
"" - _ _,.

OECUSNO. _

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

ATTENTION

PROGRAM LIBRARY

11-231

ALGOL, RT11

Gregory D. Hosler

Digital Equipment Corporation
Maynard, MassachusettS

November 1975

ASSEMBLER/ ALGOL

This i! a USER pro.:!'am. Other than requiring that it conform to submittal and review standaros,.
no quality controa nos been imposed upon this program by DECUS.

The DECUS Progra:1 Liorary is a clearing house only; it does not generate or test programs. No
warranty, expr~~s or ··.olied, is made by the contributor, Digital Equipment Computer Users
Society or Oigi ... cl Equipment Corporation as to the accuracy or functioning of the program or
related materia , and no responsibility is assumed by these parties in connection therewith.

GENERAL INFORMATION

Object Computer(s) Any PDP-11 Source Computer (if different) ----
File Nome ALGOL Version No. V6. 6001

Title ALGOL
---~

A~hor _____________ G~re~g~o~ry~D~.;.....;..;H~os~l.-e.;..;r __ ~

Submitter (if other than author)
--~ Affiliation Digital Equipment Corporation, Software Engineer

Address 32-1 Royal Crest Drive

USA Marlborough, Massachusetts 01752 Country -- ------------------------
Mon i~~OperotingS~~m ______ ~R-I~-~ll~V~2B~-----------------DEC No. ______________________ __

Core Storage Required 16K Starting Address
----------------------------------~ ------------------

Peri p her a Is Required ___ D_E_C_t_a_pe __ _

Other Software Required RT-11 linker DEC or DECUS No.
-------------~·

Source Language Assembler/ALGOL Category Programming Language

Restrictions, Deficiencies, Problems ____________ _.;..F.-o.;;..;i r..;;..ly~b~u g...;.F.;..;re;..;e;.,__ ______________ _

Date of Planned or Possible Future Revisions

TAPES AVAILABLE

·Paper Tapes Obiect Binary D Obiect ASCII D Source D Other

DECtape Magtape: 7 Track D 9 Track D BPI -------
•

IKJ LINCtape CJ Format RT-11

Obie ct Files [2[] Source Files D Documentation Files [2[] Other
---------~------

ABSTRACT

RT-11 ALGOL is a compiler and run-time system for the ALGOL-60 language which operates on 16K or
larger RT-11 V02B systems.

This implementation of the ALGOL-60 language features dynamic allocation of program and data segments
through a software virtual memory system. All ALGOL-60 statement components are supported, plus several
extensions, such as the THRU statement, numbered and unnumbered CASE statements, and the string REPLACE
and SCAN statements. Data types supported are 16-bit INTEGER, 16-bit BOOLEAN, and one or two
dimensional arrays (of INTEGER or BOOLEAN elements) with variable upper and lower bounds. Procedures
may be typed INTEGER or BOOLEAN, or moy be untyped. A Burroughs-compatible implementation of
string operations (using pointer variables) is provided.

0th, t'eatures include partial word operations, bit concatenation, IF and CASE expressions of all types,
recoru-oriented random-access and stream sequential 1/0. The 1/0 operations read and write stand.:Jrd
RT-11 files.

!he virtual memory support, RT-11 input/output, and all other operations are handled through an
interpreter which executes the code files output by the ALGOL compiler.

' 'l\'tl I 1ll·N874

CHAPTER

1

2

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

APPENDIX F.

TABLE OF CONTENTS

TITLE

The ALGOL Run-Time System

The Simulator
Memory Management
File Handling
File Openings
How to Run ALGOL Programs
Building the Interpreter and

Run-Time System

The ALGOL Compiler

PAGE

1
2
4
7
8

11

Compiler Overview 15
Compiler Source Input 16
How to Run the Compiler 32
The Booting Process or Where Did the 34

First Compiler Come From?
Possible Enhancements 35

Simulator Decoding 38

Simulator Opcodes 40

Simulator Addressing 42

RCWs and MKSCWs 4i+

Array Links, Pointer Links, and File 47
Links

File Descriptors 50

CHAPTER TITLE PAGE

-APPENDIX G. Array Descriptors 51

APPENDIX H. Program Descriptors 54

.APPENDIX I. Other Descriptors 55

APPENDIX J. Memory Links and Memory Descriptors 56

APPENDIX K. Specifications of the Code File 59

-APPENDIX L. Abs.olute Addresses in the ALGOL Run- 61
Time System

APPENDIX M •. PRT Cell Assignments

APPENDIX N. ALGOL Reserved Words

APPENDIX O. ALGOL Built-In Functions

APPENDIX P. Mnemonic File Attributes

APPENDIX Q. Compile-Time Options

APPENDIX R. Compiler Cotmnand String Switches

ii

63

65

69

73

75

78

ALGOL, RTl 1

OECUS Program Library Write-up DEC US NO. 11-231

1. THE ALGOL RUN -TIME SYSTEM

THE SIMULATOR

This simulator was built in conjunction with the

ALGOL compiler to make the job.of the compiler as easy

as possible while making the simulator and run-time sys

tem as efficient as possible. Because the .,.\LGOL compiler

lends itself very easily to a recursive descent parse,

-the code being generated is ideal for a stack oriented

machine.

Therefore, this simulator is a stack machine,

which means that.all computations take their operands

from the stack and leave their +esults in place of the

operands. Values and addresses then are 'pushed' and

'popped' onto the stack during the evaluation of some

expression so that between statements on the same level

of statement nesting, the stack remains the same.

The simulator, run on a PDP-11, takes full advan

tage of the PDP-ll's 16-bit word and stack capability.

1

Both data and instructions represented on the simulator

are full 16-bit words. The user· is referred to APPENDICES

A, ~, and C for the details of instruction specifications.

The code run through the simulator is similar in

many respects to code run through the Burroughs B5500 or

B6700. Many operators were borrowed from these machines

and some are the bases for more sophisticated operators

found within this simulator. Code run through the simu

lator generated by the ALGOL compiler is pure, i.e. re

entrant, and can be used by more than one user at a time.

However, to date, a multi-user operating system has not

been developed for the PDP-11 which will allow users to

share the run-time system, much less an ALGOL code file.

In general, code files run through the simulator

are created by the ALGOL compiler; however, there is no

reason why an assembler or a different compiler could not

create similar code files. The setup for data descriptors

and code files is found in APPENDICES F through K.

MEMORY MANAGEMENT

This ALGOL run-time system is setup to be dynamic.

2

/

Code segments (procedures or segmented blocks) are brought

into core only as required. Array rows get allocated only

as they get touched (i.e. on first access). However, dope

vectors for two-dimensional arrays get a~located upon

execution of the declaration. If an array is segmented,

the dope vector gets created at the first access to any

element but the rows remain un-allocated until some ele

ment in the particular row gets touched;

Array rows, when allocated, are assign~d space

in a swap file so that if the array row is to get swapped

out, it has a unique place to be stored. Optimization is

done when swapping data out; if an array row has not been

changed since it has been swapped in, it is not written

back out because there is a duplicate copy of it in the

swap file.

Code .segments are not written back out because

it is assumed that code cannot modify itself.

The algorithm for obtaining memory space is rela

tively simple. A search is made through the list of

memory for the first unused memory segment at least as

big as needed. If there is none, then the first non-save

3

code segment is chosen which is at least as big as re

quested. If one is found then the associated program

descriptor is marked non-present. ·rf none is found, the

first non-save data segment at least ~s bi_g is chosen.

If one is found then the associated data descriptor is

marked non-present and the contents are swapped out.

If all of the above fail, memory is searched and

· everything non-save is swapped out. The above algorithm

is applied and upon failure to find any spa~e large enough,

(8 'NO MEMORY' error is put out. This means that there is

not enough contiguous non-save memory to honor the request

made. A stack history is dumped and the programmer can

reduce the size of the code or data segment we are attempt

ing to get space for, or reduce the size of other code or

data segments or reduce the amount of saved core by remov

ing SAVE declarations.

For a detailed description of the memory links

and memory descriptors, the user is referred to APPENDIX I.

FILE HANDLIN9

There are five kinds of files. They are BINARY,'

4

..

ASCII or UISK, KB or REMOTE or TTY, TEKT, PRINTER or LP.

PRINTER files are write-only and go out to the

line printer. Default MAXRECSIZE for printer files i;~ 40

if compiled without compiler /L option and 66 .if compiled

with it.

REMOTE files are read-write. Input/Output come

from and go to the console. Default MAXRECSIZE is 36 (72

column). I/O transfer amount is the minimum of MAXRECSIZE,

array row size, specified transfer count, and the number

of characters encountered before a line terminator (input

only).

('tors:

The following are considered to be line termina
'./

Line-feed, Form-feed, and Vertical-tab.

TEKT files are unformatted REMOTE files. They

are treated exactly like REMOTE files except that I/O is

not terminated by a line terminator.

ASCII files can be either read or written but not

read/write. They are sequential. Default MAXRECSIZE is

36. Default MYUSE is 0. Records are read from files

sequentially until a line terminator is reached. These

files can be contiguous but need not be. They are used

5

primarily for ASCII oriented I/O.

BINARY files may be read, write, or read/write.

They may be read or written sequentially or randomly.

Default MAXRECSIZE is 128. Default MYUSE is 0. If an

access is made randomly and then sequentially, the sequen

tial access will start at the first record after the ran

dom access I/O. Also, if a read follows a write or a write

follows a read and both are sequential, then they will

access two sequential records. If an I/O requests more

than the MAXRECSIZE number of words to be read/written,

then several sequential records will be read/written until

the request is satisfied.

If the MAXRECSIZE of a BINARY file is not 128 and

the array row to be I/O'ed to is segmented and the I/O is

for more than 128 words, then the results are predictable

and explainable but not usually what the programmer wants.

This is semi-complicated so an explanation will not be

given here. The interested user is referred to the code

for COMM 3 in the conununicate module of the run-time system.

Hence in these cases it is suggested that the progrannner

declares the array to be a LONG array.

6

To access files on a device other than the system

device as BINARY or ASCII files, put the device name and

a ':' preceding the f.ile name in the TITLE part of the

file declaration.

i.e. FILE DTSRC(KIND=ASCII,TITLE="DT2:SOURCE");

oi;- REPLACE DTSRC.TITLE BY "DT2:SOURCE";

will access file 'SOURCE' on 'DT2' as an ASCII file.

FILE OPENINGS

File openings occur with the first access to the

~ile through an I/O or by forcing it to be open (F .OPEN:_·

-TRUE). Files are closed by a block exit in which the

file was declared, closing the file via a CLOSE statement,

or by forcing the file to be closed (F.OPEN:=FALSE).

:When a file is opened, if MYUSE is IN and the file

(is not present or MYUSE is OUT and the file is present,

then an error message is generated and the job is termi

nated.-- If MYUSE is I/O (BINARY only) then if the file is

present it is opened for I/O. If not present it is allo

cated. If a BINARY file is allocated then it is created

such that the number of blocks allocated will contain

7

MAXRECNO. The first record in the file is record number

zero. If there is not enough contiguous disk to contain

the record MAXRECNO, then the file will be assigned the

largest contiguous area on disk. When the file is opened

"MAXRECNO will be calculated and filled in depending upon

the size of the file and the MAXRECSIZE •.

If MYUSE is 0 then if the file is present, it is

opened for INPUT and if the file is non-present it is

opened for OUTPUT.

HOW TO RUN ALGOL PROGRAMS

The first step is to compile the source into an

ALGOL code file. This is explained in the following sec

tion on running the compiler. Once you have a code file

ready to run, the rest is easy •

.1. The first thing you do is to fire up the run-time

system. This is done by running ALGOLS.

i.e.

$R ALGOLS

The run-time system will respond with a pound sign

'I' indicating that it is ready for the name of the code

8

•

•

~ • file to be executed. Enter the name, extension, and user

code of the file. If no user code is specified then your

user code is assumed to be the default. If no extension

is specified then the default extension of '.ALG' is added

to your file name. Therefore a null extension should be

specified as I I . .
Examples

#NOEXT.

#NO EXT is same as #NOEXT.ALG

If no file name is specified then the default program to

be run is the compiler (ALGOL5.ALG[l,l]).

i.e. #

results in running the compiler.

After typing the file name, the user can specify

an option list to the run-time system. These options are

in absolute addresses 174 and 176 (octal) and can be

addressed in ALGOL programs. The setup of the option

words is described in APPENDIX L.

· The run-time system resides in.high core occupy-

ing slightly over 8K. DOS resides in low core occupying

slightly over SK. That leaves the rest of core for the

9

memory of the run-time syslem and the non-resident drivers

of DOS. DOS will bring them in when needed. Also each

ASCII file requires a 1/4 K buffer in DOS. The area for

these buffers and drivers is inunediately above DOS. There

is no way of telling DOS where you are so that he will

not overwrite you. Hence it is necessary to leave room

for DOS to expand.

