* p——". X

DECUS NO.
TITLE
AUTHOR
COMPANY
DATE

SOURCE LANGUAGE

 ATTENTION

DECUS

PROGRAM LIBRARY

11-307

STAGE 2 For The PDP-1l Operating Under RT-11
W. M. Waife University of Colorado
Australian National University

21 September 1976

MACRO 11

. This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or
related material, and no responsibility is assumed by these parties in connection therewith. .

GENERAL INFORMATION

Object Computer(s) PDP-11 Source Computer' (if different)
File Name Version No.

Title STAGE 2 For The PDP-1l Operating Under RT-11

Author W.M. Waite University of Colorado

Submitter (if other thon author) DOS-11 Implenientation by Peter H. Heinrich/ Modified for RT-11
BY D.M. NessS8ett

Affiliation Australiap National Tniversity
Address ' PO Box 4, Canberra. Act. Australia

' | Country
Monitor/Operating System RT-11/V2B DEC Neo.
Core Storage Required Starting Address
Peripherals Required
Other Software Required ' " DEC or DECUS No.
Source Language MACRO 11 Category _ programming Svstem

Restrictions, Deficiencies, Problems STAGE2/RT11 will not run in less than 12K and is not really
useful unless there is 16K (assuming the S/J Monitor) The STAGE2 Ccmmand "Change I/Q
channels and copy text” is modified. :

Date of Planned or Possible Future Revisions

TAPES AVAILABLE

Paper Tapes Object Binary [] Object ASCII Source [X] Other

DECtape [] LINCtape [] Format Magtape: 7 Track [] 9 Trock [] 8PI

Object Files [] Source Files [] Documentation Files [] Other

ABSTRACT

This implementation of STAGE2 is a modification of the DOS-1l

version (DECUS No. 11-158) by Peter H. Heinrich so that it will
run under rt-11

S 03693 1231-N874

o d W

#*DECUS DOCUMENTATION**

C TITLE: STAGE 2 FOR PDP-11 (RT-11)

AUTHOR: WILLIAM M. WAITE, UNIVERSITY OF COLORADO.
DOS-11 IMPLEMENTATION: PETER H. HEINRICH (INST.
" F. BIOKYBERNETIK AND BIOMED. TECHNIK UNIVERSITAET
KARLSRUHE, W.-GERMANY) MODIFICATIONS FOR RT-11:
D.M. NESSETT (AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA, A.C.T., AUSTRALIA)

DATE: - SEPT. - 1976

SOURCE: MACRO-11

1. INTRODUCTION
This document describes an implementation of Stage 2
(William M. Waite, "Implementing Software for Non-Numeric
Applications", Prentice-Hall N.J., 1973) for PDP-11 Computer
Systems operating under RT-11. Stage 2 is a general purpose
macro processor deéigned to port software writfen for abstract
~machines. Thé macro processor is itseff protable being written -

for an absfract machine called “FLUB"

2. PROGRAMS

The dectape contains the following modules:

STG2.FLB - FLUB-CODE OF STAGE 2 (W.M. WAITE)
FLUB.ST2 FLUS MACRO DEFINITIONS (P.H. HEINRICH;
OPT.ST2 OPTIMIZATION MACRO DEFINITIONS (P.H. HEINRICH)
ST2CMD.MAC COMMAND INPUT MODULE (D.M. NESSETT)
ST2RON.MAC INPUT SUBROUTINES MODULE (D.M. NESSETT)
ST2ZWTN.MAC QUTPUT SUBROUTINES MODULE (D.M. NESSETT)
ST2MSC.MAC MISC. SUBROUTINES MODULE (D.M. NESSETT)
ST2DAT.MAC DATA SECTION MODULE (D.M. NESSETT)
ST2DFN.MAC DEFINITIONS MODULE (D.M. NESSETT)
BOOT.MAC STAGE 2 IN EXPANDED FORM

BOOT.O0BJ STAGE 2 OBJECT MODULE

ST2BLD.BAT BATCH STREAM FOR BUILDING STAGE 2 (D.M. NESSETT)

3. 'IMPLEMENTATIONS

This implementation of Stage 2 was achieved by modifying
Peter Heinrich's D0S-11 implementation so that it could
operate under RT-11. Heinrich's abstract machine implementation
did not require any modification to run under RT-11, but the
supporting subroutineS (to handle I/0 and command dialog)
were completely re-written. This involved the deve]opment
of record I/0 subroutines, since all I/0 in RT-11 is physical
[/0. The detailed operation of these routines is discussed

below.

