Contributions and correspondence should be sent to:
Robert Hassinger, Coordinator - 12 Bit SIG
c/o DECUS ..or.. Liberty Mutual Research Center 129 Parker Street, PK-3/E55 71 Frankland Road
Maynard, MA 01754 Hopkinton, MA 01748
DECUS/Europe contributions are solicited through:
Lars Palmer
DECUS/Europe 12 Bit SIG Newsletter Liaison
Hassle
Fack
S-431 20 MOLNDAL 1
SWEDEN
(Please include reference to Newsletter number and page when inquiring about material published.)

NEWSLETTER SUBMISSIONS
The Newsletter is currently published bi-monthly in the odd months. The deadline for each issue is the last Friday of the preceding even numbered month. Submissions are accepted at all times and are normally used in the next issue to go to press regardless of date of receipt. The deadline for ready-to-use material for the next Newsletter is 27-October-1978. Material requiring editing/re-typing should be in earlier. Ready-to-use material should use an area $61 / 2$ inches (16.5 cm) wide by no more than 9 inches (23 cm) long on each page. It should be single spaced on white bond paper whenever possible and must be reasonably clean, legible and sufficiently dark for good photographic reproduction.

SIG COMMITTEES AND WORKING GROUPS

Steering Committee:
Robert Hassinger - address above - (617) 435-3452

Jim Crapuchettes
Menlo Computer Associates, Inc.
P.O. Box 298

Menlo Park, Calif. 94025
(415) 323-3009

Lee Nichols
E. I. Du Pont

Experimental Station
Building 357
Wilmington, DE 19898
(302) 772-3839

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER Number 30 - September 1978
Jonathan Lockwood
Harris Semiconductor
PO Box 883
Melbourne, FL 32901
(305) 724-7542 M.S. 54-40
Special Steering Committee Advisors:
Tom W. McIntyreStan Rabinowitz
RTS-8 Working Group
Lee Nichols - see above
Micro-8 Working Group
Jonathan Lockwood - see above
Symposium Software Exchange Committee
Send copies of software you wish to exchange at the next U.S. symposiumto the appropriate committee member for preparation:
DECtapes Russell Overbey
DEC floppys PO Box Y Bldg. 92101-2
AED floppys Oak Ridge National Laboratory
Oak Ridge, TN 37830
DECtapes Earl T. Ellis, Jr.
Magtapes USCG R \& D Center
Avery Pt.
Groton, CT 06340
(203) 445-8501 Ext. 296
(FTS) 642-7274 Ext. 296
LINCtapes Larry Alber
FDA Room 1222
433 W. Van Burren
Chicago, IL 60607
(312) 353-5863
ENGINEERING SPECIAL INTEREST GROUPWalter V. Dixon wrote to say that he is putting together the first issueof a newsletter for the Engineering SIG. He is interested inidentifying the interests of the engineering user community and how hisnewsletter can best serve them. He invites comments and contributions.His address is Mechanical Technology Inc., 968 Albany-Shaker Road,Latham, New York, 12110 - phone: (518) 785-2211.

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER Number 30 - September 1978

FALL DECUS/US SYMPOSIUM

The preliminary schedule for the Fall Symposium shows about 16 hours of 12 Bit related sessions. Details on the sessions were not available at press time but the following session titles are listed:

12-Bit SIG
Road Map
Meeting
Short Notes Session
DECSTATION 78/88 Software Workshop
12-Bit Microprocessor
Applications
Hardware Paper
PDP-8 Programming Tools Workshop
RTS-8 Papers
PDP-8 Educational Instructions Panel
PDP-8 Product Panel
OS/8 Papers
12-Bit Wrap Up
The TECO Tutorial should also be of interest to 12-Bit users
More detailed information should be in the mail soon from DECUS/US to U.S. members and others who request it. See you there.

OS/78 VERSION 2

I recently ordered and received the $0 S / 78$ V2 update kit. When ordered as an update for those who have $0 S / 78 \mathrm{~V} 1$, it cost something like $\$ 20$. The SPD says something about an upgrade kit for OS/8 V3D owners but I do not have any details or costs. The main reason an OS/8 user might want the 0S/78 V2 kit (available only on floppy disks of course) is to get access to the new version of BASIC. This is a major upgrade of the existing OS/8 BASIC. The official description of the features are in the SPD and the manuals. You should check them for full details, but here are some of the features I have found interesting.

The VT-52 scope is supported much better. The proper rubout sequences are used and Control S and Control Q are supported as well as the SET TTY PAUSE feature for controlling output on fast CRTs.

The BASIC editor, and programs written in BASIC can both handle the full seven bit upper and lower case ASCII character set rather than the old 6 bit, 64 character, upper case only set.

The RS command is the same as the RUN command, except that before the program starts, a report is printed to show how much free space is left. This allows you to evaluate the size of your programs better than before. This same feature is available with the CCL EXECUTE command as the /S option.

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER Number 30 - September 1978

LIST, LISTNH and DELETE now work on selected ranges of line numbers.

There is an EDIT command that will search for a character string on a line and replace with a new one. This removes the need to completely retype every line with an error. It also allows copying lines to new line numbers without having to retype them.

The SEQUENCE command sets a starting line number and a line number increment. In this mode the system automatically supplies the line numbers as you enter the program.

The WEAVE command will read a program in over one already in core (i.e. an OLD that does not clear the previous program). This simplifies combining sections of code in separate files.

The old hacks involved in numeric input (i.e. the need for inputting dummy variables at the end of lines, etc.) are gone. It looks as though BASIC finally works the way it should.

ON-GOTO and ON-GOSUB have been added to transfer control based on the value of an expresion.

A new IF OPEN \# statement has been added. It is now possable to tell if the open of a file was succesful and to avoid a program abort. Unfortunatly, there is still no way to avoid a warning message that is typed when a file open fails, however.

A form of PRINT USING has been added. It allows considerable control over output formats. It is not as general as some more advanced versions such as in the PDP-11 BASIC-PLUS but it gives the controls needed for doing business reports and checks and so on.

The TAN and ATN functions have been added.
The CAP\$ function converts lower case characters to upper case. This is handy because the comparison operations on strings do not ignore case.

The CCL command allows a program to exit and pass a command to CCL for execution. This hook has many interesting possibilities and reduces the need to run under batch in some kinds of applications, thus saving space.

The OCT function returns the decimal value of a string of octal digits.

The OCS\$ function returns an 8 digit string with the octal value of of the variable argument.

The PNT function and the documentation allow control of the special features of the VT-52 terminal and the CUR\$ function automatically sends the correct sequence of controls to do

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER
Number 30 - September 1978
direct cursor positioning on the VT-52.
The AND and IOR do the bitwise logical AND and Inclusive OR operations on the binary representations of decimal numbers.

The KEY\$ function automatically inputs one character from the keyboard. If an escape sequence is received this function handles it.

The PMT\$ function allows changing BASIC's standard "?" prompt character to any 0 through 7 character string.

Commercial arithmetic (i.e. greater than 6 digit precision) is supported via string arithmetic. You can do the four basic operations on values stored as digits in strings. The values can be integers and/or fractions and up to 15 digits long.

DIRECT RECORD I/O is provided for storing, retrieving, and updating individual records in mass storage files. This feature is similar to the FORTRAN direct access mode but it is much better. Data records are of fixed length and are stored in the file in standard OS/8 ASCII character format, complete with a carrage return and line feed at the end of each record and a control-z at the end of the file so it can be accessed with standard software. Even better is the fact that the records are fully packed, and they automatically span block boundaries. This means that there is no wasted space as in OS/8 FORTRAN IV where at most one record per block is recorded.

New, improved facilities are provided for compiling and saving programs so they may be run without recompiling every time. On the relatively slow DECstation 78 this is very valuable. Unfortunatly, there seems to be a bug that cause problems if your program depends on information that loads in the top page of field 2. For example, the executable code could be larger than one field (it loads from the top down), or you might depend on data storage being initialized to zero (it loads down from the executable code). The bug has to do with the handling of one versus two page system handlers at compile and at run times. DEC knows about this bug already but no fix has been published yet and it is not documented in the release materials.

The new release includes a "Multifunction Operation" feature. This is the "Symbiont" mentioned in a previous newsletter. You have the normal OS/78 operation in the first three fields and at the same time a second task that runs on interrupts can be in field 3. The symbiont task supplied with V2 is a print spooler. You have new monitor commands to start and stop the symbiont, to pass the spooler task a list of files to be listed on the printer, and to check on the status of the spooler. If you want, you are permitted to write your own symbiont task.

The following is the full explanation of what rules a user written program must observe to allow it to coexist with a symbiont.

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER Number 30 - September 1978

1) If the program loads into page zero of field zero, then it must contain the following code:

FIELD 0

* 1

CIF 30
JMP . -1
Also, locations 0,1 and 2 must not be used as scratch or as data.
2) If the program does not load into or use page zero of field zero, then no modifications are necessary.
3) The program must not use page zero of field zero as a buffer or data area. However, you may swap the OS/78 command decoder in this area.
4) The program must never turn interrupts on or off.
5) The program should not modify the software core size.
6) The program must not require the use of field 3.

In general the Symbiont feature will only work under 0S/78 V2 on a DECstation-like configuration. This is because no Data Break devices may be used, you must be able to disable interrupts from all devices, in particular the console terminal that comes up enabled and which can not be disabled on the older PDP-8 family machines, and because you must have the new $0 S / 78$ versions of all the system programs that have been modified to observe the above conventions.

OS/78 V2 also includes support for multicharacter switchs in CCL commands. For example you can say "DIR /BRIEF" rather than "DIR /F". This is a rather nice feature. The multicharacter switches are often easier to remember and teach. The ":" character can also be used in place of "=" for setting numeric values after multicharacter switches. For example "/I=24" can be expresed as "/IMAGE:24". Users of other DEC systems that support DCL rather than CCL will recognize these forms. Since DCL is DEC's new standard command language that is replacing CCL in most systems, as much compatibility as possible is desirable.

Unfortunatly, in OS/78 DEC is not providing the source of CCL so you can not change or extend the list of multicharacter switches and commands. I think this is a serious problem and I hope it does not propagate to the next release of $0 S / 8$ if and when it ever comes. Although it was the intention of the new CCL code to pass through all single character switches just as always, there seems to be a bug, at least in the DIRECTORY command. If one tries to pass the /A switch, it does not get through but seems to be mapped to some other, strange bit. I hope this gets fixed so we can use the Alphabetize feature of the user enhanced version of DIRECT.

NOTE FROM JIM VAN ZEE

Jim writes to say that he and Carl Appelof have just managed to transfer the source files for ADVENTURE (DECUS 11-340) from an RT-11 floppy disk to an OS/8 floppy disk. He notes that so far the program will not run (it needs a lot of modifying to fit and run under OS/8 FORTRAN IV) but

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER

 Number 30 - September 1978the system used to do the transfer might be interesting. Jim writes:
"The basic ingedients are an assembly language program which Carl wrote for the 11 and the byte-mode handler developed by Steuart Dewar for the 8 which was described in the last Newsletter (\#29, p15). Dewar's handler uses a very straight-forward sector interleaving scheme (as opposed to that used by Lynch's handler, for example) which makes it relatively simple to read/write on the 11. We have made no attempt to create a directory, so to recover the files we just used U/W-FOCAL to copy them since this program allows file input from specific block numbers. One could also just write a rather simple program to do the same thing, or better still, just use something like PIP or FUTIL (or even UWF !) to create the directory after-the-fact, providing one left room for it at the beginning. ..."
"I don't know if this is useful to anyone else or not, or if (as seems likely) someone else has already developed a better way to move files between 11's and 8's. Anyone interested (or better informed!) can write me c/o Dept. of Chemistry, University of Washington, Seattle, WA 98195. Anyone who wants a copy of ADVENTURE on an $0 S / 8$ medium is welcome to a copy, but please include ample return postage."

Having gotten sources to both the RT-11 and PDP-10 versions of ADVENTURE via other means, and having looked at the conversion to OS/8 FORTRAN IV, I can report that it is going to be quite a job and need most of 32 k . I have run the game a good bit on an RT-11 system and it is great fun. The conversion would be worthwhile for people with a big 8 and no access to an 11 who like this sort of thing. It is far better and more complex than STARTREK for example.

On the subject of moving data files between 8's and 11's, I may have mentioned in the Newsletter that a year or two ago I managed to develop a means for moving files from the 8 to the 11 on an RK05 disk (note: the hardware makes that imposable but I did it anyway). The disk is organized as an OS/8 file structured device and I have programs written in RT-11 FORTRAN to access the files via the directory. The only reason I do not go from the 11 back to the 8 is that I never got around to writting the FORTRAN routine to create files in the OS/8 directory. If ever there is an overwelming demand, I might do a Newsletter article on how all this is done and/or resurrect the code and make it available (I don't know if a bug free version of the sources still exists, it might have to be worked up again from backup versions). (RH)

DECSYSTEM 8 ENHANCEMENTS

Lyle P. Bickley sent a note to say that he has been working with Don Harmer on enhancements to the version of CCL that goes with DECsystem 8 for 0S/8 V3D. He has added the following features:
"=" can be used in CCL commands in addition to "<" and " ". For example, the command "DIR TEST.XX=DTA1:/E=5" is now valid. So is "COPY FILE1=FILE2". This feature improves compatibility with the DECsystem 10 moniter TOPS 10.