Programs which open a lot of files on several

devices may need more than the pre-allocated space. To

increase ~he DOS filler space, at the end of the input

string after the option list add in a ';'n' where n is the

number of 1/4 K blocks to add to the DOS expansion area.

rlf a program gets an F342, or a 'BAD DELETE' error·

~message while running, first attempt to correct the pro-

blem by .increasing the DOS expansion area size.

the ' . ' '

Examples

/}TEST. 35 /S ; 5

11/S; 6

/INEWIST ;2

Only the 4 order low bits of the character after

are looked at. The maximum value this could then

10

•

be would be 15 as in the letter 'o'

i.e.

f/LARGE.ONE ;O

In the current run-time system, an attempt to

catch DOS when he overwrites the data area is done but

may not always be successful.

BUILDING THE INTERPRETER AND RUN-TIME SYSTEM

There are six assembler modules required to be

~,~ssembled and linked together to build the run-time system

.and interpreter~ They and their.purposes are:

AOSYSS - The main operating system. This module contains

the memory management unit and the initializa-

tion code~

AINTPS · The main component of the interpreter. This

module contains the instruction decoder and all

of the operators.

ACOMM5 - All of the communication routines are located i~

this module.

AIOHR5 - This module contains the run-time system I/O

11

handler.

ADOS5 - This module is the interface between DOS and the

run-time system. This module is the only system

dependent module, i.e., only this module need be

modified if this run-time system is to be run on

other operating systems.

LIBR45/LIBR20 - These two modules are equivalent. They

contain the non-standard arithmetic operators

for PDP-ll's. They are the DIV, MUL, and ASHC

instructions. LIBR45 is for those with these

instructions and LIBR20 is for those Ill8Chines

without these instructions.

In each of the first five assembler modules there

is an assemble time variable called 'PDPll'. It is cur

rently set to 45. Set this variable to whatever model of

PDP-11 that this run-time system is to be run on. (i.e.

PDP11=20 for running on PDP11/20's).

When linking the modules together, they may be

linked together in any order (only the appropriate LIBR

should be linked in).

12

Examples:

$R LINK

. #ALGOL5,ALGOLS(AOSYSS,AINTP5,ACOMM5,LIBR45,ADOS5/E

for those machines with hardware MUL/DIV instructions

or

$R LINK

#ALGOL5,ALGOL5(AOSYS5,AINTP5,ACOMM5,LIBR2~,ADOS5/E

for those machines without them.

There will be one undefined symbol in AINTPS and

{-ACOMM5 (.COM14) •. This can be ignored.

The run-time system uses the space between itself

and DOS for swapping. Therefore it is suggested that the

run-time system be linked as high in core as possible in

order to make this swappable space as large as possible.

NOTE: The initialization code is non-reentrant.

Not only that, in order to get as much swap space as pos

sible, the initialization code is also used for swapping,

i.e., it gets overwritten with data and code. Hence it

is the case that a CONTROL C, BE and a CONTROL C, RE will

{not work and.will cause unpredictable results (probably an

F342 or F344). Therefore a CONTROL C, KI is suggested and

13

then run the run-time system again.

14

2. THE ALGOL COMPILER

COMPILER OVERVIEW

The ALGOL compiler implemented for this project

is a recursive descent compiler generating polish post

£ix notational code. The code generated is stored in a

£ile which is then run through the ALGOL run-time system

and simulator described in Part 1. An attempt was made

to make this compiler as compatible as possible with the

EXTENDED ALGOL compiler on the Burroughs B6700. In many

respects this goal was accomplished. However, there were

- some hardware differences which made implementation of

certain of the data types slightly different.

The first major difference is that the B6700 has

a 51-bit word (48 for data and 3 for tags). The PDP-11

has a 16-bit word of which I decided to use all 16 bits

for data. Hence there are no tags in the PDP-11 simulate~.

The second major difference is the,fact that the B6700

handles arithmetic in signed magnitude notation whereas

15

the PDP-11 handles arithmetic in two's complement notation.

This only affects partial word and concat operations on

negative numbers.

Other hardware differences follow from these two,

i.e., the largest number representable on the PDP-11 is

215 - 1 and the smallest number representable is -215 (fol-

lows from the word size difference).

Taking these differences into consideration, a

substantial number of non-trivial programs can be run on

both machines yielding the same output for the same input.

To implement this ALGOL compiler put the files

ALGOL5.ALG and ALGOLS.ERR under [1,1] as contiguous files.

The first file is the compiler and the second is its error

message file.

COMPILER SOURCE INPUT

The following data structures have been implemented:

INTEGER - 16 bit two's complement

BOOLEAN - 16 bit with bit #0 as TRUE/FALSE bit

ARRAY - one or two dimensional typed INTEGER
or BOOLEAN

16

mented:

POINTER - 8 bit pointers only

TRUTHSET - can represent numbers from 0 to
127 as well as any 8-bit character

FILE - record oriented array row read/write

The following control structures have been imple-

LABELS, SWITCHES,_and GOTO's

CASE and numbered CASE statements

DO-UNTIL, WHILE-DO, FOR-DO, THR.U loops

PROCEDURES - untyped or typed bJOLEAN or
INTEGER

Assignment statement - may be of type INTEGER,
BOOLEAN, or POINTER

REPLACE, SCAN, FILL, CLOSE, I/O, SWAP, BLOCK,
COMPOUND, LOCK, and RELEASE statements
with all but the last two found in
EXTENDED ALGOL.

DEFINEs and DEFINEs with up to 10 parameters
have been implemented.

CASE expressions and conditional expressions
have been implemented for arithmetic,
pointer, and designational expressions.

See APPENDIX N and APPENDIX 0 for ALGOL
Reserved words and ALGOL built-in func
tions.

Syntax and implementation of ALGOL was kept as

similar as possible to that of the B6700/EXTENDED ALGOL.

17

The user is referenced to a B6700 EXTENDED ALGOL LANGUAGE

REFERENCE MANUAL (FORM NO. 5Q~~649, 5-2a-74) available

from Burroughs Corp. for a price of seven dollars.

Differences, limitations, and extensions are

listed below:

ARRAY

One dimensional segmented arrays have a maximum

length of 16383 entries (half that for real arrays).

One dimensional LONG arrays have a maximum row

size of 8191.

Two dimensional arrays may not have a dope vector

of size greater than 8191 with rows (which are

LONG) of size no bigger than 8191.

CASE statement
~

The maximum number of cases allowed in a case

statement is 101 (0 through 100). This is a

restriction put on by the compiler and can be

changed by changing CASESTMT within the compiler.

Extensions to numbered case statements:

18

1) more than one case label may appear on

a statement.

2) if cases n through m are to execute a

labeled statement where n is greater

than m then a label of the form n-m is

permitted.

EXAMPLE

CASE I OF

BEGIN

END;

CLOSE statement

3: J:•l;

L:•2;

4: 2 : 8 : J : •I ;

5-7: J:•L*I;

Three forms of the CLOSE statement were implemented.

They are:

A) CLOSE(<fileid>);

B) CLOSE(<fileid>,PURGE);

C) CLOSE(<fileid>,<bexp>);

Type A will close the file and lock it (leave it

19

on the device).

Type B will close the file and then delete it

(remove it from the device).

Type C will close the file. If the< bexp) is

true (bit 10 on) then the file will be removed

(purged).

DECLARATIONS of INTEGERS, BOOLEANS, and POINTERS

DEFINES

Identical to B6700 EXTENDED ALGOL with the follow

ing extension to each of these three types of

Declarations. You may initialize local pointers

via an assignment expression.

EXAMPLES:

INTEGER

BOOLEAN

POINTER

I,J:=5,K:=REAL(Bl)*2+3,L;

B2:=TRUE,B3,B4:•B OR C;

Pl,Q:=P,R:=Q+(2*3),S;

Defines without parameters are handled exactly

the same as on the B6700. Defines with parameters

may have up to ten parameters. However, the

invocation must be with parenthesis and cannot be

20

with brackets as allowed on the B6700.

DO-UNTIL statement

The DO-UNTIL statement is handled exactly as on

the B6700.

EXPRESSIONS, ARITHMETIC

The operators MUX and TIMES were not implemented.

The operators @ and @II were added which do a load

and load-byte operation respectivelJ. They oper-

ate on primaries.

EXAMPLE:

@174 is the contents of absolute location
174 (decimal).

@11176+2 loads the contents of byte 176 abso
lute and then adds 2 to that result.

Other than these differences and those. mentioned

under machine differences on page 7 arithmetic

expressions are handled exactly the same as on

the B6700.

EXPRESSIONS, BOOLEAN

The operators IMP, EQV, IS, ISNT were not

21

implemented. Otherwise boolean expressions are

exactly as in EXTENDED ALGOL.

EXPRESSIONS, POINTER

Syntatically, pointer expressions are parsed

exactly the same as in EXTENDED ALGOL. Seman-

tically there are a few differences. A pointer

expression with a< skip part} on the B6700 is

checked for segmented array in the expression eval-

uation. Th~ PDP-11 run-time system only checks

for segmented array when a pointer is used in a

character scanning or moving operation •. The second

difference is that the < skip part> and not its

absolute value is added.

i.e. P+<prim) results in P-ABS(<prim)) if
(prim> is negative.

Other than that, pointer expressions are evaluated

the same.

FILL statement

The following construct of tne <initial value>

part of the <value list> of the fill statement

22

was not implemented:

<unsigned integer> (~value list:>)

Each fill statement generates a new data segment

which is put into the code file to fill the array

row with.

FOR-DO statement

GO.TOs

The number of <for list elements> to a FOR loop

varies between 30 and 100 ~epending upon the type

o~ <for list element~s used. An invalid index in

compiler segment #0115 indicates that you have

exceeded this limit.

Expansions:

Besides the ~for list element>s implemented in

EXTENDED ALGOL, the <.for list element> <ael> UNTIL

(ae2> has been added which compiles as <ael> STEP 1

UNTIL <ae2>.

FOR loops have been implemented exactly as on the

B6700.

Syntax is exactly the same, i.e., you may go to a

23

designational expression.

Limitation:

If you are exitting a procedure via a GO TO, then

the block that you end up in must either be the

_main program block or the main block for some

procedure.

I/O statements

Only array row I/O is implemented. The format

_p~rt must be an expression which is taken to be

the number of words to do I/O to. The list part

must be an array row designator. The fi~e part

-may have a record part appended to it.

On BINARY files this record part indicates the

record number of the record to be read/written.

(Zero is the first record of the file.) If the

record number evaluates to a negative number or

if the record part is omitted in the I/O statement,

then the next record is assumed to be the destina

tion of the I/O.

On ASCII files output the record number indicates,

24

if greater than zero, the number of blank lines

to precede the line to be written. If the record

number is zero on ASCII output, then it indicates

that the record is to be written without a carriage

return or line feed after it. This is equivalent

to a WRITE-STOP in EXTENDED ALGOL. On input from

ASCII files, the record part is ignored. REMOTE,

and PRINTER files are treated as ASCII files.

EXAMPLES:

PROCEDURES

READ(CODE[S],128,CODEARRAY);

WRITE(CODEFILE[I*J+2],J*l28,B[*]);

WRITE(LINE(S],66,HEADING);

WRITE(KB[0],10,ASKFORINPUT);

READ(BINARYFILE,512,A[I,*]);

Limitations:

Parameters are call by name unless specified to

be call by value. Call by name parameters may

not be expressions. ARRAYS, TRUTHSETS, FILES

must be call by name. INTEGERS, BOOLEANS, and

POINTERS may be either call by name or call by

25

REMARKs

value. A subscripted array element is considered

to be an expression. Typed and untyped procedures

of zero parameters may be passed by name. LABELS

and SWITCHES may not be passed as parameters.

The number of parameters to a procedure should

not exceed 145. The compiler may act unpredict-

ably should this happen.

There are three types of remarks: the end-remark,

the connnent-remark, and the escape-remark. (2-7

in Manual). This compiler's end-remark is termi-

nated only by END, UNTIL, ELSE, or I • I ' . All other

characters will be igno~ed (except the ' ' after

the final END).

REPLACE statement

Extensions:

If the count part is the constant l in a word or

convert transfer, then the class 2 reserved words

WORD, DIGIT may be used in place of the reserved

words WORDS, DIGITS.

26

The convert part has been greatly enhanced. You

may specify the base of ·conversion as well as

whether or not to zerosuppress it. Default base

of conversion is DECIMAL. The default is not to

zerosuppress. Base of conversion may be BINARY,

OCTAL, DECIMAL or HEX.

EXAMPLES:

REPLACE Q:P+l BY I FOR 3 BINARY DIGITS, J
FOR 1 HEX DIGIT, K FOR 5 ZEROSUPPRESSED
DIGITS;

Ambiguities:

It would be difficult to parse these properly.

