable error
trapping after the division is performed:

ON ERROR DIva
C=A/B
oFFERRoR

Check for $ERR_DIVIDE error

Turn off error check

The dpANS DIBOL Procedure Division 3-57

3.28 ONERROR

Function

ONERROR enables trapping of run-time errors which would otherwise
cause program termination.

Format

ON ERROR label

label
is a statement label where control is to be transferred when an error
occurs.

Rules

• This statement may be written as ONERROR or ON ERROR.

• ONERROR remains in effect until one of the following occurs:

An ONERROR is executed which specifies a different label.

An XCALL is executed. ONERROR is suspended until control
returns from the external subroutine.

An OFFERROR is executed.

The program terminates.

• The error detected by ONERROR may be determined either by using
the ERROR external subroutine, or by knowing the nature of the
statements executed after ONERROR was executed.

Run-Time Error Conditions

None

Examples

In the following example, the ONERROR statement is used to trap errors.
If a trappable error occurs after the ONERROR has been executed, control
will be transferred to the label IOERR:

ONERROR IOERR
NEXT, READS (l,CUST,EOF)

NAME=CUSNAM
AMT=BALANC
WRITES (6, PLINE)
GOTO NEXT

3-58 The dpANS DlBOL Procedure Division

Read a customer record
Save customer name
Save the balance
Print name and balance

3.29 OPEN

Function

OPEN associates a channel number with a device or with a file on a
device.

Format

OPEN (ch, [~~~~~~g;;dej] ,filespec{,AllOC:nexpj{,BKTSIZ:nexpj

(,BlKSIZ:nexpj{,BUFSIZ:nexpj{,RECSIZ:nexpj{,NUMREC:nexpj)

ch
is a numeric expression that evaluates to a channel number.

mode
designates the data transfer method (Input, Output, or Update).

submode
further defines, qualifies, or restricts mode.

MODE:afield
specifies that mode and submode will be determined at execution time.
afield is an alpha field or literal that contains the mode and the optional
submode of the form "mode(:submode}."

filespec
is an alpha field, alpha literal, or record that contains the file specification.

AllOC:nexp
is a numeric expression that specifies the initial file allocation.

BKTSIZ:nexp
is a numeric expression that specifies the bucketsize in blocks.

BlKSIZ:nexp
is a numeric expression that specifies the block size (bytes) of magnetic
tape.

BUFSIZ:nexp
is a numeric expression that specifies the size of the transfer buffer in
blocks for this channel.

The dpANS OIBOl Procedure Division 3-59

RECSIZ:nexp
is a numeric expression that specifies the length (bytes) of the records in
the file.

NUMREC:nexp
is a numeric expression that specifies the number of logical records in
lengths as defined by RECSIZE that is to be used as the initial allocation
of a file.

General Rules

• A unique OPEN statement must be executed for each unique combi­
nation of device, file, and mode of operation.

• OPEN must be executed prior to any I/O operation and remains in
effect until a corresponding CLOSE is executed.

• The channel number can be between 1 and 31, inclusive.

• The maximum number of channels opened simultaneously is system
dependent.

• Optional qualifiers prefaced by a keyword can occur in any order.

• The transfer of program control to an external subroutine does not
affect the status of a channel.

• An attempt to OPEN a file on a channel currently open will result in
an error.

Rules for mode

• OPEN uses three data access methods: sequential, relative, and
indexed.

• If a file is being opened, the modes of operation and file I/O state­
ments are:

INPUT (I)

OUTPUT (0)

UPDATE (U)

used to obtain input from an existing sequential, relative,
or indexed file. Input mode is a read-only mode.

used to create a file.

used for input and output from an existing relative or
indexed file.

• A character-oriented device is being opened, only the Input and
Output modes of operation are used.

3 ... 60 The dpANS DlBOl Procedure Division

• :afield opens the channel based on the contents of afield. The contents
of afield are evaluated at execution time to determine the mode and
optional submode for OPEN.

Rules for submode

• submodes are Sequential (S), Print (P), Relative (R), Indexed (I), or
Character (C).

• Sequential submode is used with 0 mode and indicates that the file
being created is a sequential file. Sequential submode is assumed for
file-oriented devices if no submode is specified with 0 mode.

• Character submode is assumed for character-oriented devices if no
submode is specified with 0 mode.

• Print submode is used with 0 mode and indicates that the file being
created is a print file.

• Relative submode is used with the 0 mode and indicates that the file
being created is a relative file. O:R is required when creating an RMS
relative file.

• Indexed submode is used with I and U modes and indicates that the
file being opened is an indexed file. All file volumes must be on-line
simultaneously. SI is equivalent to 1:1 and SU is equivalent to U:1.

• Character submode may be used with I and 0 modes and indicate that
the file or device is to be treated as a character-oriented device.

Rules for ALLOe

• ALLOC reserves space on a device for a file at OPEN; nexp is the
number of 512 byte units.

• ALLOC overrides any filesize specified with the filespec. The value
specified is system dependent.

• ALLOC is used in 0 mode. It is ignored for other modes.

• nexp must equal a non-negative integer.

• If nexp in NUMREC:nexp is non-zero, then NUMREC overrides
ALLOC.

Rules for BKTSIZ

•

•

BKTSIZ specifies at file creation time the number of 512 byte I/O units
to be considered as a logical group.

nexp must be a positive integer .

The dpANS D1BOl Procedure Division 3-61

Rules for BLKSIZ

• BLKSIZ specifies the block size, in bytes, for files opened on magnetic
tape.

• BLKSIZ is used when creating a file on magtape. Any other use of
BLKSIZ is ignored.

• nexp must be a positive integer.

Rules for BUFSIZ

• BUFSIZ defines the size of an internal buffer.

• The I/O buffer size must be large enough to contain the data record.

• BUFSIZ overrides the buffer size designated by PROC for this OPEN.

• The value must be between 1 and 15, inclusive.

Rules for RECSIZ

• RECSIZ defines the size of a logical record with nexp specifying the
length in bytes of each logical record in the file.

• RECSIZ is required when creating an RMS relative file. Any other use
of RECSIZ is ignored.

• RECSIZ implies the records are fixed length.

• nexp must be a positive integer.

Rules for NUMREC

•

•

•
•
•
•

NUMREC specifies the number of logical records in a file to be used
as the initial file allocation.

NUMREC may be used in OUTPUT mode. It is ignored for other
modes.

nexp must be a positive integer.

If NUMREC is specified, RECSIZ must also be specified.

If nexp is a positive, nonzero integer, NUMREC will override ALLOC.

If nexp is 0, the result is the same as not specifying NUMREC.

The following tables show which statements are legal for a file organiza­
tion, mode, and character device:

3-62 The dpANS DlBOl Procedure Division

Table 3-2: Shared File Access
Access

File Type Open Mode Other Users Status

Sequential Input none Granted

Input Granted

Output Denied

Output none Granted

Input Denied

Output Denied

Relative Input none Granted

Input Granted

Output Denied

Update Granted

Output none Granted

Input Denied

Output Denied

Update Denied

Update none Granted

Input Granted

Output Denied

Update Granted

Index Input none Granted

Input Granted

Update Granted

Update none Granted

Input Granted

Update Granted

The dpANS DlBOL Procedure Division 3-63

Table 3-3: Valid Combinations of Mode:Submode

I:S O:S I:R O:R U:R 1:1 U:I I:C O:C O:P

ACCEPT X X

CLOSE X X X X X X X X X X

DELETE X

DISPLAY X X X

FORMS X X X X

READ X X X X X

READS X X X X X X X X

STORE X

WRITE X X X

WRITES X X X X X X

MK-02736-00

Run-Time Error Conditions

$ERR-ALLOC E Invalid value specified for ALLOC:

$ERR_ARGMIS E Argument missing

$ERR_BKTSIZ E Invalid value specified for BKTSIZ:

$ERR_BUFSIZ E Invalid value specified for BUFSIZ:

$ERR_CHNUSE F Channel is in use

$ERR_DEVUSE E Device in use

$ERR_FILORG E Invalid file organization specified

$ERR_FILSPC E Bad file name

$ERR_FINUSE E File in use by another user

$ERR_FNF E File not found

3-64 The dpANS DIBOL Procedure Division

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_NOMEM E Not enough memory for desired operation

$ERR_NOOPEN F Channel has not been opened

$ERR_NOSP AC E No space exists for file on disk

$ERR_NUMREC E Invalid value specified for NUMREC:

$ERR_ONL YRO E Attempt to write to a read-only device

$ERR_ONL YWR E Attempt to open output device in input mode

$ERR_PROTEC E Protection violation

$ERR_RECSIZ E Invalid value specified for RECSIZ:

$ERR-REPLAC E Cannot supersede existing file

$ERR_SYSTEM F System error

Examples

The following statement creates a new sequential file named RENEW.DDF
and associates it with channel 5:

OPEN (5,0, 'RENEW.DDF')

The following statement creates a new relative file named ARMAS.DDF
and associates it with channel 2. All the records in the file will be 100
characters in length.

OPEN (2,O:R. 'ARMAS.DDF' ,RECSIZ:l00)

The following statement opens the terminal for both input and output,
and associates the terminal with channel 15:

OPEN (i5,O:C, 'TT: ')

The following statement opens the relative file ARMAS.DDF for modi­
fication using channel 3. It also specifies an internal buffer size of three
blocks. This buffer size overrides the size specified by PROC for this
OPEN only.

OPEN (3,U, 'ARMAS.DDF' ,BUFSIZ:2)

The dpANS D1BOL Procedure Division 3-65

The following statement creates a new sequential file named AR.LIS and
associates it with channelS. Since the new file will eventually be printed,
it is created with the P submode.

OPEN (5.0:P. 'AR.LIS')

The following example creates a new relative file, ARMAS.DDF and asso­
ciates it with channel 15. All the records in the file will be 25 characters
in length. The initial file allocation is 56 blocks.

OPEN (15.0:R. 'ARMAS.DDF' .RECSIZ:25.ALLOC:56)

The following example creates a new relative file, ARREC.DDF and
associates it with channel 21. All the records will be 80 characters in
length. The initial record allocation is 100 records which will cause an
initial file allocation of 15 blocks (80x100).

OPEN (21.0:R. 'ARREC.DDF' .RECSIZ:80.NUMREC:l00.ALLOC:50)

3-66 The dpANS DIBOL Procedure Division

3.30 READ (Indexed File)

Function

READ inputs a record from an indexed file.

Format

READ (ch,record,keyfld{,KEYNUM:nexp}J

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

keyfld
is an alpha field or record which identifies the record to be read.

nexp
is a numeric expression that specifies which key of reference is to be used.

Rules

• READ is used in I and U modes.
• The data record read is the first one with a key value equal to the key

of reference.

• If the size of keyfld is less than the size of the key field defined for the
indexed file, it is assumed to be a partial key. The system returns the
first record whose initial characters match the specified key.

• If duplicate keys exist, READ retrieves the first occurrence of the key.
READS is used to retrieve each additional occurrence of the key.

• If keyfld is contained within the record, it is assumed to be in the same
position as a key field defined for the file.

• If a record containing the specified key is not found, the record with
the next higher key is returned and a Key not same error is generated.

• The record is read into record according to the rules for moving alpha
data.

• If the data record is larger than record, an Input data size exceeds
destination size error is generated and the data record is read into
record according to the rules for moving data to an alpha field.

The dpANS DlBOl Procedure Division 3-67

• If the data record is smaller than record, the data record is read into
record according to the rules for moving data to an alpha field.

Rules for KEYNUM

• KEYNUM specifies the key number to be used in a READ from an
indexed file.

• KEYNUM:O indicates that the primary key is to be used. KEYNUM:l
indicates that the first alternate key is to be used. KEYNUM:2 indi­
cates that the second alternate key is to be used, and so on.

• If KEYNUM is not specified and the key field corresponds to a key
position defined in the record, that key position determines which key
number will be used.

• If KEYNUM is not specified and the key field does not correspond
to a key position defined in the record, or is outside the record, the
primary key number will be used.

• When a READ is executed in U mode, the blocks which contain the
record are locked; other records that lie wholly or partially within
these blocks are also locked. The lock remains in effect until one of
the following occurs:

A WRITE using the channel is executed.

A READ or READS using the channel is executed.

A STORE using the channel is executed.

A DELETE using the channel is executed.

An UNLOCK using the channel is executed.

A CLOSE using the channel is executed.

The program terminates.

Run-Time Error Conditions

$ERR_BADKEY E An illegal key was specified

$ERR_EOF E End of file encountered

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_KEYNOT E Key not same

3-68 The dpANS DIBOL Procedure Division

$ERR_LOCKED

$ERR_NOOPEN

$ERR_TOOBIG

$ERR_WRTLIT

Examples

E

F

E

F

Record is locked

Channel has not been opened

Input data size exceeds destination size

Attempt to store data in a literal

Assuming that the indexed file has been defined with a key length of five
characters and a key position of 16 and the Data Division contains:

RECORD ADDR
A5
Di0

KEY, A5, 'SMITH'
D20

then the following statement will return the record with the key SMITH
from the indexed file opened on channel 1. The READ will place that
record in ADDR. If more than one SMITH record exisits, the first one is
obtained and the remaining SMITH records can be read using the READS
statement. If SMITH does not exist, the next higher keyed record will be
retrieved, and a Key not same error will be generated. This error can be
trapped by an ONERROR statement.

READ (l.ADDR,KEY)

In the following example, the READ statement will return a record from
the indexed file opened on channel 1. The READ will place that record in
ADDR. Using the record definition above, KEYNAM specifies that the first
alternate key be used.