4. PREREQUISITES
RT-11/v2. If processor is not a PDP-11/40 or 45, EAE

must exist.

5. RESTRICTIONS

Since all Input channels are treated as if they were
concentrated into a single file, the Stage 2 command "change
I/0 channels and Copy Text" cannot be used to change the input

channel number.

6. INSTALLATION

The installation of Stage 2/RT-11 is accomplished by
running the batch stream "“ST2BLD.BAT". This batch stream
must first be transferred to the system device by mounting

‘the distribution dectape onto DTP and executing:

. R P1P
* SY:ST2BLD.BAT
*<CNTL C>

DT:ST2BLD.BAT

The batch monitor must then be linked into RT-11 (see RT-11
System Reference Manual (DEC-11-ORUGA-C-D) Chapter 12) and
the batch stream executed by typing: |

R BATCH
* ST2BLD

" If the RT-11 installation cannot run batch for some reason
(e.g. the PDP-11 has less than 12K of core). The file ST2BLD.BAT
should be listed and the commands which are contained therein

followed manually.

7. STAGE 2 Vﬂ3-3/RT-11

Stage 2 uses all core available. The I/0 is double
bufferéd (at the block 1eve1) and the error messages are
those standard for Stage 2. Input to Stage 2/RT-11 may
consist 6f‘from one to three output'files and from one to
six inpht fileé. Input files are treated as though they'
have been concatenated into one file in the same order as
they appear-on the'command line. OQutput files are available

on Stage 2 Channels 3, 4, and 5;

For example:

A. The following defines one output file (for Stage 2
Channel 3) and three input files (which will be
read by Stage 2 as if they had been concatenated
together).

OUTPUT.MAC = MACRO.DFN, TEXT1.S5T2, TEXT2.ST2

B. The following defines two output files (on Stage 2
Channels 3 and 5).

* QUTPUT.MAC,, AUX.LST = MACRO.DFN, TEXT1.ST2, TEXT2.ST2

C. The following uses the default extension capability
of Stage 2 (output file 1 = MAC, output'filé 2 = L0G,
output file 3 =LST, all input files = ST2).

* QUTPUT, LISTNG, ERRORS = MACRO, TEXT1, TEXTZ2

This is equiva}ent to:

* QUTPUT. MAC, LISTNG.LOG, ERRORS.LST = MACRO0.ST2,
TEXT1.ST2, TEXT2.ST2

8. IMPLEMENTATION GUIDE FOR STAGE 2/RT-11
A. INTRODUCTION

This document contains a written vdescription.
of the RT-11 1implementation of ‘Stage 2 (flowcharts
are to be found in Section 9). Since the RT;11
implementation is a madification of Peter H. Heinrich's

DOS-11 implementation (DECUS NO. 11-158), some

of the information contained herein describes Heinrich's
design of tﬁe,FLUB abstract machine for the POP-11. In
order that credit is given whére credit is due, the FLUB
implementation will be briefly discussed in Section B and
the RT-11 dependant sections of Stage 2/RT-11 will be

covered in Section C.

B. PDP-11 FLUB IMPLEMENTATION

The matéria] in this section briefly describes the
FLUB{imp]ementation designed by Peter‘H. Heinrich for PDP-11
Systems. It is assumed that the reader is thoroughly familiar
with the architecture of FLUB and with Stage 2's implementation
on the FLUB abstract machine. Those unfamiliar with these
should read the relevant sections of William M. Waite's
book ("Implementing Software for Non-Numeric Applications"”,

Prentice-Hall, N.J., 1973.) before proceeding.

The major desigﬁ decision that must be made when
implementing FLUB is how to represent FLUB words. Each FLUB
word consists of three fields:

1) The VAL field;

2) The PTR field;

3) The FLG field.

and

Heinrich chose to represent these fields as bytes for the
FLAG and VAL fields and as a 16-bit word for the PTR field.
Since operations upon FLUB words cannot be executed directly
but must first be loaded into a FLUB "register", the
representation of these registers also needs to be described.
Each register field corresponds to one PDP-11 16-bit word.