The "F(UTIL)" command (see newsletter \#28) is fully implemented.
If you are interested and do not want to wait for Don to release this version of DECsystem 8, you should contact Lyle at 47 Ivy Mills Rd., Glen Mills, PA 19342.

NOTE FROM ERIC WOGSBERG
Eric wrote to say that he is selling a PDP-8A based system and some extra option boards. Anyone interested can contact him at Computer Technology, 6043 Lawton Ave, Oakland, CA. 94618 (415) 653-4844.

THE
GEORGE
WASHINGTON
UNIVERSITY
MEDICAL CENTER
676-2692

August 8, 1978
Robert Hassinger, Coordinator
12 Bit Sig
Liberty Mutual Research Center
71 Franklin Road
Hopkinton, MA 01748
Dear Mr. Hassinger:
Various researchers in our medical center are buying microprocessor systems to facilitate their data collection. We are currently searching for any cross-assemblers which will run on a PDP-8 or PDP-12 and assemble code for $\mathrm{Z}-80^{\prime} \mathrm{s}, 8080^{\prime} \mathrm{s}$ or $6800^{\prime} \mathrm{s}$. We would appreciate hearing from anyone who could help us procure such software.

Sincerely,

Roy A. Standing
Programmer

Harris Semiconductor

M.S. 54-40

PO Box 88\%
Melbourne, Fl. 32901
NOTES FROM MICRO-8 WORKING GROUP
By Jonathan Lockwood Phone: (305) 724-7542
FALL-78 SYMPOSIUM
This year's symposium is expected to be a good one for microprocessor users. There are four application papers and one poster paper planned that will provide a foundation for discussion. There will also be a Hardware/Software Workshop for any mini-papers. The schedule for MICRO-8 applications on Monday Nov. 27th is as follows:

DE'Cstation-78 Product Panel 4:15-6:15pm
By Gary Cole of DEC
Design of an Ocean Based Seismometer System 8:00-8:30 pm
By Bob Moore of Scripps Institution of Oceanography
An all CMOS, 16 k word system based on the $\mathrm{HM}-6100$
which store hydrophone data on a 4 track digital
cassette. Used for seismograhic research and exploration.
The GDP-12 Geophysical Data Acquisition System 8:30-9:00 pm
By Bob Staley of Z̈onge Engineering \& Research Org.
An all CMOS, battery operated, dual processor system
used by the mining and oil industry. The 20 k word sys-
tem has interfaces for two high speed A/D converters.
An all CMOS MICRO-8 Development System 9:00-9:30 pm
By William Beals and Henry Smith of Criterion Logic Corp.
A hardware development and debug system with a 40-pin
in-circuit emulator that interfaces to a DECstation-78.
Features include backtrace, memory overlay, hardware break point, and a trigger for a logic analyzer.
PDP-8 Development System for a Bit Slice Microprocessor 9:30-10:00 pm
By Doug Gluntz of Harris Govt. Electronic Systems Div.
PDP-8/E used for source entry, linkage to a functional
simulator, and downloading to a hardware protyping sys-
tem. Functional simulation done in CDL (Computer Design Language) on a UNIVAC 1108 computer.
Hardware/Software Workshop 10:00 - ??? pm
Forum for users to share ideas on various hardware/soft-
ware hints, kluges, and maybe even solutions. Ten minute
mini-papers accepted up to day of session; just call me
for a time slot, no abstracts required.
Data Acquisition System for Offshore Oil Rigs Poster Paper
By John Kracik of Interstate Electronics Corp.
Bouy based system to monitor temperature, pressure, strain,
and acceleration. Utilizes an RF link to communicate to
oil rig.

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER NUMBER 30 SEPTEMBER 1978

SPRING-78 SYMPOSIUM

The Spring -78 Symposium that was held in Chicago was quite succesful and interesting for the PDP-8 user. A summary of several RTS-8 sessions was presented in the May newsletter (\#28). A summary of some of the other sessions follows.

OS/78-V2

Ron Jansen presented an overview of the new Commercial Basic and Symbiont features for the DECstation-78. Commercial Basic is DEC's answer to the proliferation of business Basic packages for INTEL 8080 based systems. Some of the important features include:

A better editor with more commands: now can change a string in line without retyping the whole line; automatic sequence generation of line numbbers (similar to feature in DIBOL).
Full 8-bit ASCII support, ie. can now use both upper and lower case as well as all the control chars to drive the VT-78 terminal.
15 place string arithmetic that supports +, -, *, and / and which uses decimal arithmetic instead of binary arithmetic.
PRINT USING statement that allow extremely versatile formatting of displayed, printed, or stored (file) output. It provides for readable and customized printing of numbers and dollar amounts, especially in columps. It is similar to FORMAT statement in FORTRAN.
Unit Record I/O that allows access to individual records within a file. A record may be any length up to 4093 characters and all records in the file must be the same length.
Special commands to position the cursor on the VT-78 terminal; used to generate a form entry package.

Symbiont is the word used to describe a new, long overdue multitasking fundtimon that allows OS/78 to run simultaneously with RTS-8 on a DECstation-78. This allows $0 S / 78$ to run concurrently with say a line printer spooling foutine. What DEC did was to set the software core size to 12 k words and then use the last field to run an RTS-8 task. $0 S / 78$ has been patched to allow running with interrupts on. The following convention is used: FIELD 0 *0001 GIF 30 UMP .
The one requirement of the Symbiont is that no DMA device load into page zero of Field zero. Since the DECstation-78 does not used DMA transfers this is not a problem. Several new CCL commands have been added to support this fundlion.

OS /8 WORKSHOP

Jim Mechtel, the new OS /8 Project Leader, provided information concerning RL01 support, 128 k word support, and gave some hints at future enhancements. The RLO1 is a new "5-megabyte" capacity, top loading cartridge disk drive. Since it is organized in 8 -bit words, it looks like an overgrown, high speed floppy disk. By the time $0 S / 8$ uses the "funny" 12-bit packing, the capacity has
shrunk to 2.6 million 12 -bit words. Because of directory size limitations, the disk is chopped up into three logical units as follows:

RLOA:	4081 Blocks;
	Tracks 0-177;
	16 blocks per track
RLOB:	4081 Blocks;
	Tracks $200-377$
	16 blocks per track
RLOC:	2025 Blocks;
	Tracks $1-377$
	4 blocks per track

You will need two seperate handlers, 2 pages each, to talk to these devices. The handlers will read/write $1-j 2_{10}$ pages per call.

According to Jim there will be limited 128 k word support in the next release of $0 S / 8$. Only the following was promis ϵ d: PAL8 will write a 128 k pgm; ABSLDR will load all 128 k words; and SAVE, GET, RUN, and ODT will support 128 k words. The following limitations WlLL REMAIN: CUSP's like PIP will work only with 32 K ; USR calls also limited to 32 K ; and FORTRAN II, FORTRAN IV, and BASIC will not support 128 k words.

Looking toward the future, jim said that they are considering putting the Symbiont features on PDP-8/A's. Also, they are looking at some SORT/MERGE packages and other user generated programs like the enhanced version of DirECT. However, no definite promises were made as to when these features might happen. If you have any specific features that you would like added you can write to: The PDP-8 Suggestion Box
Digital Equiptment Corp.
PK3-1/M34
Maynard, Ma. 01754

DECSTATION-78

During the session on the DECstation-78, Gary Cole mentioned that currently there are about 150 OENs selling various configurations that range from low end minicomputers to full blown business systems. He said that Word Processing usuage is three times larger this year than last. For users needing communications, he mentioned that a MODEM made by Racal-Vadic (Sunnyvale, Ca.) would accept an escape sequence to automatically dial a phone number. (Hum, that would be easy with the new Commercial Basic software, J.L.)

MICRO-12

A new, all CMOS, single board computer system - The MICRO-12 (HB-61000) - was described by Bill Bennett of Harris Semiconductor. This product is similar only in size and concept to the intercept Jr. that is made by Intersil. A preprogramed ROM in Control Panel provides: a system monitor, keyboard and display utilities, and system diagnostic capabilities. The MICRO-12 includes an 8 digit LED display and 16 key keyboard which allows direct progam insertion, execution, and examination.

The system monitor aliows the user to enter his program either manually through the keyboard or a TI'Y, or automatically from a Kansas City Standard tape cassette (300 Baud) or a DECstation-78 (9600 Baud) using the Binary Loader fea-
ture. The system monitor also provides the user with four (4) independent breakpoints for program debug. A 64×12 RAM for Control Panel page zero is used so that the monitor does not need any of the user program memory.

A special function key allows the user program to be listed in octal on either an external TTY or CRT. Another special function key allows the user to punch a program tape on either a TTY or a cassette.

The MICRO-12 can be used as an evaluation board when you are trying to learn about the 6100 microprocessor. It can also be used as a system board for low volumne applications. The board can be configured with up to 1 k words of memory, a serial interface (either $\mathrm{RS}-232$ or 20 mA current loop), and 12 bit parallel interface. In addition there is a large wire-wrap area for custom 1/0 requirements. A dual 22-pin connector lets you connect the MICRO-12 to your system and to support boards like a 4 k RAM board (available late Oct.)

For more information on this system, such as how to order one, call either me or your local Harris rep.

HARDWARE/SOFTWARE WORKSHOP

Earl Ellis presented the first three papers at the Hardware/Software workshop. His first paper described a system that used a 12 k word PCM-12 and a TV camera to measure the speed of a Coast Guard lcebreaker. The system used a Colorado Video Instruments compressor to interface the TV camera with the PCM-12. The compressed raster was then processed and the ship's speed displayed on a 3 digit BCD display. The speed could also be printed on a TI-743 terminal. The operating system was U/W-FOCAL (V3S).

Earl's second paper described two Scientific Information Processing Systems (SIPS - large pdp-8/e systems). The first system is primarily intended to be a real-time multi-purpose minicomputer system. It is used to develop software for microprocessor based instrument processors, to generate report quality graphs, to provide media and code conversions, and to provide real-time data collection. The 32 k word system supports dual dectape, 3 RK05 cartridge disk drives, dual floppy disk drives, a 9 track 800 BPI tape drive, and various other peripherals. Quite a variety of languages are used on this system including ALGOL-60. The second system is primarily intended for the collection and analysis of oil and hazardous chemical information. It is the system that is used to determine the source of oil spills around the country. The primary operating system is a time share system called ETOS.

A Spectrofluorometer was the topic of Earl's last paper. This instrument performs the actual analysis of the oil. It is connected to a 4 k PCM- 12 system via an A/D converter. The complete system is then connected to the SIPS II via a 20 ma current loop (see newsletter 非27 pgs 45 - 46.) The language used for this configuration is FOCAL-69, which Earl says is the best one for 4 k systems. The PCM-12 boots to Field 7, location 7777 and then transfers the program to Field 0. During periods of change Field 7 is CMOS RAM with battery backup, later the program will be blown into PROMS. (This is similar to using the Electronic Program Injection module on the DECstation-78, J.L.)

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER NUMBER 30 SEPTEMBER 1978

For more information on these papers or if you like to talk about FOCAL, contact:

NiSTC Earl T. Ellis Jr.
[Phone: (203)-445-8501 Ext. 296]
USCG Research \& Development Center
Avery Foint
Groton, Conn. 06340
During the next session kichard Karhuse described an 8 bit handler for 0S/8. Normally OS/8 writes 96 bytes out of 128 bytes per sector and uses 4 sectors per $0 S / 8$ Block, thus wasting 30% of the diskette. With his handler, which has both drives co-residenent with SYS:, he writes the full 128 bytes and uses only 3 sectors per US/8 Block. He also described how to add Write Protect to an RX01 drive. Since the electonics already exist in the drive, all he needed to add was a lighted toggle switch and a LED inteceptor for the ASCII standard write protect hole (not on DEC diskettes, J.L.) Finally, he mentioned that the layout for the timing capacitor for a one-shot on the M1705 Dual Output module can cause false triggering of the one-shot. For more information on these topics contact:

Richard A. Karhuse [Phone: (312)-492-5248]
Northwestern University
Computer Sciences Lab
TECH B626
2145 Sheridan Road
Evanston, Il. 60201
Footnote: There was a very interesting field trip to Northwestern during the Symposium. They have a PDP-8/E that the provides management of various disks and tape drives for a laboratory computer network. This network utilizes a high speed (56 k Baud) serial data link to talk to other PDP-8's, some microprocessor development systems, and to a CDC 6600. It is a worthwhile side trip whenever you happen to be going to Chicago.