READ (1,ADDR,ADDR(1,5),KEYNUM:i)

The dpANS DlBDL Procedure Division 3-69

3.31 READ (Relative File)

Function

READ inputs a record from a relative file.

Format

READ (ch,record,nexp)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

nexp
is a numeric expression that specifies the sequence number of the record
to be read.

Rules

• READ is used in I and U modes.
• nexp must be between one and the total number of records in the file.

• The record is read into record according to the rules for moving alpha
data.

• If the data record is larger than record, an Input data size exceeds
destination size error is generated.

• When READ is executed in U mode, the blocks which contain the
record are locked; other records that lie wholly or partially within
these blocks are also locked. The lock remains in effect until one of
the following occurs:

A WRITE or WRITES using the channel is executed.

A READ or READS using the channel is executed.

An UNLOCK using the channel is executed.

A CLOSE using the channel is executed.

The program terminates.

3-70 The dpANS DlBOl Procedure Division

Run-Time Error Conditions

$ERR_EOF E End of file encountered

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_LOCKED E Record is locked

$ERR_NOOPEN F Channel has not been opened

$ERR_RECNUM E Illegal record number specified

$ERR_RNF E Record not found

$ERR_TOOBIG E Input data size exceeds destination size

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following statement reads the 88th record of the relative file associated
with channelS and places the record in the variable REX:

READ (5,REX,88)

The following statement reads the record specified by the value stored in
the variable COUNT from the relative file associated with channel 6 and
places the record in the variable BLT:

READ (6,BLT,CDUNT)

The dpANS DlBOl Procedure Division 3-71

3.32 READS

Function

READS inputs the next available record in sequence from a file.

Format

READS (ch, record{, label})

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

label
is a statement label where control is to be transferred when the logical
end-of-file is detected.

General Rules

•

•

•

•

READS is used in I mode with a sequential file; in I and U modes with
a relative file and with an indexed file; and in I and 0 modes with a
character-oriented device.

The record is read into record according to the rules for moving alpha
data.

If the record is larger than record, an Input data size exceeds destina­
tion size error is generated and the record is read into record according
to the rules for moving data to an alpha field.

When a READS is executed in U mode, record locking occurs in the
same manner as when a READ is executed.

Rules for READS from an Indexed File

• When an indexed file is opened and the first I/O statement for that file
is a READS, the record with the lowest primary key value is returned.

3-72 The dpANS DlBOl Procedure Division

Rules for READS from a Character-Oriented Device

• READS from a character-oriented device may be affected by the
FLAGS subroutine.

• All terminating characters, except ESCAPE, position the cursor or
carriage at the beginning of the next line. ESCAPE terminates input
but does not move the cursor or carriage.

• When record is full, additional characters are ignored and the terminal
alarm sounds for each additional character typed.

Run-Time Error Conditions

$ERR_EOF E End of file encountered

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_LOCKED E Record is locked

$ERR_NOOPEN F Channel has not been opened

$ERR_TOOBIG E Input data size exceeds destination size

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following statement transfers a record from the file associated with
channel 3 to the variable INV. If the end of the file is reached, control
branches to a statement labeled END.

READS (3.INV.END)

The next example is the same as the previous one, except that if the end of
file is reached, an End of file encountered error will be generated since no
end of file label was specified. This error can be trapped by an ONERROR
statement.

READS (3.INV)

The dpANS DlBOL Procedure Division 3-73

3.33 RECV

Function

RECV accepts a message which was sent by another program.

Format

RECV (message,/abel{,sizej)

message
is an alpha field or record which will contain the message.

label
is a statement label where control is to be transferred if no message is
pending.

size
is a numeric field which will contain the size of the message received.

Rules

• The message is moved into message according to the rules for moving
alpha data.

• If message is shorter than the actual message, an error will be returned,
and the data is moved to message according to the rules for moving
alpha data.

• The message size is moved into size according to the rules for moving
numeric data.

Run-Time Error Conditions

$ERR_SYSTEM

$ERR_TOOBIG

$ERR_WRTLIT

F

E

F

System error

Input data size exceeds destination size

Attempt to store data in a literal

3-74 The dpANS DlBOl Procedure Division

Examples

The following program segments show how one program might pass
the name of a data file to another program using the SEND and RECV
statements. The PAYROL program sends the file name (TFIL.DDF) to
the program BAT. The RECV statement in BAT accepts the file name.
If the RECV statement is executed prior to the message having been
sent, control is transferred to the statement labeled LOOP. At LOOP, the
program delays for 10 seconds and then attempts to receive the message
again.

Program PAYROL

RECORD
MSG. A8. 'TFIL.DDF'
PRONAM. A3. 'BAT"

PROC

SEND (MSG.PRONAM) Send file name

STOP

Program BAT

RECORD
FILE. A9

PROC
GETM. RECV (FILE. LOOP) Receive file name

STOP
LOOP. SLEEP 10 Wait for 10 seconds

GOTO GETM

The dpANS DlBOL Procedure Division 3-75

3.34 REPEAT

Function

REPEAT repetitively executes a statement until a condition occurs to
transfer control to another statement.

Format

REPEAT statement

statement
is any DIBOL statement.

Rules

• statement is executed until control is transferred explicitly to a label or
to the end of the iterative construct.

Examples

In the following example, records are read and a routine is called to
process the records until the end of file is reached. When an end of file
is reached, control is transferred to the label specified in the READS
statement which is outside of the REPEAT block.

REPEAT
BEGIN
READS (l.FILE. DONE)
XCALL SUBi (FILE)
END

DONE.

3-76 The dpANS DIBOl Procedure Division

3.35 RETURN

Function

RETURN transfers program control to the statement logically following
the most recently executed CALL or XCALL statement.

Format

RETURN

Rules

• RETURN is placed at the logical exit of each internal and external
subroutine.

Run-Time Error Conditions

$ERR_NOCALL F RETURN with no CALL or XCALL

Examples

The following example shows how program control branches when using
external and internal subroutines. The solid lines show the control path
upon execution of CALL and XCALL statements and the broken lines
show the control path upon execution of RETURN statements.

Main Program

XCALL PROF
WRITES (6.PROFIT)
CLOSE 6
STOP

Output the profit
Close the file

The dpANS DlBOl Procedure Division 3-77

External Subroutine PROF

SUBROUTINE PROF

PROC
PBT=PRICE-COST
CALL TAX
PAT=PBT-TAX
RETURN

Subroutine to calculate tax

TAX. TAX=PBT*8
IF TAX.GT.MAX TAX=MAX
RETURN

3-78 The dpANS DlBDl Procedure Division

Compute pre-tax profit
Get the tax
Compute post-tax profit

Compute the tax

3.36 SEND

Function

SEND transmits a message to another program.

Format

SEND (message,program{,terminalj)

message
is an alpha field, alpha literal, or record which contains the message to be
sent.

program
is an alpha field, alpha literal, or record which contains the name of the
program that is to receive the message.

terminal
is a numeric expression which specifies the terminal number associated
with the receiving program.

Rules

•
•
•

•

•
•

•

•

•

Message is stored for a subsequent RECV.

Multiple messages can be stored.

FIFO (First-In-First-Out) message processing ensures that the first
message sent to a program is the first to be received by that program.

Messages may be sent from one program in a chain to a program
further along the chain.

System resources (memory, disk, ...) can affect sending a message.

Programs with the same name can be identified by specifying the
terminal to which the program is attached.

If the terminal number is not used, the first program with the correct
name that executes a RECV will receive the message.

Messages may be sent to a detached program by specifying a terminal
number of -1.

If two or more detached programs have the same name, the first to
execute a RECV will receive the message.

The dpANS DlBOl Procedure Division 3-79

Run-Time Error Conditions

$ERR~OMEM

$ERR_SYSTEM

E

F

Not enough memory for desired operation

System error

Examples

The following statement sends a message to the program CNCRNT which
may be running concurrently or at some later time on any terminal or
detached:

SEND (MSG, 'CNCRNT')

The following example sends a message to the program NEXT which is
designated as running on the same terminal as the current program:

RECORD

PROC

TNUM, D3

XCALL TNMBR (TNUM)
SEND (MSG, 'NEXT' ,TNUM)
STOP 'NEXT'

3-80 The dpANS DlBOl Procedure Division

; Terminal number

Get terminal number
Send message

3.37 SLEEP

Function

SLEEP suspends program execution for a specified period of time.

Format

SLEEP seconds

seconds
is a numeric expression that specifies the number of seconds to suspend
program execution.

Rules

• Program execution resumes only when the specified time has elapsed.

• Specifying a negative number of seconds will generate a Value out of
range error.

Run-Time Error Conditions

$ERR_OUTRNG F Value out of range

Examples

The following program sounds the terminal's alarm once every minute:

PRoe
OPEN (3,0, I TT: ')

BEEP, DISPLAY (3,7)
SLEEP 60
GOTO BEEP

Open terminal
Sound terminal alarm
Delay for 60 seconds

The dpANS DlBOL Procedure Division 3-81

3.38 STOP

Function

STOP terminates program execution.

Format

STOP {filespec}

filespec
is an alpha field, alpha literal, or record which contains a program or
command file specification.

Rules

• STOP can appear as often as needed in a program, but the first STOP
executed terminates the program.

• If filespec is used, the system automatically chains to the specified
program.

• If filespec begins with an '@', it indicates that the filespec is for a
command file.

• If no filespec is specified for a detached program, the program is logged
out.

• When a detached program stops, no terminal output is generated
(traceback, STOP message, etc.).

• If a filespec is specified by a detached program, the new program also
runs detached.

Run-Time Error Conditions

E File not found

3-82 The dpANS DlBOl Procedure Division

Examples

The following statement will stop execution of the current program and
begin execution of the PROG2 program:

STOP 'PROG2'

The following statement will stop execution of the current program and
begin execution of the CMDFIL command file:

STOP 'IDCMDFIL'

The dpANS DlBOL Procedure Division 3-83

3.39 STORE

Function

STORE adds a record to an indexed file.

Format

STORE (ch,record{,keyfld}J

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which contains the data to be stored.

keyf/d
is ignored.

Rules

• STORE is used in U:I mode.
• If record is longer than the record length defined for the file, an error

is generated and STORE is not performed.

• The data is moved according to the rules for moving data to an alpha
field.

• STORE locks the record which is being stored. The record is unlocked
when STORE is completed.

• If duplicate key values are not allowed and a record with the specified
key already exists, a Duplicate key specified error is generated.

Run-Time Error Conditions

$ERR_BADKEY E An illegal key was specified

$ERRJILFUL E Output file is full

$ERR-ILLCHN F Illegal channel number specified

$ERR_IOMODE E Bad mode specified

$ERR_LOCKED E Record is locked

3-84 The dpANS DIBOL Procedure Division

$ERR_NODUPS

$ERR_NOOPEN

$ERR_TOOBIC

E

F

E

Duplicate key is specified

Channel has not been opened

Input data size exceeds destination size

Examples

The following example illustrates the use of STORE. On each iteration
of the loop, this program stores an employee record with the key value
contained in the field BADGE.

RECORD

RECORD

PROC

NEWREC
NAME. A20
BADGE. A5

DONE. A1

OPEN O. O. 'TT: ')
OPEN (2.U:I. 'EMPFIL')
DO

BEGIN
WRITES (1. 'Name?')
READS O. NAME)
WRITES (1. 'Badge?')
READS O. BADGE)
STORE (2.NEWREC.BADGE)
WRITES (1. 'Done?')
READS O. DONE)
END

UNTIL DONE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

Employee record
Employee name
Employee badge number

Open terminal
Open employee file

Prompt for name
Get employee name
Prompt for badge number
Get badge number
Create employee record
Ask if finished
Get response

Close terminal
Close employee file

The dpANS DlBOL Procedure Division 3-85

3.40 UNLOCK

Function

UNLOCK clears the lock condition on a specified channel.

Format

UNLOCK ch

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

Rules

• Records in the locked blocks will become available for access by other
programs.

• The specified channel is the one associated with the file containing the
locked blocks.

• UNLOCK is ignored if no records are locked on the channel.

• If the specified channel is not open, a Channel not open error will be
generated.

Run-Time Error Conditions

$ERR_ILLCHN

$ERR-N"OOPEN

Examples

F

F

Illegal channel number specified

Channel has not been opened

The following program will delete employee records from an indexed
file. On each iteration of the loop, this program prompts for an employee
badge number (the key field for the indexed record), reads the employee
record (which locks the record), displays the associated name, and asks if
the employee record should be deleted. If the record is not to be deleted,
the UNLOCK statement makes the record available for other programs to
read.

3-86 The dpANS DlBOL Procedure Division

RECORD

RECORD

PROC

EMPREC
NAME, A20
BADGE, A5

DELETE, A1
DONE, A1

OPEN 0,0, 'TT: ')
OPEN (2,U:I, 'EMPFIL')
DO

BEGIN
WRITES (1, 'Badge?')
READS (1,BADGE)
READ (2,EMPREC,BADGE)
WRITES (1,NAME)
WRITES (1, 'Delete?')
WRITES (1,DELETE)
IF DELETE.EQ. 'Y'

THEN
DELETE (2,BADGE)

ELSE
UNLOCK 2

WRITES (1, 'Done?')
READS (1, DONE)
END

UNTIL DONE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

Employee record
Employee name
Employee badge number

Open terminal
Open employee file

Prompt for badge number
Get badge number
Read employee record
Display employee name
Prompt for deletion
Get response
Delete the record
Yes--
Delete the record

Unlock the record
Ask if finished
Get response

Close terminal
Close employee file

The dpANS DlBOL Procedure Division 3-87

3.41 UPCASE

Function

UPCASE converts lowercase characters to corresponding uppercase char­
acters.

