dpANS DIBOL
Language Reference Manual

Order Number: AA-KZ36A-TK

March 1988

Supersession Information: This is a new manual.

Operating System: VAX/VMS Version 5.0 or later
RSTS/E DIBOL Version 9.5 or later

Software Version: Applicable to all products containing

dpANS DIBOL.

digital equipment corporation
maynard, massachusetts

March 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 DECtype LNO3 Q-bus ULTRIX-32m
A-to-Z DECUS LVP16 Rainbow UNIBUS
COMPACTape DIBOL LQP02 RDB/VMS VAX
C0S-310 DIBOL-11 LQPO3 ReGIS VAX CDD
CTS-300 DIBOL-83 MASSBUS RMS-11 VAXcluster
DATASYSTEM DMS MicroPDP-11 RSTS VMS

DEC FMS Micro/RSTS RSTS/E VNX
DECdx FMS-11 Micro/RSX RSX VT100
DECFORM GOLD KEY MicroVAX RSX-11 VT125
DECgraph J-11 MicroVAX | RSX-11M V1220
DECmail LA50 MicroVAX 1l RSX-11M-PLUS ~ VT240
DECmate LA100 MicrovMS RT-11 VT241
DECnet LA120 PDP-11 RX50 WPS
DECprinter LA210 P/OS TK50 WPS-8
DECspell Letterprinter Professional ULTRIX-11

DECsupport Letterwriter PRO/RT ULTRIX-32

™
Digital Accounting Series Professional Host Tool Kit Hnﬂnan
Message Router Work Processor

PRO/Applications Starter Kit

57733

Contents

PREFACE xi
CHAPTER 1 dpANS DIBOL LANGUAGE ELEMENTS 1-1
1.1 DIBOL CHARACTER SET 1-1
1.2 STATEMENT TYPES 1-2
1.21 Compiler Directives and Declarations 1-2

1.2.2 Data Specification Statements 1-4

1.2.3 Data Manipulation Statements 1-4

1.2.4 Control Statements 1-5

1.25 Intertask Communications Statements 1-6

1.2.6 Input/Output Statements 1-6

1.3 PROGRAM STRUCTURE 1-7
1.4 STATEMENT LINE SYNTAX 1-9
1.5 PROCEDURE DIVISION STATEMENT LABELS 1-12
1.6 LITERALS 1-13
1.6.1 Error Mnemonics 1-15

1.7 EXPRESSIONS 1-15
1.71 Alpha Expressions 1-15

1.7.2 Numeric Expressions 1-16

CHAPTER 2 DATA DIVISION 2-1
2.1 RECORD STATEMENT 2-2
2.2 COMMON STATEMENT 2-5
23 FIELD DEFINITIONS 2-8
24 SUBROUTINE STATEMENT 2-12

241 Subroutine Argument Definition 2-13

CHAPTER 3 THE dpANS DIBOL PROCEDURE DIVISION 3-1
3.1 INTRODUCTION 3-1
3.2 VALUE ASSIGNMENT STATEMENTS 3-2

3.2.1 Moving Alpha Data 3-3
3.2.2 Moving Numeric Data 3-4
3.2.3 Alpha-to-Numeric Conversion 3-5
3.24 Numeric-to-Alpha Conversion 3-7
3.25 Formatting Data 3-9
3.2.6 Clearing Variables 3-12
3.3 ARRAY SUBSCRIPTING 3-14
34 SUBSTRINGS 3-17
3.4.1 Absolute Substring Specification 3-17
3.4.2 Relative Substring Specification 3-19
35 ACCEPT 3-21
3.6 BEGIN-END BLOCK 3-23
3.7 CALL 3-25

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

CLEAR

CLOSE

DECR

DELETE

DETACH

DISPLAY

DO-UNTIL

EXIT

EXITLOOP

FOR

FORMS

GOTO

GOTO (COMPUTED)

IF

IF-THEN-ELSE

INCR

LOCASE

LPQUE

3-26

3-28

3-30

3-31

3-33

3-35

3-37

3-39

3-40

3-41

3-44

3-46

3-47

3-48

3-50

3-52

3-53

3-54

vi

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

NEXTLOOP

OFFERROR

ONERROR

OPEN

READ (INDEXED FILE)

READ (RELATIVE FILE)

READS

RECV

REPEAT

RETURN

SEND

SLEEP

STOP

STORE

UNLOCK

UPCASE

USING

3-56

3-57

3-58

3-59

3-67

3-70

3-72

3-74

3-76

3-77

3-79

3-81

3-82

3-84

3-86

3-88

3-90

3.43 WHILE 3-93
3.44 WRITE (INDEXED FILE) 3-94
3.45 WRITE (RELATIVE FILE) 3-96
3.46 WRITES 3-98
3.47 XCALL 3-100
3.48 XRETURN 3-104
CHAPTER 4 THE dpANS DIBOL COMPILER DIRECTIVES 4-1
41 GENERAL INTRODUCTION 4-1
42 .END 42
4.3 .IFDEF-.ELSE-.ENDC 4-3
4.4 .IFNDEF-.ELSE-.ENDC 4-5
45 .INCLUDE 4-7
46 .LIST 4-9
47 .MAIN 4-11
48 .NOLIST 4-12
49 .PAGE 4-13
410 .PROC 4-15

vii

4.11 .SUBROUTINE 4-16
4.12 .TITLE 4-17
CHAPTER 5 EXTERNAL SUBROUTINES 5-1
5.1 ASCII 5-2
5.2 DATE 5-3
5.3 DECML 5-5
5.4 DELET 5-6
5.5 ERROR 5-7
5.6 FATAL 5-9
5.7 FILEC 5-11
5.8 FLAGS 5-12
5.9 INSTR 5-16
510 MONEY 5-18
5.11 RENAM 5-19
5.12 RSTAT 5-23
5.13 SIZE 5-25
5.14 TIME 5-27

viii

5.15 TTSTS 5-28
APPENDIX A dpANS DIBOL CHARACTER SET A-1
APPENDIX B ERROR HANDLING B-1

B.1 INTRODUCTION B-1

B.2 ERROR NUMBERS B-1

B.3 ERROR MNEMONICS B-1

B.4 ERROR CONDITIONS B-2
GLOSSARY Glossary—1
INDEX
FIGURES

1-1 dpANS DIBOL Program Structure 1-8

5-1 FLAGS Option Fields 5-13

5-2 RENAM Flowchart 5-21
TABLES

1-1 dpANS DIBOL Delimiters 1-9

1-2 Table of Operator Precedence 1-19

1-3 Unary Operator Table 1-19
1-4 Binary Operator Table 1-20
1-5 Truth Table 1-20
3-1 Format Control Characters 3-10

ix

3-2
3-3
5-1
A-1
B-1

Shared File Access

Valid Combinations of Mode:Submode
FLAGS Argument Parameter Assignments
dpANS DIBOL Character Set

dpANS Error Mnemonics

3-63
3-64
5-13

B-2

Preface

The dpANS DIBOL Language Reference Manual contains reference
information on all aspects of the dpANS Proposed Standard for the
DIBOL Programming Language. It does not include information on any
particular operating systems or their specific effect on DIBOL.

AUDIENCE

This manual is written for:

The programmer who is new to DIBOL but is experienced in another
high-level language.

The experienced DIBOL programmer.

MANUAL ORGANIZATION

The manual is organized as follows:

This Preface orients the reader to the format used throughout the manual,
and to the terms and symbols used within the text.

Chapter 1 contains information related to the dpANS DIBOL language
elements such as the character set, statement types, program structure,
syntax, labels, literals, and expressions.

Xi

Chapter 2 references all Data Division statements including the
COMMON, RECORD, and SUBROUTINE statements, and describes
field definitions.

Chapter 3 references all the Procedure Division statements, explains the
Value Assignment Statements, and array subscripting.

Chapter 4 contains information related to Compiler Directives such as
.END, .INCLUDE, .LIST, .MAIN, .PAGE, and others.

Chapter 5 references all dqpANS DIBOL External Subroutines.

Appendix A contains the Character Set for the dpANS Proposed DIBOL
Standard.

Appendix B contains information on Error Handling.

The Glossary defines terms and phrases as used in this manual.

MANUAL FORMAT

Xii

This manual provides the reader with fast information retrieval.
The majority of the pages contain five main sections:
The FUNCTION section briefly describes or defines the subject matter.

The FORMAT section describes the correct structure or makeup of a
statement, subroutine, etc., and explains each portion of the structure.

The RULES section provides guidelines, parameters, advice, and limi-
tations for the particular subject matter. The rules are not necessarily
presented in order of importance.

The ERROR CONDITIONS sections list compiler errors and run-time
errors. The run-time errors will also indicate their assigned error number
and whether they are Trappable (T) or Non-trappable (NT). All listed
errors are particular to the subject matter, statement, or subroutine being
discussed.

The EXAMPLES section illustrates the use of the particular subject matter.

DOCUMENT SYMBOLS

The symbols defined below are used throughout this manual.

Symbol Definition

afield is the name of an alpha field.

aliteral is an alpha literal.

ch is a numeric expression that evaluates to an
input/output channel number.

nexp is a numeric expression that can be any valid
combination of operands and operators. In
its simplest cases, nexp can be a nfield or a
nliteral.

nfield is the name of a numeric field.

nliteral is a numeric literal.

field is the name of either an alpha or a numeric
field.

label is a Procedure Division statement label.

literal is either an alpha or a numeric literal.

lowercase (characters)
non-trappable error

record
subroutine

trappable error

UPPERCASE (characters)

{3

(1

mean elements of the language which are
supplied by the programmer.

is an error that causes program termination
and cannot be trapped.

is the name of a record.
is the name of a subroutine.

is an error that can cause program ter-
mination but may be trapped using the
ONERROR statement.

mean elements of the language which must
be used exactly as shown.

represent braces and mean optional argu-
ments.

represent brackets and and mean a sin-
gle choice must be made from a list of
arguments.

Xiii

xiv

Symbol

Definition

represent a horizontal ellipsis and mean the
preceding item can be repeated as indicated.

represents a vertical ellipsis and means
that not all of the statements in a figure or
example are shown.

Chapter 1

dpANS DIBOL Language Elements

This chapter contains information on the DIBOL Character Set, the various
DIBOL statement types, program structure, statement line syntax, labels,
literals, and expressions.

A DIBOL program is a sequence of statements that describes a method
for performing a task. These statements are translated by the DIBOL
compiler for subsequent execution by the DIBOL Run-Time System under
the control of the operating system.

1.1 DIBOL Character Set

A DIBOL program consists of symbolic characters that form the elements
of the language. A subset of the American Standard Code for Information
Exchange (ASCII) characters comprises this set of symbolic characters.
Characters used as data are also selected from this character set.

Appendix A lists the ASCII characters and their associated numeric codes.

dpANS DIBOL Language Elements 1-1

1.2 Statement Types

A statement is the basic unit of expression in the DIBOL language.
DIBOL statements fall into six functional groups:

Compiler Directives and Declarations
Data Specification Statements

Data Manipulation Statements
Control Statements

Intertask Communications Statements
Input/Output Statements

A statement has one or more elements. The first element is usually an
English language verb that characterizes or symbolizes an action to be
performed (such as READ, WRITE, SLEEP, OPEN, and CALL).

The other elements of a statement may be arguments, expressions, or
other statements. Arguments consist of symbolic data names, references
to statement labels, and expressions of data values or relationships.
Arguments specify the objects of the action being performed by the
statement.

1.2.1 Compiler Directives and Declarations

® Compiler Directives and Declarations are instructions that provide
information about the program to the compiler.

® Compiler Directives and Declarations are not executable at runtime.
* Most Compiler Directives may appear anywhere in the program.

e Declarations are limited to either the Data Division (SUBROUTINE) or
Procedure Division (BEGIN-END or PROC-END). They are discussed
in the chapters devoted to those respective program divisions.

® The Compiler Directives are:

1-2 dpANS DIBOL Language Elements

.END

JFDEF-.ELSE-.ENDC

JFNDEF-.ELSE-.ENDC

INCLUDE

.LIST

.MAIN

.NOLIST

.PAGE

.PROC

.SUBROUTINE

.TITLE

The Declarations are:

BEGIN-END

PROC-END

SUBROUTINE

identifies the end of the Procedure
Division.

specifies conditional compilation based
on the presence of a preceding definition
of a named variable within the current
compilation.

specifies conditional compilation based
on the absence of a preceding definition
of a named variable within the current
compilation.

causes the compiler to open a specified
file and continue the compilation using
that file.

enables the compiler to list source code.

identifies the beginning of the Data
Division of the main program.

inhibits the listing of compiler source
code.

terminates the current listing page and
begins a new listing page.

identifies the beginning of the Procedure
Division.

identifies the beginning of a source
program that is an external subroutine.

causes a top-of-page command to occur
and a new title to be placed in the page
header.

indicates the start (BEGIN) or finish (END) of a
sequence of blocked statements. A BEGIN-END
sequence of statements may be used anywhere a
single statement may be used.

separates the Data Division statements from
Procedure Division statements (PROC) and indicates
the last statement in a program (END).

identifies a program as an external subrou-
tine. SUBROUTINE may be used instead of
.SUBROUTINE.

dpANS DIBOL Language Elements 1-3

1.2.2 Data Specification Statements

® Data Specification Statements identify and define the characteristics
(i.e., whether it is alpha or numeric decimal, its size, and its symbolic
name) of the data processed by a DIBOL program.

® The Data Specification Statements are:

COMMON

RECORD

field definition

defines an area of memory where variable data
is stored. This area can be accessed by both
main program and external subroutines.

defines an area of memory where variable data
is stored. This area is accessible only by the
declaring program.

describes the name, array count, data type,
size, and initial value of a field in a RECORD
or COMMON area.

1.2.3 Data Manipulation Statements

* Data Manipulation Statements perform conversion and value assign-

ment.

® The Data Manipulation Statements are:

CLEAR
DECR
INCR
LOCASE

UPCASE

value assignment statement

1-4 dpANS DIBOL Language Elements

sets a variable to zero or spaces.
decreases a variable by one.
increases a variable by one.

converts UPPERCASE Ietters to
lowercase.

converts lowercase letters to
UPPERCASE.

assigns the value in the source to
the destination.

1.2.4 Control Statements

Control Statements modify the order of statement execution within a

program.

The Control Statements are:

CALL
DETACH

DO-UNTIL

EXIT
EXITLOOP

FOR
GOTO
GOTO (computed)

IF
IF-THEN-ELSE

NEXTLOOP

OFFERROR
ONERROR
REPEAT
RETURN
SLEEP

STOP
USING

calls a subroutine within the program.

provided for ANS compatibility. DETACH has
no effect in VAX DIBOL.

causes repetitive execution of a statement until a
condition is true.

terminates execution of a BEGIN-END block.

terminates execution within an iterative construct
(FOR, DO-UNTIL, REPEAT, or WHILE) and
transfers control to the statement immediately
following the construct.

causes repetitive execution of a statement.
transfers control to another statement.

conditionally transfers program control based on
the evaluation of an expression.

executes a statement if a condition is true.

allows conditional execution of one of two
statements.

terminates execution with an iterative construct
(DO-UNTIL, FOR, REPEAT, or WHILE) and
begins executing the next iteration, if any, of the
iterative construct.

disables trapping of run-time errors.
enables trapping of run-time errors.
repetitively executes a statement.

causes control to return from a subroutine.

suspends program operation for a specified time
interval.

terminates program execution.

executes one statement out of a list of state-
ments.

dpANS DIBOL Language Elements 1-5

WHILE causes a statement to be executed repetitively
while a condition is true.

XCALL calls an external subroutine.

XRETURN transfers program control to the statement
logically following the XCALL statement that
transferred control to the current external
subroutine.

1.2.5 Intertask Communications Statements

* Intertask Communications Statements allow communication between
programs.

® The Intertask Communications Statements are:
LPQUE requests a file to be printed.
RECV receives a message from another program.

SEND transmits a message to another program.

1.2.6 Input/Output Statements

* Input/Output Statements control the transmission and reception of
data between memory and input/output devices.

* The Input/Output Statements are:

ACCEPT receives a character from a device.
CLOSE terminates use of an input/output
channel and closes the associated file.
DELETE deletes a record from an indexed file.
DISPLAY sends a character string to a device.
FORMS sends special printer control codes.
OPEN initializes a file in preparation for input
/output operations.
READ (Indexed File) reads a record from an indexed file.
READ (Relative File) reads a record from a relative file.

1-6 dpANS DIBOL Language Elements

READS reads the next record in sequence from

a file.
STORE adds a record to an indexed file.
UNLOCK releases a record for use by another
program.
WRITE (Indexed File) writes a record to an indexed file.
WRITE (Relative File) writes a record to a relative file.
WRITES writes the next record in sequence to a

file.