A mini paper about OMNILINK, a DMA processor link for OMNIBUS devices, was presented by Errist Lopes. This interface allows high speed transfers (150k words per second) between to PDP-8's which may be separated by several hundred meters. The transfers occur on a cable consisting of 16 twisted pairs. The device is implemented on Quad wirewrap board. For more information contact: Earnst Lopes Cardozo [Phone: 030-882221]
European 12-Bit SIG Steering Comm.
Vondellaan 24
Utrecht, Holland

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER NUMBER 30 SEPTEMBER 1978

PDP-8 MANUALS

There are a variety of software manuals that exist for the PDP-8 user. There have been several updates made to these manuals which you may not be aware of, especially concerning the 0S/8 Handbook. These manuals can be purchased separately and used to evaluate new features before you purchase new sof'tware. They may be ordered either through your local sales office or directly from the Tecnical Documentation Center serving your region. The order numbers below were obtained from the Technical Documentation Catalog Spring 1978 (EA 09342 86/78 030 3805.)

The OS/8 Handbook has been revised steadily since it was printed in 1974 and needs to be rewritten now. The most complete and well formated documentation can be found in the 0S/78 User's Manual which comes with the DECstation-78. This contains information about the latest $0 S / 8$ revision, ie. V3-D, and some information that was formerly in the $0 S / 8$ Software Support Manual. However, since $0 S / 78$ is a subset of $0 S / 8$, it does not list all the feature of $0 S / 8$ V3/D. The order numbers for these and other $0 S / 8$ related manuals follow:

NAME

0S/8 fiandbook
OS/8 Handbook Update
OS/8 VラD Kelease Notes
OS/8 V3C Software Support Manual
0S/78 User's Manual
0S/78 Command Summary
US/8 F4 Sof'tware Support Manual
0S/8 Macrel/Linker User's Guide
0S/8 Macrel/Linker Release Notes
RTS/8 User's Manual
kIS/8 Release Notes
RTS/8 DECNET/8 User's Guide
RTS/8 DECNET/8 Release Notes
PDP-8 Programing Manual
PDP-8 Pocket Reference Guide
PDP-8 Family Commonly Used Utility Koutines
PAL 8 Assembler Document
FOCAL-8 Document
FURTRAN/SABR Document

ORDER NUMBER
AA-4637A-TA
AD-4637A-T5
AA-4645B-TA
AA-4646A-TA
AA $5748 \mathrm{~A}-\mathrm{TA}$
AV-5582A-TA
AA-4532A-TA
AA-5664A-TC
AA-5663A-TC
AA-0 $/ 24 \mathrm{C}-\mathrm{TA}$
AA-5158́A-BA
AA-5184A-TA
AA-5747A-TA
AA-0586A-TA
EH-01805-77
AA-4338A-TA
AA -0615A-TA
AA-0627A-TA
AA-06;2A-7A

MICRO-8 COMPUTERS

I have recived information about another Micro-Computer system based on the 6100 microprocessor, this time from Europe. This 32 k word system has several interesting interface cards available including:

Floppy disk controller for either DSD 310 drives or Shugart SA 400 mini drives.
IEEE 488 Instrument Interface bus; either a software driven version or a hardware driven version.
512 X 8 Video KAM including modulator for VHF.
A/D multiplexed subsystem.

DECUS 12 BIT SPECIAL INTEREST GROUP NEWSLETTER NUMBER 30 SEPTEMBER 1978

The system uses an advanced control panel, completely implemented in software to perform all the required utilities necessary for efficient software development/ debugging. The control panel software allows for:

Loading, inspection, and modification of binary programs
Start, suspension either by hardware or software and continuation of programs.
Trace functions giving all information on actual progam execution.

Several ROM based application modules are available including:
A 1 k word floating point package providing add, subtract, multiply, and division. Also converting and formating for display.
A 1 k word Real-Time Monitor for parallel processes and utilities for interactive communications.

For further information contact: J. Molgaard or Chris Bagge Telephone: (02) 867722 ELEKTRONIKCENTRALEN Venlighedsvej 4 DK 2970 Horsholm venmark

SHORT NOTES

In the last newsletter (非29 page 14) Michael Mazzoni "discovered" that system CUSP's could not be called via the .RUN command under 0S/78. This is easily solved by the following CCL command: . SET SYS OSX and restored by the CCL command: . SET SYS OS78. For more information on this and other SET commands see Appendix j of the OS/8 HANDBOOK UPDATE.

Also from the last newsletter (page 17), Dave Kocsis mentioned that Intersil was looking for computer programers. Well Harris is also looking for some PDP-8 computer programers. If you are a professor at some college, then you could suggest to your students that they look at some of the companies that are using the 6100 microprocessor for posible job oportunities.

Harris Semiconductor has just finished a 200 page Systems Design Manual for the HM-6100 microprocessor. This manual covers techniques for hardware interfacing of a variety of systems from the bare bones, minimum controller to a full blown $j 2 k$ word computer. For more information on how to purchase this and other manuals just call me or your local Harris rep.

EYE RESEARCH INSTITUTE OF RETINA FOUNDATION

20 Staniford Street

19 August 1978

Changing Terminal Device Codes on a PDP-12:

In the Nay newsletter I described our continuing effort to patch
$05 / 8$ for a console device code of $40 / 41$. Since then, I have received a deluge of letters (three) on the general theme of "do it in hardware, dummy!"

These notes all refer to PDP-12's, but are quite likely applicable to PDP-8I's.

Fred Erandt has noted (Newsletter 29:12) a solution by Dave Talkin, which modifies the existing teletype interface. The final result is a single interface, with device code 03/04, with output switchable between (1) 300 baud, current loop and (2) 1200 baud, RS232.

Joe Nadden sent me full details, including a wirelist, which I append. In the normal configuration, 03/04 controls a 110-baud, current-loop teletype, and $40 / 41$ controls a 1200 -baud, RS232 video terminal. In the switched configuration, $03 / 04$ is the terminal and $40 / 41$ is the teletype. To switch configurations requires changing four jumpers and swapping two cables that plug into the backplane, so it is inconvenient ina situation mere frequent switching must be done by montechnical people. His solution has the very great virtue, however, that the "normal" configuration is absolutely identical to that supplied by DEC.

Uwight Smith describes a modification designed by Bruce Robins of DEC Field Service in Vaine (20 ? 797-9220), which 1) changes the DP1 2 device codes from $40 / 41$ to $43 / 44,2)$ installs a DPDT switch on the frame of the backplane, wired to 3) swap bit 6 of the Try and DP12 device codes, thus:

$$
\begin{array}{lll}
& \text { TTY } & \text { DP12 } \\
\text { normal } & 03 / 04 & 43 / 44 \\
\text { switched } & 43 / 44 & 03 / 04
\end{array}
$$

"The total bill for the hardware modifications was under $\$^{4} \mathrm{co}, "$ according to Dwight Smith. We are going to have this modification made on our -12, and our field service reps have been talking to maine, but all they will promise is to do it on an hourly-rate basis; they estimate it will cost $\$ 250$. I'll note the eventual outcome. This is the most convenient sclution for us, and note that it is the only one of the three which works if it is necessary to output properly to a teletype which requires two stop bits and to input block transfers from a terminal which generates only one stop bit. However, it produces anor-standard configuration and could conceivably caise trouble someday if we ever wanted to install a PT08

A $\frac{U W F / V 4}{\text { Now }} \frac{\text { trick: }}{\text { that we }}$
Now that we have within-group group-independent addressing (via "group 0"), you and I and everybody else want group NOVE's. While we're waiting for Jim van zee to figure out a clever way to implement this in less than one more word, here's a way to pass the time.

UWF detects the entry of an indirect line as a line starting with a digit. However, the line number is evaluated in the normal way, and can be any general expression, so long as it begins with a digit. I write my
subroutines as single groups, using exclusively group-zero addressing. Let's say it's group 9. I output the group as a. DA file (0 O SUB; W 9;0 C). I then edit the file to change all the line numbers from 9. XX to 0. XX+\#. I have a (sorry, MOBY MUNGERS) FOCAL program to do this automatically. To insert this into a new program as, say, group 18, I just SET \#=18;0 I SUB

The PDP-12 has a pre-wired Dataphone interface that uses device codes 40, 41.

Unlike the console teletype, the Dataphone port allows a choice of baud rates by crystal and/or jumper selection.

In order to switch the clocks such that the 1200 baud Ann Arbor terminal can be used as the console device, the following modification has been installed:

Delete	Add
N25E1 - N11J1	N25E1 - N11J1
N25E1 - N12P2	N10P2 - N11E1
N10P2 - N11E1	
N12V2 - N11E1	
NOBJ2 - NO8P2	
N08K2 - N11D1	

To switch ports such that the console device codes 03,04 control the E1A RS232 1200 baud terminal and device codes 40 , 41 control the teletype, install four jumpers as shown below. Change the corresponding cable connections to the backplane.

To restore the original configuration, change the jumpers and the cables.

N11	Normal	Switched
D1	N08K2	N12V2
E1	N12V2	N08K2
H1	N08J2	N12P2
Jl	N12P2	N08J2

Cables

Console N2 N3

Remote N3 N2
Hbove is from joseph A. Madden, Veterans' Administration Hospttal, 13000 North 30th Street, Tampa, Florida 33612; (813) 971-4500 x 301.

Notes: (by DPBS) The effect of the modification is to provide a fumper-switchable interchange $0 f$ the baud rates of the two interfaces. As supplied by DEC, the teletype interface is 110 baud, RC-controlled. and the DP1? is customer-selected, (12,00 baud in Joe Nadden"s case), crystal-controlled.
The DP 12 B is normally supplied with a BCO1A-25 cable assembly, with an KS232 connector on one end and a PC board on the other; the teletype cable terminates in a PC board. The slots on the teletype and DP12B interfaces are functionally ecuivalent, according to Joe, the necessary level conversions, etc. being done on the PC boards. So it is possible to simply switch the cables, and all that remains to be done is to set up the proper baud rates. (Note, however, the stop bit question-as wired, both TTY and DP12 send/receive 2 stop bits, which is CK for most applications. If the DP12 has been modified for 1 stop bit, presumably it will not operate the TTY properly even if the baud rate is correct).

SENSORY COMMUNICATION RESEARCH LABORATORY hearing and speech center

GALLAUDET COLLEGE

KENDALL GREEN, WASHINGTON, D.c. zooor

Mr. Bon Hassinger
12 bit Sig Coordinator
Liberty Mutual Research Center
71 Frankland Road Hopington, Massachusetts 01748

Dear Bob and Fellow decus Members:

In the May 1978 issue (\#28) on page 39, there is a letter from Dan Smith reguarding $0 S / 8$ and device codes. We had a similar problem and here is how we (David Talkin and myself) solved the problem.

If you take a look at the PDP-12 prints you will indeed see that the TTY interface and the DB-l2-B are in fact similar. The primary difference being as Dan noted the device codes (03 \& 04 for TTY and 40 \& 41 for the Dataphone). You will also see that the speed for the TTY is set by a RC clock (M 452). The speed for the Dataphone is set by crystal clock (M405 in slot N ll). Also the Dataphone requires a BCOlA cable. It is this cable that does the level conversion from RS232 to the TTL level required by the M706 \& M707). A note on the prints for the DAtaphone states that the clock rate must be 128 times the Baud rate for speeds up to 10000 Baud.Apparently speeds are available up to 100,000 baud with a slight additional change.

From this it can be seen that to change the console terminal to something other than a tty at 110 Baud all one has to do is change the clock speed if going to 300 Baud or plug in a new clock card and the BCO1A cable for the RS232.

On our PDP-12 we installed a switch so that we could use the Decwriter at 300 Baud or a CRT in an adjucent office at 1200 Baud.

There has been over the past year or so ocassional references to the Bat Handler and how to use it in the $0 S / 8$ system. We use Fortran IV for signal generation and data analysis on both oorPDP8 and 12 systems as well as the Dec System 10 at the computer center. On the 10 system it is possible to have the batch processor intercept all input and output to you TTY. Unfortnately the Batch processor for the OS/8 system is not as intellignet. But by use of the Bat handler you can read in data from the batch stream. The one necessary piece of information not given in an obvious place is how to terminate the data input to the batch handler. I submitted an SPR on this and received a call from the Maintainer. He had checked various things including the coding
and found that the data stream needs to be terminated by a '\$'. This is shown in the code for the batch handler but nowhere in the documentation for batch itself. It is mentioned in a section called Advanced Features in MS BAtch. There is for MS Batch a fourth type of instruction '\$EOD' or I assume 'End Of Data'. This bears out my experience with the Bat handler. I found that if there was nothing past the data except the '\$EOF' then all seemed well. If however there were additional commands following the data the results were unpredictable. The enclosed TTY printout will illustrate the use of the Bat Handler in a Fortran IV system.