Format

UPCASE afield

afield
is an alpha field or record which contains the characters to be converted.

Rules

• UPCASE will convert each byte encountered in afield from a lowercase
character to a corresponding uppercase character if the numeric ASCII
value of the byte is between 97 and 122, inclusive.

• UP CASE will convert each byte encountered in afield from a lowercase
character to a corresponding uppercase character if the numeric ASCII
value of the byte is between 224 and 254, inclusive.

• Other non-alphabetic characters are unaffected.

Run-Time Error Conditions

F Attempt to store data in a literal

Examples

In the following example, the first UP CASE statement changes the first
character in field A. After the first UP CASE statement is executed, the
contents of REC are 'This is a test {of upcase}'. The second UPCASE
statement changes the characters 'This is a test {of upcase}' to uppercase.
After the second UP CASE statement is executed, the contents of REC are
'THIS IS A TEST {OF UPCASE},.

RECORD REC

PROC

A.
B.

A14. 'this is a test'
A12. ' {of upcase},

UPCASE A(i.i)
UPCASE REC
STOP

3-88 The dpANS DlBOl Procedure Division

The following example allows an operator to answer 'YES' without regard
to uppercase or lowercase. The operator could type any of the following:
yes, yeS, yEs, yES, Yes, YeS, YEs, or YES.

RECORD

PROC
DONE, A3

WRITES (1, 'Done?')
READS 0, DONE)
UPCASE DONE
IF DONE. EQ. 'YES'

STOP

Prompt user
Get response
Make it uppercase
Did operator type 'YES'?
Yes--

The dpANS DlBOl Procedure Division 3-89

3.42 USING

Function

USING conditionally executes one statement from a list of statements
based on the evaluation of an expression.

Format

USING selection_value SELECT
({mexp{, ... Jj), statement

ENDUSING

selection_ value
is an alpha field, alpha literal, decimal expression, or record.

mexp
is one or more match expressions in the following format:

[:~~ THRU exp]

statement
is a DIBOL Procedure Division statement.

Rules

• selection_value is evaluated and compared with the match expressions.
Comparisons are done in the order they appear.

• selection_value cannot be an alpha substring.

• The match expression list ({mexp{, ... }}) is referred to as a case-label.

• An empty case-label (empty parentheses) is referred to as a null
case-label.

• A null case-label matches any selection_value.
• The statement associated with the first matching case-label is executed

and USING is exited.

• If no match is found, no statement within USING is executed.

• Each case-label must begin on a new line.

• statement may be on a separate line.

3-90 The dpANS DlBOl Procedure Division

• No match is found if the value to the left of THRU is greater than the
value to the right of THRU.

• The data type of selection_value must match the data type of the
match expression (mexp).

Run-Time Error Conditions

None

Examples

In the following example, the USING statement is used to check for the
decimal character codes for CTRL/U and DELETE.

USING DCHAR SELECT
(21) •

BEGIN
COL=STOOL
CALL POSTN
CALL CLEAR
END

(127) .
BEGIN
IF COL.GT.STOOL

END
ENDUSING

BEGIN
COL=COL-1
CALL POSTN
DISPLAY (1. I ')

CALL POSTN
END

CTRL/U

Reset cursor position to
. ... start of field

Clear field

DELETE

At beginning of field?
No--
Backup column number
Reset cursor position
Erase the character
Reset cursor position

The dpANS DlBOL Procedure Division 3-91

The following program displays a message indicating which case of the
USING was selected:

RECORD
CHARS, D3

PROC
OPEN (1, I , 'TT: ')

AGAIN, WRITES (1, 'Enter 3 characters')
READS (1,CHARS,EOF)

EOF,

USING CHARS SELECT
('AAA') ,

WRITES (1, '1st case selected')
('AAB' THRU 'AZZ')

WRITES (1, '2nd case selected')
('BAA' THRU 'WZZ')

WRITES (1, '3rd case selected')
(, XXX', ' YYY', ' ZZZ ') ,

WRITES (1, '4th case selected')
0,

WRITES (1,'Null case selected')
ENDUSING
GOTO AGAIN
CLOSE 1
STOP

3-92 The dpANS DlBOl Procedure Division

Characters entered

Open terminal
Display prompt
Get response
Branch based on CHARS

Close terminal

3.43 WHILE

Function

WHILE repetitively executes a statement as long as a condition is true.

Format

WHILE condition statement

condition
is a numeric expression.

statement
is a DIBOL Procedure Division statement.

Rules

• The condition is evaluated prior to each possible execution of statement.

• The condition is either true (non-zero) or false (zero).

• If the condition is true, statement is executed.

• statement may be on a separate line.

Run-Time Error Conditions

None

Examples

The following program segment accepts a line from the terminal. The
WHILE statement is used to trim trailing spaces from the input line.

RECORD INLINE

RECORD

PROC

CHR, 80Al

SIZE, D2

OPEN C1, I , 'TT: I)
READS (1, INLINE)
SIZE=80
WHILE CHR(SIZE) .EQ. I I .AND. SIZE.GT.l

SIZE=SIZE-l

Characters input

Number of characters

Open terminal
Accept terminal input
Set size of line
Trim line

The dpANS DIBOL Procedure Division 3-93

3.44 WRITE (Indexed File)

Function

WRITE updates a record in an indexed file.

Format

WRITE (ch,record{,keyfldj)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which contains the data to be written.

keyfld
is ignored.

Rules

• WRITE is used in U:I mode.
• WRITE updates the record if the record to be replaced was the last

record read and its key field has the same value as the last record
read.

• The record to be written is the record most recently read on the
specified channel and the record must still be locked. WRITE unlocks
the record when the WRITE is completed.

• If record is longer than the record length defined for the file, an error
condition is generated and WRITE is not performed.

• The data is moved according to the rules for moving data to an alpha
field.

Run-Time Error Conditions

$ERR_BADKEY

$ERR_EOF

$ERR_ILLCHN

3-94 The dpANS DIBOL Procedure Division

E

E

F

An illegal key was specified

End of file encountered

Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_KEYNOT E Key not same

$ERR_NOCURR E No current record

$ERR_NOOPEN F Channel has not been opened

$ERR_TOOBIG E Input data size exceeds destination size

Examples

The following statement will update a record in the indexed file opened
on channell. The data for the record is in ADDR and the key field is in
KEY.

WRITE (l.ADDR.KEY)

The dpANS DlBOl Procedure Division 3-95

3.45 WRITE (Relative File)

Function

WRITE outputs a record into a specified position in a relative file.

Format

WRITE (ch, record, nexp)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field, alpha literal, or record which contains the data to be
written.

dexp
is a numeric expression that specifies the sequence number of the record
to be written.

Rules

• WRITE is used in 0 and U modes.
• WRITE updates the record if it exists. If no record exists, WRITE

creates one.

• WRITE locks the record it is writing and unlocks the record when the
WRITE is completed.

• If the file is opened in output mode and the RECSIZ qualifier is
specified when the channel is opened, and record is longer than the
value specified for RECSIZ, an error condition is generated and WRITE
is not performed.

• If the file is opened in update mode and record is larger than the
record in the file, an error condition is generated and WRITE is not
performed.

• The data is moved according to the rules for moving data to an alpha
field.

3-96 The dpANS DIBOl Procedure Division

Run-Time Error Conditions

$ERR-EOF E End of file encountered

$ERR-ILLCHN F Illegal channel number specified

$ERR-IOMODE E Bad mode specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_LOCKED E Record is locked

$ERR_NOOPEN F Channel has not been opened

$ERR_RECNUM E Illegal record number specified

$ERR_TOOBIG E Input data size exceeds destination size

Examples

The following statement writes the data in the variable REX into the 88th
record of the relative file associated with channelS.

WRITE (5.REX.88)

The following statement writes the data in the variable BLT into the
relative file associated with channel 6. The record number is specified by
the value stored in the variable COUNT.

WRITE C6.BLT.COUNT)

The dpANS DlBOL Procedure Division 3-97

3.46 WRITES

Function

WRITES outputs a record to the next available position in a file.

Format

WRITES (ch,record)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field, alpha literal, or record which contains the data to be
written.

Rules

• WRITES is used in 0 mode with a sequential file in 0 and U modes
with a relative file in I and 0 modes with a character-oriented device
and in 0 mode with a printer.

• In U mode, WRITES locks the record it is writing and unlocks the
record when the WRITES is completed.

• If the file is opened in update mode and record is longer than the
defined record size, an error condition is generated and WRITES is not
performed.

• The data is moved according to the rules for moving data to an alpha
field.

Run-Time Error Conditions

$ERR_FILFUL E Output file is full

$ERR_ILLCHN F Illegal channel number specified

$ERR_IOFAIL E Bad data encountered during I/O operation

$ERR_IOMODE E Bad mode specified

$ERR_TOOBIG E Input data size exceeds destination size

3-98 The dpANS DlBOL Procedure Division

Examples

The following statement transfers the data in the array field PAY(EMPLNO)
to the next sequential record in the file associated with channel 4.
PAY(EMPLNO) must be an alpha field.

WRITES (4.PAY(EMPLNO))

Assuming that LPT contains the channel number associated with the
printer, the following statement transfers the 2nd through the 9th charac­
ters in the variable MESSAG to the printer.

WRITES (LPT.MESSAG(2.9))

The dpANS DlBOl Procedure Division 3-99

3.47 XCALL

Function

XCALL transfers program control to an external program.

Format

XCALL name (arg{, ... })

name
is the name of the external subroutine being called.

arg
is an alpha field, alpha literal, numeric field, numeric literal, expression, or
record which contains the subroutine arguments.

Rules

•

•
•

•

•

•

•

•

Each argument is linked to a corresponding argument definition in the
called subroutine to provide the logical connections necessary to pass
data. The first XCALL argument is linked to the first argument in the
subroutine, the second is linked to the second, and so on.

Arguments in the argument list are separated by commas.

A given argument may be omitted from the argument list. If more
arguments are needed, their place must be held by putting in the
commas, e.g., XCALL SUB (A"C).

For numeric fields, the returned value is moved to the field according
to the rules for moving numeric data.

For alpha fields and records, the returned value is moved to the field
according to the rules for moving alpha data.

If the number of arguments passed exceeds the number expected by
the subroutine, an error is generated.

If the number of arguments is fewer than expected, no error is gener­
ated; it is the responsibility of the subroutine to check for the existence
of each argument.

XCALL causes information to be stored in an internal stack. This stack
is of finite size; if too many XCALL statements are executed without
an intervening RETURN or XRETURN, the stack will overflow. The
exact size of the stack is system dependent and the exact number of
XCALL statements which can be nested will vary.

3-100 The dpANS DlBOL Procedure Division

• Following the execution of the subroutine, execution of the calling
routine begins with the statement which logically follows the XC ALL.

• The size of a missing external subroutine argument is -1.

• An external subroutine cannot call itself.

Rules for Subroutine Name on PDP

• A subroutine name consists of up to six characters, the first of which
must be alphabetic. Remaining characters can be alphabetic, numeric,
or _ (underscore).

• Only the first six characters of a subroutine name are significant;
remaining characters are ignored.

Rules for Subroutine Name on VAX

• A subroutine name consists of up to 30 characters, the first of which
must be alphabetic. Remaining characters can be alphabetic, numeric,
or _ (underscore).

• Only the first 30 characters of a subroutine name are significant;
remaining characters are ignored.

Run-Time Error Conditions

F System error

Examples

In the following example, the main program calls the external subroutine
(CNVRT) to change the format of the date. It passes the arguments DATE
and X_DATE. These arguments are represented in the subroutine as OLD
and NEW.

Main Program

RECORD

PROC

DATE. D6. 010750
X_DATE. AU

XCALL CNVRT (DATE. X_DATE)
OPEN (1.0.' TT: ')
WRITES (l.X_DATE)
CLOSE 1
STOP

Convert the date
Open the terminal
Display the date
Close the terminal

The dpANS DlBOL Procedure Division 3-101

External Subroutine

SUBROUTINE CNVRT Convert the date format
OLD. D Date (mmddyy)
NEW. A Date (dd-mmm-yy)

RECORD ODATE Old date format
MM. D2 Month
DD. D2 Day
YY. D2 Year

RECORD NDATE New date format
DAY. A2 Day

Al. ,-,
MONTH. A3 Month

Al. ,-,
YEAR. D2 Year

RECORD
MNAME. 12A3. 'Jan'. 'Feb'. 'Mar'. 'Apr'. 'May'. 'Jun'

& ' Jul'. 'Aug'. 'Sep'. 'Oct'. 'Nov'. 'Dec'

PROC
ODATE=OLD
DAY=DD
YEAR=YY
MONTH=MNAME(MM)
NEW=NDATE
RETURN

Move day to new format
Move year to new format
Move month to new format
Return new date

Arguments can also be made optional. This requires some coordination
between the calling program and the external subroutine. The external
subroutine must determine whether a given optional argument was
passed. This is done by using the SIZE subroutine. If the SIZE subroutine
returns a negative value, then the subroutine argument was not passed.
The following external subroutine accepts up to three file names to delete.