1) An indexed array element may be a pointer

expression, i.e., P:aA[5]+3 generates a pointer

pointing to the third character after A[5]. But

A(5]+3 is also an arithmetic expression and is

treated as such in the replace part. A(*] will

result in 'PRIMARY MAY NOT BEGIN WITH THIS TYPE

QUANTITY' on the'*'· The solution here is to use

POINTER(A[*]) and above use POINTER(A[5])+3.

2) FILEID.MAXRECSIZE in the replace part

27

will result in the error message '.TITLE' EXPECTED

on the 'MAXRECSIZE'. The solution here is to

put the entity inside of ·parens, i.e., (FILEID.

MAXRECSIZE).

The same is true for the other arithmetic file

attributes.

EXAMPLE:

REPLACE P BY (FILEID.MAXRECSIZE) for 5 ZERO
SUPPRESSED DIGITS;

Differences:

The scanning and character moving operators move

in the direction of increasing array indexes.

However, within each word the _low byte is scanned

first and then the high byte. The same is true

for a replace operation. On the B670~ the direc-

tion of the scan is from high byte to low. All

string.constants are wrapped from the last char-

acter to the first.

SCAN statement
~

Differences:

28

Same differences as noted in the REPLACE statement.

SWAP statement

Arrays need only agree in the number of dimensions.

SWITCHES

Limitations:

A switch cannot be used outside of the block in

which it was declared. The maximum number of

indicies to a switch is 251. An attempt to declare

a SWITCH with more than 251 indexes will result in
-

an invalid index inside of SWITCHDEC. This can be

fixed by changing the upper limit on the number

of indicies in SWITCHDEC. Switches may not refer-

ence another switch.

EXAMPLE:

SWITCH SW:=Ll,L2,L3, IF B THEN L4 ELSE LS;

SWITCH S2:=CASE I OF (Ll,L2,SW[J],L2);

The above example will result in a syntax error

on the use of SW within S2. ·

29

THRU statement

Limitations:

If the number of times that a statement is to be

THRUed is evaluated to be greater than 215 -1 then

the statement will not be executed. (Numbers

15 greater than 2 -1 are negative on the PDP-11.)

TRUTHSETS

The capability to use a subscripted variable and

the capability to address the bits of the truthset

were not implemented.

The following TRUTHSETS have been pre-defined for

the user.

ALPHAONLY - A-Z upper case and lower case.

NUMERIC - 0 - 9

ALPHA, ALPHANUMERIC - ALPHA or NUMERIC

SPECIAL - printable characters not in
ALPHANUMERIC

WHILE-DO statement

Exactly the same as on the B67~0.

30

The length of an identifier is limited to 63

characters as in EXTENDED ALGOL. Characters after the

first 63 will be treated as comment. If a line is greater

than 72 characters only the first 72 will get read and

the rest will be ignored.

If a line ends with a reserved word or identifier

innnediately preceding the line.terminator and the follow

ing line begins with an identifier or a reserved word in

coluIIlll 1 and the compiler is being run with the /S option

to the run-time system, then the two will be concatted

together to form a single identifier. This is due to the

fact that the /S option takes out the trailing spaces.

Alternately, if an identifier is split in two on

two consecutive lines and the last character on the first

line was not in column 72 and the /S option was not used,

then the separate parts of the identifier will be treated

as such.

A good programming practice would be to not split

identifiers up onto several lines and to have at leas~

one leading space on lines other than the first. (This

would be the case anyway if you were blocking your program!)

31

HOW TO RUN THE COMPILER

The first thing to do to run the compiler is to

run the operating system and simulator. Do this by

entering $R ALGOL5.

It will reply with a 'H'. Your reply to this will

be the compiler name followed by the switches to the run

-time system followed by the DOS expansion factor (only

necessary if you have a DEC-TAPE file).

EXAMPLES:

l/S

/IALGOL5 .ALG/S

I

1/S;6

fi; 7

The compiler, when run properly will reply

ALGOL V05.6.xxx

/I

where xxx is the patch update number. Each time the com.-.

piler is patched and re-booted, this number gets incre

mented. Your reply to the 'I' is of the form

32

[<code file>][,<list file>]«source file>

Files in brackets are optional and may be omitted. If

extensions for any of the files are left out then default

extensions are used. The default extension for the code

file is '.ALG'. The default extension for the listing

file is '.LST'. If the source file has no extension, first

the file with the extension of· '.SRC' is looked for. If

this is not found then the file with the null extension

is looked for. If this is not found then an error message

is generated.

Options may appear after any file id. .Only the

first character of.the option is lqoked at; the rest is

ignored. Options may appear in any order.

EXAMPLES:

#FOO/C,FOO/LONG/PRT/DEBUG<FOO

#,LP:<TESTl.NEW/L

ICODE.2/C<CODE.l

See APPENDIX P for an explanation of the compiler switches.

33

THE BOOTING PROCESS or WHERE DID THE FIRST COMPILER COME
FROM?

If the compiler is itself written in the language

it compiles and there is no other ALGOL compiler on this

PDP-11, where did the first ALGOL code file of the com-

piler come from?

To the answer of this question I have only limited

knowledge. The original version of this compiler was an

AL_GOL-60 compiler with strings. It was booted from a

.Burroughs B5500 to a PDP-8 which explains why the code

that it generates is so much like the code found on the

B55~0. It was later booted from a PDP-8 to a DATA GENERAL

NOVA via BARRY JAMES FOLSOM and RICK SHAW. I received

from Rick, copies of the ALGOL-60 compiler code file and

compiler source (written in itself), and copies of the

NOVA assembler run-time system.

Using the NOVA run-time sources as a guideline, I

developed a run-time system for the PDP-11. I then had

to modify the code file because the compiler does some

'hard' addressing which was machine dependent QpOn the

NOVA. I then modified the compiler source to make it

34

dependent upon PDP-11 addressing rather than the NOVA.

After many trials and tribulations that booted onto the

PDP-11 and became version 6.4.

I then added all the constructs of EXTENDED ALGOL

and blocked and commented the comp°iler (which became a

non-trivial task). Then I had to rewrite the compiler in

itself. Next I rewrote the run-time system to provide

better error diagnostics as well as handle the new opera

tors necessar~ to boot up the current version of the com

piler (version 6.5).

All in all I'm still surprised that it worked.

POSSIBLE ENHANCEMENTS

It would be nice if REAL arithmetic were added to

the compiler. Real arrays have already been implemented

in the simulator and run~time system. Equally as nice

would be the addition of FORMATS, LISTS, and formatted I/O.

This I think will end up being a non-trivial task. My

suggestion would be to write the formatter in ALGOL and

BS500 simulator-assembler then bind that code into code

files which use formats. For this task though, a binder

35

would have to be written. A RESIZE statement probably is

the most feasible enhancement. Monitor statements would

help in debugging, as would an XREF and an XREF analyzer.

Another welcome enhancement would be to make ASCII files

character-record oriented as well as the current word

record orientation. This would require the file attribute

UNITS to be added (i.e., UNITS=CHARACTERS or UNITS=WORDS).

This will require the use of another bit in the file de

scriptor. Possibly you could use the upper byte of the

word which now contains MYUSE.

A little bit more challenging would be an ON state-

ment to catch things such as:

ON INVALIDINDEX

ON ZERODIVIDE

ON ENDFILE(<fileid))

ON INTEGEROVERFLOW

ON CONTROLC

I'm not quite sure how something as this would be imple

mented, but if somebody ever figures out call by reference,

this should follow without too much difficulty.

Those, I think, are the most feasible. Something

to consider is that the addition of more PDP-11 assembler

36

code to the run-time system results in less space for the

compiler to reside in, i.e., the space left for swapping

will be decreased by whatever the run-time system is

increased by. Hence it may be somewhat plausible to write

REAL arithmetic in ALGOL routines and use the simulator

for conversions and storage operators. This may be slow

and non-desirable for number crunching though.

37

APPENDIX A

SIMULATOR DECODING

Each instruction syllable of the simulator can be

of four types depending upon the value of the low order

two bits of the instruction. (i.e. bits #~,l.) Each

syllable is decoded as follows:

- LITERAL CALL
- OPERATOR CALL
- VALUE CALL
- NAME CALL

A literal call (LITC) takes as its value bits 15

through 2 and.pushes .this value onto the stack.· Note that

this value has a range from 0 to 37777 octal (16383 deci-

mal) because bits 16 and 15 will always be zero. An oper-

ator call does just that. Depending upon the value of

bits 15-2, a specified operator is called upon to perform

operations using the information in the stack. These oper~

ators and a brief description of their job is found in

APPENDIX B.

The value call (VALC) and name call (NAMC) opera-

tions use bits 15-2 to compute an address either within

38

•

the stack or in the Program Reference Table (PRT). The

PRT contains all OWN, global (level 1), and EXTERNAL data

descriptors as well as all program descriptors. The NAMC

operator pushes the computed address onto the stack, the

VALC operator pushes the contents of the· computed address

onto the stack. The algorithm for the addres.s computation

is found in APPENDIX C.

OPCODE* MNEMONIC

2401 !ADD
2405 AOC
2411 ASD
2415 ASN
2421 BRUN
2425 BRTR
2431 BRFL
2435 ENTR
2441 CHS
2445 COMM
2451 DEL
2455 DIVR
2461 DUP
2465 NEQ
2471 EQL
2475 GEQ
2501 LSS
2505 GTR
2511 LEQ
2515 LOAD
2521 LOR
2525 LAND
2531 MKS
2535 REP
2541 IMUL
2545 LNG
2551 REL
2555 RTN
2561 SAV
2565 SBR
2571 SHL

* In octal.

APPENDIX B

SIMULATOR OPCODES

DESCRIPTION**

INTEGER ADD
ARRAY OPERAND CALL
ARRAY STORE DESTRUCT
ARRAY STORE NON-DESTRUCT
BRANCH UNCONDITIONAL
BRANCH TRUE CONDITION
BRANCH FALSE CONDITION
ENTER SEGMENTED BLOCK
CHANGE SIGN
CALL SYSTEM COMMUNICATE
DELETE TOP OF STACK
INTEGER DIVIDE (ROUNDED)
DUPLICATE TOP OF STACK
NOT EQUAL COMPARE
EQUAL COMPARE
GREATER THAN OR EQUAL COMPARE
LESS THAN COMPARE
GREATER THAN COMPARE
LESS THAN OR EQUAL COMPARE
LOAD VALUE WHOSE ADDRESS IS ON TOS
LOGICAL OR
LOGICAL AND
MARK THE STACK
REPLACE OPERATOR
INTEGER MULTIPLY
LOGICAL NEGATE
RELEASE (UN-LOCK) STORAGE
RETURN (BLOCK EXIT)
SAVE (LOCK) STORAGE
PROCEDURE ENTER
SHIFT LEFT

** For a more detailed description the user should see the
Assembler listing of the module AINTPS.

40

OPCODE MNEMONIC DESCRIPTION

2575 SHR SHIFT RIGHT
2601 STOD STORE DESTRUCT
2605 STON STORE NON-DESTRUCT
2611 !SUB INTEGER SUBTRACT
2615 XCH EXCHANGE TOP TWO STACK CELLS
2621 SCAN SCAN OPERATOR
2625 !MOD INTEGER MOD
2631 ADC ARRAY DESCRIPTOR CALL
2635 FDI FIELD ISOLATE
2641 BPS BUMP STACK POINTER
2645 SWAP SWAP· ARRAYS
2651 !EXP INTEGER EXPONENTIATE
2655 FID FIELD ISOLATE DYNAMIC
2661 RSDN ROTATE STACK DOWN
2665 RSUP ROTATE STACK UP
2671 !NOP TRUTHSET 'IN' TEST
2675 ocx OCCURS INDEX
2701 LODB LOAD BYTE
2705 DIVT INTEGER DIVIDE (TRUNCATE)
2711 FIS FIELD INSERT
2715 FISD FIELD INSERT DYNAMIC
2721 FIND LOCATE ADDRESS
2725 ONES COUNT NUMBER OF BITS THAT ARE ON
2731 FONE FIRST ONE (LEFTMOST ONE)
2735 BlD BUILD 1-DIMENSIONAL ARRAY

DESCRIPTOR
2741 B2D BUILD 2-DIMENSIONAL ARRAY

DESCRIPTOR
2745 DUPL DUPLICATE & LOAD INDEXED ARRAY

VALUE
2751 BLD BUILD ARRAY DESCRIPTOR
2755 PLOD LOAD WHAT POINTER POINTS AT
2761 PART LOAD PARTIAL WORD VALUE
2765 PSTN POINTER STORE NON-DESTRUCT
2771 PSTD POINTER STORE DESTRUCT
2775 SCMP STRING COMPARE
3001 PLNK LINK POINTER

41

APPENDIX C

SIMULATOR ADDRESSING

There are four types of relative addressing used

by the simulator depending upon the location of desired

information. They are PRT-PLUS (R+) for items in the PRT,

PROGRAM COUNTER PLUS (C+) for entries within the current

program segment (in floating data pools located beyond the

current PC), FRAME-PLUS (F+) for local entities of proce-

dures, and FRAME-MINU~ (F-) for parameters to procedures.