1.3 Program Structure

A DIBOL program may contain two major parts: an optional Data
Division and a Procedure Division. The Data Division contains statements
that define and identify the data used by the program. The Procedure
Division contains statements that execute certain tasks. Figure 1-1 shows
a schematic drawing of a dpANS DIBOL program structure.

dpANS DIBOL Language Elements 1-7

Figure 1-1: dpANS DIBOL Program Structure

Main Program

RECORD statement 1

field definiti
ie efinitions Data Division

RECORD‘statement n
field definitions
Procedure Division

PROC

END
External Subroutine

SUBROUTINE statement
argument definitions

RECORD statement n
field definitions

PROC
. Procedure Division

END

MK-02719-00

1-8 dpANS DIBOL Languagé Elements

1.4 Statement Line Syntax

General Rules

Each division of a DIBOL program has one or more logical lines.

A logical line consists of a physical line (data record) and can be
followed by one or more continuation lines.

A logical line cannot exceed 1023 characters in length. A physical line
cannot exceed 255 characters in length.

A program may contain no more than one statement per logical line.
A statement can begin anywhere on a line.

Rules for Line Continuation

The ampersand symbol (&) specifies line continuation. This allows
lengthy statements to be continued onto additional physical lines.

The ampersand symbol must be placed at the first nonspacing charac-
ter position in the continuation line.

A statement can be continued until it exceeds the limit of a logical
line (which can contain 1023 characters including ampersand symbols,
spaces, horizontal tabs, Carriage Return, and Line Feed characters).

Comments cannot be continued by an ampersand. They must be
preceded by a semicolon on each physical line.

Rules for Delimiters

Delimiters separate the elements of the language (keywords, labels,
symbols, literals).

Delimiters are listed in Table 1-1.

Table 1-1: dpANS DIBOL Delimiters

Name Symbol Name Symbol
Addition + Percent %
Colon : Period

Comma , Pound #
Division / Right Parenthesis)
Double Quotes " Single Quote !

dpANS DIBOL Language Elements 1-9

Table 1-1 (Cont.): dpANS DIBOL Delimiters

Name Symbol Name Symbol
Equal = Space
Left Parenthesis (Subtraction -
Multiplication * Tabs <TAB>
Boolean and .AND. Relational equal .EQ.
Boolean or .OR. Relational not equal .NE.
Boolean xor XOR. Relational greater than .GT.
Boolean not .NOT. Relational greater than .GE.
or equal to
Relational less than .LT.
Relational less than or .LE.
equal to

Rules for Comments

e Comments are used to explain the source program.
e Comments are ignored by the compiler.

¢ Comments are preceded by a semicolon (;).

* Comments can follow a statement on a line.

¢ Comments can be placed on any statement line by preceding the
comment with a semicolon (;).

¢ Comments can be placed on a line by themselves (full line comments).

¢ Comments cannot be continued by an ampersand. They must be
preceded by a semicolon on each physical line.

Rules for Spacing Characters

® Spacing characters are spaces or horizontal tabs not contained in an
alpha literal.

® Adjacent spacing characters occupy one character of a logical line.

® Spacing characters at either the beginning or end of a physical line are
ignored and not considered part of a logical line.

1-10 dpANS DIBOL Language Elements

Rules for Blank Lines

* A blank line is a physical line that contains no compilation informa-
tion.

* Any number of blank lines may be placed between logical lines.
® A blank line cannot precede a continuation line.

Run-Time Error Conditions

None

Examples

The following examples illustrate comments. The first example shows a
commented statement and the second example shows a full line comment.

RECORD CUST ; Customer record

; This program prints the Accounts Past Due Report

Comments can be continued onto multiple lines by using a semicolon as
follows:

READS (1,CUST,EOF) ; Read the sequentially next
. customer master file

The basic elements of the language are separated by delimiters. In the
following example, the space used as a delimiter between the keyword
GOTO and the label TEST1 is missing. This statement will generate a
compiler error.

GOTOTEST1

The following statement will also generate a compiler error because there
is an extra space in the middle of the label TESTI:

GOTO TE ST1

dpANS DIBOL Language Elements 1-11

1.5 Procedure Division Statement Labels

Definition
A statement label is a unique symbolic name that identifies a statement in
the Procedure Division of a DIBOL program.

Format

label,{statement]

label
is the statement label.

statement
is a DIBOL statement.

General Rules

* A label consists of up to 30 characters, the first of which must be
alphabetic. The remaining characters can be alphabetic, numeric,
dollar sign (“$”), or underscore (“_").

* A label may begin anywhere on a line as long as it immediately
precedes and is separated from its associated statement by a comma.

® A label can be on a line by itself.
* A label cannot be used to identify more than one statement.

* Compiler Directives and Declarations (except for BEGIN-END) cannot
have labels.

Run-Time Error Conditions

None

Examples
The following labels (LOOP6, X_RTN, and BAD$ are all legal:

LOOP6, IF I.GT.MAX GOTO DONE
X_RTN, RETURN
BAD$, WRITES (CH, 'Bad Input')

1-12 dpANS DIBOL Language Elements

The following label is legal but will be truncated to 30 characters
(i.e., DO_PAYROLL _ON_THE_DAY_THAT_BEG):

DO_PAYROLL_ON_THE_DAY_THAT_BEGINS_FISCAL_YEAR, OPEN (CH,U,'PAYROL.DDF')

The following labels (6X, _RTN, and $BAD) are not legal because they do
not begin with a letter:

6X, IF I.GT.MAX GOTO DONE
_RTN, RETURN
$BAD, WRITES (CH,'Bad Input')

1.6 Literals

Definition

Literals are alpha or numeric values permanently defined in a program.

Rules

* A literal cannot be altered during program execution.

® Alpha literals are specified by enclosing a character string within a
pair of apostrophes (') or double quote (") characters.

* Double or single quotes can appear within literals following these
guidelines:

— A single quote can appear in a literal that is enclosed in single
quotes by immediately following the quote character with a
second quote character ('O”Hare’) within the literal.

— A single quote can appear in a literal that is enclosed in double
quotes (“O’Hare").

— A double quote can appear in a literal that is enclosed in double
quotes by immediately following the double quote character with
a second double quote character within the literal ("""END
OF FILE""").

— A double quote can appear in a literal that is enclosed in single
quotes (""END OF FILE"").

¢ Literals cannot be subscripted.

dpANS DIBOL Language Elements 1-13

* Numeric literals can be any valid DIBOL number that does not exceed
18 digits.

* Literals can be used as passed arguments to subroutines but cannot be
altered by the subroutine.

Run-Time Error Conditions

None

Examples

The following numbers are all legal numeric literals:

-99234780113

+000431

10000000000

--1 (same as +1)

The following numbers are not legal decimal literals because they contain

characters other than the plus sign (+), the minus sign (=), and the
decimal digits (0 through 9).

$10
1,000,000
10.00

The following are legal alpha literals:

"PAYROLL NUMBER"

'Invalid customer number'

'$10'

"1,000,000"

The apostrophe character (') can be used in the literal by inserting two
apostrophes for each one desired, or by using the quote character (")

to start and end the literal. Both of the following literals puts a single
apostrophe character in O'Hare.

'Ol lHarel

"Q'Hare"

1-14 dpANS DIBOL Language Elements

1.6.1 Error Mnemonics

Appendix B lists the dpANS standard error mnemonics for error condi-
tions. Error mnemonics are treated as symbolic representations of numeric
literals and can be used wherever a numeric literal is allowed.

1.7 Expressions

Definition

An expression is a construct composed of one operand and an optional
unary operator or two operands joined by a binary operator. The operands
of expressions may themselves be expressions.

General Rules

The result of a resolved numeric expression shall replace all compo-
nents of the expression and shall be treated as a single operand for
any remaining phases of the expression evaluation.

Expressions are typed after the data type of their value. Thus, there
are two classes of expressions: numeric and alpha.

1.7.1 Alpha Expressions

Definition

An alpha expression is either an alpha variable or an alpha literal.

General Rules

The value of an alpha expression is the character string defined by the
field or literal.

The truth value of an alpha expression is FALSE if all characters
contained in the expression are ASCII spaces.

The truth value of an alpha expression is TRUE if any of the characters
contained in the expression are not an ASCII space.

dpANS DIBOL Language Elements 1-15

1.7.2 Numeric Expressions

Definition

Numeric expressions are valid combinations of operands and operators.

General Rules

If X and Y are operands, the following are numeric expressions:

— X binary operator Y

— unary operator X

= X

A numeric operand is a numeric field, numeric literal, or expression.

The value of a numeric expression is the numeric result of the opera-
tions indicated by the operators specified within the expression.

Operators in a numeric expression represent various arithmetic,
relational, or Boolean functions of the dpANS DIBOL language.

Unary operators require one operand.
Binary operators require two operands.
Operators require operands to be the correct data type.

Numeric expressions are evaluated according to the order of prece-
dence. Operators with equal precedence are evaluated from left to
right in a decimal expression.

The order of expression evaluation can be altered by using paren-
theses. Expressions enclosed in parentheses are evaluated before
other elements of the numeric expression in which they appear.
Additional levels of precedence are achieved by nesting; the innermost
expressions are evaluated first.

A character within a numeric field that is a space shall be treated
exactly as if it were a zero by all operators acting on that field.

When the rightmost character of a numeric field contains a lowercase
‘P’ (the minus zero value), and all other characters are either zeroes or
spaces, the field shall be considered to have a value of zero.

The treatment of a character within a numeric field which is not a

numeric digit, a blank, or a lowercase “p” through lowercase “y” alpha
letter in the rightmost character position, is undefined.

The result of a numeric expression cannot be minus zero.

1-16 dpANS DIBOL Language Elements

The truth value of a numeric expression shall be FALSE if the actual
value of the expression is zero, and TRUE if the actual value of the
expression is non-zero.

The maximum size of the resolved value of any numeric expression
shall be considered to be 18 digits for the purposes of subsequent
operations.

Rules for +, —, *, and /

Numeric expressions deal with integers only. So output data can be
correctly formatted for printing, the position of an implied decimal
point in a numeric value must be determined by the program.

Numeric expressions that produce intermediate results exceeding 18
digits generate the error Number too long.

The unary plus (+) operator has no effect on a value since unsigned
values are assumed to be positive. This operator is useful only to
facilitate reading a program listing.

The unary minus (-) operator is used to negate its operand.
Successive minuses are combined algebraically.

The addition (+), subtraction (-), multiplication (*), and division (/)
operators perform standard signed integer arithmetic.

Division by zero is illegal and results in error $ERR_DIVIDE
ATTEMPT TO DIVIDE BY ZERO.

Any fraction resulting from division is truncated.

Rules for #

The rounding number operator (#) specifies numeric rounding.
The first operand specifies the numeric value to be rounded.

The second operand is a numeric expression that evaluates to a
number between 0 and 15 which specifies the number of rightmost
digits to truncate after rounding takes place.

The least significant digit of the truncated value is rounded upward by
one if the digit to its right is greater than or equal to five.

dpANS DIBOL Language Elements 1-17

Rules for Relational Operators

* Relational operators are .EQ., .NE., .GT., .LT,, .GE,, and .LE.

* Relational expressions produce numeric results (either true [non-zero]
or false [zero]). These expressions can be used as operands with
Boolean operators.

* In comparisons using relational operators, only like data types are
allowed as operands, i.e., numeric/numeric or alpha/alpha.

* In an alpha relational comparison, the operand values are compared
on a character by character basis from left to right. The comparison is
limited to the size of the shortest operand.

Rules for Boolean Operators

* Boolean operators are .AND., .OR., and .XOR.
* The operands of binary Boolean operators are numeric expressions.

® The operand of the Boolean operator (NOT.) may be an alpha or
numeric expression.

* Boolean operators guarantee left-to-right evaluation. If the result is
known from the evaluation of the left operand, the right operand will
not be evaluated.

Run-Time Error Conditions

$ERR_BIGNUM E Arithmetic operand exceeds 18 digits
$ERR_DIVIDE E Attempt to divide by zero

1-18 dpANS DIBOL Language Elements

Table 1-2:

Table of Operator Precedence

(from highest to lowest)

Operator Description

() parentheses

+and - unary plus and minus

rounding

* and / multiplication and division
+and - addition and subtraction

.EQ. .NE. .GT. .LT. .GE. .LE.
.NOT.

.AND.
.OR. and .XOR.

relational comparisons

unary Boolean operator which
changes true to false and
false to true

Boolean AND

Boolean OR and exclusive OR

The following table indicates the legal data type(s) which can be used as
an operand for a particular unary operator. The data type result is also

shown.

Table 1-3: Unary Operator Table

UNARY OPERATORS

Operand Data Type| D

Result Data Type| D

+ - NOT
D |D/A
D D
MK-02737-00

dpANS DIBOL Language Elements 1-19

The following table indicates the valid data type(s) that can be used as
an operand for a particular unary operator. The data type result is also
shown.

Table 1-4: Binary Operator Table

BINARY OPERATORS

Data
Types of: + - # * / EQ NE GT LT GE LE OR XOR AND

Operands | D D D D D |AD|AD]| AD|AD|AD|AD| D D D
Result | D D D D D D D D D D D D D D

MK-02738-00

The following Truth Table illustrates how truth values are determined for
.OR., .AND., .XOR., and .NOT.:

Table 1-5: Truth Table

.AND. .OR. .XOR. .NOT.

exp .AND. exp Result exp .OR. exp Result exp .XOR. exp Result .NOT. exp Result
true © true true true true true true true false true false
true false false true false true true false true false true
false true false false true true false true true
false false false false false false false false false

MK-02740-00

Examples

The following examples all assume that the Data Division contains the
following information:

1-20 dpANS DIBOL Language Elements

RECORD MONEY, D6, 127654
D3, -326

D1, 4

D2, 10

D2, 20

D1, 5

D5.3, 12.300

moawe=<

PROC

The following examples illustrate the use of arithmetic operators:

Expression Result

A+B-C -6

A*D 20

c/D 4

B/A 2 (The remainder is discarded)

The order of evaluation of the subexpressions can be modified by using
parentheses, as in the following examples:

Expression Result

B+C/D*A 26

B+C/ (DxA) 11

(B+C)/ (D*A) 1 (The remainder is discarded)
((B+C) /D) *A 24

The following examples illustrate the use of the rounding operator (#):

Expression Result
MONEY#A 13
Y#2 -3
Y#A 0
(MONEY+Y) #1 12733
Y#1 -33

The Relational and Boolean operators produce true (non-zero) or false
(zero) results. These operators are most commonly used in the IF, IF-
THEN-ELSE, DO-UNTIL, and WHILE statements. They can be used
anywhere that a numeric expression is allowed. The following examples
illustrate the use of these operators:

Expression Result

A.EQ.4 1 (true)
A.NE.4 0 (false)
'ABC' .EQ. 'DEF' 0 (false)
A.EQ.4.AND.B.EQ.10 1 (true)
A.AND.B 1 (true)
A.AND.O 0 (false)

dpANS DIBOL Language Elements 1-21

Chapter 2
Data Division

This chapter contains information on Data Division statements.

The Data Division is the first division of a dpANS DIBOL program. It con-
tains RECORD and COMMON statements and associated field definitions
that define all program variables. Variables used in the Procedure Division
of a program must be defined in the Data Division. The Data Division
also contains a SUBROUTINE statement and argument definitions if the
program is an external subroutine.

The Data Division in a main program begins with a .MAIN compiler
directive. The Data Division in an external subroutine begins with a
.SUBROUTINE compiler directive. The Data Division is terminated by a
.PROC compiler directive.

Data Division 2-1

2.1 Record Statement

Function

RECORD defines the areas of memory where variable data is stored.

Format
RECORD /[name}{, X/}

name
is the record name.

X
is the redefinition indicator.

General Rules

® Storage is allocated contiguously in memory in the order the RECORD
statements appear in the main program.

* RECORD must be followed by at least one field definition.

* The total size of a record is the sum of the sizes of its fields.

* The total size of the fields within a named record cannot exceed
16,383 characters.

Rules for Record Name

® A record name consists of up to 30 characters, the first of which must
be alphabetic. Remaining characters can be alphabetic, numeric, $, or
—(underscore).

® A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

¢ If a record name is not specified, only named fields within that record
can be referenced.

2-2 Data Division

Rules for Redefinition Indicator

The redefinition indicator permits redefinition of fields within the
record being redefined.

RECORD can redefine RECORD or COMMON.

When the redefinition indicator is used, the RECORD statement
redefines the memory area defined by the immediately preceding
RECORD or COMMON statement not having a redefinition indicator.

A redefining RECORD references the same memory area as the record
being redefined.

The new field definitions are specified following the redefining
RECORD statement.

The size of the redefining RECORD (the sum of the sizes of all its
fields) must not be greater than the size of the record being redefined.

In an external subroutine, the size of a RECORD redefining a
COMMON area may be greater than the size of the COMMON
being redefined.

If a COMMON in an external subroutine is redefined by a RECORD,
the COMMON has to be named.

If a named COMMON is redefined in an external subroutine by
a RECORD, the RECORD begins at the position of the redefined
COMMON’s name in the main program.

Fields in a redefining RECORD cannot be assigned initial values.

Run-Time Error Conditions

None

Examples

The following record names (6X and —PAY) are not legal because they do
not begin with an alphabetic character:

RECORD 6X
RECORD _PAY

Data Division 2-3

The following example shows a record (OUTPUT) used to format printed
output data. The values for MN, DAY, and YR are obtained from
Procedure Division statements. The unnamed fields contain initial values
used for formatting the output record.