SUBROUTINE DEL3
FILE1. A
FILE2. A
FILE3. A

Subroutine to delete 3 files
First file

RECORD

PROC
SIZE. D3

XCALL SIZE (FILE1.SIZE)
IF SIZE. GT. 0

XCALL DELET (1.FILE1)
XCALL SIZE (FILE2.SIZE)
IF SIZE. GT. 0

XCALL DELET (1.FILE2)
XCALL SIZE (FILE3.SIZE)
IF SIZE.GT.O

XCALL DELET (1.FILE3)
RETURN

3-102 The dpANS DIBOL Procedure Division

Second file
Third file

Get size of first name
Was argument passed?
Yes--Delete file
Get size of second name
Was argument passed?
Yes--Delete file
Get size of third name
Was argument passed?
Yes--Delete file

The DEL3 external subroutine can be called using many different types of
argument lists. Some of the possible argument lists are shown below. Fl,
F2, and F3 are assumed to be valid file specifications.

XCALL DEL3 (Fl)

XCALL DEL3 (Fl. F2)

XCALL DEL3 (Fl.F2.)

XCALL DEL3 (Fl .. F3)

XCALL DEL3 (.. F3)

XCALL DEL3 ()

XCALL DEL3

The dpANS DlBOL Procedure Division 3-103

3.48 XRETURN

Function

XRETURN transfers program control to the statement logically following
the XCALL statement that transferred control to the current external
subroutine.

Format

XRETURN

Rules

• XRETURN is placed at the logical end of an external subroutine.

• XRETURN is not allowed in a main routine.

• When XRETURN is encountered within an internal subroutine of an
external subroutine, the external subroutine is exited.

• XRETURN is useful within an external subroutine to distinguish
between the return from an internal subroutine and the return from
an external subroutine.

Examples

Main Program

XCALL GETONE (NAME)
WRITES (15, NAME)

Subroutine GETONE

READIT,

EOF,

CALL READIT

XRETURN

REPEAT
BEGIN
READS (2,BUF,EOF)
IF BUF.EQ.NAME XRETURN
END
RETURN

3-1 04 The dpANS DlBOl Procedure Division

; Return to main ROUTINE

When one is found, return
to the main routine

Return from internal routine

Chapter 4

THE dpANS DIBOL COMPILER
DIRECTIVES

4.1 Generallntroduction

This chapter contains information about dpANS Compiler Directives.
Compiler Directives are non-executable instructions to the compiler and
cannot be part of any executable statement.

Compiler Directives always begin a new line and are identified with
a period as their first non-spacing character. For easy reference, the
Compiler Directives are arranged alphabetically.

THE dpANS DlBOL COMPILER DIRECTIVES 4-1

4.2 .END

Function

.END identifies the end of the Procedure Division.

Format

statement
.END

Rules

• The Procedure Division is terminated by .END.

4-2 THE dpANS DlBOL COMPILER DIRECTIVES

4.3 .lFDEF-.ELSE-.ENDC

Function

.IFDEF-.ELSE-.ENDC specifies conditional compilation based on the
definition of a variable.

Format

.IFDEF field
statement 1

{.ELSE
statement2

.j
.ENDC

field
is an alpha field, numeric field, or record that must be defined if the
statements that follow are to be compiled.

statement 1
is a DIBOL statement to be compiled if field is defined.

statement2
is a DIBOL statement to be compiled if field is not defined.

Rules

• Each .IFDEF must have a matching .ENDC.

• The statements between .IFDEF and .ELSE (or .ENDC if .ELSE is not
specified) are compiled only if the field is defined in the Data Division
before .IFDEF.

• The statements between .ELSE and .ENDC are compiled only if field is
not defined in the Data Division before .IFDEF.

• Conditional compilation directives may be nested.

• Compiler directives have no effect when they are within conditionally
uncompiled code.

THE dpANS DlBOL COMPILER DIRECTIVES 4-3

Examples

In the following example, the INCR statement is not compiled because the
variable RT11 is not defined:

RECORD
B. Dl

PROC
.IFDEF RT11

INCR B
.ENDC

STOP

4-4 THE dpANS DlBOL COMPILER DIRECTIVES

4.4 .lFNDEF-.ELSE-.ENDC

Function

.IFNDEF specifies conditional compilation based on the absence of a
preceding definition of a named variable within the compilation.

Format

.IFNDEF field
statement 1

{.ELSE
statement2

.}
.ENDC

field
is an alpha field, numeric field, or record that must not be defined if the
statements that follow are to be compiled.

statement 1
is a DIBOL statement that is compiled if field is not defined.

statement2
is a DIBOL statement that is compiled if field is defined.

Rules

• Each .IFNDEF must have a matching .ENDC.

• The statements between .IFNDEF and .ELSE (or .ENDC if .ELSE is
not specified) are compiled only if the field is not defined in the Data
Division before .IFNDEF.

• The statements between .ELSE and .ENDC are compiled only if the
field is defined in the Data Division before .IFNDEF.

• Conditional compilation directives may be nested.

• Compiler directives have no effect when they are within conditionally
uncompiled code.

THE dpANS DlBOL COMPILER DIRECTIVES 4-5

Examples

In the following example, the INCR statement is compiled because the
variable RSTS is not defined:

RECORD
B. D1

PROC
.IFNDEF RSTS

INCR B
.ENDC

STOP

4-6 THE dpANS DlBOL COMPILER DIRECTIVES

4.5 .INCLUDE

Function

.INCLUDE directs the compiler to read source code from a specified file.

Format

.INCLUDE filespec

filespec
is an alpha literal that contains the file specification of the file to be
included.

Rules

•

•
•

•

When the compiler encounters .INCLUDE, the compiler stops reading
statements from the current file and reads the statements in the in­
cluded file. When it reaches the end of the included file, the compiler
resumes compilation with the next logical line after .INCLUDE.

The filespec may contain only one specification.

The default extension for the file is the same as the default extension
for DIBOL program source files. Other system dependent information
in the specification follows the system defaults .

.INCLUDE may be nested to eight (8) levels.

Examples

.INCLUDE is particularly useful for including standard record descriptions.
Assume the file EMPREC.DBL contains the following information:

RECORD EMPREC
NAME. A20
BADGE, AS

;Employee record
;Employee name
;Employee badge number*

The .INCLUDE in the following program will include the employee record
description (stored in the file EMPREC.DBL):

THE dpANS DlBOL COMPILER DIRECTIVES 4-7

.INCLUDE 'EMPREC.DBL'
RECORD

DONE. A1
PROC

OPEN (1. O. 'TT: ')
OPEN (2.U:I, 'EMPFIL')

;Open terminal
;Open employee file

DO
BEGIN
WRITES (1. 'Name?')
READS O. NAME)
WRITES (1. 'Badge?')
READS O. BADGE)
STORE (2.EMPREC.BADGE)
WRITES (1. 'Done?')
READS O. DONE)
END

UNTIL DONE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

The resulting program listing will contain:

.INCLUDE 'EMPREC.DBL'
1 RECORD EMPREC
2 NAME. A20
3 BADGE. A5
4 RECORD
5 DONE. A1

---------- new page

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

;Employee record
;Employee name
;Employee badge number

6 PROC
7
8

OPEN O. O. ' TT: ')
OPEN (2.U:I. 'EMPFIL')

;Open terminal
;Open employee file

9 DO
10 BEGIN
11
12
13
14
15
16
17
18
19
20
21
22

WRITES (1. 'Name?')
READS (1. NAME)
WRITES (1. 'Badge?')
READS O. BADGE)
STORE (2.EMPREC.BADGE)
WRITES (1. 'Done?')
READS (1.DONE)
END

UNTIL DONE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

4-8 THE dpANS DlBOL COMPILER DIRECTIVES

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

4.6 .LlST

Function

.LIST enables the source code listing.

Format

.LlST

Rules

• .LIST is the default condition when beginning a compilation.

• .LIST and all subsequent source file input is listed.

• Normal listing continues until the end of the program or until a
.NOLIST directive is encountered.

• .LIST always enables the listing regardless of the number of .NOLIST
directives that preceded the .LIST .. LIST j.NOLIST cannot be nested.

• .LIST does not affect the content of the listing beyond the last line of
the source code.

Examples

The .LIST and .NOLIST directives in the following program will affect the
listing of the program. The .NOLIST disables listing the EMPREC record
description and the .LIST enables listing the remainder of the program.

THE dpANS DlBOL COMPILER DIRECTIVES 4-9

.NoLIST
RECORD EMPREC Employee record

NAME, A20 Employee name
BADGE, A5 Employee badge number

.LIST
RECORD

DONE, Al
PRoC

OPEN (1,0, 'TT: ')
OPEN (2,U:I, 'EMPFIL')
DO

;open terminal
;open employee file

BEGIN
WRITES (1, 'Name?')
READS 0, NAME)
WRITES (1, 'Badge?')
READS 0, BADGE)
STORE (2,EMPREC,BADGE)
WRITES (1, 'Done?')
READS 0, DONE)
END

UNTIL DoNE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

The resulting program listing will contain:

.LIST
4 RECORD
5 DONE, Al

6 PRoC
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

new page

OPEN (1,0, 'TT: ,)
OPEN (2,U:I, 'EMPFIL')
DO

BEGIN
WRITES (1, 'Name?')
READS 0, NAME)
WRITES (1, 'Badge?')
READS 0, BADGE)
STORE (2,EMPREC,BADGE)
WRITES (1, 'Done?')
READS (1,DoNE)
END

UNTIL DoNE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

4-10 THE dpANS DlBOL COMPILER DIRECTIVES

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

;open terminal
;open employee file

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

4.7 .MAIN

Function

.MAIN identifies the beginning of the Data Division of the main program.

Format

.MAIN name

name
is a valid identifier.

Rules

• Only one .MAIN is allowed within a source file.

• name must be unique among routine names in the DIBOL program.

• name may be identical to the name of a variable, statement label, or
keyword used within the routine.

• The rules for name are the same as the rules for subroutine names.

THE dpANS DlBOL COMPILER DIRECTIVES 4-11

4.8 .NOLIST

Function

.NOLIST disables the source code listing.

Format

.NOLIST

Rules

•
•

•
•

•

.NOLIST and all subsequent source file input is not listed.

If an error is detected while the listing is disabled, the statement
containing the error and the error message is listed.

Normal listing continues only when a .LIST directive is encountered.

.NOLIST ALWAYS inhibits the listing regardless of the number of

.LIST directives that preceded the .NOLIST .. LISTj.NOLIST cannot be
nested .

. NOLIST does not affect the content of the listing beyond the last line
of the source code.

Examples

See .LIST for example.

4-12 THE dpANS DlBOL COMPILER DIRECTIVES

4.9 .PAGE

Function

.PAGE ends the current listing page and begins a new listing page.

Format

.PAGE

Rules

• .P AGE is the last line listed on the page being completed.

Examples

The .P AGE directive in the following program will place the EMPREC
record description on a page by itself:

RECORD

RECORD

PRoC

EMPREC
NAME. A20
BADGE. A5

DONE. Al

OPEN O. 0 . 'TT: ')
OPEN (2.U:I. 'EMPFIL')
DO

BEGIN
WRITES (1. 'Name?')
READS (1. NAME)
WRITES (1. 'Badge?')
READS O. BADGE)
STORE (2.EMPREC.BADGE)
WRITES (1. 'Done?')
READS O. DONE)
END

UNTIL DoNE.EQ. 'Y'
CLOSE 1
CLOSE 2
STOP

;Employee record
;Employee name
;Employee badge number

;open terminal
;open employee file

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

The resulting program listing will contain:

1 RECORD EMPREC
2 NAME. A20
3 BADGE. A5

. PAGE

---------- new page

;Employee record
;Employee name
;Employee badge number

THE dpANS DlBOL COMPILER DIRECTIVES 4-13

4 RECORD
5 DONE, Ai

6 PROC
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

new page

OPEN O,O,'TT: ')
OPEN (2,U:I, 'EMPFIL')
DO

BEGIN
WRITES (1, 'Name?')
READS 0, NAME)
WRITES (1, 'Badge?')
READS 0, BADGE)
STORE (2,EMPREC,BADGE)
WRITES (1, 'Done?')
READS 0, DONE)
END

UNTIL DONE.EQ. '¥'
CLOSE 1
CLOSE 2
STOP

4-14 THE dpANS DlBOL COMPILER DIRECTIVES

;Open terminal
;Open employee file

;Prompt for name
;Get employee name
;Prompt for badge number
;Get badge number
;Create employee record
;Ask if finished
;Get response

;Close terminal
;Close employee file

4.10 .PROC

Function

.PROC identifies the beginning of the Procedure Division.

Format

.PROC

Rules

• Only one .PROC may be used for each .MAIN or .SUBROUTINE.

THE dpANS DlBOL COMPILER DIRECTIVES 4-15

4.11 .SUBROUTINE

Function

.SUBROUTINE identifies the beginning of a source program that is an
external subroutine.

Format

.SUBROUTINE name

name
is a valid identifier.

Rules

• .sUBROUTINE indicates the beginning of the Data Division for an
external subroutine. Termination of the subroutine Data Division is
indicated by the .PROC directive.

• name must be unique among routine names in the DIBOL program.

• name may be identical to the name of a variable, statement label, or
keyword used within the subroutine.

• The rules for name are the same as those for subroutine names.

4-16 THE dpANS DlBOL COMPILER DIRECTIVES

4.12 .TITLE

Function

.TITLE changes the listing page header.

Format

. TITLE {texLstringj

texLstring
is an alpha literal which is the page header text.

Rules

• .TITLE is the first source line listed on a new page.

• If the listing is already at the beginning of a page when .TITLE is
encountered, no new page is generated.

• The text-string set by .TITLE is used in the page header of all pages
until a new. TITLE directive is encountered.

• The text-string IS moved to the page header area according to the
rules for moving alpha data.

• If no text-string is specified, the page header area is filled with spaces.

Examples

The following .TITLE directive will set the title to 'Employee Update
Program'. This title will appear at the top of all pages until another .TITLE
is encountered .