Hence there are three basic registers, strangely

enough, called the R,C, and F registers. The R register

always points to the base of the PRT. "The C register always

points to the next instruction to be executed, and the F

register points to the current Return Control Word (RCW).

See APPENDIX D for the setup of an RCW. Addresses are com-

puted as follows:

P+ Bit 15 of instruction syllable equals 0, bits
14-2 is word index into the PRT.

C+ Bit 14 of instruction syllable equals ~' (bit
15 = 1), bits 13-2 is word index from next
instruction to be executed.·

42

F+ Bit 13 of instruction syllable equals 0, (bits
15,14=1), bits 12-2 is word index into local
stack space (subtract times 2 from F).

F- Bits 15,14,13 = 1, bits 12-2 is word index
into parameter space (add times 2 to F).

43

APPENDIX D

RCWs and MKSCWs

Return Control Words (RCWs) are used to remember

where we go after we finish a procedure call, i.e. the

return address. Mark Stack Control Words (MKSCWs) are used

to remember where the stack was before the procedure was

,entered. This is used in a block exit to 'cut back' the

stack.

The stack is marked with a MKS operator before

~pushing on the parameters and after the stack cell for a

typed procedure (to pass through the answer) has been allo

~ated. This is done with a level 0 MKSCW. If we are to

enter a segmented block (not a procedure, i.e. IF be THEN

BEGIN INTEGER I; •••) and that block is declared at lex

level (not to be confused with the begin-end level) N, then

the stack is marked with a MKSCW of level N. The MKSCW of

level 0 is located in the PRT as its first entry, the MKSCWs

of other levels are allocated dynamically into the PRT as

needed.

A MKSCW always points to the current mark stack word

(MKSW) of its level. Each MK.SW points to the previous MKSW

44

of its level. In this fashion the stack is linked.

RCWs work in a similar manner. The F register

points to the most recent RCW. Each RCW points to the

next most recent RCW. RCWs are created mainly by the SBR

instruction but can be created (or fuged up) .by a COMM-9

call for a segmented block exit.

An RCW is composed of three major parts. One part

tells which block and where in that block this procedure

was called from. A second part describes where the previous

RCW is, an~ the third part tells which, if any, files, arrays

_and pointers were declared locally to the procedure being

exitted. Files must be closed, arrays de-allocated, and

pointers un-linked. This is done by the RTN operator. A

typical RCW is outlined on this page.

(MkSCW) 11+' ~

',

F ,
ff cw

45

I ~ l v. (" e Ret11 n..J
foiafs 7?J M KS '-t.J
icr•tt I _ , ••• ,,... ,,.s
ll«•n .. ,. It

O.P.~ o~
to

. t /;
La-level

Pt-,~
;ous Rev

1.cc-1~ ';
&o ,.,,.c. · ~i ~.

One block exit cleans the stack such that the value

being returned (under the MKSW) is left on top of stack.

For exitting a nested block·or.procedure via a GO

TO or by reaching the end of a segmented block and 'fall

out', COMM-9 is used as follows:

If we are exitting to a procedure block and cross

ing through at least one other procedure boundary, then we

fake up the RCW to the procedure that we are go to-ing to

and change the return address (relative PC) i~ the RCW and

make the F register point to that RCW. Then we do a RTN

which does a block exit after fixing up the MKSCW for level

~. This will clean up the environment for us.

In all other cases we are not crossing a procedure

boundary. We build a RCW on the top of stack with a return

address (relative PC) and address of program descriptor we

wish to go to. Then we fake up all the links so that when

we do a RTN our environment will get cleaned up for us. Then

we do our RTN which will pull us into the proper block and

clean the stack.

APPENDIX E

ARRAY LINKS, POINTER LINKS, & FILE LINKS

The data structures ARRAY, POINTER, and FILE are

linked up in the order of their respective declarations

for the following reasons:

Files declared locally to blocks must be closed

when the block is exitted. Arrays declared locally to

1>locks must be de-allocated and their overlay cells freed

~for other array rows. Pointers are linked up to prevent

·the infamous up-level attach where a global pointer is

.attached to a local array. The block is then exitted and

the array descriptor, being built in the stack, gets over

written and is no longer an array descriptor, yet is treated

as such when the pointer is accessed. Well, we managed to

get around that problem!

There are three linked lists in the ALGOL run-time

system; one for files, one for arrays, and one for pointers.

Each list has two entry points; one for pre-linking, and

one for post-linking. Globals, in the outermost block~ and

own declarations are pre-linked in their appropriate list

the first time that their declaration is encountered.

47
•

Thereafter they are not linked. Locals are post-linked

into their appropriate list each time their declarations

are encountered. That is because they get unlinked by the

block exit routine.

When we do a block enter via a SBR, we save the

current post-links so that when we do a block.exit, we can

'un-declare' the declarations for that particular block.

The links work as follows:

FILES -

Each file link points to the file descriptor of

the file declared after it. This is initialized

to 0 for ground until the file after it is declared.

The file-link is the fourth word of the file descrip

tor (see APPENDIX F).

ARRAYS -

Each array link points to the array link of the

array-link of the array declared after it. This

also is initialized to 0 until the array declared

after the current declaration gets declared. The

array link is immediately before the array descrip

tor (see APPENDIX G).

48

POINTERS -

Each pointer link points to the pointer link of

the previously declared pointer. The pointer in

the front of the list points to ground (0). The

pointer-link is the third word of a pointer descrip-

tor {see APPENDIX I).

A stack configuration then could look like the fol-

lowing with local descriptors built in the stack and linked

RCWs and MSCWs from procedure entrances:

r ryr·,. f

49

APPENDIX F

FILE DESCRIPTORS

MAXRECSIZE - bits 15-3

KIND - bits 2-0

OPEN BIT - bit 15

value file-kind

0 BINARY
1 ASCII
2 REMOTE
3 unformatted REMOTE
4 PRINTER
5,6,7 ILLEGAL DEVICE (7 is default

KIND)

MYUSE - bit 0 = IN, bit 1 = OUT

CURRENTRECNO - (BINARY files only) record number to do next
sequential I/O to (first record of file is
record number 0)

50

APPENDIX G

ARRAY DESCRIPTORS

14Elfft'/

.----1- -~-------- PnturM -----
---·-----~·--. --~

·-. •··- -- ·------4

o/' IO
1
"

1

LB - LOWER BOUND

P PRESENCE BIT (bit 15)

D TWO-DIMENSIONAL BIT (bit 14)

S - SEGMENTED BIT (bit 15)

N - NUMBER OF ENTRIES IN ROW OR DOPE VECTOR
(bits 12-0)

The pointer word, word 2 (word 1 being the size and

info word), contains the address of the word inunediately

preceding the first entry of the array row or dope vector

if the present bit is on. If either of bits 13 or 14 are

on (equal 1) then the word pointed to by word 2 is a dope

vector. Each entry in the dope vector is a four word entry

identical to an array descriptor without the array-link.

If the dope vector is of the segmented type (bit 14 on)

then the lower bound entry in each of the dope vector

51

entries is set to 0. Otherwise the lower bound entry in

each of the dope vector entries is set to the lower bound

of the second dimension (array rows). Note that bits 13

and 14 cannot ever both be on (dope vectors never get seg-

mented). If bit 14 (D) is on then the LB entry in the array

descriptor is the lower bound of the first dimension (the

dope vector dimension). In all other cases the lower bound

entry is the lower bound of the array row. Array rows of

two-dimensional arrays never get segmented. If a one-

dimensional array is declared long, it also will never be

segmented. If a one-dimensional array is not declared long,

then if the size of the array row is less than 257 words,

it also will not be segmented.

-Word 1 of the array descriptor reflects the number

of entries in the row pointed to by word 2 not the number

of words in that row. If the row is a row of REAL entries,

each entry is two words long. The indexing algorithm takes

this into consideration when it indexes into the array row.

The third word of the array descriptor is the disk

address of where the array row can be found if it is non-

present but allocated. This entry is initialized to zero

for boolean and integer arrays and to minus one for real

52

arrays. If this entry is its initialized value when an

indexing is attempted then an array row is created and

assigned unique swap space in the swap file. The record

number of this space is put in t~e third word of the array

descriptor in bits 13-0. If the initial entry in this word

was negative then bit 14 of the disk address records this

by remaining on; otherwise it is off. The MAXRECSIZE of the

swap file is 128, the same as the segment size of segmented

arrays.

'

53

APPENDIX H

PROGRAM DESCRIPTORS

P - PRESENCE BIT (bit 15)

SIZE - NUMBER OF WORDS IN SEGMENT

·-------· ---1
-----~

I
·-·-----J

I
·---------·-~

c.o J e
ro l:Je

~ ,.,., , . ., '" f("/

DISK ADDRESS - RECORD NUMBER INTO CODE FILE OF WHERE THE
CODE SEGMENT MAY BE FOUND IF IT MUST BE SWAPPED
IN. SET BY THE COMPILER.

SEGMENT NUMBER - SEGMENT NUMBER OF COMPILED SOURCE. SET
BY COMPILER. USED IN DUMPING STACK HISTORIES.

54

APPENDIX I

OTHER DESCRIPTORS

INTEGER, BOOLEAN DESCRIPTORS

1-word descriptor contains a 16-bit value

All 16 bits are used for data. For booleans, bit

0 is the TRUE/FALSE bit with 1 as TRUE and 0 as FALSE.

REAL DESCRIPTORS

2-word descriptor

POINTER DESCRIPTORS

1-----1·~ address of array descriptor attached to
--- (or 0) byte index into that array row

---~-----1_..---(base of 0) pointer-link

TRUTHSET DESCRIPTOR
17-6

l 7 - "" .-----.
s- 7-1/o -,.,_ ,c•----

117 - I0'..·-----1
I .:. ., • I~''

lt;'1 -N(·-----
/ 7 ·: - I(, '....,_ __ __.

8 words for bit index from 0 to 177 octal.
Bits are numbered from right to.left.

These descriptors are always present. They are

either in the PRT or are built in the stack. Hence there

is no presence bit for these descriptors.

55

TYPE

APPENDIX J

MEMORY LINKS and MEMORY DESCRIPTORS

ro WoltP I ,., #.l~rT /q'1«f
l11fhtd,.f f e9,., ~" r

TO Wo,.J I o.f Jo.-~ J~sc,il'..,,,
.__ /1

Memory is linked in a link list of memory areas or

segments such that the smallest memory segment is first in

the list and the largest memory segment is last in the list.

The SIZE words contain the number of words between words

- A and B inclusive.

The TYPE word indicates the type of information

contained between words A and B inclusive. If TYPE =
.

3"177772" then this is the PRT and stack memory area. If

TYPE = 3"17777'/J" then this area is one of the File Infor-

mation Blocks (F!Bs). Otherwise the following bits in the

TYPE word have the following meanings:

BIT·l5 - SAVE BIT. If this bit is on then the memory con-

tained between words A and B inclusive is so·

56

important that either we or the programmer decided

that it should not leave core once it was brought

in. The programmer can create save storage

through SAVE declarations or by the use of the

LOCK statement.

BIT 14 - IN-USE BIT. If this bit is on then there is a

descriptor somewhere that points to this area.

Note that if a segment is saved then the in-use

bit is also on.

BIT 13 - PROGRAM/DATA BIT. If the IN-USE bit is on and the

memory in this segment is data then this bit is

on. If the memory is program then it is off.

BITS 12-4 are unused.

If this segment is in use and the PROGRAM/DATA bit

is on indicating that this segment contains ALGOL data,

then the following applies. Otherwise Bits 3-0 are unused.

BIT 0 - If on then this area contains REAL entries (2-word

as opposed to 1-word entries).

BIT 1 - If this bit is on then this seg~ent contains a dope

57

vector (4-word entries). Bit 0 will also be on.

BIT 2 - This is the I-HAVE-BEEN-CHANGED bit. If this bit

is on when we are about to swap some data out, then

the swap out to the swap file is necessary. If

this bit is off then there is an exact duplicate

of this data in the swap file and we need not write

this data out this time~ This bit is set when an

array row is created, changed by an assignment to

an indexed array element, or any replace statement,

or whenever a read I/O is done to an array row.

BIT 3 - If this bit.is on then bits 0 and 1 are also on

and this area is a dope vector. This bit says that

the dope vector points to a REAL array row. This

is used in the indexing algorithm done for seg

mented arrays.

58

APPENDIX K

SPECIFICATIONS OF THE CODE FILE

1. The code file must be a BINARY file with a maxrecsize

of 128. Under DOS that means that the file must be

contiguous.

2. Record 0 (first record of the file) must contain the

following information:

WORD

1

2

3

4

5

6

7

CONTENTS

Record number of where the PRT is located in
the code file

number of words in the PRT

0 (compiler puts the number of errors encoun
tered here)

1 (compiler puts a 1 if this is a main program
and a 0 if a bindable procedure)

Record number of where the external symbol
table is located at

Size (in words) of the external symbol table

-1 (compiler sets this upon successful compile)

Link to the first program descriptor to be
compiled.Word 2 of that descriptor then points
to word 1 of the next segment to get compiled.
This is for the binder. The last segment to
get compiled has a 0.