RECORD OUTPUT

, A8, 'Date is '

MN, D2 ; Month goes here
, AL, '/

DAY, D2 ; Day goes here

, AL, /0

YR, D2 ; Year goes here

In the following example, the record (OUTPUT) has been redefined so
that the date (in the format mm/dd/yy) can be more easily accessed. A
statement that accesses the DATE field will receive the contents of the
MN, DAY, and YR fields separated by the slash character (/).

RECORD OUTPUT

) A8, 'Date is '
MN, D2 ; Month goes here
) AL, '/
DAY, D2 ; Day goes here
, AL, M/t
YR, D2 ; Year goes here
RECORD ,X
, A8 ; Redefines 'Date is '
DATE, A8 ; Redefines MN / DAY / YR

2-4 Data Division

2.2 Common Statement

Function

COMMON defines the areas in memory where variable data is stored.
This data is to be shared between the main program and external subrou-
tines.

Format
COMMON /name,X/

name
is the COMMON name.

X

is the redefinition indicator.

General Rules

¢ COMMON must be followed by at least one field definition.

* Storage is allocated contiguously in memory in the order the
COMMON statements appear in the main program.

* The size of the allocated memory area in the main program is the sum
of the sizes of all the fields that comprise the COMMON in the main
program.

* The total size of the fields within a named COMMON area cannot
exceed 16,383 characters.

* COMMON is similar to RECORD except that fields defined within a
COMMON area are available for use by the main program or by any
external subroutine.

¢ If COMMON appears in a main program, space is allocated in memory
just as it is done for a RECORD statement.

* [f COMMON appears in an external subroutine, memory is not
allocated. All fields that appear in the subroutine’s COMMON area
will reference the main program’s COMMON area.

e Data cannot be shared between two external subroutines via the
COMMON statement unless the data is defined in the main program.

¢ COMMON and RECORD areas may be intermixed in the Data
Division.

Data Division 2-5

2-6 Data Division

When the main program is linked with its external subroutines, a
correlation is made between the field names defined in the COMMON
areas of the subroutine and those of the main program.

If a field is named in a COMMON area of an external subroutine but
there is no corresponding field name in the main program, an error
message is generated when the program is linked.

It is not necessary for the COMMON area of an external subroutine to
contain all the COMMON fields defined in the main program unless
all are needed. For those that are needed, it is necessary that fields
of the same types, names, and sizes be defined in the Data Division
of the main program and external subroutine. It is important that the
sizes and types correspond. Otherwise, the operation will be incorrect
and unpredictable problems may occur.

Fields in COMMON areas in subroutines cannot be assigned an initial
value.

The fields in the COMMON area of the subroutine do not need to be
defined in the same order as they are in the main program. The data
is stored according to the order of the main program’s field definitions.

Rules for Common Names

A COMMON name consists of up to 30 characters for VAX DIBOL, 5
for PDP-11 DIBOL, the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or _(underscore).

A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

If a COMMON name is not specified, only named fields within that
COMMON area can be referenced.

Rules for Redefinition Indicator

The redefinition indicator permits redefinition of fields within the
record being redefined.

When the redefinition indicator is used in a main program, the
COMMON statement redefines the memory area defined by the
immediately preceding RECORD or COMMON statement not having
a redefinition indicator.

A redefining COMMON references the same memory area as the
record being redefined.

The new field definitions are specified following the redefining
COMMON statement.

® The size of the redefining COMMON (the sum of the sizes of all its
fields) must not be greater than the size of the record being redefined.

* In a main program, COMMON can redefine RECORD or COMMON.

e In an external subroutine, the redefinition indicator on COMMON is
ignored.

* Fields in a redefining COMMON cannot be assigned initial values.

Run-Time Conditions

None

Examples
The following COMMON names (REC6, A_REC, and BADS$) are all legal:

COMMON REC6
COMMON A_REC
COMMON BAD$

The following example contains a main program which has two
COMMON areas and two external subroutines. One subroutine (XSUB2)
uses both COMMON areas, while the other subroutine (XSUB1) uses only
one. Neither of the two subroutines allocates memory storage area for the
COMMON areas; instead, the subroutines’ COMMON areas point to the
main program’s memory storage area.

Main Program

COMMON EMP ; Employee record
NAME, A20 ; Employee name
SAL, D5 ; Salary

COMMON
DATE, D5 ; Current date

Subroutine XSUB1

COMMON
DATE, D5 ; Current date
Subroutine XSUB2
COMMON
DATE, D5 ; Current date
COMMON EMP ; Employee record
NAME, A20 ; Employee name
SAL, D5 ; Salary

Data Division 2-7

2.3 Field Definitions

2-8 Data Division

Function
Field definitions define variables within a RECORD or COMMON area.

Format
A alit, . . .
[m] n s ./
[name], [D] { ,nlit, . .. }
A~ alit
D+, nlit
name

is the field (or array) name.

m
is the array count.

A
declares the field to be alpha.

D
declares the field to be numeric decimal.

n
is the size of each element of the field.

*

is the automatic sizing indicator.

alit
is the initial value for the alpha field.

nlit
is the initial value for the numeric field.

General Rules

* Each field name must be unique within the set of variable names
used within the declaring program. The same field name may be used
within a program and an external subroutine called by that program.

Rules for Field Name

A field name in a RECORD consists of up to 30 characters, the first of
which must be alphabetic. Remaining characters can be alphabetic,
numeric, $, or _(underscore).

Only the first 30 characters of a field name in a RECORD are signifi-
cant; remaining characters are ignored.

A field name in a COMMON area consists of up to five characters (in
PDP-11 DIBOL; 30 characters in VAX DIBOL), the first of which must
be alphabetic. Remaining characters can be alphabetic, numeric, $, or
—(underscore).

Only the first five characters (in PDP-11 DIBOL; 30 in VAX DIBOL) of
a field name in a COMMON area are significant; remaining characters
are ignored.

A name cannot be used to identify more than one RECORD area,
COMMON area, or field.

COMMON fields in an external subroutine may be defined in a
different order than the COMMON fields in the main program.

There must be an identically named COMMON variable in the main
programs for the COMMON fields in an external subroutine.

If no name is used, the field can be accessed either as part of the entire
record by using the record name, or by subscripting down from a
previous record or field.

Rules for Array Count

The array count may be any non-zero positive numeric value.
The array count default is one (1) unless the array count is specified.

Array data is referenced by using the array variable name with a
subscript.

Fields defined with an array count of one are called simple variables.
Fields defined with an array count of more than one are called arrays.

Rules for Field Size

The minimum field size is one (1).
The maximum field size for alpha fields is 16,383.
The maximum field size for numeric fields is 18.

Data Division 2-9

2-10 Data Division

Rules for Automatic Sizing Indicator

The initial value must be specified.

The size of the field will be the length of either alit for alpha fields or
nlit for numeric fields.

The auto size indicator cannot be used when an array count is speci-
fied.

Rules for Setting Initial Values

The initial value of a field is set by inserting a literal after the type and
size specification.

A comma must be used to separate the literal from the preceding type
and size specification.

The literal must be the same data type and should contain the same
number of characters or digits as specified for the field.

If the literal is longer than the field size, a warning is generated during
program compilation.

If the literal is shorter than the field size, the initial value will be
left-justified (for alpha literals) or right-justified (for numeric literals).

Leading signs (+ and -) in numeric literals, as well as delimiting
apostrophes or quotation marks in alpha literals, are not counted
when calculating the size of a literal.

If no initial value is specified, the field is initialized to all spaces if it is
an alpha field, or to all zeros, if it is a numeric field.

Initial values for COMMON fields are ignored in an external subrou-
tine.

Fields within an array may be initialized by specifying a series of
initial values separated from each other by commas.

It is unnecessary to initialize all fields of an array. Initialized array
fields will reside at the beginning of the array and will be contiguous.

Trailing unary operators (+/-) may be specified on nlit. This feature
may be deleted from future standards.

Run-Time Error Conditions

None

Examples
The following field names (DATE, ER_1, and CTR$) are all legal:

RECORD

DATE, A1l ; Date (dd-mmm-yyyy)
ER_1, D1 ; Error indicator
CTR$, D2 ; Counter

The following record contains both named and unnamed fields. The three
unnamed fields all have initial values (named fields can also have initial
values). The third field is a two character alpha field; however, the initial
value for the field contains only a single right parenthesis character ()).
The initial value will be left justified in the A2 field and the rightmost
character will be cleared to a space.

RECORD
, AL, ' (
AREA, D3 ; Area code
, A2, ')
EXCH, D3 ; Telephone exchange
s Ai, t
NMBR, D4 ; Telephone number

The following example shows two decimal fields which have initial values.
The first field (LINE) is a two digit decimal field; however, the initial value
is only a single digit. The initial value will be right justified in LINE and
the leftmost digit in LINE will be cleared to a zero.

RECORD
LINE, D2, 1 ; Line number
COLUMN, D2, 80 ; Column number

The arrays (DAYS and MONTHS) in the following example have initial
values for all of their fields:

RECORD
DAYS, 12p2, 31,28,31,30,31,30,31,31,30,31,30,31
MONTHS, 12A3, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'
& , 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'

Data Division 2-11

2.4 SUBROUTINE Statement

Function

SUBROUTINE identifies a program as an external subroutine.

Format
SUBROUTINE name

name
is the subroutine name.

Rules
e SUBROUTINE is identical in function to .SUBROUTINE. SUBROUTINE
may be deleted from future standards.

* SUBROUTINE must be the first statement (excluding compiler direc-
tives and/or comments) in the Data Division of an external subroutine.

e SUBROUTINE is used to establish a logical connection between the
subroutine and the calling program.

* An external subroutine is a completely self-contained program that is
external to the calling program. An external subroutine is compiled
separately from the calling program.

e SUBROUTINE may be followed by one or more argument definitions.
Rules for Subroutine Name

¢ A subroutine name consists of up to 30 characters (VAX DIBOL; 6 for
PDP-11 DIBOL), the first of which must be alphabetic. Remaining

characters can be alphabetic, numeric, $, or _(underscore).

® Only the first 30 characters (VAX DIBOL; 6 for PDP-11 DIBOL) of a
subroutine name are significant; remaining characters are ignored.

Run-Time Error Conditions

None

2-12 Data Division

2.4.1 Subroutine Argument Definition

Function

Subroutine argument definitions specify the data linkages between an
external subroutine and the program that called the external subroutine.

Format

name, [é]

name
is the subroutine’s internal name for the subroutine argument.

A
declares the field to be alpha.

D
declares the field to be numeric decimal.

Rules

* If a record is passed as an argument, references cannot be made to its
fields. The entire record can only be referred to in a subroutine as a
single alpha field.

* The size of the argument is the size of the data as specified in the
calling program.

* Argument definitions should correspond in data type with the argu-
ments specified in the XCALL statement in the calling program.

® The first argument definition specified refers to the data element
referenced in the first argument in the XCALL statement. The second
argument definition refers to the second XCALL argument, and so on.

* The number of subroutine arguments defined in the external sub-
routine must be equal to, or greater than, the number of arguments
defined in the corresponding XCALL in the calling routine.

* The size of a declared subroutine argument not passed by the XCALL
statement in the calling program is -1. The only valid reference
to a declared argument that does not have a corresponding passed
argument is a passed argument in a call to another external subroutine.

Data Division 2-13

2-14 Data Division

If the argument specified in the calling program is either a literal or a
numeric expression consisting of more than a single element, the data
shall be considered to be a literal. The field shall not be allowed to
be modified. Array access to the field with a value greater than one
is not allowed. Substring access outside the bounds of the field is not
allowed.

Null arguments passed as parameters to a subroutine will be treated
as placeholders of those parameters. An argument missing (JERR_
ARGMIS) error will be generated if the parameter is required by the
subroutine.

Rules for Subroutine Argument Name

An argument name consists of up to six characters (PDP-11 DIBOL;
30 for VAX DIBOL), the first of which must be alphabetic. Remaining
characters can be alphabetic, numeric, $, or _(underscore).

Only the first six characters (PDP-11 DIBOL; 30 for VAX DIBOL) of
a subroutine argument name are significant; remaining characters are
ignored.

A subroutine argument name must be unique within the set of variable
names used within the external subroutine. The name can be identical
to another routine name or statement label used within that program
or external subroutine.

Run-Time Error Conditions

None

Examples

In the following example, the main program calls the external subroutine
(CNVRT) to change the format of the date. It passes the arguments DATE
and XDATE. These arguments are represented in the subroutine as OLD
and NEW.

Main Program

RECORD
DATE, D6, 010750
X_DATE, A1l

PROC
XCALL CNVRT (DATE,X_DATE)
OPEN (1,0,'TT:")
WRITES (1,X_DATE)
CLOSE 1

STOP

External Subroutine

SUBROUTINE CNVRT

OLD, D

NEW, A
RECORD ODATE

MM, D2

DD, D2

Yy, D2
RECORD NDATE

DAY, A2

) Al,l_l

MONTH, A3

, AL, -

YEAR, D2
RECORD

MNAME, 12A3, 'Jan',
& , 'Jul’,
PROC

ODATE=0LD

DAY=DD

YEAR=YY

MONTH=MNAME (MM)

NEW=NDATE
RETURN

'Feb',
'Aug',

; Convert the date

; Open the terminal
Display the date

; Close the terminal

Convert the date format
Date (mmddyy)
; Date (dd-mmm-yy)

01d date format
; Month

; Day

; Year

; New date format

; Day

; Month

; Year
'Mar', 'Apr', 'May', 'Jun'
'Sep', 'Oct', 'Nov', 'Dec'

; Move day to new format

; Move year to new format
; Move month to new format
; Return new date

Data Division

Chapter 3

The dpANS DIBOL Procedure Division

3.1 Introduction

This chapter contains information on value assignment statements, data
conversion, and data formatting. The Procedure Division statements are
arranged alphabetically for easy reference.

The dpANS DIBOL Procedure Division processes data and controls
program execution. It contains procedural statements, statement labels,
and compiler directives. It begins immediately following the .PROC
compiler directive and ends with the .END compiler directive.

The dpANS DIBOL Procedure Division 3-1

3.2 Value Assignment Statements

Function
Value Assignment statements:

* Move data.

* Store the results of arithmetic expressions.

* Convert and format data.

® Set destination values equal to explicit variables.

Format

destination = {source}

destination
is a record or field which contains the data to be stored.

source
is a record, field, literal, or expression which contains the data to be stored.

Rules

¢ The contents of the source are moved to the destination.

® The source data is not altered unless the destination location is one of
the source elements (for example, A=A+1).

® The destination is the field or record defined in a Data Division
statement and can be either alpha or numeric.

* The source data is always converted to the data type defined for the
destination.

* If the source is not specified, the alpha destination is set to spaces and
the numeric destination is set to zeros.

3-2 The dpANS DIBOL Procedure Division

3.2.1 Moving Alpha Data

Function

Value assignment statements move alpha data.

Format

afield 1

name, [.
aliteral

afield
is an alpha field or record which is the destination.

[aliteral]

afield1
is an alpha field, alpha literal, or record which is the source.

Rules

* The source is moved to the destination and is left-justified.

e If the source is smaller than the destination, the unused rightmost
character positions in the destination are cleared to spaces.

e If the source data is larger than the destination, the rightmost charac-
ters that cause overflow are truncated.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

In the following example, NAME2, which contains ‘Johnson’, is moved
to NAME1. Since NAMEI is only four characters long, only the first four
characters of ‘Johnson’ are moved. NAME1 will contain ‘John’ and the
entire record will contain ‘JohnJohnson'.

RECORD
NAME1, A4, 'Fred'
NAME2, A7, 'Johnson'
PROC
NAME1=NAME2

The dpANS DIBOL Procedure Division 3-3

In the following example, B, which contains 'FGH’, is moved to A. 'FGH’
will be left-justified in A and the rightmost characters in A will be cleared
to spaces. A will contain 'FGH ' and the entire record will contain

'FGH FGH'.
RECORD
A, A5, 'ABCDE'
B, A3, 'FGH'
PROC
A=B

3.2.2 Moving Numeric Data

Function

Value assignment statements move numeric data.

Format

nfield = nexp

nfield

is a numeric field which is the destination.

nexp
is a numeric expression which is the source.
Rules

* The sign of the source data is preserved in the destination field.
* The source is moved to the destination and is right-justified.

* If the source is smaller than the destination, the unused leftmost digit
positions in the destination are cleared to zeros.

* If the source is larger than the destination, the leftmost digits that
cause overflow are truncated.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

3-4 The dpANS DIBOL Procedure Division

Examples

In the following example, A, which contains 1234, is moved to B. Since
B is shorter than A, 1234 is right-justified in B and the digits that cause
overflow (12) are truncated. B will contain 34.

RECORD
A, D4, 1234
B, D2

PROC
B=A

In the following example, A, which contains 1234, is moved to C. Since
C is longer than A, 1234 is right-justified in C and the leftmost digits are
cleared to zero. C will contain 0000001234.