. TITLE 'Employee Update Program'

The following .TITLE directive will clear the title for all pages that follow
until another .TITLE is encountered .

. TITLE

THE dpANS DlBOl COMPilER DIRECTIVES 4-17

Chapter 5

External Subroutines

This chapter contains information on the dpANS DIBOL External
Subroutines. Each subroutine is described and an example of its use
is given. Some subroutines may differ when used under a particular
operating system.

The appropriate operating system User's Guide should be referred to when
using any of the subroutines contained in this document.

This chapter also defines argument usage for each subroutine. Each
argument definition will contain a usage indicator at the beginning of the
argument definition section. These four indicators are:

(R) stands for "read only." The external subroutine expects to use the data
contained in the argument.

(W) stands for "write only." The external subroutine expects to return data
in this argument.

(N) stands for "neither." The argument is neither read nor written to,
and all arguments with this indicator may possibly be deleted in the
future.

(RW) stands for "read and write." The external subroutine expects to use
both the data contained in this argument and to return data in the
argument.

External Subroutines 5-1

5.1 ASCII

Function

ASCII returns the ASCII character for a decimal character code.

Format

XCALL ASCII (nexp, afield)

nexp (R) is a numeric field, literal, or expression that contains the
decimal character code.

afield (W) is an alpha field or record that is to contain the ASCII
character.

Rules

• The ASCII character is moved to afield according to the rules for
moving alpha data.

• nexp is treated as a single character code.

• If nexp exceeds the range of character codes, nexp is automatically
converted by dividing the number by 256 and taking the remainder as
the character code (258 becomes 2, 259 becomes 3, and so on).

Run-Time Error Conditions

$ERR-ARGMIS

$ERR_ARGNUM

$ERR_CANCEL

$ERR_INTRPT

$ERR_WRTLIT

Examples

E

F

E

E

F

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

Since 87 is the decimal character code for 'W', CHAR will contain 'W' after
executing the following example:

RECORD

PROC

NUM, D2, 87
CHAR, Ai

;Decimal character code
; ASCII character

XCALL ASCII (NUM,CHAR) ;Get ASCII character
STOP

5-2 External Subroutines

5.2 DATE

Function

DATE returns the current system date.

Format

XCALL DATE (afield)

afield (W) is an alpha field or record that is to contain the date.

Rules

• afield should be a nine character field.

• The date is moved to the alpha field according to the rules for moving
alpha data.

• The date is returned in the form:

dd-mmm-yy

dd is the day of the month (01-31).

mmm is the first three characters for the name of the month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC).

yy is the last two digits of the year (00-99).

Run-Time Error Conditions

$ERR_ARGMIS E Argument missing

$ERR_ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR_INTRPT E Interrupt character detected

$ERR_WRTLIT F Attempt to store data in a literal

External Subroutines 5-3

Examples

Assuming the current system date is May 13, 1983, OAT will contain
113-MAY-831 upon execution of the following program:

RECORD

PROC

5-4 External Subroutines

OAT. A9

XCALL DATE (OAT)
STOP

;System date

;Get system date

5.3 DECML

Function

DECML returns the numeric character code for an ASCII character.

Format

XCALL DECML (afield, nfield)

afield (R) is an alpha field, alpha literal, or record that contains the
ASCII character.

nfield (W) is a numeric field that is to contain the decimal character
code.

Rules

• If afield is longer than one character, only the first (leftmost) character
is used.

• The decimal character code is moved to dfield according to the rules
for moving decimal data.

• The returned character code can have up to 3 digits.

Run-Time Error Conditions

$ERR-ARGMIS

$ERR-ARGNUM

$ERR_CANCEL

$ERR_INTRPT

$ERR_WRTLIT

Examples

E

F

E

E

F

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

After executing the following example, NUM will contain 087, which is
the decimal character code for 'W'.

RECORD

PROC

NUM. D3
CHAR. Ai. 'WI

;Decimal character code
;ASCII character

XCALL DECML (CHAR.NUM) ;Get character code
STOP

External Subroutines 5-5

5.4 DELET

Function

DELET removes one or more versions of a file from a directory.

Format

XCAll DElET ({ch,) filespec)

ch (N)

filespec (R)

General Rules

is a numeric field or numeric literal that specifies a channel
number.

is an alpha field, alpha literal, or record that contains a file
specification.

• If the specified file does not exist, no error is given.

• The file is deleted unless it is protected by the system.

Rules for Multi-Version File Systems

• The file specification may contain wildcards.

• If the file specification does not specify a version number, all versions
are deleted.

• DELET will attempt to delete all the files before generating an error.

Run-Time Error Conditions

$ERR--ARGNUM

$ERR_CANCEL

$ERR-INTRPT

$ERR_WRTLIT

Examples

F

E

E

F

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

The following program will delete all versions of the file ARMAST.DDF:

RECORD

PROC
NAME. A10. 'ARMAST.DDF'

XCALL DELET (NAME)
STOP

;Delete ARMAST.DDF

5-6 External Subroutines

5.5 ERROR

Function

ERROR returns the error number and the line number at which the last
trappable error occurred.

Format

XCALL ERROR (errnum{, line}J

errnum (W) is a numeric field that is to contain the error number.

line (W) is a numeric field that is to contain the line number.

Rules

• errnum should be a three digit field.

• The error number is moved to errnum according to the rules for
moving numeric data.

• The line field should be large enough to hold the largest line number
in the program.

• The line number is moved to line according to the rules for moving
numeric data.

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR-ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR_INTRPT E Interrupt character detected

$ERR_WRTLIT F Attempt to store data in a literal

External Subroutines 5-7

Examples

Assuming that the statement C=5/0 is on line 7, LINE will contain 0007
and ERR will contain 0030, which is the Divide by 0 error number.

RECORD

PROC

BAD.

5-8 External Subroutines

LINE. D4
ERR. D4
C. D4

ONERROR BAD
C=5/0

XCALL ERROR (ERR. LINE) ;Get error and line #

5.6 FATAL

Function

FATAL specifies the action to be taken when a non-trappable error is
detected by the run-time system.

Format

XCALL FATAL (action{, [afield] J)
avar

action (R)

afield (R)

is a numeric field or decimal literal that directs the run-time
system what to do in the event of a fatal, error.

is an optional argument which contains the file name of a
program to run in place of this program if an untrapped
error occurs.

avar (W) is an optional record or field that receives the name of the
default user-designated program if action is equal to three
(3).

Rules

• When an un trapped error occurs, the user-designated program is
sent a message which contains error information. The format of the
message is:

ERR1. D3
ERR2. Dl0
ERLN. 010
MODUL. A31
PRGNM. A31

;DIBOL fatal error number
;Additional system information
;Line number of statement causing the error
;Name of routine which caused the error
; Name of the main program

• If the program that encounters the error is running detached, the
user-designated program is started detached.

• If the program that encounters the fatal error is running at a terminal,
the user-designated program is started at the terminal.

External Subroutines 5-9

• Acceptable action values are:

o Return to system level on untrapped error. The second argument is
optional and ignored.

1 Use the default user-designated program on an untrapped error. If
there is no default user-designated program, return to the system level.
The second argument is optional and ignored.

2 Use the user-designated program specified by afield on the untrapped
error. This filespec designation remains in effect while the current
program is running. The second argument is required.

3 Return, in avar, the name of the default user-designated program. If
none is defined, return spaces. The second argument is required and
must be avar.

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR-ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR-INTRPT E Interrupt character detected

$ERR_OUTRNG F Value out of range

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following statement designates the program BADERR as the program
to execute when an untrapped error occurs:

XCALL FATAL (2. 'BADERR')

The following statement specifies that no program is to be loaded when
an untrapped error occurs. Instead, control will be returned to the system
level.

XCALL FATAL (0)

5-10 External Subroutines

5.7 FILEC

Function

FILEC allows the creation of files.

Format

XCALL FILEC (afieldl,afield2)

afield1

afieId2

Rules

(R)

(R)

contains the name of the file to be created.

contains the name of the file containing the necessary
information to create the file.

• For VAX, the second argument will be the name of an FDL (File
Description Language) file.

• For RSTSjE, the second argument will be the name of a DES
(RMSDES) file.

External Subroutines 5-11

5.8 FLAGS

Function

FLAGS alters operating parameters of the run-time system.

Format

XCAll FLAGS (parameters{,action})

parameters (R)

action (R)

Rules

is a numeric field or numeric literal which contains the
FLAGS parameters.

is a numeric field or numeric which alters the action of the
subroutine.

• The digits in the parameters field are right-justified.

• Each digit corresponds to a parameter.

• The digits are numbered from right to left.

• Acceptable action values are:

Value

Not specified/passed

o

1

2

Meaning

Parameters where a non-zero appears are
enabled and remaining parameters are disabled.

Parameters where a non-zero appears are dis­
abled and remaining parameters are unchanged.

Parameters where a non-zero appears are en­
abled and remaining parameters are unchanged.

The current value for the parameters is moved
into the parameters field and is moved according
to the rules for moving data to a numeric field.

Rules When Action is 2

•
•

parameters must be a numeric field it cannot be a literal.

parameters should be a 10 digit field .

5-12 External Subroutines

• The parameters are moved to the parameters field according to the
rules for moving numeric data.

Figure 5-1: FLAGS Option Fields

Suppress Terminator Echo Data Formatting

Explicit Terminator Unrequired Upper flower Case Character

Ignore Interrupt Sequences File Protection

Suppress STOP Message

Disable RMS Carriage Control

RUBOUT for Video Displays

Suppress Character Echo

Table 5-1:
Pos Value

1 False

True

2 False

True

3 False

MK-02720-00

FLAGS Argument Parameter Assignments
Definition

Enable U.s. data formatting by using commas and a period to
separate money units (123,456.78).

Enable international data formatting by using periods and a
comma to separate money units (123.456,78).

Perform an UPCASE operation on all characters entered from
a character oriented device.

Do not perform an UPCASE operation on characters entered
from a character oriented device.

Permit a file to be opened in Output mode regardless of the
existence of a file with the same file name.

External Subroutines 5-13

Table 5-1 (Cont.): FLAGS Argument Parameter Assignments
Pos

4

5

6

7

8

9

10

5-14 External Subroutines

Value Definition

True Detect an attempt to open a file in output mode when one
having the same file name already exists and generate an
error.

False In response to a delete character sequence entered from a
character oriented device during a READS operation, remove
the previously entered character from the associated device
buffer and echo the character delete confirmation sequence for
a hard copy device.

True In response to a delete character sequence entered from a
character oriented during a READS operation, remove the
previously entered character from the associated device buffer
and echo the character delete confirmation sequence for video
display device.

False

True

Any

False

Echo character oriented device input.

Do not echo character oriented device input.

Implementation dependent.

Do not suppress messages issued upon normal completion of
a program.

True Suppress messages issued upon normal completion of a
program.

False Do not ignore any program termination sequence entered
from a character oriented device.

True Ignore any program termination sequence entered from a
character oriented device.

False

True

False

Require an explicit termination character sequence for input
from a READS operation from a character oriented device
regardless of the number of characters entered.

Implicitly terminate a READS operation from a character
oriented device when the input field is filled.

Echo termination characters or sequences entered from a
character oriented device.

True Do not echo termination characters or sequences entered from
a character oriented device.

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR_ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR_INTRPT E Interrupt character detected

$ERR_OUTRNG F Value out of range

$ERR_WRTLIT F Attempt to store data in a literal

Examples

Disabling character echo is particularly useful when accepting passwords
as in the following example. FLAGS digit five (5) is used to control
character echo.

RECORD

PRoC
PASS. Al0

OPEN O. I. 'TT: ')
DISPLAY (1. 'Enter password: ')
XCALL FLAGS (0000010000.1)
READS O. PASS)
XCALL FLAGS (0000010000.0)

; Password

;open terminal
;Display password prompt
Disable character echo
Accept password
Re-enable character echo

External Subroutines 5-15

5.9 INSTR

Function

INSTR searches a string of data for another string.

Format

XCALL I NSTR (start, string 1,string2,positionj

start

stringl

string2

position

Rules

(R) is a numeric field or numeric literal which specifies the
character position within stringl where the search begins.

(R) is an alpha field, alpha literal, or record to be searched.

(R) is an alpha field, alpha literal, or record to be searched for
in stringl.

(W) is a numeric field that is to contain the starting character
position of string2 within string1.

• The starting position specifies the position within string1 where the
search begins. The starting position indicates the leftmost boundary
for string1.

• If the starting position is less than one or is greater than the length of
string1, no search takes place and the position field is set to zero.

• The position field is set to a numeric value indicating the leftmost
position of string2 within string1. The complete string2 (all characters
in the order specified) must be found within string1.

• If the search is unsuccessful, the position field is set to zero.

• The value indicating the leftmost position of string2 within string1 is
moved to the position field according to the rules for moving numeric
data.

5-16 External Subroutines

Run-Time Error Conditions

$ERR--ARGMIS

$ERR_ARGNUM

$ERR_CANCEL

$ERR_INTRPT

$ERR_WRTLIT

Examples

E

F

E

E

F

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

The following program reads in a file name and, if the file name contains
'.ISM', opens the file in 1:1 (Indexed) mode. Otherwise, the file is opened
in I mode.

RECORD

PROC

POS.
NAME.