\

59

WORD CONTENTS

B Next segment number available. Used also by
the binder.

9 Version of the compiler that compiled this
code. This must agree with the version of
the run-time system as the compiler generates
version-dependent code.

3. The 13th word in the PRT (R+12 decimal) is the program

descriptor for segment number 1 (the main block).

60

i10* I I
172 r-·--·-·-"I
174 f.fo1 .. ~·-~-~.I
176 LJ:J __ ·Jtl~

APPENDIX L

ABSOLUTE ADDRESSES IN THE

ALGOL RUN-TIME SYSTEM

Points to FIB of code

Points to FIB of swap

Option word 1 (options

Option word 2 (options

file being run

file

A through P)

Q through Z)

The only option to affect the operating system is

the /S option (bit number 2 in word 176). If this bit is

off, the following will happen on INPUT/OUTPUT to ASCII

files. On input trailing spaces will be filled in place

of and after the line terminator to fill the record for

the specified word count. On output the entire .record

will be transferred with a carriage return-line feed after

the last character to be transferred.

If this bit is on, the trailing spaces on input

will be filled as trailing null characters (ascii zeros).

On output trailing spaces will not be transferred.

* All addresses are in octal

61

On ASCII input then, the line terminators other

than FORM feed will not be tranferred. If the line termi

nator is a carriage return line-feed then neither character

will be transferred. Both will be filled.

62

APPENDIX M

PRT CELL ASSIGNMENTS

WORD* CONTENTS

1

2

3

4

5

6

11

12

13

14

MKSCW for level 1

Not used

Used to hold zerosuppression character in binary
to string conversion.
Used also by REPLACESTMT in BY <ae) [FOR ae]
replace.

,..__._ SCRATCH POINTER 1

]-
Used by compiler for temporary storage
(only once in REPLACESTMT) .

.... __ ARRAYS built here during declarations

Not used

15 ,__ ___ PROGRAM DESCRIPTOR for segment 1

16

17

* All address in octal

63

WORD*

21

22-31

32-41

42-51

52-61

62

CONTENTS

I/O toggle (neither READ nor WRITE). Used to
communicate between the· compiled code and the ·
I/O routines.

TOGGLE (READ-ONLY). Contains result of most
recent SCAN or REPLACE.

ALPHAONLY truthset

NUMERIC truthset

ALPHANUMERIC truthset

SPECIAL truthset

First cell assigned by the compiler.

* All address in octal

64

APPENDIX N

ALGOL RESERVED WORDS 1

All reserved words in PDP-11 ALGOL have the syn-

tactical structure of identifiers. The reserved words are

divided into three types: type 1, type 2, and type 3.

Type 1 reserved words are those words that cannot

be used as identifiers, that is, they cannot be associated

with any entity, declared or specified, in the program.

In the reserved word list, type 1 reserved words are denoted

by (1). For example, BEGIN(l).

Type 2 reserved words are those words that can be

declared to be identifiers (overriding their previous mean-

ing). That is, everywhere within the scope of the declared

or specified entity, the type 2 reserved word references

the declared or specified entity and not the function nor-

mally referenced by the reserved word. In the reserved

wo~d list, type 2 reserved words are denoted by (2). For

example, ALPHAONLY(2).

1) Reprinted from B6700/B770~ EXTENDED ALGOL MANUAL,
Appendix A-1.

65

Type 3 reserved words are words that can be declared

to be identifiers, but, when used in the language as speci

fied by the syntax, have the reserved meaning. They are

therefore 'context sensitive'. In other words, whenever

an identifier that coincidentally spells a reserved word

of type 3 is used in the language where the syntax calls

for a reserved word of type 3, the identifier is not con

sidered by the compiler to be reference to some entity,

but rather the reserved word of type 3. If, however, the

identifier appears in the language where the syntax does

not call for a reserved word of type 3, the identifier is

taken by the compiler to be a reference to some .entity

declared or specified in the program, in which case the

particular entity being referenced is determined by the

rules of scope. Note the difference in the example on the

following page. Reserved words of type 3 are file mnemonics

or file attributes. In the reserved word list, type 3

reserved words are denoted by (3). For example, KIND(3).

% THIS PROGRAM DEMONSTRATES TYPE 3 RESERVED WORDS
% USING THR TYPE 3 RESERVED WORD 'KIND'
BEGIN

FILE F;
INTEGER KIND;

% IN THE FOLLOWING STATEMENT 'KIND' REFERENCES THE INTEGER
% VARIABLE 'KIND'.

KIND:=2;
% IN THE NEXT STATEMENT 'KIND' IS A TYPE 3 RESERVED WORD.

F.KIND:=VALUE(PRINTER);
KIND:=F.KIND:=KIND+l;
END.

67

ABS (2)
ADDR(2)
ALPHA ('J)
ALPHANUMERIC(2)
ALPHAONLY(2)
AND(2)
ARRAY(l)

·BEGIN(l)
BINARY(2)
BOOLEAN(l)
BY(2)

CASE(2)
CHAIN(2)*
CLOSE(2)
COMMENT(l)
COMPILETIME(2)
CURRENTRECN0(3)

DECIMAL(2)
DEFINE(l)
DELTA(2)
DIGIT(2)
DIGITS(2)
DISK(3)

· DIV(2)
DO(l)

ELSE(l}
END(l)
EQL{2) ·
EXTERNAL(!)*

FALSE(l)
FIELD(l)*
FILE(l)
FILL(2)
FIRSTONE (2)
FOR(l)
FORWARD(l)

GEQ(2)
GO(l)
GTR(2)

HEX(2)

IF(l)
IN(2)
INTEGER(l)
10(3)

KB(3)
KIND(3)

LABEL(l)
LEQ(2)
LIST(l)*
LOCK(2)
LONG(l)
LP(3)
LSS(2)

MAX(2)
MAXRECN0(3)
MAXRECSIZE(3)
MIN(2)
MOD(2)
MYUSE(3)

NEQ(2)
NOT(2)
NUMERIC(2)

OCTAL(2)
OF(2)
ONES(2)
OPEN(3)
OR(2)
OUT(3)
OWN(l)

POINTER(l)
POLISH(2)
PRESENT(3)
PRINTER(3)
PROCEDURE(!)
PRTBASE(2)
PURGE(2)

READ(2)
REAL(l)
RELEASE(2)
REMOTE(3)
REPLACE(2)

SAVE(l)
SCAN(2)
SHIFT(2)
SHL (2)
SHR(2)
SIGN(2)
SIZE(2)*
SPECIAL(2)
STEP(l)
SWAP(2)
SWITCH(l)

TEKT(3)
THEN(l)
THRU (2)
TIME(2)
TITLE(3)
T0(2)
TOGGLE(2)
TRUE(l)
TRUTHSET(l)
TTY(3)

UNTIL(l)

VALUE(l)

WHILE(l)
WITH(2)
WORD(2)
WORDS(2)
WRITE(2)

ZEROSUP
PRESSED(2)

* These words are reserved at the indicated level but the
compiler does not know what to do with them yet.

68

APPENDIX 0

ALGOL BUILT-IN FUNCTIONS

FUNCTION

/

ABS(< ae>)

*ADDR(<. id>)

*ADDR(<l-dimensional array
name>)

*ADDR((indexed array ele
ment>)

BOOLEAN(< ae>)

#COMPILETIME(<integer>)

RESULT

INTEGER. Returns the absolute
value of < ae 1.

INTEGER. Returns absolute
adclress of ~id>.

INTEGER. Returns absolute
address of first element in
array.

INTEGER. Returns absolute
address of indexed element.

NOTE. It should be noted that
arrays get swapped in and out
as need be and that the last
two functions return the cur
rent absolute address.

BOO~EAN. Returns the value
of <ae> as boolean.

INTEGER. Allows the user to
obtain various time functions
at the time of compilation.
The argument must be a constant
between 0 and 5 inclusive.
Refer to the TIME intrinsic
for the values returned.

* EXTENSIONS to this ALGOL not found in EXTENDED ALGOL.

I IMPLEMENTATION is slightly different from EXTENDED
ALGOL.

69

FUNCTION

#DELTA(<pel>,<pe2>)

FIRSTONE(<ae>)

INTEGER(<ae>)

#INTEGER(<"pe> ,<ae>)

MAX(<ael>, •.• ,<aeN>)

MIN (<ael> , •.• , <aeN.~)

ONES (<ae>)

70

RESULT

INTEGER. The number of char
acters given by< pe2 > minus
the nwnber of characters given
by < pel > is returned".. Does
not check for segmented array
as on the B6700.

INTEGERo Returns the bit num
ber of the left most non-zero
bit, plus one. It is set to
zero if no non-zero bit is
found.

INTEGER. Returns the value
of <ae>. When implemented
properly, <ae> should be REAL
and value returned is <ae>~.5.

INTEGER. Returns the decimal
value represented by the char
acter string starting with the
character indicated by the < pe>.
The lerigth is determined by the
expression <ae>. The value is
determined by interpreting the
low order 4-bits of each char
acter as decimal. B6700 allows
pointer update in < pe>.

INTEGER. Maximum value of
<ael>, ..• , <aeN> is returned.
N ~.l.

INTEGER. Minimum value of
<ael>, ... , <aeN> is returned.
N >.. 1.

INTEGER. Returns the number
of non-zero bits in <ae>.

FUNCTION

POINTER(<l-dimensional
array name,')

FOINTER(<indexed array
element>)

POINTER(<array row desig
nator:>)

POLISH

·PRTBASE

*SHIFT(<ael) ,<ae2>)

*SHL (<aeL>, <:ae2,>)

71

RESULT

A pointer is generated to
point to the low byte of the
word specified.

INTEGER. When assigned to
pushes the value onto the top
of stack. When used in an
expression, pops the top of
stack for its value. Care
should be exercised when using
this intrinsic.

INTEGER. This variable con
tains the value of the MKSCW
of level 1. This variable
should not be written into.
Its address is PRTi-0.

INTEGER. Returns the value
<ael> shifted to the right or
left the number of bits speci
fied by ABS(<ae2>). The shift
is to the left if <ae2> is
less than zero. Zeros are
brought in from either side
during the shift.

INTEGER. Returns the value
<ael> shifted to the left the
number of bits specified by
<ae2>. A negative <ae2> re
sults in a shift to the right
of -<ae2> pits.

FUNCTION

*SHR (< ael>, <ae2>)

SIGN(<ae>)

ITIME(,,.ae>)

/>TOGGLE

RESULT

INTEGER. Returns the value
<ael> shifted to the right
the number of bits specified
by <ae2>. A negative <ae2>
results in a shift to the right
of -<ae2> bits.

INTEGER. Returns +l if< ae>
is greater than 0; 0 if <ae>
equals 0, -1 otherwise.

INTEGER. TIME makes various
system times available to the
user as follows:

0 - current second,
1 - current minute,
2 - current hour,
3 - day of month,
4 - month of year, (.JANUARY

is month 1)
5 Julian year

BOOLEAN. Returns the result
of the most recent SCAN or
REPLACE statement. TOGGLE is
set to TRUE if termination of
the operation was due to max
count underflow and FALSE if
termination was due to condi
tion failing. Maxcount is
checked before condition.

TOGGLE is global in this imple
mentation whereas on the B6700
it is local.

MNEMONIC

CURRENTRECNO

KIND

MAXRECNO

MAXRECSIZE

MYUSE

OPEN

APPENDIX P

MNEMONIC FILE ATTRIBUTES
)

KIND -
INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

BOOLEAN

RESULT

Used only with BINARY files.
Contains which record is to
be READ/WRITTEN on the next
I/O if it is sequential.
READ/WRITE.

When read returns the filekind
of the file. When written
(not allowed on open files)
sets this attribute.

When read will return the num
ber of blocks in an ASCII file
and the maximum record an I/O
is allowed to in a BINARY file.
This attribute cannot be
changed on an open file.

When read/written returns/sets
the MAXRECSIZE of the file.
This attribute cannot be change:l
on open files.

When read/written returns/sets
the MYUSE attribute of the
file. This attribute cannot
be changed on an open file.

When read indicated whether
the file is opened (TRUE} or
closed (FALSE). When written
will open or close a file
depending upon whether the
boolean value is TRUE or FALSE.

73

MNEMONIC

PRESENT

TITLE

KIND .RESULT

BOOLEAN When read indicates whether
the file exists (TRUE) or not
(FALSE). When written will
create or purge the file de
pending upon whether the
boolean value is TRUE or FALSE.

STRING When read or written (can only
be done in REPLACE statements)
returns or sets the external
title of the file. When set,
a null should follow the file
name.

74

APPENDIX Q

COMPILE-TIME OPTIONS

There are eight compile-time options. These

options control the compilation and listing of the source.