Each register field is not contiguous with the other two

fields of the registor, but is contained in an array df

fields of its own type. Thus FLG.7 (the FLG field for

register 7) is contiguous with FLG.8 not with VAL.7 (this

is in keeping with Waite's suggested implementation technique
for FLUB's registers). The absolute physical address where
FLUB memory begins is kept in R3 (which is called "BASE"

in the assembly code). R4 and R5 are used to hold respectively
the line buffer read pointer (LBR) and the line buffer write
pointer (LBW).

C. RT-11 DEPENDENT SECTIONS OF STAGE 2/RT-11

Anyone examining the macro definitions for State 2/RT-11
will notice that there are subroutine calls imbedded into

five of the macro bodies. These five subroutines and their

uses are:
1) INRCH - Write a character to the line buffer;
2) CLOSE - Close a Stage 2 input channel;
3) READ - Read the next line buffer from the input stream;
4) WRITE - Write the current line buffer to an output
channel; :
and ‘
5) ERRMSG - Qutput an error message.

The first two of these are fairly simple and are functionally
identical to the routines provided in Heinrich's DO0S-11
implementation. 1WRCH simply performs a "MOVB" to insert

the given character into the line buffer. CLOSE does

nothing qsefu], since fn the RT-11 version of Stage 2 (as

in the D0S-11 version) the capability of rewinding input
channels is not provided (CLOSE appears only in the macro
definiﬁion of the FLUB command "REWIND"). The routine

ERRMSG is also fairly simple and its operation should be

obvious from its listing. The two remaining subroutines -
READ and WRITE - are not as simple, however, and will be

discussed in detail.

The read software module is composed of four sections:
1) The main'subroutine (READ);
2) The next line subroutine (NXTLNE);
| 3) The next block subroutine (NXTBLK);
and
4) The next file subroutine (NXTFIL).
The main rouiine - READ - checks the input channel number.
If this is zero, an automatic EOF is returned. If the channel
number is equal to one, NXTLNE is called to get the next
line from the current input block. If the channel number is
neither zero nor one, an error code of two is returned to

tﬁe caller.

| NXTLNE tries to obtain a new line buffer from the
current input block. If this is possible, NXTLNE returns
with thé C bit clear to indicate success. If this is not
possible, NXTBLK is called to return ;hé next block and
initiate the transfer of the following block from the input
device. NXTLNE determines it has a complete line when it
transfers a carriage return (line feeds are ignored - not
tranngrred to line buffer - by NXTLNE). The oberation of
NXTLNE is depehdent on a number of pointers into various
character arrays:
C(4) ILNEPT - This pointer keeps track of the
position in the line buffer where the next
character from the current block is to be

inserted.

(ii) IBLKPT - This pointer is used to keep track
of where in the current block the next line

begins.

(iii) ICBKEN - This location contains the address

of the end of the current block.

(iv) IENDBF - The address of the end of the line
buffer.

As was said previously, NXTBLK returns the next block
in the input stream. Ideally this block has already been
transferred from the current input device. If that transfer
has not yet finished, NXTBLK waits for its completion.
When the block becomes available, two pointers (FILBUF and
ICRBUF) are exchanged to indicate which buffer is being used
and which is being filled. IBLKPT is then loaded to contain
the first character address of the current bloék and ICBKEN
is updated. After these operations have been accomplished,
NXTBLK attempts to read the next block from the input file;
If there are no more blocks in this file, NXTFIL is called
in an attempt to locate another input channel. Otherwise,
NXTBLK returns to its caller with the C bit set to indicate

 success.

The first time it is called, NXTFIL sequences through
the input channel numbers 3-8 in an attempt to find a file
which was ;pened by command dialog (see below). If this
search is successful, NXTFIL updates the variable "INPCHN"
so that it contains the current input channel number. Each

subsequent call to NXTFIL begiﬁs searching from this number

8

for another defined input channel. If this search is
successful, "INPCHN" is updated and the routine returns
to its caller. If the search is unsuccessful, bit @ in

"FLBFLG" is set and NXTFIL returns control to its caller.

The write module is composed of three routines:

1) The main subroutine (WRITE);

2) The next line sdbroutine (NXTLNE);
and | o
3) The next block subroutine (NXTBLK).