The restriction that there must be an extra 4 K of memory still holds. Our systems are all 32 K . I have a special version(Frts without the patch to run in 32 K) of FRTS to be used with the Bat handler. Batch has been patched to run in the full 32 k while FRTS only knows about 28 K .

This could be a problem for people with less than 32 K . I tried to use the version of FRTS set up to 32 K and then the first command after beginning the job to lower the core size. This does not work! Maybe some day these restrictions will be removed.


```
THE FOLLOWING IS THE LISTING OF THE JOE SUBMITTEX TO THE:BATCH STFEAM. . .
THE: 'EAT' HANRLEFE WILL FEAII THE: MATA FFOM THE BATCH JOB BUT NOT TYFE:
IT OUT INTO THE LOOG.
                                    #30 - PAGE 20
$JOE TEST FORTRAN A EATCH REARING
.COM FATST.yTTY&&FATST.FT
- lomir Fatsitrol.
-FFFFTSD
*F4TST
*EAT:/B:b
23
34
4%
5%
$
-RES
MET!
```



```
.SU F゙ATST.BI
$JOE TEST FOFTFAN & BATCH REALING
.COM FATST, पTY&FATST,FT
```



```
            C FOFTFAN IU TEST S-2\cdots%%
0002 FEEANI (8,100)A
0003 FEEAN (8,100)E
0004 FEEANI (8,100)C
0005 REAI (8,100)I 
O006 100 FOFMAT (IG)
0007 WFIITE (4,1.OG)A,B,C,CI
```



```
00.11 STOF
0012 ENI
-loAII FATST.FEl.
-F FFTSS1
*FATST
*BAT:/8$
```



```
- FEES
SYS, ISK゙,FKKHO,FFK゙A1,FKKR1,NULL, ITTAO,LFT, IUMMF, BAT,TTY
- MEM
ЗこK゙ MEMOFY!
$ENLI JOE
```

NOTE FROM BILL HAYGOOD ON MULTI-USER OS/8

I would like to let the 12-bit community know of the completion (at lone last!) of the MULTOS-8 project (Multi-user OS/8). It took quite a while longer to get out from under the Postal Service CAI project than I had anticipated. But MULTOS-8 is now up and running and ready for delivery. MULTOS-8 presently supports the following hardware:

* 16 - 32K memory (with 20K minimum recommended)

Each user has a virtual 32 K memory regardless of physical amount of memory.

* PDP-8/A,e,f,m

PDP-8/I (code not completely deburged for 8/I)

* Up to 4 TTYs/terminals/CRTs each with own apparent copy of 0S/8, peripherals, etc.
* KE8E EAE (supports both 8/e and 8/I type EAEs)
* RK8E RKO5 disk drive O used as swapping and SYS disk
* Up to 3 additional RKO5 disk drives (RKA1-3 and RKB1-3)
* PC8E Paper Tape Reader and/or Punch
* RXO1 Dual Drive Floppy in both 12-bit (RXAO-1) and 8-bit (RO-1) modes (handlers for both modes included)
* Up to 8 TM8E Magtape transports
* Up to 6 TD8e DECtape transports (Yes, TD8E -- no hardware mods)
* Real Time clocks: DK8EA, DK8EC, DK8EP and PDP-8/A DKC8AA
* Any Line Printer using device code 66

Other features include:

* A Print Spooler which can be called with a keyboard command or under program control. Up to 32 files of any length can be spooled. As soon as the command is issued, control returns to the 0S/8 Monitor so that other processing may be done while the printer is outputting the desired files.
* Full Batch processing from any and/or terminals.
* Automatic device assirnment/de-assignment.
* Files can be transferred between terminals and/or any devices on the system.
* Separate passwords for each terminal may be used, if desired (nice for modem applications).
* Surprisingly low priced.

Future enhancements include support for 8 TCO8 DECtape transports, RLO1 disk and KL8A terminal interface.

For more information, please call or write me at 801-942-2300, ComServ (Computer Services) Enterprises, 7822 Oakledge Road, Salt Lake City, UT 84121 USA.

Mr. Robert Hassinger
Co-ordinator, 12 bit Sig
Liberty Mutual Research Center
71 Frankland Road
Hopkinton, MA 01748

Dear Bob,
As a frequent RTS/8 user-programmer, I would like to make some responses to Lee Nichols letter in the July 78 Newsletter (Number 29, pages 2-5).

First, let me thank Lee for taking the time to hhlp improve RTS/8. He was an excellent choice for the head of thle tS/8 working group.

Second, I would like to make one big suggestion to anyone interested in changes to RTS/8. This is "Look at RSX-ll". RSX-ll is a real-tine, multi-tasking system for the PDP ll. It is probably thh closest thing to RTS/ll. RT-ll, the other PDP ll system, is real-time, but not truly multi-tasking. Thus, many of the problems we are encountering with changing RTS/8 have been seen by the developers of RSX-ll. I will grant that PSX-ll is more sophisticated than we may want $\mathrm{FTS} / 8$ to be, but many of their features can solve our problems.

The main reason for an executive in a real tine system is to provide services which are inherent in the hardware, but because of multiprogramming, and real tire constraints, must be disbursed on a controlled basis. An obvious example of this is I/O. However, most executives also augment these "hardware" services. It is th augmentation which we discuss here.

For example, there is nothing inherent in the hardware about Eetting a command line. However, almost every task must do it, so RSX provides an executive call to retrieve a command line which has been entered to MCR. Thus, most RSX tasks are entered via the $M C R$ command:
nam ...command line...
where "nam" is the task name. NCF automatically does a "FUN nam". The task then issues ar exec request to fetch the command line, and processes it. By convention, any task entered in tris way terminates after processing tre sinele command line. If multiole command lines are to te entered, the task is invoked with the MCR command:
nam
again, where "nam" is the task name. MCR merely does a "RUN nam", and the task comes up. It does a "oet command line", finds none, so prompts for one and continues promptine for one uritil the user specifically exits the tasix (ty entering CTRL/2). There is a certain lofical consistency here. In the first case, the user is requestine the task to do a specific function. It does it and exits. In the second case, the user is requestin n_{0} the task, but not specifyir $\begin{gathered}\text { the }\end{gathered}$ function. Thus the task assumes that there is more than one function to re done.

Ancther thire which I can't stress enough is "USE MACPCS". We have a nice macro assembler now and maxina common code macros is so nice. This way your code is rot scattered with

CAL
SENDG
TTY TMMSG
put instead
SEVD. TTY,TTNSG
Vot only is this easier to read, but it avoids the protlems with future changes in the format of executive requests. You just chanee the PTS/8 macro library, and everyone has maje the chanfe. The advantape of this method is that those poor souls whe cannot use macros (tecause of limited soace on assombly) can continue to write it all out. The real solution would be to have MACFFL use secondary storage (e.r. disk) for extended symbcl and macro table storage if there isn't enough core. MACRO-ll does this. Stan Rabinowitz, are you listening??

RSX-11 also provides "informational" directives. These allow a task to ottain information abcut its enviornment, includine "task narameters" (name, number, priority, etc.), "partition parameters" (partition name, lergth, etc.). These are not immediately useful in $\because T S / 8$, since tasks usually know
these thirgs. However one directive yhich would be useful is Get time oarameters. This returns the date ard time in an \& word huffer.

Sorethine which the EECnet authors found lackine in RTS/s are AST's. For reasons I dor't understana, they implemented them directly in NSP rather than in $2 T S / 8$.

An AST (Asynchronous Syster Trap) is a task interrupt intiated $t y$ the executive to allow servicing of contingencies includire signalling everts, such as the completion of a previous $I / 0$ request. The extcutive keeds track of all AST's, queues them (FIFO), and is aware when a task is servicirg an AS:. Upon eviting an ASi service routine (which is sirilar to an interrupt service routire in structure), control is returned to one of three places.

1. Another (queued) AST;
2. The task, or
3. Another task (e.fj., the corresmonding tast was in a wait or suspend state prior to the executior of the $S S T$).

Sore examples of AST's include:
RECIIVE MESSAGEAS? which is invoked when a messape is queued for the task.

POWTS FECCVEPY AST which is invoked during tre power recovery procedure.

I/O COMPLETION AST whish is invoked udon comoletion of $a n$ I/O request.

MARK TIME AST which is irvoked upon completior of a mark time request.

Two directives, LISABLE AST KECOGNITION and ENAZLE AST FECCZNITICV, allow AST's to te queued durine critical sections of code that access data bases that are alsc accessel by AST sorvice routines. If AST's occur while AST recoenition is disatled, trey are queued and processed when AST recognition is enabled.

A rethod of waitine for the locical 'OF' of event flags must te oroviled. The method described in the FTS/8 User Manual is crude at best. RSy orovides a directive which does this.

As for an RTS/\& User Cormand Language (UCL), the method of invoking tasks described above is often erough for experienced users. However, for those times when it isn't, MCR should have a user interface. This orobably shouldn't be
done dynamically at run-time via ressages. Few applications require such flexibility. Instead, the command larguage should be fully defined at assembly time. There should be a "Jser Command Table", which would be a global symbol, thus any tasks can access it via. EXTERNAL. The table will be fully defined in the PARAM file. I can't think of any way of ircluding code in tasks to create this table. How could we keep track of the next free table entry?M@ L.MAR +5

Since the language must be totally general (from MCR's point of view), it is difficult to have MCR (or USERCD) do much besiaes invoke a task and pass the command line to it. However, some initial oarsing could be done by MCF, particularly if we define our language rather well. The user would define each argument to the command, whether it is ootional or required, and what type of argument it is. The types would include octal number, decimal number, memory location, task name, and character string. In the first four cases, MCR could do conversion and print errors (perhaps rore descriptive than BAD NUMBER), thus providing a high level parser for the user tasks. This parsing is both modular and will save space, since only one copy of each conversion routine is needed (in the high level parser), rather than a seperate copy in each task. The character string type is a catch-all, which prevents MCR from parsing this arg -- it is cassed directly to the user task.

The entire command table would be constructed usins macros, of course. The macro CMD would start a command table entry. It defines the commard, possibly including required and odtional characters, the task to be unblocied, and which task status bits should be unblocked. The command arfuments are defined by successive calls to ARG, which defines each areument, types it, classifies it as optional or required, and specifies a user buffer to contain the parsed argument. Finally, a call to ENDE ends this table entry.

Thus, a sample command table entry would be coded as:

CMD	IUMP, DMP, RUNWT
ARG	TSKNAM, OPT, DMPNUM
	ARG
MEMLOCC,REQ, DMFST	
ARG OCTNUM,OPT,DMPLEN	

This defines a command, "DUMP", which will cause the task LMP to be removed from RUN wait. The command has three areuments. The first is a task name or number (TSKNAM) which is optional (OPT) and the parser will place the task number in LMPNUM. The second arg is a memory location, which is required. The parser will create a two word block at DMPST which contains a CDF to the field specified as the first word, ard the absolute merrory location as the second word. The third argument is an octal number (OCTNUM), which is optional. If it is present, it will be converted and placed
at DMPLEN. The ENDE call will end the entry (nominally olace a zero in the table).

I would be interested in reaction to this prodosal.

Sincerely yours,
Mrehar

RXD1 WRITE PROTECTIDN

by: Richard A. Karhuse
Computer Science Research Laboratory
Northwestern University
TECH 1626
2145 Sheridan Road
Evanston, IL. 60201
(312) 492-5248

Tine Computer Sciences Research Laboratory of Northwestern Giversity Durchased one of ihe ilist DeC Ryol dual flopoy disk drives. Shortly after the waranty period erpired, so iid the floppy disks. DEC in their infinite
 laboratory felt this io be exorbitant and iypically ias ione all of its own maintenance in-house. In she process of diagmosing tho disia dripe, we uncovered yhat apoeared to be a drive write-protection circuitry.

Installing write protection into the the rial :loppy disk drive turi out to be simple. DBC has included all the necessary logic and microprogramming for it, zut documents it gowhere, except marginally in the prints. DEC bas brought all the necessary signals out to a Berg-type conyector. It appears DEC had planned on using a flopog drive vici dould sense a bole in the corner of the ?loppy diszette. This is the way I3M defines write protect on floppy iisks much lize the tab on cassettes. Apparently the drives that Digital is using does not have this capability (although ve have never verified this fact).

To vrite protect floppies on the ExJ1, all that is needed is a switch, a litile cable, and a Ber弓 connector. Power is oropided on the connector if a lighted switch is desired. In this case an additional resisior must be added to the driver board so that surficient current is supplied to light the lamp.