RECORD
A, D4, 1234
B, D2,
C, D10
PROC
C=A

In the following example, the result of A*B (1234%*34=41956) is moved to
C. Since C is only four digits long, 41956 is right-justified in C and the
leftmost digit is truncated. C will contain 1956.

RECORD
A, D4, 1234
B, D2, 34
c, D4

PROC
C=A*B

3.2.3 Alpha-to-Numeric Conversion

Function

Value assignment statements convert alpha data to its numeric equivalent.
Format

. afield 1
nfield, [a/iteral]

The dpANS DIBOL Procedure Division 3-5

nfield
is a numeric field which is the destination.

[afield1]
aliteral
is an alpha field, alpha literal, or record which is the source.

Rules

® The source may contain up to 18 digits with any number of plus (+)
or minus (-) characters. Plus and minus characters are treated as
unary operators and are combined algebraically. No other characters
are allowed.

® Spaces in the source are ignored.
® The source is moved to the destination and is right-justified.

* If the source is smaller than the destination, the unused leftmost digit
positions in the destination are cleared to zeros.

* If more than 18 digits are moved, or if the source is larger than the
destination, the leftmost digits that cause overflow are truncated.

Run-Time Error Conditions

$ERR_DIGIT E Bad digit encountered
$ERR_WRTLIT F Attempt to store data in a literal
Examples

In the following example, A, which contains ‘910111213141, is moved to
B. Since B is shorter than A, ‘910111213141’ is right-justified in B and the
digits that cause overflow (91) are truncated. B will contain 0111213141.

RECORD
A, A12, '910111213141"'
B, D10

PROC
B=A

In the following example, A, which contains '65444321’, is moved to C.
Since C is longer than A, '65444321’ is right-justified in C and the leftmost
digits are cleared to zero. C will contain 0065444321.

3-6 The dpANS DIBOL Procedure Division

RECORD

A, A8, '65444321'
C, D10

PROC
C=A

In the following example, A, which contains '-0065432178', is moved
to C. C will contain 006543217x. The 'x’ is the internal representation
for -8 (see Appendix A).

RECORD
A, A11, '-0065432178'
C, D10

PROC
C=

3.2.4 Numeric-to-Alpha Conversion

Function

Value assignment statements convert numeric data to its alpha equivalent.

Format

afield = nexp

afield
is an alpha field or record which is the destination.

nexp
is a numeric expression which is the source.

Rules

* The source is moved to the destination and is right-justified.

¢ If the source is negative, an additional character should be allocated in
the destination for the minus sign. A leading minus sign is inserted to
the left of the leftmost nonspace character in the destination.

e If the source is smaller than the destination, the unused leftmost
character positions in the destination are cleared to spaces.

¢ If the source is larger than the destination, the leftmost characters that
cause overflow are truncated.

The dpANS DIBOL Procedure Division 3-7

¢ Leading zeros are cleared to spaces.

¢ If the source is zero, a single right-justified zero is moved to the
destination; remaining character positions to the left are cleared to
spaces.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

In the following example, A, which contains 87654321, is moved to B.
Since B is shorter than A, 87654321 is right-justified in B and the digits
that cause overflow (8765) are truncated. B will contain '4321".

RECORD
A, D8, 87654321
B, A4

PROC
B=A

In the following example, A, which contains 1234, is moved to C. Since
C is longer than A, 1234 is right-justified in C and the leftmost characters
are cleared to spaces. C will contain ' 1234’

RECORD
A, D4, 1234
C, A6

PROC
C=A

In the following example, A, which contains Ox (the internal representation
for -08 (see Appendix A)), is moved to C. C will contain '-8'.

RECORD
A, D2, -08
C, A3
PROC
C=A

In the following example, A, which contains 000, is moved to C. C will
contain ' 0.

RECORD
A, D3, 000
C, A3
PROC
C=A

3-8 The dpANS DIBOL Procedure Division

In the following example, A, which contains 123t (the internal representa-
tion for —1234 (see APPENDIX A)), is moved to C. C will
contain '234'.

RECORD
A, D4, -1234
C, A3

PROC
C=A

If a numeric field can have a negative value, space must be made for
the sign in the alpha field. In the following example, A, which contains
-1234, is moved to C. C will contain ‘1234’ with no minus sign.

RECORD
A, D4, -1234
C, A4

PROC
C=A

3.2.5 Formatting Data

Function

Value assignment statements permit numeric data to be converted to its
alpha equivalent and formatted.

Format

afield = nexp, format_string

afield
is an alpha field or record which is the destination.

nexp
is a numeric expression which is the source.

format_string

is an alpha field, alpha literal, or record which contains format control
characters.

The dpANS DIBOL Procedure Division 3-9

Rules

The source is formatted according to the format_string and moved to
the destination.

If the formatted data is smaller than the destination, the unused
leftmost character positions in the destination are cleared to spaces.

If the formatted data is larger than the destination, the leftmost
characters that cause overflow are truncated.

The format_string forms a picture or specification of what the con-
verted data is to look like. It is composed of one or more format
control characters (see Table 3-1).

The format_string may also contain other dpANS DIBOL characters
(except for the format control characters themselves) that are to be
inserted in the formatted data. All non-format control characters are
moved to the corresponding position in afield.

The format_string should be large enough to represent the entire
source, since only those digits that are specified by the format_string
are moved.

If nexp is zero and the field is zero suppressed, all format control
characters except asterisk (*) are suppressed.

Table 3-1: Format Control Characters

Character Description

X

Each X represents a digit position. An X causes a digit in
the source to be placed in the corresponding position in the
destination. If there are more Xs than source digits, a leading
zero is inserted for each additional X. Any Z or * format
character to the right of an X is considered to be an X.

Each Z represents a digit position. A Z suppresses a leading
zero in this character position if Z is to the left of the decimal
point (see below). When placed to the right of the decimal
point, zeros are suppressed only if all digits are zero.

Each asterisk (*) represents a digit position. It replaces a
leading zero with an * symbol in this position.

3-10 The dpANS DIBOL Procedure Division

Table 3-1 (Cont.): Format Control Characters

Character

Description

money sign

Each money sign (for example, $) represents a digit position.
It replaces leading zeros beginning at this character position
with leading spaces and a single money sign. Non-money
characters to the left of the money sign are considered as
non-format control characters except for embedded commas.
Any character can be used for the money sign by calling the
MONEY external subroutine, although it is initially set to $.
Any character with an established format meaning should not
be used, for example, *,Z,X, —.

When used as the first or last character in a format string, the
minus sign (—) causes the sign of the number being formatted
to be placed in that position. If the number is negative, a
minus appears, otherwise a space is inserted. When used
elsewhere in a format string, this will cause a minus to be
placed in that position in the formatted data.

NOTE

The following descriptions on the decimal point (.) and
comma (,) are reversed when international data formatting is
selected via the FLAGS external subroutine.

Character

Description

A decimal point (.) causes a decimal point to be inserted in
the corresponding position in the formatted data and causes
zeros to the right of it to become significant.

The comma (,) causes a comma to be inserted in the corre-
sponding position in the formatted data if there are significant
digits to the left.

If an asterisk precedes a comma and the position correspond-
ing to the asterisk is not filled with a significant digit, the
comma shall be considered an asterisk.

If a Z precedes a comma and the position corresponding to
the Z is not filled with a significant digit, the comma shall be
considered a Z.

If a money sign precedes a comma and the position corre-
sponding to the money sign is not filled with a significant
digit, the comma shall be considered to be a money sign.

The dpANS DIBOL Procedure Division 3-11

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal
Examples
The following examples assume that the Data Division contains the
following fields:
RECORD
F, A8

The following examples illustrate data formatting:

Statement Result

F= 123, "xxxxxxxx’ ‘00000123’
F= 123, '22277777' ! 123’
F= 123, s’ Lannkn]23’
F= 123, '$$$$$$$$' ! $123’
F= -1123, '-XXX, XXX’ '~001,123'
F= 123, '$$$$$.XX’ " $1.23
F= =123, '$nsn sx! '$#+1.23-
F= 12345678," X, XXX.XX' '3,456.78'
F= 1234, '$,$$$ XX’ ' $12.34'
F= 1234, "X, XXX.X' %%%12.34'
F= 1234, '2,2ZZ XX’ "12.34'

3.2.6 Clearing Variables

Function

Value assignment statements clear variables.

Format
field =

3-12 The dpANS DIBOL Procedure Division

field
is an alpha field, numeric field, or record which is to be cleared
Rules

e If the destination is an alpha field, it is cleared to spaces.
e If the destination is a numeric field, it is cleared to zeros.

* If the destination is a record containing numeric fields, the entire
record, including the numeric fields, is cleared to spaces.

* If the equal sign (=) is followed by anything on the same line (other
than a comment), it is treated as an assignment statement.

NOTE
Whenever possible, use the CLEAR statement to clear fields.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

When clearing a field, the equal sign (=) cannot be followed by anything
on the same line (other than a comment). If anything follows the equal
sign, then the statement is interpreted as a value assignment statement.
In the following example, the statement is not legal. It is interpreted as
A=ELSE.

IF A.EQ.B THEN A= ELSE STOP

See CLEAR for examples on clearing fields. Whenever possible, use the
CLEAR statement to clear fields.

The dpANS DIBOL Procedure Division 3-13

3.3 Array Subscripting

Definition

Array subscripting references a specific variable within an array of vari-
ables.

Format

array (subscript)

array
is an alpha array, numeric array, or a record being referenced.

subscript
is a numeric expression that refers to a field (element) in an array.

Rules

® Array subscripting can be used in any Procedure Division statement
where a data field of the same type is allowed.

® subscript indicates the specific field to be referenced within the array.

* subscript should be between one and the number of fields in the array
as specified in the Data Division.

e If subscript exceeds the number of fields within the array, portions
of other fields may be referenced. A Subscript error occurs when
subscript specifies a field which is outside the Data Division.

» If subscript is a subroutine argument that is either a literal or an
expression within the calling program, the only subscript value allowed
is one.

* A reference to an array without subscript accesses the first field in the
array.

Run-Time Error Conditions

$ERR_SUBSCR E Invalid subscript specified

3-14 The dpANS DIBOL Procedure Division

Examples

The following examples all assume that the Data Division contains the
following information:

RECORD
NAME, 4A3, 'LAS', 'FIR', 'MID', 'ADD'
CODE, 4D4, 0617, 1739, 5173, 2480
PROC

Using an array name without a subscript will access the first element of
the array as shown in the following examples:

Field Data Accessed
NAME LAS
CODE 0617

The following examples illustrate the use of subscripts with array names:

Field Data Accessed
NAME(1) LAS

NAME(3) MID

NAME(4) ADD

CODE(1) 0617

CODE(4) 2480

Data beyond the end of the array can also be accessed as in the following
examples:

Field Data Accessed
NAME(5) 061
NAME(6) 717

The dpANS DIBOL Procedure Division 3-15

If the data to be accessed is beyond the end of the Data Division, a
subscript error will occur. For example:

Field Data Accessed

CODE(5) Subscript error
NAME(10) Subscript error

3-16 The dpANS DIBOL Procedure Division

3.4 Substrings

Definition

Substrings reference a portion of a variable.

Rules

® Substrings can be specified in any Procedure Division statement where
a data field of the same type is allowed.

® The substring type must be the same as the reference variable.

3.4.1 Absolute Substring Specification

Definition
An absolute substring references a portion of a variable specified by a
starting and ending position. '

Format
field (start,end)

field
is an alpha field, numeric field, or record being referenced.

start
is a numeric expression that specifies the position of the first character of
the substring.

end
is a numeric expression that specifies the position of the last character of
the substring.

Rules

* The starting position must be greater than or equal to one.
® The starting position must be less than or equal to the ending position.

* If the ending position exceeds the field size, portions of other fields
may be referenced. A Subscript error occurs when a subscript speci-
fies data which is outside the Data Division.

The dpANS DIBOL Procedure Division 3-17

e If field is a subroutine argument that is a literal or an expression in the
calling program, end cannot be greater than the length of field.

Run-Time Error Conditions

$ERR_BIGNUM E Arithmetic operand exceeds 18 digits
$ERR_SUBSCR E Invalid subscript specified
Examples

All of the following examples assume that the Data Division contains the
following information:

RECORD REC
AM, A13, 'abcdefghijklm'
NZ, A13, 'nopqrstuvwxyz'

NUM, D10, 1234567890
PROC

The following examples illustrate the use of absolute substrings:

Field Data Accessed
AM(2,3) be

AM(4,4) d

AM(10,13) jklm

REC(1,10) abcdefghij
REC(27,28) 12

NUM(4,8) 478
NUM(10,10) 0

NZ(12,13) yz

Any data that is beyond the end of the named field can be accessed as
illustrated in the following examples:

Field Data Accessed
AM(12,15) Imno
NZz(13,15) z12

3-18 The dpANS DIBOL Procedure Division

If the data to be accessed is beyond the end of the Data Division, a
subscript error will occur. For example:

Field Data Accessed
NUM(10,11) Subscript error
NZ(30,30) Subscript error

3.4.2 Relative Substring Specification
Definition

A relative substring references a portion of a variable specified by a
starting position and a length.

Format

field(pos:length)

field
is an alpha field, numeric field, or record being referenced.

pos
is a numeric expression that specifies the first or last character of the
substring.

length
is a numeric expression that specifies the substring.

Rules

* length cannot equal zero.
® pos must be a positive integer.
* pos must be greater than or equal to one.

e If the value of length is positive, the substring begins at pos and is
length (absolute value) characters in length.

e If the value of length is negative, the substring ends at pos and is
length (absolute value) characters in length.

e If the relative specification exceeds the declared size of field, portions
of adjacent fields may be referenced. A Subscript error occurs when
memory outside the Data Division that defines name is referenced.

The dpANS DIBOL Procedure Division 3-19

e If field is a subroutine argument that is a literal or an expression in the
calling program, the specification cannot refer to memory that is not
defined by field.

Examples

All of the following examples assume that the Data Division contains the
following information:

RECORD REC
AM, A13, 'abcdefghijklm’
NZ, A13, 'nopgrstuvwxyz'
NUM, D10, 1234567890

The following examples illustrate the use of relative substrings:

Field Data Accessed
AM(2:2) bc

AM(4:1) d

AM(13:-4) jklm
REC(1:10) abcdefghi j
REC(28:-2) 12

NUM(4:5) 45678
NUM(10:-1) 0

NZ(12:2) yz

AM(NUM(5,1):5) efghi

Any data that is beyond the end of the named field can be accessed as
illustrated in the following examples:

Field Data Accessed
AM(12:4) 1lmno
NZ(13:3) z12

If the data to be accessed is beyond the end of the Data Division, a
Subscript error will occur. For example:

Field Data Accessed
NUM(10:2) Subscript error
NZ(30:-4) Subscript error

3-20 The dpANS DIBOL Procedure Division

3.5 ACCEPT

Function

ACCEPT inputs a character from a terminal.

Format
ACCEPT (ch,field{,label})

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

field
is an alpha field, numeric field, or record which will contain the character
input from the terminal.

label
is a statement label where control is to be transferred when a CTRL/Z is
detected.

General Rules

* Each character is received individually using the ACCEPT statement.
The program can receive either the actual ASCII character or the
decimal equivalent of that character.

e ACCEPT is used in I or O mode with a character-oriented device.

* If the RETURN key on a terminal is used, a carriage return character
and line feed character are generated.

Rules for Accepting into an Alpha Field or Record

* The character is moved to the leftmost character position of the field
according to the rules for moving alpha data.

e If a CTRL/Z is detected, it is interpreted as a logical end-of-file and no
character is input.

The dpANS DIBOL Procedure Division 3-21

Rules for Accepting into a Numeric Field

® field should be a three digit field.

® The decimal character code is moved to field according to the rules for
moving decimal data.

® All characters are input. CTRL/Z is input like other characters and
does not terminate input.

Run-Time Error Conditions

$ERR_EOF E End of file encountered
$ERR_ILLCHN F Illegal channel number specified
$ERR_IOMODE E Bad mode specified
$ERR_NOOPEN F Channel has not been opened
$ERR_WRTLIT F Attempt to store data in a literal
Examples
The following examples assume that the Data Division contains the
following fields:
RECORD

ACHR, Al

DCHR, D3

In the following example, ACCEPT reads a character into ACHR. When a
CTRL/Z is detected, control is transferred to the statement labeled END.
If ‘A’ is typed at the terminal, ACHR will contain ‘A’.

ACCEPT (3,ACHR,END)

In the next example, ACCEPT puts the decimal character code for the next
character into DCHR. When accepting into a numeric field, CTRL/Z is
treated the same as all other characters. If ‘A’ is typed at the terminal,
DCHR will contain 065 which is the decimal character code for ‘A’.

ACCEPT (3,DCHR)

3-22 The dpANS DIBOL Procedure Division

3.6 BEGIN-END Block

Function

The BEGIN-END block is a sequence of statements preceded by BEGIN
and followed by END.

BEGIN
{statement

./
END

statement
is a DIBOL Procedure Division statement.

Rules
® The BEGIN-END block may be used wherever a single executable
statement is valid.

e Control can be transferred from inside a BEGIN-END block to outside
the BEGIN-END block.