"WRITE" first tests the Stage 2 channel number to see if

it is zero. If so, the routine returns immediately to

its caller after indicating a successful write. If the
Stage 2 channel number is non-zero, it is decrémented »
by 3 to transform the Stage 2 channel numbers 3, 4, and §
into their corresponding RT-11 ndmbers 0, 1, and 2. If

the transformed channel number is equal to neither 0, 1,
nor 2, "WRITE" returns to its cailer with an error condition
code. If the channel number is in the proper range, the
minus,bne used by FLUB to indicate end-of-l1ine is replaced
by a carriage return/line feed and the subroutine NXTLNE is

called.

NXTLNE first transforms the outpht channel number into
an indéx by éhifting}it one left. This index is used when
accessing the output pointers OLNEPT. OBLKPT and OLBKEN.
This is necessary since simultaneous outpdt to different
channels is a]lowed in Stage 2. NXTLNE begins moving
characters into the output block currently being constructed

for the specified channel. If the line fits into this block,

9

NXTLNE returns indicating success. If the Tine does not
fit into the cufrent block, NXTLNE places as much of the
line as will fit into the current block and then calls
NXTBLK. After NXTBLK returns, OBLKPT points to the first
character position in the next block to be constructed.
NXTLNE places the remainder of the line to be written into

this new block and returns to its caller.

NXTBLK tests to see if the last block write operation
has completed. If it hasn't, NXTBLK waits for this to
happen. It then rotates the two block buffers (by exchanging
the pointers DRNBUF and OCRBUF) and updates pointers
OBLKPT (which keeps track of where the next character is
to be written into the current block) and OCBKEN (which
holds the address of the current block's end). A .WRITE
is then initiated on the~block passed to NXTBLK by NXTLNE
and after updating the block number for the channel, control

passes back to NXTLNE.

D. INITIATING A STAGE 2 RUN - COMMAND DIALOG

Since Stage 2 runs under RT-11, some means must
exist for executing the routine and for setting up the
files which Stage 2 will manipu1ate. Initiating Stage 2

execution is accomplished simply by the RT-11 command:
-R STAGE2

Input and output files are specified by an RT-11 command
string. Interpretation of this string and I/0 setup and
shut-down is the responsibility of the command DIALQG

module.

10

The command dialog module is composed of three routines:
1) The command dialog input routine - ST2CMD;
2) The prime input channel subroutine - PRMCHN;
and |
3) The drain output channels subroutine - DRNCHN.
ST2CMD begins by reserving all available memory for Stage 2
by‘exécuting a .SETTOP. It saves the stack position, outputs
the Stage 2 title, calls the subroutine INIT to initialize |
some pointers, ﬁnd then calls .CSIGEN.to input and interpret
a command string from the console. After the command string
has been processed (see description of .CSIGEN in RT-11
System Reference Manual), the stack is restored, FLUB's
pointers ére initialized, and the routine PRMCHN is called.
After control returns to STZCMD; the Stage 2 macro processor
is called to pchess the files spetified in the command
-input string. wﬁen this is complete, ST2CMD calls DRNCHN

and then loops to ;ccept a new command string.

The routines PRMCHN and DRNCHN are used basically for
I/0 startup and shutdown. PRMCHN calls FSTFIL (which is
an equivalent entry point of NXTFIL) to set up the'first
input file, twice calls RDBLK (which is an equivalent
entry point of READ NXTBLK) to set up the first two read:
block buffers, and returns. DRNCHN writes out the last

blocks of the three output channels.

9. FLOW CHARTS

A. ERRMSG

GET MSG

(:jﬁ ENTRY ¥ surrer ADDRESS

B. IWRCH

INSERT A
CR-LF

USE .TTYOUT
TO PRINT
MSG

(ENTRY

)

XFER CHAR
TO LINE
BUFFER

12

PUT ERROR
MSG INTO
BUFFER

GET AN

——3 EVEN ADDRESS

TO RETURN TO

REID)

NO

RETURN CODE
= EOF

(reTuy

‘:)9_;_____.

NO

L

RETURN

CALL

-~ CODE
= EOF ""-’(RETURN)

YES

CAL

NXTLNE

SUCCESS-
FULL

?