Each control card can contain at most one compile-time

option.' A control card is denoted with an at-sign in col

umn 1 and the compile-time option in column 2. Any other

required information follows in colwrm 3. If an option

is not recognized, it is ignored. The options, when en

countered,. are togged from TRUE to FALSE and from FALSE

to TRUE with the exceptions of the C, F, and I options.

The options, their default conditions, and a description

of what they do follows:

C <title>

This is the CHAIN option. It may be in either

the primary or secondary input file. It closes the cur

rent source input file and opens the file denoted by ~title>

for the remainder of its input from that file.

That is, a chain option encountered within the

INCLUDE file will close the INCLUDE file and open the file

75

denoted by <title> to be the INCLUDE file. This option

will not reopen the file in which the CHAIN option was

encountered. The <title> must appear in columns 3-35.

D {RESET)

When set prints out the code generated in both

octal and BS500 assembler mnemonic fonn along with the

source in the listing file.

E (RESET)

When set produces only an error listing. This is

equivalent to a RESET-LIST on the B6700.

F cannot be SET or RESET

When this option appears a top of form is printed

in the listing file (only if the current page of listing

is non-blank).

I (title>

This is the INCLUDE option. It can only appear in

the primary input file. When it appears, it will open the

file designated by <title> and read and compile source from

this file until it encounters an end of file at which time

it will close the INCLUDE file and continue to read and

compile source from the primary input file continuing with

the card after the INCLUDE card. More than one INCLUDE

card may appear in the primary input file. The <title>

must appear in columns 3-35.

0 (RESET)

When this option is set any non-control cards will

· be treated as comment.

P (RESET)

When set all address generated by the compiler

will appear in the listing file as the compiler generates

them.

APPENDIX R

COMPILER COMMAND STRING SWITCHES

The following are the allowable switches in the

compilers connnand string. Only the first letter of each

switch is significant. Any other switch than these will

result in an 'ILLEGAL SWITCH' error message. The options

and their results are:

/C option (CRUNCH)
•

The code file has to be pre-allocated because of

the way DOS handles contiguous files. In order to compile

the compiler (which is currently 126 blocks big) the code

file is pre-allocated as being 140 blocks long. The /C

option will crunch the file at the end of the compile to

be only as long as is necessary. This option should only

be used on files smaller than 75 disk blocks.

/D option (DEBUG)

Sets the default state of the @D, @P compile-time

options to TRUE.

78

PREFACE

The purpose of this manual is to instruct ALGOL programmers in writing and using
pointer expressions. This manual covers the various syntactical constructs re
lated to pointer expressions and illustrates the pointer manipulations involved
in their execution. Examples of ALGOL pointer expressions are given with complete
explanations of their use. The B 6700 uses pointer expressions as in-line code
strings generated by the compiler. Thus, extremely fast handling of alpha/numeric
editing in ALGOL programs is permitted. The B 5700 compiler, in using a pointer
expression, calls a communicate and passes parameters. This procedure slows down
the processing speed but· still allows effective use of pointer expressions .
.

Consequently, this manual has been written from the point of view of the user of
the B 6700. Notes have been added, however, that explain the syntactical constructs
needed by the user of the B 5700.

At present, the information in this training manual is up to date and accurate.
This information is subject to change, however, because changes in system software
are likely to occur. It will be advisable to refer to the latest edition of the
B 6700 Extended ALGOL Infonnation Manual for details about the most recent imple
mentation of pointer expressions.

For their contributions to this manual, the author wishes to thank John Rooney
and James Keen of the Field Support Organization, William Johnson of the Systems
Support and Planning Department, and Phillip Shafer of the Advanced Development
organizatio~.

i

TABLE OF CONTENTS

Preface.
1.0
2.0
3.0
4.0
s.o
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

Definitions.
Pointer Declaration.
Pointer Assignment Statement
Updating Pointers.
String Statements.
String Transfer Statement.
String Scan Statement.
String Translate Statement •
Pointer-Valued Attributes.
Compare Expressions.
DELTA Function •
Type Transfer Functions Using Pointers •
List Statements Using Pointers •.•
Using Picture Identifiers.
Pointer Examples

81

iii
1-1
2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1

10-1
11-1
12-1
13-1
14-1
15-1

iii

1. 0 DEFINITIONS

The following mnemonics are used in this manual. The definitions of these
mnemonics are as follows:

Mnemonic Definition

SB Source string before execution

SA Source string after execution

DB Destination string before execution

DA Destination string after execution

AE Arithmetic expression

PE Pointer expression

The term "pointer" is defined as follows:

pointer a representation of the relative address of a character position
with respect to the beginning of a one-dimensional array or an
<array row> of a multidimensional array. Thus we say it "points"
to a character position.

83 1-1

2. 0 POINTER DECLARATION

I\ pointer wor<l must be reserved in the B 6700 stack (in the B 5700 PHT) for
each pointer i<lcnt.i ficr needed for the program. The syntactical rules for
a pointer declaration are the same as for any ALGOL declaration.

Example:

BEGIN

REAL A, B, C;

POINTER POINT, PA, T;

DEFINE P = POINTER# ;

etc ••••
The pointer declaration exemplified above would reserve words for storing
the addresses pointed to by POINT, PA, and T.

84 2-1

3.0 POINTER ASSIGNMENT STATEMENT

3.1 The pointer assignment statement assigns an address of a character within
the designated array, which is the next character to be accessed within
the string, in the reserved word designated by the pointer declaration.

Syntax:

<pointer assigrunent> ::=<pointer identifier>

<replacement operator> <pointer expression>

Example:

BEGIN

ARRAY ABLE [O. 3] ;

POINTER PA, PB, PC, PD;

PA := POINTER (ABLE); % CASE A

PB := POINTER (ABLE [O]); % CASE B

PC := POINTER (ABLE [2]); % CASE C

PD := POINTER (ABLE [1}) + 3; % CASE D

In cases A and B above, the actions are identical. The addresses placed in
PA and PB are the same.

PD :=POINTER (ABLE);

(ABLE) SB :: ABCDEF GHIJKL -----.

' PA

PA now points to the first character of array ABLE.

In case C the address is set to the base location of array ABLE plus 2
memory words. Assumming that ABLE (0:3] was declared, then the array
assigrunent is 0-1-2-3; therefore ABLE [2] is the third word of the array.

In case D the charact~r desired is not the first character of the word but
the fourth, as the ·Charactel' assignment of a word is 0-1-2-3-4-5.

PB :=POINTER (ABLE [l]) .+ 3;

(ABLE) SB :: ABCDEF GHIJKL MNOPQR STUVWX

' PD

85
3-1

3.2 The B 6700 has three types of word fonnat:

a. BCL -- Six-bit characters, eight characters per word.

b. EBCDIC -- Eight-bit characters, six characters per word.

c. NUMERIC -- Four-bit characters (on B 6700 only).

The B 6700 assumes an eight-bit character (EBCDIC) as a default value when
not specified. The B 5700 assumes a six-bit character (BCL) as a default
value. On the B 5700 only one character (six bits) is permitted; however
the B 6700 can handle any one of the three. On the B 6700, when using
the six-bit or four-bit case, a character size identifier of 6 or 4 must
be specified.

PA :• POINTER (A, L)

where L specifies character bits.

Example:

PA:= POINTER (ABLE [l], 6);

(ABLE) SB :: ABCDEFGH IJKLMNOP Q ----.

' PA

Once the six-bit configuration is assigned, the computer will assume all
character movement to be eight characters per word, until a new assigrunent
is made.

The statements PA := POINTER (ABLE) and PA := POINTER (ABLE, 8) are synonymous
on the B 6700.

3.3 Restrictions: A pointer assignment statement may not point to a word beyond
the declared area of the array declarations.

Example:

ARRAY BAKER [O:l];

POINTER PB;

PB:= POINTER (BAKER [2], 8);

%% ILLEGAL ASSIGNMENT

3-2

3.4 Pointers may be assigned to each other as long as they are declared pointers.

Example:

POINTER PA, PB, PC;

PA:= POINTER (ABLE);

PB .- POINTER (ABLE (2]);

PC := POINTER (BAKER [l]) + 3;

PA:= PB;% PA now points to ABLE [2];

PA := IF (BE) THEN PB ELSE PC;

If Boolean expression (BE) is true, then PA will point to ABLE [2]; otherwise
it will point to BAKER [l] + 3.

3.5 Pointers can also point to multidimensioned arrays; however, the pointer will
always point to the last dimension.

ARRAY DICK [0:6, 2:8];

PA := POINTER (DICK [3,4]) + 3;

PA now points to the fourth row (0,1,2,3), the third word (2,l,4 ...), character
four of array DICK.

87 3-3

4.0 UPDATING POINTERS

4.1 Pointers are not automatically updated after use; they can be reassigned to
a new character by use of the following statement.

PA := PA ±. N;

where N is a signed integer or arithmetic primary. If N is not an integer,
it will be rounded prior to the execution.

N can move the pointer forward or backward. At run time a SEG ERROR will
occur if the pointer overflows or underflows the boundaries of the array.

4.2 Two methods are available for updating pointers:

a. By assignment, as previously discussed.

b. By update constructs used in REPLACE and SCAN statements.

4.3 Syntax for Update Construct

::=<update pointer> : <Pointer expression>

4.4 Example of Update Constructs

Basic example of update constructs follows:

REPLACE PA:PB. etc ••

SCAN B:Q •• etc.,

P:P

PB : PA + (A+B/C) (Note: arithmetic primary must be in parentheses.)

T : Q :=POINTER (ARA [16], 8)

Example:

BEGIN

ARRAY ABLE [0:4];POINTER A;

A := POINTER (ABLE,8) + 4;

SB :: ABCDEF GHIJKL MNOPQR
A
A

REPLACE P:A BY "ZYX";

SA : : ABCDZY XHIJKL MNOPQR

j ' A p

88 4-1

Example:

SB :: ABCDEF GHIJKL MNOPQR -----

REPLACE PB : A := POINTER (ARA, 8) + 10 BY "CB"

SA :: ABCDEF GHIJCB MNOPQRS

' ' A PB

4.5 It may be necessary to use a pointer identifier as a recursive identifier. In
these cases, the statement would occur as follows:

4-2

REPLACE PA:PA-6 BY etc ••••

At the start of this execution, PA would be decremented by 6 and the character
transfer started. At the completion of the execution, PA would address PA-6
plus the characters replaced.

Example:

DB : : ABCDEF GHIJKL MNOPQR --
&

PA

REPLACE PA:PA-2 BY PB FOR 6;

DA:: ABCDEF GHIJKL MNOPQR ---(DESTINATION)

' PA

89

5.0 STRING STATEMENTS

There are four basic string statements:

a. String transfer statement.

b. String scan statement.

c. String translate statement.

d. File name change statement.

5.1 String Transfer Statement

The purpose of this statement is to transfer a string of characters from
one area of memory to another.

5.2 String Scan Statement

The purpose of this statement is to test.a string of characters for a match
to a desired character or a desired type of character string.

5.3 String Translate Statement

·The purpose of thi~ staten,ent is to transfer a string of characters from one
area to another and translate the bit coding of each source character to a
new character in the destination area.

· 5.4 File Name Change Statement

The purpose of this statement is to allow a progranuner to modify certain file
attributes within the program.

90 5-1

6.0 STRING TRANSFER STATEMENT

For these examples it is assumed that the following declarations have oc
curred within a program.

BEGIN

ARRAY ARA, ARB [0:13];

POINTER PA, PB, PC;

INTEGER I, J;

I := 80;

PA:= POINTER (ARB);

PB .- POINTER (ARA);

6.1 ·REPLACE <destination> BY <source> FOR <AE> <units>;

Example:

REPLACE PB BY PA FOR 6 WORDS;

This would transfer the first six words starting from ARA [O] through
ARA [5] to ARB. This is an eight-bit character set; tnerefo~e, 36 characters
would have been transferred.

Example:

REPLACE PA + 4 BY PB FOR 10;

(ARA) SB :: ABCDEF GHIJKL MNOPQR STUVWX YZ
• PA

{ARB) DB :: THIS _I S_A_SA MPLE_O
• PB

(ARB) DA:: ABCDTH IS_IS_ A_OPQR STUVWX YZ

Note that here ARA pointer PA was advanced forward by 0, 1, 2, 3, 4 before
transferring started. Also note that only the addressed area is overwritten.

91 6-1

6-2

Example:

REPLACE PC:PB+7 BY PA:PA+2 FOR 3;

(ARA) SB : : ABCDEF GHIJKL · MNOPQR ST--
A

PA

(ARB) DB :: (blanks)

(ARA) SA :: ABCDEF GHIJKL MNOPQR ST-
A

PA

(ARB) DA : : ------
1

PB

-CDE-
A

PC

This illustrates the use of updating pointers for sequential replacement of
a string of characters. PA was updated plus two digits to start the transfer;
and it now points to F, the next digit to be transferred. PB was reset to
its starting point, while PC was updated to point to the next character
after E in ARB.