When the switch is closed (see circuit diagram), DRT TRT PRCT is generated. The microcontroller senses this siznal whenever a vrite operation is issued by the host computer, for a given drive (0 or 1). If ihe drive is protected, the controller aborts the operation and sets the done, and error ilazs. The axis is set io a value of 410 (octal) and the ERROR register has a valua of $2: 0$ (octal). ± 11 system software tested (OS/B, RTS-S RT-11) did zero or more retries and then terminated the operation unsucessifully.

Installation Intis
The simpiliest way to write protect a floppy dist is to install a jumper or switch between pirs \#1 and \#3 on the appropriate Berg pins of the Mraz drive electronics board. Any sort of tozgle switch will do. We opied for a more esthetically pleasing back-illuminated, push-button switch. In addition to jumpering tice above two pias. a six rolt lamp and sifich is placed tetween pins $\angle \in$ and m to indicated when the drive is write orotected. To obtain ine half ampere needed to drive the lamp a 12 chm resisior was tacked on top of 3188 (for drive θ) or Plil (for drive 1).

The labeling "WRITB PROTSCT" vas obtained rather ingeniously. First, the 10 go was generated with 18 pt.
rub-on letters to a piece of odoper This artororix was reduced several imes with a zerox machine until ihe correct size was obtained. The logo was then trans?ered to olear
 create overhead saanoarencies. The plastic loso was inen mounted to the bution usiag Scotch ? ZOTO MOUNT Soraj dinesite (cat. 20. Eg94). The olasticis cut to the size of the button.

The switches are then mounted on tiae fici :ace jia:e. This plate is beavy cast aluminium. Thus a drill oress should be used to punch the holes. Masinin tape should be place on bhe outside of the face plate to prevent marring and the bole siould be puached from the baciside. The bole should be located suct that the backside of the switch is just above ine bacs retention olate.

The vilte orotect suitches havo ieen use in the laboratory for over six months wit 20 groblems and orevented some good iloppies from being accideataly creamed. If there is sufficient (but not overxhelring) femand, ibe laboratorj could provide the write protect switches ouilt and tesied for a nominal charge for installations wich do not have the soecialized exuijment nor personnel to builit the suitches. These users would still have punch the holes in the aluminium and install the switches.

Tc concludewith a continuation on the history of our drive, ve tape developed a RYD1 micro-controller diagnosilc. This diaznos:ic allows us to single step the RIR1 oontrolier and examine rarious igernal signals. More importantity it allows us to "dumo" the micro-controller ROM"s. Inis dump then can be compared (ti a source compare programs) with a sood Eloopy's ROM to determine whici location if any bave changed--xe have encountered . several flopoies with this problem. In our case, an "unused-bi:" cinanged state and caused our RXD1 to jump interaally vo non-existant memorj. we fired our oroblem with about ṣy. 10 of wire by sotally disabliag this unused bif.

The diagnostic will only be useful for installations wich extensively do their own rainteaance. it requires 27 bits of darallel ingut interfaces from tie micro-controiler to bhe ilagnosing comouter. M17QZ's or DR:1's will suffice to bring this data in. Jowever, a cable interiace must be built om a fiszーciip module. the diagnostic is uritten in OS/8 IORTPAN II with one SABE level subroutine to read the M1703. It shouli be fairly easy to transport this ilagnostic to a PDP-11.

The diagnostic is nos very well documented currently. But, I am willing to wort with anyone who really wants to use

```
it. It goes without saying that any installation wio wants
to use it must bave some o:her mass storage device other ihan
the floppies because you cannot run the diagnostic off a sicx
floppy. Our laboratory cariently supocrts: DSCtapes, DOS Eormat G-track mastapes, RX08 disk packs, RZ and paper iape.
```

```
PARTS LIST
(per drige)
```

Iighted Push-Button Switch Push-on, pusi-cf: 5 volt switci (Cutler-Eammer S31DE191-1 or equiv. available from Newark)

Berz Yeader/Pins
Header 65043-933 214 header, 0.10
spacing with four 47712 pins

Cable
Pour conductor aporox. 1 foot

Resistor
12 onm, 2 watt resistor

Mr. Robert Hassinger
coo DECUS
129 Parker Street, PK -3/E55
Maynard, MA 01754
Dear Mr. Hassinger,
Seeing the CPU Hints and Kinks published in the 12 bit \#27 encouraged me in include a change we made several years ago to our Straight-8 to overcome its inability to combine the Group 1 Operate Instruction INC and the various ROTATES. The problem is the set up time required by the DCD gates used for the rotates. By adding R302 delays in the various Rotate signals the gates can re-setup with the incremented value in the AC before the rotates. We used PF11 and PF12, two slots that were originally wired for the A-D converter. Others may need to find a free space to add the two cards. Don't be tempted to just delay the PQPIsignal, the MB control bits change too soon for that. I hope this will be helpful to some of those who are still using the original 8's or someone who is thinking of buying one from the surplus market.

We would appreciate it if you could send us a copy of the back issues of 12 bit on microfiche if there are any left.

We would be glad to duplicate paper tape copies of DIRECT V5 if that is still a live option. If not, how can we get a copy of the latest version? It sounds like something well need.

Sincerely yours,

Dick Bronson
No. TitLe COMBINE INC + ROTATE

DP-102-8

\#30 - PAGE
 35
 USCG Research \& Development Center Avery Point, Groton, CT 06340

Mr. C.J. Thompson
Montreal Neurological Hospital and Institute
McGill University
3801 University Street
Montreal, Canada H3A 2B4
Dear Mr. Thompson,

Single to Double Precision in a PDP-12 or PDP-8

I have read your article in the 1.2-Bit SIG Newsletter and am writing in responce to your letter which was printed on page 16 of SIG \#29. I hope thet the eode you show is not running, as; a large falt i.s present, which otner sections of your code may correct. The error is that the command SNL CLL will never clear the link. Yau have combined a Group I with a Group 2 Operate instruction. SNL CLL will be assembled by PAL8 into a 7520 (7420 is SNL, 7100 is CLL; these are Inclusive ORed into the 7520). When the PDP8 executed the 7520, It will decode it as a SMA SNL ! and the LINK is still set...............

I had this problem and solved it as follows. It does not use any Group Two. It happens to be a little cleaner inthat it only uses 6 locations.

TAD I 12	/ number from data array
TAD I 13	/ add to low order word
DCA I 14	/ save results, overflow in the link
RaL	/ Link to AC-11 and AC-0 to Link (CLJ.)
TAD I 13	/ add 0 or 1 to High Order
DCA I 14	/ Finsihed, and Link = 0 for NEXT'TAD I 12'

I had made the same error in a A/B Averager I developed for FOCAL. It uses the call $\mathrm{FADC}(\mathrm{Cl}, \mathrm{T1})$, where Cl is the Channel, and Tl is the number of times to read it, defalt $=1$. Since we use a $12 \cdots$ Bit unsigned A to D, overflow will occur. The program which calls FADC does the division, why duplicate code. This runs on a 6100 chip, and can convert 1000 readings to double precision in less than . 05 Sec , which is the time between evnats. When the event tire gets much less than that, doing single in double this way is not effective, and a DMA (FPP-12) method has to be used.

Copy to:
Bob Hassinger, 12 bit SIG

Dear Bob，
I have just read $⿰ ⿰ 三 丨 ⿰ 丨 三 一 29$ ，and I would like to comment on the quanity of RX01 handlers which use over 600 blocks．I have used Mr．Dewar＇s RX handler for non－systems and gets 650 0S／8 blocks from two devices．I have also used the DSD RX handler which gets 658 blocks on only one device．Dr．Lynch of Xerox has submitted a handler to DECUS which gets 666 blocks．

As a member of the Software Exchange Committee，I would like to see DEC adopt one of these（or write their own）so that users can take advantage of the increased storage from the RX01．I understand that soon？？？？？DEC will of－ fer the RXO2 with increased density．This will not eliminate the problem． I have tried to read a Dewar＇s RX with the DSD handler and the reverse．To date these have not been successful．

I would also like to comment on some Interrupt Code which we recently ＇found＇in DEC literature．When using the KL8 type interface，the instruction ＂KIE＂（6035）can be used to enable／disable interrupts from the interface． （the KL8－E is enabled by the CAF instruction？）The need to disable interrupts can accur when more than one KL8 is being used（two or more serial devices）or if you want to service the Clock，and disable the TTY for a while，an easy way to ignore Control－C．FOCAL，INBASIC，F－IV，and RTS－8 are all examples．

The problem arrises in the interrupt service or skip－chain．It is normal－ 1y coded as：

TSF	／DID TTY OUTPUT INTERUPT
SKP	／NO
JMP SERTSF	／YES，SERVICE IT
KSF	／TEST TTY INPUT
SKP	／NOT THAT EITHER
JMP SERKSF	／ZES，SERVICE
CLSK	／TEST THE CLOCK

．．．．
If the＇KIE＇instruction turned off TTY interrupts，the Clock interrupt will cause the TSF to be tested，and posibliy skip，and also the KSF if a key is struck on the TTY．However，the KL8 provides a way around this．It is the ＂SPI＂or＂TSK＂（6045）instruction．It will skip if and only if the interrupt is enabled and a teader／punch flag is up．This is coded up as：

TSK／DID TTY INTERRUPT？
JMP CLøCK／NO，NEXT TEST CLOCK
TSF／DID PUNCH INTERRUPT？
JMP SERKSF／NO，MUST BE READER！！
．．．．／SERVICE PUNCH HERE
KSF／BEST TO EXIT TESTING READER
SKP／FASN＇T READER TOO
JMP SERKSF／WOW！READER UP TOO
CLØCK，CLSK
／TEST THE CLOCK
This enables the KIE instruction to control the TTY I／O to an interrupt driven program．I would like to fear frg athers who are working on the same problem．

USCGR\＆DC，Avery Point，Groton，CT 06340

Mr. Robert Hassinger
coo DECUS
129 Parker Street, PK-3/E55
Maynard, MA 01754
DIGITAL EQUIPMENT GMBH

	Wallensteinplatz 2 8000 München 40 Telefon (089) 35031 Telex 05215780
	Dept. R605
Durchwahl 3503-	Datum

Dear Bob:
Reading Jon vo Zelowitz 'self erasing core zeroed' in the 12 bit SIG newsletter No. 28 reminded me of the times when we had the PDP-8 sense switch, the deposit HALT in all of memory and the zero memory contests (among others). This was in those old days when the DECUSCOPE used to be a colorful marketplace for PDP-5/8 users, around 1967.
May I recall some of these ventures for the delight of today users?

1. A refined German-Wolfberg technique:

2772 SKY
2773 DCA .+3
2774 ISZ $\emptyset \quad /$ start, $A C=\emptyset$
2775 DC I \emptyset
2776 JMP .-4
2777 DCA .-3
$3 \emptyset \emptyset \emptyset$ DCA I Ø
2. This speed record can be beaten, however, by a basically different technique which is more than twice as fast:
7771 DCA I .+5 /start, AC= \varnothing
7772 ISZ 11
7773 ISZ .+3
7774 JMP .-3
7775 DCA .-1
7776 ØดФ1
7777 JMS I Il
ØØØØ DC I 11
3. Another one with less than 8 instructions:

TAD 5 / start at Roc $\emptyset \emptyset \emptyset 4$
DEA I $1 \varnothing$
UMP 4
UMP I 4
11
ISO 10
Sincerely yours,

bhopal fill bourne $\mathfrak{J n s t i t u t e}$ of $\mathfrak{C e r b n o l o g y ~ l i m i t z d ~}$

Letters should be addressed to the Principal.

124 LA PROBE STREET, MELBOURNE, VIC. 3000 BOX No. 2476V G.P.O. MELBOURNE, VIC. 3001

Telegraphic Address: "Meltech" Melbourne.
Telephone: 3477611 Extension No. 274
In reply please quote
R.M.I.T. Technical College, Applied Science \& Mathematics Division, 80-92 Victoria Street, SOUTH CARLTON, 3053.

27th July, 1978.

Dear Bob,

The Applied Science and Mathematics Division of R.M.I.T. is currently using EDUSYSTEM 25 Version 2, to teach it's students BASIC in an interactive environment.

At the moment we cannot upgrade our software to Version 3 (which would allow us to use our mark-sense card reader) because D.E. (Aust.) tell us that D.E.C. have withdrawn all EDUSYSTEMS from sale.

We think that this is in a poor state of affairs and wonder if you or your members know whether D.E.C. is intending to upgrade these software items or replace them with any similar timesharing systems (preferably device-configuration independent)?

Failing this, is it known whether these or similar products are sold under license by O.E.M's or software houses?

Finally, we would be very interested in corresponding with other 12 BIT educational timesharing users, on matters of common interest.