NO

L)

" RETURN CODE

= ERROR

—)C RETURN j‘——

RETURN CODE
SET TO INDICATE
ERROR TYPE

13

9t

(ii) NXTLNE

SET PARTIAL
LINE FLAG
ves SET POINTER
INTO LINE BUFFER
(ILNEPT)
MOVE NEXT SET RO TO LINE
CHARACTER UEFER POINTER &
INTO LINE Rl TO BLOCK
BUFFER BUFFER POINTER
BACKSPACE
OVER LF
CLEAR PARTIAL
LINE FLAG
RETURN CODE
l s = ERROR
INSERT A STAGE 2 UPDATE
LBR AND
EOL IBLXPT
o
CEw)
? I
BACKSPACE SAVE RO : CALL
OVER gg;'mm INTO ILNEPT NXTBLK

(iii) NXTBLK (RDBLK)

BLOCK
NUMBER

HAS
READ EOD
OCCURRED

?

NO

R1 = INPUT
CHANNEL

NUMBER

RETURN
CODE ‘—-—)<:7 RETURN A:)
= EOD .
.WAIT EXCHANGE
ON f~—3 BLOCK BUFFER
CHANNEL POINTERS
'/
START XFER RESET BLKPTR
OF NEXT AND CURRENT
BLOCK BUFFER END
RETURN CODE
= ERROR ‘--é(:;, RETURN ;:)

NO

15

(iv) NXTFIL (FSTFIL)

(ewry ;:}---—f

R1 = CURRENT
CHANNEL NO.

(:‘ RETURN ‘j)

16

INCREMENT R1

IS

CHANNEL
DEFINED

YES

UPDATE
RESET e 1. CURRENT
BLOCK CHANNEL
NUMBER o

-

INDICATE
EOD

l
(remmv)

D. (i) WRITE

" PUT CHANNEL

NO. IN CORRECT
RANGE
-»
YES
REPLACE
- STAGE 2 EOL [€
(-1) BY CR-LFP
-
y
|] - A .

81

SAVE QUTPUT MAKE CHANNEL
ENTR =% NO. INTO AN
CHANNEL NO. | INDEX

SET LINE
SET PARTIAL NE
BUFFER PTR || PARTIAL)
(QLNEFT) A PARTIAL
’\vas
REMEMBER RL = CURRENT
RO = LINE g END OF BLOCK BLOCK POINTER
BUFFER PTR FOR THIS QUTPUT
ADDRESS CHANNEL

(iii) NXTBLK (WRTBLK)

: CHANNEL

UPDATE

OBLKPT 2
AND BLOCK
END PNTR

TRY TO
.WRITE
BLOCK

UPDATE
BLK
NO.

19

ROTATE BUFFER
POINTERS

RETURN CODE
= FAIL

RETURN CODE
= FAIL

[

B e e o

(114

E. (i) ST2CMD

J
ALL SAVE STACK QUTPUT
i TRy S
CORE
SET UP
FLUB'S
| RESTORE L_ CALL & CALL
MEMORY
POINTERS STACK o -
SET UP > DRNCHN
CALL CALL
LINE BUFFER =3 poon =3} sTaGE 2 o
POINTERS
(11) INIT
SETUP INITIAL
CLEAR VALUES FOR
ENTRY FLAGS -
POINTERS AND
INDICES
CLOSE

HANDLERS

RELEASE ALL
ALL DEVICE {Emmmmmmmmmmmeet
_ CHANNELS

O Sy

L {4

(iii) PRMCHN

CALL
FSTFIL
(NXTFIL)

CALL
RDBLK
(NXTBLX)

(iv) DRNCHN

CALL
RDBLK
(NXTBLK)

10. BATCH STREAM LISTINGS

aJoB/nT11
k3
irereRITINLY
? ! .
1IST2BLYD. BAT?
1 H
tryrYTLERILLY
1 .
SIESSACE/VAIT PLEASE NOUNT DISTRIBUTION DECTAPE ON UXIT ©

.} PIP

NSy, R/H=DT: ST2T. 872, 8TC2.FL3, FLUB.ST2, 02T.ST2/X

SRV rm. 2/ U=, BAT/Y . '

N3T:m, x/RN=DT: ST2DFN. ITAC -

SIESSAGE/IIOWAIT IF YOU WISE TO ASSEMBLE THE RT-11 DEPENDANT
SHESSAGE/NOWAXT MODULES AWD LIST THEM REFORE LINKING 3TAGZ2,
SIESSACE/NOWAIT TYPE:

SUII[SAGE/NOWALIT BDLDLST.DBAT

SHEIIAGE/TIDOVWALT

SHESSAGE/NOWAIT IF YOU WISH TDO ASSEMBLE THZE RT-11 DIPENDANT
SIIESSACE/NDWALIT HODULES WITHBOUT LISTINGS BEFORE LINKINC STAGE2

GHTSBACR/NOWALIT TYPE:
SIES3AGE/MOWAILT : BLDASM. BAT
SHEISSAGE/IOWALT .