Example:

J := 8

REPLACE PA:PC .- POINTER (ARB [l], 8) BY PB:PB .- POINTER

(ARA [2]) FOR J;

SB & DB NOT SHOWN

(ARA) SA • • ABCDEF GHIJKL MNOPQR STUVWX

' ' PB(before) PB(after)

(ARB) DA •• ------ MNOPQR ST----
1 1

PC PA

Four items of interest are shown here.

a.

b.

c.

d.

PC was first set to ARA[~], first character.

PA was updated to retain the final PC address.

PB was initialized and updated; this overwrote the initial assignment
statement.

A variable was used as the character count.

92

Example:

REPLACE POINTER (ARB) BY POINTER (ARA [3]) FOR 2 WORDS;

(ARB) SA:: STUVWX YZ0123 ----

Two items appear here:

a. Temporary (undeclared) pointers are used to point to ARB [O] and ARA [3].
These pointers are valid only during this statement.

b. Transfer was declared in words instead of characters.

6.2 REPLACE <destination> BY <source> FOR <arithmetic expression> <units>

Examples:

REPLACE POINTER (ARB) BY POINTER (ARA) FOR 6;

REPLACE PA BY PB FOR 80;

R~PLACE PA BY PB FOR 14 WORDS;

REPLACE PA BY PB FOR IF I = 6 THEN 10 ELSE 4;

If <units> is <empty> then character~ are assumed; otherwise use WORDS.

6.3 <source> FOR <max count> <condition>

This statement allows th~ transfer of characters to be under two controls:

a. The satisfying of a Boolean condition.

b. The exhausting of a maximum count of characters or words.

le A reserved word called TOGGLE is used in this construct. This
word references a hardware (flip-flop) type logic which can
cause severe problems. TOGGLE is not reset automatically and
can travel from one statement to another in a set condition and
can cause premature ending of the operation. In order to reset
TOGGLE, a dummy pointer statement may be necessary.

2. The following rules govern TOGGLE.

(a) TOGGLE is reset when <condition> halts the statement.

(b) TOGGLE is set when <max count> halts the statement.

(c) TOGGLE is called as a Boolean identifier within the program.

93 6-3

6.4

3. An excellent construct for using TOGGLE is:

DO <block using pointer expression> UNTIL TOGGLE;

This allows the pointer expression to condition TCXiGLE prior to the
Boolean test.

<max count> ··-<residual count> <arithmetic expression>

Example:

REPLACE PB BY PA FOR J:lO WHILE NEQ "A";

(ARA) SB : : BCDEAF RPSTVW

(ARB) DA : : BCDE-- ,

TOGGLE is set FALSE

J now equals 6

Notice that the value of J is decremented for each character transferred.
J was set to 10 at the start of the execution and then decremented every
time the WHILE NEQ "A" was TRUE.

Example:

J := 7;

REPLACE PA BY PB FOR I:J WHILE LEQ "O";

SB :: ABCDEF GHIJKL MNOPQR--

Since J = 7, the Boolean would not be satisfied and the transfer would end
after seven characters had been transferred.
TOGGLE is now TRUE, and I = zero.

Example:

REPLACE PA BY PB WHILE LSS 6;

This construct allows scanning until the Boolean test for 6 is FALSE.
A maximum count of 524,287 is assumed.

6.5 Condition

Condition has four fonns:

a. WHILE <relational operator> <arithmetic expression>

b. UNTIL <relational operator> <aritlunetic expression>

c. WHILE IN <table pointer>

d. UNTIL IN <table pointer>

6-4 94

h .b WllILE an<l UNTIL are similar constructs which can be interchanged.

a. REPLACE PA BY PB WHILE LSS O;

b. REPLACE PA BY PB UNTIL GEQ O;

Both "a" and "b" above will do the same operation; however the test for TRUE
is made under a different perspective.

6.7 WHILE IN and UNTIL IN are again quite similar in use; however, the TABLE
POINTER requires explanation.

6.8 <table pointer> ::=ALPHA I <subscripted variable> I ALPHA6 I ALPHAS
where <subscripted variable> .. - <array name> [subscript list]

Examples:

REPLACE PA BY PB WHILE IN ALPHA

REPLACE PA BY PB UNTIL IN ALPHA

ALPHA here is defined as A through Z, 0 through 9.

REPLACE PA : PA BY PB : PB WHILE IN ALPHA6;

This construct calls a fixed table which checks only six-bit (BCL internal)
-characters.

REPLACE PA:PA UNTIL IN ALPHAS; this is the same as using ALPHA;

6.9 Table Pointers

There are times when it is desired to do a search for a special set of
characters or bit configuration other than the ALPHA6 of ALPHAS array on
the system. These cases require you to generate your own table array.

The table array is an array of eight words of which the least significant
32 bits of each word are used as Boolean test bits.

By decoding the bits of each character, an address pointing to one bit in
one of the eight words of the table array can be selected. If this bit
is "on" then the test is TRUE, otherwise it is FALSE.

95

6-5

6-6

lbe tested character is hardware decoded in this fashion.

Example:

Add this octal count.to the base of
the array to address the correct
table word.

Detennine binary value of these five bits
and subtract it from 31.
This now points to the bit address
within the indexed array word.

Note: 0 = Least significant bit.

Suppose we have an array called

ARRAY SPECIAL [0:7];

and we wish to test for an A which is

EBCDIC (1100 0001).

The (110- ----) would equal an octal 6; therefore this would add to
the base of ARRAY SPECIAL to point to address SPECIAL (6).

The (---0 0001) would be subtracted from 31 for a count of 30.

The test would now be on the 30th bit of.SPECIAL [6], counting the
least significant bit as O.

29 26 23 20 17 14

TEST WORD = \ 31 28 25 22 19 16 13

~ @ 27 24 21 18 15 12

If bit 30 was "on" (one) then the test would be TRUE.

Example:

Suppose a test for a$, EBCDIC (0101 1011).

(010- ----)would indicate SPECIAL [2].

(---1 1011) would be Binary (27)

31 - 27 equals bit four (4) from word SPECIAL [2].

96

11 8 5 2

10 7 © 1

9 6 3 o·

6.10 <source part> ::=<string> <optional unit count>

This statement transfers the string under the control of the unit count.
If the unit count calls for fewer characters than the string provides,
the leftmost characters will be transferred.

Example:

REPLACE PA BY "ABCDEF" FOR 3;

DA::: ABC---

If the unit count is omitted then the entire string is transferred.

~ple:

.REPLACE PA BY "THIS IS A STRING";
,

DA :: THIS IS A STRING

This could be written:

IIBPLACE PA BY "THIS IS A STRING" FOR 16;

If it was written

REPLACE PA BY "THIS IS A STRING'' FOR 18;

then undetermined run-time errors are returned.
If a string is less than a word (48 bits), the 'word will be concatenated
with itself to create a full word whose characters are transferred
repeatedly to satisfy the unit count.

Example:

REPLACE PA BY "ABCD" FOR 10;

The word ABCD would be made into a word ABCDAB.

Therefore the DA would be ABCDABABCD.

REPLACE PA BY "EMPTY" FOR 10 WORDS;

will make 10 words in PA read EMPTYE. Note that if PA was not pointing
to the beginning of the word, it would be updated automatically to the
next word.

6.11 If the bit size is needed it can be added.

a.. BY 8 "ABCDEF" is equivalent to BY "ABCDEF".

b. If the BCL mode is being used then

BY 6 "ABCDEFGH" is used. (Eight bits are standard on B 6700;
six bits are standard on B 5700.)

97 6-7

Ci.12 Thl' form ·arithmetic expression> <unit count> will transfer the character or
word once for each unit count number, with the character type detennined by
the destination assignment statement. (Translation can occur.)

Example:

ALPHA X;

REPLACE PA BY X FOR 3 WORDS;

If X = ABCDEF (eight-bit character) then the string pointed to by PA would

equal ABCDEF ABCDEF ABCDEF.

6.13 Conversion from Arithmetic to Alpha

6-8

Whenever there is a need for printing or storing a type REAL or INTEGER in
alpha mode, the word DIGITS indicates a conversion to decimal digits is needed.

Example:

I : = 63;

REPLACE PA+4 BY I FOR 4 DIGITS;

Internally, I now equals hexadecimal 3F.

On execution:

DB ABCDEF GHIJKL

DA ABCDOO 63IJKL

a. The unit count indicates the number of alpha characters to be replaced
in the destination string.

b. If I was type REAL, then it would have been rounded into an integer
before conversion.

c. A limitation of 12 characters maximum is placed on the statement by
the hardware.

98

·1.0 STRING SCAN STATEMENT

Whenever a scan of a string of characters is needed for the interrogation
of a wanted character, the SCAN statement is used.

Syntax:

<string scan statement> ··-SCAN <source> FOR <max count> <condition>
or

<string scan statement> ::=SCAN <source> <condition>

The use of <max count> <condition> and <condition> are cqvered under REPLACE
in section 6.

Example:

SCAN PA:PA FOR 12 UNTIL EQL "A";

SB :: 123456 7890AB

' PA

SA:: 123456 7890AB

' PA

PA will be pointing to A on completion of this operation.

Example:

SCAN PA:PA FOR 12 WHILE GEQ "0"; (ZERO)

This will also stop with PA pointing to A. However, it would also stop
with any other alpha character.

Basic examples of SCAN statements:

SCAN PA:PA + 6 WHILE IN ALPHA;

SCAN PA:PA - 3 UNTIL IN ALPHA;

SCAN PB:PA FOR J : 10 WHILE NEQ " ";

SCAN PB:PA := POINTER (ARA [3]) + 3 FOR J:I UNTIL = "O";

99 7-1

t:xample:

SCAN PC : PA := PB-N rGR K : N + 3 WHILE IN TRlITHTABLE;

This statement would be executed in the following sequence:

a. The address in PB would be subtracted by N characters and the new
address stored in PA.

b. The value in unit count would be N + 3, and the scan would begin.

c. TRUTHTABLE would be a pointer membership table as shown in
paragraph 6.9.

d. On completion, PC would be the updated value of PA, and K would be
value of (N + 3) down counted for every character scanned.

e. If (N + 3) characters were scanned, then TOGGLE would be set and the
operation tenninated.

7.1 Remarks

7-2

Whenever a scan is incremented or decremented upon assignment, the tally of
the <residual count> is not counted to reflect the skip value in the pointer
expression.

Example:

If reading an 80-column card

SCAN PA:PA+6 FOR 80 WHILE IN ALPHA;

would scan the 86th character before stopping on <max count> condition.

For this reason, a scan statement being used in a repetitive block would be
written as follows:

SCAN PA:PA+N FOR CNT:CNT-N WHILE GTR "O";

In this case, PA would be incremented by N while on each execution CNT would
first be decremented by N. Therefore, a count of 80 for CNT would be accurate
to scan an SO-character card.

100

8.0 STRING TRANSLATE STATEMENT

The B 6700 handles the BCL, EBCDIC, and USASCII character sets. Internal
translation from one character set to another is done by the use of software
translation tables.

The string translate statement employs hardware speed in the search of a
software table in order to translate at high speed. At the present time
there are two tables resident in the system which can be called program
matically. These tables are as follows:

a. EBCDICTOBCL

b. BCLTOEBCDIC

8.1 Translator Table

(EBCDIC to BCL).

(BCL to EBCDIC).

The translator table is an array that is 16 words long for BCL and 64 words
long for EBCDIC. A table word is laid out as follows:

0 1 2 3 Character Position

w x y z Translate Character

The indexing into the table is done in the following manner for each
character to be translated:

Input character in eight-bit code: J_ Points to the array word in EBCDIC
6 to BCL translation.
5 Points to the array word in
~ BCL to EBCDIC translation.
~

3 Array base plus increment.
T
~ Points to character within

0 the word.

Take the EBCDIC 1 which is (1111 0001).

a. The (---- --01) would select ntunber one character position.

b. The (1111 00--) would be added to the array base address as
BASE + 60 (binary value of "111100") for EBCDIC translation.

In the above chart the X would be substituted for the EBCDIC "l" input.
The index would be TABLE [60], character one.

101 8-1

8.2 String Translate Syntax and Example

Syntax:

REPLACE <source> BY <destination> FOR <unit count> WITH <translate part>;

Example:

REPLACE PA BY PB FOR 30 WITH BCLTOEBCDIC;

REPLACE PB :=POINTER (ARA,6) BY PA :=POINTER (ARB [2], 8) FOR CHARLENGTH

WITH EBCDICTOBCL;

Note that the pointer bit value denotes the bit size of each character.

8.3 Multiple Assignments

8-2

The REPLACE statements can have multiple <string relation> expressions
following the pointer expression.