D3
A80

OPEN (1. I . 'TT: ')
DISPLAY (1. 'Enter file name: ,)
READS (1. NAME)
XCALL INSTR (1.NAME.' .ISM' .POS)
IF POS.NE.O

THEN
OPEN (3.I:I.NAME)

ELSE
OPEN (3.I.NAME)

;Where .ISM was found
;File name

;Open terminal
;Display file name prompt
; Get file name
;Check for indexed file
;Indexed file?
;Yes--
;Open indexed file

;Open non-indexed file

External Subroutines 5-17

5.10 MONEY

Function

MONEY specifies a currency symbol as either the dollar symbol ($) or
some other selected symbol.

Format

XCALL MONEY (afield)

afield (R) is an alpha field, alpha literal, or record which contains the
currency symbol.

Rules

• The currency symbol may be any ASCII character except comma (,),
period (.), asterisk (*), hyphen (-), or the letters X and Z.

• The currency symbol shall remain in effect until an XCALL MONEY is
executed specifying a different character or the program terminates.

• If afield is longer than one character, only the first (leftmost) character
is used.

Run-Time Error Conditions

$ERR_ARGMIS

$ERR-ARGNUM

$ERR_CANCEL

$ERR_INTRPT

Examples

E

F

E

E

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

In the following example the MONEY subroutine is used to change the
currency symbol to '#'. The example will display' #1234567.89'.

RECORD

PROC

5-18 External Subroutines

A. Dl0. 0123456789
B. A15

OPEN O. O. ' TT: ')
XCALL MONEY (' # ')
B=A. '############.XX'
WRITES (l.B)
CLOSE 1
STOP*

;Open terminal
;Change currency symbol
;Format value
;Display formatted value
;Close terminal

5.11 RENAM

Function

RENAM changes the name of an existing file.

Format

XCALL RENAM ((ch,jnewfile,oldfile)

ch

newfile

oldfile

Rules

(N) is a numeric field or numeric literal that is ignored (vestigial
argument).

(R) is an alpha field, alpha literal, or record that contains the
new file specification.

(R) is an alpha field, alpha literal, or record that contains the
current file specification.

• The rename operation follows the flowchart in Figure 5-2.

• A file can be renamed from one directory to another, but not from one
device to another.

• If oldfile does not exist, a File not found error is generated and the
rename operation is terminated.

• If newfile exists and specifies a file different from oldfile, but digit po­
sition three in the FLAGS subroutine is set to prevent the superseding
of an existing file, a Cannot supersede existing file error is generated
and the rename operation is terminated.

• If newfile specifies the same file as oldfile, the results are system
dependent.

• On RSTS IE, if digit position three in the FLAGS subroutine is clear,
the file is deleted and a File not found error is generated. If FLAG 3
is set, the file will not be deleted and no error occurs.

• On VAX and PRO, the file will not be deleted and no error occurs. If
FLAG 3 is clear, old versions of the specified file may be deleted.

External Subroutines 5-19

Rules for Multi-Version File Systems

• If an error occurs during the processing of multiple versions of a file
(such as a file protection error), processing continues if possible and
an error is generated upon completion.

• If the version number of newfile is omitted or the version number is a
wildcard (specified with an asterisk (*)), all versions of newfile will be
deleted prior to the actual rename operation.

• If the version number of oldfile is omitted or the version number is
wild, all versions of oldfile will be renamed.

• If the version number of oldfile is zero or blank, the latest version of
oldfile will be renamed.

• If the version number of oldfile is explicit, that version of oldfile will be
renamed.

• If the version number of oldfile is omitted or the version number
is wild, and the version number of newfile is explicitly specified,
unpredictable results may occur.

• The order of the versions of oldfile will be retained when the fields are
renamed to newfile.

5-20 External Subroutines

Figure 5-2: RENAM Flowchart

Does oldfile exist? _____ n_o ___ ~. FILE NOT FOUND __ ---'.~Exit

I V"

error

Does newfile exist? _____ n_o ___________________ ------,

Iv"
Is FLAG 3 set? ______ y'-e_s ___ -----'l.~ supersede _____ --l.~Exit i

oo
,,,m

Is newfile same

me a~:df;Jel-------n-o----. .. delete rwme

Rename oldfile
to newfile

~
Exit MK-02721-00

External Subroutines 5-21

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR-ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR_FNF E File not found

$ERR-INTRPT E Interrupt character detected

$ERRJROTEC E Protection violation

$ERR_WRTLIT F Attempt to store data in a literal

$ERR-REPLAC E Cannot supersede existing file

Examples

The following statement will rename the file OLDFIL.DDF to NEWFIL.DDF:

XCALL RENAM ('NEWFIL.DDF' ,'OLDFIL.DDF')

5-22 External Subroutines

5.12 RSTAT

Function

RSTAT returns the size and terminating character for the last record read
by a READ or READS statement.

Format

XCALL RSTAT (sizer, char})

size (W) is a numeric field that is to contain the record size.

char (W) is an alpha field or record that is to contain the terminating
character.

Rules

• The record size is moved to size according to the rules for moving
numeric data.

• char should be a one character field.

• The terminating character is moved to char according to the rules for
moving alpha data.

Run-Time Error Conditions

$ERR-ARGMIS

$ERR-ARGNUM

$ERR_CANCEL

$ERR_INTRPT

$ERR_WRTLIT

Examples

E

F

E

E

F

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

The program that follows creates a sequential file called NEWFIL.DDF and
fills the file with records from the file called OLDFIL.DDF (Le., a copy
operation). Since the size of the input records may vary, RSTAT is used to
obtain the record size following each READS. The WRITES is then done
by specifying a substring.

External Subroutines 5-23

RECORD

PROC

IN. A256
SIZE. D3

OPEN (1.1. 'OLDFIL.DDF')
OPEN (2.0. 'NEWFIL.DDF')

LOOP. READS (l.IN.DONE)
XCALL RSTAT (SIZE)
WRITES (2.IN(1.SIZE))
GO TO LOOP

DONE.

5-24 External Subroutines

CLOSE 1
CLOSE 2
STOP

;Input record
;Input record size

;Open old file
;Create new file
;Read a record
; ... and get its size
;Copy record to new file

5.13 SIZE

Function

SIZE returns the size of a field.

Format

XCALL SIZE ([Z~~] ,size)

field (R) is a variable or literal to be measured.

exp (R) is an expression to be measured.

size (W) is a numeric field which is to contain the size in characters
or digits.

Rules

• The size of a subroutine argument which is not passed is -1.

• The size of an alpha field or numeric field is the number of characters
as specified in the Data Division.

• The size of a record is the sum of the size of the fields which are part
of the record.

• The size of an alpha literal is the number of characters required to
store it.

• The size of a decimal literal is equal to the actual number of digits in
the literal. Plus and minus signs are not counted.

• The size is moved to size according to the rules for moving decimal
data.

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR-ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR_INTRPT E Interrupt character detected

$ERR_WRTLIT F Attempt to store data in a literal

External Subroutines 5-25

Examples

Creating a relative file requires that the size of the records to be placed
in the file be specified in the OPEN. This can be done by counting the
characters and hard-coding the value in the OPEN. This can also cause
maintenance problems when new fields are added to the record. A better
method is to use the SIZE subroutine to determine the size of the records
as in the following example:

RECORD

RECORD

PROC

5-26 External Subroutines

SIZE.
EMPREC
NAME.
BGN.
SAL.
TITLE.
DEP.

D3

A20
D6
Dl0
Al0
D2

;Size of packed field
;Employee record
;Employee name
;Beginning date
;Current salary
;Current title
;Number of dependents

XCALL SIZE (EMPREC.SIZE) ;Get employee record size
OPEN (1.0;R. 'EMPFIL.DDF' .RECSIZ:SIZE) ;Create file

5.14 TIME

Function

TIME returns the current system time of day.

Format

XCALL TIME (nfield)

nfield (W) is a numeric field that is to contain the current system time.

Rules

• The time is moved to nfield according to the rules for moving numeric
data.

• The time is returned in a 24-hour notation in the format:

hhmmss

hh is the number of hours elapsed since midnight.

mm is the number of minutes elapsed since the last hour.

55 is the number of seconds elapsed since the last minute.

Run-Time Error Conditions

$ERR-ARGMIS

$ERR-ARGNUM

$ERR_CANCEL

$ERR_INTRPT

$ERR_WRTLIT

Examples

E

F

E

E

F

Argument missing

Incorrect number of arguments passed

Cancel character detected

Interrupt character detected

Attempt to store data in a literal

Assuming that the current time is 2:45:57 P.M., CURTIM will contain
144557 in the following example:

RECORD

PROC
CURTIM. D6

XCALL TIME (CURTIM)
STOP

;Current time

;Get current time

External Subroutines 5-27

5.15 nSTS

Function

TT5T5 returns an indication of waiting terminal input.

Format

XCALL TTSTS (nfield{,ch})

nficld (W) is a numeric field which is to contain the number of
characters waiting to be input.

ch (R) is a numeric field or numeric literal that evaluates to a
channel number as specified in a previous OPEN statement.

Rules

• If ch is not passed, the default character oriented device associated
with the program is assumed. If no default terminal exists, a zero (0)
is returned.

• TT5T5 indicates the status by returning one of the following in dfield:

zero (0) if no characters are waiting

non-zero if one or more characters are waiting.

• The status is moved to nfie/d according to the rules for moving nu­
meric data.

• If there is at least one character in the buffer, execution of an ACCEPT
will not cause an I/O wait.

• If there is nothing in the buffer and an ACCEPT is done, the program
will wait for keyboard input.

Run-Time Error Conditions

$ERR-ARGMIS E Argument missing

$ERR-ARGNUM F Incorrect number of arguments passed

$ERR_CANCEL E Cancel character detected

$ERR...JNTRPT E Interrupt character detected

$ERR_WRTLIT F Attempt to store data in a literal

5-28 External Subroutines

Examples

The following example continuously displays a counter at the terminal.
However, the program is designed to stop if a carriage return is entered.

RECORD NUMBER
A15. 'Loop counter = ,

RECORD

PROC

CTR. D5

ARG. Dl
CHAR. D3

OPEN (1. I . 'TT: ')
DO

BEGIN
INCR CTR
WRITES (l.NUMBER)
XCALL TTSTS (ARG.l)
IF ARG

ACCEPT (l.CHAR)
END

UNTIL CHAR.EQ.13
CLOSE 1
STOP

;Open terminal

;Increment loop counter
;Display loop counter
;See if a key was typed
;Was a character entered?
;Yes--Get the character

;Carriage return?
;Close terminal

External Subroutines 5-29

Appendix A

dpANS OIBOL Character Set

Table A-I shows the 128-character ASCII character set and the corre­
sponding decimal codes used by dpANS DIBOL for data and program
statements. The order of the character set, as shown, establishes the
collating sequence.

All characters may be used for data input from the terminal and output to
the terminal and printer.

(dpANS) DIBOL stores both alphanumeric and decimal data in character
code form. To distinguish between positive and negative numbers, the
negative numbers are stored with a character in the place of the least
significant digit. The characters p through yare used to represent the
least significant digit (0-9) in a negative number. Thus, the negative
value -1234 (or 1234-) is stored internally as 123t. This means that any
program that neglects to perform decimal-to-alphanumeric conversion
before output to a device may produce numeric values that contain an
alphabetic character as the least significant digit.

dpANS DlBOL Character Set A-1

Table A-1: dpANS DIBOL Character Set

DEC HX OCT ASC DEC HX OCT ASC DEC HX OCT ASC

000 00 000 <NUL> 032 20 040 <SPACE> 064 40 100 @

001 01 001 "A 033 21 041 065 41 101 A

002 02 002 "8 034 22 042 " 066 42 102 8

003 03 003 "C 035 23 043 # 067 43 103 C

004 04 004 "0 036 24 044 $ 068 44 104 0

005 05 005 "E 037 25 045 % 069 45 105 E

006 06 006 "F 038 26 046 & 070 46 106 F

007 07 007 "G <8EL> 039 27 047 I 071 47 107 G

008 08 010 "H <8S> 040 28 050 072 48 110 H

009 09 011 "' <HT> 041 29 051 073 49 111

010 OA 012 "J <LF> 042 2A 052 074 4A 112 J

011 08 013 "K <VT> 043 28 053 + 075 48 113 K

012 OC 014 "L <FF> 044 2C 054 076 4C 114 L

013 00 015 "M <CR> 045 20 055 - 077 40 115 M

014 OE 016 "N 046 2E 056 078 4E 116 N

015 OF 017 "N

016 10 020 "P

017 11 021 "0

018 12 022 "R

019 13 023 "S

020 14 024 "T

021 15 025 "U

022 16 026 "V

023 17 027 "W

024 18 030 "X

025 19 031 "Y

026 lA 032 "Z

027 18 033 "[<ESC>

028 lC 034 "\

029 10 035 "]

030 lE 036 ..

031 IF 037

047 2F 057 /

048 30 060 0

049 31 061

050 32 062 2

051 33 063 3

052 34 064 4

053 35 065 5

054 36 066 6

055 37 067 7

056 38 070 8

057 39 071 9

058 3A 072

059 38 073

060 3C 074 <

061 3D 075

062 3E 076 >

063 3F 077

A-2 dpANS OIBOl Character Set

079 4F 117 a
080 50 120 P

081 51 121 0

082 52 122 R

083 53 123 S

084 54 124 T

085 55 125 U

086 56 126 V

087 57 127 W

088 58 130 X

089 59 131 Y

090 5A 132 Z

091 58 133 [

092 5C 134 \

093 50 135]

094 5E 136

095 5F 137

DEC HX OCT ASC

096 60 140

097 61 141 a

098 62 142 b

099 63 143 c

100 64 144 d

101 65 145 e

102 66 146 f

103 67 147 9

104 68 150 h

105 69 151 i

106 6A 152

107 68 153 k

108 6C 154 ,

109 60 155 m

110 6E 156 n

111 6F 157 0

112 70 160 p (-0)

113 71 161 q (-1)

114 72 162 r (-2)

115 73 163 s (-3)

116 74 164 t (-4)

117 75 165 u (-5)

118 76 166 v (-6)

119 77 167 w (-7)

120 78 170 x (-8)

121 79 171 y (-9)

122 7A 172 z
123 78 173

124 7C 174 I

125 70 175

126 7E 176

127 7F 177

M K -02739-00

Appendix B

Error Handling

B.1 Introduction

DIBOL provides for the reporting to the executing program, conditions
that result from the execution of various statements. The mechanism that
accomplishes this communication detects the condition and provides a
value that is available to the executing program for internal determination.

