
·!:!

I

CECUSNO. 11-307·

TITLE STAGE 2 For The PDP-ll Operatinq Under RT-11

AUTHOR W. M. Waite University of Colorado

COMPANY Australian National University

CATE 21 September 1976

SOURCE LANGUAGE MACRO 11

ATTENTION

. This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by ·tfiese parties in connection therewith ..

GENERAL INFORMATION

Object Computer(s) PDP-11 Source Computer (if different)
--- ---------

Fi le !\lame Venion No.
---------------------Title STAGE 2 For The PDP-11 Operatinq Under R'r-11

---Author W.M. Waite university of Colorado

Submitter (if other than author) DOS-11 Implementation by Peter H. Heinrich/ Modified for RT-11
by b.M. Nessett

Affiliation --------------------------------~a~1~1s~t~r~A~l~i~a~ni....i.:1N~a~t-i~o~naa.1.u~n~i•v~e~rws~i~ty..,. __________________ _
Address PO Box 4, Canberra. Act. Australia

Country
-- -------------------------Monitor/Operating System R':]:'-ll/V2B DEC No.

--------------------------------------- ------------------------
Core Storage Required Storti ng Address

------~--------------------------------- -------------------
Peri p her a Is Required

--0th er Software Required DEC or DECUS No.
-- ----------------Source Language _______ ~.......,CRO _.l_l.._ ________ ~ategory Programing System

Restrictions, Deficiencies, Problems S'l'AGE2(RT11 will not run in less than 12K and is not really
useful unless there is 16IC (assumihq the S/J Monitor) The STAGE2 Camnand "Chanqe I/O
channels and copy text" is modified.
Date of Planned or Possible Future Revisions

TAPES AVAILABLE

Paper Tapes Obiect Bi nary 0 Obiect ASCII lXl Source [!] Other

DECtape 0 LINCtape 0 Format Magtape: 7 Track D 9 Track D BPI ____ _

ABSTRACT

; •Jh'li 1:'3l·N874

Ob feet Fi 1es 0 Source Files D Documentation Files D Other

'!'his implementation of STAGE2 is a modification of the oos-11
version (DECOS No. ·11-1sa) by ?eter H. Heinrich so that it ~ill
run tinder rt-11

i

. TITLE:

AUTHOR:

DATE:.

SOURCE:

-- 11rOECUS DOCUMENTATION**
__ ..,

STAGE 2 FOR PDP-11 (RT-11)

WILLIAM M. WAITE, UNIVERSITY OF COLORADO.

DOS-11 IMPLEMENTATION: PETER H. HEINRICH (INST.

F. BIOKYBERNETIK ANO BIOMED. TECHNIK UNIVERSITAET

KARLSRUHE, W.-GERMANY) MODIFICATIONS FOR RT-11:

O.M. NESSETT (AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, A.C.T., AUSTRALIA)

SEPT. - 1976

MACR0-11

1. INTRODUCTION

This document describes an implementation of Stage 2

(William K. Waite, "Im~lementing Software for Non-Nu~eric

Applications", Prentice-Hall N.J., 1973) for POP-11 Computer

Systems operating under RT-11. Stage 2 is a general purpose

macro processor designed to port software written for abstract

machines. The macro processor is itself protab1e being written

fo~ an abstract machine called "FLUB"

2. PROGRAMS

The deetape contains the following modules:

l

STG2.FLB FLUB-CODE OF STAGE 2 (W.M. WAITE)
FLUB.ST2 rLCS MACRO DEFINITIONS { p. H. HEINRICH}
OPT.ST2 OPTIMIZATION MACRO DEFINITIONS (p . H . HEINRICH)
ST2CMD.MAC COMMAND INPUT MODULE (D.M. NESSETT)
ST2RDN.MAC INPUT SUBROUTINES MODULE (D.M. NESSETT)
ST2WTN.MAC OUTPUT SUBROUTINES MODULE (D. M. NESSETT)
ST2MSC.MAC MISC. SUBROUTINES MODULE (D. M. NESSETT)
ST2DAT.MAC DATA SECTION MODULE .(D. M. NESSETT)
ST2DFN.MAC DEFINITIONS MODULE (D.M. NESSETT)
BOOT_. MAC STAGE 2 IN EXPANDED FORM
BOOT.OBJ STAGE 2 OBJECT MODULE
ST2BLD.BAT BATCH STREAM FOR BUILDING STAGE 2 (D.M. NESSETT)