Examples:

REPLACE PA BY PB BY "ABC" FOR 3, "XYZ" FOR 3;

.REPLACE DATE BY "JANUARY ", DAY FOR 2 DIGITS, ", 1971" FOR 1 WORD;

102

~.o POINTER-VALUED ATI'RIBUTES

The file attribute TITLE is a pointer-valued attribute and is accessed
without a pointer assignment statement. The syntax for this expression
follows.

Syntax:

REPLACE <file name>. TITLE BY "<title list>.";

Example:

REPLACE DEST.TITLE BY "NEWTITLE/ONE/TWO.";

REPLACE SORCE.TITLE BY "CARDS.";

9.1 A title may be assigned also from an array in the following manner.

BEGIN

POINTER PA;
ARRAY ARA [0:5];
FILE OUTTAPE;
REPLACE PA:= POINTER (ARA,8) BY "NEWTAPEFILE";
REPLACE OUTTAPE.TITLE BY PA FOR 11, ".";
etc •••

This would change the orginal title of the file OUTTAPE.to a new title
NEWTAPEFILE. Notice that in each case the name must be terminated by
a period and that a limitation of 17 characters maximum is placed on
the number of characters used in the title.

103 9-1

10.0 COMPARE EXPRESSIONS

When the interrogation of a string of characters is necessary, one of the
following statements is used.

a. IF <pointer expression> <boolean relation> <string> THEN ..•
IF PA= "CARDS" THEN .•. ELSE ••• ;

b. IF PA:PA:= POINTER (ARA) NEQ PB:PB FOR 6 THEN

c. IF PB:= POINTER (ARB) EQL "NEXT ITEM" TiiEN .••

d. IF PA:PB EQL "ABCDEF" FOR 12 THEN •••

The use of these expressions is treated like the use of a normal IF
statement. The pointer terms are used to find the selected characters
to be scanned. After the pointers are set, a character-by-character
compare is made. The outcome of this comparison is used to determine
whether or not the THEN or ELSE branch of the statement is to be
executed.

104 10-1

11.0 DELTA FUNCTION

The DELTA function will return to the program the amount of character dis
placement between the two pointers declared.

The statement is as follows:

DELTA (Pl, P2);

where Pl and P2 are pointer parameters.

SB:: ABCDEF GHIJKL MNOPQR

' ' A B

The expression DELTA(A,B) would return 7.
The expression DELTA(B,A) would return -7.

Examples:

IF DELTA(A,B) NEQ 0 THEN •..•

SCAN PA:PB+DELTA(A,B) FOR .•••

SCAN PA:PB FOR J: DELTA(PA:PB) WHILE

J := DELTA(PA:PB);

105 11-1

12.0 TYPE TRANSFER FUNCTIONS USING POINTERS

Whenever an alpha character is needed for arithmetic expressions, a con
version to arithmetic notation is required.

The integer function handles this.

INTEGER (PE,AE)

where PE • Pointer Expression and AE • Arithmetic Expression for number
of characters to translate.

Example:

BEGIN

INTEGER I;
POINTER PA;
ARRAY ARA [O;l];

REPLACE PA:=POINTER(ARA) BY "ABC63D EFGHIJ";
I :=INTEGER (PA+3,2);

This will convert the 63 to a 77 octal and store it in I.

106 12-1

13.0 LIST STATEMENTS USING POINTERS

Pointer identifiers can be used in read and write statements as the list
identifiers. These statements must be used with a format other than a "*"
Note: The format prevails and controls the termination of the
read/write statement.

The following formats can be used with pointer expressions.

a. Type A or C. The number of characters specified by the W field are
transferred; the pointer is used as the starting
character location.

The input is considered type ALPHA; the bit configuration
is determined by the pointer assignment statement.

b. Type~·

c. Type V.

Similar to type A except that a word transfer takes
place.

Used for controlled editing.

107 13-1

14. O 11~; TNG J> I CTlJRE]))ENT IF I ERS

With a pointer expression, a transfer of characters from one ·string to
another can be Jone by using a picture identifier to edit the data during
the transfer. This facility allows the programmatic insertion of periods,
conunas, dollar signs, etc., as desired.

Syntax:

<string statement>::= REPLACE <destination> BY <source> WITH
<picture identifier>

14.1 Picture Declaration

The editing string is shown in the picture declaration with an identifier.
The syntax for this construct is as follows:

<picture declaration> ::=PICTURE <identifier>(<picture>)
or

<picture declaration> ::=PICTURE <identifier> (<picture>), <identifier>
(<picture>) etc ••••

Example:

BEGIN
REAL A,B,C;
PICTURE CHECK (FFBOIAA);
PICTURE FINAL (F(3)IA(2)), SUB (A(3)I);
INTEGER I,J;
etc.

A picture consists of a named string of editing symbols which are enclosed
in parentheses. The named string is composed of a mixture of five types
of control characters.

a. Introduction codes.

b. Control characters.

Ce Single picture characters.

d. Picture characters.

e. Picture skip characters.

14.2 Picture Editing

The following operations can be implemented by the use of pictures.

a. Unconditional character moves.

b. Move characters with leading zeros.

c. Move characters with leading zeros and floating character insertions.

108 14-1

d. Move characters with conditional character insertion.

e. Move characters with unconditional character insertion.

f. Move numeric part of character only.

g. Skip source characters (forward or reverse).

h. Skip destination characters forward.

i. Insert overpunch sign on previous characters.

14.3 . Introduction Code

14-2

There are six letters (called introduction characters) that are used to
introduce characters into a destination string. The introduction characters
are as follows:

B I p I M I c I u I N

These characters are used to instruct the system·to do a specific task on
the present character within the string. The syntax of the construct
follows:

::=<introduction code> <new character>

The meaning of each introduction code follows:

B - Replacement for leading zeros.
C - Conditional insertion of new character.
N - Unconditional insertion of new character.
M - Insert new character if field is minus • .
P - Insert new character if field is plus.
U - Special floating character insertion.

(SPACE)
(,)
(.)
(-)

(+)

($)

After each meaning above, a default value for an introduction character
is shown in parentheses. This character is assumed to be the new character,
unless assigned another character within the string.

109

Example:

If the introduction code is N and the new character is O, then the
construct would be as follows:

NO

By using this construct within a string

"IIINOIN. II" in the picture would cause .
" ••• 0 •• " to be written into the destination string.

The default value for N = (.); this generates the three periods when
.inserted by I. However, N was given a new picture of O. Therefore, a
0 was inserted next and then N was reassigned back to a period to
complete the last two periods.

14.4 Picture Character

Picture characters are used with the introduction code· to control the editing
of the source string. The syntax for this follows:

::=<picture character>(<repeat part>)

The picture characters listed below perfonn the following actions:

A - Move <repeat field> characters from source to destination.

9 - Move <repeat field> numeric portion only of the source character
to destination.

E - Editing Move. For <repeat field> count move numeric portion of
character from source to destination with the following editing:

a. Suppress leading zeros by inserting a B character.

b. If the field is positive, then insert a P character in
front of first nonzero character.

c. If the field is negative, then insert an M character in front
of the first nonzero character.

d. At the first nonzero character, end the float action and
transfer characters from source to destination to exhaust
<repeat field>.

Remember, by default, B = blank, P = +, and M = - above.

110 14-3

F - Editing Move. Insert $. This is similar to E above with the
following actions:

a. Suppress leading zeros by inserting a B character.

be At the first non-numeric character, insert a U character
($ by default) before character and transfer characters
as in E.

D - If the E or F float operation was terminated by a nonzero, then
insert a C character(,).

If E or F terminated on repeat field count, then insert a B
character (blank).

R - If the E or F operation was terminated by a nonzero, then insert
the M character (-).

If the E or F terminated with exhausted repeat field, then
insert a P character (+).

I - Insert the N character (.) unconditionally.

X - On input operations, skip the destination field forward by the
number of characters indicated in repeat field count.

On output operations, insert repeat field count of blanks in
the string.

14.S Control Characters

Two characters are used to force special control operations into the stream.

Q - This forces a sign overpunch to be placed in the preceding char
acter, if the field is negative.

- This reinitiates the placement of leading zeros into the stream.

14.6 Single Picture Character

14-4

There are two characters which are used without repeat fields. These
characters are as follows:

J - If an E or F float operation has not inserted a float character,
then stop the float operation and insert the U character ($). If
the U character has been inserted, then this character is a no
operation character.

S - If the field is plus, insert a P character {+); otherwise insert
an M character (-).

111

14.7 Picture Skip Characters

There are two skip characters used, and these perfonn the following action:

< - Skip the source pointer backward by the repeat field count.

> - Skip the source pointer forward by the repeat field count.

14.8 Picture Semantics

Note: At the time this manual was being written, the picture constructs
were not fully implemented on the B 6700; therefore, these constructs
were not tested. The following description was written, however, to give
the user some insight about the purpose of picture c'latises and their use.
The statements described here will probably need modification if they are
to be compiled successfully.

Picture constructs are used principally in banking and payroll applications,
particularly in editing the dollar quantity on checks.

As an example, consider setting up a string of digits to write the amount
on a check. The quantit~r 000164375 is used to print $1643.75. Also,
000000065 is to be printed $.65. In order to do this, a picture declara
tion would appear as follows:

PICTURE CHECKTOTAL (F(7)JIA(2));

Example:

BEGIN
REAL A,B,C;
PICTURE CHECKTOTAL (F(7)JIA(2));

REPLACE PA:PA-BY PB:PB FOR 9 WITH CHECKTOTAL;

END

The following actions should take place.

a. The "F(7)" indicates scan the first seven characters for a nonzero
digit; when nonzero digit is encountered then add the preceding $
sign and transfer the remaining characters to exhaust the repeat
field.

b. If the "F" <repeat count> has been exhausted and no "$" inserted,
then unconditionally insert the "$".

112 14-5

14-6

c. In either case, now insert the N character, which is the
period (.) .

d. Transfer the last two digits.

Therefore,

123456789 would be edited as
000006789 would be edited as
000000089 would be edited as
000000000 would be edited as

Example:

$1234567.89
$67.89

$.89
$.00

Suppose a different format were desired where

123456789 would be edited as $1234567.89
000006789 would be edited as •••• $67.89
000000789 would be edited as •••• ~$7.89
000000089 would be edited as ••••• $0.89

The picture for this would be as follows:

(B.FFFFFFJAIAA)

or

(B.F (6)JAIA(2))

113

15.0 POINTER EXAMPLES

This section includes tested pointer sentences and brief write ups on
their use.

15.1 The following is a define construct used in scanning an input card for
free-fonn fonnat words.

DEFINE
SCN(N) =SCAN PA:PA+N FOR LM:LM-N UNTIL GEQ "A"#,
RPL(H) =REPLACE PB BY PA FOR N:H WHILE GTR "Z" #,
CKATT(ST, SCNLG, ERNO, RPLG, CND, CODE) =

IF PA=ST THEN
BEGIN
SCN(SCNLG); IF TQGGLE THEN ERR(ERNO)

ELSE RPL(RPLG);
IF PA LEQ "Z" OR CND THEN ERR(ERNO) CODE
SCN(N); SETATT :=TOGGLE; GO FOUND;
END; #;

COMMENT OF CKATT
ST IS THE STRING TO BE MATCHED ON THE CARD,
SCNLG IS THE NUMBER OF CHARACTERS IN THE STRING,
ERNO IS THE CASE # OF THE ERROR MESSAGE IN ERR,
RPLG IS THE LENGTH OF NUMERIC DATA TO BE TRANSFERRED,
CND IS CHECK ON THE CONVERTED VALUE OF NUMERIC DATA,
CODE IS A TEST CODE FOR NUMERIC DATA LIMITS;

A call on this define would be written as follows:

CKATI("PARITY",6,10,2,T:=INTEGER(PB,N:=l)<O OR T>l,
ELSE S.PARITY:=T;);

The information on the scanned card would r~ad:

PARITY = 1 (any place on the card)

Initially, the value of LM:=80, and the result of the operation would set a
1 into S.PARITY. The construct would call procedure ERR, if TOGGLE was set,
indicating that a count of 80 was reached, or if Twas greater than 1 (T>l),
or if Twas less than 0 (T<O).

114 15-1

1~.2 If it is desired to use free-fonn fonnat within a field, then the following
construct can be used.

15-2

Suppose that columns 20 through 25 of a card make up a field called CFIELD.
The characters "----16" or "000016" could be punched in columns 20 through
25. However, it is easier to start in column 20 and punch "16" and then use
pointers to determine the size of the number in significant digits.

BEGIN

END.

POINTER TMP;
INTEGER I,J;
DEFINE P = POINTER#;
ARRAY TM(O:l3);

TMP := P(TM);
SCAN TMP:TMP+20 FOR I:6 UNTIL GTR "0";

% THIS FIND FIRST NONZERO DIGIT AFTER COL 20
SCAN TMP FOR J:I UNTIL LSS "0";

% THIS COUNT DIGITS UNTIL BLANK
CFIELD := INTEGER(TMP,(I-J);

%(I-J) DETERMINES VALID DIGITS TO CONVERT

115