Yours sincerely,

(A. MCCLAREN).


```
Robert Hassinger, Coordinator - 12 Bit SIG
Liberty Mutual Research Center
71 Franklin Road
Hopkinton, MA 01748
Dear Bob,
```

Here is a concise summary of what I've learned working with the fixed-point mode of the FPP-12, along with some illustrations and a listing of still another test program. As you can see, the test program is a bit specialized, but demonstrates the real problems involved and how to control them. I also discovered a special averaging situation where floating-point mode loses precision merely due to normalization problems in addition. I doubt hardware GPs, at least the cheaper ones, could be made intelligent enough to address the problem, but anyone designing a software floating-point package could easily code a solution that would probably be faster than the software equivalent of the hardware technique and more precise to boot.

Since there is little terribly new here, please edit out what wont fit, since it will use up a lot of room and there are few FPP users out there.

I would also like to make a couple of retractions (both 非28, p. 35)
1.) ALN does work correctly if given 2 's complement left shift values; it requires 2 's complement values for a correct left shift.
2.) In fixed-point FPP division for averaging, the divisor is not put into the MSW of the FAC fraction, but put there and shifted right one bit. This will then result in a numerically correct 2 's complement 12 -bit quotient in the MSW. The reason it must be done this way is that the binary point is not at the edge of the fraction, but shifted right one bit.

Finally, a question. I always avoid SQUISHing SYS under BATCH either from CCL or PIP. If BATCH is running with input from a file on SYS, is it possible to SQUISH SYS? I seem to remember horror stories about SQUISHing SYS and dead indexes and exploding $0 S / 8$. What is the current legality (and functionality) of a BATCHed SQUISH of SYS?

Sincerely,

Brian C. Converse
Associate Programmer Scientific
BCC/slr
Enclosures

Arithmetic operations that are straightforward in floating-point mode (such as divide) now require some thought. In the FPP-12 User's Manual, DEC points out that it is harder to maintain precision since no normalization is performed in fixed-point mode (the user is presumably aware that fixed-point mode has a limited dynamic range compared to floating-point). Certainly it is frustrating and (happily) hard to justify complicated jumbles of 4 -function arithmetic in fixed-point. However, fixed-point mode uses $1 / 3$ less core and runs marginally faster; it is an attractive alternative for applications such as histograms, pulse counting, and signal averaging. In either mode, the FPP-12 takes care of rounding (it would be nice to be able to turn that OFF at times!) and signs, items that eat up time in double-precision software routines with or without EAE.

In fixed-point mode, all values are treated as fractions, so any arithmetic operation generating a non-fractional result causes the FPP to exit. Also, in fixed-point mode, the instructions will not bother the exponent. If one must float a fixed-point number, this situation can be used to advantage. (See below)

Converting single-precision signed integers to double-precision signed fractions may be done via FLDA and ALN. Each FLDA will load two integers into the FAC fraction. Using ALN, the more significant 12 bits of the FAC fraction can then be moved into the least significant 12 bits, leaving an extended sign in the most significant 12 bits. The preferred ALN index register value is 14 (decimal 12). PDP-12 users note that one's complement integers, such as ADC values, must be converted to two's complement before they are subjected to any FPP arithmetic.

Once a number is available as a fixed-point fraction, it may be converted to a floating-point value. XTA is the fastest, most straightforward way to do this when starting from single-precision integers (again, check one's complement data); but the following technique may be used to float a fixed-point sum or histogram bin or pulse counter after it has been used for awhile to allow subsequent, more complicated calculations to be done in floating-point mode. The prime accessory required for the conversion is a dummy floating-point constant. Its exponent must be 27 (23 decimal); the fractional portion may be anything, including any "illegal" value, but zero is preferred. The program should switch to floating-point mode and load this constant, via FLDA, into the FAC. The program then returns to fixed-point mode and loads, via FLDA, the value to be converted. In fixed-point mode, the exponent will not be disturbed and remains 27. The program then switches back to floating-point mode and executes an FNORM to produce a floating-point value. This value will be "real" if the fixed-point fraction was derived as explained in the previous paragraph or was produced by combining fractions so derived in a correct manner.

A test program was developed to help understand the use of the FPP-12 for signal averaging purposes. The $0 S / 12$ ($O S / 8$) core image is built from a LINC mode segment and a FPP segment. The LINC code simply generates some "fake" data, starts the FPP, and throws some status information into the AC and MQ. A PDP-8 user with FPP-12 (and probable an 8A user with FPP) could write duplicate PDP-8 code in about thirty minutes; the FPP code should be universal.

The test program starts at 4020 and halts. The user sets an " N " value in the left switch register of the PDP-12 and some signed constant in the right switch register. The program uses four buffers of 512 words; a data buffer beginning at loc.0, a sum buffer beginning at loc. 10000, an average buffer beginning at 12000, and a baseline-corrected average buffer beginning at 14000. When the user hits CONTINUE, the LINC code portion of the program eats the two switch register values, stores " N " in a location known to both program segments (setting up such locations is a good way to develop an interest in MACREL or RALF!), and fills the data buffer with the signed constant. Continuing, the LINC code clears the sum, average, and corrected average buffers and starts the FPP- 12 with the CPU locked out. Once the FPP is done, the LINC code puts the FPP status in the MQ and the FPC in the AC.

The FPP code sums the data buffer into the sum buffer N times, then divides the final sum by N and puts the result into the average buffer. This result should be the same signed constant as entered in the MSW of the fraction (the switch register input is assumed to be l's complement while the FPP values are 2^{\prime} s complement). Next, an average of the 512 sums is computed. This calculation can involve a sum which overflows in fixed point, so it is done in floating point. This avoids the overflow problem, but in turn presents a significance problem. The FPP-12 User's Manual (Section 3.8.7) states, "In order to add or subtract two-floating-point numbers, the exponents must be aligned; that is, the fractional part of the number with the smallest exponent must be shifted right and the exponent incremented until the two exponents are equal." If a program is averaging numbers such that the sum gets very large, then even with four extra bits of precision, the smaller values being summed get scaled away. Eventually, the sum divided by N is not quite what it would be if infinite precision were available. [As R. K. Richards puts it in Digital Design, "...the problem of determining the number of digits that are truly significant in the final results, is not solved at all through the use of normalized floatingpoint notation." (p. 370) Software and firmware floating-point packages, since they cannot match the raw speed of a hardware FPP, might adopt a more intelligent approach to addition and subtraction: de-normalizing the larger value until it contains no trailing zeroes.] The "mean sum" so calculated should equal the value of the individual sum values, since the program is working with constants, but for moderate to large constants and N's, it doés not due to the aforementioned precision problem. The average is calculated again, using the sum minus the "mean sum" and placed in the corrected average buffer.

The results are: the signed constant in each location of the data buffer, N times the signed constant in each location of the sum buffer (fixed-point "fraction"), the signed constant in the even locations of the average buffer, and zero or -1 in the even locations of the corrected average (and zero or garbage in the odd locations depending upon whether or not there was a precision problem). Any precision problems can be verified by comparing the fixed-point mean sum, MEANLC, with any sum buffer value.

FIG. L: CONVERTING SINGLE-PRECISION \rightarrow D.P. FIXED-PT.
\#30 - PAGE 42
(1)

FLDA GEORGE, 4+

(2)

ALN 1

$$
x 1=0014
$$

Unused	exp		
0	0	0	0
0	7	4	2
(FAC)	nsw		

FSTA ALICE, $3+$

$$
\begin{aligned}
& \text { ALICE }=13000 \\
& \times 3=0047 \\
& Y=13000 \\
& +2(C(x 3)+1) \\
& =13120 \\
& x 3 \text { now }=0050
\end{aligned}
$$

FLDA GEORGE+1, 4

GEORGE $=\downarrow 2000$
$X 4=0024$

$$
\begin{aligned}
y & =12001 \\
+ & 2(c(x 4)) \\
& =12051
\end{aligned}
$$

(5)
(5)

FSTA ALICE, 3+

ALN \perp

$$
\text { ALICE }=13000
$$

$$
x_{3}=0050
$$

$$
\begin{aligned}
& Y=13000 \\
&+2(c(x 3)+1) \\
&=13122 \\
& X 3 \text { now }=0051
\end{aligned}
$$

FIG. 2: CONVERTING DOUBLE-PRECISIAN FIXED-POINT TO FLOATWG PDINT

Q4227	1ヵ20		LDA I	INONE，START FPP				
04230	いの2a		29					
04231	$\operatorname{mag} 4$		ESF	1OO AN T／O PRFSFT				
04232	1000		InAI	／AOW FIX IIF APTI OR				
a4232	5000		span					
の4234	4501		STC APTL．OC＋1					
a4235	91909		INA IIPMONE					
94236	4919		FPINRX：IMNAF					
0.4237	4502		STC APTI．OC＋？					
04240	4509		STC APTIOC					
94？41	450\％		STC APTLOP．+3					
『4？${ }^{\text {a }}$	450』		STC APTI．OC＋ 4					
04243	4505		STC．APTLOR＋5					
94244	4506		STC．APTLOC＋6					
04245	4507		STC APTI．OC＋7					
94246	1920		LTA I	／SET IIP	COMMAND RFG			
94247	4入ga							
04250	O50n		TпB					
04251	6553		FPCOM					
－4P5？	1920		I＿A I；PMONE APTLOCILMADF					
94？53	4500							
au？ $0^{\text {a }}$	4500		IOB	／START．F	FPD：$P \cap P-12$	TS L	K	nut
94255	6555		FPST					
0425A	6272		JMP PROPLM	／THTS IS	S TF THERF＊S	$A P D$	RL	
94357	ロ509		İB					
－apan	の557		FPTST					
04ア61	6257		JMP ，－					
942n？	0354		SCR 14	$1->M 0$				
04763	1900		LOA	／NORMAL	RFTIIRN			
04264	950.1		APTLOC＋1					
94265	agon		HLT					
9，4つ6高	anga		HLT					
aムフの7	ancm		HITT					
94270	627		JMP					
a4P79	ロ909		HLT					
04272	の011	PRORLM，	CLR					
94273	0.354		SCR 14					
0437 A	6265		JMP					
04275	0070	CLRRUF，	SET I 1a	／LITTLE	RMIJTINE TA	CLFAR	RUF	FRS
0.4276	3777		3777					
Q4277	an91		SET I 11					
の4500			－1777					
04301	301！		CLR					
94302	2man		ADC					
94303	4307		STC CLREXT					
04304	107！		STA I 10					
04305	\231		XSK I 11					
94アのa	6304		JMP－－？					
の4307	6307	CI．REX ${ }^{\text {P }}$	JMP．					

94246 192a
ब42ム7409の
a4つ50 ก5लの
Q4?5? 1ヵ2?
0425345π

の4?5R 627?
の4257 ब509

0ム261 6257
042n? 0354
04763 1909
04364 950.1
94つ65 aの00
a4アhA anga
のuフん7 aのリハ
a4779 ロッल円
04ア73 0.354
04?7は 6265

IMONE，START FPD

1OD an t／O PrFSET
／NOW FIX IIF APTI OR
／SET UP COMMAND RFG ／START．FPD：PRP－1P TS L חCKER חUT

JTHTS IS TF THERF＇S A PDORLFM

1－＞MO
／NORMAL RFTIIRN
／TFST PROGRAM FOR FPP ALGOPITHM PAL1？－V5 8／3／7日 PAGF 1－2

14540		＊ 15 9an	
94590	mona	APTI．OC，	a
CA501	sヵua		5aのa
のu5a？	9519		FPINOX
04503	ucaa		0
04504	aのa介		a
94505	mana		a
m450t	aana		\square
94507	勿可为		0
04510	uana	FDTNMY，	0
＠4E11	ひ＂のa		a
0451？	agar		a
0.4513	aのan		a
04514	ハのワの		0
04515	MaOx		a
94516	のana		\square
－4517	जnलa		a
	H552		FPCOM 6 655
	6555		FPST $=+5$ S 5
	6557		FPIST＝6557
			S

Flap V 5 a aug 3,70 Page 1－1

050475030 asasa 2140 050515054 a5a5？1030 050535100
，IXN LOPSFT，A＊
IA MFACAI．／HFRE ONI．Y IF \＃SUMS＝1！！！

```
INOW NO A IOOP TO NO THE RFMAININF (IF ANY) SUMMATTONS
/OF THF DATA RUFFER
/
LOPSFT, JSA COMNNX
SUMLMP, FLMA DATPUF,3+ /NOW LOOD FOR REMATNTAG TRYALS TO
    ALN 1 /RE SUMMED: IJSF FANDM STATT FLCA!
    ISA KOREKT /1'S=>POS COMPLEMFNT CONV'.
    FAODM SUMGUIF,?+ /SIJM VALUF INTO SUMM RIJFFFR
    FLDA DATRUF+1,3 /GFT OFFSFT PATR
    ALN 1
    ISA KORFKT
    FADOM SUMBUF,Z+
    JXN SUMLOP,O+
    JYN LOPSET,4*
```

 asico 1120
 051015 20?
 a5102 a10a
 051037001
 05104 ana5
 051050400
 0510 F 536
 05107 acan
 051100521
 05111 0000
 051120005
 05113 anca
 05114 640त
 05115 5? ? 4
 051160400
 0.5117 5236
 『EYZ? anab
 a5y2! a521
 a51? ? बaのa
 05123 aの日5
 asi ? 4 ano.a
 05125 54のด
 051265224
 05127 04aの.
 MFNCAI，JSA COMNOX
$\operatorname{Lnx}-777, a$
STARTF $/->F L$ ．PT．MODE