3. IMPLEMENTATIONS

This implementation of Stage 2 was achieved by modifying

Peter Heinrich's DOS-11 implementation so that it could

operate under RT-11. Heinrich's abstract machine implementation

did not require any modification to run under RT-11, but the

supporting subroutines (to handle I/0 and command dialog)

were completely re-written. This involved the development

of record I/0 subroutines, since all I/O in RT-11 is physical

I/O. The detailed operation of these routines is discussed

below.

4. PREREQUISITES

RT-11/V2. If processor is not a· P~P-11/40 or 45, EAE

must exist.

5. RESTRICTIONS

Since all Input channels are treated as if they were

concentrated into a single file, the Stage 2 command "change

I I 0 ch a·n n e 1 s and Copy Text" cannot be used to ch an g e the i n put

channel number.

6. INSTALLATION

The installation of Stage 2/RT-11 is accomplished by

running the batch stream "ST2BLD.BAT". This batch stream

must first be transferred to the system device by mounting

·the distribution dectape onto DT0 and executing:

• R PlP

~ SY:ST2BLO.BAT = OT:ST2BLO.BAT

•<CNTL C>

The batch monitor must then be linked into RT-11 (see RT-11

System Reference Manual (DEC-11-0RUGA-C-D) Chapter 12) and

the batch stream executed by typing:

. R BATCH

* ST2BLD

If the RT-11 installation cannot run batch for some reason

(e.g. the PDP-11 has less than 12K of core). The file ST2BLD.BAT

shou1d be listed and the commands which are contained therein

followed _manually.

7. STAGE 2 V03-3/RT-ll

Stage 2 uses all core available. The 1/0 is double

buffered (at the block level) and the error messages are

those standard for Stage 2. Input ~~ Stage 2/RT-11 may

consist of from one to three output files and from one to

six input files. Input files are treated as though they

have been concatenated into one file in the same order as

they appear·on the command line.

on Stage 2 Channels 3, 4, and 5.

3

Output files are available

For example:

A. The following defines one o·utput file (for Stage 2

Channel 3) and three input files (which will be

read by Stage 2 as if they had been concatenated

together).

~.OUTPUT.MAC= MACRO.OFN, TEXT1.ST2, TEXT2.ST2

B. The followin~ defines two output files (on Stage 2

Channels 3 and 5).

! OUTPUT.MAC,, AUX.LST = MACRO.DFN, TEXT1.ST2, TEXT2.ST2

C. The following uses the default extension capability

of Stage 2 (output file 1 =MAC, output.file 2 =LOG,

output file 3 = LST, all input files= ST2).

~OUTPUT, LISTNG, ERRORS= MACRO, TEXTl, TEXT2

This is equivalent to:

*OUTPUT. MAC, LISTNG.LOG, ERRORS.LST = MACRO.ST2,
- TEXT1.ST2, TEXT2.ST2

8. IMPLEMENTATION GUIDE FOR STAGE 2/RT-11

A. INTRODUCTION

This document contains a written des~rtption.

of the RT-11 implementation of Stage 2 (flowcharts

are to be found in Section 9). Since the RT-11

implementation is a modification of Peter H. Heinrich's

DOS-11 implementation (OECUS NO. 11-158), some

4

of the information contai~ed herein describes Heinrich's

design of the FLUB abstract machine for the PDP-11. In

order that credit is given where credit is due, the FLUB

implementation will be briefly discussed in Section B and

the RT-11 dependant sections of Stage 2/RT-11 will be

covered in Section C.