If error trapping is enabled, a branch in program execution shall take place
to the specified label, and processing is resumed at that point.

If error trapping is not enabled or if the condition is one which does not
allow recovery, the program execution shall be terminated.

B.2 Error Numbers

Error numbers shall be implementation dependent. Each given imple­
mentation may return error numbers for any condition or state that is
appropriate to the environment.

B.3 Error Mnemonics

Each implementation shall resolve the defined error mnemonics for
American National Standard DIBOL consistent with the error num­
ber returned at execution time. The mechanism for resolution shall be
implementation dependent.

Error Handling 8-1

B.4 Error Conditions

8-2 Error Handling

Standard error conditions for American National Standard DIBOL, associ­
ated mnemonics and the condition which generates the error shall be as
described in Table B-1.

Table B-1: dpANS Error Mnemonics

Mnemonic

$ERR_ARGMIS

$ERR_ARGNUM

$ERR_BADCMP

$ERR_BADKEY

Severity
Level

E

E

F

F

F

E

Definition

Invalid value specified for ALLOC

The ALLOC value specified in
an open statement is outside the
permitted range of values.

Argument missing

An argument expected by the
external subroutine was not passed.

Incorrect number of arguments
passed

The number of arguments passed
to the external subroutine was
greater than the required number of
arguments defined in the external
subroutine.

Argument specified with wrong
size

An argument was passed in a call to
an external subroutine that did not
match the size expected.

Compiler not compatible with
execution system

This routine was compiled with a
compiler that is not supported by
this runtime system.

An illegal key was specified

The key specified does not match
any of the keys defined for the file
in an indexed I/O operation.

Table 8-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR_BIGNUM

$ERR_BKTSIZ

$ERR_BLKSIZ

$ERR_BUFSIZ

$ERR_CANCEL

$ERR_CHNEXC

$ERR_CHNUSE

$ERR_DEVUSE

Severity
Level

E

E

E

E

E

E

F

E

Definition

Arithmetic operand exceeds 18
digits

An operand in an arithmetic opera­
tion exceeds the allowable number
of digits.

Invalid value specified for BKTSIZ

The BKTSIZ: value specified in
an open statement is outside the
permitted range of values.

Invalid value specified for BLKSIZ

The BLKSIZ: value specified in
an open statement is outside the
permitted range of values.

Invalid value specified for BUFSIZ

The BUFSIZ: value specified in
an open statement is outside the
permitted range of values.

Cancel character detected

The user entered the system specific
cancel character.

Too many channels open

An attempt to open more channels
than is supported by this system.

Channel is in use

An open statement was executed
which specified a channel number
currently in use.

Device in use

An OPEN statement attempted to
open a non-shareable device that
was in use.

Error Handling 8-3

8-4 Error Handling

Table B-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR_FILFUL

$ERRJILOPT

$ERRJILORG

$ERRJILSPC

$ERRJINUSE

Severity
Level

E

E

E

E

E

E

E

E

Definition

Bad digit encountered

The alpha value converted to a
numeric value contained a character
other than a numeric digit, a space,
or a sign character (+ or '-).

Attempt to divide by zero

An arithmetic operation attempted
to divide by zero.

End of file encountered

The end of file has been detected on
a READS or READ or the system
specific end of file indicator has
been entered from a character
oriented device during an ACCEPT
or READS.

Output file is full

All space allocated for a file has
been filled, and the file cannot be
extended.

An invalid operation for file type

An I/O statement was issued for a
file which was not allowed by the
mode in which the file was opened.

Invalid file organization specified

The mode specified in an OPEN
statement did not match the organi­
zation of the file being opened.

Bad file name

The file name contained a syntactical
error.

File in use by another user

The file specified in an OPEN is
in use by another user and is not
available as a shared file.

Table 8-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERRJNF

$ERR_ILLCHN

$ERR_INTRPT

$ERR_IOF AIL

$ERR_IOMODE

$ERR-KEYNOT

$ERR_LOCKED

$ERR_NOCURR

Severity
Level

E

F

E

E

E

E

E

F

E

Definition

File not found

The file name used does not match
an existing file name.

Illegal channel number specified

A channel number was specified
that is outside the legal range of
channel numbers.

Interrupt character detected

The user entered the system specific
interrupt character.

Bad data encountered during I/O
operation

A system error was returned during
an I/O operation that indicates the
data transfer was incorrect.

Bad mode specified

A mode was specified in an OPEN
that conflicts with the file organiza­
tion or is invalid.

Key not same

The key value specified does not
match an existing record in the file.

Record is locked

This record or group of records is in
use by another user.

Return with no CALL or XCALL

A RETURN or XRETURN was
executed in a program without a
previous CALL or XCALL.

No current record

There is not a current record spec­
ified on the channel on which the
I/O operation was executed.

Error Handling 8-5

8-6 Error Handling

Table 8-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR-NODUPS

$ERR-NOMEM

$ERR-NOOPEN

$ERR-NOTDIB

$ERR-NUMREC

$ERR_ONLYRD

$ERR_ONL YWR

Severity
Level

E

E

F

E

F

E

E

E

Definition

Duplicate key specified

A duplicate key was specified in
a file that was declared as not
allowing duplicate keys.

Not enough memory for desired
operation

This operation could not be per­
formed with available memory.

Channel has not been opened

An I/O operation was attempted on
a channel that has not been opened.

No space exists for file on disk

There is not enough room on the
specified disk for the output file.

Caller not DIBOL

A call was made by a non-DIBOL
program.

Invalid value specified for
NUMREC

The NUMREC: value specified in
an open statement is outside the
permitted range of values.

Attempt to write to read only
device

A write operation was attempted on
a read only device.

Attempt to open output device in
Input mode

An attempt to open a write only
device in input mode.

Table B-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR_OUTRNG

$ERR_PROTEC

$ERR_RECNUM

$ERR_RECSIZ

$ERR_REPLAC

Severity
Level

F

E

E

E

E

E

E

F

Definition

Value out of range

A statement parameter or argument
is outside the range of permitted
values.

Protection violation

An attempt has been made to access
a resource that is protected from this
user.

Illegal record number specified

An illegal record number has been
specified.

Invalid value specified for RECSIZ

The RECSIZ value specified in an
OPEN statement is outside the
permitted range of values.

Cannot supersede existing file

An attempt was made to supersede
a file which has been protected
against deletion.

Record not found

The record specified does not exist.

Invalid subscript specified

A value specified as a subscript
is outside the allowable range of
values.

System error

An error occurred during an operat­
ing system or other external system
service call.

Error Handling 8-7

8-8 Error Handling

Table B-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR_TOOBIG

$ERR_ARGCOUNT

$ERR_ARGOUTLIM

$ERR_ARGOUTORD

$ERR_CHADEFERR

$ERR_CMPERR

$ERR_DBLRTLERR

Severity
Level

E

F

E

E

E

F

F

F

Definition

Input data size exceeds destination
size

An attempt to store data into a
destination that is not sufficient to
contain the complete data transfer.

Attempt to store data in a literal

An attempt has been made to store
data into a literal.

Needs minimum of three argu­
ments

A call to P AK requires a minimum
of three arguments.

Argument out of record

An argument specified in a call
to P AKjUNP AK is outside of the
specified record area.

Arguments out of order

The arguments specified in a call to
PAKjUNPAK are not in the correct
order.

Channel definition error

An internal error occurred in the
DIBOL Run-Time Library. Please
submit an SPR.

Compilation error

Execution of a statement which
contained a compilation error was
attempted.

DIBOL Run Time Library internal
error

An error occurred in the DIBOL
Run-Time Library software. Please
submit an SPR.

Table B-1 (Cont.): dpANS Error Mnemonics
Severity

Mnemonic Level Definition

$ERR_DEVNOTRDY E Device not ready

The device accessed by a I/O
statement was off-line or otherwise
not ready.

$ERR_EXQUOTA E Exceeded quota

$ERRJLDNOTPAK E Field not packed

A field specified in a call to UNP AK
was not packed.

$ERRJLDRECLNG F Field or record too long

The size of a field or record exceeds
the maximum allowed size.

$ERRJlANNOTA V A E Device handler not available

The device specified is not known to
the operating system.

\ $ERR-ILLBIOSIZ E Illegal block I/O record size

The record size specified in a block
I/O statement was not a multiple of
512 bytes.

$ERR_ILL TRMNUM E Illegal terminal number

The VMS terminal identification
could not be translated into a
DIBOL terminal number, or a
DIBOL terminal number could not
be translated into a VMS terminal
identification.

$ERR-INV ARGTYP F Invalid argument type

An argument passed to a library
routine was of the wrong type
(alpha instead of decimal, or decimal
instead of alpha).

$ERR-INVKEYNUM E Invalid KEYNUM value

Invalid key of reference specified
with KEYNUM keyword on READ
or FIND.

Error Handling 8-9

Table 8-1 (Cont.): dpANS Error Mnemonics
Severity

Mnemonic Level Definition

$ERR_JOBST AERR

$ERR~OMSGMGR E Unable to open message manager
mailbox

The mailbox used by the DIBOL
SEND /RECV message manager
could not be opened.

$ERR_NO-RECSIZ E RECSIZ keyword required

Record size is required by OPEN
modes O:R, 0:1 and OPEN keyword
NUMREC.

$ERR_NO_SUCOPR F No such operation (RMS)

Support for the VAX RMS service or
option is not present in the system.

$ERR~OTISMFIL E Not ISAM file

An OPEN statement attempted to
open a non-indexed file using SI or
SU mode.

$ERR_OPENERROR E Error during file open

An unexpected error occurred while
attempting to open a file.

$ERR_QUENOT A V A E Queue not available or invalid
queue name

The queue specified in an LPQUE
statement was either not available or
invalid.

$ERR_RECEXTCAL F Recursive external call

8-10 Error Handling

Table B-1 (Cont.): dpANS Error Mnemonics

Mnemonic

$ERR-RMSERROR

$ERR_TIMOUT

$ERR_UNDOPC

Severity
Level

F

E

F

Definition

Unexp~cted RMS error

An unanticipated RMS error oc­
curred.

Time out detected

Undefined opcode

An internal error was detected
by the DIBOL Run-Time Library.
Please verify that compatible ver­
sions of the DIBOL compiler and
RTL are being used. If the compiler
and RTL are compatible, please
submit an SPR.

Error Handling 8-11

Glossary

alpha A character set that contains letters, digits, and other characters, such as
punctuation marks.

alpha expression A valid combination of operands and operators where all
operands are alpha data type.

alphabetic A character set that contains only letters.

arithmetic expression An expression that consists entirely of arithmetic opera­
tors and their numeric operands. It evaluates to a numeric value.

array A DIBOL technique for specifying more than one field of the same length
and type.

ASCII American Standard Code for Information Interchange. This is one method
of coding alphanumeric characters.

binary operator An operator, such as * or /' which acts upon two or more
constants or variables (e.g., BC).

branch change in the sequence of execution of DIBOL program statements.

byte A group of eight bits considered as a unit.

channel A number used to associate an input/output statement with a specified
device.

character A letter, digit, or other symbol used to control or to represent data.
One character is equivalent to one byte.

Glossary-1

character string A connected linear sequence of characters.

clear Setting an alphanumeric field to spaces or a numeric fieJd to zeros.

comments Notes for people to read. They do not affect program execution or
size.

compiler directive A DIBOL statement that is an instruction to the compiler.

compound statement None or more procedural statements preceded by a
BEGIN declarative and followed by a matching END declarative.

conditional statement A DIBOL statement that consists of one or more key­
words, a logical expression, and a simple compound statement that is executed
based upon the truth value of the logical expression.

continuation line A physical line whose first non-spacing character is an am­
persand. Text following the ampersand is considered part of the current logical
line.

data A representation of information in a manner suitable for communication,
interpretation, or processing by either people or machines. In DIBOL systems,
data is represented by characters.

Data Division DIBOL program portion that defines data areas which can be
referenced and manipulated during program execution.

data record A record within a DIBOL data file.

DEC Acronym for DIGITAL Equipment Corporation.

decimal DIBOL data type used to store numeric-only data in zoned decimal
format.

decimal expression A combination of one or more operands and operators that
is evaluated by a prescribed set of rules to yield a single decimal value.

delimiter A separator between identifiers, keywords, and literals.

01 BOL DIGITAL'S Interactive Business Oriented Language is used to write
business application programs.

dynamic access The facility to obtain data from or to enter data into a file using
both sequential and direct access methods.