STARTD／RAK TחFIXED PT
FLDA SUMBUF，？＋
STARTF／FI．PT．MADF
FNORM／MAKF IT NORMAL！

FLMA FXPOLY／GET EXPNNFNT RACK

FADDM MEANSM／AOW ACCIIMIILATF SUM
FLDA EXPOLY

FLDA EXPOLY／GFT 27 OCTAL IN FXPONENT OPFAP

FSTA MEANSM／WHY NO APNORMALTZE INGTRUETYON？

MEANLP，STARTD ．\because ．PFCALISE PGMS．SEEM TO DO THAT AUTOMATIE． FLMA SIIMRUF，？+ LIOOP TO DO THE PFMATNMER NOW THAT

STARTF／ANY RESTDUE IN MEANSM OVFRWRITTEN
FNORM／ROY，NOFS THIS RIIRN UP TIME！
／Calculate the mean sum valuf

05130533 h
051312100
051325120
0.51330400

051345224
051353400
0513 H 523 05137 0010 05140 agat 0514164 月0 a514？52？？
05143112π
051445202
$05145 \cdot 010 \mathrm{~m}$
a5juk 7 nam
051470521
a515a anan
051513400
051525243
059536531
051542000
051550421
05956 alano
05157 2400
a51ha 5？？
astal 34aa
95162 5243
051636431
05164 4000
051652100
051665147 051670000

052920000
95？の3 anaa
25204 0190
052057400
052069101
05207 0014
05？10 0102
の5319 7777
Flap V 50 auf，3， 70 Page $1=2$

JXN MEANLP，Q＋
FIDA MEANSM
fotvefiana dotvide by 190π
ALN／FIX IT RACK TO DP
STARTD $\quad \therefore$ AND GO BAK TA DP
fsta meanle／save for use in mean surtraction

JSA COMNTX
LnX－10日a，a／COUNT for average
avalinf，flda sumbuf，r＋／GFt a sum
fotvavgnve otivide ay n
fsta avgruf，3＊／Save in average bliffer
flita sumbuf，？／gft that onf again
fsub meanlr．／now subtract mean
fitv avgnvi．\quad oivne by N
fsta coravgis／SAVF in＂eorrecten＂averafe buffer
JXN AVGLMP，Q＋／REPEAT FOR ALL POTNTS
FINISH，FEXIT

KOREKT，a；a
Jlt RiASng
JA KOREKT／＊IS＋
biASNG，fand sprine $/ \#$ IS－1 AnO 1
JA KOREKT

```
AUG 3, 70 PAGE 1=?
```

	JXN MEANLP，${ }^{\text {a }}$	\＃30－PAGE 50
	FIDA MEANSM	／SAVF SUM FOR INSPECTION
	FOTV CFIana	dotvide my iada
	ALN	／fix it rack to dp
	StARTD	！\therefore ASN RO BAK TA DP
	FSTA MEANLE	／save for use in mean subtraction
	jsa comnix	
	Lnx－100a，a	ICOUNT FOR AVERAGE
AVCLIP，	flda sumbuf，？${ }^{\text {a }}$	IGFT A SUM
	FOTV AVGNVL	Inivide my
	FSTA AVGRUF，3＊	／SAVE in average bliffrr
	flota sumbuf，？	／GFt that onf again
	fsub meanle	／now subtract mean
	Fniv avgnvi．	／Divne by N
	FSTA CORAVG， 3	／SAVF in＂eorrecpen＂average buffer
	JXN AVGLMP， O $^{\text {＋}}$	／REPEAT FOR ALL POTNTS
FINISH，	FEXIT	

KOREKT, ala
JLT RIASNG
JA KOREKT /* IS +
K KOREKT
COMNDX, asa
LDX $=400$, 0 THIS is mostmiJSe Vallie found
LOX 14.1 /ALIGNMENT CONSTANT
LOX $=1, ?$

```
FLAD V &F AUP S.70 PAGE 1m3
```



```
"4Pa% 7%7%
25214 6105
4015 7765
-5216 Fig7
```



```
52?1 529?
```


DATBUF $=0$
SUMRI:F=10日の日
$A \vee F B!F=120 \pi a$
CORAVG=14のaの
NTDIAI. $=42 \pi 1$
FPYNOX:4510
FLAPV 5P AUP 3. 7R PAGE 1-4
NO ERPRRS
27 SYMPOLS, NO ITNKS

AldeauF	12909	AVGLOP	85147	AVGNVL	05243	AIASNG	05176
CFICDO	－5233	COMNDX	05202	CONTNU	9501？	coravg	14090
Ciban	05331	Catruf	00000	EXPOLY	05236	FINISH	Q5167
HTESUM	入5M30	FPINTX	04510	INPIITN	95245	KOREKT	05170
LOPSEY	05 m 54	MEANLC	05222	MFANLP	9512．a	MEANSM	95224

${ }^{1} \mathrm{C}$

-R PAL 12
PAL12-VD6

* TESTLN, TESTLN<TESTLN. $12 \quad / .12$ extention eases editing via scroll
- R FLAP
* TESTFP, TESTFP<TESTFP. 12
- LO TESTLN, TESTFP=4017
- SAU SYS TESTLN
$1 \therefore$ HLTS when loaded by OS/8 or after 1/0 Preset, START 20 on PDP-12 (the only reison things start © 4020 is restart convenience on PDP-12)
-SUB GLOPTER/T
\$ JOB ERASE AFTER $8 / 3$
- R FLAP
* FPAVRG, FPAURG<FPAURG. 12
- R FLAP
*, TESTFP<LTA $:$ TESTFP. 12
-R PAL 12
PALT2-V06
* ONLDGR, ONLDGR<WORKD/S

ASSEMBLY OF ON-LINE DIGITIZING PROGRAM>
ASSEMBLY OF ON-LINE DIGITIZING PROGRAM>
-R PALI2
PAL12-V66
*, TESTLN<LTA日: TESTLN. 12

- R CREF
* ONLDGR
- R PIP
*LPT: <FPAURG•LS/A
\$MSG TURN PAPER AROUND!
-R PIP
*LPT: <TESTLN.LS/A
*LPT: <TESTFP.LS/A
* FPAURG•LS, ONLDGR.LS, TESTLN.LS/D<
* TESTFP.LS/D<
- R DIRECT
*TTY: <SYS:/E/B/=2 * ILLEGAL SYNTAX S END
* END BATCH
\longleftarrow DOSEN'T WORK
- R DIRECT
*TTY: <SYS:/E/B=2
03-AUG-78
ABSLDR.SU.TC

THE ROCKEFELLER UNIVERSITY

1230 YORK AVENUE•NEW YORK, NEW YORK 10021

Mr. Lars Palmer -
DECUS/Europe 12 Bit SIG Newsletter Liaison
Hassle
Pack
S-431 20 MOLNDAL I
SWEDEN

Dear Mr. Palmer:
I am writing to you about DECUS program number 8-690. As you may recall, it is a random number generator which can be called from $0 S / 8$ FORTRAN IV. I cannot get it to work correctly in a standard corrigguration, and I thought that you might have some idea why it is giving trouble.

Briefly, the subroutine produces non-random numbers when used with an Extended Arithmetic Element (KE8-E), but seems to produce a nice flat random distribution when the EAE is disabled. If you have come across this problem, or can think of a reason for it, I would very much appreciate hearing from you. If not, perhaps you would be good enough to forward this letter along to the l2-BIT SIG Newsletter in order to inform others of the apparent problem.

To be more specific, I have a PDP--8/F with 24 k words of core memory and an EAE. Other FORTRAN IV programs seem to run perfectly well whether or not the EAE is disabled as described in the FORTRAN IV software support manual. But when a test program for subroutine RANDU runs with EAE, it produces no numbers in the range. 02 to 0.33 , about twice as many numbers as it should in the range between 0.34 and 0.65 , and approximately the correct frequency of numbers in the range 0.66 to 1.00 . Attached is my little test program of RANDU and some output from it with the EAE in and out of the system.

The version of FRTS which I am using is version 4C, with a patch included to run the Phelps USR routines.

I should mention that the EAE diagnostics seem to run perfectly well on my machine.

I hope that someone with more knowledge than I have concerning the Floating Point Processor conventions and the FORTRAN IV Run Time System can find the solution to this problem and allow me to run your extremely valuable random number generator.
$A B$ Hässle Subsidiary of Astra Pharmaceuticals $A B$

Your date

Our reference

Your reference

Ronald Larkin
Rockefeller university

1230 York ave

New York
NY 10021
USA

Dear sir
I have looked a bent at your problem. I ran it in
the FPP configuration and got exactly the same result as you did in non EAE systems.I do not have an EAE so I cannot test that but I think that what we have here is one further case of the now too frequent errors in FRTS where the FPP emulator does not behave the same way as the hardware.

I do not have the time to try to trace the error by reading the FRTS list but I suspect there is something wrong in the usage of the EAE (in association with the TRAP ?).

My attitude is that the hardware (FPP12 or 8 A) should be the reference and any divergences in FRTS suftware rutines (I know of at least two one which mede the early veriosns of R. P helps USR routine misbehave in an fpp configutations)be regarded as errors.
$I^{\prime \prime m}$ sorry I cannot help you more then this,I shall forward the material tc Bob Hassinger and hope that someone can help you.

Postal address	Office and laboratories	Telephone	Cable address	Telex
AB Hässle (in English Hassle)	Kärragatan 5	(031) 870120	Abhaessle Gothenburg	208 10 Haessle S
Hack	MOLNDAL			
S-431 20 MOLNDAL 1	Sweden			
Sweden				

Dan smith
Eye research centre
20 stanifor street
Boston mass 02114
USA
re EXPIP
Expip should handle all dates correctly but due to a programming
bug it doe not.Patch the following and it will:
locations 47546170 and 126 are cma(7040) should be cia(7041)
location 63 7450/7540
location 72 7550/7510
I will look at the C problem. It is really 2 parts to it : one that Expip resets the date to get the correct date on the new file and that I think is solvable, the other is where EXPIP does a FOTP like transfer and writes a dictionary before transfer (/W option). this is more difficult so solve and I probably will not have the time to do so

I use EXPIP mainly with the /L option to find the most recent file whe using slo media (dectape) as FOTP transfers are much faster (even htan the /W form) Transferring between disks there is no need for the faster form and the problem does not occur on ordinary transfers.

I find that the options that I use EXPIP for now (that FOTP has come) are:
1)/L comparisitions to see were the most resent file is
2) transfer and delete after transfer
3) merge files (is much faster to construct a 20 rutine Macrel library than using PIP 3 times)
4) recovering lost blocks or rather files as a compliment to the STECO and pip /I methods.

The reapl diadvantage with EXPIP as I see it compared to FOTP is the weaker decoding of wildcards and That I have no time to fix.

I hope this helps you a bit
cc to bob hassinger /lars Palmer/

Postal address	Orlice and laboratories	Telephone	Cable address	Telex
AB Hässle (in English Haessle)	Kärragatan 5	MOLNDAL	MO31) 870120	Abhaessle Gothenburg
Fack	Sweden			
S-431 20 MOLNDAL 1				
Swaessle S				

151934
SOFTWM ? STRVICESNO.:

\qquad or \qquad 1

The putik te FDIT VI2A to core list Tabs broosit re ligith a problein in
 konomends, and is visitialing TMp Puphitlo. Nene of thes maters liatil

 to the conscte nistead oif ti live intior fici!

$$
\begin{array}{ll}
\text { e.g. } & * R= \\
& * Q
\end{array}
$$

This could be fixal big changivg JMP PumeHt3 ro JIf PLNiH

$$
\begin{aligned}
& 1300 / 5304 \quad 5301 \\
& (N: r y)
\end{aligned}
$$

2 If the lasifcommand before Q was Y, then when you tipe Q you just kill the buffer wistenid of onfigutting it. Thus you lose the last peoge! This is nit so easy to fix.

I think the V12B prich Maxis a re-thuik! One way is:-

$$
2014 / 1301 \quad 2774
$$

2.774/xaxk 3112;5776;1301

The simple sinrie change is to relevile the $\triangle C A$ TABIN.D from COM1, -2 ro PUNC, -1

SOFTWARE

\qquad of \qquad

- R pIP
* cripmot file $<$ ungut fili/y
alwighs gives "BAD SySTEM HEAB" if mipirffli is in a devici mitcentinibiay a sygiten.
 uisterd of black a co the face
 cluking.