B. POP-11 FLUB IMPLEMENTATION

The material in this section briefly describes ·the

FLUB.implementation designed by Peter H. Heinrich for PDP-11

Systems. It is assumed that the reader is thoroughly familiar

with the architecture of FLUB and with Stage 2's implementation

on the FLUB abstract machine. Those unfamiliar with these

should read the relevant sections of William M. Waite's

book {"Implementing Softw~re for Non-Numeric Applications",

Prentice~Hall, N.J., 1973.} before proceeding.

The major design decision that must be made when

implementing FLUB is how to represent FLUB words. Each FLUB

word consists of three fields:

1) The VAL field;

and
2) The PTR field;

3) The FLG field.

Heinrich chose to represent these fields as bytes for the

FLAG and VAL fields and as a 16-bit word for the PTR field.

Since operations upon FLUB words cannot be executed directly

but must first be loaded into a FLUB "register", the

representation of these registers also needs to be described.

Each register field corresponds to one PDP-11 16-bit word.

Each register field is not contjguous with the other two

5

fields of the regist~r, but is contained in an array of

fields of its own type .. Thus FLG.7 (the FLG field for

register 7) is contiguous with FLG.8 not with VAL.7 (this

is in keeping with Waite's suggested impl.ementation technique

for FLUB's registers). The absolute physical address where

FLUB memory begins is kept in R3 (which is called "BASE"

in the assembly code). R4 and RS are used to hold respectively

the line buffer read pointer (LBR) and the line buffer write

pointer (LBW).

C. RT-11 DEPENDENT SECTIONS OF STAGE 2/RT-11

Anyone examining the macro definitions for State 2/RT-11

wi 11 notice that there are subroutine calls imbedded into

five of the macro bodies. These five subroutines and their

uses are:

1) IWR'CH - Write a character to the line buffer;

2) CLOSE - Close a Stage 2 input channel;

3) READ - Read the next line buffer from th• input stream;

4) WRITE - Write the current line buffer to an output

and channel;

5) ERRMSG - Output a.n e.rror message.

The first two of these are fairly simple and are functionally

identical to the routines provided in Heinrich's DOS-11

implementation. lWRCH simply performs a "MOVB" to insert

the given character into the line buffer. CLOSE does

nothing useful, since in the RT-11 version of Stage 2 (as

in ~he DOS-11 version) the capability of rewinding input

channels is not provided (CLOSE appears only in the macro

definition of the FLUB command "REWIND"). The routine

ERRMSG is also fairly simple and its operation should be

6.

obvious from its listing. The two remaini.ng subroutines -

READ and WRITE - are not as simple, however, and will be

discussed in detail.

and

The read software module is. composed of four sections:

1) The main subroutine (READ);

.2) The next line subro~tine (NXTLNE);

3) The next block subroutine (NXTBLK);

4) The next file subroutine (NXTFIL).

The main routine - READ - checks the input channel number.

If this is zero, an automat.i c EOF is returned. If the channel

number is equal to one, NXTLNE is called to get the next

line from the current input block~ If the channel number is

neither zero nor one, an error code of two is returned to
·.

the caller.

NXTLNE tries to obtain a new line buffer from the

current ihput block. If this is possible, NXTLNE returns

with the C bit clear to indicate success. If this is not

possible, NXTBLK is called to return the next block and

initiate the transfer of the following block from the input

device. NXTLNE determines it has a complete line when it

transfers a carriage return (line feeds are ignored - not

transferred to line buffer - by NXTLNE). The operation of

NXTLNE is dependent on a number of pointers into various

character arrays:

(i) _ILNEPT - This pointer keeps track of the

position in the line buffer where the next

character from the current block is to be

inserted.

7

(ii) IBLKPT - This ·pointer is used to keep track

of where in the current block the next line

begins.

(i; i) ICBKEN - This location contains the address

of the end of the current block.