SIIISSAGE/IOWALT IF YOU SIMPLY WisS3 TDO LIIX THE STAGE2 OGRJECT
SIIEIRACE/NTYALT MODULES WHICI HAVE BETY PRAVIDED
SHESSACZ/TDWALIT TYPE:

SFESSACZ/IIDWALT BLDLNK. BAT
't;'l,wo ’
.R DATCI
*' CTY"
SEQJ
SJOB/RT11 : - S -
Y .
1rrre2eserLY
'DLDLST. BAT!?
1 1
rrerITIIIIYY
'

. PIP

w8V, k2 =DT=, MAC/H .

LASSIGN * "PLEASE TYPE LIST DEVICE NAME"*°*CTY’LST

R MACRD

*ST2CUD, LST: 7/€C=3T2DF N, ST2CMD

*ST2RON, LST: /C=8T2DFN, ST2RDN

*ST2WTN,LST: /C=8T2D7 0, STV

*3T2M3C,LST: /C=23T2DF N, ST2ASC

SET2DAT, L.S5T: /C=ST2DFN, ST2DAT) : .
. %B2OT,LST: /C=ST2DFN, BOOT ‘ :
R LINK

SSTAGER,LST:=ST2CMD, ST2RDN, STSWIN,ST2MSEC, ST2DAT, BEOT

.’FF*
SCHAIN TEST.BAT
2T0J

22

SJCB/RTL
1
IRRSARARE R R
H t

.R PIP

RSV R, 2/U=DTe = HAC/K
B HMACRO
*ST2CMD=ST2DFI, STZCI!
*STARDN=ST2DFN, ST2RDN
*STRHTH=ST2DFN, ST2HIN
*ST2MSL=STROFN, ST2HSC
*ST2DAT=ST2DFN, ST2DAT
*BDOT=ST2DFN, BOOT
TP

SCOAIN LINKUM. BAT
SE0J

SJOB/RT11
1

1
tDLDLIX. BAT?
! 1

. PIP

#SY: R .%/K=DTex. 03J/X
SCHAIN LINXUM.BAT
S£0J

SJGB/RT11
*

.....

1
R LINK

SETAGE2=STRCMD, ST2RDN, ST2WTN, ST2MSE, ST2DAT, BCOT

. 'FF’
SCHAIN TEST.BAT
SEQJ

R

23

SJOB/RT11
t
IR SARRRAREA
t !
ITEST.BAT !
t !

IRRRRRRRSRES]) .
!
SMESSAGE/NOWAIT THE STAGEZ TEST WILL BE RUN TWICE, ONCE
SMESSAGE/ITOVAIT FOR THE STAGE2 PROVIDED AND ONCE FOR THE
SMESSAGE/NOVAIT STAGE2 CONSTRUCTED IN THE TEST
.R STAGE2
*TEMP, TT:=FLUB.ST2,STG2.FLB'
*STG2, TT:=0PT.ST2, TEMP. MAC
.R MACRO '
*STG2=ST2DFN, STG2
.R LINK
*TEST=ST2CMD, ST2RDN, ST2NTN, ST2MSC, ST2DAT, STG2
.R TEST
*0QUT1, ERR1=ST2T
.R STAGE2
*Qg;?. ERR2=ST2T

*L3T:3ERR1.LOCG

*LST:=0UT2. MAC

*LST:=ERR2.LOC

*8Y: ST2CMD. x, ST2RDN. x, ST2WTN. %, ST2MSC. x, ST2DAT. */D
*SY:ST2DFN. *,B0O0T.*, TEMP. *,STG2.*/D
*SY:0PT.ST2,FLUB.ST2,ST2T.ST2/D

SY:%.BAT,.CTL, TEST. SAV/D

*QUT1.MAC, ERR1, LOG, OUT2. MAC, ERR2. LOG/D

*8Y: /S

SEOJ

24