¢ BEGIN may begin on a new line.
e END may begin on a new line.

* BEGIN and END cannot be followed on the same line by any state-
ment.

¢ The label on BEGIN, if present, is outside the block.
* The label on END, if present, is inside the block.

Run-Time Error Conditions

None

Examples

The BEGIN-END block is particularly useful with the IF, IF-THEN-ELSE,
DO-UNTIL, FOR, USING, and WHILE statements. In the following
example, all the statements within the BEGIN-END block will be executed
if LNECTR is greater than MAXCTR.

The dpANS DIBOL Procedure Division 3-23

IF LNECTR.GT.MAXCTR Time for a new page?

BEGIN ; Yes--

FORMS (6,0) ; Output a form feed

INCR PAGE ; Increment the page number
WRITES (6,TITLE) ; Output title

CLEAR LNECTR ; Reset line counter

END

In the following example, the statements within the BEGIN-END block
(the READS and the IF) will be repetitively executed until CUSNAM
equals SPACES. The IF statement also contains a BEGIN-END block. The
statements within this inner BEGIN-END block will be executed if the
BALANC is greater than 100.

DO

BEGIN

READS (1,CUST,EQOF) ; Read a customer record

IF BALANC.GT.100 ; Owe more than $1007
BEGIN ; Yes--
NAME=CUSNAM ; Save customer name
AMT=BALANC ; Save the balance
WRITES (6,PLINE) ; Print name and balance
END

END

UNTIL CUSNAM.EQ.SPACES

3-24 The dpANS DIBOL Procedure Division

3.7 CALL

Function

CALL transfers program control to an internal subroutine.

Format
CALL Jabel

label
is the statement label of the first statement in the subroutine.

Rules

* Each CALL statement must be matched by a RETURN statement.

* The matching RETURN statement causes control to return to the
statement logically following the CALL.

* label must be defined within the current program.

Run-Time Error Conditions

$ERR_SYSTEM F System error

Examples

This example shows how program control branches from one subroutine

to the next and returns. The solid lines show the control path upon
execution of RETURN statements.

CALL PROFIT

WRITES (6,PROFIT) ; Output the profit
CLOSE 6 ; Close the file
STOP

; Subroutine to calculate profit

PROFIT, PBT=PRICE-COST ; Compute pre-tax profit
CALL TAX ; Get the tax
PAT=PBT-TAX ; Compute post-tax profit
RETURN

; Subroutine to calculate tax

TAX, TAX=PBT*8 ; Compute the tax
IF TAX.GT.MAX TAX=MAX
RETURN

The dpANS DIBOL Procedure Division

3-25

3.8 CLEAR

Function

CLEAR sets variables to zeros or spaces.

Format

CLEAR fieldf, . ..}

field

is an alpha field, numeric field, or record to be cleared.
Rules

e If field is an alpha field, it is cleared to spaces.
e If field is a numeric field, it is cleared to zeros.

e If field is a record containing numeric fields, the entire record, includ-
ing the numeric fields, is cleared to spaces.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following examples assume that the Data Division contains the
following fields:

RECORD REC

AFLD, A10

DFLD, D5
The following statement will clear AFLD to all spaces:
CLEAR AFLD
The following statement will clear DFLD to all zeros:
CLEAR DFLD

The following statement will clear AFLD to all spaces and will clear DFLD
to all zeros:

CLEAR AFLD,DFLD

3-26 The dpANS DIBOL Procedure Division

When a record is cleared, all fields, including numeric fields within the

record, are cleared to spaces. The following statement will clear AFLD and
DFLD to spaces:

CLEAR REC

The dpANS DIBOL Procedure Division 3-27

3.9 CLOSE

Function

CLOSE terminates the use of a channel by closing the associated file and
releasing both the I/O channel and the file buffer.

Format
CLOSE ch

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

Rules
* CLOSE is necessary for channels opened in O and U modes to assure
that records remaining in the I/O buffer are output to the file.

¢ If the channel is open in O mode, CLOSE writes records remaining in
the I/0O buffer into the file. The end-of-file mark is placed after the
last record in the file.

* If the channel is open in U, CLOSE writes records remaining in the
I/0 buffer into the file. The records are automatically unlocked.

* No error is generated if the channel is not opened.

Run-Time Error Conditions

$ERR_FILFUL E
$ERR_ILLCHN F
$ERR_IOFAIL E Bad data encountered during I/O operation
$ERR_LOCKED E Record is locked

Output file is full

Illegal channel number specified

Examples

There are three parts to the following example. First, a new file is created
and a single record is written into it. Second, the newly created file is
opened for input and the record is read. Finally, the record that was read
is displayed on the screen. All I/O operations use the same channel. The
channel number can be reused following the CLOSE statement.

3-28 The dpANS DIBOL Procedure Division

RECORD

DAT, A80

PROC

; Create a new file (TEST.DDF)

OPEN (3,0, 'TEST.DDF')

WRITES (3,'This is a test')

CLOSE 3

; Create file
; Output a record

Close TEST.DDF

Read the record written into newly created file

OPEN (3,I,'TEST.DDF')
READS (3,DAT)
CLOSE 3

Display the record that was read

OPEN (3,0,'TT:")
WRITES (3,DAT)
CLOSE 3

STOP

»
»

; Open TEST.DDF for input

Read a record

; Close the input file

; Open the terminal
; Display the data
; Close the terminal

The dpANS DIBOL Procedure Division

3-29

3.10 DECR

Function

DECR decreases a numeric field by one.

Format
DECR nvar

nvar
is the field to be decreased.

Rules

* DECR is functionally equivalent to nvar=nvar — 1 but will not cause an
overflow error if the value exceeds 18 digits.

* Underflow will result in nvar being set to minus zero.
® The field to be decreased can contain positive or negative numbers.

® If the size of the resulting value is larger than nvar, the leftmost digits
causing overflow are truncated.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following DECR statements are all valid (assuming that the fields
being decreased are all numeric).

DECR CNTR
DECR A(3)

DECR C(H,6)

IF LNECTR.GT.MINTR DECR LINECTR

3-30 The dpANS DIBOL Procedure Division

3.11 DELETE

Function

DELETE eliminates a record from an indexed file.

Format
DELETE (ch,{keyfld})

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

keyfid

is ignored.

Rules

e DELETE is used in U:I mode.

* The record to be deleted is the record most recently read on the
specified channel and must still be locked.

* DELETE clears any lock on the specified channel.

* DELETE serves as a signal to the file system that the record is no
longer valid. The action taken is system dependent.

Run-Time Error Conditions

$ERR_ILLCHN
$ERR_IOFAIL
$ERR_IOMODE
$ERR_KEYNOT
$ERR_LOCKED
$ERR_NOCURR
$ERR_NOOPEN

Illegal channel number specified

Bad data encountered during I/O operation
Bad mode specified

Key not same

Record is locked

No current record

oM omomomomom

Channel has not been opened

The dpANS DIBOL Procedure Division 3-31

Examples

In the following example, all the customer records in the indexed file are
read. When a customer with a balance of less than $20 is found, that
customer’s record is deleted.

RECORD REC
NAME, A10 ; Customer name
BAL, D6 ; Customer balance
PROC
OPEN (1,U:I,'CUSBAL.ISM') ; Open the indexed file

LOOP, READS (1,REC,0UT) Read the next record

IF BAL.LT.20 ; Balance less than $207
DELETE (1,NAME) ; YES--Delete the record
GOTO LOOP
OuT, CLOSE 1 ; Close the file
STOP

3-32 The dpANS DIBOL Procedure Division

3.12 DETACH

Function

DETACH disconnects the program from its associated terminal.

Format
DETACH

Rules for PDP

* When DETACH is executed, the message DETACHING is displayed at
the terminal and the program continues its execution.

* Attempting to perform I/O to the terminal suspends the program’s
execution until a terminal is reassigned to the detached program.

¢ DETACH has no effect on a program executing in a non-multi-tasking
or detached environment.

* The terminal number associated with a detached program is -1,
regardless of the number of the terminal from which the program
detaches.

Rules for VAX
¢ DETACH is non-operative.

Run-Time Error Conditions

None

Examples

The following program allows the operator to enter the name of a file to
print. Once the file name is entered, the terminal is no longer required by
the program. Therefore, the DETACH statement is used so that another
program may be run at the terminal.

The dpANS DIBOL Procedure Division 3-33

RECORD
FILE, A20
LINE, A132
PROC
OPEN (1,I,'TT:")
WRITES (1,'Enter file name')
READS (1,FILE)
CLOSE 1
DETACH
; The remainder of the program runs detached
OPEN (1,I,FILE)
OPEN (6,0:P,'LP:')
LOOP, READS (1,LINE,EOF)
WRITES (6,LINE)
GOTO LOOP
EOF, CLOSE 1
CLOSE 6
STOP

3-34 The dpANS DIBOL Procedure Division

File name to print
Line to print

Open the terminal
Display prompt
Accept the file name
Close the terminal
Release the terminal

Open the print file
Open the printer
Read the next line
Print the line

Close the print line
Close the printer

3.13 DISPLAY

Function
DISPLAY outputs (8-bit ASCII) characters to a device or file.

Format
afield
DISPLAY (ch, | aliteral | {, ...}
nexp
ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

afield
[aliteral]

nexp
is an alpha field, alpha literal, or numeric expression which contains
characters to be output.

Rules

¢ DISPLAY is used in O:P mode with a sequential file in I and O modes
with a printer or character-oriented device.

* DISPLAY uses the numeric ASCII character code (see APPENDIX A).
e If the data is alpha, the characters are output to the device as pre-
sented.

e If the data is numeric, it is evaluated modulo 256 and the number
is treated as a single ASCII character code. A number that exceeds
the character code range (0 through 255) is converted by dividing the
number by 256 and taking the remainder as a character code (e.g., 257
is interpreted as 001).

* A negative number produces unpredictable results.

The dpANS DIBOL Procedure Division 3-35

Run-Time Error Conditions

$ERR_ILLCHN F
$ERR_IOMODE E
$ERR_NOOPEN F
$ERR_OUTRNG F

Examples

Illegal chain number specified
Bad mode specified
Channel has not been opened

Value out of range

The following example outputs the message HELLO followed by a carriage
return (numeric character code 13) and a Line Feed (numeric character

code 10):

DISPLAY (1,'HELLO',13,10)

DISPLAY is especially useful for outputting terminal control sequences.
The terminal user guide lists control code sequences for cursor positioning,
clearing the screen, and many other operations. Assuming that channel 1
is associated with a VT100 terminal, the following example will position
the cursor to line 3, column 5:

DISPLAY (1,27,'([3;5H')

3-36 The dpANS DIBOL Procedure Division

3.14 DO-UNTIL

Function

DO-UNTIL repetitively executes a statement until a condition is true.

Format
DO statement UNTIL condition

statement
is a DIBOL Procedure Division statement.

condition
is a numeric expression.

Rules

* statement is always executed at least once.

* The condition is evaluated following each execution of the statement.
e The condition is either true (non-zero) or false (zero).

e If the condition is false, the statement is executed again.

¢ UNTIL may be on a separate line.

* statement may be on a separate line.

Run-Time Error Conditions

None

Examples

In the following example, customer records (CUST) will be read until one
is found with a balance (BAL) less than $20:
DO

READS (1,CUST,EQF)
UNTIL BAL.LT.20

The dpANS DIBOL Procedure Division 3-37

The following program segment reads customer records (CUST) and
creates a list of those customers with a balance over $100:

DO

BEGIN

READS (1,CUST,EOF) ; Read a customer record

IF BALANC.GT.100 ; Owe more than $1007
BEGIN ; Yes--
NAME=CUSNAM ; Save customer name
AMT=BALANC ; Save the balance
WRITES (6,PLINE) ; Print name and balance
END

END

UNTIL CUSNAM.EQ.SPACES

3-38 The dpANS DIBOL Procedure Division

3.15 EXIT

Function
EXIT terminates the execution of a BEGIN-END block.

Format
EXIT

Rules

* EXIT is specified within a BEGIN-END block.

e Control is transferred to the END statement of the current BEGIN-
END block.

Examples

The following program segment reads customer records (CUST) and
creates a list of customers with a balance over $1000. No entry is made in
the list if the customer is allowed an extended line of credit (CREDIT).

DO
BEGIN
READS (1,CUST,EOF)
IF BALANC .GT. 1000
BEGIN
IF CUSTYP .EQ. 'CREDIT' EXIT
NAME = CUSNAM

AMT = BALANC
WRITES (6,PLINE)
END

END
UNTIL CUSNAM .EQ. SPACES

The dpANS DIBOL Procedure Division 3-39

3.16 EXITLOOP

3-40

Function

EXITLOOP terminates execution within an iterative construct (FOR,
DO-UNTIL, REPEAT, or WHILE) and transfers program control to the
statement immediately following the iterative construct.

Format
EXITLOOP

Rules

e EXITLOOP must be physically contained within an iterative construct.

Examples

The following program segment totals month to date sales (MDTSLS). The
loop is exited if sales for any month are negative.

CLEAR YTDSLS
FOR MONTH FROM 1 THRU 12
BEGIN
IF MTDSLS (MONTH) .LT. O
THEN EXITLOOP
ELSE YTDSLS = YTDSLS + MTDSLS

The dpANS DIBOL Procedure Division

3.17 FOR

Function

FOR repetitively executes a statement.

Format
FOR nfield FROM initial THRU final {BY step} statement

nfield

is a numeric field to be altered.

initial
is a numeric expression which specifies the initial value to be assigned to
nfield.

final
is a numeric expression which specifies the final value for nfield.

step
is a numeric expression which specifies the value to add to nfield each time
through the loop.

statement
is a DIBOL Procedure Division statement.

Rules

* FOR generates internal temporary fields to hold step (t_step) and final
(t—final).

* t_final is a temporary field set to the final value, and t_step is a
temporary field set to the step value, prior to executing the loop.

* If no step value is specified, it is assumed to be one.

* Prior to entering the loop, the sign of t_step is checked to insure that
the step direction is correct. For the step direction to be correct, nfield
must be less than, or equal to, t_final if t_step is positive; and nfield
must be greater than or equal to t_final if t_step is negative. If the
step direction is incorrect, the loop is not entered.

* Prior to each execution of statement, nfield is tested to determine if it
has reached its limit. If nfield has not reached its limit, statement is
executed.

The dpANS DIBOL Procedure Division 3-41

* If nfield is not large enough to hold final plus the step value without
truncation, an infinite loop may occur.

e t_step is added to nfield following each statement execution.
* If the loop is not executed, nfield is equal to the initial value.

e If the loop is exited normally, nfield will equal the previous value of
nfield plus step.

* Modifying the initial value, final value, or step value in the FOR loop
has no effect on the execution of the FOR loop.

® The statement may be on a separate line.

Run-Time Error Conditions

$ERR_ARGMIS E Argument missing
$ERR_BIGNUM E Arithmetic operand exceeds 18 digits
Examples

In the following example, customer records 100 through 200 (inclusive)
will be read and displayed:

FOR RECNO FROM 100 THRU 200

BEGIN

READ (1,CUST,RECNO) ; Read customer record
WRITES (8,CUST) ; Display the record
END

The FOR in the following program segment trims trailing spaces from a

print line:
NEXT, READS (1,LINE) ; Read line to print
FOR I FROM 132 THRU 1 BY -1
IF LINE(I,I).NE.SPACE ; Is this a space?
GOTO FOUND ; No--found last character
FORMS (6,1) ; Completely blank line
GOTO NEXT
FOUND, WRITES (6,LINE(1,I)) ; Output the line
GOTO NEXT

3-42 The dpANS DIBOL Procedure Division

In the following example, the index field (I) is not large enough to hold
the limit value plus the step (limit (99) + step (1) = 100). When the index
reaches 99, it will be incremented to 100, but since the index field is only
a two digit field, 00 will be stored in I. Therefore, the FOR statement will
loop continuously.

RECORD WORK

I, D2 ; Loop index
PROC
OPEN (1,0,'TT:") ; Open terminal
FOR I FROM 1 THRU 99
WRITES (1,WORK) ; Display index
STOP

The dpANS DIBOL Procedure Division 3-43

3.18 FORMS

Function

FORMS outputs device-dependent codes to effect forms control. These
codes are normally used by printers.

Format
FORMS (ch,nexp)

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

nexp
is a numeric expression that results in a printer control code.

Rules

* FORMS is used in O mode with a sequential file, in I and O modes
with a character-oriented device, and in O mode with a printer.

® Acceptable control code values are:

0 Transmits a Form Feed character (ASCII code 12).

1-255 Sends this many Line Feed characters (ASCII code 10) preceded
by a carriage return character (ASCII code 13).

-1 Transmits a Vertical Tab character (ASCII code 11).
-3 Transmits a carriage return (ASCII code 13).