(iv) IENDBF - The address of the end of the line

buffer.

As was said previously, NXTBLK returns the next block

in the input stream. Ideally this block has already been

transferred from the current input device. If that transfer

has not yet finished, NXTBLK waits for its completion.

When the block becomes available, two pointers (FILBUF and

ICRBUF) are exchanged to indicate which buffer is being used

and which is being filled. IBLKPT is then loaded to contain

the first character address of the current block and ICBKEN

is updated. After these operations have been accomplished,

NXTBLK attempts to read the next block from the input file.

If there are no more blocks in this file, ·NXTFIL is called

in an attempt to locate another input channel. Otherwise,

NXTBLK returns to its caller with the C bit set to indicate

success.

The first time it is called, NXTFIL sequences through

the input channel numbers 3-8 in an attempt to find a file

which was opened by command dialog (see below). If this

search is successful, NXTFIL updates the variable "INPCHN"

so that it contains the current input channel number. Each

subsequent call to NXTFIL begins searching from this number

8

for another defined input channel. If this search is

successful, "INPCHN" is updated and the routine returns

to its caller. If the search is unsuccessful,· bit 0 in
11 FLBFLG 11 is set and NXTFIL returns control to its caller.

The write module is composed of three routines:

1) The main subroutine (WRITE);

2) The next line subroutine (~XTLNE);
and

3) The next block subroutine (NXTBLK).

"WRITE" first tests the Stage 2 channel number to see if

it is zero. If so, the routine returns immediately to

its caller after indicating a successful write. If the

Stage .2. channel number is no.n-zero, it is decremented

by 3 to transform tha Stage 2 chanriel numbers 3, 4, and 5

into their corresponding RT-11 numbers 0, 1, and 2. If

the transformed channel number is equal to neither O, 1,

nor 2, "WRITE" returns to its caller with an error condition

code. If the channel number is in the proper range, the

minus one used by FLUB to indicate end-of-line is replaced

by a carriage return/line feed and the subroutine NXTLNE is·

called.

NXTLNE first transforms the output channel number into

an index by shifting it one left. This index is used when

accessing the ~utput pointers OLNEPT, OBLKPT and OLBKEN.

This is necessary since simultaneous output to different ·

channels is allowed in Stage 2·. NXTLNE begins moving

characters into the output block currently being constructed

for the specified channel. If the line fits into this block,

9

NXTLNE returns indic~ting success. If the line does not

fit into the current block, NXTLNE places as much of the

line as will fit into the current block and then calls

NXTBLK. After NXTBLK returns, OBLKPT points to the ~irst

character position in the next block to be constructed.

NXTLNE places the remainder of the line to be written into

this new block and returns to its caller.

NXTBLK tests to see if the last block write operation

has completed. If it hasn't, NXTBLK waits for this to

happen. It then rotates the two block buffers (by exchanging

the pointers DRNBUF and OCRBUF) and updates pointers

OBLKPT (which keeps track of where the next character is

to be written into the current block} and OCBKEN (which

holds the address of the current block's end). A .WRITE

is then tnitiated on the block passed to NXTBLK by NXTLNE

and after updating the block number for the channel, control

passes back to NXTLNE.

0. INITIATING A STAGE 2 RUN - COMMAND DIALOG

Since Stage 2 runs under RT-11, some means must

exist for executing the routine and for setting up the

files which Stage 2 will manipulate. Initiating St~ge 2

execution is accomplis.hed simply by the RT-11 command:

·R STAGE2

Input and output files are specified by an RT-11 command

string. Interpretation of this string and I/0 setup and

shut-down is the responsibility of the command DIALOG

module.

10

The com~and dialog module is composed of three routines:

1) The command dialog input routine - ST2CMD;

2) The prime input channel subroutine - PRMCHN;

and

3) The drain output channe.l s subroutine - ORNCHN.