The seurn change is derailit an C'ne enciosed sitat.

$$
\begin{aligned}
& \text { A pi.3sinte firich is: } \\
& 160+7 / 3243 \\
& 16
\end{aligned}
$$

θ
SOURCE CHANGES TO PIP VIIA TO CURE $\# F I L E \subset I L E / Y$ BUG

AT K200, + 2 CHANGE JMP YTSOUT TO JMP YNOOUT
AT YOUSYS, -4 RELOCATE TAD I (7601; SZA CLA; JMP I (IMGTST
TO JUST BEFQRE YINREC, to (TAD YINREC)
AT ERR11, +2 LINES INSERT IMGTST, TAD I ($7620 ; S Z A$ CLAB $J M P$ IMGTSC?
AT IMGTST, -2 CHANGE TAD K7 TO TAD $(7$
AT IMGTST, CHANGE IMGTST, TO IMGTSE,
AT IMGTST, +3 DELETE 7 LINES (CIF O TO JMS I (TSTHED)

Tho modifications to the $/ Y$ code have jntroduced a serious buc.
The problem is that the $/ Y$ code now reads 14 blocks at a time instead of 13 ,
into 00000-06777.
This overlays the input device handler which loads into 06600-07177.
Thus /Y transfers with non-resident input handlers blow up !!
$06600-07577$ is all needed for device handlers in case of *dev1<dev2/Y
where dev1 and dev2 have dificcent non-resident 2-page handers.
You must go back to 13 blocks per transfer as before, and find some other way to fix the problem of system-head files which are right at the end of a device.

Since there is another / Y bug, and the source fix for this actually frecs some space, there may be room to combinc the fixes in the area currently available.

I think a patch may be slightly more difricult !

$$
\text { \#30 - PAGE } 59 \begin{aligned}
& \text { YXXXGEXXXXX } \\
& 215-985-7733
\end{aligned}
$$

Bickley Labarataries

computer applicationg

47 Ivy Mills Road RD2 Glen Mills, PA 19342

Robert Hassinger, Coordinator 12 Bit SIG
Iiberty Hitual Research Center
71 Frankland Road
Hopkinton, MA 01748
Dear Bob:
Here are a couple of patches for BASIC and one for CCL which I've sabwitted to DEC. Knowing the incredible delays that occur from the time an SPR
is reperted to pablioation, I'm forwarding these to you so 12 Bit SIG
members will have advantage of them mach sooner.
By the way, Bob, you are doing a great job! Thanks ever so mach.

Sincerely,

Lyle P. Bickley

57950
Page 1 of 3

vERSION (OR DOCUMENT)

SYSTEM PROGRAM AND VERT: CCL.PA
NAME: Lyle P. Buckley FIRM: Buckley Labs

| ${ }^{\text {MO }}$
O DEC USE ONLY

OAEAUO-78
Blue Bell, PA

REPORT TYPE	PRIORITY
■ LOGIC/CODING ERROR	\square LOW
\square DOCUMENTATION ERROR	\square StANDARD
\square SUGGESTION	HiGH
\square	

\square for your information
can the problem be reproduced at will?

PROBLEM:
When an afile.CM is used with the semi-colon feature of CCL, unpredictable results and system crashes can occur.

DIAGNOSIS:
When @file is used and the command string is relatively long, the buffer used to contain the concatination of the exile with other command data can overlap the GITNE routine in the keyboard monitor. This created no problems with earlier releases of CCL because the GLDNE routine was never again refenenced by CCL. With the advent of the semicolon option, however, this was changed. The semicolon routine stores a 7600 in GILNE and in the event of a trailing in in a command file, will actually reference and use the GLINE routine. Both of these eventscause errors to occur: in the first, because the date in the buffer is clobbered with a 7600; in the second, because GLINE may have become destroyed.

CURE:
These changes insure that GLINE is not modified by a 7600 store if GLINE has been overwritten by the e buffer. In addition, if GLINS has been overwritten and a trailing', occurs in an exile, the error message "?I/O OR ';' ERRCR" is displayed on the console and a return is made to the keyboard monitor.

＊57950
 SKCCOM UAA

＊ $\boldsymbol{*}^{2} * * * * *$

1） 101.	SEMSGI\％	TEXT	／？ENTEF EFFIOF：／
a）	SEMSES，	TEXT	
I．）	SEMSG3．	$T E \times T$	／？DEUICE FULL／
＊＊＊＊			
2） 101	SEMSG1\％	TEXT	／？ENTEFE EFFOR／
$2)$	SEMSG2．	TEXT	\TI／O EFROFS
2	SEMSO3y	TEXV	／？LIEVICE FULL／

必米 $\boldsymbol{*}^{*} * * *$

＊＊＊＊ ＊$^{*} * *$

1）110		TAD I（GLTNE＋1	
a）		TAII（ -1163	／MAKE SURE GLINE NOT CLOEEEFEL
I5		SNA Cla	／EY＇ror COLIE
A．）		JMF－+4	／ALI．OK゙
1．）		TALI EATBLK゙や	／EFFOKF JUMF（JF E ANI TFATLING ${ }^{\text {a }}$ ）
［1）		MCA NEWLN－1	／INSTEADI OF CALL！
．L）		JMF＋＋3	
．L）		TAII（7600	
il）			TFOFCE＊＂C－IN GLINE TO GOTO 7600^{-}
a）		JMS EATLST	
a）		BATHEET	
1）		JMF NEWLN	TINIT ${ }^{-1}$
l．）	52	TALI I XF＇	
＊＊＊＊			
2） 110		TAN－${ }^{-1}$	
		ICA XFF	
2）		TAI（7600	
2）		DCA I（CTFLLCK	フFORCE C TOMLINE TOCGOTO7600
2）		JMG EATLST	
2）		BATHED	
2）	S2．	TALI X \times F	

1） 111 ／＊＊＊＊FREUTOUS LTNE MAY BE JMF SEMEF？TO FREVENT USE OF a）／＇GLINE＇AFTER ITT HAS EEEN CLOBBEFETI BY AN QFTLENAME

l）NEWLN，TAI（EEGLN．．．．．
： 1$)$
2) $111 / * * * *$ WHAT IF WE'RE RUNNING UNIEE BATCH **** *57950 CCL.PA V3D
TAD (BEGLN-1DCA XF

\#30 - PAGE 62
1)111 JMS EATLST1)BACFLLF
1)JMF I KRLF****2)111TAII (215
2) JMS EATFUT2)TAII (212JMS EATPUT
2)2)
JMF I KRLF

SOFTWARE PERFORMANCE REPORT

\qquad - \qquad

PROBIEM:
Invalid "FE" errors at run time when OPENING a file after a previous CLOSE. Under some conditions the system crashes and the system mast be rebooted.

DIAGNOSIS:
BASIC.FF de-sillocates driver space but does not communicate this information to 0 / 8^{18} USR by modifying the device residency table or performing a RESET. In other words, BASIC thinks it can load another derice handler in previosiy used (biat now assumed free) handler space. Unfortunately, USR does not understand what has happened (it only can assume the device residency table is correct)! Therefora if a previosly opened xasu and closed file is referenced afer BASIC has loeded another handler in its slot, vary serious problems can occur (destroying the system device's data, etc.).

In addition, due to another bug in the same routine in OPEN, the OPEN routine sametimes thinks there is inadequate driver space available when such space should be available after a CLOSE (and the above bug is fixed!).

CURE:
This patch corrects both of the above problems. BASIC. FF does not attempt to free driver space until it is possible for it to issue a RESET to USR. In this way, both USR and BASIC agree as to driver residency. A sample program is included to demonstrate the fix. For those interested, the meumonics for the patch are shown below:

*13455	(contimued)					
TAD Mad	CIF 10 /ALIL FIIES CLOSED					
DCA TEMP3						
tad tadins			13	/PERFORM RESET		
DCA CHECA	CLA					
DCA I WCRD4	/RESET FILE OPEN		dCA DMAP	/FREE	ALI DEVICE	HANDIER
TAD W4PTR	CRETN,		JMS I P1 SWAP			SPACE
DCA TEMP1			JMP I ILOOP			
TAD I TEMP1	TADINS, TAD W4PTR					
$\begin{aligned} & \text { SZA CLA } \\ & \text { JMP CRETN } \end{aligned}$	/all files not closed, can't reset					
ISZ CIECK						
IS2 TEMP3						
JMP CAECK	software com	nications	use only			

DATE RECIIVIO	BACK FROM MAINTAINER	LOGGED ON
TOMAINTAINIR	DATE CLOSEO	LOGGEO OFF

\#57949 BASIC.FF V3D PAGE 2 of 4
-GE SYS BASIC.FF
.01
. $\quad-\quad 13455 / 1466133593042 \hat{y} 1301 \hat{y} 3262 \hat{y} 3472 \hat{y} 1331 \hat{y} 3040 \hat{y} 1440$
$13465 / 104276409527792629204295262962129452290013$
$13475 / 76507200 ; 303594573: 5570 ; 1331$
$13531 / 6714 \quad 6720967355675296767$
${ }^{\circ} \mathrm{C}$
. SA gYg basic.fF

*57949 BASIC.FF V3D PAGE 3 of 4

THIS TS A TEST FROGRAM TO TEST ANX ILUSTRATE THE FATCH DESCRJREG AROUE. THE FATCHET RASIC is saver UndeE The Name .nasisic.fF'.

FIEAITY
RUNNH
FROMTHTAO:THUMF.EU
TOPLFT:
--.-FFOMTITAO:TIUMF.EU
TOPTTY:
FE AT LTNE OOO4O
FEALIY

NOTE - THE ABOUE $F E E$ ERROF I'S TNCORWECT! THERE SHOUI BE FLENTY OF RFTURE SFACE AVAILARLE AFTER EOTH CLOSES.
-COFY BASIC.FFUNEASIC.FF
FJLES COFIEN:
NBASIC.EF \qquad

PRINTEDINU.
\#57949 BASIC.FF V3D PANE 4 of 4

- EASIC

NEW OF OLTI OWOL IOTEST
REALIY
RUN
IOTEST EA $5 A \quad$ 24-JUL -78

FROM?DTAO: TIUMF•EU
TO?LET:
FFOMPITAD: TLUMF + EU
TOPTTY:
1.

MUIF: = 'CODE, חUTMF'
TEXT:='CODE CC
FEATY

PROCESS CONTROL SYSTEMS, INC.

18130 S. Thornapple Lane
New Berlin, Wisconsin 53151
(414) 782.3945

hardware consultation
August 22, 1978
SOFTWARE DESIGN
PROCESS CONTROL SYSTEM DESIGN
Mr. Robert Hassinger
Liberty Mutual Research Center
71 Frankland Road
Hopkinton, MA 01748

Dear Bob:

These are date patches to $0 S 8 B 0 L$, The BOOL- 143 Control Equation Translator for the 0S/8 Industiral 14 software packago. The fear on the page heading will be correct instead of in the range 19701977.

```
For 1978-1979:
    .GET SYS OS8BOL
    . ODT
    2066/1362 1357
    2157/XXXXX 0030
    C
    .SAVE SYS OS8BOL
```

```
For 1980-1985:
    .GET SYS OS8BOL
```

 . ODT
 \(2157 / \mathrm{XxXX} \quad 0016\)
 2164/0027 0030
 C
 .SAVE SYS OS8BOL
 These are date patches to OS8PAL, the PAL-143 Symbolic Program Assembler for the 0 $0 / 8$ Induatrial if software package. The yoar on the page heading will be correct inatead of in the range 19701977.

For 1978-1979:
-GET SYS OS8PAL
. ODI
$5446 / 1371 \quad 1367$
5567/XXXXX 0030
.SAVE SYS OS8PAL

For 1980-1985:
. GET SYS OSBPAL
. ODT
$5567 / x \times x x \quad 0016$
5573/0027 0030
C
.SAVE SYS OS8PAL
Yours truly
Michael
President

MEM: blw

DECUS HAS MOVED!!

As of August 14, 1978, the DECUS International Headquarters and DECUSU.S. Chapter offices will be located at Digital Equipment Corporation inMarlboro. Our new address is:
DECUS
MR2-3/E55
One Iron Way
Marlboro, Massachusetts 01752
Marlboro is not on Centrex, a direct access telephone system, so all callswill come thru the switchboard at (617) 481-9511.
DECUS extensions are as follows:
Central Number 4100
Executive Director 4120
Admin/Finance 4122
Order Processing 4135
Accounting 4136
Membership 4166
Publications 4131
Library 4177
U.S. Chapter 4141

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing receipt of DECUS literature. Allow up to six weeks for change to take effect.
() Change of Address
() Delegate Replacement
DECUS Membership No.: \qquad
Name: \qquad
Company: \qquad
Address: \qquad

State/Country: \qquad
Zip/Postal Code: \qquad

Mail to: DECUS - ATT: Membership One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