Run-Time Error Conditions

$ERR_ILLCHN
$ERR_IOFAIL
$ERR_OUTRNG
$ERR_NOOPEN

Illegal channel number specified
Bad data encountered during I/O operation

Value out of range

T mo™

Channel has not been opened

3-44 The dpANS DIBOL Procedure Division

Examples

The following FORMS statement will skip 3 lines:

FORMS (6,3)

The following FORMS statement will cause the printer to start a new page:

FORMS (6,0)

The dpANS DIBOL Procedure Division 3-45

3.19 GOTO

Function

An unconditional GOTO transfers program control.

Format
GOTO (label)

label
is the statement label where control is to be transferred.

Rules
® The statement may be written as GOTO or GO TO.

Run-Time Error Conditions

None

Examples

In the following example, the GOTO will transfer control to the label
NEXT:

NEXT, READS (1,CUST,EOF) ; Read a customer record
NAME=CUSNAM ; Save customer name
AMT=BALANC ; Save the balanc
WRITES (6,PLINE) ; Print name and balance
GOTO NEXT

3-46 The dpANS DIBOL Procedure Division

3.20 GOTO (Computed)

Function
A computed GOTO transfers program control based on the evaluation of
an expression.

Format
GOTO (labelf, . .. }),nexp

label
is one or more statement labels where control is to be transferred.

nexp
is a numeric expression which determines to which statement label control
is transferred.

Rules

* The statement may be written as GOTO or GO TO.

* Control is transferred to the statement identified by the first label if
nexp is one, to the statement identified by the second label if nexp is
two, and so on.

* If nexp is negative, zero, or greater than the number of labels, control
is transferred to the next logical statement in sequence.

Run-Time Error Conditions

None

Examples

In the following statement, control will be transferred to the label LOOP if
the value of KEY is one; to the label LIST if the value of KEY is two; and
to the label TOTAL if the value of KEY is three. If the value of KEY is less
than one or greater than three, control will be transferred to the statement
following the GOTO.

GOTO (LOOP,LIST,TOTAL), KEY

The dpANS DIBOL Procedure Division 3-47

3.21 IF

Function

IF executes a statement if a condition is true.

Format
IF condition statement
condition

is an expression which determines whether or not the statement is exe-
cuted.

statement
is a DIBOL Procedure Division statement.

Rules

e The condition is either true (non-zero) or false (zero).
o If the condition is true, statement is executed.

e If the condition is false, statement is not executed.

* statement may be on a separate line.

Run-Time Error Conditions

None

Examples

In an alpha comparison, the operands are compared on a character basis
from left to right according to the value of their character codes (see
Appendix A). The comparison is limited to the size of the shorter alpha
field. For example, the following statement compares a three character
alpha field to a five character alpha field. Since only the first three
characters are compared, the result of the following statement is true:

IF 'ABC'.EQ.'ABCDE' STOP

3-48 The dpANS DIBOL Procedure Division

The following IF statements are all valid:

IF A.EQ.B GOTO LABEL3
IF (SLOT.NE.202) READS (CH,RECNAM,EOF)

IF SALES.LT.PROFIT+TAX-RENT
STOP

IF DONE STOP

IF LNECTR.GE.MAXCTR
BEGIN
FORMS (6,0)
WRITES (6,TITLE)
CLEAR LNECTR
END

The dpANS DIBOL Procedure Division

3-49

3.22 IF-THEN-ELSE

Function

IF-THEN-ELSE executes one of two statements based on a condition.

Format
IF condition THEN statement1 ELSE statement2

condition
is an expression that determines which statement is executed.

statement1
is a DIBOL Procedure Division statement.

statement2
is a DIBOL Procedure Division statement.

Rules

* The condition is either true (non-zero) or false (zero).
e If the condition is true, statementl is executed.

¢ If the condition is false, statement2 is executed.

¢ THEN may be on a separate line.

¢ ELSE may be on a separate line.

* statement] may be on a separate line.

* statement2 may be on a separate line.

Run-Time Error Conditions

None

Examples

In the following statement, the cost of an item is calculated differently,
depending upon whether it is discountable:

IF DISCNT.EQ.'Y' ; Is item discountable?
THEN ; Yes--
COST=PRICE-DIS+TAX ; Get cost w/ discount
ELSE
COST=PRICE+TAX ; Get cost w/o discount

3-50 The dpANS DIBOL Procedure Division

The following example performs the same type of operation except the
TAX and DIS calculations are performed within the IF statement:

IF DISCNT.EQ.'Y'

THEN
BEGIN
DIS=PRICE/10
TAX=(PRICE-DIS) *5/100
COST=PRICE-DIS+TAX
END

ELSE
BEGIN
TAX=PRICE*5/100
COST=PRICE+TAX
END

; Is item discountable?
; Yes--

Calculate the discount
Calculate the tax
Get cost w/ discount

Calculate the tax
Get cost w/o the discount

The dpANS DIBOL Procedure Division 3-51

3.23 INCR

Function

INCR increases a numeric field by 1.

Format
INCR nfield

nfield

is a numeric field to be incremented.

Rules

* The field to be incremented (dfield) can contain positive numbers,
negative numbers, and spaces.

® Spaces are treated as zeros.

® If the size of the resulting value is larger than nfield, the leftmost digits
that cause overflow are truncated.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

The following INCR statements are all valid (assuming that the fields
being incremented are all numeric).

INCR CNTR

INCR A(3)

INCR C(H,6)

IF LNECTR.LT.MAXCTR INCR LNECTR

3-52 The dpANS DIBOL Procedure Division

3.24 LOCASE

Function

LOCASE converts uppercase characters to corresponding lowercase char-
acters.

Format
LOCASE afield

afield
is an alpha field or record that contains the characters to be converted.

Rules

* LOCASE will convert each byte encountered in afield from an upper-
case character to a corresponding lowercase character if the numeric
ASCII value of the byte is between 65 and 90, inclusive. These
characters represent the English uppercase alphabetic characters.

* LOCASE will convert each byte encountered in afield from an upper-
case character to a corresponding lowercase character if the numeric
ASCII value of the byte is between 192 and 222, inclusive. These
characters represent the Multinational uppercase alphabetic characters.

® Other non-alphabetic characters are unaffected.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

In the following example, the first LOCASE statement changes the charac-
ters 'THIS IS A TEST' to lowercase. After the first LOCASE statement is
executed, the contents of REC are ‘This is a test [OF LOCASE]'. After the
second LOCASE statement is executed, the contents of REC are 'this is a
test [of locase]'.

RECORD REC
A, A14, 'THIS IS A TEST'
B, A12, ' [OF LOCASE]'
PROC
LOCASE A(2,14)
LOCASE REC
STOP

The dpANS DIBOL Procedure Division 3-53

3.25 LPQUE

Function

LPQUE queues a file to be printed by the printer spooler.

Format
LPQUE (filespec{,LPNUM:dexp} { COPIES:dexp}

{,FORM: [Z;‘I'grda . | HDELETEf:nexp})

filespec
is an alpha field, alpha literal, or record which contains the file specifica-
tion of the file to be printed.

LPNUM:nexp
is a numeric expression that specifies the printer.

COPIES:nexp
is a numeric expression which specifies the number of copies to print.

. [afield
FORM: [aliteral]

is an alpha field, alpha literal, or record which specifies the type or name
of the form to be inserted into the printer before the file is printed.

DELETE{:nexp)}
is the deletion indicator and is a numeric expression which specifies
whether or not the file is to be deleted.

Rules

® Optional qualifiers prefaced by a keyword can occur in any order.
* LPQUE sends a request to the printer spooler to print the file.
* Multiple LPQUE statements cause the print requests to be queued.

* If no printer identification is specified, the system’s default printer(s) is
(are) used.

e [f the deletion indicator is zero, the file is deleted.
e If the deletion indicator is non-zero, the file is not deleted.
® If the deletion indicator is not specified, the file is deleted.

3-54 The dpANS DIBOL Procedure Division

* If no copy count is specified, or if it is less than one, it is assumed to
be 1.

* If a form is specified, a system specific forms request is issued.

Run-Time Error Conditions

$ERR_FNF E File not found

$ERR_ILLCHN F Illegal channel number was specified
$ERR_NOOPEN F Channel has not been opened
$ERR_SYSTEM F System error

Examples

In the following example, the LPQUE statement requests the printing of
one copy (NBR=1) of the file CHECK.LIS. Before printing begins, the form
CHECKS should be placed in the printer.

RECORD
NBR, D2, 01
FILE, A9, 'CHECK.LIS'
PROC
LPQUE (FILE,COPIES:NBR,FORM: 'CHECKS')
STOP

The dpANS DIBOL Procedure Division 3-55

3.26 NEXTLOOP

Function

NEXTLOOP terminates execution within an iterative construct and begins
executing the next iteration, if any, of the iterative construct.

Format
NEXTLOOP

Rules

* NEXTLOOP must be physically contained within a FOR loop, DO-
UNTIL loop, WHILE loop, or REPEAT loop.

e NEXTLOOP transfers control to the test condition of the immediate
iterative construct with a test condition.

* For a REPEAT iterative construct, control will be passed to the state-
ment to be repeated.

Examples

In the following example, if a character cannot be printed, NEXTLOOP
terminates the loop prior to processing the character.

FOR COUNTER FROM 1 THRU STR_LENGTH
BEGIN
ACCEPT (1, IN_CHAR)
IF (IN_CHAR .LT. '') .OR. (IN_CHAR .GT. '"') NEXTLOOP
INCR O_CTR
OUT_FILE (O0_OCTR,0_CTR) = IN_CHAR
END

3-56 The dpANS DIBOL Procedure Division

3.27 OFFERROR

Function

OFFERROR disables trapping of run-time errors.

Format
OFFERROR

Rules

* This statement may be written as OFFERROR or OFF ERROR.

* When OFFERROR is executed, run-time errors normally detected by
the ONERROR statement are treated as non-trappable.

* OFFERROR affects only an active ONERROR.

Run-Time Error Conditions

None

Examples

In the following example, the ONERROR statement is used to trap the
Attempt to divide by 0 error and the OFFERROR is used to disable error
trapping after the division is performed:

ONERROR DIVO ; Check for $ERR_DIVIDE error
C=A/B
OFFERROR ; Turn off error check

The dpANS DIBOL Procedure Division 3-57

3.28 ONERROR

Function

ONERROR enables trapping of run-time errors which would otherwise
cause program termination.

Format
ONERROR /abel

label
is a statement label where control is to be transferred when an error
occurs.

Rules

® This statement may be written as ONERROR or ON ERROR.
* ONERROR remains in effect until one of the following occurs:
— An ONERROR is executed which specifies a different label.

— An XCALL is executed. ONERROR is suspended until control
returns from the external subroutine.

— An OFFERROR is executed.
— The program terminates.

¢ The error detected by ONERROR may be determined either by using
the ERROR external subroutine, or by knowing the nature of the
statements executed after ONERROR was executed.

Run-Time Error Conditions

None

Examples

In the following example, the ONERROR statement is used to trap errors.
If a trappable error occurs after the ONERROR has been executed, control
will be transferred to the label IOERR:

ONERROR IOERR

NEXT, READS (1,CUST,EOF) ; Read a customer record
NAME=CUSNAM ; Save customer name
AMT=BALANC ; Save the balance
WRITES (6,PLINE) ; Print name and balance
GOTO NEXT

3-58 The dpANS DIBOL Procedure Division

3.29 OPEN

Function

OPEN associates a channel number with a device or with a file on a
device.

Format

mode{:submode/ | & . .
OPEN (Ch'[MODE:aﬁeI x | filespect ALLOC:nexp}f BKTSIZ:nexp}

{.BLKSIZ:nexpj{,BUFSIZ:nexp}{, RECSIZ:nexp}{, NUMREC:nexp))

ch
is a numeric expression that evaluates to a channel number.

mode
designates the data transfer method (Input, Output, or Update).

submode
further defines, qualifies, or restricts mode.

MODE:afield

specifies that mode and submode will be determined at execution time.
afield is an alpha field or literal that contains the mode and the optional
submode of the form “mode{:submode)}.”

filespec
is an alpha field, alpha literal, or record that contains the file specification.

ALLOC:nexp
is a numeric expression that specifies the initial file allocation.

BKTSIZ:nexp
is a numeric expression that specifies the bucketsize in blocks.

BLKSIZ:nexp
is a numeric expression that specifies the block size (bytes) of magnetic
tape.

BUFSIZ:nexp
is a numeric expression that specifies the size of the transfer buffer in
blocks for this channel.

The dpANS DIBOL Procedure Division 3-59

RECSIZ:nexp
is a numeric expression that specifies the length (bytes) of the records in
the file.

NUMREC:nexp

is a numeric expression that specifies the number of logical records in
lengths as defined by RECSIZE that is to be used as the initial allocation
of a file.

General Rules

* A unique OPEN statement must be executed for each unique combi-
nation of device, file, and mode of operation.

* OPEN must be executed prior to any 1/O operation and remains in
effect until a corresponding CLOSE is executed.

e The channel number can be between 1 and 31, inclusive.

* The maximum number of channels opened simultaneously is system
dependent.

* Optional qualifiers prefaced by a keyword can occur in any order.

* The transfer of program control to an external subroutine does not
affect the status of a channel.

® An attempt to OPEN a file on a channel currently open will result in
an error.

Rules for mode

e OPEN uses three data access methods: sequential, relative, and

indexed.

* If a file is being opened, the modes of operation and file I/O state-
ments are:
INPUT (1) used to obtain input from an existing sequential, relative,

or indexed file. Input mode is a read-only mode.
OUTPUT (O) used to create a file.
UPDATE (U) used for input and output from an existing relative or
indexed file.

* A character-oriented device is being opened, only the Input and
Output modes of operation are used.

3-60 The dpANS DIBOL Procedure Division

:afield opens the channel based on the contents of afield. The contents
of afield are evaluated at execution time to determine the mode and
optional submode for OPEN.

Rules for submode

submodes are Sequential (S), Print (P), Relative (R), Indexed (1), or
Character (C).

Sequential submode is used with O mode and indicates that the file
being created is a sequential file. Sequential submode is assumed for
file-oriented devices if no submode is specified with O mode.

Character submode is assumed for character-oriented devices if no
submode is specified with O mode.

Print submode is used with O mode and indicates that the file being
created is a print file.

Relative submode is used with the O mode and indicates that the file
being created is a relative file. O:R is required when creating an RMS
relative file.

Indexed submode is used with I and U modes and indicates that the
file being opened is an indexed file. All file volumes must be on-line
simultaneously. SI is equivalent to I:I and SU is equivalent to U:L

Character submode may be used with I and O modes and indicate that
the file or device is to be treated as a character-oriented device.

Rules for ALLOC

ALLOC reserves space on a device for a file at OPEN; nexp is the
number of 512 byte units.

ALLOC overrides any filesize specified with the filespec. The value
specified is system dependent.

ALLOC is used in O mode. It is ignored for other modes.
nexp must equal a non-negative integer.

If nexp in NUMREC:nexp is non-zero, then NUMREC overrides
ALLOC.

Rules for BKTSIZ

BKTSIZ specifies at file creation time the number of 512 byte I/O units
to be considered as a logical group.

nexp must be a positive integer.

The dpANS DIBOL Procedure Division 3-61

Rules for BLKSIZ

BLKSIZ specifies the block size, in bytes, for files opened on magnetic
tape.

BLKSIZ is used when creating a file on magtape. Any other use of
BLKSIZ is ignored.

nexp must be a positive integer.

Rules for BUFSIZ

BUFSIZ defines the size of an internal buffer.

The I/0O buffer size must be large enough to contain the data record.
BUFSIZ overrides the buffer size designated by PROC for this OPEN.
The value must be between 1 and 15, inclusive.

Rules for RECSIZ

RECSIZ defines the size of a logical record with nexp specifying the
length in bytes of each logical record in the file.

RECSIZ is required when creating an RMS relative file. Any other use
of RECSIZ is ignored.

RECSIZ implies the records are fixed length.
nexp must be a positive integer.

Rules for NUMREC

NUMREC specifies the number of logical records in a file to be used
as the initial file allocation.

NUMBREC may be used in OUTPUT mode. It is ignored for other
modes.

nexp must be a positive integer.

If NUMREC is specified, RECSIZ must also be specified.

If nexp is a positive, nonzero integer, NUMREC will override ALLOC.
If nexp is 0, the result is the same as not specifying NUMREC.