ST2CMD begins by reserving all available memory for Stage 2

by ex~cuting a .SETTOP. It saves the stack position, outputs

the Stage-2 title, calls the subroutine INIT to initialize

some pointers, and then calls .CSIGEN.to input and interpret

a command string from the console. After the command string

.has been processed (see description of .CSIGEN in RT-11

System Reference Manual), the stack is restored, FLUB's

pointers are initialized, and the routine PRMCHN is called.

After control returns to ST2CMD, the Stage 2 macro processor

is called to process the files specified in the command

input string. When this is complete, ST2CMD calls DRNCHN

and then loops to accept a new command string.

The routines PRMCHN and DRNCHN are used basically for

I/0 startup and shutdown. PRMCHN calls FSTFIL (which is

an equivalent entry point of NXTFIL) to set up the first

input file, twice calls RDBLK (which is an equivalent

entry point of READ NXTBLK) to set up the first two read·

block buffers, and returns. DRNCKN writes out the last

blocks of the three output channels.

11

9. FLOW CHARTS

A. ERRMSG

ENTRY

B. IWRCH

ENTRY

GET MSG

BUFFER ADDRESS

INSERT A

CR-LF

USE .TTYOUT

TO PRINT

MSG

XFER CHAR
TO LINE
BUFFER

NO

-·

12

PUT ERROR
MSG INTO

BUFFER

GET AN

EVEN ADDRESS

TO REnJRN TO

RETIJRN CODE

= EOF

RETURN

RETURN

NO

• c. (i) READ

ENTRY

NO

REn.JRN CODE
= ERROR

YES

YES

13

REnJRN
CODE.

= EOF

CALL
NXTLNE

RETIJRN

RETURN

YES

NO

RETURN CODE
SET TO INDICATE

ERROR TYPE

YES

(ii)~

ENTRY

CLEAR PARTIAL

LINE FLAG

ERT A. STA.GE 2

SOL

BACKSPACE
OVER SOF'nf ARE

EOF

YES

SET PARTIAL
LINE FLAG

SET POINTER
INTO LINE BUFFER

(ILNEPT)

t«>V£ NEXT
CHARACTER
INTO LINE

SET RO TO LINE
i.-..-.,.u.FFER POINTER &

Rl TO BLOCIC
BUFFER.

UPDATE
LBR AND

IBLIPT

SAVE RO
INTO l~'lEPT

8UFfEll POINTER

s

CALL
r«TBLJC

REnJRN CODE
• ERROR

NO

YES

(iii) NXTBLK (RDBLK)

ENTRY

BUMP
BLOCK

NUMBER

YES

Rl = INPUT
CHANNEL
NUMBER

NO

CALL

NXTFIL

15

RETIJRN

CODE

= EOD

.WAIT
ON

CHANNEL

START XFER
OF NEXT

BLOCK

REruRN CODE
= ERROR

YES.

RETIJRN

EXCHANGE
BLOCK BUFFER

POINTERS

RESET BLKPTR
AND CURRENT

BUFFER END

RETIJRN

NO

(iv) NXTFIL (FSTFIL)

ENTRY
Rl = CURRENT
CHANNEL NO.

RESET
BLOCK

NUMBER

16

INCREMENT Rl

UPDATE
CURRENT
CHANNEL

NO.

YES

INDICATE

EOD

'.,· ..
·,·:•

t ..
.l

o. (i) !!m.

•

..

PUT CHANNEJ.

NO. IN CORRECT

RANGE

-· ··- -·-·-------------

RETURN COD!
• EllDll

R!"nJIM CCDE
• DROil

(ii)~

.ENTRY

SET LINE
BUFFER PTR

(OLNEP'r)

RO • LlNE,_
BUFn1l PTR

ICM! NEXT
CHARACTER TO

BLOCl

SAVE OUTPttr

CHANNEL NO.
MAKE CHANNEL
NO. INTO AN

INDEX

SET PARTIAL
LINE FLAG 16-..-NO=-..i'

REMEMBER

END OF 81.0CX

ADDRESS

SAVE

INE BUFFER
PTR

CALL

NXTBU

YES

R.1 • CURRENT
BLOCl POINTER

FOR THIS OUTPUT
CHANNEL

UPDATE
BLOCl

PTR

CLEAN
UP

RETURN
CODE

• ERROil

(iii) NXTBLK (WRTBLK)

ENTRY .WAIT ON
CHANNEL

UPDATE
OBLXPT

AND BLOCK
END PNTR

TRY TO
.. WRITE

BLOCK

NO

UPDATE
BLK
NO.