Glossary-2

dump To copy the contents of all or part of storage, usually from memory to
external storage.

end-of-file mark A control character which marks the physical end of a file.

expressions A logical or mathematical statement made up of operands and
operations. Also, any combination of variables and constants with arithmetic
operators which can be evaluated to produce a result.

external subroutine A subprogram with its own Data and Procedure Divisions
that is compiled independently, but can only be run from a calling program or
other external subroutine with which it is linked.

fatal error An error which terminates program execution.

field A specified area in a data record used for alphanumeric or numeric data;
cannot exceed the specified character length.

file A collection of records, treated as a logical unit.

file specification (filespec) An implementation specific alpha character string
used to uniquely identify a file.

flowchart A pictorial technique for analysis and solution of data flow and data
processing problems. Symbols represent operations, and connecting flowlines
show the direction of data flow.

identifier A character string that is a symbol name.

illegal character A character that is not valid according to the OIBOL design
rules.

indexed files Indexed files are Indexed Sequential Access Method files.

input Data flowing into the computer.

input/output Either input or output, or both. I/O.

jump A departure from the normal sequence of executing instructions in a
computer.

justify The process of positioning data in a field whose size is larger than
the data. In alphanumeric fields, the data is left-justified and any remaining
positions are space-filled; in numeric fields, the digits are right-justified and any
remaining positions to the left are zero-filled.

Glossary-3

key One or more fields within a record used to match or sort a file. If a file is
to be arranged by customer name, then the field that contains the customers'
names is the key field. In a sort operation, the key fields of two records are
compared and the records are resequenced when necessary.

keyword A part of a command operand that consists of a specific character string.

line See logical line, continuation line, physical line, blank line. Unless otherwise
specified, line will mean logical line.

literal An alpha, numeric, or user-defined value permanently defined in a pro­
gram.

logical expression A decimal expression, alpha field, or decimal field that is
evaluated by a prescribed set of rules to yield a truth value.

logical line A component of a DIBOL program.

location Any place where data may be stored.

loop A sequence of instructions that is executed repeatedly until a terminal
condition prevails. A commonly used programming technique in processing
data records.

machine-level programming Programming using a sequence of binary instruc­
tions in a form executable by the computer.

mass storage device A device having large storage capacity.

master file A data file that is either relatively permanent or that is treated as an
authority in a particular job.

memory The computer's primary internal storage.

merge To combine records from two or more similarly ordered strings into
another string that is arranged in the same order. The latter phases of a sort
operation.

mnemonic Brief identifiers which are easy to remember. Example: ch (channel).

mode A designation used in OPEN statements to indicate the purpose for which
a file was opened or to indicate the input! output device being used.

Glossary-4

modulo A condition where the specified number exceeds the maximum condition
in a variable. The maximum allowable number is then subtracted from the
specified number, and the remainder is used by the processor. In modulo 16,
if 17 were specified (maximum is 15), 16 would be subtracted from 17 and the
processor would use 1 as the value.

nest To embed subroutines, loops, or data in other subroutines or programs.

object program A file which is output by the compiler or assembler.

output Data flowing out of the computer.

parameter A variable that is given a constant value for a specific purpose or
process.

physical line A record within a text file that is a DIBOL source program.

primary key See key.

Procedure Division DIBOL program portion that defines the processing logic to
be performed at execution time.

pushdown stack A list of items where the last item entered becomes the first
item in the list and where the relative position of the other items is pushed back
one.

record A memory area composed of one or more fields.

record redefinition The technique of specifying several different record formats
for the same data. Special rules apply.

screen column number The number which indicates the order of the vertical
lines on the screen.

screen line number The number which indicates the order of the horizontal
lines on the screen.

sequential operation Operations performed, one after the other.

serial access The process of getting data from, or putting data into, storage,
where the access time is dependent upon the location of the data most recently
obtained or placed in storage.

sign Indicates whether a number is negative or positive.

Glossary-5

significant digit A digit that is needed or recognized for a specified purpose.

simple statement A DIBOL statement that performs a single function.

source program A program written in the DIBOL language.

statement An instruction in a source program.

string A connected linear sequence of characters.

subscript A designation which clarifies the particular parts (characters, values,
records) within a larger grouping or array.

syntax The rules governing the structure of a language.

system configuration The combination of hardware and software that make up
a usable computer system.

trappable error An error condition which may be trapped.

unary operator An operator, such as + or -, which acts upon only one variable
or constant (e.g., A=-C).

variable A quantity that can assume anyone of a set of values.

variable-length record A file in which the data records are not uniform in
length. Direct access to such records is not possible.

verify To determine if a transcription of data has been accomplished accurately.

zero fill To fill the remaining character positions in a numeric field with zeros.

zoned decimal A contiguous sequence of up to 18 bytes interpreted as a string
of decimal digits (1 digit per byte). The sign is stored as the high order bit in
the low order byte.

Glossary-6

A
absolute substring specification • 3-17
ACCEPT· 1-6, 3-21
addition operator (+) • 1-17
alpha expression· 1-1 5
alpha expressions· 1-15
alpha-to-numeric conversion • 3-5
ampersand· 1-9, 1-10
ampersand symbol· 1-9
ANS compatibility. 1-5
apostrophes ('). 1-13
argument definitions· 2-1
arguments· 1-2
array count· 2-9
array subscripting· 3-14
ASCII external subroutine· 5-2
automatic sizing indicator· 2-10

B
BEGIN-END· 1-3, 1-5
BEGIN-END block • 3-23
binary operators· 1-16
blank line • 1-11
Boolean operator· 1-18
Boolean operators. 1-18

c
CALL· 1-5
CALL statement· 3-25
CLEAR· 1-4

Index

clearing variables· 3-12
CLEAR statement· 3-26
CLOSE· 1-6
CLOSE statement· 3-28
comments· 1-9,1-10
COMMON· 1-4
COMMON fields in an external subroutine· 2-9
COMMON names· 2-6
COMMON statement· 2-3, 2-5, 2-6
compiler directives • 4-1
Compiler Directives and Declarations· 1-2
compiler source code. 1-3
continuation line· 1-9, 1-11
Control Statements· 1-5

o
data conversion. 3-1
Data Division· 1-3, 1-7, 2-1
data formatting • 3-1
Data Manipulation Statements· 1-4
Data Specification Statements· 1-4
DATE external subroutine. 5-3
DECML external subroutine· 5-5
DECR· 1-4
DECR statement· 3-30
DELETE· 1-6
DELETE statement· 3-31
DELET external subroutine· 5-6
delimiters· 1-9
DETACH· 1-5
DET ACH statement· 3-33
DIBOL program· 1-1, 1-7, 1-12
DIBOL Program Structure· 1-7
DISPLAY • 1-6

Index-1

DISPLA Y statement - 3-35
division operator (I) - 1-17
document symbols - xiii
double quote - 1-13
double quote n characters - 1-13
double quotes - 1-13
DO-UNTIL - 1-5
DO-UNTIL statement - 3-37
dpANS DIBOL External Subroutines - 5-1

E

.END - 1-3

.END compiler directive - 4-2
ERROR external subroutine - 5-7
error handling - B-1
error mnemonics - 1-15, B-1
error numbers - B-1
EXIT-1-5
EXITLOOP - 1-5
EXITLOOP statement - 3-40
EXIT statement - 3-39
expression evaluation - 1-16
expressions-1-2,1-15, 1-16
external subroutine- 1-3, 2-12
External Subroutines - 5-1

F

FA TAL external subroutine - 5-9
field definition - 1-4
field name in RECORD - 2-9
FILEC external subroutine - 5-11
FLAGS external subroutine - 5-12
FOR-1-5
formatting data - 3-9
FORMS-1-6
FORMS statement - 3-44
FOR statement - 3-41

G
GOTO-1-5
GOTO (computed) - 1-5
GOTO (computed) statement - 3-47
GOTO statement - 3-46

2-lndex

H
HEAD 1 STATEMENT - 3-59

I
IF- 1-5
.IFDEF-.ELSE-.ENDC-1-3
.IFDEF-ELSE-.ENDC compiler directive - 4-3
.IFNDEF-.ELSE-.ENDC - 1-3
.IFNDEF-.ELSE-.ENDC compiler directive - 4-5
IF statement - 3-48
IF-THEN-ELSE - 1-5
IF-THEN-ELSE statement - 3-50
.INCLUDE - 1-3
.INCLUDE compiler directive - 4-7
INCR-1-4
INCR statement - 3-52
initial values - 2-3, 2-10
Input/Output Statements - 1-6
INSTR external subroutine - 5-16
Intertask Communications Statements - 1-6

L
label- 1-12
line continuation - 1-9
.LlST- 1-3
.LlST compiler directive - 4-9
listing page - 1-3
literal- 1-13, 1-14
LOCASE-1-4
LOCASE statement - 3-53
logicalline-1-9, 1-10
logical line limit - 1-9
LPQUE-1-6
LPQUE statement - 3-54

M
.MAIN-1-3
.MAIN compiler directive - 2-1, 4-11
manual format - xii
MONEY external subroutine - 5-18
moving alpha data - 3-3
moving numeric data - 3-4

multiplication operator (0) • 1-17

N

NEXTLOOp·1-5
NEXTLOOP statement· 3-56
. NOLlST· 1-3
.NOLIST compiler directive· 4-12
numeric expression· 1-15, 1-16
numeric expressions· 1-16, 1-17, 1-18
numeric literal. 1-15
numeric literals· 1-14
numeric operand. 1-16
numeric rounding • 1-1 7
numeric-to-alpha conversion· 3-7

o
OFFERROR. 1-5
OFFERROR STATEMENT • 3-57
ONERROR· 1-5
ONERROR STATEMENT· 3-58
OPEN· 1-6
operands • 1-16
operands of expressions· 1-15
operators· 1-16
Operators· 1-16
order of precedence • 1-16

p

.PAGE·1-3

.PAGE compiler directive· 4-13
parentheses· 1-16
physical line· 1-9, 1-10, 1-11
.PROC·1-3
.PROC compiler directive· 2-1, 4-15
Procedure Division • 1-3, 1-7
PROC-END· 1-3

R
READ (Indexed File)· 1-6
READ (Relative File)· 1-6
READ (Relative File)statement· 3-70
READ (statement) • 3-67

READS· 1-7
READS statement. 3-72
RECORD· 1-4
record name· 2-2
RECORD statement· 2-2, 2-3
RECORD statements· 2-2
RECV· 1-6
RECV statement· 3-74
redefining a record • 2-3
redefinition indicator· 2-3, 2-6
relational expressions. 1-18
relational operators· 1-18
relative substring specification· 3-19
RENAME external subroutine· 5-19
RENAM external subroutine· 5-19
REPEAT· 1-5
REPEAT statement· 3-76
repetitive execution • 1-5
RETURN· 1-5
RETURN statement· 3-77
rounding number operator (#). 1-17
RST AT external subroutine· 5-23

s
semicolon· 1-9, 1-10
semicolon (;). 1-10
SEND· 1-6
SEND statement· 3-79
single quote· 1-13
single quotes. 1-13
SIZE external subroutine· 5-25
SLEEp· 1-5
SLEEP statement· 3-81
spacing characters· 1-10
statement· 1-2, 1-9, 1-12
statement label. 1-12
STOp· 1-5
STOP statement· 3-82
STORE· 1-7
STORE statement· 3-84
.SUBROUTINE· 1-3
SUBROUTINE· 1-3
subroutine argument name. 2-14
.SUBROUTINE compiler directive· 2-1, 4-16
subroutine name· 2-12
SUBROUTINE statement· 2-1, 2-12

Index-3

subroutine usage indicators. 5-1
substrings· 3-17
subtraction operator (-). 1-17

T
TIME external subroutine. 5-27
.TITLE· 1-3
. TITLE compiler directive • 4-17
top-of-page command. 1-3
trapping of run-time errors· 1-5
TTSTS external subroutine· 5-28

u
unary minus operator (+) • 1-17
unary operators· 1-16
unary plus operator (+) • 1-17
UNLOCK. 1-7
UNLOCK statement· 3-86
UPCASE·1-4
UPCASE statement· 3-88
USING· 1-5
USING statement· 3-90

v
value assignment statement. 1-4
value assignment statements· 3-1. 3-2
variables • 2-1
VAX DIBOL.1-5

w
WHILE· 1-6
WHILE statement· 3-93
WRITE (Indexed File)· 1-7
WRITE (Indexed File) statement· 3-94
WRITE (Relative file) • 3-96
WRITE (Relative File). 1-7
WRITES. 1-7
WRITES statement. 3-98

x
XCALL·1-6

4-lndex

XCALL statement· 3-100
XRETURN· 1-6
XRETURN statement· 3-104

HOW TO ORDER ADDITIONAL DOCUMENTATION

I DIRECT TELEPHONE ORDERS I

In Continental USA
and Puerto Rico
call 800-01GITAL

In Canada In New Hampshire,
call 800-267-6146 Alaska or Hawaii

call 800-01GITAL

I ELECTRONIC ORDERS (U.S. only) I

Dial 800-DEC-DEMO with any VT100 or VT200 compatible terminal and a
1200/2400 baud modem. If you need assistance, call 1-800-DIGITAL.

I DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

I DIRECT MAIL ORDERS (Canada) I

DIGITAL EQUIPMENT OF CANADA LTD.
100 Herzberg Road

P.O. Box 13000,
Kanata, Ontario, Canada K2K 2A6
Attn: DECDIRECT OPERATIONS

I INTERNATIONAL I

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the
Software Distribution Center (SDC) Digital Equipment Corporation,

Westminster, Massachusetts 01473-0471

• Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

800-754-7575

Reader's Comments dpANS DIBOL
Language Reference Manual

AA-KZ36A-TK

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I
I
I
I
I
I

;;~;~:- Heft pd T_ --------------ll-l-n-----------~~£;---I
II in the

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111","11.11" •• 1111"1.11.1"1.1"1"1.1,"1.11111

United States

-- Do Not Tear - Fold Here --