The following tables show which statements are legal for a file organiza-
tion, mode, and character device:

3-62 The dpANS DIBOL Procedure Division

Table 3-2: Shared File Access

Access
File Type Open Mode Other Users Status
Sequential Input none Granted
Input Granted
Output Denied
Output none Granted
I Input Denied
Output Denied
Relative Input none Granted
Input Granted
Output Denied
Update Granted
Output none Granted
Input Denied
Output Denied
Update Denied
Update none Granted
Input Granted
Output Denied
Update Granted
Index Input none Granted
Input Granted
Update Granted
Update none Granted
Input Granted
Update Granted

The dpANS DIBOL Procedure Division 3-63

Table 3-3: Valid Combinations of Mode:Submode

'S | O:S IR | O:R | UR Il u:l I:C { O:C | OP
ACCEPT X X
CLOSE X X X X X X X X X X
DELETE
DISPLAY
FORMS X
READ X X X
READS X X X X
STORE X
WRITE X
WRITES X X X X X X
MK-02736-00

Run-Time Error Conditions

$ERR_ALLOC
$ERR_ARGMIS
$ERR_BKTSIZ
$ERR_BUFSIZ
$ERR_CHNUSE
$ERR_DEVUSE
$ERR_FILORG
$ERR_FILSPC
$ERR_FINUSE
$ERR_FNF

Invalid value specified for ALLOC:
Argument missing

Invalid value specified for BKTSIZ:
Invalid value specified for BUFSIZ:
Channel is in use

Device in use

Invalid file organization specified
Bad file name

File in use by another user

ot oo ot ot omomom

File not found

3-64 The dpANS DIBOL Procedure Division

$ERR_ILLCHN
$ERR_IOFAIL
$ERR_IOMODE
$ERR_NOMEM
$ERR_NOOPEN
$ERR_NOSPAC
$ERR_NUMREC
$ERR_ONLYRO
$ERR_ONLYWR
$ERR_PROTEC
$ERR_RECSIZ
$ERR_REPLAC
$ERR_SYSTEM

Examples

oM om Mmoo oM™ om omom oo

Illegal channel number specified

Bad data encountered during I/O operation
Bad mode specified

Not enough memory for desired operation
Channel has not been opened

No space exists for file on disk

Invalid value specified for NUMREC:
Attempt to write to a read-only device
Attempt to open output device in input mode
Protection violation

Invalid value specified for RECSIZ:

Cannot supersede existing file

System error

The following statement creates a new sequential file named RENEW.DDF
and associates it with channel 5:

OPEN (5,0, 'RENEW.DDF')

The following statement creates a new relative file named ARMAS.DDF
and associates it with channel 2. All the records in the file will be 100

characters in length.

OPEN (2,0:R.'ARMAS.DDF',RECSIZ:100)

The following statement opens the terminal for both input and output,
and associates the terminal with channel 15:

OPEN (15,0:C,'TT:')

The following statement opens the relative file ARMAS.DDF for modi-
fication using channel 3. It also specifies an internal buffer size of three
blocks. This buffer size overrides the size specified by PROC for this

OPEN only.

OPEN (3,U, 'ARMAS.DDF' ,BUFSIZ:2)

The dpANS DIBOL Procedure Division 3-65

The following statement creates a new sequential file named AR.LIS and
associates it with channel 5. Since the new file will eventually be printed,
it is created with the P submode.

OPEN (5,0:P,'AR.LIS')

The following example creates a new relative file, ARMAS.DDF and asso-
ciates it with channel 15. All the records in the file will be 25 characters
in length. The initial file allocation is 56 blocks.

OPEN (15,0:R,'ARMAS.DDF' ,RECSIZ:25,ALLOC:56)

The following example creates a new relative file, ARREC.DDF and
associates it with channel 21. All the records will be 80 characters in
length. The initial record allocation is 100 records which will cause an
initial file allocation of 15 blocks (80x100).

OPEN (21,0:R, 'ARREC.DDF',RECSIZ:80,NUMREC:100,ALLOC:50)

3-66 The dpANS DIBOL Procedure Division

3.30 READ (Indexed File)

Function

READ inputs a record from an indexed file.

Format
READ (ch,record,keyfid{, KEYNUM:nexp))

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

keyfld
is an alpha field or record which identifies the record to be read.

nexp
is a numeric expression that specifies which key of reference is to be used.

Rules

e READ is used in I and U modes.

* The data record read is the first one with a key value equal to the key
of reference.

o If the size of keyfld is less than the size of the key field defined for the
indexed file, it is assumed to be a partial key. The system returns the
first record whose initial characters match the specified key.

¢ If duplicate keys exist, READ retrieves the first occurrence of the key.
READS is used to retrieve each additional occurrence of the key.

e If keyfld is contained within the record, it is assumed to be in the same
position as a key field defined for the file.

¢ If a record containing the specified key is not found, the record with
the next higher key is returned and a Key not same error is generated.

® The record is read into record according to the rules for moving alpha
data.

e If the data record is larger than record, an Input data size exceeds
destination size error is generated and the data record is read into
record according to the rules for moving data to an alpha field.

The dpANS DIBOL Procedure Division 3-67

e If the data record is smaller than record, the data record is read into
record according to the rules for moving data to an alpha field.

Rules for KEYNUM
¢ KEYNUM specifies the key number to be used in a READ from an
indexed file.

¢ KEYNUM:0 indicates that the primary key is to be used. KEYNUM:1
indicates that the first alternate key is to be used. KEYNUM:2 indi-
cates that the second alternate key is to be used, and so on.

e Jf KEYNUM is not specified and the key field corresponds to a key
position defined in the record, that key position determines which key
number will be used.

e If KEYNUM is not specified and the key field does not correspond
to a key position defined in the record, or is outside the record, the
primary key number will be used.

e When a READ is executed in U mode, the blocks which contain the
record are locked; other records that lie wholly or partially within
these blocks are also locked. The lock remains in effect until one of
the following occurs:

— A WRITE using the channel is executed.

— A READ or READS using the channel is executed.
— A STORE using the channel is executed.

— A DELETE using the channel is executed.

— An UNLOCK using the channel is executed.

— A CLOSE using the channel is executed.

— The program terminates.

Run-Time Error Conditions

$ERR_BADKEY E An illegal key was specified

$ERR_EOF E End of file encountered

$ERR_ILLCHN F Illegal channel number specified
$ERR_IOFAIL E Bad data encountered during I/O operation
$ERR_IOMODE E Bad mode specified

$ERR_KEYNOT E Key not same

3-68 The dpANS DIBOL Procedure Division

$ERR_LOCKED
$ERR_NOOPEN
$ERR_TOOBIG
$ERR_WRTLIT

Record is locked
Channel has not been opened

Input data size exceeds destination size

M m Mo

Attempt to store data in a literal

Examples

Assuming that the indexed file has been defined with a key length of five
characters and a key position of 16 and the Data Division contains:

RECORD ADDR
A5
, D10
KEY, A5, 'SMITH'
D20

then the following statement will return the record with the key SMITH
from the indexed file opened on channel 1. The READ will place that
record in ADDR. If more than one SMITH record exisits, the first one is
obtained and the remaining SMITH records can be read using the READS
statement. If SMITH does not exist, the next higher keyed record will be
retrieved, and a Key not same error will be generated. This error can be
trapped by an ONERROR statement.

READ (1,ADDR,KEY)

In the following example, the READ statement will return a record from
the indexed file opened on channel 1. The READ will place that record in
ADDR. Using the record definition above, KEYNAM specifies that the first
alternate key be used.

READ (1,ADDR,ADDR(1,5) ,KEYNUM:1)

The dpANS DIBOL Procedure Division 3-69

3.31 READ (Relative File)

Function

READ inputs a record from a relative file.

Format
READ (ch,record,nexp)

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

nexp
is a numeric expression that specifies the sequence number of the record
to be read.

Rules

* READ is used in I and U modes.
* nexp must be between one and the total number of records in the file.

® The record is read into record according to the rules for moving alpha
data.

e If the data record is larger than record, an Input data size exceeds
destination size error is generated.

* When READ is executed in U mode, the blocks which contain the
record are locked; other records that lie wholly or partially within
these blocks are also locked. The lock remains in effect until one of
the following occurs:

— A WRITE or WRITES using the channel is executed.
— A READ or READS using the channel is executed.
— An UNLOCK using the channel is executed.

— A CLOSE using the channel is executed.

— The program terminates.

3-70 The dpANS DIBOL Procedure Division

Run-Time Error Conditions

$ERR_TOOBIG
$ERR_WRTLIT

Input data size exceeds destination size

$ERR_EOF E End of file encountered
$ERR_ILLCHN F Illegal channel number specified
$ERR_IOFAIL E Bad data encountered during I/O operation
$ERR_IOMODE E Bad mode specified
$ERR_LOCKED E Record is locked
$ERR_NOOPEN F Channel has not been opened
$ERR_RECNUM E Illegal record number specified
$ERR_RNF E Record not found

E

F

Attempt to store data in a literal

Examples

The following statement reads the 88th record of the relative file associated
with channel 5 and places the record in the variable REX:

READ (5,REX,88)

The following statement reads the record specified by the value stored in
the variable COUNT from the relative file associated with channel 6 and
places the record in the variable BLT:

READ (6,BLT,COUNT)

The dpANS DIBOL Procedure Division 3-71

3.32 READS

Function

READS inputs the next available record in sequence from a file.

Format
READS (ch,record|,label))

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which will contain the data.

label
is a statement label where control is to be transferred when the logical
end-of-file is detected.

General Rules

* READS is used in I mode with a sequential file; in I and U modes with
a relative file and with an indexed file; and in I and O modes with a
character-oriented device.

® The record is read into record according to the rules for moving alpha
data.

® If the record is larger than record, an Input data size exceeds destina-
tion size error is generated and the record is read into record according
to the rules for moving data to an alpha field.

* When a READS is executed in U mode, record locking occurs in the
same manner as when a READ is executed.

Rules for READS from an Indexed File

®* When an indexed file is opened and the first I/O statement for that file
is a READS, the record with the lowest primary key value is returned.

3-72 The dpANS DIBOL Procedure Division

Rules for READS from a Character-Oriented Device

* READS from a character-oriented device may be affected by the
FLAGS subroutine.

* Al terminating characters, except ESCAPE, position the cursor or
carriage at the beginning of the next line. ESCAPE terminates input
but does not move the cursor or carriage.

¢ When record is full, additional characters are ignored and the terminal
alarm sounds for each additional character typed.

Run-Time Error Conditions

$ERR_EOF
$ERR_ILLCHN
$ERR_IOFAIL
$ERR_IOMODE
$ERR_LOCKED
$ERR_NOOPEN
$ERR_TOOBIG
$ERR_WRTLIT

End of file encountered

Illegal channel number specified

Bad data encountered during 1/0O operation
Bad mode specified

Record is locked

Channel has not been opened

Input data size exceeds destination size

oM o™ mom oo

Attempt to store data in a literal

Examples

The following statement transfers a record from the file associated with
channel 3 to the variable INV. If the end of the file is reached, control
branches to a statement labeled END.

READS (3, INV,END)

The next example is the same as the previous one, except that if the end of
file is reached, an End of file encountered error will be generated since no
end of file label was specified. This error can be trapped by an ONERROR
statement.

READS (3,INV)

The dpANS DIBOL Procedure Division 3-73

3.33 RECV

Function

RECV accepts a message which was sent by another program.

Format
RECV (message,labelf,size})

message
is an alpha field or record which will contain the message.

label

is a statement label where control is to be transferred if no message is
pending.

size

is a numeric field which will contain the size of the message received.

Rules
* The message is moved into message according to the rules for moving
alpha data.

® If message is shorter than the actual message, an error will be returned,
and the data is moved to message according to the rules for moving
alpha data.

* The message size is moved into size according to the rules for moving
numeric data.

Run-Time Error Conditions

$ERR_SYSTEM F System error
$ERR_TOOBIG E Input data size exceeds destination size
$ERR_WRTLIT F Attempt to store data in a literal

3-74 The dpANS DIBOL Procedure Division

Examples

The following program segments show how one program might pass
the name of a data file to another program using the SEND and RECV
statements. The PAYROL program sends the file name (TFIL.DDF) to
the program BAT. The RECV statement in BAT accepts the file name.

If the RECV statement is executed prior to the message having been
sent, control is transferred to the statement labeled LOOP. At LOOP, the
program delays for 10 seconds and then attempts to receive the message
again.

Program PAYROL

RECORD
MSG, A8, 'TFIL.DDF'
PRONAM, A3, 'BAT"
PROC

SEND (MSG,PRONAM) ; Send file name

STOP

Program BAT

RECORD
FILE, A9

PROC

GETM, RECV (FILE,LOOP) ; Receive file name
STOP

LooP, SLEEP 10 ; Wait for 10 seconds
GOTO GETM

The dpANS DIBOL Procedure Division 3-75

3.34 REPEAT

Function

REPEAT repetitively executes a statement until a condition occurs to
transfer control to another statement.

Format
REPEAT statement

statement
is any DIBOL statement.

Rules

e statement is executed until control is transferred explicitly to a label or
to the end of the iterative construct.

Examples

In the following example, records are read and a routine is called to
process the records until the end of file is reached. When an end of file
is reached, control is transferred to the label specified in the READS
statement which is outside of the REPEAT block.

REPEAT
BEGIN
READS (1,FILE, DONE)
XCALL SUB1 (FILE)
END

DONE,

3-76 The dpANS DIBOL Procedure Division

3.35 RETURN

Function

RETURN transfers program control to the statement logically following
the most recently executed CALL or XCALL statement.

Format
RETURN

Rules
e RETURN is placed at the logical exit of each internal and external
subroutine.

Run-Time Error Conditions

$ERR_NOCALL F RETURN with no CALL or XCALL

Examples

The following example shows how program control branches when using
external and internal subroutines. The solid lines show the control path
upon execution of CALL and XCALL statements and the broken lines
show the control path upon execution of RETURN statements.

Main Program
XCALL PROF

WRITES (6,PROFIT) ; Output the profit
CLOSE 6 ; Close the file
STOP

The dpANS DIBOL Procedure Division 3-77

External Subroutine PROF
SUBROUTINE PROF

PROC

PBT=PRICE-COST ; Compute pre-tax profit
CALL TAX ; Get the tax
PAT=PBT-TAX ; Compute post-tax profit
RETURN

; Subroutine to calculate tax

TAX, TAX=PBT*8 ; Compute the tax
IF TAX.GT.MAX TAX=MAX
RETURN

3-78 The dpANS DIBOL Procedure Division

3.36 SEND

Function

SEND transmits a message to another program.

Format
SEND (message,program{,terminalj)

message
is an alpha field, alpha literal, or record which contains the message to be
sent.

program
is an alpha field, alpha literal, or record which contains the name of the
program that is to receive the message.

terminal
is a numeric expression which specifies the terminal number associated
with the receiving program.

Rules

® Message is stored for a subsequent RECV.
® Multiple messages can be stored.

® FIFO (First-In-First-Out) message processing ensures that the first
message sent to a program is the first to be received by that program.

* Messages may be sent from one program in a chain to a program -
further along the chain.

® System resources (memory, disk, . ..) can affect sending a message.

* Programs with the same name can be identified by specifying the
terminal to which the program is attached.

® If the terminal number is not used, the first program with the correct
name that executes a RECV will receive the message.

* Messages may be sent to a detached program by specifying a terminal
number of -1.

* If two or more detached programs have the same name, the first to
execute a RECV will receive the message.

The dpANS DIBOL Procedure Division 3-79

Run-Time Error Conditions

$ERR_NOMEM E Not enough memory for desired operation
$ERR_SYSTEM F System error ‘
Examples

The following statement sends a message to the program CNCRNT which
may be running concurrently or at some later time on any terminal or
detached:

SEND (MSG,'CNCRNT')

The following example sends a message to the program NEXT which is
designated as running on the same terminal as the current program:

RECORD
TNUM, D3 ; Terminal number
PROC
XCALL TNMBR (TNUM) ; Get terminal number
SEND (MSG, 'NEXT', TNUM) ; Send message
STOP 'NEXT'

3-80 The dpANS DIBOL Procedure Division

3.37 SLEEP

Function

SLEEP suspends program execution for a specified period of time.

Format
SLEEP seconds

seconds
is a numeric expression that specifies the number of seconds to suspend
program execution.

Rules

® Program execution resumes only when the specified time has elapsed.

* Specifying a negative number of seconds will generate a Value out of
range error.

Run-Time Error Conditions
$ERR_OUTRNG F Value out of range

Examples

The following program sounds the terminal’s alarm once every minute:

PROC
OPEN (3,0,'TT:') ; Open terminal

BEEP, DISPLAY (3,7) ; Sound terminal alarm
SLEEP 60 ; Delay for 60 seconds
GOTO BEEP

The dpANS DIBOL Procedure Division 3-81

3.38 STOP

Function

STOP terminates program execution.

Format
STOP (filespec/

filespec
is an alpha field, alpha literal, or record which contains a program or
command file specification.

Rules
® STOP can appear as often as needed in a program, but the first STOP
executed terminates the program.

* If filespec is used, the system automatically chains to the specified
program.

o If filespec begins with an ‘@', it indicates that the filespec is for a
command file.

¢ If no filespec is specified for a detached program, the program is logged
out.

¢ When a detached program stops, no terminal output is generated
(traceback, STOP message, etc.).

e If a filespec is specified by a detached program, the new program also
runs detached.

Run-Time Error Conditions

$ERR_FNF E File not found

3-82 The dpANS DIBOL Procedure Division

Examples

The following statement will stop execution of the current program and
begin execution of the PROG2 program:

STOP 'PROG2'

The following statement will stop execution of the current program and
begin execution of the CMDFIL command file:

STOP '@CMDFIL'

The dpANS DIBOL Procedure Division 3-83

3.39 STORE

Function

STORE adds a record to an indexed file.

Format

STORE (ch,record{ keyfid))

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record

is an alpha field or record which contains the data to be stored.

keyfid
is ignored.