YES

19

ROTATE BUFFER

POINTERS

REnJRN CODE

= FAIL

RETURN CODE

= FAIL

RETURN

N
0

• t
i

!. (i) ~

ENTRY

SST UP
FLUB'S
MEMORY

POINTERS

SIT UP
LlME BUPPEI.

POIM't'ERS

(ii} .!!!!.

ENTRY

RfSTORE
STACX

AaL!ASI

CALL
.CSIGEN

CAI.I.
STAGE 2

Olm'tJ1'
TITLE

CALL
INIT

SETUP INITIAL

VALUES FOK

POINTERS AND
INDICES

ALL DEVICE ·~-----t . HAHDLDS

•

l

(iii)~

HO

ENTRY

OOTPUT
ERROR

M.SG

(iv)~

EMTRY

INC
OOTCiN

CALL
FSTFIL

(NXTP'IL)

R2 • 0
OUTQIN • 0 ..._

OOUBI.£
INC
R2

.WAIT
OUTQIN

YES

CALL
RDBLI

(NXTBLX)

CALL
RDBLX

(NXTBLX)

WRTBLJC

(NXTBLX)

YES

10. BATCH STREAM LISTINGS

CJO!:.'VH.Tl 1
!
i!t!!!!!!?rt
t
!ST2BLD.DAT!
! !
!!it??!?:!!!
!

Stl:ESSACE/W.l\IT PJ .. EISZ tiOU!fT DISTRIBUTION DECTAPE ON WIT 0
.R PIP
~sY:~.~/X=DT:STZr.ST2,STG2.FLB,FLUB.ST290?T.ST2/X
::-:~:;y: ::: • :(VX= IY.r: *. BAT /l{ .
,;:SY::;:. ;VX= DT: S"f2DFt{. ?ll\C
Sl{ZSSL\GF/UOW~IT IF YOU ltISB TO -~SS:€HBLE T!!E RT-11 DEP.EifDAlfT
~t'rESSAGVftoWAIT t!ODTJU:S AtiD LlST THEM BEFORE Ll?fKING STACZ2,
SHESSACE/ftOWAIT TYPE:
S~1E:9SA.GYNO~AIT DLDLST .DAT
{.;N:E9:3AGVI1m1AIT
SHESSAGE/riOli'AIT IF YOU WISH TO ASSE.t!BLE TEE RT-11 DEPErfDMIT
C!.iES3AGV?fOWAIT !IODULES U!TBQiJT LISTUICS BEFORE LrnKnm ST.:\CE2
~n~~:SSACV!'fOWAIT TYPE:
OitJF:S:;AGE."rfOWAIT. BLDASM. BAT
GW.SSSAGVrT011AIT
~l'i.ZSSAGVrTmiAlT !F YOU Sir!PLY WISH TO LET:{ TilE ST!\GE2 0:5.JZCT
s:r.sssAc.vn:_r;-rA.IT r·~DDULES w.arcn HAVE lJEZ"tl ?:lf)ViDED
c·.Y:E5SAC·V:t.'!9W!\IT TYPE:
Sl'~SAG'.V1WWAIT

.it DATC!I
~,CTI''

SEOJ'

Sj0JVRT11

.n PIP

!
tf!!!?!!!!Y.Y
f t
!DLDLST. !3AT !
' t !?!?!f!!!t!t
!

*SY:~. :.':/;!=D1': :lt. !•!AC/I{

BI .. DLM<. DJ-Yi'

•. ~SSIGN '"PLEf..SE 'i'Y.PE LISri: DEVICE ?1Am"''CTY'LST
• P.. ~L-\CRO .
~ST2CrID,LST:/C=ST2DF~9ST!?C~
~ST2Mii' ;LST: /C=ST:!DFrf, ST2!'J)i{
;ST2~'TN.LST:/C=ST2DFn,ST2~111
$3T.~~sc.LST:/C=ST!?DF~.ST:?l'!SC
~ST'-DAT9I...;--r:/C=S~DFn,sT:?DAT
*BOOT, LST: /C=ST2D:Frf, BOOT
.n. Llm:(
$STAGE!?. LST: =~CMD, ST2BDl'f 9 ts'r..:Ym .ST2?!SC, ST2DAT, BOOT
• 'FF 9

sca.~m '!'EST.BAT
GEOJ

22

. - . ·:- ..

$JGB/nT11

.R PIP

!
??!!!!!!!!??
t t
!D!..DiiSH. IlAT!

!
!?!it!!?!!!!

:::SY::.-:. :.V1{=DT: :::. r!AC/1(
.R MACRO
*ST:?~ID=ST!:?DFrf. S~C!!D
:.-:ST2RDN=ST!?DF?f I ST2RDN
*ST!?bl?f=ST2DFN,ST2TITN
:.":512.MS.C= ST-..!JJFN I ST.2t.ISC
~S1"2DAT=ST2DFrr 9 S!2DAT
*IlO~T=ST2DFn,BOO'r
. 'FF'
SCDA!N LI~.BAT
SEOJ

GJOB/RTl 1

.R PIP

!
!!!Y!!!?!?!t
t . f
!DLDUITC. BAT?
t . !
t?tt?t!?!!!t
!

:i:SY: :t: .. :.vX= DT::::. O:BJ/X
SCHAIN L!:NXllI'!.BA'r
SEOJ

~.T0!3/UT1 i

.R LINK

!
!T!T!!!!!Tt!
t !
?LI!lKU!1.BAT!
! r
!!!??!!?!!?!

'
~~STACE.!!=S'!"'~CW, ST2BDit, ST?lfflf, ST2MSC, ST2DAT, BCOT
• , 1''F'
SCHAIN r~-r.BAT
SE.OJ

23

. '-··--.

SJO!YRT11

' !Ttttt!!!t1t
! t
!TEST.BAT t
! !
Tttt!t!!!tf?

' SMESSACE/rtOWAIT THE STAGE2 TEST WILL BE Rtm TWICE. ONCE
SMESSAGE/nOWAIT FOR TBE STAGE2 PROVIDED AND ONCE FOR TBE
SMESSAGE/NOWAIT STAGE2 COl'iSTRUCTED IN TE TEST
.R STAGE2
:iCTErIP,Tr:=FLUB.ST2.STG2.FLB'
~STG2,TT:=OPT.ST2,TEMP.l"IAC
.R MACRO
*STC2=ST2DFN,STG2
.R LINK
~TEST=ST2Cl".!D,ST!?RDN,ST2tiTN,ST2MSC.ST2DAT,STC2
.R TEST
:ieOUTt, ERR1=ST2T
.R STAGE2
:.":OUT2,El\R2=ST2T
• ··FF'
.R PIP
:aLST: =OllTl. MAC
*LST: =ElUll. LOG
:1tLST:=OUT2.MAC
*LST: =ERR:?. LOO
SY:ST!?CMD.:a,ST2BDft.,ST2Wl'1'.•.ST2?tSC.•,ST2DAT.*/D
SY:ST2DFN.,BOOT.*,'I'EMP·*•STG2·*/D
*SY:OPT.ST2,FLUB.ST2.ST2T.ST2/D
SY:.BAT,*.CTL,TEST.SAV/D
::coUTt.MAC,ERRl.LOO,OUT2.MAC,ERR2.~
:.t:SY:/S
SEOJ

24

;·