Rules

¢ STORE is used in U:I mode.

e If record is longer than the record length defined for the file, an error
is generated and STORE is not performed.

® The data is moved according to the rules for moving data to an alpha

field.

* STORE locks the record which is being stored. The record is unlocked
when STORE is completed.

* If duplicate key values are not allowed and a record with the specified
key already exists, a Duplicate key specified error is generated.

Run-Time Error Conditions

$ERR_BADKEY
$ERR _FILFUL
$ERR_ILLCHN
$ERR_IOMODE
$ERR_LOCKED

3-84 The dpANS DIBOL Procedure Division

It 1 m ot

An illegal key was specified
Output file is full

Illegal channel number specified
Bad mode specified

Record is locked

$ERR_NODUPS E Duplicate key is specified
$ERR_NOOPEN F Channel has not been opened
$ERR_TOOBIG E Input data size exceeds destination size

Examples

The following example illustrates the use of STORE. On each iteration
of the loop, this program stores an employee record with the key value
contained in the field BADGE.

RECORD NEWREC Employee record
NAME, A20 ; Employee name
BADGE, A5 Employee badge number

RECORD
DONE, Al
PROC
OPEN (1,0,'TT:")
OPEN (2,U:I,'EMPFIL')
DO
BEGIN
WRITES (1, 'Name?')
READS (1,NAME)
WRITES (1, 'Badge?')
READS (1,BADGE)
STORE (2,NEWREC, BADGE)

Open terminal
Open employee file

Prompt for name

Get employee name
Prompt for badge number
Get badge number

Create employee record

WRITES (1, 'Done?') ; Ask if finished
READS (1,DONE) ; Get response
END
UNTIL DONE.EQ.'Y'
CLOSE 1 ; Close terminal
CLOSE 2 ; Close employee file
STOP

The dpANS DIBOL Procedure Division 3-85

3.40 UNLOCK

Function

UNLOCK clears the lock condition on a specified channel.

Format
UNLOCK ch

ch
is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

Rules
® Records in the locked blocks will become available for access by other
programs.

® The specified channel is the one associated with the file containing the
locked blocks.

e UNLOCK is ignored if no records are locked on the channel.

* If the specified channel is not open, a Channel not open error will be
generated.

Run-Time Error Conditions

$ERR_ILLCHN F Illegal channel number specified
$ERR_NOOPEN F Channel has not been opened

Examples

The following program will delete employee records from an indexed
file. On each iteration of the loop, this program prompts for an employee
badge number (the key field for the indexed record), reads the employee
record (which locks the record), displays the associated name, and asks if
the employee record should be deleted. If the record is not to be deleted,
the UNLOCK statement makes the record available for other programs to
read.

3-86 The dpANS DIBOL Procedure Division

RECORD EMPREC

RECORD

PROC

NAME, A20
BADGE, AS
DELETE, A1
DONE, Al

OPEN (1,0,'TT:')
OPEN (2,U:I,'EMPFIL')

DO

BEGIN
WRITES (1,'Badge?')
READS (1,BADGE)
READ (2,EMPREC,BADGE)
WRITES (1,NAME)
WRITES (1, 'Delete?')
WRITES (1,DELETE)
IF DELETE.EQ.'Y'
THEN
DELETE (2,BADGE)
ELSE
UNLOCK 2
WRITES (1, 'Done?')
READS (1,DONE)
END

UNTIL DONE.EQ.'Y'
CLOSE 1

CLOSE 2

STOP

Employee record
Employee name
Employee badge number

Open terminal
Open employee file

Prompt for badge number
Get badge number

Read employee record
Display employee name
Prompt for deletion

Get response

Delete the record

Yes--

Delete the record

Unlock the record
Ask if finished
Get response

Close terminal
Close employee file

The dpANS DIBOL Procedure Division 3-87

3.41 UPCASE

Function

UPCASE converts lowercase characters to corresponding uppercase char-
acters.

Format
UPCASE afield

afield
is an alpha field or record which contains the characters to be converted.

Rules

* UPCASE will convert each byte encountered in afield from a lowercase
character to a corresponding uppercase character if the numeric ASCII
value of the byte is between 97 and 122, inclusive.

* UPCASE will convert each byte encountered in afield from a lowercase
character to a corresponding uppercase character if the numeric ASCII
value of the byte is between 224 and 254, inclusive.

* Other non-alphabetic characters are unaffected.

Run-Time Error Conditions

$ERR_WRTLIT F Attempt to store data in a literal

Examples

In the following example, the first UPCASE statement changes the first
character in field A. After the first UPCASE statement is executed, the
contents of REC are ‘This is a test {of upcase)’. The second UPCASE
statement changes the characters 'This is a test {of upcase)’ to uppercase.
After the second UPCASE statement is executed, the contents of REC are
'THIS IS A TEST {OF UPCASEY}".

RECORD REC
A, Al14, 'this is a test'
B, A12, ' {of upcase}'
PROC
UPCASE A(1,1)
UPCASE REC
STOP

3-88 The dpANS DIBOL Procedure Division

The following example allows an operator to answer 'YES’ without regard
to uppercase or lowercase. The operator could type any of the following:
yes, yeS, yEs, yES, Yes, YeS, YEs, or YES.

RECORD
DONE, A3
PROC
WRITES (1, 'Done?') ; Prompt user
READS (1,DONE) ; Get response
UPCASE DONE ; Make it uppercase
IF DONE.EQ.'YES' ; Did operator type 'YES'?

STOP ; Yes--

The dpANS DIBOL Procedure Division 3-89

3.42 USING

Function

USING conditionally executes one statement from a list of statements
based on the evaluation of an expression.

Format

USING selection_value SELECT
(fmexp{, . .. }}), statement

ENDUSING

selection_value
is an alpha field, alpha literal, decimal expression, or record.

mexp
is one or more match expressions in the following format:

[chz THRU exp }

statement
is a DIBOL Procedure Division statement.

Rules

* selection_value is evaluated and compared with the match expressions.
Comparisons are done in the order they appear.

* selection_value cannot be an alpha substring.
* The match expression list ({mexp({, . . . }}) is referred to as a case-label.

* An empty case-label (empty parentheses) is referred to as a null
case-label.

* A null case-label matches any selection_value.

* The statement associated with the first matching case-label is executed
and USING is exited.

* If no match is found, no statement within USING is executed.
* Each case-label must begin on a new line.
* statement may be on a separate line.

3-90 The dpANS DIBOL Procedure Division

* No match is found if the value to the left of THRU is greater than the
value to the right of THRU.

The data type of selection__value must match the data type of the

match expression (mexp).

Run-Time Error Conditions

None

Examples

In the following example, the USING statement is used to check for the
decimal character codes for CTRL/U and DELETE.

USING DCHAR SELECT
(21),
BEGIN
COL=STOOL
CALL POSTN
CALL CLEAR
END
127, ;
BEGIN
IF COL.GT.STOOL
BEGIN
COL=COL-1
CALL POSTN
DISPLAY (1,' ")
CALL POSTN
END
END
ENDUSING

; CTRL/U

; Reset cursor position to
; ... start of field
; Clear field

DELETE

; At beginning of field?
; No--

; Backup column number

; Reset cursor position
; Erase the character

; Reset cursor position

The dpANS DIBOL Procedure Division 3-91

The following program displays a message indicating which case of the
USING was selected:

RECORD
CHARS, D3 ; Characters entered
PROC
OPEN (1,I,'TT:') ; Open terminal
AGAIN, WRITES (1, 'Enter 3 characters') ; Display prompt
READS (1,CHARS,EQOF) ; Get response
USING CHARS SELECT ; Branch based on CHARS
("AAAY),
WRITES (1,'1st case selected')
('"AAB' THRU 'AZZ')
WRITES (1,'2nd case selected')
('BAA' THRU 'WZZ')
WRITES (1,'3rd case selected')
CXXX', 'yyy', 'zzz'),
WRITES (1,'4th case selected')
0.
WRITES (1,'Null case selected')
ENDUSING
GOTO AGAIN
EQF, CLOSE 1 ' ; Close terminal
STOP

3-92 The dpANS DIBOL Procedure Division

3.43 WHILE

Function

WHILE repetitively executes a statement as long as a condition is true.

Format

WHILE condition statement

condition
is a numeric expression.

statement
is a DIBOL Procedure Division statement.

Rules

® The condition is evaluated prior to each possible execution of statement.
® The condition is either true (non-zero) or false (zero).

e If the condition is true, statement is executed.

* statement may be on a separate line.

Run-Time Error Conditions

None

Examples

The following program segment accepts a line from the terminal. The
WHILE statement is used to trim trailing spaces from the input line.

RECORD INLINE

CHR, 80A1 ; Characters input
RECORD

SIZE, D2 ; Number of characters
PROC

OPEN (1,I,'TT:') ; Open terminal

READS (1, INLINE) ; Accept terminal input

SIZE=80 ; Set size of line

WHILE CHR(SIZE).EQ.' ' .AND. SIZE.GT.1 ; Trim line

SIZE=SIZE-1

The dpANS DIBOL Procedure Division 3-93

3.44 WRITE (Indexed File)

Function

WRITE updates a record in an indexed file.

Format
WRITE (ch,recordf keyfld))

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field or record which contains the data to be written.

keyfld
is ignored.

Rules

e WRITE is used in U:I mode.

* WRITE updates the record if the record to be replaced was the last
record read and its key field has the same value as the last record
read.

® The record to be written is the record most recently read on the
specified channel and the record must still be locked. WRITE unlocks
the record when the WRITE is completed.

* If record is longer than the record length defined for the file, an error
condition is generated and WRITE is not performed.

® The data is moved according to the rules for moving data to an alpha -
field.

Run-Time Error Conditions

$ERR_BADKEY E An illegal key was specified
$ERR_EOF E End of file encountered
$ERR_ILLCHN F Illegal channel number specified

3-94 The dpANS DIBOL Procedure Division

$ERR_IOFAIL
$ERR_IOMODE
$ERR_KEYNOT
$ERR_NOCURR
$ERR_NOOPEN
$ERR_TOOBIG

Examples

Bad data encountered during I/O operation
Bad mode specified

Key not same

No current record

Channel has not been opened

Input data size exceeds destination size

The following statement will update a record in the indexed file opened
on channel 1. The data for the record is in ADDR and the key field is in

KEY.

WRITE (1,ADDR,KEY)

The dpANS DIBOL Procedure Division 3-95

3.45 WRITE (Relative File)

Function

WRITE outputs a record into a specified position in a relative file.

Format
WRITE (ch,record,nexp)

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field, alpha literal, or record which contains the data to be
written.

dexp
is a numeric expression that specifies the sequence number of the record
to be written.

Rules

e WRITE is used in O and U modes.

* WRITE updates the record if it exists. If no record exists, WRITE
creates one.

® WRITE locks the record it is writing and unlocks the record when the
WRITE is completed.

* If the file is opened in output mode and the RECSIZ qualifier is
specified when the channel is opened, and record is longer than the
value specified for RECSIZ, an error condition is generated and WRITE
is not performed.

* If the file is opened in update mode and record is larger than the
record in the file, an error condition is generated and WRITE is not
performed.

® The data is moved according to the rules for moving data to an alpha
field.

3-96 The dpANS DIBOL Procedure Division

Run-Time Error Conditions

$ERR_EOF
$ERR_ILLCHN
$ERR_IOMODE
$ERR_IOFAIL
$ERR_LOCKED
$ERR_NOOPEN
$ERR_RECNUM
$ERR_TOOBIG

End of file encountered

Illegal channel number specified

Bad mode specified

Bad data encountered during I/O operation
Record is locked

Channel has not been opened

Illegal record number specified

mm m momomomom

Input data size exceeds destination size

Examples

The following statement writes the data in the variable REX into the 88th
record of the relative file associated with channel 5.

WRITE (5,REX,88)

The following statement writes the data in the variable BLT into the
relative file associated with channel 6. The record number is specified by
the value stored in the variable COUNT.

WRITE (6,BLT,COUNT)

The dpANS DIBOL Procedure Division 3-87

3.46 WRITES

Function

WRITES outputs a record to the next available position in a file.

Format
WRITES (ch,record)

ch

is a numeric expression that evaluates to a channel number as specified in
a previous OPEN statement.

record
is an alpha field, alpha literal, or record which contains the data to be
written.

Rules

* WRITES is used in O mode with a sequential file in O and U modes
with a relative file in I and O modes with a character-oriented device
and in O mode with a printer.

® In U mode, WRITES locks the record it is writing and unlocks the
record when the WRITES is completed.

e If the file is opened in update mode and record is longer than the
defined record size, an error condition is generated and WRITES is not
performed.

* The data is moved according to the rules for moving data to an alpha
field.

Run-Time Error Conditions

$ERR_FILFUL
$ERR_ILLCHN
$ERR_IOFAIL
$ERR_IOMODE
$ERR_TOOBIG

Output file is full
Illegal channel number specified
Bad data encountered during I/O operation

Bad mode specified

M m m o™ m

Input data size exceeds destination size

3-98 The dpANS DIBOL Procedure Division

Examples

The following statement transfers the data in the array field PAY(EMPLNO)
to the next sequential record in the file associated with channel 4.
PAY(EMPLNO) must be an alpha field.

WRITES (4,PAY(EMPLNO))

Assuming that LPT contains the channel number associated with the
printer, the following statement transfers the 2nd through the 9th charac-
ters in the variable MESSAG to the printer.

WRITES (LPT,MESSAG(2,9))

The dpANS DIBOL Procedure Division 3-99

3.47 XCALL

Function

XCALL transfers program control to an external program.

Format
XCALL name (arg{, ... })

name
is the name of the external subroutine being called.

arg
is an alpha field, alpha literal, numeric field, numeric literal, expression, or
record which contains the subroutine arguments.

Rules

* Each argument is linked to a corresponding argument definition in the
called subroutine to provide the logical connections necessary to pass
data. The first XCALL argument is linked to the first argument in the
subroutine, the second is linked to the second, and so on.

* Arguments in the argument list are separated by commas.

* A given argument may be omitted from the argument list. If more
arguments are needed, their place must be held by putting in the
commas, e.g.,, XCALL SUB (A,,C).

® For numeric fields, the returned value is moved to the field according
to the rules for moving numeric data.

* For alpha fields and records, the returned value is moved to the field
according to the rules for moving alpha data.

¢ If the number of arguments passed exceeds the number expected by
the subroutine, an error is generated.

e If the number of arguments is fewer than expected, no error is gener-
ated; it is the responsibility of the subroutine to check for the existence
of each argument.

e XCALL causes information to be stored in an internal stack. This stack
is of finite size; if too many XCALL statements are executed without
an intervening RETURN or XRETURN, the stack will overflow. The
exact size of the stack is system dependent and the exact number of
XCALL statements which can be nested will vary.

3-100 The dpANS DIBOL Procedure Division

* Following the execution of the subroutine, execution of the calling
routine begins with the statement which logically follows the XCALL.

® The size of a missing external subroutine argument is -1.
* An external subroutine cannot call itself.

Rules for Subroutine Name on PDP

* A subroutine name consists of up to six characters, the first of which
must be alphabetic. Remaining characters can be alphabetic, numeric,
or _ (underscore).

* Only the first six characters of a subroutine name are significant;
remaining characters are ignored.

Rules for Subroutine Name on VAX

* A subroutine name consists of up to 30 characters, the first of which
must be alphabetic. Remaining characters can be alphabetic, numeric,
or _ (underscore).

® Only the first 30 characters of a subroutine name are significant;
remaining characters are ignored.

Run-Time Error Conditions

$ERR_SYSTEM F System error

Examples

In the following example, the main program calls the external subroutine

(CNVRT) to change the format of the date. It passes the arguments DATE
and X_DATE. These arguments are represented in the subroutine as OLD
and NEW.

Main Program

RECORD
DATE, D6, 010750
X_DATE, A1l

PROC
XCALL CNVRT (DATE,X_DATE) ; Convert the date
OPEN (1,0,'TT:") ; Open the terminal
WRITES (1,X_DATE) ; Display the date
CLOSE 1 ; Close the terminal
STOP

The dpANS DIBOL Procedure Division 3-101

External Subroutine
SUBROUTINE CNVRT

oLD, D

NEW, A
RECORD ODATE

MM, D2

DD, D2

YY, D2
RECORD NDATE

DAY, A2

R Al,"'

MONTH, A3

s Al,’-'

YEAR, D2
RECORD

MNAME, 12A3, 'Jan', 'Feb’',
& , 'Jul', 'Aug’',
PROC

ODATE=0LD

DAY=DD

YEAR=YY

MONTH=MNAME (MM)

NEW=NDATE

RETURN

'Mar’',

Convert the date format
Date (mmddyy)
Date (dd-mmm-yy)

01d date format
Month

Day

Year

New date format
Day

Month

; Year

'Apr', 'May', 'Jun'

'Sep', 'Oct', 'Nov', 'Dec’

»

’

; Move day to new format

; Move year to new format
; Move month to new format
; Return new date

Arguments can also be made optional. This requires some coordination
between the calling program and the external subroutine. The external
subroutine must determine whether a given optional argument was
passed. This is done by us